
       

Reevaluating the Ventral and Lateral  
Temporal Neural Pathways in Face 

Processing: Deep Learning Insights into 
Face Identity and Facial Expression 

Mechanisms 
 

Emily Schwartz 
 
 
 
 
 
 
 

 
 

 
 
 

A dissertation  
 

submitted to the Faculty of  
 

the department of Psychology and Neuroscience 
 

in partial fulfillment 
 

of the requirements for the degree of 
 

Doctor of Philosophy 
 

 
 

 
 
 

 
Boston College 

Morrissey College of Arts and Sciences 
Graduate School 

 
 

June 2024 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
© Copyright 2024 Emily Schwartz 

 



       

 
 
 
 
 
 
 
 
 
 
 
“I know faces, because I look through the fabric my own eye weaves, and 
behold the reality beneath.” 

Kahlil Gibran 
 

  



 

 
 
 
 
 
 
 
 
 
 
Dedicated to my brother Brian who without I 
would have never passed my first neural data 
analysis class. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



       

 
 

Reevaluating the Ventral and Lateral Temporal Neural Pathways in Face 
Processing: Deep Learning Insights into Face Identity and Facial Expression 

Mechanisms 

Emily Schwartz 

    Advisor: Dr. Stefano Anzellotti, Ph.D. 

 
There has been much debate over how the functional organization of vision develops.  

Contemporary theories that are inspired by analyzing neural data with machine learning 

models have led to new insights in understanding brain organization. Given the 

evolutionary importance of face perception and the specialized mechanisms that have 

evolved to support evaluating it, examining faces offers a unique way to study a 

dedicated mechanism that shares much of its organization in ventral and lateral neural 

pathways with other social stimuli, and provide insight into a more general principle of 

the organization of social perception. According to a classical view of face perception 

(Bruce and Young, 1986; Haxby, Hoffman, and Gobbini, 2000), face identity and facial ex- 

pression recognition are performed by separate neural substrates (ventral and lateral 

temporal face-selective regions, respectively). However, recent studies challenge this 

view, showing that expression valence can also be decoded from ventral regions (Skerry 

and Saxe, 2014; Li, Richardson, and Ghuman, 2019) and identity from lateral regions 

(Anzellotti and Caramazza, 2017). These recent findings have inspired the formulation 

of an alternative hypothesis. From a computational perspective, it may be possible to 

process face identity and facial expression jointly by disentangling information for the two 

properties. This hypothesis was tested using deep convolutional neural network (DCNN) 

models as a proof of principle. Subsequently, this is then followed by evaluating the 

representational content of static face stimuli within ventral and lateral temporal  face-

selective regions using intracranial electroencephalography (iEEG). This is then extended 



 

to investigating the representation content of dynamic faces within these regions using 

functional magnetic resonance imaging (fMRI). The results reported here as well as the 

reviewed literature may help to support the reevaluation of the roles the ventral and 

lateral temporal neural pathways play in processing socially-relevant stimuli. 
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Chapter 1

An Introduction to the Functional

Organization of Higher-Order Vision

and Faces in the Brain
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1.1 Functional organization of vision in the brain

Humans, more so than most mammals, rely on vision over their other senses.

One constantly needs to be able to understand their visual surroundings to know

how to navigate through their environments both literally (i.e. spatial navigation)

and figuratively (i.e. social navigation). Vision is a computationally demanding

task, yet most of us recognize our surroundings effortlessly, hinting at the complex

mechanisms and organization involved. This has driven many to study our visual

system in order to better understand how we perceive the outside world.

The human visual system is not uniform and undifferentiated. Early visual

regions (V1-V3) branch into three distinct streams: a ventral pathway, running

along inferior temporal cortex; a lateral pathway, running along the superior tem-

poral sulcus; and a dorsal pathway, cutting into the parietal lobe (Ungerleider and

Mishkin 1983, Felleman and Van Essen 1991, Goodale and Milner 1992, Pitcher et

al. 2021). In turn, these streams can be subdivided into distinct regions encod-

ing topographic maps of the visual field (Silver and Kastner, 2009), and starting in

the more anterior portions of the occipital cortex demonstrate an organization by

object category (Sergent and Signoret, 1992; Allison et al., 1994; Kanwisher et al.,

1997; Epstein and Kanwisher, 1998; Chao, Haxby, and Martin, 1999) and real-world

object size (Konkle and Oliva, 2012; Julian, Ryan, and Epstein, 2017). The organi-

zation into distinct streams is often discussed separately from category-selectivity

and object size effects. However, the principles shaping these different aspects of

the large-scale organization of visual cortex might be similar. Therefore, consid-

ering them jointly can help to paint a more comprehensive picture of the visual
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system in which evidence concerning one aspect of organization could inspire in-

sights into the others.

1.1.1 Cortical pathways in vision

Early anatomical and physiology studies first brought forth the idea of multiple

pathways in the visual system (Minkowski, 1920; Livingstone and Hubel, 1988;

Felleman and Van Essen, 1991). Researchers studying the primate visual system

investigated the different cell types in the lateral geniculate body (LGN), a sub-

cortical structure that receives input from the retina via the optic nerves. They

found that the retina mapped onto the cells of the LGN differently depending on

which layer of the LGN those cells were located within (Minkowski, 1920; Lev-

enthal, Rodieck, and Dreher, 1981). Most notable was the distinction between

mangocellular and parvocellular layers. Cells within these subdivisions had dif-

ferent anatomical properties, indicating they may be better suited for specific parts

of visual processing (e.g., color versus acuity). A continuation of these subdivi-

sions were found for V1 and V2, and seemed to become more pronounced further

downstream (Livingstone and Hubel, 1988). The magnocellular and parvocellular

cells in the LGN send inputs to V1 in primates. The cortex in V1 is made up of

six different cellular layers, and these different cellular layers send inputs to dif-

ferent downstream visual regions. For instance, layers 2 and 4 in V1 which are

involved in processing form and color have been mapped inputs into V2, but have

not been shown to send inputs to area MT/V5. V4 additionally receives color-

selective cell inputs from the parvo subdivisions in V1 (Livingstone and Hubel,

1988), and orientation-selective information related to shape in V1 as well (Mount-

castle et al., 1987). Meanwhile, layer 4B in V1, which contains cells selective to
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binocular disparity and directionality, as well as projections from magnocellular

cells, is involved in processing motion and directs its outputs to both V2 and area

MT (Figure 4 in Livingstone and Hubel, 1988). In line with this, areas V4 and V5, a

region that directs its outputs to area MT, connect to separate subregions of V2 in

macaques (Shipp and Zeki, 1985). Additionally, a third type of cellular layer has

been found in the LGN called the koniocellular layer which plays a more specific

role for representing colors along the yellow and blue spectrum (Hendry and Reid,

2000).

Given the high contrast sensitivity and low resolution of magnocellular cells,

which are the primary projections to area MT, and the high-resolution capabilities

of parvocellular cells for processing fine-grained details that project to area V4, it

makes sense to further evaluate the distinct pathways that connect the areas more

thoroughly. Felleman and Van Essen (1991) conducted a detailed review of the

macaque visual system to establish the demarcations of visual regions and their

connections (Figure 1.1, adapted from Van Essen et al. (2001)). This publication

outlined concrete evidence for a hierarchical model of visual processing, evalu-

ating connections between brain areas and demonstrating evidence for parallel,

interconnected pathways. Their work extended the findings of Mishkin, Ungerlei-

der, and Macko (1983), particularly concerning the branching patterns observed in

the medial superior temporal region (MST).

Specifically, they identified distinct subdivisions within MST: MSTd, located

dorsally, MSTl, positioned ventro-antero-laterally to MSTd, and FST, further ventro-

antero-laterally. These subdivisions exhibited varying response properties, con-

nectivity patterns, and different functional effects of eye gaze movement under
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FIGURE 1.1: Partitioning schemes for macaque visual cortex adapted
from Van Essen et al. (2001)

selective stimulation, which was particularly observed in MSTd and MSTl (Ko-

matsu and Wurtz, 1989; Felleman and Van Essen, 1991). Macko et al. (1982) used

2-[14C]deoxyglucose to map the full extent of these visual pathways. The neurobe-

havioral studies closely aligned with the neuroanatomical mappings. The hypoth-

esis that these distinct visual pathways may be extensions of the parvocellular and

magnocellular systems (Livingstone and Hubel, 1988) align with the above find-

ings related to the subdivisions of the higher-order visual regions, and help to

affirm the distinct functional roles of the ventral, lateral, and dorsal pathways in

visual processing that will be discussed later on.

In conjunction with this, further structures are observed within the streams.

For example, different brain regions within the ventral stream respond selectively

to distinct object categories (Kanwisher, McDermott, and Chun, 1997; Epstein and
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Kanwisher, 1998; Downing et al., 2001). This is within a broader gradient of an-

imacy in which inanimate objects drive responses in medial portions of ventral

temporal cortex and animate objects drive responses in lateral portions, with sim-

ilar patterns of response for both perceptual and semantic attributes of the object

(Chao, Haxby, and Martin, 1999). Bracci and Beeck (2016) has also demonstrated

that perceptual and semantic information coexist, yet have independent contribu-

tions, within ventral regions representing object animacy. Additionally, the ventral

temporal cortex may be better explained by the object appearance rather than the

object category. In a study where participants were shown lookalike objects and

inanimate objects that look like animate objects (e.g., a mug that is made to look

like a dog), lookalike objects were more similar to animate objects in ventral tem-

poral regions (Bracci et al., 2019). Lesion studies have also shown that recognition

of categories of living things can be damaged independently of the ability to recog-

nize categories of nonliving things (Warrington and McCarthy, 1987; Caramazza

and Shelton, 1998), and that these deficits can extend beyond visual recognition

towards semantic attributes as well. An additional known constraint is superim-

posed on this organization – distinct regions show preferential responses to small

versus large objects (Konkle and Oliva, 2012; Konkle and Caramazza, 2013; Ju-

lian, Ryan, and Epstein, 2017; Long, Yu, and Konkle, 2018). Smaller objects tend to

activate neural regions that overlap with those activated by scenes, which makes

sense from an organizational perspective considering that smaller objects often

contribute to the representation of a scene. The large-scale organization of the vi-

sual system has been a very active topic of research in the past decades. Yet, the

mechanisms that give rise to this organization and its functional significance re-

main debated in the field.
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1.2 Theories of category-selectivity

Typically, in the literature on the large-scale organization of visual cortex, distinct

theories account for the presence of specific processing streams and for the exis-

tence of category-selective and real-world-size-dependent effects. However, tak-

ing these aspects of the large scale organization of vision into account jointly might

be key to reach a comprehensive understanding of the structure of the human vi-

sual system and of its functional relevance. In the following sections, I will discuss

first the current theories of category-selective and size-dependent effects, starting

from the rich neuropsychology literature on category specific deficits, and contin-

uing with an overview of how functional imaging has shaped the understanding

of these phenomena. Next, I will discuss the accounts of the distinction between

different visual streams and of their functional roles.

1.2.1 Neuropsychology-based theories

Early work motivated by category-specific deficits in patients generated a rich

space of hypotheses to account for impairments that selectively affected some

types of objects but not all (Warrington and McCarthy, 1983; Caramazza and Shel-

ton, 1998). These theories varied along several dimensions, with a key one being

whether object representations are organized into separate brain regions special-

ized for different categories (the “neural structure principle”), or whether category

structures emerge within a unitary region from the correlations between features

within different types of objects (the “correlated structure principle”, see Mahon

and Caramazza, 2009). One influential proposal – the sensory-functional theory

(Warrington and Shallice, 1984) – hypothesized that object representations were
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organized into a system for the representation of sensory knowledge, and a system

for the representation of functional knowledge. Impairments for sensory knowl-

edge would result in deficits for the recognition of animate entities, and impair-

ments for functional knowledge in deficits for the recognition of inanimate enti-

ties. For instance, recognition of living things and food would likely be spared

together because they both rely on sensory inputs, while nonliving things and

body parts could be found spared together due to the functional role of objects

and the use of body parts to perform the function in conjunction with an object.

An alternative proposal – the domain-specific hypothesis (Caramazza and Shel-

ton, 1998) – argued that category-based organization results from specialization

for the processing of evolutionarily-relevant object domains. This hypothesis pre-

dicts that a category-specific impairment would be associated with an impairment

for both the perceptual and semantic information about the category. A third pro-

posal – the organized unitary content hypothesis (OUCH, Caramazza et al. 1990),

argued that there is a privileged relationship between some types of input repre-

sentations (such as visual form) and certain types of output representations (such

as knowledge of object manipulation). This would indicate that if categories con-

sist of properties that are highly correlated, then they would be impaired or spared

together. This is but a sampling of a broader theoretical landscape (see Mahon and

Caramazza 2009 for an in-depth discussion).

These initial theories of category-selectivity were driven primarily by case stud-

ies of patients with selective recognition impairments. At both the perceptual and

semantic level, individual studies in patients have provided crucial insight for the

mechanisms involved in object and face recognition. For instance, a case study

of one patient (Mr. W) demonstrates a selective impairment of object recognition
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with seemingly intact face recognition abilities (Rumiati et al., 1994). D.F., a well

known patient with visual form agnosia, has profound object recognition deficits

(Goodale et al., 1994). D.F. does show some impairment for faces, however this

seems to be only a partial effect due to D.F.’s ability to perform well on many face

categorization tasks (Steeves et al., 2006).

1.2.2 Imaging-based theories

Prior to the invention of functional Magnetic Resonance Imaging (fMRI), work on

the functional organization of the visual system primary came from behavioral

studies and their neural implications, along with anatomical work and neuropsy-

chological testing in humans, and work in animals. There was some electroen-

cephalogram (EEG) research; however, EEG lacks the spatial resolution of fMRI.

FMRI enabled researchers to identify which parts of the brain were activated with

much higher resolution than previously possible, facilitating the mapping of a

functional atlas of the brain. After the emergence of fMRI in the 1990s, many

researchers delved into investigating how the brain perceives the outside world.

This led to many conflicting theories on functional brain organization that are still

being discussed today.

1.2.2.1 Functional module hypothesis

The domain-specificity hypothesis is driven by evolutionary pressures that lead

to the existence of brain regions with specialized functions. The fact that brain

regions are consistently involved in processing specific categories supports the
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idea of evolutionarily-determined modules for brain functionality. These mod-

ules are thought of as specific machinery in the brain that are responsible for pro-

cessing distinct inputs. This theory has been particularly influential in the study

of higher-order vision and integrates well with the functional module hypothe-

sis, suggesting that the brain contains dedicated areas for processing specific vi-

sual domains. Using controlled functional localizer tasks, Kanwisher, McDermott,

and Chun (1997) employed fMRI to define specific regions in the brain that are

more activated for faces compared to objects, houses, hands, and scrambled faces

to control for low-level properties. They build upon work from Sergent and Sig-

noret (1992) and McCarthy et al. (1997), and discovered a region that was con-

sistent across subjects. This area became known as the fusiform face area (FFA),

with the area responding selectively to faces. The pioneering work helped to sup-

port a foundational basis for the concept of mapping of functional modules in the

brain. Similarly, Epstein and Kanwisher (1998) implemented the localizer method

to constrain the parahippocampal place area (PPA), a brain region that responds

selectively to visual scenes. In addition to this, Downing et al. (2001) found neu-

ral responses selective to the human body in the lateral occipital temporal cortex

(LOTC), becoming known as the extrastriate body area (EBA).

Both face-selective, body-selective, and scene-selective neuronal patches have

also been identified in monkeys. Tsao et al. (2006) uncovered face patches within

the temporal lobe in macaques where 97% of the visually responsive cells in the

region were activated by faces. This area is thought to be the primate equiva-

lent of the FFA found in humans. In a similar manner, Popivanov et al. (2014)

found a patch of neurons responding selectively to body parts in rhesus monkeys

within the midSTS. Additionally, Kornblith et al. (2013) reported the discovery of a
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scene-selective lateral place patch and a medial place patch in the parahippocam-

pal gyrus of macaques. These patches may be homologous to the PPA found in

humans. The detection of the selective patches in monkeys allowed researchers

to develop a deeper understanding of the properties of single neurons through

electrophysiology studies that cannot be studied in human subjects.

Event related-potential (ERP) studies have also been instrumental in demon-

strating specialized processing for different categories. For example, ERP studies

report an N170 component that has been repeatedly found in response to faces

(Bentin et al., 1996; Eimer, 2000). At 170ms post face stimulus onset, electrodes

located over the occipito-temporal area will show a negative voltage spike. This

spike is comparatively larger than what is seen for objects and scenes. Scenes also

modulate an ERP component known as P2, a positive component at about 220ms,

showing amplitude sensitivity to global properties of scenes (Harel et al., 2016).

1.2.2.2 Expertise hypothesis

A different theory was also put forth known to explain the emergence of the face-

specificity found in the FFA called the expertise hypothesis (Gauthier and Tarr,

1997; Gauthier et al., 1999). Gauthier and Tarr (1997) emphasized the view that

faces are organized in similar configurations, and are recognized at an exemplar-

specific level rather than a basic-level, which would predominately be the case for

the recognition of most objects. In conjunction with this, the FFA may not actually

be dedicated specifically to discriminate between faces, but rather may be dedi-

cated to discriminating stimuli that the specific individual has expertise in. To test

this, they created non-face stimuli called greebles. Subjects underwent training to

become experts at recognizing greebles. In a followup study, Gauthier et al. (1999)
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demonstrated that the FFA was activated to a greater extent for those who were

greeble experts than those who were not greeble experts. However, this theory

has been largely reconsidered in light of alternative explanations for the findings.

Studies of individuals with acquired prosopagnosia who exhibit abnormalities in

the FFA and severe deficits in face recognition, demonstrate normal performance

in learning to recognize greebles (Rezlescu et al., 2014).

1.2.2.3 Distributed hypothesis

An initially alternative theory was proposed by Haxby et al. (2001) a few years after

the discovery of the FFA (Kanwisher, McDermott, and Chun, 1997). At the time,

most fMRI work implemented a univariate approach that investigated the mean

activation of blood-oxygen-level-dependent (BOLD) response in a brain region of

interest. Instead, Haxby et al. (2001) expanded on a multidimensional scaling tech-

nique by Edelman et al. (1998) of voxel space representations to analyze the pat-

tern of responses to specific stimuli within the region of interest. They found that

within the FFA they could identify distinct patterns of activation not only for faces,

but for objects as well. At the same time, the activation in the FFA was still higher

in response to faces compared to objects. However, this indicated that the FFA still

carried information for objects, leading to the idea of distributed and overlapping

neuronal regions for processing visual stimuli.
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1.2.3 Contemporary theories

Improvements in neuroimaging scanner capabilities and analysis methods, as well

as advances in computational models, in particular deep neural networks have in-

fluenced the theories of category-selectivity in neuroscience (e.g., Doshi and Kon-

kle 2023, Dobs et al. 2022), shaping current hypotheses of the organization of object

representations. Based on the literature, it could be argued that representations of

objects are constrained on two ends: at the level of the inputs (due to the visual

properties of objects in different categories), and at the level of the outputs (due

to the optimization of performance for behaviorally-relevant tasks). Different ac-

counts of category-specific organization vary in terms of the emphasis they place

on constraints at these two levels. Additionally, a robust theory of functional orga-

nization should not only account for neural responses, but also explain how neu-

rons are arranged in a manner that optimizes functionality (Margalit et al., 2024).

1.2.3.1 Visual inputs and statistical learning in shaping neural structures

The visual sensory inputs from the world that travel through the retina and into

the brain are made up of consistent patterns and regularities. For instance, we typ-

ically focus our attention on faces, presenting them prominently in our visual field,

and all human faces share a similar curvature. Functional cortical organization is

likely partially constrained by the statistical properties of the visual inputs. Multi-

ple topography-related theories have been proposed at the input level. Retinotopy

involves the mapping of visual input from the retina onto corresponding neurons

within visual brain regions. For example, visual stimuli that appear in the center

of your field of view are captured by the fovea of the retina. These central vi-

sual inputs are then projected onto a specific, corresponding foveal region within
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the visual cortex. This mapping ensures that the spatial relationships in the vi-

sual field are preserved in the brain’s processing of visual information. Similarly,

there are statistical relationships between the distance of one’s center of gaze and

a point in their visual field. This is referred to as eccentricity in vision. There are

also topographic maps reflecting more complex properties of visual stimuli such as

curvature. Neurons in V1 respond selectivity to edges and borders at specific ori-

entations (Livingstone and Hubel, 1988), and higher order brain regions integrate

this information into curvature patterns to recognize shapes and objects (Arcaro

and Livingstone, 2017).

Statistical learning in vision identifies the structure of these visual inputs that

frequently and systematically emerge, and certain visual features may be more

informative for behavior. This raises the question: is there an a priori inherent

mechanism that influences how inputs shape the functional organization? For in-

stance, while evolution might have transformed functional organization to pri-

oritize certain tasks, are there specific input-level mechanisms that have been fa-

vored because they are particularly advantageous for these tasks? For example,

the ability to recognize faces is crucial for humans. Could the development of an

eccentricity-based map partially be a result of our emphasis on performing face-

related tasks? Conway (2018) suggests that regions within the inferior temporal

(IT) cortex are predisposed to align with parts of the eccentricity template, driven

by their relevance to specific goals. This underscores the interplay of both innate

and environmental factors in shaping the functional organization of IT.

Several research groups in the field are now exploring the potential of unsu-

pervised or self-organizing algorithms to shape functional cortical organization.

These methods utilize types of learning that do not require explicit category-level
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pressure to form useful representations of the data. Unsupervised learning mod-

els are algorithms that infer patterns and structures from unlabeled data. These

models do not have to rely on predefined labels to learn the representations that

are inherent in the dataset. Instead, they identify significant relationships, fea-

tures, and distributions within the data based solely on the inputs, without using

target outputs to help structure the learning process. A set of hypotheses have re-

cently emerged within the cognitive neuroscience field that focuses predominantly

on constraints at the level of the inputs. For example, the research by Arcaro and

Livingstone (2017) demonstrates that the brain is segmented into various regions

following retinotopic organization. This structure exists from birth as a protomap,

albeit in an immature state, and subsequently matures through one’s own expe-

riential influences. Additional work from Arcaro et al. (2017) expands on this,

demonstrating that looking behavior towards faces is essential to develop face do-

mains, and that this looking behavior is not innate, but it becomes preferred due

to learned reinforcement during development.

Another theory gaining traction proposes that the sensory organization of our

brain is subject to spatial constraints, which in turn dictate the topographic orga-

nization of the cortex, a process that occurs regardless of the behavioral tasks the

brain will eventually support (Doshi and Konkle, 2023; Finzi et al., 2023; Margalit

et al., 2024). These groups of researchers were able to demonstrate that by putting

certain constraints on the representational organization, done so at the input-level,

several topographic features found in the brain emerged in their models without

the need of any model supervision. For instance, Doshi and Konkle (2023) found

a large-scale organization of animacy as well as object size using a self-organizing
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data-driven approach that lacks explicit instruction, challenging the idea of spe-

cialized functional modules due to task-constraints. Instead, they propose this as

a plausible computational theory where face- and scene- selectivity arise due to

visuo-statistical differences. However, they do note some exceptions. For instance,

they do not find body-selective units via their self-organizing model. They also

find differences in the orthogonality between the animate-inanimate gradient and

size features that are not found in the human brain.

Margalit et al. (2024) took a similar approach, constructing a more brain-like

model by spatially constraining the organization and minimizing neuronal wiring

length to enhance efficiency. Here, they use a different method than Doshi and

Konkle (2023) for incorporating local spatial constraints. Instead of using an un-

supervised model with self-organizing maps, Margalit et al. (2024) create a topo-

graphic deep artificial neural network (TDANN), a contrastive self-supervised net-

work. The topographic portion is due to embedding the neuronal units of each

convolutional layer of the model into a two-dimensional simulated cortical sheet

where the unit positions are assigned retinotopically. Thus, units that respond

to similar regions of an image are then nearby each other in the simulated corti-

cal sheet. This is determined using a spatial loss function that encourages nearby

pairs of units to have more correlated responses than pairs that are further away

from one another. The model learns multiple signatures of brain functional orga-

nization. When compared to neural responses in macaques, TDANN shows cor-

responding V1 orientation tuning and is similar in its arrangement of orientation-

selective neurons. It also predicts similar maps of spatial frequency and color pref-

erence in V1. Furthermore, TDANN seems to predict similar category-selectivity

maps with face and body units more closely overlapping than face and place units.



17

The model also indirectly minimizes neuronal wiring length, a constraint that has

been favored from an evolutionary standpoint for computational efficiency. Given

that the need for a massive set of supervision labels seems unlikely in brain devel-

opment, this work is compelling.

Additional work has been done using other forms of unsupervised contrastive

learning to model the visual ventral stream (Zhuang et al., 2021). These types

of model in vision exploit the visual statistics of the inputs by learning their la-

tent representations without utilizing explicit labels or semantic content. Although

Zhuang et al. (2021) found that these models do perform similarly to supervised

models, they did speculate that unsupervised learning may serve as a proxy when

supervised or semi-supervised learning is not possible. This is an intriguing idea

since it is likely that the different computational mechanisms that support brain de-

velopment do not need to be mutually exclusive. Although most of the groups do

concede that the types of learning being implemented in the brain are not mutually

exclusive, these views highlight the importance of domain-general representations

in determining cortical organization.

