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We classify genus-two L-space knots in S3 and the Poincaré homology sphere.

This leads to the first and to-date only detection results in knot Floer homology for

knots of genus greater than one. Our proofs interweave Floer-homological proper-

ties of L-space knots, the geometry of pseudo-Anosov maps, and the theory of train

tracks and folding automata for braids. The crux of our argument is a complete

classification of fixed-point-free pseudo-Anosov maps in all but one stratum on the

genus-two surface with one boundary component. To facilitate our classification, we

exhibit a small family of train tracks carrying all pseudo-Anosov maps in most strata

on the marked disk. As a consequence of our proof technique, we almost completely

classify genus-two, hyperbolic, fibered knots with knot Floer homology of rank 1 in

their next-to-top grading in any 3-manifold. Several corollaries follow, regarding the

Floer homology of cyclic branched covers, SU(2)-abelian Dehn surgeries, Khovanov

and annular Khovanov homology, and instanton Floer homology.
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Chapter 1

Introduction

1.1 Context

Heegaard Floer homology, defined by Ozsváth–Szabó in [OS04d], is a package

of algebraic invariants for 3-manifolds and knots/links inside of them. Structural

properties of the invariants are often closely related to geometric properties of 3-

manifolds and knots/links. For example, Heegaard Floer homology has proven ex-

ceptionally useful for understanding Dehn surgery relations between 3-manifolds (see

any of [OS04a] [OS04c] [Han23] [NW15] [BS22] [Gre13] [Cau23], among many others).

A 3-manifold with very simple Heegaard Floer homology is called an L-space: S3,

the Poincaré homology sphere P , and lens spaces are all L-spaces. A knot K which

admits a non-trivial surgery to an L-space is called an L-space knot : the unknot, torus

knots, and the pretzel knot P (−2, 3, 7) are L-space knots in S3. The study of L-space

knots is intimately related to much recent progress on the Berge conjecture ([Gre13]

[Cau23]), the cosmetic surgery conjecture ([Han23] [NW15]), and several other deep

conjectures in 3-manifold topology and knot theory.

The geometry of L-space knots in S3 (or, more generally, integer homology sphere

L-spaces, like P) is known to be tightly constrained. For example, any L-space knot
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1.2. Summary of results

is fibered and strongly quasipositive, and the coefficients of its Alexander polynomial

each lie in the set {−1, 0, 1} ([Ni07] [Ghi08] [OS04a] [Hed10] [Tan11]). These proper-

ties together immediately lead to a classification of L-space knots in S3 with Seifert

genus at most one: the unknot and the trefoil are the only such knots. However,

classification of L-space knots of genus two or more remained elusive for the next

decade-and-a-half, or so.

Recent work of Baldwin–Hu–Sivek [BHS21], Ni [Ni22], and Ghiggini–Spano [GS22]

connects the structure of the Floer homology of a fibered knot (including all L-space

knots) to fixed-point properties of a corresponding surface map (the return map of

the fibration of the knot complement). This connection allows us to use tools from

surface dynamics to study L-space knots.

When K is a hyperbolic L-space knot, the corresponding surface map is pseudo-

Anosov (see Chapter 2 for a definition). In this case, we may count fixed points of the

map combinatorially, using the construction of train tracks originally due to Thurston

[Thu88], and later developed by Bestvina–Handel [BH95] and Penner–Harer [PH22],

by Ko–Los–Song [KLS02] and Ham–Song [HS07] on the marked disk, and by many

others. In other words, we can use structural properties of train tracks and their

corresponding maps to prove results about L-space knots. The aim of this thesis is to

do just that: we classify genus-two L-space knots in S3 and P , obtained by studying

train tracks and fixed points of surface maps.

1.2 Summary of results

Here, we include a brief summary of our main results, and some applications.

Much of the work in the rest of this document is taken directly from the papers

[FRW22] and [Rei23], the first of which represents joint work with Ethan Farber and

Luya Wang.
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1.2. Summary of results

As stated in the previous section, our main goal is to classify L-space knots in

genus two. Here is what we will prove:

Theorem A. The torus knot T (2, 5) is the only genus-two L-space knot in S3. The

order-three Seifert-fiber K ⊂ P (considering P as a small Seifert-fibered space) and

the torus knot T (2, 5) ⊂ B3 ⊂ P are the only genus-two L-space knots in P .

As mentioned in the previous section, we prove Theorem A by counting fixed

points of surface maps in genus two. The following definition captures the key con-

nection:

Definition 1.2.1. Let K be a hyperbolic, fibered knot in a 3-manifold Y . The

fibration of the exterior of K is described by an open book decomposition (S, h),

where S is a compact surface with one boundary component, and h : S → S is freely

isotopic to a pseudo-Anosov map ψh. We say that K is fixed-point-free (FPF for

short) if ψh has no fixed points in the interior of S.

By work of Baldwin–Hu–Sivek [BHS21], Ni [Ni22], and Ghiggini–Spano [GS22],

we know that hyperbolic L-space knots are FPF. By work of [Hed10] and [Tan11], we

know that L-space knots in S3 and P have non-zero fractional Dehn twist coefficient:

c(K) ̸= 0. So, we will show:

Theorem B. Let K be a hyperbolic, genus-two, fibered knot in S3 or P . If the

fractional Dehn twist coefficient c(K) ̸= 0, then K is not FPF.

Corollary 1.2.2. There are no genus-two hyperbolic L-space knots in S3 or P .

Theorem A follows quickly from Corollary 1.2.2, by examining the geometry of

the knot exterior of any candidate genus-two L-space knots. Corollary 1.2.2 in turn

follows quickly from Theorem B after applying the relevant Floer-theoretic results.

Both of these proofs are carried out in subsection 2.1.3. The proof of Theorem B, on

the other hand, is much more involved, and takes up the bulk of this thesis.
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1.2. Summary of results

In the process of proving Theorem B, we obtain the following classification of all

FPF maps in genus two, in most strata:

Theorem 1.2.3. Let h : S → S be a pseudo-Anosov mapping class on the genus-two

surface with one boundary component. If the pseudo-Anosov representative ψh has

no interior fixed points, then one of the following is true:

• The invariant foliations of ψh have 1-pronged or 6-pronged boundary

• h or h−1 is conjugate to the lift of ∆4k+2σn+2
1 σ2σ3σ4σ1σ2σ3σ

2
4 for n ≥ 0, k ∈ Z

• h or h−1 is conjugate to the lift of ∆4k+2(σ4σ3)
2(σ2σ1)

−2 for k ∈ Z

• h or h−1 is conjugate to the lift of ∆4k+2σ−3
1 σ−1

2 σ−1
3 σ2(σ3σ4)

2 for k ∈ Z

• h or h−1 is conjugate to the lift of ∆4k+2(σ4σ3σ
−1
1 σ−1

2 )2 for k ∈ Z

This fixed point classification represents significant progress toward the general

“botany problem” of knot Floer homology in genus two, in any 3-manifold. Combining

the previous stated results with [Ni20] and some of the work from Chapter 3, we have:

Corollary 1.2.4. Let K be a null-homologous knot of genus-two in a 3-manifold Y .

Suppose that the exterior of K is hyperbolic, and denote by S a genus-two Seifert

surface for K. If rk ĤFK (K, [S], a) = 1 for a = 1, 2 then K is fibered, and either:

• The invariant foliations of its monodromy have 6-pronged boundary, and the

dilatation of its monodromy is a root of ∆K(t) = t4 − t3 ± |H1(Y )|t2 − t+ 1

• The monodromy of K is conjugate to one of the maps in Theorem 1.2.3

The same techniques we use in this paper can surely be applied to study the

6-pronged boundary case, to complete the aformentioned botany problem. In the

special cases of S3 and P , this almost-complete solution to the botany problem can

be summarized as a “detection result” for knot Floer homology:

4



1.2. Summary of results

Corollary 1.2.5. Each of the knots in Theorem A is detected by knot Floer homol-

ogy, in the following sense: if K is one of the knots from Theorem A, and K ′ is any

knot in S3 or P with ĤFK(K ′;Z/2Z) ∼= ĤFK(K;Z/2Z), then in fact K ′ = K.

One of the central tools in the proof of Theorem B is the theory of train tracks

for pseudo-Anosov braids, including a theory of tight splitting developed in Chapter

6. Roughly, we find canonical train tracks that carry all pseudo-Anosovs with certain

singularity data, which allows us to simplify our fixed point analysis significantly.

We believe these techniques are broadly applicable elsewhere in the study of surface

dynamics. For example:

Theorem 1.2.6 (cf. Theorem 4.2.1). Let ψ be a pseudo-Anosov map with singularity

type (4; ∅; 32) (see Chaper 2 for singularity type conventions). Then, ψ is conjugate

to a map carried by the lift of the Peacock train track depicted on the left in Figure

4.4. A similar statement holds for the closed genus-two surface.

Theorem 1.2.6 follows from a special case of a more general theorem regarding

train tracks for pseudo-Anosov maps on the marked disk:

Theorem C. Let ψ be a pseudo-Anosov on the marked disk. Assume that the invari-

ant foliations of ψ have at least one k-pronged singularity away from the boundary

with k ≥ 2. Then, ψ is carried by a standard train track τ with no joints (see Section

2.2 for the definitions of standard tracks and joints).

Indeed, we use Theorem C to show that, in each of the strata (2; 15; 3), (1; 15; 4),

and (1; 15; 32) on the 5-marked disk, all pseudo-Anosovs in that stratum are carried

by a single train track. Theorem 1.2.6 then follows by applying Theorem C to the

stratum (2; 15; 3), and briefly considering the geometry of the singularities under the

Birman–Hilden correspondence in that case. See the end of Chapter 6 for more details.

Finally, it is worth mentioning the following very pleasing result, which follows

from combining Theorem C with unreleased work of Farber–Winsor (which itself is

5



1.2. Summary of results

an application of the techniques of Chapter 6):

Theorem 1.2.7. Any pseudo-Anosov on the n-marked disk with singularity type

(n−2; 1n; ∅) is conjugate to a map carried by a standard “interval-like” train track (i.e.

a track where each vertex of a punctured monogon has valence two). In particular,

any pseudo-Anosovs on the punctured disk is conjugate to a map carried either by a

standard track with no joints, or by an interval-like track; and which type of track is

governed only by the singularity type of the map.

This carrying result could be used in tandem with the techniques of Chapters

4.2 and 5 to finish the 6-pronged boundary case of Theorem 1.2.3, obtaining a com-

plete classification of FPF maps in genus two with non-zero fractional Dehn twist

coefficient. This would complete the botany problem described in Corollary 1.2.4.

1.2.1 Applications to the Floer homology of branched covers

For a knot K ⊂ S3, let Σn(K) denote the n-fold cyclic cover of S3 branched along

K. There has been much interest recently in the Floer homology of Σn(K) in terms

of K. For example, Boileau–Boyer–Gordon have studied extensively in [BBG19a] and

[BBG19b] the set of all integers n ≥ 2 such that Σn(K) is an L-space (see also e.g.

[IT20] and [Pet09]). One question that has persisted in this area is the following:

Question 1.2.8 (Boileau–Boyer–Gordon, Moore). Can Σn(K) be an L-space for K

a hyperbolic L-space knot?

Combining Theorem A with ([BBG19a], Corollary 1.4) yields the following complete

answer to this question for n > 2:

Corollary 1.2.9. If K is an L-space knot and Σn(K) is an L-space for some n > 2,

then K is either T (2, 3) or T (2, 5). In particular, K is not hyperbolic.

6



1.2. Summary of results

1.2.2 Applications to instanton Floer theory

For a 3-manifold Y , letR(Y ) = Hom(π1(Y ), SU (2)) denote the SU (2)-representation

variety. We say that a 3-manifold Y is SU (2)-abelian if R(Y ) contains no irreducibles.

The name is motivated by the fact that Y is SU (2)-abelian if and only if every

ρ ∈ R(Y ) has abelian image.

Following work initiated by Kronheimer–Mrowka in their proof of the Property

P conjecture [KM10], Baldwin–Li–Sivek–Ye [BLSY21], Baldwin–Sivek [BS21], and

Kronheimer–Mrowka [KM] proved that r-surgery S3
r (K) on a nontrivial knot K ⊂ S3

is not SU (2)-abelian for all slopes r ∈ [0, 3]∪ [4, 5) with prime power numerator, and

for some additional slopes r ∈ [3, 4).

The key theory which facilitates most of these results is the instanton Floer homol-

ogy of the surgered manifold S3
r (K) (and related techniques arising from this theory,

as in [KM]). Combining Theorem B with ([BLSY21], Proposition 2.4) allows us to

prove an analogue of Theorem A for instanton Floer homology:

Corollary 1.2.10. The torus knot T (2, 5) is the only genus-two instanton L-space

knot in S3, i.e. the only genus-two knot K ⊂ S3 for which dim I#(S3
r (K)) =

|H1(S
3
r (K))| for some r > 0.

Now, as described in ([BLSY21], Section 1.3), Corollary 1.2.10 completes the set

of slopes r for which S3
r (K) is not SU (2)-abelian, to all rational numbers r ∈ [0, 5)

with prime power numerator:

Corollary 1.2.11. Let K ⊂ S3 be a nontrivial knot, and r ∈ [0, 5) a rational number

with prime power numerator. Then, S3
r (K) is not SU (2)-abelian.

1.2.3 Applications to Khovanov homology

Khovanov homology is another algebraic invariant of links in S3, which has many

connections to Heegaard Floer homology. Often, detection results in one theory are

7



1.3. Outline

related to detection results in the other. In [BHS21], Baldwin–Hu–Sivek proved that

Khovanov homology with coefficients in Z/2Z detects T (2, 5). Combining Theorem

A with previous work of Baldwin–Dowlin–Levine–Lidman–Sazdanovic ([BDL+21],

Corollary 2), we can improve Baldwin–Hu–Sivek’s result from Z/2Z-coefficients to

Q-coefficients:

Corollary 1.2.12. LetK be a knot in S3. If Kh(K;Q) ∼= Kh(T (2, 5);Q) as bi-graded

Q-vector spaces, then K = T (2, 5).

We also obtain detection results in annular Khovanov homology. One may think

of T (2, 5) as the lift of the braid axis for the 5-braid B = σ1σ2σ3σ4 in S3, seen as

the double-branched cover over B̂ under the Birman–Hilden correspondence. From

this perspective, techniques of Binns–Martin in ([BM20], Theorems 10.2, 10.4, 10.7)

imply that annular Khovanov homology detects this braid closure:

Corollary 1.2.13. Let L ⊂ A× I be an annular link with AKh(L;Q) ∼= AKh(B̂;Q).

Then, L is isotopic to B̂ in A× I.

1.3 Outline

In Chapter 2, we review the necessary background and setup to understand the

rest of this thesis. In particular, if you are not familiar with some of the concepts

or notation in this outline, check there first. Within Chapter 2, in subsection 2.1.3,

we also prove Theorem A from Corollary 1.2.2, and Corollary 1.2.2 from Theorem

B. Both proofs are quick, so the bulk of this thesis is dedicated to proving Theorem

B, which is broken down into four smaller results: Theorems B1 — B4 contained in

Chapters 3 — 5. The proof also relies intimately on Theorem C, which is proved in

Chapter 6; but, the work in Chapter 6 requires developing new technology which we

will not need in great detail just to prove Theorem B. So, we reserve it for the end.

8



1.3. Outline

Here, we will describe how the results of Chapters 3 — 5 together prove Theorem B,

and then we will briefly summarize the main idea of Chapter 6.

1.3.1 Reducing Theorem B into Theorems B1 — B4

Let K be a hyperbolic, genus-two, fibered knot in S3 or P with fractional Dehn

twist coefficient c(K) ̸= 0. Suppose for the sake of contradiction that K is FPF— the

goal will be to show that no such K exists. Let (S, h) be the open book decomposition

associated toK, thought of as a fibered knot. By assumption, we know that h is freely

isotopic to a pseudo-Anosov map ψh : S → S, that c(h) ̸= 0, and that ψh has no

fixed points in the interior of S, where S is the genus-two surface with one boundary

component.

Because S3 and P are both L-spaces, we know by [HM18] that |c(h)| < 1. So,

because c(h) ̸= 0, it follows that c(h) ̸∈ Z. In particular, the invariant foliations of ψh

have more than one prong on ∂S. By Theorem 2.3.1, we then know h is symmetric,

and hence projects to a 5-braid β, thought of as a mapping class on the marked

disk D5. We can see that β is pseudo-Anosov, since h is, and in fact the invariant

foliations of the pseudo-Anosov representative ψβ lift to the invariant foliations for

ψh in a controlled manner. Specifically, the number of prongs on the boundary, and

at each marked point, double in the lift. It follows that the invariant foliations for ψh

have an even number of prongs at each marked point and on ∂S.

The Euler–Poincaré formula (see e.g. [FLP12]) then implies that the singularity

type of ψh is one of: (6; ∅; ∅), (4; ∅; 4), (4; 4; ∅), (4; ∅; 32), (2; ∅; 42), (2; 42; ∅), (2; 4; 4),

or (2; ∅; 34). The options (4; ∅; 4), (4; 4; ∅), and (2; 4; 4) can all be eliminated imme-

diately: the unique interior and/or marked 4-pronged singularity must be fixed by

ψh, so ψh has at least one interior fixed point. The option (2; 42; ∅) can also be elim-

inated easily: the two 4-pronged marked points must be swapped, so ψβ must swap

the projections of these two marked points on the disk. But, then β also swaps these
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1.3. Outline

marked points, so the closure β̂ is not connected (i.e. not a knot). So, the double

branched cover over β̂ is not S3 or P .

The remaining four singularity types are then: (6; ∅; ∅), (4; ∅; 32), (2; ∅; 42), and

(2; ∅; 34). These cases are the subject of our analysis in Theorems B1 — B4: we

will show that there are no pseudo-Anosov maps meeting the necessary criteria in

each case. Combining these four theorems with the analysis presented in this outline

completes the proof of Theorem B. We will present a brief summary of the techniques

used in each case.

1.3.2 The case (6; ∅; ∅)

For the singularity type (6; ∅; ∅), our arguments are significantly different from

the other three cases. Here, our analysis relies on two key facts, one of which is

quite special to the stratum (6; ∅; ∅). The first fact, due to Masur–Smilie [MS93], is

that for any pseudo-Anosov map with singularity type (6; ∅; ∅), the invariant folia-

tions are necessarily orientable. The second fact is an interpretation of the Lefschetz

Fixed Point Theorem by Lanneau–Thiffeault [LT11]: roughly, the Lefschetz index of

a pseudo-Anosov map at a fixed singular point can be understood in terms of how

the map rotates the separatrices at that point.

