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LOCALIZATION FOR KHOVANOV HOMOLOGIES

Melissa Zhang

Advisors: J. Elisenda Grigsby and David Treumann

In 2010, Seidel and Smith used their localization framework for Floer homologies to

prove a Smith-type rank inequality for the symplectic Khovanov homology of 2-periodic

links in the 3-sphere. Hendricks later used similar geometric techniques to prove analo-

gous rank inequalities for the knot Floer homology of 2-periodic links. We use combina-

torial and space-level techniques to prove analogous Smith-type inequalities for various

flavors of Khovanov homology for periodic links in the 3-sphere of any prime periodicity.

First, we prove a graded rank inequality for the annular Khovanov homology of 2-

periodic links by showing grading obstructions to longer differentials in a localization

spectral sequence. We remark that the same method can be extended to p-periodic

links.

Second, in joint work with Matthew Stoffregen, we construct a Z/p-equivariant stable

homotopy type for odd and even, annular and non-annular Khovanov homologies, using

Lawson, Lipshitz, and Sarkar’s Burnside functor construction of a Khovanov stable ho-

motopy type. Then, we identify the fixed-point sets and apply a version of the classical

Smith inequality to obtain spectral sequences and rank inequalities relating the Kho-

vanov homology of a periodic link with the annular Khovanov homology of the quotient

link. As a corollary, we recover a rank inequality for Khovanov homology conjectured

by Seidel and Smith’s work on localization and symplectic Khovanov homology.
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Chapter 1

Introduction

This dissertation is essentially the concatenation of two articles resulting from studying

the following question, which arises from Seidel and Smith’s work on localization in Floer

homologies [SS10] and on symplectic Khovanov homology [SS06]: for a link L̃ in S3 with

Z/2 rotational symmetry, is the Khovanov homology of L̃ at least as large as that of its

quotient link L?

The context of this problem is discussed in the introductions of the two attached

articles, which I encourage the reader to look over, as they not only provide an idea

of the landscape of localization problems in categorified invariants in low-dimensional

topology but also paint a picture of how this simple question about periodic links and

the rank of Khovanov homology lead me to engage with various tools.

In response to the question, in this dissertation, we show the following.

1. Yes, the rank inequality holds.

Seidel and Smith applied their localization framework for Floer homologies [SS10]

to their geometrically defined symplectic Khovanov homology Khsymp [SS06], which

they conjectured is isomorphic to (combinatorial) Khovanov homology Kh [Kho00],

to obtain the rank inequality for Khsymp (over F2). Since Kh is inherently combi-
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natorial (the definition of the invariant is a recipe for how to compute it, granted

infinite patience), one would expect a proof of the Kh rank inequality to not require

using an isomorphism to a geometrically-defined invariant.

2. It holds because of spectral sequence involving annular Khovanov homology.

This was surprising, but in hindsight should be expected. By the Smith Conjec-

ture, the fixed-point set of any orientation-preserving diffeomorphism of S3 must

be empty, two points, or an unknot. The algebraic structures representing the

topological phenomenon reflects the presence of this axis.

3. In fact, it also holds for Z/p actions, for any prime p.

The analogue to the Z/2-periodic result in knot Floer homology is due to Hendricks

[Hen15]. Due to inherent restrictions coming from Heegaard Floer diagrams, the

knot Floer argument can only be used for Z/2 actions. (Nevertheless, she reproves

many classical results for pr-periodic knots, by analyzing Heegaard diagrams for

these.) In the Khovanov case, the proofs for Z/2 are not that different from the

more general Z/p proofs.

4. A relatively low-tech proof suffices to show the analogous rank inequality for annular

Khovanov homology.

The extra annular grading in annular Khovanov homology is enough to obstruct

longer differentials in the spectral sequence. Though Chapter 2 only handles the 2-

periodic case, observe that the argument that longer differentials vanish extends to

p-periodic links, via the analysis explained in Chapter 3, in the proof of Proposition

3.76.

This dissertation is organized as follows. Chapter 2 consists of the article “A rank

inequality for the annular Khovanov homology of 2-periodic links,” published in Algebraic
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and Geometric Topology, Volume 18, Issue 2 [Zha18]. A conjecture from Section 2.8

led to the work with Matthew Stoffregen in Chapter 3, which consists of the article

“Localization in Khovanov homology.” At present, this article has been submitted for

publication and is available as an arXiv preprint [SZ18]. No attempt has been made to

reconcile the differences in notation used in the two papers. The two papers are each

rather self-contained, so notational differences should be self-explanatory. Nevertheless,

it is worth mentioning a few key differences.

• The cube {0, 1}n plays an important role in both papers. In Chapter 2, I define a

cubes of resolutions (Definition 2.13) and of chains (Definition 2.14), and notation-

ally distinguished them by font. In Chapter 3, Matt and I use the more elegant

notation of describing all such objects as functors from the cube category (Section

3.2.1). But because Khovanov homology is actually defined as a cohomological

theory, the cube category in Chapter 3 is actually the opposite of the cube cat-

egory implicit in Chapter 2. In other words, Chapter 2 works entirely with the

cohomological complex, whereas Chapter 3 studies a homotopy type.

• In Chapter 2, the homological, quantum, and winding number gradings are asso-

ciated to the letters i, j, and k, respectively. In Chapter 3, we use the letters h, q,

and k, respectively.

• The Khovanov chain complex is denoted CKh in Chapter 2, and Kc in Chapter

3. The difference in notation is analogous for the annular theory. (Is “Kh” short

for “Khovanov” or is it an acronym for “Khovanov homology?”)

I encourage undergraduate and graduate students who are interested in hands-on under-

standing and manipulation of spectral sequences coming from filtrations to take a look

at the algebraic preliminaries in Chapter 2.
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Chapter 2

A rank inequality for the annular

Khovanov homology of 2-periodic

links

2.1 Introduction

The world of topological objects is rich with spaces exhibiting interesting symmetries.

These symmetries manifest themselves in the algebraic invariants we use to study the

objects and can be manipulated to provide insights into the object itself. As fundamental,

ubiquitous objects in low-dimensional topology, knots and links are some of the most

natural objects to have algebraic invariants associated to them.

The rise of homology-type invariants categorifying polynomial link invariants have

led to the study of equivariant homology theories by Chbili [Chb10], Seidel and Smith

[SS10], Hendricks [Hen12] [Hen15], Politarczyk [Pol15] [Pol17], Borodzik and Politarczyk

[BP17], and many others, building and improving upon earlier work of Murasugi [Mur71]

[Mur88], Yokota [Yok93], and Przytycki [Prz98] relating the polynomial invariants of
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periodic links with those of their quotient links.

A link L̃ in S3 is p-periodic if there is a p-periodic automorphism τ of S3 with fixed

set an unknot B restricting to a diffeomorphism on L̃; the quotient link L is the quotient

of L̃ under the action of τ . Since L̃ can naturally be viewed in a thickened annulus A×I

by deleting the fixed set B from S3, Asaeda, Przytycki, and Sikora’s annular Khovanov

homology [APS04] seems particularly suitable for probing periodic links. We refer to a

link in the thickened annulus as an annular link.

In this article, we construct a Tate-like bicomplex (§2.4) to show rank inequalities for

the annular Khovanov homology of a 2-periodic annular link L̃ and that of its quotient

link L. For any annular link L, let AKhj,k(L) denote the annular Khovanov homology

of L at quantum grading level j and sl2 weight space grading level k.

Theorem 2.1. Let L̃ be a 2-periodic link with quotient link L. For each pair of integers

(j, k), there is a spectral sequence with

E1 ∼= AKh2j−k,k(L̃)⊗F2 F2[θ, θ
−1]⇒ E∞ ∼= AKhj,k(L)⊗F2 F2[θ, θ

−1].

A rank inequality immediately follows:

Corollary 2.2. For L̃ and L as above,

rkF2AKh
j,k(L) ≤ rkF2AKh

2j−k,k(L̃).

This result generalizes [Cor16], where Cornish proves a rank inequality between the

next-to-top sl2 weight space gradings in the annular Khovanov homologies of a 2-periodic

link and that of its quotient by employing the Lipshitz-Treumann spectral sequence

[LT16] with Auroux, Grigsby, and Wehrli’s identification of the next-to-top winding

grading with the Hochschild homology of a Khovanov-Seidel bimodule [AGW15]. He

remarks that by using Beliakova-Putyra-Wehrli’s generalization of Auroux, Grigsby, and
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Wehrli’s work [BPW19], one should be able to prove similar rank inequalities in other sl2

weight space gradings, but that this requires checking the Lipshitz-Treumann algebraic

conditions for larger dg algebras.

While our result does not require the links to be braid closures, annular Khovanov

homology is often used to study braids, as the set of conjugacy classes of a braid group

Bn embed into the set of isotopy classes of annular links. In particular, Bn can be viewed

as the mapping class group of a disk with n punctures, and Corollary 2.2 suggests that

the rank of annular Khovanov homology could provide a measure of complexity in the

mapping class group.

Following the notation in [Rob13] (page 418, under Definition 2.2; also see §2.7 in

this article), the decategorification of Theorem 2.1 can be written as follows:

Corollary 2.3. For all j and k,

〈qk,L̃(−1, q), q2j−k〉 ≡ 〈qk,L(−1, q), qj〉 mod 2,

where 〈f, g〉 denotes the coefficient of g in f .

However, the spectral sequence hints that the grading j1 := j − k is actually more

pertinent to annular links (see [GLW18] and [GLW17] for more evidence). With this in

mind, one can write down the decategorification as a statement similar to Murasugi’s

theorem on the Jones polynomial of periodic links [Mur88]:

Corollary 2.4. VL̃(1, q, q−1) ≡ [VL(1, q, q−1)]2 mod 2.

The Jones polynomial of a periodic link L̃ is related to the decategorification of the

annular Khovanov homology of its quotient link L in the following way:

Corollary 2.5. VL̃(1, q, 1) ≡ VL(1, q2, q−1) mod 2.

6



Moreover, we conjecture that a similar spectral sequence also relates the Khovanov

homology [Kho00] of L̃ with the annular Khovanov homology of L (see §2.8):

Conjecture 2.6. Let L̃ be a 2-periodic link in S3 with quotient link L. There is a

spectral sequence with

E1 ∼= Kh(L̃)⊗F2 F2[θ, θ
−1]⇒ E∞ ∼= AKh(L)⊗F2 F2[θ, θ

−1].

This would in turn imply the following cascade of rank inequalities:

rkF2AKh(L̃) ≥ rkF2Kh(L̃) ≥ rkF2AKh(L) ≥ rkF2Kh(L)

where the first and third inequalities are due to Roberts’ spectral sequence coming from

the sl2 weight space filtration on CKh(D(L̃)) and CKh(D(L)) [Rob13].

Note that this conjecture predicts much more than a rank inequality for Khovanov

homology. In many contexts, spectral sequences from the homology of an associated

graded object like AKh to the homology of the filtered complex tends to dramatically

decrease rank, so it is surprising to find so much evidence for the middle inequality

rkF2Kh(L̃) ≥ rkF2AKh(L). In fact, Corollary 2.5 would be the decategorification of

Conjecture 2.6. We can show that the conjecture and consequent rank inequalities hold

for the following family of annular links:

Theorem 2.7. If the annular braid closure L = β̂ has a diagram with at most 1 positive

crossing, then the spectral sequence in Conjecture 2.6 exists and the cascade of rank

inequalities holds.

Furthermore, it follows from Theorem 2.7 that the cascade of rank inequalities also

holds for positive braid closures (and more):

7



Corollary 2.8. If the annular braid closure L = β̂ has a diagram with at most 1 negative

crossing, then the cascade of rank inequalities holds.

We conclude by discussing frameworks for obstructing 2-periodicity in links which

arise from our results.

2.1.1 Acknowledgements

I am grateful to John Baldwin for suggesting the problem and guiding me; to Eli Grigsby

for her constant support, advice, and guidance; to Spencer Leslie and David Treumann

for enlightening conversations about equivariant homology and Smith theory; to Robert

Lipshitz and Kristen Hendricks for useful discussions about the main result; and to Adam

Saltz, Eli, and John for reading and commenting on drafts. I would also like to thank

the referees for insightful suggestions and helpful corrections.

2.2 Algebraic preliminaries

We begin by discussing the necessary homological algebra. The main theorem follows

from computing two related spectral sequences arising from a particular bicomplex (con-

structed in §2.4). Spectral sequences from bicomplexes are a special case of spectral

sequences from filtered complexes, which we discuss first.

The spectral sequences will be computed explicitly by making use of a well-known

cancellation lemma (Lemma 2.10). Due to a special property of our complexes (see

Definition 2.9), the algebraic computations can be described visually using dots and

arrows; we describe this at the end of §2.2.1.

In §2.2.5, we give a brief overview of the ideas in Borel equivariant cohomology which

motivate the constructions in this article.
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2.2.1 Filtered chain complexes

Let C• be a chain complex of F2 vector spaces, with differential ∂.

A decreasing Z-filtration of C• is a sequence of subcomplexes indexed by decreasing

integers:

. . . ⊂ FnC• ⊂ Fn−1C• ⊂ Fn−2C• ⊂ . . . ⊂ FmC• ⊂ . . . C•.

The filtration F∗C• provides a filtration grading for the chains in C•: x ∈ C• has

filtration grading p if and only if x ∈ FpC• and x 6∈ Fp+1C•. The associated graded vector

space G∗C• is given by

GpC• = FpC•/Fp+1C•.

The existence of the filtration on C• implies that every component of ∂ originating

from x ∈ C• maps to targets y where the filtration grading of y is at least that of x; we

say that ∂ is non-negative with respect to the filtration grading.

Let H• denote the homology of the chain complex C•. The filtration F∗C• induces a

filtration F∗H• on H•: the class [x] ∈ H• is in FpH• if and only if it is represented by

some chain x ∈ [x] where x ∈ FpC•. The induced filtration gives rise to the associated

graded vector space for homology, G∗H•.

Definition 2.9. In our work, the underlying vector space of C• is always freely generated

by a finite collection of distinguished generators which come equipped with some Z-

grading gr, and the differential is non-negative with respect to gr. In this case, gr induces

a Z-filtration and takes on the role of the filtration grading. We call the distinguished

generators a filtered graded basis. A component ∂r of the differential shifts the filtration

grading by s ∈ Z or is of degree r with respect to the filtration grading if for all filtered

graded basis elements x, ∂s(x) is a linear combination of basis elements in grading

gr(x) + s.

Similarly, a bigraded underlying vector space induces a Z⊕ Z-filtration if the differ-

9



x y z

wvu

Figure 2.1

ential is monotone with respect to each grading.

Let (C, ∂) be such a complex. We can visualize (C, ∂) by using dots to represent

the distinguished generators and arrows to represent components of the differential, as

shown in Figure 2.1. We write ∂(x, y) for the coefficient of y in ∂(x), so that ∂(x) is the

sum of ∂(x, y) · y as y runs over all the distinguished generators of C. If ∂(x, y) = 1, we

draw an arrow from x to y.

2.2.2 Spectral sequences from filtered complexes

Spectral sequences are used to gradually approximate the true homology of a complex by

gradually simplifying the complex, whilst preserving the homology. We execute this by

repeatedly applying the cancellation operation (Figure 2.2), which relies on the following

well-known “cancellation lemma.”

Lemma 2.10. [[Bal11], Lemma 4.1]

Let (C, ∂) be a complex of F2 vector spaces freely generated by elements xi. Let

∂(xi, xj) be the coefficient of xj in ∂(xi). If ∂(xk, xl) = 1, define a new complex (C ′, ∂′)

with generators {xi | i 6= k, l} and differential

∂′(xi) = ∂(xi) + ∂(xi, xl)∂(xk).

10



(C, d) (C ′, d′)

Figure 2.2: The cancellation process. On the left is the original complex. In the middle,
the dotted arrow represents the arrow about to be cancelled. On the right is the resulting
complex, with fewer generators and arrows, but with the same homology as the original
complex.

Then (C ′, ∂′) is chain homotopy equivalent to (C, ∂).

Given a decreasing Z-filtered complex F∗C• with filtered differential ∂, we can build

a spectral sequence to compute the homology by starting with the associated graded

complex and sequentially cancelling components of the differential of larger and larger

filtration degree.

The pages of our spectral sequence are denoted (Er, dr), where Er
p is the vector space

at filtration grading p surviving to page r, Er = ⊕pEr
p , and dr is the induced differential

on Er induced by cancellation on the previous pages. For example, E0
p = GpC/Gp−1C,

and d0 is the sum of all the components of ∂ which preserve the filtration grading

gr. The next page (E1, d1) is obtained by canceling all the components of d0, and is

chain homotopy equivalent to (E0, d0); the underlying vector space C ′ injects into C and

therefore has an induced filtration.

Iterating this process, we obtain pages (Er, dr) for all r ≥ 0. In some situations,

the spectral sequence eventually collapses, i.e. there is some N such that for all r ≥ N ,

dr = 0, and all pages are identical from then on. In such cases, the limit term E∞ :=

EN = EN+1 = . . . is identified with the homology of the original complex (C, ∂). Figure

11



2.3 shows the cancellation process (the spectral sequence) used to compute the homology

of a filtered complex.

2.2.3 Bicomplexes

A bicomplex C•,• (Figure 2.4) is a bigraded F2 vector space with differentials

∂hp,q : Cp,q → Cp+1,q

∂vp,q : Cp,q → Cp,q+1

such that ∂h ◦ ∂v + ∂v ◦ ∂h = 0. Here ∂h is the sum of all of the horizontal differentials

∂hp,q and ∂v is the sum of all of the vertical differentials ∂vp,q.

The corresponding total complex Tot(C)• is given by

Tot(C)n =
⊕
p+q=n

Cp,q

with differential ∂Tot = ∂h + ∂v.

The total complex has two standard filtrations vF (the row-wise filtration) and hF

(the column-wise filtration) induced by the rows and columns of the bicomplex, respec-

tively, defined below, and depicted in Figure 2.5:

(vFmC)p,q =


Cp,q if q ≤ m

0 otherwise

(hFmC)p,q =


Cp,q if p ≤ m

0 otherwise

.

With respect to either of these filtrations, the total differential ∂Tot is non-negative.
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(C, ∂)

E0 E1

E2 E3 = E∞ ∼= H∗(C)

Figure 2.3: The spectral sequence which computes the homology of a filtered complex.
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...
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· · · Cp−1,q+1 Cp,q+1 Cp+1,q+1 · · ·

· · · Cp−1,q Cp,q Cp+1,q · · ·

· · · Cp−1,q−1 Cp,q−1 Cp+1,q−1 · · ·

...
...

...

∂h

∂v

∂h

∂v

∂h

∂v

∂h

∂h

∂v

∂h

∂v

∂h

∂v

∂h

∂h

∂v

∂h

∂v

∂h

∂v

∂h

∂v ∂v ∂v

Figure 2.4
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vF1

vF0

C0,2

C0,1

C0,0

C1,2

C1,1

C1,2

C2,2

C2,1

C2,0

hF0
hF1

hF2

C0,2

C0,1

C0,0

C1,2

C1,1

C1,2

C2,2

C2,1

C2,0

Figure 2.5
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2.2.4 Spectral sequences from bicomplexes

The standard filtrations vF and hF induce spectral sequences of filtered complexes hvE

and vhE, respectively.

For example, consider the row-wise filtration vF shown on the left of Figure 2.5. The

pages of the attached spectral sequence hvE approximate H∗(Tot(C)) via the following

process. On page hvE0, the differential d0 consists of all the components of ∂Tot which

preserve the filtration grading; that is, d0 = ∂h. The induced differential on the next

page (∂Tot)′ now only has components which shift the filtration grading by 1 or more.

The following proposition says that in certain situations, both spectral sequences

eventually collapse to hvE∞ ∼= vhE∞ ∼= H∗(Tot(C)), where the vector space generated

by the surviving basis elements at the level set with filtration level p+q = m is identified

with Hm(Tot(C)). A proof may be found in [McC01].

Proposition 2.11. If for each n, the number of p such that Cp,n−p 6= 0 is finite, then

hvE∞p,q =v FqHp+q(Tot(C))/vFq+1Hp+q(Tot(C))

vhE∞p,q =h FpHp+q(Tot(C))/hFp+1Hp+q(Tot(C)).

Both spectral sequences converge to the total homology.

2.2.5 Equivariant homology and the Tate spectral sequence

Our bicomplex will be modeled on the bicomplex used to compute the Borel equivariant

cohomology of a topological space X with an involution τ :

H∗Z/2Z(X;F2) := ExtF2[Z/2Z](C∗(X),F2).

15



Here C∗(X) is the singular chain complex for X with F2 coefficients. Since we are working

over F2 coefficients, (1 + τ)2 = 0, so this is indeed a complex. Moreover, one can check

that the differentials of C∗(X) and the induced involution τ# commute, and therefore

so do their duals. Thus we can build the double complex

0→ C∗(X;F2)
1+τ#

−−−→ C∗(X;F2)
1+τ#

−−−→ C∗(X;F2)
1+τ#

−−−→ · · · .

which computes the Borel equivariant cohomology of X. Equipped with the row-wise

and column-wise filtration, this is a bicomplex.

We can view the underlying vector space of the bicomplex as a module C∗(X;F2)⊗F2

F2[θ], where θ shifts the column-wise filtration degree by 1 (to the right).

Localizing at θ gives the bi-infinite Tate bicomplex

C∗(X;F2)⊗F2 F2[θ, θ
−1] =

(
· · · 1+τ#

−−−→ C∗(X;F2)
1+τ#

−−−→ C∗(X;F2)
1+τ#

−−−→ · · ·
)

whose total homology, under some finiteness conditions, is isomorphic to H∗(X
fix

;F2)⊗F2

F2[θ, θ
−1]. Here X

fix
is the τ -invariant topological subspace of X. See Section 2 in [LT16]

for more details on Z/2Z-localization in Borel equivariant cohomology.

2.3 Topological preliminaries

The purpose of this section is to give an overview of the annular Khovanov homology

of a link while establishing the notation to be used in the proof of the main result. In

§2.3.1 we define annular links and relate them to braid and tangle closures. As annular

Khovanov homology is computed from an annular link diagram, in §2.3.2 we set up the

annular link diagram such that the topological involution on the link translates nicely to

an involution on the diagram. §2.3.3 reviews the construction of the annular Khovanov

16



Figure 2.6: A Hopf link embedded in a thickened annulus.

chain complex via a cube of resolutions and defines the three gradings attached to the

complex.

Throughout, we work in the smooth category with oriented links and F2 coefficients.

2.3.1 Annular links and tangles

An annular link is a finite disjoint union of embedded circles
∐n

1 S
1 in a thickened

annulus A× I. See Figure 2.6 for an example.

Annular links are tangle closures. A a tangle T is a properly embedded compact

1-manifold in D2 × I, with ∂T ⊂ D2 × {0, 1}. If the number of boundary components

of T on the two disks agree, then after arranging for ∂T = {x1, . . . , xn}⊗ {0, 1}, we can

glue D2 × {0} to D2 × {1} (via idD2) to obtain a link T̂ = T /(xi, 0) ∼ (xi, 1) in a solid

torus D2 × I/(D2 × {0} ∼ D2 × {1}).

Braids constitute a well-studied case of tangles. Closures of n-strand braids form the

braid group Bn. Isotopy classes of n-braid closures correspond to the conjugacy classes

in Bn. With this important case in mind, we think of A as the xy-plane punctured at

the origin ∗ and call {∗} × I ⊂ R2 × I ∼= D2 × I the braid axis.

A generic projection of an annular link L ⊂ A× I to A is an immersion with at most

double points, as in Figure 2.7.

17



* *

Figure 2.7: On the left is an annular diagram for the Hopf link from Figure 2.6. On the
right is an annular diagram for the quotient knot, a positively stabilized annular unknot.

2.3.2 2-periodic links and their diagrams

Given a 2-periodic link L̃ ⊂ S3 with involution τ : S3 → S3, the fixed point set B (for

“braid axis”) is an unknotted S1 in S3.

With some choice of coordinates on S3 minus a point {∞} on B, we can view B as

the z-axis in R3, τ as the rotation of 180◦ about the z-axis, and let A be the xy-plane

minus the origin. Hence L̃ ↪→ A× R ∼= A× I is an annular link.

Remark 2.12. We define a 2-periodic link L̃ ⊂ S3 as one that comes with a chosen

involution of S3 which fixes an unknot in S3. It is important to note that a link L̃ in S3

may come with multiple involutions τi, in the sense that the link L̃ ∪ B1 is not isotopic

to L̃∪B2 (where Bi is the fixed-point set of involution τi). In this case L̃ with involution

τ1 defines a different annular link from L̃ with involution τ2.

Maintaining symmetry under τ , isotope L̃ so that the projection D : A×I → A takes

L̃ to a link diagram D(L̃) in A. At the double points, we keep the crossing information.

Employing a small isotopy, we may also assume the double points occur away from the

y-axis, so that there is a clear notion of the “right side” of A × I or A (where x ≥ 0),

and the “left side” of A× I or A (where x ≤ 0).

The preimage of the right side of D(L̃) is a tangle T , which by symmetry has the

same number of loose strands on both ends. The quotient link of L̃ with respect to the

18
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*

*

*

*12

1

1

1

2

R00

R10

R01

R11

Cube( ) =

Figure 2.8: The cube of resolutions for the annular Hopf link in Figure 2.7.

involution τ is the tangle closure L := T̂ . A diagram for L in A is given by D(T ) on the

right side of A together with an identity braid on the left side of A. See Figure 2.7 for

example.

2.3.3 Annular Khovanov homology

Annular Khovanov homology (with F2 coefficients) is a TQFT from properly embed-

ded 1-manifolds in A × I and cobordisms between them to F2 vector spaces and linear

maps between them. Asaeda, Przytycki, and Sikora define this annular link invariant in

[APS04], where they construct a cube of resolutions from the diagram D(L) and asso-

ciate to it a triply-graded chain complex CKh(D(L)) which computes their annular link

invariant AKh(L).

We define two types of cubes, related by the TQFT. See Figure 2.8 and Figure 2.9

for examples.

Definition 2.13 (Cube of resolutions). We will use the notation Cube(D) to denote the
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V00

V10

V01

V11

Cube( ) =

v+ ⊗ v+

v− ⊗ v+v+ ⊗ v−

v− ⊗ v−

w+

w−

w+

w−

w+ ⊗ w+

w− ⊗ w+w+ ⊗ w−

w− ⊗ w−

∂00,10 ∂10,11

∂00,01 ∂01,11

Figure 2.9: The cube of chains for the annular Hopf link in Figure 2.7.

cube of resolutions of the diagram D, whose

• vertices are resolutions of D, which are closed 1-manifolds embedded in A

• edges are 2-dimensional saddle cobordisms between two vertices.

Definition 2.14 (Cube of chains). The annular Khovanov TQFT takes Cube(D) to

Cube(D), the cube of chains, whose

• vertices are F2 vector spaces

• edges are linear maps between the vertices.

We outline the construction of Cube(D) and Cube(D) in the rest of this subsection.

Let n be the number of crossings in D(L), and label the crossings 1 through n in any

order. Let n+ denote the number of positive crossings, and n− the number of negative

crossings.
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Definition 2.15 (Bitstring notation). We call α ∈ {0, 1}n a bitstring of length n. There

are many operations we can perform on α:

• α[i] denotes the bit at the i-th position, where indexing begins at i = 0.

• |α| =
∑n−1

i=0 α[i] is the Hamming weight of α.

• Let α′ ∈ {0, 1}n. Suppose there is an index k such that

– α[k] = 0

– α′[k] = 1

– for all j 6= k, α[j] = α′[j].

In this case, we say that α′ is a bit increment from α.

• Let β ∈ {0, 1}n. Bitstrings of length n form a poset: we write α < β if for all i,

α[i] ≤ β[i].

• αβ represents the concatenation of α and β, in that order. That is, αβ is the

length 2n bitstring where

αβ[i] =


α[i] for i < n

β[i− n] for i ≥ n

.

• For αβ as above, there is an involution τ defined by τ(αβ) = βα.

Remark 2.16. We will also use the symbol “τ” to denote some topological involutions,

but the distinction from this bitstring operation should be clear from context. See §2.4.1

for more on the notation for various involutions.
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crossing

0-resolution

1-resolution

Figure 2.10

Vertices

Let α ∈ {0, 1}n be a length n bitstring. Figure 2.10 shows two ways of resolving a local

picture of a crossing. Associate to α a resolution Rα of D(L), where at crossing i we

replace a local picture with a 0-resolution if α[i] = 0, or a 1-resolution if α[i] = 1. The

resulting resolution Rα is a closed 1-manifold embedded in the annulus A.

Let |Rα| denote the number of components ofRα. Label the components C1, . . . , C|Rα|.

Let V = 〈v−, v+〉 be the 2-dimensional F2 vector space generated by the symbols v− and

v+. We associate to the resolution Rα a vector space Vα = V⊗|Rα|, generated by the pure

tensors of the form v = vp1 ⊗ vp2 ⊗ . . . ⊗ vp|Rα| ∈ {v−, v+}
⊗|Rα|. We endow CKh(D(L))

with the following three gradings by assigning gradings to these distinguished generators.

This notation is slightly modified from that in [GLW17].

• The (homological) i-grading of v is

gri(v) = |α| − n−.

• Define p(v) = #{pi : pi = +} −#{pi : pi = −}. The (quantum) j-grading of v is

grj(v) = p(v) + |α|+ n+ − 2n−.
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• The components of Rα come in two flavors with respect to the basepoint ∗:

– The nontrivial circles have nonzero winding number with respect to ∗ (with

respect to either orientation).

– The trivial circles have zero sl2 weight space with respect to ∗ (with respect

to either orientation).

The (sl2 weight space) k-grading of v is given by

grk(v) = #{pi : pi = +, Ci nontrivial} −#{pi : pi = −, Ci nontrivial}.

We think of the i-th tensor factor in V⊗|Rα| as corresponding to a labeling of the i-th

component Ci with a − or + symbol. As such, for a trivial circle Ci we will henceforth

write the corresponding factor as W = 〈w−, w+〉, reserving the notation V = 〈v−, v+〉

for nontrivial circles. For example, if Rα consists of one nontrivial circle and two trivial

circles, labeled in that order, one of the generators of Vα is v− ⊗ w+ ⊗ w−.

Remark 2.17. In [GLW18], Grigsby, Licata, and Wehrli show that annular Khovanov

homology over C enjoys a Lie algebra sl2(C)-action, which is why we refer to the k-

grading as the “sl2 weight space grading.”

Edges

Let α, α′ ∈ {0, 1}n. If α′ is a bit increment from α, we say that the resolution R′α is a

successor to Rα. In our cube of resolutions, we draw a directed edge Rα → R′α corre-

sponding to a linear map ∂α,α′ : Vα → Vα′ . This map depends on a few characteristics of

the resolutions Rα and Rα′ .

• Since Rα and Rα′ differ at the site of exactly one crossing, all but one or two

components remain unchanged between Rα and Rα′ . The linear map ∂α,α′ may be
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a merge map or a split map. If the site of the crossing touches only one component

Ci of Rα, then in Rα′ , Ci has split into two components. If the site of the crossing

touches two components Ci and Cj of Rα, then in Rα′ , Ci and Cj merge into one

component.

• The participating components may be trivial or nontrivial circles. The linear map

∂α,α′ is constructed so that grj and grk are preserved, and gri is increased by

1. Roberts shows in [Rob13] that there are exactly six possible types of maps

corresponding to an edge in the cube resolutions. We can visually describe these

maps by drawing dots representing the distinguished generators of Vα and V ′α,

aligning them in rows of constant grj, and drawing arrows between the dots to

represent components of the differential. Figure 2.11 shows the six maps defining

all possible ∂α,α′ using this visual respresentation.

One can check that ∂AKh =
∑
∂α,α′ is a differential by verifying that each face of the

cube of chains commutes. The triply graded homology of this complex CKh(D(L)) is

independent of the choice of diagram D(L) [APS04].

2.4 The annular Khovanov-Tate bicomplex

We are now prepared to construct the bicomplex which defines the spectral sequence in

Theorem 2.1. The motivation for this construction is discussed in §2.2.5.

2.4.1 An involution on CKh

The first task is to define an involution on CKh(D(L̃)) induced by the topological

involution τ .

Definition 2.18. We will need to discuss many related involutions. By abuse of nota-

tion, we utilize only three symbols; the distinctions within each group will be clear from
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v−

v+

v+ ⊗ w+

v+ ⊗ w− v− ⊗ w+

v− ⊗ w−

Type A: v → vw

v−

v+v+ ⊗ w+

v+ ⊗ w− v− ⊗ w+

v− ⊗ w−

Type D: vw → v

w−

w+

v+ ⊗ v+

v+ ⊗ v− v− ⊗ v+

v− ⊗ v−

Type B: w → vv

w−

w+v+ ⊗ v+

v+ ⊗ v− v− ⊗ v+

v− ⊗ v−

Type E: vv → w

w−

w+

w+ ⊗ w+

w+ ⊗ w− w− ⊗ w+

w− ⊗ w−

Type C: w → ww

w−

w+w+ ⊗ w+

w+ ⊗ w− w− ⊗ w+

w− ⊗ w−

Type F: ww → w

Figure 2.11: The AKh differentials. Within each diagram, the rows have constant j-
grading.
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context. After presenting the notation, we discuss the involutions and their relationships

with each other in more detail.

