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The space of parameter vectors for a feedforward ReLU neural networks with any

fixed architecture is a high dimensional Euclidean space being used to represent the

associated class of functions. However, there exist well-known global symmetries and

extra poorly-understood hidden symmetries which do not change the neural network

function computed by network with di↵erent parameter settings. This makes the true

dimension of the space of function to be less than the number of parameters. In this

thesis, we are interested in the structure of hidden symmetries for neural networks

with various parameter settings, and particular neural networks with architecture

(1, n, 1).

For this class of architectures, we fully categorize the insu�ciency of local func-

tional dimension coming from activation patterns and give a complete list of combina-

torial criteria guaranteeing a parameter setting admits no hidden symmetries coming

from slopes of piecewise linear functions in the parameter space. Furthermore, we

compute the probability that these hidden symmetries arise, which is rather small

compared to the di↵erence between functional dimension and number of parame-

ters. This suggests the existence of other hidden symmetries. We investigate two

mechanisms to explain this phenomenon better.

Moreover, we motivate and define the notion of "-e↵ective activation regions and

"-e↵ective functional dimension. We also experimentally estimate the di↵erence be-

tween "-e↵ective functional dimension and true functional dimension for various pa-

rameter settings and di↵erent ".
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Chapter 1

Introduction

1.1 Background and motivations

The parametrized family of ReLU neural network functions is a class of piecewise

linear functions with finitely many pieces parametrized by RD, where D is large

and determined by the architecture of the neural network. However, the parameter

space of a neural network of any fixed architecture has well-known global symme-

tries, which don’t change the function computed by a neural network. In particular,

the true dimension of the space of function is less than the number of parameters.

[Grigsby et al., 2022] introduced the notion of the functional dimension dimfun(✓) of

a parameter ✓ 2 ⇥. Roughly speaking, for a randomly chosen parameter ✓0 2 ⇥

satisfying certain conditions, the functional dimension is the dimension of subspace

T✓0(⇥) spanned by gradients of components of evaluations at an input data point.

These are the only directions that one can move when doing gradient descent near

✓0. Functional dimension also serves as an important tool in practice, as deep learn-

ing heavily relies on neural networks in expressing functions. Networks of a given

architecture are determined by weights and biases parameters, and the space of pa-

rameter vectors can be used to study the space of neural network functions of the
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given architecture. But the functional dimension changes across parameter space due

to hidden symmetries, which are poorly understood. The purpose of this thesis is

to investigate the structure of hidden symmetries for a ReLU neural network with

architecture (1, n, 1), and have some further discussions on deeper bias-free networks

with input dimension 1.

The collection of activation patterns serves as a discrete toy model for neural net-

work. More specifically, we can replace the outputs of the layers with their signs to

form a discrete model. If for this discrete model, some sign can be represented by

combination of other signs, then sometimes the local functional dimension determined

by this discrete model is lower than the theoretical upper bond on functional dimen-

sion. We fully categorize the insu�ciency of local functional dimension coming from

this discrete model for neural networks with architecture (1, n, 1). We investigate two

mechanisms that might explain the gap between the theoretical upper bond and the

observed behavior of random networks in [Grigsby et al., 2023].

Since we choose bias parameters from a distribution with smaller variance, one

natural direction is to study hidden symmetries in a parameter setting by considering

only the unbounded activation regions, which is equivalent to considering bias-free

neural networks.

In practice, a more natural choice is to only consider activation regions that are

large enough. That is, we eliminate those activation regions that are so small that

they have a very low probability of containing any input data points, and hence are

negligible when computing functional dimension on finite batches of points chosen

i.i.d for a fixed probability distribution.

We introduce the notions of "-e↵ective activation regions, which are activation

regions with probability measure greater than ", and "-e↵ective functional dimension,

which is the functional dimension computed by considering only "-e↵ective activation

regions. This allows us to have a more reasonable calculation since in experiments we
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noticed that those activation regions with small probability measure rarely contain

any input data point(s) and hence do not contribute to the calculation of functional

dimension. We also compare the behavior of "-e↵ective functional dimension and true

functional dimension, and the di↵erence between them.

Key results in this thesis are as follows:

• For (1, n, 1) architecture, we give a complete set of combinatorial criteria on the

activation patterns ensuring that a parameter has no hidden symmetries coming

from the activation patterns, and prove that the list of criteria is complete. This

allows us to compute that for a ReLU neural network function with architecture

(1, n, 1), the probability that there exist hidden symmetries among the slopes

of piecewise linear functions is 1� 4�n(n+ 1).

• We compute the upper bounds on expected functional dimension for a bias-free

neural network with architecture (1, n, 1) and corroborate our computation with

experiments.

• We establish empirically that the sizes of roughly half of the activation re-

gions follow a power law with respect to the width, and empirically calculate

"-e↵ective sample size, which is the expected number of points landing in "-

heavy regions. These experiments motivate the notion of "-e↵ective activation

regions and "-e↵ective functional dimension, which are formally defined in Sec-

tion 3.3.

• For architecture (1, n, 1), we analyze the total measure (out of 1) of the union

of "-e↵ective activation regions as a function of n and ", and experimentally

compute e↵ective functional dimension and its di↵erence compared to the true

functional dimension for some setting. Our results suggest that this di↵erence

decreases with larger batch sample size of input data points, or with a smaller

" in the definition of "-e↵ective functional dimension.
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1.2 Related work

The functional dimension of a neural network function was defined and studied in

[Grigsby et al., 2022], and independently studied by [Bona-Pellissier et al., 2022]. In

[Grigsby et al., 2022], the authors study the functional dimension of a network pa-

rameter setting, that is, the dimensional complexity of the space of functions that

can be achieved by infinitesimally perturbing the parameters. More specifically, for a

feedforward ReLU neural network F of architecture (n0, n1, . . . , nd) parametrized by

RD, where D =
Pd

i=1 ni(ni1 + 1), they define a realization map

⇢ : ⇥ ! {Finite PL functions Rn0 ! Rnd}

by ✓ 7! F✓, where F✓ is a neural network function defined on the parameter set-

ting ✓. It is well-known that this realization map ⇢ is far from injective (cf.

[Phuong and Lampert, 2020]), it has a positive dimensional space of redundancies

coming from scaling and inverse-scaling the input and output paths to each neuron

in all the hidden layers and the output layer. [Rolnick and Kording, 2020] show, by

examining the geometry of the decomposition of the domain into linear regions given

by the bent hyperplane arrangement of a parameter, for depth-2 neural networks

the parameters can be reverse-engineered up to permutation and scaling, so have

no hidden symmetries. [Phuong and Lampert, 2020] use similar methods to prove

that there exists a parameter in every non-widening (n0 � n1 � . . . � nd) archi-

tecture for which reverse-engineering is possible, hence has no hidden symmetries.

[Grigsby et al., 2022] prove that the degree to which the realization map ⇢ fails to be

injective for a neural network of a fixed architecture with ReLU activation functions

is inhomogeneous; that is, the dimension of the space of redundancies varies with the

parameter. In some regions of parameter space, there exists a comparatively high-

dimensional set of parameters that define the same function, while in other regions
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of parameter space, this set of parameters that correspond to a single function is

comparatively low-dimensional.

The goal of this thesis is to understand sources of symmetries in the parame-

ter space to improve the theoretical upper bound on functional dimension deter-

mined by [Grigsby et al., 2022]. They prove this upper bound by considering dimen-

sional redundancies coming from well-known global symmetries in the computational

graphs, that is, for any activated neuron in a hidden layer nl, multiply and reverse-

multiply a scaling factor �. It has been observed that for any fully connected neural

network with ReLU activation functions, this type of symmetry does not change

the function computed by the neural network (cf. [Phuong and Lampert, 2020];

[Rolnick and Kording, 2020]).

Furthermore, the above theoretical upper bound is conjectured in

[Grigsby et al., 2023] to be achieved for almost all parameter settings without

hidden symmetries. We have a relevant observation showing that empirically, as

we are considering more batches of input data points in the process of computing

"-e↵ective functional dimension, the above theoretical upper bound can almost be

achieved.

In practice, the main problem of achieving the theoretical upper bound on func-

tional dimension is the existence of those activation regions not containing any input

data points. We observed empirically, and theoretically for the single-hidden layer

case, that the size of the bounded activation regions, when arranged in descending

order, follow a power scaling law for around half of the break points, at which point

the sizes of the regions drop precipitously. This neural scaling law phenomenon was

originally discovered and studied empirically by [Kaplan et al., 2020].

The empirical behavior of functional dimension was also studied by

[Bona-Pellissier et al., 2022]. They defined computational functional dimension and

proved that as the sample size gets larger, the probability that the computational
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functional dimension di↵ers from true functional dimension converges to zero. We

also verify and experimentally show that for a fixed batch size, the di↵erence between

"-e↵ective batch functional dimension and batch functional dimension is bounded.

Moreover, this di↵erence appears to achieve its maximum for some finite batch size,

and then decay and approach 0.

