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Abstract  

Intersectionality theory garners increased attention from researchers interested in 

understanding the many ways in which oppression impacts lived experiences. In any given 

present and evolving context, oppression leads to advantages for some social positions and 

disadvantages for others (Collins & Bilge, 2016; Crenshaw, 1989). Quantitative researchers have 

attempted to adapt statistical modeling methods to reflect intersectional identities as a proxy for 

oppression and advantage in their models (Bauer et al., 2021; Schudde, 2018). This dissertation 

expanded on existing knowledge about the statistical limitations of three methods of modeling 

intersectional analyses on a continuous outcome variable: 1) Interaction, 2) Categorical, and 3) 

MAIDHA (multilevel analysis of individual heterogeneity and individual accuracy).  

Using a Monte Carlo simulation, four demographic data characteristics were manipulated 

to explore the three models under different scenarios which manipulated: a) the number of 

demographic categories (and thus intersections); b) the proportion of the sample represented by 

each demographic group; c) the within-intersectional-group variance in the outcome variable of 

interest; d) overall sample size. Each scenario and model were replicated 1000 times; results 

summarized performance of the intersection estimates and effect detection using the outcomes: 

bias, accuracy, power, type 1 error, and confidence interval coverage. 

The fundamental questions that guided this dissertation were: 
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1. What are the statistical advantages and disadvantages of each model under different 

demographic data characteristics?  

2. In what ways does each model perform differently from one another under each 

demographic data characteristic condition?  

The findings of this dissertation contribute to intersectional quantitative research methods 

by providing greater insight into how each model performs under more complex data scenarios.  
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Chapter 1: Introduction 

Intersectionality theory garners increased attention from researchers interested in 

understanding the many ways in which oppression impacts lived experiences. An individual’s 

social position is formed through the intersection of each aspect of their identity. In any given 

present and evolving context, oppression leads to advantages for some social positions and 

disadvantages for others (Collins & Bilge, 2016; Crenshaw, 1989). Quantitative researchers have 

attempted to adapt statistical modeling methods to reflect intersectional identities as a proxy for 

oppression and advantage in their models (Bauer et al., 2021; Schudde, 2018). Applying 

quantitative approaches to incorporate intersectional identities has brought to light formally 

unseen disparities (e.g., Dillway & Broman, 2001; Hinze et al., 2012; López et al., 2018).  

 Although this work demonstrates the importance of employing an intersectional approach to 

quantitative methods when exploring the influence of oppression and advantage on lived 

experience, researchers’ understanding of how the choice of a quantitative modeling approach 

influences one’s ability to account for intersectionality is still emerging. In addition, this is 

further complicated because education researchers often work with data that has complex 

demographic characteristics, such as uneven proportions within categories and varying amounts 

of within-group variance. This dissertation simulated clustered educational datasets to examine 

how three methods of modeling intersectional identities perform under various demographic data 

scenarios. In this simulation study, I varied the number of demographic categories, the 

proportion of observations within each identity indicator, the within-intersectional group 

variance, and the overall sample size to create realistic scenarios education researchers encounter 

when working with demographic data. Analyses then examined the degree to which each of three 
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methods of modeling intersectional analyses functioned similarly or differently under these 

conditions.  

Theoretical Orientation 

Intersectionality  

Intersectionality theory posits that each individual's unique intersection of identity is 

integral to understanding their lived experience. Intersectionality theory also understands that 

social positions interact with oppression to influence an individual’s lived experience (Bowleg, 

2012; Collins, 2007; Crenshaw, 1989). Intersectional thinking arose from analyses that centered 

Black women's experiences (Collins, 1986; Combahee River Collective, 1986; Crenshaw, 1989). 

Since these initial (re)orientations, intersectional scholarship has extended to a wide range of 

social positions to consider the intersections of class, race, gender, sexuality, and other 

demographic characteristics (Collins, 2015).  

Intersectional scholars use metaphors to help describe the relationships between identities 

and the formation of social positions. For example, Crenshaw (1989) uses the metaphor of a 

traffic intersection where each road is an axis of oppression. Other scholars use the metaphor of 

interlocking cables to emphasize that different aspects of one’s identity cannot be pulled apart 

when studying experiences with oppression and advantage (Collins, 1991; CRC [Combahee 

River Collective], 1983) or borderlands where the salience of identity may change based on the 

social context in which one is currently located (Anzaldúa, 1987). The metaphor a researcher 

adopts influences the development of their research questions, the method they use to tell the 

story of their data and the subsequent interpretation and explanation of results.  

Based on this theoretical orientation, I explored three facets of the formation and 

maintenance of social positions: inseparability, mutual constitution, and social context. I used 
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each of these facets as a lens to consider the fit of a given method to the intersectional 

framework.  

1) Inseparability: Intersectional theorists assume that identities are inseparable; a Black 

woman cannot be a woman without also being Black. Both identities influence their 

experience (Crenshaw, 1989, 1991; May, 2015).  

2) Mutual Constitution: Identities are mutually constituted; each identity category 

reinforces the other(s) and is interlaced in multiple systems of oppression (May, 2015; 

Shields, 2008).  

3) Social Context: The social context surrounding an individual will interact with the 

salience of their identity and impact how oppression manifests to influence their lived 

experience (Bonilla-Silva, 1997; Collins, 1986; Collins & Bilge, 2016).  

Social positions are considered proxies for how forces of oppression advantage some groups 

while simultaneously disadvantaging others.  

Intersectionality assumes that racism, homophobia, classism, imperialism, nativism, 

ableism, and other forms of oppression exist (Hancock, 2016). Thus, this research assumed that 

oppression causes differential outcomes between social positions. Collins (2014) defines 

oppression as "any unjust situation where, systematically and over a long period, one group 

denies another group access to the resources of society" (p. 4). While oppression is often 

discussed in terms of its influences on individual identities (e.g., race, sex, age, class), 

considering only one aspect of oppression is termed "single-axis thinking" (Crenshaw, 1989; 

May 2015). From the perspective of intersectionality theory, single-axis thinking is problematic 

because it generalizes the experiences and knowledge of some group members to represent all 
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group members and ignores the intersecting influence other forms of oppression have on lived 

experience.  

Frameworks for Incorporating Intersectionality in Quantitative Methods 

According to Bauer et al. (2021), two of the most influential methodological 

contributions that account for intersectionality in quantitative research come from McCall (2005) 

& Hancock (2007). McCall (2005) explains three main methodological orientations when 

analyzing intersectional identities: intercategorical, intracategorical, and anticategorical. 

Intercategorical intersectionality explores the difference between social positions, such as how 

the experiences of Black women differ from those of white women. Intracategorical research 

investigates the within-group experience of people located within a social position. This 

approach focuses on a particular intersection, such as Black lesbian women, and explores 

variation in lived experiences among members of that social position (e.g., Bowleg, 2008). 

Finally, an anticategorical approach rejects the idea of categorization altogether to explore the 

advantages and disadvantages a person’s experiences without categorizing them into a 

demographic group.  

This research focused on quantitative models applied through an intercategorical 

orientation, where experiences with advantages and disadvantages are compared across each 

social position of interest. Hancock (2007) identifies six key assumptions for conceptualizing 

and using demographic categories within an intersectional paradigm. These assumptions are 

particularly relevant to an intercategorical approach where the researcher examines the 

relationship between categories. These assumptions include the following: 

1. Multiple background categories play a role in examining complex social 

problems and processes. 
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2. Categories should be equally attended to in research but should not always be 

assumed to have the same relationship. 

3. These categories are constructions of dynamic individual and institutional factors.  

4. Each category contains within-group variation. 

5. Categories should be examined at multiple levels of analysis.  

6. Attention is necessary regarding both empirical and theoretical aspects of the 

research question.  

Together, McCall (2005) and Hancock (2007) guide the field on how one might apply the theory 

of intersectionality to quantitative methods. These foundations have clear implications for how 

quantitative models are applied when accounting for intersectional identities.  

Re-Orientation of Quantitative Models 

When applying an intersectional lens to analyses, quantitative researchers must ensure the 

model they select aligns with intersectionality theory. Alignment is challenging, however, 

because these models typically treat demographic variables as separate, and traditional 

generalized linear models fail to represent intersectional social positions in a manner that is 

consistent with intersectionality theory. For these models, dummy coding is generally used to 

obtain estimates for each identity indicator within a single-axis demographic category (Choo & 

Ferree, 2010; Rhodes, 2010; Schudde, 2018). For example, a racial variable with four identity 

indicators may be coded into three binary dummy variables (Black, Asian, Hispanic), with white 

students as a reference and coded as 0 across each variable. The compound effect of oppression 

and advantage is then estimated by aggregating each identity indicator estimate. Researchers 

may also use interaction terms where they multiply separate demographic identity indicator 

variables, such as Black*female, to attempt to account for the intersection of identity. The 
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interaction term is interpreted as the combined effect of two identities after accounting for 

variance “explained” by each separate identity variable. Intersectionality theorists, however, do 

not conceive of oppression as the linear composite of separate axes. Instead, oppression and 

advantage are uniquely experienced as a result of a person’s intersectional social position. 

Traditional modeling approaches do not reflect the complex and compounding nature of 

oppression and advantage associated with intersectional identities; thus, they are inconsistent 

with intersectionality theory (Bauer et al., 2021; Bowleg, 2008; Misra et al., 2021; Schudde, 

2018).  

Description of the Problem 

 Over the past decade, the incorporation of intersectionality theory into quantitative 

research has gained traction; researchers are exploring ways to alter how demographic categories 

are incorporated into their models to reflect intersectionality. For example, many researchers 

center interaction terms or recode their data to include social position variables (e.g., Covarrubias 

et al., 2018; Jang, 2019; López et al., 2018; Nissen et al., 2021). Approaches such as these enable 

quantitative researchers to better align their models with intersectional thinking. However, as 

researchers fit different models to account for intersectional identities in their analyses, they 

rarely discuss the limitations of their methods (Bauer et al., 2021). The various ways of 

manipulating variables to represent intersectional identity constrain statistical models. For 

example, a greater number of interaction terms may lead to a loss of statistical power, more 

comparisons may increase type 1 error, and uneven distributions of participants between two (or 

more) identity categories may bias the coefficient and error estimates. However, most papers that 

employ a quantitative approach to intersectionality have not considered the influence model 
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selection has on their findings or have not provided detail on the extent to which their model is 

appropriate for their sample.  

 One exception to this observation is Mahendran et al. (2022b), who conducted a 

simulation study to compare the accuracy with which different methods of modeling 

intersectional analyses explained variability in continuous outcomes. Examining the influence of 

model selection through a simulation study is informative for comparing methods given different 

data scenarios. Mahendran et al. (2022b) generated data simulations at three different sample 

sizes to explore the accuracy of each model for estimating each intersectional identity’s relation 

to a continuous outcome variable. Overall, Mahendran et al. (2022b) found that when sample 

sizes were medium to large (>10,000 participants), the models explored provided accurate 

predictions for the outcome variables. Mahendran et al. (2022a) replicated the simulation 

procedures with models that predict binary outcomes, which also yielded similar findings.  

 While the simulation studies conducted by Mahendran et al. (2022a, 2022b) provided 

insight into the influence sample size has on prediction accuracy, additional research is needed to 

understand each model's performance under more complex data scenarios. Mahendran and 

colleagues investigated only one condition of sample size distribution and did not manipulate 

within-group variability. Most demographic categories they examined had relatively even sample 

sizes except for their racial category, where they simulated 80% of the participants into the 

"white" category and the other 20%into the "people of color" category. Their study focused only 

on single-level data, whereas educational datasets are often complex with clustered structures 

where students are nested in schools. Each of these factors could impact the accuracy of the 

models. Furthermore, these factors may change other characteristics of the models (such as 

power or type 1 error), which Mahendran et al. (2022b) did not investigate.  
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Present Study 

This dissertation expanded on existing knowledge about the statistical limitations of three 

methods of modeling intersectional analyses on a continuous outcome variable. The statistical 

methods explored in this dissertation focused on what McCall (2005) coins "intercategorical 

complexity," where the researchers adopt the existing demographic categories to examine 

inequality among demographic groups. This research compares three methods of modeling 

intersectional analyses that can be used to explain a continuous outcome variable: 1) Interaction, 

2) Categorical, and 3) MAIDHA (multilevel analysis of individual heterogeneity and individual 

accuracy).  

1. Interaction Model: 

Interaction terms are created by multiplying two (or more) binary or otherwise coded 

demographic variables (Hinze et al., 2012). These interaction terms are often interpreted as 

moderated multiple regression, where one variable moderates the other's relation to the outcome. 

Generally, interactions are not tested in statistics unless there is a significant relationship 

between each independent variable and the outcome variable. However, researchers working 

under an intersectional framework often include all interactions, regardless of the statistical 

significance (i.e., p-values) of the main effect covariates (Bowleg, 2008; Scott & Siltanen, 2017). 

2. Categorical Model: 

Each participant is categorized into a categorical variable representing the intersection of 

their multiple axes of identity. This method handles demographic variables differently than the 

interaction model by creating or recoding them a priori. For example, López et al. (2018) created 

categorical variables based on race, gender identity, and SES (e.g., black-female-high SES, 
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where respondents that fall into those three categories are coded as "1".) Then, each category is 

compared to a reference category (or value, depending on the coding strategy).  

3. MAIDHA (Multilevel Analysis of Individual Heterogeneity and Discriminatory Accuracy) 

In this method, intersectional social strata are created based on intersectional identities. The 

strata are created similarly to the intersectional variables in the categorical approach by 

combining multiple identity variables. However, the intersectional strata are used as a clustering 

variable (level 2) in a multilevel model instead of serving as individual predictors. In this 

method, individuals (level 1) are clustered within their intersectional social strata identities (level 

2) (Evans et al., 2018; Merlo, 2018).  

Research Questions 

 This dissertation explored the utility of three methods of modeling intersectional analyses 

under different demographic data characteristics when modeling a continuous outcome variable 

in a clustered context.  

The fundamental questions that guided this dissertation were: 

3. What are the statistical advantages and disadvantages of each model under different 

demographic data characteristics?  

4. In what ways does each model perform differently from one another under each 

demographic data characteristic condition?  

To answer these research questions, I simulated datasets to understand how four 

demographic characteristics influence the technical quality of the estimates provided by each 

model. The characteristics of focus include a) the number of demographic categories (and thus 

intersections); b) the proportion of the sample represented by each demographic group; c) the 

within-intersectional-group variance in the outcome variable of interest; d) overall sample size. 
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Across these four characteristics, I built 54 data characteristic scenarios that were applied to each 

of the three methods, yielding 162 combinations of method and scenario. For each of the 162 

combinations of scenario and method, I produced 1000 replications. I used the 1000 replications 

to summarize, under each combination of scenario and model, the performance of the 

intersections using the outcomes: bias, accuracy, power, type 1 error, and confidence interval 

coverage. For each outcome, I had values in which I flagged extreme estimates. I synthesized the 

results and performed a descriptive analysis to determine patterns across scenarios and models. 

The findings of this dissertation contribute to intersectional quantitative research methods by 

providing greater insight into how each model performs under more complex data scenarios.  

Significance 

As the use of quantitative methods in education to examine relationships between 

intersectional identities and outcomes of interest expands, researchers are deepening their 

understanding of the socio-historical forces of racism and oppression in education (e.g., 

Covarrubias et al., 2018; Jang, 2019; López et al., 2018; Nissen et al., 2021). However, the 

statistical models typically used by educational researchers today were not designed with 

intersectionality in mind (Bowleg, 2008). Recognizing the factors specific to intersectionality 

theory that impact the technical characteristics of results produced by various statistical modeling 

techniques is needed to help inform the advancement of social justice goals in education. 

This dissertation identified the advantages and disadvantages of three methods of 

modeling intersectional analyses. This dissertation revealed the ways and settings in which each 

method is beneficial for unveiling disparities between social positions. This research holds the 

potential to advance intersectional applications in quantitative research by providing an analysis 

that compares three models across several conditions specific to demographic data. By 
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comparing three different models, I provided researchers with a deeper understanding of how the 

choice of model aligns with the complexity of their intersectional data structure and, thus, the 

extent to which they will be able to answer their research question(s) with a given method.  
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Chapter 2: Theoretical Orientation & Literature Review 

The main focus of this dissertation was to explore how the complex structure of 

demographic data in education influences three methods of modeling intersectional analyses. 

This literature review explores intersectionality in quantitative modeling to provide the 

appropriate background knowledge for this research topic. First, I detail what intersectionality 

theory is and how it is applied in my research. I then explore the theoretical foundations of 

incorporating intersectionality in quantitative research. Both of these pieces set the foundations 

for how we can further explore the capabilities of intersectionality in quantitative methods. I then 

examine what is currently known about each method’s statistical limitations and conceptual fit 

with intersectionality. While the main focus of this research is on advancing understanding of the 

utility different methods have for examining statistical relationships through an intersectional 

lens, it is not possible to explore each model without first exploring its conceptual fit with 

intersectionality. While something may be statistically sound, it does not necessarily translate to 

a conceptual fit with intersectional theory. Therefore, both the conceptual and methodological 

components of each analysis approach are necessary to consider in this review. This literature 

review sets the foundations to explore how the complexity of demographic data in educational 

contexts influences the estimates provided by each method of modeling through the lens of 

intersectionality. 

Intersectionality  

The history of intersectionality does not fit a neat timeline and arguably should not be 

linearly traced (see Nash, 2019). Intersectional thinking stems from Black women whose 

experiences were not represented in feminist and civil rights movements (Collins & Bilge, 2016; 

Collins, 2019). For example, at the 1851 women’s convention, Sojourner Truth argued that as a 
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Black woman who did not fall into the traditional roles of femininity, she felt that she was not 

fully included in feminist movements; she famously declared, "Ain’t I women?" (see hooks, 

2015). With this declaration, Truth called attention to how women's movements fail to account 

for and represent the experiences and needs of Black women (Crenshaw, 1989a). Black feminist, 

Julia Cooper, is another example of an influential 19th-century voice who advocated for Black 

women. Cooper (1982) chastised those who spoke up against racism but failed to account for 

Black women’s unique experiences with oppression. She argued, "Only the Black woman can 

say, when and where I enter … then and there the whole Negro race enters with me" (Cooper, 

1982, p 31). Cooper indicates that uplifting Black women supports the entire civil rights 

movement; however, the experiences of Black women are often left behind because they face 

oppression on the basis of both race and gender (Crenshaw, 1989a). 

Intersectional thinking emerged through activism in the latter half of the 20th century; 

women of color conversed with civil rights activists through Black Power, Chicano Liberation, 

Red Power, and Asian American movements. Collins & Bilge (2016) provide examples of core 

ideas of intersectional thinking in several texts, such as Toni Cade Bambara (1970), who points 

out that race, class, and gender need simultaneous attention for Black women to have a chance of 

being liberated from oppression. In addition, Frances M. Beal (1970) interrogates Black women's 

experiences through the interlocking systems of racism, capitalism, and patriarchy. As a 

collective community of Black feminists, the Combahee River Collective (CRC) developed 

intersectional critiques of social movements. The CRC published “The Combahee River 

Collective Statement” (CRC (Combahee River Collective), 1983); as a Black feminist statement, 

it highlights a structure of interlocking oppressions similar to Beal’s expression while expanding 

to consider homophobia and heterosexism (Collins & Bilge, 2016). Collins & Bilge (2016) 
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explain that the CRC statement is the first document to frame an intersectional lens of identity as 

a tool for resistance. The ideas and liberatory goals from previous generations of women of color 

have shaped the metaphor today that is known as intersectionality. 

Intersectionality as a Metaphor 

A metaphor is a representative literary device that uses spacial relations to provide a 

mental map of a complex idea, such as human experiences and social interaction. Metaphors 

provide analytical value that aids in understanding how social structures and power relations are 

produced; they offer new angles to envision social relations (Collins, 2019). Intersectional 

theorists use metaphors to describe how multiple forms of oppression interact (Collins, 2019, 

1991). In this section, I describe several prominent metaphors to demonstrate intersectional 

ideas: interlocking systems, borderlands, and traffic intersections (Anzaldúa, 1987; Collins, 

1991; CRC (Combahee River Collective), 1983; Crenshaw, 1989). Each metaphor provides a 

visual explanation of how intersectional identities lead to unique forms of oppression. 

 In their 1977 statement, the Combahee River Collective introduced the language of 

“interlocking” to describe how multiple forms of oppression interact with the experiences of 

Black women struggling with racial, heterosexual, gender, and class oppression (CRC 

(Combahee River Collective), 1983). Through the term “interlocking,” the CRC explains how 

joint oppression systems cannot be pulled apart. In 1991, Patricia Hill Collins drew on 

interlocking as a metaphor to discuss the complexity of embedded power relations (Collins, 

1991). The imagery Collins (1991) describes of interlocking systems complements her argument 

that multiple memberships in privileged or subordinated identity groups does not mean that 

forms of oppression are similar or interchangeable. Thus, the oppressive system of racism that 
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disadvantages Black women due to their racialized identity cannot be separated from the system 

of sexism disadvantaging them due to gender identity.  

Gloria Anzaldúa (1987), in her book Borderlands/La Frontera: The New Mestiza, 

introduced the metaphor of borderlands to express intersectional thinking from a Chicana/a 

perspective. Borderlands are the spaces near and between borders where multiple physical areas 

interact. These physical areas contain different ideas, cultures, and systems of power. 

Borderlands are a meeting place that reflects complex hierarchical power relations (Anzaldúa, 

1987). Anzaldúa (1978) uses borderlands as a spatial metaphor to explore identity without 

categorizing it while still recognizing that power and oppression are shaped by identity. While 

anticategorical, this spacial identity still takes different forms as each individual moves between 

contexts.  

In 1989 Kimberle Crenshaw introduced the term intersectionality by drawing on a traffic 

intersection metaphor. The language of intersectionality was quickly adopted as a name to 

capture the intersectional thinking that had been present within activism and scholarship for 

decades. As a term, intersectionality took hold and was adopted broadly to provide a name and 

frame for theorizing social positions and experiences with oppression and advantage associated 

with those positions. In her introduction of intersectionality, Crenshaw (1989) describes the 

relationship between identity and oppression as a traffic intersection: 

Discrimination, like traffic through an intersection, may flow in one direction, and it may 

flow in another. If an accident happens in an intersection, it can be caused by cars 

traveling from any number of directions and, sometimes, from all of them. (Crenshaw, 

1989, p 149) 
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The traffic intersection metaphor demonstrates what is lost by only considering one axis of 

oppression. That is, if we limit the focus to women or people membered Black’s experiences, we 

miss out on Black women in the intersection who are experiencing oppression from multiple 

axes.  

Some theorists critique the traffic intersection metaphor's simplicity and lack of context 

(Carastathis, 2016; Garry, 2011). Carastathis (2016) extends the interpretation of the traffic 

intersection to consider an accident where no driver claims fault. In this interpretation, 

Carastathis (2016) explains that we cannot track oppression to a single source; we cannot 

determine when oppression is due to sexism versus racism (or other forms) because it is often 

due to the collision of both forms. Similarly, Garry (2011) adds a roundabout to the metaphor to 

capture the complexity of intersectionality. The roundabout helps to paint the picture of how 

axes of oppression blend and represent experiences from a mixture of identities as a driver 

changes locations within the roundabout. Conceptualizing intersectionality as a metaphor--the 

intersection of roads and vehicles, interlocking identities, or the fuzzy region forming a border--

conveys the complexity of identity and oppression experienced by an individual in a given 

context.  

Intersectionality as Heuristic 

An influential heuristic shifts perspectives and research practices. Collins (2019) explains 

that as a heuristic, intersectionality provides a set of assumptions and rules of thumb for 

researchers. As a heuristic, intersectionality provides a tool for exploring intersectional social 

problems and designing research studies. May (2015) explains intersectionality “accentuates its 

problem-solving capacity, one that is contextual, concerned with eradicating inequity, oriented 

toward unrecognized knowers and overlooked forms of meaning, attentive to experience as a 
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fund of knowledge, and interrogative (focused on asking questions, incrementally and 

continuously),” (p 19). Intersectionality can restructure how we ask research questions, design 

methods, and analyze data to better align with the intersection of groups.  

The metaphor choice shapes the way intersectionality is understood. The heuristic builds 

off the metaphor to suggest practical ways to execute research projects. For example, the 

metaphorical use of an accident at a traffic intersection (Carastathis, 2016; Crenshaw, 1989) may 

lead to an interaction model choice where the model multiplies separate components to represent 

the cumulative impact of forces of oppression as two cars collide. As a heuristic, the metaphor of 

automobiles colliding treats categories as separate (i.e., the individual roads leading to the 

intersection) and then investigates them in a combined form. They are multiplied instead of 

added together because the specific source of oppression distributes itself unevenly (i.e., a car 

from one road may have been driving faster than another). The extension of the traffic 

intersection provided by Garry (2011) with a roundabout intermeshing axes of identities may 

lead a researcher to choose a method where there is no separation of the demographic identity 

variables because the roundabout means that we cannot attribute the cause of the crash to one 

axis of oppression. Therefore, it aligns with the idea that the axes of oppression are blended to 

create what Garry (2011) calls a “distinct mixture,” where entirely new variables are created to 

represent membership in multiple identity categories. Finally, the interlocking systems metaphor 

( CRC (Combahee River Collective), 1983; Collins, 1991) may lead to an analysis that 

investigates oppression at multiple levels. Each of these metaphors will guide a researcher to 

make modeling decisions and handle quantitative variables differently based on how they apply 

the heuristic of intersectionality.  
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Intersectionality as a Paradigm  

 The use of intersectionality as a heuristic by a growing body of researchers is 

contributing to a paradigm shift within academic fields (Collins, 2019). A paradigm shift occurs 

when a field reorganizes its research practices. Collins (2019) explains: 

When applied to intersectionality, the concept of a paradigm shift suggests that 

intersectionality convincingly grapples with recognized social problems concerning 

social inequality and the social problems it engenders; that its heuristics provide new 

avenues of investigation for studying social inequality; and that it has attracted a vibrant 

constellation of scholars and practitioners who recognize intersectionality as a form of 

critical inquiry and praxis. This newly formulated, heterogenous community of inquiry 

both resonates with the metaphor of intersectionality as a collective identity and relies on 

heuristic thinking for social problem solving (p. 42).  

Collins (2019) explains that scholars in various fields are switching from a traditional view of 

separate conceptualization of inequality forces to a view that embraces the interconnection of 

multiple axes of power. For example, intersectionality has brought to light a greater complexity 

in what was formally known about disparities in STEM education and thus is shifting the way 

researchers both theorize and study inequality in STEM (e.g., Pearson et al., 2022; Van Dusen et 

al., 2022; Van Dusen & Nissen, 2020; Wilson & Urick, 2022) 

 Intersectionality contributes to paradigm shifts within existing research frames, but it may 

also be emerging as a paradigm in its own right (Collins, 2019). Through continued heuristic 

application, intersectionality changes the way of theorizing and researching entirely within a 

field or subfield of academic study. As a paradigm, Collins (2019) explores the core constructs 

and guiding premises of intersectionality. The provisional core constructs she presents include 1) 
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relationality, 2) power, 3) social inequality, 4) social context, 5) complexity, and 6) social justice 

(Collins, 2019; Collins & Bilge, 2016). 

1. Relationality: There is a relational process that connects categories of identity. Instead of 

distinguishing identity axes (such as race or gender), the focus is on examining their 

interconnection to explore the relations between race and gender. 

