Items in eScholarship@BC will redirect to URBC, Boston College Libraries' new repository platform. eScholarship@BC is being retired in the summer of 2025. Any material submitted after April 15th, 2025, and all theses and dissertations from Spring semester 2025, will be added to URBC only.
We are interested in proving the following statement: Given a 3-manifold M with boundary and a homeomorphism of the boundary f : ∂M → ∂M such that there is some power that extends to M, there is some k depending only on the genus g(∂M) and some l < k such that ƒᶩ extends to M. We will prove that the power needed to extend is not uniformly bounded with some examples, we will prove the statement is true if M is boundary incompressible and we will show that the general statement reduces to effectivising some technical results about pure homeomorphisms extending to compression bodies.