1.3 Notation and background

Let the rectified linear unit function ReLU: R ! R be defined by ReLU(x) =

max{0, x}, and let � : Rn ! Rn be the map that applies ReLU to each coordinate.

Definition 1.3.1. A feedforward neural network defined on Rn0 with ReLU activation

function applied to all hidden layers is a finite collection of a�ne maps

Ai : Rni�1 ! Rni ,

for i = 1, . . . , j and for ni 2 N a finite sequence of natural numbers. It has an

associated neural network map F : Rn0 ! Rnj of architecture (n0, n1, . . . , nj) 2 Nj+1

given by the composition

F (x) := Rn0 F1=��A1�����! Rn1 F2=��A2�����! Rn2 F3=��A3�����! · · · Fj=��Aj�����! Rnj .

F is said to have depth j and width maxn0, n1, . . . , nj. The kth layer map of F is the

composition Fk = � � Ak for k = 1, . . . , j.

It follows that there exists a natural map from RD = R
Pj

i=1 ni(ni�1+1) to the set

of neural networks of architecture n0, n1, . . . , nj. This realization map ⇢ is the map

that forms a neural network function by using the coordinates of the point in RD to

determine a�ne maps A1, . . . , Aj.
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Now consider the parametrized neural network function. The parameters of a

neural network are the weights and biases that are learned from the training data

and determine the accuracy of the network’s predictions. Let wl
ij be the weight

associated to the map connecting the ith neuron of layer l � 1 and the jth neuron of

layer l. Similarly, let bli be the bias associated to the ith neuron in the lth layer. It

follows that a neural network map F of architecture (n0, . . . , nj) is defined by

D :=
jX

i=1

(ni�1 + 1)ni

parameters. Now we can define the parameter space associated to F .

Definition 1.3.2. The parameter space of a neural network of architecture (n0, . . . , nj) 2

Nj+1 is the Euclidean space

⇥n0...,nj
:= RD.

Definition 1.3.3. A realization map

⇢ : ⇥n0,...,nj ! C(Rn0 ,Rnj)

is defined by sending a parameter ✓ 2 ⇥n0,...,nj to its associated neural network function

F✓ : Rn0 ! Rnj given by

F (x) := � � Am � · · · � � � A1(X).

Following the notation in [Grigsby et al., 2022], let ⇢ denote the marked realization

map that associates a specific point in the parameter space to its corresponding

marked neural network function, i. e., ⇢ records the information of those nested maps

with parameter coordinates. Similarly, denote the unmarked realization map by ⇢.

We briefly recall some relevant background about hyperplane arrangement, refer-
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ring reader to [Grigsby et al., 2022], [Stanley, 2007] for more details.

Definition 1.3.4. The a�ne solution set arrangement associated to one layer of a

neural network function is the finite ordered set S = {S1, . . . , Sj}. S is said to be

generic if the intersection of all subsets \k
j=1Sij is an a�ne linear subspace of Ri of

dimension i�k. In particular, if for 1  k  j, every solution set Sk has codimension

1 in Ri, then S is the hyperplane arrangement associated to that layer map.

Definition 1.3.5. For a canonical polyhedral complex C(⇢(✓)) ([Grigsby et al., 2022]),

the ternary labeling of a point x 2 Rn0 is the sequence of ternary tuples

sx := (s1x, . . . , s
j
x) 2 {�1, 0, 1}n1+···+nj

representing the sign of the pre-activation output Al �F l�1 � · · ·�F 1(x) of each neuron

of ⇢(✓) at x for the first l layer maps.

For the purpose of this thesis, we will use binary labeling instead of ternary la-

beling. We consider both the �1’s and 0’s in a ternary labeling to be 0.

Definition 1.3.6. Let ✓ 2 ⇥n0,...,nj be a parameter. An activation region for ✓ is

a maximal connected component of the set of input data x 2 Rn0 where the ternary

labeling has no 0s.

Note that the activation regions coincide with interiors of the n0-cells of C(⇢(✓))

in this paper, since we will only consider generic and transversal network functions

(as proved in [Grigsby and Lindsey, 2021], and see [Grigsby et al., 2022] for defini-

tions for a generic and transversal network). Moreover, the ternary labeling is always

constant on the interior of each cell of C(⇢(✓)), and we say the i-th neuron in the

l-th layer is turned o↵ at a point x if the sign of the pre-activation output of the

first l layer maps at x for the i-th neuron is non-positive (with the convention that

sgn(0)=0).
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Definition 1.3.7. Fix an ordered set Z = {z1, . . . , zk} of finitely many points in Rn0.

Define the evaluation map EZ : ⇥n0,...,nj ! Rk·nj by

EZ(✓) = (⇢1(✓)(z1), . . . , ⇢nj(✓)(z1), . . . , ⇢1(✓)(zk), . . . , ⇢nj(✓)(zk)).

Now recall the definition of parametrically smooth points and ordinary parame-

ters:

Definition 1.3.8. Let x 2 Rn0 and ✓ 2 ⇥n0,...,nj . The parametrized family of a

neural network function of architecture (n0, . . . , nj) is the map

Fn0,...,nj : ⇥n0,...,nj ⇥ Rn0 ! Rnj

given by

Fn0,...,nj(✓, x) = ⇢(✓)(x).

Definition 1.3.9. Fix an architecture (n0, . . . , nj). Let ✓ 2 ⇥n0,...,nj be a point in the

parameter space. A point x 2 Rn0 is parametrically smooth for ✓ if (✓, x) is a smooth

point for Fn0,...,nj .

It was shown in [Grigsby and Lindsey, 2021] that the set consisting of all generic

and transversal parameters has full Lebesgue measure. Moreover, any generic, transver-

sal parameter has a full measure set of parametrically smooth points. At this time,

we assume ✓ is generic and transversal unless stated explicitly otherwise.

Definition 1.3.10. A set Z ⇢ Rn0 is called decisive for ✓ 2 ⇥n0,...,nm if for every top-

dimensional polyhedron C 2 C(✓), Z contains precisely n0 + 1 points in the interior

of C whose set of pairwise di↵erences contains a basis for Rn0.

It follows from Lemma 3.12 in [Grigsby et al., 2022] that if ✓ is generic and

transversal, a decisive set Z for ✓ consists of parametrically smooth points for ✓.
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Recall that the rank of a smooth map is the rank of its Jacobian matrix of partial

derivatives. Choose z 2 Rn0 to be a parametrically smooth point for a parameter

✓ 2 ⇥n0,...,nm . Then the Jacobian matrix of the evaluation map Ez evaluated at ✓ is

JEz|✓ =

@(Ez)i
@✓j

� ����
✓

,

which is the nm ⇥D matrix whose entry in the i-th row and j-th column records the

partial derivative of the i-th coordinate of Ez at ✓ with respect to the j-th parameter.

Definition 1.3.11. Let ✓ 2 ⇥n0,...,nj be an ordinary parameter. The batch functional

dimension of ✓ for a batch of input data points Z ⇢ Rn0 of parametrically smooth

points for ✓ is

dimfun(✓) := rankJEZ |✓.

Definition 1.3.12. Let ✓ 2 ⇥n0,...,nj be an ordinary point. The (full) functional

dimension at ✓ is defined to be

dimfun(✓) := sup
Z⇢Rn0 is finite and parametrically smooth at ✓

rankJEZ |✓.

For the sake of brevity, we will refer to the full functional dimension as the func-

tional dimension. See [Grigsby et al., 2022] for definitions of stochastic functional

dimension and batch functional dimension.

Definition 1.3.13. (cf. [Grigsby et al., 2023]) The augmented computational graph

eG for the feedforward ReLU network architecture (n0, . . . , nm) is the graded oriented

graph:

(a) with nl ordinary vertices and 1 distinguished vertex of grading l for l = 0, . . . ,m�

1, and nm ordinary vertices of grading m,

(b) for every l = 0, . . . ,m � 1, every vertex of grading l is connected by a single
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oriented edge to every ordinary vertex of grading l+1, oriented toward the vertex

of grading l + 1.

An augmented computational graph for an architecture can be obtained from the

standard computational graph for the architecture by isolating the bias variable from

each layer and mark the biases as an extra vertex on the top of each layer. Now given

a parameter ✓ 2 ⇥, we label the edges of the augmented computational graph in the

following way:

• the edge from the i-th ordinary vertex of layer l� 1 to the j-th ordinary vertex

of layer l is labeled with the weight parameter wl
ij,

• the edge from the distinguished vertex of layer l� 1 to the k-th ordinary vertex

of layer l is labeled with the k-th component of the bias vector for F l, blk.

Associated to every oriented path � is a corresponding monomial, m(�), in the

parameters obtained by taking the product of the weight parameters on the edges

traversed along �.

Definition 1.3.14. Let ✓ 2 ⇥ be a generic, transversal parameter, and let x 2 R be

an input data point with associated binary labeling sx = (s1x, . . . , s
m
x ). A path � is said

to be open at the point x for parameter ✓ if every node along � has binary labeling 1.