1.2.3.2 Task-driven modulation in shaping representational structures

Research on the functional organization of the visual system has primarily con-

centrated on the level of visual inputs, rather than on how these inputs and their

representations may be molded at the output level to promote computational ef-

ficiency for downstream tasks. However, there is significant evidence suggesting

that 1) visual statistics are not enough to explain functional selectivity in the brain

and 2) neuronal tuning of cells in the ventral pathway can be dependent on task

optimization. There are three ways in which tasks can shape neural responses that
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take place over different timescales. First, there are long-term effects from evo-

lutionary selection that may innately specify cortical organization. In a seminal

study by Kosakowski et al. (2022), infants as young as two months old underwent

an MRI to look at functional responses to faces, scenes, and bodies. Using a care-

fully designed infant coil and a paradigm that controlled for the presence of pro-

tomap features, the researchers found face-, scene-, and body-selective regions in

the same anatomical locations as adults. These responses could not be explained

by visual features, and additionally they did not find selective responses in the

OFA and occipital place area (OPA), challenging a strictly serial relationship of

regions for bottom-up processing (Van Grootel et al., 2017). A second task-related

mechanism that may shape brain representations is the role of long-term visual ex-

perience. Longitudinal studies in macaques demonstrate time-dependent respon-

siveness towards monkey faces that are present at 1 month of age, but becomes

stronger in the first year of life, suggesting experience-related tuning (Livingstone

et al., 2017). A third mechanism that affects the neural representations of tasks re-

lates to short-term attention and its top-down role in modulating neural responses.

Responses in IT often follow activation in the prefrontal cortex (PFC), which is cru-

cial for planning and guiding behavior (Conway, 2018). This pattern, along with

feedback connections from the PFC to the IT, indicates a top-down influence on

the IT (Sheinberg and Logothetis, 1997; Sigala and Logothetis, 2002; Conway, 2018;

Dobs et al., 2018). This discussion primarily focuses on the first point, attempting

to understand the role of tasks shaped by evolutionary pressures.

What are the potential behaviorally-relevant mechanisms that may constrain
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category-specificity? Goodale and Milner (1992), in their review exploring sepa-

rate visual pathways for perception and action, suggested we have a "what" path-

way and a "how" pathway, arising due to what is required of the outputs we need

to produce for the tasks we are attempting to successfully complete. Studies in

animals and humans have demonstrated that tasks do indeed shape neural repre-

sentations (Yang and Maunsell, 2004). How the brain efficiently uses task-based

information to shape neural responses is less clear. Drawing inspiration from the

field of computer science, we can examine a single particular task within a broader

spectrum of tasks. Zamir et al. (2018) does this by modeling the structure of the

space of different visual tasks using transfer learning, a technique done to use a

previously trained model to effectively perform a new task, and creating a taxon-

omy that identifies useful relationships among these tasks. This approach aims to

develop an optimal and efficient model that capitalizes on redundant information

across tasks, using it to benefit other tasks. Similarly, Wang, Tarr, and Wehbe (2019)

adopt this theoretical perspective in the area of neural perception, positing that the

brain utilizes these inter-task relations to optimize computational processes. This

neural taskonomy proposal predicts that different types of information are pro-

cessed within common brain regions when this organization will lead to computa-

tional benefits. Conversely, when separate computational mechanisms for differ-

ent types of information should lead to improvements in performance, those types

of information should be processed by separate neural substrates.

In line with this, multiple research groups have shown the benefits of using

neural networks to understand functional specialization (Dobs et al., 2022; Schwartz

et al., 2023b). For instance, Dobs et al. (2022) demonstrated that in deep convolu-

tional neural networks (DCNN) that are dual-trained to recognize both faces and
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objects, the DCNN branches into two processing streams – one specialized for faces

and the other specialized for objects. Additionally, DCNNs have been used to un-

derstand task representations in the brain as well (Hong et al., 2016). In DCCNs

trained to perform category recognition on ImageNet (Krizhevsky, Sutskever, and

Hinton, 2012), the model suggested that not only identity-preserving transforms

can be maintained, but also the ability to build various transform representations

related to orientation and position as well (Hong et al., 2016). Their models were

able to explain neural responses both in areas IT and V4 in macaques. However,

the study did not test if the task itself was necessary to develop these representa-

tions within the models. Thus, it cannot be concluded if this is due to optimizing

the model for the task.

How do tasks influence visual perception at the behavioral level as well? In

a recent study, Dobs et al. (2023) shed light on key behavioral aspects of human

face perception by examining DCNNs. Specifically, in models trained to recog-

nize face identity, the researchers found a face inversion effect, mirroring the phe-

nomenon observed in human face perception. Furthermore, aligning with human

behavioral patterns, this effect was present exclusively in DCNNs trained for face

identity recognition, as opposed to those optimized for face detection or general

object recognition. Hong et al. (2016) also found that the decoding patterns of the

neural populations of IT in macaques were consistent with human performance on

behavioral tasks involving object properties.

Although unsupervised and semi-supervised models similarly predict neural

responses, when compared to their unsupervised counterparts, supervised models
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tend to surpass unsupervised and semi-supervised models in terms of their behav-

ioral consistency with human observations (Zhuang et al., 2021). Improved unsu-

pervised models, however, are beginning to outperform their supervised counter-

parts (Margalit et al., 2024). Furthermore, supervised models have some of the

same problems as unsupervised models as well as additional limitations. Xu and

Vaziri-Pashkam (2021) investigated the performance of 14 different convolutional

neural networks (CNNs) and compared them to fMRI data using representational

similarity analysis (RSA, Kriegeskorte and Kievit, 2013). The researchers found

that although the models show significant correspondence to lower-level visual

representations, they were unable to fully capture downstream representations

from LOTC and VOTC. This emphasizes that although the models do share simi-

larities with the brain, they do not have a perfect one-to-one correspondence.

1.3 The functional distinctions of the dorsal, ventral,

and lateral pathway

As mentioned previously, the LGN and V1 are organized into distinct layers, con-

sisting of magno cells, parvo cells, and konio cells. These three cell types make

up three cellular pathways that differ in the types of input statistics they repre-

sent. Why are these cells and the input statistics they represent each organized

into a different stream in this particular way? This might be driven by the need to

support distinct sets of behavioral functions. The interplay between input statis-

tics and task-based constraints may provide insights into how category-selectivity,

size effects, and the organization of multiple higher-order pathways emerge.
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1.3.1 Ventral versus dorsal distinctions

Mishkin, Ungerleider, and Macko (1983) traced through the visual system to de-

scribe the pathways along the inferior temporal areas (ventral pathway) and oc-

cipitoparietal areas (dorsal pathway). Initial investigations, predominantly con-

ducted on monkeys, unveiled compelling evidence of lesion-related deficits. For

example, when removing the bilateral area TE or the anterior inferior temporal

cortex, monkeys were impaired when performing an object discrimination task.

More specifically, in the experiment a monkey was familiarized with one object

from a pair of objects beforehand, and then was rewarded for choosing the un-

familiar object from the pair after. Conversely, removal of the bilateral posterior

parietal cortex disrupted landmark discrimination tasks, impeding the monkeys’

ability to discern food walls in proximity to the landmark. Mishkin, Ungerleider,

and Macko (1983) concluded that the ventral pathway is involved in processing

object qualities, while the dorsal pathway processes the object’s spatial location.

Goodale and Milner (1992) went on to expand and confirm this dissociation

with human studies, demonstrating a distinction between perceptual identifica-

tion of objects and visually guided actions directed towards objects. They revised

the initial idea of a ‘what’ versus ‘where’ functional dichotomy to instead a distinc-

tion of ‘what’ versus ‘how’. For example, patients with object ataxia (i.e. Balint’s

syndrome), a higher-order visual deficit related to misreaching when attempting to

complete visual goals, cannot reach for an object in the correct direction. However,

in addition to this, they also show deficits positioning their hands and fingers at

the right orientation, and modifying their grasp to correctly fit the size of the object

(Perenin and Vighetto, 1988; Goodale and Milner, 1992). One patient (D.F.) with

visual form agnosia, the inability to recognize objects, and whose lesions most
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FIGURE 1.2: Depicts the three pathways of the visual system: dorsal,
ventral, and lateral. Adapted from Pitcher and Ungerleider (2021)

likely are located in the ventral pathway, completed a series of tasks to evaluate

the ‘what’ versus ‘how’ distinction. D.F. was unable to recognize the object along

with various other features including size, shape, and orientation. When asked to

demonstrate the width of the object with their hands, they said they were unable to

do so. However, when asked to reach for the object, they were able to modify their

grip and accurately locate the object to pick it up (Goodale et al., 1991). These pa-

tient deficits highlight the role that action-relevant information (e.g., ‘how’) plays

in spatial vision.

1.3.2 Ventral versus lateral distinctions

More recently, Pitcher and Ungerleider detailed the argument for a three pathway

model with distinct functions related to higher order vision. In the model, the

dorsal pathway still corresponds to the ‘how’ pathway (e.g. processing location

and actions related to objects) and the ventral pathway still corresponds to the
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‘what’ pathway (e.g., processing the identity of visual objects). This third path-

way (deemed the lateral pathway) includes the inferior occipital gyrus, area MT,

and the STS (Figure 1.2 of the three pathway model, adapted from Pitcher and

Ungerleider, 2021). The lateral pathway may be specialized to process dynamic

aspects of social perception. Studies in macaques demonstrate a cortical pathway

from V1 to area MT to the STS, bypassing the ventral pathway (Ungerleider and

Desimone, 1986). These align with findings in humans that show a white matter

pathway that projects to STS from area MT that is independent of the ventral path-

way as well (Gschwind et al., 2012). The STS, recognized for its significance in

motion-related processing (Grossman et al., 2000; Pitcher and Ungerleider, 2021),

notably lacks the contralateral visual field biases observed in the ventral pathway

(Hemond, Kanwisher, and Beeck, 2007). Findings from macaque studies indicate

that both area MT and the STS boast larger receptive fields (Komatsu and Wurtz,

1989), encompassing broader regions of the visual field. This phenomenon aligns

well with their roles in motion processing, underscoring the adaptive nature of

their receptive field configurations and need to integrate across visual fields. So-

cial perception often involves observing the complete visual field due to the many

components typically involved in social interaction. This third pathway is also

known for its role in multimodal integration (Anzellotti and Caramazza, 2017;

Hasan et al., 2016). Given its association with dynamic information processing,

the integration of various sensory modalities, such as visual and auditory, should

be imperative for the effective analysis of social interactions.

While there has been widespread agreement regarding the existence of a lat-

eral pathway in visual processing, early research predominantly emphasized the
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differentiation between the ventral and dorsal pathways, leaving the role of the lat-

eral pathway somewhat less clear. Multiple selective areas have been found in the

STS in humans, and the macaque homolog (Tsao et al., 2006; Yang and Freiwald,

2021), during visual perception. These include selectivity for biological motion

(Grossman et al., 2000), body parts including hands (Grosbras, Beaton, and Eick-

hoff, 2012), faces (Anzellotti and Caramazza, 2017) including eye gaze direction

(Nummenmaa and Calder, 2009), and social interactions (Isik et al., 2017). FMRI

studies using localizer tasks and point-light display stimuli of humans walking,

dancing, and performing other typical movements identified the STS as selective

for body movement (Grossman et al., 2000). These studies used randomly moving

points while keeping other low-level features constant as a control, finding greater

activation for the biological motion point-light displays in the pSTS (Grossman

et al., 2000). Neighboring regions of the pSTS also respond to biological motion

(Peelen, Wiggett, and Downing, 2006), and rTMS to the pSTS disrupts biological

motion recognition (Grossman, Battelli, and Pascual-Leone, 2005).

Furthermore, the STS is thought to hold considerable importance in action

recognition. Actions inherently include motion, and involve the movement of var-

ious body parts. Given its connections to area MT and its selectivity to biologi-

cal motion, the STS emerges as a plausible hub for action perception. The LOTC

which partially includes the pSTS is also part of the lateral pathway. While the

ventral portion of the occipital temporal cortex may be predominately involved in

the recognition of an object, the lateral portion may be predominately involved in

action-related representations of the object (Wurm and Caramazza, 2022).

Finally, the lateral pathway has been thought to have very distinct roles in face

perception. In the 1980s, Bruce and Young made a strong argument for a cognitive
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model of face recognition, in which, after structural encoding of the face, the model

branches into two discrete pathways. One pathway is specialized for identifying

and generating the name of a face, while the other pathway is involved in facial ex-

pression, speech analysis, and gaze direction. After the development of fMRI in the

1990s, Haxby et al. (2001) came up with a neurocognitive model of face perception

that dovetailed nicely with Bruce and Young’s cognitive model. The Haxby, Hoff-

man, and Gobbini (2000) model states that early visual features are processed in the

inferior occipital gyrus, where the OFA is located, which is followed by a branch-

ing into two different pathways. Invariant aspects of face processing like recog-

nizing the identity of a face takes place in the ventral pathway which includes the

FFA. This can then be extended to include anterior temporal regions like the ATL

which is involved in person knowledge. Research using multi-voxel pattern anal-

ysis (MVPA) demonstrated that identity information can be decoded from neural

responses in OFA and FFA (Natu et al., 2010; Nestor, Plaut, and Behrmann, 2011;

Anzellotti, Fairhall, and Caramazza, 2013; Anzellotti and Caramazza, 2016; Dobs,

Bülthoff, and Schultz, 2016), and fMRI adaptation studies find higher responses

to different identities compared to the same identity (Winston et al., 2004). An

fMRI study that used MVPA was also able to encode abstract information related

to face identity in the ATL (Wang et al., 2017). However, the ATL can be difficult to

evaluate for most studies due to signal dropout in this area. Changeable features

of a face like facial expression, eye gaze, and lip movement are processed in the

pSTS in the lateral pathway of the brain, and is independent from invariant recog-

nition processing. Evidence shows the pSTS responds selectively to faces as well

as point-light displays of facial motion (Andrews and Ewbank, 2004; Atkinson,

Vuong, and Smithson, 2012). Moreover, the patterns of activity within this region
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encode critical information regarding the emotional valence of facial expressions

(Peelen, Atkinson, and Vuilleumier, 2010; Skerry and Saxe, 2014). Additionally,

faces showing dynamic expressions do not evoke increased responses in OFA and

FFA to the same degree as in pSTS (Pitcher et al., 2011). Taken together, this evi-

dence supports the involvement of OFA and FFA in the recognition of identity, and

the involvement of pSTS in the recognition of expressions. However, the evidence

presented in support of the classical view of face perception does not rule out a

role of the OFA and FFA in expression recognition, nor does it rule out a role of

the pSTS in the recognition of identity. In sum, the evidence is not sufficient to

demonstrate a separation between the mechanisms involved in the recognition of

face identity and facial expressions.

Neuroimaging studies in the past decade began to reconsider the classical view

of face perception. Identity information was found to be reliably decoded from

the face-selective posterior superior temporal sulcus (fs–pSTS) in addition to the

FFA (Anzellotti and Caramazza, 2017; Hasan et al., 2016; Dobs et al., 2018). In

fact, one study demonstrated that identity could be decoded with greater accuracy

from the pSTS than from both the OFA and FFA when the task at hand for the

subject was to perform identity recognition (Dobs et al., 2018, Fig 6). Addition-

ally, damage to the pSTS has been shown to lead to impairments in recognizing

face identity across different facial expressions (Fox et al., 2011), underscoring a

causal role for the pSTS in identity recognition. Conversely, in the study by Skerry

and Saxe (2014) that decoded valence of facial expressions in pSTS, the authors

were also able to decode the facial expression valence in the ventral pathway re-

gions OFA and FFA. Furthermore, fMRI adaptation studies have demonstrated a

release from adaptation for changes in facial expressions within the FFA as well



28

(Xu and Biederman, 2010). Even though deficits of identity recognition can spare

expression recognition (Etcoff, 1984; Young et al., 1993), such double dissociations

might occur at later stages of processing and do not exclude substantial integration

between expression and identity recognition at earlier stages (Calder and Young,

2005). Coinciding with this, prosopagnosics often show some amount of impair-

ment for expression recognition as well (Calder and Young, 2005).

These findings contradicted in part the previously indicated roles of the ventral

and lateral pathways for face perception. Duchaine and Yovel (2015) proposed a

revised model where the pathways interact, and the ventral pathway includes the

OFA, the FFA, and the face-selective ATL, and the lateral pathway includes the

face-selective pSTS, the face-selective aSTS, and the face-selective inferior frontal

gyrus (IFG). The ventral pathway preferentially responds to form information and,

thus, is important for recognizing invariant features where shape and form may

have a greater weight. In line with this, regions in the ventral pathway respond

to texforms, synthetic stimuli that contain the same mid-level texture and form

information of an object while keeping the object unrecognizable (Long, Yu, and

Konkle, 2018). The lateral pathway receives form information as well, but also

receives motion information. This is important for dynamic features that may play

a larger role in aspects like facial expression.

This evidence is part of a broader context of findings suggesting that dynamic

information contributes to the recognition of person identity (Yovel and O’Toole,

2016). Dynamic information is used to recognize face identity (O’Toole, Roark,

and Abdi, 2002). It is given more importance when the shape of the face is less

reliable (Dobs, Ma, and Reddy, 2017) and when the face is familiar (Butcher and

Lander, 2017). Person identity can also be recognized from gait presented with
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point light displays (O’Toole et al., 2011). As mentioned above, dynamic faces also

evoke stronger responses in the fs–pSTS (Pitcher et al., 2011). However, the view

that the pSTS is specialized for the processing of dynamic stimuli (Bernstein and

Yovel, 2015) does not fully account for the empirical data. Identity information

can also be decoded from the fs–pSTS after presentation of static face images and

voices (Anzellotti and Caramazza, 2017; Hasan et al., 2016). Rather than encoding

exclusively dynamic information, pSTS appears to integrate form, motion, and

sound (e.g., voices).

Collectively, these observations indicate that the evidence supporting separate

processing systems for identity and expression is not strong. However, they do

not directly refute the classical view that differentiates the ventral and lateral path-

ways, which are thought to process invariant and changeable features, respec-

tively.

1.3.2.1 Utilizing the case of face perception

A set of predictions are tested and reviewed hereby following the trail of these

surprising findings in face perception (Skerry and Saxe, 2014; Anzellotti and Cara-

mazza, 2017; Dobs et al., 2018). A classical theory of face perception holds that in-

formation about identity and information about expressions is processed by differ-

ent streams. In particular, representations of identity that are invariant to changes

of expressions are computed by discarding expression information, and represen-

tations of expressions that are invariant to identity are computed by discarding

identity information (Bruce and Young, 1986). In terms of neural implementation,

in this view, information about identity is processed by the ventral pathway, and

information about expression is processed by the lateral pathway (Haxby et al.,
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2001). In contrast with this theory, recent evidence has shown that lateral regions

(and in particular the fs–pSTS) also encode some information about face identity

(Anzellotti and Caramazza, 2017; Dobs et al., 2018). Informed by the taskonomy

proposal from Zamir et al. (2018) and its relationship to functional organization, it

can be hypothesized that this is the result of constraints at the level of the outputs.

In particular, an alternative account to the classical theory by Bruce and Young

(1986) is presented. In this alternative account, information about identity and ex-

pressions is disentangled: separating out information related to identity also helps

to separate out information related to expression, and vice versa.

1.4 Overview of Dissertations Chapters

The described alternate account results in a set of empirical predictions that can

be evaluated. First, recognizing face identity should not require discarding infor-

mation about expression, and vice versa. Instead, face identity recognition models

might even learn spontaneously, to some extent, how to separate out information

about expressions. This is tested in Chapter 2. Second, information about identity

and expression should be represented within common brain regions for static face

images. Rather than separate specialized mechanisms for identity and expression

processing, information about identity and expression should be encoded to sim-

ilar degrees in both ventral and lateral temporal brain regions. This is tested in

Chapter 3. Third, this organization should not be limited to static stimuli (images),

but it should also apply to the perception of dynamic stimuli (videos). This is then

tested in Chapter 4. A set of studies are proposed that are designed to evaluate

these predictions.
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Chapter 2 presents computational findings published in Schwartz et al. (2023a),

evaluating a proof-of-concept that may help to undermine the classical view of face

perception. To determine if face identity and facial expression processing are sep-

arate mechanisms, it is first necessary to test whether discarding irrelevant task in-

formation is necessary for accurate face identity and facial expression recognition.

If this is the case, expression information should decline when learning identity

information and vice versa. Features from DCNNs trained to recognize expression

were evaluated to determine if they could be used to recognize face identity, and

vice versa, or if performance for the irrelevant task declined. Additionally, two

other analyses were implemented: a network trained to recognize scenes and an

untrained network to act as a control.

This computational study showed that integrated processing for identity and

expression recognition is possible, and that discarding information for one task

to complete the other is not a necessity. This could potentially indicate common

mechanisms for identity and expression recognition. However, there is a weaker

version of the classical theory of face perception that can still be in line with these

computational findings. If this weaker version of the classical theory is correct,

identity-specific regions should have representational dissimilarity matrices (RDMs)

mostly driven by identity model features, and expression-specific regions should

have RDMs mostly driven by the expression model features. As a next step, neural

data from humans was used to test the relative amounts of identity and expres-

sion information within each region. Chapter 3 presents neural findings published

in Schwartz et al. (2023b) that address the open question of fMRI decoding stud-

ies that find both face identity and facial expression information in shared brain

regions. The models from Chapter 2 were used here to investigate intracranial
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electrocorticography (iEEG) data and evaluated the presence of face identity and

facial expression information in electrodes located in both the ventral and lateral

temporal pathways.

The studies in Chapters 2 and 3 demonstrated the phenomenon of shared iden-

tity and expression representations and the process of disentanglement in the anal-

ysis of static face stimuli within DCNNs (Schwartz et al., 2023a), and importantly,

both identity- and expression-trained image models showed similar correlations

across ventral and lateral temporal regions (Schwartz et al., 2023b). However, it

could be possible that static and dynamic properties are processed differently, such

that even if face identity and facial expression information are processed jointly via

static features, they may not be when using dynamic information. Thus, this hy-

pothesis had to still be tested in dynamic stimuli by comparing both identity- and

expression-trained DCNN models for video recognition to the ventral and lateral

temporal pathways.

Using fMRI, neural responses to dynamic face stimuli varying in identity and

expression were collected. Typically, DCNN architectures for video recognition

employ two processing streams: one processing individual frames (spatial or static

stream), and the other processing optic flow (temporal or dynamic stream). These

models were trained and were used in conjunction with the fMRI data to test two

predictions. It was first tested whether there are separate neural representations

for face identity and facial expression information for dynamic face stimuli, which

was anticipated to not be the case. As will be discussed in Chapter 4, RDMs from

two-stream models trained on dynamic stimuli for identity recognition and two-

stream DCNN models trained on dynamic stimuli for expression recognition sim-

ilarly explained both ventral and lateral temporal brain regions. Why do we have
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two pathways involved in processing face stimuli then? Do these pathways have

distinct functional roles and what may these roles be? The rest of Chapter 4 contin-

ued to investigate functional distinctions between the ventral and lateral temporal

pathways. Since the relative contribution of dynamic identity and expression fea-

tures did not distinguish between the ventral and lateral regions, the ventral and

lateral regions were tested to see if they may differ along a different dimension.

The delineation between the ventral and lateral temporal pathways might be more

accurately attributed to a differentiation between static and dynamic information.

For example, static features may include texture and shape, while dynamic fea-

tures may relate to motion (e.g., velocity and direction of motion).

The lateral pathway is thought to have a greater role in dynamics compared

to the ventral pathway due to its role in social processing (Ungerleider and Des-

imone, 1986). If the two-stream models — which have a spatial component and

a temporal component (that will be referred to as DCNN models themselves) -

differed in their ability to explain neural response patterns within the ventral and

lateral temporal regions, this would support a hypothesized static and dynamic

distinction. This was evaluated by comparing neural RDM and model RDMs from

two-stream DCNNs for video recognition. The results suggested no difference in

the relative contribution for each model across the ventral and lateral temporal

regions, supporting the conclusion that joint representations for identity and ex-

pression are found in both static and dynamic face stimuli, but that the pathways

are not necessarily distinguished via static and dynamic feature distinction.

Overall, the findings presented in this thesis tested multiple hypotheses. The

predictions tested are all aimed at understanding how face perception and specific

visual properties essential for evaluating faces are organized in the brain. This
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is done using a combination of behavioral, neuroimaging and machine learning

methods.



35

Chapter 2

Challenging the Classical View:

Recognition of Identity and

Expression as Integrated Processes

The contents of this chapter have been published in the following research articles:

Challenging the Classical View: Recognition of Identity and Expression as In-

tegrated Processes

Emily Schwartz 1,†, Kathryn O’Nell 2,†, Rebecca Saxe 3 and Stefano Anzellotti 1,

1 Department of Psychology, Boston College, Boston, MA, United States 02467

2 Department of Psychological and Brain Sciences, Dartmouth College, Hanover,

NH 03755

3 Department of Brain and Cognitive Sciences, Massachusetts Institute of

Technology, Cambridge, MA 02139

Brain Sci. 2023, 13(2), 296; https://doi.org/10.3390/brainsci13020296
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2.1 Introduction

The human ability to recognize face identity and facial expression is used as a

compass to navigate the social environment (Anzellotti and Young, 2020). Identity

recognition enables us to acquire knowledge about specific individuals that we can

retrieve in future encounters (Bruce and Young, 1986; Mende-Siedlecki, Cai, and

Todorov, 2012). Expression recognition helps us to infer the emotional states of an

individual (Wagner, MacDonald, and Manstead, 1986; Wu and Schulz, 2018; Saxe

and Houlihan, 2017) and predict their future actions and reactions. However, face

identity and facial expression coexist within a face image. Information about each

property needs to be extracted without being confused with the other.

