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We are interested in proving the following statement: Given a 3-manifold M with

boundary and a homeomorphism of the boundary f : ∂M → ∂M such that there is

some power that extends to M , there is some k depending only on the genus g(∂M)

and some ` < k such that f ` extends to M . We will prove that the power needed to

extend is not uniformly bounded with some examples, we will prove the statement

is true if M is boundary incompressible and we will show that the general statement

reduces to effectivising some technical results about pure homeomorphisms extending

to compression bodies.
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1 Introduction

In order to understand 3-manifolds with boundary, we might study homeomorphisms

of the manifold to itself. This would induce a homeomorphism on the boundary, a

surface homeomorphism. Since surface homeomorphisms are well understood, it is

productive to reverse the process: For M a 3-manifold with boundary component S,

we can ask when a homeomorphism of S extends to M . Precisely, for a manifold M

with a boundary component S, we say that a homeomorphism f : S → S extends to

M if there exists some homeomorphism φ : M →M such that φ|S = f .

Surface homeomorphism extension is broadly studied in 3-manifold topology and

geometry. One interesting instance is the cobordism of surface automorphisms. Let

f : S → S and f ′ : S ′ → S ′ be surface homeomorphisms. We say f and f ′ are

cobordant if there exists some 3-manifold M with boundary components S and S ′

and an automorphism F of M such that F |S = f and F |S′ = f ′. Both Bonahon

[13] and independently Edmonds and Ewing [14], show that the cobordism classes

of surface automorphisms form a group isomorphic to Z∞ ⊕ (Z/2)∞. Furthermore,

in [6], Casson and Long give an algorithm to determine if a surface homeomorphism

extends to a compression body (see below) which is a key step in determining if a

homeomorphism is nullcobordant.

1.1 Main Conjecture

We are interested in proving the following conjecture:

Conjecture 1. Let M be a 3 manifold with boundary and let B = Sg1 t · · · tSg` be

a disjoint union of a subset of the components of ∂M , closed surfaces Sgi of genus gi

with G(B) :=
∑`

i=1 gi. If f : B → B is a homeomorphism such that f raised to some

power extends to M , then there is a bounded power ` ≤ k(G(B)) such that f ` also
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extends to M .

One might wonder if any homeomorphisms require a power to extend. Section 3

gives examples of some 3 manifoldsM with boundary S and homeomorphisms f : S →

S that require a power to extend to M , including pseudo-Anosov homeomorphisms.

1.2 Partial Extension

Given these examples, one might wonder if a lesser power might extend to a subman-

ifold of M .

Let M be a compact, orientable, and irreducible 3-manifold with some compress-

ible boundary component S. Then for a homeomorphism f : S → S, we say that

f partially extends to M if there is some nontrivial compression body C ⊂ M with

∂+C = S and a homeomorphism φ : C → C such that φ|S = f .

Biringer, Johnson, and Minsky [1] prove the following:

Theorem (BJM, 2013). Let f : Σ → Σ be a pseudo-Anosov homeomorphism of

some compressible boundary component Σ of a compact, orientable and irreducible 3-

manifold M . Then the (un)-stable lamination of f is an R-projective limit of merid-

ians if and only if f has a power that partially extends to M .

Ackermann gives an alternate proof in [5] using earlier machinery of Casson and

Long (see [6] and [7]). Maher and Schleimer give an alternate proof using train tracks

and subsurface projections (see [8]).

Partial extension comes up naturally when hyperbolizing 3-manifolds created as

gluings. For instance, in [2], Lackenby studied the hyperbolization of 3-manifolds

obtained by ‘generalized Dehn surgery’, i.e. manifolds obtained by attaching a han-

dlebody H to a compact 3-manifold M along some boundary component. He showed
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(modulo the Geometrization Theorem) that if M is ‘simple’ and we choose any home-

omorphism φ : ∂M → ∂H and a homeomorphism f : ∂H → ∂H such that no power

partially extends to H, then for infinitely many integers n, the manifold M ∪fn◦φ H

is hyperbolic.

Inspired by both of these theorems, it is natural to ask if there is some bound on

the power of f required to partially extend as this would imply there are only a finite

number of powers of f to check for partial extension and subsequent obstruction to

hyperbolization. We will show that there is no universal bound via construction in

the proof of the following:

Theorem 32. For all i ∈ N there is a compact, orientable and irreducible 3-manifold

Mi with compressible boundary component Σi and a pseudo-Anosov fi : Σi → Σi such

that f ii partially extends to Mi and f ji does not for j < i.

This illustrates why in Conjecture 1, we bound our power by a function of the

genus of the boundary of M .

1.3 Outline

In Section 2, we give background on surface homeomorphisms, and compression bod-

ies. In Section 3 we present examples of boundary homeomorphisms that require a

power to extend including pseudo-Anosov maps. In Section 4 we prove Theorem 32.

In Section 5, we use the Prime Decomposition Theorem to prove the following

theorem.

Theorem 37. If Conjecture 1 is true for pure homeomorphisms on the boundary of

orientable irreducible 3-manifolds, it is true for homeomorphisms on the boundary of

orientable 3-manifolds in general.
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This along with following work of Bonahon allows us to reduce proving Conjecture

1 in general to proving it for compression bodies and irreducible manifolds that are

boundary incompressible.

Theorem 41 ([13], Theorem 2.1). Let M be an irreducible 3-manifold. There exists

V ⊂ M a disjoint union of compression bodies for ∂M , unique up to isotopy, called

the characteristic compression body, such that M −V is boundary incompressible and

irreducible.

In Section 6 we prove Theorem 42 which says that Conjecture 1 is true for pure

boundary homeomorphisms of irreducible boundary-incompressible manifolds. A key

tool we use is Theorem 43 ([18], Theorem 3.8 Characteristic torus/annulus decom-

position) which is the analogue of the JSJ decomposition theorem for manifolds with

boundary.

As a corollary to this, we prove the following:

Corollary 62. Let M be an irreducible, orientable boundary-incompressible manifold.

If B is a union of a subset of the boundary components of M with homeomorphism

f : B → B such that a power of f extends to M , then f ` extends to M such that

` ≤ 12G(B)!(3G(B)− 3)![210(B(G)− 1)]2G(B)−2.

In Section 7, we reduce proving Conjecture 1 to proving the following:

Conjecture 2. If h : Sg → Sg is a homeomorphism and C is an Sg-compression

body such that some power of h extends to C, then there exists Sg-compression body

C ′ ⊂ C such that for some j ≤ m(g) (with m(g) an increasing function) we have that

hj extends to C ′.
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Assuming this conjecture, in Proposition 63 we get a bound for extension on a

compression body. With Theorem 41 in mind we generalize to the case where M is a

disjoint union of compression bodies in the following corollary:

Corollary 64. Let V = Sg1 [K1] t · · · t Sgn [Kn] be a disjoint union of compression

bodies and suppose that B is a union of a subset of the Sgi ’s. If homeomorphism

f : B → B has a power that extends to V and if Conjecture 2 is true then there is

an i ≤ m(G(B))[1+G(B)(2G(B)−2)]G(B) such that f i extends to V .

Then in Proposition 65 we put the compression body case and the incompressible

boundary case together to get a bound on extension for an irreducible manifold. As

a corollary, we get the following for a general orientable 3-manifold:

Corollary 66. Assuming Conjecture 2, if M is an orientable 3-manifold with bound-

ary and if B is a union of a subset of components of ∂M such that f : B → B has a

power that extends to M , then there is some

i ≤
[
12G(B)!(3G(B)− 3)!m(G(B))[1+G(B)(2G(B)−2)]G(B)[210(B(G)− 1)]2G(B)−2

]G(B)

such that f i extends to M .

In Section 8, we give ideas toward proving Conjecture 2 including a proof of the

following:

Theorem 71. Let h : Sg → Sg be a homeomorphism and γ ⊂ Sg an essential simple

closed curve. Set

Ch,γ = {Sg-compression body C : h extends to C and γ compresses in C}.
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Then there are at most

(6g − 6)2g−2(6g − 6)(2g−2)2(2g−3)

minimal elements of Ch,γ.

This along with an effectivization of a theorem of Casson and Long (see Theorem

1.2 in [6]) would prove a weaker version of Conjecture 2 that applies to only pseudo-

Anosovs instead of homeomorphisms in general.

2 Background

2.1 Surface homeomorphisms

First, let us consider the homeomorphisms of a torus. The orientation preserving

automorphisms of the torus up to isotopy are isomorphic to SL(2,Z).

Fact 1. If an orientation preserving homeomorphism f : T 2 → T 2 fixes a curve up

to isotopy, then f is isotopic to a power of a Dehn twist.

Proof. Let orientation preserving homeomorphism φ : T 2 → T 2 correspond to Aφ = a b

c d

 ∈ SL(2,Z). Then there is some simple closed curve α represented by vector

v ∈ Z×Z such that (Aφ)v = v. Thus (Aφ−I)v = 0. Since such a v exists this implies

det(Aφ − I) = 0. Thus (a− 1)(d− 1)− cb = 0 (∗).

Since Aφ ∈ SL(2,Z), we have det(Aφ) = 1 and so −cb = 1 − ad. Plugging this

into (∗), we get (a− 1)(d− 1) + 1− ad = 0 which gives a+ d = 2. Thus |tr(Aφ)| = 2.

By the classification of Mod+(T 2), every A ∈ SL(2,Z) with |tr(A)| = 2 corresponds

to a homeomorphism of T 2 that is a power of a Dehn Twist. Thus up to isotopy, φ

is a power of a Dehn Twist.
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Recall the following classification of surface homeomorphisms of surfaces Sg,b,n

of genus g with b boundary components and n punctures. See [22], Chapter 13 for

details.

Theorem 2 (Nielsen-Thurston classification). Let χ(Sg,b,n) < 0. Each homeomor-

phism f : Sg,b,n → Sg,b,n is isotopic to a homeomorphism that is periodic, reducible,

or pseudo-Anosov. Furthermore, the pseudo-Anosov mapping classes are neither pe-

riodic nor reducible.

A map is reducible if it preserves a nonempty set of disjoint isotopy classes of

essential simple closed curves {c1, ..., cn} in Sg,b,n. This set is called a reduction system

for f . The canonical reduction system for f is the intersection of all maximal reduction

systems with respect to inclusion of reduction systems of f . The following corollary

to Theorem 2 proved in [23] allows us to cut Sg,b,n along the ci and look at the

classification of f restricted to the resulting pieces.

Corollary 3 ([22], Cor 13.3). Let χ(Sg,b,n) < 0 and S = Sg,b,n. Let f ∈ Mod(S) and

let {c1, ..., cm} be its canonical reduction system. Choose representatives of the ci with

pairwise disjoint closed neighborhoods R1, ..., Rm which are annuli. Let Rm+1, ..., Rm+p

denote the closures of the connected components of S −
⋃m
i=1 Ri. Let ηi : Mod(Ri)→

Mod(S) denote the homomorphism induced by the inclusion Ri → S. Then there is

a representative φ of f that permutes the Ri so that some power of φ leaves each

Ri invariant. What is more, there exists a k ≥ 0 so that φk(Ri) = Ri for all i and

fk = Πm+p
i=1 η(fi) where fi ∈ Mod(Ri) is a power of a Dehn twist for 1 ≤ i ≤ m and

fi ∈ Mod(Ri) is either pseudo-Anosov or the identity for m+ 1 ≤ i ≤ m+ p.

Definition 4. We say that map fk : Sg → Sg as described above is pure.

Note that if n = b = 0, the order |{c1, ..., cn}| ≤ 3g − 3, the order of a pants
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decomposition in a closed genus g surface and thus for any homeomorphism f : Sg →

Sg, there is some k ≤ (3g − 3)! such that fk is pure.

Let us generalize to the case that f : B → B is a homeomorphism of B a disjoint

union of closed surfaces. We denote a closed surface of genus g by Sg throughout.

Definition 5. We say f : B → B for B = Sg1 t · · · t Sgn is pure if f satisfies the

following:

1. f fixes each component of B

2. on each component Sgi with gi > 1, f is pure (as defined in Definition 4)

3. on each component Sgi with gi = 1, f = id or f is not finite order.

Definition 6. Let B = Sg1 t · · · t Sgn be a disjoint union of closed surfaces Sgi of

genus gi. We say that G(B) :=
∑n

i=1 gi is the genus sum of B.

Corollary 7. If B = Sg1 t · · · t Sgn is a disjoint union of closed surfaces Sgi of

genus gi > 0 for all i with f : B → B a homeomorphism then there is some k ≤

12G(B)!(3G(B)− 3)! such that fk is pure.

Proof. For a homeomorphism f : B → B, the map f may permute the components

of B. Then G(B) is an upper bound on the number components in B under the

assumption that each component is at least genus one. Hence there is some ` ≤ G(B)!

such that f ` maps each component of B to itself. And for a homeomorphism that

maps each component of B to itself, one can check that the reduction system of the

genus 2 or greater components of B contains at most 3G(B)− 3 curves. Thus there

is some k ≤ G(B)!(3G(B)− 3)! such that fk is pure on each component component

of B with genus greater than 1.

