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BASKETS, STAIRCASES AND SUTURED KHOVANOV HOMOLOGY
Tan Matthew Banfield

Advisor: Julia Elisenda Grigsby, PhD

We use the Birman-Ko-Lee presentation of the braid group to show that all closures of strongly
quasipositive braids whose normal form contains a positive power of the dual Garside element §
are fibered. We classify links which admit such a braid representative in geometric terms as
boundaries of plumbings of positive Hopf bands to a disk. Rudolph constructed fibered strongly
quasipositive links as closures of positive words on certain generating sets of B, and we prove that
Rudolph's condition is equivalent to ours. We compute the sutured Khovanov homology groups of
positive braid closures in homological degrees i = 0,1 as sl,(C)-modules. Given a condition on the
sutured Khovanov homology of strongly quasipositive braids, we show that the sutured Khovanov
homology of the closure of strongly quasipositive braids whose normal form contains a positive
power of the dual Garside element agrees with that of positive braid closures in homological degrees

i < 1 and show this holds for the class of such braids on three strands.
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The closure of the strongly quasipositive braid 8 = ag,1a6,305,1a5,2 as the boundary of a

quasipositive surface.

The generators a; ;. For convenience, define a; ; = a;;. The underlined number next to a
line indicates the position in the braid word.

Going counter-clockwise, any two consecutive boundaries of the triangle with vertices at
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The representations of the braid Sr associated to the 4-gon R arising from cyclic
counterclockwise orders of its vertices. Sr = Gy Gt uQts = Gy tGt Qs = Gp sO5 Gy r =
as,rau,rat,u-

Proof of Lemma 2.6

We rewrite the braid Sr corresponding to the polygon R as fr = as,6—1...0r+1,7, Where

l=s—r (mod n).
Espaliers and associated generating sets.

Plumbing a positive Hopf band along o € D “adds the generator as ,.”

Proof of Lemma 2.16. A Hopf-plumbed basket F' is described by an ordered collection of
arcs {o; C D}. The attaching regions (dotted) for the folding structure in 10b contain a

single endpoint each to make {c;} compatible.

The fiber surface F' for the trefoil and a charged fence diagram for F'. The positive Hopf
band A4 plumbed to a; € D is represented by the strand ¢ > 1 together with the two
horizontal lines connecting strand 1 to ¢ and the dotted arc ;.

The braid a274a273a172a§74a273a172 is conjugate to a staircase braid.
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(A) Bennequin surface X, (B) Charged fence diagram

FIGURE 1. The closure of the strongly quasipositive braid 8 = ag 106,305,152 as
the boundary of a quasipositive surface.

1. INTRODUCTION

Strongly quasipositive links, i.e. links that are representable as closures of strongly quasipositive
braids, are an interesting class of links first studied by Rudolph, cf. [Rud98|. Geometrically, they
can be described as boundaries of quasipositive surfaces in 52, see Figure 1a.

It is known that the slice Bennequin inequality [Rud93] is sharp for quasipositive links in general;
indeed for strongly quasipositive links the Bennequin surface is actually embedded in S2, which
implies that the slice genus equals the genus of the link [KM93, Rud93]. This can be used to
combinatorially compute the genus of a strongly quasipositive link from any strongly quasipositive
braid representation. It also implies that the only slice strongly quasipositive knot is the unknot.
There are connections to invariants coming from knot homology theories; e.g. the slice genus bounds
from Rasmussen’s s-invariant in Khovanov homology and the 7-invariant in knot Floer homology
are sharp [Shu07].

Particularly interesting are fibered strongly quasipositive links: By work of Hedden and Rudolph,
it is known that these are exactly the fibered links that induce the unique tight contact structure
on S? [Hed10]. Knot Floer homology detects if a link is fibered [Ni07], and further if a fibered link
can be represented as a strongly quasipositive braid closure [Hed10].

We will show that “almost all” strongly quasipositive braid closures are fibered. Our proof uses
a presentation of the braid group due to Birman-Ko-Lee, associated to the so-called dual Garside
structure on the braid group.

Khovanov homology is a homological invariant for a link in K € S3, defined combinatorially using
resolutions of a diagram of K. In [APS04], Asaeda-Przytycki-Sikora extended Khovanov’s theory
to links in I-bundles over surfaces. For links in the thickened annulus, Roberts [Rob13] defined

an “axis filtration” on the Khovanov chain complex, whose associated graded complex recovers the
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Asaeda-Przytycki-Sikora theory. This theory, known as “sutured annular Khovanov homology” ! is
particularly suited to studying braids and braid closures.

These invariants possess a richness of algebraic structures acting on the complex and its homol-
ogy. The filtration naturally gives rise to a spectral sequence converging to Khovanov homology.
Grigsby [ELW15] discovered a sly(C) action, and Grigsby-Licata-Wehrli in [ELW15] explain how the
homology can be given a Lie super-algebra structure. This allows us to make use of the beautiful

structure of semi-simple Lie algebra representations over the complex numbers.

Lemma 2.7. Let § = 6P, where § = 0,_10,_2...01 18 the dual Garside element and P is a

BKL-positive word. Then the braid closure B 18 fibered.

See Section 2.1 for the definition of a BKL-positive word and the dual Garside normal form. We

prove the following theorem.

Theorem 2.8. A link L which can be represented as the closure of a braid whose normal form

contains a positive power of the dual Garside element is fibered.

In Section 2.4 we classify which fibered strongly quasipositive braids arise from our construction
and relate the condition that a link L is represented as a braid closure whose normal form contains

the dual Garside element to a construction of fibered links due to Rudolph [Rud01].

Theorem 2.11. A link L is the boundary of a plumbing of positive Hopf bands to a disk D along
arcs a; C D if and only if L admits a strongly quasipositive representative 8 € B, which contains

the dual Garside element 6.

In particular, by appealing to a result of Rudolph, we show that positive braid closures are of

this form.

Theorem 2.21. A non-split positive braid link L is the closure of a strongly quasipositive braid

B € B,, whose normal form contains a positive power of the dual Garside element.

Further, for positive braids and certain 3-braids we show the following structure theorems for the

sutured Khovanov homology.

n [EW09], Grigsby-Wehrli discovered a connection with sutured Floer homology, giving rise to the
title “sutured Khovanov homology”.
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(A) Braid presentation (B) Circle presentation (c) B= a3,1a§1a7,3aié

FIGURE 2. The generators a; ;. For convenience, define a; ; = a;;. The underlined
number next to a line indicates the position in the braid word.

Theorem 3.12. Let 5 € B,, be a positive non-split braid. The sutured Khovanov homology of the

braid closure /? in homological degree i =0 and ¢t =1 is

Skh(B) ~ Sym" (V')

Skhy (B) ~ Sym"™~2(V).

Corollary 3.27. Let 3 € Bs be a strongly quasipositive 3-braid whose normal form contains a
positive power of the dual Garside element § = 0,,_10,_o...01. Then the sutured Khovanov homlogy

groups of the closure B in homological degrees i < 0,1 =0 andi=1 are

-~

Skh;(8) = 0 fori <0,

-~

Skhg(8) ~ Sym"(V),

Skhy (B) ~ Sym"™~%(V)).

2. STRONGY QUASIPOSITIVE BRAIDS, BASKETS AND STAIRCASES

2.1. The dual Garside structure of the braid group. In [BKL98|, Birman, Ko and Lee gave
a solution to the word-problem in the braid group using a new presentation of B,. The generators
a;; in this presentation correspond to pairs of strands (see Figure 2), called band generators or
Birman-Ko-Lee generators, and the relations correspond to Reidemeister moves of type II and III.
There is a nice pictorial way to describe the generators and relators, using dots labeled 1,2,...,n
arranged in a circle [IW15]. The generator a; ; is represented by a straight line between the dots
labeled i, j, as pictured in Figure 2b, and its inverse by a dashed line. An element of B,, is represented

by a sequence of such lines, see Figure 2c. The Birman-Ko-Lee relations can be stated as follows.
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FI1GURE 3. Going counter-clockwise, any two consecutive boundaries of the triangle
with vertices at 7, s, are equivalent in By, i.e. a¢ 505y = Gt,rQ1s = Gs,r Q-

FIGURE 4. The representations of the braid Sr associated to the 4-gon R arising
from cyclic counterclockwise orders of its vertices.
BR = Qurltult,s = Qu,tQt,sQsr = At 50 Qur = Qs pQu,r Oty

e Consecutive lines in the sequence representing the braid word which do not intersect can be
re-ordered arbitrarily.

e (“Cup Product”) Consider a triangle with vertices at the dots labeled 7, s, t. Moving
counter-clockwise, any two consecutive boundaries of the triangle are equivalent. See Figure
3.