In the following contexts, we use the symbol τ :

• the bitstring involution defined in Definition 2.15

• the topological involution on S3 with fixed point set B

• the restriction of τ to the 2-periodic link L̃ ⊂ S3

• the involution induced on A× I and its restriction to L̃ ↪→ A× I.

We use the symbol τA to denote the following:

• the involution induced on A from τ on A× I

• the restriction of τA to D(L̃) ⊂ A

• the involution induced on an equivariant resolution Rαα ⊂ A.

Finally, τ# is used to denote the following:

• the involution induced on the chains of CKh(D(L̃))

• the involutions induced by τ# on the pages of the spectral sequences.

We continue to use the setting described in §2.3.2. Let n be the number of crossings

in the quotient link diagram D(L). Label the 2n crossings in D(L̃) by first labeling

crossings of D(L̃) on the right side of A (x > 0) , then labeling the crossings on the left

side (x < 0) so that τA takes the i-th crossing on the right to the (i+ n)-th crossing on

the left.

With this assignment, each 2n-bit string α = α1α2 is the concatenation of two n-bit

strings α1 and α2, where α1 represents a sequence of resolution choices for the crossings
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on the right and α2 represents a sequence of resolution choices for the crossings on the

left. Thus τA takes Rα = Rα1α2 to Rτ(α) = Rα2α1 .

Thinking of the distinguished generators of the cube of chains Cube(D(L̃)) as marked

resolutions, τA induces an involution τ# on the chains of CKh(D(L̃)).

Definition 2.19. A resolution Rα is equivariant if τA(Rα) = Rα. A generator x of the

cube of chains Cube(D(L̃)) is equivariant if τ#(x) = x. If a resolution or generator is

not equivariant, it is nonequivariant.

In fact, τ# is an involution on the complex (CKh(D(L̃)), ∂AKh):

Lemma 2.20. ∂AKh and τ# commute.

Proof. It suffices to show that every edge belongs to a well-defined pair of edges {∂α,α′ , ∂τ(α),τ(α′)}

of Cube(D(L̃)), where α′ is a bit increment from α, so that the following diagram com-

mutes.

Vα′ τ#(Vα′)

Vα τ#(Vα)

τ#

τ#

∂α,α′ ∂τ(α),τ(α′)

Since ∂AKh is the sum of all such pairs of edges, ∂AKh commutes with τ#.

The edge ∂α,α′ may correspond to a change of resolution on the right or left side of

D(L̃). Without loss of generality, consider the case where the resolution change is on

the right.

Vα′1α2
Vα2α′1

Vα1α2 Vα2α1

τ#

τ#

∂α,α′ ∂τ(α),τ(α′)

The components of Rα1α2 and Rα2α1 are identified in pairs by the diffeomorphism τA;

the same holds for the pair Rα′1α2
and Rα2α′1

. In this way, a merge (resp. split) map

Vα1α2 → Vα′1α2
corresponds to the isomorphic merge (resp. split) map Vα2α1 → Vα2α′1

.
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Notice that ∂α,α′ = ∂τ(α) if and only if they have the same source and target. This

is impossible as one of |α| and |α′| is odd, and hence corresponds to a nonequivariant

resolution.

2.4.2 Construction of the AKhTate bicomplex

This allows us to define a variant of the Tate bicomplex (see §2.2.5), constructed as

follows:

• Each column is a copy of the complex CKh(D(L̃)), where the vertical filtration is

induced by gri.

• The underlying vector space is the F2[θ]-module CKh(D(L̃)) ⊗F2 F2[θ], where θ

acts on the columns by shifting right by one column.

• The horizontal differential is 1 + τ#.

Observe that this complex is quadruply graded by gri, grj, grk, and a column grading

grt, where t is the exponent of θ.

Definition 2.21. We call this bicomplex the annular Khovanov-Tate complex for the 2-

periodic link L̃ with involution τ , abbreviated AKhTate(L̃). We denote the total complex

of this bicomplex by Tot(AKhTate(L̃)).

Remark 2.22. This notation requires some justification. We will show that

H∗(Tot(AKhTate(L̃))) ∼= AKh(L)⊗ F2[θ, θ
−1]

where the latter is independent of the choice of diagram by [APS04].
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2.5 Proof of Theorem 2.1

We are now ready to prove the main result. Recall that AKhj,k(L) denotes the part of

AKh(L) at quantum grading j and sl2 weight space grading k.

Theorem 2.1. Let L̃ be a 2-periodic link with quotient link L. For each pair of integers

(j, k), there is a spectral sequence with

E1 ∼= AKh2j−k,k(L̃)⊗F2 F2[θ, θ
−1]⇒ E∞ ∼= AKhj,k(L)⊗F2 F2[θ, θ

−1].

Before diving into the details, we first give a sketch of the main ideas behind the

proof. The reader may also wish to refer to the example in §2.6.

Since the complex CKh(D(L̃)) is finite-dimensional, our bicomplex AKhTate(D(L̃))

has finite-dimensional columns, so by Proposition 2.11, the hvE and vhE spectral se-

quences both converge to H∗(Tot(AKhTate(D(L̃)))). We will compute the hvE spec-

tral sequence to find that hvE∞ ∼= AKh(L) ⊗ F2[θ, θ
−1]. Then we will show that

vhE1 = AKh(L̃) ⊗ F2[θ, θ
−1]. By Proposition 2.11, vhE∞ ∼= hvE∞, with the isomor-

phism respecting the (i+ t)-grading. Observing that each diagonal level set in vhE∞ can

be identified with ⊕iAKhi(L) (where AKhi(L) refers to the piece of AKh(L) at gri = i),

we see that vhE is a spectral sequence from the (i + t)-filtered AKh(L̃) ⊗ F2[θ, θ
−1] to

AKh(L) ⊗ F2[θ, θ
−1]. The total differential preserves j- and k-gradings, so vhE splits

along j- and k-gradings.

2.5.1 The first pages

The first pages of either spectral sequence can be understood readily and have topological

interpretations.

Lemma 2.23. vhE1 ∼= AKh(L̃)⊗F2 F2[θ, θ
−1].
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Proof. In each column, the cancellation of all the vertical arrows computes the homology

AKh(D(L̃)). The fact that cancellation actually occurs in the greater context of the

bicomplex is irrelevant because any induced maps are no longer vertical.

Lemma 2.24. hvE1 is generated by the equivariant generators of AKhTate(D(L̃)).

Proof. Since 1+τ# vanishes on all equivariant generators, it suffices to show that all the

nonequivariant generators vanish upon cancellation of all the horizontal arrows in the

bicomplex. In fact, cancellation of all the τ# arrows suffices, as shown in Figure 2.12.

Definition 2.25. A staircase of arrows (Figure 2.13) is a finite collection of arrows in a

bicomplex (generated by a distinguished filtered graded basis) which form a path with

the following properties.

• The path alternates between vertical and horizontal arrows.

• Both arrows at a corner either both point away from or both point toward the

corner.

• If a vertical arrow and a horizontal arrow meet at a corner of the path, they either

have the same source or the same target.

The height of a staircase of arrows with respect to a given filtration is the change in

filtration degree between the generators at the ends of the path.

With respect to the row-wise filtration, if both ends of the staircase begin with a

vertical arrow, then cancellation of the horizontal arrows in the staircase (in any order)

induces a single arrow from one end of the path to the other. The length of this induced

arrow is the height of the staircase.

Lemma 2.26. If r is odd, hvdr = 0.
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τ#x
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x x x x

x x x

τ#x τ#x τ#x τ#x

τ#xτ#xτ#xτ#x

τ#x τ#x τ#x

Figure 2.12: Cancellation of the τ# arrows eliminates all the nonequivariant generators.
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Figure 2.13: A staircase of arrows. In this example, the staircase has height 4, so it
induces an arrow of length 4.

Proof. By Lemma 2.24, only equivariant generators survive to hvE1. Since these belong

to vector spaces corresponding to equivariant resolutions ofD(L̃), their Hamming weights

must be even. The i-grading is a shift of Hamming weight, so every other row vanishes

on hvE1. Components of hvdr for odd r are represented by arrows of length r, which

must map to or from a vanishing row, so hvdr = 0.

Therefore the next interesting differential in the spectral sequence is hvd2.

Lemma 2.27. Every component of hvd2 is induced by the cancellation of a τ# arrow at

a row corresponding to an odd Hamming weight.

Proof. Since we begin with only (row-wise) filtration degree 0 and 1 maps, the only way

to induce a length 2 differential is by canceling the horizontal arrow on a staircase of

height 2. The source and target of a length 2 differential is an equivariant generator,

so the cancelled horizontal arrow must lie in a row corresponding to an odd Hamming

weight.

Remark 2.28. Later on it will become useful to view the computation of the induced

differentials in the spectral sequence as a sequence of maps (by ∂AKh) and lifts (by
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1 + τ#), traveling up the staircase in Figure 2.13. The maps constructed this way are

the same as the maps induced by cancellation of the τ# arrows in the staircase. This is a

more intuitive reason why cancellation of only the τ# arrows is sufficient for eliminating

the nonequivariant generators.

2.5.2 Relationship between ( hvE2,hv d2) and the quotient link

The crux of the theorem comes from the observation that the generators and differentials

on page 2 of the hvE spectral sequence correspond exactly with distinguished generators

in the cube of chains for the diagram of the quotient link. The following two propositions

verify the details of this correspondence.

Proposition 2.29. There is a one-to-one correspondence

{
generators of hvE2

}
←→

{
generators of CKh(L)⊗F2 F2[θ, θ

−1]
}

ṽ ←→v

induced by τ such that

• gri(ṽ) = 2gri(v)

• grj(ṽ) = 2grj(v)− grk(v)

• grk(ṽ) = grk(v)

• grt(ṽ) = grt(v).

Proof. By Lemma 2.24, hvE1 is generated by the equivariant generators of AKhTate(D(L̃)),

and Lemma 2.26 shows hvd1 = 0, so hvE1 = hvE2.
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Bijection of generators

First of all, the correspondence is given by the identity on the F2[θ, θ
−1] factor.

Let ṽ denote a generator of hvE2, coming from the equivariant resolution Rαα. Think-

ing of ṽ as a τA-equivariant assignment of plusses and minuses to the components of Rαα,

let v be the quotient of ṽ by τA.

In the other direction, for v a generator of CKh(L) ⊗F2 F2[θ, θ
−1] coming from a

resolution Rα, view v as an assignment of plusses and minuses to the components of Rα.

Pick any path connecting the two components of ∂A and take a double cover of Rα. The

lift of v is ṽ.

Grading relationships

The t-grading relationship follows by definition. For the other three relationships, sup-

pose v consists of

• a nontrivial circles labeled “+”

• b nontrivial circles labeled “−”

• c trivial circles labeled “+”

• d trivial circles labeled “−”

In this case, write v = va+v
b
−w

c
+w

d
− to denote the distinguished generator, suppressing

the tensor signs in favor of compact notation. Then ṽ = va+v
b
−w

2c
+w

2d
− .

Let n+ and n− denote the number of positive and negative crossings in D(L), respec-

tively. For v,

• gri(v) = |α| − n−

• grj(v) = |α|+ (a− b+ c− d) + n+ − 2n−

34



b ◦ a

a b

τ#

τ# ◦ a b ◦ (τ#)−1

Figure 2.14: Cancellation of τ# arrows induce hvd2 arrows. For each diamond of the
form above, we obtain a length 2 differential.

• grk(v) = a− b.

Since the diagram D(L̃) obtained by taking the double cover of D(L) has twice as

many positive and negative crossings as D(L), respectively, we compute that

• gri(ṽ) = 2|α| − 2n− = 2gri(v)

• grj(ṽ) = 2|α|+(a− b+2c−2d)+2n+−4n− = 2grj(v)− (a− b) = 2grj(v)−grk(v)

• grk(ṽ) = a− b = grk(v).

Proposition 2.30. Under the correspondence above, each slope -2 line in the bicomplex

( hvE2,hv d2) is isomorphic to the complex (CKh(L), ∂AKh).

Proof. Let α′ be a bit increment from α. Lemma 2.27 implies that any component of

hvd2 lies along a slope -2 line.

Upstairs, consider the components of hvd2 from Vαα ⊗ θt to Vα′α′ ⊗ θt−1. (See Fig-

ure 2.14.) The two resolutions Rαα′ and Rα′α connecting Rαα and Rα′α′ correspond to

changing the resolutions of some pair of crossings ci and ci+n from their 0-resolution in

Rαα to their 1-resolution in Rα′α′ .
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Downstairs, consider the edge of Cube(D(L)) going from Vα to Vα′ . This edge falls

into one of the six types of AKh differentials, as discussed in Section 2.3.3.

We compare the hvd2 components induced by the cancellation of the τ# arrows going

between Vαα′ and Vα′α with the components of ∂AKh, in the six different cases. Figures

2.15 through 2.19 show the computation of hvd2 in all six cases. Compare these figures

with Figure 2.11. Note that in contrast with the notation used in Figure 2.11, the

tensor signs are now suppressed for the sake of compactness. By inspection, under the

correspondence from Proposition 2.29, the induced length 2 arrows upstairs align exactly

with the differential downstairs.

2.5.3 Visualizing higher differentials

Just as all components of hvd2 are induced by cancellation of some τ# arrow, longer

differentials are induced by the cancellation of multiple τ# arrows. This can be seen by

inducting on the applications of the cancellation operation that result in a differential

of length 2r. At each step, the slope of the arrows representing the induced differen-

tials are each of the form − k
k−1 . The generators at the ends of the staircase must be

equivariant, and all the intermediate generators (i.e. the corners of the staircase) must

be nonequivariant because they are adjacent to τ# arrows.

To prove that there are no higher differentials in the hvE spectral sequence, we focus

on individual staircases. This directs us to restrict our focus to a local piece of the

complex surrounding the staircase which is large enough to determine the behavior of

the map induced by the staircase.

Definition 2.31. Let D be an annular link diagram with n crossings. Let α and β

be two n-bit strings where α < β. The subcube of resolutions from Rα to Rβ, denoted

Cube(Rα, Rβ), is the subgraph of Cube(D) whose
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v−

v+ v+w−

v−w−

v+w+

v−w+ v+w−w−

v+w+w−

v−w−w−

v−w+w−

v+w−w+

v+w+w+

v−w−w+

v−w+w+

Figure 2.15: Type A : ṽ → ṽw̃

v−

v+

v+w−

v−w−

v+w+

v−w+

v+w−w−

v+w+w−

v−w−w−

v−w+w−

v+w−w+

v+w+w+

v−w−w+

v−w+w+

Figure 2.16: Type D : ṽw̃ → ṽ

37



w−w−

w+w− w−w+

w+w+

w−

w+ v+v−

v−v−

v+v+

v−v+

Figure 2.17: Type B: w̃ → ṽṽ

w−w−

w+w− w−w+

w+w+

w−

w+

v+v−

v−v−

v+v+

v−v+

Figure 2.18: Type E : ṽṽ → w̃
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+−

−−

−+

++

+−−

+ +−

−−−

−+−

+−+

+ + +

−−+

−+ + + +−−

−−−−

+ + ++

−−++

Figure 2.19: Type C : w̃ → w̃w̃. We begin with C1 ∪C2. In the first step, C1 splits into
C1 ∪ C3. In the second step, C2 splits into C2 ∪ C4.
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+−

−−

−+

++

+−−

+ +−

−−−

−+−

+−+

+ + +

−−+

−+ +

+ +−−

−−−−

+ + ++

−−++

Figure 2.20: Type F: w̃w̃ → w̃. We start with C1 ∪ C2 ∪ C3 ∪ C4, where C1 ∪ C2 and
C3 ∪C4 are each equivariant pairs of circles. In the first step, C1 ∪C3 merges to C1 and
C2 stays put. In the second step, C2 ∪ C4 merges to C2 and C1 stays put.
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• vertex set consists of resolutions Rγ, where γ is an n-bit string with γ[i] = α[i] =

β[i] whenever α[i] = β[i]

• edge set consists of all edges of Cube(D) whose endpoints are both in the vertex

set.

In Cube(D), the subcube of chains from Vα to Vβ, denoted Cube(Vα, Vβ), is defined

similarly, with

• underlying chain groups consisting of the vector spaces corresponding to the vertex

set of Cube(Rα, Rβ)

• differentials corresponding to the edge set of Cube(Rα, Rβ).

In this case the crossings ci in the diagram D for which α[i] 6= β[i] are called par-

ticipating crossings, and all other crossings are called nonparticipating crossings. Let

D(α, β) denote the link diagram obtained from D(L) by smoothing only the nonpar-

ticipating crossings based on the common values of α and β at these bits. Then

Cube(D(α, β)) ∼= Cube(Rα, Rβ) and Cube(D(α, β)) ∼= Cube(Vα, Vβ).

Similarly, the components of Rα fall into two categories: the participating circles,

which are adjacent to the sites of participating crossings, and the nonparticipating circles,

which are the components of Rα that do not participate in a merge or split along any

edge in Cube(Rα, Rβ).

Definition 2.32. If Rα and Rβ are equivariant resolutions of an equivariant annular

link diagram D, and α < β, Cube(Rα, Rβ) is equivariantly split if the set of participating

circles can be divided into two or more equivalence classes under the equivalence relation

Ci ∼ Cj if there is a (site of a) crossing adjacent to both Ci and Cj.

Proposition 2.33. For an equivariantly split 2-periodic diagram D with 2r crossings,

there are no induced differentials of length 2r.
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Proof. If D were equivariantly split, it could be written as a split diagram D1

∐
D2, and

hence

Cube(D) ∼= Cube(D1)⊗Cube(D2).

Let ∅ 6= {Cj}j∈J1 denote the set of circles in Rα corresponding to the all-zeros resolution

of D1, and ∅ 6= {Cj}j∈J2 the set of circles in Rα corresponding to the all-zeros resolution

of D2.

The marked resolution x corresponds to a choice of markings a ∈ {v−, v+}|J1| for

{Cj}j∈J1 plus a choice of markings {v−, v+}|J2| for {Cj}j∈J2 , so for computational rea-

sons we write x = a ⊗ b, even though in reality we might have ordered the ten-

sor components differently. (We are implicitly using the isomorphism Cube(D) ∼=

Cube(D1) ⊗ Cube(D2).) Since x = a ⊗ b is an equivariant generator, a and b must

be equivariant generators for Cube(D1) and Cube(D2), respectively.

As the differential respects the tensor factors, we may use the product rule to compute

d2r(x).

x = a⊗ b

∂x = ∂a⊗ b+ a⊗ ∂b

(1 + τ#)−1∂x = (1 + τ#)−1∂a⊗ b+ a⊗ (1 + τ#)−1∂b

∂(1 + τ#)−1∂x = ∂(1 + τ#)−1∂a⊗ b+ (1 + τ#)−1∂a⊗ ∂b+ ∂a⊗ (1 + τ#)−1∂b

+ a⊗ ∂(1 + τ#)−1∂b

. . .

Here we abuse notation and write ∂ to mean the differential in Cube(D), Cube(D1), or

Cube(D2), depending on context. Writing ∂̃ := (1+τ#)−1∂, where (1+τ#)−1 represents

42



“lifting by 1 + τ#” (see Remark 2.28), the above computation becomes

d2rx = ∂∂̃2r−1x

= ∂
2r−1∑
i=0

(
2r − 1

i

)
∂̃ia⊗ ∂̃2r−1−ib

=
2r−1∑
i=0

(
2r − 1

i

)
∂∂̃ia⊗ ∂̃2r−1−ib+ ∂̃ia⊗ ∂∂̃2r−1−ib.

We want to show that each summand must be 0 on E2r, where all the survivors

are necessarily equivariant. Note that in order for a′ ⊗ b′ ∈ Cube(D1) ⊗ Cube(D2) to

be equivariant, a′ and b′ must be simultaneously equivariant, and hence must fall in a

column corresponding to even Hamming weight in their respective Cubes.

Case i odd

Then ∂∂̃ia and ∂̃2r−1−ib have even Hamming weight, while ∂̃ia and ∂∂̃2r−1−ib have odd

Hamming weight. If any component of ∂∂̃ia ⊗ ∂̃2r−1−ib is equivariant, then ∂̃2r−1−ib is

equivariant, which contradicts the fact that (1 + τ#)∂̃2r−1−ib = ∂∂̃2r−2−ib 6= 0.

Case i even

Then ∂∂̃ia and ∂̃2r−1−ib have odd Hamming weight, while ∂̃ia and ∂∂̃2r−1−ib have even

Hamming weight. If any component of ∂̃ia⊗ ∂∂̃2r−1−ib is equivariant, then ∂̃ia is equiv-

ariant, contradicting the fact that (1 + τ#)∂̃ia = ∂∂̃i−1a 6= 0.
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2.5.4 Grading shifts of higher differentials

Again let α, β be equivariant 2r-bit strings with α < β. By Proposition 2.33, we may

now assume that D(α, β) is not equivariantly split. This is will allow us to perform

computations by describing parts of the complex using connected graphs.

A first obstruction to the existence of a hvd2r map between distinguished generators

x and y is that x and y must have the same j-grading. For this reason, we compare the

j-span of Vα and Vβ, defined as follows.

Definition 2.34. The j-span of the vector space Vω associated with the binary string

ω is the range of j-gradings of the distinguished generators of Vω.

Split maps shift the upper bound of the j-span up by 2, and merge maps shift the

lower bound of the j-span up by 2.

Definition 2.35. A path through a cube of resolutions is a sequence of vertices Rαi

such that αi+1 is a bit increment from αi, together with the edges between successive

resolutions.

Since any component of hvd2r will come from repeatedly mapping via ∂ and lifting

by 1 + τ# along a (directed) path from Vα to Vβ in Cube(D(α, β)), and 1 + τ# affects

neither of the j- or k-gradings, we focus on paths through Cube(D(α, β)) and which

combinations of merges and splits they involve.

Lemma 2.36. Any path through a cube Cube(D) from the all-zeros resolution to the

all-ones resolution have the same number of merges and splits (separately).

Proof. Let #m and #∆ denote the number of merge and split maps along a path from

Vα to Vβ. These quantities satisfy the linear equations

#m+ #∆ = 2r
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A D

B E

C F

Figure 2.21: The six atoms representing the six possible equivariant two-steps.

|Rβ| − |Rα| = #∆−#m.

So, in order to count merge and splits, we may without loss of generality choose any

path we’d like. Choose γ to be a path through the cube for which every other vertex

is equivariant. In other words, after every two steps along this path, we land on an

equivariant resolution. Each such set of two-steps corresponds to one step in a path

in Cube(D(α, β)/τA), since each equivariant pair of crossings corresponds to a crossing

downstairs. We can thus classify the six different two-step paths in γ by looking at the

classification of edges in the cube downstairs.

Definition 2.37. We can describe each two-step using modular pieces of a graph, which

we call atoms (Figure 2.21). These pieces are oriented in the sense that the lines on the

left of the circle represent input circles, or circles in the source resolution, and the lines

on the right of the circle represent the output circles, or circles in the target resolution of

the two-step. A double bond indicates an equivariant twin pair of W circles, and a single

45



bond indicates a single equivariant V circle. While attaching these atoms together, we

can only attach V circles to V circles, and equivariant pairs of W circles to equivariant

pairs of W circles. A connected graph obtained by attaching these atoms together is

called a molecule.

Since the D(α, β)/τA diagram downstairs is nonsplit, when the pieces of γ are at-

tached at their equivariant ends, we obtain a single molecule Γ. Let A,B,C,D,E, F

denote the number of modular pieces of type A ,B,C ,D ,E , and F respectively. In

particular, this means that A+B + C +D + E + F = r.

Proposition 2.38. Given an equivariant path γ through an equivariantly nonsplit cube,

the size of the j-span overlap between the vector spaces corresponding to the all-zeros

resolution Vα and the all-ones resolution Vβ is

2(A+B + 2C +D + E + 2F −Nb)

where

• A,B,C,D,E, and F is the number of atoms of type A ,B,C ,D ,E , and F , re-

spectively, in the molecule Γ corresponding to γ

• Nb is the total number of bonds (counted with multiplicity) in Γ.

Proof. Let j0 denote the minimal j-grading of a distinguished generator of Vα. The num-

ber of components of Rα is equal to the number of input circles of the atoms separately,

minus the number of input circles which are then identified with output circles of other

atoms, which is equal to the number of total bonds, counted with multiplicity. Let Nb

denote the total number of bonds. The source j-span is therefore

[j0, j0 + 2(A+ 2B + 2C + 3D + 2E + 4F −Nb)].
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Traveling through the path γ, we ultimately shift the bottom of the j-span by (two

times) the number of merges, which is 2(B + 2D + E + 2F ). Hence the possible j-span

overlap between Vα and Vβ is

[j0 + 2(B + 2D + E + 2F ), j0 + 2(A+ 2B + 2C + 3D + 2E + 4F −Nb)]

which is a difference of 2(A+B + 2C +D + E + 2F −Nb).

Thus the largest j-span overlap using the atoms in Γ is achieved when Γ has a minimal

total number of bonds.

Lemma 2.39. The minimal total number of bonds achievable by a connected molecule

Γ comprised of a fixed set of atoms is achieved when Γ is composed to two trees, one

containing all the A ,B,D , and E atoms, and the other containing all the C and F

atoms, with the two trees connected by a unique double bond.

Proof. The structure of a minimally-bonded Γ must be a tree: if Γ has a cycle, we can

decrease the number of bonds by cutting any side of the cycle.

Furthermore, when attaching atoms of type A ,B,D , and E , the number of bonds is

minimized by connecting to the molecule via a single rather than a double bond. When

these atoms are arranged as a subtree of Γ, the number of single bonds is minimized.

The C and F atoms will invariably attach to the tree via a double bond, so the two-

tree molecule described has the same number of double bonds as any minimally-bonded

Γ.

2.5.5 Higher differentials vanish

The final major step in the proof of Theorem 2.1 uses the j- and k- gradings to show

that the hvE spectral sequence collapses on hvE3.
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Proposition 2.40. hvd2r = 0 for all r ≥ 2.

Proof. By Proposition 2.33, we may assume that Cube(Rα, Rβ) is equivariantly non-

split. Pick an equivariant path γ through Cube(Rα, Rβ), and let Γ denote the associated

molecule. Let’s first assume that at least one of the atoms of Γ is not of type C or F .

In the worst case, the total number of bonds is the sum of A+B +D+E − 1 from the

A ,B,D ,E tree, 2C + 2F − 2 from the C ,F tree, and 2 from connecting the two trees.

Hence Nb = A+B + 2C +D + E + 2F − 1. The size of the overlap is then

2(A+2B+2C+3D+2E+4F−(A+B+2C+D+E+2F−1))−2(B+2D+E+2F ) = 2.

Therefore x must have either the maximum or next-to-maximum j-grading of the dis-

tinguished generators of Vα. Since x is equivariant, any equivariant pair of trivial circles

must have the same marking, so since x can have at most one component marked with a

v−, all trivial circles in x are marked w+. Moreover, from Figures 2.15 through 2.20 we

see that if any equivariant paths out of Vα are not of type E , then x is not in ker(hvd2).

So all equivariant paths out of Vα must be of type E . This indicates that x is a marked

resolution consisting solely of v+-marked concentric circles. But this means x is unique

in its k-grading in the entire Cube(Vα, Vβ). Therefore there cannot be a hvd2r component

from x to y in Cube(Vα, Vβ).

In the case where all the atoms are of type C or F , the worst case Γ has 2C+2F −2

bonds, producing a j-span overlap of

2(2C + 4F − (2C + 2F − 2))− 2(2F ) = 4.

Therefore x must have at most two circles marked with w−. Again, we see in Figures

2.19 and 2.20 that x is not in ker(hvd2).

Hence there cannot be a hvd2r component from (a θ-power translate of) x to (a
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θ-power translate of) y.

As AKhTate(D(L̃)) is 1-periodic in the horizontal direction, its homology is 1-periodic

as well, so the total rank along each diagonal corresponding to the induced filtration

gradings on HTot is the same as the total rank down along a vertical column. Therefore

AKh(L) ⊗F2 F[θ, θ−1] ∼= hvE3 = hvE∞ ∼= vhE∞ so the vhE spectral sequence has

vhE1 ∼= AKh(L̃)⊗F2 F[θ, θ−1] and vhE∞ ∼= AKh(L)⊗F2 F[θ, θ−1].

Since all the maps in the double complex preserve j- and k-grading, the spectral

sequence splits along j- and k-gradings. This concludes the proof of Theorem 2.1.

Finally, since each page of a spectral sequence is a subquotient of the previous page,

Corollary 2.2 follows:

Corollary 2.2. For any annular tangle closure L, quantum grading j and sl2 weight

space grading k,

rkF2AKh
j,k(L) ≤ rkF2AKh

2j−k,k(L̃).

2.6 Example: Hopf link and stabilized unknot

To help convey the construction to the reader, we describe the simplest nontrivial exam-

ple, a two-crossing annular Hopf link as the 2-braid closure L̃ := σ̂2
1. The quotient link

is a positively stabilized unknot L = σ̂1.

Annular diagrams for both L̃ and L are shown in Figure 2.7. We label the crossings

of D(L̃) in accordance to our convention (§2.4.1); the first crossing is on the right,

and the second crossing is on the left. The cube of resolutions Cube(D(L̃)) is shown

in Figure 2.8. In order to simplify the notation in this small example, we give the

distinguished generators unique, concise names in the cube of chains shown in Figure

2.22. For example, “a+−” is the generator v+ ⊗ v− in V00, corresponding to the marked

resolution shown in Figure 2.23.
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a++

a−+a+−

a−−

b+

b−

c+

c−

d++

d−+d+−

d−−

Cube( ) =

Figure 2.22: The cube of chains for the annular Hopf link from Figure 2.7, with AKh
differentials drawn as solid lines and τ# drawn as dotted lines. The arrow heads have
been dropped; gri increases to the right. This is a finer version of Figure 2.9.

*

+

−

Figure 2.23: The marked resolution corresponding to the generator a+−.
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Figure 2.24: A local picture of the AKhTate(D(L̃)) bicomplex for the Hopf link example.
There are two copies of the cube of chains in this figure, rotated 90◦ clockwise from from
Figure 2.9. The dotted lines which bend up represent the “identity” map which increases
the t-grading, and the dashed lines which bend down represent the τ# map. This local
picture is repeated horizontally to form AKhTate(D(L̃)).

Putting this all together, the bicomplex AKhTate(D(L̃)) locally looks like Figure 2.24.

After cancelling all the τ# arrows, the only remaining interesting page to compute

the homology of is hvE2, shown in Figure 2.25. As expected, each slope-(-2) line in

hvE2 corresponds to the cube of chains for the quotient link L, under the correspondence

described by Propositions 2.29 and 2.30.

In this case, the fact that there are no higher differentials is clear from the fact that

CKh(D(L̃)) is only supported on three adjacent i-gradings. For comparison, the annular

Khovanov homologies for L̃ and L are listed in the following chart.
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Figure 2.25: A local picture of the page hvE2 in our Hopf link example.
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(j, k) rkF2(AKhj,k(L)) (2j − k, k) rkF2(AKh2j−k,k(L̃))

(3,2) 1 (4,2) 1

(1,0) 1 (2,0) 1

(-1, -2) 1 (0,-2) 1

(3,0) 1 (6,0) 1

(4,0) 2

2.7 Decategorification

Annular Khovanov homology was originally described as a categorification of the Kauff-

man bracket skein module in the trivial I-bundle over the annulus. In our case, we work

with F2 coefficients and follow the conventions in [Rob13].

Consider the F2[q
±1]-module consisting of all links in A× I modulo the usual Kauff-

man bracket skein relations. The set of all trivial braid closures B = {1̂s | s = 0, 1, 2, . . .}

form a canonical basis for the skein module.

We use the variables t, q, and x to record the i-, j-, and k-gradings, respectively.

Setting q = A−2 and introducing the k-grading to the skein relation, we have a variant

of the Kauffman bracket skein relations. Choose a particular crossing c and let L0 and

L1 denote the links obtained from L by smoothing c by the 0-resolution and 1-resolution,

respectively. Then our relations are

〈L〉 = 〈L0〉+ tq〈L1〉

〈L ∪ U〉 = (q + q−1)〈L〉

where U is an annular unknot (a trivial circle).
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Normalizing by setting 1̂1 7→ qx+ q−1x−1, we obtain a map

φ : F2[t, q
±1,B]→ F2[t, q

±1, x±1]

by viewing B as a monoid under disjoint union. Finally, we add in the proper grad-

ing shifts to obtain a variant of the Jones polynomial over F2 by setting V (t, q, x) =

tn−qn+−2n−φ(L). (To be clear, one needs to first orient L to obtain n− and n+, and we

are viewing the link L as an element of the skein module.)