For illustration, we give an example of an augmented computational graph for

architecture (1, 3, 3, 1).

Figure 1.1 shows an augmented computational graph corresponding to the acti-

vation pattern associated to an input vector x with binary label

sx = (s1x, s
2
x, s

3
x) = ((0, 1, 0), (1, 0, 1), (1)).

The ordinary vertices are filled-in circles, with red meaning the neuron is activated

and green means the neuron is inactive. The distinguished vertices are solid squares.
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Figure 1.1: An augmented computational graph for architecture (1, 3, 3, 1)

Edges connecting ordinary vertices are labeled with weights, and those connecting

distinguished and ordinary vertices are labeled with biases. A complete path is one

that ends at an output vertex and begins at either an input vertex, or a bias vertex.

The above figure draws all the open paths associated to this binary label with solid

edges. In particular, there are two open paths �1, �2 with associated monomials

m(�1) = w3
11w

2
21w

1
12, and m(�2) = w3

31w
2
23w

1
12.
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Chapter 2

Z-linear dependence relations

among activation patterns for

architecture (1, n, 1)

2.1 Z-linear dependence relations in neural net-

works of architecture (1, n, 1)

A neural network with architecture (1, n, 1) has functional dimension at most 2n+1.

This immediately follows from Theorem 7.1 in [Grigsby et al., 2022].

Theorem 2.1.1. [Grigsby et al., 2022] For any architecture (n0, . . . , nm),

dim⇥n0,...,nm  nm +
m�1X

i=0

nini+1.

Fix a batch of parametrically smooth points Z = {z1, . . . , zm} ⇢ Rn0 . If we

choose a parameter ✓ 2 ⇥, the batch functional dimension measures locally in T⇥✓,

the number of directions that one can move to change the value of the function at

✓ on the batch Z. We can then consider the dimension of the subspace of T✓(⇥)
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spanned by gradients of components of evaluations at zi, which are the only possible

directions to move when doing gradient descent. The dimension of this subspace of

T✓(⇥) is precisely the rank of the Jacobian matrix

rank(JEZ |✓).

Note that the ReLU activation function is not always di↵erentiable, but we need

to use the Jacobian matrix JEZ to compute partial derivatives of ⇢(✓)(x) for a fixed

input data point x in the domain of ⇢(✓) with respect to the coordinates of ✓. The

discussion in [Grigsby et al., 2022] guarantees the locus of di↵erentiability with re-

spect to both coordinates of ✓ and x. The idea is, as mentioned in Section 1.3,

every generic, transversal parameter has parametrically smooth points away from a

Lebesgue measure zero set (in particular, points picked from activation regions are

parametrically smooth), and the measure of its parametrically smooth points is full.

We refer readers to Theorem 3.16 in [Grigsby et al., 2022] for the proof and more

details.

Now consider a single-layer neural network, that is, a neural network function

with architecture (1, n, 1). The corresponding parameter space is ⇥ = R3n+1, whose

dimension is higher than the theoretical upper bound on functional dimension guar-

anteed by Theorem 2.1.1 (in this case 2n+1). Hence we are interested in the structure

of hidden symmetries for a neural network with architecture (1, n, 1). The columns

of its Jacobian matrix record partial derivatives with respect to weight and bias pa-

rameters from the two layers, and weights w2
ij from the second layer can be written

as a linear combination of weights and biases from the first layer. We motivate the

study of the structure of hidden symmetries for a network with architecture (1, n, 1)

with the following example.

Example 2.1.2.
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Let F be a neural network function of architecture (1, n, 1), where n 2 N. Fix a

generic, transversal parameter ✓ 2 ⇥1,n,1 with coordinates

✓ = (w1
11, b

1
1, w

1
12, b

1
2, . . . , w

1
1n, b

1
n, w

2
11, w

2
21, . . . , w

2
n1, b

2
1).

Then the function ⇢(✓) : R ! R has the form

⇢(✓)(x) = �(w2
11�(w

1
11x+ b11) + w2

21�(w
1
12x+ b12) + · · ·+ w2

n1�(w
1
1nx+ b1n) + b21).

It follows that the function ⇢(✓) is continuous and piecewise linear for each specific

parameter ✓ 2 ⇥n0,...,nj , with n + 1 regions since ✓ is generic and transversal. The

bend points (where ⇢(✓) is non-linear) are �b1i
w1

1i
. Now suppose w2

ij, b
2
j > 0 for ✓, and

the binary labeling alternates for the first region (without loss of generality, suppose

that the binary labeling starts with 0 and ends with 1): (0, 1, 0, 1, . . . , 0, 1). It then

follows that the binary labeling on the 1-cells associated to the n+ 1 regions are:

First region: s = (s1)

= ((0, 1, 0, 1, . . . , 0, 1))

Second region: s = ((1, 1, 0, 1, . . . , 0, 1))

Third region: s = ((1, 0, 0, 1, . . . , 0, 1))

. . . . . .

nth region: s = ((1, 0, 1, 0, . . . , 1, 1))

n+ 1th region: s = ((1, 0, 1, 0, . . . , 1, 0))

We can then write down the 1-row matrix JE{x} for a generic point x in each

15



region:

for x in the first region:

0 0 w2

21x w2
21 · · · w2

n1x w2
n1 0 w1

12x+ b12 · · · w1
1nx+ b1n 1

�

for x in the second region:

w2

11x w2
11 w2

21x w2
21 · · · w2

n1x w2
n1 w1

11x+ b11 w1
12x+ b12 · · · w1

1nx+ b1n 1

�

· · · · · ·

for x in the nth region:

w2

11x w2
11 0 0 · · · w2

n1x w2
n1 w1

11x+ b11 0 · · · w1
1nx+ b1n 1

�

for x in the n+ 1th region:

w2

11x w2
11 0 0 · · · 0 0 w1

11x+ b11 0 · · · 0 1

�

Now let Z be a set of parametrically smooth points for ✓. In particular, denote

by

Z = {z1, . . . , zm}

= {x1, . . . , x1
m1

, . . . , xn+1
1 , . . . , xn+1

mn+1
}

the input data points in the activation regions. Thus in this case, the Jacobian matrix
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JEZ |✓ used for computing the batch functional dimension has expression

2
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.

Notice that
�
w2

jix
�✓w1

ij

w2
ji

◆
= w1

ijx

and

w2
ji

✓
b1j
w2

ji

◆
= b1j .

If we apply the above operations to columns of weights and biases from the first

layer, i. e.,
�
w2

jix
�✓w1

ij

w2
ji

◆
+ w2

ji

✓
b1j
w2

ji

◆
= w1

ijx+ b1j ,

which is exactly the expression of the column of w2
ij. This is to say, the column

vector of polynomials which are the partial derivatives corresponding to the column

associated to w2
ij is an R-linear combination of the columns associated to w1

ij and b1j ,
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i. e., JEZ |✓ doesn’t need to contain those columns of w2
ij to compute the functional

dimension:

2
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We can view this as an alternative way to understand why a neural network

function of architecture (1, n, 1) has functional dimension at most 2n + 1, since the
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rank of the column space of JEZ |✓ is at most the rank of

rank

2
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which is 2n+ 1, since there are at most 2n+ 1 non-zero columns.

The above example gives an alternative explanation for the upper bound on func-

tional dimension for a neural network with architecture (1, n, 1) by eliminating well-

known global symmetries. More hidden symmetries will reduce the functional di-

mension further, and the degree of this symmetry is inhomogeneous: the functional

dimension changes across parameter space due to these hidden symmetries. This can

be seen from the upper bound on the expected functional dimension for a neural

network with architecture (1, n, 1).

Proposition 2.1.3. Let F be a bias-free neural network function of architecture

(1, n, 1). Let ✓0 2 ⇥ be a parameter. Then the upper bound on expected functional
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dimension of F

E(dimfun(✓0))  n.

We refer readers to Appendix 4.1 for a detailed computation on the upper bound

on expected functional dimension for an (1, n, 1) architecture and an experimental

corroboration. Note that this upper bound is tight if the other direction of lemma

2.1.7 is true.

Each activation region of a neural network function has an associated binary

coding, which determines the activation pattern of this region. Recall that for a

fixed parameter ✓ 2 ⇥ and a batch of parametrically smooth points Z, each row of

its Jacobian matrix JEZ |✓ records the activation status of a generic point x in an

activation region. This suggests a connection between the row space of JEZ and

augmented computational graphs.

In order to deduce some hidden symmetries coming from the activation patterns

in a neural network, we will need to consider the linear dependence relations over Z

among the activation patterns for a neural network. Each activation pattern has an

associated binary coding illustrating its activation status.

Example 2.1.4.