The classical view on the recognition of face identity and facial expression pro-

poses that identity and expression are processed by distinct pathways (Bruce and

Young, 1986; Haxby, Hoffman, and Gobbini, 2000). In this view, the pathway spe-

cialized for identity discards expression information, and the pathway specialized

for expression discards identity information. With respect to the underlying neu-

ral mechanisms, it has been proposed (Haxby, Hoffman, and Gobbini, 2000) that

face identity is recognized by a ventral temporal pathway, including the occipital

face area (OFA) Gauthier et al., 2000 and the fusiform face area (FFA) Kanwisher,

McDermott, and Chun, 1997. By contrast, facial expression is recognized by a lat-

eral pathway (Haxby, Hoffman, and Gobbini, 2000), including the face-selective

posterior superior temporal sulcus (fs–pSTS; Hoffman and Haxby, 2000).

In support of this view, several lines of evidence show that ventral occipitotem-

poral regions, such as OFA and FFA, play an important role in the recognition of

face identity. Studies using fMRI adaptation show that changes in identity lead
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to greater release from adaptation than changes in viewpoint (Xu and Biederman,

2010). Research using multi-voxel pattern analysis (MVPA) found that identity

information can be decoded from responses in OFA and FFA (Natu et al., 2010;

Nestor, Plaut, and Behrmann, 2011; Anzellotti, Fairhall, and Caramazza, 2013;

Anzellotti and Caramazza, 2016; Dobs, Bülthoff, and Schultz, 2016). Structural

connectivity measures reveal that congenital prosopagnosics (participants with

congenital impairments for face recognition) present with reduced white matter

tracts in the ventral occipitotemporal cortex (Thomas et al., 2009).

Other evidence indicates that fs–pSTS is a key region for the recognition of fa-

cial expression. The fs–pSTS responds selectively to faces (Andrews and Ewbank,

2004) and shows greater responses to moving faces than static faces (Pitcher et al.,

2011). Furthermore, videos of dynamic facial expressions do not evoke increased

responses in OFA and FFA to the same degree as in fs–pSTS (Pitcher et al., 2011).

Additionally, the patterns of activity in this region encode information about the

valence of facial expressions (Peelen, Atkinson, and Vuilleumier, 2010; Skerry and

Saxe, 2014). Finally, patients with pSTS damage have deficits for facial expression

recognition (Fox et al., 2011), providing causal evidence in support of the involve-

ment of pSTS in facial expression recognition.

Nevertheless, there is also evidence that weighs against this view of separate

representational streams. Previous work noted the lack of strong evidence in sup-

port of the classical view (Calder and Young, 2005). In particular, while findings

that support the classical view indicate that the lateral pathway plays a role in

expression recognition, they do not rule out the possibility that the ventral path-

way might also play a role (Duchaine and Yovel, 2015). In the same manner, find-

ings that suggest the involvement of the ventral pathway in identity recognition
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do not rule out the possibility that the lateral pathway might contribute to iden-

tity recognition as well. Moreover, recent research directly shows that recogni-

tion of face identity and facial expression might be more integrated than previ-

ously thought. FMRI adaptation studies find release from adaptation for changes

in facial expression in FFA (Xu and Biederman, 2010). Other work has shown

that the valence of facial expression can be decoded from ventral temporal re-

gions, including OFA and FFA (Skerry and Saxe, 2014; Kliemann et al., 2018).

Duchaine and Yovel (2015) proposed a revised framework in which OFA and FFA

are engaged in processing face shape, contributing to both face identity and fa-

cial expression recognition. At the same time, identity information can be de-

coded from fs–pSTS (Anzellotti and Caramazza, 2017; Hasan et al., 2016; Dobs

et al., 2018). In fact, in one study, identity could be decoded with higher accu-

racy from fs–pSTS than from both OFA and FFA (Dobs et al., 2018, Figure 6),

and two other studies demonstrated that identity could be decoded in fs–pSTS

across faces and voices (Anzellotti and Caramazza, 2017; Hasan et al., 2016). Fur-

thermore, pSTS damage leads to impairments for recognizing face identity across

different facial expressions (Fox et al., 2011), suggesting that pSTS plays a causal

role for identity recognition as well. Finally, animal studies recently identified

the middle dorsal face area (MD) in macaque monkeys. Interestingly, this face-

selective area was shown to encode information on both face identity and facial

expression (Yang and Freiwald, 2021). Importantly, the area encodes identity ro-

bustly across changes in expression, and expression robustly across changes in

identity (Yang and Freiwald, 2021), providing the strongest direct empirical chal-

lenge to the classical view.

The above evidence indicates that recognition of facial expression and face



39

identity are implemented by integrated mechanisms, and not by separate neural

pathways. Here, we offer a computational hypothesis that can account for this

phenomenon. Unlike the classical view, which suggests that information relevant

to identity recognition should be shed as representations of facial expressions de-

velop, we hypothesize that representations optimized for expression recognition

contribute to identity recognition and vice versa. Moreover, this occurs because

identity and expression are entangled sources of information in a face image, and

disentangling one helps to disentangle the other (the “Integrated Representation

of Identity and Expression Hypothesis”—IRIEH).

IRIEH leads to two non-trivial computational predictions. First, if recognition

of face identity and facial expression are mutually beneficial, training an algo-

rithm to recognize face identity might lead to the spontaneous formation of rep-

resentations that encode facial expression information and, likewise, training a

separate algorithm to recognize facial expression might lead to the spontaneous

emergence of representations that encode face identity information. Second, if

this phenomenon occurs because disentangling identity from expression helps to

also achieve the reverse, then integrated representations would not arise because

recognition of identity and expression rely on common features. On the contrary,

features important for the recognition of face identity and features important for

the recognition of facial expression should become increasingly disentangled and

orthogonal along the processing stream.

In the present article, we tested ‘in silico’ these computational hypotheses in-

spired by the neuroscience literature. To do this, we analyzed representations

of face identity and facial expression learned by deep convolutional neural net-

works (DCNNs). DCNNs achieve remarkable accuracy in image recognition tasks
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(Krizhevsky, Sutskever, and Hinton, 2012; Parkhi, Vedaldi, Zisserman, et al., 2015),

and features extracted from deep network layers have been successful at predicting

responses to visual stimuli in the temporal cortex in humans (Khaligh-Razavi and

Kriegeskorte, 2014) and in monkeys (Yamins et al., 2013; see Yamins and DiCarlo,

2016; Kietzmann, McClure, and Kriegeskorte, 2018 for reviews). Although artifi-

cially crafted stimuli (‘metamers’) have revealed differences between DCNNs and

humans (Feather et al., 2019), DCNNs show similarities to human vision in terms

of their robustness to image variation (Kheradpisheh et al., 2016). Recent work

used DCNNs to test computational hypotheses of category-selectivity in the ven-

tral temporal cortex (Dobs et al., 2022). In this article, we follow a similar approach

and argue that a clearer understanding of representations of face identity and fa-

cial expression within DCNNs can serve as the foundation for future research on

face representations in the brain.

To test our two predictions, we studied whether features from hidden layers

of a DCNN trained to recognize face identity (from here onward the “identity

network”) could be used successfully to recognize facial expression (see Colón,

Castillo, and O’Toole, 2021 for a related analysis). Symmetrically, we evaluated

whether features from hidden layers of a DCNN trained to recognize facial ex-

pression (the “expression network”) could be used to identify face identity. In

line with our anticipated results, we found that in a DCNN trained to label one

property (i.e., expression), the readout performance of the non-trained property

(i.e., identity) was not just preserved, but improved, from layer to layer. This

was in stark contrast with classical theories of abstraction in visual processing

that suggest that information about task-orthogonal information is progressively

discarded (Posner, 1970; Thornton, 1996; Kanwisher, Yin, and Wojciulik, 1999).
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Finally, we investigated the relationship between features encoding information

that distinguish between identities and expressions across different layers of the

DCNNs. We demonstrated that identity-discriminating features and expression-

discriminating features became increasingly orthogonal over the network layers.

2.2 Materials and Methods

2.2.1 Stimuli

The identity network was trained to label identities using face images from the

Large-Scale CelebFaces Attributes (CelebA) dataset (Liu et al., 2015). CelebA is

made up over 300,000 images. To match the dataset training size used for the

expression network (see below), a subset of CelebA was used. The subset of the

dataset contained 28,709 images for training and an additional 3589 images for

testing (these latter images were used to test the performance of the network after

training), and contained 1503 identities. These identities were randomly chosen,

with at least 20 images per identity. All images were cropped to 178 ⇥ 178 pixels,

resized to 48 ⇥ 48 pixels, and converted to grayscale by averaging pixel values of

the red, green, and blue channels.

The expression network was trained to label facial expressions using the face

images in the Facial Expression Recognition 2013 (FER2013) dataset (Goodfellow

et al., 2013). The dataset contained 28,709 images for training and an additional

3589 images labeled as ‘public test’ (these latter images were used to test the per-

formance of the network after training and to compare it to human performance).

All images were originally sized 48 ⇥ 48 pixels and grayscale.
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A network trained to recognize scenes was also implemented for comparison.

The UC Merced Land Use dataset (Yang and Newsam, 2010), which consisted of

2100 images of 21 classes, was used to train the network to label land images. All

images were resized to 48 ⇥ 48 pixels and converted to grayscale by averaging

pixel values of the red, green, and blue channels.

The performance for each network was tested on stimuli from an indepen-

dent dataset: the Karolinska Directed Emotional Faces (KDEF) dataset (Lundqvist,

Flykt, and Öhman, 1998). The KDEF dataset consisted of 4900 images depicting

70 individuals showing 7 different facial expressions from 5 different angles, each

combination photographed twice. We used the frontal view images and those with

views rotated by 45 degrees in both directions (left and right). Images were sized

562 (width) ⇥ 762 (height) and in color (RGB). For network transfer testing, in or-

der to match the format of the training images, all KDEF images were converted

to grayscale, cropped to squares, and downsampled to 48 ⇥ 48 pixels. The images

were converted to grayscale by averaging pixel values of the red, green, and blue

channels. As the positioning of the face within the image was consistent across

KDEF images, the rectangular images were all cropped to the same 388 ⇥ 388

pixel region around the face. Example face images from the KDEF dataset, and

example images similar (due to copyrights) to the CelebA and FER2013 datasets

can be seen in Figure 2.1. Visual inspection confirmed that the face was visible in

each KDEF image after cropping. Table 2.1 provides specific details about training

and validation/testing set sizes.

2.2.2 Neural Network Architecture

Using Pytorch (Paszke et al., 2017), a densely-connected deep convolutional neu-

ral network (DenseNet) was implemented, consisting of 1 convolutional layer, 3
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FIGURE 2.1: Face image examples. Top: naturalistic face im-
ages, similar to those from the CelebA and FER2013 datasets. Bot-
tom: selected images from KDEF dataset (AF01AFHR, AF02SUHL,

AF05AFS, AM01ANS, AM10HAHL, AM27NEHR).
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TABLE 2.1: Dataset information.

Dataset Training Set
Size

Testing/Validation
Set Size

Stimulus Type

CelebA (Liu et al., 2015)
1

28,709 3589 Face

FER2013 (Goodfellow et
al., 2013)

28,709 3589 Face

UC Merced Land Use
(Yang and Newsam,
2010)

1890 210 Scene

KDEF (Lundqvist, Flykt,
and Öhman, 1998)

2520–2646 2 294–420 2 Face

1 Only a subset of the CelebA dataset was used to train and test the identity model. 2 Number of
images used for training and held-out for testing depended on labeling task.

dense blocks, and 1 fully connected linear layer (Figure 2.2). A DenseNet archi-

tecture was selected since it has been shown to yield high performance on a va-

riety of tasks (Huang et al., 2017), and because it features connections between

non-adjacent layers, bearing a closer resemblance to the organization of the pri-

mate visual system (Van Essen, Anderson, and Felleman, 1992). The convolu-

tional layer consisted of 64 channels of 2D convolutions using a 3 ⇥ 3 kernel and

padding = 1. Each dense block consisted of 3 densely connected convolutional

layers with kernel size = 3, stride = 1, and padding = 1. Each layer in the dense

block produced 32 channels of output. Therefore, the number of input channels

for the first layer in a dense block was equal to the number of output channels

of the previous layer outside the dense block (i.e., for the first layer of the first

dense block it was equal to 64: the number of output channels of the first convo-

lutional layer). The number of input channels for each subsequent layer in each

dense block increased by 32. This choice is widely used and featured on publicly

available DenseNet implementations (i.e., https://github.com/pytorch/vision/

https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py


45

TABLE 2.2: Hyperparameters of the networks’ layers.

Layer Name Kernel Size Input Channels Output Channels

Conv1 3 ⇥ 3 1 64
Dense1-1 3 ⇥ 3 64 32
Dense1-2 3 ⇥ 3 96 32
Dense1-3 3 ⇥ 3 128 32
Transition1 2 ⇥ 2 160 80
Dense2-1 3 ⇥ 3 80 32
Dense2-2 3 ⇥ 3 112 32
Dense2-3 3 ⇥ 3 144 32
Transition2 2 ⇥ 2 176 88
Dense3-1 3 ⇥ 3 88 32
Dense3-2 3 ⇥ 3 120 32
Dense3-3 3 ⇥ 3 152 32
Avg pooling 8 ⇥ 8 152 32
FC 1 ⇥ 1 32 1

blob/master/torchvision/models/densenet.py, accessed on 1 November 2019).

Each dense block (except the last) was followed by a transition layer that re-

ceived, as input, the outputs from all layers of the dense block plus the layer pre-

ceding the dense block, and produced an output with half the number of channels

using a max pooling with a 2 ⇥ 2 kernel. The last dense block was followed by an

average pooling with an 8 ⇥ 8 kernel and then by a fully connected linear layer. In

sum, the number of input and output channels for the 13 layers of the network can

be seen in Table 2.2.

All layers used rectified linear units (ReLU) as nonlinearity for an activation

function. All layers in the dense blocks and all transition layers used 2D dropout

with a dropout probability p = 0.1 (Dahl, Sainath, and Hinton, 2013). All convolu-

tional layers were followed by batch normalization (Ioffe and Szegedy, 2015).

https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
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FIGURE 2.2: Neural network architecture. Top: Each network consists
of a convolutional layer, three dense layers, and a fully-connected
(FC) linear classifier. Expression classification is used as an exam-
ple here. Bottom: Single dense block; red arrows represent connec-
tions that would exist in a typical convolutional neural network, the
purple arrow represents connections that are unique to the densely-
connected network. Selected images from KDEF dataset: AF01AFHR,

AF02SUHL, AF05AFS, AM01ANS, AM10HAHL, AM27NEHR.
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2.2.3 Training and Validation

We evaluated 4 sets of networks: identity-trained, expression-trained, scene-trained,

and untrained (randomly initialized weights). Each network described was imple-

mented 10 times with random weight initialization to test the consistency of the

results. We report the average accuracy across the 10 initializations, including the

standard error of the mean in the figures as error bars.

Given 48 ⇥ 48 grayscale images in the CelebA dataset, the identity network

was trained to recognize 1503 face identities varying in pose and age. The network

was trained to minimize the cross-entropy loss between the outputs and true la-

bels using stochastic gradient descent. The learning rate began at 0.1 and halved

every 30 epochs. The training was run for 200 epochs, and images were presented

to the network in batches of 64. The performance of the trained network was val-

idated using an independent subset of CelebA that was not used for any of the

training. The identity network labeled face identity with an accuracy of 26.5% on

the held-out ‘test’ images (chance performance at 0.06%). The CelebA database did

not include viewpoint labels, so we were unable to test cross-viewpoint validation

performance.

The expression network produced an output of 7 values, one for each expres-

sion label in the dataset (surprised, angry, fearful, disgusted, sad, neutral, and

happy). The network was trained to minimize the cross-entropy loss between the

output and the true labels using stochastic gradient descent, with a learning rate

starting at 0.1 and halved every 30 epochs. The training was run for 200 epochs,

and images were presented to the network in batches of 64. After training, the ac-

curacy of the expression network was validated using an independent subset of the

FER2013 dataset that was not used for training (the images marked as ‘PublicTest’).
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The network achieved an accuracy of 63.5% (chance performance at 14.2%), closely

matching the reported human accuracy on the FER2013 stimuli (65%; Goodfellow

et al., 2013). The FER2013 database did not include viewpoint labels, so we were

unable to test cross-viewpoint validation performance.

The scene network was trained to recognize various land images. This network

matched the architecture used for the identity and expression networks, and fol-

lowed the same training and validation protocols. The trained network was able to

label the validation set with an accuracy of 80.95%. The untrained network (with

randomly initialized weights) used the same architecture as all other networks, but

it did not undergo any training.

2.2.4 Transferring to KDEF

After training with each dataset was completed, the weights of each network were

fixed (‘frozen’) to prevent further learning. Henceforth, we refer to a network that

has the weights fixed after the initial training as a ‘pre-trained network’. To test

identity and expression labeling, we used a new dataset of images: the KDEF

dataset (Lundqvist, Flykt, and Öhman, 1998), in which each image has both an

identity and an expression label.

2.2.4.1 Labeling Identity across Expression and Expression across Identity

To evaluate whether the identity network could successfully perform the task it

was trained for, we tested whether it could accurately label identity in the KDEF

dataset. Then, we tested the identity network’s performance at labeling expres-

sion. To assess the transformation of representations across different stages of

the neural network, we evaluated the readout accuracy of identity and expression
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for features extracted from different layers. For each of the 10 identity networks

trained with the CelebA dataset, accuracy was evaluated for features extracted

from the first convolutional layer, and for features extracted from the last layer

in each dense block, after they had been summed with the inputs of the block.

The outputs that the networks needed to produce for identity labeling and for ex-

pression labeling were different. For instance, the number of identity labels was

different than the number of expression labels (70 v 7). To accommodate for this,

we extracted the corresponding layer feature representations by running an image

through the pre-trained model (up until the specified layer). We then ran the im-

age’s feature representation through batch normalization, ReLU, and an average

pooling with an 8 ⇥ 8 kernel, followed by a fully connected linear layer that pro-

duced, as output, the identity or expression labels (referred to as the ‘readout layer’

from here on). Critically, these added fully connected readout layers achieved very

different performances depending on the layer of the network that they were at-

tached to (that is, depending on the nonlinear features that they received as an

input). Readout performance was then tested on the held-out portion of the KDEF

data. The performance of a linear layer trained directly on pixel values was used

as a control.

We followed an analogous procedure for the expression network. First, we

tested the expression network to ensure that it could accurately perform the ex-

pression recognition task on the KDEF dataset. Next, for each of the 10 expression

networks, we used the same readout procedure as above to probe the accuracy of

expression and identity labeling. To assess the transformation of representations

across different stages of the neural network, accuracy was evaluated for features

extracted from the first convolutional layer, and the last layer in each of the 3 dense
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blocks, after they had been summed with the inputs of the block. As in the case

of the identity network, the performance of a linear layer trained directly on pixel

values was used as a control.

Due to the ability of these models to rely on low-level features, we partitioned

the KDEF dataset into training and testing sets, and tested the models across dif-

ferent viewpoints. To look at cross-viewpoint generalization, the identity and ex-

pression networks’ performances were tested with a readout layer trained using all

but one of the viewpoints (frontal, 45 degree left, or 45 degree right), and accuracy

was tested using the held-out viewpoint (as in Anzellotti, Fairhall, and Caramazza,

2013). Accuracy values for both identity and expression labeling were then aver-

aged across the three conditions. This choice was made to provide a more stringent

test of identity and expression recognition, as rotation in depth alters all parts of

the face.

The added readout layers’ performances were heavily dependent on the non-

linear features received as inputs. If the added readout layers trained with a sub-

set of the KDEF images could achieve high accuracy without needing the features

from a pre-trained network, this should have been evident when they were at-

tached to early layers of that pre-trained network (or when attached to layers of the

untrained network, see below). When using features from late layers as compared

to features from early layers of the pre-trained networks, accuracy improvements

could not be due to the attached readout layer that was trained with a subset of

KDEF images because the same readout layer was used for both early and late

layers.
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2.2.4.2 Labeling Identity and Expression Using Untrained and Scene Network

Features

The procedure described above was enacted to evaluate the performance of iden-

tity and expression labeling on KDEF images using the following: (1) randomly

initialized, untrained neural network weights and (2) scene-optimized neural net-

work weights. KDEF images were run through the various networks and their

feature representations were extracted at multiple layers. The same readout proce-

dure was used to learn the identity and expression labels for the KDEF images. Af-

ter training the readout layer only, identity and expression labeling performances

on the various KDEF feature representations were obtained.

2.2.5 Overlap between Identity and Expression Features

If, as we predicted, information about the non-trained feature (i.e., identity for the

expression network and expression for the identity network) was not discarded

during training, there were two potential explanations. First, it could be that the

same image features were important for classifying both identity and expression.

Alternately, it could be that distinct image features were important for classifying

identity and expression, and both were retained within the network. In this case,

the presence of features that contributed to labeling the irrelevant task indicated

that the abstraction-based model of feature representations in the brain was not

supported by the kind of representations that were learned spontaneously by the

deep convolutional neural networks. In order to dissociate these outcomes, we

tested the congruence of the spaces spanned by the opposing identity and expres-

sion features in all 3 of the trained (identity, expression, and scene) networks.
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FIGURE 2.3: Analysis flowchart. An overview of the analysis steps
performed.

To do this, we averaged a layer’s responses across different expressions, obtain-

ing an average response pattern across the layer features for each identity. Next,

we used principal component analysis (PCA) to extract the 5 dimensions that ex-

plained most of the variation across identities. The same procedure was repeated

by averaging layer responses across identities, obtaining an average response pat-

tern for each expression, and ultimately 5 dimensions that explained most of the

variation across expressions.

Finally, we used a congruence coefficient (introduced in Krzanowski, 1979) to

evaluate the similarity between the spaces spanned by the features. Considering

the matrix Le of the loadings of principal components for expression on the layer

features and the matrix Li of the loadings of principal components for identity,

we obtained the matrix S = LiL0
eLeL0

i and measured overlap as the sum of the

eigenvalues of S, which was equal to the sum of the squares of the cosines of the

angles between all pairs of principal components where one component in the pair

was for expression and the other was for identity (Krzanowski, 1979).

An overview representing the research procedure can be seen in Figure 2.3.
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2.3 Results

2.3.1 Validation Performances of Trained Neural Networks

A densely-connected deep convolutional neural network (DenseNet, Huang et al.,

2017, Figure 2.2) was trained to recognize face identity using a subset of the CelebA

dataset. The network was able to label face identity with an accuracy of 26.5% on

the held-out ‘test’ images (chance performance at 0.06%). A confusion matrix can

be found in Appendix A (Figure A.1 A).

A DenseNet (Huang et al., 2017, Figure 2.2) was trained to recognize facial ex-

pressions (surprised, angry, fearful, disgusted, sad, neutral, happy) using over

28,000 facial expression images (FER2013). The network was able to label facial

expression on the held-out ‘test’ images with an accuracy of 63.5% (chance per-

formance at 14.2%). A confusion matrix can be found in Appendix A (Figure A.1

B).

A third DenseNet (Huang et al., 2017, Figure 2.2) was trained to label land

images. The network was able to label the different scene categories on the held-

out ‘test’ images with an accuracy of 80.95% (chance performance at 4.76%). A

confusion matrix can be found in Appendix A (Figure A.1 C).

2.3.2 Neural Networks Trained to Recognize Identity Develop Ex-

pression Representations

Recognition of face identity across changes in viewpoint is notoriously difficult

(Poggio and Edelman, 1990; Anzellotti, Fairhall, and Caramazza, 2013). Thus, we

aimed to investigate the invariance of the identity network’s face representations
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across image transformations. To do this, we used images from the KDEF dataset

that included frontal views, as well as 45 degree views (left and right) of the faces.

We explored, across different viewpoints, whether the identity network could label

both face identity and facial expression after the newly attached readout layer was

trained using two of the three views, and then, tested with the held-out view.

The identity network generalized to the KDEF dataset for identity recognition.

The network achieved an accuracy of 53.82% (chance performance at 1.42%) when

testing on held-out viewpoints (Figure 2.4A, bottom left). The readout layers that

received the identity network’s extracted features as inputs achieved a higher ac-

curacy for identity recognition when testing on a held-out viewpoint, compared to

a fully connected linear layer that received pixel values of the KDEF images as in-

puts. Specifically, the linear layer that received the pixel values as inputs achieved

an accuracy of 6.31%. By contrast, readout layers applied to the features from

the convolutional layer, first, and second dense blocks yielded accuracy values of

9.61%, 11.91%, and 22.65% respectively (Figure 2.4 A, bottom left). Thus, accuracy

increased from layer to layer.