Of interest to us is the annular link invariant VL(−1, q, x) which is the graded Euler

characteristic of AKh(L). (See Theorem 8.1 in [APS04] for details.) In other words,

VL(t, q, x) =
∑
i,j,k

tiqjxkrkF2(AKhi,j,k(L))

so the graded Euler characteristic is

VL(−1, q, x) =
∑
i,j,k

(−1)iqjxkrkF2(AKhi,j,k(L)).

As in [APS04] and [Rob13], we view the Kauffman bracket as a set of polynomials by

defining qk,L(t, q) to be the coefficient of xk in V (t, q, x), so that

qk,L(−1, q) =
∑
i,j

(−1)iqjrkF2AKh
i,j,k(L)

is the coefficient of xk in the decategorification of AKh(L).

The decategorification of Theorem 2.1 is the following:
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Corollary 2.3. For all j and k,

〈qk,L̃(−1, q), q2j−k〉 ≡ 〈qk,L(−1, q), qj〉 mod 2

where 〈f, g〉 denotes the coefficient of g in f .

Proof. This follows from Theorem 2.1 and the fact that cancellation reduces rank by a

multiple of 2 at each step (represented by erasing the dots at the head and tail of the

arrow).

In [Mur71], Murasugi proved a relationship between the Alexander polynomials of

a periodic link and that of its quotient; in [Mur88], he proved an analogous formula

for the Jones polynomial. By considering Theorem 2.1 with respect to the j1 = j − k

grading rather than the j- and k-gradings individually, we obtain an annular analogue

to Murasugi’s formulas:

Corollary 2.4. VL̃(1, q, q−1) ≡ [VL(1, q, q−1)]2 mod 2.

If on the other hand one is more interested in the usual Jones polynomial of the

2-periodic link, we may forget the k-grading information by setting x = 1, obtaining the

following relationship:

Corollary 2.5. VL̃(1, q, 1) ≡ VL(1, q2, q−1) mod 2.

It is then natural to ask if there is a categorification of this relationship, coming

from a spectral sequence from the Khovanov homology of L̃ to the annular Khovanov

homology of L (with some grading information sacrificed). In the next section, we show

that this spectral sequence indeed exists for some families of annular links, and is likely

to exist in general by way of a bicomplex very similar to the AKhTate bicomplex.
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2.8 The Khovanov-Tate bicomplex

We can similarly define the Khovanov-Tate bicomplex KhTate(D(L̃)) by replacing the

vertical differentials ∂AKh in AKhTate(D(L̃)) with the Khovanov differential ∂Kh.

Conjecture 2.6. Let L̃ be a 2-periodic link in S3 with quotient link L. There is a

spectral sequence with

E1 ∼= Kh(L̃)⊗F2 F2[θ, θ
−1]⇒ E∞ ∼= AKh(L)⊗F2 F2[θ, θ

−1].

This would in turn imply the following cascade of rank inequalities:

rkF2AKh(L̃) ≥ rkF2Kh(L̃) ≥ rkF2AKh(L) ≥ rkF2Kh(L)

where the first and third inequalities are given by the k-grading filtration on CKh(D(L̃))

and CKh(D(L)).

In §2.8.1 we give abbreviated proofs of the Kh analogues of the results from the AKh

case which support Conjecture 2.6. But first, we discuss holistic reasons why we would

expect this conjecture to hold.

Remark 2.41. Aside from the proofs of theorems given in §2.8.1, this conjecture would

not be hard to believe. H∗(Tot(KhTate)) is supposed to capture information about both

the periodic link and the involution witnessing the symmetry, so the presence of the

braid axis in S3 is inherently captured in the data of the KhTate bicomplex. Hence

H∗(Tot(KhTate)) should take on the form of an annular version of Khovanov homology.

Furthermore, Seidel and Smith proved the rank inequality for symplectic Khovanov

homology [SS10], which is known to be equivalent to Khovanov homology over ground
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x−

x+

x+ ⊗ x+

x+ ⊗ x− x− ⊗ x+

x− ⊗ x−

Merge map m

x−

x+x+ ⊗ x+

x+ ⊗ x− x− ⊗ x+

x− ⊗ x−

Split map ∆

Figure 2.26: The Khovanov differentials. These do not depend on the basepoint ∗, so x
can stand for v or w.

rings of characteristic 0 [ASmi]:

rkF2Khsymp(L̃) ≥ rkF2Khsymp(L).

They conjecture that symplectic Khovanov homology is also isomorphic to Khovanov

homology in characteristic 2 [SS06], so some of the rank inequalities implied by this

conjecture agree with their result.

2.8.1 Analogous statements in the KhTate case

Khovanov homology can be viewed as a deformation of annular Khovanov homology,

defined for knots in S3. This is why we have been denoting the underlying vector space

for the annular Khovanov complex of a link diagram by CKh; this is the same underlying

vector space as in the Khovanov complex. Since there is no basepoint in the link diagram,

the Khovanov distinguished generators are only doubly graded, by the homological i-

grading and the quantum j-grading. There are only two types of edge maps: merge and

split. Their definitions are shown in Figure 2.26 using the dot and arrow notation we

used to describe the AKh differentials in back in §2.3.3.
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Let hvE and vhE denote the spectral sequences induced by the row-wise and column-

wise filtrations, respectively, of the bicomplex KhTate(D(L̃)) = CKh(D(L̃))⊗F2F2[θ, θ
−1],

where ∂v = ∂Kh and ∂h = 1 + τ#.

Lemma 2.42. ∂Kh commutes with τ#.

Proof. We need to check that the two types of edge maps (merge and split) commute

with τ#. This is easily checked, and clear from thinking about the involution acting on

the saddle cobordism representing the merge or split map, just as in the AKh cases.

Lemma 2.43. vhE1 ∼= Kh(L̃)⊗F2 F2[θ, θ
−1].

Proof. This follows from the same argument as in the proof of Lemma 2.23.

Lemma 2.44. hvE1 is generated by the equivariant generators of KhTate(D(L̃)). Hence

if r is odd, hvdr = 0.

Proof. Since the rows of the KhTate(D(L̃)) bicomplex are identical to those of the

AKhTate(D(L̃)) complex, this is equivalent to Lemma 2.24. The second statement follows

from the first just as in the proof of Lemma 2.26.

Lemma 2.45. Every component of hvd2 is induced by the cancellation of a τ# arrow at

a row corresponding to an odd Hamming weight.

Proof. The proof of Lemma 2.27 also holds in this case.

Proposition 2.46. There is a one-to-one correspondence

{
generators of hvE2

}
←→

{
generators of CKh(L)⊗F2 F2[θ, θ

−1]
}

ṽ ←→v
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induced by τ .

Proof. By Lemma 2.44, we have already identified the generators of hvE2 with the equiv-

ariant marked resolutions, which the proof of Proposition 2.29 shows to be in bijection

with the generators of CKh(D(L)) ⊗F2 F2[θ, θ
−1] (since this is the underlying vector

space in both the KhTate(D(L)) and AKhTate(D(L)) bicomplexes).

Proposition 2.47. Under the correspondence above, each slope -2 line in the bicomplex

( hvE2,hv d2) is isomorphic to the complex (CKh(D(L)), ∂Kh).

Proof. Again, we just need to compute the induced length 2 differentials. Since there

are six types of AKh differentials, we can verify them case-by-case. The computations

are shown in Figures 2.27 through 2.32.

Since the proof that higher differentials vanish relies on the k-grading, we cannot use

the same methods to determine whether higher differentials vanish in the KhTate case.

However, the k-grading is only needed when considering atoms of type E (see §2.5.4), so

one can still consider special cases where this obstruction is not needed for the conjecture

to hold.

2.8.2 Positive and negative braid closures

Recall that the k-grading is used in the proof of Theorem 2.1 only when the j-grading

was insufficient, namely in the situation where all the first equivariant steps through

the subcube are E atoms. From this we deduce that Conjecture 2.6 holds for “mostly

negative” links.

Theorem 2.7. If the annular braid closure L = β̂ has a diagram with at most 1 positive

crossing, then the spectral sequence in Conjecture 2.6 exists and the cascade of rank

inequalities holds.
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v−

v+ v+w−

v−w−

v+w+

v−w+ v+w−w−

v+w+w−

v−w−w−

v−w+w−

v+w−w+

v+w+w+

v−w−w+

v−w+w+

Figure 2.27: Type A : ṽ → ṽw̃ for Khovanov differentials.

v−

v+

v+w−

v−w−

v+w+

v−w+

v+w−w−

v+w+w−

v−w−w−

v−w+w−

v+w−w+

v+w+w+

v−w−w+

v−w+w+

Figure 2.28: Type D : ṽw̃ → ṽ for Khovanov differentials.
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w−w−

w+w− w−w+

w+w+

w−

w+ v+v−

v−v−

v+v+

v−v+

Figure 2.29: Type B: w̃ → ṽṽ for Khovanov differentials.

w−w−

w+w− w−w+

w+w+

w−

w+

v+v−

v−v−

v+v+

v−v+

Figure 2.30: Type E : ṽṽ → w̃ for Khovanov differentials.
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+−

−−

−+

++

+−−

+ +−

−−−

−−−

+−+

+ + +

−−+

−+ + + +−−

−−−−

+ + ++

−−++

Figure 2.31: Type C : w̃ → w̃w̃ for Khovanov differentials.
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+−

−−

−+

++

+−−

+ +−

−−−

−+−

+−+

+ + +

−−+

−+ +

+ +−−

−−−−

+ + ++

−−++

Figure 2.32: Type F: w̃w̃ → w̃ for Khovanov differentials.
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Proof. The proof of Theorem 2.1 relies mostly on the j-grading to prove that the hvE

spectral sequence collapses on page hvE3, except for the case of the generator v+v+ in the

starting resolution of Type E atoms. In the KhTate case, again the j-grading is sufficient

for all cases except for Type E , so for cases where at most one atom of Type E appears,

longer differentials cannot exist. This corresponds to the case where Cube(D(L)) has at

most one edge corresponding to a change of resolution from two nontrivial circles to two

trivial circles. This means that the all-zeros resolution of D(L) corresponds to at most

one braid-like resolution; that is, the braid β has at most one positive crossing.

On the other hand, we cannot use the same method to prove the existence of the

spectral sequence for “mostly positive” braid closures. However, we can use duality in

Khovanov and annular Khovanov homology to show that the cascade of rank inequalities

still holds in this case.

Corollary 2.8. If the annular braid closure L = β̂ has a diagram with at most 1 negative

crossing, then the cascade of rank inequalities holds.

Proof. Let L be a link in S3 and D a diagram of L. Let L! denote the mirror of L, and

D! the dual diagram to D (switch the sign of all crossings). Observe that the complex

(CKh(D), ∂Kh) is dual to (CKh(D!), ∂Kh). The cohomology of CKh(D) is isomorphic to

the homology of CKh(D!), which in turn is isomorphic to the cohomology of CKh(D!),

as we are working over field coefficients. (It is now important to note that what we

have been calling “Khovanov homology” is actually a cohomology theory.) Therefore

rkF2Kh(D) = rkF2Kh(D!). For an annular link L ⊂ A × I, the above paragraph holds

analogously for annular Khovanov (co)homology. Therefore it follows from Theorem 2.7

that the cascade of rank inequalities also holds for mostly positive braid closures.

Aside from proving the conjecture, many related questions remain.
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Question 2.48. Are there other families of links for which the conjecture holds? Do

certain steps in the proof for the AKhTate spectral sequence point to other obstructions

to longer differentials for the KhTate spectral sequence? What are some other algebraic

conditions on a braid closure which guarantee that the conjecture holds?

Question 2.49. While Khovanov-thin links have been studied for some time, at present

I am unaware of any explorations of “annular Khovanov-thin links.” One could define

an annular link L to be AKh-thin if for each pair of quantum and sl2 weight space

gradings (j, k), AKhj,k is supported on two adjacent i-gradings. Then AKh-thinness

of the quotient link L suffices for the spectral sequence in Conjecture 2.6, since all

differentials after page hvE3 are too long in i-degree to be nontrivial. Which classes of

knots or links are AKh-thin?

2.8.3 Obstructing 2-periodicity

One motivation for pursuing Conjecture 2.6 arises from the study of obstructions to peri-

odicity in links. The present method may overcome the following difficulties encountered

by prior work.

First, obstructing p-periodicity for small p is particularly difficult. In particular,

Murasugi’s Jones and Alexander polynomial congruences [Mur71, Mur88] are weaker for

p = 2 as mod 2 congruences only detect parity differences in coefficients. Comparing

ranks in categorified invariants can potentially detect more differences. Borodzik and

Politarczyk choose to work with the Khovanov polynomial rather than a graded Euler

characteristic for this reason (see page 2 of [BP17]); however, their obstruction is only

valid for p > 3.

Second, sometimes obstructions to knot periodicity do not extend to links with mul-

tiple components. For example, Hendricks’ rank inequality for ĤFK pertains only to

knots (see §3.2 in [Hen15]). The present methods do not depend on the number of link
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components.

In this section, we formulate some frameworks for obstructing 2-periodicity as conse-

quences of Theorem 2.1 and of various portions of Conjecture 2.6, including the special

cases of Theorem 2.7 and Corollary 2.8.

Notation 1. Throughout this section, we fix the following notation. The symbols L and

L̃ indicate annular links (in A × I), with [L] and [L̃] denoting their isotopy classes as

links in S3. Since our frameworks consider a potentially periodic link L̃ = T̂ or [L̃]

and compare it with a potential quotient link L or [L], a priori we do not know whether

L̃ = T̂ 2.

Corollary 2.2 can be framed as an obstruction as follows.

Corollary 2.50. Let L = T̂ and L̃ be annular links. Suppose there is some (j, k)

bigrading for which rkF2AKh
2j−k,k(L̃) ≤ rkF2AKh

j,k(L). Then L̃ 6= T̂ 2.

Now suppose a weaker version of Conjecture 2.6 were true; that is, suppose that the

rank inequality holds for Khovanov homology. (Recall that Seidel and Smith proved this

rank inequality holds for symplectic Khovanov homology over F2 [SS10], which is to date

still only conjectured to be equivalent to Khovanov homology over F2.)

Conjecture 2.51. Let [L] and [L̃] be two links in S3. If rkF2Kh([L̃]) ≤ rkF2Kh([L]), then

[L̃] is not 2-periodic with quotient link [L]. In other words, there are no representatives

L̃ ∈ [L̃] and L ∈ [L] such that L = T̂ and L̃ = T̂ 2.

Remark 2.52. By comparing Propositions 2.29 and 2.46, it is clear that the present

method will not yield a rank inequality for Khovanov homology splitting along any

gradings, because the correspondence between equivariant generators of CKh(D(L̃)) and

the generators of CKh(D(L)) indicates a dependence on the position of the basepoint

via the k-grading. So, whenever we use rank inequalities involving Khovanov homology,

we must use the rank of the entire homology.
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For example, we deduce the following obstruction from Theorem 2.7 (resp. Corollary

2.8):

Corollary 2.53. Let L = β̂ be an annular link which admits a braided annular diagram

D(β̂) with at most one negative (resp. positive) crossing.

• If rkF2Kh([L̃]) ≤ rkF2Kh([L]), then [L̃] is not 2-periodic with quotient link [L].

• If rkF2Kh([L̃]) ≤ rkF2AKh(L), then [L̃] 6= [β̂2].
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Chapter 3

Localization in Khovanov homology

3.1 Introduction

3.1.1 Motivation and results

In [Kho00] Khovanov categorified the Jones polynomial: to a link diagram L, he asso-

ciated a bigraded chain complex, whose graded Euler characteristic is (a certain nor-

malization of) the Jones polynomial of L, and whose (graded) chain homotopy type

is an invariant of the underlying link. Several generalizations were soon constructed;

for example, [Kho02], [BN05] developed theories for tangles. Ozsváth-Rasmussen-Szabó

[ORSz13] constructed a version, odd Khovanov homology, also categorifying the Jones

polynomial, and agreeing with Khovanov homology over the field of two elements. A

further generalization, annular Khovanov homology, an invariant of links in the thick-

ened annulus, was introduced by Asaeda-Przytycki-Sikora [APS06], and this generalizes

readily to give also odd annular Khovanov homology, as in [GW18]. Other generaliza-

tions, for other polynomials, were given by [KR08a, KR08b] and others, and have since

been extensively developed.

The purpose of the present paper is to investigate the structure of Khovanov homology
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in the presence of symmetry; that is, we study the Khovanov homology of periodic links.

We say that a link L̃ ⊂ S3 is p-periodic if there is a Zp = Z/pZ-action on (S3, L̃) which

preserves L̃ and whose fixed-point set is an unknot Ũ disjoint from L̃. A particular

application of the techniques of this paper is the following:

Theorem 3.1. Let L̃ be a pn-periodic link, for a prime p, with quotient link L. Let

Kh(L̃;Fp) (resp. Kho(L̃;Fp)) denote the Khovanov homology (resp. odd Khovanov ho-

mology) of L̃, with coefficients in Fp, the field of p elements. Let AKh(L;Fp) (resp.

AKho(L;Fp)) denote the (resp. odd) annular Khovanov homology of L, viewed in the

complement of U = Ũ/Zp. Then,

dim Kh(L̃;Fp) ≥ dimAKh(L;Fp) and dim Kho(L̃;Fp) ≥ dimAKho(L;Fp).

The motivation for this study comes from the both the application of classical Smith

theory to Floer theories, and the general perspective of studying Floer and Khovanov

invariants via the (often only conjectural) spectra underlying these theories.

Let G be a group of order pn with p prime, acting on a finite-dimensional topological

space M , with fixed-point set MG. A version of the classical Smith inequality states

[Smi38], [Bre67]:

dimH∗(M ;Fp) ≥ dimH∗(MG;Fp). (3.2)

In low-dimensional topology and symplectic geometry, many results have been devel-

oped in analogy with the Smith inequality, relating the Floer homology of some object

with symmetries with the Floer homology of its ‘quotient,’ when the latter notion makes

sense. In particular, Seidel-Smith [?] proved an analogue of the Smith inequality for

p = 2 in Lagrangian Floer theory. In fact, one of the motivations for [?] was its appli-

cation to symplectic Khovanov homology: Seidel-Smith prove a localization result for

symplectic Khovanov homology [SS06] of 2-periodic links. Seidel-Smith further remark
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in [?] that the combinatorial analogue to their symplectic Khovanov rank inequality was

not known to hold at the time; Corollary 3.87 (a consequence of Theorem 3.1) of the

present paper asserts that this analogue does indeed hold. (Note that Khovanov homol-

ogy and symplectic Khovanov homology are known to agree in characteristic 0 by work

of Abouzaid-Smith [ASmi], but Smith-type inequalities from Zp-localization only hold

in finite characteristic.)

The Seidel-Smith inequality led to many further developments in low-dimensional

topology. For instance, Hendricks [Hen12] showed that the knot Floer homology of a

knot K ⊂ S3 has rank at most as large as that of the knot Floer homology of the

preimage K̂ in the branched double cover Σ(K), and also obtained relationships between

knot Floer homology of 2-periodic knots and that of their quotients [Hen15] (see also

[HLS16] and [Boy18]).

From the perspective of the present paper, the Seidel-Smith inequality reflects the ex-

tent to which Floer theories contain more information than just the resulting chain com-

plex (indeed, the Smith inequality is a fact about spaces, not about chain complexes). A

particularly striking formulation of this principle is found in Lidman-Manolescu [LM18b],

where they showed that, roughly, for a pn-sheeted regular cover π : Ỹ → Y there is an

action of a group G of order pn on the Seiberg-Witten Floer space SWF (Ỹ ; π∗s), so that

the fixed-point set is SWF (Y, s), the Seiberg-Witten Floer space of the quotient. They

thus obtain a rank inequality, by applying the classical Smith inequality:

∑
i

dim H̃i(SWF (Ỹ , π∗s);Fp) ≥
∑
i

dim H̃i(SWF (Y, s);Fp).

Recall that Lidman-Manolescu [LM18a] identified the reduced homology of SWF (Y, s)

with the tilde flavor of monopole Floer homology H̃M∗(Y, s). Further, Colin-Ghiggini-

Honda and Kutluhan-Lee-Taubes [CGH11],[KLT10] proved H̃M∗(Y, s) = ĤF ∗(Y, s).

Then the result of [LM18b] gives an inequality of ranks of Heegaard-Floer homology,
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and in particular strong constraints on L-spaces arising as regular covers.

In the present paper, we relate Khovanov space-level invariants of a periodic link L̃

with those of the quotient link L. This space-level relationship leads to a relationship

on the level of homology that does not seem to follow in a simple way from the chain

complex description of Khovanov homology. A priori, it is difficult to relate any given

Khovanov chain complex of a periodic link with any given Khovanov chain complex of

the quotient, since without further information these are just chain complexes without

further structure. However, the second author showed in [Zha18], without using space-

level invariants, that there is a spectral sequence relating the annular Khovanov homology

of a periodic link with that of its quotient. This took advantage of a bonus grading in

annular Khovanov homology, which is a richer invariant than Khovanov homology itself

[GLW18]; the extra structure was essential to that result.

To set up notation, recall that for a link L ⊂ S3, Lipshitz-Sarkar [LS14] constructed

a CW spectrum Xe(L) whose stable homotopy type is an invariant of the underlying link

L, and whose reduced cellular chain complex is precisely the Khovanov chain complex

Kc(L). Their construction readily generalizes to produce an annular Khovanov spectrum

of a link L in the thickened annulus (see also [LOS]). Further, in [SSS18], a family

Xn(L) of CW spectra was constructed for n ∈ Z≥0, so that X0(L) = Xe(L) and so that

the reduced cellular chain complex C̃cell(Xn(L)) is the even Khovanov chain complex

Kc(L) for n even, and is the odd Khovanov chain complex Kco(L) for n odd. It is

again straightforward to construct an annular Khovanov spectrum AKHn(L) for any

n ∈ Z≥0, whose reduced cellular chain complex C̃cell(AKHn(L)) is the even annular

Khovanov chain complex AKc(L) if n is even, and the odd annular Khovanov chain

complex AKco(L) if n is odd. The Khovanov spaces and spectra split as a wedge sum

according to quantum, and in the case of annular, (k)-gradings, as Xn(L) = ∨jX j
n(L) and

AKHn(L) = ∨j,kAKHj,k
n (L). Furthermore, for n ≥ 1, Xn(L) (resp. AKHn(L)) is a Z2-
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equivariant spectrum with geometric fixed points Σ−1Xn−1(L) (resp. Σ−1AKHn−1(L)).

The main result of the present paper is the following:

Theorem 3.3. Fix p > 1 and let L̃ be a p-periodic link with quotient link L. For each

quantum grading j, X j
0 (L̃) (AKHj,k

0 (L̃)) is naturally a Zp-equivariant spectrum, whose

Zp-equivariant stable homotopy type is an invariant of the p-periodic link L̃ (that is, the

equivariant stable homotopy type is preserved by equivariant isotopies and equivariant

Reidemeister moves of a diagram D̃ of L̃). Further, the geometric fixed points are given

by:

X j
0 (L̃)Zp =

∨
{a,b|pa−(p−1)b=j}

AKHa,b
0 (L), (3.4)

AKHpj−(p−1)k,k
0 (L̃)Zp = AKHj,k

0 (L),

up to suitable suspensions. Moreover, if n ≥ 1 and p is odd, X j
n(L̃) (AKHj

n(L̃)) is

naturally a Z2 × Zp-equivariant spectrum, whose Z2 × Zp-equivariant stable homotopy

type is an invariant of the p-periodic link L̃. Then, as Z2-equivariant spectra,

X j
n(L̃)Zp =

∨
{a,b|pa−(p−1)b=j}

AKHa,b
n (L), (3.5)

AKHpj−(p−1)k,k
n (L̃)Zp = AKHj,k

n (L).

Proof of Theorem 3.1: We begin by noting that, in Theorem 3.3, all the involved

objects are suspension spectra of finite CW complexes, and the statements in Theorem

3.3 continue to hold at the level of the underlying CW complexes. Then, Xe(L̃) (here, a

finite CW complex) admits a Zpn-action with fixed-point set AKH0(L). The homology

satisfies H̃(Xe(L̃)) = Kh(L̃), while H̃(AKH0(L)) = AKh(L). Applying (3.2) to M =

Xe(L̃), Theorem 3.1 follows for the even case. The odd case is similar.

Further, we expect that the Tate spectral sequence arising from Theorem 3.3 should
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be compatible with spectral sequences from Khovanov to Floer theories, perhaps being

related to Hendricks’ [Hen15], Roberts’ [Rob13], or Xie’s [Xie18] spectral sequences.

We mention a few further possible connections of Theorem 3.3 to other work. First,

recall from [BPW19] that annular Khovanov homology of a link L can be realized as

the Hochschild homology of an appropriate bimodule over the platform algebra (see

[CK14],[Str05]). Recall moreover that Lawson-Lipshitz-Sarkar [LLS17b] have given a

spectrum-level version of Khovanov’s invariant for tangles [Kho02]. From these devel-

opments, it seems natural to conjecture that the annular Khovanov spectrum of a link

is realized as the topological Hochschild homology of an appropriate spectral bimodule.

If this conjecture holds, it is natural to ask whether and how the actions constructed in

this paper pass over to give actions on the topological Hochschild homology. See also

[LT16].

Note also that in a recent preprint, Borodzik-Politarczyk-Silvero [BPS18] use equiv-

ariant flow categories to also show that X0(L̃) = Xe(L̃) admits a Zp-action; the main

Theorem 1.2 of [BPS18] is the first sentence of Theorem 3.3 in the present paper, al-

though it is not clear that the action constructed in [BPS18] and that constructed here

(in the case n = 0) agree. In [BPS18], they further relate the Borel equivariant coho-

mology of Xe(L̃) to Politarczyk’s equivariant Khovanov homology [Pol15]. Jeff Musyt

has also constructed a Zp-equivariant Khovanov stable homotopy type using methods

similar to ours.

3.1.2 Techniques

We summarize the machinery and organization of this paper. This paper uses the ma-

chinery of Burnside functors, introduced in [HKK16] and [LLS], to study the Khovanov

spectrum. The machinery of Burnside functors first appeared in [LLS] to handle the

product formula for Khovanov spectra, by giving a construction of the Khovanov spec-
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trum as a certain homotopy colimit, more convenient for many applications. We will use

a slight generalization of Burnside functors from [SSS18], ‘decorated’ Burnside functors,

introduced to generalize the construction of [LLS] to produce an odd Khovanov space.

We first review the construction of [LLS], in order to explain what is done in the present

paper.

In [LLS], the dual of the Khovanov chain complex of a link diagram with n ordered

crossings is viewed as a diagram of abelian groups:

Fe : (2n)op → Z-Mod,

and similarly in [SSS18], the odd Khovanov chain complex is viewed as a diagram:

Fo : (2n)op → Z-Mod

Let us recall, forK a finite group, theK-decorated Burnside category BK (written B,

if K = {1}), whose objects are finite sets, whose 1-morphisms are finite correspondences

decorated by elements of K, and whose 2-morphisms are bijections respecting decora-

tions. The 2-category B naturally comes with a forgetful functor to abelian groups

B → Z-Mod by sending a set S to the free abelian group Z〈S〉 generated by S. The

Khovanov stable homotopy type arises from a lift, according to [LLS]:

2n Z-Mod

B

Fop
e

KH

On the other hand, given a homomorphism ε : K → Z2, there is a forgetful functor

BK → Z-Mod, again by sending a set S to the free abelian group Z〈S〉 generated by

S, and with Z-Mod-morphisms twisted by ε. The odd Khovanov stable homotopy type
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arises from a lift:

2n

Z-Mod

BZ2

Z-Mod
Fop
e

ε = 0 ε = Id
KHO

Fop
o

The even Burnside functor KH is obtained by forgetting the Z2-decorations on KHO.

Given a Burnside functor F , [LLS] gives a recipe, called realization (see Section 3.4),

for how to construct a space, ||Fe(L)|| (respectively, odd Khovanov space ||Fo(L)||), as

a homotopy colimit of a certain homotopy coherent diagram constructed from F . This

is generalized in [SSS18], for the case of K nontrivial.

The goal of the present paper is to investigate extra structure on the realizations ||F ||

for, F = KH(L̃) or KHO(L̃) for L̃ p-periodic. A natural expectation is that ||F || should

admit a Zp-action. The first technical work of the present paper consists of developing

the correct notion of ‘actions’ on Burnside functors F : C → BK , for C a small category,

and on homotopy coherent diagrams C → Top∗, where Top∗ is the category of pointed

topological spaces.

First, we briefly explain the notion of ‘action’ on Burnside functors. A first guess

is that a Burnside functor F with action should be a diagram BG × C → BK , where

BG is the category with one object, and morphisms G; in analogy with viewing a

pointed G-space as a diagram BG → Top∗. The main technical difficulty is that, for

the Khovanov-Burnside functor, G = Zp acts on the category C itself. We then define

a notion of external action of a group G on a Burnside functor F as a kind of twist of

the above definition. Alternatively, as in Remark 3.17, a Burnside functor with external

action can be viewed as a functor from a thickening C̃ of the category C . In Section 3.3

we develop this notion.

We must next see how the realization process of [LLS] behaves on a Burnside functor

F with action. As before, the problem is that we obtain a homotopy coherent diagram
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where the index category itself admits a G-action (we call such a diagram a diagram

with external action by G). Note that a homotopy coherent diagram with a G-action

(so that G acts trivially on the index category) is simply a homotopy coherent diagram

in the category of G-spaces, which would be readily handled along the lines of [SSS18].

In Section 3.5, we develop some machinery for homotopy colimits for homotopy coher-

ent diagrams with an external action. We do not pursue the greatest level of generality

here; indeed, a more satisfactory treatment would be to essentially generalize the bulk

of [Vog73] to this situation. The main results are Proposition 3.50 and Lemma 5.6,

while the main application to realizations of Burnside functors is Proposition 3.66. In

fact, including Proposition 3.66 increases substantially the preliminaries we need, but

is not needed in order to show that the Khovanov spaces of p-periodic links admit a

Zp-action. Instead Proposition 3.66 is only needed to show that the resulting Zp-action

is well-defined. In Section 3.6, we show that KH and KHO have external actions under

suitable circumstances, and find the fixed point functors. This involves a reasonably de-

tailed study of the relationship of resolution configurations in a periodic link with those

in its quotient. It is somewhat interesting that the case of odd Khovanov homology here

is substantially more involved than the even case.

We conclude the introduction with a few remarks. First, in sections dealing with ho-

motopy coherent diagrams, we work with diagrams in K-spaces for a group K, although

for all of our applications K will always be Z2 or trivial. We include the more general

case because it is no more complicated, and also on account of a conjecture of [SSS18].

To explain this conjecture, recall that there are an infinite family of Khovanov spaces

Xn(L) of a link L for n ∈ Z≥0, where the n-th space has cellular chain complex equal to

the even (resp. odd) Khovanov chain complex if n is even (resp. odd). The conjecture of
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[SSS18] is that there should be stable homotopy equivalences

Xn(L) ' Xn+2(L). (3.6)

An attractive method of proving this conjecture would be the construction of a further

Burnside functor KHZ : (2n)op → BZ recovering KHO(L) by taking Z → Z2. If such a

functor could be constructed, the techniques of the present paper would apply immedi-

ately to its realizations. Note that even if (3.6) holds, Theorem 3.3 is not entirely boring

for n ≥ 2. Indeed, the statement (3.6) requires a choice of homotopy equivalence, and we

expect that the natural family of homotopies realizing this equivalence (constructed from

the putative KHZ) is not contractible. That is, there may be no preferred homotopy

equivalence Xn → Xn+2.

We remark that we expect that much of this paper should generalize to give an action

of the knot symmetry group on the (odd) Khovanov space.
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3.2 Khovanov homologies and periodic links

In this section, we briefly review the definition and basic properties of several Khovanov

homology theories. For an oriented link L ⊂ S3, we review the even Khovanov homol-
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ogy Kh(L) = Khe(L), defined by Khovanov [Kho00], and the odd Khovanov homology

Kho(L) defined by Ozsváth, Rasmussen and Szabó [ORSz13]. For an oriented link L in

the thickened annulus (S1 × [0, 1]) × [0, 1], we review the annular Khovanov homology

AKh(L) defined by [APS06], as well as the odd annular Khovanov homology AKho(L),

which appeared in [GW18]. For a more detailed introduction to Khovanov homology,

see [Kho00]. Our exposition follows [LLS] closely.

3.2.1 The cube category

We first recall the cube category. Call 2 = {0, 1} the one-dimensional cube, viewed as

a partially ordered set by setting 1 > 0, or as a category with a single non-identity

morphism from 1 to 0.

Call 2n = {0, 1}n the n-dimensional cube, with the partial order given by

u = (u1, . . . , un) ≥ v = (v1, . . . , vn) if and only if ∀ i (ui ≥ vi).

It has the categorical structure induced by the partial order, where Hom2n(u, v) has a

single element if u ≥ v and is empty otherwise. Write φu,v for the unique morphism

u→ v if it exists. The cube carries a grading given by |v| =
∑

i vi. Write u >k v if u ≥ v

and |u| − |v| = k. When u >1 v, we call the corresponding morphism φu,v an edge, and

call v an immediate successor of u.