Because the invariant foliations of ψh are orientable, we can conclude that the

characteristic polynomial χ(ψh∗) of the action ψh∗ : H1(S) → H1(S) on homology

contains the dilatation λ(ψh) as a root. Lanneau–Thiffeault’s index calculation then

allows us to precisely pin down χ(ψh∗), and then conclude that λ(ψh) = λ2, the

minimal dilatation for any pseudo-Anosov in genus two. Lanneau–Thiffeault also

showed that the pseudo-Anosov realizing λ2 as its dilatation is essentially unique,

and Ham–Song [HS07] found a 5-braid α which realizes this dilatation.

After some work, we can then conclude that, in fact, ψh must be conjugate to the

lift of α (up to inversion, reversal, and adding Dehn twists about the boundary), and

10



1.3. Outline

then we can show that no such map yields an open book for S3 or P . In the middle

of our argument, we need to resolve a special case of a general problem of interest:

if two symmetric mapping classes are conjugate, are their projections to the marked

disk conjugate as braids? We resolve this question in the affirmative for braids of

braid index at most 6.

1.3.3 The remaining three singularity cases

For the next three singularity types, (2; ∅; 42), (4; ∅; 32), and (2; ∅; 34), we use

broadly similar arguments, so we can describe the ideas in parallel. This is where the

theory of train tracks becomes crucial, and in particular where we need to apply our

Theorem C. We work with the 5-braid β on D5, and the corresponding singularity

types of the braids in each case are (1; 15; 4), (2; 15; 3), and (1; 15; 32), respectively. In

each stratum, we are able to apply Theorem C to find a single train track that carries

all pseudo-Anosov braids with the right singularity type. For the strata (1; 15; 4) and

(2; 15; 3), this is essentially immediate. In the case of (1; 15; 32), however, we need to

do a bit more work, and in fact our argument requires us to examine the structure of

the folding automaton for train tracks in that stratum.

In each case, once we pin down a unique track τ carrying all pseudo-Anosovs,

we perform an extensive combinatorial analysis of train track maps carried by the

canonical track. The key idea is to examine the image ψβ(τ) immediately before

collapsing the image back onto τ . This idea is crucial, because it allows us to un-

derstand train track maps that are actually induced by homeomorpisms, and are not

just abstract graph-maps. The general problem of understanding when a train track

map is induced by a homeomorphism is hard, but on a case-by-case basis, there are

many ways to rule out maps that are not induced by any homeomorphism.

From the image ψβ(τ) immediately before collapsing, we can actually understand

the fixed points of the lift ψh, in terms of the trace of the transition matrixM(fβ) for

11



1.3. Outline

the train track map fβ : τ → τ induced by ψβ. The key result is Lemma 2.3.2, which

lies at the heart of our proof technique, and is used repeatedly throughout this paper.

The upshot is that, because ψh is assumed to be FPF, we know that the transition

matrix M(fβ) must have trace 0 (except in the final singularity type case– there, the

analysis is slightly more complicated, but follows the same general principle). Our

case analysis results in a complete list of pseudo-Anosov 5-braids which lift to FPF

maps in the cover (these are precisely the braids appearing in Theorem 1.2.3), and

then we can show that none of the lifted maps yield an open book decomposition

for S3 or P . This last step involves analyzing the candidate braids, using a quick

fractional Dehn twist coefficient consideration and basic techniques from knot theory,

to show that none of the braids close up to the unknot or T (3, 5).

1.3.4 The main idea of Chapter 6

Finally, we will say a few words about the techniques used in Chapter 6, in which

we prove Theorem C. The main idea is to define a tool, which we call tight splitting,

that preserves the conjugacy class of a pseudo-Anosov map, but produces a new train

track that carries it. The repeated application of tight splitting operations is what

allows us to find the desired train tracks that carry all pseudo-Anosovs with a fixed

singularity type, as in Theorem C: we keep performing tight splits until we end up

with a jointless track.

One can think of tight splitting as a special case of the more general operation

of splitting, which produces a new train track from an old one. Splitting is, roughly,

inverse to folding, and tight splitting specifically can be seen as walking backwards

along the folding automaton (see Chapter 5, or [HS07] or [KLS02] for more details).

The problem tight splitting solves is that, after a general splitting operation, if you

naively carry the split through from the level of tracks to the level of train track maps,

the map may no longer be tight, i.e. it may not actually be carried by the new train
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1.3. Outline

track. Tight splitting is then a way to identify when a split is tight, i.e. when the

new map is actually carried by the new track obtained from the split.

To develop the theory of tight splitting for our use case, the key idea is to examine

how a train track map induced by a homeomorphism behaves near the vertices of a

track, in order to understand when one can tightly split at a vertex. Specifically,

we show that you can always tightly split at a vertex of maximal valence (Corollary

6.2.9). Theorem C then follows by showing that for any map in one of the relevant

strata on the punctured disk, you can always tightly split at the vertex with the most

joints to produce (possibly after several tight splits) a conjugate map carried by a

track with one less joint. Repeated application then removes all joints.
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Chapter 2

Background and setup

2.1 Pseudo-Anosov maps, three manifolds, fibered

knots, and Floer theory

In this section, we will review the basic setup to understand most of the Outline

(Section 1.3), and to prove Theorem A from Theorem B. See the next two subsections

2.2 and 2.3 for a review of the theory of train track maps and how we will use them

in this paper.

Figure 2.1: The allowable singularities in the invariant foliations of a pseudo-Anosov
map. Non-marked interior singularities must have at least 3 prongs. Left: a 3-pronged
and a 4-pronged singularity. Center: a 1-pronged and a 2-pronged singularity at a
marked point. Right: a 1-pronged and a 2-pronged boundary component.
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2.1. Pseudo-Anosov maps, three manifolds, fibered knots, and Floer theory

2.1.1 Mapping classes, pseudo-Anosovs, and singularity types

Let S be a compact surface, possibly with boundary and/or with marked points.

The mapping class group Mod(S) is the group of isotopy classes of homeomorphisms

h : S → S which fix ∂S pointwise and permute the set of marked points. A mapping

class is an element of the mapping class group, and an n-braid is a mapping class on

the n-marked disk.

A map ψ : S → S is pseudo-Anosov if there is a constant λ > 1 and a pair of

transverse, measured, singular foliations (Fu, µu) and (Fs, µs) such that:

• ψ(Fu, µu) = (Fu, λµu)

• ψ(Fs, µs) = (Fs, λ
−1µs)

and the singularities of Fu and Fs are as described in Figure 2.1. We require that non-

marked interior singular points have at least 3 prongs, and that boundary components

consist of some number k ≥ 1 of 1-pronged singularities, which we often think of

collectively as a “k-pronged boundary.”

Locally, one should think of a pseudo-Anosov map ψ as stretching S in the direc-

tion of Fu and shrinking S in a transverse direction described by Fs. The constant

λ > 1 is called the dilatation of ψ, and records how much ψ stretches/shrinks S in

each direction. Because the invariant foliations are set-wise preserved by ψ, note that

ψ always permutes the set of singular points with a given number of prongs.

It will be convenient to refer to the singularity type of a pseudo-Anosov map ψ, by

which we mean the tuple recording the number of prongs at each singularity of Fu and

Fs. We will denote the singularity type of ψ by the tuple (b1, ..., br;m1, ...,mn; k1, ..., ks)

where the ith boundary component of ψ has bi prongs; the i
th marked point has mi

prongs; and the ith non-marked interior singularity has ki prongs. We will use ∅

if there are no singularities of a certain type, and we will use exponents to denote
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2.1. Pseudo-Anosov maps, three manifolds, fibered knots, and Floer theory

multiple singularities of the same type with the same number of prongs. For exam-

ple, the tuple (3; 15; ∅) indicates that Fu and Fs have a 3-pronged singularity at the

unique boundary component of S; five 1-pronged singularities at marked points; and

no non-marked interior singularities. The tuple (23; 2, 4; 32) indicates that Fu and Fs

have 2-pronged singularities on each of the three boundary components; a 2-pronged

singularity at one marked point, and a 4-pronged singularity at the other; and two

3-pronged singularities at non-marked interior points.

When S has non-empty boundary, pseudo-Anosov maps never fix ∂S point-wise,

and hence do not represent well-defined mapping classes. Nonetheless, the Nielsen–

Thurston classification demonstrates the ubiquity of pseudo-Anosov maps in the study

of mapping classes:

Theorem 2.1.1 ([Thu88]). Let S be a compact surface, possibly with marked points.

Any mapping class h ∈ Mod(S) is freely isotopic rel. marked points to a unique

homeomorphism ψh : S → S satisfying one of the following:

• ψnh = id for some power n.

• There is a collection of disjoint simple closed curves C on S for which ψh(C) is

isotopic to C.

• ψh is pseudo-Anosov

We call ψh the geometric representative of h, and we say that ψh is periodic in

the first case, and reducible in the second. These first two cases are not mutually

exclusive, but the pseudo-Anosov case does not overlap with either of them. We will

also refer to the mapping class h ∈ Mod(S) as periodic, reducible, or pseudo-Anosov

according to the Nielsen–Thurston type of ψh.

Remark 2.1.2. Note the use of free isotopy in the theorem statement: when S

has non-empty boundary, there are infinitely many mapping classes with the same
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2.1. Pseudo-Anosov maps, three manifolds, fibered knots, and Floer theory

geometric representative, which are all freely isotopic but non-isotopic rel. boundary.

Two mapping classes have the same geometric representative exactly when they differ

by a product of Dehn twists about components of ∂S.

2.1.2 Fibered knots and fractional Dehn twists

When ∂S is connected, and for any mapping class h ∈ Mod(S), we may associate

to h a fibered knot K in a 3-manifold Y . First, define Y ∼= S × [0, 1]/ ∼ where the

relation ∼ is defined by:

• (x, 0) ∼ (h(x), 1) for all x ∈ S

• (x, s) ∼ (x, t) for all x ∈ ∂S and all s, t ∈ [0, 1]

Then, define K ⊂ Y to be the image of ∂S in the quotient. Note that in this con-

struction, the knot exterior YK is homeomorphic to the mapping torusMh. Moreover,

any copy of S in the quotient Y is naturally a Seifert surface for K, of minimal genus.

Starting from a knot instead, we say that a knot K ⊂ Y is fibered if its exterior is

the mapping torus of a homeomorphism on a Seifert surface.

The pair (S, h) of surface and mapping class is called an open book decomposition

of the 3-manifold Y , or simply an open book. Many properties of the open book (S, h)

and its geometric representative ψh can be interpreted in terms of the fibered knot

K ⊂ Y . For example, Thurston’s geometrization of fibered 3-manifolds relates the

geometry of the knot exterior YK to the Nielsen–Thurston type of ψh:

Theorem 2.1.3 ([Thu98]). Let K ⊂ Y be a fibered knot with associated open book

(S, h). Then, the exterior YK ∼= Mh is:

• Seifert-fibered exactly when ψh is periodic

• Toroidal exactly when ψh is reducible
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2.1. Pseudo-Anosov maps, three manifolds, fibered knots, and Floer theory

1 2 3 3 1 2

ψh

Figure 2.2: An example where ψh acts as a 1/3 rotation on the boundary singular
points. The fractional part of c(h) is 1/3.

• Hyperbolic exactly when ψh is pseudo-Anosov

One dynamical aspect of ψh which is important to the geometry of K is described

by the fractional Dehn twist coefficient c(h). Roughly, c(h) measures how the ge-

ometric representative ψh behaves near ∂S. When ψh is pseudo-Anosov, we define

c(h) := n+m/k, where h acts as n full twists near ∂S; the invariant foliations of ψh

have k singular points on ∂S; and ψh acts as a m/k rotation on the cyclically-ordered

set of singular points on ∂S. An example is shown in Figure 2.2.

Note that when the invariant foliations of ψh have a single prong on ∂S, we

have c(h) ∈ Z, since there is no “fractional part.” Conversely, if c(h) ∈ Z then we can

conclude that ψh does not rotate the boundary singularity. Here are some well-known

properties of fractional Dehn twist coefficients:

Theorem 2.1.4 ([IK17][HKM07]). Let S be a compact surface, possibly with marked

points, and let h ∈ Mod(S) be a mapping class.

• c(h) is preserved under conjugation within Mod(S)

• c(id) = 0 and c(Dn
∂S ◦ hk) = n+ kc(h)

• If h admits a factorization into positive Dehn twists and half twists, then c(h) ≥

0. If h is also pseudo-Anosov, then c(h) > 0.

• If S has no marked points and the open book (S, h) supports a tight contact

structure, then c(h) ≥ 0. If h is also pseudo-Anosov, then c(h) > 0.
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Given a fibered knot K, we can define c(K) := c(h) where (S, h) is the open book

associated to K. The first property above implies that this definition is well-defined,

because isotopy of K amounts to isotopy and/or conjugation of h.

2.1.3 Floer theory, and Theorem A from Theorem B

Heegaard Floer homology, defined by Ozsváth–Szabó in [OS04d], is an invariant

ĤF (Y ) of a closed, oriented 3-manifold Y , and it takes the form of a graded vector

space over F = Z/2Z. The vector space decomposes over spinc-structures on Y , and

satisfies χ(ĤF (Y )) = |H1(Y ;Z)| when Y is a rational homology S3. In particular, we

have dim ĤF (Y ) ≥ |H1(Y ;Z)| for any rational homology sphere Y . When equality is

achieved, we call Y an L-space. For some concrete examples, S3, P , and lens spaces

are all L-spaces.

A knot K ⊂ Y which admits a non-trivial surgery to an L-space is called an

L-space knot, and in this case the geometry of K is quite constrained. For example,

combining results of [Tan11], [OS04b], [Ni07], and [Ni22], we have:

Theorem 2.1.5. Suppose that Y is an integer homology sphere L-space, and let

K ⊂ Y be an L-space knot with irreducible exterior. Then, we have:

• Every coefficient of the Alexander polynomial of K is 0 or ±1, the non-zero

coefficients alternate in sign, and the top two coefficients are non-zero

• K is fibered and the open book decomposition (S, h) for K supports a tight

contact structure

• If K is hyperbolic, then ψh has no interior fixed points

Corollary 1.2.2 now follows directly from Theorem B by applying Theorem 2.1.5:

proof of Corollary 1.2.2 from Theorem B. Let K be a genus-two, hyperbolic L-space

knot in S3 or P . Note that S3 and P are both integer homology sphere L-spaces,
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so Theorem 2.1.5 applies. We can thus conclude that K is fibered and FPF. Let

(S, h) be the open book associated to K, as a fibered knot. Since K is hyperbolic

by assumption, we know h ∈ Mod(S) is a pseudo-Anosov mapping class by Theorem

2.1.3. We also know that (S, h) supports a tight contact structure by Theorem 2.1.5.

It follows that c(K) = c(h) > 0 by Theorem 2.1.4. But, then K is a genus-two FPF

knot with c(K) ̸= 0, and no such knot exists by Theorem B.

And, we can now see how Theorem A follows quickly from Corollary 1.2.2.

proof of Theorem A from Corollary 1.2.2. Let K be a genus-two L-space knot in S3

or P which is not any of T (2, 5) ⊂ S3, K ⊂ P , or T (2, 5) ⊂ B3 ⊂ P .

First suppose K has irreducible exterior. Our goal is to show that K is hyperbolic,

so that we can apply Corollary 1.2.2 and conclude that no such knot exists. Any

irreducible knot exterior in P or S3 is hyperbolic, Seifert-fibered, or toroidal. And,

T (2, 5) ⊂ S3 and K ⊂ P are the unique genus-two knots in S3 and P , respectively,

with Seifert-fibered exterior. So, K must have either hyperbolic or toroidal exterior.

Suppose for the moment that K has toroidal exterior. It then follows from

Theorem 2.1.3 that the mapping class h ∈ Mod(S) is reducible. Thinking of the

Alexander polynomial ∆K(t) of K as the characteristic polynomial of the action

h∗ : H1(S) → H1(S), we can see that ∆K(t) is reducible (because the action of h∗ fixes

a nontrivial subspace corresponding to the fixed mutlicurve of ψh). However, one can

quickly compute using the constraints of Theorem 2.1.5 that ∆K(t) = t4−t3+t2−t+1,

which is irreducible. So, such a K does not exist.

In particular, if K has irreducible exterior, then K must be hyperbolic. But, there

are no hyperbolic L-space knots in S3 or P , by Corollary 1.2.2. So, we’ve shown that

the only genus-two L-space knots in S3 or P with irreducible exterior are T (2, 5) ⊂ S3

and K ⊂ P . And, because any knot in S3 has irreducible exterior, we may conclude

that in fact T (2, 5) is the only genus-two L-space knot in S3. So, what about L-space

knots with reducible exterior in P , then?
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Figure 2.3: Left: leaves of a fibered neighborhood near a switch. Center left: a fibered
neighborhood of a track τ . Center right: the image of the red edge is not transverse
to the leaves. Right: the image of the red edge is transverse to the leaves, and ready
to be collapsed onto τ .

Suppose, for the sake of contradiction, that K ̸= T (2, 5) ⊂ B3 ⊂ P is a genus-two

L-space knot in P with reducible exterior. Recall that any knot in S3 has irreducible

exterior, so we know immediately that K ⊂ P . And, because P is itself irreducible,

we can conclude that K must in fact be contained in a 3-ball: K ⊂ B3 ⊂ P . If K

has surgery to an L-space Y , we may write Y = P#Y ′, where Y ′ is surgery on K

thought of as a knot in B3 ⊂ S3. Since Y is an L-space, Y ′ must be an L-space as

well. In this case, K is isotopic in B3 ⊂ S3 to a genus-two L-space knot, and the only

such knot in S3 is T (2, 5), as demonstrated above.

2.2 Train tracks and maps, and standard tracks

2.2.1 Train tracks carrying mapping classes

Our eventual goal will be to classify fixed-point-free pseudo-Anosov maps in cer-

tain strata on the genus-two surface with one boundary component, in the spirit of

Theorems B and 1.2.3. To do that, we will use the theory of train tracks, which may

be thought of as a combinatorial perspective on the geometry of mapping classes.

A train track τ ⊂ S is a branched 1-manifold embedded in the interior of a compact

surface S. We will refer to the non-manifold points of τ as switches. Thinking of τ

as a graph whose vertices are its switches, there is a natural cyclic ordering on the
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2.2. Train tracks and maps, and standard tracks

edges adjacent to any given switch. We say that two edges of τ form a cusp if they

are adjacent at a switch, share a common tangent direction, and are adjacent in the

natural cyclic ordering.