For illustration, consider the following sequence s of binary labeling for an (1, 6, 1)

20



architecture written from left to right:

s =(s1, . . . , s7)

= ((0, 1, 1, 0, 1, 1),

(1, 1, 1, 0, 1, 1),

(1, 0, 1, 0, 1, 1),

(1, 0, 0, 0, 1, 1),

(1, 0, 0, 1, 1, 1),

(1, 0, 0, 1, 0, 1),

(1, 0, 0, 1, 0, 0))

Since

s1 + (s7 � (s5 � s4)) = (0, 1, 1, 0, 1, 1) + (1, 0, 0, 1, 0, 0)� (1, 0, 0, 1, 1, 1) + (1, 0, 0, 0, 1, 1)

= (0 + 1� 1 + 1, 1, 1, 0 + 1� 1, 1 + 0� 1 + 1, 1 + 0� 1 + 1)

= (1, 1, 1, 0, 1, 1)

= s2

We say that there exists a linear dependence relation over Z among these activation

patterns.

We now investigate the role of this Z-linear dependence relation in inducing R-

linear dependence relations among the rows of the Jacobian matrix JEZ used to

compute batch functional dimension.

To do this, we first introduce notation to denote the sum of monomial ending at

certain node in layer i, for i = 1, . . . , d.

Given a neural network function F , we have a summand of F associated to each

path, which we denote by F i
jn, with jndenoting the j-th component of the function F i
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and i denoting the i-th decomposition of the function F . For example, for a neural

network of architecture (1, 3, 3, 1), explicitly,

F = w3
11(w

2
11(w

1
11x+ b11) + w2

21(w
1
12x+ b12) + w2

31(w
1
13x+ b13) + b21)

+ w3
21(w

2
12(w

1
11x+ b11) + w2

22(w
1
12x+ b12) + w2

32(w
1
13x+ b13) + b22)

+ w3
31(w

2
13(w

1
11x+ b11) + w2

23(w
1
12x+ b12) + w2

33(w
1
13x+ b13) + b23)

+ b3

Here

F 1
1n= w1

11x+ b11

F 1
2n= w1

12x+ b12

F 1
3n= w1

13x+ b13

Then

F 2
1n= w2

11(F
1
1n) + w2

21(F
1
2n) + w2

31(F
1
3n) + b21

F 2
2n= w2

12(F
1
1n) + w2

22(F
1
2n) + w2

32(F
1
3n) + b22

F 2
3n= w2

13(F
1
1n) + w2

23(F
1
2n) + w2

33(F
1
3n) + b23

and

F = F 3
1n= w3

11(F
2
1n) + w3

21(F
2
2n) + w3

31(F
2
3n)

Now we are ready to state and prove the following lemma, which can be regarded

as a graphical re-interpretation of the well-known backpropagation algorithm.
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Lemma 2.1.5. Let

F = F d � F d�1 � · · · � F 2 � F 1

be a neural network function of architecture (n0, . . . , nd). Denote the ordinary vertices

of an augmented graph as zli, l = 0, . . . , d if it is the i-th vertex in the l-th layer. Let

�lij be the edge connecting zl�1
i and zlj. Then

@F

@wl
ij

=
X

path � beginning at zlj

m(�)
X

path � ending at zl�1
j

m(�),

where m(�) indicates that the value on the input vertex is not included.

Proof. Consider the following computational graph with the edge elij corresponding

to the weight wl
ij being highlighted in red.

...
...

...
...

· · ·
...

· · ·

Figure 2.1: Use computational graphs to compute partial derivatives.

As we can see from the computational graph, the edge elij corresponding to the

weight wl
ij connects two vertices zl�1

i and zlj. We are interested in computing

@F

@wl
ij

in terms of the sum of other partial derivatives. Since we can express the neural

network function F as the sum of monomial with respect to paths and with their
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original values on the input vertices being included, i. e.,

F =
X

�

m(�),

then @F
@wl

ij
depends only on those paths that are starting from or ending at this edge

elij.

Now we can use linearity of partial derivatives to break down each partial deriva-

tive path by path and apply the chain rule to each path. More specifically, for each

such path �, we have the function F l
ij associated to this path. Then the chain rule

tells us:
@F

@wl
ij

= (wd
11 . . . w

l+1
j1 + · · ·+ wd

dd�1nd
. . . wl+1

jnl+1
)F l�1

in

But F l�1
in is just the sum of PL functions going into the hidden neuron zl�1

i , therefore

@F

@wl
ij

=
X

path � beginning at zlj

m(�)
X

path � ending at zl�1
j

m(�).

Example 2.1.6. (A simple example of broken path interpretation)

Let F be a neural network function of architecture (1, 3, 3, 3, 1). Consider the

following augmented computational graph

Figure 2.2: An example of broken path interpretation of partial derivatives.

The edge marked in red is e232, which corresponds to the weight parameter w2
32.

We want to compute the partial derivative of F with respect to w2
32, that can be
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explicitly computed can break down into functions along the incoming paths ending

at the node z13 , and functions along the outgoing paths beginning at the node z22 .

@F

@w2
32

= w4
11w

3
21(w

1
13x+ b13) + w4

21w
3
22(w

1
13x+ b13) + w4

31w
3
23(w

1
13x+ b13)

= (w1
13x+ b13)(w

4
11w

3
21 + w4

21w
3
22 + w4

31w
3
23)

= m(�113)(m(�34211) +m(�34221) +m(�34231))

=
X

path � ending at z13

m(�)
X

path � beginning at z22

m(�)

We are now ready to state and prove the following lemma.

Lemma 2.1.7. Let F be a ReLU neural network function class with architecture

(1, n, 1). Choose a generic, transversal parameter ✓0 2 ⇥, let Z = {z1, . . . , zm} ⇢

Rn0 = R be a set of parametrically smooth points for ✓0, and let szi(✓0) be the binary

sign pattern for zi at ✓0. If

szi(✓0) =
X

zj2Z

szj(✓0),

then

@⇢(✓0)zi =
X

zj2Z

@⇢(✓0)zj ,

where @⇢(✓0)zi is the slope of the realization map ⇢(✓0) for F at zi.

Proof. Let �i be the augmented computational graph associated to the activation

pattern s✓0(zi). If

szi(✓0) =
X

zj2Z

szj(✓0),

then the edges being turned on in �i are the sum of activated edges in �j, j = 1, . . . ,m,

namely,

�i =
X

j2{1,...,m}

�j.
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In particular,

m(�i) =
X

j2{1,...,m}

m(�j),

the sum of monomials in each �i match. Then

@⇢(✓0)zi =
X

zj2Z

@⇢(✓0)zj .

One might wonder whether the opposite direction is true. We conjecture that it

is.

Conjecture 2.1.8. Let F be a ReLU neural network function class with architecture

(1, n, 1). Choose a generic, supertransversal parameter ✓0 2 ⇥, let Z = {z1, . . . , zm} ⇢

Rn0 = R be a set of parametrically smooth points for ✓0, and let szi(✓0) be the sign

pattern for zi at ✓0. If

@⇢(✓0)zi =
X

zj2Z

@⇢(✓0)zj ,

then

szi(✓0) =
X

zj2Z

szj(✓0),

where @⇢(✓0)zi is the slope of the realization map ⇢(✓0) for F at zi.

For a neural network function of architecture (1, n, 1), Lemma 2.1.7 guarantees

that we can transfer linear dependence relations in the data space coming from addi-

tive binary triples to the linear dependence relations in the parameter space among

the slopes. Namely, if we intend to investigate the linear independence relations of

the slopes of realization maps in the parameter space, we believe that it su�ces to

determine the number of additive triples in the binary labeling associated to an input

data point.
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Now consider a parametrized neural network function. In particular, when the

architecture of a neural network function is (1, n, 1), the graph of the function ⇢(✓0)

at a parametrically smooth point ✓0 has n breakpoints on the axis, and hence n bend

points on its graph in the parameter space if the neural network function does not

have any hidden neurons being turned o↵ by ReLU activation function. Figure 2.3

shows the picture of a parametrized function ⇢(✓0) of a neural network function with

architecture (1, 2, 1).

Figure 2.3: The graph of the function ⇢(✓0) for a parametrically smooth point ✓0.

Let sx be the binary labeling at an input data point x. Again, we drop x from

the subscript since x does not a↵ect the activation pattern. Denote binary labeling

of each activation region by

s = (s1, s2, . . . , sn+1)

for an (1, n, 1) architecture. We can then make the following definitions
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Definition 2.1.9. Let si, i = 1, . . . , n+1, be the binary labeling of the i-th activation

region for an (1, n, 1) architecture. Define index(si) to be the ordered tuple positions

indicating the 1’s in the binary tuple si.

Definition 2.1.10. Let si, i = 1, . . . , n+1, be the binary labeling of the i-th activation

region for an (1, n, 1) architecture. Define |si| to be the total number of 1’s in si. We

say |si| is ascending (resp. descending) if |si| > |si�1| (resp. |si| < |si�1|) for all i.

For illustration, consider the following example of a binary string

si = (0, 0, 1, 1, 0, 0, 1).

Then

index(si) = (3, 4, 7)

records the position of 1’s in si, and

|si| = 3

specifies the total number of 1 in si is three.

Now we can investigate the linear dependence relation over Z among activation

patterns for a neural network function with architecture (1, n, 1).