We will study chain complexes refining the cube category whose homological gradings

correspond to the gradings of the vertices. When we work with homotopy colimits, it is

most useful for us to work with commutative cubes, i.e. cubes where the 2-dimensional

faces commute. However, in order for ∂2 = 0 to hold in the chain complex, we must

assign signs to the edges of the cube to force each face to instead anticommute, leading

to the following definition.
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Definition 3.7. The standard sign assignment s is the following function from edges of

2n to F2. For u >1 v, let k be the unique element in {1, . . . , n} with uk > vk. Then

su,v :=
k−1∑
i=1

ui mod 2.

Note that s may be viewed as a 1-cochain in C∗cell([0, 1]n;F2). In general, s + c is

called a sign assignment for any 1-cocycle c in C∗cell([0, 1]n;F2).

3.2.2 Even Khovanov homology Kh

Khovanov homology, introduced in [Kho00], is a combinatorial link invariant computed

from a planar diagram of an oriented link by considering the cube of resolutions. The

result is a bigraded homology theory associated to an oriented link. We sometimes

refer to this theory as even Khovanov homology to distinguish it from odd Khovanov

homology.

Let D be a link diagram with n ordered crossings. Each crossing can be resolved

as the 0-resolution or the 1-resolution .

We will view Khovanov homology as coming from a functor

Fe : (2n)op −→ Z-Mod

which we define below. The theory is also defined similarly over more general rings. In

the context of Smith inequalities (Subsection 3.6.5), we will use field coefficients.

Generators

For each v ∈ 2n, let Dv be the complete resolution of D formed by taking the 0-resolution

at the ith crossing if vi = 0, or the 1-resolution otherwise. The diagram Dv is a planar

diagram of embedded circles. We write Z(Dv) for the set of embedded circles (which
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we just call circles) in Dv. A Kauffman state at v will be an element of the powerset

of Z(Dv). Let Fe(v) be the free Z-module generated by Kauffman states at v. We

can think of Kauffman states as the monomials in the symmetric algebra generated by

the circles Z(Dv), modulo x2i = 0 for each circle xi ∈ Z(Dv), that is, as an element of

Sym(Z(Dv))/(x
2)x∈Z(Dv). Sometimes we will also think of a Kauffman state as a labeling

Z(Dv)→ {x−, x+} (for formal variables x±), where the monomial xi1 . . . xik corresponds

to the labeling where the circle xij is sent to x− for all j, and the other circles are all

sent to x+.

Arrows

Let v, u ∈ Ob(2n) where v 61 u. Since Du and Dv differ only at the resolution of one

crossing, either two circles in Dv merge to become one circle in Du, or, dually, one circle

in Dv splits to become two circles in Du. Let φop
v,u : v → u be the arrow opposite φu,v.

First, say that two circles a1, a2 ∈ Z(Dv) merge to a circle a ∈ Z(Du). Note that the

complements Z(Dv)\{a1, a2} and Z(Du)\{a} are naturally identified. Define Fe(φ
op
v,u) as

the Z-algebra map

Sym(Z(Dv))/(x
2)x∈Z(Dv) → Sym(Z(Du))/(x

2)x∈Z(Du)

determined by sending a1, a2 to a, and sending other circles by the identity.

Next, say that one circle a ∈ Z(Dv) splits to circles a1, a2 ∈ Z(Du). Define

Fe(φ
op
v,u)(x) = (a1 + a2)x

where we have used the natural identification of Z(Dv)\{a} with Z(Du)\{a1, a2}. One

readily checks that, with these definitions, Fe defines a functor (2n)op → Z-Mod.
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Gradings

There are two gradings associated to the Khovanov complex: first, there is the homologi-

cal grading grh, and an additional quantum grading grq that allows for decategorification

to the Jones polynomial.

Let D be a diagram for an oriented link L, n the number of crossings in D, and

n+ and n− the number of positive and negative crossings (where a negative crossing is

locally ) in D, respectively. Let x = a1 . . . a` ∈ Fe(Du) (where ai ∈ Z(Du)); then the

gradings of x are given by

grh(x) = |v| − n−, grq(x) = |Z(Dv)| − 2`+ |v|+ n+ − 2n−.

Note that the morphisms Fe(φ
op
v,u) increase homological grading by 1 and preserve

quantum grading. In particular, we can regard

Fe(φ
op
v,u)→ Z-gMod

where Z-gMod is the category of graded Z-modules. We write Fje for the functor taking

(2n)op to the j-graded component of Fe.

3.2.3 Homology from functors

Khovanov homology is defined from Fe as follows. Let

Kc(L) =
⊕
v∈2n

Fe(v), ∂Kh =
∑
v>1w

(−1)sv,w Fe(φ
op
w,v).

Here s is the standard sign assignment from Definition 3.7. The chain homotopy type

of the resulting complex is an invariant of the oriented link L, [Kho00, Theorem 1]. Note

that Kc(L) decomposes, over quantum grading, as a chain complex Kc(L) = Kcj(L).
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The resulting homology Kh i,j(L) = H i(Kcj(L)) is the Khovanov homology of L.

3.2.4 Odd Khovanov homology Kho

Odd Khovanov homology, introduced in [ORSz13], is structurally very similar to even

Khovanov homology, but instead uses exterior algebra operations to define the differ-

ential, introducing signs to the differential within edges. We will view odd Khovanov

homology as coming from a functor

Fo : (2n)op −→ Z-Mod

In order to define odd Khovanov homology from a link diagram D with n ordered

crossings, we further equip D with an orientation of crossings, which is a choice of an

arrow at each crossing. Note that an orientation of the link can be used to acquire an

orientation of crossings. The resolution of a diagram D with an orientation of cross-

ings assigns to v ∈ 2n a collections of embedded circles, along with embedded oriented

arcs joining the circles. That is, locally the 0-resolution of (respectively, ) is

(respectively, ) and the 1-resolution is (respectively, ).

For objects v ∈ 2n, set Fo(v) = Λ(Z(Dv)), the exterior algebra, over Z, on the set of

symbols Z(Dv). This can be identified with Fe(v), but the identification is not canonical.

To define Fo, we start with an auxiliary assignment F′o (with the same objects) defined

on edges u ≥1 v; the functor Fo is obtained by changing suitable signs of F′o. We will

call F′o the projective odd Khovanov functor.

For u ≥1 v, so that circles a1, a2 ∈ Z(Dv) merge to a circle a ∈ Z(Du), set F′o(φ
op
v,u)

to be the Z-algebra map Λ(Z(Dv))→ Λ(Z(Du)) determined by sending a1, a2 → a and

by identifying the other generators.

For u ≥1 v, so that a circle a ∈ Z(Dv) splits into circles a1, a2 ∈ Z(Du), and so that
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the arc in Du points from a1 to a2, set

F′o(φ
op
v,u)(x) = (a1 − a2)x

where we view Λ(Z(Dv)) as a subalgebra of Λ(Z(Du)) by sending a to either a1 or a2

and identifying the other generators (it is easy to see that F′o does not depend on the

choice of where a is sent). It will be convenient later to have the following terminology

from [LS14]:

Definition 3.8 (Definition 2.1 [LS14]). A resolution configuration C is a pair (Z(C), A(C))

where Z(C) is a collection of pairwise-disjoint embedded circles in S2, and A(C) is a

totally ordered collection of arcs embedded in S2 with A(C) ∩ Z(C) = ∂A(C). The

number of arcs will be called the index of a resolution configuration.

An odd resolution configuration will be such as above, but where the arcs are oriented.

The assignment F′o on the edges of (2n)op commutes up to a sign along 2-dimensional

faces. We can adjust F′o to give a genuine functor from the cube category, as follows.

The two-dimensional odd resolution configurations can be divided into four categories

as follows (with unoriented arcs being orientable in either direction).

A : , , , .

C : , , , , .

X : .

Y : .

(3.9)

For a link diagram D and u ≥i w ∈ 2n, we write Du,w for the resolution configuration

obtained by performing the w-resolution, and then drawing the i arcs corresponding to

the difference between u and w.

Note that F′o commutes on faces of type C, and anticommutes on faces of type A.
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Meanwhile, F′o both commutes and anticommutes on faces of type X and type Y (that

is, F′o(φ
op
v,u)F

′
o(φ

op
w,v) = 0 on faces of type X and type Y). For later reference, we call

type X and type Y odd resolution configurations (as well as their underlying resolution

configurations) ladybug configurations.

We can then define obstruction cocycles Ω(D) ∈ C2
cell([0, 1]n;Z2) as follows (Z2 =

{1,−1} will be written multiplicatively). Define the type X (resp. type Y) obstruction

cocycle Ω(D)X ∈ C2
cell([0, 1]n;Z2) (resp. Ω(D)Y ) by setting Ω(D)Xu,w = −1 on faces of

type A and type X (resp. type A and type Y), and Ω(D)Xu,w = 1 on faces of type C and

type Y (resp. type C and type X). In the sequel we will usually omit the superscript

from Ω(D)X , and usually we will work with the type X obstruction cocycle.

Note that the obstruction cocycle cannot a priori be determined from the projective

functor F′o : (2n)op → Z-Mod itself; the value Ω(D)u,w on faces u ≥2 w ∈ 2n so that

F′o(φ
op
v,u)F

′
o(φ

op
w,v) 6= 0 is determined by F′o, but for faces with F′o(φ

op
v,u)F

′
o(φ

op
w,v) = 0, we

need the type of Du,w to specify Ω(D)u,w.

It is shown in [ORSz13] that Ω(D) (for either type) is a cocycle, and so also a cobound-

ary, since H2(Ccell([0, 1]n;Z2) = 0. That is, there exists some edge-assignment ε ∈

C1
cell([0, 1]n;Z2) such that δε = Ω(D), where δ denotes the coboundary of Ccell([0, 1]n;Z2).

Moreover, H1(Ccell([0, 1]n;Z2)) = 0, so ε is well-defined up to multiplication by the 0-

cocycle taking value −1 on all vertices of [0, 1]n.

We define

Fo(φ
op
v,u) = εu,vF

′
o(φ

op
v,u).

By definition of ε, Fo defines a functor from the opposite cube category (2n)op → Z-gMod.

Although the identification of Fo(Du) and Fe(Du) is noncanonical, all choices result in

the same grading on Fo(Du). Moreover, it is clear that the arrows Fo(φ) respect q-grading

and increase h-grading by 1.

Odd Khovanov homology is constructed from this functor via
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Kco(L) =
⊕
v∈2n

Fo(v), ∂Kho =
∑
v>1w

(−1)sv,w Fo(φ
op
w,v).

The homology H i(Kcjo, ∂Kho) = Kh i,jo (L) is called the odd Khovanov homology of L, and

its isomorphism class is an invariant of the isotopy class of the oriented link L, [ORSz13].

We will write Khjo(L) for the sum ⊕iKh i,jo (L), and similarly for even Khovanov homology.

We will also need to fix bases for the various Z-modules considered above. For the

even case, a natural set of generators is given by elements a1⊗· · ·⊗ak ∈ Sym(Z(Dv))/(x
2)x∈Z(Dv)

where each ai ∈ Z(Dv) is distinct. For the odd case, say we have fixed an orientation

of crossings and an edge assignment. In order to choose a basis, we fix at every vertex

v ∈ 2n a total ordering > on the set Z(Dv). The set

Kg(v) = {a1 ⊗ · · · ⊗ ak : ai ∈ Z(Dv), a1 > · · · > ak}

is called the set of Khovanov generators at v.

3.2.5 Annular filtrations

We call a link L ⊂ (R2 − {0}) × [0, 1] an annular link; in this section we recall the

definition of the annular and odd annular Khovanov homologies of annular links. The

former is first defined by [APS06], the latter is a generalization of their construction,

first appearing in [GW18].

It is convenient to think of annular links as drawn on S2 = R2 ∪ {∞} with two

basepoints, with X at the origin and O at ∞. The presence of these basepoints filters

both the even and odd Khovanov complexes by a filtration grading grk, and the associated

graded objects are the annular Khovanov and the odd annular Khovanov complexes. We

will denote their homologies by AKh and AKho, respectively.

Fix an annular link diagram D. To obtain the annular ‘(k)-grading,’ we choose an
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oriented arc γ from X to O that misses all crossings of D; the resulting grading will

be independent of the choice of γ. For each Kauffman state of a resolution Du, viewed

as a monomial xa1 . . . xat in the circles Z(Du), we obtain an orientation of the circles

Z(Du), where the circles xai for i = 1, . . . , t are oriented clockwise and the other circles

are oriented counterclockwise. View the collection of oriented circles (associated to a

Kauffman state) Z(Du) as an embedded 1-manifold z. The (k)-grading of x = xa1 . . . xat ,

written grk(x), is defined by grk(x) = I(γ, z), the algebraic intersection number of γ and

z.

One can check that the maps Fe(φ
op
v,u) and Fo(φ

op
v,u) (whence also the differentials

∂Kh and ∂Kho) can only preserve or decrease the (k)-grading. We set Fj,kAnn(v) to be

the submodule of Fje(v) concentrated in annular grading k (similarly for Fj,kAnno
(v)). Let

ιk : Fj,kAnn(v)→ Fje(v) be the natural inclusion, and let πk : Fje(v)→ Fj,kAnn(v) be the natural

projection. We define the morphisms Fj,kAnn(φop
v,u) to be the (k)-grading preserving part

of Fje(φ
op
v,u), that is: Fj,kAnn(φop

v,u) = πkF
j
e(φ

op
v,u)ιk. The definition for FAnno is similar. The

even (resp. odd) annular Khovanov functor

FAnn : (2n)op −→ Z-Mod,

where FAnn = ⊕j,kFj,kAnn (resp. FAnno), is the associated graded object. It will also be con-

venient to define F′Anno
, the (odd) annular Khovanov projective functor, as the associated

graded object of F′o.

The even annular Khovanov homology AKhi,j,k(L) = H i(AKcj,k(L)) is defined as

the homology of the complex

AKcj,k(L) =
⊕
v∈2n

Fj,kAnn(v), ∂ =
∑
v>1w

(−1)sv,w FAnn(φop
w,v),

and similarly for odd annular Khovanov homology AKho(L), as the homology of a
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complex AKco(L). The isomorphism classes of AKh(L) and AKho(L) are invariants

of the annular isotopy class of L.

We can also describe the maps FAnn(φop
v,u) in local pictures. It will be useful later to

define annular resolution configurations (resp. odd annular resolution configurations) as

in the definition of resolution configurations, except that we replace with the condition

that the embedded circles lie in S2 with the condition that the embedded circles lie in

S2 − {X,O}. Note that an (odd) annular resolution configuration has a well-defined

underlying (odd) resolution configuration. We sometimes abuse notation and refer to

any of the above kinds of resolution configurations as just a configuration.

There are two types of circles in an annular resolution: we call a circle nontrivial if

it separates O and X and trivial otherwise. We associate the Z-module V = Z[v+, v−]

to nontrivial circles and W = Z[w+, w−] to trivial circles in order to distinguish the two

types of tensor components appearing in FAnn(v). Note that an elementary cobordism

in the annulus corresponds to one of six situations, the isotopy classes of index-1 an-

nular resolution configurations. Figure 3.1 shows these elementary cobordisms. For an

elementary cobordism S : Dv → Du, we call a circle x in Z(Dv) or Z(Du) active if the

component of S containing x is not homeomorphic to a cylinder, otherwise we call x

a passive circle. The maps FAnn(φop
v,u) (and FAnno(φ

op
v,u)) are obtained from the maps in

Figure 3.1 (and their split map duals) by tensoring with the identity map on generators

corresponding to passive circles.

There is another grading grj1 special to the annular case that we are tempted to call

the annular quantum grading, as it appears to be more relevant in annular Khovanov

homology than the quantum grading, first introduced in [GLW18] as the ‘filtration-

adjusted quantum grading.’ It is defined by grj1 = grq − grk, and will play an important

role when we study the Khovanov complexes for periodic links.

Given an annular link diagram, the Khovanov generators Kg(v) inherit a well-defined
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X 1 2 3

•
v+v+

•
w+

•
v+v−

•
v−v+

•
w−

•
v−v−

•
v+w+

•
v+

•
v+w−

•
v−w+

•
v−

•
v−w−

•
w+w+

•
w+

•
w+w−

•
w−w+

•
w−w−

•
w−

Figure 3.1: Elementary cobordisms in the annulus. Surgering along dotted arc ‘1’ merges
two nontrivial circles into a trivial one, corresponding to the merge map V ⊗ V → W.
Similarly, surgering along dotted arc ‘2’ merges a nontrivial circle with a trivial one, and
surgering along dotted arc ‘3’ merges two trivial circles. The reverse surgeries yield the
other index-1 annular resolution configurations.

(k)-grading, and we will write Kg j,k(v) for the Khovanov generators at v ∈ 2n with

grq = j and grk = k.

3.2.6 Periodic links

Here we review some facts about periodic links. The definition is motivated by the

resolution [Wal69], [MB84] of the Smith Conjecture, which states that the fixed-point

set of any action by Zp by orientation-preserving diffeomorphisms of S3 is the empty set,

two points, or an unknotted circle.

A link L̃ ⊂ S3 is p-periodic if there is an orientation-preserving Zp-action ψ on the

pair (S3, L̃) such that the fixed-point set is an unknot Ũ disjoint from L̃ (often, we will

confound notation, and write ψ for a generator of this action). The image of L̃ under

the quotient map S3 → S3/ψ is called the quotient link, and is denoted L. We always

assume p > 1. Two p-periodic links are considered equivalent if there is an equivariant
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R1

R2

R3

X

X

X

X

X

X

Figure 3.2: Examples where non-annular Reidemeister moves change the isotopy class
of the periodic link. The figures in left column show the quotient link L before the
Reidemeister move; in each case, the periodic link L̃ is annularly isotopic to the unknot
which links once with the axis Ũ . The right column shows the quotient link after the
Reidemeister move. For the R1 and R3 cases, L̃ is the torus knot (or link) T2,p. For the
R2 case, L̃ is the closure of of the braid (σ2σ1σ

−1
2 σ−11 )p; in the case p = 2, this is the

Figure 8 knot.

(ambient) isotopy relating them [Pol15].

Definition 3.10. Two p-periodic links (L̃0, ψ0) and (L̃1, ψ1) are equivariantly isotopic

if there is an ambient isotopy φt : S1 × [0, 1] → S3, 0 ≤ t ≤ 1, and a homotopy of

Zp-actions ψt : Zp × S3 × [0, 1] → S3 extending the actions ψ0, ψ1 and so that φi = L̃i

for i = 0, 1, and so that φt is ψt-equivariant.

Observe that if we remove the fixed-point set at each time t, such an isotopy can be

viewed as an ambient isotopy in the solid torus. By quotienting by the action of ψt at

each time, we see that this isotopy is a lift of an isotopy from L0 to L1.

A cyclic group can act on a link in distinct ways, and different cyclic groups can act

on the same link, so a p-periodic link is defined to be a pair (L̃, ψ). Since ψ specifies the

unknotted axis Ũ , periodic links are inherently annular.
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With this in mind, observe that L̃ has a diagram D̃ on the annulus, where the

unknotted axis is viewed as the z-axis ∪ ∞ and is projected to the basepoint X, and the

induced Zp-action on D̃ (also denoted ψ) is simply counterclockwise rotation about X

by 2π/p. We will call such a planar diagram a periodic diagram of the periodic link L̃.

Then D = D̃/ψ is a diagram for the quotient link L. We will usually assume that all of

our diagrams for p-periodic links are periodic diagrams.

Note also that given an annular diagram D, we can form a p-periodic link diagram

D̃, called the p-cover of D, by taking p copies {Di}i=1,...,p of D cut along an arc γ as

in the definition of annular Khovanov homology, and gluing (reversing orientation on

the boundary) Di to Di+1 along one boundary component of the cut diagram (with

subscripts interpreted cyclically).

With this notion of periodic diagrams, given p-periodic diagrams D̃1 and D̃2, they

represent the same periodic link if and only if they are related by equivariant isotopies

and equivariant Reidemeister moves, which are the lift of Reidemeister moves on the

quotient diagrams D1, D2 (see [Pol15]). See Figure 3.9 for instance.

Remark 3.11. In particular, equivariant Reidemeister moves do not interact with the

basepoint X in the diagram. Figure 3.2 provides examples showing why we should expect

equivariant moves to be annular: moves that do interact with the basepoint can change

the isotopy class of the periodic link in S3.

For bookkeeping purposes, we introduce the notation that ·̃ generally means ‘lift of’,

as well as the following rules. Given an ordering of crossings of a diagram D, we obtain

an ordering of crossings upstairs as follows. Recall that in the definition of annular

Khovanov homology we relied on an arc γ. As the quotient of a periodic diagram D̃, the

diagram D is naturally an annular diagram, and we fix some arc γ as in the definition of

annular Khovanov homology. Lift it to some arc γ̃ on D̃. We divide the plane containing

D̃ into sectors, that is, the connected components of R2 − Zpγ̃, where Zpγ̃ denotes the
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orbit of γ̃ under Zp. The sectors are labeled S1, . . . , Sp, where Si is the sector between

ψi−1γ̃ and ψiγ̃. The crossings of D̃ are ordered by requiring that the first n crossings

are just those contained in S1, ordered according to their ordering in the quotient, the

next n are the crossings of S2, and so on. From now on, unless otherwise stated, given

an annular diagram D with ordered crossings, we will assume its p-cover D̃ has this

ordering of crossings.

There is also an induced action ψ on the Khovanov generators, by acting by rotation

on resolution diagrams. That is, Zp acts on ⊕vFe(v) by sending a Kauffman state

x1 . . . xt to y1 . . . yt, where yi is the result of rotation on xi. For the above ordering

of the crossings of D̃ and D, this action lies over the action of Zp on (2n)p by cyclic

permutation. Call a Khovanov generator an invariant generator if it is invariant under

the action of Zp. Meanwhile, Zp does act by bijections on the set Kg(D̃), but one can

say somewhat more. That is, Zp may send (odd) Khovanov generators to ±-multiples

of odd Khovanov generators. Let a signed bijection X : S1 → S2 between two finite sets

S1, S2 be a bijection along with a ‘sign’ map σ : S1 → Z2 (really, we should view X as a

correspondence between S1 and S2 along with a ‘sign’ map σ : X → Z2. See Section 3.3).

Then the generator ψ of Zp acts by signed bijections, Kg(u)→ Kg(ψu), where the sign of

x ∈ Kg(u) records the sign of the generator ψ(x) as a Khovanov generator of Fo(ψu). We

write Kg(D̃)Zp for the set of invariant Khovanov generators (where invariant just means

invariant under the Zp-action, and does not involve the sign map of the Zp-action).

We conclude this section by discussing the relationship between generators in Kc(D)

and their lifts in Kc(D̃); in particular, the relationship between their gradings explains

the role annular filtrations play in localization of Khovanov homology.

Proposition 3.12 (cf. Proposition 29, [Zha18]). There is a bijective correspondence

between the generators of Kc(D) and the invariant generators of Kc(D̃), given by x 7→ x̃,
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such that

grk(x̃) = grk(x), grh(x̃) = pgrh(x), and grq(x̃) = pgrq(x)− (p− 1)grk(x).

In particular, this implies grj1(x̃) = pgrj1(x).

Proof. Note that ñ+ = pn+, ñ− = pn−, and |ũ| = p|u|. Let x ∈ Kc(D) be a generator

lying at vertex u ∈ 2n. Suppose Du has α nontrivial circles labeled v+, β nontrivial

circles labeled v−, γ trivial circles labeled w+, and δ trivial circles labeled w−. Up to

permuting the tensor factors around, we may write x = vα+v
β
−w

γ
+w

δ
−.

Let S be a circle in Du. If S is nontrivial, then its lift in Dũ consists of a single

equivariant nontrivial circle. On the other hand, if S is trivial, then its lift consists

of p identical copies of a nontrivial circle. In light of this observation, we may write

x̃ = vα+v
β
−w

pγ
+ w

pδ
− . Now we may compute the following.

grk(x̃) = α− β = grk(x)

grh(x̃) = |ũ| − ñ− = p|u| − pn− = pgrh(x)

grq(x̃) = |ũ|+ α− β + pγ − pδ + ñ− − 2ñ+

= p|u|+ p(α− β + γ − δ)− (p− 1)(α− β) + p(n− − 2n+)

= pgrq(x)− (p− 1)grk(x).

The grj1 relationship follows directly.

Moreover, as a matter of conventions, Proposition 3.12 extends to a signed bijective

correspondence Kg(D)→ Kg(D̃)Zp , when the order of circles upstairs is chosen to satisfy

the following. First, if circles a1, a2 ∈ Z(Du) satisfy a1 < a2, then any circles over them,

say ã1 and ã2, satisfy ã1 < ã2. Further, for a ∈ Z(Du), let ã1 be the circle upstairs that

is closest to γ̃, proceeding counterclockwise from γ̃, and where we require that ã1 not
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intersect γ̃. For nontrivial circles, which necessarily intersect γ̃, there is no ambiguity.)

Define ãi = ψiã for i ≤ p. We require a1 < · · · < ap. The bijection Kg(D) → Kg(D̃)Zp

takes nontrivial circles to nontrivial circles, and takes a trivial circle a to ã1 . . . ãp.

3.3 Burnside categories and functors

In this section we recall the machinery of Burnside functors from [LLS],[LLS17a]. We

will also record a slight generalization of the signed Burnside functors of [SSS18]. The

sections 3.3.1-3.3.3 are essentially a review of material from [LLS]-[SSS18]. In section

3.3.4, we introduce external actions on Burnside functors and prove basic properties.

The rest of the section consists of generalizing notions of [LLS] to Burnside functors

with external action.

3.3.1 The Burnside category

Given finite sets X and Y , a correspondence from X to Y is a triple (A, s, t) for a finite

set A, where s, t are set maps s : A → X and t : A → Y ; s and t are called the source

and target maps, respectively. The correspondence (A, s, t) is depicted:

X Y

AsA tA

For correspondences (A, sA, tA) and (B, sB, tB) from X to Y and Y to Z, respectively,

define the composition (B, sB, tB) ◦ (A, sA, tA) to be the correspondence (C, s, t) from X

to Z given by the fiber product C = B ×Y A = {(b, a) ∈ B × A | t(a) = s(b)}

with source and target maps s(b, a) = sA(a) and t(b, a) = tB(b). There is also the

identity correspondence from a set X to itself, i.e., (X, IdX , IdX) from X to X. Given

correspondences (A, sA, tA), (B, sB, tB) from X to Y , a morphism of correspondences
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(A, sA, tA) to (B, sB, tB) is a bijection f : A→ B commuting with the source and target

maps. There is also the identity morphism from a correspondence to itself.

Composition (of set maps) gives the set of correspondences from X to Y the structure

of a category. Define the Burnside category B to be the weak 2-category whose objects

are finite sets, morphisms are finite correspondences, and 2-morphisms are maps of

correspondences.

Recall that in a weak 2-category, that arrows need only be associative up to an equiv-

alence, and similarly the identity axiom holds only after composing with a 2-morphism.

To be explicit, for finite sets X, Y and (A, s, t) a correspondence from X to Y , neither

(Y, IdY , IdY ) ◦ (A, s, t), nor (A, s, t) ◦ (X, IdX , IdX), equals (A, s, t). Rather, there are

natural 2-morphisms, left and right unitors,

λ : Y ×Y A→ A, ρ : A×X X → A

given by λ(y, a) = a and ρ(a, x) = a. Further, the composition C ◦ (B ◦ A), for A from

W to X, B from X to Y , and C from Y to Z, is not identical to (C ◦ B) ◦ A, rather

there is an associator

α : (C ×Y B)×X A→ C ×Y (B ×X A)

given by α((c, b), a) = (c, (b, a)). The categories to follow are slight variations of this

one.

3.3.2 Decorated Burnside categories

Fix a group K (for our purposes, usually the cyclic group Z2 = {1,−1}). Given finite

sets X and Y , a decorated correspondence is a correspondence (A, sA, tA) equipped with

a map σA : A → K, regarded as a tuple (A, sA, tA, σA); we call σA the “decoration” of
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the correspondence (or the “sign” if K = Z2):

X Y

A

K

sA tA

σA

In the sequel we often write ‘correspondence’ for ‘decorated correspondence,’ where

it will not cause any confusion. We define a composition (B, sB, tB, σB) ◦ (A, sA, tA, σA)

of decorated correspondences (A, sA, tA, σA) from X to Y , and (B, sB, tB, σB) from Y to

Z by (C, s, t, σ), where (C, s, t) is the composition (B, sB, tB) ◦ (A, sA, tA) and σ(b, a) =

σB(b)σA(a). Also, we define the identity correspondence by (X, IdX , IdX , 1) (i.e., the

identity correspondence takes value 1 on all elements).

We define maps of decorated correspondences f : (A, sA, tA, σA)→ (B, sB, tB, σB) to

be morphisms of correspondences f : (A, sA, tA)→ (B, sB, tB) such that σB ◦f = σA. We

may then define the K-Burnside category BK to be the weak 2-category with objects

finite sets, morphisms given by decorated correspondences, and 2-morphisms given by

maps of decorated correspondences. The structure maps λ, ρ, α of §3.3.1 are easily seen

to respect the decoration, confirming that BK is indeed a weak 2-category. There is a

forgetful 2-functor F : BK → B which forgets decorations. We will usually refer to such

2-functors simply as functors.

For a homomorphism d : K → Z2 we define a functor Ad : BK → Z-Mod by sending a

set X ∈ BK to the free abelian group generated by X, denoted Ad(X). For a decorated

correspondence φ = (A, s, t, σ) from X to Y , we define Ad(φ) : Ad(X)→ Ad(Y ) by

Ad(φ)(x) =
∑

a∈A | s(a)=x

d(σ(a))t(a) (3.13)
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for elements x ∈ X, extended linearly over Z. We often suppress d from the notation.

3.3.3 Functors to Burnside categories

We now consider functors from the cube category 2n to the Burnside categories thus far

introduced. The functors F : 2n → BK we consider will be strictly unitary 2-functors;

that is, they will consist of the following data:

1. For each vertex v of 2n, an object F (v) of BK .

2. For any u ≥ v, a 1-morphism F (φu,v) in BK from F (u) to F (v), such that F (φu,u) is

the identity morphism IdF (u).

3. Finally, for any u ≥ v ≥ w, a 2-morphism Fu,v,w in BK from F (φv,w) ◦ F (φu,v) to

F (φu,w) that agrees with λ (respectively, ρ) when v = w (respectively, u = v), and

that satisfies, for any u ≥ v ≥ w ≥ z,

Fu,w,z ◦2 (Id ◦ Fu,v,w) = Fu,v,z ◦2 (Fv,w,z ◦ Id)

(with ◦ denoting composition of 1-morphisms and ◦2 denoting composition of 2-

morphisms; and we have suppressed the associator α).

We will usually use the characterization of these functors in the lemma to follow.

Lemma 3.14. [Lemma 3.2 [SSS18]] Consider the data of objects F (v) for v ∈ 2n,

a collection of 1-morphisms F (φv,w), in BK, for edges v >1 w, and 2-morphisms

Fu,v,v′,w : F (φv,w)◦F (φu,v)→ F (φv′,w)◦F (φu,v′) for each 2-dimensional face described by

u >1 v, v
′ >1 w, such that the following compatibility conditions are satisfied:

1. For any 2-dimensional face u, v, v′, w as above, Fu,v,v′,w = F−1u,v′,v,w;

2. For any 3d face in 2n on the left, the hexagon on the right commutes:
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u v′

v′′ w

v w′′

w′ z

◦

◦

◦◦

◦

◦
Id× Fu,v,v′′,w′

Fv′′,w′,w,z × Id

Id× Fu,v′′,v′,w
Fv′,w,w′′,z × Id

Id× Fu,v′,v,w′′

Fv,w′′,w′,z × Id

This collection of data can be extended to a strictly unitary functor F : 2n → BK,

uniquely up to natural isomorphism, so that Fu,v,v′,w = F−1u,v′,w ◦2 Fu,v,w.

Definition 3.15. Given a functor F : 2n → BK and d : K → Z2, we construct a chain

complex denoted Totd(F ), and called the totalization of the functor F . We usually

suppress d from notation when it is clear. The underlying chain group of Tot(F ) is given

by

Tot(F ) =
⊕
v∈2n
A(F (v)).

We set the homological grading of the summand A(F (v)) to be |v|. The differential is

given by defining the components ∂u,v from A(F (u)) to A(F (v)) by

∂u,v =


(−1)su,vA(F (φu,v)) if u >1 v

0 otherwise.

3.3.4 External actions on Burnside functors

We will be especially interested in Burnside functors that admit ‘extra symmetries’, as

follows. Throughout, we require that G is a finite group.

By an action of G on a small category C , we mean a group action ψ of G on Ob(C ),

along with an isomorphism of sets ψg : Hom(x, y) → Hom(ψgx, ψgy) for each g ∈ G,

compatible with composition of morphisms in C and so that ψhψg = ψhg. We further
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require that the group action preserves identity morphisms. Equivalently, this is the

data of functors Fg : C → C , for g ∈ G, satisfying the appropriate relations.