2. Power: Power divisions based on categories of identity produce social groups that cannot 

be understood as separate categorical identities. Multiple axes of power lead to 

interlocking identities, which mutually construct a person's experience with power 

systems.  

3. Social Inequality: Power relations produce social inequalities. We assume that these 

social inequalities exist, are produced by experiences with oppression and advantage, and 

are constantly evolving. 

4. Social Context: Social context influences the identities and forms of oppression most at 

play in a given situation and impacts lived experiences and outcomes. Researchers must 

consider the influence of historical, intellectual, and political contexts that influence and 

produce present inequality. 

5. Complexity: Intersectionality is complex; it intertwines themes of power, inequity, 

relationality, and context. Researchers are working under this paradigm to better 

represent the complexity of social structures. This complexity means intersectional 

theorists can never produce a tidy instruction manual or a set of methods that tell others 

how to "apply intersectionality."  

6. Social Justice: Historically, social justice has been central to intersectional thinking. 

While there are different beliefs about how intersectionality handles social justice, many 
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scholars believe that research cannot be intersectional if it does not work toward social 

justice. Meanwhile, many scholarly papers today work to tease out how to apply research 

methods that may not directly engage with social justice. Still, those researchers believe 

this foundational work will produce more applications that directly lead to social justice 

and liberation. 

In addition to core constructs, Collins (2019) also introduces provisional guiding 

premises of the paradigm for practitioners to follow:  

(1) Race, class, gender, and similar systems of power are independent and mutually 

construct one another. 

(2) Intersecting power relations produce complex, interdependent social inequalities of 

race, class, gender, sexuality, nationality, ethnicity, ability, and age.  

(3) The social location of individuals and groups within intersecting power relations 

shapes their experiences within and perspectives on the social world.  

(4) Solving social problems within a given local, regional, national, or global context 

requires intersectional analyses. (p. 44) 

These four guiding premises offer a starting point for understanding shared assumptions under an 

intersectional framework. Collins argues that these premises, coupled with the core constructs, 

are the foundation for an intersectional paradigm. Overall, the metaphors, heuristics, and 

paradigm (shifts) of intersectional thinking serve as practical cognitive architectures. They lead 

us from concepts to strategies and finally onto a framework for using intersectionality in research 

practice. 
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From Social Position to Lived Experience 

Developing Social Positions. I refer to social positions as the intersection of identities, 

such as age, sex, gender, race, ethnicity, or class. I focus on three key ideas to define social 

positions and their relation to lived experiences. First, the identities that create a social position 

are inseparable. Second, the axes of oppression affecting an individual are mutually constituting 

and thus co-construct a lived experience. Third, the tangible and social context shapes an 

individual’s social position. After examining these three facets, I discuss how systems of 

oppression form the lived experience for any given social position.  

Inseparability of Identity. The notion of inseparability of identity is foundational to 

intersectional thinking. Most intersectional metaphors orient themselves around inseparability, 

such as an interlocking system that is incapable of being separated. Although researchers often 

discuss oppression in terms of its influences on individual identities (i.e., racism, sexism, ageism, 

classism), only considering one aspect of oppression functions as "single-axis thinking" 

(Crenshaw, 1989; May, 2015). Separating a Black woman's identity into that of being Black and 

that of being a woman does not adequately represent a Black woman. Her identity as a person 

who is Black intersects with her womanhood to create unique forms of oppression only 

experienced by individuals with similar social positions. When researchers disaggregate identity, 

we miss out on unique experiences at the intersection of multiple axes of identity (and thus forms 

of oppression). 

Single-axis thinking falsely universalizes the experiences and knowledge of some group 

members to represent the experiences, needs, and claims of all group members; this can lead to 

unseen disparities. The wage gap provides a helpful example of how single-axis thinking can 

mislead the reality of wage divides. Women make, on average, $0.82 for every dollar the average 
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man makes. Black individuals make less than non-Hispanic whites; for every dollar a non-

Hispanic white makes, a Black individual earns $0.76. However, these numbers do not paint the 

picture of individuals at the intersection at which women who are Black operate. Focusing only 

on Black women, we see that they earn $0.63 compared to non-Hispanic white men (Kochhar, 

Rakesh, 2023; Wilson & Urick, 2022). Independently investigating wages separated on a single 

axes by gender or race obscures the stark wage differences of multiple intersecting categories.  

In her legal analysis of workplace discrimination cases, Crenshaw (1989) demonstrates 

how Black women fail to receive a judgment in their favor because the cases focus on a single 

axis, such as civil rights or gender discrimination. For example, in DeGraffenreid v General 

Motors, five Black women alleged discrimination, but the courts examined their claim through 

the single-axis lenses of racial discrimination and gender discrimination. They ruled that there 

was no discrimination on account of race and there was no discrimination on account of gender. 

However, the women were experiencing discrimination through their multiple identities as Black 

women. Crenshaw argues that the unique social position of a Black woman experiences greater 

inequality than considering either identity (Black or women) separately.  

Mutually Constitute. Intersectional thinkers often use the language "mutually 

constitute(d)" to recognize that identity categories are not independent of one another. Shields 

(2008) explains that categories of identity reinforce each other. “The formation and maintenance 

of identity categories is a dynamic process in which the individual herself or himself is actively 

engaged. We are not passive “recipients” of an identity position, but “practice” each aspect of 

identity as informed by other identities we claim” (Sheilds, 2008, p. 302).  

May (2015) explains that our identities are interlaced in multiple systems of oppression 

which co-construct the lived experience. Similar lived experiences of individuals grouped in 

https://www.dol.gov/agencies/ofccp/about/data/earnings/race-and-ethnicity
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social positions are due to how oppression interacts with the formation of each aspect of our 

identity. 

Social Context. Multiple levels of context situate an individual by influencing how they 

identify and how others identify them. The identity they are assumed to have influenced their 

experiences with oppression. Within each level of context, the salience of an individual's identity 

may shift. Each characteristic of someone's identity will influence their experiences, but at some 

levels, one identity may seem more prominent than the other one it co-constructs. Bonilla-Silva 

(1997) discusses how, depending on the context, a particular aspect of identity may take 

precedence over others. For example, in U.S. systems, the racial struggle may be more salient 

than gender or class, whereas, in Brazil, class is more salient. Similar aspects of identity salience 

are prominent across social structures within the United States and throughout an individual's 

development, depending on their context. 

 Another way to consider the relationship between context and oppression is through a 

sociological lens. The sociological lens reveals how oppression and advantage operate at 

multiple contextual levels, from the individual to their larger context and the policies that orient 

their experience. A framework of a socio-ecological approach is provided by McLeroy et al. 

(1988), where a higher education researcher may consider the: 1) individual intrapersonal 

knowledge, attitudes, and behaviors of an individual; 2) the relational/ interpersonal social 

support structures surrounding that individual; 3) the institution factors and formal rules and 

regulations; 4) community factors and relations among the organization and institution; and 5) 

local, state, and national laws/ policies. This multi-level focus is similar to Bronfenbrenner's 

ecological systems theory that demonstrates the role micro (individual), meso (locale), and 

macro (societal) level factors have in influencing human experience (Bronfenbrenner & Evans, 
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2000). The micro level captures levels 1 and 2 of the sociological lens; the meso level captures 3 

and 4, and the macro is similar to level 5.  

 Regardless of the framework applied, recognizing the multiple levels of power dynamics 

helps us contextualize an individual's experience in systems of advantages and disadvantages. 

For example, a light-skinned Latina may not find her ethnicity salient in primarily white spaces 

since she may pass with racial/ ethnic privilege. However, this identity may be more salient in a 

Latina/o/x-dominated social space (such as a Latino/a/x Student Alliance at a university) as it 

creates and forms bonds with others who share similar cultural values. Her ethnicity may be 

salient in this situation because it creates a sense of belonging. Whereas, perhaps in a white-

dominated space where her ethnicity may not be as recognized, an identity such as class may 

appear to have a larger influence on her experiences. However, the class identity exists within 

and is mutually constituted by racism and sexism. While, it might appear more salient, her 

financial status is co-constructed with systems of racism and sexism.  

We can widen the lens for this example to investigate the community/public policy 

levels. This student's experience in her Latino/a/x Student Alliance at her university may be 

different from another woman in a similar social position at a different university in perhaps 

another part of the country. The policies and procedures at the national, state, and college levels 

will influence an individual's experience on campus. For example, affirmative action or DACA 

programs may have helped both women attend college; but these policies may be looked upon 

more favorably in certain locales compared to others. Within the institution, the Latino/x/a 

student alliance may be more supported (and thus funded, creating better experiences) on one 

college campus than another based on the unique policies and events that influence that campus.  
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Oppression. Collins (2014) defines oppression as "any unjust situation where, 

systematically and over a long period, one group denies another group access to the resources of 

society" (p. 4). Similarly Bell (2016) defines oppression as "the term we used to embody the 

interlocking forces that create and sustain injustice” (p 29). The intersections of our identities 

and their context influence how an individual or group is subjected to oppression and advantage 

(Zinn & Dill, 1996). The advantage may lead to greater opportunities, which Shields (2008) 

argues is different from avoiding disadvantages. A group may experience advantages in one 

context and disadvantages in others.  

Multiple frameworks help us examine how oppression operates within different contexts. 

Collins (2014) focuses on the hierarchical structure of power and its operation at multiple levels. 

Under the framework of the “matrix of domination,” Collins (2014) describes the four domains 

of power that organize the systems of oppression that individuals experience. Collins (2014) and 

Collins & Bilge (2016) present the four domains of power and explain their influence on our 

social positions.  

1) Interpersonal Domain: This is the unique social position in which an individual 

operates; the multiple axes of oppression shape a person's identity (their interests, 

experiences, needs, and desires.)  

2) Disciplinary Domain of Power: Social positions dictate how rules are communicated 

to us, which rules are (or are not) implemented, and when. These rules both explicitly 

and implicitly send individuals to various life paths and provide options that may not 

be viable to others in different social positions.  
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3) The Structural Domain of Power: How an organization or specific context is 

organized to reflect power, perpetuate inequality, and promote particular individuals/ 

organizations over others.  

4) Cultural (or Hegemonic) Domain of Power: Society can hide that playing fields are 

not level. However, the cultural domain claims that society at its core is unjust, and 

conditions for groups in various social positions across contexts are not equivalent.  

The domains of power offer an example of mutual constitution: each domain of power 

operates in conjunction with, and thus reinforces, the remaining three. The multiple forms of 

oppression operating are part of a greater system that is not in control of an individual. The 

matrix of domination helps to show that there are rarely pure "winners" or "losers;" instead, most 

people experience advantages from one level of oppression and disadvantages from another. The 

context shifts an individual's experience with the world due to the interconnected forces of power 

and oppression described in the matrix of domination. An individual's context can influence their 

lived experience because of how oppression interacts with the salience of their identities.  

Theoretical Underpinnings: Intersectional Heuristics for Quantitative Methods 

The theoretical underpinnings of intersectional heuristics draw from Leslie McCall and 

Ange-Marie Hancock, who have laid the foundations for applying quantitative methods to an 

intersectional framework. Leslie McCall presents typologies of methods, and Ange-Marie 

Hancock presents assumptions for research within an emerging intersectional paradigm.  

 Typologies of Methods 

Leslie McCall (2005) explains three methodological approaches when accounting for 

intersectional identities: Intercategorical, Intracategorical, and Anticategorical. While research in 

practice may not fit neatly into each category, it is helpful to consider these three approaches to 
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intersectional analysis. Figure 1 demonstrates my conceptualization of the spectrum of 

approaches McCall (2005) describes. The purpose of this visual is to represent how the research 

focus narrows from one approach to the next. These arrows should not be misconstrued as 

hierarchical but instead represent how the constriction of the research focus.  

Figure 1 

Visualization of McCall (2005) Methodological Approaches 

 

  

The layered blocks show how the approaches start broad with the inclusion of many 

demographic categories of research participants, then narrow to focus on specific groups and 

individuals, and finally reject categorization of identity altogether to focus on each person as a 

unique individual. I use blocks and arrows to demonstrate that the same data source can be used 

to form each approach, but who the sample focuses on may narrow. The space between 

intercategorical and intracategorical indicates that these are two distinct approaches, whereas the 

connection of intracategorical and anticategorical represents a spectrum from investigating a 

particular category to denying the use of categorical framing altogether.  

Intercategorical. Intercategorical analysis focuses on the intersections of a complete set 

of multiple categorical social positions to investigate advantages and disadvantages between 

groups. Within intercategorical research, every demographic category of interest based on theory 
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is cross-classified to form unique intersectional groupings. For example, López et al. (2018) 

applied an intercategorical approach to study achievement gaps at a university located in the 

Southwest. They re-coded their single-axis data into social position variables based on race-

ethnicity, class, and gender. This approach led to categories such as “Black female high-

income,” “Black female low-income,” and “Asian male high-income.” McCall (2005) describes 

this type of categorization as provisional to "empirically chart" the inequalities between groups. 

Therefore, Lopez et al.’s (2018) analysis describe differences between social position groups as a 

proxy for forces of inequality. The intercategorical approach is beneficial for understanding the 

experiences of multiple social positions. However, it comes with the caution of overemphasizing 

between-group experiences without recognizing the within-group differences (May, 2015).  

Intracategorical. The intracategorical approach examines a specific social position, such 

as research on Black women, and explores the lived experiences (and differences in experience) 

of members in that position. Intracategorical approaches still member individuals into a social 

position, but the focus is on the within-group experience instead of the relationship between 

positions. For example, Bowleg (2008) studies Black lesbian women, a social position that she 

explains has been historically understudied. She documents shared aspects of the lived 

experience of Black lesbian women that were previously unexplored. An intercategorical 

approach can reveal the complexity that a group experiences due to the intersection of 

oppression. Intracategorical approaches are valuable in acknowledging that a social position does 

not lead to a homogenous experience; recognizing within-group differences is important in 

intersectionality research.  

Anticategorical. Through the critiques of categorization, anticategorical complexity 

arose. Drawing from the idea that categories are not a reflection of reality due to their social 
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construction, anticategorical approaches attempt to avoid categorization altogether. Thus, an 

anticategorical approach is taken when researchers investigate an intersectional social position 

without categorizing it. Anticategorical intersectionality focuses on the within-person experience 

and how forms of oppression manifest in a participant's lived experience (McCall, 2005). By 

rejecting categories, anticategorical researchers seek to avoid group-level generalizations.  

Emerging Paradigm 

 Hancock (2007) presents a compelling list of assumptions for quantitative researchers to 

consider when attempting an intersectional analysis. In these assumptions, Hancock (2007) 

details how researchers can conceptualize and use multiple intersecting variables to guide 

analysis. Hancock (2007) explains these assumptions are valuable for how they guide researchers 

as they operationalize indicators of inequality within and between social positions. Given their 

categorical focus, these assumptions apply to McCall's (2005) conceptualizations of 

intercategorical and intracategorical analysis, but are not applicable to an anticategorical 

approach. Hancock argues that intersectional research should jointly address all six of these 

assumptions: 

1. Multiple background categories play a role in examining complex social problems 

and processes.  

2. Categories should be equally attended to in research but should not always be 

assumed to have the same relationship.  

3. These categories are constructions of dynamic individual and institutional factors. 

4. Each category contains within-group variation.  

5. Categories should be examined at multiple levels of analysis. 
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6. Attention is necessary regarding both empirical and theoretical aspects of the 

research question.  

Hancock’s (2007) assumptions lay a foundation that encourages quantitative methodologists to 

explore the intersecting categories and who is within them while simultaneously centering each 

participant's context. These assumptions support the notion that intersectional research is not a 

method, but instead a way of theorizing a problem and designing a study. In conjunction, Cho et 

al. (2013) argue that what "makes an analysis intersectional—whatever terms it deploys, 

whatever its iteration, whatever its field or discipline—is its adoption of an intersectional way of 

thinking about the problem of sameness and difference and its relation to power" (p. 795). 

Hancock’s (2007) six assumptions demonstrate that critical thinking is necessary at every step of 

the research process to mold our quantitative methods into an intersectional paradigm. 

Resituating the Paradigm 

Researchers must frame their studies and select methods that best support their 

understanding of intersectionality within the context of their research. Intersectional thinking 

challenges traditional quantitative approaches because of the complexity with which 

intersectionality conceives of how social positions, oppression, and context influence one’s lived 

experiences. To move into an intersectional paradigm, our quantitative approaches and the 

assumptions guiding them must shift. Quantitative researchers must question the normative 

assumptions of their training, which often have anchors in positivism. Positivism is an 

epistemology that assumes that robust research methodology can lead to neutral and bias-free 

results. Intending to uncover "truth," positivism assumes that rigorous research can lead to 

objective reality. As I will explore, many of the assumptions of this approach do not hold when 

working within an intersectional paradigm. This section probes strategies for integrating 
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intersectional thinking into quantitative methodology. First, I detail how an additive approach is 

incompatible with intersectional thinking. Then, I examine how quantitative researchers can 

better account for the three facets of social positions: inseparability, mutual constitution, and 

context. Finally, I will offer some limitations of the intercategorical approach. 

Additive Approach 

Traditional modeling methods often rely on an additive approach. When investigating the 

relations between different demographic variables, an “additive approach” treats identity as the 

sum of the individual effects of each single-axis form of oppression (Choo & Ferree, 2010; 

Rhodes, 2010; Schudde, 2018). To understand the experience of someone in multiple identity 

categories, the researcher adds covariate coefficients to estimate the combined experience. For 

example, consider an additive approach to the question, “How do Black females experience sense 

of belonging on their college campuses?” The coefficient for a variable representing females and 

the coefficient for a variable representing Black racialized identity are added to yield an 

aggregate estimate of the experience of Black membered females. Using this approach, a 

researcher may assume that if being Black is positively related to the outcome and being female 

is positively associated with the outcome, then the effect of being Black and female would also 

be positively associated with the outcome. The additive approach is problematic because it treats 

intersectional identity as separable forms of oppression and advantage. In this scenario, the 

researcher does not investigate the unique position of being a Black female but assumes that their 

experiences are an aggregate of the effect of two distinct aspects of their identity.  

Mutually Constituted Categories 

In addition to accounting for inseparable identities in the model, researchers must 

interpret identity categories jointly. However, researchers who formerly focused on one 
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demographic category often interpret their findings with preference given to that category 

(Hancock, 2007). Collins (2019) describes this case as prioritizing one "master" category and 

adding other categories to it, such as prioritizing a discussion of gender and later interpreting 

racial findings. Focusing first on one category creates the impression that forms of oppression 

influencing the categories are separate rather than mutually constituted. To honor the mutual 

constitution of categories, researchers must apply joint attention to both categories throughout 

the research process (Collins, 2019; Hancock, 2007).  

Inseparability of Categories 

Intersectionality posits that identity categories are inseparable. The additive approach 

treats the experience for members of an intersectional group as a linear combination of sexism 

and racism. It ignores the potential intersections among forms of oppression and advantage as a 

result of the intermeshing of one's gender and racialized social position. Most statistical methods 

require the assumption of independent covariates. Given the intersectional understanding of 

inseparability, treating variables as independent terms violates statistical modeling assumptions 

and can lead to inaccurate covariate estimates and interpretations (Shields, 2008). Because 

categories of identity (and thus forms of oppression) are inseparable, researchers must adapt their 

approaches to better represent demographic categories. While data may have been collected from 

separate categories, one solution to better align with inseparability is to manipulate the variables 

to member participants into social positions. For example, the categorical method involves re-

coding separate demographic categories (such as gender or race) to be unique variables 

representing intersectional identities (such as Black-female). In this way, each aspect of identity 

is no longer conceived of as independent from every other aspect. 
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Incorporation of Context. Within an intersectional paradigm, research approaches 

must acknowledge the context of the participants. Hancock (2007) explains that intersectional 

research should incorporate context at multiple levels. Research should explore how these levels 

interact to create a unique lived experience (Bowleg, 2012). To best represent context, 

researchers may model relevant contextual variables. For example, we know that Black students 

(individual level) at predominantly white universities (institutional level) report a lower sense of 

belonging compared to Black students at Historically Black Colleges and Universities (HBCUs) 

(Hurtado et al., 1998). A researcher could account for this interaction between college contexts 

and individuals in a multilevel model which nests students in the college they attend 

(Raudenbush & Bryk, 2002). This approach can allow a researcher to model HBCU enrollment 

at a second level. The researcher can then investigate cross-level interactions between the 

individual's identity and their HBCU enrollment. By considering multiple levels, research can 

portray how an individual operates within a larger ecosystem.  

While researchers may not always work with data capable of exploring the full context 

and its cross-level interactions, they must situate the literature and the results within the greater 

context (Bowleg, 2008; Bowleg, 2012; Cuadraz & Uttal, 1999). For example, Bowleg (2012) 

integrates multiple research studies in her explanation of Black lesbians' experiences in health. 

Through this incorporation of literature, she is able to explain how experiences with structural 

racism limit her participants' ability to feel comfortable disclosing their sexual identity, which 

further defines the full access to the health care they receive (Bowleg, 2012). Pairing 

intersectional research with a model that conceptualizes the influence of context and cross-level 

interactions is beneficial; such as the previously discussed socioecological model (McLeroy et 
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al., 1988), ecological systems model (Bronfenbrenner & Evans, 2000), matrix of domination 

(Collins, 2014) or another framework which similarly theorizes interrelations between levels. 

Reframing the research question(s) can set up a dialog that explores how context shapes 

an individual, rather than the popular narrative that directs attention to the experience of a group 

after the context is controlled. For example, Johnson & Jabbari (2022) study Black student 

suspensions in majority white schools. They frame their research question, "How do the math 

performances and beliefs of suspended and non-suspended students from varying racial groups 

change as a high school’s white student enrollment increases?" In this question, they 

acknowledge that context influences individual-level experiences. Johnson & Jabbari (2022) are 

then able to use existing literature on social inequality to help explain their results.  

When applying an intersectional lens, Bowleg (2008) suggests that research questions 

should pointedly highlight discrimination and prejudice beyond looking at demographic 

differences. Cole (2009) suggests asking what role inequality plays in a given context; this type 

of question enables the researcher to draw attention to how intersectional group membership 

positions a person's experience in the context of the inequalities they experience. One way to do 

this is to frame questions around group similarities to help situate how the outcomes reflect 

institutional and cultural influences (Cole, 2009). This framing can enable the research to 

transcend beyond investigating differences towards a discussion on how forces of oppression and 

advantage are causing and shaping the differences observed. Overall, research questions are a 

powerful tool to focus research on context.   

When addressing context, researchers should also consider their use and interpretation of 

covariates. Often contextual variables are interpreted as "control variables" to describe the 

“effect” of a demographic category after the contextual covariate is controlled for, or the 
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variance associated with the covariate is partialed out (Spector & Brannick, 2011). For example, 

a researcher who is modeling academic achievement may use a variable that indicates the type of 

locale an individual is from (urban, suburban, rural). They may explain that after controlling for 

race, the locale has a significant impact on student achievement. Or, if they are focusing on the 

demographic category, they may state after controlling for the locale that the effect of race is not 

related to student achievement. But, the locale someone lives in and the resources within that 

locale are directly related to systemic oppression. The experience of a given social position is 

shaped by context; context often dictates how forms of oppression manifest. Therefore, by 

attempting to “control for” or “partial out the effects of” a locale, the researcher may actually be 

explaining away forms of oppression. Although it is not possible to incorporate all aspects of 

context that influence someone's advantages and disadvantages, researchers can come closer to 

an accurate depiction of reality by integrating literature, using theory to shape their analysis, and 

reframing their narrative around oppression.  

Categorization  

Essentialism treats identity as though it is constant across contexts. Most analyses reflect 

an essentialist conception of identity: identity is treated as a fixed, permanent, and stable 

characteristic within a sample or population. However, intersectional scholarship focuses on 

subjective identities. The social context around a person will influence how they view or express 

their identity. Categorizing variables is necessary for most statistical models; but categorization 

requires discrete boundaries that may be challenging to establish accurately. Demographic 

variables—such as racialized identity, gender, and ethnicity—do not offer reliable 

categorizations because they are social constructs. (Viano & Baker, 2020; Zuberi & Bonilla-

Silva, 2008). The social construction means each demographic construct’s definition is unstable 
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over time (as society changes, meanings can shift). For example, racialized identity is a dynamic 

construct in political and social history (James, 2008). Therefore, the category that someone 

members in today may be different from the category they member themselves in tomorrow. 

Categorization is an inherent limitation of quantitative methodology because it stratifies social 

constructs into categories and treats them as fixed (James, 2008).  

In the context of secondary data, I use the terminology “membering” individuals into 

categories, which assumes that this categorization is imprecise and that the participants are not 

given full autonomy over their demographic placement. Because demographic variables are often 

socially constructed, membering individuals into categories is fraught with error (James, 2008; 

Kaplan, 2014; Zuberi, 2001). For example, Viano & Baker (2020) investigated administrative 

data collection in schools and found a lack of reliability in how an individual is classified based 

on the wording of the demographic question and who is in charge of membering individuals into 

categories. Therefore, while this research relies on categorization, it is essential to recognize its 

imperfections. Despite limitations, categories can allow groups to serve as a proxy for oppression 

and advantage experienced and include social positions in research that previously had not been 

explored (Hancock, 2007). 

 Categorization is helpful when exploring those experiences because intersectional 

thinking understands that the lived experience of members who experience similar intersections 

of oppression are more similar to each other than people in other social positions. The membered 

overlapping identity categories can help us explore oppression’s complexity and how it operates 

in diffuse and differentiated ways (Cho et al., 2013). Nonetheless, despite the analytic utility 

afforded by forming categories and membering individuals into a given group, researchers must 

recognize that these categories are provisional and fluid.  
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Subgroup Variation 

When researchers create categorical demographic variables, they place individuals who 

vary in a heterogeneous manner into a single homogenous group. For example, an Asian 

demographic category comprises people with a variety of cultural values. Researchers often 

discuss covariate estimates with the implicit assumption that the aggregate result encompasses 

the experience of all members of the group. This is in contrast with an intersectional paradigm 

where we assume there is variation within the subgroup (Hancock, 2007; McCall, 2005). For 

example, Hancock (2007) points back to the broad “Asian” demographic category. She explains 

that within education, the needs of Southeast Asian students are often unseen because their 

experiences are membered into a more general Asian category; the “Asian” aggregate outcomes 

do not necessarily reflect the experiences of Southeast Asian students (Hancock, 2007).  

To avoid homogenous interpretations, researchers should examine variability within each 

category. For example, including descriptive information for each category (e.g., group 

deviations or residuals) can help demonstrate the variability that exists around the mean score 

estimated for all group members. For groups that seem to have a wide degree of variation, it may 

be helpful to provide graphs, further disaggregate descriptive statistics, or perform supplemental 

analysis. Even when the focus of analysis is between groups, examining the within-subgroup 

variation can provide direction for further research. For example, in an intercategorical approach, 

researchers may notice that the Asian category has relatively high outcomes but with high 

amounts of variation. Therefore, their subsequent intracategorical study may focus on 

intersectionality within the Asian demographic to further uncover formerly unseen experiences.  
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Beware: Intersectionality as a Testable Hypothesis 

Researchers have several areas to consider as they move into an intersectional paradigm. 