Lemma 2.1.11. Let F be a neural network function of architecture (1, n, 1). For

i = 1, . . . , n + 1, let si be the binary coding for the i-th activation region. If |si| is

monotonically ascending (or monotonically descending), or descends first and then

only ascends, then there is no Z-linear dependence relations among activation pat-

terns.

Proof. Since si’s have constraints coming from the fact that they are a sequence of

activation patterns for an (1, n, 1) architecture, it follows that in the first descending
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part, 1 will be deleted when going from index(s1) to index(s2), and similarly in the last

ascending part, n+1 in index(sn+1) will never appear in other index(si)’s. Therefore,

these two parts will be irrelevant of determining the existence of a Z-linear dependence

relation among the activation patterns.

List index(si) for all i = 1, . . . , n+1. Start from the first non-descending sequence

of index(s) and stop at the end of the last non-ascending index(s). Then the following

lemmas hold:

Lemma 2.1.12. Let F be a neural network function of architecture (1, n, 1). If

index(s) is monotonically ascending or monotonically descending for all i = 1, . . . , n+

1, i. e., if |si| is strictly increasing or strictly decreasing, then there does not exist any

linear dependence relation over Z among activation patterns associated to F .

Proof. If the binary labelings are monotonically decreasing, then what has appeared

in the former index(si)’s will never appear later, so there does not exist any additive

binary triples. Now suppose that index(si)’s are monotonically increasing. Moreover,

suppose the first non-descending sign is si, then from si to si+1, we are changing the

sign at the i-th position. Using index(si), this means we are adding i+1 to index(si).

Similarly to what we have in the monotonically decreasing case, n would only appear

in the last index(sn+1), so neither can index(sn+1) be written as a linear combination

of other binary labelings, nor can it be a base for other binary labelings. This implies

that it would be impossible to find any Z-linear dependence relation among activation

patterns in this case.

Lemma 2.1.13. Let F be a neural network function of architecture (1, n, 1). If

index(s) is not monotonic, then the element si 2 s satisfying |si| = argmax{|s|} can

be expressed as a linear combination of exactly one pair sj, sk 2 s, where i 6= j 6= k.

Namely, there exists a Z-linear dependence relation among sj, sk and si.
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(1,5)

(5)

(2,5)

(2,3,5)

(2,3,4,5)

�1 +2

+3

+4

Figure 2.4: A monotonically increasing case for n = 5, note that we ignore the first
descending part from (1, 5) to (5), and 4 only appears in index(s5) = (2, 3, 4, 5).

Proof. If index(s) is not monotonic, then index(s) can either increase and decrease

thereafter, or increase and decrease for multiple times.

For the first case, assume that we start from index(si) and index(s) ascends for j

steps, i. e., we reach the maximum at index(si+j). Then index(s) descends for k steps

when it arrives at index(si+j+k). Denote index(si+j) as A, and similarly index(si) as

B, index(si+j+k) as C. So B has j less 1’s compared to A, and C has k less 1’s than

A. Along the path moving from B to A, we are changing the �-th 0 to 1 at the �-th

step. Along the path descending from A to C, we are changing the  -th 1 to 0 at

the  -th step. This implies that the positions of 1’s in B and C will match up with

the positions of 1’s in A. Therefore, A can be represented as a linear combination

of B and C, namely, A = B + C. In this case, this is the only way to form a Z-

linear dependence relation among the activation patterns. Since on the left of the

maximum, 1 is added to the maximum one at a time to the corresponding position,

and similarly, on the right of the maximum, 1 is subtracted from it one at a time

from the corresponding position. Any binary coding in between the maximum and

minima will have more 1 needed to form a Z-linear dependence relation.

Now consider the case where index(s) ascends and descends for multiple times,

but there is only one maximum. Namely, there exist several local maxima, but there
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(1,5)

(5)

(2,5)

(2,3,5)

(2,3,4,5)

(2,3,4)

�1 +2

+3

+4 �5

i

i+ j

i+ j + k

Figure 2.5: Case when there is only one maximum. Here i = 1, j = 3 and k = 1.

is only one global maximum. Assume that starting from index(si), index(s) descends

for i steps first, then ascends and descends for a1, d1, a2, d2, . . . , at, dttimes. Without

loss of generality, let si+a1 be the unique global maximum and denote it as MG.

Denote other local maxima as Mi for i = 1, . . . , t� 1, and all the local minima as Bj

for j = 1, . . . , t+ 1.

We can investigate on the positions of 1’s in MG. For those binary labelings ap-

peared before MG, 1’s were appended at positions i, . . . , i+a1 to form MG. Therefore

MG must have 1’s at its i-th to (i + a1)-th positions. Moreover, MG must also have

1’s at its (i+a1+1)-th to (i+a1+d1)-th, (i+a1+a2+1)-th to (i+a1+d1+a2+d2)-

th, . . ., (i +
Pt

i ai + 1)-th to (i +
Pt

i ai + di)-th positions so that these 1’s can be

subtracted from MG to enable the descending pattern for sx appeared later than MG.

Note that we need to avoid including all the 1’s appended in ai for i > 1. This can be

achieved by using all the local maximums Mi. Each Mi has two bases binary labeling

(recede for ai+1 steps to get Bi+1 and proceed for di+1 steps to get Bi+2). Then locally

applying how a maximum is formed by its bases, Mi + Bi+2 + Bi+1 (here 1 + 1 = 0)

will be the same as Bi+1 minus those 1’s diminished from the descending path joining

Mi and Bi+2. This suggests that we can move the descending path Mi � Bi+2 after

Bi+1, i. e., we can paste all the descending paths appeared after MG together, so that
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MG is the now the only maximum. This modification still will record how 1’s in MG

are appended and deleted. In summary, in this case, the sign whose index is MG can

be written as a linear combination of all the Bi’s and all the Mi’s.

B1 = (2, 3, 5, 6)

MG = (1, 2, 3, 5, 6)

(1, 3, 5, 6)

B2 = (1, 5, 6)

M1 = (1, 4, 5, 6)

(1, 4, 6)

B3 = (1, 4)

B1

MG

B2

B3

+1 �2

�3 +4 �5

�6

+1 �2

�3

�5

�6

Figure 2.6: Modifying di+1 so that there is only one maximum. The detailed illustra-
tion of this specific example is shown in Example 2.1.4.

Finally, if index(s) ascends and descends for multiple times with di↵erent global

maxima, namely, now there does not exist any single maximum dominating other

maximums, then this would be similar to the previous single-global-maximum case,

just that we need to pay attention to the total number of steps, which must be

enough to guarantee that the maximum has two bases. Thus, if there does not

exist su�ciently many steps, then there is no Z-linear dependence relations among

activation patterns. If there are enough steps, then we can treat this case as the

previous case where there are several maxima. Combining these maxima together

by the method shown in figure 2.6 implies that there exists one linear dependence

relation over Z among activation patterns.

In these two cases where there are more than one maximum, a Z-linear depen-

dence relation only exists among the activation patterns M’s and B’s. Since the

ascending paths represent the action of adding 1 to the corresponding position, and

the descending paths represent subtracting 1 from the corresponding position, any
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middle steps other than M’s and B’s do not have other binary codings being able to

constitute 1 at its corresponding position.

(2, 4, 5)

(1, 2, 4, 5)

(1, 4, 5)

(1, 3, 4, 5)

(1, 3, 5)

(1, 3)

+1 �2 +3 �4

�5

Figure 2.7: A possible situation when there are several global maxima.

Theorem 2.1.14. Let F be a neural network function of architecture (1, n, 1). Then

there exists at most one linear dependence relation over Z among activation patterns

of this network F .

Proof. Lemma 2.1.12 to lemma 2.1.13 cover all the possibilities for a neural network

function F of architecture (1, n, 1) to admit a Z-linear dependence relation among

activation patterns of F . Combining the above lemmas prove this theorem.

As we have proved above, there exists at most one additive binary triple for a

neural network with architecture (1, n, 1). Depending on the binary coding of the

first activation region, sometimes there does not exist any additive binary triples

among activation regions at all. We are then interested in computing the probability

that a neural network function of (1, n, 1) admits a additive binary triple.

Lemma 2.1.15. Let F be a neural network function of architecture (1, n, 1), n > 1.

Then with probability 1 � 4�n(n + 1), F admits a linear dependence relation over Z

among its activation patterns.
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Proof. Recall that in order for F to have a Z-linear dependence relation among its

activation patterns, we shall exclude the following two cases:

Case 1 s is monotonically increasing or monotonically decreasing, which implies that

s1 is all 1’s or all 0’s, i. e.,

s1 = (0, . . . , 0) or s1 = (1, . . . , 1).

Case 2 s monotonically increases after decreasing first, i. e.,

s1 = (1, 0, . . . , 0) or (1, 1, 0, . . . , 0) or (1, 1, 1, 0, . . . , 0) · · · or (1, . . . , 1, 0).

We can compute that the probability that case 1 can happen is

P (Case 1) = 2⇥
✓
1

2

◆n

,

and the probability that case 2 happens is

P (Case 2) = (n� 1)

✓
1

2

◆n

.