Recall that Mod(T 2) ∼= SL(2,Z). Since 4 is an upper bound on the order of every

finite cyclic subgroup of SL(2,Z), then f 12 restricted to the tori components of B is

either the identity or has infinite order.
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Now, we look at the well known result that the isometry group of a hyperbolic

surface is finite. Following the Primer on Mapping Class Group’s treatment [22] of

Hurwitz’s famous 84(g − 1) theorem, we generalize to surfaces with punctures.

Proposition 8. If X is a hyperbolic surface genus g with n punctures then |Isom(X)| ≤

42(2g + n− 2).

Proof. We begin by proving that if X is a hyperbolic surface homeomorphic to Sg,n,

a genus g surface with n punctures, then Isom(X) is finite in any hyperbolic metric.

By the thick-thin decomposition and the Margulis constant, for every x ∈ X and

all f ∈ Isom(X), d(x, f(x)) is uniformly bounded. Let F be an infinite sequence

of fn ∈ Isom(X). Then F is uniformly equicontinuous. So by Arzela-Ascoli, two

functions in F are isotopic.

It is sufficient to show that if f ∈ Isom(X) is isotopic to the identity, it is the

identity. Consider f̃ an isometry on H2. Either f̃ has 1 fixed point in H2, 1 fixed

point in ∂H2, 2 fixed points in ∂H2, or fixes ∂H2. Since f̃ is isotopic to the identity,

f̃ conjugates to the identity and so f̃ must fix ∂H2. Hence f̃ is the identity.

Now, set Y = X/Isom+(X). Since |Isom+(X)| is finite, Area(Y ) = Area(X)/|Isom+(X)|.

Suppose that there is some lower bound M < Area(Y ) for all orbifolds Y =

Sg,n/Isom+(X). It would follow that |Isom+(X)| < Area(X)/M .

Recall that the Euler Characteristic of orbifold Y with m cone points Pi with

degree pi is χ(Y ) = 2− 2g − n−m+
∑m

i=1
1
pi

. By the Gauss Bonnet Theorem,

Area(Y ) = −2πχ(Y )

= −2π

(
2− 2g − n−

m∑
i=1

(
1− 1

pi

))
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To find a lower bound for Area(Y ), we need to find an upper bound for χ(Y ).

Note that for orbifold Y ′ with g = 0 = n with 3 cone points of degree 2, 3, and 7,

χ(Y ) = − 1
42

.

Suppose to the contrary that there is a Y with χ(Y ) > − 1
42

. Let’s consider the

cases.

1. First, note that if Y has no cone points, then χ(Y ) is a negative integer.

2. Suppose g > 1. Then χ(g) ≤ −2

3. If g = 1 then either n > 0 or m > 0 in order for Y to be hyperbolic.

(a) If n > 0 then χ(Y ) ≤ 2− 2− n ≤ −1

(b) If m > 0 then note that each cone point subtracts off at least 1
2

in its

contribution to Euler characteristic. Thus χ(Y ) ≤ −1
2
.

4. Suppose g = 0. Then χ(Y ) = 2− n−
(∑m

i=1 1− 1
pi

)
(a) If n > 2, χ(Y ) ≤ −1.

(b) If n = 2 and m ≥ 1, then χ(Y ) ≤ −1
2
.

(c) If n = 2 and m = 0 then Y is not hyperbolic.

(d) If n = 1 and m ≥ 3 then χ(Y ) ≤ −1
2
.

(e) If n = 1 and m = 2 with both degree 2, χ(Y ) = 0 which means Y is not

hyperbolic.

(f) if n = 1 and m = 2 with degree 2 and 3, χ(Y ) = −1
6
. Any other degrees

will result in a lower Euler characteristic.

(g) if n = 1 and m = 1 with degree k, χ(Y ) = 1
k

which means Y is not

hyperbolic.

(h) if n = 0, then X is a closed surface. The proof of Theorem 7.10 in [22]

examines these cases to show that for all Y = Sg,0/Isom(X), there is no

hyperbolic orbifold with Euler characteristic greater than − 1
42

.
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Therefore, orbifold Y ′ from above has the greatest upper bound for hyperbolic Y .

Thus for all hyperbolic orbifolds Y , χ(Y ) ≤ − 1
42

. It follows that Area(Y ) ≥ π
21

. Thus

|Isom(X)| ≤ Area(X)/
π

21

= −2π(2− 2g − n)/
π

21

= 42(2g + n− 2)

Definition 9. Let M be a 3-manifold with nonempty boundary. Then the compo-

nents of ∂M are closed surfaces. We say that M is boundary-incompressible if no

essential simple closed curve on ∂M bounds an embedded disk in M .

2.2 Compression bodies

A compression body C is an orientable, compact, irreducible 3-manifold with a pre-

ferred boundary component ∂+C that π1-surjects. We say ∂+C is the exterior bound-

ary component of C.

Definition 10. If we fix a closed surface S to be the exterior boundary, an S-

compression body is a pair (C,m) where C is a compression body with a homeo-

morphism m : S → ∂+C. Here, m is the marking of C which is dropped when

non-ambiguous.

Any S-compression body C can be constructed in the following way: Set {α1, ..., αn}

to be a maximal disjoint set of simple closed curves on S that bound disks in C. First

consider S× [0, 1] and attach 2-handles along annuli in S×{0} whose core curves are

{αi} × {0}. Then we attach 3-balls along any resulting boundary components that

are homeomorphic to S2. In this construction, ∂+C = S × {1}. For details see [3].
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When an S-compression body can be constructed as above by attaching 2-handles

along simple closed curves {α1, ..., αn} and subsequent 3-balls, we denote it as S[α1, ..., αn]

and call {α1, ..., αn} a compressing system.

The trivial S-compression body is homeomorphic to S × I. We call ∂C\∂+C the

interior boundary of C.

For S-compression bodies (C,m) and (D,n) we write (C,m) ⊂ (D,n) if there

exists an embedding H : C → D such that n = H|∂+C ◦m.

Two S-compression bodies (C,m) and (C ′,m′) are equivalent if there exists a

homeomorphism ϕ : C → C ′ such that the diagram below commutes.

∂+C
′

S

∂+C

m′

m
ϕ|∂+C

A homeomorphism f : S → S sends (C,m) to (C,mf−1). This action respects the

equivalence relation. From here forward, we will drop all markings and will abusively

refer to compression bodies when we mean equivalence classes of marked compression

bodies. In particular, we denote this action as f(C). Notice that f(S[α1, ..., αn]) =

S[f(α1), ..., f(αn)].

Definition 11. Let C be an S-compression body and f : S → S a homeomorphism.

We say that f extends to C if there is a homeomorphism φ : C → C such that

φ|∂+C = f . Here we can write f(C) = C. We say f partially extends to C if there

is an S-compression body D ⊂ C with a homeomorphism ψ : D → D such that

ψ|∂+D = f .

Definition 12. Let α be a simple closed curve in ∂+C. If α bounds a disk in C then

we say α is a meridian of C and α compresses in C. The disk set of an S-compression

body denoted D(C) is the set of all simple closed curves in S that compress in C,

viewed as a subset of the vertices of the curve graph C(S).
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In fact, the disk set completely determines a compression body.

Proposition 13 ([3], Cor. 2.2). Let C and D be S-compression bodies. Then C

and D are isomorphic if and only if D(C) = D(D), and C ⊆ D if and only if

D(C) ⊆ D(D).

Definition 14. Let α be an essential simple closed curve in the exterior boundary of

compression body C. If there is some simple closed curve α′ in the interior boundary

of C such that α and α′ together bound an embedded annulus in C we say α bounds

an annulus

Recall the following well known fact which is proved in detail in [16]:

Fact 15. Let C be an S-compression body. A Dehn twist Tα : S → S extends to C if

α compresses in C or bounds an annulus in C.

The idea of the proof is to define a Dehn twist of C by twisting in a neighborhood

of the disk or annulus bounded by α.

In the compression body S[α1, ..., αn] there are likely many curves besides the αi

that compress.

Fact 16. If two boundary components of an embedded pair of pants in ∂+C bound

disks then the third boundary component also bounds a disk.

Proof. Let P be a pair of pants embedded in ∂+C with boundary components c1, c2

and c3 such that c1, c2 bounding disks d1 and d2 respectively. Since P ∪ d1 ∪ d2 is

homeomorphic to a disk then c3 compresses.

Definition 17. An S-compression body C is small if it can be written as S[a] for

some simple closed curve a ∈ S = ∂+C. A compression body is minimal if it does not

contain any (non-trivial) sub-compression bodies. Let C be a set of S-compression
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bodies. Then C ∈ C is minimal among the elements of C if the following holds: if

there is some D ∈ C such that D ⊆ C, then D = C.

Minimality and smallness are related in the following work of Biringer and Vlamis.

Proposition 18 ([3], Cor. 2.7). An S-compression body is minimal if and only if

it is a solid torus or a small compression body obtained by compressing a separating

curve.

A compression body can be built out of minimal compression bodies in the fol-

lowing way:

Definition 19. A sequence of minimal compressions of an S-compression body C is

a chain S × [0, 1] = C0 ⊂ C1 ⊂ · · · ⊂ Ck = C of S-compression bodies where Ci+1

is obtained from Ci by gluing in a minimal Fi-compression body to Fi, an interior

boundary component of Ci. (See [3] section 2.2 for details.)

In this sequence, each compression body is obtained by gluing in either a solid

torus or obtained by compressing a single separating curve. Biringer and Vlamis

give a formula for the number of steps required to obtain a compression body from

minimal compressions:

Proposition 20 ([3], Prop. 2.10). If C is any S-compression body with interior

boundary F1 t · · · t Fn, then the length k of any sequence of minimal compressions

S × [0, 1] = C0 ⊂ C1 ⊂ · · · ⊂ Ck = C is h(C) := 2g(S) − 1 −
∑n

i=1(2g(Fi) − 1), the

height of C.

Proposition 21 ([3], Cor. 2.4). Let C ⊂ E be S-compression bodies and let ∂−C =

F1 t · · · t Fn where n ≤ g. Then E is isomorphic to an S-compression body obtained

by gluing to C a collection of (possibly trivial) Fi-compression bodies Di, one for each

i.

14



2.3 Curve Surgery in Compression bodies

Lemma 22 ([3], Lemma 2.8). Suppose that α and β are both meridians of compression

body C in minimal position. Then the intersections with α divide β into a collection

of arcs, one of which, say b has the following properties:

1. both intersections of b with α happen on the same side of α

2. the union of b with either of the two arcs of α with the same endpoints is a

meridian which is disjoint from (after isotopy) but not isotopic to a

Definition 23. In the case of Lemma 22, let a and a′′ be the two arcs of α. We

say α′ := a′ ∪ b and α′′ := a′′ ∪ b are obtained by b-surgery on α. In general, given

an S-compression body C with meridian α and arc b in S with b ∩ α = ∂b where b

satisfies (1) of Lemma 22, the intersections of b with α divide α into two arcs a′ and

a′′. We say α′ := a′ ∪ b and α′′ := a′′ ∪ b are obtained by b-surgery on α.

Note that as long as both α and β compress in some compression body, we can

perform b-surgery on α, even if we are considering a context where α and or β is not

a meridian. If both are meridians, then b-surgery yields curves that are meridians as

well by Lemma 22.

Definition 24. Let δ be a meridian in S-compression body C. Let b be an arc in

S with ∂b = b ∩ δ satisfying (1) of Lemma 22. Then we say arc b is a δ-wave if b is

homotopic in C rel endpoints to an arc of δ. (See definition 3.2 in [25])

Fact 25. Let α be a meridian in S-compression body C. Let b be an arc in S with

∂b = b∩ δ satisfying (1) of Lemma 22. Then b is an α wave if and only if the curves

α′ and α′′ obtained by b-surgery on α are meridians which are disjoint from α and b.
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Proof. Suppose b is an α-wave. Then b is homotopic to in C rel endpoints to an arc

a′ of α. This homotopy sweeps out a disk in C with boundary b∪a′ and so α′ := a′∪b

obtained from b-surgery of α is a meridian of C. After isotopy α′ is disjoint from b

and α (since α ∩ b = ∂b) and cobounds a pair of pants with α′′ = b ∪ (α− a′). So by

Fact 16, α′′ is also a meridian of C.

Conversely, if α′ is a meridian, then we can homotope b rel its endpoints through

this disk to a′. So b is an α-wave.

2.4 Compressing Systems

Definition 26. Let K = {δ1, ..., δn} be a set of disjoint meridians in C. We say that

γ is in tight position with respect to K if γ contains no arcs that are δi-waves for

1 ≤ i ≤ n.

Fact 27 ([3], Lemma 3.5). For C an Sg-compression body and α any simple closed

curve on Sg, there is a compressing system with respect to which α is in tight position.