Specifically, quantitative researchers with positivist-based training must avoid treating 

intersectionality as a “testable hypothesis.” As Hancock (2013) explains, positivist-oriented 

researchers may approach intersectionality as a hypothesis that is tested to determine whether an 

intersection “exists.” For example, Bauer et al. (2021) argue that treating intersectionality as a 

testable hypothesis results from the author’s lack of clarity on using theory to inform their 

analysis. In intersectionality, we assume differences in exposure to advantages and disadvantages 

are a result of a social position. Instead of focusing on whether an intersectional group exists, 

intersectional researchers focus on how experiences differ between and within social positions. 

This theoretical work guides the field in how one might apply quantitative methods 

within an intersectional paradigm. As a research paradigm, intersectionality is more than 

methods. Further, simply including intersectional groupings in an analysis does not qualify the 

analysis as intersectional. Rather, an intersectional analysis is informed by theory, which guides 

the entirety of the research process.  

Conceptual and Statistical Limitations and Advancements 

This research compares three methods of modeling intersectional analyses; 1) interaction 

model, 2) categorical model, and 3) MAIDHA (multilevel analysis of individual heterogeneity 

and discriminatory accuracy). This dissertation compares each method’s conceptual and 

statistical limitations, specifically in the context of how they handle complex demographic data. 

In this section, I suggest several areas of expansion for both conceptual application and statistical 

considerations. Then, I discuss existing comparisons of intersectional methods. In this review, I 

observe that the complex structure of demographic data is a topic that has been understudied and 
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is in need of further exploration. This section provides a necessary foundation for where the 

current state of research is for each of these models and where it can progress.  

Interaction Model 

In an interaction model, the product of two variables, X*Z, is used to create an interaction 

term (Cohen & Cohen, 1983). Researchers who use this model to represent intersectional 

experiences investigate the interaction of single-axis demographic variables. To do this, they first 

code the demographic identity indicators into variables, most often through a process of dummy 

coding (Daly et al., 2016). Dummy coding incorporates categorical variables into a regression 

model by creating k(categories) - 1 variable for a demographic category. Each variable is coded 

as 1 if that individual falls into that category or 0 if they do not, with a reference category coded 

as 0 across all variables of a given category. For example, for a set of variables representing 

gender identity, a researcher may have three categories in their dataset—male, female, and 

nonbinary. A female variable is created where the female is coded as “1,” and all other 

participants as “0”, and a nonbinary variable is created where nonbinary individuals are “1” and 

all other respondents would be “0”. Therefore, there is no “male” variable, and instead, males are 

coded as 0 across both the two gender identity variables.  

To investigate interactions between dummy-coded variables, a researcher creates 

interaction terms for all variables of one demographic category (such as gender identity) across 

all variables of another demographic category (such as racialized identity). For example, a 

researcher may use “male” and “white” as reference categories for racialized and gender 

identities. They then create interaction terms by multiplying the value of each racial category 

with each gender category (i.e., “female”*“Black,” “nonbinary”*”Black,” “female”*“Asian,” 
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“nonbinary”*”Asian,” and so on). The interaction terms are then included in the statistical 

model, and a coefficient for each interaction term is estimated. 

Conceptual Implications.  

Additive Components. The interaction model uses additive components to create 

interaction terms; the approach begins by examining separate demographic variables. 

Intersectionality does not understand social identity categories as distinct where gender is 

separate from racialized identity (e.g., white and female); instead, intersectionality recognizes 

multiple identities as inseparable (e.g., white-female). Thus, including the discrete demographic 

terms in the model and interpreting each term separately violates the assumption of 

inseparability. Researchers can advance the use of this approach to have greater conceptual 

alignment by only focusing on the interpretation of the interaction effect (Scott & Siltanen, 

2017).  

Reference Category Exclusion. The interaction model does not allow for simultaneous 

comparison of all possible social identities because reference groups are not comparable. For 

example, if I use gender and race in an interaction model—with “white” and “male” as reference 

groups, I may find a significant interaction of “Black”*“female.” However, I would not know if 

there was an interaction between the most privileged categories of “white”*“male” or the 

combination of privilege and disadvantage such as “Black”*“male.” Therefore, when using a 

coding approach that requires reference categories, the interaction terms do not account for all 

possible interactions among categories.  

Multiple Moderated Regression. An alternate approach to conceptualizing interaction 

terms employs “Multiple Moderated Regression” or “MMR” (Jaccard & Turrisi, 2003). 

Typically, an interaction term is only employed in a model if the main effects are significant. 
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Then, that interaction is retained in the model only if it is also significant (Scott & Siltanen, 

2017). In MMR, a significant interaction term means that a third variable moderates the 

relationship between an independent variable and an outcome variable. Thus, the interaction of X 

and Z on outcome variable Y is interpreted as Z moderating the relationship between X and Y or 

that the slope of Y on X differs across values of Z (Aguinis et al., 2005). To interpret the 

interaction terms of demographic variables, such as “female”*“Black,” a researcher may explain 

that when a respondent identifies as female compared to male, there is a fixed unidirectional 

change in the outcome variable moderated by their identity as Black compared to white. MMR 

does not align with intersectional thinking because it suggests prioritizing one identity over the 

other. For example, an excerpt from Jaccard & Turrisi (2003) reads, “and how these ethnic 

differences vary as a function of gender. In this case, ethnicity is the independent focal variable, 

and gender is the moderator variable” (p 4). In this example, Jaccard & Turrisi (2003) center 

ethnicity in the analysis. Hancock (2007) argues that prioritizing one identity over another is a 

research pitfall when attempting to account for intersectionality. This prioritization conflicts with 

the assumption of mutually constituted identity categories.  

Another problem with interaction terms is that they are used only if the single-axis 

variables are significant. Under MMR, if one or both single-axis variables are not significant, 

then an interaction term based on the two single-axis variables is not included. Intersectional 

researchers can explore ways to conceptualize interaction terms outside the MMR hypothesis. 

One way to better align with intersectional thinking is to include the interaction terms regardless 

of the main effects (Scott & Siltanen, 2017). While we risk losing statistical power by including 

every interaction term, at a minimum, researchers can include interactions for social positions 
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that they theorize to be salient in a given research context. Under an intersectional paradigm, it is 

often reasonable to include race, ethnicity, gender identity, and class variables. 

Another way to better align with intersectionality is to shift our interpretation of the 

interaction terms. For example, Schulman et al. (1999) use interaction terms in their study on 

physician recommendations for cardiac catheterization. Using the reference groups “white” and 

“male,” Schulman et al. (1999) explain that Black women are more likely than white men to 

experience cardiac catheterization. In their discussion, they do not prioritize or discuss 

moderation of racialized or gender identity categories (Schulman et al. 1999). The joint result of 

the interaction is assumed to be more influential than the individual influence of each 

demographic variable.  

Statistical Implications. 

Power. A model with high statistical power is more likely to detect a significant 

interaction if it exists. Interaction terms often influence the statistical power of a model, as the 

number of interaction terms in a model increases, the statistical power decreases. Auginis & 

Gottfredson (2010) explain that for interaction terms, the overall cell size of each group and the 

overall sample size must be considered. Statistical power increases when categories are relatively 

equal in sample size. A Monte Carlo simulation study by Alexander & DeShon (1994) found that 

when sample sizes are unequal across subgroups, the large-sized subgroup has more error 

variance, which violates the assumption of homogeneity and causes the power to decrease. Bell 

et al. (2019) explain that sample size is less problematic for two-way interactions (e.g., 

race*gender). For example, in an analysis that uses three categories of gender identity—male, 

female, and non-binary—the model will have higher power if each group has a similar sample 

size. However, a researcher will likely find that the number of participants membered into the 
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non-binary category is drastically lower than that of male or female, leading to uneven group 

sample sizes. However, with greater model complexity, sample size constraints frequently lead 

to underpowered models when there are three-way (e.g., race*gender identity*class) interactions. 

Educational researchers often work with demographic data with a large sample size in some 

categories (i.e., white) and small sample sizes in other categories (i.e., indigenous/ native). 

Therefore, the disparities in sample size may present limitations for this approach.  

Combining Categories. To increase a model’s statistical power, researchers often create a 

new variable that combines multiple categories of identity (McClelland & Judd, 1993). For 

example, many education studies focus their racial analysis on white compared to other races or 

ethnicities because this combination of categories can lead to more equal sample sizes. However, 

combining categories directly contrasts with the core principles of intersectionality. By treating 

separate identities as one, this approach ignores the unique experiences associated with each 

distinct identity. In addition, combined categories increase the within-group variance, which will 

introduce greater error into the model (McClelland & Judd, 1993). This additional error can lead 

to issues of detection and interpretation of interactions, reduction of power, and even the 

introduction of spurious interaction effects (Busemeyer & Jones, 1983; Maxwell & Delaney, 

1993). Thus, researchers may consider accepting a higher type 1 error rate and avoid collapsing 

demographic categories. 

Categorical Approach 

 The categorical approach involves the use of intersectional categorical variables. For 

example, a researcher interested in the relationship between gender and race creates variables 

representing “female-Black,” “male-Black,” “non-binary-Black,” “female-Asian,” and so forth. 

For a researcher using an existing dataset, this would mean recoding formerly separate 
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demographic terms into intersectional categorical variables. While this approach produces 

conceptual benefits, it also yields additional statistical constraints that I explore.  

Conceptual Implications. Conceptually, the categorical approach improves on some of 

the limitations discussed with the interaction model. This model aligns with the notion of the 

inseparability of identity by creating the variables before building the model and does not include 

variables representing single-axis identity categories. Instead of multiplying variables to create 

interactions, the researcher creates intersectional variables apriori. In addition, the categorical 

approach improves the issue of reference category exclusion because there is only one reference 

category across all intersections of a demographic variable. While conceptually different, this 

approach yields coefficients that are similar to the interaction model (Evans et al., 2018). While a 

researcher will likely not find substantially different regression coefficients with this model, they 

will be able to view more results through a larger number of comparisons available, potentially 

explain a greater amount of the variation, and demonstrate alignment with intersectionality. 

Reference Comparisons. Categorical demographic variables require a reference group or 

value. Like the interaction approach, categorical models often rely on dummy coding (i.e., López 

et al., 2018). The reference category frequently defaults to the most advantaged group, which is 

often white males. This selection may make sense if you want to understand the most prominent 

differences between groups. However, defaulting to the most privileged group means that every 

other group is implicitly (or explicitly) described as "less than." Evans et al. (2018) argue that 

using the most privileged group as a reference category reinforces the idea of privilege being a 

“default” social achievement. However, researchers can frame their questions to shift 

interpretation. If the research question(s) are framed in terms of the outcomes being a product of 

the individual, then it’s likely the results will be interpreted from a deficit narrative. 
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Alternatively, when the question is framed in terms of the impact of oppression, the focus is on 

the overall systems of oppression that influence the experiences of those located in a given social 

position. Thus, the limitations of the reference group can be mitigated with carefully articulated 

research questions. 

Alternatively, researchers can also use categorical coding strategies to shift the narrative 

of their results. While dummy coding is the most frequently used strategy, there are other 

approaches that do not rely on an individual reference group, such as effect coding and 

orthogonal coding. An example of each coding procedure is provided in Table 1. Effect coding 

compares each category to the unweighted average of all categories (Hardy, 1993). Effect coding 

is well-suited for categories with relatively even sample sizes. However, an unweighted average 

presents an issue when social position variables differ notably in sample size. In education 

settings, the most privileged groups often have the highest representation; thus, effect coding 

may still use a comparison value derived from this privileged group. To counter this, Te 

Grotenhuis et al. (2017) suggests following a weighted effect scheme to better account for 

unequal observations across categories. Sweeney & Ulveling (1972) introduce a weighted effect 

coding scheme based on sample sizes. Another approach by Daly et al. (2016) uses population 

weights to adjust the mean comparison value.  

Contrast coding is an orthogonal method where specific independent comparisons are 

determined apriori (see Cohen & Cohen, 1983). For example, suppose a researcher is interested 

in the differences between males and females of similar social positions. They may set up 

contrasts that compare “Black-male” with “Black-female’ and “White-male” with “White-

female,” and so forth. However, there are limited cases where contrast coding is relevant because 

researchers need theoretical justification for the contrasts they employ.  
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Table 1 

Example of Coding Procedures 

 Additive Variable Recoded Intersectional Variable 
 Race Gender Black-female Black-male white-female 
Dummy 
Code 

white male 0 0 0 
Black male 0 1 0 
white female 0 0 1 
Black female 1 0 0 

      
Effect 
Code 

white male -1 -1 -1 
Black male 0 1 0 
white female 0 0 1 
Black female 1 0 0 

      
Orthogonal 
Code 
 

white male 0 0 1 
Black male 0 1 0 
white female 0 0 -1 
Black female 0 -1 0 

 

Statistical Implications. 

Multiple Comparisons. A categorical approach inevitably compares multiple variables. 

When we simultaneously compare multiple groups using the same data set, the probability of type 

1 errors increases (see Shaffer, 1995). Therefore, when working with intersectional social 

positions and thus creating multiple groups, researchers need to be mindful of the type 1 error 

rate. One way to account for an inflated type 1 error rate is to adjust the p-value for each 

estimated covariate. A popular solution is a family-wise adjustment; Shaffer (1995) explains this 

method as treating each set of comparison groups as a family and dividing the intended alpha 

level by the number of members. For example, if a researcher investigates comparisons among six 

social position variables with an intended alpha level of .05, the new adjusted alpha level is .008.  

Another option is the Benjamini & Hochberg “B-H” method which uses ordered p-values 

to control the false discovery rate (Benjamini & Hochberg, 1995). Russell et al. (2021) apply the 
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B-H procedure to an intersectional study of differential item functioning; after adjusting for 

multiple comparisons, they still report more differences with intersectional variables compared to 

an analysis of the additive components. Regardless of the method, researchers need to be aware 

of the issues of multiple comparisons, especially when looking at the intersection of three or 

more demographic variables.  

Multilevel Models 

 Researchers use multilevel models to account for the nesting of individuals in a shared 

context, such as a school or a classroom. For the purpose of secondary data analysis, this can be 

referred to as a clustered dataset. Multilevel models are necessary because we assume that 

individuals within a given school are more similar to each other than they are to those from other 

schools.  

 The hierarchical model operates with multiple levels. The first level is the individual 

(students), and the second level is the shared context (schools). Models can have more than two 

levels if there are additional clustered contexts (states). Alternatively, they can be cross-classified 

within a level if multiple contexts interact at the same level (neighborhoods and schools). 

Multilevel modeling partitions the variance to demonstrate what the individual level (level 1) 

explains by accounting for what is explained at level 2 (Goldstein et al., 2010). Thus, in a 

hierarchical model, a researcher can simultaneously examine the main effects for each level and 

interactions across levels (Hoffman & Walters, 2022). Education researchers often work with 

datasets where students are clustered within schools, classrooms, districts, or other contexts. This 

research will consider each model in the context of clustered datasets. Therefore, multilevel 

models are appropriate, and both the conceptual and statistical fit with intersectionality is 

explored. The models previously explained, interaction and categorical, are modeled at level 1, 
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with educational clusters (schools) modeled at level 2. The MAIDHA model, as discussed in the 

next subsection, is designed as a hierarchical model, and for a clustered dataset, the school 

context will be cross-classified at level 2.  

Conceptual Implications. Hierarchical modeling is conceptually relevant to 

intersectional thinking because social positions and the salience of identity depend on the context 

an individual operates within. Raudenbush (1989) draws on work from Bidwell & Kasarda 

(1980) to explain how schooling is a multilevel process because actors within the organizations 

determine the distributions of resources, including time, people, and materials. Educational 

structures encompass other sources of inequality. For example, the school someone attends is 

related to their neighborhood, which can often be connected back to policies created to segregate 

housing based on racialized identities. 

Statistical Implications. In multilevel models, most researchers cite rules of thumb for 

sample sizes (Hox, 1998; Maas & Hox, 2004, 2005; or Keft, 1996). These researchers discuss 

sample size providing suggestions for the number of units at level 2 and the number of units 

within each level 2 unit. The earliest commonly cited rule of thumb is from Kreft (1996), who 

introduced the 30/30 rule, which is a minimum of 30 units at each level (i.e., 30 groups with 30 

individuals in the group). Hox (1998) adds details to Kreft’s (1996) suggestion by explaining that 

30/30 is suitable for an investigation of the fixed effects for level 1 predictors. However, Hox 

(1998) explains when cross-level interactions are of interest, then a 50/20 rule is more 

appropriate, and when the focus is on level two fixed effects, a 100/10 rule is a better fit. Maas & 

Hox (2004, 2005) ran a series of simulation studies on the influence of sample size to provide 

further evidence for these “rules of thumb” commonly followed. They found that when there are 

ten groups with a sample size of 5, the fixed effects are not biased (but the level 2 variance is) 
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(Maas & Hox, 2004, 2005). Maas & Hox (2004, 2005) explain any group size under 100 will 

lead to bias in the standard error estimates such that they are too small, but a group size of 50 is 

still reasonable in practice. Clarke & Wheaton (2007) echo this 100/10 rule by examining 

conditions from 50 to 200 level 2 units and 2 to 20 level 1 unit per cluster. They found that 

following the 100/10 rules avoids most bias in the parameters and errors. 

Recent research continues to back up these early findings on sample size in multilevel 

models. McNeish & Stapleton (2016) explored research findings regarding small cluster sizes in 

multilevel models and found that overall, models were most impacted by the number of level two 

units. McNeish & Stapleton (2016) found that across articles, fixed effects were the least affected 

by the number of clusters, and level 2 fixed effects (and cross-level interactions) tend to be 

overestimated when the number of clusters falls below 15 (e.g., Baldwin & Fellingham, 2013; 

Stegmueller 2013). When the number of clusters is small, researchers agree that the resulting 

standard errors will be downwardly biased (McNeish and Stapleton, 2016). Overall, these results 

show the importance of the number of level two units; with a low number of level two units, the 

model estimates are susceptible to underestimated standard errors and bias on the variance 

components. McNeish (2017) explains that when the standard error estimate is too small, the test 

statistic will be inflated, which will lead to p-values that are too small. This ends up inflating the 

Type-I error rates for the fixed effects (McNeish, 2017). Working with demographic data in 

education may offer greater complexity to the understanding of sample sizes. In education 

research, there are often uneven demographic categories per level two cluster, and they may be 

unevenly distributed.  
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MAIDHA 

The MAIDHA model is a “multilevel analysis of individual heterogeneity and 

discriminatory accuracy.” This approach to conducting intersectional analyses was introduced by 

Evans (2017) and coined by Merlo (2018). MAIDHA is a hierarchical model where individual 

respondents and their separable identities (Level 1) are nested within intersectional social strata 

(Level 2). From a data management perspective, intersectional social strata are created nearly the 

same way as the categorical variables such as “Black-female.” However, the use of these 

variables is entirely different; MAIDHA clusters intersectional variables at the second level of a 

hierarchical model. Therefore, MAIDHA does require a traditional coding procedure and thus 

does not compare results to a reference category or value. MAIDHA can better promote the idea 

of within-group differences (in addition to between-group differences) due to the estimates that 

the hierarchical model provides (Evans, 2019; Merlo, 2014).   

Typically, researchers nest individuals within level 2 when they share a tangible context 

that creates a similarity between them, such as a school, classroom, or neighborhood. Often, 

researchers do not consider demographics such as gender, race, or ethnicity to be something that 

is used to cluster. However, it is theoretically relevant to cluster on intersectional social strata, 

given that models require that error terms are not correlated. Within an intersectional paradigm, 

the forces of oppression are understood to be shared among members of an intersectional social 

position; each group can be assumed to have correlated errors. Thus, under intersectional theory, 

this is similar to the clustering structure of physical or structural contexts.  

Cross-Classified Model. A cross-classified model uses multiple clustering variables at 

the same level, such as schools and neighborhoods, where there are different combinations of the 

two with which a participant may be associated. A cross-classified model is appropriate when 
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observations are nested in multiple contexts crossed at level 2 (Hoffman & Walters, 2022). The 

researcher will likely use a cross-classified model to apply the MAIDHA method in a dataset 

with natural clustering structures such as neighborhoods or schools (Evans, 2019c). For example, 

for a model with neighborhoods and schools, researchers would cross-classify the two contexts at 

level two, but in this case, social strata are cross-classified with the second contextual cluster. A 

cross-classified model is conceptually aligned with intersectionality theory because it allows for 

proxies for oppression to interact at the same level as the context in which an individual is 

positioned. When using a cross-classified model, Evans (2019c) explains that researchers should 

allow the social stratum effects to differ across the second clustering variable and the second 

clustering variable effects to be able to differ across social strata.  

Conceptual Implications. 

Interaction Effects. Multiple researchers claim that an advancement MAIDHA offers is 

the ability to estimate “interaction effects” using the stratum-level residual (level 2 variance) 

(Evans et al., 2018; Merlo, 2018). Evans et al. (2018) explain that interaction effects identify the 

extent to which the inclusion of social strata contributes to explaining the outcome variable 

beyond that of the additive model. An interaction effect can be interpreted as the extent to which 

the intersectional social positions account for the system of disadvantage that impacts the 

outcome variable above and beyond what is explained by an additive-only model. Evans et al. 

(2018) caution that this estimate cannot be a direct measure of the influence of “intersectionality” 

because interpreting the interaction effects in this way requires the assumption of no-omitted 

variable bias; thus, all relevant axes of identity must be in the model (Evans et al., 2018). All 

axes of identity which are salient towards the intersectional experience in the research context 

would need to be included, and this may prove difficult in fields where the theory on 
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intersectional identities and their relation to outcomes is still in development. Despite this 

limitation, the interaction terms have been the central focus when interpreting MAIDHA results 

(e.g., Evans, 2019a, 2019b; Evans et al., 2018; Merlo, 2018). Merlo et al. (2018) detail how this 

estimate can aid decision-making in the public health sector. Evans et al. (2018) argue that it is 

ideal in their own public health research context to “determine simultaneously whether all 

intersectional identities exhibit evidence of an interaction (or intersectional) effect” (p. 65). 

However, this claim and what interaction effects can and cannot explain is a point of contention 

in the literature.  

Lizotte et al. (2020) present a critique of the MAIDHA approach with a specific focus on 

the utility of the interaction effects. Lizotte et al. (2020) argue that the so-called interaction 

effects are not interpretable, and thus, this approach lacks utility. They explain that the stratum-

level residuals in the model cannot be interpreted as interaction effects because “the fixed effects 

in MAIHDA do not represent population average effects; rather, they reflect effects under an 

implicit re-weighting of the data given all intersections are of equal size” (Lizotte et al., 2020, p. 

4). This is due to the fact that the individual demographic identity variables in level 1 (fixed 

effects) also determine the social strata membership that a person is in at level 2, leading to 

“over-adjusting where it is not possible to know whether to attribute a difference in mean 

outcome to a difference in group membership or to individual-level social position effects” 

(Lizotte et al., 2020 p. 5). Further, the estimates of stratum residuals are conflated due to 

unmodeled interaction terms between the demographic identities at level 1. Lizotte et al. (2020) 

conclude that the emphasis placed on interaction effects is not of value, and therefore MAIDHA 

does not provide additional information beyond a categorical model. In their rebuttal, (Evans et 

al., 2020) clarify that the fixed effects estimates are precision-weighted grand means. While they 
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acknowledge the limitation of no omitted variable bias as something not only present in 

MAIDHA but all multilevel models, they do not provide a rationale for the omission of 

interaction terms. They explain the language around the interaction effect in that it “tells us 

whether the stratum is advantaged or disadvantaged relative to what might have been predicted 

for it based on additive effects alone” (Evans et al., 2020, p 6). Overall, Evans et al. (2020) argue 

for the use of MAIDHA and discuss the value of its use in intersectional analysis. This 

discussion demonstrates that defining what MAIDHA is and is not capable of – specifically, 

what the interaction effects can tell us— remains disputed.  

In addition to ongoing scholarly discussions, I argue that interaction effects are not fully 

aligned with intersectional thinking. The interaction effects, as described in the literature, are a 

way of testing for the relevance of intersectionality in a given context. But, applying an 

intersectional lens to research requires the assumption that intersectional oppression exists. 

Evans (2018) acknowledges this limitation, “that our framing of quantitative, intercategorical 

intersectionality falls into what some scholars have called ‘intersectionality as testable 

explanation’ (Hancock, 2013), in that it involves an assessment of whether statistically 

significant interaction effects are detectable.” (p. 66). Evans (2018) further explains that this 

approach is intended to be exploratory and does not require hypothesis testing of interaction 

effects. Therefore, researchers need to be careful with their interpretation of the interaction effect 

so that it does not lead to a narrative of testing for intersectionality. Applied through an 

intersectional lens, one may interpret whether the oppression experienced has a meaningful 

impact on the outcome variable, but this does not negate the fact that intersectional groups exist. 

Therefore, researchers must be clear that this is not a test of whether intersectional groups exist 



 67 

but rather a test of the extent to which oppression and advantage experienced by the 

intersectional group is salient in explaining a given research context.  

Statistical Implications. 

Model Fit. The multilevel structure of MAIDHA presents advantages for model 

parsimony. In MAIDHA, additional demographic categories increase the number of terms in the 

model linearly instead of geometrically (Evans et al., 2018). In an exploration of model fit, 

Evans et al. (2018) found that the number of parameters added to the MAIDHA model did not 

increase the Bayesian Information Criterion (BIC). MAIDHA remains robust even when 

additional intersectional categories are added; thus, the model is scalable.  

Multiple Comparisons. MAIDHA may also be more robust to issues of multiple 

comparisons. Evans (2019a) explains that multilevel models have greater precision with 

weighted estimation and borrow strength due to the inclusion of random effects. Through this 

approach, Evans (2019a) explains that MAIDHA models “automatically adjust estimates for 

social strata based on the number of respondents at those intersections, down-weighting extreme 

estimates based on too few respondents and therefore providing more reliable (if conservative) 

estimates” (p. 96).  

However, Bell et al. (2019) argue that this is only applicable when the level 2 residual 

terms are independent and identically distributed. However, in this approach, that assumption 

may not be met because, depending on the context, the salience of axes of identities may vary. 

While intersectionality does not test the saliency of each axes of identity, if one particular axes is 

salient while no others in the model are, that salience will influence the ability for model 

shrinkage to occur. For example, if gender is a salient aspect in predicting a given outcome, then  
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the ‘male’ intersections will be more similar to each other than to the ‘female’ 

intersections…. This would have the effect of not only making those intersections appear 

different (indeed, we would want them to do this), but also affect the estimates of other 

residuals because shrinkage would be incorrectly applied. (Bell et al., 2019, p. 89)  

Bell et al. (2019) substantiate this argument with a Monte Carlo simulation that assesses the 

influence of related residuals. By comparing the accuracy in residual statistical significance, they 

found there were some benefits in the statistical shrinkage to increase model accuracy compared 

to a main-effects approach, but it was still less than desired (Bell et al., 2019). 

To mitigate the influence of the broken assumption, Bell et al. (2019) suggest applying an 

iterative approach by first adding two-way interactions, then three-way. Bell et al. (2019) 

recommend statistically comparing the amount of level-2 variation explained with model 

comparison statistics such as the Deviance Information Criterion (DIC). A reduction of level 2 

variance approaching zero (as seen by Jones et al., 2016) indicates that adding additional axes of 

identity to the model will not account for further variance explained in the outcome. Bell et al. 

