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The development of highly controllable quantum coherent simulators such as superconducting qubits and Rydberg
atom arrays has stimulated the study of non-equilibrium quantum dynamics, opening the door to exciting topics includ-
ing dynamical phase transitions, thermalization, transport, and quantum error correction. This thesis addresses various
questions from non-equilbrium quantum dynamics, with a concentration on measurement-induced phase transitions
(MIPT), adaptive dynamics with feedback mechanism, and Hilbert space fragmentation. In the !rst part, we study the
hybrid quantum automaton (QA) circuits with di"erent symmetries subject to local composite measurements. For Z2-
symmetric hybrid QA circuits, there exists an entanglement phase transition from a volume-law phase to a critical phase
by varying the measurement rate. The special feature of QA circuits enables us to interpret the entanglement dynamics
in terms of a stochastic particle model. With the help of this stochastic model, we further investigate the entanglement
#uctuations and quantum error correcting property of the volume-law phase in QA circuits with no symmetry, and study
the entanglement dynamics in QA circuits with U(1) symmetry. Despite being a hallmark of non-unitary quantum dy-
namics, MIPT is absent in the density matrix averaged over measurement outcomes. In the second part, we introduce
an adaptive quantum circuit subject to measurements with feedback. The feedback is applied according to the mea-
surement outcome and steers the system towards a unique state above certain measurement threshold. We show that
there exists an absorbing phase transition in both quantum trajectories and quantum channels. In the end, we turn
to the phenomenon of Hilbert space fragmentation (HSF), whereby dynamical constraints fragment Hilbert space into
many disconnected sectors, providing a simple mechanism by which thermalization can be arrested. However, little is
known about how thermalization occurs in situations where the constraints are not exact. To study this, we consider
a situation in which a fragmented 1d chain with pair-#ip constraints is coupled to a thermal bath at its boundary. For
product states quenched under Hamiltonian dynamics, we numerically observe an exponentially long thermalization
time, manifested in both entanglement dynamics and the relaxation of local observables. To understand this, we study
an analogous model of random unitary circuit dynamics, where we rigorously prove that the thermalization time scales
exponentially with system size. Slow thermalization in this model is shown to be a consequence of strong bottlenecks in
con!guration space, demonstrating a new way of producing anomalously slow thermalization dynamics.
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5.1 Schematic phase diagram illustrating (a) the entanglement phase transition for the individual quantum
trajectories and (b) domain wall density transition as a function of the measurement rate p and feedback
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5.8 Finite-size data collapse of the domain-wall particle density n(t) of the classical bit-stringmodel with two
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5.14 The entanglement entropy S(2)
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6.1 a) A schematic of the setup considered in this paper: a 1d chain is partitioned into a constrained region
at sites 1 < i ≤ Lcons within which the dynamics is fragmented, and an unconstrained region at sites
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6.5 Eigenenergies in di"erent variants of SU(3)-symmetric models for L = 8, arranged according to the
Krylov distance dµ (6.15) of each eigenstate. Left: Unperturbed TL model without sublattice staggering
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with gi = (−1)i: the frozen states now lie in the middle of the spectrum. Right: The samemodel but now
with a two-site impurity of strength λ = 1 at the end of the chain. States with large dµ continue to be
located roughly in the middle of the spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.6 Eigenenergies in di"erent SU(3)-breaking models for L = 8, arranged according to the Krylov distance
dµ (6.15) of each eigenstate. Left: Arandom translation-invariant choice of the pair-#ipmatrix gab. Center:
The choice gabi = (−1)igab adopted in the main text with λ = 0. The frozen states at dµ = 0 continue
to lie roughly in the middle of the spectrum. Right: The same Hamiltonian but with λ = 1, showing a
distribution of dµ which continues to remain very broad. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.7 Eigenenergies for N = 2 models. Left: The SU(2)-symmetric model with gi = (−1)i and λ = 0. Cen-
ter: The same model but with λ = 1, with most eigenstates clustering around a small value of dµ, as
expected from a thermalizing Hamiltonian (on account of the absence of strong fragmentation). Right:
An SU(2)-breaking model with random pair-#ip matrix gab. The distribution of dµs is even more tightly
concentrated about the value one would obtain for a thermalizing Hamiltonian. . . . . . . . . . . . . . . 95
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Chapter 1

Introduction

One of the most important topics in condensed matter physics is quantum phases of matter. Much of our understanding
of quantum phases is based upon systems in equilibrium, where there is no net #ow of matter or energy. Typically, a d-
dimensional isolated quantum system satisfying the Eigenstate Thermalization Hypothesis (ETH) will eventually evolve
into a state described locally by statistical mechanics [1, 2, 3]. One can think of a small subset of the degrees of freedom
as a subsystem A, then the rest of the system Ac will act as a heat bath which leads to thermal descriptions of A when
probed with local observables. The reduced density matrix ρA obtained by tracing out the degrees of freedom in Ac of
the state ρwill approach the Gibbs state. Meanwhile, as an important measure of entanglement and correlation between
degrees of freedom, the von Neumann bipartite entanglement entropy de!ned as

SA ≡ − lnTrρA ln ρA (1.1)

exhibits a volume-law scaling under the in!nite time limit, i.e.,

lim
t→∞

SA(t) ∼ Ld
A, (1.2)

which means that every degree of freedom within A is entangled with those in Ac in equilibrium.
A natural question arises: Is thermalization an inevitable fate for all quantum systems? Indeed, there exist mech-

anisms that impede thermalization [1, 2, 4, 5, 6]. One example is many-body localization [7, 8], which evades ther-
malization through strong quenched disorder. Another mechanism that does not rely on spatial disorder is through
imposing dynamical constraints, thereby rendering the dynamics non-ergodic. This results in the Hilbert space being
split into exponentiallymany dynamically disconnected fragments, a phenomenon known asHilbert space fragmentation
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23].

An alternative way of approaching this question is investigating the dynamics of monitored random quantum cir-
cuits. Quantum circuit models are the minimal models to study entanglement dynamics in quantum systems, since any
unitary operation acting on a d-dimensional Hilbert space can be decomposed into a sequence of local unitary gates. A
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generic system with only local unitary evolution exhibits a ballistic growth of SA until saturating to a state with volume-
law entanglement [24]. When measurements are also involved, the non-unitary dynamics can exhibit many emergent
phenomenawhich are inaccessible in pure unitary dynamics or in systems in equilibrium. If post-selection is prohibited,
the state is averaged over measurement outcomes, resulting in a decohered maximally-mixed state. However, if mea-
surement outcomes are recorded and one can keep track of the quantum trajectory, a dynamical entanglement phase
transition from a volume-law phase where SA ∼ Ld

A to an area-law phase where SA ∼ Ld−1
A emerges as one increases

the measurement rate p [25, 26, 27].
The measurement-induced phase transition (MIPT) was !rst observed in Haar random and Cli"ord random circuits

composed of local two-qubit unitary gates and single qubit projective measurement gates[28, 25, 26, 27, 29, 30, 31].
In particular, at the phase transition point pc, aspects of critical phenomena come into play, with, e.g., emergent two-
dimensional conformal symmetry emerging in certain (1+1)-dimensional [(1+1)D] circuits[28, 32]. At !rst, this !nding
is rather surprising, since every measurement can reduce the entanglement, while only local unitary operators near
the bipartition boundary can increase the entanglement. This apparent contradiction can be understood via quantum
error correction [29, 30, 33]: When p is small, the hybrid quantum circuit is dynamically generating a robust quantum
error correcting code, where the quantum information is protected by unitary evolution against projectivemeasurements
acting as errors; For p > pc, the unitary evolution fails to protect the quantum information, and the system undergoes a
phase transition to a disentangled area-law state.

Since its discovery, MIPTs have been generalized to othermonitored open quantumdynamics[34, 35]. Aside from the
interpretation in terms of quantum error correction, it can also be understood as a symmetry-breaking phase transition in
the enlarged replica space[36, 37, 38, 39], where the entanglement entropy corresponds to the domain wall free energy.
Recently, it was shown in Ref.[40] that the quantum automaton (QA) circuit subject to composite measurement can
also exhibit an entanglement phase transition. This model provides a new physical picture for interpreting the phase
transition in terms of bit-string dynamics and the entanglement transition within this model belongs to the directed
percolation (DP) universality class[41]. Monitoring quantum systems can also stabilize interesting phases which cannot
exist in equilibrium. One example is non-unitary free-fermion dynamics. In this system, there is an emergent critical
phase protected by continuous weak measurement [42, 43]. Another class of examples are given by monitored quantum
systems with additional discrete symmetries, which can possess highly entangled volume-law phases with conventional
or topological order[44, 45, 39]. In addition, the area-law phase can also have a richer phase diagram characterized by
di"erent orders[44, 45, 46].

Motivated by the questions addressed above, this thesis will focus on various aspects in non-equilibrium quantum
dynamics. In the !rst three chapters, we will explore the measurement-induced criticality as well as entanglement and
transport properties in the volume-law phase of the aforementioned hybrid QA circuits under di"erent symmetries.
Hybrid QA circuits consist of QA unitaries that map one basis state to another up to a phase in the computational ba-
sis, interspersed with composite measurements that impose a rotation after projective measurements, so that the wave
function is always an equal-weight superposition of all the allowed basis states with the phases carrying the quantum in-
formation. Due to this basis-preserving feature, we are able to perform large-scale numerical simulations, and interpret
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the entanglement dynamics in terms of a stochastic two-species particle model.
In Chapter.2, we study the entanglement dynamics of hybrid QA circuits with Z2 symmetry, with a focus on the

second Rényi entropy S(n=2)
A , where

S(n)
A =

1

1− n
ln [Tr(ρnA)]. (1.3)

We!nd that there is a transition froma volume-lawphase to a critical phasewith logarithmic entanglement scaling as one
increases themeasurement rate p. We further show that the critical point pc belongs to the parity-conserving universality
class [41, 47, 48], and the critical phase p > pc exhibits di"usive dynamical exponent, which can be explained using the
stochastic model where the particles perform branching-annihiltaing random walks.

In Chapter.3, we focus on theweakly-monitored volume-law phase of the QA circuit with no symmetry. In particular,
we will study the #uctuation of the entanglement in this random dynamics and the quantum error correction property
of the volume-law phase. Previous studies for 1d random Haar circuits suggested that the entanglement entropy can be
mapped to the free energy of the directed polymer in a random environment (DPRE) which has #uctuation belonging
to the Kardar-Parisi-Zhang (KPZ) universality class [28, 25, 49, 50]. Such #uctuations lead to a subleading correction
term scaling as L1/3 in the entanglement entropy in the volume-law phase, which has also been numerically veri!ed
for random Cli"ord circuits [51, 52]. We numerically show that the entanglement entropy of a subsystem in both the
early-time dynamics and the steady state in the hybrid QA circuit also exhibit sample-to-sample #uctuations with the
same scaling behavior. Again, this KPZ scaling can be understood through randomwalks in a !xed random environment
from the stochastic particle model. Furthermore, we investigate the quantum error correcting property of the hybrid QA
circuit in terms, and !nd that there are two di"erent kinds of code distance corresponding to di"erent errors that both
scale polynomially in L.

In Chapter.4, we turn to the entanglement dynamics of hybrid QA circuits with U(1) symmetry with a focus on the
second Rényi entropy S(n=2). For a generic unitary quantum circuit under U(1) symmetry, it has been demonstrated
that although the von-Neumann entanglement entropy continues to grow linearly, the growth of higher Rényi entropies
is limited by the di"usive transport and therefore exhibits sub-ballistic growth [53, 54, 55, 56]. Mathematically it is
rigorously proven that the growth of S(n>1) is at most di"usive, with a logarithmic correction [53], i.e.,

S(n>1) ≤ n

n− 1
O(

√
t ln t). (1.4)

We show that forQA circuits, the entanglement growth saturates this upper bound. This saturation is caused by the “slow
modes” that contain extensively long domains of spin 0s or 1s whose boundary expands di"usively (up to a logarithmic
correction) under time evolution. We further numerically investigate the monitored dynamics and !nd that contrary to
non-automaton random circuits where any non-zero rate of measurements leads to linear growth of the second Rényi
entropy, the di"usive entanglement growth still persists in the volume-law phase of U(1)-symmetric hybrid QA circuits.
As the measurement rate increases, there is a phase transition from a volume-law phase to a critical phase where SA

increases logarithmically in time, which is similar to the critical phase observed in Z2-symmetric QA circuits.
While theMIPT is an intriguing phenomenon in out-of-equilibrium quantum dynamics, it remains invisible in quan-
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tum channels where postselection is impossible, posing great challenges to experimental observations. Recently, a new
class of non-equilibrium dynamics called adaptive dynamics appears, which uses feedback mechanism to in#uence the
system’s evolution by measurement outcomes, enabling the realization of non-trivial density matrices and a variety of
quantum ordered phases [57, 58, 59, 60, 61, 62]. In Chapter. 5, we introduce a class of adaptive random circuits with
feeback that exhibits a phase transition that is observable in both quantum trajectories and quantum channels. Aside
from themeasurement rate p, we add another parameter which is the feedback rate r. The feedback is designed to “steer"
the system towards particular !nal states. When p× r is large enough, the steady state is a mixture of two ferromagnet-
ically ordered states instead of a maximally mixed state involving exponentially many con!gurations. Thus, there is an
order-disorder phase transition in the quantum dynamics, which can be observed at the level of both quantum trajectory
and quantum channel [59, 60]. By explicitly mapping the motion of domain walls to a classical branching-annihilating
random walk (BAW) process, we show that the order-disorder phase transition in our adaptive circuit model belongs to
the parity-conserving (PC) universality class. Furthermore, the familiar MIPT is observed at the level of the quantum
trajectory. Interestingly, we !nd that these two transitions typically occur at di!erent critical measurement rates.

In Chapter.6, we go back to the question addressed at the beginning of this introduction and concentrate on systems
with Hilbert space fragmentation. Since the ergodicity-breaking mechanism of HSF relies on !ne-tuned dynamical con-
straints in stead of disorder, the ergodicty is expected to be restored once the constraints are broken. We are interested
in how the thermalization dynamics is a"ected by the structure of HSF in the presence of constraint-breaking pertur-
bations. We will focus on a one-dimensional spin chain called “pair-#ip” model that exhibits HSF [63], and couple one
end to a heat bath. We will show that the thermalization dynamics is anomalously slow. This slowness is due to the
strong bottlenecks the system encounters as one tries to explore the Hilbert space under the contraint-breaking bath, a
phenomenon which arises from the type of constraints and the local nature of the coupling to the bath. We rigorously
prove an exponentially large lower bound on tth in the setting where the system undergoes a constrained form of ran-
dom unitary (RU) dynamics, and provide numerical evidence that tth for Hamiltonian dynamics is similarly long. In an
upcoming work, we show that this anomalously slow thermalization can be generalized to other HSF systems, and they
can be classi!ed into three categories according to di"erent mechanisms of forming HSF.
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Chapter 2

Measurement-induced criticality in
Z2-symmetric quantum automaton circuits

2.1 Introduction

In this chapter, we construct a hybridQAcircuitwithZ2 symmetry and study its entanglement dynamics. We show that if
we impose thisZ2 symmetry, there exists an entanglement phase transition from a highly entangled volume-law phase to
a critical phase with logarithmic entanglement scaling, with the transition occurring by varying the measurement rate p
(See Fig. 2.1). We generalize the classical bit-string picture developed in Ref.[40] and demonstrate that the entanglement
phase transition belongs to the parity-conserving (PC) universality class with dynamical exponent z = 1.744[47, 48, 41].
Due to the Z2 symmetry, this universality class is distinct from the aforementioned DP universality class. We further
derive a two-species particle model based on the bit-string picture to calculate the entanglement dynamics from a short-
range entangled state. The particles in this model can di"use, branch, and annihilate in pairs, and the purity for a
subsystem is equivalent to the fraction of con!gurationswhere particles of di"erent species never encounter one another.
In particular, the prefactor of the logarithmic scaling of the second Rényi entropy at the transition point pc is related to
the local persistence coe$cient of the two-species particle model and is a universal constant for PC universality class.

Unlike the conventional measurement-induced phase transition in which there is an area-law entangled phase when
the measurement rate p is larger than some critical threshold pc, here we observe a critical phase, characterized by
logarithmic entanglement scaling when p > pc. Speci!cally, this phase has dynamical exponent z = 2 and is protected
by the combination of the Z2 symmetry and the special features of the QA circuit. We show that the underlying bit-
strings have di"usive dynamics, and provide an interpretation of the critical entanglement scaling in terms of the two-
species particlemodel. We further analyze the puri!cation dynamics starting from amixed densitymatrix with extensive
entropy[30]. We !nd that when p > pc, the entropy decays di"usively in time which is consistent with the entanglement
dynamics results.

The rest of the chapter is organized as follows. In Sec. 2.2, we construct a hybrid QA circuit with Z2 symmetry. We
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Volume law phase Critical phase (z=2)

PC universality class 
(z=1.744)
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Figure 2.1: A cartoon picture for the phase diagram of the hybrid QA circuit in the presence of Z2 symmetry. The
dynamical exponents of the quantum phase transition at p = pc and the quantum critical phase p > pc are inherited
from the associated classical bit-string dynamics, respectively.

numerically compute the entanglement entropy for this circuit in Sec. 2.3 in terms of a Cli"ord stabilizer representation.
In addition, we provide an interpretation of second Rényi entropy in terms of classical particle model. In Sec. 2.4, we
analyze the puri!cation dynamics and !nd that the results for critical point and critical phase are consistent with that
in Sec. 2.3. We summarize our results in Sec. 2.5.

2.2 QAmodel with Z2 symmetry

In this section, we construct a hybrid QA circuit with Z2 symmetry. We aim to study how the information encoded in
the quantum state evolves under the competition between quantum automaton unitary operators and non-unitary mea-
surements, which will be speci!ed later in this section. Given a subregion A, a particularly useful quantity to measure
this is the nth Rényi entropy:

S(n)
A =

1

1− n
ln [Tr(ρnA)]

ρA = TrB |ψ〉〈ψ|.
(2.1)

where B is the complement of A. In this chapter, we will focus on the second Rényi entropy with n = 2 and take the
base to be the natural logarithm base.

The QA circuit is built up of unitary operators that permute a set of vectors in a speci!c orthonormal basis (namely,
the computational basis) up to some random phase, i.e.,

U |n〉 = eiθn |π(n)〉, (2.2)

where π ∈ SN is an element of the permutation group on the product states |n〉 in the computational basis with cardinal-
ityN . Through out this chapter, we build the computational basis from the Pauli Z basis. The Z2 symmetry is imposed
by requiring that the parity of the computational basis remains !xed under the unitary evolution. From the previous
de!nition it is clear that the automaton unitary evolution does not create entanglement when acting on product states
in the computational basis. However, it can generate entanglement in a wavefunction which involves a superposition of
the basis states—for example, we can apply the measurement (1 + Z1Z2 · · ·ZL)/

√
2 to a product state polarized in +x

direction with an even number of qubits L to make it Z2 even. When the automaton unitary operator acts on such an

6



initial state,
|ψI〉 = U |ψ0〉 = U ◦ 1 + Z1Z2 · · ·ZL√

2

⊗

i

1√
2
(|0〉+ |1〉)

=
1√
2L−1

∑

n

eiθn |π(n)〉,
(2.3)

we can obtain a highly entangled state for su$ciently generic θn. In the above equation, each |n〉 contains an even
number of 1’s and 0’s, and together they form a Z2-symmetric computational basis {|n〉} with cardinalityN = 2L−1. In
this chapter, we consider unitaries U composed of local unitary QA gates. With this construction, the entanglement can
grow linearly in time, and saturates to volume-law scaling at late times.

Aside from the QA unitary operators, non-unitary local measurements are also introduced into the QA circuit. Since
theQAunitary evolution does not enlarge the number of basis states involved in thewave function, repeated local projec-
tivemeasurements in theZ directionwill continually reduce the number of available basis states, andwill ultimately lead
to a product state with no entanglement. Therefore, there is no entanglement phase transition when the measurement
rate is !nite.

To resolve this issue, Ref.[40] introduced a composite measurement which applies a rotation to the spin into | ± x〉

following the projection in the Z direction so as to preserve the basis states. In such a hybrid QA circuit model, the
wave function at any time is an equal weight superposition of all the basis states, and there exists an entanglement phase
transition belonging to DP universality class at !nitemeasurement rate. In our system, we need tomodify this composite
measurement slightly to preserve the Z2 symmetry. We therefore de!ne the composite measurement as

Mσ
L/R = R ◦ PσL/R, (2.4)

which acts on two qubits. This measurement is a combination of the projection operator PσL/R on the left/right qubit
into the spin σ = {0, 1}, together with a two-site rotation operation

R =
1√
2





1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1




(2.5)

that maps |00〉 to (|00〉+ |11〉)/
√
2, |11〉 to (|00〉 − |11〉)/

√
2 and |01〉 to (|01〉+ |10〉)/

√
2, |10〉 to (|01〉 − |10〉)/

√
2. For

instance, whenM0
L is applied to a two-site wave function with even parity de!ned as follows,

M0
L|ψ〉 = R ◦ P 0

L[
1√
2
(eiθ0 |00〉+ eiθ1 |11〉)]

= eiθ0R|00〉

=
1√
2
eiθ0(|00〉+ |11〉).

(2.6)

After imposing the composite measurement, the wave function is still an equal weight superposition of all the basis
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states with the same parity: the only thing that changes is the information stored in |ψ〉, among which only half of the
phases are preserved after each application ofMσ

L/R. Therefore, we anticipate that measurements will act to disentangle
the many-qubit system, while still preserving the Z2 symmetry.

2.3 Entanglement Transition

2.3.1 Cli!ord QA circuit and entanglement dynamics

CZ gate
CNN(R) gate
CNN(L) gate

Z measurement Rotation gate

(a)

(b)

Figure 2.2: (a) A schematic for the gates appearing in our circuit. (b) The arrangement of gates in a single time step
of our Z2-symmetric hybrid QA circuit. Each time step involves three layers of CNN gates and two layers of CZ gates,
interspersed with three measured layers. The dashed box represents a measured layer enclosing two rows of composite
measurements, with the !rst/second row containing randomly distributedMσ

L/R applied on sites (2i−1, 2i)[(2i, 2i+1)]
for i ∈ [1, L/2]. As with the CNN gates, the projection ofMσ

L/R is chosen to be applied on the left/right qubit with equal
probability. In general, the composite measurement appears in a measured layer with probability p.

We choose a subset of Cli"ord gates to construct a QA circuit with Z2 symmetry (an example is illustrated in Fig.
2.2), and explore the entanglement dynamics by varying the composite measurement rate p. First we prepare a product
state with L qubits polarized in the +x direction and measure the Pauli string Z1Z2 · · ·ZL to implement Z2 symmetry.
We take this as the initial state |ψI〉, and then apply the hybrid circuit, consisting of Z2-symmetric QA unitaries and
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composite measurements, to |ψI〉. We then compute the entanglement entropy of a consecutive subsystem A.
Notably, the entanglement dynamics of a Cli"ord circuit can be e$ciently simulated by applying the stabilizer for-

malism from the Gottesman-Knill theorem [64]. A stabilizer of a pure state |ψ〉 is a Pauli string operator g that acts
trivially on |ψ〉, i.e., g|ψ〉 = |ψ〉. Such state with L qubits can be uniquely speci!ed by a stabilizer groupG generated by
L independent and mutually commuting stabilizers,

G = 〈G〉 = 〈g1, . . . , gL〉

=
{ L∏

i=1

gpi
i |pi ∈ {0, 1}, gi|ψ〉 = |ψ〉, [gi, gj ] = 0

}
,

(2.7)

where G = {g1, . . . , gL} is the generating set of G. By de!nition, a Cli"ord unitary gate maps a Pauli string operator to
another one, i.e., UgU † = g′, ∀g ∈ G. On the other hand, any Pauli measurement Oi acting on the ith site becomes a
generator of the stabilizer group, with the rest of the generators rearranged so thatOi commutes with all elements inG.
Consequently, instead of tracing the trajectory of |ψ〉with 2L degrees of freedom, we can keep track of the generating set
of its stabilizer group whose information can be conveniently stored in a L × 2L binary matrix. Hence, we are able to
perform the simulation on a large system with hundreds of qubits.

The unitary evolution is composed of two types of gates, both of which preserve the Z2 symmetry. The !rst type
are CNOTNOT(CNN) gates, which are three-qubit gates that #ip two qubits according to the value of the third (control)
qubit. If the control qubit is on the left we denote the corresponding gate as CNNL; it acts as

CNNL|1σ1σ2〉 = |1(1− σ1)(1− σ2)〉

CNNL|0σ1σ2〉 = |0σ1σ2〉.,
(2.8)

with the leftmost qubit acting as the control. The case when the rightmost qubit acts as the control analogously de!nes
a right CNN gate CNNR. In the circuit under consideration, we choose CNNL and CNNR gates randomly, with equal
probability. Notice that in each time step, we apply three layers of random CNN gates as shown in Fig. 3.2(b).

The second type of gate that appears in the unitary evolution part of the circuit is the CZ gate. This gate is diagonal
in the computational basis, and assigns a π phase to |11〉. Explicitly,

CZ =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




. (2.9)

In the circuit, we apply two layers of CZ gate in each time step.
The randomly-applied composite measurements can be constructed by Cli"ord gates de!ned as Mσ

L/R in Sec. 2.2.
We introduce the composite measurements into the circuit and de!ne the measurement rate p as the density ofMσ

L/R

in each measured layer. As we increase p from 0, the entanglement entropy decreases. Numerically, we observe an
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(a) (b)

(c) (d)

Figure 2.3: (a) The steady state S(2)
A vs ln (x) for L = 480, where x ≡ sin (πLA/L)L/π. (b) The entanglement dynamics

for half of the system S(2)
A vs t on the semi-logarithm scale for L = 480. (c) An example of the data collapse of the steady

state S(2)
A vs lnx for di"erent system sizes at p = 0.9. The slope for L = 600 is λ2(0.9) = 0.605. We also plot S(2)

A vs
1
2 ln (t) for comparison and we can see that it is roughly parallel to the steady state curves. Numerically, λ1(0.9) = 0.291.
The ratio between these two slopes is 2.079. On average, λ2/λ1 = 2.009 for p > pc. Similarly, for p = pc, λ2 = 1.947
and λ1 = 1.12, leading to a ratio λ2/λ1 = 1.738. (d) The entanglement dynamics of the QA circuit with no CNN gates
for L = 240 plotted on the semi-log scale. We !nd that S(2)

A (t) = 0.283 ln (t) for all p. All of the numerical data for
entanglement entropy are calculated with periodic boundary conditions, and in the natural logarithm base.
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entanglement transition at pc ≈ 0.335. The value of the critical point is consistent with that observed in the puri!cation
dynamics in Sec. 2.4 and the classical bit-string dynamics in Appendix 2.A. As shown in Fig. 2.3(a), when p < pc, the
entanglement entropy has volume-law scaling. The volume-law coe$cient decreases as we increase p. When p ≥ pc,
Fig. 2.3(a) indicates that the steady state entanglement scales logarithmically in the subsystem size. In our numerical
simulations, we impose periodic boundary conditions and observe that

S(2)
A (LA, p) = λ2(p) ln

[L
π
sin (

πLA

L
)
]
, (2.10)

where the overbar represents an ensemble average. This is interesting and is distinct from conventional measurement-
induced phase transitions in interacting systems, where an area-law entangled phase appears for p > pc. In our model,
the area-law phase is replaced by a critical phase with λ2(p) changing continuously with p. This critical phase is a special
feature of the QA circuit with Z2 symmetry. As we will explain later, this is related to the underlying classical bit-string
dynamics with Z2 symmetry.

Aside from the steady state, we also study the entanglement dynamics starting from an initial state |ψ0〉. When
p < pc, SA(t) grows linearly at early times and saturates to a volume-law entangled steady state, while for p ≥ pc we
observe a logarithmic entanglement growth before saturation,

S(2)
A (t, p) = λ1(p) ln(t), (2.11)

as shown in Fig. 2.3(b). Similar to λ2(p), λ1(p) also depends on p. We !nd that when p = pc, λ2/λ1 = 1.738, while
when p > pc and the circuit is measurement-dominated, the ratio is independent of p, with λ2/λ1 = 2.009.

We also simulate the entanglement dynamics for the QA circuit in the absence of CNN gates. The numerics in
Fig. 2.3(d) shows that in such a circuit, the system is critical and has logarithmic entanglement scaling. In particular,
S(2)
A (t) = λ1 ln(t) where λ1 = 0.283 for all p. On the other hand, the steady state entanglement entropy S(2)

A = λ2 ln(x)

with λ2 = 0.591 for all p. Hence the ratio is λ2/λ1 = 2.088 which is close to that in the critical phase of the circuit with
CNN gates. In the following sections, we will give an interpretation for λ1 and λ2 and show that the ratios between them
are related to the dynamical exponents of the underlying classical bit-string model.

2.3.2 bit-string dynamics with Z2 symmetry

For the second Rényi entropy, the purity Tr(ρ2A) is equivalent to the expectation value of the SWAPA operator which acts
on the tensor product of two identical copies of the state [65, 66],

Tr(ρ2A) = 〈ψ|2 ⊗ 〈ψ|1SWAPA|ψ〉1 ⊗ |ψ〉2. (2.12)

For the wave function |ψ〉 expanded in the basis in subregion A and B,

|ψ〉 = 1√
N

∑

i,j

eiθij |αi〉A|βj〉B , (2.13)
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the SWAPA operator then exchanges the spin con!gurations |α〉 within the A region of the copies of the system (here
N = 2L−1 is the total number of basis states).

To understand the entanglement dynamics in the non-unitary evolution described by Ũt, we insert two complete sets
of basis states in Eq. (2.14) and !nd [40],

Tr(ρ2A) =
∑

n1,n2

〈ψ|2〈ψ|1SWAPA|n1〉|n2〉〈n2|〈n1|ψ〉1|ψ〉2

=
∑

n1,n2

〈ψ0|2〈ψ0|1Ũ†
t ⊗ Ũ†

t |n′
1〉|n′

2〉〈n2|〈n1|Ũt ⊗ Ũt|ψ0〉1|ψ0〉2

=
1

N2

∑

n1,n2

e
−iΘn′

1 e
−iΘn′

2 eiΘn1 eiΘn2 ,

(2.14)

where
|n′

1〉|n′
2〉 = SWAPA|n1〉|n2〉

= SWAPA|α1β1〉|α2β2〉

= |α2β1〉|α1β2〉.

(2.15)

and
eiΘn =

√
N〈n|Ũt|ψ0〉, e−iΘn =

√
N〈ψ0|Ũ †

t |n〉. (2.16)

The problem of computing Tr(ρ2A) can therefore be converted into evaluating the phases in (2.16).
When estimating the overlap of Ũt|ψ0〉 with any basis state 〈n|, we can deduce the e"ective action of Ũt on 〈n| and

compute its overlap with |ψ0〉 even though the composite measurement is non-unitary. Consider applying a composite
measurementMσ

L/R on |ψ〉 which is the equal weight superposition of all the allowed states,

〈n|Mσ
L/R|ψ〉 = 〈n|R ◦ PσL/R|ψ〉

= 〈T σL/R(n)|ψ〉 =
1√
N

e
iθTσ

L/R
(n)

.
(2.17)

Here |T σL/R(n)〉 refers to the state |n〉 with the spin at site L/R forced to be in the σ state, while its neighboring spin
at site R/L is chosen to preserve the parity. Suppose the hybrid QA circuit has the non-unitary dynamics of the form
Ũt = MtUtMt−1Ut−1 · · · , the overlap can be evaluated by applying Ũ from left to right on 〈n|,

〈n|Ũt|ψ0〉 = 〈n(t′ = 0)|MtUtMt−1Ut−1 · · · |ψ0〉

= 〈n(t′ = 1)|UtMt−1Ut−1 · · · |ψ0〉

= eiθn(t′=1)〈n(t′ = 1)|Mt−1Ut−1 · · · |ψ0〉

= · · · = 1√
N

eiΘn ,

(2.18)

where Θn is the accumulated phase under time evolution,

eiΘn = eiθn(t=1)eiθn(t=2) . . . eiθn(t=T ) . (2.19)
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To compute the dynamics of the purity, we investigate the evolution of bit-strings and the associated phases. We
de!ne the di"erence between bit-string pairs as

h(x, t) = |n1(x, t)− n′
1(x, t)|. (2.20)

At each site, h(x) can only be either 0 or 1, and can be conveniently described in terms of the particle representation
illustrated in Fig. 2.4(b) where ◦ denotes empty site and • denotes occupied site. For instance, under the CNNL gate,
we have • ◦ ◦ ↔ • • • and • ◦ • ↔ • • ◦. Under time evolution governed by CNNL/R gates, the particles can di"use,
branch and annihilate on the lattice. Even if the initial con!guration only has one particle, the particle number grows
linearly in time and the steady state has roughly L/2 particles. On the other hand, under the composite measurement,

α1

α′ 2

β1

β′ 1

|n1⟩

|n′ 1⟩

h(x, t)

(a)

t = 0
t > 0

A B

(b)

Figure 2.4: (a) The spreading of the bit-string di"erence h(x, t) under the hybrid QA circuit with Z2 symmetry. Without
the intervention of measurements, the front of h(x, t)moves to the right at constant velocity with possible broadening.
(b) The particle representation of h(x, t). Initially, all the particles are distributed randomly in region A. Under the CNN
gates and measurements, the particles perform branching-annihilating random walks and can intrude into region B.

we have pair-annihilation •• → ◦◦ and di"usion •◦ ↔ ◦•. The particles di"use on the lattice and annihilate in pairs with
probability p when they encounter one another. Combining unitary dynamics and measurement together, the particles
perform branching-annihilating random walks (BAW) with an even number of o"-springs []

W ↔ 3W, W +W
p−→ ∅. (2.21)

The competition between the unitary evolution and the composite measurement leads to a continuous phase transition
which can be characterized by the total particle numberD(t) ≡

∑
x h(x, t) (The numerical details for this can found in

Appendix.2.A). When p < pc,D(t → ∞)/L in the steady state saturates to a !nite constant. When p ≥ pc, if the initial
state has an even number of particles, the steady state hasD(t → ∞) = 0. At pc,D(t) exhibits interesting and universal
power law scaling behavior and this critical point belongs to the parity-conserving (PC) universality class with dynamical
exponent z = 1.744[47, 48, 41]. When p > pc, the dynamics is dominated by the annihilation process W + W → ∅.
Since annihilation only occurs when a pair of particles encounter one another, D(t) decays di"usively in time and the
p > pc phase has dynamical exponent z = 2. This is di"erent from the DP universality class, where a single particle can
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annihilate directly with probability p, which leads to an exponential decay of D(t) with a !nite rate at p > pc. The Z2

symmetry protects the slow di"usive dynamics and is also responsible for the quantum critical phase when we take into
account the phase gate.

Keeping the above classical bit-string dynamics in mind, we now introduce the phase gate and investigate the entan-
glement dynamics. We !rst consider entanglement entropy for a random phase state de!ned as

|ψ〉 = 1√
2L−1

∑

n

eiθn |n〉, (2.22)

where θn is a random phase that takes the value in {0,π} 1. This wave function can be generated under random unitary
QA evolution and has maximally entangled volume-law scaling. This can be understood as follows: from Eq. (2.14), we
can see that when |n1〉 = |α1β1〉 and |n2〉 = |α2β2〉 share the same spin con!guration in region A, they are invariant
under the swap operator, whichmeans that the randomphases always cancel, i.e., θn1−θn′

1
= 0 and θn2−θn′

2
= 0. There

are 2LA × (2L−LA−1)2 such pairs that each contributes 1/22L−2 to the purity. For other bit-strings that are di"erent in
region A, the random phase terms will in general add up to zero and make no contribution to Tr(ρ2A).2 Hence, the wave
function has the volume-law scaling

S(2)
A ≈ − ln

2LA × 4L−LA−1

4L−1
= LA ln 2. (2.23)

In the above example, only the bit-string pairs without phase di"erence contribute to the purity. This is also true
when we consider the entanglement dynamics starting from |ψI〉. Notice that in Eq. (2.14), there are four accumulated
phases for each bit-string con!guration {|n1〉, |n2〉, |n′

1〉, |n′
2〉}. We need to !nd out how these phases evolve in time and

how they contribute to the purity. For simplicity, here we !rst consider the phase di"erence for |n1〉 and |n′
1〉 only in

regime B and de!ne the quantity,

Q(t) ≡ 1

M

∑

n1,n′
1

e
−iΘB

n′
1
+iΘB

n1 , (2.24)

whereM is the total number of bit-string pairs. The complete analysis of the time evolution of all these phase terms in
the purity will be deferred to Sec. 2.3.4.

