Items in eScholarship@BC will redirect to URBC, Boston College Libraries' new repository platform. eScholarship@BC is being retired in the summer of 2025. Any material submitted after April 15th, 2025, and all theses and dissertations from Spring semester 2025, will be added to URBC only.
We use the Birman-Ko-Lee presentation of the braid group to show that all closures of strongly quasipositive braids whose normal form contains a positive power of the dual Garside element δ are fibered. We classify links which admit such a braid representative in geometric terms as boundaries of plumbings of positive Hopf bands to a disk. Rudolph constructed fibered strongly quasipositive links as closures of positive words on certain generating sets of Bₙ and we prove that Rudolph’s condition is equivalent to ours. We compute the sutured Khovanov homology groups of positive braid closures in homological degrees i = 0,1 as sl₂(ℂ)-modules. Given a condition on the sutured Khovanov homology of strongly quasipositive braids, we show that the sutured Khovanov homology of the closure of strongly quasipositive braids whose normal form contains a positive power of the dual Garside element agrees with that of positive braid closures in homological degrees i ≤ 1 and show this holds for the class of such braids on three strands.