Having established that the identity network successfully generalized to the

KDEF dataset for the task it was trained to perform (identity recognition), we next

studied whether the identity network developed features that could yield accurate

expression recognition when testing on the held-out viewpoint. As detailed in the

Methods section, in order to generate the 7 facial expressions as output (instead of

the 70 face identity labels), a readout layer was attached to the outputs of a hid-

den layer of the pre-trained identity network, and then trained with KDEF images

consisting of two viewpoints to label expression. Critically, the identity network
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weights were fixed at this stage, and only the weights of the newly attached read-

out layer would be able to change.

When using identity-trained weights, expression classification of images from

the KDEF dataset across different viewpoints (44.37%, Figure 2.4A, bottom right)

was greater than chance. By contrast, a linear layer that received pixels as inputs

achieved an accuracy of 20.40%. Importantly, as in the case of identity classifica-

tion, the accuracy of the network increased from early layers to late layers. Read-

outs of features extracted from the initial convolutional layer, and first and second

dense blocks of the identity network yielded accuracy values of 17.61%, 16.67%,

and 23.02%, respectively, when labeling expression, finally reaching 44.37% in the

third dense block, as mentioned previously (Figure 2.4A, bottom right). A large

increase in accuracy was observed in the second and third dense blocks, parallel-

ing the increase in accuracy observed for identity labeling at the same processing

stages. This indicated that in the network trained to label identity and then tested

on expression recognition, the findings deviated from the predictions of the classi-

cal view (Figure 2.4A, top right).

2.3.3 Neural Networks Trained to Recognize Expression Develop

Identity Representations

In parallel to the identity network analysis, we investigated the invariance of the

expression network’s face representations across image transformations. The ex-

pression network was not trained to recognize identity across different viewpoints,

but it was trained to label facial expression across viewpoints. Could the features

it developed for labeling facial expression be used to support the demanding task

of view-invariant identity recognition? To address this question, we again used
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images from the KDEF dataset showing a frontal view as well as 45 degree views

(left and right) of the faces. We investigated whether the expression network could

label facial expressions and identities when the newly attached readout layer was

trained with two of the three views, and then tested with the held-out view.

The final accuracy at cross-viewpoint expression labeling on the KDEF images

was high (53.43%, Figure 2.4B, bottom left), showing that the expression network

generalized successfully to the new dataset. As expected, labeling accuracy in-

creased from layer to layer of the expression network. A readout layer applied

directly to the pixels of the KDEF images obtained an accuracy of 20.40% for ex-

pression classification, but subsequent layers were necessary to reach the final ac-

curacy of 53.43%. Features extracted from the initial convolutional layer, and first

and second dense blocks of the expression network yielded accuracy values of

17.22%, 17.31%, and 24.93%, respectively, when labeling expression (Figure 2.4B,

bottom left). Similar to the patterns in accuracy that were found when using the

identity network, a large increase in accuracy was observed in the third dense

block with a final accuracy of 53.43% (Figure 2.4B, bottom left).

Next, the expression network weights were used to label identity. In order

to generate the 70 identities as output (instead of the 7 facial expression labels),

a readout layer was attached to the outputs of a hidden layer of the expression

network pre-trained with the FER2013 dataset, and trained with images consisting

of 2 viewpoints to label identity. The expression network weights were fixed at

this stage, and only the weights of the newly attached readout layer could change.

Final identity classification of images from the KDEF dataset (20.2%, Figure

2.4B, bottom right) was greater than chance. By contrast, linear classification using
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the pixels as input achieved an accuracy of only 6.31%. Importantly, readout ac-

curacy increased from early to late layers in the network. Features extracted from

the initial convolutional layer, and first and second dense blocks of the expression

network, yielded accuracy values of 9.56%, 6.32%, and 14.81%, respectively, when

labeling identity, reaching a final accuracy of 20.20% in the third dense block (Fig-

ure 2.4B, bottom right). An increase in accuracy was observed in the second and

third dense blocks. Although to a smaller degree, this paralleled the increases in

accuracy observed for expression labeling at the same processing stages. This find-

ing was in contrast with the decrease in identity information that would have been

expected in the classical view (Figure 2.4B, top right).

2.3.4 Recognition of Identity and Expression Using Features from

an Untrained Neural Network

We next aimed to investigate an untrained network’s face representations across

image transformations. Like before, we used images from the KDEF dataset show-

ing a frontal view as well as 45 degree views (left and right) of the faces. We

explored whether the randomly initialized, untrained network could label facial

expressions and face identities when the newly attached readout layer was trained

with two of the three views, and then tested with the held-out view.

For expression labeling, features extracted from the initial convolutional layer,

and the first, second, and third dense blocks of the untrained network yielded ac-

curacy values of 16.54%, 16.22%, 15.51%, and 16.51%, respectively (Figure 2.5A,

top right). The untrained network performed similarly for all layers of the net-

work, with each layer performing close to chance level.
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FIGURE 2.4: Identity and Expression Networks. (A) Identity Net-
work. (Top row) Expected pattern of results following a classical view
of abstraction. (Middle row) Expected pattern of results following
an alternative view of abstraction. (Bottom row) Observed Results.
Classification accuracy for identity (left) and expression (right) for a
readout layer attached to successive sections of the pre-trained iden-
tity network. Dotted line represents performance at chance. Leftmost
bar represents performance of the unattached linear classifier. (B) Ex-
pression Network. (Top row) Expected pattern of results following
a classical view of abstraction. (Middle row) Expected pattern of re-
sults following an alternative view of abstraction. (Bottom row) Ob-
served Results. Classification accuracy for expression (left) and iden-
tity (right) for a readout layer attached to successive sections of the
pre-trained expression network. Dotted line represents performance
at chance. Leftmost bar in each plot represents performance of the
unattached linear classifier. Error bars denote the SEM of the perfor-

mance of each network instance.
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For identity labeling, features extracted from the initial convolutional layer, and

the first, second, and third dense blocks of the untrained network yielded accuracy

values of 7.90%, 7.13%, 13.62%, and 6.10%, respectively (Figure 2.5A, bottom right).

The untrained network decreased in classification performance overall.

Figure 2.5B shows the accuracy differences for expression and identity labeling

when subtracting the untrained network performance from the trained network

performance of the transferred task. Overall, the difference between the trans-

ferred task performance and the untrained performance increased from layer to

layer, showing the relative advantage of the trained network.

2.3.5 Recognition of Identity and Expression Using Features from

a Neural Network Trained to Recognize Scenes

To test the transfer performance of a network trained to recognize an unrelated

category, we explored the ability of a network trained for scene recognition to la-

bel facial expression and face identity across image transformations. Unlike facial

expression and face identity recognition tasks, which both involve face images as

inputs, scene recognition does not involve faces. We examined whether a scene

network (that received no face input during training) could label facial expression

and face identity after the newly attached readout layer was trained using two

of the three views, and was then tested with the held-out view from the KDEF

dataset.

When labeling expression, features extracted from the initial convolutional layer

and first, second, and third dense blocks of the scene network yielded accuracy

values of 15.9%, 16.0%, 23.5%, and 33.0%, respectively (Figure 2.6A, top right). Al-

though the scene network increased from layer to layer, it did not perform as well
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FIGURE 2.5: Comparisons with the Untrained Network. (A) Classi-
fication performance using identity features and untrained features
for expression labeling (top) and expression features and untrained
features for identity labeling (bottom). (B) Difference in expression
classification between identity network and untrained network (top).
Difference in identity classification between expression network and
untrained network (bottom). Error bars in plots denote the SEM of

the performance of network instances.
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as the expression and identity networks for expression classification. The differ-

ences in accuracy between the identity and scene network for expression labeling

can be seen in Figure 2.6B (top).

When labeling identity, features extracted from the initial convolutional layer,

and the first, second, and third dense blocks of the scene network yielded accuracy

values of 9.5%, 7.8%, 17.3%, and 29.6%, respectively (Figure 2.6A, bottom right).

Although the scene network increased from layer to layer, it did not perform as

well as the identity network. However, interestingly, the scene network was more

accurate at identity labeling than the expression network. This can be seen in Fig-

ure 2.6B (bottom).

2.3.6 Overlap between Identity and Expression Features May De-

cline across Layers

Different hypotheses could account for the observed increase in accuracy for iden-

tity labeling in correspondence with the increase in accuracy for expression label-

ing. According to one hypothesis, recognition of face identity and facial expres-

sion might rely on similar features. Therefore, the features learned by the network

trained to recognize expression would also yield good accuracy when labeling face

identity. Instead, according to a different hypothesis, recognizing identity and

expression would require disentangling two generative sources that jointly con-

tribute to the same image. In this case, separating what aspects of the image were

due to identity could prevent a neural network from erroneously attributing those

aspects to expression. For this reason, a neural network trained to label identity or

expression might develop representations of expression and identity, respectively.

The representations could then be used to disentangle identity and expression,
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FIGURE 2.6: Comparisons with the Scene Network. (A) Classification
performance using identity features and scene features for expression
labeling (top) and expression features and scene features for identity
labeling (bottom). (B) Difference in expression classification between
identity network and scene network (top). Difference in identity clas-
sification between expression network and scene network (bottom).
Error bars in plots denote the SEM of the performance of network in-

stances.
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even when recognition of identity did not rely on the same features as expression

recognition.

If the features that were most useful for labeling identity and expression were

similar, the dimensions that best discriminated between identities and those that

best discriminated between expressions should also be similar. Thus, the angles

between identity dimensions and expression dimensions should be small and con-

gruence should be high. If, on the other hand, features needed to recognize identity

and expression were disentangled by the net, the angles between identity dimen-

sions and expression dimensions should become increasingly larger from layer to

layer. Furthermore, if training with identity or with expression induced disen-

tanglement between identity and expression features, training the network with

scene images should yield comparatively higher congruence between identity and

expression features compared to training with identity or expression.

We differentiated between these predictions by calculating a congruence coef-

ficient between the first five principal components (PCs) for expression and the

first five PCs for identity for each layer of each trained neural network. A larger

congruence coefficient would signify that the identity and expression dimensions

were more similar to one another, and a smaller congruence coefficient would in-

dicate they were less similar. In both the network trained to label identities and the

network trained to label expressions, the PCs for identity and expression exhibited

higher congruence values in the earliest layer. For both the identity and expres-

sion networks, congruence decreased from layer to layer (Figure 2.7A). The scene

network’s congruence values followed the same decreasing pattern. However, the

congruence coefficients between identity and expression were larger compared to

the other networks, indicating that the identity and expression features were less
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disentangled in the scene network.

For visualization purposes, the activation patterns across network features in

response to different face images were projected onto the top two identity and ex-

pression PCs for each layer within a network (see Figure 2.7B–E). In each case, the

relevant aspect (expression or identity) visibly clustered in deeper layers of the net,

while the other aspect did not, further showing that discrimination of expression

and identity relied on co-existing but different features.

2.4 Discussion

Recent studies revealed the presence of information about face identity and facial

expression within common brain regions (Anzellotti and Caramazza, 2017; Dobs

et al., 2018), challenging the view that recognition of face identity and facial ex-

pression are implemented by separate neural mechanisms, and supporting alter-

native theoretical proposals (i.e., Duchaine and Yovel, 2015; Pitcher and Unger-

leider, 2020). In the present study, we proposed the Integrated Representation of

Identity and Expression Hypothesis (IRIEH), according to which recognition of

face identity and facial expression are ‘complementary’ tasks, such that represen-

tations optimized to recognize face identity also contribute to the recognition of

facial expression, and vice versa. This would account for the observation that both

identity and expression information coexist within common brain regions, includ-

ing the face-selective pSTS (Anzellotti and Caramazza, 2017; Dobs et al., 2018).

Based on IRIEH, we predicted that features from artificial deep networks trained

to recognize face identity would be able to support accurate recognition of facial

expression, and reciprocally so too would features from deep networks trained to

recognize facial expression be able to support accurate recognition of face identity.
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FIGURE 2.7: Trained neural networks and principal components. (A)
Identity, expression, and scene network congruence coefficients be-
tween principal components derived from activations averaged over
expression and identity. (B) Face activations labeled by expression
projected into expression and identity principal component spaces
for each layer of the identity network. (C) Face activations labeled by
identity (only 7 of 70 identities are displayed for clarity) projected into
expression and identity principal component spaces for each layer of
the identity network. (D) Face activations labeled by expression pro-
jected into expression and identity principal component spaces for
each layer of the expression network. (E) Face activations labeled by
identity (only 7 of 70 identities are displayed for clarity) projected into
expression and identity principal component spaces for each layer of

the expression network.
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To evaluate this hypothesis, we trained a deep convolutional neural network

(DCNN) to label face identity, and found that, as the labeling of identity increased

in accuracy from layer to layer, the labeling of expression also correspondingly

improved, despite the fact that the features of the identity network were never

explicitly trained for expression recognition. We also demonstrated that this phe-

nomenon was symmetrical. The same DCNN architecture trained to label expres-

sion learned features that contributed to labeling identity, even though the features

of the expression network were never explicitly trained for identity recognition.

Additionally, in the models that we tested, features from a network trained to cat-

egorize scenes also supported identity and expression recognition, indicating that

this phenomenon might not be restricted to within domain-tasks.

Our findings could serve as proof, that in order to perform identity recognition,

expression information does not necessarily need to be discarded (and vice versa).

In fact, within the set of models that we tested in this article, networks trained

to perform one task did not just retain information that could be used to solve

the other task, but rather, they enhanced it. The accuracy for labeling expression

achieved with features from intermediate layers of the network was higher than

the accuracy achieved with features from early layers. Likewise, the accuracy of

labeling identity using features trained for expression recognition improved over

layer progression. These same patterns held for the identity network, in that accu-

racy improved over the layers when labeling identity and expression.

In seeming contrast with our results, a previous study Yosinski et al., 2014

found that features became increasingly specialized for the trained task in the later

layers of the network. In the present article, despite features encoding expression

and identity becoming increasingly orthogonal from early to late layers, accuracy
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at labeling progressively increased for the tasks. A fundamental difference that

sets apart the study by Yosinski and colleagues (Yosinski et al., 2014) from the

present study is that we attached a read-out layer directly to the frozen hidden

layer, rather than continuing to train the rest of the model. When retraining multi-

ple layers, starting from an early pre-trained layer yields better accuracy (Yosinski

et al., 2014). However, our results indicated that, at least in the case of identity and

expression, when using a simple readout, features from later layers yielded better

accuracy than features from earlier layers.

Lastly, one could conclude that the increase in performance seen in late lay-

ers was not due to common features found between tasks. Our factor congruence

analysis comparing identity and expression spaces suggested that the similarity

between the dimensions that best distinguished between identities and the dimen-

sions that best distinguished between expressions decreased from layer to layer in

both the identity and expression networks (and this was true for the identity and

expression dimensions from the scene network as well). Since a small amount of

congruence remained, it was not possible to rule out some overlap. However, the

representations of identity and expression became increasingly orthogonal from

layer to layer. Our findings dovetailed with previous work that proposed that

object recognition was a process of untangling object manifolds (DiCarlo and Cox,

2007; DiCarlo, Zoccolan, and Rust, 2012). Each image of an object can be thought of

as a point in a high-dimensional feature space, and an object manifold is the collec-

tion of the points corresponding to all possible images of an object. Using pixels as

the features, object manifolds are not linearly separable. Object recognition maps

images onto new features that make the object manifolds linearly separable (Di-

Carlo and Cox, 2007). In the case of face perception, we can think of face identity
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manifolds (the points corresponding to all possible images of a given face identity),

and facial expression manifolds (the points for all images of a given expression).

By interpreting the identity and expression results from this perspective, face per-

ception is not only limited to untangling identity manifolds, but also to untangling

expression manifolds. In other words, the process of untangling one set of mani-

folds naturally untangles the other to some extent, similar to pulling two ends of

yarn to unravel a knot.

There are several aspects that need to be taken into consideration when in-

terpreting our findings. First, while our results do provide a proof of principle

that identity representations arise naturally in simple, feedforward architectures

trained to achieve near-human accuracy at expression recognition and vice versa,

this does not guarantee that all neural network architectures show the same effect.

Nevertheless, in support of the view that recognition of identity and expressions

might be more integrated than previously thought, some recent studies tested one

direction of this classification (training on identity and testing on expression) for

the top layers of a ResNet-101 (Colón, Castillo, and O’Toole, 2021) model and a

VGG-16 (Zhou, Meng, and Zhou, 2021) model, providing some converging evi-

dence that this phenomenon is not restricted to the one specific neural network

architecture.

Secondly, although DCNNs share similarities with brain processing, findings

from DCNN models cannot be directly used to reach conclusions about the human

brain (Xu and Vaziri-Pashkam, 2021). Nonetheless, DCNNs are a useful tool for

proof of principle tests of computational hypotheses (see Saxe, McClelland, and

Ganguli, 2019 for an elegant example) and can inspire us to generate hypotheses

that we can then test with neural data.
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Finally, we found that while untrained DCNNs did not lead to increasing ac-

curacy for identity and expression recognition from layer to layer, transfer from

DCNNs trained for scene recognition to face tasks (identity and expression) per-

formed similarly to transfer from DCNNs trained for one of the face tasks (e.g.,

identity) to the other face task (e.g., expression). Thus, our findings cannot be in-

terpreted as supporting the possibility that face-selectivity in the brain might be

the result of greater transfer accuracy for tasks within a same category (e.g., faces)

than across categories. Note that each network was retrained ten times to account

for random variation in weight initialization, indicating that these results were

consistent across multiple choices of the networks’ initial weights.

Given the scene network’s transferring ability, an open question that remains

is why a model that was trained to recognize scenes was able to label identity

and expression with increasing performance. Substantial evidence indicates that

face and scene processing are specialized tasks and do not take place within the

same brain regions (Haxby, Hoffman, and Gobbini, 2000; Epstein, 2008). If the

DCNN models show that shared representations for scenes and faces are possible,

then why does this not occur in the brain? One can speculate that there may be

other mechanisms that may constrain category-specificity (Dobs et al., 2022). For

instance, one can envision this using different types of neural network modeling,

such as models that leverage multi-task learning. If one were to train a multi-

task neural network to perform identity and expression recognition together and

a different multi-task neural network to perform identity and scene recognition

simultaneously, the former may perform significantly better than the latter. Taken

together, it is likely that different sets of algorithmic learning principles determine

the constraints of category-specificity.
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Chapter 3
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3.1 Introduction

Humans are exposed to a multitude of faces everyday; each face provides rich

information about an individual’s identity and emotion. The social importance of

faces makes it critical that we understand how we recognize others and their facial

expressions.

According to an established hypothesis (henceforth the ‘classical’ view), face

identity and facial expression are processed by distinct, specialized pathways (Bruce

and Young, 1986; Haxby, Hoffman, and Gobbini, 2000). In this view, face-selective

regions in ventral temporal cortex (‘ventral stream’) are specialized for identity

recognition, while face-selective regions in lateral temporal cortex (‘lateral stream’)

are specialized for expression recognition (Haxby, Hoffman, and Gobbini, 2000).

Indeed, previous studies indicate that the ventral stream plays a key role in face

identity recognition. Response patterns in the ventral stream can be used to decode

face identity (Nestor, Plaut, and Behrmann, 2011; Ghuman et al., 2014; Anzel-

lotti, Fairhall, and Caramazza, 2014; Axelrod and Yovel, 2015; Dobs et al., 2018;

Li, Richardson, and Ghuman, 2019; Boring et al., 2021), and participants with

face recognition deficits have reduced structural connectivity in ventral regions

(Thomas et al., 2009). In parallel, other studies indicate that the lateral stream

plays a role in expression recognition. Facial expression valence can be decoded

from a region in lateral temporal cortex: the face-selective posterior superior tem-

poral sulcus (pSTS) (Peelen, Atkinson, and Vuilleumier, 2010; Skerry and Saxe,

2014). Additionally, patients with pSTS damage experience expression recognition

deficits (Fox et al., 2011), suggesting a causal role of the lateral stream in expression

recognition.
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While these findings support the lateral stream’s involvement in expression

recognition, they do not rule out that the ventral stream might also play a role.

Similarly, results suggesting ventral stream involvement in identity recognition do

not rule out that the lateral stream might contribute to identity recognition. Con-

sidering this, an alternative hypothesis suggests that identity and expression are

not necessarily independent neural mechanisms (Duchaine and Yovel, 2015). The

ventral and lateral streams, instead, might differ in whether they represent form or

motion (Duchaine and Yovel, 2015; Pitcher and Ungerleider, 2021). Consistent with

this alternative, facial expression can be decoded in ventral face-selective regions

(Skerry and Saxe, 2014; Li, Richardson, and Ghuman, 2019), and face identity can

be decoded in lateral regions (face-selective pSTS; Anzellotti and Caramazza, 2017

Hasan et al., 2016, Dobs et al., 2018). Furthermore, behavioral studies find correla-

tions between expression and identity recognition abilities (Connolly, Young, and

Lewis, 2019).

Even considering this evidence, it is still possible that ventral and lateral streams

might be specialized for identity and expression recognition, respectively. Behav-

ioral correlations between recognition abilities might result from differences in up-

stream regions, before face processing separates into ventral and lateral streams.

Furthermore, ventral representations specialized for identity might contain a small

amount of expression information that would support fMRI decoding, and vice

versa. Compatible with this possibility, computational studies using deep convo-

lutional neural networks (DCNNs) found that identity-trained networks encode

some expression information (Colón, Castillo, and O’Toole, 2021), and vice versa

(Schwartz et al., 2023a). In fact, one study found that in contrast to untrained
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DCNNs and DCNNs trained to recognize non-face objects, DCNNs trained to rec-

ognize face identity have expression-selective units that share similarities with hu-

man expression recognition, making similar errors (Zhou et al., 2022). Together

with our results, this suggests that identity and expression recognition might share

common mechanisms both in the brain and in DCNNs.

While DCNNs trained to recognize identity encode some expression informa-

tion (and vice versa; Colón, Castillo, and O’Toole, 2021, Schwartz et al., 2023),

DCNNs trained to recognize identity and DCNNs trained to recognize expression

still have distinct representations (Figure 3.1, see Methods). If the classical view is

correct, representational dissimilarity matrices (RDMs) from identity-trained DC-

NNs should correlate with RDMs from ventral regions, and symmetrically, RDMs

from expression-trained DCNNs should correlate with RDMs from lateral regions.

Critically, there would need to be an interaction between DCNN type (identity-

or expression-trained) and brain region. By contrast, if ventral and lateral regions

contribute to both identity and expression recognition then one would anticipate

that the DCNNs should correlate with both ventral and lateral regions, and that

there would not necessarily be an interaction between DCNN type and brain re-

gion. Furthermore, these conclusions hold if the models either equally correlate

with the regions or if one model outperforms the other for both sets of regions.

We test this directly by analyzing neural responses measured with intracranial

electroencephalography (iEEG) to faces varying in identity and expression. Com-

paring the representational geometry of neural responses in ventral and lateral

regions to the representational geometry in DCNNs trained to recognize identity

and expression, we examine whether RDMs extracted from these DCNNs correlate

differentially with RDMs based on responses in face-selective electrodes in ventral



75

and lateral regions.

3.2 Methods

3.2.1 Participants

The experimental protocols were approved by the Institutional Review Board of

the University of Pittsburgh. Written informed consent was obtained from all par-

ticipants. Participants were a subset of patients selected a-priori from Li, Richard-

son, and Ghuman, 2019 and Boring et al., 2021 who performed two variations

of the face individuation task. Eleven human patients (7 females; mean age 31.8

years, SD = 9.89) underwent surgical placement of electrocorticographic (surface

and depth) electrodes for seizure onset localization. One subject was initially ex-

cluded due to noisy data (as determined with a reliability analysis described in

the Temporal Localizer section below). None of the subjects showed evidence of

epileptic activity on electrodes located in the ventral and lateral temporal lobes.

3.2.2 Experimental Design and Statistical Analysis

3.2.2.1 Stimuli

Subjects viewed face images from the Karolinska Directed Emotional Faces (KDEF)

dataset (Lundqvist, Flykt, and Öhman, 1998). The KDEF dataset consists of 4900

images depicting 70 individuals (50% female) showing 7 different expressions from

5 different angles. The following expression categories were included in the exper-

iment: happy, sad, afraid, angry, and neutral. Each combination of a face identity

and a facial expression was shown in different viewpoints, including 0 degrees
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(frontal view), 45 degrees left and right views, and 90 degrees (profile) left and

right views.

3.2.2.2 Experimental paradigm

Prior to completing the main task, participants completed a functional localizer

task (Li, Richardson, and Ghuman, 2019; Boring et al., 2021). Subjects were shown

images of faces, houses, bodies, words, hammers, and phase scrambled faces.

More details about the design of the functional localizer can be found in Li, Richard-

son, and Ghuman, 2019; Boring et al., 2021. The data from the functional localizer

was used to identify electrodes that respond selectively to faces. An electrode was

deemed face-selective using the criteria described in the “Electrode localization”

section below.

Two different sets of participants completed two different versions of the ex-

periment (Li, Richardson, and Ghuman, 2019; Boring et al., 2021), which we will

refer to as A and B. In both experiments, each trial began with a face image pre-

sented for 1000ms. This was followed by a 500ms inter-trial interval, during which

a fixation cross was presented at the center of the screen. Subjects were instructed

to press a button to identify if the presented face was male or female. Subjects were

asked to respond as quickly and as accurately as possible. A set of 10 practice trials

was executed before the start of the experiment.

