Items in eScholarship@BC will redirect to URBC, Boston College Libraries' new repository platform. eScholarship@BC is being retired in the summer of 2025. Any material submitted after April 15th, 2025, and all theses and dissertations from Spring semester 2025, will be added to URBC only.
We classify genus-two L-space knots in S3 and the Poincare homology sphere.This leads to the first and to-date only detection results in knot Floer homology for knots of genus greater than one. Our proofs interweave Floer-homological properties of L-space knots, the geometry of pseudo-Anosov maps, and the theory of train tracks and folding automata for braids. The crux of our argument is a complete classification of fixed-point-free pseudo-Anosov maps in all but one stratum on the genus-two surface with one boundary component. To facilitate our classification, we exhibit a small family of train tracks carrying all pseudo-Anosov maps in most strata on the marked disk. As a consequence of our proof technique, we almost completely classify genus-two, hyperbolic, fibered knots with knot Floer homology of rank 1 in their next-to-top grading in any 3-manifold. Several corollaries follow, regarding the Floer homology of cyclic branched covers, SU(2)-abelian Dehn surgeries, Khovanov and annular Khovanov homology, and instanton Floer homology.