Definition 3.16. Fix a Burnside functor F : C → BK , for C a small category. Say there

exists an action of G by ψ on C . An external action ψ on F consists of the following

data:

1. A collection of 1-isomorphisms

ψg,v : F (v)→ F (gv),

in BK , for all g, v, subject to ψgh,v = ψg,hv ◦ ψh,v (where the equality is to be read

as there being a fixed choice of 2-morphism between the two sides of the equation,

which we suppress from notation).

2. A collection of 2-morphisms

ψg,A : ψg,t(A) ◦ F (A)→ F (gA) ◦ ψg,s(A)

for all g ∈ G,A ∈ Hom(C ), with source s(A) and target t(A).

The data are subject to the following conditions:

(E-1) The 2-morphism ψgh,A is given by the composite:

ψgh,t(A) ◦ F (A) = ψg,ht(A)ψh,t(A) ◦ F (A)→ψh,A ψg,ht(A) ◦ F (hA) ◦ ψh,s(A)

→ψg,hA F (ghA) ◦ ψg,hs(A)ψh,s(A) = F (ghA) ◦ ψgh,s(A).
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Schematically,

u hu ghu

v hv ghv

=
u ghu

v ghv

(E-2) The following pentagon commutes:

ψg,t(B) ◦ F (B) ◦ F (A)

F (B) ◦ ψg,s(B) ◦ F (A)

F (B) ◦ F (A) ◦ ψg,s(A)

F (B ◦A) ◦ ψg,s(A◦B)ψg,t(B◦A) ◦ F (B ◦A)

ψg,B ◦2 Id
Id ◦2 ψg,A

αA,B ◦2 IdId ◦2 αA,B

ψg,A◦B

Schematically, this says:

u v w

gu gv gw

=
u w

gu gw

Remark 3.17. An external action on a Burnside functor F can alternatively be de-

scribed as follows. Let C̃ denote the category whose objects are those of C and whose

morphisms are given by HomC̃ (x, y) = qg∈GHomC (x, g−1y), where we call the summand

associated to g ∈ G the g-labelled (not decorated) summand. Composition is given

by HomC (y, h−1z)× HomC (x, g−1y)→ HomC (x, (hg)−1z) by sending HomC (y, h−1z)→

HomC (g−1y, g−1h−1z) using the functor Fg−1 , and then using composition of arrows in

C . In particular, this composition law takes the g-labeled component of HomC̃ (x, y) and

the h-labeled component of HomC̃ (y, z) to the hg-labeled component of HomC̃ (x, z).

It is a pleasant exercise to show that Burnside functors F with external action are

identified with functors C̃ → BK .
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Note also that Definition 3.16 can be substantially simplified in the case K = {1}.

Remark 3.18. The complex Tot(F ), for F : 2np → BK admitting an external Zp-

action by permutation of the coordinates, admits its own Zp-action as follows. For each

u ∈ 2np, let τ(u) = (#{i ≤ n(p − 1) | ui = 1})(#{i > n(p − 1) | ui = 1}). Define

ψ∗ : Tot(F ) → Tot(F ) by, for x ∈ F (v), setting ψ∗(x) = τ(v)ψ(x), where ψ(x) refers to

the object in F (ψ(v)), coming from the external action on F . It is a direct but tedious

check to see that ψ∗ is a chain map. Moreover, ψp∗ = Id, giving Tot(F ) the structure of a

chain complex with Zp-action. We will not need this structure but we try to make note

of it in the sequel; see also Section 3.6.6.

Lemma 3.19. Let Zp act on (2n)p by cyclic permutation of the factors. Consider the

data F as in Lemma 3.14 along with the following data:

1. A collection of 1-isomorphisms (in BK) ψg,v : F (v) → F (gv), for v ∈ 2np =

(2n)p, g ∈ Zp. We require that these 1-isomorphisms satisfy ψgh,v = ψg,hvψh,v.

2. For each g ∈ Zp and pair u ≥1 v ∈ 2np, a 2-morphism ψg,u,v : ψg,v ◦ F (φu,v) →

F (φgu,gv) ◦ ψg,u.

Assume that the data satisfies the following conditions:

(E-1 ′) For u ≥1 v ∈ 2np, we have

ψgh,u,v = (ψg,hu,hv ◦ Id) ◦2 (Id ◦ ψh,u,v),

for all g, h. That is, the data (ψg,v, ψg,u,v) satisfy (E-1) for length 1 morphisms.

(E-2 ′) Write F (φu,v) = Au,v to ease the notation. For u ≥1 v, v
′ ≥1 w, the following
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hexagon commutes:

Agv,gw ◦Agu,gv ◦ ψg,u

Agv′,gw ◦Agu,gv′ ◦ ψg,u

Agv′,gw ◦ ψg,v′ ◦Au,v′ψg,w ◦Av′,w ◦Au,v′

ψg,w ◦Av,w ◦Au,v

Agv,gw ◦ ψg,v ◦Au,v

Fgu,gv,gv′,gw ◦2 Id

Id ◦2 Fu,v,v′,w

This collection of data extends to a strictly unitary functor F : (2n)p → BK admitting

an external Zp-action, which is unique up to Zp-equivariant natural isomorphism, among

strictly unitary functors as constructed in Lemma 3.14 admitting an external action

extending the data.

Proof. We will need to briefly describe the argument for Lemma 3.14, which is identical

to that of Proposition 4.3 [LLS17a]. The functor F constructed in Lemma 3.14 is defined

by, for each φu,v, choosing a sequence u ≥1 u1 · · · ≥1 ui−1 ≥1 ui = v and then setting

F (φu,v) = F (φui−1,v) ◦ · · · ◦ F (φu,u1). For each u ≥i v ≥j w, one defines a 2-morphism

Fu,v,w : F (φv,w) ◦ F (φu,v) → F (φu,w) as follows. By construction, we need a bijection of

decorated sets

(F (φvj−1,w) ◦ · · · ◦ F (φv,v1)) ◦ (F (φui−1,v) ◦ · · · ◦ F (φu,u1))→ F (φu′i+j−1,w
) · · · ◦ F (φu,u′1)

for some sequences u ≥1 u1 · · · ≥1 ui = v, v ≥1 v1, · · · ≥1 vj = w, and u ≥1 u
′
1 · · · ≥1

u′i+j = w. Such a bijection is obtained by taking a composition of bijections of the form

Id ◦ Fx,y,y′,z ◦ Id as in the statement of Lemma 3.14. The condition (2) of Lemma 3.14

guarantees that the bijection of decorated sets thus constructed is independent of the
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choices of the Fx,y,y′,z.

We need to define 2-isomorphisms in BK , ψg,u,v : ψg,v ◦ Au,v → Agu,gv ◦ ψg,u for all

u ≥ v so that (E-1 ′) and (E-2 ′) hold. Recall that in the construction of F , for each

u ≥i v, we selected a sequence u ≥1 u1 · · · ≥1 ui = v, and set Au,v = Aui−1,v ◦ · · · ◦Au,u1 .

We have a diagram:

ψg,v ◦Aui−1,v ◦ · · · ◦Au,u1 Agui−1,gv ◦ ψg,ui−1 ◦ · · · ◦Au,u1
. . . Agui−1,gv ◦ · · · ◦Agu,gu1 ◦ ψg,u

ψg,v ◦Au,v Agu,gv ◦ ψg,u

where the vertical 2-morphisms are given by the construction of F : the left one

is part of the definition, and the right one arises from a sequence of bijections of the

form Id ◦ Fx,y,y′,z ◦ Id, as in the proof of Lemma 3.14. Although the decomposition of

the vertical into the Fx,y,y′,z is not well-defined, the resulting composite (the vertical

2-morphism in the diagram) is well-defined. We define the action ψg,u,v to make the

diagram commutative.

For checking that (E-1) holds, we draw the following schematic figures, which the

determined reader can translate into equations. Let us set up some notation. Say

that in the definition of F , we have selected the sequences u ≥1 u1 ≥1 · · · ≥1 ui = v

and hu ≥1 u′1 ≥1 · · · ≥1 u′i = hv and ghu ≥1 u′′1 ≥1 · · · ≥1 u′′i = ghv to define
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Au,v, Ahu,hv, Aghu,ghv, respectively. We need to compare the composite of 2-morphisms:

u

u1

...

ui−1

ui = v

hu

hu1

...

hui−1

hui = hv

hu

u′1

...

u′i−1

u′i = hv

ghu

gu′1

...

gu′i−1

ghui = ghv

ghu

u′′1

...

u′′i−1

u′′i = ghv

Φ (3.20)

with
u

u1

...

ui−1

ui = v

ghu

ghu1

...

ghui−1

ghui = ghv

ghu

u′′1

...

u′′i−1

u′′i = ghv

(3.21)

Here the horizontal 2-morphisms come from composing several of the Fx,y,y′,z maps. We

first apply the hypothesis (E-1 ′) to express (3.21) as:

u

u1

...

ui−1

ui = v

hu

hu1

...

hui−1

hui = hv

ghu

ghu1

...

ghui−1

ghui = ghv

u

u′′1

...

u′′i−1

ghv

(3.22)

Observe that the first pair of columns of (3.22) is the first 3 columns of (3.20), followed

by the 2-morphism Φ−1.
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Consider the cubes of 1-morphisms, where x ≥1 y, y
′ ≥1 z:

y′ gy′

z gz

x gx

y gy
hu ghu

hv ghv

hu ghu

hv ghv

In the left-hand cube, there are two paths of 2-morphisms (coming from 2-morphisms

associated to each face of the cube) from x → y → gy → gz to x → y′ → gy′ → gz,

which agree by (E-2 ′). Here the left-hand face is Fx,y,y′,z and the right-hand face is

Fgx,gy,gy′,gz.

Since Φ−1 is built as a composite of the Fx,y,y′,z, we have that Φ−1 fits into a similar

cube ‘of commuting 2-morphisms’, built by composing the small cubes on the left, to

form the cube on the right.

The top and bottom faces of the right cube are the identity, while the back face

comes from 3.20 and the front face is from 3.22. Another application of (2) from Lemma

3.14 then suffices to verify (E-1).

The proof of (E-2) is proved by substantially similar techniques (but does not require

(E-1 ′)), and is left to the reader.

The proof of uniqueness up to natural isomorphism is analogous to the proof that F

itself is (nonequivariantly) well-defined up to natural isomorphism.

Let H a subgroup of G. For a small category C with a G-action, let CH , called the

H-fixed-point category, be the subcategory of C whose objects and arrows are invariant

under the action of H.
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Definition 3.23. Fix a Burnside functor F : C → BK with an external action by G.

Let H a subgroup of G. The H-fixed-point functor of F is the functor FH : CH → BK ,

defined by FH(v) = F (v)H (where H acts on F (v) since v is H-fixed, where we have

forgotten the decoration of the bijection ψh,v) and where morphisms FH(φ) for φ ∈ CH

are sent to FH(φ) = F (φ)H . (Note that H acts on F (φ) for φ ∈ Hom(CH).)

Let us see that FH is well-defined. Indeed, we need to see that there are canonical

associators αHφ2,φ1
: FH(φ2)◦FH(φ1)→ FH(φ2◦φ1). However, the associator of F restricts

to give a bijection of H-fixed-point sets, since the associator commutes with the G-action,

by (E-2).

3.3.5 Natural transformations

To relate different functors to the Burnside category, we will need the following notion:

Definition 3.24. A natural transformation η : F1 → F0 between 2-functors F1, F0 : C →

BK is a strictly unitary 2-functor η : 2×C → BK so that η|{1}×C = F1 and η|{0}×C = F0.

A natural transformation of functors F1, F0 : 2np → BK with external action by Zp, where

Zp acts on 2np by permuting the coordinates, is such an η, itself admitting an external

action (where 2× 2np has the product Zp-action).

We usually refer to ‘natural transformations with external action’ as ‘natural trans-

formations’ where it will not cause confusion.

For C = 2n or 2np, a natural transformation (functorially) induces a chain map be-

tween the chain complexes of Burnside functors, which we write as Tot(η) : Tot(F1) →

Tot(F0). (In fact, for a natural transformation with external action, Tot(η) is Zp-

equivariant).

Many of the natural transformations we will encounter will be sub-functor inclusions

or quotient functor surjections. Given a functor F : 2np → BK with external action,
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a sub-functor with external action (respectively, quotient functor) H : 2np → BK is a

functor that satisfies:

1. H(v) ⊂ F (v) for all v ∈ 2np, and so that the external action of Zp restricts to an

action on objects.

2. H(φu,v) ⊂ F (φu,v) for all u ≥ v, with the source and target maps being restrictions

of the corresponding ones on F (φu,v), and so that the action of Zp preserves H (in

the natural sense).

3. s−1(x) ⊂ H(φu,v) (respectively, t−1(y) ⊂ H(φu,v)) for all u ≥ v and for all x ∈ H(u)

(respectively, y ∈ H(v)).

If H is a sub- (respectively, quotient) functor of F , then there is a natural transforma-

tion H → F (respectively, F → H), and the induced chain map Tot(H) → Tot(F )

(respectively, Tot(F )→ Tot(H)) is an inclusion (respectively, a quotient map) of chain

complexes (in fact, a Zp-equivariant map of chain complexes).

Definition 3.25. If J is a sub-functor with external action of F : 2np → BK , then the

functor L defined as L(v) = F (v) \ J(v) and L(φu,v) = F (φu,v) \ J(φu,v) is a quotient

functor of F (and vice-versa). Such a sequence

J → F → L

is called a cofibration sequence of Burnside functors; it induces the short exact sequence

0→ Tot(J)→ Tot(F )→ Tot(L)→ 0

of chain complexes.
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3.3.6 Stable equivalence of functors

In the sequel, we will be interested not just in functors F : 2n → BK , but in stable

functors, which are pairs (F,R) for R an element of the real representation ring of G. In

case G = {1}, we view stable functors as pairs (F, r) for r an integer, referring to r copies

of the trivial representation. We denote the regular representation of G by R(G). For an

orthogonal G-representation V , write V + for its one-point compactification, considered

as a pointed space by taking the point at infinity as the basepoint. We will also write

ΣRF for (F,R).

Let DetG = H̃∗(R(G)+) as a graded Z[G]-module. We define the totalization of the

stable functor (F, rR + sR(G)), by Tot((F, rR + sR(G)) = Tot(F )[r] ⊗Z Det⊗sG , where

Tot(F )[r] denotes the (ordinary) totalization shifted up by r. If s < 0, we make sense

of the above formula using the (graded) dual of DetG. In this section we will describe

when two such stable functors are equivalent, following Definition 3.6 of [SSS18].

A face inclusion ι is a functor 2n → 2N that is injective on objects and preserves the

relative gradings. Note that self-equivalences ι : 2n → 2n are face inclusions. Consider a

face inclusion ι : 2n → 2N and a functor F : 2n → BK . The induced functor Fι : 2N →

BK is uniquely determined by requiring that F = Fι ◦ ι, and such that for v ∈ 2N/ι(2n),

we have Fι(v) = ∅. For a face inclusion ι, we define |ι| = |ι(v)|−|v| for any v ∈ 2n, which

is independent of v since ι is assumed to preserve relative gradings. For any functor F

and face inclusion ι as above,

Tot(Fι) ∼= Σ|ι|Tot(F )

where the isomorphism is natural up to certain sign choices.

For Zp acting on 2np, 2Np by cyclic permutation, an equivariant face inclusion ι : 2np →

2Np will be a face inclusion so that gι = ιg for all g ∈ Zp. An equivariant face inclu-

107



sion induces a Zp-equivariant isomorphism between Tot(Fι) and Det
|ι|/p
Zp ⊗ Tot(F ), also

natural up to certain sign choices.

With this background, we state the relevant notion of equivalence for stable functors.

Definition 3.26. Two stable functors (E1 : 2m1 → BK , q1) and (E2 : 2m2 → BK , q2) are

stably equivalent for d : K → Z2 if there is a sequence of stable functors {(Fi : 2ni →

BK , ri)} (0 ≤ i ≤ `) with Σq1E1 = Σr0F0 and Σq2E2 = Σr`F` such that for each pair

{ΣriFi,Σ
ri+1Fi+1}, one of the following holds:

1. (ni, ri) = (ni+1, ri+1) and there is a natural transformation η : Fi → Fi+1 or η : Fi+1 →

Fi such that the induced map Tot(η) is a chain homotopy equivalence.

2. There is a face inclusion ι : 2ni ↪→ 2ni+1 such that ri+1 = ri − |ι| and Fi+1 = (Fi)ι; or

a face inclusion ι : 2ni+1 ↪→ 2ni such that ri = ri+1 − |ι| and Fi = (Fi+1)ι.

Two stable functors (E1, R1), (E2, R2) with Ei : 2nip → BK with external action by Zp

(extending the action on 2nip by cyclic permutation) are externally stably equivalent

if they are related by moves as above, such that the following are satisfied. Moves

as in (1) must be natural transformations of functors with external actions, so that

Tot(ηH), where ηH is the fixed-point Burnside functor, must be a homotopy equivalence

Tot(FH
i )→ Tot(FH

i+1) or Tot(FH
i+1)→ Tot(FH

i ) for all subgroups H ⊂ Zp. Further, the

face inclusions in (2) are required to be equivariant. In particular, in the external case

for (2), we require ri+1 = ri − (|ι|/p)R(G) or ri = ri+1 − (|ι|/p)R(G).

We call such a sequence, along with the arrows between ΣriFi, a stable equivalence

between the stable functors Σq1E1 and Σq2E2. If the sequence is such that the maps η

satisfy Tot(η) are chain homotopy equivalences for every choice of degree d : K → Z2, we

call it a K-equivariant (stable) equivalence, and say that ΣqiEi are K-equivariantly equiv-

alent. All external stable equivalences that appear in this paper will be K-equivariant.
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An external stable equivalence from Σq1E1 to Σq2E2 induces a Zp-equivariant chain

homotopy equivalence Tot(Σq1E1) → Tot(Σq2E2), well-defined up to choices of inverses

of the chain homotopy equivalences involved in its construction, and an overall sign.

Remark 3.27. We need not restrict to cube categories 2n and 2np in Definition 3.24;

this notion makes sense for any small category C and small category C with G-action,

respectively. However, to define stable equivalences when working with a more general

category C , there is no notion of the totalization. Note that the totalization Tot(F )

is weakly equivalent to the homotopy colimit of FF , viewed in the category of chain

complexes, where F denotes the forgetful functor BK → Z-Mod. In particular, the

appropriate generalization of Definition 3.26 to more general C is simply to replace

totalizations with homotopy colimits.

We will also need the notion of a product of Burnside functors.

Definition 3.28. Given functors F : 2mp → BK and J : 2np → B, both with external

action by Zp, we define the product F × J : 2(m+n)p → BK as follows

1. For (v1, v2) ∈ 2mp × 2np, (F × J)((v1, v2)) = F (v1)× J(v2).

2. For all (u1, u2) > (v1, v2), (F × J)(φ(u1,u2),(v1,v2)) = F (φu1,v1) × J(φu2,v2). The

decoration on each element of the correspondence is the decoration of F (φu1,v1).

3. For all (u1, u2) > (v2, v2) > (w1, w2), the map (F × J)(u1,u2),(v1,v2),(w1,w2) is defined:

(F × J)(u1,u2),(v1,v2),(w1,w2)(x1, x2) = ((F )u1,v1,w1(x1), (J)u2,v2,w2(x2)),

where, if ui = vi or vi = wi, we set (F )ui,vi,wi = Id or (J)ui,vi,wi = Id, respectively.

This defines a strictly unitary lax 2-functor 2(n+m)p → BK . We have Tot(F × J) =

Tot(F )⊗ Tot(J).
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The Zp-action on F × J is given as follows. On objects, ψg,(v,w) is given by the

product action ψg,(v,w) : F (v)× J(w) → F (gv)× J(gw), and similarly for the action on

correspondences.

3.4 Realizations of Burnside functors

In this section, given a functor F : 2n → BK , along with some other choices, we construct

an essentially well-defined finite CW spectrum |F |, which is an equivariant spectrum in

case K 6= {1}. As a first step, we construct finite CW complexes ‖F‖V for sufficiently

large representations V , so that increasing the parameter V corresponds to suspending

the CW complex ‖F‖V . The finite CW spectrum |F | is then defined from this sequence

of spaces. The construction of ‖F‖V depends on some auxiliary choices, but its stable

homotopy type does not. Moreover, the spectra constructed from two stably equivalent

Burnside functors will be homotopy equivalent. This section, included mostly to set up

notation, is almost entirely contained in [SSS18, §4], which itself is mostly a collection

of results from [LLS], along with some equivariant topology. The only new material in

the present section is Lemma 3.35.

3.4.1 Maps from correspondences

We start with the construction of (ordinary) disk maps, following [LLS, §2.10]1. Let

B` = {x ∈ R` | ||x|| ≤ 1}, and fix an identification S` = B`/∂, with ∂ := ∂B`, which we

maintain through the sequel, and view S` as a pointed space. For any subset B ⊂ B` of

the form B = {y ∈ B` | ||y − y0|| ≤ c, ||y0|| + c ≤ 1}, we note that there is a standard

identification of B with a copy of B` by sending x→ c(x−y0) and so we have a standard

1In previous papers, starting with [LLS], but continuing in [LLS17a],[SSS18], one works with “box
maps”. The previous papers could have been executed in very close analogy using disk maps as formu-
lated here, obtaining homotopy-equivalent objects; we prefer disk maps in the present paper as they are
more suitable for visualizing the group action.
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identification S` = B/∂B. In the sequel, by a subdisk B ⊂ B` we will mean a subset

B as above, along with the standard identification φ : B` → B (that is, we think of a

subdisk as a subset of B`, along with the standard framing).

Given a collection (indexed by {1, . . . , t}) of sub-disks B1, . . . , Bt ⊂ B with disjoint

interiors, there is an induced map

S` = B/∂B → B/(B\(B̊1 ∪ · · · ∪ B̊t)) =
t∨

a=1

Ba/∂Ba =
t∨

a=1

S` → S`. (3.29)

The last map is the identity on each summand, so that the composition has degree t. As

observed in [LLS], this construction is continuous in the position of the sub-disks. We

let E(B, t) denote the space of (indexed) disks with disjoint interiors in B, and have a

continuous map E(B, t)→ Map(S`, S`).

We can generalize the above procedure to associate a map of spheres to a map of

sets A → Y , as follows. Say we have chosen sub-disks Ba ⊂ B with disjoint interiors,

for a ∈ A. Then we have a map:

S` = B/∂B → B/(B\(
⋃
a∈A

B̊a)) =
∨
a∈A

Ba/∂Ba =
∨
a∈A

S` →
∨
y∈Y

S` (3.30)

where the last map is built using the map of sets A→ Y .

More generally, we can also create maps from a correspondence of sets, as follows.

Fix a correspondence A from X to Y with source map s and target map t. Say that

we also have a collection of disks Bx for x ∈ X. Finally, we also choose a collection of

sub-disks Ba ⊂ Bs(a) with disjoint interiors, for a ∈ A. We then have an induced map

∨
x∈X

S` →
∨
y∈Y

S`, (3.31)

by applying, on Bx, the map associated to the set map s−1(x) → Y . A map as in
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Equation (3.31) is said to refine the correspondence A. Let E({Bx}, s) be the space

of collections of labeled sub-disks {Ba ⊂ Bs(a) | a ∈ A} with disjoint interiors. Then,

choosing a correspondence (A, s, t) (so that A and s are those appearing in the definition

of E({Bx}, s)—note that the definition of E({Bx}, s) does not involve the target map

t)—Equation (3.31) gives a map E({Bx}, s)→ Map(∨x∈XS`,∨y∈Y S`). We write

Φ(e, A) ∈ Map(
∨
x∈X

S` →
∨
y∈Y

S`) (3.32)

for the map associated to e ∈ E({Bx}, s) and a compatible correspondence (A, s, t). One

of the main points is that, for any disk map Φ(e, A) refining A, the induced map on the

`th homology agrees with the abelianization map

A(A) : A(X) = H̃`(∨x∈XS`)→ A(Y ) = H̃`(∨y∈Y S`).

We now indicate a further generalization of disk maps to cover decorated correspon-

dences, along with a choice of representation r : K → Homeo(B`), so that the topological

degree of r is d : K → Z2. Fix a decorated correspondence (A, s, t, σ) from X to Y , and

let Bx, x ∈ X be some collection of disks. Fix a collection of K-labeled subdisks

φa : Ba ↪→ Bs(a) for a ∈ A. There is an induced map just as in Equation (3.31), but

whose construction depends on the decoration σ, as follows. For x ∈ X, we have a set

map s−1(x) → Y , along with decorations for each element of s−1(x). We modify the

disk map refining s−1(x)→ Y (without decoration) by precomposing with r(σ(a)):

S` = B/∂B → B/(B\(
⋃
a∈A

B̊a)) =
∨
a∈A

Ba/∂Ba

∨
r(σ(a))−−−−−→

∨
a∈A

Ba/∂Ba =
∨
a∈A

S` →
∨
y∈Y

S`.

We say that a map constructed this way r-refines (or, when r is clear from context,

simply refines) the decorated correspondence (A, s, t, σ). As before, we can regard the
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above construction as a map

Φ(e, A) ∈ Map(
∨
x∈X

S`,
∨
y∈Y

S`),

where e ∈ E({Bx}, s), and (A, s, t, σ) is a compatible decorated correspondence. Once

again, the induced map on the `th homology agrees with the d-abelianization map.

We will assume henceforth that B = B(V ) is the unit disk of some orthogonal

representation V of K.

Let EK,V ({Bx}, s) denote the set of disk embeddings in E({Bx}, s) whose centers lie

in B(V )K .

Lemma 3.33. [cf. Lemma 4.5 [SSS18]] Consider s : A → X. If dim(V K) ≥ k then

EK,V ({Bx}, s) is (k − 2)-connected.

Proof. The proof is analogous to [LLS, Lemma 2.29] or [SSS18, Lemma 4.5].

Lemma 3.34. [cf. Lemma 4.6 [SSS18]] Fix an orthogonal K-representation r. If e ∈

E({Bx}, sA) is compatible with a decorated correspondence A from X to Y , and f ∈

E({By}, sB) is compatible with a decorated correspondence B from Y to Z, then there is

a unique f ◦re ∈ E({Bx}, sB◦A) compatible with B◦A, so that Φ(f ◦re, B◦A) = Φ(f,B)◦

Φ(e, A). Moreover, this assignment E({By}, sB) × E({Bx}, sA) → E({Bx}, sB◦A) is

continuous and sends EK,V ({By}, sB)× EK,V ({Bx}, sA) to EK,V ({Bx}, sB◦A).

Proof. For (b, a) ∈ B ×Y A with decorations g, h respectively, define B(b,a) to be the

sub-disk whose image is

Bb ↪→ BsB(b)=tA(a)
r(h−1)−−−→ BsB(b) = Ba ↪→ BsA(a).

Note that the embedding of the disk is not that given by the above composition

(rather, we take the standard framed disk with the same image). This defines f ◦r e as
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the image of (f, e) under the assignment E({By}, sB) × E({Bx}, sA) → E({Bx}, sB◦A).

It follows from the definitions that Φ(f ◦r e, B ◦ A) = Φ(f,B) ◦ Φ(e, A).

Finally, consider the restriction of the assignment to EK,V ({By}, sB)×EK,V ({Bx}, sA).

It is clear that the above construction takes disks centered on V K to disks centered on

V K , completing the proof.

Note that if K is abelian, then for e ∈ EK,V ({Bx}, s), the induced map Φ(e, A) is

K-equivariant.

Fix a finite group G and let U be a completeK×G-universe [May96]. The set of finite-

dimensional subspaces of U is partially ordered by inclusion. For a finite-dimensional

subspace V of U , let B(V ) denote the unit ball.

Lemma 3.35. Let H a subgroup of G as above and A a correspondence from X to Y ,

possibly K-decorated. Say that H acts on X and Y , compatibly with source and target

maps, by K-decorated bijections ψh for h ∈ H, and we arer given the data of 2-morphisms

ψh,A : ψh ◦ A→ A ◦ ψh for all h ∈ H.

Further, define an action of H on E({Bx}, s) by sending a collection of embedded

disks {φa : Ba → Bs(a)}a∈A to {gφag−1 : Bga → Bgs(a)}a∈A. Here g takes Ba → Bga,

by the action of g ∈ G on B(V ) using the identifications Bga = B(V ) = Ba. That

is, say the correspondence ψg : Y → Y takes y ∈ Y to gy ∈ Y . Then, g acts by

Ba = B(V ) →g B(V ) = Ba, and similarly for g−1 (using the decorations of the action

on X). For any N > 0, for all sufficiently large finite-dimensional subspaces V of U ,

EK,V ({Bx(V )}, s)H is N-connected (and, in particular, nonempty).

Proof. We must first see that the formula for the H-action indeed gives a well-defined

action. By definition, it takes disks to disks, but it is also necessary that it take framed

disks to framed disks; this is clear from the definitions. (Note, however, that for an

arbitrary H-action on a ball B, this condition need not be satisfied).
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We write out the argument for K = {1}; for more general K one need only replace

V with V K throughout. We also reduce to the case X = {x} as follows. First, label

A = {a11, . . . , a1k1
, . . . , an1 , . . . , a

n
kn
}, where s(ai1j1) = s(ai2j2) if and only if i1 = i2. Observe

that to an element of E({Bx(V )}, s), we may associate a tuple (z11 , . . . , z
n
kn

) ∈ V ×(
∑
ki) by

taking centers, and E({Bx(V )}, s) is equivariantly homotopy-equivalent to V ×
∑
ki −∆

where ∆ is the set of tuples (zi) for which there is some pair i 6= j with zi = zj.

Let Π denote the projection map E({Bx(V )}, s) → V ×
∑
ki − ∆. Now, if for some

v ∈ V ×
∑
ki we have vi`1 = vi`2 with `1 6= `2, then gvi`1 = gvi`2 by definition. Thus, a

H-fixed tuple (z) ∈ V ×
∑
ki (where H acts on V ×

∑
ki as in the statement of the lemma)

is in ImΠ|E({Bx(V )},s)H if and only if, for x running over any set of representatives for the

orbits of X under H, there are no a1 6= a2 ∈ A so that s(a1) = s(a2) = x and z1 = z2

(where zi ∈ V are the centers of the disks corresponding to ai). That is, we may assume

X = {x}, by possibly replacing H with a subgroup H ′ ⊂ H.

Fix X = {x} and let Ω denote the set of orbits of the G-action on A, and choose some

identification Ω ∼= {1, . . . , n}. Choose a collection of representatives {ai}1≤i≤n for the

orbits. For each ai, let Si ⊂ H be the stabilizer. Define 〈g〉 ⊂ G to be the subgroup of G

generated by g ∈ G. Let B = B(V ) for some V sufficiently large. Let E ′({Bx}, s) be the

set of tuples (x1, . . . , xn) ∈ V ×n so that xi ∈ V Si and so that, for all g ∈ G which are not

in Si, xi 6∈ V 〈g〉, and so that (x1, . . . , xn) 6∈ ∆ where ∆ is the set of tuples (xi) for which

there is some pair i 6= j with g1xi = g2xj for some g1, g2. We observe that associated to

any element of E({Bx}, s)H we obtain a tuple of points in B(V ) by taking centers of the

embedded disks; in fact, this gives a map E({Bx}, s)H → E ′({Bx}, s) with contractible

fibers. The condition that xi 6∈ V 〈g〉 is necessary, since an element e ∈ E({Bx}, s) must

consist of disks whose interiors are disjoint; indeed, if xi ∈ V 〈g〉 for g 6∈ Si, then the

interiors of the disks Bai and Bgai would intersect nontrivially.
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That is, E ′({Bx}, s) =
∏n

i=1 V
Si/D where

D = ∆ ∪
n⋃
i=1

(
(V S1 × V S2 × . . .× V Si−1)×

⋃
g 6∈Si

V 〈g〉 × (V Si+1 × . . .× V Sn)

)
.

For given N > 0, to show that E ′({Bx}, s) (and therefore also E({Bx}, s)H) is N -

connected, it suffices to show that D has arbitrarily high codimension in
∏n

i=1 V
Si . This

can be achieved by constructing a suitably large V in U .

As U is complete, it contains infinitely many copies of the regular representation R[G]

of our finite group G. Recall that R[G] satisfies the following two properties:

1. It contains a copy of the trivial representation; every g ∈ G acts trivially on this

1-dimensional component.

2. For any 1 6= g ∈ G, g acts nontrivially on some irreducible component of R[G].

Given 1 6= g ∈ G, these two facts show that both the dimension and the codimension of

R[G]〈g〉 are at least 1.

As D is the union of finitely many pieces, it suffices to show that each piece has

arbitrarily high codimension, say at least N + 2. Choose V ∼= R[G]⊕N+2, so that V 〈g〉

has dimension and codimension at least N+2. It is now clear that the non-∆ pieces of D

have codimension at least N+2. To see that ∆ also has high codimension, observe that ∆

is the (finite) union of subsets homoeomorphic to diagonals ∆i,j = {(x, x) ∈ V Si × V Sj}

for i 6= j, thickened by the remaining components
∏

k 6=i,j V
Sk . The dimension of ∆i,j is at

most min(dimV Si , dimV Sj), so it codimension is at least max(dimV Si , dimV Sj), which

is at least N + 2. The codimension of ∆i,j ⊂ V Si × V Sj is the same as the codimension

of ∆i,j × (
∏

k 6=i,j V
Sk) ⊂

∏n
k=1 V

Sk .