The second relation implies that one can associate to a polygon R a well-defined element Sr € B,
as follows: Let the vertices of R be at (¢1,...,q,) listed in any cyclic counterclockwise order and let
BR = Gq,.q._1 - - - Qgs,q - O€€ Figure 4 for an example when R is a 4-gon.

A braid g is BKL-positive if it can be written as a word in only positive powers of the generators
a;,j. BKL-positive braids form a monoid, denoted by B;'", and Birman-Ko-Lee proved that two BKL-

positive elements are equivalent in B, if and only if they are equivalent in B;'.
Definition 2.1 ([BKL98]). The dual Garside element is 6 = apn—10n-1,n—2-.-02,1-

The dual Garside element is called the fundamental braid in [BKL98]. As the name implies, ¢ is
in fact a Garside element for a Garside structure on B,,. In the circle presentation, § corresponds

to the n-gon spanned by all vertices.

Definition 2.2. The starting set S(8) of a BKL-positive braid word (3 is the set of generators a; ;
that can appear at the start of a BKL-positive word representing 8. Similarly, the finishing set F ()

is the set of generators a; ; that can appear at the end of 3.
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We will need the following facts.

Fact 2.3 ( [BKL98], Corollary 3.7). The finishing and starting sets of the dual Garside Element 0

are the set of all generators, i.e. F(6) ={a;; |4,j€{1,...n},i# j}.

Fact 2.4 (Dual Garside Normal Form, [BKL98], Theorem 3.10). Every element 5 € B, can be
uniquely written as f = 0¥ Ay ... A,,, where & is the dual Garside element, all A; are BKL-positive

and A;s is not a canonical factor for any s € S(Ait1).

The A; in the previous theorem are called canonical factors and correspond to disjoint union
of polygons in the circle presentation. The condition that A;s is not a canonical factor for any
s € S(A;y1) ensures uniqueness of the normal form and is denoted by A;[A;1.

A braid is strongly quasipositive if and only if the power of the dual Garside element § in the
normal form is non-negative. A link is strongly quasipositive if it admits a braid representative with

a non-negative power of 4.

2.2. Detecting fibered braids. A link L is fibered with fiber F' if 9F = L and its exterior S®\v(L)
fibers over the circle such that F'is a fiber. This is a strong condition; it implies that all fiber surfaces
are isotopic and minimal genus. In fact, for Seifert surfaces F' of a fibered link the following are
equivalent: F is a fiber surface, F' is genus-minimizing and F is incompressible [Kaw96].

In [Gab86], Gabai established an algorithm to detect if a link L C S is fibered. The idea is as
follows: Let F' be a minimal genus Seifert surface for L. The link L is fibered if and only if the
complementary sutured manifold (Y,v) = (S3\ (F x I),dF) associated to F is a product sutured
manifold, that is, (Y,v) ~ (X x I, 9%) for a surface ¥. Gabai proves the following theorem [Gab86].

Fact 2.5 ([Gab86], Theorem 1.9). The link L C S® is fibered with fiber surface F if and only if there
exists a sequence of product disk decompositions of (Y,~) = (S3\ (F x I),OF) that terminates in the

trivial sutured manifold (B3, a), where o is a single curve on OB>.

We will apply this theorem to a braid closure [3’ of a braid word expressed in the Birman-Ko-Lee
generators. Recall from Section 2.1 that we can express a braid f = w as a word w in the Birman-
Ko-Lee generators. For such a word w, we can construct a canonical Seifert surface, 3, called the

Bennequin surface, as follows.

e Draw n parallel disks, one for every strand of the braid 5.
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e For each generator a;; (inverse of a;;, resp.) attach a positively (negatively, resp.) twisted

band between the disks corresponding to strands ¢ and j, going over all other disks.

See Figure la for an example of the Bennequin surface for 5 = ag 1a6,3a5,1a52. For strongly
quasipositive braid closures, the Bennequin surface is minimal genus among all smoothly embedded
surfaces in B* bounded by the oriented link; this follows from Rudolph’s proof of the slice Bennequin
inequality [Rud93], which in turn relies on Kronheimer-Mrowka’s proof of the local Thom conjecture.

[KM93]

Lemma 2.6 (Cancellation). Suppose a braid word w contains a term a%j, and let w' be the word
obtained from w by replacing the aij with a; j (i.e. a square of a generator is replaced with just the
generator). Then the complementary sutured manifold (Yo, Vo) = (S®\ (B x I),0%,,) is a product

if and only if (Yo, Vo) = (S3\ (B x I),0%,) is a product.

Proof. According to Gabai ([Gab86], Lemma 2.2), if (Y,~) ~ (Y’,~’) is a product disk decomposi-
tion, then (Y,~) is a product if and only if (Y, ') is a product. The lemma will follow immediately
once we show that (Y, v,) is obtained from (Y, v, ) by a product disk decomposition. See figures

5a, bb, bc for the proof. O

Lemma 2.6 and Theorem 2.8 were inspired by Ni’s work on fibered 3-braids [Ni09]. The operation
of canceling repeated generators of B3 was called “Untwisting” in Ni’s work.

For strongly quasipositive braid closures the Bennequin surface is minimal genus and hence a
fiber surface if the braid closure is fibered. This lemma then immediately implies that the closure
of B = w is fibered if and only if the closure of 5’ is fibered, meaning we may cancel powers of

generators in deciding if strongly quasipositive braid closures are fibered.

2.3. Strongly quasipositive fibered braid closures.

Lemma 2.7. Let 8 = 6P, where § = 0,,_10,,_o...071 is the dual Garside element and P is a BKL

positive word. Then the braid closure 3 is fibered.

Proof. We use induction on the word length L = In(P) of the BKL-positive word P in the BKL
generators. If L = 0, then 8 = 6" is a non-split Artin-positive braid, whose closure is fibered by a
result of Stallings [Sta78].

Otherwise, if L > 0, write P = a,P’ for some generator a,; € S(P) and a BKL-positive word

P’. Since as; is in the finishing set F'(d) of the dual Garside element 6 by Fact 2.3, we can write
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(A) The piece of (Yu,vw) corresponding to a?,j. The dotted blue disk D is the product disk and the solid
red arcs are part of the sutures v.,.

il Ry

(¢) An isotopy of the suture from Figure 5b shows that the decomposed sutured manifold is (Y, Y’ )-

FIGURE 5. Proof of Lemma 2.6
d = P"a,,, where P” is a BKL-positive word. Then
B=dkp
_ 5k—1 (P”ans)(ar,spl)

= 61 (P"(ar sar5)P).
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=

FIGURE 6. We rewrite the braid S corresponding to the polygon R as Sr =

(s 5—1 - --Qpt1,r, Where [ = s —r (mod n).
Canceling the repeated generator a, s, we obtain the braid 8’ = (6*~1P"a, (P') = 6*P’. Note that
In(8’) = L — 1 < L, and by induction we conclude that the braid closure 3 is fibered. By Fact 2.5
and Lemma 2.6, if 4’ is fibered, then J is also fibered. |

Theorem 2.8. Let 3 € B,, be strongly quasipositive and let 3 = %A, ... A,, be its normal form. If

k > 1, then the braid closure B is fibered.

Proof. Apply Lemma 2.7 to § = 6P with P = A ... A,,. |

The converse of Theorem 2.8 is not true. In Section 2.4 we explain a geometric classification of
braid closures whose normal form contains a positive power of the dual Garside element, and use
this in Corollary 2.12 to show that the (2,1) cable of the trefoil is a fibered strongly quasipositive
braid closure whose normal form does not contain a positive power of the dual Garside element.

The following corollary is known for braids on 3 strands. [Ni09, Sto06]

Corollary 2.9. After adding at most n—2 crossings to § € By, every non-split strongly quasipositive

braid closure B on n strands becomes fibered.

Proof. By the previous theorem, we may assume that the normal form is
B8=A;...A,. Let A,, = Pas, for a BKL-positive word P and a generator a, , € F(A,,). Consider
the strongly quasipositive braid 8’ obtained from § by adding n —2 crossings (all subscripts are mod

n):
5/ = Al e Am—lp(ar—Q,r—lar—B,r—Q cee as+l,s)as,r(as,s—las—l,s—Q e ar+2,r+l)

=A;...A,,-1PJ (see Figure 6)

The braid 5’ is conjugate to dA; ... Ay, 1 P and hence its closure B’ is fibered by Theorem 2.8. [

Theorem 2.8 has the following probabilistic interpretation: Fixing the number of strands, the

probability that a randomly generated strongly quasipositive braid word will contain §, or in fact
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M ~—

(T) ={a2,1,a4,2,a5,2,a4,3,a6,5} (B) G(Vs) ={a2,1,a3,1,a4,1,0a5,1, 06,1}

FIGURE 7. Espaliers and associated generating sets.

any subword of fixed length, approaches 1 as the word length increases to co. This justifies our
claim that almost all strongly quasipositive braid closures are fibered.