A train path on a train track τ is a smooth immersion γ : [0, 1] → τ such that γ(0)

and γ(1) are switches. For example, any edge of τ is a train path. A train track map

f : τ → τ is a surjection such that for any train path γ : [0, 1] → τ , the composition

f ◦γ is also a train path. Fix an enumeration e1, ..., en of the edges of τ ; the transition

matrix M(f) is the matrix whose (i, j) entry is the number of times that the train

path f(ei) passes through ej.

A fibered neighborhood F (τ) ⊂ S is a tubular neighborhood of τ which is foliated

by intervals transverse to τ , away from the switches. The intervals are called leaves.

A geometric map ψh : S → S is carried by τ if ψh(τ) can be isotoped into F (τ) so

that the image is everywhere transverse to the leaves of the foliation. We say that

a mapping class h ∈ Mod(S) is carried by τ if its geometric representative is. See

Figure 2.3 for some local pictures, and then look at Figure 2.5 for an image of the

entirety of ψh(τ) ⊂ F (τ).

When a mapping class h is carried by τ , it induces a train track map fh : τ → τ ,

determined by the image ψh(τ) under the geometric representative. For an edge e of

τ , we define fh(e) to be the train path that the image ψh(e) ⊂ F (τ) collapses onto

under the natural deformation retraction F (τ) → τ . The induced train track map fh

completely determines ψh:

Theorem 2.2.1 ([BH95]). Let h, g ∈ Mod(S) be two mapping classes with geometric

representatives ψh, ψg. Suppose that h and g are carried by the same train track τ ,

and induce maps fh, fg : τ → τ . If fh = fg, then h and g are freely isotopic and

ψh = ψg.

Corollary 2.2.2. Let α, β ∈ Mod(Dn) be two n-braids which are carried by the

same track τ and induce the same train track map fα = fβ : τ → τ . Then, we have
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2.2. Train tracks and maps, and standard tracks

ψα = ψβ and α = ∆2kβ for some k ∈ Z, where ∆2 = (σ1...σn−1)
n is a full twist about

∂Dn.

Given a mapping class h ∈ Mod(S), we define the geometric data of h to be a

tuple (h, ψh, τ, fh) where ψh is the geometric representative of h, τ carries h, and

fh : τ → τ is the induced train track map. It should be noted that any mapping class

h is always carried by many different train tracks. But, if τ is a train track which

carries h, then the induced train track map fh is well-defined.

Train tracks which carry mapping classes, and train track maps which are induced

by mapping classes, are somewhat special. There are many train tracks which do not

carry any mapping classes. And, on any given train track, it is easy to produce train

track maps which are not induced by any mapping class. Indeed, the geometry of a

mapping class is determined by the geometry of a train track which carries it. For

example, when the mapping class is pseudo-Anosov, we have:

Proposition 2.2.3 ([BH95]). Let h be a pseudo-Anosov mapping class carried by τ .

If N is a connected interior (resp. peripheral) component of S \ τ , then τ has p cusps

along ∂N if and only if ψh has a p-pronged singularity in the interior of N (resp. a

p-pronged boundary in N).

For example, the train track in Figure 2.3 carries maps in the stratum (1; 15; 4):

the peripheral region has 1 cusp; each marked point lies in a monogon region; and

there is a unique non-marked interior region, which has 4 cusps. We will often refer

to a train track as belonging to a certain stratum, by which we mean it carries maps

in that stratum.

When a train track map is induced by a mapping class, much of the interesting

geometric information of the mapping class can be read from the train track map.

For example:
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2.2. Train tracks and maps, and standard tracks

Proposition 2.2.4 ([BH95][Los10][CC09]). Let (h, ψh, τ, fh) be the geometric data

of a mapping class. Then, the transition matrix M(fh) is Peron–Frobenius iff the

mapping class is pseudo-Anosov. In this case, the dilatation λ(ψh) is the largest

eigenvalue of M(fh), and the number of fixed points of ψh is bounded in terms of the

trace of M(fh):

1

2
tr(M(fh)) ≤ |Fix(ψh)|

2.2.2 Real and infinitesimal edges

Given a geometric map ψh, Bestvina–Handel in [BH95] construct a train track τ

which carries ψh. The key object of the Bestvina–Handel construction is an efficient

fibered surface associated to ψh. The fibered surface F ⊂ S is a deformation retract

of S which is decomposed into strips and junctions determined by ψh. Roughly, the

junctions are disks which record the periodic pieces of S under the action of ψh, and

the strips are rectangles foliated by lines parallel to the junctions.

Given a fibered surface F for a geometric ψh, we obtain a graph G by collapsing

each junction to a vertex and each strip to an edge. Bestvina–Handel explain how

to insert infinitesimal edges into each junction according to the geometry of ψh, so

that collapsing strips to edges and junctions to their infinitesimal edges forms a train

track τ which carries ψh. The edges of τ formed by strips are called real edges.

The structure of the real and infinitesimal edges of τ is crucial to the fidelity of

Bestvina–Handel’s construction. As the infinitesimal edges were inserted into periodic

pieces of the fibered surface, it follows that ψh sends infinitesimal edges to infinitesimal

edges. In particular, the train track map fh : τ → τ induced by ψh sends infinitesimal

edges to infinitesimal edges.

Moreover, the cusp structure of the infinitesimal edges in a given junction is

preserved under ψh. An infinitesimal polygon is a connected component of S\τ whose

boundary is a union of infinitesimal edges. By the Bestvina–Handel construction, ψh
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Figure 2.4: Some train tracks in the stratum (1; 15; 4). Left: a standard track with
a joint. Center: a non-standard track (with no joints). Right: a standard, jointless
track.

and fh send infinitesimal polygons of τ to other infinitesimal polygons with the same

number of cusps.

For the rest of the paper, we will restrict our attention to train tracks which

carry pseudo-Anosov maps. And, we will implicitly presuppose the structure of real

and infinitesimal edges of τ , as imposed by an arbitrary map carried by τ . The

infinitesimal edges will always be drawn in black, and the real edges in color. For

example, in the tracks in Figures 2.3 and 2.4, the real edges are shown in red and the

infinitesimal edges in black.

2.2.3 Standard and jointless tracks, and a carrying theorem

We say that a train track τ ⊂ Dn on an n-marked disk Dn is standard if:

• Every non-peripheral component of S \ τ is an infinitesimal polygon

• The switches of τ are precisely the vertices of the infinitesimal polygons

• At each switch, all adjacent infinitesimal edges are tangent to each other, all

adjacent real edges are tangent to each other, and no real edge is tangent to an

infinitesimal edge

• For each marked point p of Dn, there is a single edge of an infinitesimal polygon

vertically above p, and no other edge of τ is vertically above p.
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2.3. Branched covers and lifting train track maps

See Figure 2.4 for an example of a standard train track. The idea of standard

tracks originally appeared in [KLS02] (and later [CH08] and [HS07]) as a tool to

study dilatations of pseudo-Anosov braids. In their terminology, a track satisfying

the first three properties is standardly embedded and a track satisfying the third is in

standard position.

Standard tracks are useful, because they help us restrict our attention to a specific

collection of tracks, which we can enumerate. The key result that facilitates this

perspective is:

Proposition 2.2.5 ([KLS02]). Every pseudo-Anosov map on a marked disk is carried

by a standard train track.

So, if we want to understand pseudo-Anosov maps in a particular stratum, we

can instead study train track maps on standard tracks in that stratum. By further

considering the singularity structure of a stratum, we can dramatically improve this

enumeration.

A joint of a standard train track τ is a switch of an infinitesimal monogon sur-

rounding a marked point, which has more than one adjacent real edge. See Figure

2.4. Theorem C says that, in most strata on the marked disk, all pseudo-Anosovs are

conjugate to maps carried by tracks with no joints. This result will be central to the

techniques used in Chapters 3 — 5. However, it requires technology that lies outside

the scope of the proof of Theorem B, so we save it for the end, in Chapter 6.

2.3 Branched covers and lifting train track maps

2.3.1 Braids and the Birman–Hilden correspondence

We will be interested in studying fibered knots and mapping classes under branched

coverings. The Birman–Hilden correspondence describes the relevant operation in our
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2.3. Branched covers and lifting train track maps

setting. We may view the n-marked disk Dn as the quotient of a surface S via the

action of a fixed hyperelliptic involution ι : S → S. When a map h : S → S com-

mutes with ι, it projects to an n-braid β : Dn → Dn. In this case, we say that h is

symmetric. Every n-braid lifts to a symmetric map on a surface S of genus ⌊n−1
2
⌋

with 1 boundary component if n is odd, and 2 boundary components if n is even.

Here is how to interpret the correspondence from the perspective of knots and

3-manifolds. Suppose β lifts to h, where (S, h) is an open book decomposition for Y

describing the fibered knot K ⊂ Y . Then, Y is the double cover over S3 branched

along the braid closure β̂. And, K is the lift to Y of the unknotted braid axis for β

in S3 under this covering.

For example, S3 is the double branched cover over the unknot, so the 3-braid σ1σ2,

which closes up to an unknot, lifts to a genus-one open book decomposition for S3:

the binding of this open book is the trefoil in S3. Similarly, the 5-braid (σ1σ2σ3σ4)
3

closes up to T (3, 5), so this braid lifts to a genus-two open book for P (thought of as

the double cover branched over T (3, 5)): the binding of this open book is the order-

three Seifert fiber K from Theorem A. It will be helpful to note that the unknot is

the unique knot in S3 whose double branched cover is again S3; and T (3, 5) is the

unique knot in S3 whose double branched cover is P .

The Nielsen–Thurston class is preserved under the Birman–Hilden correspon-

dence, i.e. ψβ is pseudo-Anosov (resp. periodic, reducible) iff ψh is (resp. periodic,

reducible). In the case that ψh and ψβ are pseudo-Anosov, the invariant foliations

can be tracked through the lift, as well. Specifically, the number of prongs of the

foliations at the marked points double in the lift. For example, 1-pronged marked

points of ψβ lift to regular points of ψh; and 2-pronged marked points of ψβ lift to

4-pronged marked points of ψh. The number of boundary prongs double in a similar

manner. Away from the boundary, however, each non-marked singularity of ψβ lifts

to two singularities of ψh with the same number of prongs. So, for example, ψβ has
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2.3. Branched covers and lifting train track maps

singularity type (1; 15; 4) exactly when ψh has singularity type (2; ∅; 42). Analyzing

how ψβ and ψh twist near the boundary leads also to a relationship between fractional

Dehn twist coefficients: we always have c(β) = 2c(h).

Baldwin–Hu–Sivek in [BHS21] showed that, in genus two, most FPF pseudo-

Anosovs are symmetric:

Theorem 2.3.1 (Baldwin–Hu–Sivek). Let h ∈ Mod(S) be a pseudo-Anosov mapping

class on the genus-two surface with one boundary component. If the pseudo-Anosov

representative ψh is FPF and the invariant foliations for ψh have more than one prong

on ∂S, then h is symmetric.

It will be useful to note that, when c(h) ̸∈ Z, we know that ψh has more than one

boundary prong. It follows that Theorem 2.3.1 applies for any FPF pseudo-Anosov

mapping class h with c(h) ̸∈ Z.

2.3.2 Lifting standard tracks, and the trace lemma

Let (β, ψβ, τ, fβ) be the geometric data of a pseudo-Anosov n-braid. We will

explicitly construct related data (h, ψh, τ̃ , fh) for the lift h of β under the Birman–

Hilden correspondence. For simplicity, assume that τ is standard (though a similar

construction will work for non-standard tracks), and start by lifting τ to obtain two

copies of τ on S. Because we assumed τ to be standard, the two copies of τ in the lift

together produce a train track away from the marked points. But, near the marked

points, we see two copies of the infinitesimal polygons surrounding each marked point,

which we need to paste together coherently. To do this, simply replace each pair of

infinitesimal p-gons surrounding a marked point with a single infinitesimal 2p-gon, as

in Figure 2.6. If p = 1, instead replace the pair of monogons with a smooth point.

See Figure 2.5 for an example of a full lifted track τ̃ .

This construction produces a train track τ̃ for which edges come in pairs e1, e2 of

lifts of a single real edge e of τ ; the pairs satisfy ι(e1) = e2. Moreover, any train path
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2.3. Branched covers and lifting train track maps

fh

liftlift

fβ

Figure 2.5: Lifting a train track and train track map from D5 to S. Dashed edges
indicate the back side of the surface.

29



2.3. Branched covers and lifting train track maps

a1 a2
x1 x2

a1 a2

a1 b2

y1 y2

x1 x2

b1 a2

a1 b2

y1 y2

x2

x1b1 a2

Figure 2.6: Smoothing infinitesimal polygons near a marked point. Top: smoothing
monogons to a regular point. Bottom: smoothing bigons to a rectangle. In both
images, the involution ι is a 180◦ rotation about the marked point, and the side-
swapping edge in τ is x, which lifts to x1, x2 in τ̃ .

e(1)...e(n) in τ always lifts to exactly two train paths e(1)1...e(n)ni and e(1)2...e(n)nj

in τ̃ . These two train paths are distinguished by which “side” of τ̃ the paths start

on. Now, for an arbitrary real edge e of τ , let fβ(e) = e(1)...e(n). To construct

fh : τ̃ → τ̃ , simply define fh(ei) = e(1)i1 ...e(n)in to be the unique lift of fβ(e) which

starts on the same side of τ̃ as ψh(ei) does. An example of a lifted train track map is

shown in Figure 2.5.

The explicit construction of fh from fβ allows us to examine fixed point properties

of ψh in terms of the transition matrix M(fβ). Recall that a standard track on the

marked disk has a unique edge of an infinitesimal polygon above each marked point.

For the statement and proofs of the next two lemmas we will refer to these edges

as side-swapping edges : their key feature is that when a train path runs over a side-

swapping edge, it swaps to the “other side” of τ̃ . See Figure 2.6. The following lemma

will be crucial for our analysis.

Lemma 2.3.2 (The trace lemma). Let (β, ψβ, τ, fβ) be the data of a pseudo-Anosov

braid with lift (h, ψh, τ̃ , fh) on S. Suppose that τ is standard and that ψh has no

interior fixed points on S. Then, for any real edge e of τ , and between any two

occurrences of e in fβ(e), the image path fβ(e) must contain an even number of
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2.3. Branched covers and lifting train track maps

side-swapping edges.

Proof. Because ψh has no interior fixed points, we know M(fh) must be traceless, by

Proposition 2.2.4. In particular, for any real edge ei ∈ τ̃ , we know that ei does not

appear in fh(ei).

Now, note that every time fβ(e) passes over a side-swapping edge, the image fh(ei)

of either lift of e crosses over to the other side of τ̃ . So, if e appears in fβ(e) with an

odd number of side-swapping edges between adjacent appearances, then both lifts e1

and e2 appear in the image fh(e1) (and same for fh(e2)).

The following is a special case of the trace lemma as stated above. Because the

train tracks relevant to this paper will always have jointless monogons at all marked

points, it will be a very useful simplification.

Corollary 2.3.3 (The trace lemma for jointless monogons). Retain the same notation

and assumptions as in the previous lemma. If e is a real edge of τ which is incident

to a jointless monogon at a marked point, then e does not appear in fβ(e).

Proof. Suppose that e does appear in fβ(e). Because e is adjacent to a jointless

monogon, either there are two adjacent appearances of e, or fβ(e) ends on e. The

first case is not allowed by the previous lemma, and the second case produces a fixed

point in the lift, at the end of fh(ei).
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Chapter 3

The stratum (6; ∅; ∅)

The rest of this thesis will be devoted to proving Theorem B, as explained in

the outline (Section 1.3). From the argument in the outline, it suffices to consider

pseudo-Anosov maps in just four strata: (6; ∅; ∅), (2; ∅; 42), (4; ∅; 32), and (2; ∅; 34).

Our argument for the first of these strata, (6; ∅; ∅), will be a little different from the

next three. Instead of performing a careful combinatorial analysis of train track maps,

we will instead use more general geometric methods specific to this stratum. Our goal

is to prove:

Theorem B1. Let h ∈ Mod(S) be a pseudo-Anosov mapping class with geometric

representative ψh. Suppose that c(h) ̸= 0, and that ψh is FPF and has singularity

type (6; ∅; ∅). Then, (S, h) is not an open book decomposition for S3 or P .

Before turning to the proof of Theorem B1, it will be helpful to recall the Lefschetz

fixed point theorem for compact surfaces, which will be a key ingredient in our proof:

Theorem 3.0.1 (Lefschetz fixed point theorem). Let S be a compact surface and

f : S → S a homeomorphism. Let f∗ : H1(S;Z) → H1(S;Z) denote the induced map

on first homology. Then, we have:
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2− tr(f∗) =
∑
p=f(p)

Ind(f, p).

We will apply the Lefschetz fixed point theorem to read off information about the

action of a pseudo-Anosov on homology, from its dynamical properties. The relevant

result in this vein is an index calculation due to Lanneau–Thiffeault in [LT11]:

Proposition 3.0.2 (Lanneau–Thiffeault). Let ψ : S → S be pseudo-Anosov with

orientable invariant foliations, and let p be a fixed k-prong singularity of ψ. Denote

by ψ∗ : H1(S) → H1(S) the action on homology, and denote by ρ(ψ∗) the leading

eigenvalue of this action, i.e. the eigenvalue with greatest absolute value.

1. If ρ(ψ∗) < 0 then Ind(ψ, p) = 1; that is, every fixed point of ψ has index 1.

2. If ρ(ψ∗) > 0 then either:

(a) ψ fixes each prong and Ind(ψ, p) = 1− k < 0, or

(b) ψ cyclically permutes the prongs and Ind(ψ, p) = 1.

We can now use Lanneau–Thiffeault’s calculation to restrict the dilatation of the

pseudo-Anosov representative of a potential FPF knot K in Theorem B1:

Proposition 3.0.3. Let (S, h) be an open book decomposition for an integer homol-

ogy sphere Y . Suppose that c(h) ̸∈ Z, and that the pseudo-Anosov representative ψh

has singularity type (6; ∅; ∅) and is FPF. Then, ψh achieves the minimal dilatation λ2

among pseudo-Anosovs in genus two.

Proof. Let (S, h) be such an open book decomposition. Because ψh has singularity

type (6; ∅; ∅) by assumption, we may cap-off ψh to a pseudo-Anosov ψ̂h on the closed

genus-two surface Ŝ and extend the foliations preserved by ψh over the capping disk.