The same argument applies to any representation containing V , and so the result

now follows.
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Lemma 3.36. Maintain the notation from Lemma 3.35. For e ∈ EK,V ({Bx(V )}, s)H ,

the induced map Φ(e, A) is K ×H-equivariant.

Proof. This follows from the definition of disk maps, as well as the definition of the

H-action on E({Bx(V )}, s) in Lemma 3.35.

3.4.2 Equivariant topology

Let Top∗ be the category of well-based topological spaces; we will usually work with finite

CW complexes. A weak equivalence X → Y is a map that induces isomorphisms on all

homotopy groups; typically our spaces are all simply connected, when the definition

reduces to being isomorphisms on all homology groups. Homotopy equivalence is a

special case of weak equivalence, and for CW complexes (the case at hand), the two

notions are equivalent.

We will sometimes also work with spaces equipped with an action by a fixed finite

group G, and all maps are G-equivariant, forming a category G-Top∗. We also require

that the inclusions of fixed points XH → XH′ , for all subgroups H ′ < H of G, are

cofibrations; in our case, all the spaces will carry CW structures so that the actions

are CW actions—that is, each group element simply permutes the cells and respects

the attaching maps. A map X → Y is called a weak equivalence if the induced map

XH → Y H is a weak equivalence for all subgroups H of G. A homotopy of G-maps

X → Y is an extension to a G-equivariant map X × I → Y , where X × I is given a

G-structure by g(x, i) = (gx, i), and we have the usual notion of a nullhomotopy. A

homotopy equivalence in G-Top∗ induces a weak equivalence. For G-CW complexes

(the case at hand), the two notions are equivalent by the G-Whitehead theorem, see

[GM95, Theorem 2.4]. For G-CW complexes, a weak equivalence X → Y induces a weak

equivalence between quotients of fixed points, XH′/XH → Y H′/Y H , for all subgroups

H ′ < H of G, and between orbit spaces, X/H → Y/H, for all subgroups H of G.
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We will also need the concept of a G-universe U , that is, a countably infinite-

dimensional real inner product space with an action of G by linear isometries [May96].

The space U is called complete if it contains an infinite number of copies of all finite-

dimensional irreducible representations of G.

3.4.3 Homotopy coherence

In this section, we briefly review homotopy colimits and homotopy coherent diagrams

following [LLS, §2.9].

We recall the notion of a homotopy coherent diagram, which is the data from which a

homotopy colimit is constructed. A homotopy coherent diagram is intuitively a diagram

F : C → K-Top∗ which is not commutative, but commutative up to homotopy, and the

homotopies themselves commute up to higher homotopy, and so on, and for which all

the homotopies and higher homotopies are viewed as part of the data of the diagram.

Precisely, we have the following.

Definition 3.37 ([Vog73, Definition 2.3]). A homotopy coherent diagram F : C →

K-Top∗ assigns to each x ∈ C a space F (x) ∈ K-Top∗, and for each n ≥ 1 and each

sequence

x0
f1−→ x1

f2−→ · · · fn−→ xn

of composable morphisms in C a continuous map

F (fn, . . . , f1) : [0, 1]n−1 × F (x0)→ F (xn)

with F (fn, . . . , f1)([0, 1]n−1×{∗}) = ∗. These maps are required to satisfy the following
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compatibility conditions:

F (fn, . . . , f1)(t1, . . . , tn−1) =

F (fn, . . . , f2)(t2, . . . , tn−1), f1 = Id

F (fn, . . . , f̂i, . . . , f1)(t1, . . . , ti−1 · ti, . . . , tn−1), fi = Id, 1 < i < n

F (fn−1, . . . , f1)(t1, . . . , tn−2), fn = Id

F (fn, . . . , fi+1)(ti+1, . . . , tn−1) ◦ F (fi, . . . , f1)(t1, . . . , ti−1), ti = 0

F (fn, . . . , fi+1 ◦ fi, . . . , f1)(t1, . . . , t̂i, . . . , tn−1), ti = 1.

(3.38)

When C does not contain any non-identity isomorphisms, homotopy coherent diagrams

may be defined only in terms of non-identity morphisms and the last two compatibility

conditions.

Given a homotopy coherent diagram, we can define its homotopy colimit in K-Top∗,

quite concretely, as follows:

Definition 3.39 ([Vog73, §5.10]). Given a homotopy coherent diagram F : C → K-Top∗

the homotopy colimit of F is defined by

hocolim F = {∗} q
∐
n≥0

∐
x0

f1−→··· fn−→xn

[0, 1]n × F (x0)/ ∼, (3.40)
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where the equivalence relation ∼ is given as follows:

(fn, . . . , f1; t1, . . . , tn; p) ∼



(fn, . . . , f2; t2, . . . , tn; p), f1 = Id

(fn, . . . , f̂i, . . . , f1; t1, . . . , ti−1 · ti, . . . , tn; p), fi = Id, i > 1

(fn, . . . , fi+1; ti+1, . . . , tn;F (fi, . . . , f1)(t1, . . . , ti−1, p)), ti = 0

(fn, . . . , fi+1 ◦ fi, . . . , f1; t1, . . . , t̂i, . . . , tn; p), ti = 1, i < n

(fn−1, . . . , f1; t1, . . . , tn−1; p), tn = 1

∗, p = ∗.

When C does not contain any non-identity isomorphisms, homotopy colimits may be

defined only in terms of non-identity morphisms and the last four equivalence relations.

That is,

hocolim F = {∗} q
∐
n≥0

∐
x0

f1−→··· fn−→xn
∀i∈{1,...,n},fi 6=Id

[0, 1]n × F (x0)/ ∼′,

where ∼′, in the case C has no non-identity isomorphisms, is the last four cases of the

definition of ∼.

In this paper, the categories C will have no non-identity isomorphisms, so we will

work with the latter formulation.

We will occasionally need:

Definition 3.41. [Definition 2.6, [Vog73]] A homomorphism of homotopy coherent

diagrams F1, F0 : C → K-Top∗ is a collection of maps φx : F1(x) → F0(x) for each

x ∈ Ob(C ), so that

F0(fn, . . . , f1)(t1, . . . , tn−1) ◦ φx = φy ◦ F1(fn, . . . , f1)(t1, . . . , tn−1),

where fn ◦ · · · ◦ f1 : x→ y ∈ C , for all ti.
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A homotopy-coherent diagram may itself be viewed as a commutative diagram from

an auxiliary category as in [Vog73, Definition 2.3], and a homomorphism of homotopy

coherent diagrams is a homomorphism (of diagrams, in the usual sense) of the associated

commutative diagrams from the auxiliary category.

We will need the following properties:

(ho-1) Suppose that F0, F1 : C → K-Top∗ are homotopy coherent diagrams and η : F1 →

F0 is a natural transformation, that is, a homotopy coherent diagram

η : 2× C → K-Top∗

with η|{i}×C = Fi, i = 0, 1. Then η induces a map hocolim η : hocolimF1 →

hocolimF0, well-defined up to homotopy, according to [Vog73, Theorem 5.12].

If η(x) is a weak equivalence for each x ∈ C —we will call such an η a weak

equivalence F1 → F0—then hocolim η is a weak equivalence as well.

When the spaces involved are K-CW complexes (the case at hand), a weak equiv-

alence η : F1 → F0 is also a homotopy equivalence [Vog73, Proposition 4.6], that

is, there exists ζ, ζ ′ : F0 → F1 and

h, h′ : {2→ 1→ 0} × C → K-Top∗,

with h|{2→1}×C = η, h|{1→0}×C = ζ, h|{2→0}×C = IdF0 , and h′|{2→1}×C = ζ ′,

h′|{1→0}×C = η, h′|{2→0}×C = IdF1 .

(ho-2) A homomorphism F1 → F0 : C → K-Top∗ of homotopy coherent diagrams in-

duces a K-equivariant map hocolimF1 → hocolimF0, compatible with (ho-1), as

in [Vog73, Proposition 7.1].

(ho-3) For any subgroup H of K, define the fixed-point diagram FH : C → Top∗ by
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setting FH(x) to be the fixed points F (x)H . Then there is a natural homeomor-

phism

hocolim(F )H ' hocolim(FH).

(ho-4) Suppose that F : C → Top∗ and G : D → Top∗. Then there is an induced functor

F ∧ G : C × D → Top∗ with (F ∧ G)(v × w) = F (v) ∧ G(w). Then there is a

natural (in homomorphisms of homotopy coherent diagrams) weak equivalence

(hocolimF ) ∧ (hocolimG)→ hocolim(F ∧G).

(ho-5) Let L : C → D be a functor between small categories. Given d ∈ Ob(D), the

undercategory of d is as follows. It has objects {(c, f) | c ∈ C , f : d → L(c)},

and arrows Hom((c, f), (c′, f ′)) = {g : c → c′ | f ′ = L(g) ◦ f}. We write d ↓ L

for the undercategory of d. The functor L is called homotopy cofinal if for each

d ∈ Ob(D), the undercategory d ↓ L has contractible nerve.

For a homotopy coherent diagram F : D → Top∗, there is an induced homotopy

coherent diagram F ◦ L : C → Top∗. Require that F (j) is cofibrant for all j ∈

Ob(D). If L is homotopy cofinal, then the natural map

hocolimF ◦ L→ hocolimF

is a homotopy equivalence. This follows from the version for homotopy limits in

[BK72]; cf. [LLS, (ho-4), §2.9].

3.4.4 Little disks refinement

With this background, we are ready to review the little box realization construction of

[LLS, §5] and generalize to functors to BK . Assume from now on that K is abelian.
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Definition 3.42. Fix a small category C and a strictly unitary 2-functor F : C → BK .

A spatial refinement of F modeled on V , for V an orthogonal K-representation, is a

homotopy coherent diagram F̃ : C → K-Top∗ such that

1. For any u ∈ C , F̃ (u) = ∨x∈F (u)B(V )/∂B(V ).

2. For any sequence of morphisms u0
f1−→ · · · fn−→ un in C and any (t1, . . . , tn−1) ∈ [0, 1]n−1

the map

F̃k(fn, . . . , f1)(t1, . . . , tn−1) :
∨

x∈F (u0)

B(V )/∂B(V )→
∨

x∈F (un)

B(V )/∂B(V )

is a K-equivariant disk map refining the correspondence F (fn ◦ · · · ◦ f1), which is

naturally isomorphic to F (fn)×F (un−1) · · · ×F (u1) F (f1).

This definition extends [LLS, Definition 5.1] and [SSS18, Definition 4.11].

The main technical result that makes it possible to construct spatial refinements from

Burnside functors is as follows.

Proposition 3.43. [cf Proposition 4.9 [SSS18], Proposition 5.2 [LLS]] Let C be a small

category in which every sequence of composable non-identity morphisms has length at

most n, and let F : C → BK be a strictly unitary 2-functor.

1. For V sufficiently large, there is a spatial refinement of F modeled on V .

2. For V sufficiently large, any two spatial refinements of F modeled on V are weakly

equivalent.

3. If F̃ is a spatial refinement of F modeled on V then the result of suspending each

F̃ (u) and F̃ (fn, . . . , f1) by W gives a spatial refinement of F modeled on V ⊕W .

Proof. This is entirely analogous to the proof of Proposition 4.9 of [SSS18]
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3.4.5 Realization of cube-shaped diagrams

Finally in this section we will discuss how to construct a CW complex ‖F‖, and then

a CW spectrum |F |, from a given diagram F : 2n → BK . We assume in this section

that K is abelian. Let 2+ be the category with objects {0, 1, ∗} and unique non-identity

morphisms 1→ 0 and 1→ ∗, and let 2n+ = (2n)q ∗ where, for v ∈ 2n − {0n}, there is a

unique arrow v → ∗, and Hom(0n, ∗) = ∅.

Let F̃ : 2n → K-Top∗ be the spatial refinement of F modeled on a K-representation

V , and let F̃+ : 2n+ → Top∗ be the diagram obtained from F̃ by setting F̃+(∗) = pt. Let

‖F‖V be the homotopy colimit of F̃+ (we will usually suppress V from the notation).

Sometimes we write ||F̃+|| to indicate dependence on the choice of spatial refinement.

We call ‖F‖ the realization of F : 2n → BK .

Corollary 3.44. [cf. Corollary 5.6 [LLS] and Corollary 4.14 [SSS18]] For V sufficiently

large, the realization ‖F‖V is well-defined up to weak equivalence in K-Top∗.

Proof. This follows from Proposition 3.43 and properties of homotopy colimits (ho-1).

The homotopy colimit ‖F‖ may be given several CW structures. First, from Defi-

nition 3.39, there is the standard CW structure, with cells [0, 1]m × Bx, parameterized

by tuples (fm, . . . , f1) subject to some relations. Usually, this will not even be a K-CW

decomposition (as some cells may be, for example, fixed by the action of K, but not

fixed pointwise, as in the definition of a K-CW structure).

We have a second CW structure on ‖F‖, the fine structure, which is obtained from

the standard structure by subdividing each cell [0, 1]m ×Bx into K-CW cells.

There is also the coarse cell structure of [LLS, Section 6]. There they construct a

CW structure on ‖F‖ for F an (unsigned) Burnside functor, with cells formed by taking

unions of standard cells, so that there is exactly one (non-basepoint) cell C(x) for each
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x ∈ quF (u). In more detail, if Fx denotes the Burnside sub-functor of F generated

by x, then the subcomplex ‖Fx‖ of ‖F‖ is the image of the cell C(x). The coarse cell

structure generalizes in a straightforward way to K-equivariant realizations; but it is not

an equivariant CW-structure.

Proposition 3.45. If F : 2n → BK and d : K → Z2, then the shifted reduced cellular

complex C̃cell(‖F‖V )[− dimV ] is isomorphic to the totalization Totd(F ) with the cells

mapping to the corresponding generators. If η : F1 → F0 is a natural transformation of

Burnside functors, then the map ‖F1‖ → ‖F0‖ is cellular, and the induced cellular chain

map agrees with Tot(η).

Proof. This follows as Proposition 4.16 of [SSS18].

We package the output of this construction as a finite CW spectrum, by which we

mean a pair (X,W ), for X a pointed K-CW complex and W a formal linear combination

of elements of some (fixed) complete K-universe U . Such a pair can be viewed as an

object of the Spanier-Whitehead category, or as ΣW (Σ∞X), the W -suspension of the

suspension spectrum of the K-CW complex X. We define the (spectrum) realization

of a stable Burnside functor (F : 2n → BK ,W ) as the finite CW spectrum |ΣWF | =

(‖F‖V ,W − V ).

We record a result of [SSS18] (there it is proved for K = Z2; the more general proof

is no different):

Proposition 3.46. [Lemma 4.17 [SSS18]] Let (F : 2n → BK ,W ) be a stable Burnside

functor. The spectrum realization |ΣWF | is well-defined up to K-equivariant stable ho-

motopy equivalence. For stable Burnside functors (Fi,Wi) for i = 1, 2, a K-equivariant

stable equivalence ΣW1F1 → ΣW2F2 induces a K-equivariant homotopy equivalence

|ΣW1F1| → |ΣW2F2|
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well-defined up to K-equivariant homotopy equivalence.

3.5 External actions and realization

Our goal in the following will be to show that, for a Burnside functor F with an external

action ψ, a suitable realization of F admits a G-action, and the fixed-point set can be

explicitly described as a realization of yet another Burnside functor. In Section 3.5.1 we

deal with some generalities on homotopy coherent diagrams, then specialize to homotopy

coherent diagrams from Burnside functors in Section 3.5.2. Throughout this section we

assume that K is an abelian group.

3.5.1 External actions on homotopy coherent diagrams

Definition 3.47. Let F : C → Top∗ a homotopy coherent diagram, where C is a small

category so that there is some n for which each sequence of composable non-identity

morphisms has length at most n. Say that a finite group G acts on C . An external

action ψ̄ of G on F is defined as follows. An external action consists of a map ψ̄ : G→

Homeo(
∨
c∈Ob(C ) F (c)) lifting the group action ψ of G on Ob(C ) (and preserving the

basepoint). The action ψ̄ is required to ‘commute with composition’ in the following

sense:

ψ̄g(F (fi, . . . , f1)(t1, . . . , ti−1)(y)) = F (ψg(fi), . . . , ψg(f1))(t1, . . . , ti−1)(ψ̄gy), (3.48)

for all g ∈ G and y ∈ F (c). For a functor F : C → K-Top∗, an external action on F is

as above but further requiring that the K and G actions commute.

Remark 3.49. A homotopy coherent diagram with external action by G may be thought

of as an analogue of a G-space in the category of homotopy coherent diagrams. First,

126



note that a pointed G-space X may be viewed as a functor X : BG → Top∗, where

BG is the category with one object, and morphisms G. A more flexible notion (though

equivalent for many purposes, see [DKS89],[Coo78]) is a homotopy coherent diagram

X : BG→ Top∗.

Consider the case of a small category C without a G-action. Then one might define

a “G-equivariant” diagram as a homotopy-coherent diagram BG× C → Top∗.

For the case of present interest, that is, for a small category C with G-action, we

need a ‘twisted’ version of the above construction. One would then expect a homotopy-

coherent diagram (EG × C )/G → Top∗. However, our definition of an external action

is not the most general possible; roughly, it is somewhere between a BG commutative

(rather than homotopy coherent) diagram and a homotopy coherent diagram (EG ×

C )/G→ Top∗. That is, Definition 3.47 turns out to be equivalent to a functor C̃ → Top∗,

using the notation of Remark 3.17, which is homotopy coherent along some faces, and

required to be strictly commutative along others (suitably interpreted), as the reader

may verify (cf. Definition 3.41).

Proposition 3.50. Let F : C → Top∗, where C has an action ψ and F admits an

external action, all as in Definition 3.47. Then the homotopy colimit hocolimF admits

a G-action by

g(fm, . . . , f1; t1, . . . , tm; y) = (ψgfm, . . . , ψgf1; t1, . . . , tm; ψ̄gy).

Similarly, if F : C → K-Top∗ admits an external action by G, the homotopy colimit in

K-Top∗ inherits a K ×G-action by the same formula.

Proof. This consists of unraveling the Definition 3.39 of homotopy colimits and applying

the condition (3.48). We work with the version of the homotopy colimit in which no non-

identity isomorphisms appear in the index category (as is possible from our hypotheses
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on C ). The K-equivariant version is analogous. One first sees by directly considering

Definition 3.39 that G acts on the homotopy colimit (as a set), and the continuity of

the G-action in Definition 3.47 implies that the G-action on the homotopy colimit is

continuous.

Definition 3.51. Let F1, F2 : C → K-Top∗ be homotopy coherent diagrams, where C

has an action ψ and F1 and F2 admit external actions, all as in Definition 3.47. We say

that F1 and F2 are externally weakly equivalent (usually shortened to weakly equivalent

if the context is clear) if there is a diagram F3 : 2× C → K-Top∗, where 2× C is given

the product G-action, so that F3|i×C = Fi−1 and so that F3 itself has an external action.

Furthermore, we require that the maps F1(x)→ F2(x) are weak equivalences of K-spaces

for each x ∈ C .

Lemma 3.52. Let H a subgroup of G, and F : C → BK as in Definition 3.47. The

H-fixed-point set (hocolimF )H of hocolimF is the homotopy colimit of the homotopy co-

herent diagram FH : CH → K-Top∗ with entries FH(u) = F (u)H , whose homotopies

FH(fi, . . . , f1)(t1, . . . , ti−1)(y) are given by the restriction of the homotopies of F to

F (u)H .

Proof. We describe the fixed-point set explicitly. First, by the construction of homotopy

colimits, by applying the relations iteratively, each point in hocolimF may be represented

(uniquely) by a tuple (fm, . . . , f1; t1, . . . , tm; y) for m ≥ 0, with none of ti = 0, 1. Such a

point is in the fixed-point set if and only if

(fm, . . . , f1) = (hfm, . . . , hf1)

as tuples in Hom(C ), and y = hy.
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That is, the fi must come from the H-fixed arrows, i.e. elements of Hom(CH).

Moreover, it is clear that the homotopies are as in the statement of the lemma.

3.5.2 Realizations

Lemma 3.53. Fix a Burnside functor F : C → BK where F admits an external action

ψ̄ by G, for C a small category so that there is some n for which each sequence of

composable non-identity morphisms has length at most n.

Let F̃+ be a r-homotopy coherent diagram for F , modeled on a K×G-representation

V , where r is V viewed as an orthogonal representation of K. Suppose that

g(F̃+
k (fi, . . . , f1)(t1, . . . , ti−1)(p)) = F̃+

k (g(fi), . . . , g(f1))(t1, . . . , ti−1)(gp). (3.54)

for p ∈ Bx/∂Bx, and x ∈ F (u), and finally g ∈ G. Here, g acts on each copy Bx, for

x ∈ qu∈Ob(C )F (u), of B(V ), by using that each Bx is canonically identified with B(V ).

That is, g ∈ G acts by Bx = B(V ) →g B(V ) →k= Bgx, where k ∈ K is the label

σ(s−1(x)) for s−1(x) ∈ ψg,u where x ∈ F (u) , as in the notation of Definition 3.16.

Then hocolimF̃ admits a G-action, commuting with its natural K-action, given by

(fm, . . . , f1; t1, . . . , tm−1; y)→ (gfm, . . . , gf1; t1, . . . , tm−1; g(y)).

If F : 2np → BK is a Burnside functor admitting an external action by Zp, with

F̃ satisying the conditions of the Lemma for C = 2n, we have that ||F̃+|| admits a

Zp-action, commuting with its natural K-action, as above.

Proof. This follows directly from Proposition 3.50; the last statement is a special case.

Note that the the condition (3.54) divides up into a family of conditions for each
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1 ≤ i ≤ n, which may be checked separately.

Definition 3.55. We call an equivariant refinement F̃+ of a Burnside functor F : C →

BK with a G-external action satisfying (3.54) a G-coherent refinement of F .

We next try to build a homotopy coherent diagram satisfying the conditions of Lemma

3.53. The key is to provide a suitable generalization of Proposition 5.2 of [LLS].

Proposition 3.56. [cf. Proposition 5.2 [LLS], Proposition 4.12 [SSS18]] Let C be a

small category admitting a G-action ψ, in which every sequence of composable non-

identity morphisms has length at most n, and let F : C → BK be a strictly unitary

2-functor admitting an external G-action.

1. For all sufficiently large finite-dimensional representations V of K ×G there exists a

G-coherent refinement of F modeled on V .

2. There exists some finite-dimensional G-representation W so that for all finite-dimensional

representations V of K×G containing W , any two G-coherent refinements of F mod-

eled on V are weakly equivalent.

3. If F̃V is a G-coherent spatial refinement of F modeled on V , then the result of suspend-

ing each F̃V (u) and F̃V (fn, . . . , f1) by a K ×G representation V ′ gives a G-coherent

spatial refinement of F modeled on V ⊕ V ′.

Proof. For Item 1, we inductively construct a spatial refinement F̃ .

First, choose representatives aω of the orbits of Hom(C ) under the action of G. For

each representative aω, let Sω ⊂ G be its stabilizer subgroup. For each aω, choose a

K×Sω-equivariant disk map refining F (aω); such exist by Lemmas 3.35 and 3.36. Then,

define the maps associated to each a ∈ Hom(C ) by, if gaω = a, setting gF̃ (aω)g−1 =:

F̃ (gaω). Here, recall that g ∈ G acts on ∨u∈C ∨x∈F (u) B(V )x/∂ by B(V )x = B(V ) →g
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B(V )→k(g) B(V ) = B(V )gx, where k(g) is the label of the arrow x→ gx (an element of

K), so that F̃ (gaω) is a composite (say that aω is a correspondence from F (u) to F (v)):

F̃ (gu) =
∨

gx∈F (gu)

B(V )gx/∂ →k(g−1)g−1
∨

x∈F (u)

B(V )x/∂ →F̃ (aω) F̃ (v) =
∨

y∈F (v)

B(V )y/∂

→k(g)g
∨

gy∈F (gv)

B(V )gy = F̃ (gv).

It follows from the construction of F̃ (aω) that F̃ (a) is independent of the choice of

g so that gaω = a holds. Let us see that the maps constructed thus satisfy Lemma 3.53

for i = 1. Indeed, we need to check

gF̃ (f)(p) = F̃ (gf)(gp)

for all g ∈ G. By hypothesis, f = haω for some aω. Then F̃ (haω) is defined by

hF̃ (aω)h−1, and the i = 1 case of (3.54) follows readily, using that sF̃ (aω)s−1 = F̃ (aω)

for s ∈ Sω.

Fix ` ≥ 1 and suppose that for any sequence v0 →f1 · · · →f` v` of non-identity mor-

phisms we have chosen a map ef1,...,f` : [0, 1]`−1 → EK,V ({Bx | x ∈ F (v0)}, sF (f`◦···◦f1)),

compatible in that:

ef`,...,f1(t1, . . . , ti−1, 0, ti+1, . . . , t`−1) = ef`,...,fi(ti+1, . . . , t`−1) ◦ efi−1,...,f1(t1, . . . , ti−1)

ef`,...,f1(t1, . . . , ti−1, 1, ti+1, . . . , t`−1) = ef`,...,fi◦fi−1,...,f1(t1, . . . , ti−1, ti+1, . . . , t`−1)

and satisfying the i = ` condition of Lemma 3.53.

Then, choose representatives aω for the orbits of the G-action on the set of all com-

posable tuples v0 →f1 · · · →f`+1 v`+1 for vi objects of C , with stabilizers Sω as before.

Here, G acts on the set of composable tuples by acting diagonally on each of the mor-
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phisms in a composable tuple. Then for the induction step, given aω = (f1, . . . , f`+1)

where v0
f1−→ · · · f`+1−−→ v`+1 is a composable sequence of arrows, we have a continuous map

S`−1 = ∂([0, 1]`)→ EK,V ({Bx | x ∈ F (v0)}, sF (f`+1◦···◦f1))

defined by

(t1, . . . , ti−1, 0, ti+1, . . . , t`) 7→ ef`+1,...,fi+1
(ti+1, . . . , t`) ◦ efi,...,f1(t1, . . . , ti−1)

(t1, . . . , ti−1, 1, ti+1, . . . , t`) 7→ ef`+1,...,fi+1◦fi,...,f1(t1, . . . , ti−1, ti+1, . . . , t`).

(3.57)

By Lemma 3.35, this map extends to a map, call it ef`+1,...,f1 , from [0, 1]`, which is

K × Sω-equivariant. Define ef ′`+1,...,f
′
1
, for (f ′`+1, . . . , f

′
1) = gaω for some g ∈ G, by

geaωg
−1. This is well-defined as in the i = 1 case (independent of the choice of g for

which (f ′`+1, . . . , f
′
1) = gaω) and gives that the collection of e(f ′`+1,...,f

′
1)

thus defined satisfy

the i = `+ 1 case of Lemma 3.53.

We have used that external actions respect composition, as in Definition 3.16, in order

to see that each geaωg
−1 is a family of disk maps refining the composite correspondence

g(f ′`+1 ◦ · · · ◦ f ′1).

By definition, the maps

Φ(efm,...,f1) : [0, 1]m−1 ×
∨

x∈F (v0)

B(V )x/∂B(V )x →
∨

x∈F (vm)

B(V )x/∂B(V )x

assemble to form a homotopy coherent diagram.

Next we address point 2. Fix G-coherent refinements F̃i of F , for i = 0, 1. It suffices

to construct a G-coherent refinement F̃2 : 2 × C → K-Top∗ with F̃2|{i}×D = F̃i, where

F2 : 2 × C → BK is two copies of F , along with identity arrows along the 2-factor. By

Item 1 we can construct such F̃2. By construction, each F̃2(φ1,0 × Idu) for u ∈ Ob(D)
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will be a homotopy equivalence (where φ1,0 is the unique nonidentity morphism in 2),

and by definition we obtain that F0, F1 are weakly equivalent.

Item 3 is clear.

Let us consider the fixed-point set of the homotopy colimit constructed in Lemma

3.53. We state the result only for Burnside functors from the cube category; the result

for general C differs only notationally. Henceforth, we will always view 2np as a category

with Zp-action by permuting the coordinates. The fixed-point set is readily identified

with a copy of ι : 2n → (2n)p, which we call the canonical embedding of cube categories.

Call a Burnside functor F with external action singular if there exists u ∈ CH

and x ∈ F (u)H so that ψg (the decorated bijection F (u)H → F (u)H) has nontrivial

decoration on x. Otherwise, call F nonsingular

Lemma 3.58. Let F̃ be a Zp-coherent refinement of F : 2np → BK, a nonsingular

Burnside functor with external action. For H a subgroup of Zp, the H-fixed-point set,

||F ||H , is a K × Zp/H-equivariant realization of the fixed-point Burnside functor FH .

That is, ||F ||HV = ||FH ||V H .

Proof. By Lemma 3.52, (hocolimF̃+)H is described explicitly, by restricting to the sub-

homotopy-coherent diagram (F̃H)+ : (2np)H+ → K-Top∗ by assigning F̃H(u) = F (u)H ,

with homotopies as in Lemma 3.52. That is,

(hocolimF̃+)H = hocolim(2np)H+
(F̃H)+

This sub-homotopy coherent diagram F̃H is a K-equivariant refinement of FH , by un-

wrapping the definitions. The previous equation then shows that ||F ||H = hocolim(F̃H)+

for the K-equivariant refinement F̃H := F̃H .
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Lemma 3.59. Let 2n ⊂ (2n)p be the canonical embedding. Fix a nonsingular Burnside

functor F : (2n)p → BK with external action, where F admits an external action lifting

the Zp action on (2n)p. We will denote both actions by ψ.

Let F be a Zp-coherent refinement. Then the fixed-point set (hocolimF+)Zp is hocolimJ̃+,

for J̃ some K-equivariant refinement of F |2n.

Proof. This follows immediately from Lemma 3.58.

We also briefly discuss an equivariant cell decomposition for hocolimF̃+ (which will

not be needed in the sequel); this depends on some choices. First, choose a fixed K×G-

CW decomposition of S(V ) = B(V )/∂B(V ), coming from a K×G-representation V , as

well as K × S-CW decompositions of each G/H for H ⊂ G (see [Ada84][§2]).

The most immediate construction is by taking the fine CW structure described above,

and dividing it into pieces along the orbits of composable tuples v0
f1−→ · · · f`−→ v` under

the action of G. To be more precise, choose representatives {ai}i=1,...,N for each orbit

(f1, . . . , f`) among composable tuples, under the action of G. Let Si be the stabilizer of

ai. Let v0 be the starting object of ai, so that F̃ (v0) =
∨
j∈J S(Vj), the sphere associated

to Vj, a copy of the K×G-representation V . Note that Si acts on the index set J . Choose

orbit representatives bk with stabilizer Si,j. Now, S(Vj) becomes a K×Si,j-representation

sphere, and inherits a K×Si,j-CW decomposition from our above choices. That is, S(Vj)

admits a decomposition as a union of cells, running over k, Ck
j ×(K/K ′×Si,j/S ′i,j) where

K ′ ⊂ K and S ′i,j ⊂ Si,j are stabilizer subgroups, and Ck
j are ordinary CW cells. Then the

corresponding G-CW cells of (hocolimF̃+) are obtained by the G-orbit of the preceding

cells. That is, to the pair of orbit representatives (ai, bj), along with a K × Si,j-cell of

S(Vj), say Ck0
j × (K/K ′ × Si,j/S ′i,j), we obtain an equivariant cell

Ck0
j × (K/K ′ ×G/S ′i,j)
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of hocolimF̃+. This gives a reasonably explicit CW decomposition of hocolimF̃+, but it

is somewhat unwieldy for calculation.

We can now discuss how the realizations of different Burnside functors are related.

Lemma 3.60. [cf. Lemma 4.15 [SSS18]] A cofibration sequence J → F → H of functors

with external action 2np → BK, upon realization, induces a cofibration sequence in

(K×Zp)-Top∗. In general, any external natural transformation η : F1 → F0 of Burnside

functors 2np → BK induces a (K×Zp)-equivariant map on the realizations, well-defined

up to K-equivariant homotopy.

Proof. The proof is parallel to that of Lemma 4.15 of [SSS18], which produces a K-

equivariant map of realizations as a Puppe map. We will need some of the details in the

proof of Lemma 3.61, so we go over the argument.

If η : 2np+1 → BK is the natural transformation, then (F0)ι0 is a subfunctor and

(F1)ι1 is the corresponding quotient functor, where ιi : 2np → 2np+1 is the face inclusion

to {i} × 2np. We obtain a cofibration sequence

‖(F0)ι0‖ → ‖η‖ → ‖(F1)ι1‖.

However, ‖(F0)ι0‖ = ‖F0‖, while ‖(F1)ι1‖ = Σ‖F1‖ since ‖F1‖ is constructed as a ho-

motopy colimit over 2n+, while ‖(F1)ι1‖ is constructed as a homotopy colimit over 2n+1
+ .