The above observations may lead the reader to conclude that all strongly quasipositive braids are
fibered, but this is not true. In fact, on the class of strongly quasipositive links, all Seifert forms are
realized, so the leading coefficient of the Alexander polynomial Ay may be arbitrary! [Rud05]

In particular, if Ay, is not monic, then the link L is not fibered. An example of a non-fibered
strongly quasipositive braid closure is given by 83 = a3 1a4,2a31a42. The Bennequin surface g,
consists of two once-linked Hopf annuli. The complement of a thickening of ¥4, is the Hopf-link

exterior, which implies that the closure 63 is not fibered as the Hopf-link exterior is not a handlebody.

2.4. Hopf-plumbed baskets. In [Rud01], Rudolph constructs fibered links that arise as closures of
certain homogeneous braids 3 € B,,, generalizing earlier work of Stallings on closures of homogeneous

braids in the Artin generators [Sta78]. Rudolph constructs generating set G(7T) of B, as follows:

e Let 7 be a tree with n vertices and n — 1 edges. Embed the tree into C with vertices at
1,2,...n € R C C and edges in the lower-half plane. Note that the assumptions imply that
every vertex 1,...,n is the endpoint of at least one edge. These trees are called espaliers.

e To an edge e € E(T) of T with endpoints at the vertices r, s associate the BKL-generator
a(e) = as, € By,

o Let G(T) = {a(e) | e € E(T)} be the set of T generators.

See Figure 7 for examples of espaliers and their generating sets. The espalier in Figure 7b is
maximal ? among espaliers on n vertices.

Let H = (S|R) be a group presentation with generating set S and relations R. A word w is
homogeneous (positive) with respect to the generating set S if every generator s € S occurs in
w with either only positive or only negative (only positive) powers. A word § in the generating
set G(T) associated to a tree T is called a T-bandword. A strict 7-bandword is a homogeneous

T-bandword 3 such that every generator g € G(T) occurs in (3.

2Y,, was denoted Vx (for X = {1,2,...,n}) in [Rud01]. The definition of the partial order is given
in Chapter 6 of Rudolph’s paper [Rud01].
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Definition 2.10 ([Rud01]). A surface S is a Hopf-plumbed basket if S is a plumbing of Hopf bands
along arcs a; C D, all of which lie in D. A (+) Hopf-plumbed basket is a Hopf-plumbed basket such

that all plumbands are positive Hopf bands.

Theorem 2.11. A link L is the boundary of (+) Hopf plumbed basket if and only if L admits a

strongly quasipositive representative 8 € By, which contains the dual Garside element §.

In particular, this implies that the converse to Theorem 2.8 is not true. The author would like to

thank Sebastian Baader for providing the following counterexample.

Corollary 2.12. There exist fibered strongly quasipositive braid closures which do not contain the

dual Garside element 6.

Proof. Let L be the (2,1) cable of the trefoil, and let F' be the fiber surface for L. By work of
Hedden [Hed08] and earlier work of Melvin-Morton [MMS86], F is quasipositive but does not deplum
a Hopf band. By definition, Hopf-plumbed baskets always deplum Hopf bands, so F' can not be
a (+) Hopf-plumbed basket. Theorem 2.11 then implies the boundary L = OF does not admit a

strongly quasipositive representative which contains the dual Garside element §. |

Lemma 2.13. Let

ﬂ = Qpr;1Qry,1 -+ - Arpp1 S Bn

be a positive YV, -bandword of word length M. Consider the sequence (r;) = (r1,72,...,7n). If there
exists 1 <k<nandl <L <P<U<M such that
err=1rp=k, ry=n,
e for all i such that 1 < i < k, there exists Q(i) satisfying L < Q(i) < P such that rggy = i
and further, Q(i) < T < P implies that rr > rq),
o for all i such that k <1i < n, there exists Q(i) satisfying P < Q(i) < U such that rg(;) =i
and further, P < T < Q(i) implies that v < rg),

then B contains the dual Garside element 6.

Proof. Informally, the idea of the proof is to slide a; 1 “down” for i < k, and slide a;1 “up” for j > k
so they form §. We introduce the following notation: Let w(4, j) be the subword of w from position

i to position 7.3 Now let w be a positive T-bandword for 3 satisfying the statement of the lemma.

3For example, take z = ag 1a6,304,104,2. Then 2(2,3) = ag 3a4.1.
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We will prove that the subword w(Q(1), Q(n) of 8 contains §. For convenience, define Q(k) = P.
For s € 8 = {rq@),--->7Q(i+1)—1}, the relations in the braid group imply that a;1as1 = a; sa:1 as

s >4 by our assumptions. Consider

ai,lw(Q(iL Q(z + 1) - 1) = Q4,107 ;),10rg 41,1 - - - Argcry 1,1

= Argay,ilrqeyssi - - drqutn—1. di1

’
w;

and note that w] commutes with a; for j < i. We apply this equation in the next step:

k—1
w(Q(1), Q(k) —1) = H ai 1 w(Q(i), w(@Q(i + 1) — 1)

k—1
_ /
= W; 4,1
i

/ / /
=W Wy ... WE_1A1,142/1 - - - Ak—1,1
=Tray 02,1 ...05-1,1,
for a BKL-positive word T7,. Moreover, a similar reasoning shows that for some BKL-positive word

TU)

w(Q(k) +1,Q(n)) = Ak1,10k+1,1 - - - A1 TU.

To finish the proof, we note that the dual Garside element  can be written as 0 = a1 1a2,163,1 ... an 1.

)

We can now show that the subword w(Q(1), @(n) of 3 contains d:

w(Q(1),Q(n)) = w(Q(1), Q(k) — Q(k)w(Q(k) + 1,Q(n))
=Tra11621 ... 0k—1,10k,10%4+1,1 - - - An 1Ty

=Tr01y.

Remark The converse is true: If 8 contains the dual Garside element § then there is a word w for

B which satisfies the assumptions of the lemma. |

For the proof of Theorem 2.11, it will be convenient to use so-called charged fence diagrams,

which represent quasipositive surfaces S and define a braid word for the strongly quasipositive link
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0S. See figures 1b and 11d for examples of charged fence diagrams, and [Rud98] for a thorough

discussion of quasipositive surfaces and charged fence diagrams.

Lemma 2.14. Let B = ag, r, ... G5, 1,0 € By, be a braid which contains the dual Garside element 6.

Then the fiber surface fm’B is a (+) Hopf-plumbed basket.

Proof. We construct a (+) Hopf-plumbed basket whose boundary is B . Let
D=(DyU---UD)U((Tp, U---UT, ),

be the Bennequin surface for the subword § = 0,1 ...071 of 8, where D; are the disks corresponding
to the strands and T; are the positively twisted bands corresponding to the generators o; = a;—1 ;.
Using fact 2.3, write 0 = ay, , P for a BKL-positive word P and isotope D accordingly.

Consider the surface D x,, A4 given by plumbing a positive Hopf band A, to this disk D along
the arc @y = « in Figure 8a. The surface D %,, A, is pictured in Figure 8b, and the sequence of
isotopies in figures 8c and 8d show that D %,, A, is the fiber surface for the closure of the braid
s, r, 0. Informally, this plumbing “adds the generator a; , to the braid word.”

Now repeat this process by plumbing positive Hopf bands for the generators (asy ry), - - -5 (Asy 1 )-
By construction, the fiber surface ((D %o, A4) - *a, A4) is a (+) Hopf-plumbed basket bounding

B. O

Given a braid 8 = ary s, ... Gr; 5,0 € By representing L = B, the lemma provides an explicit
construction of a (+) Hopf-plumbed basket (D %o, A1) %4, A+ whose boundary is the link L.
The normal form of the representative 3 € B,, induces additional structure on D, which is pictured

in Figure 9.

e The disk D is partitioned into disjoint disks D; for 1 <7 < mn and T for 1 < j < n as
in Figure 9c. The disks D; and D,, are distinguished by noting that 9D N D; has a single
component for i = 1 and ¢ = n but two components for 1 < ¢ < n. There are two components
in 0D NTj for every i < j < n.

o There exist disks AT; C D; which satisfy (1) Uda; C UOAT; and (2) AT; NOD; is connected,
where {c;} is an ordered set of compatible arcs (defined below). We refer to AT; as an
“attaching region.” In figures 9b and 9c, the attaching regions AT; are the dotted regions

contained in D;.