In total, there are 2n possible initial binary coding. We can then calculate the prob-

ability of F admitting a Z-linear dependence relation is

1� P (Case 1) + P (Case 2)

2n
= 1�

2
�
1
2

�n
+ (n� 1)

�
1
2

�n

2n

= 1� 4�n(n+ 1).

In particular, notice that as n ! 1, the above probability approaches 1, meaning,

it is more likely for a wider neural network function to admit a linear dependence
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relation over Z among the activation patterns associated to it.

Theorem 2.1.16. Let F be a neural network function of architecture (1, n, 1). When

only considering hidden symmetries coming from collection of activation patterns, the

upper bound on its functional dimension is 2n with probability 1� 4�n(n+ 1).

Proof. Let F be given. Proposition 2.1.14 summarizes a complete list of combinatorial

criteria on the activation patterns ensuring a parameters admits, or does not admit

any Z-linear dependence relation. The existence of a Z-linear dependence relation

reduced the upper bound on the functional dimension by 1, with probability given by

lemma 2.1.15.

2.2 Z-linear dependence relations and deeper uni-

variate neural networks

The argument of detecting all the Z-linear dependence relations among activation

patterns of a neural network cannot be smoothly generalized to a neural network

function with a higher input dimension. The main problem is that for a neural

network function of architecture (1, n, 1), the binary labelings sx have an one to one

correspondence with the activation regions, whereas for a neural network function of

an architecture with a higher input dimension m > 1, every binary labeling sx reflects

the activation status provided by m distinct inputs.

Instead, we would also be interested in counting the number of Z-linear depen-

dence relations of a deeper neural network function with input dimension 1. This will

provide another perspective of considering the upper bound on functional dimension

of a neural network with more layers. In this section, we will only give an example

showing the existence of Z-linear dependence relations in a deeper univariate network.
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Example 2.2.1. An example of Z-linear dependence relation for architecture (1, 3, 3, 1)

with the associated initial binary coding to be sx = (s1x, s
2
x, s

3
x) = ((0, 1, 0), (1, 0, 1), (1)).

We first write down all the binary coding from each layer in the �l direction. In

the direction of �1 we have

(0, 1, 0), (1, 1, 0), (1, 0, 0), (1, 0, 1),

and in the �2 direction, we have

(1, 0, 1), (0, 0, 1), (0, 1, 1), (0, 1, 0).

We can see �1 = (1, 1, 0) with two bases ��
1 = (0, 1, 0) and �+

1 = (1, 0, 0), �2 = (0, 1, 1)

has bases ��
2 = (0, 0, 1) and �+

2 = (0, 1, 0). Then (�1,�2) is dependent on ��
1 , �

+
1 ,

��
2 and �+

2 . We can draw their computational graphs and explicitly write down the

open paths:

The open paths for G are:

w3
21w

2
12w

1
11x;

w3
31w

2
13w

1
11x;

w3
21w

2
22w

1
12x;

w3
31w

2
23w

1
12x.

The open path for G�� is

w3
31w

2
23w

1
12x.
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Figure 2.8: The augmented computational graph G for (�1,�2) =
((1, 1, 0), (0, 1, 1), (1))

Figure 2.9: The augmented computational graph G�� for (��
1 ,�

�
2 ) =

((0, 1, 0), (0, 0, 1), (1))

The open path for G�+ is

w3
21w

2
22w

1
12x.

The open path for G+� is

w3
31w

2
13w

1
11x.

Finally, the open path for G++ is

w3
21w

2
12w

1
11x.
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Figure 2.10: The augmented computational graph G�+ for (��
1 ,�

+
2 ) =

((0, 1, 0), (0, 1, 0), (1))

Figure 2.11: The augmented computational graph G+� for (�+
1 ,�

�
2 ) =

((1, 0, 0), (0, 0, 1), (1))

From the above figures, we can see that the open paths in G is the sum of the open

paths in G��, G�+, G+� and G++, o↵ by a constant given by the bias parameters. In

particular, this implies that the partial derivative with respect to weight parameters

labeled on the paths of G can be written as a linear combination of the corresponding

partial derivatives from all four other graphs.
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Figure 2.12: The augmented computational graph G++ for (�+
1 ,�

+
2 ) =

((1, 0, 0), (0, 1, 0), (1))
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Chapter 3

E↵ective functional dimension

3.1 Background

Initialization has a great influence on the speed of the optimization achieved by a

neural network. Historically, neural networks are mostly initialized by random weights

drawn from either normal distribution or uniform distribution, with normal distribu-

tions used more often for deep networks [Krizhevsky et al., 2012]. With uniform stan-

dard deviations, neural network models may encounter di�culties converging (e.g.,

reported in [Karen Simonyan, 2014]). Glorot and Bengio [Glorot and Bengio, 2010]

and He [He et al., 2015] proposed di↵erent initialization methods to solve this prob-

lem. In this section, we have less requirements on initialization for analyzing distri-

bution of breakpoints for a neural network with architecture (1, n, 1). Therefore, we

will simplify calculations by using standard normal distribution for weight and bias

parameters. That is,

wi ⇠ N(0, 1) and bi ⇠ N(0, 1).
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Now for a neural network of architecture (1, n, 1) with expression

�(
X

i

w(2)
i yi + b(2)i ),

where (j) in the superscript denotes the number of the layer, � is the ReLU activation

function and yi = �(w(1)
i x + b(1)i ), the boundaries of activation regions are given by

�b(1)i /w(1)
i . We denote these boundaries as breakpoints of the neural network function.

In other words, the breakpoints of a neural network function of architecture (1, n, 1)

are the boundaries of its activation regions with expression �b(1)i /w(1)
i .

Recall that the Cauchy distribution is the distribution of the ratio of two indepen-

dent normally distributed random variables, and it has probability density function

f(x; x0, �) =
1

⇡�


1 +

⇣
x�x0
�

⌘2
�

=
1

⇡


�

(x� x0)2 + �2

�
,

where x0 is the location parameter and � is the scale parameter.

For the standard Cauchy distribution, we choose � = 1 and x0 = 0. Since the

weight and bias parameters were chosen randomly from independent normal distri-

butions, it follows that the breakpoints follow the standard Cauchy distribution.

It turns out that because the breakpoints are drawn from a Cauchy distribution,

there is a huge variation in the sizes of the bounded activation regions. To understand

this, we first introduce the important notion of the order statistic of a random variable.

Definition 3.1.1. Let X be a random variable with probability density function

f : R ! [0,1). The k-th order statistic on a sample of size n drawn from f is

the random variable representing the k-th smallest value among n i.i.d draws of the

random variable X. We denote it by X(k : n), or just X(k) for convenience.
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Following a common convention, we use upper-case letters to refer to random

variables, and lower-case letters (as in the following example) to refer to their actual

observed values. For instance, suppose that we take 5 i.i.d random variables X1, X2,

X3, X4, X5 with the following sample values:

x1 = 6, x2 = 18, x3 = 27, x4 = 9, x5 = 5.

Then the k-th smallest value from the set is considered to be an independent draw of

X(k : n), which is the k-th order statistic on samples of size 5. Explicitly we have

x(1) = 5, x(2) = 6, x(3) = 9, x(4) = 18, x(5) = 27,

where the subscript (k) enclosed in parentheses indicates the k-th order statistic of

this sample. The probability distribution of these values gives the distribution of the

k-th order statistics. We are now ready to state the following.

3.2 "-e↵ective activation regions

We first motivate the definition of "-e↵ective activation regions by experimentally

and theoretically showing the behavior of activation regions.

Let X be a random variable, following a distribution D, with probability density

function fX(x) such that fX(x) has a global maximum. In particular, argmax fX(x)

is finite. Now sample {Xi}ni=1 from D. Define Y(i) to be the i-th order statistics of

{Xi}ni=1 and let

Zi := Y(i+1) � Y(i).

Denote the i-th order statistics of Zi as Z(i). Then Y(i) has a probability density

function transformed from Xi, Zi has a probability density function transformed
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from Y(i), and Z(i) has a probability density function transformed from Zi. Moreover,

the expected value E(Z(i)) would be a number depending on i.

With this setup, we can empirically verify that logE(Z(i)) and log i are linearly

related for significant portion of the indices i, which equivalently says that E(Z(i))

and i satisfy a power law. Hence, we can make the following conjecture

Conjecture 3.2.1. Let Z(i) be defined as above. Denote E(Z(i)) as its expected value.

Given an architecture (1, n, 1), for i  n/2,

E(Z(i)) = ↵ · i�,

for some ↵, � 2 R.