Initially, |n1〉 and |n′
1〉 are identical in B and are only di"erent in A. The relative phase −ΘB

n′
1
+ ΘB

n1
caused by

CZ gates is zero and we have Q(t = 0) = 1. The nonzero relative phase can be generated when particles enter into
B. Speci!cally, if we apply CZ gate on •◦ with the ensemble of possible bit-string con!gurations {{|n1〉, |n′

1〉}} =

{{|10〉, |00〉}, {|11〉, |01〉}, {|01〉, |11〉}, {|00〉, |10〉}}, the phase di"erences generated by the CZ gate are {0,π,π, 0}. We
also get similar results for the particle con!guration ◦ • and • •. To summarize, for all these nonzero particle con!gura-
tions, half of the corresponding bit-string pairs contribute a π phase to the accumulated phase, while half of them do not

1In the Cli"ord dynamics, θn can only take a discrete value nπ/2 with n randomly chosen in 0,1 2 and 3.
2In fact, the pairs that are the same in regionB also contribute to the purity. If we take them into account, the purity becomes Tr(ρ2A) = (2LA ×

4L−LA−1 + 4LA × 2L−LA−1 − 2LA × 2L−LA−1)/4L−1 = 2−LA + 2−L+LA − 2−L+1, therefore the actual steady state entanglement S(2)
A <

LA ln 2. But now we care about the leading non-constant term so the last two terms are discarded temporarily.
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contribute any phase terms. This result can be generalized to the many-qubit case. The accumulated phase terms of all
the con!gurations that contain particles inB will add up to zero andmake no contribution to Eq. (2.24). Meanwhile, the
con!gurations that will contribute to Q(t) are those with no particles in B and hence have zero relative phase. There-
fore, Q(t) can be alternatively viewed as the fraction of con!gurations in which the particles never reach the boundary
between A and B,

Q(t) ≈ K0(t)

K
, (2.25)

where K is the total number of particle con!gurations in A and K0 is the number of particle con!gurations in which
particles never reach the boundary up to time t.

2.3.3 Single-species BAWmodel

(a) (b)

Figure 2.5: (a) The evolution of Q on a log-log scale. The system size is L = 120. We also plot K0/K at p = 0.9 for
comparison. (b) We simulate the single-species BAW model with no CNN gates and plot K0

K vs t for L = 120 on the
log-log scale. K0

K decays as a power law function with the exponent close to the analytical prediction 3
16 .

The above analysismotivates us to de!ne a single-species BAWmodel. Initially, the particles are distributed randomly
in A on a 1D lattice. We let them undergo the same dynamics as the QA circuit in which they perform BAW. Our aim
is to !nd the probability Q(t) that the particles have never reached the boundary between A and B up to time t. In the
limit where p = 0, the particle front propagates with a constant velocity v. Then, only the initial con!gurations with
no particles distributed within a distance vt to the boundary contribute to K0(t). This leads to Q(t) ∼ 2−vt, i.e., the
probability that particles never cross the boundary decays exponentially in time. If we roughly take the entanglement
entropy as SA ∼ − lnQ(t), it then grows linearly in time. As we increase p, the propagation slows down and eventually
becomes di"usion-dominated when p > pc. At this critical point pc and in the critical phase p > pc, we will see that
Q(t) decays algebraically asQ(t) ∼ t−θ where θ is the so-called persistence exponent in the !rst passage problem[67].
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t = 0

t > 0

A B

X particle Y particle

(1)

(2)

Figure 2.6: An example of the two-species BAWmodel. The black dots representX particles, and the red dots represent
Y particles. Initially, X and Y particles are distributed in region A and B respectively. Under the time evolution, the
two species perform BAW before they encounter one another. There are two types of possible particle con!gurations in
which the two species have not met up to time t: (1)X particles intrude into B and (2) Y particles intrude into A.

We !rst simulate the phase dynamics and numerically computeQ(t) de!ned in Eq. (2.24) on an open-boundary 1D
lattice in Fig. 2.5(a). We !nd that at p = pc, Q(t) ∼ t−θ with θ = 0.484 before saturation; when p > pc, θ decreases by
increasing p and the system still stays in the critical phase. We also replace the CZ phase gate by a random phase gate and
we observe the same scaling behavior (not presented in the plot). For comparison, we compute the fraction K0(t)/K

and we !nd that it has the same scaling behavior as Q(t), con!rming their equivalence in Eq. (2.25) [See the curves for
p = 0.9 in Fig. 2.5(a)]. In addition, we also consider the case when there are no CNN gates and the particles only di"use
and annihilate upon contact. As shown in Fig. 2.5(b), the probability that the particles never cross the boundary scales
asK0(t)/K ∼ t−3/16 for all p. The exponent 3

16 is the persistence rate for the 1D di"usion-annihilation process and has
been analytically computed in Refs.[68, 69] (For more details, see Appendix. 2.B).

2.3.4 Two-species BAWmodel

Inspired by the single-species BAW model, in this section, we will take into account all of the phase terms and analyze
the dynamics of the purity de!ned in Eq. (2.14).

Similar toQ(t) in the previous section, only the bit-string pairs with zero relative phase up to time t, viz., those with
−θn′

1
− θn′

2
+ θn1 + θn2 = 0, can contribute to Tr[ρ2A(t)]. Any other bit-string pairs will generate random accumulated

phase terms, which sum up to zero.
To understand the zero relative phase constraint, we propose a two-species BAW model. Initially, the particles rep-

resenting the di"erence of the bit-string pair |n1 − n2| are distributed randomly along a 1D lattice. Let X (Y ) particles
denote the bit-string di"erence initially in region A (region B). We further de!ne x as the location of the rightmost
X particle and y as the location of the leftmost Y particle. As shown in Fig. 2.6, under the hybrid QA circuit with Z2

symmetry, the particles start to perform BAW. BeforeX and Y particles encounter one another, the generated phase in
each layer θn is composed of three parts: θ[1,x]n , θ(x,y)n and θ[y,L]

n , which denote the phases generated within the regimes
[1, x], (x, y) and [y, L] respectively. Since the !rst regime occupied byX particles always satis!es n1([1, x]) = n′

2([1, x])
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(a) (b)

(c) (d)

Figure 2.7: (a)−lnP vs t on a semi-log scale, de!ned for a half-system-size cut with system size L = 120. (b) The steady
state−lnP vs ln(x), where x ≡ sin (πLA/L)L/π. (c) The comparison of−lnP (t) and S(2)

A (t) at p = pc. (d) The scaling
of−lnP (t) when the CNN gates are absent. We !nd that λ1 = 0.269 for all p. All of the numerical data of− lnP (t) are
calculated under the periodic boundary condition.

and n2([1, x]) = n′
1([1, x]), we have θ

[1,x]
n1 = θ[1,x]n′

2
, θ[1,x]n2 = θ[1,x]n′

1
. Similarly, in the third regime occupied by Y par-

ticles, θ[y,L]
n1 = θ[y,L]

n′
1

, and θ[y,L]
n2 = θ[y,L]

n′
2

. In addition, since there is no particle in the intermediate regime, we have
θ(x,y)n1 = θ(x,y)n2 = θ(x,y)n′

1
= θ(x,y)n′

2
. Therefore the total phase di"erence vanishes: −θn′

1
− θn′

2
+ θn1 + θn2 = 0.

Once the rightmostX particle comes across the leftmost Y particle, the two-qubit phase gate acting on sites x and y
will generate a nonzero relative phase. For example, if we apply the CZ gate on ••with a possible corresponding bit string
con!guration {|n1〉, |n2〉, |n′

1〉, |n′
2〉}x,y = {|10〉, |01〉, |00〉, |11〉}, a relative phase 0+ 0− 0− π = −π is generated. If we

apply the CNOT gate on sites x and y, {|n1〉, |n2〉, |n′
1〉, |n′

2〉}x,y → {|11〉, |01〉, |00〉, |10〉}, i.e., another type of “particle”
di"erent from the two species with bit string con!guration |n1〉y = |n2〉y 5= |n′

1〉y = |n′
2〉y appears on site y and will
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p = 0.335 p = 0.5 p = 0.7 p = 0.9

−lnP
λ1 1.053 0.507 0.355 0.293
λ2 1.858 0.999 0.716 0.615

λ2/λ1 1.765 1.970 2.017 2.099

S(2)
A

λ1 1.120 0.473 0.334 0.291
λ2 1.947 0.926 0.665 0.605

λ2/λ1 1.738 1.958 1.991 2.079

Table 2.1: The comparison of scaling prefactors of the two-species BAWmodel and the Z2-symmetric Cli"ord QAmodel
for various measurement rates p ≥ pc. Both of them are computed under periodic boundary condition.

spread along the lattice under further evolution. As time evolves, the con!gurations for which the two species have met
will generate random accumulated phases, half of which are composed of odd numbers of π, while the other half are
composed of even numbers of π. The accumulated phase terms eiΘr of such con!gurations will add up to zero andmake
no contribution to Eq. 2.14. Therefore, we have

Trρ2A(t) ≈ P (t) ≡ M0(t)

M
,

S(2)
A (t) ≈ − log2 P (t),

(2.26)

where M is the total number of particle con!gurations and M0 is the number of con!gurations in which X and Y

particles never encounter one another up to time t.
The validity of the two-species BAWmodel is numerically veri!ed by simulating− lnP on a 1D lattice with periodic

boundary condition. Compared with Fig. 2.6, there are two boundaries between A and B. As shown in Fig. 2.7, we !nd
that this quantity exhibits a logarithmic growth before saturation, i.e., − lnP (t) = λ1 ln t for p ≥ pc. Speci!cally, we
compare the value of−lnP (t) and S(2)

A (t) at p = pc in Fig. 2.7(c) and !nd that they have the same scaling. Numerically,
λ1(pc) = 1.053 ≈ 1.12where 1.12 is the prefactor of the logarithmic scaling of S(2)

A (t) at p = pc. In addition, we remove
the CNN gates in Fig. 2.7(d) and let the particles perform di"usion-annihilation random walks. As a result, we !nd
−lnP (t) ∼ 0.269 ln(t) for all p, with the prefactor 0.269 being close to 0.283 which is the prefactor of the entanglement
entropy without CNN gates.

We also investigate P in the steady state and use this to understand the steady state entanglement entropy. In the
steady state,M0 is the number of con!gurations inwhichX orY particles have vanished by annihilatingwith themselves
before they encounter one another. If the subsystem length LA 6 L, it is highly possible that theX particle will vanish
!rst. In this case, when p ≥ pc, the subsystem A reaches the steady state at t ∼ Lz

A and we have

P (t = Lz
A) ∼ L−λ1z

A , (2.27)

this leads to a logarithmic scaling of entanglement entropy with respect to the subsystem length LA. In particular, the
prefactor is λ1z.

We simulate − lnP in the steady state in Fig. 3.5(b) to numerically verify the above analysis. Here we !x the total
system length L = 120 and vary the subsystem length LA. As expected, we observe a phase transition from the volume-
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law phase to a critical phase in which

− lnP = λ2 ln (sin (πLA/L)L/π) (2.28)

for p ≥ pc. We calculate the ratio between λ2 and λ1 for di"erent p and !nd that λ2/λ1 = 1.765 at p = pc and
λ2/λ1 = 2.029 at p > pc, which are consistent with the two dynamical exponents z = 1.744 at p = pc and z = 2 at p > pc

in the PC universality class. These exponents are also very close to the numerical simulation of the Cli"ord QA model
λ2/λ1 = 1.738 at pc and λ2/λ1 = 2.009 for p > pc. (For a more detailed comparison, see Table. 2.1). Consequently, we
can con!rm that the hybrid QAmodel with Z2 symmetry can be well-described by the classical two-species BAWmodel.

2.4 Puri"cation Dynamics

(a)

(b) (c)

Figure 2.8: Illustration of the circuit used to explore puri!cation dynamics. (a) Every phase gate acts on four qubits, two
from system A and two from environment B, in order to form L

2 EPR pairs. (b) The symbols of the four-qubit phase gate,
three-qubit CNN gate, the single-qubit Z measurement gate and two-qubit rotation gate . (c) The arrangement of gates
in a time step for the puri!cation process of Z2-symmetric hybrid QA circuit model. Except the initial setup in (a), the
hybrid circuit is applied in system A only.

In this section we will study the puri!cation dynamics of the hybrid QA model with Z2 symmetry [30]. We consider
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(a) (b)

Figure 2.9: Data collapse of puri!cation dynamics described in Fig. 3.6(c). (a) is the result at p = 0.7 > pc and (b) is the
result at pc = 0.335.

system A and environment B entangled together, and then apply the hybrid circuit solely on the system A. We aim to
explore how the entropy of the system depends on the measurement rate.

Under a generic hybrid quantum dynamics, the system will eventually be puri!ed. It is shown in Ref. [30] that
the time of puri!cation can be used to characterize the entanglement phase transition. In the volume-law phase with
p < pc, the puri!cation time diverges exponentially in the system size L, while in the area-law phase with p > pc, the
entropy decays exponentially with a !nite rate and the puri!cation time is proportional to lnL. At the critical point pc,
the entropy decays algebraically when t 6 Lz . This result also holds in the hybrid QA circuit without Z2 symmetry,
where the puri!cation dynamics can be further interpreted in terms of classical bit-string dynamics [40].

In the presence of the Z2 symmetry, we will show that the puri!cation dynamics of the QA circuit will be modi!ed
when p > pc, analogous to the entanglement dynamics we studied in the previous section. Numerically, we prepare
a product state with 2L qubits polarized in the x direction, and then divide them into system A and environment B
with equal size L. In order to impose the Z2 symmetry, we measure the Pauli string Z1Z2 · · ·ZL in the system and
ZL+1ZL+2 · · ·Z2L in the environment. Then we apply a four-qubit diagonal phase gates onto the system A and en-
vironment B as in Fig. 3.6(a) to create entanglement between them. The phase gate assigns a π phase to the basis
|0110〉, |0111〉, |1110〉, |1111〉 with the rest of the basis remaining invariant. Moreover, it is a Cli"ord gate and therefore
the total initial state can be represented as a stabilizer state. Since each phase gate can create ln 2 entanglement between
the system and the environment, the system has an entropy S(2)

A = L
2 ln 2.

In the puri!cation dynamics, the unitary andmeasurement gates are applied solely on systemA, as shown inFig. 3.6(c).
Notice that di"erent from the entanglement process illustrated in Fig. 3.2(b), here we do not need to introduce phase
gates, due to the fact that the phases between {|n1〉, |n′

2〉} and between {|n2〉, |n′
1〉} always cancel with each other. There-

fore the unitary evolution consists solely of CNNgates, which simplymap one basis state to another. These gates scramble
the quantum information within system A, while the entropy of the full system remains the same. On the other hand,
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the measurement gate disentangles the system from the environment, and the entropy decreases monotonically under
the time evolution.

We simulate the puri!cation dynamics of the above hybrid QA Cli"ord circuit. When p > pc, we observe that the
entropy has a slow di"usive power law decay for a long period of time due to the presence of the Z2 symmetry, while it
takes a time exponentially long in system size to purify the system when p < pc. The data collapse of di"erent system
sizes in Fig. 2.9(a) further indicates that S(2)

A = F (t/Lz) with z = 2 when p > pc. In addition, at critical point pc, the
above scaling form also works with di"erent z = 1.744 [See Fig. 2.9(b)]. We believe that such scaling is universal in other
non-Cli"ord hybrid QA circuits with Z2 symmetry and the dynamical exponents are consistent with what we found in
the entanglement dynamics.

2.5 Conclusion

In this chapter, we explore theZ2-symmetric quantum automaton (QA) circuit subject to local compositemeasurements.
By tuning the measurement rate p, we !nd an entanglement phase transition from a volume-law entangled phase to a
critical phase with logarithmic entanglement scaling. By analyzing the underlying classical bit-string dynamics, we
show that the critical point pc belongs to the parity-conserving universality class. We further show that the critical
phase is protected by the combination of Z2 symmetry and the special feature of QA circuit. We derive an e"ective
two-species particle model in which particles perform branching-annihilating random walks. We use this model to
understand the entanglement dynamics and illustrate that the purity of the wave function is equivalent to the fraction
of particle con!gurations in which two di"erent species of particles never encounter. Based on this result, we show that
the prefactors of the logarithmic second Rényi entropy at the critical point and the critical phase are related to the local
persistence exponents of the corresponding two-species particle models. In addition, the above critical behavior when
p ≥ pc is further demonstrated in the puri!cation process.

The idea of presenting bit-string dynamics in the particle language can also be applied in Ref. [40] to explain the
entanglement phase transition without Z2 symmetry that belongs to the directed percolation universality class. Based
on this method, it is also possible to develop similar tools to understand the universality classes of entanglement phase
transition in the hybridHaar random circuit and hybrid Cli"ord random circuit[25, 26]. In addition, it can also be used to
understand the subleading correction term in the non-thermal volume-law phase when p < pc[33, 52]. This interesting
question will be explored in the next chapter.

Acknowledgement.—We acknowledge Ethan Lake for his careful proofreading. We also acknowledge the helpful discus-
sions with Jason Iaconis.
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2.A parity-conserving universality class and the branching-annihilating
randomwalks

Nonequilibrium phase transitions in classical dynamical lattice models can be classi!ed purely by their scaling behavior.
The most common nonequilibrium class is the directed percolation (DP) universality class. Another class called parity-
conserving (PC) universality class emerges whenwe add extra symmetry, namely, parity conservation to the system. Like
the DP universality class, the PC universality class is very robust in a sense that it contains many models that share the
same critical exponents. In this appendix, we will show that the BAW model introduced in Sec. 2.3 belongs to the PC
universality class.

In Sec. 2.3 we have established the connection between the hybrid QA model with Z2 symmetry and a classical
particle model. Under the QA circuit composed of CNN gates and composite measurements, the particles perform the
branching-annihilating randomwalks (BAW) where they di"use on a one-dimensional lattice and annihilate when they
come into contact with probability p. Furthermore, each particle can generate an even number of o"-springs, i.e.

W ↔ 3W, W +W
p−→ ∅. (2.29)

There are three initial conditions which lead to di"erent scaling behavior of various properties under the same dynamics:
(a) the seeding process starting with a pair of adjacent particles, (b) the seeding process starting with a single particle,
and (c) the puri!cation process starting with a fully occupied state.

We !rst analyze the BAWmodel with initial condition (a) numerically. We vary p and measure the scaling behavior
of the mean particle number N(t). As shown in Fig. 2.10(a), we observe a phase transition while adjusting p: when
p < pc ≈ 0.335, an active steady state with !nite number of particles emerges. At p = pc,N(t) ∼ tθ where θ = 0. When
p > pc, the dynamics is dominated by annihilation of particles in pairs and the system enters an absorbing phase where
the particle number is monotonically decreasing until N(t → ∞) = 0. In addition, we measure two other quantities:
P (t), the probability that the system has not entered the absorbing phase at time t; R2(t), the mean-square distance
from the center of the lattice chain, averaged over the surviving samples. From Fig. 2.10(b), when p < pc, the system
maintains a !nite possibility to survive and stay away from the absorbing phase. When p = pc, P (t) ∼ t−δ where
δ = 0.286. Notably, when p > pc, P (t) still decays as a power law with the exponent 1/z = 1/2. P can also be viewed as
an order parameter which marks the existence of a phase transition. Furthermore, the numerics in Fig. 2.10(c) shows
that the mean-square distance R2(t) ∼ t2/z at p = pc with the other dynamical exponent z = 1.833. These exponents
are universal for the PC universality class and agree with the numerical !ndings that δ = 0.286, θ = 0, z = 1.744 when
p = pc and z = 2 for p > pc in Ref.[47].

We also study the other initial conditions under the same dynamics. Fig. 2.11(a) exhibits the scaling of N(t) for
the seeding process starting with a single particle. It is easy to see that the system will never reach an empty state for
N(0) = 1 since the parity is conserved, therefore, the survival rate P (t) is always zero, δ = 0 for all p. On the other hand,
N(t) ∼ t0.286 when p = pc. These exponents coincide with that of the seeding process starting with a pair of particles
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(a) (b)

(c)

Figure 2.10: We simulate the BAW model of the seeding process starting with a pair of adjacent particles and !nd that
the critical point is around pc = 0.335. In the calculation done in the Appendix with L = 600, we !nd that if we choose
pc = 0.335, the critical exponents have the best match with the critical exponents of the PC universality class. (a) The
mean particle number N vs t on the log-log scale for L = 600. (b) P vs t on a log-log scale for L = 600. When p = pc,
P (t) ∼ t−0.286 and when p > pc, P (t) ∼ t−0.5. (c) The mean-square distance scales as R2(t) ∼ t1.091 at p = pc for
L = 600.

23



(a) (b)

Figure 2.11: The mean particle number N(t) vs t on a log-log scale for (a) the seeding process beginning with a single
particle and (b) the puri!cation process starting with a fully occupied state.

except that the values of δ and θ exchange, which is quite interesting.
As shown in Fig. 2.11(b), N(t) for the puri!cation process has a similar scaling with P (t) for the seeding process

starting with a pair of adjacent particles. When the measurement rate p < pc, the system approaches an active state
with a !nite number of particles. Once p = pc,N(t) ∼ t−0.286. When p > pc, the particles are performing annihilation-
dominated BAW,N(t) still decays algebraically, i.e.,N(t) ∼ t−1/2.

2.B Single-species BAWmodel and the "rst passage problem

(a) (b)

Figure 2.12: Mapping between the zero-temperature Glauber dynamics in one dimension and the corresponding domain
wall quasiparticles: (a) the spin marked in orange is updated and the domain wall quasiparticles annihilate; (b) the spin
marked in orange is #ipped to match the value of its right neighbor and the domain wall quasiparticle di"uses to the left.

In this appendix, we will investigate the correspondence between the single-species BAWmodel in Sec. 2.3.3 and the
!rst passage problem of the 1D Ising model discussed in Ref.[68].

In Ref. [68], they studied the persistence probability r(q, t) that a given spin stays in the same state up to time t
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of an in!nite 1D q-state Potts model whose update rule obeys the zero-temperature Glauber dynamics. If a random
initial q-state spin con!guration is quenched at zero temperature, the dynamics tends to align all the spins. At each time
step, a chosen spin is updated according to the values of its two nearest neighbors, i.e., Si(t + 1) = Si−1(t) or Si+1(t)

with equal probability. They proposed a coagulation model which treats S0(t) at di"erent time steps as random walkers
which coalesce upon contact in the time-reversed order and !nd that the persistence rate is just the probability that
S0(1) = S0(2) = · · · = S0(t) which scales as

r(q, t) ∼ t−θ(q), (2.30)

where the exponent has the analytical expression

θ(q) = −1

8
+

2

π2

[
cos−1

(
2− q√

2q

)]2
. (2.31)

A single-species BAW model was introduced in Sec. 2.3.3. Initially, the particles are distributed randomly in the
left half of the lattice chain. Under the unitary gates and composite measurements, the particles perform BAW. We
have demonstrated thatQ(t) de!ned in Eq. 2.24 is equivalent to − ln(K0/K), whereK0(t)/K is the fraction of particle
con!gurations inwhich the particles never di"use into the right half of the lattice chain up to time t, or in otherwords, the
probability that the boundary between A andB has never been visited by the particles. If we consider the case when the
particles are performing di"usion-annihilation randomwalks, i.e., there are no CNN gates, and we treat them as domain
walls between the spins, then their dynamics under themeasurement-only circuit has a one-to-one correspondence to the
zero-temperature Glauber dynamics of the 1D Ising model (q = 2). As illustrated in Fig. 2.12, when the spin di"erent
from both of its nearest neighbors is #ipped, the domain walls annihilate; When its neighbors are in di"erent states
and the spin is aligned with one of them, the domain wall either di"uses or stays still. Besides, there is no creation of
domainwalls, i.e., no particle branching since the zero temperature prohibits any energy-raisingmove. ThenK0(t)/K =
√
r(q = 2, t), since it is equivalent to the probability that the spin on the boundary of a !nite chain has never #ipped.

Thus,K0(t)/K decays as a power law with the exponent θ(q = 2)/2 = 3/16.
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Chapter 3

Entanglement structure in the volume-law
phase of hybrid quantum automaton
circuits

3.1 Introduction

The past few years havewitnessed a surge of interest inmonitored quantum dynamics[25, 27, 26, 31, 30, 37, 36, 42, 46, 44,
45]. These non-unitary dynamics can exhibit many emergent phenomenawhich are inaccessible in pure unitary dynam-
ics or in systems in equilibrium. It is by now well-known that in a generic interacting system, repeated measurements
can induce a continuous phase transition from a highly-entangled volume-law phase to a disentangled area-law phase
[25, 27, 26, 31, 30, 37, 36]. In addition, speci!c types of measurements can stabilize various quantum phases, including
critical phases and ordered phases[42, 70, 46, 44, 45]. These rapid developments signi!cantly broaden our understanding
of non-equilibrium dynamics.

To understand these emergent phenomena in monitored quantum dynamics, various non-unitary random circuits
have been constructed. This includes hybrid random Cli"ord circuits and hybrid random Haar circuits. For Cli"ord
circuits, there exists a very e$cient algorithm in terms of the stabilizer formalism which allows us to simulate non-
unitary dynamics for very large system sizes [71, 26, 31, 30]. On the other hand, Haar circuits provide an important
analytical approach which can map many quantum dynamics problems to statistical mechanics models [25, 37, 36].

Recently, a new type of circuit called hybrid quantum automaton (QA) circuit was constructed to investigate the en-
tanglement dynamics in the monitored quantum systems [40]. This circuit is composed of QA unitaries and local com-
posite measurements. Compared with random Haar/Cli"ord circuits, QA circuits not only provide an e$cient method
for large-scale numerical simulation, but also provide an analytical tool to understand the quantum dynamics. Due to
the basis-preserving feature of QA circuits, the entanglement dynamics can be interpreted in terms of a classical bit-string
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picture. Speci!cally, the second Rényi entropy can be mapped to the !rst-passage problem in the bit-string dynamics.
Based on this mapping, it was further shown that the measurement-induced entanglement phase transition in a generic
hybrid QA circuit belongs to the directed percolation (DP) universality class[40]. At the critical point, the prefactor of
the logarithmic entanglement is related to the local persistent exponent in the DP universality class. By further imposing
symmetries in the dynamics, new critical points or critical phases belonging to di"erent universality classes can also be
identi!ed [70].

Inspired by the above bit-string picture, in this chapter we will study the weakly-monitored volume-law phase of
one-dimensional (1d) hybrid QA circuits. In particular, we will study the #uctuation of the entanglement in this random
dynamics and the quantum error correction property of the volume-law phase. Previous studies for 1d random Haar
circuits suggested that the entanglement entropy can be mapped to the free energy of the directed polymer in a random
environment (DPRE)whichhas#uctuation belonging to theKardar-Parisi-Zhang (KPZ) universality class [28, 25, 49, 50].
Such #uctuations lead to a subleading correction term scaling as L1/3 in the entanglement entropy in the volume-law
phase, which has also been numerically veri!ed for random Cli"ord circuits [51, 52]. We numerically show that the
entanglement entropy of a subsystem in both the early-time dynamics and the steady state in the hybrid Cli"ord QA
circuit also exhibit sample-to-sample #uctuations with the same scaling behavior. In order to understand this behavior,
we construct a particlemodel based on the bit-string picture in which the particles undergo stochastic randomdynamics.
We compute the classical quantity in the particlemodel which corresponds to the second Rényi entropy in theQA circuit,
and show that it exhibits similar #uctuation.

In addition, we study the puri!cation dynamics in the hybrid QA circuit in the volume-law phase[30]. Wemodify the
aforementioned particle model slightly and use this to give an interpretation of the entanglement entropy of a subsystem
in the presence of the environment. Previously, it was shown that for puri!cation dynamics, the hybrid quantum circuit
can dynamically generate a quantum error correcting code (QECC) [30, 29, 33], whose property has been quantitatively
investigated in the Cli"ord circuit [52]. We analyze this code in the hybrid QA circuit in terms of the particle model
and show that it exhibits two types of contiguous code distance for di"erent errors with both of them diverging in the
thermodynamic limit.

Interestingly, the stochastic classical particle model itself has an error correction property, and can dynamically gen-
erate a classical linear code (CLC). We study this random CLC by analyzing the dynamics of the associated generator
matrix and numerically compute its contiguous code distance.

3.2 Review of the hybrid QA circuit and two-species particle model

Ref. [40] establishes the relationship between the entanglement dynamics and the classical bit-string dynamics in the
hybrid QA circuit. The subsequent work in Chapter 2 explicitly constructs a classical particle model to describe the
entanglement dynamics of the Z2-symmetric hybrid QA circuit. In this section, we brie#y review some of the important
results in these two works and modify the two-species particle model so that it can be applied on hybrid QA circuits
without any symmetry.
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The hybrid QA circuit is composed of QA unitary operators and composite measurements. A QA unitary gate per-
mutes product states in the computational basis up to a phase, i.e.,

U |n〉 = eiθn |π(n)〉, (3.1)

where π ∈ S2L is an element of the permutation group on the computational basis of a lattice with L qubits. We choose
the Pauli Z basis as the computational basis and take the initial state to be a product state polarized in x direction,
|ψ〉 = |+ x〉⊗L. QA unitaries scramble the phase information stored in |ψ〉 and hence increase the entanglement of the
state until it saturates to the volume-law scaling. Meanwhile, the wave function remains an equal-weight superposition
of computational basis states, which is the characteristic of QA circuits.

On the other hand, local measurements can suppress the growth of entanglement. In the QA circuit, the composite
measurement of the i-th qubit is de!ned as a projection operator followed by a Hadamard gate,

Mσ
i = Hi ◦ Pσi , (3.2)

where Pσi = 1±Zi
2 is the Pauli Z measurement on site i with the outcome σ = {0, 1} andHi rotates the state back to an

equal-weight superposition over the computational basis. Therefore, after imposingMσ
i , the phase information for half

of the basis states is lost. The composite measurements disentangle the system while preserving the special feature of
QA circuits.

It is shown in Ref. [40] that by increasing the measurement rate p, the one-dimensional hybrid QA circuit undergoes
an entanglement phase transition from a volume-law entangled phase to an area-law disentangled phase, with the phase
transition belonging to the 1+1d directed percolation (DP) universality class. If we bipartition the system into subsystem
A and its complement B, a common quantity to measure the entanglement between them is the nth Rényi entropy:

S(n)
A =

1

1− n
log2 [Tr(ρnA)]

ρA = TrB |ψ〉〈ψ|.
(3.3)

In this chapter, we focus on the second Rényi entropy with n = 2, whose purity equals the expectation value of the
SWAPA operator over two copies of the state [65, 66],

Tr(ρ2A) = 〈ψ|2 ⊗ 〈ψ|1SWAPA|ψ〉1 ⊗ |ψ〉2, (3.4)

where the SWAPA operator exchanges the spin con!gurations |α〉 within subsystem A.
The entanglement dynamics of the hybrid QA circuit can be interpreted in terms of classical bit-string dynamics. By

inserting two sets of complete basis on the right side of the SWAPA operator in Eq. 4.9 and applying the circuit on the

28
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Figure 3.1: A cartoon of the two-species particle model. The black dots representX particles, and the red dots represent
Y particles. Initially, X and Y particles are distributed in region A and B respectively. We use x and y to denote the
leftmostX particle and the rightmost Y particle.

bit-strings in a time-reversed order, we obtain

Tr(ρ2A) =
1

4L

∑

n1,n2

e
−iΘn′

1 e
−iΘn′

2 eiΘn1 eiΘn2 , (3.5)

where
|n′

1〉|n′
2〉 ≡ SWAPA|n1〉|n2〉

= SWAPA|α1β1〉|α2β2〉

= |α2β1〉|α1β2〉,

(3.6)

and eiΘni =
√
2L〈ni|Ũt|ψ0〉, with Ũt denoting the circuit evolution. In order to compute Tr(ρ2A), we need to understand

the dynamics of the relative phase Θr = −Θn′
1
− Θn′

2
+ Θn1 + Θn2 for each bit-string pair {|n1〉, |n2〉}. Under QA

evolution, nonzero randomly distributed Θr will lead to destructive interference, and as such only con!gurations with
trivial relative phase contribute to the purity. This observation motivates us to construct a two-species particle model, as
mentioned in the previous chapter.

The particles here characterize the di"erence between a bit-string pair {|n1〉, |n2〉},

h(x, t) = |n1(x, t)− n2(x, t)|. (3.7)

We use the empty site symbol ◦ to denote h(x) = 0 and the occupied site symbol • to denote h(x) = 1. Speci!cally, we
represent the di"erence at t = 0 in A (B) by X (Y ) particles, as illustrated in Fig. 3.1. Under the time evolution, these
two species start to expand according to the update rule determined by the circuit. For the rest of the chapter, we focus
on QA unitary gates U which are linear with respect to the bit-string addition de!ned in !nite !eld F2, so that for any bit
string pair n1 and n2, U(|n1〉+ |n2〉) = U |n1+n2〉. This means that we can directly work on the particle representation
h(x, t) without keeping track of the bit-string dynamics. One good example is the two-qubit CNOT gate. When the !rst
qubit acts as the control, we have •◦ ↔ ••. On the other hand, the composite measurement forces the spins on the same
site to be identical, which results in particle annihilation, • → ◦. Only the con!gurations in which theX and Y particles
do not meet up to time t yield Θr = 0 and hence contribute to the purity (For more details, see Chapter 2). Therefore,
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we have
Trρ2A(t) =

N(t)

2L
≡ P (t),

S(2)
A (t) = − log2 P (t),

(3.8)

whereN(t) is the number of con!gurations inwhich the two species do notmeet up to time t. At the critical point p = pc,
the fraction P (t) decays algebraically as P (t) ∝ t−α, where α is the persistence exponent. For the DP universality class,
α = 0.938 is a universal number [40]. This power-lawdecay is responsible for the logarithmic scaling of the entanglement
entropy at criticality.

3.3 Entanglement dynamics in the volume-law phase

We now take a closer look at the entanglement entropy in the volume-law phase with p < pc. Previous studies of
these 1 + 1d hybrid circuits indicate that randomness induces strong #uctuations in the entanglement entropy in both
spatial and temporal directions. A nice way to understand this problem is through the minimal cut picture introduced
in Ref. [28], which maps the entanglement dynamics to the !rst passage problem on a percolation lattice. Such a picture
rigorously describes the zerothRényi entropyS(0)

A of theHaar randomcircuit subject to projectivemeasurements. For the
entropy with higher Rényi index, it is argued that it can be treated as the free energy of the domain wall in a disordered
magnet[51, 72]. Notice that in both approaches, the entanglement entropy is mapped to the free energy of the 1 +

1d directed polymer in a random environment (DPRE), whose #uctuation belongs to the KPZ universality class. As a
result, there exists a sub-leading correction term in the ensemble averaged entanglement entropy in both the early-time
dynamics and the steady states, i.e.,

〈SA(t)〉 = λ1t+ atβ + · · · , (3.9)

〈SA(LA)〉 = λ2LA + bLβA + · · · , (3.10)

where the brackets represent an ensemble average and β = 1
3 is the “roughness exponent” of the DPRE[49]. The sub-

leading correction term can be extracted by computing the standard deviation

δSA(t) =
√
〈[SA(t)]2〉 − 〈SA(t)〉2 ∝ tβ , (3.11)

δSA(LA) =
√
〈[SA(LA)]2〉 − 〈SA(LA)〉2 ∝ LβA, (3.12)

which characterizes the sample-to-sample #uctuations with the same exponent β. This result has been con!rmed nu-
merically in Cli"ord circuits in Refs. [51, 52]. Below we will numerically examine the volume-law phase of the hybrid
Cli"ord QA circuit and understand its physics in terms of the particle dynamics.
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CZ gate CNOT gate

Z measurement Hadamard gate

(a)

A B

t

(b)

Figure 3.2: (a) A schematic for the gates appearing in the hybrid Cli"ord QA circuit. (b) The dashed box represents the
arrangement of gates in a single time step. Each time step involves two layers of CNOT gates and two layers of CZ gates,
interspersed with composite measurements with probability p.