Proof. Let K1 = {κ1, ..., κm} be a compressing system for S-compression body C and

let α be an essential simple closed curve of S.

Note that the set of points
(⋃

κ∈K1
κ
)
∩ α divides α into arcs. Suppose that

arc a ⊂ α is a κi-wave for some i. Then we obtain κ′i and κ′′i via a-surgery on

κi which are both meridians and disjoint from κi and a by Fact 25. Set C ′ :=

[κ1, · · ·κi−1, κ
′
i, κ
′′
i , κi+1, ..., κm]. Since both κ′i and κ′′i compress in C, then C ′ ⊂ C.

Notice that κi cobounds a pair of pants with κ′i and κ′′i hence by Fact 16, κi compresses

in C ′ implying C ⊂ C ′. Thus C = C ′ and so K2 := {κ1, · · ·κi−1, κ
′
i, κ
′′
i , κi+1, ..., κm}

is a compressing system for C. And by replacing κi from K1 with κ′1 and κ′′i in K2,

we have removed ∂a from among the points of intersection of α with the compressing
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system for C. Thus

∣∣∣∣∣
( ⋃
κ∈K1

κi

)
∩ α

∣∣∣∣∣ ≥
∣∣∣∣∣
( ⋃
κ∈K2

κi

)
∩ α

∣∣∣∣∣+ 2.

Continue the process starting with a κi wave of Kj. Since
∣∣∣(⋃κ∈Kj

κ
)
∩ α
∣∣∣ is

finite and strictly decreasing as j increases, the process will terminate with K` a

compressing system for C with which α is in tight position either when there are no

κi waves for all κi ∈ K` or when
∣∣(⋃

κ∈K`
κi
)
∩ α
∣∣ = 0 in which case α is disjoint from

the curves of K` and hence there are certainly no κi waves in α.

3 Examples of Extension

We will examine several examples of surface homeomorphisms that do not extend to

the whole 3-manifold but where powers do extend. Let Sg be a closed surface of genus

g.

Example 28. As pictured in Figure 1 (a), consider the 3-manifold Sg[α, β, γ]. Let r :

Sg → Sg rotate Sg one “click” counterclockwise. That is, let r be the rotation of angle

2π/(g−1) to the left along the axis pictured and so r has order g−1. Homeomorphisms

of 3-manifolds map meridians to meridians. Notice for example that r(α) does not

bound a disk in Sg[α, β, α]. Thus r cannot extend to a homeomorphism of Sg[α, β, γ]

and in fact rj for 1 ≤ j < g − 1 does not extend to Sg[α, β, γ] but rg−1 = id does

extend to Sg[α, β, γ].
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r

α

β

γ

(a) Sg[α, β, γ]

r

σ

α
δ

η
β

(b) Set K = {α, γ, δ, η, σ}

Figure 1: Examples of extending maps

A classical theorem of Wiman states that any periodic homeomorphism of a surface

of genus g has order at most 4g+ 2 up to isotopy [11]. Therefore, Conjecture 1 holds

when f is periodic with k(g) = 4g + 2.

By the Nielsen-Thurston classification of homeomorphisms (see Theorem 2), every

surface homeomorphism is isotopic to either a periodic, reducible, or pseudo-Anosov

homeomorphism. Pseudo-Anosovs are the most interesting case of the three and

should be thought of as highly mixing-up the entire surface. Consider the following

example which is similar to Example 28 but gives a pseudo-Anosov map instead of a

periodic one.

Example 29. Considering again the 3-manifold Sg[α, β, γ] from Figure 1 (a). We will

construct a pseudo-Anosov of Sg as a composition of Dehn twists using the following

theorem of Fathi.

Theorem 30 ([9], Theorem 0.2). Let h be a mapping class of surface a S and α1, ..., αk

be simple closed curves on S. Suppose that the orbits under h of the αi are distinct

and fill S. Then there exists an n ∈ N such that for every (n1, ..., nk) ∈ Zk with

|ni| ≥ n, the class T nk
αk
...T n1

α1
h is pseudo-Anosov.
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In order to apply Fact 15, we add an additional condition to the curves about which

we will twist: they must bound disks or annuli in rj(Sg) for all j ∈ {1, 2, ..., g− 1} so

that the Dehn twists extend to the orbit of Sg under r.

Each curve in K as pictured in Figure 1 (b) bounds a disk in Sg[α, β, γ] and

moreover, each curve in K bounds a disk or annulus in rj(Sg[α, β, γ]). Note that

the orbit of K under r fills S and so applying Theorem 0.2 of Fathi [9], there are

n1, ..., n5 ∈ Z such that f := T n1
α ◦ T n2

γ ◦ T
n3
δ ◦ T n4

η ◦ T n5
σ ◦ r is pseudo-Anosov. By our

construction we have

f(Sg[α, β, γ]) = T n1
α T n2

γ T n3
δ T n4

η T n5
σ r(Sg[α, β, α])

= r(Sg[α, β, γ]).

As seen in the last example, rj(Sg[α, β, γ]) 6= Sg[α, β, γ] for j < g−1. In other words,

rj does not extend to Sg[α, β, γ] for j < g − 1 which implies that for j < g − 1,

the pseudo-Anosov homeomorphism f j does not extend to Sg[α, β, γ]. But since

f g−1(Sg[α, β, γ]) = rg−1(Sg[α, β, γ]) = Sg[α, β, γ], our pseudo-Anosov does extend at

power g − 1.

In our next example, we will construct a pseudo-Anosov map that requires a

power to extend to a handlebody, which is interesting because we can’t exploit a lack

of compression disks to construct the homeomorphism.
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c1 c2

c3

a1

a2

a3

b1

b2

b3

d

γ(c1) γ(c2)

γ(c3)

γ(a2)

γ(a3)

γ(d)

γ(b2)

γ(b3)

γ(b1)
γ(a1)

γe γ(e)

ρ

Figure 2: Handlebody H := S4[a1, a2, a3, b1, b2, b3, c1, c2, c3], homeomorphism ρ : S4 →
S4 a 2π

3
counterclockwise rotation about the axis, and homeomorphism γ : S4 → S4.

Example 31. Consider the handlebody H := S4[a1, a2, a3, b1, b2, b3, c1, c2, c3] as pic-

tured in Figure 2. Let ρ : S4 → S4 be the 2π
3

counterclockwise rotation about the axis

pictured. Let γ be the reducible homeomorphism as follows: the identity on the genus

2 component of S4\{c1, c2}. On the genus 1 component of S4\{c1, c2} considered as

the flat unit square torus with boundary components c1 and c2, γ is the transforma-

tion

 0 1

−1 0

 which results in the image depicted in Figure 2. Note that ρ has

order 3 and γ has order 4.

Moreover, note that γ, γ2, γ3 don’t extend to H since for example, meridian b1

is mapped to γ(b1) which does not compress in H. Composing our maps, we have

homeomorphism ρ ◦ γ : S4 → S4 that requires power 12 to extend to H.
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α
β

Figure 3: The homeomorphism f := T n1
α ◦ T

n2
β ◦ γρ is pseudo-Anosov

Consider the simple closed curves α and β which fill S4. Clearly this implies that

the orbits of α and β under γρ also fill S4. Therefore, we can apply Fathi’s Theorem

30, giving integers n1 and n2 such that f := T n1
α ◦ T

n2
β ◦ γρ is pseudo-Anosov.

Notice that this pair of curves are band-sums of meridians of H and thus compress

in H. Moreover, α and β are band-sums of meridians of (γρ)i(H) for all integers i

since γρ preserves the disks bounded by the ci. Therefore, Tα and Tβ extend to the

handlebodies (γρ)i(H) for all integers i by Fact 15.

Therefore, f i(H) = (γρ)i(H). Hence, f i doesn’t extend to H for i < 12 but f 12

does extend to H.

Note that this example can be expended to a family of examples of genus g han-

dlebodies Hg with a pseudo-Anosov map fg such that f ig doesn’t extend to Hg for

i < (g − 1)4 but f (g−1)4 does.

4 Partial Extension

Recall from Definition 11 that we say f : S → S partially extends to M , a compact,

orientable, and irreducible 3-manifold with some compressible boundary component
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S if there is some nontrivial compression body C ⊂ M with ∂+C = S and a home-

omorphism φ : C → C such that φ|S = f . Let Sg be a closed surface of genus

g.

We will prove Theorem 32 by constructing a family of manifolds and corresponding

pseudo-Anosovs. In fact, the manifolds we construct below are compression bodies.

We restate our Theorem 32 to reflect this:

Theorem 32. For g ∈ N there is an S2g-compression body Cg and a pseudo-Anosov

fg : S2g → S2g such that f gg extends to Cg and f jg does not partially extend to Cg for

j < g.

Proof. Fix 2g, the genus of the exterior boundary component, and consider the com-

pression body K1 := S2g[γ, α] as shown in Figure 4. We will construct a pseudo-

Anosov homeomorphism fg : S2g → S2g such that f gg extends to K1 but f jg does not

extend to any sub-compression body of K1 for j ≤ g.

γ

α

12

3 ...g

r

Figure 4: Compression body K1 := S2g[γ, α]

Let r be the rotation of S2g by 2π
g

. Define Kj := rj−1(K1) for 1 < j ≤ g. Since rg

is the identity then rg extends to K1. Thus r(Ki) = K
(i+1)mod(g)

.
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Lemma 33. Each curve in the set K = {σ, ϕ, γ, β, δ} (see Figure 5) bounds a disk

or annulus in K1, ..., Kg.

γ

12

β

δ

σ

ϕ

Figure 5: Set K = {σ, ϕ, γ, β, δ}.

Proof. First, note that every curve in K bounds an annulus in Ki for i > 2 and every

curve in K\{σ} bounds an annulus in K2.

Clearly γ bounds a disk and δ bounds annulus in K1. Since meridian α and curve

β co-bound a pair of pants, by Fact 16, β also bounds a disk in K1. Also by Fact 16,

curve ϕ′ bounds a disk in K1 as seen in Figure 6. Notice that ϕ is a band-sum of this

disk bounded by ϕ′. Thus ϕ also bounds a disk in K1.

γ

12

ϕ

ϕ′

α

Figure 6: Curve ϕ, a bandsum of ϕ′
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In Figure 7 in steps (a) through (d) we see that σ homotopes to σ̃1 in K1 which

bounds an annulus. Hence σ bounds an annulus in K1. In Figure 8 we see that in

K2, σ is homotopic to σ̃2 which co-bounds a pair of pants with r(γ) and r(α) which

both compress in K2. Thus σ bounds a disk in K2.

γ

α

12

σ γ

α

12

γ

α

12

γ

α

12

σ̃1

(a) (b)

(c) (d)

Figure 7: Curve σ bounds an annulus in K1

r(γ)

12

σ
r(γ)

12

r(γ)

r(α) 12

σ̃2

r(α)r(α)

Figure 8: Curve σ bounds a disk in K2

We will apply the following theorem of Fathi:

Theorem ([9], Theorem 0.2). Let h be a mapping class of surface a S and γ1, ..., γk

be simple closed curves on S. Suppose that the orbits under h of the γi are distinct

and fill S. Then there exists an n ∈ N such that for every (n1, ..., nk) ∈ Zk with

|ni| ≥ n, the class T nk
γk
...T n1

γ1
h is pseudo-Anosov.
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The curves
⋃g
i=1 r

i(K) fill S2g as follows. Looking at Figure 2, we see that ϕ, σ, b1,

and δ fill the genus 2 component of S2g\γ. Also, note that the genus 0 component of

S2g\
⋃g−1
i=0 r

i(γ) is filled by
⋃g−1
i=0 r

i(σ). Hence the orbit of K under r fills S2g.

By Fathi’s theorem there exists ng1 , · · · , ng5 ∈ Z such that

T
ng1
γ ◦ T ng2

σ ◦ T ng3
ϕ ◦ T ng4

β ◦ T ng5
δ ◦ r := fg

is pseudo-Anosov.

Lemma 34. The homeomorphism f gg : S2g → S2g extends to K1 but f jg does not

extend to K1 for j < g.

Proof. Recall that r(Ki) = K
(i+1)mod(g)

. By Lemma 33, every curve in K bounds a

disk or annulus so Fact 15 implies that Tc extends to Ki for all c ∈ K and 1 ≤ i ≤ g.

Therefore, fg(Ki) = K
(i+1)mod(g)

. Hence, f gg (K1) = K1 and so f gg extends to K1 but

f jg does not for j < g.

We must now show that f j for j < g does not partially extend to K1. First, we

prove two lemmas.

Lemma 35. Every common meridian of Ki and Kj for i 6= j is separating.

Proof. Let’s first consider the homology of Ki. Set αi := ri−1(α) and γi := ri−1(γ).