For this stratum on Ŝ, Masur-Smillie ([MS93]) prove that the foliations preserved by

ψ̂h, and therefore by ψh, are necessarily orientable. We will use this fact to apply the
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Lefschetz fixed point theorem and determine completely the Alexander polynomial of

the knot K corresponding to the open book (S, h).

BecauseK is a fibered knot by construction, the Alexander polynomial ∆K is equal

to the characteristic polynomial χ(ψh∗) of the action of ψh on homology. Because K is

a genus-two fibered knot in an integer homology sphere, ∆K is a monic, degree-four,

palindromic polynomial satisfying ∆K(1) = ±1. Moreover, because the fractional

Dehn twist coefficient c(h) ̸∈ Z by assumption, we know ψ̂h rotates the separatrices

of the 6-prong singularity p formed by the capped boundary component, so that

Ind(ψ̂h, p) = 1 regardless of the sign of ρ(ψh∗). And, because p is the unique fixed

point of ψ̂h by assumption, it follows from the Lefschetz fixed point theorem that

tr(ψh∗) = tr(ψ̂h∗) = 1.

From the discussion above, we conclude that the coefficients of t4 and t0 in ∆K(t)

are 1, while the coefficients of t3 and t are −tr(ψh∗) = −1. Now, using the fact

that ∆K(1) = ±1, we can see ∆K(t) = t4 − t3 ± t2 − t + 1. Because the foliations

preserved by ψh are orientable, the dilatation λ(ψh) is a root of ∆K . The polynomial

t4 − t3 + t2 − t+ 1, however, has no real roots. So it must be the case that ∆K(t) =

t4− t3− t2− t+1. Finally, note that this polynomial has a single root λ2 greater than

1, which is the minimal dilatation achieved by any pseudo-Anosov on the genus-two

surface, see e.g. [LT11].

We will also need the following lemma for the proof of Theorem B1:

Lemma 3.0.4. Let h, h′ ∈ SMod(S) be the lifts of 5-braids β, β′ ∈ Mod(D5). Sup-

pose that the capped-off maps ĥ and ĥ′ on Ŝ are conjugate in Mod(Ŝ). Then, β is

conjugate to ∆2kβ′ for some k ∈ Z.

Proof. Because ĥ and ĥ′ are conjugate in Mod(Ŝ), and the hyperelliptic involution ι

on Ŝ is in the center of Mod(Ŝ), we may quotient the conjugating homeomorphism in

Mod(Ŝ) to the mapping class group of the punctured sphere Mod(S0,6). It follows that
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β and β′ are conjugate after capping-off to Mod(S0,6). In particular, β is conjugate

to ∆2kβ′ for some k ∈ Z.

Though we will not need the following corollary for our larger purpose, it follows

quickly from Lemma 3.0.4 and we believe it to be helpful in many other contexts.

Corollary 3.0.5. Let h, h′ ∈ SMod(Srg) be the lifts of braids β, β′, for g, r ∈ {1, 2}.

Then, h and h′ are conjugate in Mod(Srg) if and only if β and β′ are conjugate as

braids.

Proof. For simplicity, suppose g = 2 and r = 1, though the same proof works for the

other cases, with minor adjustments. If β and β′ are conjugate, it is clear that h and

h′ are conjugate, too: we may simply lift the conjugating map to S. On the other

hand, suppose h and h′ are conjugate in Mod(S). It follows that the capped-off maps

ĥ and ĥ′ are conjugate in Mod(Ŝ). Lemma 3.0.4 now implies that β is conjugate to

∆2kβ′ for some k ∈ Z. Because h and h′ are conjugate in Mod(S), we know that

c(h) = c(h′) (see Theorem 2.1.4). It follows that c(β) = 2c(h) = 2c(h′) = c(β′),

whereas c(∆2kβ′) = c(β′) + k, so we must have that β and β′ are conjugate as

braids.

Returning to our main objective of proving Theorem B1, we need one last propo-

sition before we can complete the proof.

Proposition 3.0.6. Let (S, h) be an open book decomposition with c(h) ̸∈ Z and

h symmetric. Suppose the pseudo-Anosov representative ψh has singularity type

(6; ∅; ∅) and dilatation λ(ψh) = λ2. Then, (S, h) is not an open book decomposition

for S3 or P .

Proof. Because ψh has singularity type (6; ∅; ∅), we may cap-off ψh to a pseudo-

Anosov on Ŝ with singularity type (∅; ∅; 6). Lanneau and Thiffeault [LT11] show that

the pseudo-Anosov on Ŝ with foliation type (∅; ∅; 6) and dilatation λ2 is unique, up to
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conjugacy in Mod(Ŝ), inverse, and composition with the hyperelliptic involution ι on

Ŝ. Note that the pseudo-Anosov representative ψα of the 5-braid α = σ1σ2σ3σ4σ1σ2

studied by Ham–Song in [HS07] achieves dilatation λ(ψα) = λ2. In particular, the

pseudo-Anosov representative ψA of the lift A of α to S achieves minimal dilatation

λ(ψA) = λ2 with the proper singularity type. It follows that ψ̂h is conjugate in

Mod(Ŝ) to one of ψ̂±1
A or ψ̂±1

A ◦ ι. This further implies that ĥ is conjugate in Mod(Ŝ)

to one of Â±1 or Â±1 ◦ ι.

Because ι is freely isotopic to the lift of the 5-braid ∆2, we can see that A±1 ◦ ι

is freely isotopic to the lift of ∆2α±1. Since h is symmetric by assumption, it is the

lift of a braid β. A is symmetric by construction, so Lemma 3.0.4 implies that β is

conjugate as a braid to ∆2kα±1 for some k ∈ Z. In particular, if (S, h) is an open book

decomposition for S3 or P , we can see that ∆2kα±1 has closure either the unknot or

T (3, 5) for some k ∈ Z.

Because S3 and P are both L-spaces, we must have |c(∆2kα±1)| < 2, by [HM18].

We may deduce that 0 < c(α) < 1 because α is a positive pseudo-Anosov braid,

and ∆−2α is a negative pseudo-Anosov braid (see Theorem 2.1.4). In particular,

k < c(∆2kα) < k + 1. So, it suffices to check that none of the braids α, ∆2α−1, ∆2α,

or ∆4α−1 close up to the unknot or T (3, 5). For all except α, one can use a self-linking

number computation to confirm this, and one can easily perform an isotopy to see

that α̂ = T (2, 3).

Proof of Theorem B1. Let h be as in the statement of the theorem. Recall that since

ψh is FPF by assumption, h is symmetric (see Theorem 2.3.1). Since (S, h) is an open

book decomposition for S3 or P , both of which are L-spaces, we know |c(h)| < 1. So

if c(h) ̸= 0, then c(h) ̸∈ Z. Proposition 3.0.3 then implies that the dilatation of ψh is

λ(ψh) = λ2, but this contradicts Proposition 3.0.6.

In the stratum (6; ∅; ∅), we may additionally lift the assumption that c(h) ̸= 0:
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Proposition 3.0.7. Let (S, h) be an open book decomposition for S3 or P . If c(h) =

0 and the pseudo-Anosov representative ψh has singularity-type (6; ∅; ∅), then ψh is

not FPF.

Proof. Suppose that ψh has no fixed points in the interior of S. As in the proof of

Theorem B1, we may cap-off ψh to a pseudo-Anosov ψ̂h on Ŝ and extend the foliations

preserved by ψh. Again, we have that these foliations are orientable. Note that if

ρ(ψh∗) < 0, then an argument identical to that of Theorem B1 will apply.

So, assuming that ρ(ψh∗) > 0, the Lefschetz fixed point theorem then yields

tr(ψ̂h∗) = 2 − (−5) = 7, because the unique fixed point p given by the boundary

6-prong singularity is unrotated (since c(h) ∈ Z). Consider the Markov matrix M for

a train track representative of ψ̂h. It follows from a theorem of Rykken [Ryk99] that

any eigenvalue of ψ̂h∗ is also an eigenvalue of M (counting multiplicity) except for

possibly eigenvalues of 0 or roots of unity. Note here that a train track representative

of ψ̂h has 8 real edges, so that M is an 8× 8 matrix, while ψ̂h∗ is 4× 4. In particular,

M has at most four more eigenvalues than ψ̂h∗, and each has absolute value at most

one. Hence:

tr(M) ≥ tr(ψ̂h∗)− 4 = 7− 4 = 3.

On the other hand, a well-chosen train track carrying ψ̂h also carries ψh. In particular,

by Theorem 2.2.4, we can see that tr(M) = 0 because ψh is assumed to be fixed-point-

free in the interior of S, which is a contradiction.
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Chapter 4

The strata (2; ∅; 42) and (4; ∅; 32)

4.1 The stratum (2; ∅; 42)

We will need to perform some train track map analysis in this stratum. However,

this case is much simpler than the next two. So, we’ll also build up some notation

here, and introduce the ideas that we’ll develop further in the next two strata. Our

goal for this section is to prove:

Theorem B2. Every pseudo-Anosov map in the stratum (2; ∅; 42) has an interior

fixed point.

By the discussion in the outline (section 1.3), if h ∈ Mod(S) is a pseudo-Anosov

mapping class with FPF geometric representative ψh, then h is the lift of a 5-braid

β. If ψh has singularity type (2; ∅; 42) then ψβ has singularity type (1; 15; 4), by the

discussion in Section 2.3. So, Theorem B2 reduces to the following:

Proposition 4.1.1. Let β be a pseudo-Anosov 5-braid whose geometric representa-

tive ψβ has singularity type (1; 15; 4). Then, the lift ψh : S → S has an interior fixed

point.

The proposition will follow from an analysis of train track maps on a special train

track in the stratum (1; 15; 4). In this stratum, there is a unique jointless standard
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4.1. The stratum (2; ∅; 42)

r

b p

g y

Figure 4.1: Left: the jellyfish track, with labeled edges. Center: b+ appears in fβ(r).
Right: fβ(r) = p−g−r+y◦.

train track (up to isotopy): the “Jellyfish” track, shown in Figure 4.1. So, by Theorem

C, it suffices to check braids carried by this canonical track.

For the rest of this section, τ will denote the Jellyfish track shown in 4.1. The real

edges are labeled r, b, p, g, and y as in the figure, and each is oriented toward the

marked points. The data (β, ψβ, τ, fβ) will describe a pseudo-Anosov braid carried by

τ , which lifts to a map (h, ψh, τ̃ , fh) on S. Note that every real edge e of τ ends at

a jointless 1-marked monogon. In particular, Corollary 2.3.3 applies, so if ψh is FPF

then e never appears in fβ(e) for any real edge e.

For any real edge e, we may write

fβ(e) = e(1) · e(1) · e(2) · e(2) · ... · e(l − 1) · e(l − 1) · e(l)

where each e(i) is a real edge of τ , and e(i) denotes e(i) with orientation reversed.

To simplify and specify our notation to the relevant analysis, we will instead write

fβ(e) = e(1)±e(2)±...e(l − 1)±e(l)◦

Here, the ± in e(i)± describes which way the image ψβ(e) traverses e(i), as in the

center of Figure 4.1, and e(l)◦ simply means that fβ(e) ends at e(l). See the right of

Figure 4.1 for an example of this notation. We will also write, e.g., fβ(b) = ...r+◦... to
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4.1. The stratum (2; ∅; 42)

Figure 4.2: Visual aids for the proof of Lemma 4.1.2.

indicate that, at that particular instance of r in fβ(b), we aren’t sure whether fβ(b)

passes r on the right or stops there.

To begin our analysis, note that the interior infinitesimal quadrilateral of τ must

rotate: if it doesn’t, then, for example fβ(r) would start at r, immediately violating

the trace lemma. This rotation is determined by the first letter in fβ(r). First,

suppose that fβ(r) starts at b.

Lemma 4.1.2. If ψh is FPF and fβ(r) starts at b, then fβ(g) does not start with r
+

and fβ(y) does not start with r
−.

Proof. First, if fβ(g) starts with r+, then so does fβ(y). The next letter in each of

fβ(g) and fβ(y) must be either g or y, as in the left of Figure 4.2. We know that

fβ(g) ̸= r+g±◦... by trace, so we must have fβ(g) = r+y±◦..., but then fβ(y) = r+y±◦...

Next, if fβ(y) starts with r−, then so does fβ(g). The next letter in both fβ(g)

and fβ(y) is b, as in the right of Figure 4.2. We can see that if fβ(g) = r−b+◦..., or

if fβ(g) = r−b−r±◦... then fβ(r) = b+r±◦.... A similar argument holds for fβ(y), so

we must have fβ(g) = r−b−p±◦... and fβ(y) = r−b−p±◦... The same type of argument

holds for all of the following letters in fβ(g) and fβ(y), so it must be that both fβ(g)

and fβ(y) start with r−b−p− and then traverse either g or y next. From here, it’s
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Figure 4.3: Visual aids for the proof of Lemma 4.1.3.

easy to see that either fβ(g) passes over g or fβ(y) passes over y.

Lemma 4.1.3. If ψh is FPF and fβ(r) starts at b, then fβ(g) does not start with r
−

and fβ(y) does not start with r
+.

Proof. If fβ(g) starts with r−, then a very similar argument to that of the pre-

vious lemma shows that fβ(g) = r−b−p−y±◦... Note that we must have fβ(g) =

r−b−p−y−r±◦..., because otherwise fβ(p) passes over p. So, we must have fβ(g) =

r−b−p−y−r−b−p−..., as depicted on the left of Figure 4.3. But, now, fβ(g) either

eventually passes over g, or continues to spiral around the track.

If fβ(y) starts with r
+, then we must have fβ(y) = r+g±◦..., as shown on the right

of Figure 4.3. If fβ(y) = r+g−◦... then fβ(p) = g−r−b±◦... The argument here is now

similar to the previous ones: if fβ(p) = g−r−b+◦... or passes r next, then fβ(r) passes

over r. So, we must have fβ(p) = g−r − b−p±◦...

It follows that fβ(y) = r+g+p±◦. A very similar argument applies for the next

few letters, so fβ(y) = r+g+p+b+r+... and either eventually stops at y or continues to

spiral around the outside of the track.

We can conclude from the lemmas above that fβ(r) cannot start at b: if it did,

then we would have fβ(g) = fβ(y) = r◦, but both fβ(g) and fβ(y) cannot end at
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r. The next cases for where fβ(r) starts are almost identical. For example, if fβ(r)

starts at p, then fβ(g) and fβ(y) both start at b. One can then apply the analogous

arguments as above to show that in this case fβ(g) = fβ(y) = b◦.

4.2 The stratum (4; ∅; 32)

The Peacock The Snail

Figure 4.4: The two train track classes with no joints in the stratum (2; 15; 3).

The goal of this section is to prove the following theorem:

Theorem B3. Let h ∈ Mod(S) be a pseudo-Anosov mapping class with geometric

representative ψh. Suppose that ψh is FPF and has singularity type (4; ∅; 32). Then,

(S, h) is not an open book decomposition for S3 or for P .

The first step in proving Theorem B3 is to observe the following consequence of

Theorem C, which we prove at the end of Section 6:

Theorem 4.2.1. Let ψβ be a pseudo-Anosov map on D5 with singularity type

(2; 15; 3). Then, ψβ is conjugate to a map carried by the Peacock train track shown

in Figure 4.4.

Now, to prove Theorem B3, it suffices by Theorem 4.2.1 to look at pseudo-Anosovs

carried by the lift of the Peacock track. See Figure 2.5 for an image of the lifted track.

We will perform a careful analysis of train track maps on this track, together with

topological arguments to study a family of braids βn inducing a special collection of

42



4.2. The stratum (4; ∅; 32)

b
ψ(a)

o
g p

b

rv3
v2

v1

1 2 3 4 5

Figure 4.5: Left: The Peacock train track with edge labels and orientations. Center:
f(a) passes b on the right. Right: f(o) = g+r−g−b◦.

train track maps. We present the relevant family of braids βn and their corresponding

train track maps in subsection 4.2.1. Then, in subsection 4.2.2, we study train track

maps on the Peacock.

4.2.1 A family of braids lifting to fixed-point-free maps

For the remainder of this section, τ will be the Peacock train track depicted on

the left in Figure 4.5, with edges and vertices labeled as in the figure (with edges

oriented towards the punctures); β will be an arbitrary 5-braid with pseudo-Anosov

data (ψβ, τ, f); and h will be the lift of β to S, with pseudo-Anosov data (ψh, τ̃ , f̃),

where τ̃ and f̃ are constructed as in subsection 2.3. An image of τ̃ in this case is

shown in Figure 2.5. We will use the decorations {+,−, ◦} and other notation for

the images of real edges under fβ similarly to the previous section. See the right of

Figure 4.5 for an example.

Here is the family of braids which we will study:

Proposition 4.2.2. Set βn = σn+2
1 σ2σ3σ4σ1σ2σ3σ

2
4 for n ≥ 0. Then, βn is pseudo-

Anosov, and the lift of ∆2β±1
n to S is FPF. Moreover, β−1

n is conjugate to a braid

43



4.2. The stratum (4; ∅; 32)

homeo H

σ−2
1 H−1 collapse

σ−2
4 σ−1

3 σ−1
2 σ−1

1 σ−1
4 σ−1

3 σ−1
2

isotopy

Figure 4.6: The train track map induced by Hβ−1
n H−1, where H is an orientation-

preserving homeomorphism which swings r around the rest of the track.

carried by τ , which induces the train track map fn : τ → τ defined by:

fn(o) = p◦ fn(g) = b◦ fn(r) = g◦

fn(p) =


(r−o−)(

n
2
+1)r◦ n even

(r−o−)
n+1
2 r−o◦ n odd

fn(b) =


(r−o−)

n
2 r−o◦ n even

(r−o−)
n+1
2 r◦ n odd

Proof. Figure 4.6 verifies that Hβ−1
0 H−1 is carried by τ and induces the train track

map f0 : τ → τ , where the orientation-preserving homeomorphism H is given by

swinging the real edge r around the train track to the other side. For n ≥ 1, note

that βn = σ1βn−1, and the additional σ1 simply adds more twists between the left-

most edges before composing with H−1 in the last step. This additional twisting adds

words of the form (r−o−) to fn(p) and fn(b), and swaps which edges p and b end on,

as in the map in the proposition statement.