(a) (b)

Figure 3.3: (a) The standard deviation of entanglement entropy δSA vs LA plotted on a log-log scale. The data are
computed from the steady-state entanglement entropy SA for half-system size LA = L/2 over a variety of L. The
measurement rates are taken to be p = 0.04 and p = 0.08. (b) The standard deviation of early-time entanglement
entropy δSA vs t for p = 0, 0.04, 0.08. All of the numerical data for entanglement entropy are calculated with periodic
boundary conditions (PBC).

3.3.1 Numerical study in hybrid Cli!ord QA circuits

We consider a hybrid Cli"ord QA circuit in which the QA unitaries also belong to the Cli"ord group. According to the
Gottesman-Knill theorem [71, 64], the Cli"ord circuit can be e$ciently simulated on a classical computer using the
stabilizer formalism. As illustrated in Fig. 3.2, the circuit is constructed from two types of unitary gates chosen from the
two-qubit Cli"ord group, namely, CNOT and CZ gates, as well as sporadic composite measurements distributed with
probability p. The critical point is at pc ≈ 0.138 [40]. The numerics in Fig. 3.3(a) indicates that for 0 < p < pc, the
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standard deviation of the steady-state entanglement entropy scales as δSA ∝ Lβ1

A with β1 ≈ 0.322.
Aside from the steady state, we also study the early-time entanglement dynamics in the volume-law phase. Similarly,

we observe in Fig. 3.3(b) that for p < pc (not necessarily nonzero), δSA(t) ∝ tβ2 with β2 ≈ 0.307 for p = 0 and p = 0.04,
and β2 ≈ 0.266 for p = 0.08. For p ≤ 0.04, The exponents of the sub-leading terms of the steady-state and early-
time entanglement entropies are similar and are close to the roughness exponent, i.e., β1 ≈ β2 ≈ 1

3 . The exponent
β2 ≈ 0.266 at p = 0.08 is smaller than 1/3 and is probability due to the proximity to the critical point. We also consider
the entanglement entropy in the puri!cation dynamics of the same circuit and in the Z2-symmetric hybrid Cli"ord QA
circuit. In both cases, we !nd that it exhibits similar #uctuation. The details can be found in App. 3.C and App. 3.A.
Overall, these results provide numerical evidence that the entanglement entropy in the volume-law phase of the Cli"ord
QA circuit has KPZ #uctuations.

3.3.2 Single-species particle dynamics

(a) (b)

Figure 3.4: (a) The early-time δ(− log2 K) vs t plotted on a log-log scale. (b) The steady state δ(− log2 K) of the single-
species particle model vsLA plotted on a log-log scale. The numerical data are calculated from the single-species particle
model using the basis-decomposing method with particle annihilation rate p = 0.04 and p = 0.08.

Recall that in the two-species particle model, the entanglement entropy is related to the logarithm of P (t), which
is the fraction of con!gurations in which X particles do not encounter Y particles up to t. We denote x (y) as the
rightmostX (leftmost Y ) particle. In the volume-law phase, x and ymove toward each other at roughly the same speed,
so P (t) decays exponentially in t, leading to the linear growth of S(2)

A (t). The subleading term in S(2)
A (t) is caused by the

#uctuation of the velocities of x and y in di"erent particle con!gurations. For simplicity, we !x the position of y to be
next to the boundary between A and B, so that only the #uctuation of x is considered. This is equivalent as computing
a subset of phase terms in Eq.(3.5) restricted in subsystem B,

1

4LA

∑

α1,α2

e
−iΘB

n′
1
+iΘB

n1 . (3.13)
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where {α1,α2} are the spin con!gurations in subsystem A of the bit-string pairs {|n1〉, |n′
1〉}. With this approximation,

P (t) is simpli!ed to beK(t), the fraction of con!gurations in which x never crosses the boundary between A and B up
to time t.

One important advantage of taking the single-species approximation is thatK(t) can be e$ciently computed using
the following approach: (1) All of the particle con!gurations in subsystem A can be generated by a set of binary basis
H0 = {h1, . . . , hLA}. Hence, any particle con!guration can be expressed as the linear combination

h =
LA∑

i=1

hαi
i (3.14)

de!ned on the !nite !eld F2 with αi = {0, 1}. Initially, we can set hi(t = 0) = (0 . . . 1i . . . 0). Under linear operators,
we can evolve each basis separately and the above equation still holds with {αi} remaining invariant. (2) K(t) can be
evaluated by simply evolving a set of basis H(t) which span the ensemble of particle con!gurations which never enter
B. Initially,H(t = 0) = H0 and thereforeK(t = 0) = 1. Under the time evolution, if the rightmost particle x of a single
basis state, say, hj(t), crosses the boundary, then only the particle con!gurations with αj = 0 will contribute to K(t).
Hence, half of the con!gurations are ruled out, and the “entanglement entropy”− log2 K(t) increases by one. This also
means that hj is excluded from H(t) for further computation. On the other hand, if the x particles of multiple basis
states, say, G = {h1, . . . , hn}, cross the boundary at the same time, one can easily verify that − log2 K(t) still increases
by one, except that the updated basis set becomesH(t) = {h1 + h2, . . . , h1 + hn}

⋃
H(t− 1) \G. As a result,

− log2 K(t) = LA − |H(t)|, (3.15)

where |H(t)| is the number of existing basis at time t. This way of tracing the basis set which span the con!gurations
whose boundary has not been visited by the particles resembles the stabilizer formalism in Cli"ord dynamics.

We use the above method to !rst study the p = 0 limit of the single-species particle model under the Cli"ord QA
circuit de!ned in Fig. 3.2(b). With this limit, the particle basis states evolve under only unitary operators, i.e., random
CNOT gates. The numerics in Fig. 3.4(a) shows that the early-time dynamics has the #uctuation δ[− log2 K(t)] ∝ t0.304.
In the steady state, the particles in all the basis states will pass the boundary and therefore − log2 K(t → ∞) = LA

without subleading correction.
When 0 < p < pc, we observe similar#uctuations in the early-time dynamics. Fig. 3.4(a) shows that δ[− log2 K(t)] ∝

t0.294 at p = 0.04 and δ[− log2 K(t)] ∝ t0.26 at p = 0.08. The power law exponent slightly decreases as we increase p. As
opposed to the p = 0 case, the steady state entropy cannot reach themaximal value. Due to the localmeasurement which
forces • → ◦ in all the basis states at the same location, the time-evolved basis states in H(t) cease to remain mutually
linearly independent. The steady state basis vectorsH(t → ∞) are formed by zero vectors containing no particles. The
#uctuation of the number of such zero vectors is the same as the #uctuation of − log2 K(t → ∞) and is shown in Fig.
3.4(b). By performing !nite size scaling, we observe that δ[− log2 K(LA)] ∝ L0.245

A for both p = 0.04 and p = 0.08,
slightly o" from 1/3.
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3.3.3 Two-species particle dynamics

(a) (b)

Figure 3.5: (a) The early-time δ(− log2 P ) vs t plotted on a log-log scale. The numerical data are calculated from the two-
species particle model with the sampling method and with the system size L = 256. (b) The steady state δ(− log2 M) vs
LA plotted on a log-log scale, the ratio LA/L is !xed to be 1/2. M is one of the terms that contribute to P which can be
computed using the basis-decomposing method.

In the two-species particle model, it is unclear if there exists an e$cient algorithm to evaluate P (t). The existence
of two moving fronts makes the problem di$cult to solve. Nevertheless, we can still simulate the early-time dynamics
using Monte Carlo sampling method[40]. More speci!cally, we prepare a large sample of randomly generated particle
con!gurations and estimate P (t) by computing the fraction of con!gurations in whichX and Y never meet up to time
t. This method works well for subsystem with entanglement entropy smaller than ∼ 20. Around pc, the entanglement
entropy is small and this sampling method has been successfully used to identify pc and compute the critical exponents
precisely over a few hundred qubits [70]. We apply the sampling method to the volume-law phase during the early time
and as shown in Fig. 3.5(a), the standard deviation of the entropy δ[− log2 P (t)] ∝ t0.34 at p = 0.04 and p = 0.08, which
is consistent with the KPZ #uctuation.

Unfortunately, it is unrealistic for us to evaluate the sample #uctuation of− log2 P of the steady state using the same
method. This is because in the steady state, P is exponentially small and avoiding the contact between the two species
becomes a rare event at late times. Below we analyze the physics of P and take some approximation to estimate the
#uctuation of log2 P in the steady state.

In the context of particle dynamics, the entanglement entropy saturates when all the particle con!gurations which
contribute to P (t) have at most one species left. The steady state P is therefore composed of three parts,

P =
NX

2L
+

NY

2L
− NXY

2L
= PX + PY − PXY , (3.16)

where PX (PY ) denotes the fraction in which X (Y ) particles annihilate !rst under the dynamics before they could
encounter the other species, PXY denotes the fraction in which both species extinguish at the same time before they
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p = 0 p = 0.04 p = 0.08

δSA
β1 N/A 0.322 0.322
β2 0.307 0.307 0.266

δ(− log2 K)
β1 N/A 0.245 0.245
β2 0.304 0.294 0.26

δ(− log2 P ) β2 N/A 0.34 0.34
δ(− log2 M) β1 N/A 0.266 0.266

Table 3.1: The comparison of the exponents of the #uctuation δSA of Cli"ord QA entanglement entropy, δ(− log2 K)
of the single-species particle model, the early-time δ[− log2 P (t)] of the two-species particle model using the sampling
method, the steady-state δ[− log2 M(LA)]whereM is a term that contributes toP . Themeasurement rate or the particle
annihilation rate is taken to be p = 0, 0.04 and 0.08. In the table, β1 refers to the exponent of Lβ1

A and β2 refers to the
exponent of tβ2 .

meet. In the volume-law phase, PX ∝ exp(−LA), PY ∝ exp(−LB) and PXY ∝ exp(−L). In the thermodynamic limit,
the last term can be ignored and the !rst two terms compete as we tune LA. When LA < LB , PX dominates and we
have P ≈ PX . In contrast, when LA > LB , we have P ≈ PY . This leads to

S(2)
A ≈






− log2 PX , LA < L/2

− log2 PY , LA > L/2.
(3.17)

Computing PX is still not an easy task. Instead we consider a subset of PX that can be simulated e$ciently using
the basis-decomposing method in Sec. 3.3.2. We de!ne the binary basisH0

X (H0
Y ) which span theX (Y ) particle con!g-

urations in the absence of Y (X) particles. Both H0
X and H0

Y evolve under the same dynamics. At time t, we consider
the con!gurations in which the X particles never encounter Y particles in any of the basis states of H0

Y (t) and denote
this fraction asM(t). In other words, M(t) is equivalent to K(t) in the single-species particle model, except that now
the boundary determined by the leftmost Y particle inH0

Y (t) is spreading to the left. Therefore,

− log2 M(t) = − log2
2|HX(t)| × 2LB

2L
= LA − |HX(t)|. (3.18)

whereHX(t) is the basis ofX particle con!gurations which never meet the leftmost Y particle inH0
Y (t).

In the steady state, HX is the set of basis in which the X particles have already vanished before encountering any
Y particles inH0

Y (t). As shown in Fig. 3.5(b), there exists sample #uctuation in − log2 M in the volume-law phase. In
particular, we !nd that δ[− log2 M ] ∝ L0.266

A for both p = 0.04 and p = 0.08. This exponent is smaller than the one
computed in the Cli"ord QA circuit. The exponents for di"erent models at various p < pc are listed in Table. 3.1 and we
!nd that some of them are smaller than 1/3.

Currently, it is unclear if this is a !nite size e"ect, or if the #uctuations of these quantities in the one/two-species
particle models belong to other universality classes. The main obstacle of this issue is the lack of rigorous analytical
results. However, wewant tomention that there are someknown results aboutKPZ#uctuations in the particle dynamics.
Under the hybrid QA circuit, each particle con!guration experiences the same circuit dynamics, therefore the end points
of the two species x and y can be treated as particles performing biased randomwalks in a !xed time-dependent random
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environment. Mathematically, the dynamics of the endpoint is known as randomwalk in random environment (RWRE),
in which the logarithm of the transition probability is proven to exhibit KPZ #uctuations in some limit [73, 74, 75].
Indeed, this quantity is similar to the second Rényi entropy and the detailed discussion about this connection can be
found in App. 3.B.

3.4 Puri"cation Process and quantum error correction

3.4.1 Puri"cation process and hybrid QA QECC

System Q

Reservoir R

(a)

CZ gate CNOT gate

Z measurement Hadamard gate

(b)

A B

t

(c)

Figure 3.6: (a) We use CZ gates to generate entanglement between system Q and environment R. (b) The symbols of
the CZ gate, CNOT gate, the single-qubit Z measurement gate and Hadamard gate. (c) The arrangement of gates for the
puri!cation process of the hybrid QA circuit. Except the initial setup in (a), the hybrid circuit is applied solely in system
Q.

An alternative approach to understand the measurement-induced entanglement phase transition is through puri!-
cation dynamics[30]. The basic idea is to prepare a system Q with an extensive entropy and evolve it under the hybrid
quantum dynamics. Although the system will eventually be puri!ed, in the weakly-monitored volume-law phase with
0 < p < pc, the puri!cation time is exponentially long in system size L. On the other hand, when p > pc, the entropy
decays exponentially in time with a constant rate.

The existence of long puri!cation time in the regime 0 < p < pc suggests that the hybrid quantum circuits can dy-
namically generate a robust quantum error correcting code (QECC) at polynomial time[30]. TheQECC can be compactly
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denoted as [L, k, d]. Here L is the number of physical qubits inQ and k characterizes the amount of logical information
encoded in the code space and is quanti!ed by the entropy of ρQ. The third index d is the code distance, which is de!ned
as the minimum weight of all uncorrectable errors. Here the errors can be interpreted as measurements which can po-
tentially reduce the entropy when applied on ρQ. If an error changes the entropy of Q, then it is an uncorrectable error
since it damages the encoded quantum information and hence can not be recovered. Due to the locality of the circuit
model, a better measure is the contiguous code distance dcont, which is the minimal length of a contiguous section of
qubits that supports an uncorrectable error [30]. In the volume-law phase, dcont diverges in the thermodynamic limit.
The quantum information is stored non-locally under the unitary evolution and thus is protected against any local mea-
surements. On the other hand, for p > pc, the unitary dynamics fails to protect the encoded information under frequent
measurements. Previous works have quantitatively analyzed the statistical property of QECC in hybrid random Cli"ord
circuits [52, 51]. In this section, we will study the puri!cation dynamics of the hybrid QA circuit and investigate the
QECC in terms of the classical particle model.

Initially, we prepare a product state of 2L qubits polarized in+x direction which can be evenly divided into systemQ

and environmentR. Then, we create L EPR pairs between them by applying CZ gates as shown in Fig. 3.6(a). Thus, the
systemQ becomes maximally entangled with environmentR, i.e., S(2)

Q = L. To investigate the puri!cation dynamics, a
hybrid QA circuit is solely applied on system Q. Numerically, we consider the model described in Fig. 3.6(c), identical
to the hybrid QA Cli"ord circuit in the entanglement dynamics in the last section. The composite measurements disen-
tangle the qubits in Q from the environment R. Meanwhile, the unitary evolution scramble the quantum information
within systemQ, increasing the entanglement between any subsystem A inQ and its complement B := Q \A, but not
a"ecting S(2)

Q . There is a phase transition in the puri!cation time of S(2)
Q at p = pc ≈ 0.138 [40], consistent with the

entanglement dynamics studied in the last section.
As we discussed before, an important measure of the error-correcting ability of our QECC is the contiguous code

distance dcont, which is the minimal length of a contiguous region supporting an uncorrectable error. It is thus natural
to mark the existence of such errors supported on a contiguous subregion A using the mutual information between A

and the environment R [76, 52, 77],
IA,R = S(2)

A + S(2)
R − S(2)

A,R

= S(2)
A + S(2)

Q − S(2)
B .

(3.19)

When IA,R = 0,A andR are completely decoupled, we cannot acquire any information encoded in the state by observing
any qubits within the subregion A. In other words, any measurements acting within A are correctable errors since they
will not a"ect S(2)

Q . Therefemphore, dcont is the maximum length L∗
A such that IA,R = 0 for LA < L∗

A
1.

We simulate the Cli"ord QA circuit to !nd the entanglement entropies S(2)
A and S(2)

B and the mutual information
IA,R over various subsystem sizes LA. The numerical results are given in Fig. 3.7. We take the code distance to be the
maximum length L∗

A such that 〈IA,R〉 ≤ ε for LA < L∗
A. In the numerical simulation of the !nite system size, we

set ε = 1. Remarkably, we !nd that S(2)
A starts to decrease at LA = L − L∗

A until it reaches S(2)
Q at LA = L. This

1In the stabilizerQECC, dcont can also be viewed as theminimal length of nontrivial logical operators actingwithin the code space. This is equivalent
to the dcont de!ned through the criterion IA,R = 0.
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(a) (b)

Figure 3.7: (a) The entanglement entropies S(2)
A and S(2)

B and half of the mutual information 1
2IA,R vs LA computed

from the Cli"ord QA circuit with system size L = 400 at T = 2L, and p = 0.08. (b) The contiguous code distance dcont
for di"erent system size L at p = 0.08 and p = 0.04 at T = 3L plotted on a log-log scale. Here we take dcont to be the
maximum length L∗

A such that 〈IA,R〉 ≤ 1. All of the data are computed with PBC.

non-monotonic behavior coincides with that in the previous study of the hybrid Cli"ord circuits [52] and is crucial in
understanding the code distance. We will modify the two-species particle model in the following section so as to give an
interpretation for S(2)

A . As shown in Fig. 3.7(b), dcont has a sublinear power law scaling with L. Numerically, it scales as
L0.343 for p = 0.04 and L0.387 for p = 0.08, and its value increases as the measurement rate increases.

3.4.2 QECC in classical particle language

To understand the dynamically generated QECC from the perspective of classical particle dynamics, we need to com-
pute the mutual information de!ned in Eq. (3.19) in terms of the two-species particle model. An important task is to
understand the entanglement entropy of a subsystem A in the presence of environment R. For the bit-string dynamics
in the puri!cation process, the hybrid QA circuit is applied only on system Q of the bit-strings in a time-reversed order,
generating the relative phase Θr, followed by the CZ gates acting on both the system Q and environment R, generating
another relative phase ∆r. Therefore, only the con!gurations satisfying Θr = 0 and ∆r = 0 contribute to the purity.
As shown in App. 3.D, in the particle picture, this corresponds to the con!gurations in which all of the X particles
have vanished before they can encounter any Y particles at time t. These con!gurations are a subset ofN(t) de!ned in
Eq.(4.14) in the entanglement dynamics. Let the number of these con!gurations beN1(t), the entanglement entropy of
A is then

S(2)
A (t) = − log2

N1(t)

2L
≡ − log2 P1(t). (3.20)
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Speci!cally, when A = Q, there are only one type of particles, we only need to count the con!gurations whose particles
extinguish at time t. Letting the number of such con!gurations be denotedNQ, we have

S(2)
Q (t) = − log2

NQ(t)

2L
≡ − log2 PQ(t). (3.21)

Initially, PQ(t = 0) = 1/2L and Q is maximally entangled with R. Under the hybrid QA circuit, more and more
con!gurations become empty and SQ decreases monotonically with time. The time scale for which the particles of all
the con!gurations vanish depends on p and is consistent with that of the puri!cation transition.

We are interested in the QECC generated at polynomial time t = λLwith λ7 1. At this time,X or Y particles have
already spread over the entire system and therefore the con!gurations that contribute to P1(t) can have at most one type
of particle. Similar to the steady state P of the entanglement dynamics derived in Eq.(3.16), P1(t) can be expressed as

P1(t) =
ÑX(t)

2L
+

ÑY (t)

2L
≡ PX + P̃Y (t), (3.22)

where P̃Y (t) is a subset of PY , which further requires thatX particles vanish at time t. There is also a small contribution
from PXY which we ignore here.

When LA < LB , since PX > PY > P̃Y (t), PX dominates and we have P1(t) ≈ PX . Therefore, S(2)
A (t) is the same

as the steady state S(2)
A in the entanglement dynamics. The regime LA > LB is di"erent from that of the steady state in

the entanglement dynamics. Since P̃Y (t) is a small fraction of PY , when LA is slightly larger than LB , PX > P̃Y (t) and
we still have S(2)

A ≈ − log2 PX . We de!ne Lc to be the threshold of the subsystem size LA where PX = P̃Y (t). When
LA > Lc, P̃Y (t) dominates and we have S(2)

A (t) ≈ − log2 P̃Y (t). For P̃Y (t), it can be understood as follows,

P̃Y (t) =
ÑY (t)

2L
=

NY

2L
ÑY (t)

NY
≡ PY P2(t), (3.23)

where P2(t) ≡ ÑY (t)/NY . Since the X particles of con!gurations in NY have already spread over the entire system
when all of the Y particles extinguish, P2(t) actually counts the fraction of con!gurations which have no particles at
time t. Directly evaluating P2(t) is di$cult. However, due to the scrambling property of the unitaries, it is reasonable to
assume that P2(t) ≈ PQ(t),

P̃Y (t) ≈ PY PQ(t). (3.24)

Summarizing, we have

S(2)
A (t) ≈






− log2 PX , LA < Lc

− log2 PY − log2 PQ(t), LA > Lc.
(3.25)

We numerically verify the above approximation in Fig. 3.8(a). Due to the di$culty for simulating highly-entangled
state, we are only able to simulate the two-species particle model on a system with size L = 32 at T = 3L in the
volume-law phase. We !nd that there indeed exists a non-monotonic decay area for S(2)

A = − log2 P1 when LA passes
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(a) (b)

Figure 3.8: (a) The entanglement entropy S(2)
A ≈ − log2 P1 vs LA computed from the two-species particle model, in

comparison with the two approximate values− log2 PX and− log2 (PY · PQ) forLA < Lc andLA > Lc. The numerical
data are calculated by the sampling method over a system of size L = 32, at T = 3L, p = 0.08 and under PBC. (b) The
Z-error contiguous code distance dZcont in comparison with dcont for di"erent system sizes at p = 0.04 and p = 0.08 at
T = 3L plotted on a log-log scale.

the threshold Lc, and that Eq.(3.25) holds within a small di"erence ε = O(1). The non-monotonicity comes from the
competition of the two terms PX and P̃Y . As subsystem A enlarges, PY increases and PQ stays the same. As a result,
whenLA > Lc and P̃Y dominates, S(2)

A starts to decline asLA continues to increase. The location of the peakLc depends
on time and can eventually shift to L/2 when the system is completely puri!ed.

Based on the above analysis of S(2)
A (t), we are now ready to understand the QECC in terms of particle dynamics. In

the regime with LA ∈ [0, L− Lc) and hence LB ∈ (Lc, L], the mutual information becomes

IA,R = S(2)
A + S(2)

Q − S(2)
B

≈ − log2 PX − log2 PQ + log2 PX + log2 PQ

= 0.

(3.26)

It vanishes because the two terms in S(2)
B completely cancel with S(2)

A and S(2)
Q , similar to the decoupling domain wall

picture discussed in Ref. [52]. On the other hand, when Lc > LA > L− Lc, it is easy to show that

IA,R ≈ − log2 PX − log2 PQ + log2 PY > 0. (3.27)

We arrive at the conclusion that IA,R = 0 if and only if LA < L−Lc and the contiguous code distance is dcont = L−Lc.
These results are consistent with the numerical results of hybrid Cli"ord QA circuit in Fig. 3.7(a).

The code distance speci!ed by the mutual information works for all kinds of errors. In the QA circuit, we could
consider a special type of error which is theZ error de!ned as the measurement operator (1±O)/2whereO is a PauliZ
string. Suppose at time t, a QECC is prepared through the QA puri!cation dynamics and some Z errors occur within a
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contiguous subsystemA, which could possibly reduce the entropy of ρQ. We de!ne the Z-error contiguous code distance
dZcont as the maximum length of subsystem A such that S(2)

Q does not change.
Since the particle dynamics is evolved in a time-reversed order, the Z error acts as annihilation on all of the particle

con!gurations at t = 0. For subsystem A of size smaller than dZcont, S
(2)
Q is invariant under any Z error occurred within

A, or in other words, with any initial particle distribution in A. Therefore, we start from an ensemble of particle con!g-
urations with empty subsystemA, so that the information aboutA is completely removed. The entanglement entropy of
Q after the Z error becomes

S(2)
Q (t) = − log2 PB(t), (3.28)

where PB(t) denotes that among all the con!gurations with only Y particles located in B initially, the fraction that be-
comes completely empty at time t. Consequently, dZcont is the maximum length of subsystemA such that− log2 PB(t) =

− log2 PQ(t) for LA < dZcont.
Both− log2 PB(t) and− log2 PQ(t) can be e$ciently calculated by evaluating the number of independent basis under

the hybrid time evolution. We prepare two sets of binary basis, one isH whose rows are the basis spanning all the particle
con!gurations in systemQ, the other one isH ′ which is the truncation ofH where a contiguous submatrix of sizeL×LA

is removed. Then, we evolve them under the same circuit dynamics. One can easily see that− log2 PQ(t) = rank2(H(t))

and− log2 PB(t) = rank2(H ′(t)), which are the number of independent basis inH(t) andH ′(t) respectively. The code
distance dZcont(t) is therefore identi!ed as the largest LA such that the rank of H(t) and H ′(t) agree within ε = 1. As
shown in Fig. 3.8(b), although dZcont is much larger than dcont, they have similar power-law scaling.

The sublinear power-law exponent in the contiguous code distance is a special feature of the hybrid randomdynamics
and is closely related to the subleading correction term in the entanglement entropy. In the Cli"ord circuit, this can be
easily understood in the dynamics of the stabilizer generators, in which there exist a !nite number of “short" stabilizers
caused by local measurements[31]. These short stabilizers are responsible for both the #uctuation in the entanglement
entropy and also the sublinear power-law exponent in the code distance[31]. Under pure unitary dynamics, these short
stabilizers become long stabilizers and span over the whole system, the subleading correction term vanishes and the
code distance becomes extensive and is proportional to L, the same as the conventional random QECC[78].

The above physics can also be understood in the hybrid QA circuit as shown in Fig. 3.9(a). Compared with Fig.
3.6(c), we add an extra pure unitary evolution for time T2. Recall that the particle representation experiences the circuit
dynamics in a time-reversed order, it !rst evolves under the pure unitary evolution for T2 and then the hybrid dynamics
for T1. Here we take su$ciently long T2 for unitary evolution so that the particles are fully scrambled and only the
con!gurationswith noX (Y ) particles at the beginning can contribute toPX (PY ). Hence,PX = 2−LA andPY = 2LA−L

and we have

S(2)
A (t) =






LA, LA < Lc

L− LA − log2 P2(t), LA > Lc.
(3.29)

Here − log2 P2(t) is simply counting the number of independent basis initially de!ned in A.
To verify this result, we simulate the Cli"ord QA circuit and compare the results with that derived from the particle
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Figure 3.9: (a) The setup of the alternative hybridQA circuit. “U+M” represents the original hybridQA circuit composed
of unitary gates and sporadic local composite measurements. “U” represents the circuit in the limit p = 0 with only
QA unitaries. (b) The entanglement entropy S(2)

A and half of the mutual information 1
2IA,R vs LA computed from the

Cli"ord model, in comparison with the two approximations− log2 PX and− log2(PY ·PQ). We also calculate− log2 P2

and !nd that it grows linearly in LA and saturates to − log2 PQ when LA = − log2 PQ. We take L = 400, p = 0.08 and
T1 = T2 = 2L.

model. As shown in Fig. 3.9(b), we !nd that S(2)
A agrees with LA for LA < Lc and L − LA − log2 P2(t) for LA > Lc

with negligible #uctuation. Di"erent from the previous circuit de!ned in Fig. 3.6(c), it is easy to numerically evaluate
P2(t) in this circuit. Due to the scrambling property of the unitary evolution in T2, we !nd that over a large range of LA,
− log2 P2(t) = − log2 PQ(t) and they become di"erent only whenLA < − log2 PQ(t). There is no subleading correction
term in S(2)

A anymore and the code distance is L − Lc which is linearly proportional to L. These results indicate that
the sublinear power-law scaling in both the contiguous code distance and the #uctuation of the entanglement entropy
are emergent properties of the hybrid random circuit and disappear when the dynamics is fully scrambled under unitary
evolution.

3.5 Classical linear code

The classical particle model discussed in this chapter has an interesting connection with the classical error correction.
For a system with L sites, the total number of the particle con!gurations is 2L and all of them can be generated from L

independent particle string basis. Under the unitary dynamics, the number of basis is invariant, indicating that the total
amount of the classical information is unchanged. On the other hand, the composite measurement forces • → ◦ at one
site in all of the basis and can potentially reduce the number of independent basis, resulting in the loss of information.

The information retained in the classical particle model can be characterized by the number of independent basis k.
Under the puri!cation dynamics in Sec. 3.4.1, k is the same as the entropy SQ. When 0 < p < pc, it takes exp(L) time
for k(t) decreasing to zero. On the other hand, when p > pc, k(t) decreases to zero exponentially fast with a !nite decay
rate. The phase transition at p = pc belongs to the directed percolation universality class.
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Figure 3.10: (a) The CLC is determined by the binary square matrixM(t) on the left. The occupied site symbol • denotes
1 and the empty site symbol ◦ denotes 0. To evaluate the contiguous CLC code distance dccont at time t, anL× l submatrix
is taken away from M(t) and dccont is the largest l such that the rank of the truncated matrix M ′(t) agrees with that of
M(t) within ε. In the numerical simulation, we set ε = 1. (b) dccont vs system size L for p = 0.04 and p = 0.08 at T = 4L
plotted on a log-log scale.

Similar to the dynamically generated QECC with p < pc, the associated particle dynamics also generates a classi-
cal linear code (CLC) governed by a k × L generator matrix, whose rows are binary strings forming a basis for the k
dimensional codespace. When the time t is linear in L, the encoded bit k is extensive and the information is protected
by the scrambling property of the unitaries and is inaccessible by the local measurement. A CLC is typically denoted by
[L, k, dc], in which L classical bits can store k bits of classical information. dc is the classical code distance and is equal
to the minimal number of #ips mapping a codeword to another. Similar to the QECC discussed before, since we have
local unitary dynamics, it is more reasonable to consider contiguous code distance dccont for our CLC.

In a CLC [L, k, dccont], any bit #ip occurring in a subsystem with length l < dccont does not change the encoded bit
k. Numerically, this motivates us to evaluate dccont in the following way as illustrated in Fig. 3.10(a): Consider an initial
generatormatrixM with rank2(M) = L. We evolve all of the row vectors according to the hybrid QA circuit described in
Fig. 3.6 (b). At any time t, the encoded bit is the number of the independent binary vectors inM(t), i.e., k = rank2(M(t)).
We then remove a contiguous L × l submatrix from M(t) and obtain a truncated M ′(t). The largest l which makes
k − rank2(M ′(t)) < ε is dccont. In the numerical simulation, we take ε = 1 and we are interested in the regime t = αL

with α 7 1. As shown in Fig. 3.10(b), we observe that dccont ∝ L0.331 for p = 0.04 and dccont ∝ L0.35 for p = 0.08.
Similar to the QECC, the power law exponent is again smaller than 1. The diverging code distance is consistent with
exponentially long puri!cation time – the information is encoded non-locally and is resilient to any local errors.

3.6 Conclusion

In this chapter, we analyze entanglement entropy #uctuations in the volume-law phase of 1+1d hybrid QA circuits. We
numerically show that the #uctuations belong to the KPZ universality class, just as for other random circuits studied
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previously. Due to the special feature of the QA circuit, we are able to map the second Rényi entropy to a classical
quantity in a particle model. We compute the #uctuations of this quantity in di"erent approaches and show that they
exhibit #uctuations with similar exponents. The existence of the strong #uctuations may have interesting connection
with the multifractal behavior observed in the volume-law phase of hybrid Cli"ord circuits, where the entanglement
entropy transition is mapped to an Anderson localization transition[79]. Besides this, we could also study #uctuations
at the critical point in these hybrid random circuits. These critical points, dominated by randomness, are di"erent from
those clean systems. Since the hybrid QA circuit has an underlying particle picture, it could be a good starting point to
explore this problem.

We also study the dynamically generated QECC in the puri!cation dynamics of 1+1d hybrid QA circuits. Again, we
give an interpretation of the error correction in terms of the particlemodel. In particular, we show that the particlemodel
itself can be treated as a random classical linear code (CLC), and numerically compute the contiguous code distance for
it. This observation motivates us to consider other random CLCs and use similar approaches to construct QECC. We
leave this for the future study.

Acknowledgement.—We acknowledge Ethan Lake for his proofreading and the useful discussion with Yaodong Li.

3.A Entanglement dynamics in the volume-law phase of Z2 symmetric hy-
brid Cli!ord QA circuit

In this appendix, we study the subleading correction term of the volume-law phase entanglement entropy of the Z2-
symmetric hybrid QA circuit. The Z2 symmetry requires that the parity of the computational basis remains !xed. This
can be satis!ed by measuring the Pauli string Z1Z2 . . . ZL on an initial product state with L qubits polarized in the +x

direction. We choose a subset of Cli"ord gates to construct the QA circuit with Z2 symmetry and the setup is shown
in Fig. 3.11. The unitary evolution composed of CNOTNOT(CNN) gates and CZ gates. The CNN gate #ips two qubits
according to the value of the third (control) qubit. If the control qubit is on the left we denote the corresponding gate as
CNNL; it acts as

CNNL|1σ1σ2〉 = |1(1− σ1)(1− σ2)〉

CNNL|0σ1σ2〉 = |0σ1σ2〉.
(3.30)

Aside from the unitary evolution, we also introduce into the circuit the two-qubit composite measurements de!ned as

Mσ
L/R = R ◦ PσL/R. (3.31)
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CZ gate
CNN(R) gate
CNN(L) gate

Z measurement Rotation gate

(a)

(b)

Figure 3.11: (a) A schematic for the gates appearing in the circuit. (b) The arrangement of gates in a single time step
of the Z2-symmetric hybrid QA circuit. Each time step involves three layers of CNN gates and two layers of CZ gates,
interspersed with three measured layers. The dashed box represents a measured layer enclosing two rows of composite
measurements, with the !rst/second row containing randomly distributedMσ

L/R applied on sites (2i−1, 2i)[(2i, 2i+1)]
for i ∈ [1, L/2]. As with the CNN gates, the projection ofMσ

L/R is chosen to be applied on the left/right qubit with equal
probability. In general, the composite measurement appears in a measured layer with probability p.