In experiment A, each subject performed one session containing 600 trials. Sub-

jects viewed a set of stimuli that contained 8 identities, 5 expressions, and 5 view-

point angles (left/right profile, left/right 45 degree, and frontal). Each stimulus

was presented three times within a session. In experiment B, subjects performed at

least two sessions, and viewed a different subset of KDEF stimuli. Subjects viewed
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a set of stimuli that contained 40 identities, 5 expressions, and 3 viewpoint angles

(profile, 45 degree, and frontal). Each stimulus was shown only once per session.

3.2.2.3 Data preprocessing

Data was preprocessed at the University of Pittsburgh. Further details can be

found in Li, Richardson, and Ghuman, 2019 and Boring et al., 2021. The data

analyzed here contains 14 depth electrodes and 11 surface electrodes. Depth elec-

trodes and surface electrodes were used to record local field potentials at 1000 Hz.

Reference and ground electrodes were distantly placed from the recording elec-

trodes subdurally and having contacts oriented towards the dura. Surface area of

the recording site was similar across grid and strip electrode contacts. Here, “elec-

trode contacts” will be referred to as “electrodes” in this manuscript. There were

no consistent differences in neural responses observed between the grid and depth

electrodes. To extract single-trial potential signals, the raw data was band-pass fil-

tered preserving the frequencies from 0.2 Hz to 115 Hz. This step was implemented

using a fourth order Butterworth filter. After removing slow and linear drift as well

as high-frequency noise, a 60 Hz line noise was also removed with 55-65 Hz as the

stop-band. Single-trial potentials (stP) were time-locked to the stimulus onset for

the trial with the signal sampled at 1000 Hz.

Raw data was also inspected to identify and reduce artifacts. There were no ic-

tal events detected. The mean maximum amplitude across all trials was computed

and any trials with a maximum amplitude 5 standard deviations above the mean

were discarded. Trials that had a difference greater than or equal to 25 µV between

back-to-back sampling instances were discarded as well. This resulted in fewer

than 1% of trials removed.
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3.2.2.4 Electrode localization

The location of the electrodes (Figure 3.2A) was determined using an automated

method that was used to coregister grid electrodes and electrode strips (Hermes

et al., 2010). Patient high-resolution post-operative CT scans were coregistered

with anatomical MRI scans to section electrode contacts before patients underwent

surgery and implantation of the electrodes. Pre- and post-operative imaging scans

were also used to localize SEEG electrodes.

Face-selective electrodes were identified by analyzing data from a functional

localizer, during which participants were shown images of faces, bodies, words,

hammers, houses, and scrambled faces. An electrode was defined as face-selective

if its temporal response patterns could be used to decode faces from other object

categories significantly above chance (see Li, Richardson, and Ghuman, 2019 and

Boring et al., 2021 for details).

3.2.2.5 Deep convolutional neural network models

Deep convolutional neural networks (DCNNs) were implemented to model the

neural data. Each network was trained to perform one task only, either identity

recognition or expression recognition. Therefore, identity-trained models will be

referred to as identity DCNNs and the expression-trained as expression DCNNs.

For both the identity and expression DCNNs, we used a densely connected archi-

tecture (DenseNet, Huang et al., 2017; see Figure 3.1A), as well as a residual neural

network (ResNet-18) architecture.

The identity DCNNs were trained to label identities using the CelebA dataset

(Liu et al., 2018). CelebA consists of over 300,000 images. To match the size of

the dataset used for the two networks, a subset of CelebA was used. The subset
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contained 28,709 images for training and an additional 3,589 images labeled for

testing, containing a total of 1,503 identities. These identities were randomly cho-

sen, ensuring that at least 20 images were available for each identity. All images

were sized 48 ⇥ 48 pixels and grayscale.

The expression DCNNs were trained to label expressions using face images

from the facial expression recognition 2013 (FER2013) dataset (Goodfellow et al.,

2013). The dataset is split to contain 28,709 images specified for training and 3,589

images labeled as ‘public test’ for validation. All images were sized 48 ⇥ 48 pixels

and grayscale.

Once trained, the DCNNs were tested on their ability to perform identity and

expression recognition using the KDEF dataset (Lundqvist, Flykt, and Öhman,

1998). This was done by freezing the DCNNs’ weights, and extracting the activa-

tions of units in the last convolutional layer of each network for each of the images.

Activations for the different images were then used as the inputs to a simple read-

out layer. To test for identity labeling, the readout layer was trained on all KDEF

images except from one expression category (85.7% train, 14.3% test). The left-out

expression category was then used to test the network’s ability to label identity.

Cross-validation was performed so that each expression category could be left-out

for training (7 testing sets) and performances were averaged. To test for expression

labeling, images from 7 identities were held out of the training set for the readout

layer (90% train, 10% test). Cross-validation was performed so that each set of

7 identities could be left-out for training (10 testing sets) and performances were

averaged.

The DenseNet trained to recognize identity achieved an accuracy of 26.5% on

a left-out subset of CelebA, and the DenseNet trained to recognize expression
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achieved an accuracy of 63.5% on a left-out subset of FER2013 (Schwartz et al.,

2023a) Using the DenseNet, each network was able to transfer to KDEF for the task

it was trained to perform (identity DenseNet on identity recognition: accuracy =

95.2%, chance level = 1.42%; expression DenseNet on expression recognition: ac-

curacy = 81.9% , chance level = 14.2%). The identity DenseNet was able to label

facial expression on the KDEF dataset with an accuracy of 77.7%. The expression

DenseNet was able to label face identity on the KDEF dataset with an accuracy of

89.7%.

To facilitate comparison with previous studies, we additionally trained an iden-

tity and an expression DCNN based on the ResNet architecture (ResNet-18, He et

al.). The ResNet-18 networks were trained using the same datasets that were used

for the DenseNets. The ResNet-18 trained to recognize identity achieved an accu-

racy of 28.0% on a left-out subset of CelebA, and 91.5% on KDEF (chance level =

1.42%). The ResNet-18 trained to recognize expressions achieved an accuracy of

61.3% on a left-out subset of FER2013, and 66.4% on KDEF (chance level = 14.2%).

When transferring to the different tasks, the identity ResNet-18 labeled facial ex-

pression and the expression ResNet-18 labeled identity with accuracies of 55.7%

and 80.1% on KDEF, respectively. Therefore, both DCNNs performed better than

chance on left-out images from the datasets that they were trained on, as well as

on images from the KDEF dataset. However, they did not transfer to KDEF as well

as the DenseNets.

A ResNet-18 pre-trained on ImageNet to perform object recognition (hence-

forth referred to as the object ResNet-18) was implemented as an additional model
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comparison. Details on the training can be found in He et al., 2016. The ob-

ject ResNet-18 was trained using images in RGB. Since the identity and expres-

sion DCNNs were trained using grayscale images, we modified the weights of

the conv1 layer here by summing over the dimension of the input channels. The

object ResNet-18 was able to label identity and expression on KDEF images with

accuracies of 96.2% (chance level = 1.42%) and 61.4% (chance level = 14.2%), re-

spectively. A randomly initialized DenseNet and Resnet-18 (same architectures as

trained DCNNs) were also used as additional control analyses.

3.2.2.6 Training and testing datasets comparisons

Since we could not access a sufficiently large dataset including both identity and

expression labels, the identity DCNNs and expression DCNNs were trained using

two different datasets. It is possible that the testing dataset (KDEF) might be more

similar to one of the two training datasets (either CelebA or FER2013). If this is

the case, the networks for which the training and testing datasets are more sim-

ilar might perform better. In order to test this possibility, both training datasets

were compared to the testing dataset by evaluating the similarity between image

representations using features from the object ResNet-18 (see “Deep neural net-

work models”). The object-trained Resnet-18 was used to extract feature repre-

sentations from different layers for images in the identity and expression training

datasets, and for images in the testing dataset. For each layer, Pearson r correla-

tion coefficients were computed between the features of image pairs where one

image is taken from the testing dataset (KDEF) and one from either the identity or

expression training dataset (this analysis was performed separately for each train-

ing dataset). Correlations were computed for one channel at a time and averaged
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across channels. This was done for 100 different randomly chosen image pairs,

and the correlations were averaged across the pairs. This procedure yielded for

each layer a measure of the similarity between the training and testing datasets

based on the features in that particular layer. In order to estimate the robustness

of the results, the analysis was conducted 10 times, each time selecting a different

randomly chosen set of image pairs.

When comparing images from CelebA and KDEF, this analysis yielded mean

values of 0.1254, 0.3606, 0.1894, 0.2430, and 0.1244 for conv1, and hidden layers

1-4 respectively. When comparing images from FER2013 and KDEF, this analysis

yielded mean values of 0.1708, 0.4263, 0.2141, 0.2739, and 0.0848 for conv1, and

hidden layers 1-4 respectively.

The similarity between the training datasets and the testing dataset is compa-

rable. In addition, neither of the training datasets is more similar to the testing

dataset for all layers of the object ResNet-18. If anything, the FER2013 dataset

shows greater similarity to KDEF for most layers. Therefore, if the CelebA-trained

networks were to better account for neural responses, it would be unlikely that this

is due to CelebA being more similar to the testing dataset (KDEF).

3.2.2.7 Representational similarity analysis: comparison between DCNNs

Before comparing the representations in DCNNs to neural responses, we sought to

quantify how different are the representations learned by the identity DCNNs and

by the expression DCNNs. Transfer-learning tests conducted in a previous study

demonstrate that these DCNNs learn representations that can be used to perform

the other task with above-chance accuracy (Schwartz et al., 2023a). For example,

representations in layers of the expression DenseNet could be used to read out the
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identity of faces (Schwartz et al., 2023a). However, this does not imply that the

identity and expression DenseNets have the same representations.

To test the similarity of the representations in the two DCNNs, we used repre-

sentational similarity analysis (RSA). We analyzed the representations in multiple

hidden layers of the neural networks. Specifically, features from either four or five

hidden layers were extracted: the first convolutional layer, and the last layer in

each of the three dense blocks (after shrinkage) or the last layer in each of the four

residual blocks. For each of these layers, we calculated representational dissim-

ilarity matrices (RDMs) using a three-step procedure. First, we extracted feature

vectors for all KDEF images used in the experiment. Next, we mean-centered the

feature vectors by calculating and subtracting the mean feature vector across all

KDEF images. Finally, for all pairs of images, we calculated the correlation dis-

tance between their mean-centered feature vectors (correlation distance is 1 � r

where r is Pearson’s correlation). In experiment B, information about viewpoint

only included the viewpoint angle, without distinguishing between left and right

viewpoints, therefore the feature vectors for the left and right viewpoints were

averaged (i.e., left and right profile views averaged, left and right half views aver-

aged).

This procedure produced RDMs of size 200⇥ 200 for experiment A, and RDMs

of size 600 ⇥ 600 for experiment B (see Figure 3.1 B and C). Note that, as described

in the Experimental paradigm section, the sizes of the RDMs are different in the two

experiments because different subsets of the KDEF images were used in experi-

ment A and experiment B. In the end, Kendall tB was used to compute the similar-

ity between the RDMs from different layers in the two different DCNNs. A 4 ⇥ 4

cross-network similarity matrix for the trained DenseNets is shown in Figure 3.1D.
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FIGURE 3.1: Face representations in a DenseNet trained to recog-
nize identity or expression. A: KDEF stimuli (AF27HAS, AM01AFS,
AF06ANS, AM29AFS) and neural network architecture examples. B:
RDMs of the identity DenseNet features from KDEF images used in
version A of the experiment. C: RDMs of the expression DenseNet
features from KDEF images used in version A of the experiment. D:
Kendall tau values between identity DenseNet RDMs and expression
DenseNet RDMs. Each tick on the horizontal axis represents an iden-
tity DenseNet RDM and each tick on the vertical axis represents an
expression DenseNet RDM. C1, conv 1; D1, dense block 1; D2, dense

block 2; D3, dense block 3.
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3.2.2.8 Representational similarity analysis of neural data

To retain as much data as possible, we initially performed an analysis on all of the

face-selective electrodes, including those from participants who were shown each

stimulus once. In this analysis, we computed separate RDMs for each of three

temporal windows (125ms - 175ms, 175ms - 225ms, 225ms - 275ms). This specific

temporal range was chosen based on previous studies on the temporal dynamics

of visual face perception (Barbeau et al., 2008). As discussed in more detail later, it

remains possible that some face information might be encoded in later time win-

dows as well (Ghuman et al., 2014, Li, Richardson, and Ghuman, 2019, Boring

et al., 2021; see also Temporal Localizer section below). For each temporal win-

dow per each electrode, we extracted a 50-dimensional vector, such that the value

for each dimension reflects the amount of measured response in the correspond-

ing millisecond of the 50ms window. RDMs were obtained by following the same

procedure used for the DCNN RDMs, using correlation distance to determine the

dissimilarity between the response patterns for each pair of stimuli. As in the RSA

analysis for the DCNNs, the average response over all stimuli was subtracted from

each stimulus response to remove any baseline that is stimulus-independent.

In addition to this, we performed an RSA analysis restricted to highly reliable

responses from electrodes located in the fusiform gyrus (n=7). Highly reliable elec-

trodes and time windows were identified following the procedure described be-

low. We then extracted patterns of response from each reliable electrode and time

window and performed the RSA analysis following the same approach described

in the previous paragraph, comparing neural RDMs to RDMs extracted from the

DenseNet models.
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3.2.2.9 Temporal localizer

We sought to identify time windows during which face-selective electrodes show

the most reliable responses. The data time-series was segmented using disjoint,

successive time windows of 50ms. The first window was centered at 0 post stimu-

lus onset, and the last at 500. Therefore, the windows included time points start-

ing from 25ms before stimulus onset to 525ms post-onset. Disjoint windows were

used to reduce the number of multiple comparisons. To identify which of the time

windows contained relatively less noise compared to the amount of base signal,

all presentations of a stimulus’ neural response were correlated within a specific

time window. An average correlation over all time windows for that stimulus was

obtained as well. The average correlations across all time windows were then sub-

tracted from the time window-specific correlations. A paired t-test was performed

between the correlation of the stimulus responses for a given time window and the

average correlation of the mean response averaged over all time windows for that

stimulus (p < 0.05). This determined which of the time windows contained re-

sponse patterns whose test-retest reliability was significantly higher than average.

To correct for multiple comparisons, all t-tests were Bonferroni corrected. One

electrode was excluded from the RDM analysis due to not containing any time

windows with reliable responses (p > 0.05).

3.2.2.10 Representational similarity analysis: comparison between neural ac-

tivity and DCNNs

We next aimed to compare the neural representations in specific time windows to

the representations in the DCNNs. In particular, we evaluated the extent to which
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RDMs computed using the identity DCNNs and using the expression DCNNs cor-

relate with RDMs based on the iEEG measurements (Kriegeskorte and Kievit, 2013;

Khaligh-Razavi and Kriegeskorte, 2014). To calculate the concordance between the

DCNN’s RDMs and the neural RDMs, we performed two types of analysis. In

the first type of analysis, we compared the RDMs extracted from neural data to

RDMs extracted from individual layers of the identity DCNNs and of the expres-

sion DCNNs, calculating Kendall Tau’s rank correlation coefficient, tB. Since neg-

ative variance explained values are uninterpretable, any negative tB correlations

were set to 0 (Fang, Poskanzer, and Anzellotti, 2022). The smallest of negative val-

ues was -0.003. This affected a total of 37 out of 360 tau values. This procedure was

repeated using RDMs from the object ResNet-18 and untrained DCNNs as well.

However, since this analysis compares neural representations to the representa-

tions in one DCNN layer at a time, one limitation of this analysis is that it does not

capture the overall correspondence between neural data and the representations

across all layers of a DCNN jointly.

Comparing neural representations to DCNN representations one layer at a time

does not reveal to which extent different layers of the DCNN encode redundant

information or unique information. To address this question, we introduced a new

type of analysis, using semi-partial Kendall Tau’s rank correlation (Kim, 2015) to

evaluate the overall correspondence between the RDMs extracted from the neural

data and each of the identity and expression DCNNs when considering jointly the

representations in all layers of the DCNNs.

Semi-partial correlations measure the strength of the relationship between two

variables (i.e., between the neural RDM and the first hidden block RDM) while

controlling for the effects of other variables (i.e., the initial convolutional RDM).
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Within each DCNN model, the semi-partial tB was calculated for each layer, con-

trolling for the effect of the previous layers. Then, the semi-partial tB values were

summed to obtain a cumulative tB value. This allows one to control for redun-

dancy between the layers, evaluating the overall similarity between the models

and the data without inflating the tB values.

After calculating the semi-partial tB values between the face-selective electrodes

and identity and expression DCNNs, we performed model comparison using Bayes

Factor to potentially establish evidence for the absence of differences between the

DCNN’s ability to account for neural responses (Keysers, Gazzola, and Wagen-

makers, 2020). This was done to evaluate the statistical evidence for the possibility

that there is no difference between the identity DCNN’s representational similarity

to the neural representations and the expression DCNN’s representational similar-

ity to the neural representations (and more precisely, that they come from a same

distribution). The analysis with Bayes Factor was performed using the set of all

face-selective electrodes to maximize statistical power.

3.2.2.11 Relative contribution of identity and expression

Next, we set out to test if different sets of electrodes were more strongly correlated

with one DCNN over the other. The dataset included electrodes located in the

ventral stream as well as electrodes located in lateral temporal regions. If ventral

regions are specialized for identity recognition, and lateral regions are specialized

for expression recognition, ventral electrodes might have a greater cumulative tB

with the identity DCNN, while lateral electrodes might have a greater cumula-

tive tB with the expression DCNN. Alternatively, electrodes in ventral and lateral

regions might be similar in terms of their relative correspondence to the identity
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DCNN and to the expression DCNN.

To compare the relative similarity of neural RDMs in individual electrodes to

the RDMs of the identity and expression DCNNs, each electrode at each time win-

dow was plotted as a point in a 2D space, where the coordinate along the x-axis

was determined by the cumulative Kendall tB between the electrode’s RDM and

the identity DCNN RDM, and the coordinate along the y-axis was determined

by the cumulative Kendall tB between the electrode’s RDM and the expression

DCNN RDM. If ventral electrodes have comparatively higher Kendall tBs with

the identity DCNN, and lateral electrodes have comparatively higher Kendall tBs

with the expression DCNN, the two sets of electrodes should fall on lines with

different slopes, where the slopes correspond to the ratio between the cumulative

tB for the identity model and the cumulative tB for the expression model. In par-

ticular, electrodes in the ventral stream that are comparatively better explained by

the identity DCNN should fall on a line which is closer to the identity axis, while

electrodes in the lateral stream should fall on a line which is closer to the expres-

sion axis (despite electrodes varying in how well they are explained overall). This

would demonstrate the presence of an interaction between DCNN model type and

brain region (in line with the classical view). By contrast, if all the electrodes fall

on the same line, it means that the relative performance of the identity and expres-

sion DCNN models at explaining neural responses is similar for the two streams

(in contrast with the classical view), demonstrating the absence of an interaction

between DCNN model type and brain region.

Frequentist tests are designed to test for the presence of significant interactions,

but a lack of significant effects does not demonstrate no interaction. This makes it

challenging to test for the absence of an interaction. However, Bayesian tests are
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built in such a way that they can evaluate the strength of evidence for the absence

of an effect. Thus, a Bayesian approach is implemented to evaluate the relative

support for a model in which all the electrodes fall on the same line compared to a

model in which the electrodes can fall on two separate lines, one for each stream.

To statistically test if ventral and lateral electrodes fall on lines with different

slopes, we fit the data with two competing linear regression models: one model

with two separate slopes for the ventral and lateral electrodes, and one model with

a single slope. We then performed model selection with the Bayesian Information

Criterion (BIC) to determine which linear regression model provides a better ac-

count for the data. A lower BIC score signifies the better model. The difference

between BIC scores, d = BICseparate � BICcombined, determines the size of the effect:

a difference greater than 10 denotes strong evidence for the better model (Raftery,

1995).

To further examine the ratio between identity and expression model perfor-

mance for the DenseNet models, we calculated an index ranging from �• to •,

where negative values indicate that the neural representations correlate more with

representations in the expression DCNN, and positive values indicate that they

correlate more with the identity DCNN. To accomplish this, for each electrode and

time window, we calculated the index LR = log(tid/texp). This was then plotted

as a histogram where log ratios between �• and 0 represent expression-preferring

electrode/time-window combinations and log ratios between 0 and +• represent

identity-preferring electrode/time-window combinations. When conducting com-

parisons with the DenseNets, three electrodes had cumulative tB values smaller or

equal to zero in one time window, therefore the log-ratio could not be calculated

and they were not included in the log-ratio histogram (Figure 3.3B).
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3.3 Results

3.3.1 Representations in deep networks trained for identity and

expression recognition

We compared the representations in two deep convolutional neural networks (DC-

NNs) with the same DenseNet architecture (Figure 3.1A) where one network was

trained to recognize identity and the other was trained to recognize expression. For

each network, we calculated representational dissimilarity matrices (RDMs) using

activations in the first convolutional layer, and in the last layer of each dense block

(Figure 3.1B and 3.1C). To compare the feature representations across the two DC-

NNs, the similarity between the RDMs was computed using Kendall’s tB (Figure

3.1D). Early layers were more similar to one another compared to late layers. The

tB values between the DCNNs steadily decreased from layer to layer, indicating

that the representations in the two DCNNs become increasingly different in later

layers. A similar pattern was found when comparing the identity and expression

ResNet-18 representations.

3.3.2 Localization of face-selective electrodes

After probing the representations of faces in the DCNNs, we localized face-selective

electrodes to analyze the neural representations of the same set of face stimuli.

Out of the 1,079 total electrodes across 11 participants, 25 were found to be face-

selective (2.3%). Of these 25 electrodes, 12 were located in the ventral stream (de-

fined as the ventral portion of the temporal cortex and of the occipital cortex ante-

rior to area V2) with 10 of them being located in the fusiform (as determined with
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FIGURE 3.2: Face-selective electrodes and Kendall tB correlations be-
tween their representational similarity and the representational simi-
larity in DenseNet layers. A: Face-selective electrode locations (n=24).
B: Semi-partial tB values were computed to examine contribution
across layers. This is plotted as a cumulative value obtained from
each model and averaged over electrodes. SEM bars are depicted.
C: Kendall tB values between face-selective iEEG RDMs and layer
feature RDMs from the identity DenseNet averaged over electrodes
(n=24). SEM bars are depicted. D: Kendall tB values between face-
selective iEEG RDMs and layer feature RDMs from the expression

DenseNet averaged over electrodes (n=24). SEM bars are depicted.
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Neurosynth, Yarkoni et al. 2011, we additionally used Marsbar, Brett et al. 2002, to

confirm that these electrodes were located within Brodmann area 37). However,

one of these face-selective electrodes did not surpass our reliability analysis and

was removed from further analyses. The remaining 24 electrodes are shown in

Figure 3.2A. Eight of the face-selective electrodes were located in the lateral stream

(defined as the lateral temporal cortex and lateral occipital cortex anterior to area

V2 - including V3d, V5, and the superior temporal sulcus), and four of the elec-

trodes were located in regions outside the ventral and lateral streams, and thus

were labeled as “other”.

Comparison between face-selective neural responses and deep net-

works

Having identified the face-selective electrodes, we next sought to compare repre-

sentations in these electrodes to representations in the trained DenseNet models.

To this end, for each electrode and time window, we computed neural RDMs, and

we compared them to the RDMs extracted from the DenseNets using Kendall’s tB.

This analysis revealed that representational similarity between the model RDMs

and the neural RDMs decreased from the 125-175ms time window to the 225-275

ms time window (Figure 3.2C, D), for both the identity and expression models (this

might be due to a decline in the reliability of the signal, see Discussion). However,

within each time window, Kendall tB values were comparable for both DenseNets

(Figure 3.2C, D).
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To probe more rigorously the representational similarity between neural re-

sponses and the identity and expression DCNNs overall, we used a novel ap-

proach, that consists in calculating a cumulative Kendall tB value between neu-

ral responses and multiple layers of a DCNN combined (see Methods for details).

While the cumulative Kendall tB between the identity DenseNet and neural re-

sponses was numerically higher than the expression DenseNet (Figure 3.2B), the

difference showed weak evidence for one model over the other (Bayes Factor:

0.412-0.441).

To evaluate the robustness of our results, we then repeated our analysis using

ResNet-18 for our model. Following the same approach as the DenseNet analy-

sis, RDMs were extracted from the ResNet-18 and compared to each neural RDM.

Similarly to the DenseNet results, representational similarity between the ResNet-

18 RDMs and the neural RDMs decreased from the 125-175ms time window to

the 225-275 ms time window (Figure 3.4A, B), for both the identity and expression

models. For almost all time windows, the identity ResNet-18 outperformed the

expression ResNet-18 (Figure 3.4A, B). Bayes Factor was performed on the cumu-

lative Kendall tB values. This again found weak evidence for one model over the

other (Bayes Factor: 0.444-0.503).

Previous work (Storrs et al. 2020) found similar amounts of correspondence

between trained and untrained neural network models and neural RDMs (unless

tuning was used). Consistent with this, untrained DCNNs show similar corre-

spondence with neural responses in this study. While identity and expression DC-

NNs yielded different representations (Figure 3.1 B-D), these differences did not

capture corresponding differences between the neural responses in ventral and

lateral regions. The untrained DenseNet layer correlations to the neural data had
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values ranging between 0.0567-0.0623, 0.0355-0.0416, and 0.0105-0.0124 for time

windows 125-175ms, 175-225ms, and 225-275ms, respectively. Neural responses

showed a lower correspondence but similar pattern with the untrained ResNet-18

(Table 3.1). The ResNet-18 model that was pre-trained on object recognition (Ta-

ble 3.1) also performed comparably to the identity DCNNs. Overall however, the

identity ResNet-18 outperformed the pre-trained object network.