We can then check that the transition matrix Mn associated to the train track

map fn is Perron–Frobenius, which will imply that Hβ−1
n H−1 is pseudo-Anosov, and

hence βn is, too. When determining the matrix Mn from the map fn given above,

it may be helpful to recall that, for real edges a, b of τ , each instance of b± in f(a)

records the word bb̄, and each instance of b◦ records just b. Regardless of the parity

of n, the transition matrix is:
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Mn =



0 0 n+ 2 n+ 1 0

0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 n+ 3 n+ 2 0


It is straightforward to check that M7

n is strictly positive for all n ≥ 0, so Mn is

Perron-Frobenius.

Finally, one can check that the lift of ∆2β±1
n to S is FPF, by using the fixed point

computation of Los or Cotton-Clay in terms of train track maps in [Los10][CC09].

The point is simply that the transition matrix for the lift is traceless, the lift of ∆2

swaps the pair of 3-prong singular points of the lift of β±1
n , and there are no fixed

regular points arising from what Cotton-Clay calls “flips.”

It follows from Proposition 4.2.2 that any braid inducing the train track map

fn : τ → τ must be conjugate to β−1
n within the mapping class group of the punctured

sphere. In subsection 4.2.2, we’ll prove the following:

Proposition 4.2.3. If a pseudo-Anosov braid β is carried by τ and lifts to a FPF

map h in the cover, then β is conjugate to βn for some n, up to powers of ∆2.

Assuming Proposition 4.2.3, we can conclude the proof of Theorem B3:

proof of Theorem B3. Suppose for contradiction there were such an h. We can con-

clude that h is symmetric, and projects to a 5-braid β which is carried by the Peacock

track, by Theorem 4.2.1. We can compute that, as a braid, c(∆2kβ±1
n ) = k ± 1

2
. Be-

cause S3 and P are both L-spaces, we know c(h) < 1 by [HM18], and therefore

c(β) < 2. So, we can conclude that β must be conjugate to one of β±1
n , ∆±2β∓1

n ,

∆±2β±1
n , or ∆±4β∓1

n . Moreover, because (S, h) is an open book decomposition for S3
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-(n+2) -(n+2) -(n+2)

-(n+1) -n -n

-n+1 -n+2 -n+3

-n+3 -n+3

Figure 4.7: Isotopies of ∆̂2β−1
n to P (3, 3− n,−2)

46



4.2. The stratum (4; ∅; 32)

or P , we know that, as a knot, β̂ is either the unknot or T (3, 5). So, it suffices to

check that none of βn, ∆
2β−1

n , ∆2βn, or ∆
4β−1

n close up to the unknot or T (3, 5).

The closure β̂n is easily seen to be the torus knot T (2, n + 7). And, figure 4.7

verifies that the closure ∆̂2β−1
n is the 3-stranded pretzel knot P (3, 3−n,−2). None of

these knots are isotopic to the unknot or T (3, 5). For ∆2βn, we may simply compute

the self-linking number: sl(∆2βn) = 25 + n is greater than the maximal self-linking

number sl(T (3, 5)) = 7 of T (3, 5) and of the unknot sl(unknot) = −1. And, for

∆4β−1
n , note that det ∆̂4β−1

n ̸= 1: if the determinant were 1, then det β̂−1
n = 1, too,

but instead det β̂−1
n = detT (2, n+ 7) = n+ 7 > 1.

So, our goal for the remainder of this chapter will be to prove Proposition 4.2.3.

4.2.2 Train track maps on the Peacock

In this subsection, we will prove 4.2.3 through an extensive combinatorial analysis

of train track maps on the Peacock track. We begin with some helpful lemmas to

simplify the case analysis. It will be helpful to review the Trace Lemma, Lemma 2.3.2

from Section 2.3, since we will use it very frequently in this section. It will be the

main tool for our case analysis.

We can start by applying the Trace Lemma to constrain the rotation of the in-

finitesimal triangle in the Peacock track:

Lemma 4.2.4. If ψh is fixed-point-free, then fβ(vi) ̸= vi for i = 1, 2, 3.

Proof. If fβ(vi) = vi for some i, then fβ(r) immediately crosses r, which is forbidden

by the Trace Lemma.

The above lemma implies that fβ(v1) ∈ {v2, v3}, and this choice also determines

the images fβ(vi) for i = 2, 3. Note that there is a natural horizontal symmetry of

τ induced by reversing the orientation of the disk. Composing with this symmetry

takes a braid to its reverse inverse, and a braid lifts to a fixed-point-free map if and
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a

b

v

ψβ(a)

ψβ(b)

f(v)

ψβ(c)
convex
cone

Figure 4.8: c will be absorbed into f(v).

only if its reverse inverse does. Hence, it suffices to choose either one of the images

fβ(v1) as above. Therefore, without loss of generality, fβ(v1) = v3.

Lemma 4.2.5. Let a, b be any two real edges of τ with a and b adjacent at initial

vertex v. Then, for any real edge c of τ , ψβ(c) does not intersect the convex cone

determined by the initial segments of ψβ(a) and ψβ(b). See Figure 4.8 for reference.

Proof. By injectivity of ψβ, we know that ψβ(c) may not cross ψβ(b) or ψβ(a). If ψβ(c)

enters the convex cone X on the initial segments of ψβ(a) and ψβ(b), then ψβ(c) must

either have its endpoint inside X or must leave X. The first case is not possible

because c ends at a vertex of an infinitesimal monogon by assumption. Therefore

ψβ(c) must enter and leave X. Let A and B denote the strips of the fibered surface F

that collapse onto a and b, respectively. The arc ψβ(c) lies transverse to the fibers of

F . Assume without loss of generality that ψβ(c) enters X along A. Since it must exit

X, ψβ(c) must subsequently traverse either A or B. Neither case is possible, however,

since a and b form a cusp: the arc ψβ(c) is forced to be non-smooth.

When a situation as in Lemma 4.2.5 arises, we say that the edge c is absorbed

into fβ(v). In practice, an edge being absorbed into a vertex is much easier to spot

visually than by formal definition: the typical picture is the one depicted in Figure

4.8.

For the following arguments, recall that we assume without loss of generality that

fβ(v1) = v3. The figures provided in each proof below are single scenarios appearing

in each main case, not exhaustive images of every possibility. We strongly encourage
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Df(p) = r◦ Df(p) = r◦ Df(p) = r◦Case 1 Case 2 Case 3

Figure 4.9: Cases for the proof of Lemma 4.2.7.

the reader to draw by hand the train track maps which are written in words, as they

read through each argument.

Lemma 4.2.6. If ψh is fixed-point-free, then fβ(r) does not start with o
+ or g+.

Proof. If fβ(r) starts with o
+, then we must have fβ(r) = o+r±◦..., which is forbidden

by the Trace Lemma. The same argument applies to g+.

Lemma 4.2.7. If ψh is fixed-point-free, then fβ(p) starts with r
−.

Proof. First suppose that fβ(p) starts with r+. Then, the second letter in fβ(p) is

either p or b. The former is not allowed by trace. In the latter case, note that then

fβ(b) = r+b±◦..., which is again ruled out by trace.

Now, suppose that fβ(p) = r◦. Note that then fβ(b) starts with r+, and this

further implies by trace that fβ(b) = r+p±◦... It then follows that fβ(o) starts with

p±◦, so we will check these three possible cases individually. See Figure 4.9.

Case 1: fβ(o) = p◦. In this case, fβ(b) = r+p+... and fβ(g) starts with p+. By

trace, it follows that fβ(g) = p+o±◦..., and this in turn forces fβ(r) to start at o. By

Lemma 4.2.6, we know fβ(r) does not start with o
+, so fβ(r) starts with o

− or ocirc.

If fβ(r) starts with o◦, then the real edges o, p, and r are permuted, implying that

the transition matrix of f is not Perron-Frobenius. Finally, if fβ(r) starts with o−,

we can see that fβ(r) = o−p−r±◦..., which is ruled out by trace.
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Df(b) = r◦ Df(b) = r◦ Df(b) = r◦Case 1 Case 2A Case 2B

Df(b) = r◦ Df(b) = r◦ Df(b) = r◦Case 3 Case 4A Case 4B

Figure 4.10: Cases for the proof of Lemma 4.2.8.

Case 2: fβ(o) starts with p
−. In this case, we must have fβ(o) = p−r−g±◦... by

trace (or else fβ(o) is absorbed into either fβ(v3) or fβ(v1), if it goes “inside” b or

g, respectively). This further implies that fβ(g) = p−r−g±◦..., which is ruled out by

trace.

Case 3: fβ(o) starts with p+. Here, we have fβ(o) = p+g±◦..., and therefore

fβ(b) = r+p+g±◦... In particular, this forces fβ(g) = p+g±◦..., which is ruled out by

trace.

Lemma 4.2.8. If ψh is fixed-point-free, then fβ(b) starts with r
−.

Proof. By Lemma 4.2.7, we may assume fβ(p) starts with r
−. Note that fβ(b) cannot

start with r+, because then one of b or p will be absorbed into fβ(v3).

So, suppose fβ(b) = r◦. We branch along cases for the second letter in fβ(p). Note

that if fβ(p) = r−g+◦..., then fβ(r) starts with g+, which contradicts Lemma 4.2.6.

So, there are four cases left to consider, shown in Figure 4.10.
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Case 1: fβ(p) = r−g−... In this case, we must have fβ(p) = r−g−b±◦..., because

otherwise p is absorbed into fβ(v3) (if it follows r next) or contributes trace (if it

follows p next). Now note that fβ(o) starts at b. If fβ(o) starts with b+ or b◦,

then fβ(g) = b+g±◦..., which is ruled out by trace. So, fβ(o) starts at b− and we

must have fβ(o) = b−r−g±◦... by trace. Note that fβ(g) does not start with b+ by

Lemma 4.2.5, so fβ(g) must start with b− or b◦. If fβ(g) starts with b
−, then we have

fβ(g) = b−r−g±◦..., which is ruled out by trace. So, fβ(g) starts with b◦. Finally,

consider cases for fβ(r). We know fβ(r) starts at g, and by Lemma 4.2.6, we must

have that fβ(r) starts with g
− or g◦. If fβ(r) starts with g

◦, then the transition matrix

is not Perron-Frobenius. If fβ(r) starts with g−, then fβ(r) = g−b−r±◦..., which is

ruled out by trace.

Case 2: fβ(p) = r−o+... In this case, fβ(p) = r−o+r+b±◦... by trace and, by

Lemma 4.2.6, it follows that fβ(r) starts with g
−◦. Now, look at cases for fβ(o).

If fβ(o) starts with b+ or b◦ then fβ(g) = b+g±◦..., which is ruled out by trace.

And, if fβ(o) starts with b
− then fβ(o) = b−r−o±◦..., also ruled out by trace. If fβ(o)

starts with p− then similarly fβ(o) = p−r−o±◦..., which is again ruled out by trace.

There are two remaining subcases to consider:

Subcase 2A: fβ(o) starts with p◦. Here, consider cases for fβ(g): fβ(g) starts

with either p+ or b±◦. If fβ(g) starts with p
+ then fβ(g) = p+g±◦... which is ruled out

by trace. We cannot have fβ(g) starts with b
+ because then g is absorbed into fβ(v1).

Finally, we cannot have fβ(g) starts with b
− b◦ because then either p is absorbed into

fβ(v1) (if fβ(g) starts with b
◦ or b−, with p outside g) or g is absorbed into fβ(v3) (if

fβ(g) starts with b
−, and g is outside p).

Subcase 2B: fβ(o) starts with p+. Here, consider cases for fβ(r): fβ(r) starts

with either g◦ or g−, by Lemma 4.2.6. If fβ(r) starts with g
◦ then o will be absorbed

into fβ(v3). If fβ(r) starts with g−, then either o is inside r, in which case fβ(r) =

g−p−r±◦... (which is ruled out by trace); or, r is inside o, in which case o will be
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absorbed into fβ(v3).

Case 3: fβ(p) = r−o−... In this case, we must have fβ(p) = r−o−b±◦... (otherwise

p will be absorbed into fβ(v3) or contribute trace), which forces fβ(o) and fβ(g) to

both start at b. If fβ(o) starts with b
+, then either fβ(o) = b+o±◦... (which is ruled

out by trace), or fβ(o) = b+g±◦... in which case fβ(g) = b+g±◦..., too (which is again

ruled out by trace). And, if fβ(o) starts with b−, then fβ(o) = b−r−o±◦..., which is

ruled out by trace.

So, we must have fβ(o) = b◦. Note here that fβ(r) must start with o− or o◦, by

Lemma 4.2.6, and fβ(g) must start with b+. Now, look at r: if fβ(r) starts with o
−,

then fβ(r) = o−b−r±◦... which is ruled out by trace. Finally, if fβ(r) starts with o
◦,

then either g is inside p, in which case g is absorbed into fβ(v3), or p is inside g, in

which case p will be absorbed into fβ(v1).

Case 4: fβ(p) = r−o◦. In this case, note that fβ(r) starts with either g− or g◦ by

Lemma 4.2.6, so consider subcases for fβ(r).

Subcase 4A: fβ(r) starts with g
−. Here, consider cases for fβ(o). If fβ(o) starts

with b+ or b◦ then fβ(g) = b+g±◦..., which is ruled out by trace. If fβ(o) starts with

b− then fβ(o) = b−r−o−..., again ruled out by trace. If fβ(o) starts with p− or p◦

then fβ(r) = g−p−r±◦..., ruled out by trace. And finally, if fβ(o) starts with p
+ then

either o is inside r in which case fβ(r) = g−p−r±◦... (which is ruled out trace), or o is

outside r in which case it will be absorbed into fβ(v3).

Subcase 4B: fβ(r) starts with g◦. Look first at fβ(o). If fβ(o) starts with

p+ or b+ then o will be absorbed into fβ(v3). If fβ(o) starts with p− or b− then

fβ(o) = p−r−o±◦... or fβ(o) = b−r−o±◦..., both of which are ruled out trace. So,

we must have fβ(o) = p◦ or fβ(o) = b◦, and then it follows that fβ(g) = b◦ or

fβ(g) = p◦, respectively, as well, after some simple analysis on fβ(g). But, note that

fβ(o) = b◦ and fβ(g) = p◦ is not possible, since ψβ is orientation-preserving. And,

fβ(o) = p◦ and fβ(g) = b◦ is not possible, because then the transition matrix is not
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Final Final FinalCase 1 Case 2A Case 2B

Figure 4.11: Cases for the proof of Proposition 4.2.3. In this figure, we have chosen
to omit the shaded collapsing regions for readability.

Perron-Frobenius.

Lemma 4.2.9. If ψh is fixed-point-free, then fβ(r) starts with g
− or g◦.

Proof. By Lemma 4.2.6, we know that fβ(r) does not start with g
+ or r+, so we just

need to show that fβ(r) does not start with o
− or o◦. Suppose otherwise, i.e. fβ(r)

does start with o− or o◦. By Lemmas 4.2.7 and 4.2.8, we know that fβ(p) and fβ(b)

both start with r−, and then because fβ(r) starts with o− or o◦ by assumption, it

follows that fβ(p) = r−o−... and fβ(b) = r−o−... From here, we must have fβ(b) =

r−o−p±◦... by trace, but then fβ(p) = r−o−p±◦, which is ruled out by trace.

We are finally ready to prove Proposition 4.2.3.

Proof of Proposition 4.2.3. Note by the discussion after Lemma 4.2.4, it suffices to

assume fβ(v1) = v3. By Lemmas 4.2.7 and 4.2.8, we know fβ(p) and fβ(b) both start

with r−, and by Lemma 4.2.9 we know fβ(r) starts with g− or g◦. From here, we

branch along cases for fβ(o). The cases where fβ(o) starts at b can be ruled out

quickly as follows.

If fβ(o) starts with b
+, then fβ(o) = b+g±◦... by trace. But, then fβ(g) = b+g±◦...,

which is ruled out by trace. If fβ(o) = b◦, then fβ(g) = b+g±◦... because fβ(r) starts

with g− or g◦, and this is ruled out by trace. Finally, if fβ(o) starts with b−, then

fβ(o) = b−r−g±◦... by trace. Because fβ(r) starts with g− or g◦, it follows that
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fβ(p) = r−g−... and fβ(b) = r−g−... From here, we must have fβ(b) = r−g−p±◦... by

trace. But, then fβ(p) = r−g−p±◦, too, which is ruled out by trace.

And, note that if fβ(o) starts with p−, then fβ(o) = p−r−g±◦... by trace. Here,

we must have fβ(p) = r−g−p±◦... because fβ(r) starts with g
− or g◦, which is ruled

out by trace. So, we have two cases left to consider, shown in Figure 4.11.

Case 1: fβ(o) starts with p+. In this case, we have fβ(o) = p+g±◦... by trace.

If fβ(o) = p+g−◦... then fβ(r) is either absorbed into fβ(v1) or passes over r. So

fβ(o) = p+g + r±◦....

Next, consider fβ(g). If fβ(g) starts with b
+ then g is absorbed into fβ(v1), and

the case where fβ(g) starts with p
+ is ruled out quickly by trace. So, fβ(g) must start

with b− or b◦. In either case, note that for both of fβ(p) and fβ(b), the second letter

is in the set {o±◦, g−} because fβ(r) starts with g− or g◦. If fβ(p) = r−g−... then

fβ(p) = r−g−p±◦..., which is ruled out by trace. So, fβ(p) = r−o±◦...

Similarly, if fβ(b) = r−g−... then either b is outside o, in which case b will be

absorbed into fβ(v1), or o is outside b, in which case o will be absorbed into fβ(v3).

So, we must have fβ(b) = r−o±◦..., too.

Now, if fβ(p) = r−o+◦... then fβ(b) = r−o+r+b±◦... which is ruled out by trace.

So, we must have fβ(p) = r−o−r±◦... And, if fβ(p) = r−o−r−◦... then fβ(o) =

b+g+r−o±◦..., which is ruled out by trace. So, we have instead fβ(p) = r−o−r+g−p±◦...

because fβ(r) starts with g
− or g◦, which is again ruled out by trace.

Case 2: fβ(o) = p◦. Here, we branch along subcases for fβ(g). Note that if

fβ(g) starts with b
+ then g is absorbed into fβ(v1), and if fβ(g) starts with p

+ then

fβ(g) = p+g±◦..., which is ruled out by trace. So we have two remaining subcases to

consider:

Subcase 2A: fβ(g) starts with b−. Because fβ(r) starts with either g− or g◦,

note that if fβ(p) = r−g−... then p is absorbed into fβ(v1). A similar argument

applies to fβ(b), so we must have both fβ(p) = r−o±◦... and fβ(b) = r−o±◦... Now, if
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4.2. The stratum (4; ∅; 32)

fβ(b) = r−o+... then either b is absorbed into fβ(v3), or fβ(b) = r−o+r+b±◦, which is

ruled out by trace. So, either fβ(b) = r−o−r±◦... or fβ(b) = r−o◦.