This measurement is a combination of the projection operator PσL/R on the left/right qubit into the spin σ = {0, 1},
together with a two-site rotation operation

R =
1√
2





1 0 0 1

0 1 1 0

0 1 −1 0

1 0 0 −1




, (3.32)

so that the wave function is always an equal weight superposition of Z2 symmetric computational basis.
As shown in Ref. [70], the competition of the unitary evolution and the composite measurements leads to an en-

tanglement phase transition from a volume-law phase to a critical phase as the measurement rate p increases, and the
critical point is pc = 0.335. Here we focus on the subleading correction of the entanglement entropy in the volume-law
phase p < pc. We !rst compute the #uctuation of the steady state entanglement entropy. As shown in Fig. 3.12(a),
δSA ∝ Lβ1

A with β1 = 0.312 for p = 0.05 and p = 0.1, β1 = 0.256 for p = 0.2. In Fig. 3.12(b), we compute the
#uctuation of the early-time entanglement entropy and !nd that δSA ∝ tβ2 with β2 = 0.324 for p = 0, β2 = 0.317 for
p = 0.05, β2 = 0.289 for p = 0.1 and β2 = 0.214 for p = 0.2. Similar to the case in the QA circuit without Z2 symmetry,
the #uctuation exponents exhibit a drop from the roughness exponent β = 1

3 as p approaches pc.
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(a) (b)

Figure 3.12: The standard deviation of entanglement entropy of the Z2-symmetric hybrid Cli"ord QA circuit. (a) δSA

vs LA plotted on a log-log scale. The data are computed from the steady-state entanglement entropy SA for half-system
size LA = L/2 over a variety of L. The measurement rates are taken to be p = 0.05, 0.1, 0.2. (b) δSA vs t for p =
0, 0.05, 0.1, 0.2. All of the numerical data for entanglement entropy are calculated with periodic boundary conditions
(PBC).

3.B Single-species end-point RWREmodel

TD-RWRE refers to random walks performed in a "xed random environment. Di"erent from the di"usions in time-
independent random media where the #uctuations are of order

√
t, it was found that in the large deviations regime of

TD-RWRE, #uctuations of the logarithm of the transition probability are distributed with the roughness exponent β = 1
3

of the DPRE, i.e.
log2 P (Xt > ut) ∼ C1(u)t+ C2(u)t

1
3χ (3.33)

at large time, where u > uc = 0 and χ obeys the GUE Tracy-Widom distribution [73, 74, 75]. Hence, the large deviations
regime of TD-RWRE belongs to the KPZ universality class.

In the two-species particle model, the rightmost X particle and the leftmost Y particle can be regarded as two end-
point particles performing TD-RWRE since all the con!gurations experience the same circuit dynamics. To unravel the
problem, we consider the single-species particlemodel introduced in Sec.3.3.2, inwhichwe focus on the phase di"erence
of |n1〉 and |n′

1〉 in the B region measured by the quantity

1

4LA

∑

α1,α2

e
−iΘB

n′
1 eiΘ

B
n1 . (3.34)

Denoting the bit-string di"erence |n1 − n′
1| as particles, it is obvious that this quantity equalsK(t) which is the fraction

of con!gurations in which the particles initially located in regime A never cross the boundary between A and B up to
time t. Therefore, we only care about the dynamics of the end points of each particle con!guration and can treat them
as biased random walkers in a !xed random environment.

Based on the above analysis, we propose a single-species end-point RWRE model. Initially, we place the end points
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Figure 3.13: The standard deviation δN vs t for LA = 1000.

of all the particle con!gurations on the lattice, which results in a lattice chain fully occupied in A and empty in B.
We further simplify the problem by assuming that the con!gurations with the same end point initially share the same
dynamics, so that each site can be viewed as being occupied by only one particle at t = 0. At each time step, a random
value ωi ∈ (0, 1) is assigned to each site i on which the particles have the probability ωi to move to the right. Assume
that when an end point originally located on site i arrives at the boundary, the end points originally sit on the right
of i have already arrived. De!ne N(t) as the number of particles that have already passed the boundary at time t, the
“entanglement entropy” can be expressed as

− log2 K(t) ≈ − log2
2LA − 2LA−1 − · · · 2LA−N(t)

2LA

≈ − log2
2LA−N(t)

2LA
= N(t).

(3.35)

N(t) grows linearly in time and eventually saturates to LA. In Fig. 3.13, we compute the standard deviation δN(t)

and !nd that it scales as t0.26.

3.C Puri"cation dynamics in the volume-law phase

In this appendix, we numerically study the #uctuation exponent of the puri!cation process of the hybrid Cli"ord QA
model in the volume-law phase p < pc. We !rst compute the #uctuation of the entanglement entropy of subsystemA in
Fig. 3.14(a) and !nd that δSA ∝ L0.318

A , with the exponent 0.318 close to the roughness exponent. We can also extract
the subleading term out by computing the mutual information between the two subsystems IA,B = SA + SB − SQ. As
shown in Fig. 3.14(b), IA,B ∝ L0.324

A . This again indicates the correlation between the volume-law phase of hybrid QA
circuits and the KPZ universality class.
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(a) (b)

Figure 3.14: (a) The standard deviation of the entanglement entropy δSA vs LA plotted on a log-log scale. (b) The
mutual information between the two subsystems IA,B vs LA plotted on a log-log scale. All of the data are collected from
the hybrid Cli"ord QA circuit at half system size LA = L/2 for a variety of L at T = 3L and are computed under PBC.

3.D Two-species particle model of the puri"cation process

In order to interpret the puri!cation process in terms of the two-species particle model, we go back to the bit string
picture and modify Eq. 2.14. The wave function can now be expanded in the basis in subsystems A and B and also the
environment R,

|ψ(t)〉 = Ũt ◦ CZ|ψ0〉

= Ũt ◦ CZ|+ x〉⊗2L

=
1√
4L

∑

i,j,k

eiθi,j,k |αi〉A|βj〉B |γk〉R,

(3.36)

where the CZ gate acts on both the system and the environment, creatingL EPR pairs, and the following Ũt is the combi-
nation of the hybrid QA circuit applied solely on systemQ. To compute the purity, we can still apply the SWAPA operator
which exchanges the spin con!gurations |α〉 within subsystem A of the replicated states, and insert two complete sets
of basis upon which the operators act in a time-reversed order,

Tr(ρ2A) =
∑

n1,n2

〈ψ|2〈ψ|1SWAPA|n1〉|n2〉〈n2|〈n1|ψ〉1|ψ〉2

=
∑

n1,n2

〈ψ0|1CZ ◦ Ũ†
t |n′

1〉〈ψ0|2CZ ◦ Ũ †
t |n′

2〉

〈n1|Ũt ◦ CZ|ψ0〉1〈n2|Ũt ◦ CZ|ψ0〉2

=
1

42L

∑

n1,n2

e
−i(∆n′

1
+Θn′

1
)
e
−i(∆n′

2
+Θn′

2
)

× ei(∆n1+Θn1 )ei(∆n2+Θn2 ),

(3.37)
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where
|n′

1〉|n′
2〉 = SWAPA|n1〉|n2〉

= SWAPA|α1β1γ1〉|α2β2γ2〉

= |α2β1γ1〉|α1β2γ2〉.

(3.38)

Here Θn is the accumulated phase generated by the circuit within system Q of the bit string |n〉, and ∆n is the phase
generated by the CZ gate acting on bothQ and R of the time-evolved bit string Ũt|n〉.

Based on the analysis in Chapter 2, only the bit string con!gurations {|n1〉, |n2〉, |n′
1〉, |n′

2〉}whose total accumulated
phases are zero can contribute to Tr(ρ2A). We can take a further step by assuming that only the con!gurations satisfying
∆r = −∆n′

1
−∆n′

2
+∆n1 +∆n2 = 0 and Θr = −Θn′

1
− Θn′

2
+ Θn1 + Θn2 = 0 contribute to the purity. The former

constraint is met when |n1(t)〉 = |α1β1γ1〉 = |n′
1(t)〉 = |α′

2β
′
1γ1〉, and |n2(t)〉 = |α2β2γ2〉 = |n′

2(t)〉 = |α′
1β

′
2γ2〉. In the

particle language, it means that the particles representing the bit-string di"erence |n1 −n′
1| completely die out at time t.

Meanwhile, the latter constraint is the same as in the entanglement dynamics, i.e., the X and Y particles representing
the di"erence |n1(x, 0)− n2(x, 0)| in A and B respectively never encounter each other up to time t. To summarize, we
only need to count the con!gurations for whichX and Y particles do not meet andX particles have become extinct at
time t. Let the fraction of such con!gurations be P1, the entanglement entropy of the subsystem A is then

S(2)
A (t) ≈ − log2 P1(t). (3.39)
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Chapter 4

Entanglement dynamics in U(1)
symmetric hybrid quantum automaton
circuits

4.1 Introduction

Entanglement is an important measure of correlations between di"erent degrees of freedom in many-body quantum
systems. In a typical system with local interactions, quantum information propagates ballistically, resulting in linear
growth of entanglement over time [24]. This physics can be understood through random circuit models, which o"er a
minimal model for investigating entanglement dynamics and information scrambling [80, 81, 82, 28, 83].

However, the above-described picture changes slightly when an additional continuous symmetry is present in the
dynamics. If U(1) symmetry is imposed, it can lead to di"usive transport of the conserved charges. It has been demon-
strated that although the von-Neumann entanglement entropy continues to grow linearly, the growth of higher Rényi
entropies is limited by the di"usive transport and therefore exhibits sub-ballistic growth [53, 54, 55, 56]. Mathematically
it is rigorously proven that the growth of S(n>1) is at most di"usive, with a logarithmic correction [53], i.e.,

S(n>1) ≤ n

n− 1
O(

√
t ln t). (4.1)

Motivated by these !ndings, this paper investigates the entanglement dynamics in the U(1)-symmetric quantum
automaton (QA) circuits with a focus on the second Rényi entropy S(n=2). In QA circuits, the quantum state is always an
equal-weight superposition of all the allowed basis states with the phases carrying the quantum information. Due to this
special property, S(n=2) can be mapped to a quantity of a classical bit string model [70, 84, 40]. Such a mapping enables
us to study the entanglement dynamics analytically and also provides an e$cient method for numerical simulation. We
show that the growth of S(n=2) is governed by the presence of the rare bit strings that contain extensively long domains
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comprising consecutive spin 0s or 1s, consistent with the physical picture introduced in Ref. [53, 54]. Additionally, we
present numerical evidence demonstrating that the dynamics of S(n=2) actually saturates the upper bound de!ned in
Eq. (4.1). This saturation is caused by the di"usive transport (up to a logarithmic correction) of the boundary of these
long domains. Furthermore, for charge-!xed states, we study the coe$cient in front of the di"usive scaling of S(n=2)(t)

and !nd that it is linearly dependent on the charge !lling factor ν when ν is small.
In addition, we are interested in the impact of U(1) symmetry on the entanglement dynamics of monitored QA cir-

cuits. Notably, recent research has revealed that monitored quantum dynamics give rise to a measurement-induced
entanglement phase transition (MIPT) [25, 27, 26]. This occurs as a result of the interplay between random unitary evo-
lution and local non-unitary measurements, driving the system from a highly-entangled volume-law phase to a disen-
tangled area-law phase [25, 27, 26, 31, 30, 37, 36], or even to other quantum phases, such as the critical phase, depending
on the symmetry and type of measurements imposed [42, 85, 46, 44, 45, 70]. WhenU(1)-symmetry is introduced inmon-
itored Haar random circuits, it is found that any non-zero rate of single-qubit projective measurements will eliminate
the rare slow modes containing extensively long domains, and the Rényi entropy grows linearly in time for 0 < p < pc

and exhibits z = 1 dynamical scaling at the critical point pc [86].
With these insights in mind, our paper also investigates the entanglement dynamics of U(1)-symmetric QA circuits

under speci!c measurements that preserve U(1) symmetry and keep the wave function as an equal weight superposi-
tion of basis states. Interestingly, di"erent from Haar random circuits, the measurements leave these extensively long
domains untouched and the second Rényi entropy still exhibits di"usive growth in the volume-law phase. As the mea-
surement rate p increases, we observe a phase transition to a critical phase where the entanglement entropy grows log-
arithmically in time. The critical phase that we observe is a result of both the unique properties of QA circuits and
the presence of U(1) symmetry. It is worth noting that similar behavior has also been observed in the monitored Z2

symmetric QA circuits [70].

4.2 U(1)-symmetric hybrid QA circuits and two-species particle model

In this chapter, we consider 1+1d U(1)-symmetric hybrid QA circuits. The dynamics consists of local QA unitary oper-
ators and composite measurements, which are chosen to preserve the total charge

Q =
L∑

i

σi, where σi = (1− Zi)/2 (4.2)

and Zi is the Pauli Z matrix acting on the ith site of a chain with L qubits. A QA unitary operator permutes states in the
computational basis up to a phase, i.e.,

U |n〉 = eiθn |π(n)〉, (4.3)

51



t

Fredkin gate

SWAP gate

M1/2 = R ∘ P1/2

CZ gate

Figure 4.1: The setup of the U(1)-symmetric hybrid QA circuit of one time step. The dashed box encloses the gates
within a single layer. Each time step involves three layers of Fredkin gates, SWAP gates, and CZ gates, interspersed
with composite measurements. The Fredkin and SWAP gates are applied in each layer with probability pu < 1, and
the measurement appears in each measured sublayer with probability p. The Fredkin and SWAP gates determine the
dynamics of bit string |n〉 and can be replaced by other QA gates preserving U(1) symmetry.

where π ∈ SN is an element of the permutation group on a computational basis with cardinality N . Here we take the
initial state

|ψ0〉 =
∑

n

|n〉√
N

(4.4)

to be an equal-weight superposition of two di"erent sets of basis states: (i) {|n〉 = |σ1σ2 . . .σL〉 : σi = {0, 1}} is all the
allowed Pauli Z basis with cardinalityN = 2L so that

|ψ0〉 = |+ x〉⊗L =
[ 1√

2
(|0〉+ |1〉)

]⊗L
. (4.5)

(ii) {|n〉 = |σ1σ2 . . .σL〉 : σi = {0, 1},
∑

i σi = Q} is the subset of the Pauli Z basis with a !xed extensive charge !lling
ν ≡ Q/L, so thatN =

(L
Q

)
= L!/[(L−Q)!Q!].

Fig.4.1 depicts a brickwork-patterned U(1) symmetric hybrid QA circuit. Each time step consists of three layers of
QA unitary operators interspersed with composite measurements with probability p. For the unitary part, we consider
Fredkin gates and SWAP gates, along with CZ gates which assign a π phase to the spin con!guration |11〉. The Fredkin
gates are three-qubit gates that interchange qubits i − 1 and i + 1 according to the value of the middle (control) qubit,
i.e., |σi1i+1σi+2〉 8→ |σi+21i+1σi〉 and |σi0i+1σi+2〉 8→ |σi0i+1σi+2〉. Meanwhile, the SWAP gates interchange two
neighboring qubits. Together with CZ gates, they scramble the quantum information and increase the entanglement
entropy of the state until it saturates to the volume-law scaling. As illustrated in Fig.4.1, in the !rst/ second/ third layer
of each time step, the Fredkin gates are applied on sites {3j − 2, 3j − 1, 3j}/{3j − 1, 3j, 3j + 1}/{3j, 3j + 1, 3j + 2} for
j ∈ [1, L/3], while the SWAP and CZ gates are applied on sites {2j − 1, 2j}/{2j, 2j + 1}/{2j − 1, 2j} for j ∈ [1, L/2].
Speci!cally, we set the occurring probability of the Fredkin and SWAP gates to be pu and we take pu < 1 throughout the
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chapter.
Constructing the measurement gates can be quite tricky. To ensure that |ψt〉 remains an equal-weight superposition

of basis states, we introduce a charge-preserving two-qubit composite measurementM1/2 = R ◦ P1/2. Here P1 and P2

are the Kraus operators,

P1 =





1√
2

0 0 0

0 1 0 0

0 0 0 0

0 0 0 1√
2




,

P2 =





1√
2

0 0 0

0 0 0 0

0 0 1 0

0 0 0 1√
2




,

(4.6)

followed by a two-site rotation operator,

R =





1 0 0 0

0 1√
2

1√
2

0

0 1√
2

− 1√
2

0

0 0 0 1




, (4.7)

which maps |01〉 8→ (|01〉 + |10〉)/
√
2 and |10〉 8→ (|01〉 − |10〉)/

√
2 1, and acts trivially on |00〉 and |11〉, so as to

rotate the wave function back to equal weight (up to a phase) superposition of the computational basis. In general, the
measurement disentangles the system by discarding the phase information of a quarter of the basis states. However,
considering it is a two-qubit operator as required by the U(1) symmetry, as we will see later, the measurements together
with phase gates can actually induce entanglement in certain circumstances. As shown in Fig.4.1, each measured layer
contains two rows of composite measurements, with each row containingM1/2 randomly distributed with probability p
on sites {2j − 1, 2j}/{2j, 2j + 1} for i ∈ [1, L/2].

Throughout the chapter, we focus on the entanglement dynamics between subsystems A and B that the system is
bi-partitioned into. Speci!cally, we consider the second Rényi entropy of A,

S(2)
A (t) = − lnTr[ρ2A(t)],

ρA(t) = TrB |ψt〉〈ψt|
(4.8)

where |ψt〉 = Ũt|ψ0〉 is thewave function of the quantum trajectorywith Ũt representing the circuit evolutionup to time t.
We!rst consider the initial condition (i), where |ψ0〉 = |+x〉⊗L. In our earlier work, we discovered an e$cient algorithm
to compute S(2)

A (t) from this initial state [40]. Additionally, we presented a classical stochastic model to elucidate the
entanglement dynamics [70]. In the following, we will provide a brief overview of them and apply these methods to our

1In numerical simulations, we omit the extra π phase in front of |10〉 obtained from the rotation ofM2. This is because it is equivalent to applying
M2 without the extra π phase followed by a controlled phase gate. As shown later, such a phase gate will not a"ect the entanglement phase transition
from the volume-law phase to the critical phase. The location of the phase transition is only determined by the corresponding bit string dynamics.
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QA circuit with U(1) symmetry.
The purity can be expressed as the expectation of the SWAPA operator over double copies of the system [65],

Tr[ρ2A(t)] = 〈ψt|2 ⊗ 〈ψt|1SWAPA|ψt〉1 ⊗ |ψt〉2. (4.9)

The SWAPA operator swaps the con!gurations of the copies within region A. Since QA circuits preserve the computa-
tional basis that spans |ψt〉, we can insert into Eq.(4.9) two sets of complete basis which are acted upon by the circuit in
a time-reversed order,

Tr[ρ2A(t)] =
∑

n1,n2

〈ψt|2〈ψt|1SWAPA|n1〉|n2〉

〈n2|〈n1|ψt〉1|ψt〉2

=
1

4L

∑

n1,n2

e
−iΘn′

1
(t)
e
−iΘn′

2
(t)
eiΘn1 (t)eiΘn2 (t),

(4.10)

where
eiΘni (t) =

√
2L〈ni|Ũt|ψ0〉, (4.11)

and
|n′

1〉|n′
2〉 ≡ SWAPA|n1〉|n2〉

= SWAPA|α1β1〉|α2β2〉

= |α2β1〉|α1β2〉,

(4.12)

where |αi〉 and |βi〉 are the spin con!gurations in subsystems A and B of |ni〉. Therefore, in the numerical simulation,
instead of evolving the wave function |ψt〉, we can apply the circuit on the bit strings in a time-reversed order. When
evaluating Eq. (4.11) from left to right, although the composite measurementM is non-unitary, we can still derive the
e"ective action on the bit string 〈n|. For bit strings that have anti-parallel spins on the sites whereM is applied, they are
all forced to be either 〈. . . 01 . . . | or 〈. . . 10 . . . | after the measurement.

With a fewmodi!cations, the above equations used to compute the purity can also be applied to the initial condition
(ii). When |ψ0〉 is a charge-!xed state of !lling factor ν, only the bit string pairs that share the same !lling factor both
before and after the SWAP, i.e., {|n1〉, |n2〉, |n′

1〉, |n′
2〉} with the same ν, will have nonzero overlap with |ψ0〉 and hence

contribute to the purity.
Eq. (4.10) not only o"ers a numerical method but also helps us to understand the entanglement dynamics through

the classical bit string dynamics. It is worth noting that this equation sums up the accumulated phase Θr = −Θn′
1
−

Θn′
2
+Θn1 +Θn2 for each bit string pair {|n1〉, |n2〉}. Under random time evolution,Θr can become a nonzero random

number, and we expect the sum over these phases to be zero. Therefore only the con!gurations withΘr = 0 contribute
to the purity. This observation leads to a stochastic particle model in which there are two particle species X and Y

representing the bit string di"erence
h(x, t) = |n1(x, t)− n2(x, t)| (4.13)

initially distributed in subregionA andB respectively [70, 84], as illustrated in Fig. 4.2. As time evolves, the two species
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X particle Y particle

A B

X̃ Ỹ

Figure 4.2: The cartoon of the two-species particle model. We use ◦ to denote h(x) = 0 and • to denote h(x) = 1,
where the black dots representX particles and the red dots represent Y particles, and X̃(Ỹ ) represents the rightmostX
(leftmost Y ) particle. At t = 0, the X and Y particles are distributed in region A and B respectively. As time evolves,
both species begin to expand and intrude into each other’s territory.

originally located in subregions A and B gradually expand. It is shown that only the con!gurations in which X and Y

particles have never met up to time t satisfy Θr(t) = 0 and hence contribute to the purity, i.e.,

S(2)
A (t) = − lnTrρ2A(t) ≈ − ln

N0(t)

4L
≡ − lnP (t), (4.14)

whereN0(t) is the number of bit string pairs in which the two species never encounter each other up to time t (For more
details, see chapter.2).

From the above analysis, the growth of the second Rényi entropy is determined by the dynamics of the endpoint X̃
and Ỹ particles of each bit string pair, i.e., the rightmostX particle and the leftmost Y particle. Let us !rst consider the
system without any symmetry. Under unitary dynamics, the X̃ and Ỹ particles move ballistically toward each other at
roughly the same speed, i.e., the distance that an endpoint particle travels over time t scales as ∆l(t) ∝ t. Therefore,
only the con!gurations whose initial rightmostX and leftmost Y particles are situated a distance of at least 2∆l(t) apart
can contribute to the purity. This leads to P (t) = [22∆l(t) × 4L−2∆l(t)]/4L = O(e−t), which explains the linear growth
of entanglement entropy in the absence of U(1) symmetry.

4.3 Unitary dynamics

We !rst study the U(1)-symmetric QA circuit without measurements, i.e., p = 0, and take the unitary rate pu = 0.5.
The classical bit string model allows for numerical simulations of the second Rényi entropy for relatively large system
sizes. To be more speci!c, we prepare a large sample of randomly generated bit strings which can have either un!xed
or !xed charge !lling, and estimate S(2)

A using Eq.(4.10). In both cases, we !nd that the ensemble-averaged early-time
S(2)
A (t) exhibits a sub-ballistic power-law growthwith the exponent close to 1/2. We also evaluateP (t) by calculating the

fraction of the bit string con!gurations whose correspondingX and Y particles never meet up to time t. The numerics
indicates that− lnP (t) exhibits the same scaling as the one obtained using Eq.(4.10). Hence we conclude that− lnP (t)

provides a reliable approximation for evaluating S(2)
A in U(1)-symmetric QA circuit. By studying the dynamics of the

classical particle model, we can obtain valuable insights into the underlying physics.
More careful examination of− lnP (t) and S(2)

A (t) reveals that the power law growth exponent is slightly larger than
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Figure 4.3: S(2)
A (t) and − lnP (t) in the QA circuit with p = 0. We consider two di"erent initial conditions: the charge-

mixed state and the charge-!xed state with the !lling factor ν = 1/3. We take the unitary rate pu = 0.5 in each layer
with the system size L = 120 and subsystem size LA = L/2 = 60. Both the early-time S(2)

A (t) and − lnP (t) for the two
initial conditions have

√
t ln t scaling.
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Figure 4.4: The illustration of the initial bit string con!guration of (a) fast modes and (b) slow modes with the same
particle representation. For convenience, we consider the bit strings {|n1〉, |n′

1〉}whose di"erence represents the particle
con!guration where there are onlyX particles located in the region A initially.

1/2, which has also been observed in the previous study [87]. Since the growth is constrained by Eq.(4.1), the power law
exponent cannot exceed 1/2. We propose that the deviation of the exponent from 1/2 observed in the numerics is due
to the logarithmic correction. As shown in Fig.4.3, both quantities are linearly proportional to

√
t ln t. Therefore, in our

QA circuit,

S(2)
A (t) = λEE

√
t ln t. (4.15)

To explain the above results, we study the dynamics of the two-species particle model. Since the dynamics of the X̃
and Ỹ particles are analogous, we will focus on the displacement∆l(t) of the X̃ particle. Di"erent from the case without
U(1) symmetry where the particles move ballistically, in the presence of U(1) symmetry, there are two distinct modes
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Figure 4.5: The distance that an endpoint particle travels ∆l(t) over time t under U(1)-symmetric QA unitaries for the
initial con!gurations (a) without the dead region and (b) with the dead region. Without loss of generality, we take the
probability of Fredkin and SWAP gates to be pu = 0.5 in each layer, the system size L = 600, and the number of spin
1’s to be L/3 in (a) and LA/3 in (b), both of which have ν = 1/3. We !nd that (a) ∆l ∝ t and (b) ∆l ∝

√
t ln t before

saturation.

of X̃ particles depending on the corresponding bit string con!guration to the right of X̃ particle. As illustrated in Fig.
4.4(a), in typical random bit strings whose domains are ofO(1) length, the X̃ particle moves ballistically with a constant
velocity. In contrast, in Fig. 4.4(b), for the bit string con!gurations with domains of O(L) length, the X̃ particle only
moves di"usively (up to some logarithmic correction). Such con!gurations are rare and only comprise O(e−L) of the
bit string ensemble. To verify the existence of the slow modes, in numerical simulations, we consider the extreme case
where the initial bit string con!gurations in subsystem B are a single domain of spin 0’s which is called “dead region”,
i.e.,

|n1(t = 0)〉 = |α1〉 ⊗ |0〉⊗|B|,

|n′
1(t = 0)〉 = |α2〉 ⊗ |0〉⊗|B|.

(4.16)

We also study∆l(t) without the dead region for comparison.
As shown in Fig. 4.5, for the con!gurations without the dead region,∆l grows linearly in time. This is responsible for

the ballistic information spreading observed in the out-of-time-ordered correlator (OTOC) in a similar U(1) symmetric
QA circuit [42]. On the other hand, for con!gurations with the dead region,∆l exhibits di"usive growth over time, with
a logarithmic correction, that is,

∆l = λl
√
t ln t. (4.17)

The di"usive motion of the X̃ particle comes from the di"usive dynamics of the rightmost charge (spin 1) located at
the boundary of the dead region. In the simple symmetric exclusion process, one of the most basic models with U(1)
symmetry, it is analytically proven that the displacement of the rightmost charge expands as

√
t ln t [88]. Despite the

greater complexity of our model involving the Fredkin gate, we believe that the underlying physics remains fundamen-
tally the same. In Appendix.4.A, we examine a simple QA circuit with the kinetic constraint set by SWAP gates only,
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enabling an exact mapping of the bit string dynamics to the simple symmetric exclusion processes. In addition, we also
investigate another QA circuit involving a four-qubit gate. For both models, we provide numerical evidence con!rming
the existence of logarithmic corrections in both Eq.(4.17) and Eq.(4.15).

Based on this analysis, the bit string pairs that contribute to the purity (See Eq.(4.14)) can be divided into two parts,
P (t) = PF (t)+PS(t), wherePF (t) andPS(t) are the fractions of fast modes and slowmodes respectively whoseX and
Y particles have not encountered each other up to time t. Since the distance between the endpoint X and Y particles
decreases by 2∆l(t) over time t, only the con!gurations whose initial two species are located a distance 2∆l(t) apart
contribute to P (t). Therefore, both PF (t) and PS(t) decay as exp(−∆l(t)), whereas PF (t) ∝ exp(−t) and PS(t) ∝

exp(−
√
t ln t). In the absence of U(1) symmetry, the bit string ensemble comprises only fast modes, which account for

the linear growth of S(2)
A (t) as explained earlier. In the presence of U(1) symmetry, slow modes consisting of the bit

string pairs with identical long domains with length O(L) between X̃ and Ỹ emerge. Therefore it takes O(L2) time
for X̃ particle to reach Ỹ particle. For S(2)

A (t) ≈ − ln[PF (t) + PS(t)], PF (t) vanishes at time O(L), leaving a di"usive
growth of S(2)

A (t) caused by the slow modes up to timeO(L2).
Similar reasoning can also be applied to the charge-!xed state. In particular, we can also analyze the dependence of

the coe$cient λEE in Eq.(4.15) on the !lling factor ν. As shown in Fig. 4.6, λEE ∝ ν for ν # 0.3. To understand this
behavior, we investigate the dependence of PS on ν, given by

PS =

[(
L− 2∆l

νL

)/(
L

νL

)]2
=

[
(L− 2∆l)!(L− νL)!

(L− 2∆l − νL)!L!

]2
. (4.18)
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If ν 6 1− 2∆l/L, we can approximate as follows:

− lnPS ≈ −2[(L− 2∆l) ln (L− 2∆l) + (L− νL) ln (L− νL)− (L− 2∆l − νL) ln (L− 2∆l − νL)− L lnL]

= −4∆l ln

(
1− νL

L− 2∆l

)
− 2νL ln

(
1− 2∆l

L− νL

)
+O(ln∆l) +O(ln νL)

≈ 8ν∆l +O(ln∆l) +O(ln νL).

(4.19)

As time evolves, the entanglement entropy is dominated by the slow modes and has the scaling S(2)
A (t) ≈ − lnPS(t) ∝

ν∆l. We further investigate the dependence of ∆l on ν. We examine the displacement of X̃ particle of the bit string
con!gurations with the dead region as illustrated in Fig. 4.4(b). Speci!cally, we de!ne νA to be the !lling factor in
subsystem A. As shown in Fig. 4.6,∆l remains largely una"ected by changes in νA.

Combining these !ndings, we can explain the numerical observation of the linear dependence of λEE on ν when ν
is small. In addition, we also observe similar linear dependence on 1− ν for ν $ 0.7 (not presented in the !gure), which
can be understood in a similar way.

4.4 Hybrid dynamics

Nowwe introduce the composite measurements into the circuit and examine its impact on the entanglement dynamics.
As shown inFig.4.7, our!nding indicates thatwhen p is small, the entanglement still grows di"usivelywith a logarithmic
correction, as described in Eq.(4.15). This can be explained by the fact that our composite measurement only acts non-
trivially on anti-parallel neighboring sites, while leaving the bit strings with extensively long domains una"ected. We
expect that this scaling behavior persists throughout the entire volume-law phase. This is di"erent from the single-qubit
projective measurement which quickly destroys the slowmodes with dead regions and leads to the linear growth of S(2)

A

in the volume-law phase of the non-unitary U(1) symmetric Haar random circuit[86].
As p increases, we observe a decrease in the coe$cient λ for S(2)

A (t). Eventually, this di"usive growth is replaced
by logarithmic growth. To expand the tuning range for the ratio p/pu, we !x p to be a !nite constant and reduce pu.
Surprisingly, we !nd that even when pu approaches zero, the logarithmic scaling persists. This observation suggests that
there is an entanglement phase transition from a volume-law phase to a critical phase in our model.

Such a transition to a critical phase is a special feature of QA circuits and a similar transition has also been observed in
the hybrid QA circuit with discrete Z2 symmetry [70]. To understand this phase transition, we can analyze the dynamics
of the particles characterizing the bit string pairs di"erence, in particular, the particle density n(t) ≡

∑
x h(x, t)/L

[70, 84, 40]. In theZ2 symmetric QA circuit, it is shown that the particles perform branching-annihilating randomwalks
(BAW) with an even number of o"spring:

W ↔ 3W,W +W
p−→ ∅. (4.20)

The !rst process arises from unitary dynamics, while the second annihilation process occurs due to the measurement.
The competition between these processes gives rise to a phase transition at a critical value pc, which falls into the parity-
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Figure 4.7: (a) S(2)
A vs

√
t ln t for p = 0.1 and p = 0.3 with the unitary rate pu = 0.5. (b) S(2)

A vs ln t for p = 0.6, 0.8 and
1 with pu = 0.1. For both phases, we take the system size L = 120 and the !lling factor ν = 1/3, under the periodic
boundary condition (PBC).

conserving (PC) universality class. In the absorbing phase with p > pc, the dynamics are primarily governed by the
randomwalking particles, which annihilate in pairs uponmeeting. This particular dynamics leads to an algebraic decay
with n(t) ∼ t−0.5, resulting in a power-law decay of P (t). This, in turn, leads to a critical quantum phase characterized
by logarithmic entanglement dynamics and a dynamical exponent of z = 2.

In our model, the particle dynamics is similar and still preserves parity, but is more complicated. For example,
for the bit string pair {|011〉, |001〉}, under the Fredkin gate, it becomes {|110〉, |001〉} and the particle representation
◦ • ◦ 8→ • • •, i.e., the particles branch from 1 to 3. However, for the bit string pair {|111〉, |101〉} which has the same
particle representation as the previous one, it will remain invariant under the Fredkin gate. On the other hand, the
SWAP gate enables particles to di"use •◦ ↔ ◦• regardless of the bit string con!guration. Similarly, under the composite
measurement, the particles will experience pair annihilation •• 8→ ◦◦ only when the bit string pair is {|10〉, |01〉} instead
of {|00〉, |11〉}. This leads to a phase transition belonging to a di"erent universality class.

We !rst focus on the absorbing phase. In the limit pu = 0, we observe that the particle density follows a power law
behavior n(t) ∼ t−α with α = 0.28 for all measurement rates p > 0, which is signi!cantly smaller than the exponent of
0.5. This is because particle annihilation only occurs upon measurement based on speci!c bit string pairs, as illustrated
earlier. More detailed data analysis suggests that n(t) for di"erent system sizes can be collapsed onto the function

n(t) = t−αf(t/Lz), (4.21)

where z = 1.95, close to that of the critical phase observed in Z2 symmetric QA circuits. We also take a small but !nite
pu and similar scaling behavior is observed. For instance, in Fig.4.8(b), we present the data collapse for pu = 0.1 and
p = 1, yielding exponents α = 0.27 and z = 2. This absorbing phase with algebraic decay is responsible for a power law
decay of P (t), which further leads to a quantum critical phase with a logarithmic entanglement scaling. Notice that in
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Figure 4.8: The !nite-size data collapse n(t)tα vs t/Lz at: (a) pu = 0, p = 0.5, with the dynamical exponent z = 1.95
and α = 0.28. (b) pu = 0.1, p = 1, with z = 2 and α = 0.27. (c) pu = 0.1, p = 0.4. (d) pu = 0.4, p = 1. Both (c) and (d)
have the same critical exponents z = 2.5 and α = 0.26. The data are calculated over a variety of system sizes with the
!lling factor ν = 1/3 under PBC.

this phase, P (t) is mainly determined by the fraction PF (t) without extensively long domains.
We further analyze the transition point. By !xing the unitary rate at pu = 0.1 and decreasing themeasurement rate p,

we can numerically identify the critical point. In Fig.4.8(c), it is observed that the critical point occurs at approximately
p = 0.4, with α = 0.26 and z = 2.5. The existence of the phase transition persists as the unitary rate pu increases,
until it reaches pu = 0.4. At this point (as illustrated in Fig.4.8(d)), the critical point is found at the maximum allowed
measurement rate p = 1. It is worth emphasizing that this phase transition does not fall into the PC universality class,
where the critical exponents are zPC = 1.744 and αPC = 0.286.