Hence both αi and γi compress in Ki. Let Dαi
and Dγi denote the disks in Ki bounded

by αi and γi respectively. Consider the following portion of the the Mayer-Vietoris

long exact sequence:

H1(S2g ∩ (Dαi
tDγi))

Φi−→ H1(S2g)⊕H1(Dαi
tDγi)

Ψi−→ H1(Ki).

Note that H1(Dαi
tDγi) = 0 giving H1(S2g)

Ψi−→ H1(Ki). Also, S2g∩(Dαi
tDγi) =
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{αi, γi}. By exactness of the Mayer-Vietoris sequence, Im(Φi) = Φi({αi, γi}) =

ker(Ψi). Moreover, γi is separating and hence Φi([γi]) = 0 in H1(S2g). Therefore,

ker(Ψi) is generated by αi.

Note that the [αi] for i ∈ {1, 2, ..., g} form a subset of a basis for H1(S2g). If

ω is a simple closed curve in S2g and a meridian of both Ki and Kj then [ω] ∈

ker(Ψi) ∩ ker(Ψj) ⊂ H1(S2g). So [ω] ∈ 〈[αi]〉 ∩ 〈[αj]〉 implying [ω] = 0 in H1(S2g).

Therefore, ω is a separating curve of S2g.

Lemma 36. Every S-compression body D ⊂ Ki ∩Kj is small.

Proof. For all i, the interior boundary components of Ki are homeomorphic to S1 t

S2g−2. Applying Proposition 20 for all i, the height of Ki is

h(Ki) = (2(2g)− 1)− [2(1)− 1]− [2(2g − 2)− 1]

= 4g − 1− 1− (4g − 5)

= 3.

Let D be an S-compression body with D ⊂ Ki ∩Kj. Then h(D) < 3.

If h(D) = 1 then S2g×[0, 1] = C0 ( C1 = D is a sequence of minimal compressions

for D. By Proposition 18, since D is not a solid torus, D is small.

If h(D) = 2 then S2g × [0, 1] = C0 ( C1 ( C2 = D is a sequence of minimal

compressions for D. By Lemma 35, both compressions are along separating curves.

Therefore, the interior boundary of D is F1 t F2 t F3 with Fi a closed surface where

g(F1) + g(F2) + g(F3) = 2g and g(F`) > 0 for ` ∈ {1, 2, 3}. Recall that the interior

boundary components of Ki are S2g−2tS1. Then D ⊂ Ki implies that g(F`) ≥ 2g−2

for some ` ∈ {1, 2, 3}. Without loss of generality, say g(F1) ≥ 2g − 2. This forces
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g(F1) = 2g − 2, g(F2) = 1 and g(F3) = 1.

There is some sequence of minimal compressions with S2g × [0, 1] = C0 ( C1 (

C2 = D ( C3 = Ki. Thus we must compress a curve in F2 or F3 to obtain Ki (to

preserve the genus 2g−2 interior boundary component). Likewise, we must compress

a curve in F2 or F3 to obtain Kj. Therefore, Ki and Kj share F1, the same genus

2g − 2 interior boundary component. But this is false by construction of Ki and Kj.

Therefore, h(D) 6= 2.

Thus, D is a small compression body.

To prove Theorem 32 recall we must show that for all j < g, f jg does not partially

extend to K1. Assume for sake of contradiction that there is some S2g-compression

body K ′ ( K1 with ` < g such that f `g extends to K ′. Then f `g(K
′) = K ′. Since

f `g(K1) = K`+1, this implies that K ′ ⊂ K`+1. Thus K ′ ⊂ K1 ∩ K`+1. By Lemma

36, K ′ must be a small S2g-compression body and by Lemma 35, K ′ has exactly one

meridian, a, a separating curve. Then f `g must map the disk bounded by a to itself.

This implies that f `g(a) = a which contradicts the fact that f `g is pseudo-Anosov.

Therefore, f g extends to K1 and no lesser power partially extends to K1. As the

genus to goes to infinity, the power required for f to extend to the corresponding

compression body K1 also goes to infinity.

5 Reducing to irreducibility and pure homeos

We will reduce Conjecture 1 to the case that M is an irreducible manifold. Recall

that a 3-manifold M is irreducible if every embedded S2 bounds a 3-ball.

Theorem 37. If Conjecture 1 is true for pure homeomorphisms on the boundary of

orientable irreducible 3-manifolds, it is true for homeomorphisms on the boundary of

orientable 3-manifolds in general.
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Proof. Let M be a 3 manifold with boundary and let B = Sg1 t · · ·tSg` be a disjoint

union of a subset of the components of ∂M , closed surfaces Sgi of genus gi.

By the Prime Decomposition Theorem [16], there is a unique decomposition

of M into a connected sum of prime manifolds, that is a connected sum of irre-

ducible manifolds and S2 bundles over S1. Here, we take all 3-cells to be inte-

rior to M and therefore preserve the components of B. Since S2 bundles over S1

are closed manifolds, it follows that a prime manifold with a boundary component

Sgi will be irreducible and in particular, for gj = 0, we have that Sgj is isotopic

to S2, in the decomposition giving that Sgj will be the surface of a 3-ball. Let

M = Mirr1# · · ·#Mirr`#Mirr`+1
# · · ·#Mirr`+m

#Mbun1# · · ·#Mbunn where the Mirrj

for 1 ≤ j ≤ ` are 3-balls, the Mirrj for `+ 1 ≤ j ≤ `+m are the irreducible manifolds

that are not 3-balls, and the Mbunj
are the S2 bundles over S1.

Proposition 38. For prime decomposition

M = Mirr1# · · ·#Mirr`#Mirr`+1
# · · ·#Mirr`+m

#Mbun1# · · ·#Mbunn

as above and an orientation preserving homeomorphism h : B → B which fixes all

non-spherical components of B with the property that h that extends to each Mirrj

adjacent to a component of B, we have that h extends to M .

Proof. We will define a homeomorphism H : M →M such that H|B = h.

Set Bh ⊂ B to be the disjoint union of non-spherical components of B (which are

all fixed by h by assumption). Since h is orientation preserving, we can isotope h so

that h fixes a disk on each Sgi ⊂ Bh. By assumption, for Mirrj adjacent to some Sgi ,

there exists a homeomorphism Hj : Mirrj → Mirrj such that Hj|Sgi
= h. Since Mirrj

is orientable, there is a collar neighborhood Sgi × I embedded in Mirrj where we can

isotope Hj to be h on the fibers of the neighborhood. So for each Mirrj adjacent to a
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component of Bh, we have a homeomorphism Hj that fixes a 3-ball birrj .

Now, consider the Mirrj that are not adjacent to a component of B. For such j,

define Hj : Mirrj →Mirrj to be the identity. Likewise, for the Mbunj
which are closed

and thus not adjacent to any component of B, define H ′j : Mbunj
→ Mbunj

to be the

identity.

Now consider the components of B\Bh = {P1, ..., Pd} which are S2 boundary

components of M . In the prime decomposition each Pi is a boundary component

of some 3-ball Mirrj for 1 ≤ j ≤ `. Isotope h so that it is the identity on each S2

composed with the permutation σ where h(P1, ..., Pd) = (Pσ(1), ..., Pσ(d)).

Let D3 be a 3-ball with {p1, ..., pd} disjoint marked points. There is an orientation

preserving self-homeomorphism g : D3 → D3 such that g|∂D3 = id and g(pi) = pσ(i).

Isotope g so that it permutes {b1, ..., bd}, small disjoint embedded 3-balls with bi

centered at pi.

Now, connect sum theMirr1# · · ·#Mirr`#Mirr`+1
# · · ·#Mirr`+m

#Mbun1# · · ·#Mbunn

in the following way. For the Mirrj with ` + 1 ≤ j ≤ ` + m adjacent to a boundary

component of Bh, we take the deleted 3-ball to be embedded in birrj . Next, for each Pi

with corresponding Mirrj for 1 ≤ j ≤ `, connect sum the Mirrj to D3 along a deleted

3-ball contained in bi. Then connect sum the D3 via some embedded 3-ball in birrj

for some j. Finally, connect sum the rest inside some birrj .

Notice that the induced map H : M → M from the Hj, identity map and g on

the appropriate components of the decomposition restricts to h on the boundary of

M .

In the above set-up, set Bi := B ∩ ∂Mirri for `+ 1 ≤ i ≤ `+m .

Corollary 39. If Conjecture 1 holds for a boundary homeomorphism that preserves

the positive genus boundary components for each irreducible component of M adjacent
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to B in the prime decomposition of M , then the conjecture holds for M . Precisely, let

f : B → B be an orientation preserving homeomorphism that preserves all positive

genus components of B and has a power that extends to M . If for each Mirri adjacent

to a component of B, there is a bounded power `i ≤ k(G(Bi)) such that (f |Bi
)`i

extends to Mirri then there is some ` ≤ [k(G(B))]G(B) such that f ` extends to M .

Proof. By assumption, for eachMirri adjacent to a component of B, there is a bounded

power `i ≤ k(G(Bi)) such that (f |Bi
)`i extends to Mirri . Let `′ be the product of

all the `i. Then f `
′

extends to all the Mirri and is orientation preserving. And

`′ ≤
∏`+m

i=`+1 k(G(Bi)) ≤ k(G(B))m ≤ [k(G(B))]G(B).

Now, we use the fact that a bounded power of any homeomorphism will pre-

serve the positive genus components of B and in fact a bounded power f is a pure

homeomorphism (see Corollary 3 and Definitions 4 and 5 and Corollary 7).

Fact 40. Let M a 3-manifold with boundary and let B ⊂ ∂M be a disjoint union of

components of ∂M . Let f : B → B be a homeomorphism. If the pure map fn has

a bounded power ` ≤ k(G(B)) that extends to M then f has a bounded power that

extends to M .

Proof. From Corollary 39, it suffices to prove for irreducible M . If M is a 3-ball, then

the mapping class group of ∂M is trivial and hence f extends to M . Otherwise, the

genus of all boundary components of M is positive and so by Corollary 7, there is a

bounded n ≤ 12G(B)!(3G(B) − 3)! such that fn fixes each component of B and is

pure on each component (and hence orientation preserving). So if (fn)` extends to

M for ` ≤ k(G(B)) then for some bounded m ≤ 12G(B)!(3G(B) − 3)!k(G(B)), fm

extends to M .
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Thus we have reduced to the case where we need to prove that Conjecture 1 holds

when M is irreducible and f is pure.

6 Incompressible case

With the goal of proving Conjecture 1, we can employ the following theorem of

Bonahon now that we have reduced to the case of irreducible manifolds.

Theorem 41 ([13], Theorem 2.1). Let M be an irreducible 3-manifold. There exists

V ⊂ M a disjoint union of compression bodies for ∂M , unique up to isotopy, called

the characteristic compression body, such that M −V is boundary incompressible and

irreducible.

If Conjecture 1 is true for both compression bodies and for boundary-incompressible

manifolds, then the conjecture holds for irreducible manifolds in general. We will ad-

dress this in detail in Section 7. In this section we show that the conjecture is true if

M is boundary-incompressible, that is if any simple closed curve in ∂M does bound

an embedded disk in M .

Theorem 42. Let M be an irreducible, orientable boundary-incompressible mani-

fold. If B is a union of a subset of the boundary components of M with pure

homeomorphism f : B → B such that fk extends to M , then there is some ` ≤

[210(B(G)− 1)]2G(B)−2 such that f ` extends to M .

We will use the Characteristic torus/annulus decomposition as formulated by

Bonahon which is attributed to K. Johannson [15], W. Jaco and P. Shalen [20] [21],

and Bonahon and Siebenmann [19].

Theorem 43 ([18], Theorem 3.8 Characteristic torus/annulus decomposition). Let M

be an orientable 3-manifold of finite type with boundary, which contains no essential
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2-sphere or compression disk for its boundary. Then, up to isotopy, there is a unique

compact 2-dimensional submanifold F of M such that :

1. Every component F1 of F is 2-sided (i.e. its normal bundle is trivial in M) and

is either an essential 2-torus or an annulus with F1 ∩ ∂M = ∂F1.

2. For every component W of M − F , either

(a) W contains no essential embedded 2-torus or annulus,

(b) W admits a Seifert fibration for which W ∩ ∂M is a union of fibers, or

(c) W admits the structure of a D1-bundle over a surface of finite type such

that the corresponding ∂D1-bundle is equal to W ∩ ∂M .

3. Property (2) fails when any component of F is removed.

In addition, note that the ends of a Seifert fibered component W of M − F all are of

the toric type, and can be delimited by 2-tori in W ;

Remark 44. Recall in general, a map f : (S, ∂S) → (M,∂M) is essential if (1) it

cannot be homotoped (rel ∂S) to f ′ : S → ∂M and (2) the induced homomorphism

f∗ : π1(S) → π1(M) is injective. (see [28]) In regards to (a) above, W contains no

essential annuli in the sense that W −F is pared (see below). An annulus (A, ∂A) ↪→

(W,∂W ) that can be isotoped into ∂W such that A must intersect F it is considered

essential.