(2019) explain, “by seeing how the level-2 variance decreases as increasing orders of interactions 

are included, it would be possible to see how ‘deep’ the intersectionality goes – whether it is the 

result of two variables interacting, three, or more” (p. 95). Thus, the intersections included are 

the most salient axes of oppression related to the outcome of interest, and additional intersections 

would not further increase the variance explained by the model. Therefore, this would represent 

the depth of intersecting axes of oppression that may be relevant to explaining advantage and 

disadvantage for the given outcome. This approach can be used to complement the axes of 

identity a researcher has already determined may be salient in their context, based on theory.  
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Interpreting Intersectional Experiences. Since MAIDHA uses intersectional identities as 

the clustering variable, the analysis fundamentally changes how intersectional identities are 

explored. Unlike interaction and categorical models, intersectional identities are not entered in as 

covariates. Instead, to understand the differences between intersectional strata, researchers must 

examine the magnitude of the level-2 intercepts. Instead of comparing the coefficients for the 

covariates, the slope intercepts are examined to estimate the strata’s relationship with the 

outcome variable.  

Sample Size. Depending on the goal of the analysis, research on multilevel modeling 

suggests a minimum of 30 level two units to produce accurate estimates. This means there should 

be a minimum of 30 intersectional social strata. However, for a researcher whose theory has led 

them to analyze a race-gender intersection, where they have 2 categories of gender identity and 

5-8 categories of racialized identity, they may only end up with 10-16 social strata (level 2 units). 

Therefore, this approach may be limited to research contexts where it is theoretically relevant to 

explore a high number of social strata.  

In addition, the multilevel structure requires sufficient cell sizes to make accurate 

estimates. As previously explained, the model operates best with a relatively even sample 

distribution. Evans (2019b) suggests that each cell contains at least 20 observations; however, 

she does not provide a rationale for that number. Given that this is a newer method, additional 

research is needed to better understand the advantages and limitations of this modeling approach 

(Evans et al., 2020; Lizotte et al., 2020). Until then, the scholarly debate will continue regarding 

the best approaches for model building, model use, and model interpretations.  
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Empirical Comparisons of Methods 

Conceptually, the literature does not point to any one method as being more 

advantageous than others when conducting quantitative analyses through the lens of 

intersectionality; each method has both advantages and disadvantages. The approach used to 

answer a given research question depends on how the researcher aims to balance statistical 

constraints with the issues they wish to explore with the data. While the use of intersectionality 

in quantitative methods is still emerging, several researchers have empirically compared methods 

to offer a deeper understanding of the statistical constraints of each method.  

Claire Evans (2019a) provides a comparative study that demonstrates empirical 

differences between an interaction model and a MAIDHA approach. The main question of 

interest in her study was whether MAIDHA produced fewer statistically significant results 

compared to an interaction model. Evans (2019a) sought to explore the implications of adding 

more dimensions of social identity, such as including gender, race, or class in a model, and how 

those additions influence statistical significance. Using the Add Health dataset, she compares the 

results of several outcome variables for MAIDHA and the conventional interaction model. When 

comparing models, Evans (2019a) found that MAIDHA was less likely to reveal interactions 

(when examining at the interaction effect) compared to the interaction model (when examining 

significant covariate interactions). Overall, Evans (2019a) found that when additional dimensions 

of identity were added, formally unseen intersectional experiences were uncovered. Evans 

(2019a) acknowledges that this fits the theoretical narrative of intersectionality. However, 

researchers must still be careful about employing too many dimensions because type 1 error 

inflation may occur due to multiple comparisons.  
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Mayuri Mahendran and her colleagues have published the first two simulation studies on 

empirically evaluating the accuracy of intercategorical data analysis approaches that account for 

intersectionality (Mahendran et al., 2022b, 2022a). Mahendran et al. (2022a) focus on binary 

outcomes, and Mahendran et al. (2022b) explore continuous outcomes. In these studies, they 

investigate several methods, including the interaction model, categorical model, and MAIDHA. 

For both binary and continuous outcome variables, they found that at large sample sizes (n > 

50,000), all three methods could accurately estimate the outcome, and MAIDHA performed 

better than the other methods at smaller sample sizes (2,000 to 5,000).   

When applied to a real dataset, Mahendran et al. (2022a) found that the categorical model 

(which they label the main effects model) and the MAIDHA model produced very different 

estimates.   

For example, for white female respondents aged 18 to 39 with poverty-level income, the 

estimated prevalence varied from 7% to 20%. Comparing the two best performing 

methods at smaller samples from the simulation, MAIHDA and main effects, the 

estimated prevalence were also different. For example, among Black male respondents 

age 60+ with non-poverty income, main effects estimated 76.5% while MAIHDA 

estimated 65.3%. For female Hispanic respondents age 60+ with poverty-level income, 

main effects estimated 50.5% while MAIHDA estimated 60.3%. (Mahendran et al., 

2022a, p 8) 

Mahendran et al. (2022b) suggest that MAIDHA is more accurate. This may demonstrate how 

MAIDHA can surpass the accuracy of the other methods at large sample sizes due to the ability 

of multi-level shrinkage. 
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While there have been several studies that compare the models, they do not provide all of 

the information necessary to make conclusions about the statistical utility of each model. First, 

Evans' (2018) study only compares two models (categorical and MAIDA) on a singular dataset. 

This is helpful to show how the models present themselves differently, but the results are limited 

to the constraints of that dataset. The studies by Mahendran et al. (2022a, 2022b) were useful for 

comparing overall model accuracy to each other and demonstrating the capabilities of each 

model. However, they did not vary the sample size within each cluster. Therefore, their design 

does not necessarily reflect the complexity that researchers accounting for intersectionality in 

education may face.  

Education researchers often grapple with starkly unequal distributions of sample sizes 

across groups. However, within intersectional methods, researchers have yet to investigate the 

proportion of representation and variance within single-axis categories. In addition, each of these 

comparisons has been in the context of a single-level dataset. It is possible that the introduction 

of clustered data influences the accuracy of model parameters as well as other outcomes. It is 

necessary to explore the implications of uneven sample sizes within clustered intersectional 

models. While there have been a number of studies that focus on the influence of sample size in 

multilevel models, no study has yet to take into account the unique features that intersectionality 

introduces into a model.  

A comparison of intersectional methods in a clustered data setting is necessary for 

researchers to determine the most appropriate model given their design and data. Therefore, this 

dissertation seeks to extend research on how methods of accounting for intersectional analyses 

handle complex demographic data (and thus sample size issues) in a clustered data context. This 

research considers uneven sample sizes, high variance, and overall model complexity in a series 
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of simulations. The purpose of this dissertation is to contribute to our knowledge of the statistical 

advancements and limitations of multilevel models.   
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Chapter 3: Methods 

This chapter details the methodological choices made for this dissertation. The study's 

objectives were to evaluate how each of the three methods of modeling intersectional analyses 

(1. Interaction, 2. Categorical, and 3. MAIDHA) perform, given various complexities in 

demographic data characteristics. In the section titled "Objectives," I present the research 

questions, discuss the study's goals, and provide a general overview of the simulation design. 

Then, in "Simulation Procedures," I outline the simulation design, including the data 

characteristics used to form the scenarios, data generation procedures, and simulation study 

outcomes for evaluating performance in a given scenario. Next, in "Methods of Modeling 

Intersectional Analysis," I provide the statistical components of the models investigated. Finally, 

in “Reporting of Results & Proposed Comparative Analysis,” I describe the approaches used to 

analyze the statistical characteristics associated with each method under each data condition, as 

well as summarize findings across all analyses. 

Objectives 
 

Demographic data in education often have uneven sample sizes and notable differences in 

variability within sub-groups. It is imperative to understand how intersectional models both 

perform and compare to each other under different complexities in demographic data. In Chapter 

2, I described three methods of modeling intersectional analyses. These methods of modeling 

include: 1) Interaction, 2) Categorical, and 3) MAIDHA. This simulation study aims to 

understand how these three methods of modeling intersectional analyses function under various 

demographic data characteristics. 

The research questions addressed in this dissertation were:  
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1. What are each model's statistical advantages and disadvantages under different 

demographic data characteristics?  

2. In what ways does each model perform differently from one another under each 

demographic data characteristic scenario? 

Where, the demographic data characteristics are a) the number of demographic categories; b) the 

proportional representation of identity indicators within demographic categories of the total 

sample; c) the within-intersectional-group variance; and d) the total sample size.  

A series of Monte Carlo simulations were conducted to generate data sets that were used 

to compare the performance of each method of modeling intersectional analyses under different 

conditions, each of which was designed to mimic the complexity of demographic data in 

education. Scenarios were created based on a combination of each of four demographic data 

characteristics. There were 54 unique scenarios that were defined by a combination of four 

demographic data characteristics. Across all repetitions, this study simulated a hierarchical data 

context where students were evenly clustered in groups designed to represent schools. 

For each of the 54 different scenarios, 1000 datasets were generated based on true 

analytic parameters for each intersectional group, yielding a total of 54,000 datasets. For each 

dataset, three analytic methods were applied. This yielded a total of 162 combinations of 

methods and scenarios, and thus a total of 162,000 models were built. For each of the 162 

combinations of methods and scenarios, five simulation outcomes were estimated: bias, accuracy 

(mean square error), type 1 error, power, and coverage. Model fit through Akaike Information 

Criterion (AIC) and the Bayesian Information Criterion (BIC) was also retained.  
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Simulation Procedures 

This simulation study examined how demographic data characteristics influence 

estimates, designed to be proxies of intersectional oppression, provided by three methods of 

modeling intersectional analyses. In this section, I first describe the scenarios designed to reflect 

various conditions of complex demographic data. Next, I explain the procedures for generating 

true values and datasets. Finally, I describe the outcomes of the simulation study and the saved 

values used to compare models within and across scenarios.  

“Demographic” categories were created to mimic: A) racialized and ethnic identities; B) 

gender identity; and C) financial status, presented in Table 2. Since the data employed for this 

study was simulated and this research did not examine actual relationships among the three 

demographic categories and/or various intersectional groupings, these three identity categories 

are henceforth referred to as A, B, and C. Each category is represented by separate variables, 

annotated using the notation of a letter to represent a given demographic category and a number 

to represent an identity indicator within that category. As an example, B1 is used to represent 

demographic category B (e.g., gender identity) and identity indicator 1 (e.g., female). For 

scenarios with two demographic categories, only A and B were used to build datasets and model 

results, whereas for scenarios with three demographic categories C was used as well.  

It is important to note that these proxy demographic categories are imperfect. For 

example, in writing this I recognize that six categories of racialized identity do not capture every 

identity, there are more than two gender identities, and the differences between financial status’s 

may be arbitrary. The specific choices of categories were chosen based off the current IPEDS 

data collection, to represent what may be “typically” collected in an education context. However, 

these categories have several limitations, and researchers should critically consider what identity 
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indicators are theoretically relevant to the issue(s) they are studying and for which categories 

they are able to collect sufficient information on when designing an intersectional analysis.  

Table 2 

Demographic Variable Notation 

Category Notation 
A. Racialized and Ethnic Identities A0* 
 A1 
 A2 
 A3 
 A4 
 A5 
 A6  
B. Gender Identity B0* 
 B1  
C. Financial Status  C0* 
 C1  
 C2  

Note. * indicates the reference category for dummy-coded variables. 

Simulation Scenarios  

The simulation scenarios were designed to reflect variation in four characteristics of 

demographic data, including the number of demographic groups, the proportion of the sample 

represented by each demographic group, the within-intersectional group variance in the outcome 

variable, and the total sample size. Each scenario and its conditions are summarized in Table 3.  
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Table 3  

Scenario Conditions  

Scenario 
Characteristic 

Description Additional Details 

Number of 
Demographic 
Categories 

1. Two 
Categories (A 
and B) 

2. Three 
Categories (A, 
B, and C) 

1. A (seven categories), and B (two categories) 
2. A (seven categories), B (two categories), 

and C (three categories) 
 

The proportional 
representation of 
identity indicators 
within 
demographic 
categories 

1. P1: Even 
2. P2: 

Imbalanced 
3. P3: Extremely 

Imbalanced 
 

The ratios of the sample in each identity indicator 
are presented in Table 4 

Within Category 
Variance in the 
Outcome Variable  

1. Small: Little 
to no variance 
for all 
intersectional 
groups 

2. Large: High 
variance for 
all 
intersectional 
groups 

3. Mixed: Mixed 
variance 

Where high variance is (𝜎2 = 5.0). Mixed variance 
was set so 10% of the groups had high variance 
 
Displayed in Table 5 

Overall Sample 
Size 

1. Small sample 
2. Medium size 

sample 
3. Large sample 

1. 5,000 
2. 10,000 
3. 20,000 

 
 

Condition 1: Number of Demographic Categories. Intersectionality theory emphasizes 

the importance of employing theory to inform the relevance of specific intersectional groups in 

an analysis. Thus, the inclusion of an intersectional social position in an analysis must be driven 

by theory. Many educational researchers theorize that lived experiences of students differ across 

gender, racialized identity, and class/economic status. As a result, these three demographic 
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categories are often included in analyses of educational experiences. Given this practice, this 

study models two sets of demographic data, one based on two demographic categories (A and 

B), and another based on three demographic categories (A, B, and C). Moreover, the number of 

identity indicators within each category differs, such that category A has seven identity 

indicators, category B has two identity indicators, and category C has three identity indicators.  

Condition 2: Demographic Data Representation. There were three variations of 

demographic data representation across identity indicators. The first condition reflects an even 

representation of identity indicators, where the proportional representation of each identity 

indicator within a demographic category is equal. The second condition models relatively 

imbalanced identity indicator distributions, which were loosely based on 2021-2022 IPEDS data 

on college enrollment (U.S. Department of Education, 2021). After collecting the IPEDS 

proportions, I adjusted the lowest possible proportions to be .050 to provide representation of 

categories during this study. Finally, in the third condition, extremely unbalanced representation 

was designed such that some identity indicators have a relatively high proportional 

representation (as high as .80), and others had a relatively low proportional representation (as 

low as .005). Table 4 presents the breakdowns for the distribution of identity indicators within 

each demographic category across each of the three conditions. Categorical intersectional 

variables and intersectional social strata were formed from these additive variables. Thus, the 

proportion for a participant in intersectional group A1/B1/C1 would be equivalent to the three 

individual proportions multiplied, where, in a relatively imbalanced scenario, this is 

0.050*.590*.467= 0.014 proportion of respondents out of the total sample.  
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Table 4 

Distribution of Sample Size within Each Dummy-Coded Demographic Variable  

Identity 
Indicator 

Even Relatively 
Imbalanced 

Extreme 

A0  0.143 0.432 0.630 

A1  0.143 0.050 0.050 

A2  0.143 0.073 0.110 

A3  0.143 0.137 0.050 

A4  0.143 0.208 0.050 

A5  0.143 0.050 0.055 

A6  0.143 0.050 0.055 

B0  0.500 0.410 0.200 

B1  0.500 0.590 0.800 

C0  0.333 0.145 0.100 

C1  0.333 0.467 0.700 

C2  0.333 0.388 0.200 

 

Condition 3: Within Category Variance. Often in educational research, the datasets we 

work with have some intersectional groups with very little variance in an outcome variable, 

while others have a large variance. To reflect this variation, the variance within intersectional 

groups was manipulated in three ways. In one set of scenarios, each intersectional group was 

designed to contain a small amount of naturally occurring variance. In a second set of scenarios, 

each intersectional group was simulated to contain high variance (𝛔𝟐 = 5.0). In the third set of 

scenarios, the amount of within-category variance differed where 10% of the unique 
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combinations of intersectional group and school ID were randomly selected to have high 

variance (𝛔𝟐 = 2.0), listed in table 5. All other groups had a small amount of (unchanged) 

variance.  

Table 5 

Intersectional Groups with High Variance for the Mixed Variance Condition 

 Intersectional Group Designed Difference 
Two Demographic 
Categories 

A1B1 Negative  

 A3B1 No difference  

Three Demographic 
Categories 

A2B0C0 Positive  

 A6B1C1 Negative  

 A6B1C2 Negative  

 A0B0C1 No difference 

 A1B0C1 No difference 

 A4B1C2 No difference 

 

Condition 4: Sample Size. Three sizes are simulated: 5,000, 10,000, and 20,000.  

Models 

This section describes the statistical components for each of the three methods of 

modeling intersectional analyses examined in this study; a conceptual overview of each method 

is presented in Chapter 2, under the section titled “Conceptual and Statistical Limitations and 

Advancements.” Hierarchical linear models were developed for each method to examine their 

functioning within a clustered data structure.  

I first describe the null model for each method before presenting the full model. The 

unconditional model predicts the outcome variable for a given “school” cluster without adding 
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any predictor variables. Typically, an unconditional model is used to estimate the interclass 

correlation coefficient (ICC), which is estimated as 𝜏00

𝜏00+𝜎2, where 𝜏00 is the estimated between-

group variance and 𝜎2 is the estimated within-group variance. Categorical and interaction 

models have the same unconditional model and thus are described together. The MAIDHA 

model has a different unconditional model due to its cross-classified structure.  

Figure 2  

Unconditional Model for Interaction and Categorical Models 

Level one 
𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑟𝑖𝑗 

 
Level two  

𝛽0𝑗 =  𝑦00 + 𝑢𝑜𝑗 
 
Mixed model  
 
 

𝑌𝑖𝑗 = 𝑦00 + 𝑢0𝑗 + 𝑟𝑖𝑗 
 
 

In this model, 𝑦00 is the fixed component of the model, the predicted grand mean of the 

outcome variable, 𝑢0𝑗is a random level-2 effect (for school j), 𝐵0𝑗 is the intercept, and 𝑟𝑖𝑗  is the 

error term.  

Model 1: Interaction 

In the interaction model, the dummy coded identity indicator variables for each 

demographic category were multiplied to produce interaction terms representing unique 

intersectional groupings of demographic categories. For example, the dummy coded variable 

representing female gender identity was multiplied by each of the five dummy coded variables 

representing each racialized identity indicator to produce five interaction terms that represent the 

intersection of gender identity and each indicator of racialized identity. The number of terms 
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(dummy-coded demographic variables and interaction terms) varied based on the scenario, as 

described under simulation conditions. Given the intent to vary the number of demographic 

categories (and thus the number of variables), the models had either 6 or 12 interaction terms. 

Including the individual additive identity indicator variables entered in separately, this approach 

yields models containing a total of 13 or 21 terms.   

Figure 3 

Interaction Model 

Level 1 
𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗(𝑋𝑖𝑗) + ⋯ 𝛽𝑘𝑗(𝑋𝑖𝑗) + 𝛽1𝑗(𝑋𝑖𝑗) ∗ 𝛽𝑘𝑗(𝑋𝑖𝑗) + 𝑟𝑖𝑗 

 
Level 2 

𝛽0𝑗 = 𝑦00 + 𝑢0𝑗 

 

β1𝑗…𝑘𝑗 = y10…k0 

Mixed Model 
 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑌10(𝑋𝑖𝑗) + ⋯ 𝑌𝑘0(𝑋𝑖𝑗) + 𝑌𝑘0(𝑋𝑖𝑗) ∗ (𝑋𝑖𝑗) + 𝑢0𝑗 
 
Where k is the number of dummy-coded demographic variables in the model. 
 
Model 2: Categorical 

In the categorical model, intersectional groupings (e.g., Black-female, white-male, etc.) 

were created a priori. Rather than entering single-axis demographic variables and interaction 

terms, the intersectional groupings were entered directly into the model. As a result, depending 

on the demographic data scenario, there were either 13 or 41 categorical intersectional variables 

entered into the model. 
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Figure 4 

Categorical Model 

Level 1 

 
𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗(𝑋𝑖𝑗) + ⋯ 𝛽𝑘𝑗(𝑋𝑖𝑗) + 𝑟𝑖𝑗 

 
Level 2 

𝛽0𝑗 = 𝑦00 + 𝑢0𝑗 

 

β1𝑗…𝑘𝑗 = y10…k0 

Mixed Model 
 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑌10(𝑋𝑖𝑗) + ⋯ 𝑌𝑘0(𝑋𝑖𝑗) 
 

+𝑢0𝑗 
 
 Where k is the number of intersectional group variables in the model  
 
Model 3: MAIDHA (Multilevel Analysis of Individual Heterogeneity and Discriminatory 

Accuracy)  

Figure 5 

MAIDHA Unconditional Model. 

Level 1 
 
 

𝑌𝑖(𝑗1,𝑗2) = 𝛽0(𝑗1,𝑗2) + 𝑟𝑖(𝑗1,𝑗2) 
 
Level 2 
 

𝛽0(𝑗1,𝑗2) =  𝛾000 + 𝜇0𝑗1 + 𝜈0𝑗2 
 
 
Mixed Model 

𝑌𝑖(𝑗𝑘) = 𝛾000 + +𝜇0𝑗1 + 𝜈0𝑗2 + 𝑟𝑖(𝑗1,𝑗2) 
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MAIDHA presents a cross-classified model where schools and intersectional strata were 

both modeled at level two. The intersectional strata were an additional level two clustering 

variable used to indicate the unique intersection of identities. An additional subscript is used 

where j1 and j2 identify the cross-classified factors (j1 intersectional strata and j2 school) to 

account for the cross-classification of two level two clusters. The parentheses around the 

subscripts are separated by a comma (j1,j2) to indicate that these two factors operate conceptually 

at the same level (Hox, 1998). 

In the cross-classified model, 𝛾000 is the grand mean for the outcome variable 𝑦𝑖(𝑗1,𝑗2) 

which represents the outcome for student i in intersectional strata j1 and school j2. 𝛽0(𝑗1,𝑗2) 

represents the intercept for the predicted outcome for students from the specific combination of 

intersectional social strata j and school (predicted cell means); we assume that the intercept 

varies randomly across j1 and j2. 𝑟𝑖(𝑗1,𝑗2) represents the individual residual, the deviation of a 

student's score from the students' strata, and the school-predicted intercept value. 

𝜇0𝑗1 is the residual error term for intersectional strata, and 𝜈0𝑗2 is the residual error term 

for schools. 𝜇0(𝑗1,𝑗2) is the random intercept effect and is the residual beyond that predicted by 

the grand mean, and the two main effects. 

The following equations represent the full MAIDHA model. In this model, the main 

effects at level 1 are represented by individual additive identities (i.e., race/ ethnicity, gender, 

and class), and the level two intercepts are each intersectional social strata, where k at level one 

is the number of demographic covariates and k at level two is the number of intersectional strata. 

The models had either 7 demographic identity indicator variables at level one clustered into 14 

intersectional social strata, or 9 demographic identity indicator variables at level one clustered 

into 42 intersectional social strata.  
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Figure 6 

MAIDHA Model 

 
Level 1 
 
 

𝑌𝑖(𝑗1,2) = 𝛽0(𝑗1,𝑗2) + 𝛽1(𝑗1,𝑗2)(𝑋𝑖(𝑗1,𝑗2)) + ⋯ 𝛽𝑘(𝑗1,𝑗2)(𝑋𝑖(𝑗1,𝑗2)) + 𝑟𝑖(𝑗1,𝑗2) 
 
Level 2 
 

𝛽0(𝑗1,𝑗2) =  𝛾000 + 𝜇0𝑗1 + 𝜈𝑗2 
𝛽1(𝑗1,𝑗2)=𝛾100 
𝛽𝑘(𝑗1,𝑗2)=𝛾𝑘00… 
 
 
Mixed Model 

𝑌𝑖(𝑗1,𝑗2) = 𝛾000 + 𝑌10(𝑋𝑖(𝑗1,𝑗2)) + ⋯ + 𝑌𝑘0(𝑋𝑖(𝑗1,𝑗2))+𝜇0(𝑗1,𝑗2) + 𝜈0(𝑗1,𝑗2) 
 

Procedures for Generating Datasets 

This study used a Monte Carlo simulation design. All simulations of datasets and 

subsequent analyses were conducted using R. To generate datasets, a clustered data structure was 

built, “true” values were selected for coefficients, and the “true” outcome was generated. Then, 

independent datasets, replicated 1,000 times, were generated for each scenario. Each dataset was 

built using the parameters from the true coefficient values for each intersectional group and the 

true outcome generation formula. A random number generator was used to set the seed when 

generating each simulated data set.  

Clustered Data Structure. Clustered data were simulated to represent a structure similar 

to students nested in schools. One hundred school clusters were simulated with relatively even 

distributions of cases within each cluster. School clusters were designed such that the intraclass 

correlation coefficient was at least 0.10. The random intercept variance was set as 0.25, and the 

residual variance was 1 in order to obtain an ICC close to 0.20. 
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Coefficient “Truth” Generation. Intersectional groups were designed to have what I 

refer to as a “true difference” or “no true difference.” A true difference refers to the fact that in 

the population, x intersectional group has a true mean difference on the outcome variable 

compared to the reference category, after accounting for the variance from all other intersectional 

groups. Then, for groups with no true differences, the population level difference from the 

reference group is 0. For the sake of brevity, henceforth, I will refer to the former as simply as 

“true difference” and the latter as “no true difference.”  

There were two versions of true coefficient values generated, one for scenarios that use 

two categories and another for scenarios that use three categories. These true values were 

generated in comparison to the reference category (A0B0 or A0B0C0). To obtain true coefficient 

values, I used a random number generator to select a starting seed for each intersectional group 

designated to have a true difference. Then, I determined the true coefficient value for each of 

these intersectional groups by randomly selecting a value from a distribution with a range of + or 

– [0.20 to 2.00]. These true coefficient values were then used to generate the true outcome in the 

population, as described below.  

These computed values represent the level 1 main effect truths for the intersectional 

coefficients in the categorical and interaction models. Since the members represented by an 

interaction term are identical to those represented by a categorical term, the interaction and 

categorical terms share the same true coefficient value. For example, data that is coded so those 

who are A1 = 1 and those who are B2 = 1 are classified as A1B2, which is equivalent to the A1 

and B1 interaction where A1*B2 = 1. The interaction model does not estimate coefficients for all 

intersectional groupings; intersectional groupings with “0” for any letter were excluded from the 

model.  
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In MAIDHA, the intersections examined were the level two intercepts. The true values 

for these intercepts were computed after outcome generation for the true dataset. The outcome 

was summarized across intersectional strata averages, where the average is the true value for the 

level two intercept. Tables 6 and 7 specify the designed difference for each coefficient, the 

randomly generated true coefficient values for the interaction and categorical model level 1 main 

effects, and the computed level 2 intercept truths for MAIDHA. 
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Table 6  

Coefficient Truths for Scenarios with Two Categories  

 

  

Intersectional Group Designed Difference Truth – Level 1 Main 
Effects 

Truth — Level 2 
Intercepts for 
MAIDHA 

A0B0 No difference 0 0.827 

A1B0 Positive  0.779 1.686 

A2B0 Negative -0.899 0.029 

A3B0 Negative -0.639 0.503 

A4B0 No difference 0 0.990 

A5B0 No difference 0 1.062 

A6B0 No difference 0 0.937 

A0B1 No difference 0 0.792 

A1B1 Negative -1.159 -0.097 

A2B1 Positive 0.936 2.044 

A3B1 No difference 0 1.106 

A4B1 No difference 0 1.012 

A5B1 No difference 0 1.064 

A6B1 No difference 0 0.998 
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Table 7  

Coefficient Truths for Scenarios with Three Categories  

Intersectional Group Designed Difference True Values – Level 1 
Intersectional Group 
Coefficients 

True Values — Level 
2 Intercepts for 
MAIDHA 

A0B0C0 No difference 0 0.291 

A1B0C0 Positive  1.639 1.559 

A2B0C0 Positive  1.314 0.981 

A3B0C0 Negative -0.956 -1.623 

A4B0C0 No difference 0 -0.029 

A5B0C0 No difference 0 -0.016 

A6B0C0 No difference 0 0.182 

A0B1C0 No difference 0 -0.036 

A1B1C0 No difference 0 -0.128 

A2B1C0 Positive 1.844 1.702 

A3B1C0 No difference 0 -0.161 

A4B1C0 No difference 0 -0.375 

A5B1C0 No difference 0 --0.161 

A6B1C0 No difference 0 -0.114 

A0B0C1 No difference 0 -0.259 

A1B0C1 No difference 0 0.011 

A2B0C1 Positive 0.953 0.950 

A3B0C1 Negative  -0.957 -1.026 
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A4B0C1 No difference 0 -0.176 

A5B0C1 No difference 0 0.029 

A6B0C1 No difference 0 -0.070 

A0B0C2 No difference 0 -0.168 

A1B0C2 No difference 0 -0.111 

A2B0C2 No difference 0 -0.136 

A3B0C2 No difference 0 -0.141 

A4B0C2 No difference 0 -0.158 

A5B0C2 Negative -0.521 -0.546 

A6B0C2 No difference 0 0.028 

A0B1C1 No difference 0 -0.085 

A0B1C2 No difference 0 -0.063 

A1B1C1 No difference 0 -0.249 

A2B1C1 Positive 1.666 1.544 

A3B1C1 No difference 0 -0.023 

A4B1C1 No difference 0 -0.087 

A5B1C1 No difference 0 0.051 

A6B1C1 Negative  -1.724 -1.924 

A1B1C2 Negative -1.344 -1.251 

A2B1C2 No difference 0 0.006 

A3B1C2 Negative  -0.610 -0.729 

A4B1C2 No difference 0 -0.126 
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A5B1C2 No difference 0 0.051 

A6B1C2 Negative  -1.650 -1.702 

 

True Outcome Generation. Two formulas provided the underlying process of 

generating the outcome variable based on the number of demographic categories included. A 

researcher should choose the number of categories they include according to what they theorize 

to be salient intersectional groups given the outcome of interest and the research context. Thus, I 

chose to have two different formulas in order to represent the variations in truth for models with 

two categories and models with three categories.  