4.5 Discussions and outlook

In this chapter, we investigate the entanglement dynamics of U(1) symmetric QA circuits. We show that the second
Rényi entropy saturates the upper bound introduced in Eq.(4.1), namely S(2)

A (t) ∝
√
t ln t. To understand this behavior,
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wemap the entanglement dynamics to a classical bit stringmodel and demonstrate that the di"usive dynamics of S(2)
A (t)

is caused by bit strings containing extensively long domains.
Additionally, we explore the monitored entanglement dynamics under U(1) symmetry and identify a phase transi-

tion from a volume-law phase to a critical phase as the measurement rate p increases. Within the volume-law phase,
S(2)
A (t) continues to exhibit di"usive growth due to the presence of bit strings with long domains that remain una"ected

by the introduced measurements. On the other hand, the critical phase is characterized by logarithmic scaling of the
entanglement, and its stability is ensured by both the U(1) symmetry and the basis-preserving nature of QA circuits.

The analysis of the second Rényi entropy can be extended to higher integer Rényi indices n. By making slight modi-
!cations to Eq.(4.10), it can be shown straightforwardly that the evolution of S(n)

A is mapped to a classical dynamics that
encompasses n copies of bit strings. In particular, the volume-law phase exhibits di"usive dynamics in the presence of a
logarithmic correction. This behavior is governed by these bit string con!gurations with extensive long domains.

Notably, in both the volume-law phase and critical phase, the spin transport exhibits di"usive dynamics and fails
to capture the entanglement phase transition. This is because this measurement-induced transition is visible solely
in the non-linear observable of the density matrix. We con!rm this di"usive transport by numerically computing the
correlation functions and the detailed results are presented in Appendix.4.B.

It has been established that the volume-law phase can be alternatively understood as a quantum error correcting
code [30, 29, 33, 52, 51]. In Chapter 2, we presented an interpretation of the quantum error correction property of the
volume-law phase of a generic QA circuit, relating it to the dynamics of classical bit strings. Furthermore, we demon-
strated a connection between quantum error-correcting codes and classical linear error-correcting codes. In the case of
the QA circuit with U(1) symmetry, we expect that the volume-law phase continues to exhibit the characteristics of a
quantum error-correcting code. In particular, the dynamics of the associated classical bit strings reveal that the di"er-
ence between bit string pairs still preserves classical information in a non-localmanner, thereby functioning as a classical
error-correcting code. It is worth noting that, unfortunately, this classical error-correcting code is no longer linear. We
leave this for future study.

Acknowledgement.—We thank Hisanori Oshima and Ethan Lake for the useful discussions. This research is supported
in part by the Google Research Scholar Program and is supported in part by the National Science Foundation under
Grant No. DMR-2219735. We gratefully acknowledge computing resources from Research Services at Boston College
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4.A Entanglement dynamics of U(1) symmetric QA circuits with other ki-
netic constraints

4.A.1 The SWAPModel

We study the entanglement dynamics under the kinetic constraint determined by SWAP gates solely, so that our circuit is
a U(1) symmetric Cli"ord QA circuit, which can be e$ciently simulated at large system sizes using stabilizer formalism
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Figure 4.9: The arrangement of gates of the SWAP model in a time step. The dashed box encloses the gates within a
single layer. Each time step involves two layers of SWAP gates with probability pu = 0.5, and CZ gates.
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Figure 4.10: (a) S(2)
A (t) of the SWAP model simulated using the stabilizer formalism. (b) The X̃ particle displacement

∆l(t) of the slow modes. It is found that both S(2)
A (t) and ∆l(t) scale as

√
t ln t. We take the system size L = 600 and

|ψ0〉 = |+ x〉⊗L for (a) and the bit strings with dead regions with the charge !lling νA = 1/3 in subsystem A for (b).

[64]. We will only consider the unitary dynamics as the composite measurements can not be simulated by stabilizer
formalism. As illustrated in Fig.4.9, we consider a circuit where each time step involves two layers of SWAP gates and CZ
gates, with each applying on odd/even sites. To achieve enough randomness, we take the SWAP rate to be pu = 0.5 < 1.
In addition, we consider |ψ0〉 = |+x〉⊗L as the initial state and takeL = 600. As shown in Fig.4.10(a), the entanglement
entropy grows di"usively with a logarithmic correction, i.e., S(2)

A ∝
√
t ln t.

On the other hand, we examine the endpoint displacement∆l(t) of the bit strings with the dead region with a charge
!lling factor of νA = 1/3. The numerics in Fig.4.10(b) indicates that∆l(t) ∝

√
t ln t aswell. This scaling can be explained

by exactly mapping the spin dynamics of the SWAPmodel to the simple symmetric exclusion processes. In this process,
each charge undertakes a symmetric random walk, while being prohibited from jumping to an already occupied site. It
has been analytically shown in Ref. [88] that the position of the rightmost charge expands as

√
t ln t.

It is worth noting that Cli"ord circuits with U(1) symmetry are highly restricted. For example, all Rényi entropies are
equal for Cli"ord circuits, which fails to capture the ballistic growth of vonNeumann entropy for generic U(1) symmetric
random circuits. Nevertheless, the SWAPmodel enables us to verify at a large system size that the second Rényi entropy
indeed saturates the upper bound in Eq. (4.1) and is dominated by rare slow modes with extensively long domains.
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Figure 4.11: The arrangement of gates of the Four-qubit CSWAPmodel in a time step. The dashed box encloses the gates
within a single layer. Each time step involves four layers of the four-qubit CSWAP gates with probability pu, and CZ
gates, interspersed with measurements with probability p.
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Figure 4.12: −lnQ of the Four-qubit CSWAP model at the measurement rate (a) p = 0 and p = 0.1, and (b) p = 0.7 and
p = 0.9. We observe that −lnQ ∝

√
t ln t for (a) and −lnQ ∝ ln t for (b). We take the system size L = 120, pu = 0.5,

and charge !lling ν = 1/2.

4.A.2 The Four-qubit CSWAPmodel

Now we consider the entanglement dynamics of the U(1) symmetric QA circuits with the kinetic constraint determined
by a four-qubit gate, which swaps the spins σ2 and σ3 if the !rst spin σ1 = 0 or the fourth spin σ4 = 1. It is also called
Fredkin gate in other works [87, 89], to distinguish it from the Fredkin gate in the main text, we call it the Four-qubit
CSWAP gate. As shown in Fig.4.11, each time step of the circuit consists of four layers of gates under PBC and in each
layer, the Four-qubit CSWAP gates are applied on sites {4j − 3, 4j − 2, 4j − 1, 4j}/{4j − 2, 4j − 1, 4j, 4j + 1}/{4j −

1, 4j, 4j + 1, 4j + 2}/{4j, 4j + 1, 4j + 2, 4j + 3} for j ∈ [1, L/4] with probability pu = 0.5, and the CZ gates are applied
on sites {2j−1, 2j}/{2j, 2j+1}/{2j−1, 2j}/{2j, 2j+1}, interspersed with composite measurements with probability
p applied on both odd and even sites.

To simplify the numerical simulation, we can !x the position of Ỹ particle to be the boundary between subsystems
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Figure 4.13: The endpoint displacement∆l(t) of the bit strings with the dead region of the Four-qubit CSWAPmodel vs√
t ln t at p = 0 and p = 0.1. We take the system size L = 600, pu = 0.5, and νA = 1/2.

A and B. This is equivalent to focusing on the single species picture where there are onlyX particles and considering a
subset of the phase di"erence in Eq. (??), i.e., the phase di"erence of |n1〉 and |n′

1〉 restricted in regime B, denoted as

Q ≡ 1

M

∑

n1,n′
1

e
−iΘB

n′
1
+iΘB

n1 , (4.22)

whereM is the number of bit string pairs {|n1〉, |n′
1〉}. With this approximation, the con!gurations which contribute to

Q are those whose X̃ particles never reach the middle cut.
We numerically simulate − lnQ(t) for an ensemble of bit strings {|n1〉, |n′

1〉} with system size L = 120 and charge
!lling ν = 1/2. As shown in Fig.4.12, there exists a similar phase transition from a volume-law phase to a critical phase:
when p < pc, −lnQ ∝

√
t ln t, and when p > pc, −lnQ ∝ ln t. We believe that this applies to S(2)

A (t) as well.
Finally, we study the endpoint displacement∆l(t) of the bit stringswith the dead region evolved under the Four-qubit

CSWAP gates. The numerics in Fig.4.13 con!rms that ∆l ∝
√
t ln t for pure unitary dynamics and small measurement

rate p = 0.1. We believe that this di"usive growth persists in the whole volume-law phase.

4.B Spin transport of hybrid QA circuits with U(1) symmetry

In this section, we consider the transport properties of the conserved charges which can be characterized by the spin
correlation function

C(x, t) = 〈Zx(t)Z0(0)〉 − 〈Zx(t)〉〈Z0(0)〉, (4.23)
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Figure 4.14: The correlation function C(0, t) of (a) the Fredkin-SWAP model and (b) the Four-qubit CSWAP model. We
take the system size L = 300 and pu = 0.1, ν = 1/3 for (a), and pu = 0.5, ν = 1/2 for (b). It is found that for (a),
C(0, t) ∝ t−0.5 for all p, and for (b), C(0, t) ∝ t−0.41 for p = 0 and C(0, t) ∝ t−0.5 for p > 0.

where site 0 is in the middle of the system. If we consider a charge-!xed state |ψ0〉 = 1√
N

∑
n |n〉 with the !lling factor

ν, then the correlator of our QA circuit can be sampled using the classical bit strings via

C(x, t) =
1

N

∑

n

〈n|Ũ †
t Zx(0)ŨtZ0(0)|n〉 −

1

N

∑

n

〈n|Ũ†
t Zx(0)Ũt|n〉

1

N

∑

m

〈m|Z0(0)|m〉

=
1

N

∑

n

Zn(t),xZn,0 −
1

N2

∑

n

Zn(t),x

∑

m

Zm,0,
(4.24)

where Zn(t),x is the spin value at site x of the bit string |n(t)〉 at time t. The correlation function for di"erent system
sizes can be collapsed onto the scaling form

C(x, t) = t−1/zf(x/t1/z). (4.25)

Here we will only focus on the correlation in the time direction C(0, t) for the Fredkin-SWAPmodel and the Four-qubit
CSWAP model, and observe the dynamical exponents as we vary the measurement rate p.

As shown in Fig.4.14(a), for the Fredkin-SWAP model, C(0, t) ∝ t−1/z with z = 2 for all p. The spin transport is
di"usive with and without the measurements and hence fails to re#ect the measurement-induced entanglement phase
transition. This is becauseMIPTs are only visible in observables that are nonlinear in the densitymatrix. Similar di"usive
dynamics is observed for all p > 0 in the Four-qubit CSWAP model, as shown in Fig.4.14(b). Interestingly, when p = 0,
the dynamical exponent z = 2.44 > 2, consistentwith z = 8/3 as discovered in previous literature [87, 89]. Nevertheless,
the spin at the boundary of the extensively long domain still exhibits di"usive dynamics with a logarithmic correction.
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Chapter 5

Entanglement Steering in Adaptive
Circuits with Feedback

5.1 Introduction

Monitoring a quantum system can yield fascinating physics. The interplay between unitary dynamics andmeasurement
creates an intriguing non-equilibriumphenomenon referred to asmeasurement-induced entanglement phase transitions
(MIPTs) [26, 31, 25, 27, 30, 29]. In itsmost commonly explored setting, an initial unentangled state is evolved by a random
quantum circuit subject to measurements at a rate p. Above (below) a critical rate pc, the steady-state exhibits area-law
(volume-law) entanglement scaling. To observe this transition, it is necessary to keep track of each individual quantum
trajectory as the intrinsic randomness ofmeasurement outcomes leads to the ensemble-averaged post-measurement state
being a maximally mixed density matrix (ρ ∝ 1) in the allowed Hilbert space. As a result, the MIPT remains invisible to
the ensemble-averaged density matrix, presenting signi!cant challenges for experimental observation, with only a few
exceptions [90, 91, 92].

Despite these challenges, mid-circuit repeated measurements have become a valuable tool to create novel quantum
phases dynamically. Recently, a new class of non-unitary dynamics has been proposed, where the outcome of a mea-
surement can impact the dynamics themselves, leading to a non-trivial density matrix and stabilizing various quantum
ordered phases through a feedback mechanism [57, 58, 59, 60, 61, 62].

In this chapter, we introduce a class of adaptive random circuits with feedback that exhibits phase transitions for both
the quantum trajectory and the ensemble-averaged density matrix (i.e., quantum channel), as depicted schematically in
Fig. 5.1. In addition to varying the measurement rate p, the post-measurement state is also locally corrected conditioned
on the measurement outcome with a feedback rate 0 ≤ r ≤ 1. The feedback is designed to “steer" the system to-
wards particular !nal states. When p× r is large enough, the steady state is a mixture of two ferromagnetically ordered
states instead of a maximally mixed state involving exponentially many con!gurations. Thus, there is an order-disorder
phase transition in the quantum dynamics, which can be observed at the level of both quantum trajectory and quantum
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Figure 5.1: Schematic phase diagram illustrating (a) the entanglement phase transition for the individual quantum trajec-
tories and (b) domain wall density transition as a function of the measurement rate p and feedback rate r. The transition
in (b) also signals an entropy transition at the level of quantum channel (ensemble-averaged density matrix). The critical
line in (b) belongs to the PC universality class and satis!es p× r = const.(≈ 0.55). The critical line in (a) is numerically
upper bounded by pEE

c ≤ 0.45.

channel [59, 60]. A similar order-disorder transition has also been discussed recently in the context of dissipative phase
transitions [93, 94]. However, we emphasize that the transitions discovered therein only exist in d-dimension with d ≥ 2

or 1d systems with long-range interactions. Instead, by explicitly mapping the motion of domain walls to a classical
branching-annihilating random walk (BAW) process, we show that the order-disorder phase transition in our adaptive
circuit model belongs to the parity-conserving (PC) universality class which exists in 1d [41, 47, 48, 70]. Furthermore, the
familiarMIPT is observed at the level of the quantum trajectory. Interestingly, we !nd that these two transitions typically
occur at di!erent critical measurement rates. Moreover, we show that the order-disorder phase transition can be probed
experimentally from the measurement outcomes along the circuit evolution, and does not require post-selection.

5.2 Model

Our circuit model consists of three-qubit unitary gates and two-qubit measurements, as illustrated in Fig. 5.2. We take
each three-qubit unitary gate to have a block structure: it leaves the basis states |000〉 and |111〉 unchanged up to a U(1)
phase (forming blocks of size one), and acts as a Haar random unitary within the six-dimensional subspace spanned
by {|001〉, |010〉, |100〉, |011〉, |101〉, |110〉}. We measure the product of Pauli-Z operators across a bond between two
consecutive sites ZiZi+1. Crucially, our construction includes feedback: if an “undesiredQQmeasurement outcome
ZiZi+1 = −1 is obtained (meaning that the post-measurement state is |01〉 or |10〉), we apply a Pauli-X operator on
either site with probability r to correct the state into |00〉 or |11〉; if the measurement outcome is +1, then no operator
is applied. A set of measurements and corrections is implemented in two layers – !rst over odd and then even bonds.
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(s = 0, 1)

Figure 5.2: Setup of the adaptive circuit with feedback (one time unit). The circuit consists of three-qubit unitary gates
(denoted by blue boxes) and two-qubit measurements (orange lines with dotted endpoints). The unitary gate leaves
|000〉 and |111〉 unchanged, and acts as a Haar random unitary within the complementary subspace. If themeasurement
outcome ZiZi+1 = −1, a Pauli-X operator (green box) is applied on one site to correct the post-measurement state into
|11〉 or |00〉. Each unit time step contains three layers of unitary gates related by translation by one site, and two sets of
measurements. Each set consists of an even and an odd layer, forming a brickwork structure.

In each layer, measurements are made at a rate p per bond. Each unit time step contains three layers of unitary gates
related by a translation by one site, interspersed with a set of measurements after each of the !rst and second, but not
third, layers. Time evolution for each unnormalized quantum trajectory is thus given by:

|ψ({s}, T )〉 =
T∏

t=1

[U3(t)M2(t)U2(t)M1(t)U1(t)] |ψ0〉

≡ C({s}) |ψ0〉, (5.1)

where Uj denotes the jth layer of unitary gates at each time step,M1/2 denotes a set of measurements, and {s} records
the full set of measurement outcomes along this particular trajectory.

Akin to previous studies on measurement-induced phase transitions in hybrid random circuits, we expect that there
is anMIPT in our setup for individual quantum trajectories [Fig. 5.1(a)]. Upon increasing the measurement rate p, there
is a transition in the time-evolved states (5.1) from a volume-law entangled phase to a weakly entangled area-law phase,
where the spins almost point along the ẑ direction. Without feedback (r = 0), each spin could randomly point along±ẑ

directions in each trajectory, depending on the measurement outcomes. Upon introducing feedback, the !nal states in
all trajectories will approach a ferromagnetically ordered state α|00 . . . 0〉 + β|11 . . . 1〉, provided that the measurement
and feedback rates are large enough. This indicates that besides theMIPT, the steady state also exhibits an order-disorder
transition in a physical observable – the domain wall density – due to feedback [Fig. 5.1(b)]1. Since the expectation value

1In our model, the steady state persists until a timescale t ∼ poly(L) with a power ≥ 2. For t ∼ exp(L), the states will eventually approach a
ferromagnetically ordered state, and both the entanglement and order-disorder phase transitions no longer exist.
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of a physical observable is linear in the density matrix, the average domain wall density evaluated for the trajectories and
the quantum channel (trajectory-averaged density matrix)

ρ =
∑

{s}

C({s}) |ψ0〉〈ψ0| C({s})† (5.2)

are equivalent. Hence, this order-disorder transition can be observed both in the individual trajectories and the quantum
channel.

5.3 Phase transition in the domain wall density

We demonstrate that there is indeed an order-disorder phase transition captured by the domain wall density by mapping
the dynamics of domain walls under the hybrid circuit evolution to a classical stochastic process. We write the time-
evolved wavefunction as a sum of world histories: |ψ(t)〉 =

∑
{m(τ)}

A({m(τ)}) |m〉, where {|m〉} are bitstrings in the

computational basis, and A({m(τ)}) is the amplitude of a particular world history {m(τ)}0≤τ≤t. We consider each
world history by constructing paths connecting bitstring con!gurations in the initial state to state at time t, as illustrated
in Fig. 5.3(a)&(b).

Each individual path can be mapped to a classical stochastic process, which has a non-equilibrium phase transition.
We denote the presence of each domain wall as a particle •, and the absence of which as an empty site ◦. The bitstring
con!guration is thus translated into one of particle occupations, as shown in Fig. 5.3(c). Under the action of unitary
gates, the particles undergo two types of processes: • ◦ ◦ ↔ • • • (branching), and di"usion. Under measurement, the
particles can either di"use: •◦ ↔ ◦•, or annihilate in pairs with probability q ≡ pr: •• → ◦◦. Combining these processes
together, the particles perform BAW with an even number of o"spring:

W ↔ 3W, W +W
q−→ ∅. (5.3)

Since the parity of the total particle number is conserved, the classical dynamics described above belongs to the PC
universality class, which has a continuous dynamical phase transition when the rate of particle annihilation exceeds a
certain threshold [41, 47, 48, 70] [see the appendices for more details]. The two phases can be distinguished in terms of
the average particle (domain wall) density in the steady state n(t) = N(t)/L.

For initial conditions with an extensive number of particles N ∝ L, n(t) saturates to a !nite constant when q < qc

after a !nite amount of time. When q > qc, n(t) ∼ t−1/2, and decays to zero at t ∼ L2 if the initial state has an even
number of particles. At qc, n(t) ∼ t−θ with a universal exponent θ = 0.286 characteristic of PC universality class. For
the initial condition with two adjacent particles, when q < qc, the particle density grows linearly in time and saturates
to a !nite constant. At q = qc, the particle density remains constant. When q > qc, the particle density decays as t−1/2.
Therefore, our model exhibits an order-disorder phase transition at a critical e"ective measurement rate qc. Below, we
shall explicitly demonstrate both transitions depicted in Fig. 5.1 via numerical simulations of the hybrid circuit dynamics.
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Figure 5.3: (a)&(b): Illustration of the bitstring dynamics in the quantum trajectory undergoing hybrid circuit evolution.
The blue arrows indicate two representative paths (“world histories") of the bitstring dynamics. (a) When the measure-
ment rate is small, the steady state involves exponentially many bistring con!gurations. (b) When the measurement
rate is high, the steady state is spanned by two ordered bitstrings. (c) Mapping from a bitstring con!guration to particle
distribution, where a particle and an empty site represent the presence and absence of a domain wall, respectively.

5.4 Numerical results

In our simulations, initial states, which are product states in the computational basis, are evolved according to the setup
in 5.2 with open boundary conditions. We record, at each time step, the second Rényi entropy S(2)

A (t) = − log(trρ2A),
where ρA denotes the reduced densitymatrix of subsystemA composed of sites 1, 2 . . . |A|; 1 ≤ |A| ≤ L

2 , and the domain
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Figure 5.4: The trajectory-averaged domain wall density n(t) as a function of time, for di"erent values of the feedback
rate r while !xing p = 1, starting from random initial states. The result con!rms the existence of two phases. Numerical
simulations are performed for L = 300, and averaged over 104 realizations of circuits and initial states.

wall density

n(t) ≡ 1

L− 1

L−1∑

i=1

1− ZiZi+1

2 t
. (5.4)

We then compute the trajectory-averaged second Rényi entropy S(2)
A (t) and domain wall density n(t). It is worth noting

that in experimental platforms, the determination of n does not require an extra step; the measurement outcomes for
any p > 0 provide an accurate sampling of n(t). Our simulations are performed using the ITensor Julia package [95, 96]
based on a matrix product state representation of the time-evolved wavefunctions.

We !rst set p = 1, and study n(t) as r is varied (along the right boundary of Fig. 5.1). Since the system is expected
to be in the area-law phase, this serves as a benchmark to observe the order-disorder phase transition as revealed by
the domain wall density n(t). Starting from a random state with n(t = 0) ≈ 1

2 , we !nd clear evidence that the steady
state is area law entangled and is independent of r (data not shown). Further study of n(t) indicates that when r ! 0.2,
n(t) saturates to a !nite constant at long times; on the other hand, when r " 0.8, n(t) ∼ t−1/2 as shown in Fig. 5.4.
This indicates the existence of two phases within the area-law entangled phase, distinguished byn(t). However, owing to
!nite-size e"ects, n(t) appears to decay with a continuously varying exponent (i.e. n(t) ∼ t−θn0=0.5(r)) for 0.2 ! r ! 0.8,
which makes identifying the critical rc di$cult. Instead, we consider an initial state with two neighboring domain walls
centered in the lattice. Again, n(t) ∼ tθN0=2(r) with a continuously varying exponent in the intermediate regime, but the
critical point rc is determined by the rate r at which n(t) ∼ const. (or equivalently, when θN0=2(rc) ≈ 0 and changes
sign). Using this criterion, we !nd that rc ≈ 0.55 in 5.5(a).

Next, we study the dynamics upon varying p, while !xing r = 1 (along the top boundary of Fig. 5.1). In this case,
we expect to observe an entanglement phase transition and a transition in n(t). In Fig. 5.5(b), we !nd an order-disorder
transition as revealed by n(t) at pnc ≈ 0.55. In fact, we !nd, by considering various values of p and r, that the order-
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Figure 5.5: The averaged number of domain walls N(t) starting from an initial state with two domain walls. (a) For
p = 1, the exponent θ as in n(t) ∼ tθ changes sign at rc ≈ 0.55. (b) For r = 1, pnc ≈ 0.55. (c) Demonstration that the
order-disorder transition in n(t) is governed by a single parameter q ≡ pr.

disorder transition in our system is controlled by a single parameter q ≡ pr, and happens at qc ≈ 0.55 (see Fig. 5.5(c)),
con!rming our mapping to a classical BAW process in Fig. 5.3. An interesting question that naturally arises is whether
the location of the order-disorder transition in n(t) coincides with that of the MIPT.

The computational resources required to simulate the system increase exponentially as one nears the critical point
pEE
c of the MIPT from above. Nonetheless, we provide strong evidence that these two transitions happen at di!erent
points in our system. As we further lower p such that p < pnc ≈ 0.55, we !nd that the system remains in the area-law
entangled phase despite a !nite domain wall density, as is demonstrated by the scaling of S(2)

A with subsystem size in
Fig. 5.6(a). In appendices, we provide a heuristic argument based on the correlation length to explain why these two
transitions in general should be di"erent. We thus conclude that the critical point for the MIPT pEE

c < pnc . This is also
consistent with the general expectation that the entanglement transition for the individual trajectories must precede that
for the quantum channel, if there is one.

5.5 Discussion

The physics discussed in this work remains unchanged if the 3-qubit unitary gates are replaced by k-qubit unitary gates
(k > 3) which leave |00 . . . 0〉︸ ︷︷ ︸

k

and |11 . . . 1〉︸ ︷︷ ︸
k

invariant (up to a U(1) phase) and act as Haar random unitaries within

the remaining (2k − 2)-dimensional subspace. When k = 2, however, the local unitary gates coincide with those for a
U(1)-symmetric Haar random circuit. As a result, the particles can only spread out di"usively rather than ballistically
and hence cannot compete with any non-zero rate of particle annihilations induced by feedback. n(t) always decays as
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Figure 5.6: (a) The steady state entanglement entropy remains independent of subsystem size, regardless of the initial
state. (b) The di"erence in the early time growth visualized across di"erent initial conditions and subsystem sizes. In
both !gures, p = 0.45 < pnc and r = 1.

t−1/2 for any q > 0; there is noMIPT and individual trajectories are immediately driven to an area-law entangled phase.
This is in sharp contrast to U(1)-symmetric hybrid circuits without feedback, where an MIPT is present [86].

In thiswork, wehave argued that the two transitions –MIPTs and order-disorder transitions – are generally unrelated.
As we increase r, the di"erence between pEE

c and pnc becomes smaller but remains !nite when r = 1. In appendices, we
consider models in which the essential physics is unchanged, but the di"erence between these two transitions is more
pronounced. This is in contrast to a free fermion system subject to non-unitary dynamics with feedback that was recently
studied in Ref. [60]. It remains to be seen ifmodels with interactions can exhibit these transitions at the same point, while
a broader understanding of the conditions that can facilitate this coincidence of these transitions is desirable.

We conclude by commenting on the experimental realizability of the order-disorder transition, spurred by the recent
implementation of adaptive quantum circuits with high !delity [62, 61]. Overhead can be drastically reduced by estimat-
ing n(t) from measurement outcomes obtained over the course of the circuit evolution, instead of preparing the states
at di"erent times and then separately performing measurements. Furthermore, we numerically !nd that this transition
is robust to imperfect rotations in the feedback and decoherence, but susceptible to other types of noise.

Note Added.— Shortly after our paper appeared on the arXiv, we became aware of an independent work where similar
results were obtained in a di"erent setup [97].
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5.A Particle density transition of the classical bit-string dynamics

Inspired by the quantum dynamics under the hybrid circuit with feedback, we proposed a classical stochastic process
that traces the dynamics of the bit strings in the quantum state shown in Fig. 3. Under the 3-site unitary gates, the
bit string either stays invariant if there are no domain walls or is mapped to another bit string within the ensemble
{|001〉, |010〉, |100〉, |011〉, |101〉, |110〉}with equal probability. On the other hand, when themeasured sites have opposite
spins, the Pauli-X operator rotates either spin and kills a pair of domain-walls (a pair of neighboring particles) with
probability r. Since the measurement rate is p, this leads to an e"ective annihilation rate q ≡ pr. Therefore the domain-
wall particles either di"use, branch or annihilate in pairs. This is often referred to as branching-annihilating random
walks (BAW) with even o"spring,

W ↔ 3W, W +W
q−→ ∅. (5.5)

BAWmodels with even o"spring usually experience an absorbing phase transition that belongs to parity-conserving (PC)
universality class, which is characterized by the additional symmetry that preserves the parity of the number of particles
in the system.

In this appendix, through investigating the domain-wall particle density transition of three di"erent circuit setups,
i.e., hybrid circuits with one/two/three sets of measurements with probability q per time step, we will show that our
classical bit-string model belongs to PC universality class. We consider two initial conditions which lead to di"erent
scaling behaviors in the particle density under the same dynamics: (a) the seeding process beginning with a pair of
adjacent domain-wall particles, and (b) the puri!cation process beginning with a randomly occupied state (i.e., a random
bit-string).

The numerical results are shown in Fig. 5.7. We vary the annihilation rate q and calculate the scaling behavior of the
mean domain-wall particle density n(t) ≡ N(t)/L, where N(t) is the mean domain-wall particle number and L is the
system size. We !nd that except for the model with one layer of measurements per time step, the rest of the setups all
experience a phase transition while adjusting q. For the puri!cation process beginning with a random bit string state,
when q < qc, the system stays at an active steady state with a !nite particle density. When q = qc, n(t) ∼ t−θ with
θ = 0.286. When q > qc, the particles perform annihilation-dominated BAW and the particle density decays di"usively,
i.e., n(t) ∼ t−1/2. For the seeding process starting with a pair of adjacent domain-wall particles, despite the !nite-size
e"ect, when q < qc, the system approaches an active state. At q = qc, n(t) ∼ tδ with δ = 0. When q > qc, n(t) still
decreases di"usively (not shown in the plot). These exponents are universal and agree with the numerical !ndings of
the PC universality class that θ = 0.286, δ = 0 for q = qc, and z = 2 for q > qc.

The two di"erent initial conditions also help us to pin down the critical point. We do !nd that for L = 300, the bit-
string model with one layer of measurements has a critical point qc = 0.99. However, this is very close to q = 1 which
is probably due to the !nite size e"ect. Hence, we claim that the case with only one set of measurements per time step
doesn’t have a phase transition. For models with two and three sets of measurements per time step, the critical points
are qc = 0.55 and qc = 0.37 respectively, which agree with the corresponding qc’s found via direct simulations of the
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(a) (b) (c)

(d) (e) (f)

Figure 5.7: We simulate the domain-wall particle density n(t) of the bit-string model with one set of measurements in
(a) and (c), two sets of measurements in (b) and (e), and three sets of measurements in (c) and (f). Among them, (a), (b),
and (c) are the results of the seeding process starting with a pair of adjacent particles, (d), (e), and (f) are the results of
the puri!cation process starting with a random state. All of the data are computed for system size L = 300 under open
boundary condition (OBC) over a variety of measurement rates q, and we plot n(t) vs t on a log-log scale.

(a) (b) (c)

Figure 5.8: Finite-size data collapse of the domain-wall particle density n(t) of the classical bit-string model with two
sets of measurements for di"erent system sizes at (a) q = 1, and (b) q = qc = 0.55, respectively. (c) Data collapse using
the scaling form Eq. (5.6), for |q − qc| = 0.01, 0.02, . . . , 0.05 at L = 600 for t ∈ [100, 1200]. We use periodic boundary
condition (PBC) for numerical simulations.

circuit evolution.
In addition, we have performed a detailed !nite-size scaling analysis of the domain wall density of the puri!cation
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Figure 5.9: The particle density n(t) vs t plotted on a log-log scale for the puri!cation process under the circuit with two
sets of 2-site unitary gates and two sets of measurements with probability q per unit time step. When q = 0, n(t) does
not decay with time. Once q > 0, the particle density decays as n(t) ∼ t−1/2. All of the data are collected for system size
L = 300 under OBC.

process in the vicinity of the critical point. We expect that the domain wall density satis!es the following scaling form:

n(t, q) = t−θf(t/Lz, |q − qc|t1/ν‖), (5.6)

where zPC = 1.744 at the critical point qc = 0.55 and νPC
‖ = 3.22 [47]. As shown in Fig.5.8(b) and 5.8(c), we !nd

excellent agreement with the above scaling form using known exponents of the PC universality class. We have also
examined the data collapse in the critical phase where zPC = 2 for q > qc in Fig.5.8(a). This further con!rms that our
model belongs to the PC universality class.

Finally, we consider replacing the 3-site unitary gates with 2-site unitary gates, which keep the bit strings {|11〉, |00〉}
unchanged and map the bit strings with domain walls randomly within the ensemble {|10〉, |01〉}. The U(1) symmetry
imposed by the 2-site unitary gates preserves the total spin and the domain-wall particles propagate di"usively, which is
too weak to compete with the particle annihilation due to measurements. Therefore, there is no particle density phase
transition andwe have n(t) ∼ t−1/2 for any q > 0. This is veri!ed by Fig.5.9 in whichwe simulate n(t) of the puri!cation
process with two sets of 2-site unitaries interspersed with two sets of measurements per unit time.

5.B Results with 1 set of measurements

In this section, we present results for the set-up where the feedback scheme is implemented with only 1 set of mea-
surements per time step, after all 3 layers of unitary gates have been applied. As in the classical model, the transition
in n appears to occur extremely close to pr = 1, rendering the observation of the ordered phase unfeasible, owing to
!nite-size e"ects. The transition points rc and pnc are estimated as in the main text, by identifying the values of r and p

at which n(t) does not change with time, beginning from an initial state with 2 adjacent domain walls in the center of
the chain. It is found that when p = 1, rc ≈ 0.99, and pnc ≈ 0.99 when r = 1.
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Figure 5.10: Numerically obtained results for the quantum model with 1 set of measurements after 3 layers of unitary
gates, for L = 300, and results averaged over 2 × 104 realizations. (a) The domain wall density n at p = 1, showing
a critical scaling of n(t) ≈ t−0.286 near r ≈ 1. The steady state domain wall density appears !nite for r ! 0.5, but
!nite size e"ects prevail for r " 0.7. (b) The number of domain walls, beginning from an initial state with two adjacent
domain walls in the center of the system. The data a"ords an estimation of qnc ≈ 0.99. (i) p = 1 and (ii) r = 1.
(c) The steady state entanglement scaling for r = 1, p = 0.8 < pnc . The entanglement satis!es area law scaling and
shows a slight dependence on the initial condition. (d) The entanglement dynamics for two di"erent initial states for
r = 1, p = 0.8 < pnc . ForN(t = 0) = 2, the two domain walls are located close to the center.

We !nd that pEE
c < pnc in this case as well. The characteristic dependence of the entanglement growth on the initial

state is also present here, since the entangling unitary gates act trivially on large parts of the system when considering
initial conditions with a vanishing density of domain walls. These results provide compelling evidence that (a) the two
transitions are indeed di"erent and (b) The qualitative features of this family of adaptive quantum circuits are largely in-
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sensitive to themicroscopic details of the circuit. These conclusions strengthen, and are strengthened by, the connection
to the classical dynamics.

5.C E!ects of Imperfect Circuits

Wewere initiallymotivated by strategies that could facilitate the realization of themeasurement-induced phase transition
in present-day NISQ-era quantum devices. In this spirit, we study the e"ects that noise might have on the di"erent
dynamical phenomena we observe. In particular, we consider (i) the e"ects of imperfect corrective rotations and (ii) the
role of decoherence.

5.C.1 Imperfect Corrective Rotations

Our set-up involves measuring the operator ZiZi+1 on neighboring sites, which can result in the outcomes ±1. If the
outcome−1 is observed, then, with probability r, either the qubit at location i or at i+1 is rotated by π about the X-axis.
We account for imperfections in this process by considering noisy, imperfect rotations of the form

Rε,i,t = e−iθε,i,tX

θε,i,t ≡
π

2
(1 + εx̃i,t) (5.7)

where x̃ is a random number independently drawn from [−1, 1] at each time t and site i when a corrective rotation is to
be applied. ε dictates the strength of the noise. The results are presented in 5.11.