TABLE 3.1: ResNet-18 and neural responses

3.3.3 Examining relative similarity in individual electrodes

The pattern of results observed across all face-selective electrodes might arise from

averaging electrodes with distinct properties: ventral temporal electrodes in re-

gions specialized for identity recognition, with greater representational similarity

to the identity DCNN, and lateral temporal electrodes in regions specialized for

expression recognition, with greater representational similarity to the expression
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DCNN. Alternatively, the representations measured by electrodes in both ventral

and lateral temporal regions might be similar in terms of the extent to which they

correlate with activations in the identity and expression DCNNs, respectively.

We investigated this question with two converging analyses. First, for each

electrode we evaluated how similar the electrode is to the identity DenseNet RDM

and then how similar it is to the expression DenseNet RDM. We used these two val-

ues as coordinates for a scatter plot (Figure 3.3A). If ventral electrodes have com-

paratively higher cumulative Kendall tB with the identity DenseNet, and lateral

electrodes have comparatively higher cumulative Kendall tB with the expression

DenseNet, the two sets of electrodes should fall on two different lines with differ-

ent slopes. Instead, all observed electrodes were located along one line - show-

ing a similar ratio of expression tB to identity tB (Figure 3.3A). To quantify this,

we used the Bayesian Information Criterion (BIC, lower values indicate a better

model) to compare a model with separate slopes for the ventral and lateral elec-

trodes separately (BICseparate = �198.13) to a model with a single slope for both the

ventral and lateral electrodes (BICcombined = �603.84, BICseparate � BICcombined =

405.71). Differences greater than 10 in BIC values are interpreted as providing

strong evidence in favor of the model with lower BIC (i.e., the combined model;

Raftery 1995). All electrodes (surface and depth) fall on the same line (Figure 3.3A),

suggesting that they have a similar ratio of match to the identity and expression

DenseNet models.

The same procedure was repeated using the ResNet-18 model. In accordance

with the DenseNet results, the face-selective electrodes were located along one line

- showing a similar ratio of expression tB to identity tB (Figure 3.4C).The Bayesian

Information Criterion analysis confirmed this: a model with separate slopes for the
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ventral and lateral electrodes separately had a smaller BIC (BICseparate = �191.91)

compared to a model with a single slope for both the ventral and lateral electrodes

(BICcombined = �478.17, BICseparate � BICcombined = 286.26). Again, this suggests

there is strong evidence in favor of a model where ventral and lateral face-selective

electrodes are modeled with a single slope.

Next, we computed an index capturing the relative contribution of RDMs from

the expression DenseNet and RDMs from the identity DenseNet to account for

neural RDMs. The index ranges from �• to •: negative values indicate a greater

contribution of the expression DCNN while positive values indicate a greater con-

tribution of the identity DCNN (see Methods for details). The distribution of index

values is shown in Figure 3.3B.

FIGURE 3.3: Variation across individual electrodes. A: Scatter plot
comparing tB values from identity and expression DenseNet models
matched on electrode (n=24) and time window. Each electrode’s neu-
ral response was segmented into 3 time periods, generating 72 data
points. B: Histogram showing relative contribution of identity and ex-
pression DenseNet models (69 datapoints, 3 electrodes had one time
window dropped). Expression-preferring electrodes have a log ra-
tio from �• to 0 while identity-preferring electrodes have a log ratio

from 0 to +•.
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FIGURE 3.4: Face-selective electrodes and Kendall tB correlations be-
tween their representational similarity and the representational simi-
larity in ResNet-18 layers. A: Kendall tB values between face-selective
iEEG RDMs and layer feature RDMs from the identity ResNet-18 av-
eraged over electrodes (n=24). SEM bars are depicted. B: Kendall tB
values between face-selective iEEG RDMs and layer feature RDMs
from the expression ResNet-18 averaged over electrodes (n=24). SEM
bars are depicted. C: Scatter plot comparing tB values from identity
and expression ResNet-18 models matched on electrodes (n=24) and
time window. Each electrode’s neural response was segmented into 3

time periods, generating 72 data points.
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3.3.4 Comparison between fusiform neural responses and deep

networks

FIGURE 3.5: Representational similarity Kendall tB correlations be-
tween fusiform electrode responses and DenseNet deep networks’
layers. A: Semi-partial tB values were computed to examine contri-
bution across layers for fusiform electrodes (n=7) in time windows
showing high reliability (see Methods: Temporal localizer). This is
plotted as a cumulative value obtained from each model and aver-
aged over electrodes. SEM bars are depicted for time windows with
more than one electrode. B: Kendall tB values between fusiform iEEG
RDMs and layer feature RDMs from the identity DenseNet averaged
over electrodes (n=7). SEM bars are depicted for time windows with
more than one electrode. C: Kendall tB values between fusiform iEEG
RDMs and layer feature RDMs from the expression DenseNet aver-
aged over electrodes (n=7). SEM bars are depicted for time windows

with more than one electrode.

As a final step, we performed an additional analysis restricted to highly reli-

able responses in face-selective electrodes located in the fusiform, a region known

to play a key role in face perception (Kanwisher, McDermott, and Chun, 1997).

Several electrodes in this region (n=7) had highly reliable responses across mul-

tiple time windows. The tB values for fusiform-located electrodes comparisons
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were averaged across electrodes for each time window. Figure 3.5A shows results

examining the contribution across layers of each DenseNet model. The tB val-

ues are higher as compared to the average of all face selective electrodes shown

in Figure 3.2 (panels B, C, and D), but follow a similar pattern. Within most time

windows, the identity DenseNet model displayed a numerically larger cumula-

tive semi-partial tB compared to the expression DenseNet model when examining

fusiform electrodes (as was the case in the analysis with all face-selective elec-

trodes as well). This difference between the DenseNet models was greatest in the

125ms-175ms range.

Figure 3.5B shows fusiform responses correlated with individual layers of the

identity DenseNet and Figure 3.5C shows fusiform responses correlated with in-

dividual layers of the expression DenseNet. Similar to the face-selective pattern

mentioned above, both identity and expression DenseNet models were best able

to explain neural responses in the 125ms-175ms range, followed by 175ms-225ms,

and then 225ms-275ms when averaging data over multiple electrodes. The 275ms-

325ms and 325ms-375ms windows are included for single electrodes that showed

reliable responses during one of the two periods. Similar to the face-selective elec-

trodes again, within each time window, later layers of the identity DenseNet model

outperformed earlier layers. This was not the case for the expression DenseNet

model.

3.4 Discussion

According to a classical view in the field, face identity and facial expression are

processed by separate mechanisms (Bruce and Young, 1986): identity is processed

by regions in ventral temporal cortex, while expression is processed by regions
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in lateral temporal cortex (Haxby, Hoffman, and Gobbini, 2000). If this is the

case, features optimized to recognize facial expression should better capture the

similarity between neural responses in lateral regions, and features optimized to

recognize face identity should better capture responses in ventral regions. Thus,

the classical view would predict that RDMs from identity-trained DCNNs should

correlate more with RDMs from the ventral regions, and RDMs from expression-

trained DCNNs should correlate more with RDMs from the lateral regions. How-

ever, this was not what we found: both identity and expression DCNNs were able

to explain neural responses in ventral and lateral regions. The identity DCNNs

outperformed the expression DCNNs in both sets of regions (even though this dif-

ference was not found to be significant).

These results cannot be dismissed as being due to noise. First, if the data were

too noisy, we would have encountered poor correlations between the DCNN mod-

els and neural responses. However, Kendall tB values in this study were compara-

ble to other studies (Higgins et al., 2021). It should also be noted that the Kendall

tB for both the identity and expression DCNN models were close to zero in later

time windows, indicating that values found in earlier time windows were not just

due to the method used. Second, statistical analysis using Bayesian Information

Criterion (BIC) revealed that the results provide strong support for the hypothesis

that the relative contribution of identity and expression DCNN models is similar

for ventral and lateral electrodes (Figure 3.3). Finally, when restricting our analysis

to electrodes and time windows with very reliable responses, the pattern of results

was unchanged (Figure 3.5).

Successful transfer learning can be difficult due to potential differences in the

data distribution between source and target datasets (Madan et al., 2022). Thus, it
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is important to determine whether the neural networks trained for their respective

tasks can successfully generalize to the KDEF dataset. Both the identity and the

expression DCNNs yielded high accuracies on the KDEF dataset. Despite that

the expression DCNN labeled expressions with a lower accuracy than the identity

DCNN labeled identity, its accuracy was well within the human range (from 72%,

Goeleven et al., 2008 - to 89.2%, Calvo and Lundqvist, 2008) for the DenseNet.

For this reason, while it is difficult to rule out domain shift problems entirely, it is

unlikely that the accuracy difference between the two DCNNs is due to a failure of

transfer.

Instead, the difference might be driven by task difficulty. Some facial expres-

sions can be ambiguous even for human observers (Aviezer, Trope, and Todorov,

2012; Guo, 2012; Tarnowski et al., 2017). While expression recognition perfor-

mance on KDEF ranges from 72% (Goeleven et al., 2008) to 89.2% (Calvo and

Lundqvist, 2008), human observers are very accurate (above 90%) at recognizing

identity (Bruce, 1982; Burton et al., 1999), even in the presence of changes in view-

point.

The gender recognition task that the participants performed might have af-

fected their neural responses, and in turn, their correspondence with the DCNN

models. Previous work demonstrated that attention selectively enhances face rep-

resentations (Dobs et al., 2018). It could be argued that the gender detection task is

more similar to an identity task. However, gender provides only limited informa-

tion about identity, and gender information can be decoded from neural responses

earlier than identity information (Dobs et al., 2019). Despite this, we cannot en-

tirely rule out that the gender recognition task might have differentially engaged
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identity recognition mechanisms, potentially enhancing the amount of identity in-

formation in face-selective regions.

Nonetheless, our findings are still difficult to reconcile with the classical view.

If ventral regions are specialized for identity and lateral regions are specialized

for expressions, we would expect that a gender task would enhance ventral re-

sponses, and leave lateral responses unaffected (or suppressed). Instead, we find

that lateral responses show robust correlations with the identity DCNN. A gen-

der recognition task can only enhance identity representations in lateral regions

if there can be identity representations in those regions to begin with. Therefore,

the correspondence between the identity DCNN and lateral regions challenges the

view that representations of identity and expressions are separate.

If ventral and lateral regions are not specialized respectively for the recogni-

tion of identity and expression, do they serve the same functional role? If not,

what are their functional differences? Studies using combined transcranial mag-

netic stimulation (TMS) and fMRI (Pitcher, Duchaine, and Walsh, 2014) suggest

that the posterior superior temporal sulcus (pSTS) might receive inputs from both

regions responding to motion and regions encoding shape information. In addi-

tion, there is evidence for pSTS involvement in audiovisual integration (Nath and

Beauchamp, 2012; Anzellotti and Caramazza, 2017; Rennig and Beauchamp, 2021).

Considering this evidence, we speculate that lateral temporal regions along the

superior temporal sulcus might host the convergence of static visual information,

dynamic visual information, and auditory information.

In seeming contrast to the proposal that recognition of face identity and facial

expression share common neural mechanisms, some previous studies reported pa-

tients with dissociations between these two abilities. For example, Hornak, Rolls,
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and Wade (1996) reported a case of a patient with impaired recognition of expres-

sions but spared recognition of identity. However, the patient had damage in ven-

tral frontal cortex, not in lateral temporal cortex. As proposed in Calder (2011),

processing of identity and expressions might diverge at later stages, but they might

still rely on common regions in posterior temporal cortex. In a more recent study

(Jansari et al., 2015), one patient (DY) with acquired prosopagnosia showed iden-

tity recognition deficits, but relatively intact expression recognition as tested with

FEEST (Young et al., 2002). However, DY did have difficulty recognizing anger

(Jansari et al., 2015), indicating some impairment for expression recognition. In

addition, while DY was impaired relative to controls at recognizing the identity of

upright faces, his performance was similar to that of controls when distinguish-

ing inverted faces and fractured faces, suggesting that he might rely on featural

information (Jansari et al., 2015). Such featural information might have also been

sufficient to distinguish between the different emotions in FEEST. This possibility

is consistent with the previously reported finding that anger recognition is partic-

ularly affected by face inversion (Bombari et al., 2013, Figure 2): in DY, an impair-

ment for configural face processing might have led to the observed difficulties for

recognizing the identity of upright faces and also to his disproportionate difficulty

for recognizing anger.

The present findings are part of broader research efforts indicating that infor-

mation about object category and other object properties coexist in common re-

gions within temporal cortex (Hong et al., 2016). A relevant study reported that

speaker identity and speech content can be decoded in the superior temporal cor-

tex (Formisano et al., 2008; Bonte et al., 2014). Together, these studies reveal that

some sets of tasks rely on shared brain regions, while others are implemented by
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distinct neural substrates. Recent work is beginning to investigate what are the

optimal ways of structuring and sharing representations across multiple different

tasks (Zamir et al., 2018; Schwartz et al., 2022).

It is important to note that this study is affected by some limitations. First, the

DCNNs were trained using two different datasets. It would be preferable to use

a training dataset that included both identity and expression labels, but we were

unable to find one such dataset with a sufficient number of images. To mitigate

this concern, the training datasets we used (FER2013 and CelebA) are similar in

that they include images with a broad range of variation in viewpoint and pose.

The DCNNs trained with the two datasets both achieved high performance on the

KDEF dataset. It is worth mentioning that even if we had used a single dataset

with labels for both identity and expression, the same dataset could include very

different expressions but similar identities (or vice versa). Therefore, ensuring that

the DCNN’s transfer accuracy is high is essential to determine whether the training

procedure was successful for both identity and the expression tasks.

The Bayes Factor analysis only showed weak evidence for the identity DCNN’s

abilities to explain the neural responses compared to the expression DCNNs when

evaluating Kendall tB values for all of the face-selective electrodes together (DenseNet

in 3.2B). It is possible that there would be stronger evidence if more data could have

been included in the analysis, but given the number of data points available, the

evidence for this difference is only weak. However, even if the difference between

the two models were strong, this would not alter the conclusion that the results

challenge the classical view: Figure 3.2B includes electrodes from both the ventral

and lateral streams, and the BIC scores strongly favored a single-line fit for both

streams (Figures 3.3A, 3.4C).
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We found that neither the identity nor the expression DCNN models accounted

for a large proportion of the variance in later time windows (Figures 3.2, 3.4A,

3.4B), suggesting that the DCNN models we used do not fully capture the struc-

ture of face representations. This conclusion is in line with work showing that

feedforward DCNNs do not offer a complete account of representational similar-

ity between different images of objects (Xu and Vaziri-Pashkam, 2021). Models

that incorporate recurrence are promising candidates to improve the concordance

with neural representations (Kar et al., 2019; Kietzmann et al., 2019). Additional

studies are needed to test whether they provide a better characterization of neural

responses to faces in later time windows.

Recent findings have suggested that object-trained DCNN models can explain

similar or greater variance in neural responses to face stimuli compared to face-

trained DCNN models (Grossman et al., 2019; Chang et al., 2021; Ratan Murty et

al., 2021). Some research groups have interpreted this to mean that face-selective

cells are not entirely domain-specific (the “domain-general view”; Vinken, Kon-

kle, and Livingstone, 2022). Alternatively, it has also been proposed that face-

selective cells may have a generalist-like function (the “generalist view”; Chang et

al., 2021), in the sense that these cells might support multiple face perception tasks

(e.g. recognition of expressions, age, et cetera). If this is the case, DCNNs that en-

code features that can support several different face perception tasks would show

more similarity to neural representations of face images. In turn, DCNNs trained

to perform object recognition might encode such a variety of features because they

are trained with many different object classes that vary widely in shape, color, and

texture. This could explain why object recognition models show more similarity

of neural responses to face images.
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In our study, the ResNet-18 trained to perform face identity recognition and

the ResNet-18 trained to perform object recognition performed similarly in terms

of their correlation with the neural data. It is possible that this could be due to face-

selective regions encoding domain-general features. Alternatively, if a ResNet-18

model was trained to perform multiple face tasks, rather than just a single task, it is

possible this face-specific model would significantly outperform the object-trained

ResNet-18. This would suggest that face-selective regions do encode domain-

specific features that support multiple different face tasks. Our study is not de-

signed to discriminate between the domain-general view and the generalist view.

However, our results are at least consistent with the generalist view, suggesting

that face-selective regions contribute to both identity and expression recognition.

Future studies will need to be implemented to distinguish between these two al-

ternatives.

Even though we did not observe differences between the ventral and lateral

streams in terms of their correlations with identity and expression DCNNs, com-

paring the representations learned by these DCNNs in more detail remains an in-

teresting question for future research. Methods that localize the regions of an im-

age that are important for a given classification (Selvaraju et al., 2017) might offer

cues about features that are key for both identity and expression recognition, and

features that might be uniquely relevant for one of the two tasks.

Lastly, iEEG is a correlational method. Therefore, we are unable to demonstrate

that representations recorded by lateral electrodes causally contribute to identity

recognition, nor that representations recorded by ventral electrodes causally con-

tribute to expression recognition. Studies using causal methods (such as TMS;
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Pitcher et al., 2007) will be needed to establish the causal involvement of these rep-

resentations for face perception. Even considering these limitations, the findings

challenge the view for which lateral regions are specialized for expression recog-

nition while ventral regions are specialized for identity, and converge with recent

evidence to suggest that face identity and facial expressions share common neural

substrates.
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Chapter 4

Investigating the Representation of

Static and Dynamic Face Features

Using fMRI and Deep Learning

Models for Video Recognition
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4.1 Introduction

Vision plays a crucial role for our understanding of social interactions. In social sit-

uations, one must quickly identify other individuals, their potential mental states,

and analyze the surrounding environment to decide how to act appropriately. Both

static and dynamic features can carry important information related to someone’s

visual appearance (O’Toole et al., 2011; Dobs, Ma, and Reddy, 2017). Substantial re-

search has been conducted to investigate higher-order visual regions in the human

brain to understand how these areas contribute to social perception, particularly

with faces (Isik et al., 2017; Pitcher and Ungerleider, 2021).

The classical view of face perception hypothesizes that the recognition of face

identity is performed by the ventral pathway of the brain, and the recognition of

facial expression by the lateral temporal pathway of the brain (Haxby, Hoffman,

and Gobbini, 2000). Recent work has challenged the classical view of face percep-

tion. As highlighted in the previous chapters, information about both face identity

and facial expressions can be found in both the ventral and lateral temporal path-

ways (Skerry and Saxe, 2014; Hasan et al., 2016; Anzellotti and Caramazza, 2017;

Schwartz et al., 2023b). In light of this evidence it has been proposed that identity

and expression rely on shared mechanisms (Duchaine and Yovel, 2015). Work from

Schwartz et al. (2023b) supports this possibility, but only tested representations of

static face stimuli (images). It is important for one not to assume that any results

obtained using static stimuli will hold true for dynamic stimuli as well without

proper investigation (Dobs, Bülthoff, and Schultz, 2018). However, there is reason

to hypothesize shared face identity and facial expression mechanisms in the brain

for dynamic faces. Thus, this study aims to evaluate if this phenomenon extends
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to dynamic face stimuli as well.

As discussed in Chapter 1, the STS receives direct inputs from area MT/V5,

which is known for its role in visual motion perception (Komatsu and Wurtz, 1989).

This makes the pSTS a highly plausible candidate for processing representations

of motion information. Additionally, many studies have suggested the role of the

lateral temporal pathway in social processing (Pitcher and Ungerleider, 2021). The

STS is thought to be a hub for social perception (Deen et al., 2015). It plays a role

in perceiving faces, voices, biological motion, as well as understanding mental

states and the actions of others (Grossman et al., 2000; Shultz et al., 2011; Anzellotti

and Caramazza, 2017). It is also a prominent location for audiovisual integration

(Beauchamp, Nath, and Pasalar, 2010; Nath and Beauchamp, 2012), an important

component for understanding social interactions.

Several studies have also reported higher neural responses to dynamic neu-

tral faces in the fs–pSTS compared to static faces (Pitcher et al., 2011). Conversely,

neural responses in the FFA do not differ for neutral dynamic faces compared to

static (Pitcher et al., 2011). Emotional faces have also been used to test differences

between dynamic and spatial stimuli-evoked fMRI, finding no difference in re-

sponses to static and dynamic faces in the FFA as well (Furl et al., 2013).

Here, fMRI was used to investigate the neural responses involved in processing

dynamic faces. In order to study the representation of static and dynamic informa-

tion, we used models that separated these different kinds of information into dis-

tinct processing streams: two-stream models for video recognition. By comparing

these neural patterns with those of the models — also trained on dynamic faces —

it aimed to establish that the observed phenomena in both Chapters 2 and 3 extend

beyond static facial representations. Furthermore, this approach may offer insights
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into the role of the two pathways for processing static and dynamic information.

Two-stream neural network models for video recognition contain a spatial stream

to process individual frames, and a temporal stream to process motion extracted

from sets of frames. Here, hidden two-stream neural network models (Zhu et al.,

2019), a type of DCNN, were trained on face videos. Leveraging these models,

it was tested whether 1) identity and expression DCNN models trained on static

face frames do not differ in terms of their relative contribution in ventral and lat-

eral regions when using fMRI, 2) identity and expression DCNN models trained

on dynamic faces do not differ in terms of their relative contribution in ventral

and lateral regions when using fMRI, and 3) the ventral and lateral temporal re-

gions vary in terms of whether they represent static information, dynamic infor-

mation, or a combination of both. First, we would expect both ventral and lateral

temporal regions to have a similar correspondence with identity and expression

static DCNNs. Second, we would expect both ventral and lateral temporal re-

gions to have a similar correspondence with identity and expression dynamic DC-

NNs. Third, based on the current literature, we would anticipate that the tempo-

ral stream (interchangeable with the term dynamic stream) would exhibit weaker

similarity with the ventral pathway (OFA and FFA), and that the temporal stream

would exhibit greater similarity with the lateral temporal pathway (pSTS) than

it would with ventral regions. Additionally, the spatial stream (interchangeable

with the term static stream) could still correlate with the ventral pathway, but to

a lesser degree compared to the lateral pathway. The pSTS would show greater

correspondence when using a combination of the spatial and temporal stream fea-

tures, while accounting for a potential benefit of additional redundant informa-

tion. Thus, a combination of the spatial and temporal stream should correlate more
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strongly with the lateral temporal pathway than either stream alone, specifically

the face-selective pSTS. This account is illustrated in Figure 4.1. Following a sim-

ilar approach to the one used in Chapter 3, this was tested directly by analyzing

fMRI responses using RSA using videos of faces varying in both face identity and

facial expression. Comparing the representational geometry of neural responses

in ventral and lateral temporal regions to the representational geometry in DC-

NNs optimized for either 1) identity or expression information, and 2) static or

dynamic information, we examined whether RDMs extracted from these DCNN

models correlate differently with RDMs based on responses in face-selective ROIs

in ventral and lateral temporal regions.

FIGURE 4.1: The alternative account of face perception processing. It
can be hypothesized that the OFA and FFA are involved in process-
ing static features of faces while the pSTS is involved in processing

dynamic features of faces.
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4.2 Methods

4.2.1 Participants

Flyers were used to recruit study participants. Data was collected for 20 subjects

between the ages of 18-29 years(10 females; mean age 22.05 years, SD = 2.74).

Scanning was done at Athinoula A. Martinos Imaging Center - MIT McGovern

Institute. Each participant underwent an MRI safety pre-screening before taking

part in the experiment. One subject was excluded due to a coil issue. This study

was approved by the Boston College Institutional Review Board.

4.2.2 Experiment Design

In this study, each subject participated in two fMRI experiments. Experiment 1

used a functional localizer task and Experiment 2 used a dynamic face perception

task. Both experiments had the subject use a button-press controller during the

tasks.

4.2.3 Stimuli

In experiment 1, subjects were shown 240 images or videos. These images and

videos fell into 6 different categories of stimuli: static images of faces, static images

of bodies, videos of faces, body parts performing actions, artifacts and scenes. Face

images were obtained from the KDEF database (Lundqvist, Flykt, and Öhman,

1998), while all other stimuli categories were from the Kanwisher lab (Julian et al.,

2012). Each of the six categories included 36 unique stimuli. For the KDEF images,

the faces were extracted and each placed on a black background.
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Most previous studies of emotion perception have relied on posed facial ex-

pressions. However, posed expressions display stereotypical facial movements

that can be different from those produced in naturalistic settings. To mitigate this

issue, for experiment 2, we chose to use the Denver Intensity of Spontaneous Facial

Action Database (DISFA, Mavadati et al., 2013) since these stimuli display spon-

taneous facial expressions. DISFA consists of four minute videos evoking facial

expressions from 32 different identities. Subjects were recorded while watching

emotion-eliciting videos. Emotions elicited include happiness, sadness, surprise,

disgust, and fear. Since some of the spontaneous expressions were very subtle, we

selected a subset of the expressions so that they displayed an adequate amount of

motion. Videos were watched in full, and each reaction was coded for expressive-

ness in order to determine if the stimulus would be a good fit for the experiment.