The two models of outcome generation were built from the categorical model. I chose to 

use this model to generate the true outcome variable as it does not include separate components 

of identity, only intersectional terms. I believe the categorical representation of intersectional 

social locations is best aligned with intersectional theory, compared to the other methods. 

Because the outcome variable is generated from a categorical model, it is likely that the 

categorical model analyses yield greater accuracy in estimated coefficients since there is a direct 

alignment between the truth simulation outcome generation method and the statistical modeling 

method. I attempted to mitigate this conflation by examining multiple outcomes to make 

conclusions about the statistical constraints of each model under various conditions. I chose to 

use a consistent formula for generating the true outcome variable for all three methods of 

modeling intersectional analyses so that I could directly compare results across modeling 

methods. 

The outcome variable was generated using a two-level model with observations nested in 

groups. At the first level, the outcome variable was generated as a linear function of 54 
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intersectional groups. The second level nested the groups into schools, but no additional 

predictors were included. An error term was generated to be randomly distributed with a mean of 

0 and a standard deviation of 1. The outcome variable was assumed to be normally distributed, 

and the random effects were assumed to be independent. The R code for the truth generation is 

available online (https://github.com/oszendey/Intersectional-Analyses).  

Figure 7 

Model 1: Two Demographic Categories 

 

Figure 8 

Model 2: Three Demographic Categories  

 

Procedures for Fitting Models and Generating Outcomes  

 Every dataset was analyzed using each of the three methods of modeling intersectional 

analyses. This approach allowed the three methods to be compared with respect to how they 

perform for each scenario because they all use the same dataset for a given scenario and 

https://github.com/oszendey/Intersectional-Analyses
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iteration. Each model used restricted maximum likelihood estimation (REML) (Mason et al., 

1983; Raudenbush & Bryk, 1986). REML is appropriate for complex data structures because the 

restricted maximum likelihood estimates are adjusted for the fixed effects' uncertainty 

(Raudenbush et al., 1991). While MAIDHA was first designed with Bayes estimates, Mahendran 

et al. (2022b) demonstrated that it produces similar estimates as frequentist approaches. 

Therefore, this study used REML instead of Bayes for both computational efficiency and 

consistency across methods of modeling intersectional analyses.  

Each model was only set to run if the ICC was above .100. Therefore, a null model was 

first built for every iteration to determine the ICC. The dataset was discarded and regenerated if 

the null model had an ICC of less than .100. Following this, a "full" model was built with all 

demographic variables entered into each model's final form. Because coding does not change the 

overall model parameters, dummy coding was used for all models. When fitting the models for 

each scenario, some intersectional groups were dropped from the within one or more iterations 

due to non-representation as is the case in some of the more extreme proportion scenarios. In 

those cases, that specific scenario was recorded and removed from analysis.  

Estimated Intersectional Group Coefficients. From each model, the estimates of each 

intersectional group’s coefficient and their associated p-values were stored. For the interaction 

model, the overall estimate of an intersectional group is the composite of the two additive terms 

and their interaction. Therefore, the true coefficient value for A1B1 was compared to the 

estimate of coefficients A1 + B1 + A1*B1 in the interaction model. The categorical model only 

contained intersectional groups, entered in as categorical variables. Thus, every coefficient 

estimate from each intersectional categorical variable was stored and evaluated. Finally, 

MAIDHA enters the intersectional groups as a level-two clustering variable; these level-two 
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intercept estimates were stored and compared to true level-two intercept values. In addition to 

intersectional groups and p-values, model fit information from AIC and BIC were stored for each 

iteration.  

Simulation Outcomes. Bias, accuracy, coverage, power, and type 1 error were the 

primary outcomes used in this study to evaluate and compare the performance of each model. 

There were two categories of outcomes: a) those that compare an estimated coefficient value to 

the true coefficient value (bias and accuracy) and; b) those that examine alignment of statistical 

significance with the presence or absence of a true coefficient difference (power, type 1 error, 

and coverage). Below, I describe the process of comparing stored estimates from each model to 

the true coefficient value and true difference. In addition, I describe the criteria for each outcome 

that was applied to flag intersectional group coefficient estimates as potentially problematic for 

misrepresenting the true coefficient value or true difference.  

Comparison to True Coefficient of Intercept Values. Bias and accuracy were used to 

examine the deviation of each model’s estimated intersectional group coefficients from the true 

coefficient value. These true coefficient values were generated under coefficient truth generation 

and were presented in Tables 6 and 7.  

Bias. Bias examines the average difference between the estimated intersectional group 

coefficient and the true coefficient value across all repetitions: 𝜹 = �̅̂� − 𝜷 𝒘𝒉𝒆𝒓𝒆 𝜷 was the true 

coefficient value for each intersectional group and �̅̂� was the estimated intersectional group 

coefficient, averaged across 1000 repetitions (�̅̂� =  ∑ �̂�𝒊 𝟏𝟎𝟎𝟎⁄𝑩
𝒊=𝟏 ). Thus, bias was calculated 

for each intersectional group’s coefficient, averaged across 1000 replications.  

 To flag for extreme bias, the standard error around the estimate, 𝑆𝐸(�̂�), was calculated; 

Bias that that exceeded 2𝑆𝐸(�̂�) was flagged as high. The standard error around the estimate was 
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calculated from the standard deviation of the intersectional group coefficient estimate averaged 

across all replications: 𝑆𝐸(�̂�) =  √[
1

𝐵−1
] ∑ (�̂�𝑖 − �̅̂�𝑖)

2.𝐵
𝑖=1   

Accuracy. Accuracy was measured through mean square error (MSE), a metric that 

incorporates measures of bias and variability. The formula used to calculate MSE was: (�̅̂� −

𝜷)𝟐 + (𝑺𝑬(�̂�))𝟐. Similar to bias, MSE was computed for the average of each intersectional 

group’s estimate across all 1,000 repetitions. A highly accurate model would have an MSE close 

to 0; MSE that exceeded 0.5 was flagged.  

Alignment of Statistical Significance with the Presence or Absence of a True 

Coefficient Difference. Three outcomes-- power, type 1 error, and coverage-- were used to 

examine the extent to which the p-value estimate for each intersectional group coefficient, and 

thus the hypothetical decision to reject or retain the null hypothesis, was representative of the 

true difference for that intersectional group. A model that accurately reflects the relationships 

simulated into the data would estimate the intersectional groups with true differences to have low 

p-values and intersectional groups with no true differences to have p-values above the alpha 

level. For conditions with two demographic categories, there were 5 intersectional groups 

designed to have a true difference. For conditions with three demographic categories, there were 

12 intersectional groups designed to have a true difference. 

Using a .05 alpha level, statistical significance was used to evaluate the extent to which 

estimated intersectional group coefficients reflected the existence of a true difference (or no 

difference) modeled into the datasets. In the interaction model, the statistical significance of each 

interaction term was evaluated. In the categorical model, the statistical significance of each 

categorical term was evaluated. The number of times each intersectional group’s p-value was 

equal to or below .05 was examined to determine power and type 1 error rates. For each 
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intersectional group’s coefficient estimate, across the 1000 repetitions, the number of times the 

p-value was equal to or less than the alpha of .05 was summed. 

Finally, in the MAIDHA model, the difference of each level two intersectional social 

strata’s intercept from 0 was evaluated. In MAIDHA, the intersectional groups of interest were 

modeled as “random effects,” which are not subject to traditional hypothesis testing as fixed 

effects. Therefore, it is not possible to analyze p-values to determine statistical significance. 

Instead, I calculated a 95% confidence interval around the random variance of each level two 

intersectional group intercept. If the interval contained zero, I concluded that the intercept was 

not significantly different from zero. If the interval did not contain zero, I concluded that the 

intercept was significantly different from zero. The number of times this interval contained 0 was 

summarized across 1000 replications.  

Coverage. Coverage was determined by calculating the proportion of times the 

confidence interval surrounding an estimated intersectional group’s coefficient contained the true 

value. Thus, a 95% confidence interval was formed around each intersectional coefficient 

estimate to determine coverage. Each confidence interval was calculated as �̂�𝒊 ± 𝒁𝟏−𝜶 𝟐⁄ 𝑺𝑬(�̂�𝒊). 

This interval was then examined to determine the percentage of times, across 1000 repetitions, 

that the confidence interval contained the true coefficient value for each intersection. A model 

that correctly represents the true difference would have a coverage estimate close to 95%. 

Flagging for coverage followed the lower bound of Bradley's (1978) "liberal" criterion for 

robustness, where the resulting percentage of coverage was flagged if it is less than 92.5%. 

Power. For intersections designed to have a true difference, the power of detecting that 

difference was determined by examining the overall proportion of times the p-value was 

correctly rejected. For example, if 700 of the 1000 repetitions estimated a p-value equal to or less 
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than .05 for a given intersectional group’s coefficient, then the overall power for detecting that 

intersectional group’s difference was .70. The study aims for power to be at .80 or higher. Thus, 

model estimates with a power lower than .80 were flagged.  

Type 1 Error. For intersections designed to have no true difference, the type 1 error rate 

was calculated by examining the overall proportion of times the p-value was rejected when there 

was no true difference. Using a .05 alpha level, it was expected that less than 50 of the 1000 

replications contained p-values less than .05. Type 1 error was flagged when this calculated rate 

was larger than .05.  

Model Fit. In addition to each of these data simulation outcomes, I also investigate 

reported model fit through the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC) where AIC = D(β, σ2 ) + 2k and BIC = D(β, σ2 ) + k log n, and k is the number 

of free parameters in the model (Akaike, 1974; Schwarz, 1978). Unlike primary simulation study 

outcomes of interest, AIC and BIC do not have flagged cut-off values where “good fit” is 

defined. Instead, these statistics are used to compare models, where the models with lower AIC 

and BIC values are preferred. Under “Reporting of Results and Proposed Comparative 

Analysis,” I discuss how I will use AIC and BIC values to evaluate and compare model fit and 

parsimony across models and conditions.  
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Chapter 4: Results 

Terminology 

Before discussing the results, I present the terminology used throughout this chapter. The 

27 scenarios have a nomenclature I use as shorthand to represent the combination of conditions 

used to compare each of the three methods of conducting a statistical analysis through the lens of 

intersectionality. The nomenclature contains three elements describing each scenario's 

components: a) sample size; b) proportion representation category; and c) the standard deviation 

category. The first element represents sample size and is expressed as n_5000, n_10000, or 

n_20000. The second element represents the proportion of representation and is expressed as p1 

for even representation, p2 for uneven representation, and p3 for extremely uneven 

representation. Finally, the standard deviation is expressed as std_small for small or unchanged 

standard deviation, std_large for large standard deviation near 5.0, and std_mixed for scenarios 

where 10% of the intersectional groups in schools were assigned to a large standard deviation 

condition, and the remainder were unchanged. For example, the nomenclature of 

n_5000_p1_std_small refers to a scenario with an n of 5000, an even proportional representation, 

and a small standard deviation. One additional component of the scenarios is the number of 

identity categories analyzed; a separate data generation process was required to produce data sets 

containing intersectional groupings based on two or three “identity” categories. These two 

categories of data were analyzed separately and, thus, this component is not included in the 

nomenclature.  

In addition to scenario nomenclature, there are differences in how I refer to the results of 

each intersectional group. For interaction and categorical models, the results of each 

intersectional group are referred to as estimated main effect coefficients, or “coefficients” for 
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short. For the MAIDHA model, the results are the estimated level two intersectional group 

intercepts, or “intercept” for short. Finally, I refer to intersectional coefficients/intercepts 

designed to have an effect as “true effect” and those designed to have no effect as “no effect.” 

When discussing specific coefficients or intercepts, I use an asterisk to designate if it has a true 

effect; for example, A1B1* has a true effect, but A5B1 does not. 

Procedures for Obtaining Results 

This simulation study was run in two waves of data generation. First, datasets were 

generated to represent two-category conditions. Then, datasets were generated to represent three-

category conditions. For the two-category condition, 27 different scenario combinations were 

explored: varied proportion of representation (even, unbalanced, and extremely unbalanced), 

within-group standard deviation (small, mixed, and large), and sample size (5000, 10,000, and 

20,000). Within each of these scenarios, 1000 replications of datasets were generated. Each 

model was run on each of the generated datasets, yielding 27,000 datasets and, thus 81,000 

combinations of scenarios and models. For the three-category condition, 21 different scenario 

combinations were explored, which varied in proportion of representation (even, unbalanced, and 

extremely unbalanced), within-group standard deviation (small, mixed, and large), and sample 

size (5,000, 10,000, and 20,000). Six scenario combinations fit in the two-category models could 

not be fit in some the three-category model iterations due to a lack of representation in certain 

intersectional groups. For scenarios with n = 5000 and n = 10,000 in the extreme proportion 

setting, there were some iterations in which not all groups were represented. Thus, those results 

were not included in this study. The dropped scenarios were:  

• n_5000_p3_std_small 

• n_5000_p3_std_large 
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• n_5000_p3_std_mixed 

• n_10000_p3_std_small 

• n_10000_p3_std_mixed 

• n_10000_p3_std_large.  

As described in Chapter 3, 1000 replicates were run for each scenario and the outcome 

was summarized over these replications. The outcomes examined included accuracy, bias, 

coverage, type 1 error, and power. Accuracy was calculated as the average deviation, across 

1000 replications, of the observed value from the true value. An accurate value is one where the 

deviation from its true value is 0; values above .50 points away from the true value were flagged.  

For bias, the accuracy value was multiplied by the standard error of beta (SE(�̂�)) to 

incorporate error in the deviation estimate. Bias was flagged as moderate for 0.5* SE(�̂�) or 

extreme as 2* SE(�̂�).  

Coverage was determined by examining the percent of replications for which the true 

value was included in the 95% confidence interval for each coefficient or intercept. Coverage 

was flagged if the percentage of coverage was below 92.5%.  

Type 1 error was examined for no effect coefficients or intercepts by calculating the 

percent of replications for which the p-value was below the alpha level of α = .05, thus 

incorrectly rejecting the null. Type 1 error was flagged if the percentage of time the null was 

incorrectly rejected was greater than the 5% alpha level.  

Finally, power was examined for true effect coefficients as the percent of times the null 

hypothesis was correctly rejected; the percent of replications for which the p-value was less than 

the alpha level of .05. Power was flagged when the false negative percentage was less than 80%.  
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Results were generated for each outcome in tables that summarize the outcome for each 

coefficient or intercept and scenario, with shading to represent flagged instances. The number of 

tables is extensive and stored in an online repository. To discuss the results, I start with an 

analysis of each model, where I present summarized results of the online repository tables in the 

narrative text in this chapter. This analysis is written individually for each outcome and model. 

For each table in the online repository, I discuss the overall patterns across scenarios and 

intercepts or coefficients within a given model. In the appendix I compiled summary tables. 

Then, to compare across models the average outcome values for true effect and no effect 

coefficients, which I discuss in this chapter. 

Finally, I summarize results across outcomes by presenting the overall percentage of 

flags for each outcome and model. Since the number of flags possible for each model and 

outcome varied, the number of observed flags was transformed into percentages representing the 

number of observed flags divided by the number of possible flags. For example, if there were 12 

intersectional groups in the model, the number of flags present for bias, accuracy, and coverage 

was divided by 12. If five of those outcomes were true effects, then the number of flags for 

power was divided by 5, and the number of flags on a scenario for type 1 error was divided by 7. 

Finally, I summarize the average of each outcome across all coefficients or intercepts and AIC 

and BIC values for model fit.  

Two-category Results 

Accuracy 

Model Analysis. Tables 2.1a-c in the repository present the average accuracy for each 

intersectional main effect coefficient or level two intercept. 

https://github.com/oszendey/Intersectional-Analyses/blob/main/Appendix_Repository.xlsx
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Interaction. The two true effect coefficients were flagged for high accuracy in scenarios 

with large standard deviation. The average accuracy values for the true effect coefficients in the 

high standard deviation scenarios were A1B1* (accuracy = 22.70) and A2B1* (accuracy 

=14.94). No other coefficients or scenarios were flagged for this model. 

Categorical. The categorical model followed a similar pattern, where the true effect 

coefficients in large standard deviation scenarios were flagged as inaccurate. The scenario 

n_5000_p3_std_large presented an exception to this pattern where three no effect coefficients 

were flagged as inaccurate: A4B0 (accuracy = 0.57), A5B0 (accuracy = 0.57), and A6B0 

(accuracy = 0.61). While these values deviated from their true values, that deviation was minimal 

compared to the average true effect coefficient (accuracy = 13.52) flagged in large standard 

deviation scenarios.  

MAIDHA. The MAIDHA model also demonstrated greater inaccuracies for true effect 

coefficients, but the pattern deviated from what was observed in the previous two models. 

Accuracy was always flagged for two true effect intercepts, A1B0* and A2B0*. While the 

accuracy values were always above .50 for those coefficients, the average value in large standard 

deviation scenarios (accuracy = 22.94) was greater than the average value in small and mixed 

standard deviation scenarios (accuracy = 1.26). The two other true effect intercepts, A1B1*, 

A2B1* were flagged for accuracy when the standard deviation was large. Finally, there was one 

no effect intercept, A3B1, that was flagged when the standard deviation was large.  

Model Comparison. Table 8 presents the average accuracy value for each true and no 

effect coefficient or intercept in each scenario, by model. The table presents shading when the 

average accuracy value was larger than the flagging cut-off of .50. The shading shows a clear 

pattern of what was described in the individual model analysis, where scenarios with large 
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deviations were less accurate for true effects. For MAIDHA, the accuracy values on average 

were above the flagging criteria in the mixed scenarios as well. All three models had better 

accuracy for no effect coefficients or intercepts. This means that each model represents a value 

of “0” with greater accuracy than a value different from 0. Figure 9 demonstrates the distribution 

of accuracy values with a dashed line used to indicate the .50 flagging threshold.  

Bias 

Model Analysis. Tables 2.2a-c contain bias estimates for individual coefficients or 

intercepts. The first set of tables, 2.2a-c.1, presents the mean bias values. The second set of 

tables, 2.2a-c.2, reports the average standard error of beta values, which were used to both 

generate bias values and flag for both moderate and extreme bias.  

Interaction. The two true effect coefficients, A1B1* and A2B1*, were always flagged in 

mixed and large standard deviation scenarios. In addition, the two true effect coefficients were 

the only ones to receive any flagging for extreme bias: A1B1* had extreme bias on all mixed and 

large standard deviation scenarios, and A2B1* had extreme bias on all large standard deviation 

scenarios. The two true effect coefficients contained the highest bias values of all coefficients, 

where the highest accuracy values were in large standard deviation conditions, with absolute 

values ranging from 3.66 to 4.80. All no effect coefficients were also flagged for moderate bias 

on the mixed standard deviation scenarios. Some no effect coefficients also received flagging on 

some of the large standard deviation scenarios. There were no instances of high bias in any of the 

small standard deviation scenarios. 

Categorical. The categorical model also did not present any flagging for bias when the 

standard deviation was small. The true effect coefficients were always flagged for bias in the 

mixed and large standard deviation scenarios, except A1B0*, which was not flagged for bias on 
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n_10000_p2_mixed, n_10000_p3_mixed, and n_20000_p3_mixed. Most of the bias flagged for 

true effect coefficients was extreme. Bias was also regularly flagged for no effect coefficients on 

mixed and large standard deviation scenarios—but not as frequently as the flagging for true 

effect coefficients. In addition, most of the bias flagged for the no effect coefficients was 

moderate.  

MAIDHA. All intercepts in the MAIDHA model were flagged for moderate or extreme 

bias in six or more scenarios. The effect of the intercept did not appear to determine whether bias 

was flagged; three of the five true effect intercepts (A1B0*, A2B0*, and A2B1*) were flagged 

across all scenarios for bias. In addition, five of the eight no effect intercepts (A4B0, A6B0, 

A0B1, A4B1, and A6B1) were flagged across all scenarios for bias. There was slightly more bias 

flagged in large standard deviation scenarios compared to small and mixed.  

Model Comparison. Table 9 presents the average absolute bias value for each true effect 

and no effect coefficient/ intercept, by scenario and model. The table presents shading for 

moderate and extreme bias based on the average SE(�̂�) value. The shading displays the patterns 

seen in the individual model analysis: both categorical and interaction models did not flag any 

bias on small standard deviation scenarios. For both of those models, true effect coefficients 

showed greater amounts of bias than no effect coefficients. The average bias values on 

MAIDHA intercepts were flagged for extreme bias in every scenario.  

 The distribution of bias values is depicted in Figure 10 flagged for moderate bias, and 

Figure 11 flagged for extreme bias. As can be seen, most values that fall close to 0 are flagged 

for moderate bias. Extreme bias captures the values in the tails, or the biggest deviations.  
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Coverage 

Model Analysis. Tables 2.3a-c contain information on coverage for each model and 

coefficient/ intercept. Tables 2.2a-c.1 present the percent of times, out of 1000 replications, for 

which the 95% confidence interval contained the true value for the given coefficient/ intercept. 

The set of tables, 2.3a-c.2 presents average 95% confidence intervals.  

Interaction. In every scenario, the two true effect coefficients, A1B1* and A2B1*, were 

flagged for lack of coverage, along with one no effect coefficient, A3B1. The flagged 

coefficients had little to no coverage, at or near 0%. There was little to no change in coverage 

across scenario scenarios.  

Categorical. Coverage was strong, above 92.5%, for all coefficients in the small standard 

deviation scenarios. For mixed and large standard deviation scenarios, every true effect 

coefficient was flagged for poor coverage. For true effects, coverage was often much higher in 

mixed standard deviation scenarios compared to large. For example, for A1B0*, coverage in 

mixed scenarios ranged from 47.60-91.40%, and in large standard deviation scenarios coverage 

ranged 0 to 1.90%. There was flagging for no effect coefficients across many mixed and large 

standard deviation scenarios as well.  

MAIDHA. The MAIDHA model had perfect (100%) coverage on every single intercept, 

both true effect and no effect. 

Model Comparison. Table 10 presents the average percent of coverage for each true 

effect and no effect coefficient or intercept by scenario and model. Table 10 presents the patterns 

of high percent of flagging for coverage in interaction and categorical models. For flagged 

coefficients in the interaction and categorical models, true effect coefficients always had worse 
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coverage than the no effect coefficients in the same scenario. As discussed in the individual 

model analysis, there was no flagging in the MAIDHA model. 

Figure 12 presents the distributions of coverage percentages, with a line at 92.50% to 

indicate flagging. All three distributions of flagged coverage were different, meaning coverage 

was highly dependent on the model. The distribution analysis depicts a disparity of coverage in 

the interaction model because most no effect coefficients had perfect coverage, and most true 

effect coefficients had no coverage. For the categorical distribution there was less of a disparity 

and more coverage percentages that fell at or near the 92.5% threshold. Finally, the MAIDHA 

distribution shows perfect coverage.  

Power 

 Tables 2.4a-c contain information on power. Tables 2.4a-b.1 for interaction and 

categorical models contains the percentage of times the p-value was less than the alpha level of 

.05, and the Tables 2.4a-b.2 present the average p-value. For the MAIDHA model, Table 3.4c.1 

is the percentage of times the calculated interval did not contain zero, and 3.4c.2 is the average 

interval mean.  

Model Analysis. 

Interaction. The two true effect coefficients modeled, A1B1* and A2B1*, were detected 

correctly 100% of the time in all scenarios. Thus, there were no flags for power in the interaction 

model. 

Categorical. There were also no coefficients flagged for power in the categorical model. 

The true effect coefficients had high coverage and thus were correctly detected nearly all the 

time. The minimum percentage of true effect correctly detected being 87.80% for A1B0* for the 

scenario n_5000_p3_std_mixed. 
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MAIDHA. There were four instances of flagging in the MAIDHA model for power. All 

flags were on the A3B0* intercept. The flagged scenarios for A3B0* were for 

n_5000_p3_std_small = 44.60%, n_5000_p3_mixed = 20.50%, n_10000_p3_std_mixed = 

55.60%, and n_5000_p3_std_large = 46.50%. All the scenarios with low power had extreme 

proportional representation, and three of the four were for the smallest sample size, n= 5000.  

Model Comparison. Table 11 presents the average rate of correctly detecting true 

effects. When averaged across all true coefficients, all percentages for detecting true effects were 

above the threshold of flagging of 80%, with the lowest percentage of 84.10% for the MAIDHA 

model on n_5000_p3_std_mixed. Overall, the interaction model had the highest percentage of 

true effects correctly detected, where both true effects were always detected. Power across all 

three models was extremely strong. The distribution of flags in Figure 13 further demonstrates 

the strength of power. 

Type 1 Error 

Model Analysis. 

Interaction. In the interaction model, the null hypothesis for no effect coefficients was 

frequently rejected above the 5% intended error rate. A3B1 was detected as having an effect 90-

100% of the time, whereas the other coefficients generally had an error rate below 10%.  

Categorical. The categorical model also had a high false positive rate, and the type 1 error 

flagging was related to standard deviation scenarios. The percentage of incorrectly rejected p-

values was lowest for small standard deviation scenarios, for which only about half of the 

coefficients and scenarios were flagged. Meanwhile, type 1 error was the highest for mixed 

standard deviations, where all the coefficients were flagged across each of the mixed standard 

deviation scenarios. The lowest false positive rate for mixed standard deviation scenarios was 
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A3B1 in n_5000_p3_std_mixed at 5.20% and the highest was for A4B0 in 

n_20000_p2_std_mixed at 58.30%. In the large standard deviation scenarios, false positive rates 

ranged from 4.40% for A4B0 in n_5000_p1_std_large to 32.70% for A6B0 in 

n_20000_p1_std_large. In addition to standard deviation, it appeared that sample size had a 

relationship to the false positive rate where larger sample sizes had higher false positive rates 

than smaller sample sizes.  