We can see from figure 3.1 that the performance of logE(Z(i)) and log i behaves

predictably as a power law before a turning point, but then gets bottlenecked after-

wards. In particular, we can apply linear regression to logE(Z(i)) and log i for the

points that follow the power law and appear before the turning point, and then verify

that ↵ = �1.905, � = 7.931. Therefore,

E(Z(i)) = �1.9 · i7.93. (⇤)

We investigate deeper on this turning point appearing in figure 3.1. For an archi-

tecture (1, n, 1), we have (figure 3.2, latex doesn’t insert the figure correctly)

where the x-axis is n for an (1, n, 1) architecture, and the y-axis is the turning

point, i. e., it indicates the place where the power law is violated. The decision

boundary for deciding whether the power law stops working or not depends on if the

log distance | log x� log y| > �, where x is the point, and y is the fitted line in figure

3.1, � is a certain threshold, which is chosen to be 0.5 here. Apply linear regression
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Figure 3.1: logE(Z(i)) and log i are linearly related. This figure demonstrates experi-
ments on an architecture (1, 10000, 1), with parameters randomly drawn from N(0, 1).
Here on the label of y-axis, µ = 10�6.

to figure 3.2, we get the regression coe�cient to be 0.4762, i. e.,

y = 0.48n

for an (1, n, 1) architecture. In other words, for approximately i > n/2, the above

power law is violated.

Combined with Figure 3.1, we can see that when n is large enough, there are

around half of the breakpoints before and after the turning point. More precisely,

approximately half of the activation regions follow the power law (⇤) above and half

the points do not.

The above experiments show that as we have more hidden neurons, the smallest

log distance between two consecutive breakpoints is tiny for roughly half of the break-

points. In other words, half of the activation regions of a neural network function

with architecture (1, n, 1) are much smaller than the rest, suggesting a low probability

of data points landing in these activation regions. This implies that in practice, due

to sampling considerations, achieving the theoretical upper bound on the functional
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Figure 3.2: Scatter plot of the index where the power law fails when the log distance
between the point and the fitted line is greater than 0.5. This figure shows results
for architecture (1, n, 1), where n = 1000 + 20i for i 2 [0, 950]. For each n, 3n + 1
parameters are randomly drawn from N(0, 1).

dimension is practically impossible.

Note that weights and biases parameters can be sampled from any distribu-

tion. There is nothing special about assuming them being independent normally

distributed. As long as the quotient distribution of weights and biases has a global

maximum, the above statement holds.

In conclusion, the breakpoints of a neural network function of architecture (1, n, 1)

whose weights are sampled from N(0, 1) follow a standard Cauchy distribution, re-

sulting in tiny activation regions for roughly half of the points. Moreover, as the

neural network function gets wider, i. e., as n gets larger, there will be more and more

tiny activation regions clustered together in the center of the bounded regions of the

graph of the realization map ⇢(✓) (figure 2.3 shows an example of the graph of ⇢(✓) for

architecture (1, 2, 1)). This implies that in practice, when we train a neural network

function, many of its activation regions will contain no data points in them, which
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will have implications for the functional dimension that can actually be realized on a

batch of sample points.

This motivates the following definitions:

Definition 3.2.2. Let F be a fixed neural network function. Fix " > 0. Denote {xj}

as the set of breakpoints. Let Y(i) be the i-th order statistics of {xj}. An activation

region R bounded by two consecutive breakpoints y(j�1) and y(j) is said to be "-e↵ective

for F if

P (y(j�1) < Z < y(j)) � ".

And an activation region R is said to be "-ine↵ective to a neural network F if

P (y(j�1) < Z < y(j)) < ".

With this definition in hand, we can also run experiments to estimate the total

measure (out of 1) of the union of "-e↵ective regions as a function of n and " for a

neural network function of architecture (1, n, 1). Our experiments are demonstrated

in Figure 3.3.

The e↵ectiveness of an activation region implies that, in practice, usually it would

be hard to achieve the theoretical upper bound 2n + 1 on functional dimension for

a neural network function of architecture (1, n, 1). As we have shown by various

experiments on “activated” activation regions, if the input data points are sampled

from a standard normal distribution, then there are only around 40% of the activation

regions are "-e↵ective.

Insu�cient "-e↵ective activation regions would result in a smaller size of sample

data points when computing the functional dimension, and hence, the "-e↵ective

functional dimension will be lower than the full functional dimension. To see this,

for m points drawn from N(0, 1), we can run experiments to test the "-e↵ective

sample size, that is, the expected number of points landing in "-heavy regions. For
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Figure 3.3: Total measure of union of "-e↵ective regions
with threshold axis denoting ". We can see that when n is large and " is small, the

total measure of "-e↵ective activation regions is around 40%.

illustration, figure 3.5 shows the "-e↵ective sample size for " = 0.05 is at most 82 when

m = 100 and n = 1, . . . , 100 for a neural network function of architecture (1, n, 1).

The di↵erence in the activation regions and e↵ective activation regions leads to a

discussion of e↵ective functional dimension. We should view the "-e↵ective functional

dimension as the functional dimension achieved empirically. We first formally define

"-e↵ective functional dimension.

3.3 "-e↵ective functional dimension

Consider the set of breakpoints {xj}kj=1 following a Cauchy distribution. Note

that k is the number of breakpoints and it is fixed for a specific architecture. Let Y(i)

be the i-th order statistics of {xj}. Locally in the parameter space ⇥, the weight and

bias parameters are fixed, whence the activation regions are fixed. In particular, this
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Figure 3.4: For a neural network of architecture (1, n, 1), when n is large and when
there are enough amount of input data points, we can see that only about 40% of the
activation regions are being "-e↵ective.

means that y(i)’s are fixed. Now let " > 0, and let z be a random input data point.

Define

I(i) :=

8
>><

>>:

1 if P (y(i�1) < z < y(i)) > "

0 otherwise

Let ZI be a subset of Z, which excludes points according to this function I. i. e.,

ZI is a smaller batch of sample points, it considers only those input points with

weights at least ".

Definition 3.3.1. Let the marked realization map ⇢(✓) be defined as before. Let

✓ 2 ⇥n0,...,nm be an ordinary parameter. The batch "-e↵ective functional dimension

of ✓ for a batch Z ⇢ Rn0 of parametrically smooth points for ✓ is

dim"
e.ba.fun(✓, Z) := rankJEZI

|✓,

48



Figure 3.5: The "-e↵ective sample size for " = 0.05.

We are now ready to define the (full) "-e↵ective functional dimension of an ordi-

nary point ✓ 2 ⇥n0,...,nm .

Definition 3.3.2. Fix " > 0. Consider an architecture (n0, . . . , nm). For any point

✓ 2 ⇥n0,...,nm, define the (full) "e↵ective functional dimension at ✓ to be

dim"
e.fun(✓) := sup

Z
dim"

e.ba.fun(✓, Z).

Here again, Z ⇢ Rn0 is finite and parametrically smooth for ✓. We can also define

the local (in the sense of the parameter space ⇥n0,...,nm) e↵ective functional dimension.

Definition 3.3.3. Fix an architecture (n0, . . . , nm). Define the e↵ective functional

dimension of the parameter space ⇥no,...,nm to be

dim"
e.fun := sup

✓
dim"

e.fun(✓).

We give an empirical example to illustrate and compare the di↵erence between the

(theoretical) functional dimension and the e↵ective functional dimension. Consider
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the architecture (1, 11, 1). If ✓ 2 ⇥1,n,1 has coordinates

✓ = (w1
11, . . . , w

1
1n, b

1
1, w

1
21, . . . , w

1
2n, b

1
2, . . . , w

2
1n, b

2
1),

then a similar computation as we did when computing the dimension of the column

space of JEz shows that for a generic, transversal parameter ✓, the functional di-

mension on decisive sets consisting k(n0+1) points can achieve the theoretical upper

bound 2n+1, where k is the number of top-dimensional cells of the canonical polyhe-

dral complex C(✓). However, in practice, if we sample the weight and bias parameters

from a normal distribution and compute the "-e↵ective functional dimension, with

about 40% activation regions being "-e↵ective, we would only achieve approximately

40% of the true functional dimension.

Figure 3.6: "-e↵ective functional dimension for architecture (1, 11, 1) with " = 0.1,
and no ReLU on the final layer. The x-axis shows the "-e↵ective functional dimension,
and the y-axis is the number of time we get this "-e↵ective functional dimension. Note
that the total number of networks is 2000.

For Figures 3.6 to Figure 3.8, we ran 2000 experiments, where each run has weights

and biases drawn from N(0, 10) and 10000 data points randomly generated from
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Figure 3.7: "-e↵ective functional dimension for architecture (1, 11, 1) with " = 0.01,
and no ReLU on the final layer. The x-axis shows the "-e↵ective functional dimension,
and the y-axis is the number of time we get this "-e↵ective functional dimension. Note
that the total number of networks is 2000.