Our strategy is to show that Theorem 42 holds when M is replaced with a com-

ponent of M − F and then see that this gives us the theorem for M as well.

Proof. Let M be an irreducible, orientable boundary-incompressible manifold and B

a disjoint union of a subset of the boundary components of M with a pure homeo-

morphism f : B → B which preserves the components of B such that there is some

k such that fk extends to M .
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Fact 45. A pure homeomorphism f preserves the components of ∂F .

Proof. Since F is unique up to isotopy, fk preserves ∂M ∩ F . Since f is also pure,

then f must preserve ∂M ∩ F . Suppose that c is a curve of ∂F . Then f(c) ⊂ ∂F .

If c is contained in some Ri such that f |Ri
= id then f(c) = c. (see Corollary 3).

If c is a core curve of an annulus Rj such that f |Rj
= T nc then f(c) = c since f is

pure. Suppose that γ is a curve in the canonical reducing system of f and let Rγ

be a regular neighborhood of γ. Note that no finite set of arcs transverse to γ in

Rγ with geometric intersection 1 with γ are preserved by T iγ. Hence, f preserves ∂F

only if ∂F ∩ γ = ∅. Suppose Rj is a region on which f is pseudo-Anosov. Since f |Rj

preserves no finite set of arcs then it follows that ∂F ∩ Rj = ∅. Thus, f preserves

each component of ∂F .

Now we will consider the different components of M − F . We start with compo-

nents that are adjacent to B.

6.1 Interval bundles

First, suppose W a component of M − F satisfies (c) above. That is W admits

the structure of a D1-bundle over a surface of finite type S = Sg,b such that the

corresponding ∂D1-bundle is equal to W ∩ ∂M .

Proposition 46. Let W be a component of M − F satisfying (c) in Theorem 43,

and let f : B → B be a pure homeomorphism such that at least one component of

W ∩ ∂M is contained in B. Suppose that fk extends to M and so fk|B∩W extends to

W . Then f |B∩W extends to W .

Proof. Suppose W a component of M − F admits the structure of a D1-bundle over

a surface of finite type S = Sg,b such that the corresponding ∂D1-bundle is equal to
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W ∩ ∂M . If exactly one of the S ×{0}, S ×{1} is contained in B, say S ×{0}, then

f extends to W by defining F : W → W to be f on each of the fibers of W .

Suppose (S×{0}∪S×{1}) ⊂ B. Since f is pure and fixes F ∩B, we know that f

sends S×{0} to itself and likewise S×{1}. For every simple closed curve α ⊂ S, we

have α×{0} is isotopic to α×{1} in W and moreover, since fk extends, fk(α×{0})

is isotopic to fk(α × {1}). Thus, fk|S×{0} = fk|S×{1} up to isotopy. Since f is pure,

fk is pure. In the notation of Corollary 3, suppose Ri is a component of S where fk

is the identity on Ri × {0} and Ri × {1}. Then f is also the identity on Ri. Thus f

extends to Ri × [0, 1]. Now suppose Ri is a component where fk is pseudo-Anosov

on Ri × {0} and Ri × {1} with dilatation λ and stable lamination Ls and unstable

lamination Lu. Then f is pseudo-Anosov with dilatation λ1/k and stable lamination

Ls and unstable lamination Lu for both Ri × {0} and Ri × {1} and so f |Ri×{0} is

isotopic to f |Ri×{1}. Hence f extends to Ri × [0, 1]. Finally suppose Ri is an annular

component of S with core curve a where fk is a power of a Dehn Twist, T pa×{0} on

Ri × {0} and T pa×{1} on Ri × {1}. Since f is also pure, then f must be a power of a

Dehn twist about a, T ja such that jk = p. It follows that f extends to Ri × [0, 1]. It

follows that f extends to W .

6.2 Seifert Fibered Spaces

Next, we consider the case when W a component of M −F is a Seifert fibered space.

Recall that all boundary components of an orientable Seifert Fibered Space are tori.

Proposition 47. Let W is a component of M −F satisfying (b) in Theorem 43 that

is an orientable Seifert Fibered Space, and let f : B → B be a pure homeomorphism

such that at least one component of W ∩ ∂M is contained in B. Suppose that fk

extends to M and so fk|B∩W extends to W . Then f |B∩W extends to W .
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Proof. Suppose that W is a Seifert fibered space. We break this up in to 4 cases: W

is the solid torus, T 2 × I, a twisted I bundle over a Klein bottle, or a Seifert fibered

space that is none of the former cases.

Claim 48. The proposition holds when W is not homeomorphic to a solid torus,

T 2 × I nor a twisted I bundle over a Klein bottle.

Proof. Assume that W is not homeomorphic to a solid torus, T 2 × I nor a twisted I

bundle over a Klein bottle. We start with a theorem.

Theorem 49. Suppose that M is an oriented Seifert fibered space with boundary and

that M is not homeomorphic to a solid torus, S1 × S1 × I or a twisted I-bundle

over the Klein bottle. Let π : M −→ X be a Seifert fibration, where X is a 2-

orbifold with boundary components b1, . . . , bm. Set Bi := π−1(bi), fix pi ∈ bi and set

hi = π−1(pi) ⊂ Bi.

If φ : M −→ M is an orientation preserving homeomorphism that leaves each

component of ∂M invariant, then for each i, the restriction φ|Bi
is isotopic to T ni

hi
,

the nthi power of a Dehn twist of Bi around the curve hi, and
∑

i ni = 0.

Here, when defining the Dehn twists, we are regarding Bi ⊂ ∂M with the bound-

ary orientation coming from the specified orientation of M . If we switch the orienta-

tion on M , the powers ni all negate, but their sum is still zero.

Proof. By Theorem VI.18 in [27], we may assume after isotopy that φ is fiber pre-

serving. Hence, each restriction φ|Bi
is a power T ni

hi
of a Dehn twist around the fiber

hi, and the goal is to prove
∑

i ni = 0.

Let’s first assume that X is oriented, and let xj, j ∈ J be the singular points.

Pick a collection of disjoint disks Dj, where xj ∈ Dj, and and let

X0 = X \ ∪jDj, M0 = π−1(X0).
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Since M and X are both orientable, the bundle π : M0 −→ X0 restricts to a trivial

bundle over every loop in X0. And since X0 is homotopy equivalent to a wedge of

circles, it follows that π : M0 −→ X0 is trivial. So, we can fix a section

X0 ↪→M0, x 7−→ x∗ (1)

of π. Let qj := ∂Dj, equipped with the boundary orientation. Then

H1(M,Z) =

〈
a∗k, b

∗
k, q
∗
j , b
∗
i , h

∣∣∣ αjq∗j + βjh = 0 ∀j,
∑
j

q∗j +
∑
i

b∗i = 0

〉
(2)

Here, ak, bk are pairs of simple closed curves on X0, where the number of pairs is the

genus of X, the αj, βj are pairs of relatively prime integers determining the types of

the singular fibers of M , and h is the common homology class of all the regular fibers,

e.g. the hi. In each case, (·)∗ denotes the image of (·) under the map from Equation

(1). See Corollary 6.2 of [26] for details in the case that X has no boundary; the same

arguments apply in our case.

Since φ is fiber preserving, it induces a homeomorphism φ̄ : X −→ X with

π ◦ φ = φ̄ ◦ π. Note that φ̄ permutes the singular set of X, which is finite. To prove

the theorem, it suffices to work with a nontrivial power of φ: after all, passing to

the kth power just scales all the ni by k, and
∑

i kni = 0 if and only if
∑

i ni = 0.

So, after passing to a power of φ, we may assume φ̄ fixes all the singular points of

X. After isotopy, we can also assume that φ̄ leaves invariant each disk Dj. So if

Qj := π−1(qj) ⊂ M , then φ restricts to a homeomorphism of each Qj. The map

φ|Qj
fixes the isotopy class in Qj of the π-fibers, but it also fixes the isotopy class of

curves on Qj that bound disks in π−1(Dj). These curves are linearly independent in

H1(Qj,Z), since the fibers of a fibered solid torus are never meridians. Hence, φ|Qj
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is isotopic to the identity. Since q∗j ⊂ Qj, it follows that

[φ(q∗j )] = [q∗j ] ∈ H1(M,Z), ∀j.

So, using the last relation in Equation (2), we get that in homology,

∑
j

[q∗j ] +
∑
i

[bi] = 0 = (φ∗)

[∑
j

q∗j +
∑
i

b∗i

]
=
∑
j

[q∗j ] +
∑
i

[φ ◦ bi]. (3)

But since φ restricts to T ni
hi

on the boundary component Bi, Equation (3) implies

∑
i

[bi] =
∑
i

[φ ◦ bi] =
∑
i

ni[hi] + [bi] =
∑
i

ni[h] + [bi],

so as [h] has infinite order in H1(M,Z), we must have
∑

i ni = 0.

Assume now that X is nonorientable. Again, we may assume after isotopy that φ

is fiber preserving, and hence that Consider the degree 2 cover

M̂ −→M

corresponding to the subgroup of π1M consisting of loops γ such that π ◦ γ is an

orientable loop in X. Then M̂ is also a Seifert fibered space and there is a diagram

M̂ M

X̂ X

π̂ π

where the vertical arrows are Seifert fibrations and the bottom arrow is the orientation

double cover of X. Since φ descends to a homeomorphism φ̄ of X, the subgroup

described above is clearly preserved by φ, and hence φ lifts to a fiber preserving
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homeomorphism

φ̂ : M̂ −→ M̂.

Since the boundary components of X are orientable curves, each component Bi ⊂ ∂M

is covered homeomorphically by a pair of components of ∂M̂ . On each of these

components, the map φ̂ acts as T ni

ĥi
, where here ĥi covers hi homeomorphically. So,

by the orientable case above, we have

∑
i

2ni = 0, =⇒
∑
i

ni = 0.

Let π : W −→ X be a Seifert fibration, where X is a 2-orbifold with boundary

components b1, . . . , bm. Set Bi := π−1(bi), fix pi ∈ bi and set hi = π−1(pi) ⊂ Bi.

Since fk|B∩W extends to W , we have that fk restricted to a boundary component

Bi of W must be a power of a Dehn twist T ni
hi

with
∑m

i=1 ni = 0.

Suppose W has only one boundary component. Then by the proposition, n1 = 0

and so fk is the identity on the boundary. Hence f has finite order. Since f is pure

then f = id and so f |B∩W extends to W .

Suppose W has more than one boundary component. In general, because fk is a

power of a Dehn twist, f |Bi
= T `ihi such that k`i = ni for Bi ⊂ B and so

∑
i `i = 0.

Thus it is possible that f might be a restriction of some map on W . In fact we will

construct a map F : M →M such that F |Bi
= fBi

for all Bi ⊂ B.

We can isotope the base orbifold X so that it has the form pictured in Figure

9 where all the handles, möbius bands and singular points are outside a regular

neighborhood of the bi. Therefore, Y ⊂ X which is shaded red in the figure is

orientable.

Fact 50. The bundle over Y in M is trivial. That is Ỹ := π−1(Y ) ∼= Y × S1.
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cone points, handles

and Mobius bands

b1 b2

b3b4

b5

t
s

Y

γ

Figure 9: Orbifold X with 5 boundary components and Y ⊂ X orientable.

Proof. Note that any S1 bundle over S1 is homeomorphic to either the torus or

the Klein bottle. Since both Y and M are orientable, then Ỹ := π−1(Y ) must be

orientable. Thus for any curve γ in Y , π−1(γ) must be homeomorphic to the torus.

Note that Y deformation retracts to a wedge of S1’s. Therefore, Ỹ ∼= Y × S1.

Fix 1 ≤ i < m. Consider the strip Ri
∼= I × I bounded by an arc of bi and

an arc of bm as shown in Figure 9 where {0} × I ⊂ bm and {1} × I ⊂ bi. Set

M ′ := π−1(X − (∪iRi)). Then for our desired F : M →M , set F |M ′ = id.

On the strip Ri, define F |π−1(Ri) : I × I × S1 → I × I × S1 such that (s, t, p) 7→

(s, t, r2π`it(p)) where rt is rotation by p so that F |π−1(bi)=Bi
= T `ihi .

Note that π−1({0}× I) is an annulus contained in Bm and F |π−1({0}×I) = T−`ihi
for

all i. It follows that F |Bm = T
(
∑m−1

i=1 −`i)
hm

= f |Bm . Hence we have proven the claim

and f |W∩B extends to W .

Claim 51. If W is a solid torus with f : ∂W → ∂W such that fk extends to W then
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f does as well.

Proof. Now suppose that W is a solid torus. By assumption, ∂W ⊂ B ⊂ ∂M .

Therefore, M is a solid torus. (We will address the case that ∂W ⊂ F below).