The transition still persists even in the presence of noise. We see that the e"ect of the noise in the rotation angle
is to merely renormalize the rate r at which errors are corrected. The renormalized value can be explicitly obtained by
considering the bit-string picture. We !x p = 1 so that the feedback rate is solely controlled by r. In the absence of any
noise (ε = 0), upon !nding an outcome of ZiZi+1 = −1, there are two possible scenarios -

ZiZi+1a.m. =






+1, with probability r

−1, with probability 1− r
(5.8)

(a.m. denotes “after measurement"). When ε 5= 0, it will be helpful to write (with the i, t labels suppressed) Rε =

cos θε + iX sin θε. Assuming the correction occurs at site i, 5.8 is modi!ed to give

ZiZi+1a.m. =






R†
εZiRεZi+1a.m., with probability r

−1, with probability 1− r
(5.9)
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Figure 5.11: The e"ects of imperfect rotations on the domainwall density, shown only to have the e"ect of renormalizing
r as given in 5.12. Simulations are performed onL = 300 spins, startingwith a pair of adjacent domainwalls in the center
of the chain, and averaged over 2 × 103 realizations. rc ≈ 0.55 in the absence of noise. (a) r is varied, holding ε = 0.5
!xed. The critical r shifts downward to rc(ε = 0.55) ≈ 0.7. (b) With r !xed at r = 0.7, a transition between the two
dynamical phases is driven by tuning the strength of the noise ε.

We can further expand R†
εZiRεZi+1 as

cos2(θε)ZiZi+1 = −1a.m. − sin2(θε)ZiZi+1 = +1a.m.

= sin2(
πεx̃

2
)(−1) + cos2(

πεx̃

2
)(+1).

(5.10)

Since the measurements are frequent and we expect ZiZi+1 to have a de!nite value, we can interpret the result of
5.10 as a stochastic process with the update rule

R†
εZiRεZi+1a.m. =






−1, with probability sin2 πεx̃2

+1, with probability cos2 πεx̃2

(5.11)

Combining ??, we !nally have

ZiZi+1a.m. =






+1, with probability r cos2(πεx̃2 )

−1, with probability 1− r + r sin2(πεx̃2 ).
(5.12)

By averaging over x̃, we arrive at an expression for the renormalized value of r

rrenorm =
r

2
(1 +

sin(πε)

πε
). (5.13)

We can use 5.13 to calculate the rc as a function of ε for the case with 2 layers of measurements. We know from
numerical simulations that rc,renorm ≈ 0.55 which implies rc(ε) ≈ 1.1

1+ sin(πε)
πε

. Speci!cally, for ε = 0.5, we !nd that
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Figure 5.12: The particle density n(t) vs t for the seeding process starting with a pair of particles under bit #ip errors with
an error rate of 0.01. The circuit contains three sets of measurements with each set followed by a layer of random bit #ip
errors. There is a !nite particle density in this case even at large q, which indicates that the absorbing state transition is
unstable to bit-#ip errors. Numerical simulations are performed for system size L = 300 under OBC.

rc ≈ 0.68, which is in agreement with what we !nd in 5.11(a).

5.C.2 E!ects of Decoherence

Since present-day quantum computing platforms are not perfectly isolated from the environment, there is a natural decay
of coherence. One way of modeling this decoherence is to consider the depolarizing channel [98], which is de!ned for a
density matrix ρ as

E(ρ) = (1− b)ρ+ b
!
D

(5.14)

whereD = Tr! is the dimension of the Hilbert space under consideration, and 0 ≤ b ≤ 1 represents an “error rate".
ρ can refer to the density matrix of any part of the system (or the system in its entirety). In our case, we investigate the
robustness of the absorbing phase transition to the e"ects of a depolarizing channel acting randomly on any qubit in the
system. This can be implemented directly in the classical model by #ipping each bit independently at a !xed rate. As
shown in Fig. 5.12, for the seeding process starting with a pair of particles, even a tiny error rate of 0.01 leads to a !nite
particle density in the steady state for large q. Therefore, the absorbing state transition is unstable to the presence of
depolarizing noise.

5.C.3 E!ects of O!-Diagonal Dephasing

The !nal error we consider is that of the loss of coherence in the o"-diagonal elements of the density matrix. Since both
the ZZ measurements and the domain wall density n share a basis, and are both diagonal in the computational basis,
we do not expect this dephasing to have an impact on the observation of the order-disorder transition.
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Figure 5.13: The estimated number of domain walls Ñ , as obtained from the sampling procedure detailed in Sec. IV,
plotted for di"erent values of (a) the feedback rate r, with p = 0.75 and (b) the measurement probability p, with r = 1.
The dashed line denotes di"usive decay Ñ ∼ t−0.5. In both cases, this estimator re#ects the order-disorder transition at
the same value of p× r = qc ≈ 0.55, where Ñ(t) ∼ t0 at the critical point, when starting from an initial condition with
2 adjacent domain walls at the center of the chain.

5.D Sampling Protocol

In this section, we elaborate on our proposal for obtaining the averaged domain wall density n(t). Recall that the de!ni-
tion of n is

n ≡
L−1∑

j=1

1− ZjZj+1

2
. (5.15)

The protocol also involves measuringZjZj+1 (and applying feedback at some rate r), !rst for odd and then even j after a
layer of random unitaries. In numerical simulations, we were able to directly calculate 1−ZjZj+1

2 without any additional
steps. However, in practical experiments, one would have to !rst prepare a state and then perform several measurements
in order to estimate the expectation value of ZjZj+1, which a priori poses a large overhead. Since our protocol involves
measurements of this operator, we can utilize these outcomes to estimate n.

For concreteness, we consider the set-up with 2 sets of measurements, one each after the !rst and second layers
of random unitaries, but not the third. At each time step, the outcomes of the last set of measurements are recorded.
Let the number of measurements at this time-step be Nm, and the measurement outcomes be mi

Nm
i=1 with mi = ±1.

Nm ≤ (L− 1) and on average,Nm = p(L− 1). The quantity ñ, de!ned as

ñ ≡ 1

Nm

Nm∑

i=1

1−mi

2
(5.16)

averaged over trajectories and circuit realizations, provides an accurate sampling of the true domain wall density n. The
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reason for this is that at any p > 0, an extensive number of measurements are still being made. We can straightforwardly
obtain an estimate for the number of domain walls Ñ as Ñ ≡ (L−1)∗ ñ. As shown in 5.13, the number of domain walls
obtained from this sampling procedure Ñ captures the order-disorder transition, and agrees well with the true value of
n.

5.E Heuristic argument of the di!erence between entanglement transi-
tion and steering transition

When r > rc, as we tune p, the quantum trajectory undergoes two transitions: the entanglement phase transition at
pEE
c and the steering (domain wall density) phase transition at pnc . First, it is easy to show that pEE

c ≤ pnc in the steady
state |ψ〉. This is because when p > pnc , |ψ〉 is spanned by |00 . . . 0〉 and |11 . . . 1〉 and the entanglement entropy SA for a
subsystem A is smaller than log 2.

According to previous studies on the 1 + 1d measurement induced entanglement phase transition, we expect that
when p ≥ pEE

c [25, 31],

SA =






logLA, LA < ξ

log ξ, LA > ξ
(5.17)

where ξ is the correlation length for the entanglement measure and diverges at p = pEE
c . When p is slightly larger than

pEE
c , the correlation length is still quite large with log ξ > log 2. Increasing p will reduce ξ and eventually when p is
large enough, we have log ξ < log 2. This implies that there is a !nite separation between pEE

c and pnc .
The di"erence between pEE

c and pnc is more obvious in higher dimensional systems with spatial dimension d > 1.
As we vary p, the entanglement entropy exhibits three di"erent scaling behaviors. Here we consider a simple case where
the subsystem A is d-dimensional sphere with radius LA. The leading term of the entanglement entropy satis!es:

SA :






∼ Ld
A, p < pEE

c

∼ Ld−1
A , pEE

c < p < pnc

< log 2, p > pnc .

(5.18)

5.F Simulation of the Volume-Law Phase

Lastly, we address the technical and conceptual di$culties with obtaining an accurate estimate of pEE
c . The challenges

are two-fold – (i) The rapidly burgeoning entanglement entropy as we approach the critical point or enter the volume
law phase renders MPS methods (which are designed for states with low entanglement) computationally costly, and (ii)
our speci!c family of models are particularly prone to !nite-size e"ects owing to the absorbing nature of the steady state.

The volume-law phase of general (i.e. non Cli"ord [64]) non-unitary circuits requires exponential resources and is
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Figure 5.14: The entanglement entropy S(2)
A (t) vs t plotted on a log-log scale using the exact diagonalization of the

quantum trajectory under the circuit with two sets of measurements per unit time step over a variety of measurement
rate p. All of the data are collected for system size L = 18 and feedback rate r = 1 under PBC.

di$cult to simulate on classical computers. The exact diagonalization (ED) technique, commonly used to study the
volume law phase, can only deal with small systems with L ! 30. The detrimental e"ects of the resulting !nite-size
e"ects are especially germane to our system. In such a small system, if q = p × r > 0, under BAW dynamics, any state
with a !nite density of domain walls quickly evolves to states with no domain walls {|0 · · · 0〉, |1 · · · 1〉}. The absorbing
phase transition is no longer observable, since any initial con!guration decays to the absorbing state. Consequently,
since pEE

c < pnc , the entanglement phase transition cannot be observed either in a small system with !nite r. As shown
in Fig. 5.14, the entanglement entropy calculated using ED for system size L = 18with an initial product state polarized
in the+x direction shows a strong !nite size e"ect and decays to a !nite constant quickly for all p > 0, r = 1. This rapid
decay obviates the usage of both the volume law scaling of the steady-state entanglement entropy S(n)

A (t → ∞) ∼ |A|

and its linear growth at early times S(n)
A (t) ∼ t as diagnostics for the volume law phase.

However, in a large system, we can observe an absorbing phase transition. In such a system, we can use the in-
e$cacy of MPS methods in simulating states with large entanglement to obtain an upper bound on pEE

c (i.e. when
the infamous “exponential wall" has been encountered and the bond dimension grows too large to store the state on a
classical computer). For the model with two sets of measurements, we !nd that the upper bound for pEE

c is 0.45.
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Chapter 6

Exponentially slow thermalization and the
robustness of Hilbert space fragmentation

6.1 Introduction

A central theme in quantum dynamics is the understanding of mechanisms which impede or arrest thermalization
[1, 2, 4, 5, 6]. Many such mechanisms, most prominently many body localization [7, 8], rely crucially on some form of
spatial disorder. A recent body of work has demonstrated that even without recourse to strong disorder, the imposition
of certain dynamical constraints can be rigorously shown to prevent thermalization [9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23]. In these systems, thermalization is evaded by virtue of the dynamics being non-ergodic, with the space
of product states splitting into exponentially many dynamically-disconnected “fragments”, in a phenomenon known as
Hilbert space fragmentation (HSF).

Unfortunately, this form of ergodicity breaking relies on !ne-tuning the dynamics to ensure that the dynamical con-
straints leading to HSF are exactly obeyed. What happens when the constraints are weakly broken is a relatively unex-
plored question, despite the fact that many experimental systems are close to !ne-tuned points where the constraints are
exact [99, 100, 101, 102, 103, 104, 105]. A natural question thus remains: how does the structure of HSF imprint itself on
thermalization dynamics once its associated constraints are broken? In particular, can there exist models of constrained
dynamics which display anomalous thermalization even in the presence of constraint-breaking, ergodicity-restoring per-
turbations?

In this work, we answer this question a$rmatively by studying what happens when a 1d spin chain with “pair-#ip”
constraints is connected at its end to a chain undergoing generic unconstrained dynamics (Fig. 6.1 a). The coupling to the
unconstrained system can be veiwed as a coupling to a thermal bath, and it renders the dynamics fully ergodic. Naively,
onemight expect the bath to initiate a thermalizing “avalanche” that spreads out and thermalizes the constrained region
on the time scale needed for the in#uence of the bath to be felt across the system, viz. on a time of order Lcons, where
Lcons is the size of the constrained region. We show that this intuition is in fact false, and that the thermalization time
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Figure 6.1: a) A schematic of the setup considered in this paper: a 1d chain is partitioned into a constrained region at
sites 1 < i ≤ Lcons within which the dynamics is fragmented, and an unconstrained region at sites Lcons < i ≤ Lwhere
the dynamics is generic. b) Growth of the normalized entanglement entropy for a quench from under Hamiltonian
dynamics, calculated for the region A = [1, L/2] with Lcons = 8, L = 10, N = 3. The solid line shows a quench from
the frozen state |12〉⊗L/2; for the dashed line the !rst site is changed to 2, creating a single #ippable pair. In both cases,
a slow logarithmic growth is observed. c) Relaxation of the charge Q1 computed in region A for the same initial state,
showing a similarly slow decay.

tth instead scales exponentially in Lcons. This slowness is due to strong bottlenecks that the system encounters as it tries
to explore Hilbert space, a phenomenon which arises from the type of constraints and the local nature of the coupling
to the bath. We rigorously prove an exponentially large lower bound on tth in the setting where the system undergoes a
constrained form of random unitary (RU) dynamics, and provide numerical evidence that tth for Hamiltonian dynamics
is similarly long. Remarkably, the long approach to equilibrium can be diagnosed simply by measuring expectation
values of certain local operators, which take exponentially long to reach their steady-state values.

6.2 Slow thermalization in the pair-#ip model:

We begin by studying Hamiltonian dynamics. We consider a spin-(N − 1)/2model of the formH = H0 +Himp. Here
the constrained HamiltonianH0 takes the form

H0 =
L−1∑

i=1

N∑

a,b=1

ga,bi |aa〉〈bb|i,i+1, (6.1)

with gi arbitrary N × N Hermitian matrices. The “impurity” Hamiltonian Himp acts to break the constraints on sites
Lcons < i ≤ L, with Lcons the size of the constrained region. H0 only #ips neighboring spins with identical values. As a
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result, it preserves the U(1) charges
Qa ≡

∑

i

(−1)i|a〉〈a|i. (6.2)

When N > 2, which we will specify to unless explicitly noted otherwise, H0 additionally possesses an exponentially
large number of non-local conserved quantities [106]. Among these are the N(N − 1)L−1 “frozen” states of the form
|a1, . . . , aL〉, ai 5= ai+1, which are annihilated byH0. We will denote the space spanned by these states asHfroz.

To numerically study the robustness of the constrained dynamics with respect to Himp, we investigate quantum
quenches performed on initial states in Hfroz. For concreteness we will specify to the case where gabi = (−1)i(1/N +

κδa,b); here the (−1)i ensures that the states in Hfroz lie approximately in the middle of H0’s spectrum (since for this
choice of gabi ,H0 is an alternating-sign sum of frustration free projectors that annihilateHfroz). The model obtained by
setting κ = 0 is a form of Temperley-Liebmodel [107, 108], which hasSU(N) symmetry, fragments in an entangled basis
[109], and possesses a very large number of degenerate states. In Sec. 6.6 we prove that this model fails to thermalize
even at in!nite times when the constraint is broken only on a single site. In our numerics we will however !x κ = 2/3,
breaking SU(N) and yielding a more generic pair-#ip model. ForHimp, we take for de!niteness

Himp = N−1
L∑

i=Lcons+1

(eiπ/4Xi + e−iπ/4XT
i ), (6.3)

where Xi ≡
∑N

a=1 |a〉〈[a + 1]N |i with [·]N denoting reduction modulo N , and with N ensuring that each term in
Himp has unit norm. This choice fully restores ergodicity, and can be numerically checked to render the spectrum ofH
completely non-degenerate.

Since states inHfroz are near the middle ofH ’s spectrum, energy conservation does not present an obstacle for states
inHfroz to thermalize to in!nite temperature, evenwhen the size of the impurity region is small. Furthermore, as wewill
see momentarily, only O(L) applications of Himp are required to connect any two computational basis product states.
From these facts, a reasonable prior would be that states inHfroz rapidly thermalize to a volume-law in!nite-temperature
state, with this occurring on the time scale needed for the in#uence of Himp to propagate throughout the full extent of
the constrained region. Simulating the dynamics with TEBD for the simplest choice of N = 3 reveals that this is not
what happens. In Fig. 6.1 we compute the bipartite entanglement entropy SA(t), with A = [1, Lcons/2] half of the
constrained region, together with the charge expectation values 〈Qa〉, with Qa computed on the sites [1, Lcons] of the
constrained region. Both of these quantities indicate an exponentially long thermalization time, with SA(t) exhibiting a
slow logarithmic growth and 〈Qa〉 a similarly slow decay. Slow thermalization is also observed for initial product states
which are mostly frozen but contain a small number of #ippable nearest-neighbor pairs; for these states SA(t) increases
quickly at short times t ! L but then grows as ∼ log(t) thereafter.
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Figure 6.2: Krylov graph illustrations for N = 3. a) Each computational basis product state |a1, . . . , aL〉 de!nes a
length-Lwalk on the degree 3 tree, with the walk backtracking when two identical labels are encountered in a row. The
constrained dynamics preserves walk endpoints (grey circles), each of which de!nes a Krylov sector; the sectors are thus
enumerated by the even (odd) sublattice of the depth-L tree for even (odd) L. Paths which reach the edge of the tree are
frozen under the constrained dynamics, while those with backtracks belong to sectors of dimension > 1. Breaking the
constraints at the edge induces transitions between next-nearest-neighbor tree vertices in the manner indicated by the
pink lines. b) Values of the charge Q1 in each sector (shown for L = 6). Redder (bluer) colors indicate more positive
(negative) values. Dynamics begun from a state in the region C will take exponentially long to escape C due to the
bottleneck imposed by the tree structure. c) Krylov sector occupations for a quench under e−iHt, starting from a frozen
state on the edge of the tree. Circle sizes and colors are drawn according to 〈ψ(t)|ΠK|ψ(t)〉 at time t = 103, where ΠK
projects onto the sector K.

6.3 Hilbert space connectivity and randomwalks

To understand these observations, it will be helpful to have a geometric understanding of how the dynamics acts in
Hilbert space. To best illustrate this we will momentarily !x L = Lcons+1, so that the pair-#ip constraint is broken only
on the last site of the chain. This understanding is obtained by associating each product state |a1, . . . , aL〉with a length-L
walk on theN -valent tree TN . The walk is determined by reading the product state from left to right: a1 determines the
direction of the !rst step of thewalk, a2 the second, and so on. The direction of thewalk’s travel is !xed by the convention
that if two identical labels are encountered in a row (ai = ai+1), the walk backtracks (see Fig. 6.2 a for an illustration
withN = 3). Themerit of this is that the allowed processes implementable byH0 are precisely thosewhich preserve walk
endpoints, sinceH0 acts nontrivially only on locations with backtracks. Each vertex of TN (more precisely, each vertex of
TN ’s even / odd sublattice, depending on the parity ofL) thus de!nes a disconnected sector of the constrained dynamics.
The sectors on the edge of TN contain precisely those states whose walks have no backtracks; these states thus spanHfroz

and de!neO((N − 1)L) one-dimensional sectors. As shown in [110], the sectors increase exponentially in size towards
the center of the tree, with the largest sector at the tree center having dimension |Kmax| ∼ L3/2(2

√
N − 1)L.

The action of Himp at the chain end breaks the constraint by allowing the last step of the walk to be changed. This
restores ergodicity, connecting the sectors to their nearest neighbors on one sublattice of TN , in the manner shown in
Fig. 6.2 a. We will refer to the graphGK of Krylov sectors so obtained as the Krylov graph. The dynamics thus induces a
random walk on GK, and for a system to thermalize, its wavefunction must spread out across the entirety of GK under
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the action of this walk.
The tree structure of the Krylov graph suggests that this spreading is slow, since for a vertex of TN at depth 1 < d < L,

there are N − 1 ways of going “out” towards the boundary, but only one way of going “in” towards the center. This
implies that a simple randomwalk on TN will have an “outward” bias with velocity vN = (N −1)/N −1/N = 1−2/N ,
and suggests that the dynamics on GK will take exponentially long to overcome this bias and thermalize. However,
this argument ignores the fact that the sectors increase exponentially in size as one moves towards the center of GK,
which introduces an opposing “inward” bias. Our main goal in the following will be to understand which one of these
competing e"ects dominates.

As a !rst pass, one can quench a state in Hfroz under e−iHt and numerically compute the weight of |ψ(t)〉 in each
sector. Doing so gives weights which are highly clustered around GK’s edge even when t 7 L, as shown in Fig. 6.2 c.
This suggests that the “outward” bias—which acts to slow thermalization—wins out. To understand why, we shift our
focus from Hamiltonian to RU dynamics, where rigorous bounds on thermalization times can be proven.

6.4 RU dynamics and Hilbert space bottlenecks

To simplify the dynamics, we replace the unconstrained region by a thermal bath which subjects the spin on the end
of the chain to depolarizing noise. This models the situation where the unconstrained region is taken to be in!nitely
large (so that it can exchange an arbitrary amount of energy with the constrained region), and then traced out. Since
there is no conserved energy in this setup, we will replace time evolution underH0 by a constrained form RU dynamics,
consisting of local gates which preserve the pair-#ip constraint but are otherwise Haar random. The quantum channel
implementing one step of the dynamics is

Cd(ρ) = U†
d (TrL[ρ]⊗ 1/N)Ud, (6.4)

where TrL[·] denotes tracing out the spin at site L, and Ud is a random depth-d constrained brickwork circuit. In our
analytic arguments we will take d 7 L, which simpli!es things by making the intra-sector dynamics thermalize instan-
taneously. Regardless of d, Cd should generically thermalize product states faster than theHamiltonian dynamics studied
above. We will nevertheless prove that the thermalization time under Cd is exponentially long in L. Detailed proofs of
the statements to follow are deferred to the supplementary information [110]; in what follows we will only discuss the
most salient aspects.

Let us !rst examine the circuit-averaged state ρψ(t) ≡ E{U} Ct
d(|ψ〉〈ψ|) obtained by evolving a computational basis

product state |ψ〉 for time t. Using by-now standard techniques [111, 112], the circuit average can be performed exactly,
mapping the RU evolution to a certain kind of Markov process. One !nds ρψ(t) = |Mtψ〉〈Mtψ|, where |Mtψ〉 is
the state obtained from |ψ〉 by t applications of a Markov generator of the form M = MPFML. In this expression
ML = 1L−1⊗ 1

N

∑
a,b |a〉〈b|L randomizes the state of the spin on the end of the chain, andMPF is a depth-d stochastic

brickwork circuit implementing pair-#ip dynamics, each brick being the 2-site gate 1
N

∑
a,b |aa〉〈bb|+

∑
a *=b |ab〉〈ab| (see

[110] for details).
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Let GH be the graph with a vertex for each computational basis product state, and an edge drawn between all pairs
of vertices connected by a single step of the dynamics. The Krylov graph GK is thus a “coarse-grained” version of GH,
obtained by gathering all states in a given sector into a single “supernode”, and merging all connections between states
in bath-connected sectors into a single “superedge”. M implements a random walk on GH, with ρ = 1 as its unique
steady state. Thus all initial states thermalize under Cd, provided one waits long enough. How long one must wait is
determined by the relaxation time trel, which is inversely proportional to the spectral gap∆M ofM. As a !rst result, we
prove

Theorem 1. ∆M is exponentially small in system size:

∆M ≤ |Kmax|N−L ∼ L−3/2ρLN , (6.5)

where ρN ≡ 2
√
N − 1/N < 1 is the spectral radius of TN .

This result follows from the fact that states evolving underM encounter severe bottlenecks as theymove throughout
Hilbert space. To see this, de!ne the expansion Φ(G) of a graphG as [113]

Φ(G) ≡ min
C :|C|≤|G|/2

|∂C|/|C|, (6.6)

where |∂C| denotes the number of edges connecting the subgraph C to G \ C. Graphs with strong bottlenecks have
smaller values of Φ(G), and random walks on graphs with strong bottlenecks mix slowly. This is quanti!ed using
Cheeger’s inequality [113], which reads

1

2
Φ(GH)2 ≤ ∆M ≤ 2Φ(GH). (6.7)

SinceGK is formed by coarse-grainingGH, we haveΦ(GH) ≤ Φ(GK), provided that |∂C| (|C|) in (6.6) are appropriately
weighted by the sizes of the superedges (supernodes). The upper bound in (6.5) then follows by letting C be one full
branch of the tree (shown in Fig. 6.2 b for N = 3), for which |∂C| ∼ |Kmax| and |C| ∼ NL/N . This gives an upper
bound on Φ(GK)—and hence on∆M—scaling as |Kmax|/NL, which is exponentially small in L (exact diagonalization
indicates that this bound is in fact saturated [110]). This demonstrates the existence of a large bottleneck and shows that
the “outward” bias discussed above ultimately wins out at long times (the e"ect of the “inward” bias turns out to be to
reduce the base of the exponential in (6.5) from 1/N to ρN ).

An initial state |ψ〉 chosen randomly from C will thus typically take an exponentially long time to leave C, immedi-
ately yielding a bound on the circuit-averaged entropy Sψ(t) = E{U} S[Ct

d(|ψ〉〈ψ|)]. To this end, de!ne tS(γ) ≡ min{t :

Sψ(t) ≥ γL ln(N)} as the time at which Sψ(t) !rst reaches a fraction γ of its maximal value. We !nd

Theorem 2. Let γ satisfy γ∗ < γ < 1, γ∗ ≡ 2(1− vN ln(N − 1)/ lnN). Then

tS(γ) ≥ Cγ
√
LeLλγ , (6.8)

where Cγ is an unimportantO(1) constant and λγ ≡ 1
2 ((1− γ/2) ln(N)/ ln(N − 1)− vN )2.
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Figure 6.3: The charge relaxation time tQ for the maximal-Q1 initial state |ψ(0)〉 = |21〉⊗L/2. Left: Slow charge relax-
ation for N = 3: tQ for γ = 0.1 and γ = 0.01. The former !ts well to L times the bound in (6.9) (blue dot-dashed line),
while the latter saturates the γ → 0 bound of ∼ 1/Φ(GH) (red dashed line). Right: Fast relaxation for N = 2: tQ on a
log-log scale, showing clear di"usive behavior.

This indicates that when initialized from a typical computational basis product state, the system rapidly reaches an
entropy of S∗ = γ∗L lnN , but that after reaching S∗ the entropy growth slows dramatically, taking exponentially long
to fully saturate. This can be understood by appealing to the biased random walk introduced above, which implies that
almost all product states are located at a depth near d∗ = vNL. A state initialized on the boundary of GK may rapidly
move inwards to a depth of d∗ (duringwhich the “inward” bias dominates), but then gets “stuck” at d∗, where the number
of states is largest (and where the “outward” bias now dominates).

Remarkably, the small gap (6.5) imprints itself in the expectation values of the chargesQa ∈ [−L/2, L/2], despite the
fact that expectation values of local operators do not allow one to distinguish di"erentKrylov sectors. This occurs because
the pattern of values thatQa takes on di"erent sectors is strongly anisotropic acrossGK, as illustrated in Fig. 6.2 b. The
exponential smallness of Φ(GH) means that the charge of a generic product state will also take exponentially long to
relax. The upshot of this is that similarly to Thm. 2, we can bound tQ(γ), the time for 〈Qa(t)〉 to drop below γL/2when
initialized in a state |ψmax〉 of maximalQa charge, as follows:

Theorem 3. Let γ satisfy 0 < γ < vN/2. Then when γ = Θ(L0),

tQ(γ) ≥ Dγ

√
LeL(2γ−vN )2/2 (6.9)

whereDγ is another unimportantO(1) constant. In the γ → 0 limit, tQ(γ) ≥ Dγ/Φ(GH).

The above theorems were all stated for the case of N > 2. When N = 2, the constrained dynamics is not strongly
fragmented: it instead possesses onlyO(L) sectors, the largest of which has a dimension smaller than 2L by only a factor
of 1/

√
L. These sectors are connected by the bath to form a 2-valent tree (i.e. a line), yielding Φ(GH) ∼ 1/

√
L. The

N = 2 dynamics thus possesses only a weak bottleneck, and thermalizes exponentially faster than theN ≥ 3models.
These results are corroborated in Fig. 6.3 by numerically simulating charge relaxation in the classical stochasticmodel

de!ned byM. In these simulations we !x the depth of each RU brickwork layer at d = 2, constraining the intra-sector
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dynamics by spatial locality. On general grounds we expect this to decrease ∆M by a factor of L−1, so that Cheeger’s
inequality for N = 2 reads L−2 ! ∆M ! L−3/2. For N = 2 our numerics give a di"usive tQ ∼ L−2, matching this
lower bound. ForN = 3 and γ = Θ(L0), tQ(γ) is similarly observed to exceed the lower bound of Thm. 3 by a factor of
L. Interestingly however, when γ → 0 the lower bound of 1/Φ(GH) ∼ L3/2ρ−L

3 appears to be quite nearly saturated,
without an extra factor of L. Finally, we note that when N = 3, the base of the exponent in (6.9) is only e1/18 ≈ 1.06

for small γ; this makes the poly(L) contribution to tQ(γ) dominate for moderate system sizes. In the future it would be
interesting to explore models with stronger bottlenecks, where the exponential scaling may be more pronounced.

6.5 Discussion

In this work we have seen how HSF can be remarkably robust in the presence of local coupling to a thermal bath, with
signatures of fragmentation remaining present even on times exponentially long in system size. Our results have focused
onmodels with pair-#ip constraints, where thermalization is arrested by the presence of strong bottlenecks encountered
by the dynamics as it explores Hilbert space. This picture can be shown to generalize to a larger family of strongly-
fragmented systems, including the dipole-conserving models of Refs. [9, 10] and the general family of semigroup-based
dynamics introduced by one of the authors in Ref. [112]. Furthermore, by viewing one half of a fully-constrained sys-
tem as a bath for the other half, our results imply that bottlenecks inevitably produce slow intra-sector dynamics in
unperturbed models, a result which may be useful for understanding the slow charge transport of Refs. [112, 16].

Our analytic results have focused on the case of RU dynamics. Hamiltonian dynamics should generically thermalize
at least as slowly, although there are other reasons why disorder-free Hamiltonian dynamics may be parametrically
slower, and in the future it would be interesting to investigate this possibility in more detail. It would also be interesting
to understand couplings to di"erent types of baths and the resulting steady states, as in Ref. [23].
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6.A Notational preface

As discussed in the main text, each computational product state |s〉, si ∈ {1, . . . , N} can be associated to a randomwalk
on the balanced N -tree TN . Proceeding from left to right, each si determines where the walk proceeds, with the walk
backtracking when si = si−1. Each walk which ends at a point of depth d on the tree can be associated with a length-d
string which corresponds to the shortest path on the tree from the origin to that point. We will refer to the shortest path
associated a string s as s’s irreducible string, which we write as irr(s). We will let vs denote the vertex of TN at which s
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Figure 6.4: Numerical results of the N = 3 translation-invariant PF model with random gab = (gab)∗ under a single-
site random impurity of strength λ = 1 at L, starting from an initial state inHfroz. Left: The normalized von-Neumann
entropy SA(t)/SA(∞), where A is half of the constrained region and SA(∞) = |A| ln(N)/2− 1/2. Center: The Krylov
entropy SK(t) normalized by SK(∞), where SA(∞) is calculated using pvs = |Kvs |/|H|. Right: The probability of the
spin on the !rst site to match with its original value.

ends. Since the walks on TN are non-lazy, a string of length |s| = L can only reach those nodes at a depth whose parity
matches that of L. Writing |vs| for the depth of the node vs (i.e. |vs| = |irr(s)|), this means that [vs]2 = [L]2, where [·]2
denotes reduction mod 2.

We will let the K(L)
vs denote the set of all length-L strings with the same irr(s). The states in K(L)

vs form a basis of the
Krylov sector associated with the node vs. We will writeK(L)

d when we wish to refer to an arbitrary Krylov sector whose
associated vertex is at a depth d on TN . In addition, we will write NK(L) for the total number of Krylov sectors on a
system of size L. Finally, we will represent the projection operator onto the Krylov sector K(L)

vs as

ΠK(L)
vs

≡
∑

|s〉∈K(L)
vs

|s〉〈s|. (6.10)

6.B More numerical results

In this section we collect additional numerical results regarding the thermalization of Hamiltonian dynamics, withN =

3 unless explicitly stated otherwise. All of the Hamiltonians we will consider will act on open 1d chains, and will be of
the form

H = H0 + λHimp, (6.11)

where H0 acts on the entire system (of length L), and Himp acts only on sites Lcons < i ≤ L. Htot will always be
normalized such that ||Himp||∞ = L− Lcons.

6.B.1 Entanglement and Krylov entropy

In this subsection we show the entanglement dynamics of a more general locally-perturbed PF model, including the
half-chain entanglement entropy of the constrained system, and Krylov entropy, a quantity that measures the spreading
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of the wave function over di"erent Krylov subspaces, i.e.

SK(t) ≡ −
∑

vs

pvs ln pvs , (6.12)

where
pvs ≡ 〈ψ(t)|Π(Lcons)

Kvs
⊗ 1L−Lcons |ψ(t)〉 (6.13)

is the probability that the !rst Lcons sites of the state are in sector Kvs .
We consider a translation-invariant PF model under a single-site perturbation, described by the Hamiltonian

H0 =
3∑

a,b=1

gab
L−1∑

i=1

|aa〉〈bb|i,i+1, Himp =
3∑

a,b=1

|a〉〈b|L, (6.14)

where g is an arbitraryN ×N Hermitian matrix that we take to be site-independent to avoid possible many-body local-
ization caused by disorder. In Fig.6.4, we take λ = 1 and average over di"erent realizations of gab and di"erent initial
frozen states. We!rst consider the half-chain von-Neumann entropySAwhereA = [1, Lcons/2] is half of the constrained
region. As shown in the left panel, SA(t) ∼ ln(t) as it approaches its thermal value SA(∞) = Lcons ln(3)/2. Similarly,
in the middle panel, the Krylov entropy increases logarithmically at early times. Here we plot SK(t) normalized by the
value it takes when pvs = |Kvs |/|H|, i.e. the value it takes when the wavefunction is spread out uniformly across Hilbert
space. Since this is not the value of the pvs whichmaximizes the entropy, a non-monotonic time dependence is observed.

We additionally calculate Pmatch(x), the probability of the spin on site x to be the same as its original value. As
shown in the right panel, Pmatch(x = 1) starts to deviate from 1 after the in#uence of the bath has propagated through
the whole system, decreasing logarithmically in time to a value that approaches 1/3 asL → ∞. This further veri!es that
the time scale of thermalization of the general PF model under a constraint-breaking perturbation is exponentially long
in system sizes.

6.B.2 Localization of eigenstates

To determine the extent that eigenstates of H are localized on TN , we can measure the “expected depth” dµ of each
eigenstate |µ〉, de!ned as

dµ ≡
L/2∑

d=0

∑

vs : irr(s)=d

d〈µ|ΠKvs
|µ〉. (6.15)

Histograms of dµ and eigenstate energy E are shown in Figs. 6.5, 6.6, and 6.7 for SU(3)-symmetric pair-#ip models,
SU(3)-breaking pair-#ip models, and the N = 2 variant of the symmetric model (unitarily equivalent to a perturbed
XXX chain), respectively. For theN = 3models we use a total system size of L = 8, while forN = 2 we set L = 12.

In Fig. 6.5 we study SU(3)-symmetric Temperley-Lieb chains of the form

HTL(gi) =
∑

i

giPi,i+1 + λHimp, Pi,i+1 ≡ 1

N

∑

a,b=1,...,N

|a, a〉〈b, b|i,i+1, (6.16)
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Figure 6.5: Eigenenergies in di"erent variants of SU(3)-symmetric models for L = 8, arranged according to the Krylov
distance dµ (6.15) of each eigenstate. Left: Unperturbed TL model without sublattice staggering (gi = 1). The frozen
states at d = 8 all lie at the bottom of the spectrum. Center: The same model with with gi = (−1)i: the frozen states
now lie in the middle of the spectrum. Right: The same model but now with a two-site impurity of strength λ = 1 at the
end of the chain. States with large dµ continue to be located roughly in the middle of the spectrum.

Figure 6.6: Eigenenergies in di"erent SU(3)-breaking models for L = 8, arranged according to the Krylov distance
dµ (6.15) of each eigenstate. Left: A random translation-invariant choice of the pair-#ip matrix gab. Center: The choice
gabi = (−1)igab adopted in the main text with λ = 0. The frozen states at dµ = 0 continue to lie roughly in the middle
of the spectrum. Right: The same Hamiltonian but with λ = 1, showing a distribution of dµ which continues to remain
very broad.