MAIDHA. The MAIDHA model had a low amount of flagging for type 1 error and thus a 

minimal false positive rate. The main exception to the low rate was A3B1, which was detected as 

incorrectly having an effect 80-100% of the time. The other intercepts had minimal flagging. 

Specifically, across the 27 scenarios, A0B0 had four false positives, A0B1 had eight false 

positives, A4B1 had three false positives, and A5B1 had three false positives.  

Model Comparison. When averaged across all coefficients/intercepts, the percentage of 

false positives for each model was frequently above the threshold of 5%, as seen in Table 12. 

The distribution analysis, Figure 14, shows how many of the detection rates were at or above the 

5% threshold. While MAIDHA did have minimal flagging for type 1 error, the near 100% false 

positive rate of A3B1 skewed the overall average. Therefore, on average, all models suffered 

from high type 1 error rates. MAIDHA’s type 1 error rates were similar across scenarios. For 

interaction and categorical type 1, error rates were lowest for small standard deviation scenarios 

and higher for mixed scenarios.  

Two-category Summary/ Conclusion 

To summarize the two-category scenarios, I first present summary Tables 13-15 which 

detail the average percentage of flags, per outcome, by scenario. Next, I explore a cross-outcome 

analysis based on Table 16 which reports the percentage of flags averaged across all outcomes, 
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by model and scenario. I explore the nuance of standard deviations using Figure 15. Then, table 

17 and Figure 16 present the overall percentage of flagged coefficients/ intercepts by model and 

outcome. To explore whether there is a relationship between model and outcome, I conducted a 

chi square test of independence on the percent of flags. Finally, I supplement the scenario and 

outcomes analysis with information on model fit in Table 18. For Tables 13-17, a five-category 

shading system is utilized to provide a description of the overall percentage of flagging. 

“Excellent” is used to describe flagged percentages from 0-19% where there is no shading. A 

light orange shades flags 20-39% where they are considered “ 

“moderate” flagging. A medium orange is used to shade flag percentages 40-59% and is 

considered a “fair” amount of flagging. “Poor” flagging is indicated by a dark orange, which 

shades flag percentages from 60-79%. Finally, anything flagged about 80% is shaded bright red, 

and considered “extremely poor”.  

Interaction. In the interaction model, Table 13, power was never flagged. Accuracy was 

flagged one-third of the time in each of the large standard deviation scenarios but not at all in 

the mixed or small standard deviation scenarios. Bias was extremely poor in mixed standard 

deviations and ranged from fair to poor in large standard deviation scenarios. Coverage was 

flagged half the time, across all scenarios. Finally, type 1 error performance was moderate to 

extremely poor, with the greatest percentage of flags occurring in mixed standard deviation 

scenarios.  

Categorical. In the categorical model, Table 14, there were no flagged instances for bias, 

accuracy, coverage, or power in small standard deviation scenarios. Type 1 error was flagged 

between 25-75% of the time in small standard deviation scenarios but in mixed and large 

standard deviation scenarios there was always poor or extremely poor performance. Power had 
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excellent performance across all scenarios. Accuracy had excellent performance in small and 

mixed standard deviation scenarios. Accuracy had a moderate performance in most large 

standard deviation scenarios. Performance was poor, however, when the sample size was small 

(n = 5000), and the proportional representation was extremely uneven (p3). While bias had 

excellent performance for small standard deviation scenarios, it was quite problematic across 

mixed and large standard deviation scenarios, ranging from being flagged 46.15-100% of the 

time. Similarly, coverage was problematic across mixed and large standard deviation scenarios, 

while the percentage of flags ranged from 52.85 to 100% of the time.  

MAIDHA. In the MAIDHA model, table 15, coverage was never flagged and thus was 

considered excellent across all scenarios. Power was also minimally flagged, with just four 

scenarios resulting in moderate flagging. Type 1 error performance was excellent in small 

standard deviation scenarios. Still, flagging increased to either moderate or fair for mixed 

standard deviation scenarios with uneven and extremely uneven proportion representation, as 

well as large standard deviations with extremely uneven proportion representation. Accuracy had 

excellent performance in small and mixed scenarios but increased to fair performance in large 

standard deviation scenarios. Finally, bias for MAIDHA had extremely poor performance, where 

every scenario was heavily flagged, ranging from a low of 71.43% to a high of 92.86%.  

Cross-Outcome Analysis. Table 16 presents the overall percentage of flags, averaged 

across outcomes. No model outperformed all others on every single outcome, indicating that 

each model has comparative strengths and weaknesses. For example, the interaction and the 

categorical models had a high average percentage of flags on the n_10000_p3_std_large scenario 

at 50.00% and 61.54%, respectively, the MAIDHA model only flagged at 38.52%. Whereas, on 

n_5000_p3_std_small, MAIDHA’s average of 23.37% of flagged instances were worse than that 
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of interaction at 20.00% and MAIDHA at 5.00%. Across all models, small standard deviation 

scenarios were related to less flagging. To better understand the patterns of sample size and 

proportional representation, Figure 15 presents the overall percentage of flags for small standard 

deviation scenarios. In this visualization, the interaction model had the highest flags in all 

scenarios = except for n_5000_p3 where the MAIDHA model had a higher percentage. For the 

interaction model, the highest percentage of average flags was observed for the n_20000_p1 

scenario. The categorical model consistently performed best, with the lowest percentage of flags 

occurring for n_5000_p2, n_5000_p3, n_10000_p3, and n_20000_p3. There were no clear 

patterns between the scenario and the percentage of outcomes. However, the categorical model 

surprisingly performed worse on even proportional representation scenarios than extreme 

proportional representation.  

Table 17 presents, accompanied by Figure 16, the overall percentage of flags by each 

outcome and model. This table again demonstrates the variation in model performance across 

outcomes. The MAIDHA model had the smallest percentage of flags on coverage, power, and 

error. The interaction model had the smallest percentage of flags on accuracy, and the interaction 

and categorical models had the smallest percentage on power. Overall, the most concerning 

outcome was the type 1 error rate, which was poor to extremely poor across categorical and 

interaction models and moderate for the MAIDHA model.  

To determine if there were statistically significant differences in the distributions of bias, 

accuracy, coverage, power, and type 1 error across interaction, categorical, and MAIDHA 

models, a Pearson’s Chi-squared test was conducted. The test yielded a Chi-squared statistic of 

223.63 with 8 degrees of freedom. The p-value of < .001 was below the alpha level of 0.05. This 
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indicates that we can reject the null hypothesis and conclude that there were statistically 

significant differences in the distributions of the five outcomes across the three models. 

AIC and BIC, as seen in Table 18, were consistent across models in each scenario. 

Therefore, no evidence exists that model fit changes due to the selected model. However, the 

overall fit did change based on the scenario. The scenarios that had the best overall fit (in order 

from best) were N_5000_p1_std_small, N_5000_p2_std_small, and _5000_p3_std_small. The 

scenarios that had the worst overall fit, in order from worst, were N_20000_p3_std_large, 

n_20000_p2_std_large, and n_20000_p1_std_large. 

Three-category Scenarios 

Accuracy 

Model Analysis. Tables 3.1a-c in the repository present three-category accuracy results 

for each model.  

Interaction. Accuracy values were below the flagging threshold of .50 in all small 

standard deviation scenarios. Four coefficient estimates in the mixed standard deviation 

scenarios received three or more flags: A2B1C1*, A1B1C2*, A2B1C2, and A6B1C2. Accuracy 

values were the highest overall in large standard deviation scenarios; every true effect coefficient 

was flagged in all seven scenarios. In addition, each of the no effect coefficients had at least 

three flags on the large standard deviation scenarios.  

Categorical. There were no coefficients flagged for accuracy on any of the small standard 

deviation scenarios. Five true effect coefficients (A1B0C0*, A2B0C0*, A2B1C0*, A2B1C1*, 

A1B1C2*) and three no effect coefficients (A6B0C0, A2B0C2, and A2B1C2) received at least 

one flag on the mixed standard deviation scenarios. The large standard deviation scenarios had 
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the highest number of flags; all coefficients except for seven no effect coefficients had at least 

one flag.  

MAIDHA. There were eight intercepts flagged on every single scenario: A2B0C0*, 

A3B0C0*, A2B0C1*, A1B0C2, A3B0C2, A1B1C2*, A2B1C2, and A6B1C2*. Four scenarios 

were flagged on all mixed and large standard deviation scenarios: A2B1C0*, A3B1C1, A0B1C2, 

and A4B0C2. Finally, all remaining intercepts received flagging on at least one large standard 

deviation scenario except for A2B0C0*, A4B0C1, A0B1C1, A2B1C1*, and A5B1C1.  

Model Comparison. Table 19 presents the overall pattern for the individual analysis. 

Across analyses, small standard deviation scenarios were the most accurate, followed by mixed 

scenarios, and the large scenarios were least accurate. While both true effect and no effect 

coefficients or intercepts were flagged, the average deviation from the true score for true effect 

coefficients/ intercepts was always higher compared to no effect coefficients/ intercepts. In the 

distribution of accuracy values displayed in Figure 17, the majority of coefficient/intercept and 

scenario combinations had minimal deviation and were thus accurate. The values in the tails of 

each distribution show that while on a whole the models were relatively accurate, each had 

model coefficient/ intercepts that were estimated extremely inaccurately.  

Bias 

Model Analysis. Tables 3.2a-c contain bias estimates for individual coefficients. The 

first set of Tables, 3.2a-c.1, report mean bias values. The second set of Tables, 3.2a-c.2 report the 

average standard error of beta values, which were used to generate bias values, which in turn 

were used to flag both moderate and extreme bias.  

Interaction. Every coefficient produced by the interaction model presented bias in more 

than half of the scenarios. In the small standard deviation scenarios, all bias was considered 
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moderate. In mixed and large standard deviation scenarios, extreme bias was observed. The bias 

appeared to be relatively balanced between true effect and no effect coefficients.  

Categorical. There was no bias flagged in small standard deviation scenarios for any 

coefficient. Overall, there was more extreme amounts of bias present in large standard deviation 

scenarios. However, the following eight no effect coefficients were flagged for bias in the mixed 

scenario but not for the large scenarios: A4B1C0, A0B0C1, A4B0C1, A0B0C2, A4B0C2, 

A0B1C1, A4B1C1, and A4B1C2.  

MAIDHA. In the MAIDHA model, 24 of the 42 intercepts MAIDHA= were flagged as 

extremely biased for most or all scenarios. Another 12 intercepts were flagged on most or all 

scenarios for moderate bias. There was no noticeable relationship between scenario and flagging.  

Model Comparison. As seen in Table 20 there was a clear pattern between flagging for 

bias and the standard deviation modeled into the data for both the categorical and interaction 

models. The small standard deviation scenarios were most accurate, followed by mixed standard 

and large standard deviation scenarios. The pattern for the MAIDHA model was less clear, but 

higher bias values were observed for the large standard deviation scenarios. Overall, the 

categorical model yielded the lowest average bias, and the MAIDHA model yielded the highest 

average bias. 

 The distributions of flags are shown in Figures 18 and 19. Overall, the categorical model 

produced a clear divide between flagging for moderate bias compared to the absence of flagging 

for bias, while the interaction and MAIDHA models had many instances on the threshold 

between no bias and flagging for moderate bias This can be seen in the Figures 18 and 19 where 

the bias values are further from the threshold line in the categorical model compared to the 

spread across the threshold line for the interaction and MAIDHA models. Most of the extreme 
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bias flags for categorical and interaction models were only observed in the tails, while the 

MAIDHA model had many extreme bias values close to the center. 

Coverage  

Model Analysis. Coverage is reported in two sets of tables in the online repository. 

Tables 3.3a-c.1 report the overall percentage of times, out of 1000 replications, that the true 

value was located within the 95% confidence interval. These tables are shaded to represent the 

flagging of values below 92.5%. The second set of Tables 3.3a-c.2 present the average upper and 

lower limits of the confidence intervals across 1000 replications.  

Interaction. In the interaction model, coverage was strong for no effect coefficients, 

where the average coverage was just under the cut-off at 92.39%. Meanwhile, true effect 

coefficients demonstrated substantially worse coverage, where the average coverage was 

67.32%. Every true effect coefficient had some scenarios in which it was flagged for poor 

coverage. However, only two no-effect coefficients scenarios were flagged: the first occurrence 

occurred for A1B1C1, which was flagged for under coverage for the n_20000_p1_std_large 

scenario (coverage = 66.30%). The second occurrence was for A2B1C2, which was flagged on 

most mixed and large standard deviation scenarios where the average coverage on flagged 

scenarios was (coverage = 21.00%). The combination of true effects and large standard deviation 

scenarios produced extremely poor coverage results, where the average was 22.62% coverage. 

Models in small standard deviation scenarios produced the highest overall coverage.  

Categorical. Similarly, in the categorical model, coverage was weak for true effect 

coefficients (average coverage = 37.67%) and slightly stronger for no effect coefficients (average 

coverage = 78.23%). There were eight coefficients, a mix of true effects and no effects, that were 

flagged for poor coverage across all scenarios: A2B1C1*, A6B1C1*, A2B0C2, A5B0C2, 
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A1B1C2*, A2B1C, A3B1C2*, and A6B1C2*. All other coefficients had strong coverage in 

small standard deviation scenarios but worse coverage in mixed and/or large standard deviation 

scenarios.  

MAIDHA. The pattern for the MAIDHA model did not resemble the coverage results for 

the two other models. Three true effect intercepts were flagged across most, if not all, scenarios: 

A1B0C0* (average coverage = 59.59%, A6B1C1* (average coverage = 62.27%), and A1B1C2* 

(average coverage = 67.97%). Three other true effect intercepts had flagging on only one 

scenario: A3B0C0* (n_20000_p3_std_mixed = 89.30%), A2B1C0* (n_5000_p2_std_mixed = 

91.00%), and A2B1C1* (n_5000_p2_std_mixed = 91.00%). Only one no effect intercept 

received any flagging, A2B0C0, which received flags on all n_5000_std_mixed and 

n_10000_std_mixed scenarios across all proportion representations as well as 

n_20000_p3_std_mixed. The average coverage for the flagged values of the A2B0C0 intercept 

was 88.12%.  

Model Comparison. Table 21 presents the average percentage of observations each true 

value fell in the 95% confidence interval, with values under 92.5% shaded to indicate under 

coverage. Overall, MAIDHA presented the strongest coverage across true effects and no effects. 

The interaction model demonstrated strong coverage for small standard deviation scenarios but 

was considerably weaker for large standard deviation scenarios. The categorical model, on 

average, displays the weakest coverage across scenarios.  

Figure 20 displays the overall distribution of coverage percentages. A dashed red line 

represents a flagging criterion of 92.5% or below. The distribution shows that the categorical 

model suffers from under coverage for many coefficients and replications. Meanwhile, the 

MAIDHA model has minimal dispersion of under coverage.  
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Power 

Model Analysis. Tables 3.4a-c present findings for power. Tables 3.4a-b.1 report results 

for the interaction and categorical models and show the percentage of times the p-value was less 

than the alpha level of .05, and Tables 3.4a-b.2 presents the average p-value. For the MAIDHA 

model, Table 3.4c.1 reports the percentage of observations for which the calculated interval did 

not contain zero, and 3.4c.2 presents the average interval mean.  

Interaction. Only one coefficient, A3B1C2*, was flagged for minimal power. For 

A3B1C2*, in most scenarios, the null hypothesis was retained more than 80% of the time. 

Specifically, A3B1C2* had low power in all but four scenarios; those four had uneven 

proportion representation as a common denominator. All other coefficients had nearly perfect 

detection across scenarios.  

Categorical. Most coefficients had near-perfect power across scenarios. However, 

A3B1C2* and A6B1C2* always had lower detection percentages and were always flagged. 

A5B0C2* had low power on small and mixed scenarios, and A1B1C2* had low power on small 

and some mixed scenarios. Finally, A2B0C0* and A2B0C1* were flagged for several large 

standard deviation scenarios.  

MAIDHA. Four intercepts were flagged for over half of the scenarios: A2B0C0*, 

A2B0C1*, A5B0C2*, and A3B1C2*. There was no distinct pattern for those four intercepts as to 

which scenarios had a higher error. Two other intercepts were flagged on n_p2_std_mixed: 

A1B0C0* and A2B1C0*.  

Model Comparison. Table 22 presents the percentage of flags across scenarios. On 

average, the interaction model had the strongest power, and the average of all coefficients was 

above the flagging criteria of 80%. Both the categorical and MAIDHA models' average power 
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was below the 80% threshold for most scenarios. These patterns are evident in the distribution of 

percentages in Figure 21. Figure 21 shows that the percentages in all three models were close to 

100. MAIDHA had many cases with low percentages in the tail, indicating a high number of 

intercepts that were rarely detected. 

Type 1 Error 

Model Analysis. 

Interaction. Most coefficients in the interaction model were flagged for type 1 error most 

of the time. Some coefficients, such as A4B1C1, had detection rates slightly over the alpha level 

(average = 10.50%). Whereas others, such as A2B1C2, had p-values that were nearly always 

above the alpha level (average = 99.84%).  

Categorical. Every coefficient in the categorical model received flagging in at least some 

scenarios. Most coefficients received flagging on over half of the scenarios. Oftentimes, 

scenarios with large standard deviations had higher type 1 error rates compared to those in mixed 

or small standard deviations on the same coefficient —but this pattern did not hold across all 

coefficients.  

MAIDHA. The MAIDHA model had a high type 1 error rate. All but one of the 

intercepts, A5B0C1, were flagged in almost all scenarios. The percentage of false detection was 

often well above the 5% alpha threshold, frequently between 90-100%.  

Model Comparison. Table 23 presents the average false positive percentage across all 

coefficients/intercepts for each model. Every model had an average type 1 error rate above the 

5% alpha threshold for all scenarios. The highest average percentage of false positives was 

89.41% for the interaction model in n_20000_p1_std_large. The lowest rate was for the 

categorical model in n_5000_p1_mixed at 17.44%. Overall, the categorical model had the lowest 
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type 1 error rates. The distribution in Figure 22 shows the wide variety of type 1 error rate 

percentages across intercept/coefficients and scenarios. In each model, there was a minority of 

instances that were below the 5% alpha threshold.  

Model Summary/Conclusion 

To summarize the two-category scenarios, I first present summary Tables 24-26 which 

detail the average percentage of flags, per outcome, by scenario, with each table representing a 

different model. Then, I explore a cross-outcome analysis based on Table 27 which reports the 

percentage of flags averaged across all outcomes, by model and scenario. I explore the nuance of 

standard deviation scenarios using Figure 23. Then, Table 28 presents the overall percentage of 

flagged coefficients/ intercepts by model and outcome, with an accompanying visualization 

shown in Figure 24. To explore if there was a relationship between model and outcome, I 

conducted a chi square test of independence on the percent of flags. Finally, I supplement the 

scenario and outcomes analysis with information on model fit in Table 29. For Tables 24-28, a 

five-category shading system is utilized to provide a description of the overall percentage of 

flagging. “Excellent” is used to describe flagged percentages from 0-19% where there is no 

shading. A light orange shades flags 20-39% where they are considered moderate flagging. A 

medium orange is used to shade flag percentages 40-59% and is considered a fair amount of 

flagging. Poor flagging is indicated by a dark orange, which shades flag percentages from 60-

79%. Finally, anything flagged about 80% is shaded bright red, and considered extremely poor.  

Interaction 

Table 24 presents the percentages of flags for each outcome and scenario in the 

interaction model. The interaction model had extremely poor performance on type 1 error, where 

most coefficients received flags nearly all the time across scenarios. Conversely, the interaction 
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model performed moderately well to excellent for power, where the percentage of coefficients 

flagged in each scenario was always 20% or less. For accuracy and coverage, there was a 

relationship between the standard deviation scenario and the percentage of flags. For accuracy 

and coverage, large standard deviation scenarios were related to a higher level of flagging. Bias 

had a relationship with proportional representation; there were always more flags in even 

representation (p1) compared to uneven representation (p2) and frequently more than in 

extremely uneven representation (p3).  

Categorical 

Table 25 presents the percentages of flags for each outcome and scenario in the 

categorical model. Type 1 error performed worst across all scenarios, where more than 20% of 

the coefficients were flagged for most scenarios. The categorical model performed best on 

power, with only one scenario flagged more than 20% of the time. All outcomes in the 

interaction model appeared to have a relationship with large and mixed standard deviations 

related to higher flagging compared to small standard deviations. In addition, a higher sample 

size was often related to increased type 1 error. Only one outcome/ scenario, 

n_20000_p3_std_mixed, had extremely poor performance for type 1 error.  

MAIDHA 

Table 26 presents the percentage of flags for each scenario and outcome in the MAIDHA 

model. The MAIDHA model had extremely poor performance in all scenarios for both bias and 

type 1 error. The MAIDHA model performed best on coverage, where it had excellent 

performance across all scenarios. In small and mixed scenarios, there was increased flagging for 

smaller sample sizes and n = 20,000 when the proportional representation was extreme. Finally, 

the percentage of flags for accuracy increased for large standard deviations scenarios. 
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Cross Model Analysis  

Table 27 presents the average percentage of flags across all outcomes for each model and 

scenario. The categorical model presented the only instances with outcomes flagged, on average, 

less than 20% of the time. The low percentage of flagging for the categorical model occurred 

most often for the small standard deviation scenarios. For all three models, flagging was the 

highest for large standard deviation scenarios. For the interaction model, flagging was higher for 

even representation than uneven (although it was also high for extremely uneven).  

 Since all models performed stronger for small standard deviation scenarios, it was useful 

to isolate the small standard deviations to better understand the impact of proportional 

representation and sample size; this is displayed in Figure 23. The interaction model had the 

fewest flags on n_20000_p2_std_small and the highest number on n_10000_p1_small. The 

categorical model has the most flags on n_5000_p2_std_small and the least number on 

n_10000_p2_small. Finally, MAIDHA had the most flags on n_20000_p3_small and the least 

flags on n_20000_p1_small. Overall, there was not a noticeable relationship between the 

averaged outcomes sample size and proportional representation.  

Table 28 and Figure 16 present the total percentage of flags each outcome received across 

models. Of all the models, the categorical model performed best for four of the five outcomes: 

accuracy, bias, power, and type 1 error. The MAIDHA model performed best on coverage. 

Despite the better performance, the overall percentages for the categorical model were still 

concerningly high, ranging from 3.97 to 43.90%. Across all models, the worst outcome was type 

1 error, which was flagged in the interaction model 93.20% of the time, in the categorical model 

47.25% of the time, and in the MAIDHA model 91.11% of the time. 
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To determine if there were statistically significant differences in the distributions of bias, 

accuracy, coverage, power, and type 1 error across interaction, categorical, and MAIDHA 

models, a Pearson’s Chi-squared test was conducted. The test yielded a Chi-squared statistic of 

219.01 with 8 degrees of freedom. The p-value of < .001 was below the alpha level of 0.05. This 

indicates that we can reject the null hypothesis and conclude that there were statistically 

significant differences in the distributions of the five outcomes across the three models. 

Table 29 presents the AIC and BIC, an indication of model fit. The categorical and 

MAIDHA models often had very similar model fit indices, but the interaction model differed 

substantially. This makes sense since the AIC and BIC penalize models with more parameters, 

and the interaction model had about half as many parameters as the other two models. Therefore, 

there were no consistent three scenarios across models that were best and worst. For the 

interaction model, the three scenarios with the best fit were n_5000_p2_std_small, 

n_5000_p1_std_small, and n_5000_p2_std_mixed. The three scenarios with the worst fit were 

n_20000_p3_std_large, n_20000_p2_std_large, and n_20000_p1_std_large. For the categorical 

and MAIDHA models the three scenarios with the best fit were n_20000_p1_std_mixed, n 

20000_p1_std_large, and n_20000_p3_std_mixed. The three scenarios with the worst fit were 

n_10000_p2_std_small, n_5000_p1_std_large, and n_5000_p1_std_small. 

Comparison of Two and Three-Category Results 

 Tables 30 and 31 present previously explored results reconfigured to explore two and 

three-category percentages of flags side by side. Table 30 presents the average percentage of 

flagged outcomes per scenario by model. Table 31 presents the percentage of flagged 

coefficients/intercepts by outcome. 
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Similarities 

 The two and three-category scenarios had consistent themes across other scenarios and 

models. First, in the individual model analysis of coefficients/intercepts across outcomes and 

models, a relationship between a given outcome and larger amounts of variation was observed 

frequently. 

  In Table 30, it is evident that the categorical model had a consistent relationship with 

standard deviation scenarios and always had a low percentage of flagging on the small standard 

deviation scenarios. In the interaction model, there was a consistent relationship with the mixed 

standard deviation scenarios where in both the two and three-category scenarios, flagging 

occurred approximately 50% of the time.  

 Table 31 helps portray the consistency in performance across outcomes for each model. 

For the interaction and categorical models, power was the best-performing outcome across two 

and three-category scenarios, and type 1 error was the worst-performing outcome. Coverage was 

the best performing outcome for the MAIDHA model for both two and three-category scenarios.  

Differences 

 While the individual model analysis often centered around true vs. no true coefficients 

being flagged at different rates, that pattern was more apparent for two-category models than 

three.  

 Table 30 shows that the interaction model had a higher percentage of flags for small and 

large standard deviation conditions in the three-category scenarios. In addition, for the three-

category scenarios, the interaction model flagged even proportional representation at higher rates 

compared to unbalanced and extremely unbalanced representation scenarios. For the categorical 

models, mixed standard deviation scenarios were flagged substantially higher in two-category 
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conditions compared to three-category conditions. Finally, the MAIDHA model always had a 

higher percentage of flagging in three-category conditions across scenarios.  

 In Table 31, it is useful to look at differences in the overall percentage of an outcome 

flagged. Specifically, I point to instances in each model where the percentage of an outcome 

flagged differed by 15 or more percentage points. For the interaction model, bias (18.25 

percentage point difference) and coverage (25.40 percentage point difference) were substantially 

worse in the two-category scenarios than the three-category scenarios. Still, in the interaction 

model, power was never flagged for two-category scenarios but was flagged 16.19% of the time 

for three-category scenarios. In the categorical model, bias was flagged less in three-category 

scenarios (31.97 percentage point difference) and accuracy was flagged more in three-=category 

scenarios (29.87 percentage point difference). The MAIDHA model had substantial differences 

between two and three-category scenarios: bias was flagged at a higher rate in two-category 

scenarios (34.34 percentage point difference). Whereas a higher percentage of three-category 

scenarios were flagged for accuracy (66.10 percentage point difference), power (25.61 

percentage point difference), and type 1 error (69.21 percentage point difference). Particularly 

striking is the change in type 1 error; for two-category scenarios, the type 1 error rate was 

substantially lower than in the other models, whereas, for the three-category scenarios, it was 

about the same as the other models.  
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Chapter 5: Discussion 

In this dissertation, I sought to understand the implications of an intersectional lens when 

applied to a quantitative research design. While the specific focus of this work was on the 

statistical implications resulting from the methods of modeling an intersectional analysis, 

Chapter 2 also addresses conceptual implications because the two cannot be separated in a 

research project. For Chapter 5, I aim to widen the lens and re-integrate conceptual 

considerations in light of the statistical results. The aim of this chapter is to engage in a 

discussion on how and in what ways it is appropriate to use the results of this dissertation and to 

provide actionable steps for researchers.  