In the first case, note that if fβ(b) = r−o−r+..., then either b is absorbed into

fβ(v3), absorbed into fβ(v1), or fβ(b) = r−o−r+o+r+b±◦..., which is ruled out by

trace. So, we must have either fβ(b) = r−o−r−... or fβ(b) = r−o−r◦.

We can then see that fβ(b) = (r−o−)kr−o◦ or fβ(b) = (r−o−)k+1r◦ for some k ≥ 0.

The argument that follows will not depend on k (with large k, all remaining strands

will just turn more times along r and o), so for simplicity suppose either fβ(b) = r−o◦

or fβ(b) = r−o−r◦.

First, suppose fβ(b) = r−o◦. Then, we must have fβ(p) = r−o−r±◦... and fβ(g) =

b−r−o−... Note here that if fβ(p) = r−o−r+◦... then g will be absorbed into fβ(v3).

But, if fβ(p) = r−o−r−..., then p will be absorbed into fβ(v3). This same argument

will work for arbitrary k after several twists around r and o.

Next, suppose fβ(b) = r−o−r◦. The argument is very similar in this case. We

must have fβ(p) = r−o−r−o±◦... and fβ(g) = b−r−o−r−o±◦... If fβ(p) = r−o−r−o−◦...

then g will be absorbed into fβ(v3). And, if fβ(p) = r−o−r−o+ then either g will be

absorbed into fβ(v3) or p will be absorbed into fβ(v1). As before, the same argument

will work for arbitrary k after several additional twists around r and o.

Subcase 2B: fβ(g) = b◦. We can see that fβ(r) cannot start with g−, since

then r will be absorbed into fβ(v1). So, we must have fβ(r) = g◦. From here,

note that fβ(b) = r−o−◦... because otherwise b will be absorbed into either fβ(v1) or

fβ(v3). In either case, it follows that fβ(p) = r−o−r−◦... because otherwise p will be

absorbed into either fβ(v1) or fβ(v3). Iterating the same argument, it is now easy to

see that fβ(b) = (r−o−)
n
2 r−o◦ or fβ(b) = (r−o−)

n+1
2 r◦, and fβ(p) = (r−o−)(

n
2
+1)r◦ or

fβ(p) = (r−o−)
n+1
2 r−o◦ for some n ≥ 0.

One may observe that these final train track maps match identically with the

ones given in Proposition 4.2.2. Proposition 4.2.2 and the subsequent discussion then
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4.2. The stratum (4; ∅; 32)

implies that the braid β is conjugate to β−1
n for some n, within the mapping class

group of the punctured sphere.
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Chapter 5

The stratum (2; ∅; 34)

There is one more stratum to consider for the proof of Theorem B. This last

stratum will be a bit more challenging, so we will need to consider some additional

geometry mixed into our train track analysis. Here is what we will prove:

Theorem B4. Let h ∈ Mod(S) be a pseudo-Anosov mapping class with geometric

representative ψh. Suppose that ψh is FPF and has singularity type (2; ∅; 34). Then,

(S, h) is not an open book decomposition for S3 or P .

Together with Theorems B1—B3, Theorem B4 will complete the proof of Theorem

B, as explained in the outline (section 1.3). Note that any h from Theorem B4 is the

lift of a pseudo-Anosov braid in the stratum (1; 15; 32). We will show that there is a

canonical track that carries all pseudo-Anosov maps in this stratum, and then check

train track maps on that track.

Proposition 5.0.1. Any pseudo-Anosov map (or its reverse) in the stratum (1; 15; 32)

is conjugate to one carried by the Camel track on the right in Figure 5.2.

Proof. By Theorem C, any pseudo-Anosov in this stratum is carried by a jointless

track. The only jointless tracks in this stratum are those shown in Figure 5.2: the

Enoki pair and the Camel pair. Note that the tracks shown in pairs are related by a
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σ−1
1 σ−1

2 σ−1
3

σ4

σ−1
1

σ4σ3σ2

σ−1
1 σ−1

2

σ4σ3

σ4

σ−1
1 σ−1

2 σ−1
3 σ−1

1

σ4σ3σ2

Figure 5.1: The folding automaton for the stratum (1; 15; 32) on D5. The dashed
edges induce trivial braid words. Any circuit around the outside of the automaton
yields a reducible braid.
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The Enoki

The Camel

Figure 5.2: The two pairs of jointless tracks in the stratum (1; 15; 32). Each pair is
preserved under a horizontal reflection of the plane. Every pseudo-Anosov map is
carried by one of the Camel tracks.

horizontal reflection on the disk. In particular, if a map is carried by one track from

a pair, then its reverse is carried by the partner track. So, it suffices to show that any

pseudo-Anosov map is carried by one of the two Camel tracks.

Ham and Song in [HS07] compute the folding automaton for train tracks in the

stratum (1; 15; 32). This automaton is depicted in Figure 5.1. The key fact for our

proof is that any pseudo-Anosov is represented by a loop in the automaton, and a map

ψβ is carried by a track τ if and only if τ appears in the automaton loop representing

ψβ. From this perspective, changing the starting track of such a loop amounts to

conjugating β.

Now, let β(a, b) = σa4σ3σ2σ
−b
1 σ−1

2 σ−1
3 . The braid β(a, b) is given by an “outside”

loop in the folding automaton, which only passes through the tracks in the corners.

Note that any loop starting at one of the Enoki tracks which doesn’t pass through

either Camel track is given by a product of β(a, b)’s. But, β(a, b) is reducible: it

is conjugate to (σ−1
3 σa4σ3)(σ2σ

−b
1 σ−1

2 ), which fixes the isotopy class of a curve sur-
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5.1. Analyzing the candidate braids

r b p g y

d

Figure 5.3: Left: the Camel track. Right: fβ(p) = r+dp−g+p+db◦

rounding only the second and fourth marked points. Similarly, any braid of the

form β(a1, b1)β(a2, b2)...β(an, bn) is reducible, where ai, bi, n ≥ 0 for all i. It follows

that any pseudo-Anosov in this stratum is carried by one of the Camel tracks, up to

conjugation.

5.1 Analyzing the candidate braids

This singularity type does lead to some FPF maps ψh, but we will show that none

of the corresponding mapping classes h describe open book decompositions for S3 or

P . First, we introduce the candidates.

Proposition 5.1.1. The braids

β1 = (σ4σ3)
2(σ2σ1)

−2

β2 = σ−3
1 σ−1

2 σ−1
3 σ2(σ3σ4)

2

β3 = (σ4σ3σ
−1
1 σ−1

2 )2

are all pseudo-Anosov and carried by τ . The images βi(τ) are shown in Figure 5.4

immediately before collapsing onto τ . The braids ∆4k+2βi lift to FPF maps on S, for

any i ∈ {1, 2, 3} and any k ∈ Z.

Proof. A routine isotopy rel. marked points certifies that the images βi(τ) depicted
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5.1. Analyzing the candidate braids

Figure 5.4: The images βi(τ) before collapsing. Left: β1. Right: β2. Bottom: β3.

in Figure 5.4 are correct. From there, it is immediate that all three βi are carried

by τ : the images are transverse to the leaves of an appropriate fibered neighborhood

of τ . To check that the braids are pseudo-Anosov, one may compute their transition

matrices M(fβi) from the images depicted. The matrices are all Perron–Frobenius,

so the braids are pseudo-Anosov by Propostion 2.2.4. The fact that the braids ∆2βi

lift to FPF maps can be verified by e.g. XTrain [Bri00].

Remark 5.1.2. The braids βi themselves do not lift to FPF maps, since their lifts fix

all four 3-pronged singularities. Composition with ∆2 lifts to composition with the

hyperelliptic involution ι : S → S, which swaps the 3-pronged singularities in pairs.

Proposition 5.1.3. If a pseudo-Anosov braid β is carried by τ and lifts to a FPF

map h in the cover, then β is conjugate to some βi, up to powers of the full twist ∆2.

Assuming Proposition 5.1.3, we will prove Theorem B4:

proof of Theorem B4. Suppose for the sake of contradiction that there is such an h.
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5.2. Setup for the case analysis

Because ψh is fixed-point-free and the invariant foliations of ψh have 2 ≥ 1 boundary

prongs, we can conclude that h is symmetric and projects to a pseudo-Anosov 5-braid

β, by Theorem 2.3.1. It then follows that β̂ is the unknot or T (3, 5), since the double

branched cover over β̂ is S3 or P . And, since S3 and P are both L-spaces, we know

that |c(h)| < 1 by [HM18], and therefore |c(β)| < 2. By Proposition 5.0.1, we know

β (or its reverse) is conjugate to a map carried by the Camel track from Figure 5.2.

By Proposition 5.1.3, we know β is conjugate to ∆2kβ±1
i for some i, k ∈ Z. We can

easily compute c(∆2kβ±1
i ) = k, so we know β is conjugate to β±1

i or ∆2β±1
i for some

i. It thus suffices to check that none of those braids close up to the unknot or T (3, 5).

For each, a determinant computation will work: their determinants are all either 5 or

9, but the determinants of the unknot and of T (3, 5) are both 1.

The rest of this section will be devoted to proving Proposition 5.1.3. We will do

that by an argument similar to that of Section 4, by carefully analyzing the possible

train track maps on the canonical track τ .

5.2 Setup for the case analysis

For the rest of this section, τ will denote the Camel track shown in Figure 5.3.

Denote the real edges of τ by r, b, g, p, y all oriented upward, and d (for dashed)

oriented to the right. As in the previous chapter, we will simplify notation to write

ee as just e for any e ̸= d. The edge d, on the other hand, never appears in a train

path twice in a row, and the orientation of d or d will be an important consideration

later. The decorations +, −, and ◦ over a real edge e ̸= d will notate passing e on

the right or left or ending there, respectively, as in Chapter 4. For d, we will only use

◦ to denote ending on d. An example of this notation is shown in Figure 5.3.

Next, we will interpret the Trace Lemma (Lemma 2.3.2) on τ , and see how it

interacts with the singularity type of the lifted map. Note that every real edge besides
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5.2. Setup for the case analysis

d ends at a 1-marked monogon, so if β lifts to a FPF map under the Birman–Hilden

correspondence, then e does not appear in fβ(e) for e ̸= d. For d, we know there are

an even number of letters between any two occurrences of d or d in fβ(d).

To further restrict the behavior of fβ(d), we may examine the interaction of the

infinitesimal triangles with the lift ψh of ψβ to the surface S. Each infinitesimal trian-

gle contains a 3-pronged singularity, which lifts to two 3-pronged singularities in the

lift. Note that h commutes with a hyperelliptic involution ι : S → S, by construction.

Denote the four 3-pronged singularities in the lift by p1, ..., p4, and suppose ι(p1) = p3,

and ι(p2) = p4. Because ψh permutes the set of pi, ψh and ι commute, and ψh is FPF:

it follows that there are only a few possibilities for ψh(p1), ..., ψh(p4). The following

table lists all the possibilities.

Case A Case B Case C Case D

ψh(p1) p3 p2 p4 p2

ψh(p2) p4 p1 p1 p3

ψh(p3) p1 p4 p2 p4

ψh(p4) p2 p3 p3 p1

The upshot of this analysis is that the infinitesimal triangles in τ downstairs are

fixed by fβ if and only if their lifts are sent by fh to the other side of τ̃ (case A).

Conversely, the infinitesimal triangles in τ downstairs are swapped by fβ if and only

if at least one of their lifts is sent to the same side of τ̃ (case B: both are sent to the

same side; cases C and D: one is sent to the same side, one to the opposite side).

We can then conclude by the Trace Lemma (2.3.2) that in case A (the triangles

are fixed by fβ), every occurrence of d or d in fβ(d) occurs after an even number of

preceding letters. In cases B, C, and D (the triangles are swapped by fβ), that at

least one of fβ(d) or fβ(d) passes over d or d after an odd number of letters.
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5.2. Setup for the case analysis

Figure 5.5: Visual aids for the proof of Lemma 5.3.1.

Figure 5.6: Visual aids for the proof of Lemma 5.3.2.

Figure 5.7: Visual aids for the proof of Lemma 5.3.3.

Figure 5.8: Visual aids for the proof of Lemma 5.3.4.
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5.2. Setup for the case analysis

Figure 5.9: Visual aids for the proof of Lemma 5.3.5.
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5.3. Cases B, C, D

5.3 Cases B, C, D

Our analysis begins with cases B,C, and D above, when the triangles are swapped

by fβ. In these cases, we know that at least one of fβ(d) or fβ(d) passes over d or d

after an odd number of letters. We will build our case analysis around which of fβ(d)

or fβ(d) satisfies this property. In what follows, we strongly encourage the reader to

grab some colored writing implements and draw the maps described in each proof:

the symbols can only help so much.

First, assume that fβ(d) passes over d after an odd number of letters. We know

that fβ(d) starts at b, r, or d because the triangles are swapped by fβ. But, fβ(d)

cannot start at d, because by assumption it passes over d after an odd number of

letters. So, it must be that fβ(d) starts at either b or r.

Lemma 5.3.1. If fβ(d) starts at b, then ψh has a fixed point.

Proof. Because fβ(d) starts at b, we must have that fβ(g) starts at r and fβ(p) starts

at d. Now, note that fβ(p) = dg±◦... by trace. It follows that either fβ(g) = r◦, or

fβ(g) = r+b±◦... by trace. Note that fβ(d) = b−d... (possibly after some initial twisting

over r and b), and then it’s easy to see that fβ(g) = r◦ or fβ(g) = r−b−dp±◦... We’re

now in the situation pictured on the left of Figure 5.5 (with some extra information

about fβ(g) not yet shown).

From here, look at the other triangle. We don’t know where each edge starts on

the right triangle, so consider which edge starts at g. If fβ(r) starts at g, then either

fβ(r) will pass over r or fβ(p) will pass over p. We reach a similar conclusion if fβ(b)

starts at g.

The slightly harder case is if fβ(d) starts at g. In this case, look at fβ(b): we know

it starts at p. If fβ(b) starts with p
+ then it will pass over b. On the other hand, if

fβ(b) starts with p− then either fβ(b) will pass over b or fβ(p) will pass over p. It

follows that fβ(b) = p◦. From there, we can quickly conclude that fβ(g) = r◦.
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5.3. Cases B, C, D

Next, follow fβ(d) and fβ(y). We must have fβ(d) = b−dp−g−... and then fβ(d)

must spiral around the track some (possibly 0) number of times before eventually

passing over y. This situation is pictured on the right in Figure 5.5. Finally, note

that fβ(y) follows all of fβ(d) to that point, so fβ(y) passes over y.

Lemma 5.3.2. If fβ(d) starts at r, then ψh has a fixed point.

Proof. In this case, because fβ(d) passes over d after an odd number of letters, we

must have fβ(d) = r+d... (possibly after some initial twisting on r and b). Also, we

know g starts at d, so we must have fβ(g) = dp±◦... by trace. It is easy to see from

here that either fβ(p) = b◦ or fβ(p) = b+r + dg±◦... This situation is pictured on the

left of Figure 5.6.

Now, consider which edge starts at p; whichever edge it is, it must start with p+,

because otherwise fβ(g) will be forced to pass over g. If fβ(b) starts at p, we know

fβ(b) = p+db±◦... and if fβ(r) starts at p, we know fβ(r) = p+db+r±◦... In either case,

we’ve reached a contradiction by trace.

So, we are left to consider if fβ(d) can start at p. Note that in this case, fβ(d) =

p+db+r+d... and fβ(d) = r+dg±◦... See the right of Figure 5.6. From here, because

there must be an even number of letters between occurrences of d or d in both fβ(d)

and fβ(d), we can see that fβ(d) and fβ(d) will continue to spiral around the outside

of the track and never meet.

This completes the casework under the assumption that fβ(d) passes over d after

an odd number of letters. Now, suppose instead that fβ(d) passes over d after an

even number of letters. From the argument in the previous subsection, we can then

conclude that fβ(d) passes over d after an odd number of letters. In this case, fβ(d)

starts at one of p, g, or y.

Lemma 5.3.3. If fβ(d) starts at p, then ψh has a fixed point.
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Proof. In this case, we know fβ(d) starts with p+, fβ(b) starts with d or y±◦, and

fβ(r) starts with g±◦. We don’t know which edges start where on the left triangle,

but consider cases for which edge starts at d. The options are: fβ(p) starts at d, fβ(d)

starts at d, or fβ(g) starts at d. If fβ(p) starts at d, then we must have fβ(p) = dg±◦...

by trace. See the left of Figure 5.7. Then, we can see fβ(b) = db±◦..., so fβ(p) can’t

start at d.

If instead fβ(d) starts at d, then a similar argument works by looking at fβ(d)

and fβ(b). See the center of Figure 5.7. We know the next letter in fβ(d) is either

p or g. If fβ(d) = dg±◦, then we must have fβ(b) = db±◦... On the other hand, if

fβ(d) = dp±◦... then after a quick inspection of fβ(y) and fβ(d)we can conclude that

fβ(y) = dp−g±◦... From here, we can check that either fβ(y) passes over y, fβ(r)

passes over r, or fβ(g) passes over g.

The last case is if fβ(g) starts at d. Here, we know fβ(g) = dp±◦... and fβ(d) =

p+d... Because by assumption fβ(d) passes over d or d after an even number of times,

we must have fβ(d) = r−b−d... and we can quickly conclude that fβ(d) and fβ(d) must

meet here. So, then, fβ(d) = p+db+r◦. We can then see that fβ(y) = r−b−dp−g±◦...,

as in the right of Figure 5.7. Looking at fβ(r) now, we find fβ(r) = g◦. But, then

fβ(y) will continue spiraling around the outside of the track unless it eventually passes

over y.

Lemma 5.3.4. If fβ(d) starts at g, then ψh has a fixed point.

Proof. Here, we know fβ(d) = g−d... (it’s possible that fβ(d) twists over g and y some

number of times before going to d, but this won’t matter for our analysis). It follows

that fβ(r) = db±◦.... See the left of Figure 5.8. Now, consider cases for which edge

starts at b; whichever edge it is will start with b− because otherwise fβ(r) will pass

over r.

If fβ(d) starts with b−, then fβ(d) = b−d..., so fβ(d) passes over d after an odd

number of letters. But we’re assuming this is not the case. And, if fβ(p) starts
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5.3. Cases B, C, D

Figure 5.10: Visual aids for the proof of Lemma 5.4.1

with b−, then it will pass over p. Finally, if fβ(g) starts with b
−, then we must have

fβ(g) = b−dp±◦..., as in the right of Figure 5.8. From there, it is not so hard to see

that either fβ(b) passes over b or fβ(g) passes over g.