Therefore, the Puppe map

‖(F1)ι1‖V = Σ‖F1‖V = ‖F1‖V⊕R → Σ‖(F0)ι0‖V = Σ‖F0‖V = ‖F0‖V⊕R

is the required map. To see that the map is also Zp-equivariant, we use that, under the

hypothesis of Lemma 3.60, the cofibration sequence itself is Zp-equivariant, from which

the Puppe map can be chosen to be Zp-equivariant.
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Write η∗ for the map ||F1||V → ||F0||V as in Lemma 3.60.

Lemma 3.61. [cf. Proposition 4.16 [SSS18]] If F : 2np → BK is a Burnside functor with

Zp-external action, then its shifted reduced coarse cellular complex C̃cell(‖F‖V )[− dimV ]

is isomorphic to the totalization Tot(F ), with the cells mapping to the corresponding gen-

erators. If η : F1 → F0 is an external natural transformation, then the map η∗ : ||F1||V →

||F0||V is homotopic to a map which is cellular with respect to the coarse CW structure,

and such that the induced cellular map on the coarse structure agrees with Tot(η). More-

over, if F is nonsingular, the restriction to fixed points η∗|H : ||F1||HV → ||F0||HV , for H

a subgroup of Zp, is K-equivariantly homotopic to ηH∗ : ||FH
1 ||V H → ||FH

0 ||V H , the map

of realizations induced by the H-fixed-point functor ηH : FH
1 → FH

0 . Here we have used

||Fi||HV = ||FH
i ||V H , for suitable realizations, by Lemma 3.58. Also, ηH∗ is K-equivariantly

homotopic to a cellular map on the coarse CW structures on ||Fi||HV . Finally, the induced

cellular chain map on the H-fixed points, in the coarse CW structure of the fixed points,

is Tot(ηH).

Recall that neither the coarse nor fine CW structures need be equivariant CW struc-

tures.

Proof. The first claim is just Proposition 3.45, and does not involve the external action.

The map η∗ constructed in Lemma 3.60 is not necessarily cellular, but by (ho-1), the

homotopy-type of η∗ is (not necessarily Zp-equivariantly) K-equivariantly well-defined.

However, the map constructed in Proposition 3.45 is cellular, with induced cellular chain

map Tot(η). This establishes the claim that η∗ is K-equivariantly homotopic to a cellular

map with the appropriate induced map on cellular chain complexes.

Finally, we address the induced map on fixed-point sets. The natural transformation η

restricts to a natural transformation of Burnside functors ηH : FH
1 → FH

0 . The realization

of ηH , along with some additional choices, defines a map ηH∗ : ||FH
1 || → ||FH

0 ||. On the
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other hand, we have that η∗|H is homotopic to ηH∗ , by construction. Now, applying

Proposition 3.45 exactly as in the non-fixed-point case, we obtain that ηH∗ is homotopic

to a cellular map, and that cellular map has induced map on chain complexes given by

Tot(ηH). This completes the proof.

Remark 3.62. The Lemmas 3.60 and 3.61 are unsatisfactory in several regards. First,

we expect that it should be possible to choose the map in Lemma 3.60 to be both cellular

for the coarse CW structure, and Zp-equivariant. Second, we expect for the resulting

map η∗ that the restricted maps η∗|H , as in Lemma 3.61, are cellular with respect to

the coarse CW structure on the H-fixed-point sets. These issues are not especially

disturbing, as our object is to understand the homotopy colimit, not necessarily the

coarse CW structures (which, indeed, are not equivariant CW structures to begin with),

although use of the coarse CW structure makes it easier to translate statements about

Khovanov homology to Khovanov spectra.

Another problem is that the map constructed in Lemma 3.60 is not guaranteed to

be well-defined up to Zp-equivariant homotopy. To establish any form of ‘naturality’ for

equivariant Khovanov spectra, this well-definedness would be necessary.

Furthermore, in Lemma 3.61, it should be possible to identify C̃cell(‖F‖V )[− dimV ]

with the totalization Tot(F ) as Zp-chain complexes.

Note that Lemma 3.61 applies for any spatial realization of a Burnside functor with

external action; in turn we use it to prove:

Lemma 3.63. Let F : 2np → BK be a nonsingular Burnside functor with external action

by Zp. For V sufficiently large, ||F ||V is well-defined up to homotopy-equivalence in

(K × Zp)-Top∗.

Proof. Say that there exist refinements F̃0 and F̃1. By Proposition 3.56(2), there is a

homotopy coherent diagram η̃ : 2× 2np → K-Top∗ so that η̃|i×2np = F̃i. By construction,
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Tot(ηH), for any subgroup H ⊂ G, is the identity. By Lemma 3.61, the connecting

map ||F̃1|| → ||F̃0|| is a K×Zp-equivariant homotopy equivalence (since it induces chain

homotopy equivalences on all fixed-point sets), from which the Lemma follows.

In order to describe the relationship between realizations of externally stably equiv-

alent Burnside functors, we need a further object. Let Jp : 2p → BK be the Burnside

functor (with external action by Zp) with Jp(1
p) a 1-element set, and Jp(v) = ∅ for

v 6= 1p.

Lemma 3.64. The realization of Jp satisfies ||Jp||V = ΣV (R(Zp))+.

Proof. This is an exercise in the definitions.

We also need a simple fact about indexing categories:

Lemma 3.65. The natural Zp-equivariant map 2p+ × 2np+ → 2
(n+1)p
+ is homotopy cofinal.

Proof. This is similar to the proof of [LLS][Lemma 4.18].

Proposition 3.66. An external K-equivariant stable equivalence (E1,W1) → (E2,W2)

of stable nonsingular functors (E1 : 2n1p → BK ,W1) and (E2 : 2n2p → BK ,W2) induces

a K × Zp-equivariant homotopy equivalence |ΣW1E1| → |ΣW2E2|.

Proof. We need only check that the operations (1) and (2) of Definition 3.26 induce

equivariant homotopy equivalences.

For operation (1), say we have a natural transformation F1 → F2 of Burnside functors

with external action. Associated to a natural transformation with external action, there

is a map ||F1||V → ||F2||V for any realizations, for V sufficiently large, by Lemma 3.60. By

Lemma 3.61, the resulting (equivariant) map is a homotopy equivalence ||FH
1 || → ||FH

2 ||

for all H (having applied the Whitehead theorem on each fixed-point set). A similar

argument handles subgroups S ⊂ K × Zp with nontrivial projection to K. By the
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G-Whitehead theorem, we have that F1 and F2 are (K × Zp)-equivariantly homotopy

equivalent.

We next deal with operation (2). It will suffice to show that for the face inclusion

ι : 2np → 2(n+1)p and a Burnside functor F : 2np → BK , that ΣR(Zp)||F || is (equivariantly)

homotopy equivalent to ||Fι||. We will check this using the relationship of homotopy

colimits to smash products.

First, observe by (ho-4) that we have a natural weak equivalence:

(hocolim2p+
J̃+) ∧ (hocolim2np+

F̃+)→ hocolim2p+×2
np
+

(J̃+ ∧ F̃+). (3.67)

We must check first that this map is Zp-equivariant. To do so, we would like to use

naturality of the map in (ho-4). In order to use that naturality, we need to use the

external action to generate homomorphisms of homotopy coherent diagrams.

Choose a generator g ∈ Zp. Let Fg−1 : 2np+ → 2np+ be the action of g−1 on 2np+ . We

consider the pullback homotopy coherent diagram Fg−1(F̃+). The external action of Zp

on F̃+ defines a homomorphism of homotopy coherent diagrams Fg−1(F̃+) → F̃+. We

then obtain a well-defined K-equivariant map, by (ho-2),

hocolimFg−1(F̃+)→ hocolimF̃+.

Note that hocolimFg−1(F̃+) is not identical to hocolimF̃+, however, there is a natural

homeomorphism hocolimFg−1(F̃+) → hocolimF̃+, essentially by relabeling. All of this

discussion applies equally well, replacing F̃+ with J̃+ or F̃+ ∧ J̃+. In fact, we have a

commutative diagram:
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(hocolim2p+
(Fg−1 J̃+)) ∧ (hocolim2np+

(Fg−1F̃+)) hocolim2p+×2
np
+

(Fg−1(J̃+ ∧ F̃+))

(hocolim2p+
J̃+) ∧ (hocolim2np+

F̃+) hocolim2p+×2
np
+

(J̃+ ∧ F̃+)

Moreover, the Zp-action on hocolimF̃+ factors nicely, in that we have a commutative

diagram:

hocolim2np+
(Fg−1F̃+)

hocolim2np+
F̃+

hocolim2np+
F̃+

g

g

where the vertical arrow is the map induced by the homomorphism, and the diagonal

arrow labeled by g is as in the definition of the Zp action on hocolimF̃+. The analogous

diagrams for (hocolim2p+
J̃+) ∧ (hocolim2np+

F̃+) and hocolim2p+×2
np
+

(J̃+ ∧ F̃+) also com-

mute. Using the above commutative square, and the naturality of (ho-4) with respect

to homomorphisms, we see that (3.67) is Zp-equivariant.

We note that J̃+ ∧ F̃+ is the pullback of some G-coherent spatial refinement J̃ × F
+

under L : 2p+ × 2np+ → 2
(n+1)p
+ , as follows from the definitions.

Moreover, it is immediate from the definitions that J × F = Fι.

Using Lemma 3.65 and (ho-3), we have a homotopy-equivalence

hocolim2p+×2
np
+

(J̃+ ∧ F̃+) ' hocolim
2

(n+1)p
+

(J̃ × F
+

).

Moreover, this homotopy-equivalence is once again equivariant with respect to the Zp-

action, because it is natural in the involved diagrams. For each subgroup H ⊂ Zp, we

obtain a similar map on diagrams of H-fixed-point sets. However, the same hypotheses
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we have used to this point apply to the H-fixed-point sets, since they come from re-

finements of the Burnside functor FH , according to Lemma 3.58. That is, the map on

H-fixed-point sets is also a homotopy equivalence, and by the G-Whitehead Theorem,

we have obtained:

(hocolim2p+
J̃+) ∧ (hocolim2np+

F̃+) ' hocolim
2

(n+1)p
+

(J̃ × F
+

),

equivariantly. Applying Lemma 3.64, the result follows.

Remark 3.68. Expanding on Remark 3.62, we expect that there is a form of Proposition

3.66 so that the induced map is well-defined up to K × Zp-equivariant stable homotopy

equivalence.

3.6 Applications to Khovanov spectra and homology

In this section, we recall the definition and main properties of Khovanov spectra from

[LLS], as well as the generalization of the Lawson-Lipshitz-Sarkar construction to the

odd Khovanov case [SSS18].

Fix a link L with diagramD, from which we obtain the Khovanov functor Fe(D) : 2n →

Z-Mod and the odd Khovanov functor Fo(D) : 2n → Z-Mod; we will often omit the di-

agram D from the notation where it is clear from context. In [LLS], Lawson-Lipshitz-

Sarkar extended Fe : 2n → Z-Mod to KH : 2n → B:

2n Z-Mod

B

Fe

KH

and in [SSS18], Fo(L) was extended to KHO : 2n → BZ2 , so that for d = 0: Z2 → Z2,

Totd(KHO) = Fe and for d = Id, Totd(KHO) = Fo. In [SSS18], it was shown that
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the equivariant stable-equivalence class of KHO(D) is an invariant of the link L. From

KHO, one can construct an infinite family Xn(L) of Khovanov spaces (or spectra), well-

defined up to stable homotopy.

Once we have recalled these definitions, we will see in Section 3.6.2 that the machinery

of Sections 3.3-3.5 applies to the Khovanov-Burnside functors KHO and KH. That is,

we will show that KH and KHO, as well as their annular analogs, admit external

actions in various settings. This is largely, but not entirely, formal. In Section 3.6.3,

we will show that the fixed-point functors of these Khovanov-Burnside functors agree

with certain annular Khovanov-Burnside functors. This section is not formal, and relies

on understanding the relationship between resolution configurations in the periodic link

and the quotient link; this becomes particularly complicated in the odd case. In Section

3.6.4, we show that the action is well-defined; this section is largely formal once an

understanding of the fixed-point functors is dealt with (one can also obtain the results

of this section without knowing the fixed-point functor explicitly, but it is somewhat

easier with the results of Section 3.6.3 in hand). Here we also wrap up the construction

of space-level invariants, proving Theorem 3.3 using the tools from Section 3.5. We end

with some spectral sequences in Section 3.6.5, and some questions in Section 3.6.6.

3.6.1 The Khovanov-Burnside functor

The purpose of this section is to explicitly describe the various Burnside functors we will

use (cf. [LLS17a] §6).

We start by recalling the construction of the functor KHO(D), for D a diagram of

an oriented link L, with n ordered crossings, and a choice of orientation of crossings, as

well as a choice of edge assignment as in Section 3.2.4, and finally an ordering of the

circles of each resolution. Following Lemma 3.14, it suffices to define it on objects, edges
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φu,v with u ≥1 v, and across two-dimensional faces of the cube 2n. On objects, set

KHO(u) = Kg(u).

For each edge u >1 v in 2n, and each element y ∈ KHO(v), write

Fo(φ
op
v,u)(y) =

∑
x∈KHO(u)

εx,yx.

Note each εx,y ∈ {−1, 0, 1}. Define

KHO(φu,v) = {(y, x) ∈ KHO(v)×KHO(u) | εx,y = ±1},

where the sign on elements of KHO(φu,v) is given by εx,y of the pair, and the source and

target maps are the natural ones.

We need only define the 2-morphisms across 2-dimensional faces. In fact, there is a

unique choice of 2-morphisms compatible with the preceding data. To be more specific,

for any 2-dimensional face u >1 v, v
′ >1 w, and any pair (x, y) ∈ KHO(u) × KHO(w),

there is a unique bijection between

Ax,y := s−1(x) ∩ t−1(y) ⊂ KHO(φv,w)×KHO(v) KHO(φu,v)

and

A′x,y := s−1(x) ∩ t−1(y) ⊂ KHO(φv′,w)×KHO(v′) KHO(φu,v′)

that preserves the signs. (That is, the signed sets Ax,y, A
′
x,y both have at most one

element of any given sign). Indeed, the only resolution configurations for which Ax,y

has more than one element are the ladybug configurations. The unique sign-preserving

matching turns out to be the right ladybug matching of [LS14] for a type X edge assign-
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ment, and is the left ladybug matching for a type Y edge assignment. This completes

the description of a strictly unitary lax 2-functor KHO0(D) associated to the data as

above. We call the identification (for any x, y) of sets Ax,y and A′x,y above the ladybug

matching. Recall also that we work with stable Burnside functors; that is, pairs of a

Burnside-functor and an integer. We define the (odd) Khovanov-Burnside functor by

KHO = (KHO0,−n−). It follows from the construction that we may write KHO as a

sum over quantum gradings: KHO = qjKHOj.

Recall that KHO is a link invariant:

Theorem 3.69 (Theorem 1.7 [SSS18]). The equivariant stable equivalence class of the

stable functor KHO is independent of the choices in its construction, and is a link

invariant. Let K̃HOj,n be a spatial refinement of KHOj in sufficiently high dimension,

modeled on R̃n. Then the stable homotopy-type of the spatial realization X j
n = ||K̃HO

+

j,n||

is a link invariant. Moreover, there is a CW structure on X j
n for which the reduced

cellular chain complex C̃∗cell(X j
n) = Kcjo(L;Z) = TotId(KHOj)∗ if n odd, or Kcj(L;Z) =

Totd=0(KHOj)∗ if n is even.

Let KH = F(KHO) denote the Burnside functor obtained by forgetting signs; call

this the even Khovanov-Burnside functor ; it agrees with the construction of [LLS]. We

illustrate an example Khovanov-Burnside functor in Figure 3.3.

Next, we address the construction of the annular Khovanov-Burnside functor AKHO(D) =

qj,kAKHOj,k(D) : 2n → BZ2 associated to a diagram D of an annular link L, along with

an ordering of the n crossings, an orientation of the crossings, a choice of edge assignment,

and an ordering of circles at each resolution. We define, for u ∈ 2n,

AKHOj,k(u) = Kg j,k(u).
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•
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•
x2

•
y1
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x1x2

a1
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a3

Figure 3.3: An example Burnside functor F : 21 → BZ2 . We visualize elements of
F (1), F (0) as dots, and regard the morphism F (φ) as a collection of arrows. Here, we let
F (1) = {1, x1, x2, x1x2}, the set of Khovanov generators associated to a resolution con-
figuration of two circles, and F (0) = {1, y1}, the set of Khovanov generators associated
to a single circle. Set F (φ1,0) = {a1, a2, a3}; s(ai) is given by the tail of the arrow ai,
and t(ai) is given by the head of the arrow ai. This is the Khovanov-Burnside functor
associated to two circles merging to a single circle.

For each edge u >1 v in 2n, and each element y ∈ AKHO(v), write

FAnno(φ
op
v,u)(y) =

∑
x∈AKHO(u)

εx,yx.

Define

AKHO(φu,v) = {(y, x) ∈ AKHO(v)×AKHO(u) | εx,y = ±1},

where the sign on elements of AKHO(φu,v) is given by εx,y of the pair, and the source and

target maps are the natural ones. The matching along 2-dimensional faces is obtained

from that of KHO, and the formal desuspension of AKHO is also inherited from KHO.

We have the following theorem:

Theorem 3.70. The equivariant stable equivalence class of the functor AKHO(D)

is independent of the choices involved in its construction, and is an invariant of the

annular link L. Let ÃKHOj,k,n be a spatial refinement of AKHOj,k in sufficiently

high dimension, modeled on R̃n. Then the stable homotopy-type of the spatial real-

ization AKHj,k
n = ||ÃKHO

+

j,k,n|| is a link invariant. Moreover, there is a CW struc-

ture on ||ÃKHO
+

j,k,n|| for which the reduced cellular chain complex C̃∗cell(AKHj,k
n ) =
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AKcjo(L;Z) = TotId(AKHOj,k)∗ if n odd, or AKcj(L;Z) = Totd=0(AKHOj,k)∗ if n is

even.

Proof. This follows from keeping track of the annular gradings in the invariance proof

of the equivariant stable equivalence class of KHO.

We write AKH : 2n → B for the even annular Khovanov-Burnside functor, obtained

from AKHO by forgetting the sign.

3.6.2 Equivariant Khovanov-Burnside functors

In this section, we apply the machinery from Sections 3.3-3.5 to construct Burnside

functors with external action. We first outline the notation used in this section. Let

p ≥ 1 be an integer, and consider a p-periodic link L̃ with (annular) periodic diagram

D̃. The action by Zp on L̃ and D̃ are both denoted ψ. The quotient link L = L̃/ψ has

(annular) diagram D = D̃/ψ, with, say, n crossings. We refer to information relating to

L̃ as ‘upstairs’ and information relating to the quotient L as ‘downstairs.’

Theorem 3.71. Let L̃ be a p-periodic link. Then there is a natural Zp-external action

on AKH(L̃) and KH(L̃), whose external stable equivalence class is an invariant of the

equivariant isotopy type of the link L̃. If p is odd, then there is a natural Zp-external ac-

tion on AKHO(L̃) and KHO(L̃), whose external stable equivalence class is an invariant

of the equivariant isotopy type of the link L̃.

We will prove this theorem over the course of the next few sections. We start with

the construction.

Proposition 3.72. Let D̃ be a p-periodic link diagram. There is a natural Zp-external

action on AKH(D̃) and KH(D̃).
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Proof. Recall from Section 3.2.6 that Zp acts onqu∈2npKg j,k(u) for any j, k ∈ Z. For u ≥1

v, it is easy to check that there are natural bijections ψ : AKH(φu,v) → AKH(φψu,ψv)

and ψ : KH(φu,v) → KH(φψu,ψv). We are almost in the situation of Lemma 3.19: in

order to apply that lemma, we need only show that the Zp-action respects the ladybug

matching. However, this is also essentially automatic; let us see how formal properties

of the ladybug matching guarantee this. First of all, we need only consider squares

u ≥1 v, v
′ ≥1 w in 2np so that KH(φu,v) (or AKH(φu,v)) has two elements, otherwise

the diagram in the hypotheses (E-2 ′) of Lemma 3.19 is automatically commutative.

That is, we may assume the resolution configuration associated to u ≥2 w is a ladybug

configuration.

Then the arrows from the action in (E-2 ′) are obtained from the maps

Kg(u)→ Kg(ψu),

(similarly for v, v′, w), obtained by rotating the resolutionDu toDψu (using thatKH(φu,v),

etc., is a subset of the product KH(u) × KH(v)). Finally, the ladybug matching is an

invariant of planar isotopy, as in [LS14, Lemma 5.8], and so the diagram commutes.

Lemma 3.19 then implies that there is a natural Zp-external action on AKH(D̃) and

KH(D̃), as needed.

We next generalize this to the odd case. We will need an auxiliary lemma.

Lemma 3.73. Say p is odd. Let C
Zp,∗
cell ([0, 1]np;F2) be the subcomplex of Ccell([0, 1]np;F2)

consisting of Zp-invariant chains, with respect to the product cell structure on [0, 1]np.

Then H2(C
Zp
cell([0, 1]np;F2)) = H1(C

Zp
cell([0, 1]np;F2)) = 0.

Proof. Say c ∈ CZp,1
cell ([0, 1]np;F2) has δc = 0. Now, c = δe for some e ∈ C0

cell([0, 1]np;F2).

Then (1 + ψ)δe = 0, from which we see that (1 + ψ)e is a cocycle. However, the only

cocycles in C0
cell([0, 1]np;F2) are the constant cochains evaluating to 0 or 1 on all vertices

147



of [0, 1]np. The cochain evaluating to 1 is not in the image of 1 + ψ, since the image of

1 + ψ is characterized as those cochains so that on each Zp-orbit, the sum of evaluation

over the orbit is 0. Thus (1 +ψ)e = 0, and so c is the boundary of an invariant cochain,

as needed.

Next, say c ∈ C
Zp,2
cell ([0, 1]np;F2) with δc = 0. Say c = δe for e ∈ C1

cell([0, 1]np;F2).

As before (1 + ψ)e is a cocyle, and in particular, say δf = (1 + ψ)e. Then δ(1 + ψ +

· · ·+ ψp−1)f = 0. That is, (1 + ψ + · · ·+ ψp−1)f is either the constant 0-cocycle or the

constant 1-cocycle. Since p is odd, we obtain that, in the former case, f must vanish

on invariant vertices of [0, 1]np, and in the latter case, f evaluates to 1 on the invariant

vertices. However, adding the nontrivial cocycle to f still produces a cochain f ′ so that

δf ′ = (1 + ψ)e, and so we may assume that f vanishes on all the invariant vertices of

[0, 1]np, and that (1 + ψ + · · · + ψp−1)f = 0. That is, f lives in a free Zp-submodule of

C0
cell([0, 1]np;F2), and using (1 + ψ + · · · + ψp−1)f = 0, it follows that f = (1 + ψ)g for

some g ∈ C0
cell([0, 1]np;F2). Then δg = e + e′ for some e′ in the image of multiplication

by (1 + ψ + · · ·+ ψp−1), since Zp acts freely on C1
cell([0, 1]np;F2). Then, since δ2 = 0, we

have δe′ = c. Finally, the image of (1 + ψ + · · · + ψp−1) on C1
cell([0, 1]np;F2) is equal to

the set of invariant cochains in degree 1, so c is the boundary of an invariant cochain, as

needed.

Proposition 3.74. Say p is odd. Let D̃ be a p-periodic link diagram. Then there is

a natural Zp-external action on AKHO(D̃) and KHO(D̃). Moreover, this Zp external

action is nonsingular.

Proof. We begin by choosing an equivariant orientation of crossings for D̃, by which we

mean that for each orbit of the np crossings of D̃ under the action of Zp, we choose a

representative crossing, orient it, and then use the Zp-action to define an orientation of

crossings for all crossings in the same orbit.

Next, we need to show that there exists an equivariant edge assignment. By this,
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we mean that the function ε as in Section 3.2.4 can be chosen so that εv,u = εψv,ψu.

For p = 2, this is not generally possible, as the reader may confirm by drawing the

usual picture of the Hopf link. However, recall that an edge assignment amounts to

the choice of an element ε ∈ C1
cell([0, 1]np;F2) with coboundary δε = Ω(D̃) (tacitly

identifying Z2 = {±1} with F2). We first observe that Ω(D̃) is Zp-equivariant, since

the odd resolution configuration Cu,w for u ≥2 w is planar isotopic to the odd resolution

configuration Cψu,ψw, and since Ω(D̃)u,w is determined by the isotopy type of Cu,w for each

u ≥2 w ∈ 2np. The condition εu,v = εψu,ψv means that we require ε ∈ CZp,1
cell ([0, 1]np;F2).

By Lemma 3.73, such ε exists.

Finally, we must also choose orderings of the circles at each resolution. In fact, any

ordering of circles will do.

We must now describe the action of ψ on Kg . That is, forgetting the sign, we have ψ

takes Kg(u) → Kg(ψu) as in the proof of Proposition 3.72. Say Z(D̃u) = {a1, . . . , a`1}

so that a1 < · · · < a`1 and Z(D̃ψu) = {b1, . . . , b`1} so that b1 < · · · < b`1 . For x =

a1 ⊗ · · · ⊗ ak ∈ Kg(u) taken to bσ(1) ⊗ · · · ⊗ bσ(k) ∈ Kg(ψu), the sign is just sgn(σ).

We have now constructed ψ on objects of AKHO(D̃) and KHO(D̃). Since the

edge assignment is equivariant, we have actions ψ : AKHO(φu,v)→ AKHO(φψu,ψv) and

ψ : KHO(φu,v)→ KHO(φψu,ψv). The proof of the proposition now follows as in the proof

of Proposition 3.72. To see nonsingularity of the resulting external action, consider any

Khovanov generator x ∈ Kg(u) fixed by ψ (viewed as a bijection, not a signed bijection).

In particular, we have ψu = u. Every invariant generator x either comes from a nontrivial

circle of D̃u, or is a product x = xi1 . . . xip of trivial circles. In the former case, certainly

ψ takes x → x with sign 1. In the latter, ψ acts by some permutation of xi1 . . . xip .

To verify that the sign of ψ is 1, it suffices to check a particular ordering of the circles

of u. To see this, note that reordering the circles changes the action of ψ (viewed as

a permutation of {1, . . . , `} using the ordering of the circles) by conjugation. Ordering
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the trivial circles in a Zp-orbit by order of appearance, going counterclockwise starting

from an arc γ̃, we see that, indeed, ψ acts with sign +1 on all fixed generators, for any

ordering of circles.

3.6.3 Fixed-point functors

In this section, we find the fixed-point Burnside functors of the equivariant Khovanov-

Burnside functors constructed above. The main result is the following.

Write ι : 2n ↪→ 2np for the canonical embedding.

Theorem 3.75. Let D̃ be a p-periodic link diagram (with p > 1), with quotient diagram

D. The Khovanov fixed-point functors are

1. AKH(D) = KH(D̃)Zp

2. AKHj,k(D) = AKHpj−(p−1)k,k(D̃)Zp,

for any pair of quantum and (k)-gradings (j, k). If p is odd, we further have, for suitable

choices of crossing orientations, edge assignments, and circle orderings at each resolu-

tion:

3. AKHO(D) = KHO(D̃)Zp ,

4. AKHOj,k(D) = AKHOpj−(p−1)k,k(D̃)Zp .

Proof. Let us first address the case of F = KH(D̃); that is, let us see that F Zp =

AKH(D). By Lemma 3.19, and the fact that the fixed-point category of 2np is the

image of the canonical embedding 2n → 2np, it suffices to identify F Zp(ιu) for each

u ∈ 2n, as well as the correspondences F Zp(φιu,ιv) for u ≥1 v, and finally to identify the

2-morphisms associated to 2-dimensional faces of 2n. Proposition 3.12 shows that F Zp(ιu)

is canonically identified with AKH(u). We package the proof that the 1-morphisms are
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correct as Proposition 3.76 below, and the claim about 2-morphisms is Lemma 3.83.

Assuming those lemmas, the present theorem follows directly.

Proposition 3.76. Let D̃ be a p-periodic link diagram, with p > 1. Fix u ≥1 v ∈ Ob(2n)

and consider a sequence of objects of 2np given by ιu ≥1 u1 · · · ≥1 up = ιv. Then

KH(D̃)Zp(φup−1,ιv ◦ · · · ◦ φιu,u1) ∼= AKH(D)(φu,v), (3.77)

AKH(D̃)Zp(φup−1,ιv ◦ · · · ◦ φιu,u1) ∼= AKH(D)(φu,v),

where ∼= denotes natural isomorphism. Further, if p is odd, then:

KHO(D̃)Zp(φup−1,ιv ◦ · · · ◦ φιu,u1) ∼= AKHO(D)(φu,v),

AKHO(D̃)Zp(φup−1,ιv ◦ · · · ◦ φιu,u1) ∼= AKHO(D)(φu,v),

for appropriate choices for D̃,D of crossing orientations and edge assignments, and of

circle orderings at each resolution.

Proof. First consider the case for F = KH(D̃). By commutativity of the 2-dimensional

faces of the cube, it suffices to show the identification of one-morphisms for any particular

path {ui}i.

The proof amounts to a case-by-case check of the three different types of merges; see

Figure 3.4.

First, say φop
v,u represents a V ⊗ V → W merge. Then F (ιu) has four invariant gen-

erators, {1, x1, x2, x1x2} where x1, x2 ∈ Z(D̃ιu), and F (ιv) has two invariant generators,

{1, y1 . . . yp}, for y1, . . . , yp ∈ Z(D̃ιv), all lying in the same Zp-orbit.

The first map φop
ιv,up−1

is a merge, and then all the following maps {φop
ui,ui−1

}0<i<p are

split maps. It is straightforward to check that F (φιu,ιv)
Zp ∼= {a1, a2} with source and
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Figure 3.4: The three equivariant annular merges.

target maps s(ai) = y1 . . . yp and t(ai) = xi. Thus, F (φιu,ιv)
Zp is naturally isomorphic to

AKH(D)(φu,v) for this case.

If φop
v,u represents a V ⊗W → V merge, then all p maps {φop

ui,ui−1
}1≤i≤p are merge

maps. The invariant generators at ιv are {1, x, y, xy} with x ∈ Z(Dιv) a nontrivial

circle and y ∈ Z(Dιv) a trivial circle. The invariant generators at ιu are {1, z} for

z ∈ Z(Dιu). The correspondence F (φιu,ιv)
Zp = {a1, a2} with s(a1) = 1, s(a2) = z and

target t(a1) = 1, t(a2) = x. We then observe that F (φιu,ιv)
Zp is naturally isomorphic to

AKH(D)(φu,v) in this case as well.

A similar situation occurs for the case W⊗W→W. The invariant generators at ṽ are

{1, x1 . . . xp, y1 . . . yp, x1 . . . xpy1 . . . yp}, where xi ∈ Z(Dιv) are all in the same Zp-orbit,

and similarly for yi ∈ Z(Dιv). The invariant generators at ιu are {1, z1 . . . zp} where

zi ∈ Z(Dιu) lie in the same Zp-orbit. A quick check shows F (φιu,ιv)
Zp = {a1, a2, a3} with

s(a1) = 1, t(a1) = 1, and s(a2) = x1 . . . xp, t(a2) = z1 . . . zp, and finally s(a3) = y1 . . . yp,

t(a3) = z1 . . . zp. It is then readily checked that F (φιu,ιv)
Zp is naturally isomorphic to

AKH(D)(φu,v) in this case.

The above cases, along with duality, show that equation (3.77) holds.
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The case of F = AKH(D̃) is quite similar but somewhat simpler, and we omit it.

Next we treat the case F = KHO(D̃). We have already seen that, if we forget the

signs, (FF )Zp = AKH(D). Now, AKHO(D) can be viewed as a way of sprinkling signs

on the correspondences of AKH(D) (and similarly for KHO(D̃) relative to KH(D̃)),

and we need to say that these sprinklings respect the equality of Burnside functors in

(3.77).

Recall that in order to define F , we needed to choose the data of an (equivariant)

orientation of crossings, as well as an equivariant edge assignment. Say we have fixed

these data. Now, in order to define AKHO(D), we need an orientation of crossings of

D, as well as an edge assignment of D. We choose the orientation of crossings coming

from taking the quotient of the orientation of crossings of D̃. In order to compare

AKHO(D) with F , we must find a way to define an edge assignment on D, given the

edge assignment upstairs. We start with the following lemma. Recall that Kg(D̃)Zp

upstairs is identified with Kg(D) downstairs, using the choice of an arc γ̃, as in the

discussion after Proposition 3.12.

Lemma 3.78. Let C be an index-1 annular resolution configuration, with associated odd

annular Khovanov projective functor F′Anno
: 2op → Z-Mod. Let p odd, and let C̃ denote

the p-cover of C, with some choice of lift of γ to γ̃. Set vi = 0p−i1i ∈ Ob(2p). Let

F′o : (2p)op → Z-Mod denote the odd Khovanov projective functor associated to C̃. Then

(F′o(φ
op
vp−1,vp

) ◦ · · · ◦ F′o(φop
v0,v1

))Zp = F′Anno(φ
op
0,1). (3.79)

Here we have written (·)Zp to denote the restriction of (·) to F′o(0
p)Zp and then its projec-

tion to F′o(1
p)Zp. Further, recall that the ordering of the arcs and circles of C̃ are defined

with respect to the lift γ̃.