BASKETS, STAIRCASES AND SUTURED KHOVANOV HOMOLOGY 13

]

(A) A piece of the disk D and « C D. (B) Plumbing a positive Hopf along a.

r S

D Y
Scecncca=="

~

e

(c) Isotopy. (D) Further isotopy.

FIGURE 8. Plumbing a positive Hopf band along a € D “adds the generator as,.”

[

(A) Fiber surface F' bounding (B) D = D;UD;UD3sUT1UT5 and the  (C) Folding structure for D.
B = az1a2,1a3,190. plumbing arcs a; C D. F = ((D *q,
A+) *ag A+) Fag Ag.

FIGURE 9

e Orient the arcs v; = AT; N dD; as submanifolds of 0D endowed with the boundary orien-
tation. We say that an ordered set {7; C D} of properly embedded arcs whose endpoints
are contained in U;y; is compatible if (1) |y; N 07;| < 2 for all ¢,5; and (2) for & > [, if

a € 9tpN~y; and b € 91N, then a < b in the order on 7; ~ (0, 1) induced by the orientation.



14 IAN MATTHEW BANFIELD

The construction in the proof of the lemma implies that the plumbing arcs {«a;} are compatible
and that the disks D; (T}, respectively) correspond to the disks D; (twisted bands for 0; = aj41,5,
respectively) in the Bennequin surface Y.

We call such a structure a folding structure and denote it by (D, D;, o), where D; are disks in
a partition of a disk D as described above and {«;} is an ordered set of compatible arcs. To justify
the omission of Tj, AT; and ~; from the notation, we note that a partition satisfying the conditions
is completely determined by the disks D;, essentially by the smooth Jordan curve theorem. The
attaching regions AT; and the arcs v; C OAT; are defined in terms of the disks D; and the ordered set
of compatible arcs. A priori, (D, D;, ;) may not be arising from a braid 8 € B,, whose normal form
contains ¢ through the construction described in the proof of Lemma 2.14, however, the following

lemma asserts this is the case and justifies the term “folding structure.”

Lemma 2.15. Let (D, D;, o ) be a folding structure. Then there exists a braid € B, which

contains the dual Garside § such that the folding structure is induced by (3.

Proof. Let AT; be the attaching regions for the folding structure and let k£ = [{¢;}| be the number
of arcs and n = [{D; }| be the number of disks. Define r(j) and s(j) by da; € AT, ;) U AT,;. Let
B = ar1),s(1) - - - Ar(k),s(k)0 € Bn. It is straightforward to verify that the folding structure induced
by 8 is (D, Dj, o). |

Lemma 2.16. The boundary OF of a (+) Hopf plumbed basket F' admits a representative which

contains the dual Garside element §.

Proof. The idea of the proof is to define a folding structure (D, D;, «;) and appeal to the previous
lemma. We begin by noting that according to Section 3 of [Rud01], a Hopf-plumbed basket is
completely described by the plumbing arcs S = {o; C D} and the order in which the Hopf bands
are plumbed. By re-indexing S, we may assume the Hopf bands are plumbed in increasing order of
the plumbing arcs’ indices.

Let k = |S| be the number of arcs and let p1,ps,...,par € D be the endpoints of the arcs {«;}
in some cyclic order. Let 7 C 9D be the arc with endpoints at p; and por which is disjoint from all
other endpoints p;. Choose points ¢, ..., ¢ak—1 € 7 in increasing order on 7 ~ (0, 1).

We now define the disks D; of the folding structure. For ¢ = 1 and ¢ = 2k, let D; be a small disk
containing p;; and for 1 < ¢ < 2k, let D; be a tubular neighborhood of an arc connecting p; to ¢;.

This is illustrated in Figure 10b. The arcs {c;} are compatible, as each attaching region contains
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(A) Plumbing arcs {«; C D} for F. (B) Folding structure. (c) The braid f = OF given by

Lemma 2.15.

F1GURE 10. Proof of Lemma 2.16. A Hopf-plumbed basket F' is described by an
ordered collection of arcs {a;; C D}. The attaching regions (dotted) for the folding
structure in 10b contain a single endpoint each to make {«;} compatible.

exactly one endpoint, which implies that the compatibility condition is vacuous. By Lemma 2.15,
the folding structure (D, D;, ;) is induced by a braid S € Bg; which contains the dual Garside

element 6. O

Corollary 2.17. The boundary OF of a (+) Hopf-plumbed basket F with plumbing arcs {a;} is the

closure of a strongly quasipositive braid 8 = 4§, where v is an unlink on k = |{a; }| components.
Proof of Theorem 2.11. Immediate from Lemma 2.14 and Lemma 2.16. ]

Theorem 2.18 ([Rud01], Theorems 6.1.6, 6.2.4). If S is a Hopf-plumbed basket, then there is an
espalier T and a strict homogeneous T -bandword B such that B =08S. Conversely, the fiber surface

of a strict homogeneous T -bandword is a Hopf-plumbed basket.

See Figure 11 for the idea of the proof in case of ),-bandwords. It is straightforward to check
that Rudolph’s proof holds when one restricts to strict positive 7-bandwords, which are strongly

quasipositive braids:

Theorem 2.19 ([RudO01]). If S is a (+) Hopf-plumbed basket, then there is an espalier T and a
positive strict T-bandword B such that B = OS. Conversely, the fiber surface of a positive strict
T-bandword is a (+) Hopf-plumbed basket.
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h 12 3
7 s, P
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1 . '
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(A) F (B) Isotopy of F (c) Isotopy to a quasiposi- (D) Charged fence dia-
tive surface gram

FI1GURE 11. The fiber surface F' for the trefoil and a charged fence diagram for F.
The positive Hopf band A, plumbed to a; € D is represented by the strand i > 1
together with the two horizontal lines connecting strand 1 to ¢ and the dotted arc
.

Corollary 2.20. A braid closure B can be represented by a positive strict T -bandword if and only

if it can be represented by a strongly quasipositive braid which contains the dual Garside element.
Proof. Immediate from Theorem 2.11 and Theorem 2.19. O

Theorem 2.21. A non-split positive braid closure L can be represented by a strongly quasipositive

braid which contains a positive power of the dual Garside element 6.

Proof. Let T, * be the espalier with n vertices and with edges connecting i to i + 1 for 1 < i < n.
The set of generators G(7,) = {a21 = 01,...,ann-1 = 0n_1} is the set of Artin generators of B,,
which shows that a non-split positive braid is a positive strict 7,-bandword. Now apply Corollary

2.20. |

2.4.1. Some examples and applications.

Definition 2.22. A staircase braid is a strongly quasipositive braid whose dual Garside normal form

contains a positive power of the dual Garside element 6 = op_1...0207.
Lemma 2.23. The link 10145 is a staircase braid closure, but not a positive braid link.

Proof. A strongly quasipositive braid representative for 10145 is given by § = a274a273a1_’2a§_’4a2_’3a112
[CL]. A sequence of braid relations and conjugacy moves is exhibited in Figure 12, showing that 5

is conjugate to a staircase braid. However, the knot 10145 is not a positive braid knot [CL]. O

4We follow Rudolph’s notation in [Rud01] for the espalier corresponding to positive braids, hence
the subscript “P”
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| |

FIGURE 12. The braid a214a213a1_’2a§14a213a1_’2 is conjugate to a staircase braid.
The previous lemma and Corollary 2.12 imply the following strict inclusions.
{Positive braids links} C {Staircase braid closures} C {Tight links}
The following application of our work was suggested by Lee Rudolph.

Corollary 2.24. Staircase braid closures are stably positive braid links, that is, if F' is the fiber
surface of a staircase braid closure, then there exists an iterated positive Hopf plumbing ((F *q,

Ay) - *a,, Ay which is isotopic to the fiber surface of a positive braid.

Proof. Let 8 € B, be a staircase braid, let F' be the fiber surface for the closure B and let A € B,
be the full twist. Fact 2.3 implies that A™f is a positive braid for sufficiently large m. In Lemma
2.14 it was shown that adding a band generator to the braid word for 5 corresponds to plumbing a
positive Hopf band to the fiber surface F. The corollary now follows from the observation that the

full twist A is a product of band generators. O

The following corollary of Theorem 2.11 was independently obtained by Filip Misev.
Corollary 2.25. There are only finitely many staircase braid closures in each concordance class.