After viewing all 32 videos, seven identities were selected to be included in the ex-

periment due to having highly-rated reactions via recognizability (by two different

raters) for all expression categories. The surprise videos depicted situations that

could elicit multiple emotions (e.g., an alligator suddenly snapping). These videos

could have elicited both surprise and fear, and in fact the resulting facial expres-

sions were similar. Therefore, fear and surprise were combined into one category

(“fear/surprise”).

After selecting the 7 identities, a research assistant cropped 2 second segments

of the original videos that best captured the emotional expression. Each consisted

of a person starting in a neutral expression and then moving their face into a strong

emotional expression. Once the clips were selected, low-level perceptual features

of the videos were adjusted to control for brain regions that are sensitive to low-

level features. Stimulus transformations included RGB normalization, contrast,
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and brightness, as well as various croppings of the frames. More specifically, stim-

uli were resized at 4 different scales by adding different amounts of padding and

then resampling the frames back to 512x512.

4.2.4 Paradigms

Experiment 1 consisted of a single run. The localizer was used to identify the re-

gions of the brain that respond preferentially to particular stimuli. During the run,

participants were shown the 6 types of stimuli: static images of faces, static images

of bodies, videos of faces, body parts performing actions, artifacts and scenes (Fig-

ure 4.2). For each stimulus type, 4 blocks with 20 seconds duration were shown,

separated by 6 seconds of fixation, leading to a total duration of approximately

12 minutes. Participants performed a 1-back task, and in 10% of the trials, two

identical stimuli were shown in a row.

Experiment 2 consisted of 4 runs. The experimental paradigm made it possible

to capture the neural responses for a stimulus set consisting entirely of controlled,

but spontaneous facial expressions over various identities. During each of the 4

runs, participants were shown 2 second long videos of facial expressions: 10 for

each emotion label (sadness, fear/surprise, disgust, happiness, neutral). Videos

were presented in randomized order. Participants were asked to press a button us-

ing a button box after a neutral facial expression video was shown. This task was

chosen to limit button press movements by removing the use of multiple buttons.

Seven face identities were shown, each contributing two videos for each emotion.

Halfway through the run, there was a 30 second break for participants (which they

are made aware of beforehand). Each video was followed by a jittered intertrial

interval of 4-8 seconds extracted from a uniform distribution, leading to a total run
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duration of approximately 9.7 minutes. Accuracy performance on the task was

given after the completion of each run to help motivate participants to pay atten-

tion. The same stimuli in randomized order were shown in each run, but the size of

each stimulus video varied between runs. The size changes were done to increase

the likelihood of capturing representations of identity and expression that would

be robust to changes in image transformations such as size variation, rather than

capturing representations of low-level visual features. Prior to scanning, partici-

pants underwent a practice session outside of the scanner where they completed

a shortened version of the controlled, dynamic face task. Figure 4.2 (right) depicts

the task paradigm.

FIGURE 4.2: Face-selective Localizer. Subjects viewed images and
videos of faces, body parts, and videos of objects and scenes. Sub-
jects pressed a button when they saw a stimulus repeated twice in a
row (N-1 back task). Dynamic Face Paradigm. Subject presses a but-
ton on a response controller during a fixation period after viewing a

neural facial expression video clip.
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4.2.5 Acquisition protocol

The acquisition protocol used the standard MIT Center for Brain Mind and Ma-

chines scanning parameters. The scanner used was a Siemens 3-T MAGNETOM

Prisma with a 32-channel head coil. Before collecting functional data, a high-

resolution (1 × 1 × 1 mm3) T1-weighted MPRAGE sequence was performed (sagit-

tal slice orientation, field of view read = 256mm, field of view phase = 100%, 176

partitions with 1-mm thickness, GRAPPA acquisition with acceleration factor PE =

2, duration = 5.36 min, repetition time = 2500, echo time = 2.96, TI = 1070 ms, 8° flip

angle). Functional data were collected using an echo-planar 2D imaging sequence

with phase oversampling 0% (repetition time = 2000 ms, echo time = 30 ms, flip

angle = 90°, slice thickness = 2.6 mm, with 2.6 × 2.6 mm in plane resolution).

4.2.6 fMRI data preprocessing

All data were preprocessed using fMRIPrep (https://fmriprep.org/en/latest/

index.html). fMRIprep is a robust and easy to use pipeline built to preprocess

fMRI data (Esteban et al., 2019). The anatomical images were skull-stripped with

ANTs (http://stnava.github.io/ANTs). This was followed using FSL FAST for

tissue segmentation. The functional images were corrected for head movements

using FSL MCFLIRT (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT), and

then the images were coregistered to the corresponding anatomical scans using

FSL FLIRT. The pipeline included brain extraction, tissue segmentation, spatial

normalization for the anatomical scans, followed by bold estimation with head-

motion and slice time correction, and resampling to native space. Denoising was

done using the derived aCompCorr (anatomical Component-Based Noise Correc-

tion) confound regressors (Muschelli et al., 2014).

https://fmriprep.org/en/latest/index.html
https://fmriprep.org/en/latest/index.html
http://stnava.github.io/ANTs
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MCFLIRT
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4.2.7 ROI localization

Functional localizers (Experiment 1) were analyzed using General Linear Mod-

els (GLM) in SPM12 (Ashburner et al., 2014), with boxcar predictors for differ-

ent stimulus types, convolved with a standard hemodynamic response function

(HRF). Human face-sensitive areas were defined as clusters of voxels which re-

spond more to human faces than to objects, scenes, and body parts (uncorrected

p < 0.05). The voxel cluster size was set to 0. For each participant and hemisphere,

visually responsive voxels were identified based on the functional localizer scans

in which responses to videos of faces were contrasted with videos of body parts

performing actions, videos of artifacts and videos of scenes. ROIs were determined

using a standard procedure for spherical ROI creation: identifying coordinates of

peak voxels from the above steps, drawing a 9mm radius spherical ROI around the

peak voxel as the sphere’s center, and selecting the top 80 voxels within the spheri-

cal ROI based on the t-values from the relevant contrast. Voxels were not included

in the spherical ROI if they had a t-value less than 0. The identified voxels were

then used to create a binary mask to select the subset of voxels that lay within the

rOFA, lOFA, rFFA, lFFA, rpSTS, and lpSTS for Experiment 2.

4.2.8 Analyzing BOLD responses to dynamic faces

In Experiment 2 initially, an analysis building a GLM for each trial where each trial

was compared to all other trials was done (Mumford et al., 2012). However, after

evaluating the test-retest reliability, the betas obtained appeared to be noisy. In-

stead, a GLM was implemented for each subject and run designed to characterize

each face identity and facial expression as its own predictor using SPM12 (Ash-

burner et al., 2014). Trials of the same identity and trials of the same expression
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were grouped together and included as multiple regressors. This yielded 11 pre-

dictors for each run (neutral removed due it its relevance to the task the subjects

were told to perform). Thus, there was a resulting estimated beta image corre-

sponding to each identity category and each facial expression category. The pur-

pose of modeling each face identity and each facial expression instead of modeling

each combination of the face identity category and the facial expression category

was to avoid overfitting the model. This can happen when using too many param-

eters and not enough data points. Additionally, the top five aCompCorr compo-

nents were included as regressors in the GLM for each subject.

4.2.9 Representational dissimilarity matrices: neural responses

Representational dissimilarity matrices were created using the face identity and

facial expression beta values obtained from the GLM analysis of the fMRI data.

For each ROI, the beta values from each of the 11 predictor beta images were ex-

tracted from the fMRI data using ROI masks created via the localizer study data.

In other words, the full pattern of voxel data was extracted from each beta image

that corresponded to a particular predictor, and this yielded an ROI-specific vector

for each predictor. For each run, an RDM was creating by calculating the pairwise

correlation (1-Pearson’s r) between the ROI-specific beta vectors for each identity

and expression predictor. This was repeated for all four subject RDM runs sepa-

rately. Following this, for each subject, the RDM runs were then averaged to get a

single subject RDM per ROI averaged across runs.
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4.2.10 Reliability within subject runs

To evaluate reliability across the four runs for each subject, the smallest sized stim-

uli were averaged with the second largest stimuli to form one RDM pair. Similarly,

the second smallest stimuli were averaged with the largest stimuli to form another

RDM pair. These two averaged RDMs were then correlated using Kendall’s tB. To

verify that this was different than noise, the procedure was repeated with RDMs

that were randomly shuffled before averaging, and the correlation between the

averaged shuffled RDMs was obtained.

4.2.11 Noise ceilings

A preliminary analysis was performed to calculate the noise ceiling for the data in

Experiment 2. Across runs, stimuli were presented multiple times with variations

in size to accommodate a greater number of stimuli. Considering the repeated

presentation of stimuli across runs with variations in size, RDMs for each subject

were created that contained the pairwise dissimilarities between the responses for

different predictors. To derive an unbiased noise ceiling, each subject’s RDM was

correlated with the average RDM computed from the data of the other subjects

(using a "leave-one-out" approach), as well as a noise ceiling where each subject’s

RDM was correlated with the average RDM computed from all subject’s data.

4.2.12 Two-stream deep convolutional neural network models

Two-stream DCNNs were implemented to model the neural data. The models

were trained to perform either video recognition of face identity or video recogni-

tion of face expression using the Hidden Two-Stream Architecture method by Zhu
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et al. (2019). The model architecture consisted of 3 components: an unsupervised

optic flow estimation (MotionNet) that will be referred to as the optic flow model,

a temporal stream convolutional neural network (CNN) which will be referred to

as the temporal stream, and a spatial stream CNN which will be referred to as

the spatial stream. The temporal stream was trained to label the stimulus based on

motion (via optic flows estimated via the MotionNet component), while the spatial

stream was trained to label the stimulus based on still video frames. The overar-

ching goal of the complete model was to implicitly capture motion information

and predict class labels successfully. More details describing each component are

presented below.

4.2.12.1 MotionNet

Optic flow captures apparent motion information between the frames of a video.

The MotionNet was used to predict the optic flow of consecutive video frames.

This was done in a window size of 11 frames for each video. The optic flow maps

were then fed into the temporal stream which is detailed below.

The MotionNet worked by taking windows of frames and inputting them into

a DCNN made up of four convolutional layers and four deconvolutional layers.

After each convolutional layer, the dimensions of the frames were downsampled.

The dimensions of the frames were then upsampled through a series of decon-

volutional layers and additional convolutional layers. For each set of deconvo-

lutional/convolutional layers and their associated output resolutions, a flow loss

was calculated. This flow loss was made up of 3 different loss functions. The

first loss function was a standard pixelwise reconstruction loss that is based on

the pixel-level optical flow change from reconstructing the current frame from the



123

next frame. The second loss function was a piecewise smoothness loss. This ad-

dressed the aperture problem when estimating motion in non-textured regions that

may seem ambiguous by calculating the gradients of the estimated flow fields in

both the x and y directions. The third loss function was a structural similarity loss

(SSIM) that was used to learn the structure of the frames, by comparing how sim-

ilar patches are between the frame and the reconstructed frame. The three losses

were then each weighted by their relative importance during training, and then

a weighted sum was calculated. A table from Zhu et al. (2019) of the MotionNet

architecture can be found in Table 4.1.

4.2.12.2 Spatial stream

The spatial stream of the model processed individual frames from the videos, treat-

ing each frame as a separate image. Each frame was assigned the corresponding

label from its video and is essentially subjected to the same procedure as an image

for a standard image classification model. ResNet-18 (He et al., 2016) was used as

the spatial stream architecture (Table 4.2), and the model was trained to either learn

to identify the face identity depicted in the single frame or the facial expression.

4.2.12.3 Temporal stream

The temporal stream used the optic flow maps generated by MotionNet as its in-

put. The MotionNet was given 11 frames as an input and from there outputted

11 optic flow estimations. These optic flows have a specific resolution as well as

x and y channels. Thus, the optic flows had a shape of 11x224x224x2. ResNet-18

(He et al., 2016) was used as the temporal stream architecture (Table 4.2), and the
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TABLE 4.1: Layers of the MotionNet Architecture from Zhu et al.
(2019)
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TABLE 4.2: Layers of the ResNet-18 Model.

Layer Name Kernel Size Input Channels Output Channels

Conv1 7 ⇥ 7 3 64
Conv2_1 3 ⇥ 3 64 64
Conv2_2 3 ⇥ 3 64 64
Conv3_1 3 ⇥ 3 64 128
Conv3_2 3 ⇥ 3 128 128
Conv4_1 3 ⇥ 3 128 256
Conv4_2 3 ⇥ 3 256 256
Conv5_1 3 ⇥ 3 256 512
Conv5_2 3 ⇥ 3 512 512
Avg Pool 1 ⇥ 1 512 512
FC � 512 328 (or 7)

model was trained to either learn to identify the face identity or the facial expres-

sion based on the optic flow maps generated from the 11 frames given as input

into the MotionNet.

4.2.12.4 Training the MotionNet

The Human-Centric Atomic Action Dataset with Curated Videos (HAA500) database

(Chung et al., 2021) was used to train the MotionNet. HAA500 is an action recog-

nition database and consists of over 591,000 frames with 500 action labels. The

database was split into training (0.8), validation (0.05), and testing sets (0.15). Frames

were cropped and resized to 224 ⇥ 224. The batch size was 64 frames and the

model was trained to minimize the weighted sum of the pixelwise reconstruction

loss, the piecewise smoothness loss, and the SSIM loss at each resolution scale.

4.2.12.5 Training the spatial stream

For the identity recognition DCNN, a subset of 16,379 videos were used from Vox-

Celeb2 (Nagrani et al., 2020), a video dataset made up of over 150,000 videos.
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Videos to include were chosen at random. However, each identity had to have at

least 50 videos. The subset was broken down into a training set made up of 15,068

videos and each video was clipped to have 51 frames. A validation set was made

up of 983 videos, and a testing set made up of 328 videos. Given 224 ⇥ 224 videos

from a subset of the VoxCeleb2 dataset, the identity network was trained to rec-

ognize 328 face identities varying in pose and age. The batch size was 64 images.

The network was trained to minimize the cross-entropy loss between the outputs

and true labels using the adaptive movement estimation (Adam) optimization al-

gorithm. Adam adapts learning rate to improve speed and model convergence

(Kingma and Ba, 2014). The learning rate was specified at 0.0001 with initial decay

rate betas ranging from 0.9 to 0.999. The training was set for 40 epochs, however,

early stopping was implemented to prevent the models from overfitting. A val-

idation set was used to test the accuracy of the model every 500 batches. If the

validation accuracy was not greater than the previous max accuracy after 10 con-

secutive validations, early stopping of the model was implemented. The model

converged and stopped running during the second epoch on batch 7000, with a

validation accuracy of 80.3%. The model was then again evaluated on a small test-

ing set and performed with an accuracy of 78.5%. Training and validation loss can

be seen in Figure 4.3A.

For the expression recognition DCNN, videos were used from Dynamic Fa-

cial Expression in-the-Wild (DFEW, Jiang et al., 2020). DFEW contains more than

16,000 videos. However, due to the nature of the videos of the dataset, face de-

tection was performed on each video to crop closer to the face. This reduced the

usable videos, and thus, a subset of 6,076 videos were used for expression train-

ing. On average, each video of DFEW was made up of more frames (mean = 72.11
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FIGURE 4.3: Training performance for identity two-stream DCNN. A)
Training and validation loss of the spatial stream when training with
VoxCeleb2 for identity recognition. The x-axis represents the number
of times validation performance was calculated while training. Losses
were plotted every 500 batches of training. B) Training and validation
loss of the temporal stream when training with VoxCeleb2 for identity
recognition. Losses were plotted every 500 batches of training. Losses

were plotted every 500 batches of training.

frames) compared to the identity network (all videos clipped to 51 frames). The

batch size was 64 images. The network was trained to minimize the cross-entropy

loss between the outputs and true labels using the adaptive movement estima-

tion (Adam) optimization algorithm (Kingma and Ba, 2014). The learning rate was

specified at 0.0001 with initial decay rate betas ranging from 0.9 to 0.999. The train-

ing was set for 40 epochs, however, early stopping was implemented to prevent

the models from overfitting. A validation set was used to test the accuracy of the

model every 500 batches. If the validation accuracy was not greater than the pre-

vious max accuracy after 10 consecutive validations, early stopping of the model

was implemented. The model ran for all 40 epochs, with a validation accuracy of

91.0%. The model was then again evaluated on a small testing set and performed

with an accuracy of 87.7%. Training and validation loss can be seen in Figure 4.4.
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FIGURE 4.4: Training performance for the expression spatial stream
DCNN when training with DFEW for expression recognition. The x-
axis represents the number epochs where the training and validation
losses were calculated. Losses were obtained every 500 batches of
training. A plot for the expression temporal stream was not included

due to incomplete training.

4.2.12.6 Training the temporal stream

Given 224 ⇥ 224 videos from a subset of the VoxCeleb2 dataset, the identity DCNN

was trained to recognize 328 face identities varying in pose and age. Batch size con-

sisted of 16 outputs from MotionNet. The network was trained to minimize the

cross-entropy loss between the outputs and true labels using the adaptive move-

ment estimation (Adam) optimization algorithm. The learning rate was specified

at 0.0001 with initial decay rate betas ranging from 0.9 to 0.999. The training was

set for 20 epochs, however, early stopping was implemented to prevent the mod-

els from overfitting. A validation set was used to test the accuracy of the model

every 500 batches. If the validation accuracy was not greater than the previous

max accuracy after 10 consecutive validations, early stopping of the model was

implemented. The model converged and stopped running in its forth epoch on

batch 6500, with a validation accuracy of 66.5%. The model was then again evalu-

ated on a small testing set and performed with an accuracy of 60.2%. Training and
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validation loss can be seen in Figure 4.3B.

Given 224 ⇥ 224 videos from a subset of the DFEW dataset, the expression tem-

poral DCNN was trained to recognize 7 facial expressions (neutral, happy, sad, dis-

gust, surprise, anger, and fear). Batch size consisted of 16 outputs from MotionNet.

The network was trained to minimize the cross-entropy loss between the outputs

and true labels using the adaptive movement estimation (Adam) optimization al-

gorithm. The expression temporal stream DCNN needed a smaller learning rate

than its identity counterpart. The learning rate was set to 0.00001 with initial decay

rate betas ranging from 0.9 to 0.999. Due to time constraints, the training was set

for 10 epochs with early stopping implemented if needed. A validation set was

used to test the accuracy of the model every 500 batches. If the validation accuracy

was not greater than the previous max accuracy after 10 consecutive validations,

early stopping of the model was implemented. However, due to time constraints,

a partially trained model is presented here. The model was evaluated on a testing

set and performed with an accuracy of 46.3%.

4.2.12.7 Hidden-two stream model performance

After training each piece of the hidden-two stream model for identity recognition,

the outputs of the identity spatial stream DCNN and identity temporal stream

DCNN were fused to get the final model accuracy. This was done by summing

the output vectors from the two streams and then running an argmax function.

Argmax finds the position in a vector containing the element with the largest value.

The final accuracy of the complete fused model for identity recognition was 73.1%.

After training each piece of the hidden-two stream model for expression recog-

nition, the outputs of the expression spatial stream DCNN and the partially-trained
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expression temporal stream DCNN were fused to get the final model accuracy. The

final accuracy of the fused model for expression recognition was 92.9%.

4.2.13 Representational dissimilarity matrices: two-stream DC-

NNs

Feature representations for each stimulus used in the fMRI study were extracted

from the MotionNet, the spatial stream DCNN, and the temporal stream DCNN.

For the MotionNet, this corresponded to the last flow block of the model, yielding

outputs of 20 channels (10 for the x gradient and 10 for the y gradient) with 224x224

resolution. For both the spatial stream and temporal stream DCNNs, outputs were

extracted after the last convolutional layer of the last residual block before the fully

connected layer of the ResNet-18 architecture.

Since there were multiple sizes of the same fMRI stimuli, feature representa-

tions were extracted from the DCNNs for each size of the stimulus, and then av-

eraged to obtain a single representation for each unique stimulus. To get stimulus

representations for each identity and for each expression, the stimulus feature rep-

resentations were averaged over the facial expressions to get an identity represen-

tation, and averaged over the face identities to get a facial expression representa-

tion. Prior to doing this, all neutral facial expression stimuli were removed. For

all pairs of expressions and identities, correlation distance was calculated between

the feature vectors (correlation distance is 1 � r where r is Pearson’s correlation)

to create a representational dissimilarity matrix (RDM). The pairwise correlations

were implemented in the same order for all of the following RDMs.
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TABLE 4.3: RDM comparisons for evaluation.

Model ROI

Spatial stream rOFA rFFA rpSTS
lOFA lFFA lpSTS

Temporal stream rOFA rFFA rpSTS
lOFA lFFA lpSTS

Spatial + temporal stream rOFA rFFA rpSTS
lOFA lFFA lpSTS

MotionNet rOFA rFFA rpSTS
lOFA lFFA lpSTS

4.2.13.1 Representational similarity analysis: comparison between two-stream

DCNNs and neural activity

To calculate the concordance between the two-stream DCNN RDMs and the neu-

ral RDMs (detailed in section 4.2.9), correlations were calculated using Kendall

Tau’s rank correlation coefficient, tB. Table 4.3 shows the different comparisons

made. Semi-partial tB correlations were also calculated to get a combined spatial

and temporal stream model tB value. As mentioned in the Methods section of

Chapter 3, semi-partial correlations assess the strength of the relationship between

two variables (e.g., between the neural RDM and in this case one of the DCNN

RDMs) while controlling for the influence of other variables (e.g., the other DCNN

RDM). This was done for both the identity temporal stream DCNN model and the

expression temporal stream DCNN model.

As mentioned in the Methods section of Chapter 3, Frequentist tests are not

designed to test for the absence of an interaction. However, Bayesian tests can

be used to evaluate the strength of evidence for the absence of an effect. Thus, a

Bayesian approach was once again implemented. Here, it was used for multiple
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analyses. First, to examine the relative similarity of ventral and lateral ROI RDMs

to the identity and expression RDMs for both spatial stream and temporal stream

DCNNs. Second, to evaluate the relative support for a model in which the lateral

ROIs may have a slope aligning closer to the axis representing a combination of

the spatial and temporal streams compared to the ventral ROIs.

First, we aimed to test the hypothesis that ventral responses are predominantly

characterized by identity information, and lateral responses by expression infor-

mation. In order to evaluate this, we sought to statistically determine whether ven-

tral face-selective ROIs (rOFA, rFFA, lOFA, lFFA) and lateral face-selective ROIs

(rpSTS, lpSTS) fall on lines with different slopes in terms of their correlations with

the identity DCNN and the expression DCNN. To this end, the data was fit with

two competing linear regression models: one model with two separate slopes for

the ventral and lateral ROIs, and one model with a single slope. This was done

using the spatial stream DCNNs, and the temporal stream DCNNs separately.

Second, we aimed to test the hypothesis that ventral regions encode predom-

inantly static information, while lateral regions encode a combination of static

and dynamic information. To statistically test if ventral face-selective ROIs (rOFA,

rFFA, lOFA, lFFA) and lateral face-selective ROIs (rpSTS, lpSTS) fall on lines with

different slopes in terms of their correlations with the static stream model and the

static and temporal model combined, the data was fit with two competing linear

regression models: one model with two separate slopes for the ventral and lateral

ROIs, and one model with a single slope. This was done separately for the identity

DCNN model and for the expression DCNN model.

For all of these comparisons, model selection was then performed using Bayesian

Information Criterion (BIC) to determine which linear regression model provided
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a better account for the data. A lower BIC score signified the better model. The

difference between BIC scores, d = BICseparate � BICcombined, determined the size

of the effect, with a difference greater than 10 denoting strong evidence for the

better model (Raftery, 1995). Additionally, to evaluate if combined static and

dynamic feature RDMs showed significantly greater correlations with the lateral

pathway compared to RDMs using only static features from the spatial stream

DCNN model, Wilcoxon signed-rank test was implemented. This will be done

by taking the difference of the tB values (combined-single stream) between sub-

jects. The Wilcoxon signed-rank test is a non-parametric version of the paired t-

test. A non-parametric test was chosen due to using correlation values which are

constrained between -1 and 1, and therefore, would not be normally distributed.

4.3 Results

4.3.1 Behavioral performance on neutral face task

Subjects completed a dynamic face viewing task where they were instructed to

press a button after every video of a neutral facial expression. Subjects, on average,

were able to detect the neutral facial expression with an accuracy of 84% (SD: 17.7).

4.3.2 Comparison of neural RDM runs

To assess reliability within the four runs, the runs with the smallest size stimuli

were averaged with those of the second largest size stimuli to create one RDM

pair. Similarly, the runs with the second smallest stimuli were averaged with those

of the largest stimuli to create another RDM pair. These two averaged RDMs were

then correlated using Kendall’s tB. To verify the robustness of this method, the
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FIGURE 4.5: Within-subject correlations to evaluate reliability be-
tween pair runs of neural RDMs compared to randomly shuffled pair

run RDMs.

procedure was repeated with RDMs that were randomly shuffled prior to averag-

ing. The correlation between the averaged shuffled RDMs was obtained. Figure 4.5

compares the RDMs to their randomly shuffled counterparts for each ROI. Figure

4.6 shows the ROI RDMs averaged across subjects (n = 19).