Proof. The proof is a case-by-case check of index-1 annular resolution configurations.
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γ̃ D̃05
γ̃ D̃15

y5
y4

y3y2

y1

Figure 3.5: The V ⊗ V → W case for p = 5. The map downstairs is x1, x2 → x,
where x1, x2 ∈ Z(D0), x ∈ Z(D1). Let Z(D̃05) = {x̃1, x̃2}, the elements over x1, x2, and
let Z(D̃15) = {y1, . . . , y5}, related by the action of Z5. Then upstairs the map on fixed
points is x̃i → (y5 − y1)(y1 − y2)(y2 − y3)(y3 − y4)y5 = y1y2y3y4y5, which verifies Lemma
3.78 in this example.

First, consider the resolution configuration associated to a merge V⊗ V→W. That is,

say we have the following picture in the base:

X

D0
γ

X

D1
γ

For this case, consider Figure 3.5, which illustrates the proof for p = 5; the proof for

general p is entirely analogous.

Next, consider the resolution confiugration associated to a merge V⊗W→ V. In this

case, both upstairs and downstairs there are only merge maps, from which the Lemma

follows readily.

Next, consider the case W ⊗W → W. In this case, again, upstairs there are only

merges, from which the result is immediate.

Next, consider the case W → W ⊗W. For this, downstairs we have Z(D0) = {x},

Z(D1) = {y1, y2} and upstairs Kg(0p)Zp = {z1 . . . zp} and Kg(1p)Zp = {w1
1 . . . w

1
p, w

2
1 . . . w

2
p, w

1
1 . . . w

1
pw

2
1 . . . w

2
p},

where the ordering is so that y1 < y2 and w1
1 ≤ w1

i < w2
1 ≤ w2

i , and {zi}, {w1
i }, {w2

i } are

the orbits of circles z1, w
1
1, w

2
1, respectively, under Zp.
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Downstairs, having fixed an orientation of crossing going from y1 to y2, we have:

F′Anno(φ
op
0,1)(1) = y1 − y2 F′Anno(φ

op
0,1)(x) = y1y2.

Upstairs, we observe, using the definition of the odd Khovanov projective functor:

F′o(φ
op
vp−1,vp

) ◦ · · · ◦ F′o(φop
v0,v1

)(1) = (w1
1 − w2

1) . . . (w
1
p − w2

p),

F′o(φ
op
vp−1,vp

) ◦ · · · ◦ F′o(φop
v0,v1

)(z1 . . . zp) = (w1
1 − w2

1) . . . (w
1
p − w2

p)(z1 . . . zp)

= w1
1 . . . w

1
pw

2
1 . . . w

2
p.

From this calculation, we have obtained the Lemma in the W→W⊗W case.

The cases V→W⊗V and W→ V⊗V are very similar to the cases we have done so

far, and we leave them as exercises to the reader; this finishes the proof of Lemma 3.78.

Now, we must see how to go from an (equivariant, type X) edge assignment ε̃ on D̃

to an edge assignment on D. Fix u ≥1 v ∈ 2n. We define vi ∈ 2np by vi = (v)p−i(u)i, as

elements of (2n)p for 0 ≤ i ≤ p. We then define an element ε ∈ C1
cell([0, 1]n;Z2) by:

εu,v = ε̃vp,vp−1 . . . ε̃v1,v0 .

Recall the definition of the obstruction cocycle Ω(D) from Section 3.2.4. Any cochain

c ∈ C1
cell([0, 1]n;Z2) for which δc = Ω(D) gives a functorAKHO(D)c : 2n → BZ2 , the odd

annular Khovanov-Burnside functor with edge assignment ε, whose stable equivalence

class is well-defined, i.e. independent of c. To proceed, we need to confirm that δε =

Ω(D). We will work with the type X obstruction cocycle; the following lemma also holds

for the type Y obstruction cocycle, if the edge assignment upstairs is chosen to be type

Y (the proof below immediately generalizes to the type Y case).
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Lemma 3.80. For ε ∈ C1
cell([0, 1]n;Z2) as defined above, we have δε = Ω(D).

Proof. For x ∈ C2
cell([0, 1]n;Z2) and u ≥2 w ∈ 2n, we write xu,w for the evaluation of x

on the copy of [0, 1]2 corresponding to the pair (u,w). We need to check that for each

2-dimensional face u ≥1 v, v
′ ≥1 w, that (δε)u,w = Ω(D)u,w. There are two cases to

consider.

First, say that F′Anno
(φop

v,u)F
′
Anno

(φop
w,v) 6= 0. Then Ω(D)u,w is determined as follows:

F′Anno(φ
op
v,u)F

′
Anno(φ

op
w,v) = F′Anno(φ

op
v′,u)F

′
Anno(φ

op
w,v′)

if and only if Ω(D)u,w = 1. However, if F′Anno
(φop

v,u)F
′
Anno

(φop
w,v) = 0, more data is needed

to determine Ω(D)u,w. For comparison, if we worked with F′o in place of F′Anno
, more

data is needed to define Ω(D)u,w only for ladybug resolution configurations Cu,w (in that

case Ω(D)u,w = −1 for type X edge assignments, etc.).

Let us consider the case where F′Anno
(φop

v,u)F
′
Anno

(φop
w,v) 6= 0. Write wi = wp−ivi,

w′i = wp−iv′i and vi = vp−iui, v′i = v′p−iui, as objects in 2np. Then

ε̃vp,vp−1 . . . ε̃v1,v0 ε̃wp,wp−1 . . . ε̃w1,w0 = ε̃v′p,v′p−1
. . . ε̃v′1,v′0 ε̃w′p,w′p−1

. . . ε̃w′1,w′0

⇔ F′Anno(φ
op
v,u)F

′
Anno(φ

op
w,v) = F′Anno(φ

op
v′,u)F

′
Anno(φ

op
w,v′),

since

ε̃vp,vp−1 . . . ε̃v1,v0 ε̃wp,wp−1 . . . ε̃w1,w0F
′
o(φ

op
vp−1,vp

) ◦ · · · ◦ F′o(φop
v0,v1

)F′o(φ
op
wp−1,wp

) ◦ · · · ◦ F′o(φop
w0,w1

) =

ε̃v′p,v′p−1
. . . ε̃v′1,v′0 ε̃w′p,w′p−1

. . . ε̃w′1,w′0F
′
o(φ

op
v′p−1,v

′
p
) ◦ · · · ◦ F′o(φ

op
v′0,v

′
1
)F′o(φ

op
w′p−1,w

′
p
) ◦ · · · ◦ F′o(φ

op
w′0,w

′
1
).

That is, we have verified (δε)u,w = Ω(D)u,w on all faces of the first case.

We next treat faces of the second type. We start by cataloging such faces:
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I.

X

II.
X

III.
X

IV. X

Figure 3.6: The annular resolution configurations of type X.

Lemma 3.81. Say u ≥1 v ≥1 w and let Cu,w be an index-2 odd annular resolution

configuration so that

F′Anno(φ
op
v,u)F

′
Anno(φ

op
w,v) = 0. (3.82)

Then either the underlying resolution configuration of Cu,w is type X or Y , or Cu,w

consists of three concentric nontrivial circles C1, C2, C3 with C1, C2 joined by an arc, as

well as C2, C3 joined by an arc, or the dual configuration of the latter.

Proof. The proof of this Lemma is a simple case-by-case check.

Next, we check that (δε)u,w = Ω(D)u,w for configurations Cu,w of type X or Y. We

may as well assume now that u = 11, v = 10, v′ = 01, w = 00, to simplify notation. First

consider Cu,w of type X. There are four annular resolution configurations to consider,

pictured in Figure 3.6.

Recall that we need to show

ε̃vp,vp−1 . . . ε̃v1,v0 ε̃wp,wp−1 . . . ε̃w1,w0 = −ε̃v′p,v′p−1
. . . ε̃v′1,v′0 ε̃w′p,w′p−1

. . . ε̃w′1,w′0 .

However, we have, by definition of an edge assignment,

p∏
i=1

ε̃vi,vi−1
ε̃v′i,v′i−1

ε̃wi,wi−1
ε̃w′i,w′i−1

=
∏

(a,c)∈I

Ω(D̃)a,c,
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where I is the set of pairs (a, c) with c = 02x ∈ (22)p for some x ∈ (22)p−1, and a is the

result of replacing the rightmost 0 in the first 2p-factor of c with a 1, and the rightmost

0 in the second 2p-factor with a 1; e.g. (015, 021012) ∈ I for p = 3. We draw the product∏
Ω(D̃) as a product running over the faces of a grid, whose vertices are objects of (22)p.

We visualize this as follows in the p = 3 case, with only a few vertices labeled:

(06) (051)(03101) (010101)

(101010) (16)

Each of the faces of this grid G, corresponding to a ≥1 b, b
′ ≥1 c ∈ (22)p, is assigned a

label in {A,C,X,Y} according to the type of the corresponding odd resolution configu-

ration D̃a,c. Sometimes, we will assign the faces of the grid a ±1, using that Ω(D̃)a,c = 1

for faces of type C,Y and is −1 for faces of type A,X. We will work to understand this

grid in cases I-IV. For instance, we will see below that for case I and p = 3, the grid is:

(06) (051)(03101) (010101)

(101010) (16)

X

X

X

C

C

C

CC

C

Given a vertex c ∈ Vert(G), with vertex b ∈ Vert(G) directly below, and b′ ∈ Vert(G)

directly to the right, we call Db the left resolution of Dc, and Db′ the right resolution of

Dc. Note that each edge of the grid corresponds to resolving a crossing that is entirely

contained within a single sector (recalling the notation of sectors from Section 3.2.6),
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and so we may label each edge of the grid by the sector in which the corresponding

surgery occurs.

First we treat the configuration I. Here, upstairs we have a picture as:

X

γ̃

which illustrates the p = 3 case. Let G denote the grid associated to such a configuration.

It is immediate from the definitions that all the faces on the main diagonal of G are type

X. Now, for each off-diagonal face D, we see that one of the resolutions performed

must be a merge. Moreover, each off-diagonal resolution configuration is disconnected.

Inspecting the list of odd 2-dimensional resolution configurations, any such configuration

is of type C, and so we have verified Lemma 3.80 in this case.

Next, we treat case II. The picture upstairs is as follows, again illustrated for p = 3:

X

γ̃

It is readily checked once again that all of the diagonal faces are type X. Fix an off-

diagonal face with upper-left hand vertex at a ∈ Vert(G), whose left-resolution is in the
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qth sector and whose right-resolution is in the r 6= qth sector. Write 22
t for the tth-factor

of 22 in (22)p. Then the resulting resolution configuration depends only on the initial

condition of c in 22
r and 22

q. To see this, consider the restriction of Da,c to a sector St

outside of Sq and Sr. It will be an arc connecting the boundary components ∂+St and

∂−St (where the positive (negative) boundary ∂+St (∂−St) of a sector St will denote the

end obtained by traversing counterclockwise (clockwise)), as well as some disjoint circles,

no matter the restriction of c to 22
t . In particular, the resulting two-dimensional resolution

configuration Da,c is formed by drawing the parts of the resolution configuration in the

q and r sectors, and attaching these on their boundaries; see for example Figure 3.7.

Next, fix c ∈ Vert(G), the upper-left hand corner of a square a, b, b′, c in G, where

Db is the left resolution and Db′ is the right resolution. Say the pair a ≥2 c differs only

in entries e1, e2, where e1 is in the qth-sector and e2 is in the rth-sector. Let aq, ar, cq, cr

denote the restrictions of a and c to 22
q, 22

r, respectively, and recall that the type of the

resolution configuration Da,c depends only on aq, cq, ar, cr. Note furthermore that the

only c in the grid for which cq = cr = 02 is c = 02p, which does not participate in an

off-diagonal face. So, we need only consider pairs (a, c) with (cq, cr) 6= (02, 02). We list

all such resolution configurations and their types in Figure 3.7. Indeed, we see that all

the off-diagonal faces of G are type C, which completes case II (since type X faces appear

an odd number of types on the diagonal).

Case III is quite similar to case II and we leave it to the reader.

Finally, we address case IV. The picture upstairs is as follows (for p = 5):

X
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X X X X

X

X X X

Figure 3.7: The off-diagonal resolution configurations in case II. The first four configu-
rations are realized up to isotopy by expressions of the form (∗1, 0∗) ∈ 22

q × 22
r and their

permutations, while the latter four are obtained from permutations of (∗1, ∗1) ∈ 22
q× 22

r.
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We order the crossings so that the edges forming a pentagon correspond to the first

factor 2p → (22)p and the other edges correspond to the second factor 2p → (22)p.

We divide length 1-arrows in (22)p into two sets as follows. Recall that each arrow

φop
v,u for u ≥1 v can be recorded as the element v ∈ (22)p, but with one of the 1, 0-entries

of v replaced by a ∗ to denote the entry that changes between v, u. If ∗ is at an odd

position in 2p (that is, ∗ occurs in the first 2-factor in some copy 22 ⊂ (22)p), we call φop
v,u

a left edge, otherwise a right edge. Similarly, an index-2 resolution configuration from

u ≥2 w can be described by an element in (22)p with two bits replaced by ∗.

Note that resolving a right edge on some resolution Dc is a split, unless c = (10)p.

Further, resolving a left edge is a merge unless c = (10)k(00)(10)p−k−1 for some k.

Further, any resolution configuration Du,w for which φop
w,v is a split and φop

v′,u is a split,

while φop
w,v′ and φop

v,u are merges, has type C.

Then we need only consider faces inG containing the vertex (10)p or some (10)k(00)(10)p−k−1.

However, (10)k(00)(10)p−k−1 is a vertex of G if and only if k = 0. So, we see in fact that

only the lower left-hand cornered can be of type other than C. The picture in the lower

left-hand corner is:

X

This is a type X face, and so the proof is completed for case IV.

Translating the above proof to type Y faces is immediate. The grid is the same in

each case, with type X faces replaced with type Y faces.

The only case that remains to check is that of three concentric circles (and its dual).

We fix an orientation of edges as below; the case of other orientations is safely left to
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the reader.

X

We order the crossings so that the outer edges correspond to the first factor 2p → (22)p

and the inner edges correspond to the second factor 2p → (22)p. The upper left-hand

corner of G is readily seen to be a type C configuration, since it consists of two merges.

We note that the next configuration on the diagonal of G is a type X face:

X

In fact, all other faces on the diagonal are type X, since the arcs outside of the ‘active’

sector, up to isotopy, do not depend on c, as is illustrated below:

∼

In particular, there are an even number of faces of type X on the diagonal.

For u ∈ (22)p, let |u|1 (resp. |u|2) denote the number of 1’s occurring in the first copy

of 2p → (22)p (resp. second copy). Now, say Da,c is an index-2 resolution configuration
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so that |c|1 > |c|2, for a, c ∈ Vert(G), and b is the left resolution, b′ the right resolution.

Such resolution configurations are, up to isotopy:

From these, we observe that φop
c,b′ is a merge and φop

b′,a is a split, while φop
c,b is a split and

φop
b,a is a merge. Any such resolution configuration has type C. For any c with |c|2 > |c|1,

it turns out similarly that Da,c is type C. Then, for the case of three concentric circles

downstairs, (δε)u,w = 1 = Ω(D)u,w. (The case of three concentric circles, with the

orientation of edges changed, results in replacing the type X faces on the diagonal by

type Y faces).

We omit the case dual to three concentric circles; it follows by application of tech-

niques similar to above.

Since there is at most one signed matching compatible with the Khovanov-Burnside

functor, we have that the matching specified above is the ladybug matching. This

completes the proof of Lemma 3.80.

In turn, Lemma 3.78 and Lemma 3.80 complete the proof Proposition 3.76.

We next deal with the case of 2-morphisms for the even Khovanov functor. Note

that, for p odd, the following lemma is a consequence of Lemma 3.80.

Lemma 3.83. Let u ≥1 v, v
′ ≥1 w ∈ 2n. The bijection KH(φιv,ιw)Zp ◦ KH(φιu,ιv)

Zp →

KH(φιv′,ιw)Zp ◦ KH(φιu,ιv′)
Zp is the ladybug matching.

Proof. This is quite similar to, but easier than, the proof of Lemma 3.80 above. First of

all, there is only something to check if the configuration Du,w downstairs is a ladybug (so
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there is no analogue of the three-concentric circles case in the previous proof). Moreover,

KH(φιv,ιw)Zp ◦ KH(φιu,ιv)
Zp = ∅ for configurations of type II and III (appearing in

the proof of Lemma 3.80). That is, we need only consider index 2 annular resolution

configurations downstairs of types I and IV.

With the experience from Lemma 3.80, the case I is rather direct, and is safely left

to the reader. For case IV, we argue inductively. For odd p, we are already done, and

the reader may readily verify that the Lemma holds for the case p = 2.

Say we have verified case IV for fixed p′, we show how to verify it for p = 2p′. The

resolution configuration D̃ upstairs is formed from p′ sectors of the form:

X

2

4

3

1

We now draw the grid G as in the odd case, except that we order the crossings using

the ordering of (24)p
′
, rather than (22)p. That just means that in the above picture, we

resolve all edges labeled ‘1’ (resp. 2) before any of those labeled ‘3’ (4).

The Zp′-fixed resolutions look as in Figure 3.8, in one of the p′ sectors.

In the configuration D̃1010, label the inner circle by x and the outer circle by y.

Using our inductive hypothesis (and looking at the ladybug matching on D̃/Zp′), the

circle x is matched with z1 . . . zp′ , where zi are the circles in D̃1100 that intersect sector

boundaries. A further use of our inductive hypothesis matches z1 . . . zp′ with the product

w1
1 . . . w

1
p′w

2
1 . . . w

2
p′ , where the w1, w2 are as labeled in Figure 3.8. Note that the generator

w1
1 . . . w

2
p′ is indeed Zp-invariant, as are x and y. Taking the quotients of D̃1010 and D̃0101

by Zp, we see that x̄, the generator downstairs corresponding to x, indeed corresponds,
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X

X

X

X

X

X

X
w1

w2

X

X

Figure 3.8: Resolution configurations appearing in Lemma 3.83. Here are
pictured (one sector of) the resolution configurations invariant under the action of
Zp′ ⊂ Zp. The configurations on the top row are D̃04 , D̃0100, D̃0101, followed by the
row D̃1000, D̃1100, D̃1101 and finally D̃1010, D̃1110, D̃14 . We have simplified the indexing by
writing the indices for the quotient diagram D̃/Zp′ .

under the right ladybug matching, to w̄, the generator downstairs corresponding to the

product w1
1 . . . w

2
p′ . This establishes the inductive step, and completes the Lemma.

This lemma may also be proved more directly, and indeed it is a pleasant exercise to

verify the odd case without taking advantage of Lemma 3.80.

3.6.4 Well-definedness of the action

In this section we show that, for a p-periodic link L̃, the Zp-external stable equiva-

lence class of the Burnside functor KH is an invariant of L̃, and moreover if p is odd

that the external equivariant stable equivalence class of KHO is an invariant of L̃, and

corresponding statements for the annular functors AKH and AKHO.

Proof of Theorem 3.71. Throughout the proof we will usually abbreviate ‘(equiv-

ariant) external stable equivalence class’ to ‘equivalence class,’ where it will cause no

confusion. We start with the case of p odd and KHO. We must first show that the

equivalence class of KHO(D̃), for a fixed diagram D̃, is an invariant of the choices made
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in its construction. Namely, we show independence of the orientation of crossings, the

(equivariant) edge assignment, and the ordering of the circles ai at each resolution. The

proof of these claims almost follows verbatim from the start of the proof of Theorem 1.7

of [SSS18].

• Edge assignment: Let ε, ε′ be two different equivariant edge assignments of the same

type. As noted in [ORSz13, Lemma 2.2], εε′ is a (multiplicative) (Zp-invariant) cochain

in C1
cell([0, 1]n;Z2). By Lemma 3.73, εε′ is the coboundary of an invariant 0-cochain

α on the cube of resolutions. That is, there is a map α : 2n → {±1}, so that for

any v >1 w α(v)α(w) = ε(φop
w,v)ε

′(φop
w,v). If F0 and F1 are the corresponding functors

2n → BK , we construct a stable equivalence using the functor F2 : 2n+1 → BZ2 ,

defined by F2|i×2n = Fi, and on the arrows between the two copies of 2n using the

signed (identity) correspondence F1(v) → F2(v) determined by α. That is, we apply

the sign reassignment by α in the language of [SSS18, Definition 3.5]. Using the

invariance of α, we see that F2 admits an external action. It is straightforward that

this natural transformation induces quasi-isomorphisms on the totalization of all fixed-

point functors, finishing this check.

• (Equivariant) Orientations at crossings: Recall that [ORSz13, Lemma 2.3] as-

serts that for oriented diagrams (L, o) and (L, o′) and an edge assignment ε for (L, o),

there exists an edge assignment of the same type ε′ for (L, o′) so that Kco(L, o, ε) ∼=

Kco(L, o
′, ε′). The isomorphism constructed in that Lemma respects the Khovanov

generators, and so induces an isomorphism of Burnside functors. Some thought shows

that the natural generalization to the equivariant setting also holds; that is, for a

change of equivariant orientation of crossing, the corresponding odd Khovanov chain

complexes are identified (and ε′ is equivariant), from which independence of KHO fol-

lows. (Independence of the (equivariant) orientations of crossings can also be proved

using (equivariant) Reidemeister II moves twice, as in [SSSz17, Figure 4.5].)
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• Type of edge assignment: [ORSz13, Lemma 2.4] shows that an edge assignment

ε of a link diagram with oriented crossings (L, o) of type X can also be viewed as a

type Y edge assignment for some orientation o′. That is, the type X Burnside functor

associated to (L, o, ε) is already the type Y Burnside functor associated to (L, o′, ε).

In fact, if L is a periodic link diagram, the orientation o′ constructed in [ORSz13]

is equivariant. Moreover, the identification of the Burnside functors is equivariant,

handling this case.

• Ordering of circles at each resolution: We must check that reordering the circles

of a resolution results in an equivalent Burnside functor. For this, let Kg(u) and

Kg ′(u) denote the Khovanov generators for two differing orderings of the circles for a

fixed link diagram. These orderings are related by a bijection from Kg(u) to Kg ′(u).

One checks directly that these bijections relate the two functors F1, F2 : 2n → BK by

a sign reassignment, which, moreover, commutes with the action of Zp.

We now assume that the ordering of the circles upstairs is chosen as at the end of

Section 3.2.6.

We show how to check invariance of KHO under Reidemeister moves by upgrading

the proof for chain complexes to Burnside functors, as is done in [LLS17a],[LS14], with

the only change that we keep track of the external action in the course of the proof.

We will work out the details in the case of a Reidemeister I move - this case will make

clear what modifications are necessary to the usual invariance proof of KHO (without

external action) for Reidemeister II and III moves. Indeed, the proof of invariance is

largely an iterated version of the usual invariance proof of Khovanov homology.

Let D̃ be a periodic link diagram, and let D̃′ be a diagram that differs from D̃ by only

an equivariant Reidemeister 1 (R1) move, which consists of p usual Reidemeister moves

in the same orbit. See Figure 3.9, where we choose one of the R1 moves for concreteness.

Let F1 denote the odd Khovanov-Burnside functor of D̃, and F2 that of D̃′.

168



X

D̃

X

D̃′

Figure 3.9: An equivariant Reidemeister I move. The left-hand image denotes a periodic
link diagram D̃ (with p = 3 pictured), with a Zp-orbit of a certain unknotted arc in
picked out. The right-hand image denotes the periodic link diagram D̃′ obtained by
performing a Reidemeister I move along each arc of the orbit.

X

ap−1

ap a1

D̃′0p

X

D̃′1p

Figure 3.10: Some resolutions of the link diagram D̃. The ellipses to the upper-right
record that we have omitted all but three sectors of the periodic link diagram D̃′.

From its definition Kg(D̃′) = qi∈2pKg(D̃′i), where D̃′i denotes the resolution of D̃′ by

resolving the orbit of the R1-crossing according to i ∈ 2p. Let C denote the subcomplex

spanned by all the generators of qj 6=0pKg(D̃j) as well as the generators of Kg(D̃0) that

do not contain the product a1 . . . ap, where the ai are as in Figure 3.10

Some thought shows that the subcomplex C is acyclic. One can see this, by, for ex-

ample, iterating the usual proof that Reidemeister I moves preserve the chain-homotopy

type of Kc(L).

Furthermore, Kco(D̃) is naturally identified with Kco(D̃
′)/C. We have a quotient

map

Kco(D̃
′)→ Kco(D̃), (3.84)
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which is a chain homotopy equivalence (because C is acyclic). This map is induced

from a subfunctor inclusion KHO(D̃) → KHO(D̃′), in that (3.84) is the dual map on

totalizations:

Tot(F2)
∗ → Tot(F1)

∗.

Here we have used Theorem 3.69 to relate the Khovanov chain complex with the total-

izations. That is, we have a (equivariant) stable equivalence F1 → F2; but we have not

yet seen that it is an external equivariant stable equivalence.

That is, we must also show that the induced map

Tot(F
Zq
2 )∗ → Tot(F

Zq
1 )∗

is a homotopy-equivalence for each q > 1 dividing p. For this, let b1, . . . , bp/q denote the

images of the Reidemeister circles ai in the quotient D̃/Zq. Consider the subcomplex E

of AKco(D̃
′/Zq) generated as before by all generators except those of (D̃′/Zq)0p/q that

contain the product b1 . . . bp/q. As usual, one checks that E is acyclic, and AKco(D̃/Zq) =

AKco(D̃
′/Zq)/E, so the map

AKco(D̃
′/Zq)→ AKco(D̃/Zq) (3.85)

is a quasi-isomorphism.

Moreover, the subfunctor inclusion KHO(D̃)→ KHO(D̃′) described above passes to

an inclusion on Zq-fixed-point functors KHO(D̃)Zq → KHO(D̃′)Zq . Using the identifica-

tion in Theorem 3.75, the induced map on totalizations is (3.85). Since we have already

seen that (3.85) is a quasi-isomorphism, we have proved invariance under Reidemeister I

moves. Keeping track also of the maps induced on even Khovanov homology shows that

the inclusion F1 → F2 is an equivariant stable equivalence of Burnside functors with
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external action, as needed.

Invariance under equivariant Reidemeister II and III is shown in much the same way.

That is, for each acyclic subcomplex or quotient complex “move” in the usual proof

of invariance of KHO, one iterates the move p times to produce an acyclic sub- (resp.

quotient) complex which is equivariant, and whose quotient (resp. dual subcomplex) is

homotopy-equivalent to the original complex. The sub (quotient) complexes resulting

from fixed-point functors can be understood via Theorem 3.75 and the induced maps on

the totalization of the fixed-point functors give chain homotopy equivalences as well, since

they are the usual maps used in the proof of invariance for the odd annular Khovanov-

Burnside functor (without external action).

The proofs of the even version (for all p > 1) of the Theorem, as well as the two

annular versions, are entirely analogous.

Proof of Theorem 3.3. Let Xn(L̃) denote an equivariant realization modeled on R̃n

of the stable Burnside functor with external action KHO(L̃) and similarly let AKHn(L)

be the realization of AKHO(L) modeled on R̃n. The statement that the actions are

well-defined is the combination of Proposition 3.66 with Theorem 3.71 and Theorem

3.69. The fixed-point assertions follow from Theorem 3.75 combined with Lemma 3.59.

The gradings can be recovered from Proposition 3.12.

3.6.5 Smith inequalities

We now use the results on fixed-point functors from Section 3.6.3 to obtain rank inequal-

ities for Khovanov homology. Let p be prime, and G = Zp.

Recall that the classical Smith inequality (3.2) for a finite G-CW complex M is
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obtained by studying two spectral sequences arising from the Tate bicomplex :

CTate(M) = (C∗(M ;Fp)⊗ Fp[θ, θ−1], dTate)

:= (· · · 1−ψ−−→ C∗(M ;Fp)
N(ψ)−−−→ C∗(M ;Fp)

1−ψ−−→ C∗(M ;Fp)
N(ψ)−−−→ · · · ),

where ψ generates the G-action on singular cochains C∗(M ;Fp) and N(ψ) is the norm

1 +ψ+ψ2 + . . .+ψp−1. The filtration by cohomological degree gives a spectral sequence

E• with E1 ∼= H∗(M ;Fp) ⊗ Fp[θ, θ−1] while the filtration by θ-degree gives a spectral

sequence converging to H∗(MG;Fp) ⊗ Fp[θ, θ−1]. The assumptions provide sufficient

boundedness to conclude that E• also converges to H∗(MG;Fp) ⊗ Fp[θ, θ−1], and the

rank inequality follows. (For a more detailed exposition, cf. [LT16],[Zha18].)

Theorem 3.86. For a p-periodic link L̃ for prime p, with quotient link L, and each pair

of quantum and (k)-gradings (j, k), there is a spectral sequence with E1-page AKhpj−(p−1)k,k(L̃;Fp)⊗

Fp[θ, θ−1] (resp. AKh
pj−(p−1)k,k
o (L̃;Fp)⊗Fp[θ, θ−1]) converging to E∞ ∼= AKhj,k(L;Fp)⊗

Fp[θ, θ−1] (resp. AKhj,ko (L;Fp)⊗Fp[θ, θ−1]). There is also a spectral sequence with E1 ∼=

Kh(L̃;Fp)⊗Fp[θ, θ−1] (resp. Kho(L̃;Fp)⊗Fp[θ, θ−1]) converging to E∞ ∼= AKh(L;Fp)⊗

Fp[θ, θ−1] (resp. AKho(L;Fp))⊗ Fp[θ, θ−1].

Proof. First, consider the case of p odd, and odd annular Khovanov homology. Construct

the Tate bicomplex for Xn(L̃) for odd n (here, viewed as a space, without passing to

the suspension spectrum), with the singular differential acting vertically. The column-

wise filtration gives a spectral sequence with the desired E1-page which converges to

the homology of the fixed-point set Xn(L̃)G, which by Theorem 3.3 is AKHn(L). Now,

for the case of even Khovanov homology, repeat the above recipe for n even. Since odd

Khovanov homology Kho(L̃;F2) agrees with Kh(L̃;F2) and AKho(L;F2) = AKh(L;F2),

we have also covered the case of p even for odd Khovanov homology (rather trivially).

The proof for the spectral sequences starting in the annular case is entirely analogous.
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Finally, for the gradings, note that the spectral sequence splits according to the wedge

sum components in the CW-realizations.

Corollary 3.87. Maintain the notation from Theorem 3.86. For each pair of quantum

and (k)-gradings (j, k), the following rank inequalities hold (for vector spaces over Fp):

dimAKhpj−(p−1)k,k(L̃;Fp) ≥ dimAKhj,k(L;Fp) and

dimAKhpj−(p−1)k,ko (L̃;Fp) ≥ dimAKhj,ko (L;Fp).

We also have the rank inequalities (where each object is the sum over all quantum and

(k)-gradings):

dimAKh(L̃;Fp) ≥ dim Kh(L̃;Fp) ≥ dimAKh(L;Fp) ≥ dim Kh(L;Fp) and

dimAKho(L̃;Fp) ≥ dim Kho(L̃;Fp) ≥ dimAKho(L;Fp) ≥ dim Kho(L;Fp).

Proof. The AKh-to-Kh inequalities follow from the filtration of the Khovanov complex

[Rob13]. The middle inequalities follow from Theorem 3.86.

3.6.6 Questions

We conclude with some questions about the construction of equivariant Khovanov spaces.

Fix throughout a p-periodic link L̃ with quotient L.

(q-1) We have not attempted to relate the totalization Tot(KHO) (that is, the equiv-

ariant odd/even Khovanov complex) with any particular CW chain complex of

Xn(L̃), viewed as a Zp-equivariant space (see Remark 3.18). This would be useful

to understand in order to relate the constructions of this paper with the equivari-

ant Khovanov homology (or an odd version of same) constructed by Politarczyk
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[Pol15]. In more generality, it would be desirable to better understand a Zp-

equivariant cell decomposition of Xn(L̃), so that, for example, the space X0(L̃)

could be related to the space constructed in [BPS18].

(q-2) A better understanding of the case of even p for the odd Khovanov-Burnside

functor KHO would be desirable. In particular, the techniques of this paper are

sufficient to show that for a given periodic-diagram D̃ of L̃, the functor KHO(D̃)

admits a Zp-external action. However, it is not immediately clear that this ac-

tion is a link invariant, and moreover, the resulting external action need not be

nonsingular. It is not clear to the authors whether (for n ≥ 1) Theorem 3.3 (in-

cluding the statement about fixed points) also holds for even p; we do not know

of a counterexample.

(q-3) Are there applications of the construction of the present paper to showing that

some links are not periodic? Borodzik-Politarczyk-Silvero [BPS18] have obtained

such applications; are there further applications that require using the odd theory?

(q-4) Willis [Wil17] showed that the Khovanov homotopy type of torus links T (n,m)

stabilizes as m→∞. How does this stabilization interact with the Zm-action?
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