Recall that H1(T 2,Z) ∼= Z ⊕ Z and that the orientation preserving homeomor-

phisms of T 2 up to isotopy as a group are isomorphic to SL(2,Z) where a class [g] ∈

Mod+(T 2) corresponds to g∗ : H1(T 2,Z) → H1(T 2,Z). Let H1(T 2,Z) = 〈[`], [m]〉

where we make the following identifications: [`] =

 1

0

 and [m] =

 0

1

.

Let h be a framing h : S1 ×D2 →M of the solid torus with h({1} × ∂D2) = [m]

and h(S1 × {1}) = [`]. Notice here that [m] is the boundary of a disk.

Since fk extends to M then fk([m]) also bounds a disk and so fk([m]) = [m]. So

for (fk)∗ =

 a b

c f

 ∈ SL(2,Z) we have

 a b

c d


 0

1

 = ±

 0

1

 and so b = 0 and d = ±1 giving (fk)∗ =

 a 0

c ±1


Since (fk)∗ ∈ SL(2,Z), then det((fk)∗) = 1. Hence a = ±1. Thus (fk)∗ = 1 0

c 1

 or (fk)∗ =

 −1 0

c −1

 for some c ∈ Z. Recall the following fact.

Fact 52. If [σ] ∈ Mod+(T 2) with corresponding matrix Aσ ∈ SL(2,Z) with |tr(Aσ)| =

2 then [σ] is a power of a Dehn twist. If |tr(Aσ)| < 2 then [σ] is periodic. If |tr(Aσ)| >

2, [σ] is Anosov.

Since f∗ ∈ SL(2,Z), if (fk)∗ =

 1 0

c 1

 then f∗ =

 1 0

` 1

 with `k = c and if

(fk)∗ =

 −1 0

c −1

 then f must be odd and f∗ =

 −1 0

` −1

 with −k` = c.

40



Either way, f is a power of a Dehn twist that fixes meridian m and so f extends

to M .

Claim 53. If W = T 2×I and f : B → B is a pure homeomorphism such that at least

one component of ∂W is contained in B with fk|B∩W extending to W , then f |B∩W

extends to W .

Proof. If exactly one of the T 2×{0}, T 2×{1} is contained in B, say T 2×{0}, then f

extends to W by defining F : W → W to be f on each of the fibers of W . When we

consider the boundary orientation coming from the specified orientation of W , then

F |T 2×{0} = f and F |T 2×{1} = −f .

Suppose (T 1 × {0} ∪ T 1 × {1}) ⊂ B. By assumption, f fixes the components of

B and so f sends T 2 × {0} to itself and likewise T 2 × {1}.

Let α be an essential simple closed curve in T 2 × {0}. Then α × {0} is isotopic

to α × {1} in W . Since fk extends, fk(α × {0}) is isotopic to fk(α × {1}). Thus,

fk|T 2×{0} = fk|T 2×{1} up to isotopy. Note the orientation of each of the fibers is the

same, we are not considering orientation on T 2 × {1} as the boundary orientation

from W .

If fk is periodic, then f is periodic with order j ≤ 4. So f j = id extends to W .

If fk is a power of a Dehn twist, then as we saw above, f must also be a power of

a Dehn twist–completely determined by fk.

If fk is Anosov then Afk has two real positive eigenvalues λ and 1/λ and corre-

sponding eigenspaces in R2 where one is stretched and one is contracted by a factor

of λ. It follows that Af must have the same eigenspaces but stretch and contract by

a factor of λ1/k.

In the above to cases, we can conclude that there is a unique homeomorphism

f ′ up to isotopy such that f ′k = fk. Thus f |T 2×{0} is isotopic to f |T 2×{1} and thus
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extends to W .

Claim 54. Suppose W is a twisted I-bundle over the Klein bottle and we have a pure

homeomorphism f : ∂W → ∂W such that fk extends to W . Then f extends to W .

Proof. Finally, we consider the case where W is a twisted I-bundle over the Klein

bottle which can be described in the following way. Set W = T 2 × [0, 1]/(x, 1) ∼

(σ(x), 1) such that σ : T 2 → T 2 is an orientation reversing fixed point free involution.

Note that ∂W = T 2 × {0} which by assumption is contained in B. In this case,

W = M since there is only one boundary component of W .

Note that K2 = T 2/σ with the induced covering map ρ : T 2 → K2 with the

bundle map π : T 2 × [0, 1]/ ∼→ K2 with (p, t) 7→ ρ(p).

First, we consider what kind of homeomorphisms g : T 2 → T 2 extend to W .

Fact 55. If g : T 2 → T 2 extends to M = T 2×[0, 1]/(x, 1) ∼ (σ(x), 1) and σ : T 2 → T 2

is an orientation reversing fixed point free involution then g commutes with σ up to

homotopy.

Proof. Let c ∈ ∂M = T 2 × {0} be an essential simple closed curve. Then in M , the

curve c× {0} is isotopic to c× {1} in M which is identified with σ(c)× {1} which is

isotopic through M to σ(c)×{0}. So there is an essential annulus A embedded in M

with ∂A = c ∪ σ(c) ⊂ ∂M .

Replacing c with g(c) above, we get that g(c)× {0} is isotopic to σ(g(c))× {0}.

Let G : M → M be the extension of g to M . Then G(A) is also an essential

annulus with ∂G(A) = g(c)∪g(σ(c)) ⊂ ∂M . So g(c)×{0} is isotopic to g(σ(c))×{0}.

Thus for any essential simple closed curve c ∈ T 2, σ(g(c)) is isotopic to g(σ(c)).

Set A =

 1 0

0 −1

 and t : R2 → R2 such that (x, y) 7→ (x, y + 1/2). Define
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σ = t◦A. Taking T 2 = R2/Z2, it follows that σ is an orientation reversing fixed point

free involution of T 2.

Then [σ]A = A acts on H1(T 2,Z). If g : T 2 → T 2 extends to W , then g∗ :

H1(T 2,Z)→ H1(T 2,Z) is an element g∗ =

 a b

c d

 ∈ SL(2,Z) such that on homol-

ogy we have g∗Aσ = Aσg∗.

 a b

c d


 1 0

0 −1

 =

 1 0

0 −1


 a b

c d


 a −b

c −d

 =

 a b

−c −d

 .

Therefore, b = 0 and c = 0. Moreover, since det(g∗) = 1, ad = 1 which implies

a = d = 1 or a = d = −1. Thus, g = id or g2 = id.

Suppose that fk extends to W . Then fk = ±id. Hence fk has finite order and

thus f does as well. Since f is pure, this implies that f = id and thus extends to

W .

So we have addressed all the cases of the orientable Seifert fibered spaces and have

proved the proposition.

6.3 Hyperbolic manifolds

Now we look at the case where W is neither Seifert fibered nor a surface cross an

interval such that ∂W ∩B 6= ∅ which we will prove are hyperbolic.
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Proposition 56. Let Ŵ be the disjoint union of all the components of M − F sat-

isfying (a) in Theorem 43 that is neither a SFS nor an I-bundle, and let f : B → B

be a pure homeomorphism such that at least one component of ∂Ŵ is contained

in B. Suppose that fk|∂Ŵ∩B extends to Ŵ . Then (f |∂Ŵ∩B)i extends to Ŵ for

i ≤ [210(B(G)− 1)]2G(B)−2.

Proof. First, consider W a component of Ŵ .

Fact 57. In the set up above, if fk|B∩W extends to W then f |W∩B is periodic.

Proof. Suppose W contains no essential embedded 2-torus or annulus.

Any component ofM−F that is neither a Seifert fibered nor admits a the structure

of a D1-bundle over a surface is a pared manifold (W,F ∩∂W ) as defined by Thurston.

Definition 58. A pared manifold is a pair (M,P ) such that the following hold

1. M is a compact orientable irreducible 3-manifold

2. P ⊂ ∂M is a disjoint union of incompressible tori and annuli Pj

3. no two components of P are isotopic in ∂M

4. every abelian noncyclic subgroup of π1(M) is conjugate to a subgroup of π1(Pj)

for some j

5. there are no essential cylinders (A, ∂A) ↪→ (M,P )

Definition 59. In an acylindrical pared manifold (M,P ), every essential embedded

annulus (A, ∂A) ↪→ (M,∂M) has non-empty intersection ∂A ∩ P .

A pared manifold (M,P ) has incompressible boundary if every meridian α has

nontrivial intersection with P .

A hyperbolic metric with totally geodesic boundary on a pared manifold (M,P ) is

a complete hyperbolic metric on M−P such that ∂(M−P ) is totally geodesic. Here,

the components of P correspond to cusps.
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Notice that (W,F ∩∂W ) has incompressible boundary. Let α ∈ ∂W bound a disk

in W . Since by assumption, M is boundary incompressible, then α 6⊂ ∂M and so

F ∩ α 6= ∅. Thus α ∩ Pi 6= ∅ for some Pi component of F ∩ ∂W .

Furthermore, (W,F ∩ ∂W ) is acylindrical by Theorem 43. The following theorem

of Thurston’s tells us about the structure of (W,F ∩ ∂W ).

Theorem 60 ([24], p. 14). Any acylindrical pared manifold (M,P ) with incompress-

ible boundary admits a hyperbolic metric with totally geodesic boundary.

Thus (W,F ∩ ∂W ) admits a hyperbolic metric with totally geodesic boundary

where the F ∩∂W correspond to cusps. By assumption fk|W∩B has an extension, say

Fk : W → W .

Claim 61. The metric with geodesic boundary on W is unique up to isotopy.

Proof. Glue two copies of W , say W1 and W2 along their boundary to get the double

of W denoted DW which is a closed manifold without boundary. Then by Mostow’s

Rigidity Theorem, there is a unique hyperbolic metric on DW . Let τ be the natural

involution of DW that interchanges W1 and W2 and fixes the boundary of W . Then

the quotient of DW by τ gives back W with the corresponding unique hyperbolic

structure on W . Since W has totally geodesic boundary, it follows that this unique

hyperbolic structure on W induces a hyperbolic metric on ∂W which is unique up to

isotopy. (See [18] Section 2.5 for details).

Therefore, Fk is isotopic to an isometry of W and fk|W∩B is isotopic to an isometry.

Hence fk|W∩B is periodic and thus f |W∩B is as well.

Note that F ∩ ∂Ŵ = P1 tPk t T 2 t · · · t T 2 where each Pi is an essential annulus

contained in some component of ∂Ŵ . Then ∂Ŵ − F = Sg1,b1 t · · · t Sgj ,bj such that

Sgi,bi is a genus gi surface with bi boundary components (and no punctures). When
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F1
F2W1

W2

W3

P1

P2

(W3, P1 ∪ P2)

W3

Figure 10: An example of M with Characteristic Submanifold F = F1 ∪ F2. M − F
has 3 components. W1 admits the structure S1,1 × I. W2 is a SFS. (W3, F1 ∪ F2) is
a pared manifold which admits a hyperbolic metric with totally geodesic boundary.
Note how F1 and F2 correspond to cusps in the metric.

we endow Ŵ with a hyperbolic metric from the above theorem, the Pi correspond to

cusps, and so the totally geodesic boundary of Ŵ is Sg1,n1t· · ·tSgj ,nj
such that bi = ni

and Sgi,ni
is the genus gi surface with ni punctures (and no boundary components)

since these boundary components bi correspond to punctures in the induced metric

on ∂Ŵ .

Recall that f |Ŵ∩B fixes ∂F and thus f |Ŵ∩B preserves each Sgi,ni
. By The Nielsen

realization theorem ([22], Thm 7.2) and the fact that |Isom(X)| ≤ 42(2g+n−2) (see

Proposition 8), the order of f |Sgi,ni
is bounded by 42(2gi + ni − 2). Moreover, for all

Sgi,ni
, we have gi ≤ G(B) and ni ≤ 3G(B)− 3. Hence the order of f |Sgi,ni

is bounded
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by 42(2G(B) + (3G(B)− 3)− 2) = 210(G(B)− 1).

Let j be the number of components of ∂W − F . Then j ≤ 2G(B)− 2 (an upper

bound on the number of pants in a pants decomposition of B). Hence we can say

that the order of f |Ŵ∩B is bounded above by [210(B(G)− 1)]2G(B)−2.

Note that this bound is not sharp because as the number of punctures and com-

ponents increase, the genus decreases.

Thus there is some i ≤ [210(B(G) − 1)]2G(B)−2 such that f |i∂W = id. Hence f i

extends to Ŵ .

6.4 Putting it all together: boundary-incompressible mani-

folds

Now we must prove that Theorem 42 holds for M as a whole. Let A ⊂ F be an

essential annulus with ∂A ⊂ B. If A is adjacent to an S × I component and a

hyperbolic component, isotope f so that it fixes ∂A point-wise and that any twisting

occurs in the S × I component. By assumption, fk extends to a homeomorphism

Fk : M →M .

Consider W a hyperbolic component of M −F with a torus boundary component

T . As in the proof of Claim 61, let DW be the double of W which is a finite volume

hyperbolic 3-manifold without boundary. Let H : W → W be a homeomorphism.