4.3.3 Comparison between face-selective ROIs and hidden two-

stream neural networks

A hidden two-stream neural network was trained to perform identity recognition

on a video databases of faces. The hidden two-stream neural network can be bro-

ken down into three components: the spatial stream DCNN model, the optic flow

DCNN model (MotionNet) and the temporal stream DCNN model. Figure 4.7 A

and C show the DCNN model RDMs. RDMs from each model were correlated
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FIGURE 4.6: RDMs averaged across subjects for each face-selective
ROI.
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FIGURE 4.7: RDMs from identity and expression two-stream models
and the optic flow model. A) RDMs of the fMRI stimuli representa-
tions extracted from the identity spatial stream DCNN and the iden-
tity temporal stream DCNN models. B) RDMs of the fMRI stimuli
representations extracted from the expression spatial stream DCNN
and the expression temporal stream DCNN models. C) RDMs of the
fMRI stimuli optic flows extracted from the MotionNet model. For all
RDMs, predictors 0-3 are facial expressions (disgust, fear/surprised,

happy, sad) and 4-10 are the seven different face identities.
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with subject RDMs for each ROI. Figure 4.8 shows the Kendall tB values aver-

aged over subject with SEM bars and noise ceilings. All 3 identity DCNN models

performed similarly for each ROI with the exception of the rpSTS that showed a

smaller correlation with the optic flow model compared to the spatial and tempo-

ral stream models. The lpSTS showed the same pattern as rpSTS but to a lesser

extent. Additionally, the rOFA and rFFA showed slightly greater correlations with

the spatial and temporal DCNN models. These correlations were greater for the

spatial and temporal stream DCNN models compared to the optic flow DCNN

model within theses regions, whilst the lOFA and lFFA had greater correlations

with the optic flow DCNN model compared to the spatial and temporal stream

DCNN models. This could make sense due to the right hemisphere being more

specialized for faces compared to the left, but the differences were small. Addi-

tionally, the rFFA had the highest correlations overall for the spatial and temporal

stream DCNN model comparisons, with the spatial stream DCNN model tB as the

largest.

A hidden two-stream neural network was trained to perform expression recog-

nition on a video databases of faces. Figure 4.7 B and C shows the DCNN model

RDMs. RDMs from each model were correlated with subject RDMs for each ROI.

Figure 4.9 shows the Kendall tB values averaged over subject with SEM bars and

noise ceilings. The expression spatial DCNN model had the highest correlations

for each ROI. The rFFA showed slightly greater correlations with the spatial and

optic flow DCNN models compared to the lFFA. This again makes sense due to

the right hemisphere being more specialized for faces compared to the left, but

the differences are small. Additionally, the rFFA had the highest correlations over-

all for the spatial and temporal stream DCNN model comparisons, with the spatial
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FIGURE 4.8: Correlations between neural RDMs and identity hidden
two-stream model RDMs. Per each face-selective ROI, Kendall’s tB
was calculated for the spatial stream, the optic flow MotionNet, and
the temporal stream, averaging over subjects (n = 19). SEM bars are
depicted in black. The shaded grey regions represent the lower and

upper bound of the noise ceiling for each ROI.
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stream DCNN model as the largest. The expression temporal stream DCNN model

had much lower correlations compared to the other two expression models as well

as the identity stream models. However, the expression temporal stream was only

partially trained, so it could be expected that these values would increase with a

fully trained version of the expression temporal DCNN.

FIGURE 4.9: Correlations between neural RDMs and expression hid-
den two-stream model RDMs. Per each face-selective ROI, Kendall’s
tB was calculated for the spatial stream, the optic flow MotionNet,
and the temporal stream, averaging over subjects (n = 19). SEM bars
are depicted in black. The shaded grey regions represent the lower

and upper bound of the noise ceiling for each ROI.

To test if the spatial streams of both identity and expression DCNNs similarly

correlated with the ventral (rOFA, rFFA, lOFA, lFFA) and lateral regions (rpSTS, lp-

STS), the same analysis implemented in Chapter 3 was done. If ventral ROIs have

comparatively higher Kendall tB with the identity spatial stream DCNN, and lat-

eral ROIs have comparatively higher Kendall tB with the expression spatial stream

DCNN, the ventral and lateral ROIs should fall on two different lines with differ-

ent slopes. However, if the findings from Chapter 3 were to be replicated using



140

these models and the fMRI data, then the ROIs should fall along one slope. Like

before, the data points from the ventral ROI and the lateral ROI were located along

one line (Figure 4.10 A). The BIC analysis confirmed this when modeling the ven-

tral and lateral ROIs separately (BICseparate = �162.927), and when combining

the ventral and lateral regions(BICcombined = �520.140, BICseparate � BICcombined =

357.213). Differences greater than 10 in BIC values were interpreted as providing

strong evidence in favor of the model with lower BIC (i.e. the combined model;

Raftery 1995). This corresponded to the ventral and lateral ROI having a similar

ratio of expression tB to identity tB (Figure 4.10 A).

This was then repeated using the temporal streams of both identity and ex-

pression DCNNs. Again, the data was better fitted when using a single slope for

all ROIs. This is seen in the BIC analysis (BICseparate = �168.616, BICcombined =

�549.062, BICseparate � BICcombined = 380.446). The scatter plot is shown in Figure

4.10 B.

For each subject, each ROI was evaluated to determine how similar it was to

the identity spatial stream DCNN model RDM, and then how similar it was to

the combined identity spatial and temporal stream DCNN model RDMs. The two

values were used as coordinates for a scatter plot (Figure 4.11). If ventral ROIs have

a comparatively higher Kendall’s tB with the spatial stream DCNN model, and

lateral ROIs have a comparatively higher Kendall tB with the combined spatial and

temporal stream DCNN model, the two sets of ROIs should fall on two different

lines with different slopes. Instead, for the identity DCNN model, all observed

ROIs were located along one line - showing a similar ratio of the spatial model tB to

the combined spatial and temporal DCNN model tB (Figure 4.11). To quantify this,

BIC was used to compare a model with separate slopes for the ventral and lateral
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FIGURE 4.10: Relative contributions of identity and expression mod-
els within streams. A) Scatter plot comparing correlation values
from the identity spatial stream and expression spatial stream using
Kendall tB matched on ROI per subject (n=19 subjects). B) Scatter plot
comparing correlation values from the identity temporal stream and
expression temporal stream using Kendall tB matched on ROI per
subject (n=19 subjects). For each ROI, the right and left hemispheres

were included as individual data points in both plots.
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ROIs separately (BICseparate = �166.846) to a model with a single slope for both

the ventral and lateral ROIs (BICcombined = �523.180, BICseparate � BICcombined =

356.334). All of the ROIs fall along the same slope (Figure 4.11), suggesting that

they have a similar ratio of match to the identity spatial stream and the combined

identity spatial and temporal streams. To statistically test if the combined static

and temporal tB correlations were greater than the static stream tB correlations for

the lateral regions, a Wilcoxon signed-rank test was run. The combined static and

temporal stream DCNN model showed significantly greater correlations with the

lateral regions than the spatial stream DCNN model alone (p < 0.001).

This was then repeated using the expression DCNN model by comparing a

model with separate slopes for the ventral and lateral ROIs separately (BICseparate =

�161.087) to a model with a single slope for both the ventral and lateral ROIs

(BICcombined = �527.212, BICseparate � BICcombined = 366.125). All of the ROIs fall

along the same slope (Figure 4.12), suggesting that they have a similar ratio of

match to the spatial stream and the combined spatial and temporal streams. Sim-

ilar to the identity model analysis above, all of the ROIs fall along the same slope

(Figure 4.12), suggesting that they have a similar ratio of match to the expression

spatial stream and the combined expression spatial and temporal streams as well.

To statistically test if the combined static and temporal tB correlations were greater

than the static stream tB correlations for the lateral regions, a Wilcoxon signed-rank

test was run. The combined static and temporal stream DCNN model showed

significantly greater correlations with the lateral regions than the spatial stream

DCNN model alone (p < 0.01).
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FIGURE 4.11: Variation across ROIs for identity model streams. A:
Scatter plot comparing correlation values from the identity spatial
stream and combined spatial and temporal streams using semi-partial
Kendall tB matched on ROI per subject (n=19 subjects). For each
ROI, the right and left hemispheres were included as individual data

points.
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FIGURE 4.12: Variation across ROIs for expression model streams. A:
Scatter plot comparing correlation values from the expression spa-
tial stream and combined spatial and temporal streams using semi-
partial Kendall tB matched on ROI per subject (n=19 subjects). For
each ROI, the right and left hemispheres were included as individual

data points.
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4.4 Discussion

Originally, the distinction between the ventral and lateral temporal pathways in

face perception was thought to be due to discrete neural mechanisms for process-

ing invariant aspects of the face like face identity recognition, and for processing

changeable aspects of the face like facial expression recognition. However, recent

evidence had suggested something else: face identity recognition and facial ex-

pression recognition rely on shared neural mechanisms (Duchaine and Yovel, 2015;

Bernstein and Yovel, 2015; Li, Richardson, and Ghuman, 2019; Schwartz et al.,

2023b). In previous work, this finding was mostly restricted to static features due

to evaluating static images of faces rather than dynamic faces. Thus, the first goal

of this study was to determine if integrated representations of face identity and fa-

cial expression occur not only when processing static elements of face perception,

but dynamic elements as well.

Since we used both a two-stream DCNN model trained for identity recognition

and a two-stream DCNN model trained for expression recognition, the contribu-

tion of the static streams in isolation was evaluated first to see if the findings in

Chapter 3 replicate when using a different neuroimaging modality. This was found

to be the case: both identity and expression static stream DCNN models were able

to explain neural responses in ventral and lateral regions. There was no interac-

tion between the DCNN model type and the neural pathway, indicating that each

model did not specifically correlate more strongly with a different pathway. Dif-

fering from what was found in Chapter 3, the identity spatial DCNN model did

not outperform the expression stream DCNN model overall. This could be due

to a variety of reasons. For instance, it may be due to a feature of the databases
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or the change in neuroimaging modality from iEEG to fMRI. Importantly, this did

not alter the interpretation of the results in terms of the relative contribution for

the models for both sets of regions.

Next, to test if this phenomenon extended to dynamic attributes of face pro-

cessing, the analysis was repeated using the temporal stream of both identity and

expression models. We found that representations of identity and expression co-

existing within the same regions occurred when processing face dynamics with

both identity and expression temporal stream DCNN models being able to explain

neural responses in ventral and lateral regions. Numerically, the identity model

outperformed the expression model. However, further tests are needed to deter-

mine whether the difference is significant. Given the fact that the temporal stream

for the expression model was only partially trained, this may be why.

Since we found that shared mechanisms for face identity and facial expression

held true for dynamic faces, what could be an alternative dimension that may be

able to explain the ventral and lateral functional roles? Based on a current theory

of social perception, there is one pathway specialized for processing static (e.g.,

form) information, and another pathway specialized for processing both static and

dynamic (e.g., velocity) information (Pitcher and Ungerleider, 2021). Static infor-

mation is represented in regions in the ventral temporal cortex, while both static

and dynamic information are represented in the lateral temporal cortex where both

types of information can be integrated for social understanding. If this is the case,

features optimized to recognize static information should better capture the simi-

larity between neural responses in ventral regions, and features optimized to rec-

ognize static and dynamic information should better capture responses in lateral

regions. Thus, the current theory would predict that RDMs from a model trained
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to recognize identities from spatial inputs should correlate with RDMs from the

ventral regions, while RDMs from both a model trained to recognize identities

from spatial inputs as well as a model trained to recognize identity from optic flow

estimation or motion inputs should correlate with RDMs from the lateral brain re-

gions. However, this was not what was found: both ventral and lateral regions

had comparable Kendall’s tB values with each type of model, and were similarly

explained by a combination of static and dynamic information.

The results presented here cannot be attributed to noise that could hide poten-

tial differences between ventral and lateral temporal face-selective ROIs. In fact,

the correlation values obtained between the neural regions and the models would

not be considered low, are on par with previous studies (Yamins et al., 2013). As an

additional check for noise and consistency within a subject’s neural data, Kendall’s

tB was calculated comparing subject run pairs with randomly shuffled RDMs. Fig-

ure 4.5 demonstrated that for each ROI the mean correlation for real data RDMs

was higher than the shuffled data RDMs. The BIC analysis also showed strong

support for the ventral and lateral ROIs to be modeled together with a single slope

to account for the relative contribution of either static or static and dynamic infor-

mation combined. It was also important to control for shared variance between the

RDMs obtained from the spatial and temporal models when combining the two to

get a cumulative value for combined static and dynamic information. The analysis

used semi-partial correlations by computing the correlation of the residuals for the

temporal stream model while controlling for the spatial stream model to account

for redundant information that may be present in both spatial and temporal stream

representations.
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Face perception has typically been regarded as a specialized process that dif-

fers from all other object recognition, but it might have more in common with the

mechanisms involved in perceiving bodies and actions than has been previously

considered. Both macaques and humans have adjacent face-selective and body-

selective brain areas (Pinsk et al., 2009; Arcaro et al., 2020), suggesting commonal-

ities in the organization. Furthermore, a similar study done by the lab (Karimi et

al., 2023) has been using fMRI data and two-stream video models to evaluate static

and dynamic information in ventral and lateral regions for bodies and actions. In-

terestingly, the findings fit with the results reported here, also suggesting similar

amounts of spatial and dynamic information for ventral and lateral regions. It is

intriguing to see that this phenomenon seems to generalize for both action and

face perception. Thus, face and body perception may not only be similar in terms

of their large-scale architecture, but also in terms of how the static and dynamic

information they both encode are organized.

There are a few documented cases in patient studies that have indicated motion-

related deficits from ventral lesions (Gilaie-Dotan et al., 2013). These deficits, how-

ever, appear not to be crucial for processing biological motion, but rather pertain to

the structure of the moving stimuli (Gilaie-Dotan et al., 2015). Conversely, there are

also many cases where patients have ventral lesions and face recognition deficits,

but do not have impairments for motion. Although, motion perception seemed

to be spared in many of these patient cases, it would be unlikely that motion in-

formation is in the ventral regions accidentally. If not an accidental byproduct,

what is the functional role of motion information in the ventral pathway? Work in
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object segmentation, and understanding two dimensional (2D) and three dimen-

sional (3D) layouts may be able to provide useful clues. Shape is typically consid-

ered an important static feature. However, it it difficult to perceive an object’s 3D

shape from a static image. Behavioral work has shown that people need to have

seen a motion sequence in order to perceive the 3D shape of an object from its 2D

image (Sinha and Poggio, 1996; Caudek and Rubin, 2001). Humans perceive struc-

ture from motion, a phenomena that has been well documented in work related to

face and body perception as well (O’Toole, Roark, and Abdi, 2002; O’Toole et al.,

2011). It may be possible that motion information is used in ventral temporal re-

gions in order to extract necessary shape attributes, and contributes to learning the

structure of visual stimuli. Predictive coding strategies related to learning spatio-

temporal relationships may also play a role for learning invariance in recognition.

Exploring the role of dynamic features in the ventral pathway will be an important

direction to evaluate in future research.
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Chapter 5

Discussion
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5.1 Summary of findings

The aims of this dissertation were to 1) determine if it is possible to acquire face

identity information without discarding facial expression information and vice

versa, 2) evaluate the relative contributions of both identity and expression in-

formation in face-selective brain regions for static face stimuli and 3) extend this to

dynamic faces, investigating whether and where both static and dynamic features

are encoded in the ventral and lateral temporal neural pathways. A combination

of neuroimaging techniques and deep learning methods allowed a nuanced as-

sessment of the functional roles of the ventral and lateral temporal pathways in

the brain, specifically within the realm of face perception. In Chapter 2, a proof-

of-concept experiment was described to demonstrate that it is possible to learn

identity and expression information together, without needing to discard informa-

tion for one. Computational models were developed that can undermine the tra-

ditional view of abstraction in psychology (Posner, 1970), and within the scope of

neuroscience research, implemented a novel techniques to further analyze RDMs

using semi-partial correlations. In Chapter 3, the computational models were ap-

plied to neural data, and demonstrated that within face-selective regions of both

the ventral and lateral temporal pathways, there were both face identity and facial

expression information. The iEEG results, thus, argue against the weak explana-

tion of the classical theory of face perception (where only a small amount of in-

formation for either identity or expression is leftover as a by-product). Chapter

4 further showed that integrated representations of identity and expression occur

in dynamic face stimuli as well, and examined the functional roles that may dif-

ferentiate between the ventral and lateral temporal pathways. Using fMRI, neural
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responses were collected while subjects viewed videos of faces constructed from

different identities and expressions. To investigate the representational content of

the responses in the brain, computational models specialized for video tasks were

trained to recognize face identity and compared to the neural data. These mod-

els had the unique property of implementing two streams for visual processing:

a spatial stream and a temporal stream. The optimized streams were then used

to investigate questions related to static and dynamic face processing in the brain.

Unlike what was hypothesized, the results demonstrated that there was a similar

amount of dynamic information represented in both ventral and lateral temporal

face-selective regions.

In the following sections, the implications and limitations of the three studies

are discussed in a broader context. More specifically, the discussion expands on

how they contribute to our understanding of the functional organization of the

brain in relation to vision and social perception. The brain functions as an op-

timized computational system, developing efficient mechanisms that enable our

day-to-day functions. Given this, it is important to understand how the visual sys-

tem develops to function as it does. It will be briefly discussed why we may have

integrated representations in the brain to enable more efficient and accurate pro-

cessing of complex information, and why this may hold true for both spatial and

temporal modalities. The last section discusses how these findings may affect the

way we think of the distinction between the ventral and lateral temporal neural

pathways.
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5.2 For what reason might we have representations of

identity and expression in common brain regions?

Chapter 2 suggests that information about face identity and facial expression is

progressively disentangled from layer to layer within DCNN models. A similar

idea of untangling has been proposed before in object recognition which suggests

that objects are entangled manifolds within a space, and that variations of the ob-

ject are a point on a manifold (DiCarlo and Cox, 2007). This type of perspective is

part of broader research efforts suggesting that information about object category,

along with other properties such as position and aspect ratio, are disentangled

while coexisting in IT representations (Hong et al., 2016). Audition studies have

demonstrated that both speaker identity and speech content can be decoded in

the superior temporal cortex (Formisano et al., 2008; Bonte et al., 2014), indicat-

ing similar phenomena are observed in other cognitive domains. Taken together,

these studies reveal that some sets of complementary tasks — such as recognition

of face identity and facial expression or speaker identity and speech content —

rely on common brain regions, while others — like the recognition of faces and

places — are implemented by distinct neural substrates. It can be speculated that

this pattern of integrated representations might be driven by constraints derived

from computational efficiency (e.g., the number of neurons allocated, the amount

of training input needed). Recent work has begun to investigate these computa-

tional constraints in the field of deep learning and computer science, testing what

are the optimal ways of structuring and sharing representations across multiple

tasks (Zamir et al., 2018). This proposal is broadly related to the concept of a tax-

onomy of tasks (‘Taskonomy’, Zamir et al., 2018, Wang, Tarr, and Wehbe, 2019)
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which describes a structural space to relate tasks to one another. Importantly, this

framework is not limited to the domain of vision but can be applied across various

fields. An interesting future direction would include modeling neural responses

using multi-task networks that learn to recognize both face identity and facial ex-

pression as mentioned in the Discussion section of Chapter 2.

In the context of using machine learning as a tool to model the brain, it has

been shown that object-trained DCNNs can correlate with face regions to a larger

extent than DCNNs trained for identity recognition (Grossman et al., 2019; Chang

et al., 2021). These findings might lead to the explanation that the neural regions

are not partaking in domain-specific processing of categories, but rather, are doing

domain-general processing (Vinken, Konkle, and Livingstone, 2022). However, as

mentioned in the Discussion of Chapter 3, this is not a necessary conclusion given

the results. There is an alternative interpretation according to which these regions

would be expected to be better predicted by the object-trained DCNNs even if neu-

ral processing is domain-specific. In particular, brain regions might be involved in

supporting multiple different face perception tasks (e.g., recognition of face iden-

tity, face viewpoint, facial expressions, age, eye gaze). A model that is trained to

do only one of these tasks would only capture part of the information encoded by

these regions, and therefore, its performance at predicting neural responses may

be lacking. By contrast, because non-face objects have a wide variety of features

and shapes, models trained to recognize non-face objects might learn representa-

tions that are sufficiently varied that could be used to perform quite accurately at

multiple different kinds of face tasks. In line with this, Chang et al. (2020) studying

macaque monkeys found that neural networks trained to perform face recognition

did not predict neural responses to faces well. Instead, their work suggested that
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generative models of faces best explain neural responses. They proposed that face-

selective cells in macaque monkeys have high-level information associated with

different face features and that these features are filtered out in DCNNs trained

to specifically perform face identification. However, generative face models learn

latent representations that do not necessarily relate distinctly to identity. Thus,

the generative models would better incorporate explained variance, and thereby

predict with higher accuracy due to the models having learned additional infor-

mation that is not directly related to face identity. This finding is in concordance

with the hypothesis that identity and expression are processed by shared mecha-

nisms, in line with the computational results observed in Chapter 2. Importantly,

face processing in the ventral stream may not follow the traditional model of ab-

straction that sheds non-target information (Posner, 1970), but rather it may build

representations of multiple different aspects of the face.

This research demonstrated that spontaneous learning of expression represen-

tations occur when DCNN models are trained to label identity (and vice versa).

Importantly, the integrated representations found in both DCNN models were able

to correlate with sets of regions previously thought to encode separate information

related to faces. As mentioned earlier, similar phenomena related to the Integrated

Representation of Identity and Expression Hypothesis (IRIEH, described in Chap-

ter 2) might be in play in other cognitive areas. Moving forward, there are various

ways this can be extended to other modalities and social processes. More broadly,

one could speculate that implementation of more integrated computations might

be a large-scale principle of organization of human cortex, determining which sets

of cognitive processes are represented within the same neural systems. As such,

disentanglement of shared mechanisms could apply to cases as diverse as word
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recognition and speaker recognition in speech processing, syntax and semantics in

language, and the inference of mental states and traits in social cognition.

5.3 Which dimensions may serve to define the func-

tional roles of the ventral temporal and lateral tem-

poral pathways?

If ventral and lateral temporal regions are not specifically specialized for the recog-

nition of identity and expression respectively, but rather consist of integrated rep-

resentations for related tasks, do these two pathways serve the same functional

role? Otherwise, what are the functional differences between them? Studies com-

bining TMS and fMRI have suggested that the pSTS receives inputs from both

motion-responsive regions and form-encoding regions (Pitcher, Duchaine, and Walsh,

2014). Furthermore, the pSTS is also involved in audiovisual integration (Nath and

Beauchamp, 2012; Anzellotti and Caramazza, 2017; Rennig and Beauchamp, 2021),

which is reasonable given that audition information also has a temporal compo-

nent. Based on the evidence, lateral regions along the STS might integrate static vi-

sual information, dynamic visual information, and auditory information, whereas

regions in the ventral pathway are specialized for shape information (Duchaine

and Yovel, 2015). Chapter 4 aimed to elucidate the functional role of these two

pathways.

Curiously, the findings in Chapter 4 did not support a differentiation of static

and dynamic information in the ventral temporal and lateral temporal pathways

when processing the neural representations of dynamic face stimuli. In concor-

dance with this, recent work from Karimi et al. (2023) has also shown this to be
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the case when processing videos of bodies performing actions. Therefore, it is im-

portant to investigate why there could be motion information in ventral temporal

regions, and what may be the differentiating feature between ventral and lateral

temporal pathways if not dynamic processing.

As mentioned in the Discussion of Chapter 4, research in object segmentation

and the way humans comprehend 2D and 3D layouts might offer valuable insights.

Shape is generally thought of as a static feature, yet it is challenging to perceive an

object’s 3D shape from a static image alone. Structure from motion is the process of

estimating 3D structure from 2D images. In fact, people typically need to observe

a motion sequence to discern the 3D shape of an object from its 2D representa-

tion (Sinha and Poggio, 1996). This fits with studies showing that effects of face

familiarity increase with motion (O’Toole, Roark, and Abdi, 2002). Thus, motion

information might be represented in the ventral temporal regions to extract crucial

shape features and aid in learning the structure of visual stimuli.

5.4 Relevance to other research areas

The findings here may be able to be applied to clinical areas as well, particularly

for understanding impairments in prosopagnosia and potentially in addressing

deficits in face and biological motion perception found in some individuals with

autism spectrum disorder. In a different direction, this work is valuable for ex-

ploring how artificial intelligence (AI) can enhance our understanding of the hu-

man brain. Similarly, insights into vision and the brain can also help to inform

advancements in AI, allowing AI to potentially better emulate human cognitive

functioning.
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5.5 Conclusion

These approaches enabled a more detailed investigation of the functional roles of

the ventral and lateral temporal pathways in the brain, particularly in the context

of face-specificity by evaluating the representational content in face-selective brain

regions. The research here provided essential groundwork for understanding per-

ceptual representations and their organization in the brain, potentially elucidating

how the brain effectively perceives faces and other aspects of the social world.
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Appendix A

Chapter 2 Supplementary Materials
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FIGURE A.1: Identity, expression, and scene DCNN confusion ma-
trices. A) The confusion matrix of the identity-trained DCNN based
on identity classification performance on the identity validation test
set. B) The confusion matrix of the expression-trained DCNN based
on expression classification performance on the expression validation
test set. C) The confusion matrix of the scene-trained DCNN based
on scene classification performance on the scene validation test set.
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