Proof. The 4-ball genus g4(K) is a concordance invariant, which coincides with the ordinary genus
for strongly quasipositive links [Rud93]. A staircase braid closure is entirely determined by the
collection of plumbing arcs {a; C D}. By Theorem 2.11, the number of plumbing arcs |{a;}|
depends only on the genus of the knot. The count of possible arrangements of a finite number of

indexed arcs in the disk is clearly finite and the corollary follows. O

3. SUTURED KHOVANOV HOMOLOGY

3.1. Sutured Khovanov homology and the sl;(C)-module structure. The sutured Khovanov
complex is a combinatorially defined, triply graded chain complex, whose chain homotopy type is

an annular link invariant [APS04, Rob13].
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FIGURE 14. Sign of a crossing.

Let A be an oriented annulus. Let L C A x I be an annular link and choose a diagram D =
p(L) C A with projection p: A x I — A. A crossing c is a double point of the projection p together
with over/under strand information. Endowing the annular link L with an orientation, define the
sign of a crossing as in Figure 14. Let ny (n_, respectively) be the number of positive (negative)
crossings in D and let n = ny + n_ be the total number of crossings.

The two ways to smooth a crossing c are illustrated in Figure 13 and called the 0 and 1 smoothing,

respectively.

Definition 3.1 ([Kau83] [Kho00]). A Kauffman state is a choice of smoothing for each crossing
of a diagram D; that is, a complete resolution of D. An oriented Kauffman state v is a Kauffman
state with a choice of orientation for all components. The weight of the state v is the number of

1-smoothings in the complete resolution and denoted by |v].

We refer to the components of a Kauffman state as “circles”. Note that a Kauffman state is
determined by the choice of smoothings and is therefore in 1-1 correspondence with elements of the

hypercube H = {0, 1}", where n is the number of crossings of the diagram.

Definition 3.2. Let v be an oriented Kauffman state. A circle vy of v is trivial if [y] = 0 € H1(A)

and non-trivial otherwise.

3.1.1. Generators. The sutured Khovanov chain complex is freely generated by oriented Kauffman

states. Formally, let F be the ground ring and let V' = F{v_,vy). The sutured Khovanov chain
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complex groups C; are
C; = @ yen@)

where the summation is over all Kauffman states v satisfying ¢ = |v| — n_ and n(v) is the number
of circles in the Kauffman state.

Pictorial representation of the generators Specific circles in the complete resolution are as-
sociated to specific factors in the tensor product V®™(*). In a complete resolution of a diagram,
labeling a circle v with “4” (“—”, respectively) indicates that the component in the tensor for the

factor corresponding to v is vy (v_, respectively).

3.1.2. Gradings. The generators of the sutured Khovanov complex inherit the quantum and homo-
logical grading from the ordinary Khovanov complex. Specifically, let v be an oriented Kauffman
state and define the i-grading (the homological grading) and j-grading (the quantum grading) as
follows. [Kho0O]

i(v) = o] = n_,

j(v) = #(counterclockwise circles) — #(clockwise circles) + i(v) + ny —n_.

The third grading is given by the singular homology class [v] € H;(A) of the oriented Kauffman
state v C A. An integer-valued grading is obtained by fixing an isomorphism ¢ : H;(A4) ~ Z and
setting k(v) = ¥([v]). This grading is called the k-grading, or sly(C) weight space grading, for

reasons explained in Section 3.1.5.

3.1.3. Differentials. The differential measures how oriented Kauffman states behave under a change
of the resolution of a crossing from a O-smoothing to a 1-smoothing. This operation either merges
two circles into a single circle, giving rise to the “merge” map m : V @ V — V', or splits one circle

into two circles, the “split map” A :V — V ® V. These maps are defined as follows. [KhoO0]

m(vy ®vy) = vy Avy) = vy ®v- + - ®og
m(vy ®uv_) =v_ =m(v_ Qvy) Alv_)=v_®v_
mv-®v_)=0

Consider a Kauffman state and identify it by the corresponding vertex in the hypercube H = {0, 1}"™.

Let E be the set of edges of the cube and associate a sign (. € {+, —} to each edge e € F such that
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each square has an odd number of minus signs, see [BN02]. The Khovanov differential is

dgp(v) = Z Cede(v),

where the summation is over all edges e connecting the Kauffman state v to a state obtained by
changing a single O-resolution to a l-resolution, and d.(v) is the corresponding merge or split map.

The differential can be written as a sum
(3.1) th =do+d_o,

where dy (d_s, respectively) is sly(C) weight space grading-preserving (lowers the sly(C) weight
space grading by 2, respectively). The differential of the sutured Khovanov complex is then defined

as d = dy, the grading-preserving part.

Definition 3.3. The sutured Khovanov homology of an annular link L C A x I is Skh;(L) =

H;(Ckh(L), d).

Notation We denote the sutured Khovanov homology in homological degree i, quantum degree

j and sly(C) weight space grading k by Skh; ; ,(L).

3.1.4. Filtration and spectral sequence to Khovanov homology. The sl (C) weight space grading can
be exploited to construct a finite-length filtration on the complex. Let the F-module, generated by

all generators of k-grading at most K, be Fx = (v | k(v) < K) and consider the filtration
g : Ckh(L) = gn D) gn—Q DD s—n D) g—n—2 =0.

Equation (3.1) implies that the Khovanov differential is a filtered map and that the sutured Khovanov
differential is the grading-preserving part. This implies that the sutured Khovanov complex is
the associated graded complex of the filtration §. Via the standard procedure [Hut, Balll], the
filtration gives rise to a spectral sequence from the annular Khovanov homology converging to

ordinary Khovanov homology.

3.1.5. sly(C)-module structure.
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Definition 3.4. The Lie algebra slo(C) is the complex vector space generated by (X,Y, H) and

endowed with a bracket [—, —] : sl3(C) x slo(C) — slo(C) defined by the following equations.
[H, X] = 2X,
[H,Y]=-2Y,
[X,Y] = H.

Fact 3.5. [FHO1| The Lie algebra sls(C) is semi-simple and thus every finite-dimensional sly(C)-

representation is semi-simple.

Fact 3.6. [FH91| The unique (n + 1)-dimensional irreducible slo(C) representation is the complex
vector space Sym" (V) = (v,) @ (U—2) B+ B (V_pt2) ® (v_pn). The operator H acts diagonalizable,
with eigenvectors vy, and corresponding eigenvalue k. The Lie algebra slo(C) action is thus completely

described by the following diagram.

H H H x H
<Un> v<vn—2>v<vn—4>v “ <U—n>
Y Y Y Y

Note that the vector space V = (vy1) @ (v_1) used in the definition of the chain groups of the
chain complex is the unique 2-dimensional irreducible sly(C) representation Sym'(V). The dual

*

representation Syml(V) is isomorphic to Syml(V), with the action of the operators X and Y
modified by a multiplication with a factor of (—1). The trivial representation of any Lie algebra g
on a vector space W is defined by g @ w +— 0 € W for all g € g and all w € W. We denote this

representation by Oyy.

From now on, we take as our ground ring the field of complex numbers, that is, F = C.

Definition 3.7 ([ELW15]). Let v be a Kauffman state and let NT},...,NT,, be the nested non-
trivial circles of v, from innermost to outermost, and let T, ..., T; be the trivial circles. The sly(C)

representation associated to v is the tensor representation

Sym' (V) @ Sym*(V)* @ --- @ Sym! (V) ®0%

m alternating Sym* (V') and Sym'(V)* factors
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Lemma 3.8 ([ELW15]). The sutured Khovanov differential d is an sla(C)-module map and thus the

5lo(C)-module structure is well defined on the level of homology.

3.1.6. Khovanov homology under change of a crossing marking. Khovanov homology and sutured
Khovanov homology are invariants of oriented links and annular links, respectively. However, the
orientation of the link is merely necessary to mark crossings as either positive or negative. While
these markings determine an overall shift of the complex in the homological and quantum grading,
they play no role in the definition of either the generators or differential. It is often useful to define
Khovanov homology (sutured Khovanov homology, respectively) as an invariant of an unoriented link
(unoriented annular link, respectively) together with the counts of positive and negative markings

of the crossings.

Lemma 3.9. Let (Ckh,d) be a sutured Khovanov complex with at least one crossing, say ¢, marked
positive and let (Ckh' d) be the complex with the crossing ¢ marked negative. Then (Ckh,d) =

(Ckh', d)[1,3], where the homological grading is shifted by 1 and the quantum grading shifted by 3.