Figure 6.7: Eigenenergies for N = 2 models. Left: The SU(2)-symmetric model with gi = (−1)i and λ = 0. Cen-
ter: The same model but with λ = 1, with most eigenstates clustering around a small value of dµ, as expected from a
thermalizing Hamiltonian (on account of the absence of strong fragmentation). Right: An SU(2)-breaking model with
random pair-#ip matrix gab. The distribution of dµs is even more tightly concentrated about the value one would obtain
for a thermalizing Hamiltonian.
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where Himp is a random matrix supported only on the last two sites of the chain (i = 7, 8) and normalized so that
||Himp||∞ = 1. In the left panel we set gi = 1,λ = 0 and observe a large dengeneracy of E = 0 states at the bottom of
the spectrum. The model is strongly fragmented since λ = 0, and so dµ is an integer for each |µ〉. In the middle panel
we take gi = (−1)i, which puts the frozen states at E = 0 into the middle of the spectrum. In the right panel we break
the fragmentation by taking λ = 1, which is the value of λ for which Himp has the strongest e"ect on the spectrum.
Now the dµ are no longer integers, but nevertheless a fairly broad distribution of dµs is observed. A generic model with
no localization on the Krylov space tree would have dµ ≈ vNL = L/3 for all eigenstates. The broad distribution of dµ
observed here suggests that some degree of localization persists, although future work will be needed to understand to
what degree this is due to !nite size e"ects.

We now consider pair-#ip models which lack SU(3) symmetry at λ = 0. The most general Hamiltonian we will
consider is of the form

HPF (g
ab
i ) =

∑

i

N∑

a,b=1

gabi |a, a〉〈b, b|i,i+1 + λHimp. (6.17)

In the left panel of Fig. 6.6 we show the spectrum at λ = 0 for a random translation-invariant choice of gabi . The frozen
states at dµ = 8 are observed to lie roughly in the middle of the spectrum. In the center panel we show the choice of gabi
adopted in the main text, viz.

gabi = (−1)igab ≡ (−1)i
(
1

3
+ κδa,b

)
(6.18)

with κ !xed at 2/3, as in the main text.
Fig. 6.7 shows the spectrum of analogous models with N = 2, which are not strongly fragmented. In the left panel

we show (6.16) with gi = (−1)i and λ = 0, which is unitarily equivalent to a staggered XXX chain. In the center panel
we set λ = 1, which brings nearly all of the |µ〉 down to dµ/L ≈ 1/4, which is close to what we would expect for a
generic Hamiltonian. Finally, in the right panel we let H be a random pair-#ip Hamiltonian, observing an even more
tightly clustered distribution of dµ.

6.B.3 r statistics

Themodels withN > 2 that we study all exhibit strong HSF, with |Kmax| being exponentially smaller than |H|. This im-
plies that if one examines the spectrum ofH , consecutive eigenstates will almost certainly belong to distinct Krylov sec-
tors, and hence the spectrum ofH will exhibit no nearest-neighbor level repulsion in the absence of constraint-breaking
terms. How strongly the eigenstates in di"erent sectors hybridize as a constraint-breaking term is applied provides a
characterization of the severity by which thermalization is impeded, since such hybridization is a prerequisite for get-
ting initial product states in Hfroz to thermalize. In this subsection we will take some !rst steps towards studying this
question numerically by computing the r-statistic [115]

〈r〉 ≡ 〈rn〉, rn ≡ min(δn, δn+1)

max(δn, δn+1)
, (6.19)
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Figure 6.8: The 〈r〉 statistics ofN = 3models vs. perturbation strength λ for L = 4, 6, 8. Left: The translation-invariant
PF model with random pair-#ip matrix gab, a longitudinal !eld with strength ‖ha

i ‖ = 0.1, and a single-site perturbation.
When λ = O(1), 〈r〉 → 0.6 as L → ∞. Right: The model with gabi = (−1)igab discussed in the main text, under a
random two-site impurity.

where δn ≡ En+1−En is the gap between adjacent non-degenerate energy levelsEn+1 > En. Computing 〈r〉 also allows
us to make contact with research examining how the addition of local and/or weak generic perturbations to integrable
Hamiltonians leads to the onset of chaos (see [116, 117] for two almost-randomly chosen references on this broad topic).

Asmentioned above, when λ = 0—viz. when the constraint-breaking term is turned o"—we expect Poisson statis-
tics, with 〈r〉 ≈ 0.38. On the other hand, if the constraint-breaking term strongly hybridizes the states in di"erent sectors,
we expect 〈r〉 to be given by the Gaussian unitary ensemble (GUE) value of 〈r〉 ≈ 0.6. In Fig.6.8, we study the 〈r〉 statis-
tics of theN = 3 locally-perturbed PF models as a function of the perturbation strength λ. In the left panel, we consider
the translation-invariant random PF model as in Eq.6.14, with an additional longitudinal !eld Hf =

∑
i h

a
i |a〉〈a|. As

λ→ 0, 〈r〉 ≈ 0.38 indicates that the unperturbed PF model possesses a spectrum with Poisson distribution, as expected.
In the !nite-size numerics, 〈r〉 continues to grow as λ increases and peaks at λ ∼ 1, approaching 0.6 as L increases,
followed by a slight decrease to a plateau as λ → ∞. In the right panel, we consider the staggered PF model adopted in
the main text, with the perturbation being replaced by a two-site random impurity. This model has similar but smaller
!nite-size 〈r〉 statistics which does not increase as L increases. This is consistent with the fact that the perturbed stag-
gered PF model thermalizes slower than the perturbed random PF model. We conjecture that in the thermodynamic
limit, 〈r〉 approaches the GUE value for all λ = Ω(1). If true, this indicates that the di"erent Krylov sectors becomewell-
hybridized in the thermodynamic limit. This of course does not preclude slow thermalization arising due to the Hilbert
space bottleneck mechanism discussed in the main text, although it may mean that the thermalization times of typical
Hamiltonian dynamics and the constrained RU dynamics studied in the main text are not parametrically di"erent.

The plateau for large λ can be understood as follows. When λ → ∞, λHimp decouples the perturbed site from the
system, splitting the spectrum of H into sectors labeled by the eigenstate |φm〉 of Himp, and the total eigenstate of H
becomes |ψm

L 〉 ≈ |ψLcons〉 ⊗ |φm〉. Taking the impurity to act on only a single site for simplicity, so that L = Lcons + 1,
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the e"ective Hamiltonian in the sector labeled bym is

Hm
eff = (1Lcons ⊗ |φm〉〈φm|)H(1Lcons ⊗ |φm〉〈φm|)

=
N∑

a,b=1

(
Lcons−1∑

i=1

gabi |aa〉〈bb|i,i+1 + gabLcons
〈φm|a〉〈b|φm〉|a〉〈b|Lcons

)
⊗ |φm〉〈φm|

≡ H̃m
eff ⊗ |φm〉〈φm|,

(6.20)

with some constant terms ignored. H̃m
eff is essentially the same PF model as before, but now de!ned on a length L − 1

chain with an impurity Hamiltonian acting on the boundary whose matrix elements are

[Hm
imp,eff ]ab = gabLcons

〈φm|a〉〈b|φm〉 ∼ O(1). (6.21)

Therefore, the 〈r〉 statistics on a system of size L at λ → ∞ should be the same as that of a system of size L − 1 at
λ = O(1).

From the numerics, there does not naively seem to be a well-de!ned transition in the 〈r〉 statistics from Poisson to
GUE, as one !nds in certain types of perturbed integrable models [117], although a more detailed numerical study will
need to be carried out to properly address this question.

6.C Krylov sector dimensions

6.C.1 N = 2

We !rst dispatch with the easy case of N = 2, for which the dynamics is not fragmented. The tree T2 is simply a line,
and the di"erent Krylov sectors can be fully distinguished by the chargeQ1 de!ned in (6.2), the value of which gives the
distance of the Krylov sector along the line. The number of Kyrlov sectors is simply

NK(L) = L+ 1. (6.22)

The dimension of a sector whose irreducible string has length d is determined by counting the number of length-L
non-lazy random walks on the line which end at a distance of d > 0 from the origin. This number is simply

dim[Kd(L)] = δ[d]2,[L]2

(
L

L+d
2

)

≈

√
2L

π(L2 − d2)
exp(LH(pd)),

(6.23)

whereH(x) = −x lnx− (1− x) ln(1− x) is the binary Shannon entropy and pd ≡ (1 + d/L)/2.
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Figure 6.9: Left: The probability that a randomly chosen product state will lie in a Krylov sector with irreducible string
of length d. The dashed black line lies at d/L = (1 − 2/N) with N = 3, the most probable size in the L → ∞ limit.
Center: the sizes of Krylov sectorsKd with length-d irreducible string, compared with the size of the largest Krylov sector
(dots). Dashed lines are plotted using the approximate expression in (6.46). Right: the relative size of succesive Krylov
sectors arranged by distance d, exhibiting a decay scaling approximately exponentially with d/L. The dashed black line
is drawn according to (6.46).

6.C.2 N > 2

WhenN > 2 the dynamics is strongly fragmented, and determining the sizes of the di"erent Krylov sectors is less trivial.
We start with the total number of Kyrlov sectors NK(L). From thinking about the tree structure of TN , it is clear that
this number is

NK(L) = 1 +N

L/2∑

l=1

(N − 1)2l−1(L even)

N

(L+1)/2∑

l=1

(N − 1)2l−2(L odd)

=
(N − 1)L+1 − 1

N − 2
= Θ((N − 1)L).

(6.24)

Note that while this number is exponentially large in L, it is still exponentially smaller than the Hilbert space dimension
dimH = NL.

We now begin in our determination of the Krylov sector sizes. For simplicity of notation we will restrict our attention
to the case when L is even. We start with the size of the largest Krylov sectorK(L)

0 , which is identi!ed with the vertex at
the center of the tree:

Proposition 1. For even L, the size of the largest Krylov sectorK(L)
0 is

|K(L)
0 | = NL



1 +
1

2

L/2∑

n=1

N−2n

(
1/2

n

)
(−1)nγ2n



 . (6.25)
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For both even and odd L, in the large L limit |K(L)
0 | scales as

|K(L)
0 | ∼ L−3/2(Nρ)L, (6.26)

where
ρ ≡ 2

√
N − 1

N
(6.27)

is the spectral radius of TN [113].

Proof. As in Ref. [118], our proof will use generating functions to obtain an exact expression for |K(L)
0 |. Since we are

assuming L is even, the size of K(L)
0 can be determined by counting the number of non-lazy simple length-L random

walks on TN which begin and end at the origin.
Let R(x) be the generating function for non-lazy simple random walks on TN . R(x) is easily seen to obey the recur-

sion relation
R(x) = 1 +Nx2R(x)B(x), (6.28)

whereB(x) is the generating function for returning walks on the rootedN -regular tree TN,r which begin and end at the
root vertex (which has degreeN − 1). We thus need a recursion relation for B(x), which is readily obtained as

B(x) = 1 + x2(N − 1)B(x)2, (6.29)

which when solved yields [118]

B(x) = 2
1−

√
1− (xγ)2

(xγ)2
γ ≡ 2

√
N − 1. (6.30)

We can now use this expression to get R(x), which we may write after some algebra as1

R(x) =
2 +N(

√
1− (γx)2 − 1)

2(1− (Nx)2)
. (6.33)

We now want to determine the long-walk asymptotics, which requires that we perform the series expansion

R(x) ≡
∑

k

x2k|K(2k)
0 |, (6.34)

which takes the form of a convolution between a geometric series and the series coming from the expansion of the square
1An aside: one should not be alarmed that R(1) is imaginary. If one wants the expected number of times an in!nitely long walk returns to the

origin, one needs to write down generating functions for probabilities, rather than for number of paths. Since each individual move has an equal
probability of 1/N , this amounts to sending x &→ x/N , which gives

R(x/N) =
2(N − 1)

N − 2 +N
√

1− (xρ)2
, (6.31)

and so sending x → 1 then gives
〈number of returns〉 = N − 1

N − 2
. (6.32)

This appropriately diverges whenN = 2 but is !nite for allN > 2, and correctly approaches 1 asN → ∞.
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root in the denominator. From (6.33), a Taylor expansion gives

R(x) =
1

2

∞∑

m=0

(Nx)2m
(
2−N +N

∞∑

n=0

(
1/2

k

)
(−1)k(γx)2k

)
. (6.35)

The Lth coe$cient is then

|K(L)
0 | = NL



1 +
1

2

L/2∑

n=1

N−2n+1

(
1/2

n

)
(−1)nγ2n



 , (6.36)

giving the exact result (6.25).
We now obtain the asymptotic result (6.26). For this we rewrite the fractional binomial coe$cient above as

(
1/2

n

)
(−1)n = − (2n− 3)!!

2nn!
. (6.37)

Since the fraction of length-2k walks which return to the origin vanishes as l → ∞, we have (|K(L)
0 |/NL)|L→∞ = 0,

which using the above implies
∞∑

n=1

N1−2nγ2n(2n− 3)!!

2n+1n!
= 1. (6.38)

Thus for large L we may write

|K(L)
0 |

NL
=

∞∑

n=k+1

N1−2nγ2n(2n− 3)!!

2n+1n!

≈
∞∑

n=L/2+1

√
e3N2(1− 3/2n)

16π
(n− 3/2)−3/2 exp (n[−2 ln(N/γ) + ln(1− 3/2n))

≈
∫ ∞

L/2
dn

√
N2e3

16π
n−3/2 exp(−2n ln(N/γ)),

(6.39)

where we used k!! ≈
√
2k(k/e)k/2 at large k.

Doing the integral (whose exact expression is written in terms of Γ(1/2, L ln γ)) then gives

|K(L)
0 | ∼ L−3/2(Nρ)L, (6.40)

where ρ = γ/N is the spectral radius introduced above. That the base of the exponential isNρ also followsmore directly
from the fact that ρ characterizes the return probability pret(L) as ρ ≡ limL→∞(pret(L))1/L [119].

Since ρ < 1 for all N > 2, the largest Krylov sector occupies an exponentially small subset of Hilbert space, and the
PF model is strongly fragmented for allN > 2.

We will also have occasion to know the number of length-L random walks that end a distance d from the origin. To
this end, we can generalize the above result about |K(L)

0 | to
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Figure 6.10: Scaling of the size of the largest Krylov sectorK0 as a function of L, plotted forN = 3. Cyan circles are the
exact result (6.25), and the gray line is the asymptotic expression (6.26).

Proposition 2. The size of a Krylov sectorK(L)
d whose irreducible strings have length d is

|K(L)
d | = 2d

(L+d)/2∑

n=0

d∑

k=0

|K(L+d−2n)
0 |(−1)k+n

(
d

k

)(
k/2

n

)
γ2(n−d). (6.41)

Proof. Let G(x; d) be the generating function for walks which travel to a speci!c vertex at distance d. In terms of the
generating functions introduced above, this is seen to be

G(x; d) = xdR(x)Bd(x). (6.42)

Performing an expansion of Bd(x), we have

G(x; d) = 2d
∞∑

l,n=0

d∑

k=0

(−1)k+n

(
d

k

)(
k/2

n

)
γ2(n−d)|K(2l)

0 |x2l+2n−d, (6.43)

and so writing G(x; d) =
∑∞

m=0 x
d+2m|K(d+2m)

d |, we have

|K(d+2m)
d | = 2d

d+m∑

n=0

d∑

k=0

|K(2(d+m−n))
0 |(−1)k+n

(
d

k

)(
k/2

n

)
γ2(n−d). (6.44)

For a length L random walk we will havem = (L− d)/2; inserting this above gives the exact expression (6.41).
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Figure 6.11: The asymptotic expression (6.46) for the size of K(L)
d , shown here with L = 20.

Intuition: biased randomwalks

We have already obtained an asymptotic expression for |K(L)
0 | valid at large L. When d/L is not very small, we can

obtain a complementary asymptotic expression for |K(L)
d |. This can be done from a straightforward (if unilluminating)

expansion of the binomial coe$cients in (6.44). More physically, we can argue by realizing that N(N − 1)d−1|K(L)
d |

is equal to the probability for a length-L biased random walk on N to end a distance d from the origin; here the radial
direction of TN is identi!ed with N and the factor ofN(N − 1)d−1 is equal to the number of sectors at depth d. The bias
of this walk is probability of moving outward (1 − 1/N)minus the probability of moving inward (1/N), and hence the
walker has velocity

vN ≡ 1− 2/N. (6.45)

Therefore

|K(L)
d | ≈

(1− 1/N)
L+d

2 N−L−d
2

( L
L+d

2

)

N(N − 1)d−1
NL

≈ 2(N − 1)

N
√
2πL

NL exp

(
− (d− vNL)2

2L
− d ln(N − 1)

)
,

(6.46)

where in the second line we have used that the probability distribution of a random walker on the real line with velocity
vN is p(x, t) = 1√

2πt
e−(x−vN t)2/2t (with t = L and x = d in the above), and the factor of 2 comes from the fact that d

must have the same parity as L (with the−d ln(N − 1) ensuring that |K(L)
d | is always monotonically decreasing with d).

This function is shown in Fig. 6.11.

6.4 From RU to stochastic dynamics

In this section we derive the generator of the stochastic dynamics that arises from studying circuit-averaged evolution in
the model of open-system RU dynamics introduced in the main text. A single timestep of the dynamics corresponds to
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evolution under the channel
C(ρ) = U†

(
TrL[ρ]⊗

1

N

)
U , (6.47)

where TrL denotes tracing out the last site of the system, the 1 acts on the Lth site, and U is a random constraint-
preserving unitary de!ned via a depth-2 brickwork circuit:

U =




L/2−1⊗

i=1

U2i,2i+1








L/2⊗

i=1

U2i−1,2i



 , (6.48)

where each Ui,i+1 are independent unitaries which preserve the constraint. We will view the TrL[ρ]⊗1 part of (6.47) as
arising from dynamics in which a “bath” system at sites i > L, which is coupled to the length-L system through a generic
interaction at site L, is acted on by generic Haar-random unitary dynamics and then traced out, resulting in completely
depolarizing noise being applied to the Lth site. In the following we will !rst consider the most general case in which
the Ui,i+1 are constrained only by their preservation of walk endpoints in the computational basis; we refer to this as
the case of “pair-#ip” constraints. In a subsequent subsection we will consider a more restrictive case where the Ui,i+1

preserve walk endpoints in all single-site bases; this corresponds to a RU realization of the constraints present in the
Temperley-Lieb model.

6.4.1 Pair-#ip

For general pair-#ip dynamics, the elementary gates Ui,i+1 take the form

Ui,i+1 =
∑

a,b

UPF
ab |aa〉〈bb|+

∑

a *=b

eiφab |ab〉〈ab| = UPF ⊕
⊕

a *=b

eiφab , (6.49)

where thematrixUPF is drawn from the Haar ensemble onU(N), and the second term in the direct sum acts as a diago-
nal matrix of random phases on the subspace of states frozen under the PF dynamics, viz. those of the form |a, b〉, a 5= b.

We will be interested in understanding how an operator O evolves under the circuit-averaged dynamics, following
[111] and the slightly modi!ed treatment given in [112]. We let

O(t) ≡ E
Ct

[Ct(O)] (6.50)

denote the circuit-averaged evolution ofO over time t, where theECt denotes averaging over the unitaries constitutingU .
To help with notation, we will divide each unit time interval into three steps of length t = 1/3: at t ∈ N the depolarizing
noise is applied, at t ∈ N+ 1/3 the !rst layer of U is applied, and at t ∈ N+ 2/3 the second layer is applied. Thus

O(t+ 1/3) = TrL[O(t)]⊗ 1. (6.51)

104



DecomposingO as

O(t) =

L/2−1⊗

i=1

O2i,2i+1(t) (6.52)

without loss of generality, performing the Haar average gives

O2i,2i+1(t+ 2/3) =
Tr[O2i,2i+1(t+ 1/3)ΠPF ]

N
ΠPF +

∑

a *=b

Tr[O2i,2i+1(t+ 1/3)Πab]Πab, (6.53)

where we have de!ned the projectors

ΠPF ≡
∑

a

|a, a〉〈a, a|, Πab ≡ |a, b〉〈a, b|. (6.54)

The action of the second layer of the brickwork is obtained similarly.
Note that since ΠPF , Πab are diagonal in the computational basis, so too is O after any nontrivial amount of time

evolution. We may thus focus on diagonal operators, i.e. states, without loss of generality. From (6.51) and (6.53), the
diagonal operator |ψ〉〈ψ| evolves according to

|ψ(t+ 1)〉 = MoMeML|ψ(t)〉, (6.55)

where
ML = 1L−1 ⊗

1

N

∑

a,b

|a〉〈b|

Me =

L/2−1⊗

i=1

MPF
2i,2i+1

Mo =

L/2⊗

i=1

MPF
2i−1,2i,

(6.56)

where we have de!ned the 2-site stochastic matrix

MPF ≡ 1

N

∑

a,b

|a, a〉〈b, b|+
∑

a *=b

|a, b〉〈a, b|. (6.57)

Note thatMoMeML is doubly stochastic and irreducible, and hence its unique steady state is the uniform distribution
onH (irreducibility would of course fail ifML were absent). This guarantees that RU dynamics will always thermalize
to the uniform distribution at long enough times.

6.4.2 Temperley-Lieb

For Temperley-Lieb dynamics, the elementary unitary gates are constrained to preserve the pair-#ip constraint in any on-
site basis, which is done by enriching the previously studied pair-#ip dynamics with SU(N) symmetry. The elementary
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unitary gates for this model take the form

Ui,i+1 = eiφi,i+1ΠTL + (1−ΠTL), (6.58)

where
ΠTL ≡ 1

N

∑

a,b

|aa〉〈bb|, (6.59)

and where each φi,i+1 is sampled randomly from [0, 2π).
The !rst part of each timestep, whereby the spin at site L is depolarized, is of course unchanged from the more

general pair-#ip case. After averaging over the φi,i+1, one sees that the !rst layer of the brickwork maps operators as

O2i,2i+1(t+ 2/3) = ΠTLO2i,2i+1(t+ 1/3)ΠTL + (1−ΠTL)O2i,2i+1(t+ 1/3)(1−ΠTL), (6.60)

with the second layer of the brickwork acting analogously.
Because of the U(N) invariance of TL dynamics, an operator which is diagonal in any single site product state basis

will remain diagonal in that basis. For concreteness we will continue to use the computational basis, although any other
basis is equally !ne. Diagonal operators, or equivalently states, evolve as |ψ(t + 1)〉 = M|ψ(t)〉, where the Markov
generatorM has the same form as (6.56), except withMPF replaced by the matrixMTL, where

MTL =

(
1− 2(N − 1)

N2

)∑

a

|a, a〉〈a, a|+ 2

N2

∑

a *=b

|a, a〉〈b, b|+
∑

a *=b

|a, b〉〈a, b|, (6.61)

which follows from (6.60) and reduces toMPF whenN = 2. Thus compared withMPF , whenN > 2 TL dynamics has
a smaller probability for pairs to #ip. In particular, pairs completely cease to #ip in theN → ∞ limit. As with pair-#ip,
M is doubly stochastic and irreducible, and hence the uniform distribution isM’s unique steady state.

6.5 Rigorous bounds on relaxation and mixing times

In this section we will prove bounds on the relaxation and mixing times of the Markov processM associated with the
pair-#ip RU dynamics studied in the main text, as de!ned in Sec. 6.4.

Before we begin, some remarks and reminders on notation. The initial states we consider will always be computa-
tional basis product states, referred to simply as “product states” in what follows. ψ will be used to denote an arbitrary
product state. We will write ψ(t) for a sequence of product states obtained as a particular realization of the Markov pro-
cess de!ned byM. This is to be distinguished from the probability distribution one obtains from evolving a given state ψ
for time t, which we write as |Mtψ〉. As mentioned above, the double stochasticity ofM implies thatM’s equilibrium
distribution is uniform on the space of product states, which we will denote asH by a slight abuse of notation.

The irreducible string associated with a product state ψ—which is obtained by iteratively removing pairs of adjacent
identical characters inψ—will bewritten as sψ . In various places belowwewill write sd whenwewish only to emphasize
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that the irreducible string in question has length d. As de!ned previously, Ks will denote a speci!c Krylov sector with
irreducible string s; when we wish to denote an arbitrary Ks with |s| = d we will instead similarly write Kd, and when
we wish to explicitly specify the system size we will write K(L)

d . In all of what follows we will assume for simplicity of
notation that L is even, although all results can be readily generalized to odd L.

Wewill refer to the graphwhose vertices are Krylov sectors andwhose edges are drawn according to how the coupling
to the bath connects the sectors as theKrylov graph. Since the constraint-breaking termmoves the endpoint of the random
walk by a distance of exactly 2, each sector in the Krylov graph is connected to N(N − 1) other sectors, and thus the
Krylov graph is formed by the even / odd (depending on L mod 2) sublattice of the symmetric depth L N -regular tree
(see Fig. 6.2 a).

6.5.1 Markov chains and graph expansion

We begin by reviewing some central concepts in the theory of Markov chains,2 letting M to denote the generator of a
given Markov process. A key notion in what follows will be that of the expansion:

De"nition 1. LetR ⊂ H. The expansion ofR is de!ned as the amount of probability #ow that the uniform distribution
experiences out of R during one step of the Markov processM:

Φ(R) ≡ 1

|R|
∑

ψ∈R

∑

ψ′∈Rc

〈ψ′|M|ψ〉, (6.62)

where the sums run over sets of computational basis product states spanning R and Rc, respectively.

The utility of this de!nition is that when Φ(R) is small, states initially in R take a long time to di"use to its comple-
ment Rc [113]:

Proposition 3. The probability that a product state ψ(0) randomly drawn fromR will leaveR in time t is upper bounded
by

P (ψ(t) ∈ Rc |ψ(0) ∈ R) ≤ tΦ(R). (6.63)

Proof. We proceed following Ref. [113]. Using the Markovity of the dynamics,

P (ψ(t) ∈ Rc |ψ(0) ∈ R) ≤ |H|
|R|

t∑

r=1

P (ψ(r) ∈ Rc, ψ(r − 1) ∈ R)

=
t|H|
|R| P (ψ(1) ∈ Rc, ψ(0) ∈ R)

= tΦ(R),

(6.64)

where we have used that the probability of selecting any particular state ψ is 1/|H|.

Regions with smallerR are more “cut o"” from their complementsRc. The most isolated subregion ofH de!nes the
expansion ofM:

2See e.g. [113] for a good introduction.
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De"nition 2. The expansion ofM is de!ned by the minimal expansion of a subregion ofH:

Φ(M) ≡ min
R⊂H : |R|≤ 1

2 |H|
Φ(R). (6.65)

Φ(M) thus provides a fundamental measure of the slowness of the dynamics. Its primary utility is that it can be used
to bound two important timescales characterizing the slowness ofM, de!ned as follows:

De"nition 3. The relaxation time is de!ned as the inverse gap ofM:

trel ≡
1

∆M
, (6.66)

where ∆M ≡ 1 − λ2, with λ2 the second largest eigenvalue of M. The mixing time is de!ned as the amount of time
required for the distributionMtψ to become close to the uniform distribution π:

tmix ≡ min{t : max
ψ∈H

||Mtψ − π||1 ≤ 1

2
}, (6.67)

where the maximum is over all initial product states inH.

trel and tmix are essentially equivalent in their ability to capture the slowness of M, as follows from the general
bounds (trel − 1) ln 2 ≤ tmix ≤ trel ln(4|H|) [120]. For concreteness we will focus on trel in what follows.

The expansion Φ(M) bounds trel via a fundamental result known as Cheeger’s inequality (see e.g. [113]):

Φ(M)2

2
≤ ∆M ≤ 2Φ(M). (6.68)

In what follows, we will calculate Φ(M) for the Markov chains of interest and will use the above inequality to provide a
rather tight constraint on the relaxation time. We will also see how the calculation of Φ(R) for appropriate choices of R
can be used to bound entanglement growth and the relaxation times of local operators.

6.5.2 Local and non-local chains

The Markov generator derived in Sec. 6.4 was obtained by considering brickwork RU dynamics composed of three alter-
nating layers: one layer of constrained 2-site gates on the even sublattice (Me in the notation of Sec. 6.4), one layer on
the odd sublattice (Mo), and one layer consisting solely of depolarizing noise applied to the spin on site L (ML). In this
section, we will writeMloc for the Markov generator so obtained:

Mloc ≡ MoMeML. (6.69)

This dynamics is to be constrasted with a simpler “non-local” Markov process, obtained in the limit in which the de-
polarizing noise is weak, with the number of constrained RU brickwork layers being much larger than the number of
applications of the depolarizing noise. In this limit, the constrained part of the dynamics thermalizes within each Krylov
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sector much faster than the time scale over the constraint-breaking term acts. In this situation, the internal structure
of the dynamics within each Krylov sector is trivial: as soon as a state reaches a new sector, it instantly spreads out
uniformly across that sector, and the thermalization dynamics is consequently controlled solely by transitions between
sectors. We will denote the Markov generator of this dynamics byMnonloc:

Mnonloc ≡ (MoMe)
∞ML = ΠunifML, (6.70)

where
Πunif =

∑

vs

1

|Kvs |
∑

s,s′∈Ks

|s〉〈s′| (6.71)

projects product states onto the uniform distribution over the Krylov sector they belong to.
Analytic bounds on the gap of Mnonloc are naturally easier to obtain than bounds on that of Mloc, since for the

former, the locality of the dynamics does not come into play. In almost all of this section we will thus focus onMnonloc,
rather thanMloc. This is done without loss of generality since we are primarily interested in obtaining upper bounds on
the gap, and naturally the lack of locality means that

∆Mnonloc ≥ ∆Mloc , (6.72)

so that an upper bound on∆Mnonloc will also upper bound∆Mloc . On physical grounds we in fact expect

∆Mloc ∼
∆Mnonloc

L
, (6.73)

with the 1/L coming from the time needed for the dynamics to make transitions induced by the bath felt across the
system. Indeed, we will see shortly that numerical determinations of the gap agree with this scaling.

6.5.3 N > 2

In this subsection we prove a variety of results establishing exponentially slow thermalization in the strongly fragmented
models obtained whenN > 2. The case ofN = 2, where thermalization is expected to be much faster, is dealt with in a
subsequent subsection.

The spectral gap

We begin by proving the following theorem:

Theorem 4. ForN > 2, the expansion of the Markov processMnonloc at large L satis"es

Φ(M) ≤ C

L3/2
ρL, (6.74)
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Figure 6.12: The krylov graph for L = 6, N = 3, with examples of regions C2, C4 indicated by the dashed lines.

where C is an unimportantO(1) constant

ρ ≡ 2
√
N − 1

N
< 1 (6.75)

is the spectral radius of the symmetricN -ary tree.

To prove this, we need the following de!nition:

De"nition 4. For a length d − 1 irreducible string sd−1, de!ne the cone Csd−1 ⊂ H as the subregion of Hilbert space
spanned by the N − 1 sectors which lie at depth d and whose parent vertex is associated with the string sd−1, together
with all sectors which are children of these sectors. More formally, we have

Csd−1 ≡
⊕

s′ : (s′1...s
′
d−1)=sd−1, |s′|≥d

Ks′ , (6.76)

where the sum is over all irreducible strings of length ≥ d whose !rst d − 1 entries are equal to sd−1. When the exact
string sd−1 is not important, we will simply writeCd instead ofCsd−1 . A graphical illustration of this de!nition is shown
in Fig. 6.12.

Our proof of Theorem 4 will rely on the following Lemma:

Lemma 1. The expansion of Cd is

Φ(Cd) =
N − 1

N

|K(L−1)
d−1 |

∑(L−d)/2
c=0 |K(L)

d+2c|(N − 1)2c+1
. (6.77)
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Figure 6.13: The number of states in the cone Cd for N = 3, L = 30. The exact result (circles) is compared with the
asymptotic expression (6.81) (solid line).

In particular, when both L, d are large and L− d = Θ(L), Φ(Cd) behaves as

Φ(Cd) ≈
2(N − 1)e(d/L−vN )(1−vN )

N2



Θ(d− vNL)(d/L− vN ) +Θ(vNL− d)
e−

(d−vNL)2

2L

√
2πL



 , (6.78)

where vN = 1− 2/N as before.

Proof. To determine Φ(Cd), we need to know the sizes of both Cd and its boundary. The exact size of Cd is

|Cd| =
(L−d)/2∑

c=0

|Kd+2c|(N − 1)2c+1. (6.79)

When both L and d are large, we may use (6.46) to write

|Cd| ≈
(N − 1)2−dNL−1

√
2πL

∫ L−d

0
dx exp

(
− (x+ d− vNL)2

2L

)
. (6.80)

The value of this expression depends on the sign of d/L − vN , which we will assume is Θ(L). If d/L > vN , then
the saddle point of the integrand does not lie within the integration domain, and we may approximate the integral by
e−(d−vNL)2/2L/(d/L−vN ). If d/L < vN wemay use the saddle point approximation, with the integral becoming

√
2πL.

Thus
|Cd| ≈

(N − 1)2−dNL−1

√
2πL

(
Θ(d− vNL)

e−(d−vNL)2/(2L)

d/L− vN
+Θ(vNL− d)

√
2πL

)
, (6.81)

which is shown plotted against the exact result (6.79) in Fig. 6.13. This result means that when d > vNL, most of the
states inCd are concetrated at a depth of d, while when d < vNL, most of the states are concentrated within a window of
width ∼

√
L around vNL. This can be understood simply from the concentration of the biased random walk discussed
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near (6.46).
To get Φ(Cd), we need to calculate the probability for states in Cd to move to the complement Cc

d under one step of
Mnonloc. Clearly the only states which can do so are those in theN − 1 sectors at depth d. UnderMnonloc, an arbitrary
state is equally likely (with probability 1/N ) to move to each of the N − 1 distinct sectors it is connected to. Therefore
since there areN − 1 sectors in Cd whose states can be connected to Cc

d,

∑

ψ∈Cd

∑

ψ′∈Cc
d

〈ψ′|Mnonloc|ψ〉 =
N − 1

N
|{ψ ∈ Kd : ∂ψ ∩Kd−2 5= 0}| (6.82)

where Kd is one of the depth d sectors in Cd, Kd−2 is the depth d − 2 sector it is connected to, and ∂ψ denotes those
states that have nonzero overlap withMnonloc|ψ〉. If a state in Kd is to have ∂ψ ∩ Kd−2 5= 0, the length-L walk on TN

associated to ψ must lie at depth d− 1 at step L− 1. Therefore

|{ψ ∈ Kd : ∂ψ ∩K(L)
d−2}| = |K(L−1)

d−1 |, (6.83)

from which the exact expression (6.77) then follows. The approximate expression in (6.78) is then obtained using (6.46)
and a bit of algebra.

Themost important aspect of (6.78) is thatΦ(Cd) is exponentially small inL if d < vNL, while it isO(1) and roughly
L-independent when d > vNL. From (6.62), this means that a state initially localized in a random state in Cd will take
exponentially long to di"use out of Cd when d < vNL, while it can take only O(1) time when d > vNL. This means
that di"usion on the Krylov graph is fast for states corresponding to random walks that reach a distance further from
the center of the graph than the expected distance of vNL, and slow for states that reach a distance less than vNL. The
crossover between these two regimes occurs over a window of depths centered on vNL and of width ∼

√
L, which is

where most of the states inH lie.
As a particular case of the previous lemma and (6.40), we have

Corollary 1. The conductance of the region C2 is

Φ(C2) = (N − 1)
|K(L−1)

1 |
NL − |K(L)

0 |
∼ L−3/2ρL, (6.84)

where∼ denotes equality in the asymptotic scaling sense.

This then gives the desired bound appearing in Theorem 4.