Lemma 5.3.5. If fβ(d) starts at y, then ψh has a fixed point.

Proof. If fβ(d) starts at y, then we must have fβ(d) = y+g+p+d... (possibly after

some initial twisting which will not matter for our analysis). See the left of Figure

5.9. We’ll consider cases for which edge starts with d; whichever edge it is must then

continue to p afterward. In particular, we know fβ(p) cannot start with d here.

If fβ(d) starts with d, then we can quickly deduce that fβ(d) and fβ(d) must meet

here, so that fβ(d) = y+g+p+d◦. See the center of Figure 5.9. But, we then have

fβ(y) = dp−g−y±◦...

If instead fβ(g) starts with d, then we also know fβ(d) and fβ(y) both start with

r. By the assumption that fβ(d) passes over d after an even number of letters, we

know fβ(d) = r−b−d..., as in the right of Figure 5.9. We can quickly conclude that

fβ(d) and fβ(d) must meet here, so that fβ(d) = y+g+p+db+r◦. But, then fβ(y) will

eventually pass over y.
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5.4. Case A

Figure 5.11: Visual aid for the proof of Lemma 5.4.2.

Figure 5.12: Visual aids for the proof of Lemma 5.4.3

Figure 5.13: Visual aids for the proof of Lemma 5.4.4.

5.4 Case A

This is the case in which the candidate braids βi arise, and we will see them

appear at the end of this subsection. In case A, recall that we know the infinitesimal

triangles of τ are fixed by fβ, and that fβ(d) and fβ(d) both pass over d after an even

number of letters. As in cases B,C,D, we will split our argument into cases based on

fβ(d) and fβ(d). This time, we know that fβ(d) does not start at d and fβ(d) does
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5.4. Case A

not start at d, because otherwise r, b, p, and g would all pass over themselves. We

also know that fβ(d) does not start at y, because then y would pass over itself.

So, we know fβ(d) must start at r or b, and fβ(d) must start at p or g. The

four pairs of choices for fβ(d) and fβ(d) are the final cases to complete the proof of

Proposition 5.0.1 and Theorem B4.

Lemma 5.4.1. If fβ(d) starts at b and fβ(d) starts at p, then ψh has a fixed point.

Proof. In this case, we can completely work out fβ(d). Note that fβ(d) = b+r+d...

and fβ(d) = p−g−... because each needs to pass over d after an even number of letters.

From here, note that fβ(d) = p−g−d... because otherwise y passes over itself. This

situation is pictured on the left of Figure 5.10. Now, fβ(d) and fβ(d) must meet here:

otherwise, whichever end goes “inside” the other would have to pass over d again

after an odd number of letters. For example, if fβ(d) goes above fβ(d) and inside it

to continue towards r, then fβ(d) will eventually be forced to pass over d after an odd

number letters.

So, we must have fβ(d) = b+r+dg+p◦. Now, note that fβ(y) = p−g−dr−b−d...

From here, look at r and g. We know that fβ(r) starts at d and fβ(g) starts at d.

See the right of Figure 5.10. If fβ(g) goes “above” r here, then we must have fβ(g)

will eventually pass over g. On the other hand, if fβ(r) goes “above” g, then either

fβ(r) will pass over r, or fβ(y) will pass over y (e.g. if fβ(r) = dp−g−y...)

Lemma 5.4.2. If fβ(d) starts at r and fβ(d) starts at p then ψh has a fixed point.

Proof. Just as in the previous lemma, we can completely determine fβ(d) here. Us-

ing a very similar argument to the previous lemma, we can conclude that fβ(d) =

r−b−dg+p◦. Now, simply note that fβ(b) = dg+p+db±◦... See Figure 5.11.

Lemma 5.4.3. If fβ(d) starts at b and fβ(d) starts at g, then ψh has a fixed point.

Proof. As in the previous two lemmas, we can completely determine fβ(d): it must

be fβ(d) = b+r+dp−b◦. See the left of Figure 5.12. Next, look at fβ(p). We must
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5.4. Case A

have fβ(p) = y◦ by trace. From here, note that fβ(r) = dp−g−y−p±◦... as shown on

the right of Figure 5.12. To finish the proof, consider how fβ(r) interacts with fβ(g)

and fβ(y).

fβ(r) must continue fβ(r) = dp−g−y−p−b±◦... because otherwise fβ(g) eventually

passes over g (after following fβ(r) backwards for a while). But, in that case, fβ(y)

must eventually pass over y (note that fβ(y) ̸= g◦, because then fβ(r) is absorbed

into the vertex of the triangle near g).

Lemma 5.4.4. If fβ(d) starts at r and fβ(d) starts at g, then either ψh has a fixed

point, or β is conjugate (up to full twists) to one of the βi.

Proof. By Theorem 2.2.1, it suffices to show that fβ = fβi for some i ∈ {1, 2, 3}.

In this case, we can conclude that fβ(d) = r−b−dp−g◦. See the left of Figure 5.13.

Now, look at fβ(p). We can quickly conclude that either fβ(p) = y◦ or fβ(p) = db±◦.

In the latter case, fβ(b) = dg+p+db±◦... So, we must have fβ(p) = y◦, and then we

also have fβ(b) = dp±◦. See the right of Figure 5.13.

From here, we will look at fβ(b), fβ(r), fβ(g), and fβ(y). By considering how the

images of these four edges interact, we will find that fβ must be one of the train track

maps induced by the βi. To start, note that either fβ(b) = dp◦ or fβ(b) = dp−g−◦...

(if fβ(b) = dp+... then fβ(b) will eventually pass over b). In the latter case, we can

conclude that fβ(b) = dp−g◦, because otherwise either fβ(g) will pass over g or fβ(b)

will pass over b. So, either fβ(b) = dp◦ or fβ(b) = dp−g◦.

If fβ(b) = dp◦, then fβ(g) = p+db±◦... By looking at fβ(r) and fβ(g), we can

conclude that either fβ(g) = p+db◦, or fβ(g) = p+db+r◦. In the first case, we must

then have fβ(r) = b−dp−g◦ and fβ(y) = g+p+db+r◦, which is the train track map

induced by β3. In the second case, where fβ(g) = p+db+r◦, we then have fβ(r) = b◦

and fβ(y) = g◦. This is the train track map for β1.

If instead fβ(b) = dp−g◦, then fβ(g) = p◦ and fβ(y) = g+p+db±◦. Here, we must

have fβ(y) = g+p+db+r◦, because otherwise r will follow back along the path of fβ(y)
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and get absorbed into the vertex near b. From here, we can then conclude fβ(r) = b◦,

and this is the train track map for β2.
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Chapter 6

The tight splitting

This section is devoted to developing a tool which is integral to proving Theorem

C, which in turn lies at the heart of our major proof techniques. The key idea is a

specialized form of “splitting,” which will allow us to determine a canonical class of

train tracks carrying all pseudo-Anosovs in most strata on the marked disk. This is

how we restrict our attention to pseudo-Anosovs carried only by a single track in each

stratum in the previous chapters.

6.1 Splitting standardly embedded tracks

We start by adapting the following definition from Ham–Song’s notion of an ele-

mentary folding map [HS07].

Definition 6.1.1. Let τ, τ1 ↪→ Dn be standardly embedded train tracks. A Markov

map is a graph map p : τ1 → τ that maps vertices to vertices, and is locally injective

away from the preimages of vertices. An elementary folding map is a smooth Markov

map such that for exactly one real edge α, the image p(α) has word length 2, while

the images of all other edges have word length 1. We require that the distinguished

edge α belong to a cusp (α, β) of τ1, and that p(α) be of the form
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6.1. Splitting standardly embedded tracks

e

α

β

e
a

β
p

Figure 6.1: An example of an elementary folding map. The map p is the identity
except at the edge α, which is mapped as a directed path to β · e · a.

p(α) = p(β) · a,

where a is a real edge joined to p(β) by an infinitesimal edge.

For the purposes of this paper, an elementary folding map p : τ1 → τ will be the

identity map away from the distinguished real edge α. See Figure 6.1.

Remark 6.1.2. An elementary folding map in our terminology is the composition of

two elementary moves in Ham-Song’s terminology [HS07].

Suppose now that (τ, ψ, f) is the data of a pseudo-Anosov ψ on Dn carried by the

standardly embedded τ :

τ

τ ψ(τ)
ψ

f
collapse

Suppose further that τ1 ↪→ Dn is another standardly embedded train track such

that there exists an elementary folding map p : τ1 → τ . Then there is a well-defined

elementary folding map pψ : ψ(τ1) → ψ(τ) such that the following diagram commutes:
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6.1. Splitting standardly embedded tracks

τ

τ ψ(τ)

τ1 ψ(τ1)

ψ

f
collapse

ψ

p pψ

In general, we cannot expect τ1 to carry ψ: if it did, we would then be able to complete

the above commutative diagram as follows:

τ

τ ψ(τ)

τ1 ψ(τ1)

τ1

ψ

f
collapse

ψ

p

f1

pψ

collapse

In this section we will discuss how to find such a τ1. The process of producing the

data (τ1, ψ, f1) from (τ, ψ, f) is called tight splitting, or t-splitting for short.

Let τ ↪→ Dn be standardly embedded, and let v ∈ τ be a switch. The link of v

is the collection Lk(v) of edges of τ incident to v. The elements of Lk(v) inherit a

natural counterclockwise cyclic order e1, . . . , ek. A subset C ⊆ Lk(v) is connected if

whenever ei, ej ∈ C and i < j, then either

1. ei+1, . . . , ej−1 ∈ C, or

2. ej+1, . . . , ek, e1, . . . , ei−1 ∈ C.

The collections

R(v) = {real edges in Lk(v)}, I(v) = {infinitesimal edges in Lk(v)}

are connected. We index the elements of Lk(v) so that the real edges are e1, . . . , em
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6.1. Splitting standardly embedded tracks

under the cyclic order. In other words, from the perspective of v facing its real edges,

e1 is the real edge furthest to the right and em is the edge furthest to the left.

Definition 6.1.3. The right extremal edge of v is r(v) = e1, and the left extremal

edge is l(v) = em. If R(v) = {e} is a singleton, then we set e = l(v) = r(v).

If v is a switch at an infinitesimal loop of τ , we treat each end of the loop as

a distinct element of Lk(v). Hence I(v) always consists of two elements, il and ir.

These are defined so that, under the cyclic order, we have

l(v) < il < ir < r(v).

Definition 6.1.4. We denote by vl the switch of τ at the other end of il from v.

Similarly, we denote by vr the switch of τ at the other end of ir from v. In the case

that v is at a loop of τ , we set vl = vr = v.

From now on, we set the convention that, for a given switch v of τ , all edges in

R(v) are oriented into v as paths.

Definition 6.1.5. Let τ ↪→ Dn be a standardly embedded train track. Let v be a

switch of τ . Fix a train track map f : τ → τ . We say that v splits tightly to the left

or l-splits if for every real edge x ⊆ τ the following two conditions hold:

1. Whenever l(v) appears in the train path f(x), it is followed by r(vl), and

2. whenever l(v) appears in the train path f(x), it is preceded by r(vl).

Similarly, we say that v splits tightly to the right or r-splits if for every real edge

x ⊆ τ the following two conditions hold:

1. Whenever r(v) appears in the train path f(x), it is followed by l(vr), and

2. whenever r(v) appears in the train path f(x), it is preceded by l(vr).
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a

e

b
τ N(τ)

ψ

α

e

b
τ1 N(τ1)

ψ

v v

Figure 6.2: Left: part of a train track τ and the image of a pseudo-Anosov ψ carried
by τ . Here ψ induces a train track map f : τ → τ for which v splits tightly to the
right. Right: The train track τ1 after r-splitting v, and the action of ψ on τ1. Note
in particular that ψ has not changed, only τ and its fibered neighborhood N(τ). In
each row, the highlighted regions are collapsed by a deformation retraction onto the
corresponding edges.

a

e

b
τ

N(τ)

ψ α
e

b
τ1

ψ

N(τ1)

v
v

Figure 6.3: Left: another train track τ and map f : τ → τ for which v splits tightly
to the right. Right: the train track τ1 after r-splitting v.
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6.1. Splitting standardly embedded tracks

In either case, we say that v splits tightly, or that v t-splits. See Figures 6.2 and 6.3.

If v splits tightly, we define a new train track that maps to τ by an elementary

folding map. In this way, we view splitting as an inverse operation to folding. In

what follows we will restrict our attention to the case that v tightly splits to the left:

all definitions are analogous if v splits tightly to the right. To obtain these analogous

statements and proofs, one need only replace all l’s with r’s and vice versa.

Suppose v l-splits. Define τ lv to be the standardly embedded train track obtained

by deleting l(v) and replacing it with a real edge α such that

1. As a directed edge, α(0) = l(v)(0) and α(1) = r(vl)(1).

2. The edge α forms a bigon (i.e. a two-cusped disk) with the train path l(v)·r(vl),

and there is an isotopy rel the punctures of Dn so that α lies transverse to the

leaves of the fibered neighborhood of τ .

The standardly embedded track τ lv comes equipped with a natural elementary

folding map p : τ lv → τ , defined by

p(x) =


x x ̸= α

l(v) · r(vl) x = α

Definition 6.1.6. If v splits tightly to the left, then the map p : τ lv → τ is called a

tight left split or an l-split of τ . We analogously define the tight right split or r-split

p : τ rv → τ .

Proposition 6.1.7. Suppose (τ, ψ, f) is the data of a pseudo-Anosov carried by the

standardly embedded train track τ :

τ

τ ψ(τ)
ψ

f
collapse
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6.1. Splitting standardly embedded tracks

If v l-splits, then τ lv carries ψ. Hence the above diagram may be completed to the

commutative diagram

τ

τ ψ(τ)

τ lv ψ(τ lv)

τ lv

ψ

f
collapse

ψ

p

f lv

pψ

collapse

where f lv is a train track map.

Proof. Let F ⊆ Dn be a fibered surface for ψ from which the Bestvina-Handel algo-

rithm produces τ . Let L, I, and R denote the strips of F collapsing to the (unoriented)

edges l(v), il, and r(vl) of τ , respectively. Deleting L and replacing it with a strip A

collapsing to α produces a new fibered surface F ′ from which the algorithm produces

τ lv. The fact that F ′ is a fibered surface for ψ follows from the fact that v l-splits:

any strip of ψ(F ) passing through L in fact passes through all three of L, I, and R

in order, and hence after an isotopy we may arrange for the strip to pass through A

instead. Furthermore, since α is isotopic to l(v) · il · r(lv) and ψ(L), ψ(I), and ψ(R)

may be isotoped into F ′, it follows that ψ(A) may be isotoped into F ′ as well.

Proposition 6.1.8. Suppose that v l-splits and let M and Mv be the transition

matrices of f : τ → τ and f lv : τ
l
v → τ lv, respectively. Then

Mv = P−1MP,

where P is the transition matrix of the elementary folding map p : τ lv → τ : that is, if

l(v) is the jth edge and r(vl) is the ith edge, then we have
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6.1. Splitting standardly embedded tracks

P = In +Di,j,

where τ has n real edges, In is the identity, and Di,j is the square matrix with a 1 in

the (i, j)-entry and 0’s elsewhere.

Proof. We will argue that we have the following commutative diagram:

τ lv τ lv

τ τ

p

f lv

p

f

From this the claim will follow, since each of the arrows is a Markov map, and so

upon passing to transition matrices we obtain the relation

PMv =MP.

Suppose x is an edge of τ lv. By the definition of p we have

(f ◦ p)(x) =


f(x) x ̸= α

f(l(v)) · f
(
r(vl)

)
x = α

On the other hand, we must understand the map f lv : τ
l
v → τ lv in order to analyze

the composition p◦f lv. For any edge y ∈ τ , define f ′(y) to be the word obtained from

the train path f(y) by replacing each instance of l(v) · r(vl) with α and each instance

of r(vl) · l(v) with α. In other words, f ′(x) is the unique word such that

p(f ′(x)) = f(x).

If x ̸= α is an edge of τ lv, then f lv(x) = f ′(x). If x = α, then f lv(x) = f lv(α) =

f ′(l(v)) · f ′
(
r(vl)

)
. In either case, we obtain the formula
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6.1. Splitting standardly embedded tracks

(p ◦ f lv)(x) =


f(x) x ̸= α

f(l(v)) · f
(
r(vl)

)
x = α

This agrees with the formula for f ◦ p, so the proof is complete.

Recall that by the Perron-Frobenius theorem, the dilatation of ψ is a simple

eigenvalue of the transition matrix M , and there exists a positive right λ-eigenvector

µ of M . For a fixed choice of µ we will denote by µ(x) the entry of µ corresponding

to the real edge x.

Corollary 6.1.9. Let (τ, ψ, f) be the data of a pseudo-Anosov carried by a standardly

embedded train track. LetM be the transition matrix for f : τ → τ , and let λ be the

dilatation of f . Fix a positive right λ-eigenvector µ ofM . If v l-splits then µv = P−1µ

is a positive right λ-eigenvector of Mv. Consequently,

µ(l(v)) < µ(r(vl)).

Proof. Since Mv = P−1MP , it immediately follows that µv = P−1µ is a right λ-

eigenvector of Mv. At least one entry of µv is positive, since µv(α) = µ(l(v)) > 0.

Therefore µv is positive, since the Perron-Frobenius theorem states that λ is a simple

eigenvalue of Mv and has a positive eigenvector.

To see that µ(l(v)) < µ(r(vl)), observe that

0 < µv(r(vl)) = µ(r(vl))− µ(l(v)).

Example 6.1.10. Here is an extended example of a sequence of t-splits. The maps

appearing in this example are closely related to the maps studied in Section 4.2. Let
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e1
e2 e3

e4

e5
α
βγ

1 2 3 4 5 3 4 5 1 2

ψ

e1
e2 e3

e4

e5
α
βγ

1 2 3 4 5 3 4 5 1 2

ψ

e1
e2 e3

e4

e5
α
βγ

1 2 3 5 4 3 4 5 2 1

σ−1
4 ◦ ψ ◦ σ4

e1
e2 e3

e4
e5

α
βγ

1 2 3 5 4 3 4 5 2 1

σ−1
4 ◦ ψ ◦ σ4

τ1

τ2

τ ′2

τ3

Figure 6.4: The track τ1, τ2 carries ψ. The track τ ′2 = σ−1
4 (τ2) carries σ−1

4 ◦ ψ ◦ σ4.
The track τ3 carries σ−1

4 ◦ ψ ◦ σ4.
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(τ, ψ, f) be the data of the pseudo-Anosov represented in Figure 6.4. The transition

matrix for f : τ → τ is

M1 =



0 0 1 0 0

0 0 0 1 0

0 0 0 1 1

1 2 0 0 0

1 1 0 0 0


.