Proof. Let ny,n_,n/,,n’_ be the count of positive and negative markings in (Ckh, d) and (Ckh', d),
respectively. Then n/, =ny —1 and n’ =n_ + 1. The claim is then immediate from the definition

of the homological and quantum grading in Section 3.1.2. O

3.1.7. Plamenevskaya’s element. In [Pla06], Plamenevskaya describes an invariant of transverse links
L C (53,§Std), defined using Khovanov homology. This invariant, called Plamenevskaya’s invariant
W(L), is defined as a special class in Khovanov homology. Concretely, choose a braid representative
B € B, of the transverse link L, and consider the element w = v_ Qv_ ® --- QR v_ € CkhO’SI(L),
living in the braid-like resolution of the braid closure B . Plamenevskaya’s invariant is defined as the
homology class [w] € Kh®s!(£),

From the sutured Khovanov point of view, the element w is the unique generator in minimal
k-grading. Of course, this implies that 0 # [w] € Skho(g) and the sly(C)-module structure on

sutured Khovanov homology then implies that Plamenevskaya’s element generates a factor (w) =

Sym" (V) C Skhy. We have proved the following lemma.

Lemma 3.10. Let 8 € By, be a braid. Then Sym" (V) < Skho(/5).

-~

Abusing notation, in the context of the sutured theory, we will use () to denote Plamenevskaya’s

~

element in the complez Ckh(S).
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3.2. Computer program to calculate sutured Khovanov homology. The combinatorial na-
ture of Khovanov-type homology theories lend themselves to implementation on a computer. A
computer program to calculate the sutured Khovanov homology of braid closures as sl3(C) represen-
tations, written by the author of this thesis, is available at https://www2.bc.edu/ian-banfield/.
See [HKLM15] for another application to calculate sutured Khovanov homology, using Mathematica
and the KnotTheory package.

For example, this is the sutured Khovanov homology of a strongly quasipositive braid represen-

tative of the fibered link 10,4, namely of the closure of 8 = 0y01010207 '0201010909.

i=0: Sym*(V)p,

i=1: Sym'(V)

i=2: Sym' (V)i

i=3: Sym' (V)13 e Sym' (V)1

i=4: 2Sym' (V)13

i=5: Sym'(V)7 ©Sym' (V)15

i=6: 2Sym'(V)i7

i=7: Sym"'(V)g

i=8: Sym'(V)a

1 =9: Syml(V)gg

The subscripts denote the quantum grading of the highest weight vector in the representation.

3.3. Positive braids.

Definition 3.11. A braid 5 € B,, is split if for a representative w, there exists 1 < j < n such that

the braid word w contains neither the generator o; nor its inverse aj_l, and is non-split otherwise.

Note that some authors reserve the term “split braid” to denote braids whose closure is a connected

sum in a prescribed way.
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Theorem 3.12. Let 8 € B, be a non-split positive braid. The sutured Khovanov homology groups

of the braid closure B in homological degree © <0, i =0 and i =1 are

-~

(3.2) Skh;(3) =0 for i < 0,
(3.3) Skho () ~ Sym™ (V) = ([¥(B)]),
(3.4) Skhy (B) = Sym" (V) = ([, ((B))]) = (va([T(B)))),

-~

where U(B) is Plamenevskaya’s element [Pla06], 5};66 is the k-grading increasing part of the Lee
differential [Lee05, ELW15] and vy is the element of the Lie superalgebra described in [ELW15].

This motivates the following definition.

Definition 3.13. If a braid 8 € B, satisfies Equations (3.2) - (3.4), then we say that 8 is Skh-

positive.

Throughout this section, we work over the field of complex numbers. With suitable adaptations,
the results of this section also hold over Zs. For technical reasons, it will be easier to work with
negative braids rather than positive braids. Appealing to a result of Khovanov relating the Khovanov
homology of the mirror of a link with the dual complex [KhoO0] enables us to prove Lemmas 3.3

and 3.4.

Lemma 3.14. Let 3 € B, be a negative, non-split braid. The sutured Khovanov homology of

the braid closure in homological degree i = 0 is Skho(8) = Sym"(V) = (U(5)), where ¥(5) is

Plamenevskaya’s element.

Proof. Let d—1 : Ckh_; — Ckhy and dy : Ckhg — Ckh; be sutured Khovanov differentials. We
explicitly describe the kernel ker(dy) and the image im(d_;) and conclude that the dimension of
Skho(ﬁ) = ker(dp)/im(d_1) is bounded above by dim(Skho(B)) < (n+ 1), where n is the number
of strands of the braid. This part of the sutured Khovanov complex for negative braids is pictured

in Figure 15. It is convenient to work in the basis given by the generators of the sutured Khovanov

chain complex as described in Section 3.1.1. The map dy is trivial and thus the kernel of djy is
ker(dp) = Ckhg = V™" = (v, @0, @+ @0, | & € {+,—1}).

From Figure 15, we note that the differential d_; is a sum of split maps; specifically of the maps

associated to splitting a trivial circle into non-trivial circles:
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Ficure 15. Example for § = 01_102_103_ oy .

e d_;(v_) =0 as the k-grading is not preserved, and

e d 1(vy)=vy ®U_+v_Qug.

This shows that the image of d_; is generated by the following elements.
im(d_1)={( - QU_Q@uUqy--+—--- Uy @U_...).

On the level of homology, the assumption that the braid is non-split yields the “sign swapping”

relation.
(3.5) [ Qu_®uy®...]=—[ Qv v_®...] € ker(dy)/im(d_1)
Consider the basis elements

vk:v+®...®v+®v_®...®v_.

k n—=k

The dimension of Skhg = ker(dp)/im(d_1) is bounded above by dim(Skhg) < n+1, because repeated
application of Equation (3.5) to a basis element v of ker(d_;) shows that v is homologous to +wvy

for some 1 < k < n. Appealing to Lemma 3.10 now implies the desired result. O

Lemma 3.15. Let § € B,, be a negative, non-split braid. The sutured Khovanov homology of the

braid closure in homological degree i = —1 is Skh_l(g) = Sym" (V).
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Proof. We proceed in two steps. First, we prove the lemma for g = 01_102_1 .. .G’;il, which are

negatively stabilized unknots. This is part of Proposition 14 in [ELW15], though we use a slightly
different approach. The second step is to show that the operation of injecting o-j_1 into a negative
braid word preserves the homology group Skh_;. Let d_5 : Ckh_y — Ckh_; and d_; : Ckh_; —
Ckhg be sutured Khovanov differentials.

We begin by explicitly describing ker(d_1) in the case of 8 = o7 'o; ... 0", € B,. Consider

the following subspaces V_, V. < Ckh_1, where the elements v;r ; and v, are pictured in Figure 16.

Vi = |i,je{l,...,n—1}]i—j| > 1),

Vo=(v; |ie{l,...,n—1}).

We claim that ker(d_1) = V_ @ V4. A straightforward calculation shows that d_;(v) = 0 for
v € V_ @ V4. The reverse containment follows from Proposition 14 [ELW15]; or more explicitly
from an elementary, if lengthy, linear algebra argument inducting on n. Now consider the elements

wSS, uf € Ckh_ pictured in Figure 17, where ¢, € {+, —}. Calculating the differential shows that

2,70 7

d_l(w:]1+) = :i:v;fj,
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and this implies that V, < im(d_2). differentials d_o(w™ ) and d_2(u*+) and the assumption
that the braid is non-split imply the relations pictured in Equations (3.6) and (3.7) on the level of

homology.

. H

1

J

~
<.
~

+

(3.6) =
N Il

I:)CN
Il
|

|:C

Now consider the following elements wy in the direct summand of Ckh_; corresponding to the

1

complete resolution with the crossing corresponding to o; ° resolved with a 0-smoothing and all

other crossings resolved with a 1-smoothing.
W = V_ ®U+®“'®U+®U7®"'®U7,

~—
for ﬂ)/ k n—k—2

where 7 is the unique trivial circle in the resolution. Note that wy € V_ and further, that iterated
applications of Equations (3.6) and (3.7) imply that every generator of V_ is homologous to +wy, for
some 1 < k < n—2. There are n—2+1 = n — 1 such elements, and hence the dimension is bounded
above by dim(Skh_;) < n — 1. To obtain the lower-bound we note that all non-trivial circles w,,_o
are marked with a “—”. However, elements in the image of the differential im(d_») have at least one
non-trivial circle marked “4+” and thus w,,_s ¢ im(d_1). The element w,,_o generates an irreducible
summand (w,_») = Sym" ?(V) < Skh_; as the k-grading is k(w,_2) = —n + 2. This completes
the first step.

