Items in eScholarship@BC will redirect to URBC, Boston College Libraries' new repository platform. eScholarship@BC is being retired in the summer of 2025. Any material submitted after April 15th, 2025, and all theses and dissertations from Spring semester 2025, will be added to URBC only.
In 2010, Seidel and Smith used their localization framework for Floer homologies to prove a Smith-type rank inequality for the symplectic Khovanov homology of 2-periodic links in the 3-sphere. Hendricks later used similar geometric techniques to prove analogous rank inequalities for the knot Floer homology of 2-periodic links. We use combinatorial and space-level techniques to prove analogous Smith-type inequalities for various flavors of Khovanov homology for periodic links in the 3-sphere of any prime periodicity. First, we prove a graded rank inequality for the annular Khovanov homology of 2-periodic links by showing grading obstructions to longer differentials in a localization spectral sequence. We remark that the same method can be extended to p-periodic links. Second, in joint work with Matthew Stoffregen, we construct a Z/p-equivariant stable homotopy type for odd and even, annular and non-annular Khovanov homologies, using Lawson, Lipshitz, and Sarkar's Burnside functor construction of a Khovanov stable homotopy type. Then, we identify the fixed-point sets and apply a version of the classical Smith inequality to obtain spectral sequences and rank inequalities relating the Khovanov homology of a periodic link with the annular Khovanov homology of the quotient link. As a corollary, we recover a rank inequality for Khovanov homology conjectured by Seidel and Smith's work on localization and symplectic Khovanov homology.