N(0, 10). Here we choose a higher variance for normal distribution on the sample

points because otherwise we would need a much larger sample size in order to have

enough points in the activation regions so that the "-e↵ective functional dimension

will not always be 0. Additionally, we did not put ReLU activation function on the

final layer map, since this will yield many calculations to be 0. These figures show

that even though theoretically we should expect 2n+1 linearly independent degrees of

freedom available for perturbing parameters near ✓ = ✓0, while remaining in the class

of functions realizable by neural network functions of the same architecture, however,

in practice, the maximum number of linearly independent degrees of freedom we could

actually achieve for varying parameters near ✓0 is much smaller, especially when " is

large. We observe that when "! 0, we have more "-e↵ective activation regions, and

the upper bound on e↵ective functional dimension converges to the theoretical upper

bound on functional dimension, which is demonstrated by the above figures, with "

51



Figure 3.8: "-e↵ective functional dimension for architecture (1, 11, 1) with " = 10�13,
and no ReLU on the final layer. The x-axis shows the "-e↵ective functional dimension,
and the y-axis is the number of time we get this "-e↵ective functional dimension. Note
that the total number of networks is 2000.

varies from 0.1 to 10�13.

More formally, we can see this from a di↵erent perspective: if there are less "-

ine↵ective regions (i. e., more regions are activated), then the di↵erence between the

upper bound on "-e↵ective functional dimensions and true functional dimension is

smaller. We can construct an e"-net for the set of "-ine↵ective regions �(c). That is,

we consider only those "-ine↵ective regions with weight at least e" under normal distri-

bution. Thus, let M be a sample set of size m, and let �e"(c) = {r 2 �(c) : Px2N [x 2

r] � e"}. We can make the following definition:

Definition 3.3.4. For any e" > 0, we say that a set M is an e"-net for �(c) if every

region in �e"(c) contains a point from M , i. e., for every r 2 �e"(c), we have M\r 6= ;.

Now fix an "-ine↵ective region r 2 �e"(c). By construction, we can bound the

probability that all the m random sample points miss r, this is at most (1 � e")m.

In other words, the probability that all but one "-ine↵ective regions contain a sam-
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ple from M is bounded above by (1 � e")m. This suggests the di↵erence between

the e↵ective batch functional dimension and true functional dimension is bounded.

Moreover, this upper bound gets tighter as e" gets larger, which means there exists

fewer "-ine↵ective regions.

Now given a sample batch of size M , denote E[hM ] to be the "-e↵ective batch

functional dimension forM , and hFD to be the batch functional dimension. We would

like to investigate more on |E[hM ]�hFD|, the di↵erence between the "-e↵ective batch

functional dimension for M and batch functional dimension.

Define ⌘ to be the extra rank given by adding rows corresponding to those inef-

fective sample points (i. e., those data points in activation regions but not "-e↵ective

activation regions) to the Jacobian matrix for computing the "-e↵ective batch func-

tional dimension. Then by definition, we have

E[hM ]  hFD  E[hM ] + ⌘.

|E[hM ]� hFD| is thus bounded above by ⌘. Furthermore, we can test |E[hM ]� hFD|

for di↵erent M and ".

Figure 3.9 shows that for " very close to 0 (for instance, " = 10�13), the di↵erence

between "-e↵ective batch functional dimension and batch functional dimension is

constantly zero for any batch size M . When " = 0.01, |E[hM ] � hFD| = 0.1, 0.26,

0.77, 1.51, 1.83, 1.51, 1.24,1, 0.53 for M = 10, 46, 215, 1000, 4642, 21544, 100000,

464159, 2154435; respectively for the same M , when " = 0.1, |E[hM ]� hFD| = 0.05,

0.29, 0.77, 1.59, 1.8, 1.26, 1.22, 1, 0.45; for " = 0.26, |E[hM ]�hFD| = 0.03, 0.22, 0.74,

1.45, 1.79, 1.16, 1.17, 1, 0.47.

Let M⇤ be the batch size such that the di↵erence |E[hM ] � hFD| is maximized.

We can see that M⇤ = 4642, which is around 2% of M . For M > M⇤, |E[hM ]� hFD|

decays slowly to 0.
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Figure 3.9: Di↵erence between "-e↵ective batch functional dimension and batch func-
tional dimension for various ". Each color of the curve shows the behavior of one
".
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Chapter 4

Appendix

4.1 Expected functional dimension

Each activation region has a binary labeling associated to it, therefore, depending

on the activation pattern, the functional dimension can vary for a fixed architecture. It

is known that the degree of hidden symmetries is inhomogeneous, i. e., many di↵erent

parameter settings can determine the same neural network function. In particular,

the functional dimension changes across the parameter space. This section provides

a short discussion on computing the upper bound on expected functional dimension.

In particular, we can theoretically compute the upper bound on expected functional

dimension for a neural network of architecture (1, n, 1). Note that this upper bound

is tight if the opposite direction of lemma 2.1.7 holds.

We start by considering a neural network function of architecture (1, 2, 1).

Lemma 4.1.1. Let F be a neural network function of architecture (1, 2, 1). Let ✓0 2 ⇥

be a parameter. Then

E(dimfun(✓0)) 
57

16
.

Proof. The activation status of two hidden neurons determine the activation patterns
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of three activation regions. In particular, once we know the binary labeling of the first

activation region, we can determine the rest. There are four possible sign patterns

for the first region: (0, 1), (1, 0), (0, 0), (1, 1), each with equal probability 1/4.

For the first case that the first activation region has binary labeling (0, 1), the

other two activation regions have binary labeling (1, 1) and (1, 0). Depends on how

the hyperplane from the last layer intersects, with right to be the positive direction,

we have the following six cases

1.{(0, 1), (1)}, {(1, 1), (1)}, {(1, 0), (1)};

2.{(0, 1), (1)}, {(1, 1), (1)}, {(1, 1), (0)}, {(1, 0), (0)}, {(1, 0), (1)};

3.{(0, 1), (1)}, {(0, 1), (0)}, {(1, 1), (0)}, {(1, 0), (0)}, {(1, 0), (1)};

4.{(0, 1), (1)}, {(1, 1), (0)}, {(1, 0), (0)}, {(1, 0), (1)};

5.{(0, 1), (0)}, {(1, 1), (0)}, {(1, 1), (1)}, {(1, 0), (1)};

6.{(0, 1), (0)}, {(0, 1), (1)}, {(1, 1), (1)}, {(1, 0), (1)},

and changing the positive direction for the intersecting hyperplane, we will have the

other six cases with equal probability. We can compute the functional dimension for

each case. Case 1 has functional dimension at most 5, switching the direction for the

hyperplane gives functional dimension 0, similarly, case 2 has functional dimension

at most 5, 4; case 3 has functional dimension at most 5, 5; case 4 has functional

dimension at most 3, 5; case 5 has functional dimension at most 4, 4; and case 6

has functional dimension at most 5, 3. Since bias parameters are chosen from a

distribution with smaller variance, it implies that the bounded regions are very small

compared to those unbounded ones. Hence we will only consider case 1, 3, 4, 6 for

computing the expected functional dimension. Then in this case, the upper bound
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on expected functional dimension is

E(case 1) + E(case 3) + E(case 4) + E(case 6)

2.5

16
+

5

16
+

4

16
+

4

16

=
15.5

16

Similarly, we can computed the upper bound on expected functional dimensions

for the other three cases: 15.5
16 , 13

16 and 13
16 . Thus, the expected functional dimension

for a neural network function of architecture (1, 2, 1) is at most 57
16 .

We can use the same method to compute the upper bound on expected functional

dimension for a general architecture.

Proposition 4.1.2. Let F be a bias-free neural network function of architecture

(1, n, 1). Let ✓0 2 ⇥ be a parameter. Then the upper bound on expected functional

dimension of F

E(dimfun(✓0))  n.

Proof. There are three possible cases in the parameter space:

1. All the slopes in the parameter space are preserved (or on the contrary, being

zeroed out) by the activation function. The upper bound on expected functional

dimension for this case is

E  (0 + 2n+ 1)

✓
1

n

◆✓
1

4

◆
,

where 2n+1 is the upper bound on functional dimension for an (1, n, 1) network

work, 1/n is the probability of the intersecting hyperplane can turn in terms of

its dimension, and 1/4 = 1/2⇥1/2 is the probability that the function achieves

the full functional dimension, or it’s completely being zeroed out. Then for n
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large enough, we have

lim
n!1

E  1

2
.

2. Only slopes in the unbounded regions are preserved. Similarly as above, this

case has probability

E  (5 + 5)

✓
1

n

◆✓
1

4

◆
,

and

lim
n!1

E = 0.

3. Only one slope in the parameter space is preserved and its symmetric case. This

has probability

E  (3 + 2n+ 1)

✓
1

n

◆✓
1

4

◆
,

and

lim
n!1

E  1

2
.

Therefore, as each subcase has probability
�
1
2

�n
, we can summarize and com-

pute the expected functional dimension for a bias-free neural network of architecture

(1, n, 1):

E 
2n

�
1
2

� �
1
2

�n
�
1
2

�n = 2n

✓
1

2

◆
= n.

We have also run an experiment to test the expected functional dimension for a

neural network function of architecture (1, n, 1), it is 3.74 for n = 2, and approaches n

when n ! 1, which matches our computations from the upper bound above, leading

evidence for Conjecture 2.1.8 (suggesting that the opposite direction for Lemma 2.1.7

is very likely to be true).
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