In the second step we generalize the argument to non-split negative braids. Let a € B,, be such
a braid and let ¢ be the number of crossings of the closure @. The rank-nullity theorem and Lemma

3.14 show that
(3.8) dim(ker(d_1)) =n+1+ (c—2)2" %

Let us now inductively inject the inverse of generators into the braid word for 3 to obtain «, in
any order. Equation (3.8) shows that the operation of injecting the inverse of a single generator into

the braid word increases dim(kerd_;) by 2771,
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FIGURE 18. The elements v; € V. < ker(d_1) lie in the image of the differential.

We enlarge V_ to contain all additional generators with the trivial circle in the resolution marked

«

with a “—”. These generators are in the kernel kerd_; and contribute 2”2 to its dimension. The

differential of the elements z;, pictured in Figure 17, implies Equation (3.9) on the level of homology.

(3.9) ﬁ == U

e

Combining the relation in Equation 3.9 with the previous relations shows that the added generators
are homologous to wy for some 1 < k < n — 2. Further, from an explicit computation of the sign

along the edges, it follows that wgy ¢ im(d_) is equivalent to
w1 & (2 + (=1) ;| 1< 4,5 < M),

where M is a positive integer and the x; freely generate a complex vectorspace. This is a straightfor-
ward exercise which we omit. As noted in step one, wg ¢ im(d_;) implies that dim(Skh_;) >n —1.
Now enlarge V. by adding to it the elements v; shown in Figure 18, where the signs depend on the
signs along the edge maps in Section 3.1.3. Counting linearly independent such elements, note that
the dimension of V, increases by 2¥=2. Figure 18 shows that v; € im(d_5). The generators added
to V_ and V, increase the dimension of the kernel by 2 x 27=2 = 2"~! accounting for the entire
change in the dimension of the kernel without generating additional elements in homology. Thus
dim(Skh_;) < n — 1, which concludes the second step.

O

To prove Theorem 3.12 for positive braids, we appeal to the following fact, relating the sutured

Khovanov homology of a braid with that of its mirror.

Fact 3.16. Let K be an annular link and K' its mirror. Then Skh;(K) ~ Skh_;(K").
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Proof. Corollary 1 in [ELW15] implies that Skh;(5,k) ~ Skh;(5,—k) [ELW15]. The claim now

follows immediately from [Kho0O], Proposition 31. O

Proof of Theorem 3.12. Let 8 € B,, be a non-split positive braid and let ' be its mirror. The braid

(' is a non-split negative braid. Fact 3.16 and Lemmas 3.14 and 3.15 imply

Skhy(3) ~ Skho(8') ~ Sym™(V),

Skh; () ~ Skh_;(8") ~ Sym™ (V).

Lastly, it remains to show these homology groups are generated as claimed in the statement of the

Theorem 3.12.

-~

Skhy(3) = (W(B\» Immediate from Section 3.1.7, as the class of Plamenevskaya’s element generates

a factor of Sym™ (V') for any braid closure.

-~

Skhy (B) = (6] .,

-~

(T(B))]): Lemma 3 of [ELW15] implies that

A5 (U(B)) = —0f o (A(T(B)) = 57 . (0) =0,
and therefore 5{66(\11(3)) is a cycle. The term 5iee(ql(§)) is a signed sum of oriented
Kauffman states with a single trivial circle v marked “+” and n — 2 non-trivial circles
marked “—”. In the case of positive braids, all maps associated to the edges Ckhy — Ckh;
are maps merging two non-trivial circles into the trivial circle 4. The condition that the

sutured Khovanov differential preserves the k-grading implies that 5ﬂee(\11( )) can not be

in the image of the differential. Hence [5{66(\11(3))] # 0. O

3.4. Applications. In [Cro93], Cromwell gave a proof using spanning surfaces of the following fact.

Theorem 3.17 (Cromwell). Suppose that Seifert’s algorithm constructs a minimal genus spanning
surface for L when applied to a diagram w(L) = D of L. Then L is a split link if and only if D is

disconnected.

When applied to a positive braid link, the braided surface constructed by Seifert’s algorithm is
indeed of minimal genus, hence positive braid links satisfy the assumptions of Cromwell’s theorem.
However, for strongly quasipositive links, the spanning surface constructed may not be minimal

genus.
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The key assumption in Theorem 3.12 is that the braid 3 is non-split. It follows from the definition
of the sutured Khovanov homology that the homology of a split link is given by tensoring the sutured
Khovanov homologies of the components. We are now ready to prove a version of Cromwell’s result

for positive braids links.

Corollary 3.18. A positive braid (3 is conjugate to a non-split braid if and only if B is non-split.

Proof. If the positive braid § is non-split, then apply Theorem 3.12 to deduce that Skho(zﬁ)) is
an irreducible sly(C)-module. Sutured Khovanov homology is a conjugacy class. If S was conju-

gate to a split braid, then Skho((8)) would be a tensor representation, contradicting that tensor

representations are not irreducible [FH91]. O

Theorem 3.19 ([Sta78]). Let 8 be a positive braid. The closure B is fibered if and only if B is

non-split.

Corollary 3.20. Sutured Khovanov homology detects if a positive braid closure is fibered.

-~

Proof. Let § € B, be positive. The sutured Khovanov homology in degree i = 0 is Skhy(f)

12

Sym" (V) if and only if B is non-split if and only if 3 is fibered. a
3.5. Strongly quasipositive braids and staircase braids.

3.5.1. The mapping cone description of sutured Khovanov homology and the long exact sequence for
a crossing. Let D be a diagram for an annular link L and choose a crossing ¢. Let Dy (D7) be
the diagrams obtained from D by resolving the crossing ¢ with a 0-smoothing (1-smoothing, respec-
tively). The sutured Khovanov complex of D can be described in terms of the sutured Khovanov
complex of the diagrams Dy and D; via a mapping cone construction. Let [X], [D(], [X] be the

sutured Khovanov complexes associated to D, Dy and D;. Then
[X] = C( % X)),
where d is the differential. The associated short exact sequence of chain complexes
0= [X][1) 5 [X] 5 D =0
gives rise to the long exact sequence of homology groups,

(3.10) oo HA[X][) = Hoa[X] = Hoa(] = Ho[X)[] = ..
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Lemma 3.21. The maps in the long exact sequence of homology groups are sla(C)-module homo-

morphisms.

Proof. The maps in the exact sequence are either inclusion maps, projection maps or the connecting

homomorphism, which is the differential d. All these maps commute with the sl3(C) action. O

3.5.2. The sutured Khovanov homology of staircase braids.

Lemma 3.22. Let § € B,, be Skh-positive and let D be a diagram for the braid closure //3\ Let ¢
be a positive crossing, and let Dy (Dy) be the diagram obtained by resolving the crossing ¢ with a
0-smoothing (1-smoothing). Denote the sutured Khovanov complex for D, Dy, D1 by [X], (], [X],

respectively. The homology groups for [X(] and [X] satisfy H;([)(]) = H;([X]) fori < —1.

Proof. Consider the long exact sequence for homology groups (3.10). For ¢ < —1, the relevant part

of the long exact sequence reads

H; 1[X] —— H,_1[)(| — H;[X][1] — H;[X]

| I
0 0

and hence H;_1[)(] ~ H;[X][1] = H;—1[X]. Now consider the exact sequence
Hy[X] —— Hoa[X] —2 Ho[X][1] —*— Ho[X]

| |
0 Sym" (V)

It is immediate that the map « is injective. We claim that « is also surjective. Note that Ho[X][1]
is a semi-simple sly(C)-module whose irreducible factors are of dimension at most n — 2. If the map
¢ was non-zero, then pre-composing with an injection into one of the irreducible factors of Hy[X][1]
yields a non-trivial map between irreducible sly(C)-modules of different dimension. This contradicts
the fact that a map between irreducible Lie algebra modules must be either an isomorphism or
trivial. As the sequence is exact, this implies that image of « is im(«) = ker(¢) = Ho[X][1]. Thus

a: H 1[D{] — Ho[X][l] = H-1[X] provides the desired isomorphism. O

Recall that we defined staircase braids as the strongly quasipositive braids whose normal form

contains a positive power of the dual Garside element.