By Cheeger’s inequality, we thus have the following corollary:

Corollary 2. The relaxation time trel ≡ ∆−1
Mnonloc

satis"es

trel ≥ C ′L3/2ρ−L (6.85)

for anO(1) constant C ′.
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Figure 6.14: Markov gaps for N = 3, computed with exact diagonalization. Left: The gap ∆Mnonloc of the non-local
chain (blue circles) !t to the analytic bound ∝ ρL3L

−3/2 (dashed line). Right: As left, but for the local chainMloc, and
!t to ∝ ρL3L

−5/2.

The above arguments have only established an upper bound on the expansion, but in fact we expect this bound to
be fairly tight, as we expect C2 to be fairly close to the true region of minimal expansion. As steps in this direction, we
note !rst that the region with minimal expansion will always be connected.3 Suppose now that Φ(R) is minimized by
a connected region whose boundary de!nes a cut between vertices on the Krylov graph, i.e. suppose that for all Ks,
either Ks ⊂ R or Ks ∩ R = ∅. If this is true then Φ(R) is obviously minimized for R = Cd for some d, since for a given
Ks ∈ R, including every child sector ofKs inR increases |R| but leaves

∑
ψ∈R

∑
ψ′∈Rc〈ψ′|Mnonloc|ψ〉 unchanged. This

C2 de!nes aminimal expansion region if one can show that aminimal expansion cutmust always bemade betweennodes
on the Kyrlov graph, instead of being made within any particular node. This may not be true in complete generality, but
we expect C2 to be close enough to the region of minimal expansion that Φ(Mnonloc) still follows the same asymptotic
scaling as the upper bound (6.74). We thus conjecture that there exist constants C1, C2 such that

C1L
−3ρ2L ≤ ∆Mnonloc ≤ C2L

−3/2ρL. (6.87)

While ρ < 1—implying exponentially large relaxation times—the factors ofL−3/2, L−3 appearing in the above inequality
dominate over the exponentiall parts for modest values of L, meaning that for smaller system sizes we expect a mostly
power-law scaling of trel.

In Fig. 6.14 we determine the gaps of bothMnonloc and its local variantMloc for very small system sizes using exact
diagonalization. For the small values of L available, we observe a scaling of ∆Mnonloc ∼ ρ3L−3/2, consistent with a

3This follows simply from the fact that for positive numbersA1,2, V1,2,
A1 +A2

V1 + V2
=

A1

V1
p+

A2

V2
(1− p) ≥ min(A1/V1, A2/V2), (6.86)

where p ≡ (1/V2)/(1/V1 + 1/V2).
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saturation of the upper bound on trel obtained from (6.87). We likewise observe a good !t of ∆Mloc to ρ3L−5/2, with
locality thus providing an extra factor of 1/L, as advocated for around (6.73).

In the following subsections, we prove that the exponentially long thermalization time is also manifested in both the
growth of entanglement entropy, and in the expectation values of certain local operators.

Entanglement entropy

We now use the formalism developed in the previous section to bound entropy growth. We will !rst focus on the case
where the dynamics is that of a random unitary circuit perturbed by depolarizing noise on the boundary. In this setting,
our diagnostic of thermalization will be the von Neumann entropy of the time-evolved state:

S(t;ψ) ≡ E
Ct

S(Ct(|ψ〉〈ψ|)), (6.88)

where the average is over depth-t quantum circuits Ct de!ned as in themain text, andψ is a product state of our choosing.
More generally, for a subspaceR ⊂ H spanned by product states, wewill be interested in the average of the entanglement
entropy when the initial states are sampled uniformly from R:

S(t;R) ≡ E
ψ∈R

S(t;ψ). (6.89)

The ultimate !xed point of the dynamics we consider is always the maximally mixed state 1, so that regardless of R,
S(t → ∞;R) = L lnN .

We will prove the following:

Theorem 5. Let Cd be as in (6.76), and suppose that d satis"es

d < vNL, vNL− d = Θ(L). (6.90)

Then
S(t;Cd) ! L ln(N)

(
1− d

L

ln(N − 1)

ln(N)
+ t

Fd√
L
e−L

(d/L−vN )2

2

)
+ c, (6.91)

where c = 1/e+ 2 ln(N − 1)− ln(N) and Fd is anO(1) constant:

Fd =
4(N − 1)√

2πN2
e(d/L−vN )(1−vN ). (6.92)

This means that the entropy of the system will take a time exponentially long in system size to saturate if initialized
in a random state in Cd, although it may quickly approach the sub-maximal volume-law value of

ln(|Cd|) ≈ L ln(N)

(
1− d

L

ln(N − 1)

ln(N)

)
. (6.93)

In particular, it is easy to see that S(t; |ψ〉〈ψ|) ≤ S(t;Cd) for all d if |ψ〉 is any state on the boundary of the Krylov graph,
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and thus a bound on the thermalization times of such boundary states may be obtained by minimizing the RHS of (6.91)
over d satisfying (6.90).

Proof. By the concavity of the entropy and linearity of the trace, we have

S(t;Cd) ≤ S(E
Ct

E
ψ∈Rd

Ct(|ψ〉〈ψ|)) ≡ S(ρ(t; d)), (6.94)

where ρ(t; d) is the channel- and state-averaged density matrix:

ρ(t; d) = E
Ct

E
ψ∈Cd

Ct(|ψ〉〈ψ|). (6.95)

Normally this inequality is of limited use when studying random unitary circuits, since the averaged reduced density
matrix is usually rendered trivial by the average over the RU part of the dynamics. In our case, the slow mixing ofM
will mean this is not so; indeed our above result on trel will be seen to imply that for exponentially long times, ρ(t; d) has
most of its support on only an exponentially small fraction of Hilbert space.

Anticipating this, we will !rst show that if σ is a density matrix mostly supported on some subspaceR, and if σ does
not connect R with its complement, then S(σ) cannot be much more than ln |R|. To this end, de!ne

σR ≡ ΠRσΠR

Tr[ΠRσ]
, (6.96)

where ΠR projects onto R. If ΠRσΠ⊥
R = 0 (where Π⊥

R ≡ 1−ΠR), then the trace distance between σ and σR is

T (σ,σR) = Tr|σR − σ|

= Tr
∣∣∣∣
ΠRσΠR

Tr[ΠRσ]
−ΠRσΠR −Π⊥

RσΠ
⊥
R

∣∣∣∣

= 1− Tr[ΠRσ] + Tr[Π⊥
Rσ]

= 2Tr[Π⊥
Rσ].

(6.97)

Fannes’ inequality then implies4

|S(σ)− S(σR)| ≤ T (σ,σR) ln(NL) +
1

e
= 2L ln(N)Tr[Π⊥

Rσ] +
1

e
. (6.98)

Since rank(σR) ≤ |R|, we have S(σR) ≤ ln |R|. Therefore

S(σ) ≤ ln |R|+ 2L ln(N)Tr[Π⊥
Rσ] +

1

e
. (6.99)

4This is not the strongest version of Fannes’ inequality, but strengthening it only modi!es the unimportant L-independent part.
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We now apply the above inequality to the model under study. From the de!nition of ρA(t; d),

Tr[Π⊥
Cd
ρ(t; d)] = P (ψ(t) ∈ Cc

d | ψ(0) ∈ Cd), (6.100)

where the probability on the RHS is calculated usingM. From (6.63), we then know that

Tr[Π⊥
Cd
ρ(t; d)] ≤ tΦ(Cd). (6.101)

Since ρ(t; d) is diagonal in the computational basis, we have ΠCdρ(t; d)Π
⊥
Cd

= 0, which allows us to apply (6.99) to give

S(t;Cd) ≤ ln(|Cd|) + 2tL ln(N)Φ(Cd) +
1

e
. (6.102)

By (6.78) and our assumption that d < vNL, the expansion of Cd is

Φ(Cd) ≈
Fd

2
√
L
e−L

(d/L−vN )2

2 , (6.103)

where the O(1) constant Fd is de!ned as in (6.92). Relatedly, (6.81) gives |Cd| ≈ (N − 1)2−dNL−1 since d < vNL, and
so

S(t;Cd) ! L ln(N)

(
1− d

L

ln(N − 1)

ln(N)
+ t

Fd√
L
e−L

(d/L−vN )2

2

)
, (6.104)

where the ! indicates that we have dropped the constant c appearing in (6.91).

This Theorem shows that the entropy for typical states in Cd will take a time exponential in system size to fully
saturate provided vN −d/L is positive and orderL0. Tomake this more concrete, we de!ne the entanglement saturation
time tS(γ;ψ) as the time needed for S(t;ψ) to reach a fraction γ of its maximal value S(t → ∞;ψ) = L lnN :

tS(γ;ψ) ≡ min{t : S(t;ψ) ≥ γL lnN}. (6.105)

We then have:

Corollary 3. Suppose that γ satis"es

1 > γ > γ∗, γ∗ ≡ 2

(
1− vN

ln(N − 1)

ln(N)

)
, (6.106)

with |γ − γ∗| = Θ(L0). Then if |ψ〉 is a state on the boundary of the Krylov graph,

tS(γ;ψ) ≥
γ

2Fdγ

√
LeL

(dγ/L−vN )2

2 , (6.107)

where
dγ = L(1− γ/2)

ln(N)

ln(N − 1)
. (6.108)
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Proof. This follows directly from Theorem 5 after !xing d = dγ , so that 1− (d/L) ln(N − 1)/ ln(N) = γ/2.

Note that |γ− γ∗| = Θ(L0) implies |dγ − vNL| = Θ(L), so that tS(γ;ψ) is exponentially large in L. The result (6.91)
suggests that a product state at the boundary of the Krylov graph thermalizes in the following two-stage process. In the
!rst stage, the system undergoes a period of rapid entanglement growth as it quickly occupies sectors at depths d ≥ vNL,
with the entropy reaching a value of S ≈ ln |CvNL|. In the second stage, it undergoes a gradual ln(t) growth which takes
exponentially long in L to saturate to the steady state value. Note that the length of the !rst stage becomes smaller asN
gets larger, on account of the fact that vN→∞ = 1.

While there are exponentially many states on the boundary of the Krylov graph, such states are still an exponentially
small fraction of all computational basis product states. Nevertheless, a random product state is exponentially likely to
have an entanglement saturation time scaling in the same way as states on the boundary of the Krylov graph:

Corollary 4. For γ satisfying (6.106),

Pψ

[
tS(γ;ψ) ≥

γ

2Fdγ

√
LeL

(dγ/L−vN )2

2

]
" 1−

√
L√

2πdγ
e−L

(dγ/L−vN )2

2 , (6.109)

where ψ is sampled uniformly from all computational basis product states.

Thus with unit probability in the L → ∞ limit, the dynamics initialized from |ψ〉 takes exponentially long to ther-
malize.

Proof. As we have seen above, if ψ is sampled uniformly from H, for large L, |irr(ψ)| will be distributed according to a
biased random walk on N with velocity vN , and hence Pψ[|irr(ψ)| = d] ≈ 1√

2πL
e−L(d/L−vN )2/2. Thus

Pψ[|irr(ψ)| ≤ dγ ] !
1√
2πL

∫ dγ

0
dx e−L

(x/L−vN )2

2 ≈
√
L√

2πdγ
e−L

(dγ/L−vN )2

2 , (6.110)

which is exponentially small in L since |dγ − vNL| = Θ(L). Thus a randomly drawn ψ is exponentially likely to be
contained inCdγ . Furthermore, the concentration of |irr(ψ)| about vNLmeans that the saturation time of this randomly
chosen state will be bounded using 1/Φ(Cdγ ) in the same way as in Corollary 3.

Thus far we have focused on the entropy of the full system’s density matrix when undergoing evolution by the open
dynamics Ct. In the setting with closed system time evolution performed by an appropriate random unitary circuit Ut,

Corollary 5. For a spatial bipartitionAB, |A| = |B| = L/2, de"ne the circuit-averaged bipartite entanglement entropy as

SA(t;ψ) ≡ E
Ut

S(TrB [U†
t |ψ〉〈ψ|Ut]). (6.111)

Then SA(t;Cd) ≡ Eψ∈Cd SA(t;ψ) satis"es

SA(t;Cd) ! L ln(N)

(
1− d

L

ln(N − 1)

ln(N)
+ t

2Fd√
L
e−L

(d/L−vN )2

2

)
+ c, (6.112)
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whose only di!erence with respect to the bound (6.91) is a factor of 2 in the term proportional to t.

Proof. The reasoning is almost exactly the same as in the proof of Theorem 5. The only di"erence is in the anologue of
(6.98) that one obtains, which instead reads

|S(σA)− S(σR
A)| ≤ T (σA,σ

R
A) ln(N

L/2) +
1

e
≤ LTr[Π⊥

Rσ] lnN +
1

e
. (6.113)

This follows from (6.98) after using the fact that the trace distance is monotonically decreasing under partial trace, so
that the reduced density matrices σA,σR

A of the σ,σR appearing in (6.98) satisfy

T (σA,σ
R
A) ≤ 2Tr[Π⊥

Rσ]. (6.114)

Note that the maximum possible value of SA(t;Cd) is L
2 lnN , which is smaller than the t = 0 value of (6.112) only if

ln(|CvNL|) = L ln(N)

(
1− d

L

ln(N − 1)

ln(N)

)
<

L

2
lnN =⇒ N ≥ 5, (6.115)

from which we conclude that (6.112) provides a meaningful bound only ifN ≥ 5.

Operator relaxation times

We now examine how operator expectation values diagnose the long relaxation times computed above. For an operator
O of unit norm and a computational basis product state |ψ〉, we de!ne the relaxation time tO(γ;ψ) by the time needed
for the expectation value of O in the circuit-averaged state ρ(t;ψ) ≡ ECt Ct(|ψ〉〈ψ|) to relax to within an amount γ of
its circuit-averaged equilibrium value, where we require that 0 < γ < 1, γ = Θ(L0). Since the circuit-averaged density
matrix at long times is simply 1/|H|, this de!nition reads

tO(γ;ψ) ≡ min{t : |〈O〉ρ(t;ψ) −
1

|H|Tr[O]| ≤ γ}. (6.116)

It is not obvious that operators with exponentially long relaxation times exist. If one was willing to give up locality,
a naive guess would be to let |ψ〉 be a state at the edge of the Krylov graph, and to set O = |ψ̃〉〈ψ̃|, where |ψ̃〉 is any
product state on the edge of the tree whose Hamming distance with |ψ〉 is L. In this case 〈O〉ρψ(t) vanishes at t = 0

and indeed takes a time of ∼ trel to increase to its equilibrium value, but that value is Tr[|ψ̃〉〈ψ̃|]/|H| = N−L, whose
smallness means that t|ψ̃〉〈ψ̃|(γ;ψ) = 0 by virtue of our requirement that γ = Θ(L0).

Fortunately, there nevertheless exist local operators whose relaxation times are exponentially long. These are the
normalized charge operators

Qa =
2

L

∑

i

(−1)i|a〉〈a|i. (6.117)
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Figure 6.15: The quantum numbers of each Krylov sector under the symmetries Qa for N = 3 and a system of size
L = 6. The darkest red sectors have the maximum value ofQa = L/2; the darkest blue haveQa = −L/2.

Indeed, let ψmax,a be a product state with maximal Qa charge 〈Qa〉ψmax,a = 1. For concreteness, we will !x ψmax,a =

(ba)L/2 where b = a+ 1 mod N . In this section, we will prove the following theorem:

Theorem 6. Let 0 < γ < vN/2, γ = Θ(L0). Then the relaxation time ofQa in the state |ψmax,a〉 is exponentially long:

tQa(γ;ψmax,a) " Dγ

√
LeL

(2γ−vN )2

2 , (6.118)

where theO(1) constantDγ is de"ned as

Dγ ≡ 2(1 + 2γ)(N − 1)

N2
√
2π

e−(2γ−vN )(1−vN ). (6.119)

We will in fact prove a slightly more general version of this theorem which allows for more freedom in the choice of
the initial state.

Proof. Our proof strategy is to de!ne a subspaceA of states inHwhich all have a large nonzero expectation value ofQa,
and then argue that a system initialized in A typically takes an exponentially long time to move to the complement Ac

of A inH. While knowing the values ofQa in a given product state do not allow one to distinguish where in the Krylov
graph that state lies, the distribution ofQa charges in the Krylov graph is not homogeneous (see Fig. 6.15), and this can
be used to select out an appropriate choice of A. Fixing b ≡ (a + 1) mod N as above, and assuming that Lη ∈ 2N in
what follows for simplicity of notation, the space we choose is the cone

A = C(ba)Lη/2 = {ψ : irr(ψ) = (ba)1Lη/22 × Σ∗}, (6.120)

where Σ∗ is the set of the irreducible strings of all the product states of length less than L(1− η), namely A is the space
of all product states whose irreducible strings have the !rst 2>Lη/2? elements equal to (ba)Lη/2 (c.f. (6.76)).

119



Let us compute the expected value ofQa obtained after evolving a random state in A for time t,

〈Qa〉A(t) ≡ E
ψ∈A

〈Qa〉ρ(t;ψ). (6.121)

This is

〈Qa〉A(t) = E
ψ∈A




∑

ψ′∈A

P (ψ(t) = ψ′|ψ(0) = ψ)〈Qa〉ψ′ +
∑

ψ′∈Ac

P (ψ(t) = ψ′|ψ(0) = ψ)〈Qa〉ψ′





≥ E
ψ∈A




∑

ψ′∈A

P (ψ(t) = ψ′|ψ(0) = ψ)〈Qa〉ψ′



− P (ψ(t) ∈ Ac |ψ(0) ∈ A),

(6.122)

where we usedminψ∈H〈Qa〉ψ = −1. To deal with the !rst term, we need

Lemma 2. The average charge of states which begin in A and remain inA at time t satis"es

E
ψ∈A

∑

ψ′∈A

P (ψ(t) = ψ′ |ψ(0) = ψ)〈Qa〉ψ′ ≥ η(1− P (ψ(t) ∈ Ac |ψ(0) ∈ A)). (6.123)

Proof. This is true because the average value of Qa for states in A is at least η. Showing this is complicated slightly by
the fact that there exist states in A with 〈Qa〉ψ as small as η − (1− η) = 2η − 1. Our strategy will be to show that these
states always pair up with states of larger charge to give an average charge bounded below by η.

To this end, for each ψ ∈ A, write irr(ψ) = (ba)Lη/2×sψ for some length |irr(ψ)|−Lη irreducible string sψ . Suppose
!rst that the second entry of sψ is not equal to a, [sψ]2 5= a. Then de!ne ψ̃ as the state whose irreducible string di"ers
from irr(ψ) by a cyclic permutation on the last |sψ| entries:

sψ̃ = T (sψ), (6.124)

whereT is the cyclic permutationT (a1 · · · an) = a2a3 · · · an−1a1. Note that irr(ψ̃) = irr(ψ)×sψ̃ is an allowed irreducible
string since [sψ̃]2 5= a by assumption. Thus

E
ψ′∈A

P (ψ(t) = ψ |ψ(0) = ψ′) = E
ψ′∈A

P (ψ(t) = ψ̃ |ψ(0) = ψ′). (6.125)

We may thus write

E
ψ∈A

∑

ψ′∈A

P (ψ(t) = ψ′|ψ(0) = ψ)〈Qa〉ψ′ = E
ψ∈A

∑

ψ′∈A : [sψ′ ]2 *=a

P (ψ(t) = ψ′|ψ(0) = ψ)
〈Qa〉ψ′ + 〈Qa〉ψ̃′

2

+ E
ψ∈A

∑

ψ′∈A : [sψ′ ]2=a

E
ψ∈A

P (ψ(t) = ψ′ |ψ(0) = ψ)〈Qa〉ψ,
(6.126)

The point of writing things like this is that (〈Qa〉ψ′ + 〈Qa〉ψ̃′)/2 = η, simply because the Qa charge of sψ̃ is opposite to
that of sψ (on account of the fact that T interchanges sublattices and thus TQaT−1 = −Qa), meaning that (〈Qa〉ψ′ +
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〈Qa〉ψ̃′)/2 receives contributions only from the !rst Lη characters of irr(ψ′), which carry aQa charge of η. Therefore

E
ψ∈A

∑

ψ′∈A

P (ψ(t) = ψ′|ψ(0) = ψ)〈Qa〉ψ′ = η E
ψ∈A

∑

ψ′∈A : [sψ′ ]2 *=a

P (ψ(t) = ψ′|ψ(0) = ψ)

+ E
ψ∈A

∑

ψ′∈A : [sψ′ ]2=a

P (ψ(t) = ψ′ |ψ(0) = ψ)〈Qa〉ψ.
(6.127)

The second summand in (6.127) can be dealt with similarly. Since this summand contains only states with [sψ′ ]2 = a,
(ba)Lη/2×T (sψ′) is not an allowed irreducible string. We thus instead split up the states in the sum asψ′ = (ba)Lη/2ca×

pψ′ for some c 5= a, where pψ′ is a lengthL−Lη/2−2 irreducible stringwith [pψ′ ]1 5= a. We can then pair up the subset of
these states with [pψ′ ]2 5= a in the samemanner as was done above by de!ning an appropriate ψ̃′ obtained from cyclically
shifting pψ′ ; each pair appearing in the sum is then seen to have an averageQa charge of η+2/L. Repeating this process,
the successive paired states one generates are all seen to have average charge η+2n/L, with 0 < n ≤ (1− η)L/2. Since
these average charges are all strictly greater than η, we obtain the bound

E
ψ∈A

∑

ψ′∈A

P (ψ(t) = ψ′|ψ(0) = ψ)〈Qa〉ψ′ ≥ η E
ψ∈A

∑

ψ′∈A

P (ψ(t) = ψ′ |ψ(0) = ψ)

= ηP (ψ(t) ∈ A |ψ(0) ∈ A)

= η(1− P (ψ(t) ∈ Ac |ψ(0) ∈ A)),

(6.128)

which is what we wanted to show.

This result lets us write (6.122) as

〈Qa〉A(t) ≥ η − (1 + η)P (ψ(t) ∈ Ac |ψ(0) ∈ A)), (6.129)

with the second term being bounded from above by tΦ(A) as in (6.63). Since A is a union of cones, the expansion of A
is simply

Φ(A) = Φ(CLη+2), (6.130)

and so

〈Qa〉A(t) ≥ η − t(1 + η)Φ(CLη+2). (6.131)

As we saw in (6.78), Φ(Cd) is exponentially small only when d < vNL, |d/L − vN | = Θ(L0). To get a long relaxation
time, we thus will need to assume that

η < vN , (6.132)

with |η − vN | = Θ(L0). If this is the case, we conclude from (6.78) that

〈Qa〉A(t) ≥ η − t

Dη/2

√
LeL

(η−vN )2

2

, (6.133)
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with the constant
Dη/2 ≡ N2

√
2π

2(1 + η)(N − 1)
e−(η−vN )(1−vN ). (6.134)

The advertised bound on tQa(γ;ψmax,a) is then obtained by setting η = 2γ. Notably, when γ → 0, 〈Qa〉A(t) " 2γ −

tΦ(C2), so that the lower bound of tQ is equal to that of the relaxation time, i.e.,

tQa(γ → 0;ψmax,a) " 1/Φ(C2) ∼ L3/2ρ−L
3 . (6.135)

6.5.4 N = 2

Wenow compute the expansion forN = 2. In this case we expect a large expansion—and hence a fast mixing time—due
to the absence of strong Hilbert space bottlenecks.

In this subsection we will !nd it most convenient to label the Krylov sectors by their chargeQ, de!ned as

Q ≡
∑

i

(−1)iZi, (6.136)

with 〈Q〉ψ measuring the endpoint of the random walk de!ned by the product state ψ. For a length-L system, there are
thus L + 1 sectors KQ, with Q ∈ {−L,−L + 2, · · · , L − 2, L} (in the language of the charges Qa discussed for N > 2,
Q = Q1 −Q2). The dimensions of these sectors are accordingly determined as

|KQ| =
(

L
L+Q
2

)
. (6.137)

We now argue that charge relaxation in this case is polynomially fast. In particular, we will argue that the spectral
gap ofMnonloc satis!es

1

πL
≤ ∆Mnonloc ≤

√
8

πL
. (6.138)

We will give a rigorous proof of the upper bound, and a slightly less rigorous one for the lower bound. As in our analysis
of the N > 2 case, the lack of rigour for the lower bound comes from making the assumption that the subset S ⊂ H

withminimal expansion is determined by a cut which passes “between” two Krylov sectors, rather than cutting “within”
a given sector. Even if this is not true, we expect the minimal expansion to be asymptotically the same as the minimum
expansion of a region de!ned by making only inter-sector cuts.

With this assumption, it is straightforward to see that the S with minimal expansion can be taken without loss of
generality to be of the form

SQ =
⋃

Q′≥Q

KQ′ , (6.139)

with the minimal SQ having Q ≥ 0 without loss of generality; in the language of our N > 2 discussion this is simply a
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cone CQ. To !nd the minimal SQ, we use the recursion relation

|KQ| = |∂SQ|+ |∂SQ+2|, (6.140)

which holds for allQ ≥ 0 and follows from the fact that each state inKQ is connected to exactly one state inKQ+2∪KQ−2.
Solving this recursion relation for |∂SQ| yields

|∂SQ| =
L∑

Q′=Q

(−1)
Q′−Q

2 |KQ′ |, (6.141)

where the sum accordingly only includes thoseQ′ with the same parity as L. Now the di"erence in expansions between
adjacent sectors is

Φ(SQ+2)− Φ(SQ) =
|SQ||∂SQ+2|− |SQ+2||∂SQ|

|SQ||SQ+2|
, (6.142)

which can be evalulated using (6.141) and the dimensions |KQ|, with some unilluminating algebra showing that the
RHS is always positive, meaning that Φ(SQ) is minimized on the smallest value of Q (viz. Qmin = L mod 2). Taking
L ∈ 2N+ 1 for notational simplicity, this gives

Φ∗ = Φ(S1) = 21−L
(L−1)/2∑

k=0

(−1)k
(

L
L+1
2 + k

)
=

L+ 1

L2L

(
L

L+1
2

)
≈
√

2

π
L, (6.143)

where we used |S1| = |H|/2 in the second equality,
∑l

k=0(−1)k
( 2l+1
l+k+1

)
= l+1

2l+1

(2l+1
l+1

)
in the third, and Stirling’s approx-

imation in the fourth. Cheeger’s inequality thus tells us that

1

πL
≤ ∆Mnonloc ≤

√
8

πL
, (6.144)

which is what we wanted to show.
Calculating the gaps of ∆Mloc ,∆Mnonloc exactly for small values of L with exact diagonalization yields the scaling

shown in Fig. 6.16. Even for very small values of L, the scaling of ∆Mnonloc !ts very well to the linear lower bound of
∼ L−1. The gap of the local chainMloc is (as expected) observed to scale slower by one power of L as ∆Mloc ∼ L−2,
consistent with the simulations of Fig. 6.3. These !nding are consistent with those reported in Ref. [121].

6.6 Lackof thermalization inTemperley-Liebmodels perturbedbya single-
site impurity

In this section we show that a certain class of SU(N) symmetric models—referred to as Temperely-Lieb Hamiltonians
in what follows—are such that they remain fragmented even when perturbed by an arbitrary term that has support only
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Figure 6.16: Markov gaps for N = 2, computed with exact diagonalization. Left: The gap ∆Mnonloc of the non-local
chain (green circles) !t to the analytic bound∝ L−1 (dashed line). Right: As left, but for the local chainMloc, and !t to
∝ L−2.

on a single site. The Hamiltonians we consider are of the form [107, 108, 109]

HTL =
L∑

i=1

giPi,i+1, Pi,i+1 ≡ 1

N

N∑

a,b=1

|a, a〉〈b, b|i,i+1 ≡ |Ψ〉〈Ψ|i,i+1 (6.145)

withN > 2 in all of what follows. The projectors Pi,i+1 satisfy P 2
i,i+1 = Pi,i+1 and obey the Temperly-Lieb algebra

Pi,i+1Pj,j+1Pi,i+1 =
1

N2
Pi,i+1, i = j ± 1

Pi,i+1Pj,j+1 = Pj,j+1Pi,i+1, |i− j| > 1.
(6.146)

The product states |s〉 =
⊗L

i=1 |si〉 with si 5= si+1 for all i = 1, . . . , L− 1 are clearly annihilated byHTL. However,
these are far from the only types of states in the kernel of HTL. Frozen states can be constructed using “singlets” like
|Φab〉 ∝ |aa〉 − |bb〉, which are orthogonal to |Ψ〉, as well as more complicated states. For example, when L = 3 we may
write down the state

|Λ〉 ∝
∑

a=1,...,N

ζa−1
N (|1aa〉+ |aa1〉)− |111〉, (6.147)

where ζN = e2πi/N . |Λ〉 is annihilated by bothP1,2 andP2,3 but is not constructible from the |Φab〉 or the |s〉. This makes
enumeratingHTL’s frozen states rather complicated.

Nevertheless, owing to the TL algebra obeyed by the projectors Pi,i+1, quite a large amount of information about
the spectrum ofHTL can be determined analytically, even without explicitly constructing any eigenstates. We will only
need to know a few facts about the counting ofHTL’s degenerate levels, the !rst of which is [108]
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Proposition 4. On an open chain of length L, the number of zero-energy eigenstates ofHTL is

|ΩL| =
(N +

√
N2 − 4)L+1 + (N −

√
N2 − 4)L+1

2L+1
√
N2 − 4

. (6.148)

If gi ≥ 0 for all i, HTL is frustration free, and the states in ΩL are in one-to-one correspondence with the ground
states ofHTL. Our results however will hold for arbitrary gi.

Proof. To keep our presentation self-contained, we will reproduce the proof from Ref. [108]. Let ΩL denote the space of
states annihilated by all of the Pi,i+1:

ΩL ≡
⋂

i

kerPi,i+1. (6.149)

We are interested in obtaining the dimension |ΩL| of this space.
We proceed by induction. Given ΩL−1, we determine ΩL as

ΩL = ker(P1,2 : H⊗ ΩL−1 → |Ψ〉 ⊗ ΩL−2), (6.150)

whereH is the onsite Hilbert space. It is easy to check that the map P1,2 is surjective, and thus |ΩL| is determined as

|ΩL| = dim[H⊗ ΩL−1]− dim[|Ψ〉 ⊗ ΩL−2] = N |ΩL−1|− |ΩL−2|. (6.151)

The initial values needed to set up a recurrence relation are |Ω0| = 1, |Ω1| = N . The soltuion to this recurrence
relation is precisely (6.148).

We now ask about the spectrum of the model

H = HTL +Himp, (6.152)

where Himp is an arbitrary N × N single-site Hamiltonian acting on the !rst site only. Cases with impurities acting
in the middle of the chain, or with multiple non-adjacent impurities, can be treated similarly at the expense of more
complicated notation.

We can use a similar approach as the one used in the computation of |ΩL| to determine a large number of degenerate
states ofH :

Proposition 5. Let |α〉 be the eigenstates of Himp and εα be the corresponding eigenvalues. Let ΩαL denote the eigenstates
ofH with eigenvalue εα. Then ΩαL is always non-empty, and in particular has degeneracy

|ΩεαL | = |ΩL−1|− |ΩL−2|. (6.153)

This proposition is rather surprising at face value: since [Himp,HTL] 5= 0we would not generically expectH to have
eigenvalues equal to those ofHimp, and (6.153) says that the number of such eigenvalues is in fact exponentially large in
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L. Indeed though, such states can be readily constructed, as we now prove.

Proof. Consder the space |α〉 ⊗ ΩL−1. States in this space are almost the desired eigenstates of H , but they are not
annihilated by P1,2. The desired eigenstates are thus identi!ed with the kernel

ΩαL = ker(P1,2 : |α〉 ⊗ ΩL−1 → |Ψ〉 ⊗ ΩL−2). (6.154)

The map P1,2 here is surjective for almost all choices ofHimp. Therefore using similar reasoning as above,

|ΩαL| = dim[|α〉 ⊗ ΩL−1]− dim[|Ψ〉 ⊗ ΩL−2]

= |ΩL−1|− |ΩL−2|

=
1

N
|ΩL|−

(
1− 1

N

)
|ΩL−2|.

(6.155)

A similar result holds in a situation where one places impurities on both ends of the chain:

Corollary 6. Let
Htwo−imp = HTL +Himp,1 +Himp,L, (6.156)

whereHimp,1/L are independently random single-site Hamiltonians on the left and right ends of the chain, respectively. Let
εα1/L

be their corresponding eigenvalues. Let alsoΩα1+βL

L be the set of eigenstates ofHtwo−imp with energy εα1 + εβL . Then

|Ωα1+βL

L | = |ΩL−2|− |ΩL−3|. (6.157)

This result is true even if the left and right impurities do not possess a common eigenbasis; all that matters is that
they act only on single sites.

Proof. The proof proceeds as in the previous proposition, except with the starting state drawn from the vector space
Ωα1

L−1 ⊗ |βL〉.

The above results tell us that even in the presence of local impurities, the spectrum ofH contains exponentially large
degeneracies. This leads to initially frozen states possessing memory of their initial conditions for in!nitely long times,
since the large number of degeneracies mean that a large number of energy levels of H do not dephase relative to one
another. The following theorem makes this intuition precise:

Theorem 7 (non-thermalization of the TL + impurity model). LetM be the memory that typical fozen states inΩL have
of their initial conditions:

M ≡ E
f∈ΩL

lim
T→∞

1

T

∫ T

0
dt |〈f |e−iHt|f〉|2, (6.158)
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where Ef∈ΩL denotes an average over states in ΩL. Then in the L → ∞ limit,

M =
1

N

(
1− 4(N − 1)

(N +
√
N2 − 4)2

)2

+ · · · (6.159)

is an order one constant (with the · · · denoting terms vanishing as L → ∞).

Proof. Our proof will proceed by making use of the degenerate eigenstates in ΩαL. We start by writing

M = E
f∈ΩL

∑

µ,ν∈Spec(H)

δEµ,Eν |〈µ|f〉|2|〈ν|f〉|2

≥ E
f∈ΩL

∑

α∈Spec(Himp)

∑

µ,ν∈ΩαL

|〈µ|f〉|2|〈ν|f〉|2

= E
f∈ΩL

∑

α∈Spec(Himp)

〈f |ΠΩαL
|f〉2,

(6.160)

where
ΠΩαL

=
∑

µ∈ΩαL

|µ〉〈µ| (6.161)

and the |µ〉, |ν〉 are orthonormal eigenstates ofH .
We then use ||v||22 ≥ 1

N ||v||21 for any v ∈ RN together with an application of Jensen’s inequality Ex[f(x)2] ≥

(Ex[f(x)])2 to write

M ≥ 1

N
E

f∈ΩL




∑

α∈Spec(Himp)

〈f |ΠΩαL
|f〉




2

≥ 1

N




∑

α∈Spec(Himp)

E
f∈ΩL

〈f |ΠΩαL
|f〉




2

.

(6.162)

The average over frozen states gives Ef∈ΩL |f〉〈f | = ΠΩL/|ΩL|, so

M ≥ 1

N |ΩL|2




∑

α∈Spec(Himp)

Tr[ΠΩαL
ΠΩL ]




2

. (6.163)

Since ΩαL ⊂ ΩL, the trace is simply |ΩαL| for all α. Thus

M ≥ N

(
|ΩαL|
|ΩL|

)2

=
1

N

(
1− (N − 1)

|ΩL−2|
|ΩL|

)2

∼ 1

N

(
1− 4(N − 1)

(N +
√
N2 − 4)2

)2

,

(6.164)

where the ∼ in the tast line denotes the leading scaling in the L → ∞ limit.
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Since M ∼ O(1) but |ΩL| is exponentially large, almost all frozen states are guaranteed to retain memory of their
intitial conditions for in!nitely long times. From our numerical results we believe this result should remain true even
when a term

HZ =
∑

i

∑

a=1

ha
i |a〉〈a|i (6.165)

is added to H , although the proof techniques for this case must necessarily be di"erent on account of the fact that the
degeneracy ofH ’s spectrum is completely lifted for a generic choice of ha

i .
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