This chapter begins with a discussion of the research questions with a focus on surprising 

statistical findings and why they might have occurred. Then, I discuss how researchers can apply 

the findings of this study to their own quantitative intersectional projects. In the discussion, I 

explore the limitations researchers will face when applying methods of intersectional analyses. In 

Next, I provide suggestions for future simulation studies that explore specific issues not 

addressed in this dissertation study. Before concluding, I reintegrate the discussion of model use, 

and how these results can be used in conjunction with statistical theory. 

Summary of Findings 

Revisit Research Questions 

To answer the research questions, I reference the flagging classifications from Chapter 4: 

0-19% “excellent” performance on outcomes, 20-39% “moderate” performance on outcomes, 

40-59% “fair” performance on outcomes, 60-79% “poor” performance on outcomes, and 80-

100% “extremely poor” performance on outcomes. Tables 13-17, 24-28, and 30-31 are a useful 

reference for this discussion.  
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Research Question 1: What are the statistical advantages and disadvantages of each model 

under different demographic data characteristics?  

There was no one model or scenario in which performance on the outcomes observed was 

uniformly strong. Instead, for each scenario, every model had both statistical advantages and 

disadvantages. To answer this question, I investigated the overall percentage of coefficient and 

outcomes flagged for each model, by scenario conditions. For each model, I start with a 

presentation of what worked well: scenarios where performance on each outcome was relatively 

strong. Then, I discuss what went poorly: scenarios where performance on each outcome was 

relatively poor. I then summarize the findings from chapter 4 based on differences between true 

and no effect coefficient or intercepts. These results, for each model, are presented in table 32. In 

the section labeled Across Outcomes, I explore the average percentage of flags across all 

outcomes and discuss overall best and worst performances.  

Interaction. 

Individual Outcomes. Accuracy had excellent performance for small and most mixed 

standard deviation scenarios. For the two-category scenarios, bias had excellent performance in 

small standard deviation scenarios. Power always had excellent performance in the two-category 

scenarios and moderate performance in the three-category scenarios.  

Accuracy had poor or extremely poor performance in most three-category large standard 

deviation scenarios. Bias had extremely poor performance in all two-category mixed standard 

deviation scenarios, and poor performance in scenarios with extreme representation, two-

categories, and large standard deviation. Bias had extremely poor performance for three-category 

small and mixed standard scenarios. Across scenarios, type 1 error was always poor or extremely 

poor.  
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Differences in accuracy and bias were observed for outcomes of no effect coefficients 

compared to those with true effects, in which case true effect coefficients often performed worse. 

Coverage was also worse for no effect coefficients for the three-category = large standard 

deviation scenarios. In two-category scenarios, the interaction model always had moderate 

performance on coverage. However, for the three-category scenarios, coverage had excellent 

performance for all small standard deviation scenarios and fair performance in large standard 

deviation scenarios. 

Across Outcomes. The lowest overall percentage of flagging across outcomes occurred 

when the standard deviation was small and only two demographic categories were included. For 

these scenarios, the performance of the interaction model was moderate. There were no scenario 

combinations in which performance across outcomes was excellent. The percentage of flags in 

the two-category small standard deviation scenarios was consistent across sample size and 

proportion representation. While there was a greater percentage of flags compared to the two-

category scenario, the three-category scenario also had moderate performance on small standard 

deviation scenarios. Within the three-category scenarios, the lowest percentage of flags occurred 

for small standard deviations with uneven proportion representation. 

There were several instances of poor performance for the interaction model, but none of 

these scenarios resulted in extremely poor performance. The worst performance for the 

interaction model occurred for three-categories in large standard deviation scenarios when the 

proportion of representation was even or extremely uneven. 

Categorical. 

Individual Outcomes. Accuracy, bias, coverage, and power all had scenarios within the 

categorical model results in which there was excellent performance. Accuracy had excellent 
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performance on small and mixed standard deviation scenarios. Bias and coverage had excellent 

performance on small standard deviation scenarios. Power had excellent performance in almost 

all scenarios.  

There were also instances of poor or extremely poor performance for the categorical 

model across individual outcomes. Accuracy had one instance of poor performance in the two-

category scenarios: in large standard deviations, uneven proportion representation, and small 

sample (n = 5,000). Accuracy had poor performance for all uneven or extremely uneven 

proportion representation within the three-category large standard deviation scenarios. Bias and 

coverage both had either poor or extremely poor performance on most two-category mixed and 

large standard deviation scenarios. Bias and coverage ranged from fair to poor performance in 

the three-category mixed and large standard deviation scenarios. For two categories, type 1 error 

had poor or extremely poor performance for all two-category mixed and large standard deviation 

scenarios, as well as several scenarios with small standard deviations. In the three-category 

scenarios, there were several instances of poor performance in type 1 error throughout mixed and 

large standard deviation scenarios, but only one instance of extremely poor performance, with a 

large sample size (n = 20,000), extremely uneven proportion, and a mixed standard deviation. 

There were also differences observed for true compared to no effect coefficients. 

Accuracy and bias were often higher in mixed and large standard deviation scenarios for true 

effect compared to no effect coefficients. In scenarios with two categories mixed and large 

standard deviations, as well as in three-category scenarios with small standard deviations, 

coverage was often higher for no-effect coefficients than for true effect coefficients. 
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Across Outcomes. The categorical model had excellent performance in all small standard 

deviation scenarios. In addition, it had moderate performance in three-category mixed standard 

deviation scenarios for small (n = 5,000) and moderate (n = 10,000) sample sizes. 

There was poor performance on several two-category scenarios: moderate (n = 10,000) 

and large (n = 20,000) sample sizes in the mixed standard deviation scenario with even or 

uneven representation, large (n = 20,000) sample sizes in the large standard deviation scenario, 

and moderate sample size (n = 10,000) in the large standard deviation scenario when the 

proportion of representation was extremely uneven.  

MAIDHA.  

Individual Outcomes 

The MAIDHA model always had excellent coverage across all scenarios. In addition, it 

had excellent accuracy in two-category small and mixed standard deviation scenarios and three-

category small standard deviation scenarios. There was excellent performance for power in most 

two-category scenarios, and moderate performance in most three-category scenarios. For two-

categories, there was excellent performance for type 1 error in all scenarios with small standard 

deviations, mixed standard deviations with even proportion representation, large standard 

deviations and either even or uneven proportion representation. 

Accuracy had no instances of poor or extremely poor performance in two-category 

scenarios but did have fair performance on two-category large standard deviation scenarios. 

Accuracy had extremely poor performance on three-category large standard deviation scenarios. 

There was poor or extremely poor performance for bias on all scenarios in both two and three-

category models. Finally, type 1 error was always extremely poor in the three-category scenarios. 
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There was also a relationship between the true effects and no effects and how each 

intercept effect type performed on each outcome. True effect intercepts always performed worse 

than no effects on accuracy and bias. True effect intercepts often had worse coverage than no 

effect intercepts for three-category scenarios.  

Across Outcomes. The MAIDHA model had excellent performance for all two-category 

scenarios with small standard deviations except the small sample size (n = 5,000) with uneven 

representation, where it had fair performance. In addition, MAIDHA had fair performance across 

all other scenario combinations in the two-category scenario except the small sample size (n 

=5,000) with uneven proportion representation in large standard deviations. The MAIDHA 

model had poor performance in three-category scenarios with large standard deviations for all 

moderate sample sizes (n = 10,000) as well as large sample sizes (n = 20,000) with uneven or 

extremely uneven proportion representation.  

Research Question 2: In what ways does each model perform differently from one another 

under each demographic data characteristic scenario? 

Looking at specific outcomes across demographic data characteristics, the MAIDHA 

model performed better than the interaction and categorial models for type 1 error within in two-

category scenarios, where it performed moderately. The categorical model outperformed the 

other models in the three-category scenarios, where it had a fair overall performance on type 1 

error, while MAIDHA and the interaction model had extremely poor performance on type 1 error 

in the three-category scenarios. For power, the MAIDHA and interaction models saw an increase 

in the percentage of flags with the three-category scenarios. In contrast, the categorical model 

had excellent power performance in two and three-category scenarios. MAIDHA always had 

excellent coverage, while the interaction and categorical models had fair coverage. Finally, 
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MAIDHA had a higher percentage of flags on accuracy and bias than the interaction and 

categorical models. 

Scenarios. Despite overall different performances on individual outcomes, models had 

similar performance on average percent of total flags for each scenario. In total, the greatest 

differences in performance were associated with the magnitude of the within-intersectional group 

standard deviation simulated in the data. All models performed better for most outcomes in small 

standard deviation scenarios compared to mixed and large standard deviation scenarios. This 

suggests that the amount of standard deviation within intersectional groups is related to how well 

models estimate the true value and detect a true effect if it is simulated in the data. In addition, 

there were differences for each model based on the number of categories included in the analysis. 

For most models, better performance was observed across outcomes for two categories compared 

to three. However, the categorical model had several outcomes where that pattern was reversed: 

type 1 error was always worse for two-category scenarios; coverage and bias were worse for 

two-category scenarios in mixed and small standard deviations. While there were some instances 

where outcomes seemed to differ regarding proportion representation or sample size, those 

findings were minimal compared to the changes associated with standard deviation and the 

number of categories included.  

Comparison of Two and Three-Category Findings. The number of categories included 

in each model had a strong impact on statistical outcomes. In this study, I expected scenarios 

with two-categories to have better outcomes than those with three. However, that relationship 

was sometimes flipped, such that three-category scenarios showed less overall flagging. Models 

were not directly comparable between two and three-category scenarios because of the two 

separate data generation processes. However, due to the similarity of the data generation 
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processes and a desire to understand the impact of the number of intersectional groups, it is 

useful to discuss differences in the performance of models when there were two versus three-

categories. In this section, I compare the two and three-category models on each outcome, 

specifically focusing on instances where the percentage of flagging was greater than ten-

percentage points (see Tables 17 and 28). 

` For accuracy, the percentage of flagging across all models was higher for three-category 

scenarios versus two-category scenarios such that models with more categories were less 

accurate. Bias followed a similar pattern for the interaction and MAIDHA models, where two-

category scenarios had a lower overall percentage of flagging for bias. However, in the 

categorical model, bias was flagged less often for each model for three-category scenarios 

compared to the two-category scenarios. This pattern of observations may have occurred because 

the additional fixed effects accounted for different sources of variability in the data.  

 There were also surprising results for coverage. Coverage flagging was reduced by over 

ten percentage points for two versus three-category scenarios for the interaction and categorical 

models. This indicates that the three-category models had better coverage and that the true value 

appeared in the confidence interval more frequently. This may be due to various factors, such as: 

a) the fixed effects accounting for a greater proportion of the variance; or b) the amount of error 

surrounding the estimated coefficient/ intercepts resulted in wider confidence intervals, thus 

providing a larger interval for the true value to fall into. Power was flagged at substantially 

higher rates for three-category scenarios compared to two-category scenarios for the interaction 

and categorical models. This observation suggests that as more terms, and thus more true effect 

terms, are introduced, the models are less likely to detect all the true effects; a pattern which was 

expected for power. 
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Due to multiple comparisons, I expected type 1 error to increase when more terms were 

included in each model. The interaction and the MAIDHA models followed this pattern: there 

was greater type 1 error in the three compared to the two-category scenarios. However, for the 

categorical model, there was a surprising 31.72 percentage point decrease in flagging for type 1 

error for the three compared to the two-category scenarios. It is unclear why this pattern may 

have occurred, but I present several hypotheses related to the A) relationship with power, B) 

amount of random variation, and C) overall sample size.  

A) Relationship with power: this pattern may be due to the relationship between power 

and type 1 error; overall power was lower in the categorical model compared to the other two 

models. There were no substantial changes in power from the two and three-category scenarios 

in the categorical model, while there were in MAIDHA and interaction. The tradeoff of lower 

power may have led to a more conservative control of type 1 error for the categorical model, but 

this is unlikely to tell the full story.  

B) Amount of random variation: type 1 error can be influenced by random variation in 

the data. Therefore, it's possible that the two different data generation strategies impacted the 

type 1 error for the categorical model in different ways. Therefore, it is possible that the data 

generation process favored the three-category categorical model compared to the two-category 

model.  

C) Overall sample size: type 1 errors can be influenced by sample size. Thus, it is 

possible that with the three-category model, the sample size was not large enough to support the 

increased complexity, leading to less detectable differences.  
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Next steps for Applied Researchers 

Given the complexity of the findings summarized above, this section aims to explore how 

the results may be used to advance methods of modeling intersectional analyses. Specifically, 

this section explores how researchers interested in using a method of intersectional analyses can 

consider and counter the limitations of within-group standard deviation, number of categories, 

the high type 1 error rate, and—specific to MAIDHA— the random effect statistical 

significance. 

Within Intersectional Group Standard Deviation 

Each model demonstrated better performance across outcomes when the within-group 

standard deviation was small. However, a small within-group standard deviation is unrealistic in 

most education contexts. In addition, the amount of variance in real contexts has more 

irregularity than the fixed values set in my study. For example, I used a mixed condition to help 

demonstrate how the overall mix of variances may influence parameters, where 10% of the 

groups had a high standard deviation. In a real-life context, within-group standard deviation will 

likely be more variable in mixed contexts. While the standard deviation scenarios in this study 

helped to demonstrate that the amount of within-group variability is influential, what was 

modeled is unlikely to be a scenario that matches the variability of lived experiences within 

intersectional groups. 

Before beginning analysis, researchers must consider how the overall within-group 

standard deviation influences model parameters. Suppose within-group variability is large. 

Researchers can engage in a priori simulation studies designed to examine how the variance 

influences statistical outcomes. This can provide confidence in the results if the simulation study 

shows that the variance structure of their intersectional groups does not lead to inflated flagging 
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of outcomes. On the contrary, if the variance structure of intersectional groups negatively 

impacts modeling outcomes, they may wish to explore alternative methods of analysis.  

Number of Categories  

Findings from this study can be used by researchers to consider the implications the 

number of categories they plan to include in their analysis has on their model. This simulation 

study examined two and three-category scenarios. Within those categories, this study examined 

varying number of intersectional groups such that for two-category scenarios, there were a total 

of 14 intersectional groups and for three-category scenarios there were a total of 42 intersectional 

groups. In other contexts, the number of categories and number of groups within each category 

will differ. Additional research is needed to determine how these types of expected changes in 

research design influence model outcomes. 

These results showed one version of incorporating intersectional groups. However, there 

are other ways that it is possible to explore three-categories of intersections without 

incorporating them all directly into a model. An alternative approach would be to take a subset of 

the data of just category A and perform an intersectional analysis of B and C. For example, if, 

based on theory, a researcher is interested in the experience of gender identity in academia, they 

may already recognize that the female gender identity has unique intersections with racialized 

identity and income status. So, instead of running an intersectional analysis on 

gender*race*income, they could opt to run an intersectional analysis of race*income within the 

female gender identity. While this will answer different research questions compared to the 

former approach, it would likely be more informative and yield better model outputs.  
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Type 1 Error Rate 

 Of all the outcomes, type 1 error had the most consistent flagging across models and 

scenarios. When there was sizeable within-group variation, type 1 error was almost always 

flagged. While this may be discouraging, there are approaches that can help mitigate type 1 error 

inflation. Relationships of intersectional groups that were previously hidden can be considered a 

new discovery and would benefit from the researcher selecting a lower alpha threshold. In a 

commentary authored by over 20 statisticians, Benjamin et al. (2018) recommend using an alpha 

threshold of .005 in instances of new discoveries to reduce the rate of false positives. In addition, 

researchers should utilize a p-value adjustment method to account for multiple comparisons, 

such as the B-H method of a family-wise procedure (Benjamini & Hochberg, 1995; Shaffer, 

1995).  

Significance in MAIDHA   

The MAIDHA model presents challenges for determining significant differences between 

intersectional groups. In the MAIDHA model, intersectional groups were explored as random 

effects. In hierarchical linear modeling, it is unusual to develop a hypothesis and report a p-value 

for random effects. In fact, no such p-value is estimated by most software outputs. Instead of 

relying on p-values and test statistics, I created confidence intervals to examine whether there 

was a “significant” difference between intersectional groups. In this work around, I used the 

confidence intervals around the intercepts to consider whether the interval excluded “0” which 

would suggest an effect associated with that intersectional group’s experience on the outcome. 

This approach of using estimated confidence intervals was imprecise. There are other 

alternatives researchers may choose to explore, such as leaning on high dimensional fixed effects 

to make decisions. Instead of relying on the level two random effects to inform a decision, 
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researchers could explore the fixed effects within each intercept by examining point estimates 

and the 95% confidence intervals surrounding them for each additive identity (within a given 

intersectional group).  

Proportion Representation 

The representation of intersectional groups is a challenge for researchers interested in 

exploring intersectionality. As I discussed in chapter two, it is common in education research to 

have small sample sizes in some demographic categories, and large sample sizes in others. This 

is due to the overall representation of all intersections in the population of this country and the 

systems of oppression that have caused disproportionate access to educational opportunities and 

attainment.  

 Researchers often cannot represent the universe of all possible intersections within their 

sample. When I started this work, I initially had smaller proportions suggested for some of the 

identity indicators in the extreme representation scenarios. However, when combined for two-

way and three-way intersections, the odds that those identities would appear in the sample for 

even my largest size of n = 20,000 became quite small. For example, I initially had the extreme 

condition set that A1 = .005, B0 = .200, and C0 = .100. Therefore, the probability that someone 

of those three intersecting identities, A1*B0*C0, could be selected for the sample was p = .0001. 

Because this was a simulation study, I could manufacture the proportions. I raised them to 

understand how full representation would influence data properties. However, in real-life 

conditions, a researcher cannot increase the proportion when an intersectional group is absent in 

their study.  

While I could achieve representation in many cases, that representation was often small. 

For example, I had one student who was A6*B1*C2 in school ID # 62. I allowed one student 
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from that school to be used to make inferences about the population of all students in that 

intersection represented in that school. Researchers must examine not only the statistical 

properties but also the implications for interpreting the results. It may not be appropriate, 

depending on the context, to include cases where a single student represents an intersectional 

group’s experience in large-scale quantitative studies due to the risk of misrepresenting an entire 

intersectional group's experiences. Yet, a student's experiences should not be overlooked just 

because they exist at a unique intersection within a system of oppression. Researchers must tread 

carefully with their modeling and interpretation choices when making inferences about the 

population. 

Researchers interested in applying an intersectional approach should consider the overall 

representation in their sample (or ideal sample) before selecting research questions and 

determining a research approach. Braun (2021) coined the term "carrying capacity of data" to 

provide a framework for examining the extent to which a data source can answer a given 

research question, is appropriate for a particular hypothesis, and can handle specific statistical 

approaches. This framework, or similar techniques to investigating a data source, should be 

applied before estimating a model. By scrutinizing the data in the planning stages, researchers 

can ensure they choose an appropriate model and avoid situations where they may jump to 

inappropriate conclusions.  

Next Steps in Studying Methods of Modeling Intersectional Analyses  

 In this research I explored three methods of modeling intersectional analyses: interaction 

models, categorical models, and MAIDHA. These three methods were selected because they 

were appropriate for analyzing large-scale data when examining a single continuous outcome 

variable. When I ran each of these models, I varied four demographic characteristics to create 
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unique scenarios. The demographic data characteristics I chose to focus on were the number of 

demographic categories, the within-intersectional group standard deviation, the proportion of 

representation of identity indicators within demographic categories, and the overall sample size. 

Finally, I evaluated the performance of the models using five outcomes: accuracy, bias, 

coverage, power, and type 1 error. 

 In this study, I therefore made choices about models, demographic data characteristics, 

and outcomes. Other researchers may choose to study methods of modeling intersectional 

analyses and select other conditions or different demographic data characteristics to design a 

different study with the same goals as this dissertation. At this point, understanding how to best 

study intersectional experiences with oppression is novel and the ways to study methods of 

modeling intersectional analyses therefore feels infinite. In the following sections I recommend a 

few specific areas that would be of value for future research to focus on: model selection, 

clustered context, true value selection, type 1 error, and within-group standard deviation.  

Model Selection 

 As I discussed in Chapter 2, the interaction model is limited in its theoretical alignment 

with intersectionality theory. However, I opted to examine it as a model in this study due to its 

widespread use. As I discuss under the upcoming Model Use section, a categorical model can 

apply in nearly any situation for which a researcher would select an interaction model. In 

addition to its limited theoretical alignment, the interaction model does not add much statistical 

value. Within the two-category scenarios, the interaction and categorical models performed 

similarly. In the three-category scenarios, the categorical model outperformed the interaction 

model in all outcomes except for coverage. Unless coverage is of the utmost concern for a given 

research design, I would suggest future studies drop the interaction model.  
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Outcome Selection and Criteria  

 In future studies, the flagging criteria for accuracy should be a smaller threshold or it 

could even be removed as an outcome. With a flagging criterion of .50 for accuracy, a bit of a 

contradiction was presented in the results: in many scenarios the results were deemed fairly 

accurate, but often times the confidence interval did not contain the true value. This is because 

the confidence interval in my simulated design was often narrower than the width of the 

accuracy threshold. So, if the flagging threshold were lowered for accuracy, accuracy and 

coverage would be more in line. However, the benefits of having accuracy as an outcome when 

both bias and coverage capture many of the facets that accuracy aims to is unclear to me. To 

narrow the focus of the study, and to make the interpretation of the outcomes simpler, accuracy 

could be removed as an outcome from future studies.  

Clustered Context  

I chose to explore the models specifically in a clustered data context. Previous 

simulations on intersectionality in quantitative research had only used non-clustered contexts. It 

would be useful to explore how models statistically compare when used in the context of a 

hierarchical linear model versus a single level in a study. For example, a study could explore the 

accuracy of intersectional estimates in a model clustered in school IDs (as I have done) but then 

explore single-level models within individual schools. While the two different models could not 

be used to address same research questions, knowing if one model version has better statistical 

properties would be useful in designing research questions specific to the capacity of the data.  

I held my clustered data context constant throughout the simulations. The data generation 

process maintained 100 schools with intersectional groups distributed evenly within them. In 

addition, the ICC was held constant, though the standard deviation manipulations naturally 
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caused variability. Future studies might manipulate the number of schools, representation within 

schools, and the ICC. While I explored the models within a clustered context, they may not have 

represented the complexities and differences of, say, districts in a state. Rarely do we see schools 

in education where identities are consistently distributed across a state. Therefore, I suggest 

future research explores how different characteristics at the cluster level influence model 

parameters.  

This study only examined identity-based fixed effects, and it did not include additional 

predictors outside of identity. In education contexts, there are many predictors that can influence 

the relationship between intersectional identity and a given outcome in education. It would be 

useful to study the impacts of the introduction of other predictors, specifically designed to 

“interact” with given intersectional identities. Specifically, this may be useful to explore in the 

MAIDHA model, as this would mean the model may have cross-level interactions. Because the 

random effect structure would have a greater interpretable value, I believe that contexts with 

cross-level interactions may increase the utility of MAIDHA in the education context. A 

researcher could determine how different intersectional group memberships influence the 

relationship between a given predictor variable and the outcome variable. Thus, exploring 

predictors may open up additional uses of this model in education research.   

True Values 

In this study, I did not intentionally set an effect size but rather randomly selected 

coefficient values from a range of |.2 to 2.0|. However, I believe that this is an additional avenue 

that can be explored; it would be useful to know how a larger range of effect sizes influences 

model parameters under a variety of other demographic data characteristics. 
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Similarly, I selected a set of true effects that were consistent across each scenario. 

Researchers could also change which intersectional groups have a true effect and how many 

groups have a true effect. This, combined with an exploration of representation, would be 

valuable. For example, a true effect for a group with a higher representation may be easier to 

detect than a true effect for a group with a lower representation. This would help better inform 

the conversation around representation and help researchers understand what representation is 

needed if they hope to see the effect of a particular group.  

Type 1 Error 

Type 1 error proved to be a consistent issue in each method of modeling intersectional 

analysis. In this chapter, I suggested ways to mitigate type 1 errors through p-value adjustments 

and raising the alpha level. Future simulation studies should examine the extent to which those 

methods are effective at improving type 1 error rates. Further, type 1 error had a surprising 

reversal in percent flagged from the two-category to the three-category scenarios for the 

categorical model. Research should attempt to replicate these findings and, if they hold, seek to 

determine possible reasons for this surprising trend in type 1 error flagging. 

Within Group Standard Deviation 

As I discussed earlier in this chapter, the way I designed my standard deviation scenarios 

is unlikely to match other lived-experience contexts. Given the influence of standard deviation, it 

would be useful for researchers to design additional standard deviation conditions to further 

understand the impact of large and mixed variability settings. It would be beneficial to design a 

simulation based on existing relationships between and within intersectional groups in an 

existing educational data context.  
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Model Use 

This work specifically investigated statistical properties, but it did not explore 

interpretations of intersectional group’s coefficients/ intercepts within the context of advantages 

and disadvantages with oppression. The overall purpose of this research was to inform decisions 

about the statistical utility of the models by identifying the statistical advantages and 

disadvantages of each method of modeling intersectional analysis under different demographic 

data characteristics. However, a decision about model selection should never be based on 

statistical properties alone; the results of this dissertation cannot be used absent the context and 

theory.  

Alignment with Research Questions and Theory 

 Determining how to incorporate intersectionality into a quantitative research project 

should be based on multiple factors and driven by theory. While this dissertation focuses on the 

statistical components of three models, these results should not be considered outside of 

intersectional theory, research goals, or the data’s carrying capacity. The model selection is not a 

cut-and-dry “Which performs best?” but rather, “Which performs best in the context of my 

research goals?” Each of the models supports slightly different research questions.  

 The interaction model supports research questions that explore the extent to which given 

additive identities interact. As discussed in Chapter 2, I do not believe this model aligns with 

intersectional theory due to its reliance on single axis categories of identities. In addition, it is not 

possible to explore all intersections of identity due to reference category exclusion, as discussed 

in Chapter 2. The categorical model improves the research questions that the interaction model 

may be asking since it avoids single-axis categories of identities while allowing all intersections 

of identity to be represented in an analysis. Both the categorical and interaction models place 
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intersectional groups in a point of comparison. Coming from “traditional” quantitative training, 

this is likely the direction researchers may lean towards. However, intersectionality requires 

pushing outside of traditional boundaries, and bodes well with a critical quantitative approach. 

Although it is important to recognize that simply comparing the magnitude of estimated 

coefficients across intersectionally formed groups does not, in itself, constitute intersectionality 

research, there are times when such comparisons are useful for informing understanding of how 

oppression operates different among intersectional groups (Bowleg et al., 2008; Lopez et al., 

2018). Researchers must question the extent to which comparison-based questions are useful in 

their context, and how their research leads towards dismantling systems of oppression.  

 In contrast, the MAIDHA model answers very different research questions than the 

categorical and interaction models. The level two intercepts do provide an opportunity to assess 

magnitude of an intersectional group. While it’s possible to examine how much above or below 0 

a group falls, testing that difference is a challenge. It is less suitable for research questions in 

which identity groups are being directly compared based on significance since there is no direct 

way to test for the difference between random effects. However, suppose the difference between 

groups is not the focus of the main research question. In that case, the MAIDHA model may be 

suitable for intersectional approaches, as it does provide a unique intercept for each intersectional 

group. MAIDHA therefore deviates from many of the traditional quantitative approaches and 

offers opportunities to consider alternative ways of theorizing quantitative methods within an 

intersectional framework.  