-~

Theorem 3.23. Assume that Skh;(8) = 0 for i < 0 if 8 € B, is a strongly quasipositive braid.
Then the class of staircase braid closures in B, is Skh-positive, that is, if v € By, is a staircase braid

then 7 is Skh-positive.
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Proof. Recall from Lemma 2.7 that if v is a staircase braid, then there is a sequence of braids

T Ym Y Ym—1 e 0

where all ~; are strongly quasipositive, 7y is a positive braid and ;41 ~» ~; indicates that ~;
is obtained from ~;11 by canceling a repeated band generator. The braid ~y is Skh-positive by
Theorem 3.12. We now proceed by induction and show that if ; being Skh-positive implies that
~it+1 is also Skh-positive.

The braid word for ;41 contains a square of a band generator, say afﬁs, as viy1 ~ vi. Expressed

in the Artin generators, a square of a band generator is

2 2

ay o = ((O‘T)_l(O'r+1)_l OO ... O'T)

= (o) o)t 02051 ... O,

This implies that to obtain a braid word for 7; we replace the square of the Artin generator o? in
the braid word for ;11 with a single power of the Artin generator os. Let D (D’) be the diagram for
the braid closure of v; (7;+1, respectively). By these remarks, these diagrams are identical except
in a small neighborhood, which contains o in D and o2 in D'.

Now consider the short exact sequence of chain complexes

o

0— & —— [&] —— []
[x|]‘ 2] Cth(D’) Ck}|1‘(D)

(3.11)

The complex [X] ([)(], respectively) is the sutured Khovanov complex associated to resolving
the crossing ¢ corresponding to o, in D with a 1-smoothing (0-smoothing, respectively) and [X] =
Ckh(D). For i < 0, the homology groups satisfy H;[X] = H;[>{] = 0. The first equality follows from
Lemma 3.22 and the second is immediate from our assumption that the sutured Khovanov homology
of strongly quasipositive braids in B, is supported only in non-negative homological grading.

Consider the part of the long exact sequence of homology groups associated to the short exact

sequence (3.11)



BASKETS, STAIRCASES AND SUTURED KHOVANOV HOMOLOGY 33

Ha[X)2) — Hoa [§] — HoalX] )

[-> Ho[X][2] —— Ho {é} —% s Ho[X] j

L Hi[X[2] —— i [§] —— X

It is immediate that ¢ is an isomorphism as Hy[X][2] = H_2[X] = 0and H[X][2] = H_1[X] = 0.
This also immediately implies that 7, is injective. The map 7, is the map induced by the projection
onto a quotient complex and we claim it is surjective. Write x; = W(¥;) for the Plamenevskaya
element of ;. By Equation (3.4) and the inductive hypothesis, we may assume that Hq[X] =
Sym" (V) = <([5Eee (2;)])), where 5Eee is the k-grading increasing part of Lee’s differential [Lee05,
ELW15]. We claim that W*([5fee($i+1)]) = [6Eee(:ﬂi)]. To start, recall from the proof of Theorem
3.12 that d(éiee(xi)) = 0, using Lemma 3 of [ELW15], so the elements 6i-ee(xi) represent homology
classes. Identify oriented Kauffman states for the resolutions of «;1; where ¢ is resolved with a
0-smoothing with the oriented Kauffman states of ;. For convenience, index the crossings in such
a way that c is the last crossing. Note that 5fee (z441) is a signed sum of oriented Kauffman states,
each containing a single trivial circle marked “4” (corresponding to a 1-smoothing of a positive
crossing), and n — 2 non-trivial circles marked ”-”. Our identification of Kauffman states and choice
of indexing shows that 5£ee(:z:i+1) = 5{66(351-) +v. Here, v is the state that corresponds to resolving
the crossing ¢ with a 1-smoothing and marking the trivial circle with a “+” and the non-trivial

circles with a “—”. Note that 7(v) = 0 and therefore,

7[5 o (@i 1)]) = (70 g0 (31) + )] = [ (5 oo ()] = 5 oo )]
and the lemma now follows. ]

The next technical lemma provides a convenient criterion to verify if a strongly quasipositive

braid closure has sutured Khovanov homology supported in non-negative homological grading.

Lemma 3.24. Let Dy 1 be the annular link diagram obtained by resolving all band generators of
the closure of a strongly quasipositive braid B € B,, with a 1-smoothing and let m(3)°® be the number

of band generators in B. If H;_p,(5)[D1..1] = 0 fori < 0 for all strongly quasipositive braids 3 € By,

5Note that for strongly quasipositive braids the writhe and the number of band generators coincide.
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then strongly quasipositive braids closures in B, are supported in non-negative homological grading.

Proof. We proceed by induction. Consider a strongly quasipositive braid with one band generator,

B=ars= (0,) Hors1) ™ .. 0505 1 ... 0

Let D be the diagram of the braid closure and let ¢; be the positive crossing associated to the
Artin generator os. Let Dy and D; be the annular link diagrams that are obtained by resolving ¢y
with a 0-smoothing and 1-smoothing, respectively, and let [X], [>(], [X] be the sutured Khovanov
complexes for D, Dy, D;. The diagram D represents the trivial braid closure on n strands whose
sutured Khovanov homology is supported only in homological grading i = 0. Applying the long
exact sequence from Equation (3.10) we obtain, for i <0,

Hi ) —— H;1[X] — H;[X] — H;[){]

I I
0 0

We now assume that the result is true for strongly quasipositive braids in B, with less than M
band generators and consider a strongly quasipositive braid 8 with M band generator. Label the
positive crossings of 8 corresponding to the band generators by ci,...,car, and let Dj 4, 5, be the
diagram obtained by resolving the crossing ¢; with a j;-smoothing for 1 < i < L, see Figure 19. We
claim that for ¢ < 0, the homology of the sutured Khovanov complex for these diagrams satisfies the

following equations.

(3.12) Hix[Dy . 101 =0,
—
k+1
(3.13) Hi—x[D1 . 1]l =Hi +0)[D1.. 1)
13 k+1

Let 8’ be the strongly quasipositive braid that is obtained by removing the band generator corre-
sponding to the positive crossing cxy1 from the braid word for 3 and let D’ be an diagram for the
braid closure of 3. By induction and noting that the base case is immediate, we may assume that
equations (3.12) and (3.13) hold for the diagram D’.

Note that the diagram D;. 19 (count of 1s in the subscript is k) is isotopic to the diagram D} ,

(count of 1s in the subscript is k). Hence Equation (3.12) is equivalent to H;_(D}) =0 fori <0
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FiGURE 19. Diagrams obtained by partially resolving the braid
B8 = a1,3a2 3a1 2, closures omitted.
(count of 1s in the subscript is k). For k = M — 1 this claim follows from the assumption in the
statement of the lemma, and for k¥ < M — 1 the claim follows from this observation and repeated
applications of Equation (3.13).
It remains to prove Equation (3.13) for the diagram D. For this, we apply the long exact sequence

(3.10) corresponding to the short exact sequence of chain complexes

0—[Dy. qlll]=[Dy. 1] —=[D1.. .10l >0
—

k+1 k k41

We can now prove Equation (3.13) by considering the following part of the long exact sequence (for

i <0).
Hi—x1[Dy . 10l = Hi—k[Dy . 1]1] = Hi—x[Dy 1] — Hi—k[Dy1 . 10
N—— N—— N—— N——
k+1 k+1 k k+1
||(3.12) ||(3.12)
0 0

Using Equation (3.13), we see that for ¢ < 0 the sutured Khovanov homology of 3 satisfies H; [D] = 0.
H;[D] = H; 1[D1] = H; o[D11] =+ = Hi_py(py[D1..1] = 0
O

Lemma 3.25. The sutured Khovanov homology of strongly quasipositive 3-braids is supported in

non-negative homological grading.

Proof. Let 8 € Bs be a strongly quasipositive 3-braid, let m(5) be the number of band generators of
B and let Dy ; be the annular link diagram obtained by resolving all band generators of the closure
B . Then D; ; has at most m(3) negatively marked crossings and appealing to Lemma 3.24 implies

-~

that Skh;(3) = 0. O

We finish with two immediate corollaries of this lemma.
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Corollary 3.26. The Khovanov homology of strongly quasipositive 3-braids is supported in non-

negative homological grading.

Proof. The spectral sequence from sutured Khovanov homology to Khovanov homology respects

homological grading. O
Corollary 3.27. Staircase 3-braids are Skh-positive.

Proof. Immediate from Lemma 3.25 and Theorem 3.23. O
Corollary 3.28. Staircase 3-braids are conjugate to non-split braids if and only if they are non-split.
Proof. Identical to Corollary 3.18. O
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