Then H lifts to H̃ : DW → DW . By Mostow’s Rigidity Theorem, H̃ is isotopic

to an isometry of DW and moreover, the mapping class group of DW is finite.

Thus the mapping class group of W is also finite. Therefore, Fk|T must be of finite

order. Suppose that T is a boundary component of W ′ a Seifert fibered component

of M − F . We know that Fk|T is a power of a Dehn twist which has infinite order
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if it’s not the identity. Thus Fk|T = id. If W ′ has boundary components in B, then

f |Ti∈B∩∂W ′ = T ni
h such that

∑
Ti⊂∂W ′ ni = 0. It follows that f i extends to W ′ and

f i|T = id for all i.

Hence, for some i ≤ [210(B(G)−1)]2G(B)−2, f i is the identity on all the hyperbolic

W and on all S× I and SFS components, f i extends and induces the identity on any

boundary components that are adjacent to the hyperbolic components. Thus, f i

extends to M .

Corollary 62. Let M be an irreducible, orientable boundary-incompressible manifold.

If B is a union of a subset of the boundary components of M with homeomorphism

f : B → B such that fk extends to M , then f ` extends to M such that

` ≤ 12G(B)!(3G(B)− 3)![210(B(G)− 1)]2G(B)−2.

Proof. This follows directly from Fact 40 and Theorem 42.

7 General Case

In this section we reduce proving Conjecture 1 to proving Conjecture 2 (see below).

In the following section, we will present ideas toward proving Conjecture 2.

By Theorem 37 we first reduce to the case where M is an irreducible manifold.

At the end of this section, we present a bound for a general orientable manifold in

terms Conjecture 2.

Recall the following Theorem of Bonahon.

Theorem 41 ([13], Theorem 2.1). Let M be an irreducible 3-manifold. There exists

V ⊂ M a disjoint union of compression bodies for ∂M , unique up to isotopy, called
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the characteristic compression body, such that M−V is boundary incompressible and

irreducible.

The characteristic compression body V is simple to construct: Let K be a maximal

set of essential simple closed curves on ∂M that bound disks in M where Sg1 , ..., Sgn

are the components of ∂M that contain curves of K. Set Ki = K ∩ Sgi . Then

V = Sg1 [K1] t · · · t Sgn [Kn]. Notice that V is a disjoint union of compression bodies

as described in Section 2.2.

First, we would like to prove Conjecture 1 when M is a single compression body

and then we can address the case where M is a disjoint union of compression bodies

such as the Characteristic Compression body. We will use the following conjecture:

Conjecture 2. If h : Sg → Sg is a homeomorphism and C is an Sg-compression

body such that some power of h extends to C, then there exists Sg-compression body

C ′ ⊂ C such that for some j ≤ m(g) (with m(g) an increasing function) we have that

hj extends to C ′.

Proposition 63. Let f : Sg → Sg be a homeomorphism and C an Sg-compression

body such that some power of f extends to C. If Conjecture 2 is true, then there exists

some i ≤ m(g)1+g(2g−2) such that f i extends to C.

Proof. Let f : Sg → Sg be a homeomorphism and C an Sg-compression body such

that fk extends to C. By Conjecture 2, there exists a j1 ≤ m(g) and a nontrivial

C1 ⊂ C such that f j1 extends to C1. If C1 = C then f j1 extends to C.

Suppose not. The interior boundary ∂−C1 = F 1
1 t · · · t F 1

n . Biringer and Vlamis’

Proposition 21 lets us decompose C in terms of C1 in the following way: There exist

F 1
i -compression bodies D1

i such that C = C1

⋃
∂−C1

D1
1 t · · · tD1

n.

Fix i. We have homeomorphism f j1 |F 1
i

: Sg(F 1
i ) → Sg(F 1

i ). Since f j1k extends to C

then (f j1|F 1
i
)k extends to D1

i . Again by Conjecture 2, there exist some C2
i ⊂ D1

i such
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that (f j1 |F 1
i
)j2i extends to C2

i with j2i ≤ m(g(F 1
i )) ≤ m(g).

Set j2 := Πn
i=1j2i and C2 = C1

⋃
∂−C1

C2
1 t · · · t C2

n. Note that j2 ≤ m(g)g.

Then f j1j2 extends to C2. Moreover, since C1 6= C, there is some i such that D1
i is

nontrivial and hence C2
i is also nontrivial implying C1 6= C2. We have a sequence of

compressions, Sg × [0, 1] ( C1 ( C2.

In general, if C` 6= C, we have The interior boundary ∂−C` = F `
1 t · · · t F `

n for

n < g. There exist F `
i -compression bodies D`

i such that C = C`
⋃
∂−C`

D`
1 t · · · tD`

n.

Fix i. We have homeomorphism fΠ`
i=1ji |F `

i
: Sg(F `

i ) → Sg(F `
i ). Since fkΠ`

i=1ji extends

to C then (fΠ`
i=1ji |F `

i
)k extends to D`

i . Again by Conjecture 2, there exist some

C`+1
i ⊂ D`

i such that (fΠ`
i=1ji |F `

i
)j`+1 extends to C`+1

i with j`+1i ≤ m(g(F `
i )) ≤ m(g).

Set j`+1 := Πn
i=1j`+1i and C`+1 = C`

⋃
∂−C`

C`+1
1 t· · ·tC`+1

n . Note that j` ≤ m(g)g.

Then fΠ`+1
i=1ji extends to C`+1. Moreover, since C` 6= C, there is some i such that D`

i is

nontrivial and hence C`+1
i is also nontrivial implying C` 6= C`+1. We have a sequence

of compressions, Sg × [0, 1] ( C1 ( · · · ( C`+1.

By Proposition 20, there is some a ≤ 2g − 1 such that Ca = C with fΠa
i=1ji

extending to c. Since j1 ≤ m(g) and for i > 1, ji ≤ m(g)g, we have that Πa
i=1ji ≤

m(g)(m(g)g)a−1 = m(g)1+g(a−1) ≤ m(g)1+g(2g−2).

Now we show that if M is a disjoint union of compression bodies that Conjecture

1 is true assuming Conjecture 2 is true.

Corollary 64. Let V = Sg1 [K1] t · · · t Sgn [Kn] be a disjoint union of compression

bodies and suppose that B is a union of a subset of the Sgi’s. If homeomorphism

f : B → B has a power that extends to V and if Conjecture 2 is true then there is an

i ≤ m(G(B))[1+G(B)(2G(B)−2)]G(B) such that f i extends to V .

Proof. Assuming Conjecture 2, for each Sgi [Ki], there is some i such that f |iSgi
extends
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for i ≤ m(G(B))[1+G(B)(2G(B)−2)]. Therefore, f
∏n

i=1 i extends to V . There are at most

G(B) compression bodies in the disjoint union V hence n ≤ G(B).

Now we consider the case where M is some irreducible manifold. By Theorem

41, any homeomorphism of M preserves V . And any homeomorphism of V induces a

homeomorphism on ∂(M − V ). So we can put together the incompressible case with

compression bodies case to get the following.

Proposition 65. Assuming Conjecture 2, if M is an irreducible orientable 3-manifold

with boundary and if B is a union of a subset of components of ∂M such that f :

B → B has a power that extends to M , then there is some

i ≤ m(G(B))[1+G(B)(2G(B)−2)]G(B)12G(B)!(3G(B)− 3)![210(B(G)− 1)]2G(B)−2

such that f i extends to M .

Proof. Let M be an irreducible orientable 3-manifold with boundary with homeo-

morphism f : B → B such that fk extends to M . First, by Theorem 41, we have

characteristic compression body V . Assuming Conjecture 2, by Corollary 64, there is

some i ≤ m(G(B))[1+G(B)(2G(B)−2)]G(B) such that f i extends to V .

Let ∂+V denote the disjoint union of the exterior boundary components of the

compression bodies of V and ∂−V denote the disjoint union of interior boundary

components of the compression bodies of V . Then f i induces a map fi : ∂−V → ∂−V .

Consider M − V which is an orientable irreducible boundary incompressible 3-

manifold with boundary (∂M − ∂+V ) ∪ ∂−V . Set B′ = (B − ∂+V ) ∪ ∂−V . Then we

have f ′ : B′ → B′ such that f ′|∂−V = fi as defined above and f ′|B−∂+V = f i. Since

fk extends to M then fki does as well. Hence, f ′k extends to M − V .

Note that G(B′) ≤ G(B) since the genus of the interior boundary of Sgi [Ki] is less
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than the genus of the exterior boundary. By Corollary 62, there is a

j ≤ 12G(B′)!(3G(B′)− 3)![210(G(B′)− 1)]2G(B′)−2

≤ 12G(B)!(3G(B)− 3)![210(G(B)− 1)]2G(B)−2

such that f ′j extends to M − V . It follows that f ij extends to M .

Assuming Conjecture 2 is true, we can obtain a bound for any orientable 3-

manifold by applying Corollary 39.

Corollary 66. Assuming Conjecture 2, if M is an orientable 3-manifold with bound-

ary and if B is a union of a subset of components of ∂M such that f : B → B has a

power that extends to M , then there is some

i ≤
[
12G(B)!(3G(B)− 3)!m(G(B))[1+G(B)(2G(B)−2)]G(B)[210(B(G)− 1)]2G(B)−2

]G(B)

such that f i extends to M .

Note that for each irreducible M ′ in the prime decomposition of M , there is an

i′ ≤ 12G(B)!(3G(B) − 3)!m(G(B))[1+G(B)(2G(B)−2)]G(B)[210(B(G) − 1)]2G(B)−2 such

that f |i′∂M ′∩B is orientation preserving since i′ can be chosen to be even (we can do

so in the step where we take a power of f such that f is pure on M ′ − V ′). Thus we

can apply Corollary 39 to get the bound above.

8 Extension in Compression bodies

In this section we present ideas toward a proof of Conjecture 2.

We first effectivize Casson and Long’s Corollary 2.5 in [6] that a simple closed

curve of S compresses in only finitely many minimal S-compression bodies for which
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homeomorphism f : S → S extends (see Theorem 71).

Definition 67. Let C be Sg-compression body and α an essential simple closed curve

of Sg. If B is an Sg-compression body satisfying both C ⊂ B and α compresses in B

then we say B is C ∗ α.

Let C and D be Sg-compression bodies. If B is an Sg-compression body satisfying

both C ⊂ B and D ⊂ B then we say B is C ∗D.

Theorem 68. Let S be a closed genus g surface. Set

CD∗E := {S − compression bodies C : C is D ∗ E}.

There are at most (6g − 6)(2g−2)2 minimal elements of CD∗E.

First we prove two lemmas:

Lemma 69. Let C be Sg-compression body and α an essential simple closed curve of

Sg that does not compress in C. Then there exists a set of compression bodies D with

|D| ≤ 6g − 6 with the property that C ( D for all D ∈ D such that for any C ∗ α

compression body E, there exists a D′ ∈ D with D′ ⊂ E.

Proof. Fix Sg-compression body C and let α be an essential closed curve of Sg that

does not compress in C. By Fact 27, there exists compressing system {κi, ..., κk} for

C for which α is in tight position.

If α is disjoint from the κi, ..., κk, then {κi, ..., κk, α} is a compressing system.

Denote D := Sg[κi, ..., κk, α]. Then C ( D and also D ⊂ E.

Now suppose α is not disjoint from κi, ..., κk. Set K = κ1 ∪ · · · ∪ κk and hence

K ∩ α 6= ∅. Fix E to be a compression body that is C ∗ α.

Let Dα be an embedded disk in E with boundary α and for each κi, define Dκi

similarly. We may assume the Dκi are all disjoint and that Dα intersects them
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transversely. This intersection is then a set of disjoint arcs A ⊂ Dα. Let α be

an outermost arc in A, that is an arc that bounds a component of Dα − A with an

arc of α. Denote this arc of α as a. Thus α is homotopic rel ∂α to arc a through

Dα. Also note that α is homotopic rel ∂α to an arc of κj through Dκj for some j.

Denote this arc k. Thus a is homotopic to k in E, thus a is a κj-wave. It follows that

a-surgery on κj gives κj
′ = k ∪ a which is a meridian in E disjoint from κj by Fact

25. Moreover, κ′j and κ′′j are disjoint from κi for i 6= j since the κi form a compressing

system. Set Da = Sg[κ1, ..., κk, κ
′
j]. Then Da ⊂ E. Recall that by assumption, α is

tight position with respect to {κ1, ..., κk} in C. Therefore, a is not a κj-wave in C.

So by Fact 25, κ′j and κ′′j are not meridians of C. Hence C ( D. Therefore, Da ∈ D.

Note that for for each E satisfying C ∗ α, an ourtermost arc of K ∩ Dα may be

homotopic to a different arc of α−K. However, any arc a ⊂ α−K that is homotopic

to an outermost arc of K ∩Dα in some C ∗ α compression body E will satisfy both

of the following properties.

(1) ∂a ⊂ κi for some κi ∈ K. That is, a is incident to a single component of K.