The characteristic polynomial ofM1 is χ(t) = (t+1)(t4−t3−t2−t+1). The dilatation

of ψ is the root λ of this polynomial with largest absolute value. A positive right

λ-eigenvector for M1 is

µ1 =



µ1(e1)

µ1(e2)

µ1(e3)

µ1(e4)

µ1(e5)


=



2 + 5λ− λ2 − λ3

−2− 2λ+ λ2 + λ3

1 + λ+ 4λ2 − 2λ3

−1− λ− λ2 + 2λ3

3


=



2.537...

2.628...

4.370...

4.526...

3


One can see that the vertex at loop 5 splits tightly to the left. Performing this

l-split produces the track τ2, which also carries ψ. See Figure 6.4. The transition

matrix of the l-split p1 : τ2 → τ1 is

P1 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1


= I5 +D4,5

and the transition matrix for f2 : τ2 → τ2 is
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M2 = P−1
1 M1P1 =



0 0 1 0 0

0 0 0 1 1

0 0 0 1 2

0 1 0 0 0

1 1 0 0 0


which has right λ-eigenvector

µ2 = P−1
1 µ1 =



µ2(e1)

µ2(e2)

µ2(e3)

µ2(e4)

µ2(e5)


=



µ1(e1)

µ1(e2)

µ1(e3)

µ1(e4)− µ1(e5)

µ1(e5)


=



2.537...

2.628...

4.370...

1.526...

3


We may conjugate by σ−1

4 to obtain the track τ ′2, which is slightly easier to read.

See Figure 6.4. This move is a standardizing braid move in the language of [KLS02].

It is not a t-split and is purely cosmetic. It does not alter the transition matrix or

any other relevant dynamical information.

We can now see that the switch at loop 4 splits tightly to the right. Performing

this r-split produces the track τ3, which also carries σ−1
4 ◦ψ ◦σ4. See Figure 6.4. The

transition matrix of the r-split p2 : τ3 → τ2 is

P2 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 1 1


= I5 +D5,4
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and the transition matrix for f3 : τ3 → τ3 is

M3 = P−1
2 M2P2 =



0 0 1 0 0

0 0 0 2 1

0 0 0 3 2

0 1 0 0 0

1 0 0 0 0


which has right λ-eigenvector

µ3 = P−1
2 µ2 =



µ2(e1)

µ2(e2)

µ2(e3)

µ2(e4)

µ2(e5)− µ2(e4)


=



µ1(e1)

µ1(e2)

µ1(e3)

µ1(e4)− µ1(e5)

2µ1(e4)− µ1(e4)


=



2.537...

2.638...

4.370...

1.526...

1.473...



6.2 Switch rigidity

In this section we investigate when a t-split is possible at a given switch, identifying

the essential obstruction. We call this obstruction switch rigidity and show that it

is uncommon. Indeed, the orbit of every switch contains a switch that is t-splittable

(cf. Proposition 6.2.7).

Let v be a switch of the train track τ . Recall that Lk(v) is the set of edges of τ

incident to v. A Markov map f : τ → τ induces a map Df : Lk(v) → Lk(f(v)) as

follows. Orient all edges in Lk(v) and Lk(f(v)) away from v and f(v), respectively.

Then

Df(a) = b if f(a) begins with b.

As a consequence of the Bestvina-Handel algorithm, all elements of R(v) belong to
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e1
e2

e

f(w) = v

f(x1)

f(x2)

v

Figure 6.5: An example of a rigid switch. On the left is the switch, on the right the
image of the map near the switch.

the same gate: that is, there exists an integer k ≥ 1 such that (Df)k = D(fk) is

constant on R(v).

Definition 6.2.1. Let τ ↪→ Dn be standardly embedded, and let f : τ → τ be a

train track map. Let v be a switch of τ such that R(v) is not a singleton, and set

R(v) = {e1, . . . , ek}. Let w be the switch of τ such that f(w) = v. We say that v is

rigid if there exist x1, . . . , xk ∈ R(w) such that

Df(xi) = ei for all i.

Lemma 6.2.2. Let (τ, ψ, f) be the data of the pseudo-Anosov ψ on Dn carried by

the standardly embedded τ . Let w be a switch of τ . Write α = r(w), β = l(w), and

v = f(w). For any c ∈ R(v) between Df(α) and Df(β), there exists γ ∈ R(w) such

that Df(γ) = c. In other words, the set Df(Lk(w)) ⊆ Lk(v) is connected.

Proof. Suppose c ∈ R(v) is between Df(α) and Df(β). Since ψ is pseudo-Anosov,

f is surjective. Hence there exists a real edge γ such that f(γ) collapses onto c. But

since ψ is a homeomorphism, ψ(γ) cannot intersect ψ(α ∪ β), so γ must be incident

to w. In other words, c = Df(γ).

Definition 6.2.3. We say a switch v of τ is a loop switch if it is incident to an

infinitesimal loop.

The next lemma says that switch rigidity is the only barrier to the existence of a

t-split at a loop switch. Note that if v is a loops switch, then vl = vr = v.
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Lemma 6.2.4. Let (τ, ψ, f) be the data of a pseudo-Anosov ψ on Dn carried by

the standardly embedded τ . Let v be a loop switch, and suppose that R(v) is not a

singleton. Then exactly one of the following three possibilities is true.

1. The switch v splits tightly to the left.

2. The switch v splits tightly to the right.

3. The switch v is rigid.

Proof. Let w be the loop switch of τ such that f(w) = v. If either (1) or (2) holds

then v cannot be rigid: for example, if v l-splits then there does not exist x ∈ R(w)

such that Df(x) = l(v). On the other hand, if v is not rigid then Lemma 6.2.2 implies

that at least one of l(v), r(v) is not in the image Df(Lk(w)).

Assume without loss of generality that l(v) ̸∈ Df(Lk(w)). Then any appearance

of l(v) in an image train path is in fact an appearance of l(v) · x, up to orientation.

Here x is some edge in R(v) that might vary. If x is always r(v) then v l-splits.

Otherwise, we claim that v r-splits.

Indeed, suppose that there exists a real edge y ⊆ τ such that f(y) contains l(v) ·x,

up to orientation, for some real edge x ̸= r(v). Lemma 6.2.2 implies that Df(Lk(w))

is a subset of the real edges between l(v) and x. In particular, r(v) ̸∈ Df(Lk(w)).

Let z be a real edge such that f(z) contains r(v), up to orientation. Since ψ is a

homeomorphism and f(z) is a train path, the appearance of r(v) in f(z) must be

followed by l(v), due to the existence of ψ(y). In other words, v r-splits.

Thus we have established that (1) or (2) holds if and only if (3) does not hold. It

remains to show that (1) and (2) are mutually exclusive. Corollary 6.1.9 says that

if v l-splits then µ(l(v)) < µ(r(v)). It follows that if (1) holds then (2) cannot. The

proof is complete.

The same argument gives the following proposition for a switch not at a loop.
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6.2. Switch rigidity

Proposition 6.2.5. Let (τ, ψ, f) be the data of a pseudo-Anosov ψ on Dn carried

by the standardly embedded τ . Let v be a switch of τ , and suppose that R(v) is not

a singleton. Suppose additionally that R(vl) and R(vr) are singletons. Then at least

one of the following three possibilities is true.

1. The switch v splits tightly to the left.

2. The switch v splits tightly to the right.

3. The switch v is rigid.

Moreover, case (3) is disjoint from cases (1) and (2).

Lemma 6.2.4 says that if we cannot split at a particular switch v, then it is rigid.

The natural next step is to consider the preimage switch v1 causing v to be rigid.

If v1 is also rigid, we look at its preimage v2. It might happen that we never find

a splittable switch. In this case, the periodic orbit of v consists of a cycle of rigid

switches.

Definition 6.2.6. A rigid cycle of length k is a collection of rigid switches v1, . . . , vk ∈

τ such that f(vj) = vj−1 for all j, where the indices are taken modulo k.

Proposition 6.2.7. Rigid cycles do not exist.

Proof. Let v ∈ τ be a switch. Since τ is standardly embedded, every element of R(v)

belongs to the same gate of v, hence there exists k ≥ 1 such that (Df)k is constant

on R(v). In fact, for all n ≥ k we have that (Df)n is constant on R(v). On the other

hand, if v belonged to a rigid cycle of length n then (Df)n : R(v) → R(v) would be

the identity map, a contradiction.

Corollary 6.2.8. Let v ∈ τ be a switch such that R(v) is not a singleton. Then

some iterated preimage switch w of v is not rigid.
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It is well-known that if (τ, ψ, f) is the data of a pseudo-Anosov, then f permutes

the infinitesimal k-gons for each k (cf. [BH95]). We obtain the following corollary,

which will be of central importance in the following section. The real valence of a

switch v is the cardinality of R(v).

Corollary 6.2.9. Let nk denote the maximal real valence of a switch at an infinites-

imal k-gon of τ , where k ≥ 1. If nk > 1 then there exists a switch of valence nk at

such a k-gon which is not rigid.

Proof. The infinitesimal k-gons are permuted by f . If every such maximal valence

switch is rigid, then they must form a rigid cycle, since real valence cannot decrease

when passing to the preimage of a rigid switch. This is impossible, since rigid cycles

do not exist.

6.3 The proofs of Theorems 4.2.1, 1.2.6, and C

In this subsection, we will use the theory of t-splits developed in Section 6 to prove

Theorems C, and see 4.2.1 as a consequence. Though Theorem D itself is more general

than necessary to prove Theorem 4.2.1, we believe it has wider-reaching applications

to surface dynamics.

Definition 6.3.1. Let τ ↪→ Dn be a standardly embedded train track. We say a real

edge e of τ is a stem if at least one end of e is incident to an infinitesimal k-gon,

where k ≥ 2.

Definition 6.3.2. Let τ ↪→ Dn be a standardly embedded train track. We say a loop

switch v ∈ τ is a joint if |R(v)| ≥ 2.

Theorem C. Let ψ be a pseudo-Anosov onDn with at least one k-pronged singularity

away from the boundary with k ≥ 2. Then ψ is carried by a train track τ with no

joints.
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6.3. The proofs of Theorems 4.2.1, 1.2.6, and C

The central argument in the proof of Theorem C hinges on finding a maximal-

valence vertex v near a puncture, and then using Corollary 6.2.9 to tightly split at v.

Before diving into the proof, we observe one crucial lemma. Although well-known to

experts, the authors could not find a complete proof of Lemma 6.3.3 in the literature.

For the sake of completeness, we have included a proof which arose from a helpful

conversation with Karl Winsor.

Lemma 6.3.3. For any fixed n and B > 0, there is a finite number of Perron-

Frobenius matrices of size n and spectral radius at most B. In particular, there is a

finite number of Perron-Frobenius matrices of a given size with a particular Perron-

Frobenius eigenvalue.

Proof. Fix n ≥ 2, and let M be an n × n Perron-Frobenius matrix. Write Mi,j for

the (i, j)th entry of M , and Cj(M) for the jth column of M . An exercise in matrix

algebra shows that for each integer k ≥ 1,

Cj(M
k) =

n∑
i=1

(Mk−1)i,j · Ci(M).

It is well-known (cf. [Wie50]) that Mn2−2n+2 has all entries positive. Hence the

smallest column sum of Mn2−2n+3 is at least the sum ∥M∥1 of all the entries of M .

It is not hard to see that the smallest column sum of a Perron-Frobenius matrix is a

lower bound on its spectral radius ρ(M). We now have

ρ(M)n
2−2n+3 = ρ

(
Mn2−2n+3

)
≥ ∥M∥1 .

In particular, ρ(M) ≥ ∥M∥
1

n2−2n+3

1 . Since there are only finitely many integer-

valued matrices M with ∥M∥1 below a given bound, the result follows.

Proof of Theorem C. Let τ0 ↪→ Dn be a standardly embedded train track carrying

ψ. We will algorithmically produce a finite sequence of t-splits on τ0 to produce the
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6.3. The proofs of Theorems 4.2.1, 1.2.6, and C

desired track τ with no joints.

Let J denote the number of cusps at the loop switches of τ , i.e. J =
∑

v(|R(v)|−1),

where v ranges over the loop switches of τ . If J = 0 then there is nothing to prove, so

assume J ≥ 1. By Corollary 6.2.9 there exists a loop switch of τ0 of maximal valence

that can be t-split. Therefore, we introduce the following simple algorithm.

1. Initialize τ = τ0 and M = {M0}, where M0 is the transition matrix associated

to the data (τ0, ψ, f0).

2. Find a loop switch of τ of maximal valence that is not rigid, and split it,

obtaining the data (τ1, ψ, f1) with transition matrix M1. Set τ = τ1.

3. If J has decreased by 1, terminate.

4. If J has not decreased, add M1 to M and repeat Steps 2 and 3.

We claim that this algorithm terminates in finitely many steps, and returns a train

track τ with one fewer joint than τ0. Indeed, by Lemma 6.3.3 there are only finitely

many possible transition matrices that can appear, hence we will eventually produce

a matrix Mj =Mi ∈ M. Since this matrix is Perron-Frobenius, the dilatation λ of ψ

is an eigenvalue with strictly positive eigenvectors µi and µj. Moreover, λ is simple, so

in fact µj is a scalar multiple of µi. According to Corollary 6.1.9, each t-split reduces

one of the entries of this eigenvector, so recurring to a matrix in M implies that every

entry of µ has been reduced, i.e. that every real edge of τ0 has been split over. In

particular, the stems of τ0 have been split over. Such a split necessarily decreases the

joint number J , causing the algorithm to terminate.

Repeating this algorithm sufficiently many times will eventually reduce J to 0,

proving the theorem.

proof of Theorem 4.2.1. Note that in the stratum (2; 15; 3), there are only two classes

of standardly-embedded train tracks without joints: those shown in Figure 4.4. By
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Theorem C, any pseudo-Anosov in this stratum is conjugate to one carried by either

the Peacock or the Snail. We will argue that any pseudo-Anosov ψ carried by the

Snail tightly splits to one carried by the Peacock.

First, observe that ψ must split at the unique valence-3 switch of the infinitesimal

triangle in the Snail, by Corollary 6.2.9. Either a left or right split at this vertex

yields a pseudo-Anosov ψ′ conjugate to ψ, and carried by a track τ ′ with a unique

two-valent vertex v at a puncture. This vertex v is again splittable by Corollary 6.2.9.

At v, note that ψ′ splits either to another map carried by τ ′, with strictly smaller

edge weight on the edge running between two punctures, or to a map carried by the

Peacock. In particular, after sufficiently many splits, ψ′ splits to a pseudo-Anosov

carried by the Peacock.

proof of Theorem 1.2.6. Note that if ψ : S → S has the given singularity type, we

may cap-off ψ to a pseudo-Anosov ψ̂ on the closed genus-two surface Ŝ and extend the

foliations preserved by ψ along the capping disk. In this case, the 4-prong singularity

p in the capping disk is the unique 4-prong singularity of ψ̂. In particular, ψ̂ commutes

with the hyperelliptic involution ι on Ŝ and p is fixed by ι, as in e.g. Lemma 3.7 of

[BHS21]. And, because p is fixed by ι, we see that ψ commutes with the hyperelliptic

involution on S, as well. We may then quotient ψ to a pseudo-Anosov 5-braid β.

Theorem 4.2.1 implies that β is carried by the Peacock track depicted in Figure 4.4,

and we can then lift this track to S as described in section 2.3.
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[OS04d] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and topological invari-

ants for closed three-manifolds. Annals of Mathematics, 159(3):1027–1158,

2004. 1, 19

[Pet09] Thomas Peters. On l-spaces and non left-orderable 3-manifold groups,

2009. 6

[PH22] R. C. Penner and J. L. Harer. Combinatorics of Train Tracks. (AM-125).

Princeton University Press, 1922. 2

[Rei23] Braeden Reinoso. Fixed-point-free pseudo-anosovs, and genus-two l-space

knots in the poincare sphere, 2023. 2

[Ryk99] E. Rykken. Expanding factors for pseudo-Anosov homeomorphisms.

Michigan Math. J., 46(2):281–296, 1999. 37

[Tan11] Motoo Tange. On the non-existence of l-space surgery structure. Osaka J.

Math, 48:541–547, 2011. 2, 3, 19

[Thu88] William P. Thurston. On the geometry and dynamics of diffeomorphisms

of surfaces. Bulletin (New Series) of the American Mathematical Society,

19(2):417–431, 1988. 2, 16

[Thu98] William P. Thurston. Hyperbolic structures on 3-manifolds, ii: Surface

groups and 3-manifolds which fiber over the circle, 1998. 17

[Wie50] Helmut Wielandt. Unzerlegbare, nicht negative Matrizen. Math. Z.,

52:642–648, 1950. 91

98


	Contents
	List of Figures
	Acknowledgements
	Introduction
	Context
	Summary of results
	Applications to the Floer homology of branched covers
	Applications to instanton Floer theory
	Applications to Khovanov homology

	Outline
	Reducing Theorem B into Theorems B1 — B4
	The case (6;;)
	The remaining three singularity cases
	The main idea of Chapter 6


	Background and setup
	Pseudo-Anosov maps, three manifolds, fibered knots, and Floer theory
	Mapping classes, pseudo-Anosovs, and singularity types
	Fibered knots and fractional Dehn twists
	Floer theory, and Theorem A from Theorem B

	Train tracks and maps, and standard tracks
	Train tracks carrying mapping classes
	Real and infinitesimal edges
	Standard and jointless tracks, and a carrying theorem

	Branched covers and lifting train track maps
	Braids and the Birman–Hilden correspondence
	Lifting standard tracks, and the trace lemma


	The stratum (6;;)
	The strata (2;;42) and (4;;32)
	The stratum (2;;42)
	The stratum (4;;32)
	A family of braids lifting to fixed-point-free maps
	Train track maps on the Peacock


	The stratum (2;;34)
	Analyzing the candidate braids
	Setup for the case analysis
	Cases B, C, D
	Case A

	The tight splitting
	Splitting standardly embedded tracks
	Switch rigidity
	The proofs of Theorems 4.2.1, 1.2.6, and C