(2) both intersections of a with κi happen on the same side of κi by Lemma 22

Set A = {arc a ⊂ α : a satisfies (1) and (2)}. Each a ∈ A determines a compres-

sion body Da ∈ D. However, these may not be distinct.

Suppose that arcs ai, aj ∈ A are parallel in Sg\K. Parallelism gives that both

ai and aj have boundaries on the same curve κ` ∈ K and property (2) gives that

∂(ai ∪ aj) is contained in a single boundary component b of Sg\K. Thus ai, aj and

b bound an embedded rectangle in Sg\K. Thus we can homotope κ′` obtained by

a1-surgery through the embedded rectangle to κ′′` , the curve obtained by aj-surgery

as illustrated in Figure 11. Thus, Dai = Daj .
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ai

aj

κ′′
`

κ′
`

Figure 11: Because ai and aj are parallel, κ′` is homotopic to κ′′`

This implies that |D| is bounded by the number of homotopy classes of properly

embedded arcs that can be realized disjointly in Sg\K. An Euler Characteristic

argument shows that in fact, |D| ≤ 6g − 6.

Lemma 70. Let C be a non-trivial Sg-compression body and γ an essential simple

closed curve of Sg. Set CC∗γ = {Sg-compression bodies D : D is C ∗ γ}.The number

of minimal elements of CC∗γ is bounded by (6g − 6)2g−2.

Proof. Let C be an Sg-compression body C and let γ be an essential closed curve of

Sg.

If γ compresses in C, then C ∈ CC∗γ and is the sole minimal element.

Suppose that γ does not compress in C. Let E ∈ CC∗γ and assume that E is

minimal. By Lemma 69, there exist D11 , ..., D`1 for `1 ≤ 6g − 6 such that there is

some j with C ( Dj1 ⊂ E. If γ compresses in Dj1 , then by minimality of E, E = Dj1 .

In this case, there are at most 6g − 6 minimal elements of CC∗γ.

If not, set Dj1 = D1. Since γ does not compress in D1, again by Lemma 69, there

exist D12 , ..., D`2 with `2 ≤ 6g−6 such that for some j, D1 ( Dj2 ⊂ E. Set Dj2 = D2.

By minimality of E, if γ compresses in D2, then E = D2. In this case, there were at

most 6g−6 possibilities for D1 and then at most 6g−6 possibilities for D2, dependent

on D1. Thus there are at most (6g − g)2 minimal elements of CC∗γ.

If not, continue the process.
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In general, if γ does not compress in Di for all i ≤ n−1, then by Lemma 69, there

exist D1n , ..., D`n with `n ≤ 6g−6 such that for some j, D1 ( · · · ( Dn−1 ( Djn ⊂ E.

Set Djn = Dn. By minimality of E, if γ compresses in Dn, then E = Dn. In this

case, there were at most 6g − 6 possibilities for D1 through Dn and so there are at

most (6g−6)n possibilities for Dn, dependent on previous Di. Thus there are at most

(6g − g)n minimal elements of CC∗γ.

By Proposition 20, in any sequence of compressions Sg × [0, 1] ( C1 ( · · · ( Ck

we have the bound k ≤ 2g − 1.

We have Sg × [0, 1] ( C ( D1 ( · · · ( Dn which is a length n + 1 sequence of

compressions. Thus n+ 1 ≤ 2g − 1 and so for some n ≤ 2g − 2, Dn = E.

Thus there are at most (6g − 6)2g−2 minimal elements of CC∗γ.

Now we prove Theorem 68.

Proof. If E ⊆ D, then D ∈ CD∗E is minimal and moreover the only minimal element.

Now suppose that E 6⊂ D (as well as D 6⊂ E) and let C ∈ CD∗E be minimal. This

implies that D ( C (since D = C contradicts E 6⊂ D). It also implies that D is a

nontrivial compression body. We look to bound the length of a chain of compressions

from D to C.

There is some simple closed curve β1 that compresses in E but not in D. Then by

Lemma 70 there is a bounded list of D ∗ β1 minimal compression bodies C11 , ..., C`1

with `1 ≤ (6g − 6)2g−2. Then for some i, Ci1 ⊆ C. Set C1 := Ci1 . If C = C1 then we

have the chain D ( C1 = C and there are at most ` ≤ (6g− g)2g−2 minimal elements

of CD∗E.

If C1 ( C, by minimality of C, there is some meridian β2 of E that doesn’t

compress in C1. Then by Lemma 70 there is a bounded list of C1 ∗ β2 minimal

compression bodies C12 , ..., C`2 with `2 ≤ (6g− 6)2g−2. Then for some i, Ci2 ⊆ C. Set
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C2 := Ci2 . Then we have the chain D ( C1 ( C2. There were at most (6g − 6)2g−2

possibilities for C1 and then at most (6g − 6)2g−2 possibilities for C2, dependent on

C1. If C = C2 then there are at most (6g − 6)2(2g−2) different chains of compressions

to give some minimal element C and so there are at most (6g − 6)2(2g−2) minimal

elements of CD∗E.

In general, if Ci ( C for all i < j, then by minimality of C there is some meridian

βj of E that doesn’t compress in Cj−1. Then by Lemma 70 there is a bounded list

of Cj−1 ∗ βj minimal compression bodies C1j , ..., C`j with `j ≤ (6g− 6)2g−2. Then for

some i, Cij ⊆ C. Set Cj := Cij . Then we have the chain D ( C1 ( · · · ( Cj. For this

chain, there are at most (6g− 6)2g−2 for each Ci dependent on the previous selection.

So there are at most (6g − 6)j(2g−2) possibilities for Cj. If C = Cj then there are at

most (6g − 6)j(2g−2) minimal elements of CD∗E.

Thus we have some sequence of compressions Sg × [0, 1] ( D ( C1 ( · · · ( Cj of

length j + 1. By Proposition 20, j + 1 ≤ 2g − 1 and so for some j ≤ 2g − 2, Cj = C.

Thus there are at most (6g − 6)(2g−2)2 minimal elements of CD∗E.

Theorem 71. Let h : Sg → Sg be a homeomorphism and γ ⊂ Sg an essential simple

closed curve. Set

Ch,γ = {Sg-compression body C : h extends to C and γ compresses in C}.

Then there are at most

(6g − 6)2g−2(6g − 6)(2g−2)2(2g−3)

minimal elements of Ch,γ.

Proof. Let C ∈ Ch,γ be minimal. By Lemma 70, there are at most (6g−g)2g−2 minimal
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S[γ] ∗ h(γ) compression bodies D11 , ..., D`1 . Since h(γ) compresses in C, then one of

these minimal S[γ]∗h(γ) compression bodies, say Di1 is contained in C. Set D1 = Di1 .

If D1 = C then we have a sequence of compressions Sg × [0, 1] ( D1 = C.

Suppose D1 ( C. By minimality of C, we have D1 /∈ Ch,γ. Since γ compresses in

D1 by construction, it follows that h doesn’t extend to D1. In other words, h(D1) 6⊆

D1. Applying Theorem 68, there are at most (6g − 6)(2g−2)2 minimal D1 ∗ h(D1)

compression bodies D12 , ..., D`2 . Note that for all i, D1 6= Di2 because h(D1) ⊂ Di2

and h(D1) 6⊂ D1. Since h extends to C and D1 ⊂ C, it follows that for some i,

Di2 ⊂ C. Set D2 := Di2 . We have a sequence of compressions Sg × [0, 1] ( D1 ( D2.

Suppose Dn−1 ( C. By minimality of C, we have Dn−1 /∈ Ch,γ. Since γ compresses

in Dn−1 by construction, it follows that h doesn’t extend to Dn−1. In other words,

h(Dn−1) 6⊂ Dn−1. Applying Theorem 68, there are at most (6g − 6)(2g−2)2 minimal

Dn−1 ∗ h(Dn−1) compression bodies D1n , ..., D`n all satisfying Din 6= Dn−1 as above.

Since h extends to C and Dn−1 ⊂ C, it follows that for some i, Din ⊂ C. Set

Dn := Din .

We have a sequence of compressions Sg × [0, 1] ( S[γ] ( D1 ( · · · ( Dn which

has length n+ 1. By Proposition 20, n ≤ 2g − 2. Hence this process must terminate

with some Dn = C for n ≤ 2g − 2.

Therefore, any minimal element C ∈ Ch,γ has a sequence of compressions Sg ×

[0, 1] ( S[γ] ( D1 ( · · · ( Dn for n ≤ 2g − 2 where D1 is one of the at most

(6g − g)2g−2 minimal S[γ] ∗ h(γ) compression bodies, and Di for 2 ≤ i ≤ n is one of

the at most (6g − 6)(2g−2)2 minimal Di−1 ∗ h(Di−1) compression bodies. So there are

at most (6g − g)2g−2(6g − 6)(2g−2)2(2g−3) minimal elements of Ch,γ.

Casson and Long prove that for a pseudo-Anosov homeomorphism f : Sg → Sg,

there is a finite setMf of essential simple closed curves of Sg, such that if f extends

to compression body C, then some c ∈ Mf is a meridian of C. (see Theorem 1.2 in
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[6])

Some coarse geometry arguments from Maher and Schleimer’s paper [8] may help

to effectivize Casson and Long’s Theorem 1.2. We will state this as a conjecture.

Conjecture 3. Suppose that f : Sg → Sg is a pseudo-Anosov homeomorphism.

Then there exists set Mf = {γ1, ..., γ`} for ` ≤ k(g) such that if f extends to an

Sg-compression body C, then some γi is a meridian of C.

The following proposition is similar to Conjecture 2 however it is weaker: in

Conjecture 2, f is any homeomorphism but in the proposition below, f must be

pseudo-Anosov.

Proposition 72. Assuming Conjecture 3, if f : Sg → Sg is pseudo-Anosov and there

is some Sg-compression body C such that some power of f extends to C, then there

exists an Sg-compression body C ′ ⊂ C such that for some i ≤ [k(g)(6g − g)2g−2(6g −

6)(2g−2)2(2g−3)]!, we have that f i extends to C ′.

Proof. First we prove the following lemma.

Lemma 73. Let f : Sg → Sg be a pseudo-Anosov and set

Cf = {Sg-compression bodies C : f extends to C}.

If Conjecture 3 is true, then there are at most k(g)(6g − g)2g−2(6g − 6)(2g−2)2(2g−3)

minimal elements of Ch.

Proof. Let C ∈ Cf be minimal. Then by Conjecture 3, there is some γi ∈ Mf which

compresses in C. There are at most k(g) curves γi and at most (6g − g)2g−2(6g −

6)(2g−2)2(2g−3) minimal compression bodies to which f extends where γi compresses.

Thus we multiply to get the bound.
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Let f : Sg → Sg be a pseudo-Anosov and assume that fk extends to Sg-compression

body C.

Set CM
fk

= {D ∈ Cf : D is minimal}, the set of minimal Sg-compression bodies to

which fk extends.

Note that f permutes the elements of CM
fk

. To see this, let D ∈ CM
fk

. Then

fk(f(D)) = f(fk(D)) = f(D). Hence f(D) ∈ CM
fk

.

From Lemma 73, |CM
fk
| ≤ k(g)(6g − g)2g−2(6g − 6)(2g−2)2(2g−3). Thus, the order i

of f as a permutation of CM
fk

is at most [k(g)(6g − g)2g−2(6g − 6)(2g−2)2(2g−3)]!. By

minimality of the compression bodies of CM
fk

, there is some C ′ ∈ CM
fk

such that C ′ ⊂ C

with f i(C ′) = C ′.

Note that we can’t use the above proposition to prove a pseudo-Anosov analogue

to Proposition 63 because of the following: Let h : Sg → Sg be a pseudo-Anosov

that has a power that extends to some Sg-compression body C. Then by the above

proposition, there exists a bounded i such that hi has an extension Hi : C ′ → C ′ for

some C ′ ⊂ C. Recall that ∂−C
′ is the interior boundary of C ′, that is ∂C ′ − ∂+C

′.

Note that Hi|∂−C′ is a surface homeomorphism but is likely not a pseudo-Anosov

homeomorphism. Thus we cannot induct like we did in the proof of Proposition 63

to get a bounded power of extension to C. This illustrates why we need the stronger

Conjecture 2.

Thus we would like to prove the following generalized form of Conjecture 3.

Conjecture 4. Suppose that homeomorphism h : Sg → Sg is pure and is pseudo-

Anosov on subsurface X of S. Then there exists a set of non-peripheral, essential

simple closed curves of X,Mh = {γ1, ..., γi} for i ≤ `(g) such that if C is any proper

X-compression body to which h extends, then some γi compresses in C.

If Conjecture 4 is true, one might use tools of forthcoming work of Biringer and
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Lecuire [25] to prove Conjecture 2 which would in turn prove Conjecture 1 for all

orientable 3-manifolds as described in Section 7.
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Birkhäuser Boston, Inc., Boston, MA, 2001.

63