Recommended Model Use 

 The results of this study were complex, but there were some scenarios in which 

researchers with similar data structures may apply one or more of the methods of modeling 
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intersectional analyses with less limitations. In general, most models performed best with small 

within-group standard deviation and a lower number of demographic categories. In practice 

researchers will have different configurations of the number of demographic categories and the 

number of identity indicators within each demographic category. Therefore, it may be helpful to 

consider this with respect to the overall number of intersectional groups. In my two-category 

scenarios there were 14 intersectional groups, and in my three-category scenarios there were 42 

intersectional groups. The interaction model is feasible to use with small standard deviations 

when there are up to 14 intersectional groups. However, researchers need to be weary of the risks 

of type 1 error. The categorical model is feasible for use with up to 42 intersectional groups with 

small within-group standard deviation. However, the categorical model also presented inflated 

type 1 error in those conditions. Finally, MAIDHA is recommended for use in up to 14 

intersectional groups with small within-group standard deviation, but researchers need to be 

wary of bias.  

Integration of Qualitative Data 

 Based on my results, any effort to examine intersectionality using the quantitative models 

explored in this study will likely produce substantial error. The small standard deviation 

scenarios led to promising results, but education contexts often see large amounts of within-

group variation in demographic categories. Therefore, based on the findings from the simulation 

analyses presented above, I caution against a purely quantitative study. At this same time, I do 

not think quantitative results need to be avoided; they still hold promise to advance 

understanding of the impacts of oppression for intersectional groups of interest and support 

incorporating more voices in social science research. Specifically, I think quantitative 

intersectional analysis offers promise for exploratory-based designs where a researcher may use 
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quantitative intersectional analysis to identify potential differences that are then explored in 

greater detail through a qualitative study. Because of the limitations I found in my study, I 

suggest that quantitative results should be triangulated and backed by literature and theory.  

Conclusion 

In this dissertation, I was interested in how well each model estimated each intersectional 

group’s coefficient or intercept. This approach differs from previous intersectional simulation 

studies (Mahendran et al., 2022b, 2022a), where the researchers investigated the model overall, 

instead of the coefficients/intercepts estimated by the model. In education, researchers are often 

interested in understanding demographic-group differences in a given outcome. Thus, knowing if 

the estimates from intersectional groups were accurate and unbiased is important for further 

transforming the capabilities of intersectionality in quantitative methods. Thus, this study 

expands the understanding of how methods of modeling intersectional analysis may be applied in 

educational contexts.  

Specifically, this study expanded researchers’ understanding of the advantages and 

disadvantages of methods of modeling intersectional analyses under different demographic data 

contexts. This study is the first to date to explore, in any capacity, the impact of within-group 

standard deviation, number of demographic categories, and proportion of representation within 

categories in methods of modeling intersectional analyses. Coupled with the inclusion of sample 

size, this exploration revealed the depth of impact that the number of categories and within-

group standard deviation have on the statistical properties of estimated models.  

 The findings of this study expanded our current understanding of how demographic data 

characteristics influence the statistical parameters of method of modeling intersectional analyses. 

Until now, there has been no knowledge base regarding how the technical properties of estimated 
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coefficients are impacted by and vary across methods of developing an intersectional model. 

This dissertation opens more doors for questions than answers it provides, and it serves as a 

starting point for the continued study of intersectionality.  
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Appendix 

Online Repository [https://github.com/oszendey/Intersectional-
Analyses/blob/main/Appendix_Repository.xlsx] 
 
Table 8 

Two Categories: Average Accuracy Values for True Effect and No Effect Intersectional Groups, 

by Model  

 
  Interaction Categorical MAIDHA 
  True Effect No Effect True Effect No Effect True Effect No Effect 
n_5000_p1_std_small 0.03 0.01 0.01 0.01 0.40 0.02 
n_5000_p2_std_small 0.03 0.01 0.01 0.01 0.39 0.02 
n_5000_p3_std_small 0.03 0.01 0.01 0.01 0.39 0.02 
n_10000_p1_std_small 0.03 0.01 0.00 0.00 0.40 0.02 
n_10000_p2_std_small 0.03 0.01 0.00 0.00 0.40 0.02 
n_10000_p3_std_small 0.03 0.01 0.01 0.00 0.39 0.02 
n_20000_p1_std_small 0.03 0.01 0.00 0.00 0.40 0.02 
n_20000_p2_std_small 0.03 0.01 0.00 0.00 0.40 0.02 
n_20000_p3_std_small 0.03 0.01 0.00 0.00 0.40 0.02 
n_5000_p1_std_mixed 0.27 0.04 0.19 0.04 0.77 0.03 
n_5000_p2_std_mixed 0.24 0.04 0.18 0.04 0.71 0.03 
n_5000_p3_std_mixed 0.23 0.03 0.20 0.05 0.69 0.03 
n_10000_p1_std_mixed 0.26 0.04 0.17 0.03 0.76 0.03 
n_10000_p2_std_mixed 0.23 0.04 0.15 0.02 0.71 0.03 
n_10000_p3_std_mixed 0.22 0.03 0.16 0.03 0.69 0.03 
n_20000_p1_std_mixed 0.25 0.04 0.16 0.02 0.76 0.03 
n_20000_p2_std_mixed 0.22 0.04 0.14 0.02 0.71 0.03 
n_20000_p3_std_mixed 0.21 0.03 0.14 0.02 0.70 0.03 
n_5000_p1_std_large 19.53 0.30 13.88 0.18 15.78 0.33 
n_5000_p2_std_large 18.90 0.26 13.40 0.18 14.93 0.33 
n_5000_p3_std_large 18.17 0.30 13.67 0.34 14.67 0.33 
n_10000_p1_std_large 19.69 0.30 13.90 0.11 15.97 0.33 
n_10000_p2_std_large 18.78 0.27 13.24 0.10 15.06 0.33 
n_10000_p3_std_large 18.09 0.30 13.39 0.20 14.84 0.32 
n_20000_p1_std_large 19.67 0.28 13.88 0.07 16.03 0.33 
n_20000_p2_std_large 18.60 0.26 13.12 0.06 15.09 0.33 
n_20000_p3_std_large 18.01 0.30 13.23 0.12 14.88 0.33 

 
Note. Accuracy is shaded red if the average value is greater than 0.50 to represent flagged coefficients.  
 

https://github.com/oszendey/Intersectional-Analyses/blob/main/Appendix_Repository.xlsx
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Table 9 

Two Categories: Average Bias Values for True Effect and No Effect Intersectional Groups, by 

Model  

  Interaction Categorical MAIDHA 
  True Effect No Effect True Effect No Effect True Effect No Effect 

n_5000_p1_std_small 0.00 0.00 0.00 0.00 0.27 0.23 
n_5000_p2_std_small 0.00 0.00 0.00 0.00 0.27 0.23 
n_5000_p3_std_small 0.00 0.00 0.00 0.00 0.27 0.23 

n_10000_p1_std_small 0.00 0.00 0.00 0.00 0.26 0.23 
n_10000_p2_std_small 0.00 0.00 0.00 0.00 0.27 0.23 
n_10000_p3_std_small 0.00 0.00 0.00 0.00 0.27 0.23 
n_20000_p1_std_small 0.00 0.00 0.00 0.00 0.27 0.23 
n_20000_p2_std_small 0.00 0.00 0.00 0.00 0.27 0.23 
n_20000_p3_std_small 0.00 0.00 0.00 0.00 0.27 0.23 
n_5000_p1_std_mixed 0.42 0.14 0.37 0.13 0.42 0.29 
n_5000_p2_std_mixed 0.39 0.12 0.34 0.12 0.40 0.28 
n_5000_p3_std_mixed 0.38 0.11 0.34 0.11 0.39 0.28 

n_10000_p1_std_mixed 0.41 0.12 0.35 0.12 0.42 0.28 
n_10000_p2_std_mixed 0.38 0.12 0.33 0.12 0.40 0.28 
n_10000_p3_std_mixed 0.36 0.11 0.32 0.11 0.39 0.28 
n_20000_p1_std_mixed 0.40 0.12 0.35 0.12 0.42 0.28 
n_20000_p2_std_mixed 0.37 0.12 0.33 0.12 0.40 0.28 
n_20000_p3_std_mixed 0.36 0.11 0.32 0.11 0.39 0.28 

n_5000_p1_std_large 4.32 0.18 3.63 0.17 2.00 1.29 
n_5000_p2_std_large 4.26 0.15 3.57 0.14 1.95 1.27 
n_5000_p3_std_large 4.16 0.25 3.59 0.21 1.93 1.27 

n_10000_p1_std_large 4.34 0.17 3.65 0.17 2.01 1.29 
n_10000_p2_std_large 4.24 0.14 3.56 0.14 1.96 1.27 
n_10000_p3_std_large 4.15 0.25 3.57 0.22 1.94 1.27 
n_20000_p1_std_large 4.34 0.17 3.65 0.16 2.02 1.29 
n_20000_p2_std_large 4.22 0.14 3.55 0.14 1.96 1.27 
n_20000_p3_std_large 4.14 0.25 3.57 0.22 1.94 1.28 

 
Note. Bias that exceeded 1/2 SE(B ̂ ) but was less than 2SE(B ̂ ) was flagged as moderate (light red) and bias that 

exceeded 2SE(B  ̂) was flagged as high (dark red). 
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Table 10 

Two Categories: Average Coverage Percentages for True Effect and No Effect Intersectional 

Groups, by Model  

 Interaction Categorical MAIDHA 
 True Effect No Effect True Effect No Effect True Effect No Effect 

n_5000_p1_std_small 0.00% 75.00% 95.94% 94.90% 100.00% 100.00% 
n_5000_p2_std_small 0.00% 75.00% 95.34% 95.30% 100.00% 100.00% 
n_5000_p3_std_small 0.00% 74.90% 95.82% 95.26% 100.00% 100.00% 
n_10000_p1_std_small 0.00% 75.00% 94.88% 94.04% 100.00% 100.00% 
n_10000_p2_std_small 0.00% 75.00% 95.22% 94.89% 100.00% 100.00% 
n_10000_p3_std_small 0.00% 74.98% 95.16% 95.26% 100.00% 100.00% 
n_20000_p1_std_small 0.00% 75.00% 94.98% 94.83% 100.00% 100.00% 
n_20000_p2_std_small 0.00% 75.00% 94.82% 95.09% 100.00% 100.00% 
n_20000_p3_std_small 0.00% 75.00% 95.06% 95.30% 100.00% 100.00% 
n_5000_p1_std_mixed 0.00% 75.58% 39.60% 85.73% 100.00% 100.00% 
n_5000_p2_std_mixed 0.00% 75.40% 45.36% 85.58% 100.00% 100.00% 
n_5000_p3_std_mixed 1.65% 78.40% 56.20% 89.19% 100.00% 100.00% 
n_10000_p1_std_mixed 0.00% 75.00% 25.98% 77.44% 100.00% 100.00% 
n_10000_p2_std_mixed 0.00% 75.05% 31.46% 75.19% 100.00% 100.00% 
n_10000_p3_std_mixed 0.05% 75.35% 42.52% 81.68% 100.00% 100.00% 
n_20000_p1_std_mixed 0.00% 75.00% 14.88% 60.28% 100.00% 100.00% 
n_20000_p2_std_mixed 0.00% 75.00% 24.38% 57.65% 100.00% 100.00% 
n_20000_p3_std_mixed 0.00% 75.00% 29.32% 69.73% 100.00% 100.00% 
n_5000_p1_std_large 0.00% 75.00% 0.00% 92.48% 100.00% 100.00% 
n_5000_p2_std_large 0.00% 75.00% 0.00% 93.70% 100.00% 100.00% 
n_5000_p3_std_large 1.45% 74.98% 1.36% 92.39% 100.00% 100.00% 
n_10000_p1_std_large 0.00% 75.00% 0.00% 88.74% 100.00% 100.00% 
n_10000_p2_std_large 0.00% 75.00% 0.00% 92.50% 100.00% 100.00% 
n_10000_p3_std_large 0.10% 75.00% 0.04% 89.04% 100.00% 100.00% 
n_20000_p1_std_large 0.00% 75.00% 0.00% 82.83% 100.00% 100.00% 
n_20000_p2_std_large 0.00% 75.00% 0.00% 89.65% 100.00% 100.00% 
n_20000_p3_std_large 0.00% 75.00% 0.00% 82.83% 100.00% 100.00% 

Note. Average percentages were shaded light red to represent flagging if the true value was in the interval less than 

92.5% of the time. 
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Table 11 

Two Categories Average Power Rate (Percent) for True Effect Intersectional Groups, by Model  

 Interaction Categorical MAIDHA 

n_5000_p1_std_small 100.00% 100.00% 100.00% 
n_5000_p2_std_small 100.00% 100.00% 100.00% 
n_5000_p3_std_small 100.00% 99.78% 88.92% 
n_10000_p1_std_small 100.00% 100.00% 100.00% 
n_10000_p2_std_small 100.00% 100.00% 100.00% 
n_10000_p3_std_small 100.00% 100.00% 97.88% 
n_20000_p1_std_small 100.00% 100.00% 100.00% 
n_20000_p2_std_small 100.00% 100.00% 100.00% 
n_20000_p3_std_small 100.00% 100.00% 99.96% 
n_5000_p1_std_mixed 100.00% 100.00% 99.92% 
n_5000_p2_std_mixed 100.00% 99.92% 99.82% 
n_5000_p3_std_mixed 100.00% 96.30% 84.10% 
n_10000_p1_std_mixed 100.00% 100.00% 100.00% 
n_10000_p2_std_mixed 100.00% 100.00% 100.00% 
n_10000_p3_std_mixed 100.00% 99.78% 91.12% 
n_20000_p1_std_mixed 100.00% 100.00% 100.00% 
n_20000_p2_std_mixed 100.00% 100.00% 100.00% 
n_20000_p3_std_mixed 100.00% 100.00% 98.92% 
n_5000_p1_std_large 100.00% 100.00% 100.00% 
n_5000_p2_std_large 100.00% 100.00% 100.00% 
n_5000_p3_std_large 100.00% 99.82% 89.30% 
n_10000_p1_std_large 100.00% 100.00% 100.00% 
n_10000_p2_std_large 100.00% 100.00% 100.00% 
n_10000_p3_std_large 100.00% 100.00% 98.14% 
n_20000_p1_std_large 100.00% 100.00% 100.00% 
n_20000_p2_std_large 100.00% 100.00% 100.00% 
n_20000_p3_std_large 100.00% 100.00% 99.98% 

Note. No values were shaded as all averages were above the 80% threshold.  
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Table 12 

Two Categories: Average Type 1 Error Rate (Percent) for No Effect Intersectional Groups, by 

Model  

 Interaction Categorical MAIDHA 
n_5000_p1_std_small 4.50% 5.09% 11.30% 
n_5000_p2_std_small 5.17% 4.69% 11.59% 
n_5000_p3_std_small 4.93% 4.71% 12.41% 
n_10000_p1_std_small 5.40% 5.96% 11.18% 
n_10000_p2_std_small 5.27% 5.11% 11.28% 
n_10000_p3_std_small 5.20% 4.74% 12.47% 
n_20000_p1_std_small 5.57% 5.18% 11.11% 
n_20000_p2_std_small 5.20% 4.91% 11.18% 
n_20000_p3_std_small 4.83% 4.70% 11.68% 
n_5000_p1_std_mixed 8.67% 14.26% 11.70% 
n_5000_p2_std_mixed 10.43% 14.40% 13.86% 
n_5000_p3_std_mixed 6.53% 10.80% 15.26% 
n_10000_p1_std_mixed 11.63% 22.55% 12.02% 
n_10000_p2_std_mixed 17.13% 24.81% 14.63% 
n_10000_p3_std_mixed 8.63% 18.33% 17.86% 
n_20000_p1_std_mixed 18.43% 39.71% 11.81% 
n_20000_p2_std_mixed 27.83% 42.35% 14.66% 
n_20000_p3_std_mixed 11.47% 30.28% 17.27% 
n_5000_p1_std_large 5.20% 7.53% 11.37% 
n_5000_p2_std_large 6.17% 6.28% 12.22% 
n_5000_p3_std_large 5.87% 7.61% 15.34% 
n_10000_p1_std_large 5.60% 11.25% 11.30% 
n_10000_p2_std_large 5.87% 7.50% 11.60% 
n_10000_p3_std_large 6.10% 10.95% 15.26% 
n_20000_p1_std_large 5.70% 17.16% 11.11% 
n_20000_p2_std_large 5.70% 10.35% 11.30% 
n_20000_p3_std_large 5.47% 17.18% 14.03% 

Note. Light red shading was used to represent flagging above the 5% threshold.  
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Table 13 

Two Categories: Interaction Model Percentage of Flags by Outcome 

 Accuracy Bias Coverage Power Type 1 Error 
n_5000_p1_std_small 0.00% 0.00% 50.00% 0.00% 50.00% 
n_5000_p2_std_small 0.00% 0.00% 50.00% 0.00% 75.00% 
n_5000_p3_std_small 0.00% 0.00% 50.00% 0.00% 50.00% 
n_10000_p1_std_small 0.00% 0.00% 50.00% 0.00% 75.00% 
n_10000_p2_std_small 0.00% 0.00% 50.00% 0.00% 75.00% 
n_10000_p3_std_small 0.00% 0.00% 50.00% 0.00% 75.00% 
n_20000_p1_std_small 0.00% 0.00% 50.00% 0.00% 100.00% 
n_20000_p2_std_small 0.00% 0.00% 50.00% 0.00% 75.00% 
n_20000_p3_std_small 0.00% 0.00% 50.00% 0.00% 50.00% 
n_5000_p1_std_mixed 0.00% 100.00% 50.00% 0.00% 100.00% 
n_5000_p2_std_mixed 0.00% 100.00% 50.00% 0.00% 100.00% 
n_5000_p3_std_mixed 0.00% 100.00% 50.00% 0.00% 100.00% 
n_10000_p1_std_mixed 0.00% 100.00% 50.00% 0.00% 100.00% 
n_10000_p2_std_mixed 0.00% 100.00% 50.00% 0.00% 100.00% 
n_10000_p3_std_mixed 0.00% 100.00% 50.00% 0.00% 100.00% 
n_20000_p1_std_mixed 0.00% 100.00% 50.00% 0.00% 100.00% 
n_20000_p2_std_mixed 0.00% 100.00% 50.00% 0.00% 100.00% 
n_20000_p3_std_mixed 0.00% 100.00% 50.00% 0.00% 100.00% 
n_5000_p1_std_large 33.33% 50.00% 50.00% 0.00% 75.00% 
n_5000_p2_std_large 33.33% 33.33% 50.00% 0.00% 100.00% 
n_5000_p3_std_large 33.33% 66.67% 50.00% 0.00% 75.00% 
n_10000_p1_std_large 33.33% 50.00% 50.00% 0.00% 100.00% 
n_10000_p2_std_large 33.33% 33.33% 50.00% 0.00% 75.00% 
n_10000_p3_std_large 33.33% 66.67% 50.00% 0.00% 100.00% 
n_20000_p1_std_large 33.33% 50.00% 50.00% 0.00% 100.00% 
n_20000_p2_std_large 33.33% 33.33% 50.00% 0.00% 100.00% 
n_20000_p3_std_large 33.33% 66.67% 50.00% 0.00% 50.00% 

Note. Percentages were calculated for each cell, out of the total possible flags for that cell. 
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Table 14 

Two Categories: Categorical Model Percentage of Flags by Outcome 

  Accuracy Bias Coverage Power Type 1 Error 
n_5000_p1_std_small 0.00% 0.00% 0.00% 0.00% 62.50% 
n_5000_p2_std_small 0.00% 0.00% 0.00% 0.00% 25.00% 
n_5000_p3_std_small 0.00% 0.00% 0.00% 0.00% 25.00% 
n_10000_p1_std_small 0.00% 0.00% 0.00% 0.00% 75.00% 
n_10000_p2_std_small 0.00% 0.00% 0.00% 0.00% 37.50% 
n_10000_p3_std_small 0.00% 0.00% 0.00% 0.00% 25.00% 
n_20000_p1_std_small 0.00% 0.00% 0.00% 0.00% 50.00% 
n_20000_p2_std_small 0.00% 0.00% 0.00% 0.00% 62.50% 
n_20000_p3_std_small 0.00% 0.00% 0.00% 0.00% 25.00% 
n_5000_p1_std_mixed 0.00% 100.00% 100.00% 0.00% 100.00% 
n_5000_p2_std_mixed 0.00% 92.31% 92.31% 0.00% 100.00% 
n_5000_p3_std_mixed 0.00% 76.92% 69.23% 0.00% 100.00% 
n_10000_p1_std_mixed 0.00% 100.00% 100.00% 0.00% 100.00% 
n_10000_p2_std_mixed 0.00% 100.00% 100.00% 0.00% 100.00% 
n_10000_p3_std_mixed 0.00% 84.62% 92.31% 0.00% 100.00% 
n_20000_p1_std_mixed 0.00% 100.00% 100.00% 0.00% 100.00% 
n_20000_p2_std_mixed 0.00% 100.00% 100.00% 0.00% 100.00% 
n_20000_p3_std_mixed 0.00% 92.31% 92.31% 0.00% 100.00% 
n_5000_p1_std_large 38.46% 69.23% 61.54% 0.00% 87.50% 
n_5000_p2_std_large 38.46% 46.15% 53.85% 0.00% 75.00% 
n_5000_p3_std_large 61.54% 69.23% 61.54% 0.00% 100.00% 
n_10000_p1_std_large 38.46% 69.23% 84.62% 0.00% 100.00% 
n_10000_p2_std_large 38.46% 69.23% 61.54% 0.00% 87.50% 
n_10000_p3_std_large 38.46% 84.62% 84.62% 0.00% 100.00% 
n_20000_p1_std_large 38.46% 84.62% 84.62% 0.00% 100.00% 
n_20000_p2_std_large 38.46% 84.62% 76.92% 0.00% 100.00% 
n_20000_p3_std_large 38.46% 92.31% 92.31% 0.00% 100.00% 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 
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Table 15 

Two Categories: MAIDHA Model Percentage of Flags by Outcome 

 Accuracy Bias Coverage Power Type 1 Error 
n_5000_p1_std_small 14.29% 71.43% 0.00% 0.00% 11.11% 
n_5000_p2_std_small 14.29% 71.43% 0.00% 0.00% 11.11% 
n_5000_p3_std_small 14.29% 71.43% 0.00% 20.00% 11.11% 
n_10000_p1_std_small 14.29% 71.43% 0.00% 0.00% 11.11% 
n_10000_p2_std_small 14.29% 71.43% 0.00% 0.00% 11.11% 
n_10000_p3_std_small 14.29% 71.43% 0.00% 0.00% 11.11% 
n_20000_p1_std_small 14.29% 71.43% 0.00% 0.00% 11.11% 
n_20000_p2_std_small 14.29% 71.43% 0.00% 0.00% 11.11% 
n_20000_p3_std_small 14.29% 71.43% 0.00% 0.00% 11.11% 
n_5000_p1_std_mixed 14.29% 78.57% 0.00% 0.00% 11.11% 
n_5000_p2_std_mixed 14.29% 71.43% 0.00% 0.00% 33.33% 
n_5000_p3_std_mixed 14.29% 78.57% 0.00% 20.00% 44.44% 
n_10000_p1_std_mixed 14.29% 78.57% 0.00% 0.00% 11.11% 
n_10000_p2_std_mixed 14.29% 71.43% 0.00% 0.00% 33.33% 
n_10000_p3_std_mixed 14.29% 78.57% 0.00% 20.00% 44.44% 
n_20000_p1_std_mixed 14.29% 78.57% 0.00% 0.00% 11.11% 
n_20000_p2_std_mixed 14.29% 78.57% 0.00% 0.00% 33.33% 
n_20000_p3_std_mixed 14.29% 78.57% 0.00% 0.00% 44.44% 
n_5000_p1_std_large 42.86% 78.57% 0.00% 0.00% 11.11% 
n_5000_p2_std_large 42.86% 92.86% 0.00% 0.00% 11.11% 
n_5000_p3_std_large 42.86% 92.86% 0.00% 20.00% 55.56% 
n_10000_p1_std_large 42.86% 85.71% 0.00% 0.00% 11.11% 
n_10000_p2_std_large 42.86% 85.71% 0.00% 0.00% 11.11% 
n_10000_p3_std_large 42.86% 92.86% 0.00% 0.00% 55.56% 
n_20000_p1_std_large 42.86% 71.43% 0.00% 0.00% 11.11% 
n_20000_p2_std_large 42.86% 92.86% 0.00% 0.00% 11.11% 
n_20000_p3_std_large 42.86% 92.86% 0.00% 0.00% 44.44% 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 
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Table 16 

Two Categories: Percentage of Flags, Averaged Across Outcomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 

 
 

  

 Interaction Categorical MAIDHA 
n_5000_p1_std_small 20.00% 12.50% 19.37% 
n_5000_p2_std_small 25.00% 5.00% 19.37% 
n_5000_p3_std_small 20.00% 5.00% 23.37% 
n_10000_p1_std_small 25.00% 15.00% 19.37% 
n_10000_p2_std_small 25.00% 7.50% 19.37% 
n_10000_p3_std_small 25.00% 5.00% 19.37% 
n_20000_p1_std_small 30.00% 10.00% 19.37% 
n_20000_p2_std_small 25.00% 12.50% 19.37% 
n_20000_p3_std_small 20.00% 5.00% 19.37% 
n_5000_p1_std_mixed 50.00% 60.00% 20.79% 
n_5000_p2_std_mixed 50.00% 56.92% 23.81% 
n_5000_p3_std_mixed 50.00% 49.23% 31.46% 
n_10000_p1_std_mixed 50.00% 60.00% 20.79% 
n_10000_p2_std_mixed 50.00% 60.00% 23.81% 
n_10000_p3_std_mixed 50.00% 55.39% 31.46% 
n_20000_p1_std_mixed 50.00% 60.00% 20.79% 
n_20000_p2_std_mixed 50.00% 60.00% 25.24% 
n_20000_p3_std_mixed 50.00% 56.92% 27.46% 
n_5000_p1_std_large 41.67% 51.35% 26.51% 
n_5000_p2_std_large 43.33% 42.69% 29.37% 
n_5000_p3_std_large 45.00% 58.46% 42.26% 
n_10000_p1_std_large 46.67% 58.46% 27.94% 
n_10000_p2_std_large 38.33% 51.35% 27.94% 
n_10000_p3_std_large 50.00% 61.54% 38.26% 
n_20000_p1_std_large 46.67% 61.54% 25.08% 
n_20000_p2_std_large 43.33% 60.00% 29.37% 
n_20000_p3_std_large 40.00% 64.62% 36.03% 
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Table 17 

Two Categories: Percentage of Flagged Coefficients/Intercepts by Model and Outcome 

  Interaction Categorical MAIDHA 
Bias 50.00% 56.13% 78.57% 
Accuracy 11.11% 13.68% 23.81% 
Coverage 50.00% 55.84% 0.00% 
Power 0.00% 0.00% 2.96% 
Type1Error 85.19% 79.17% 21.90% 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 
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Table 18 

AIC and BIC Values, by Model 

  Interaction Categorical MAIDHA 
  AIC BIC AIC BIC AIC BIC 
n_5000_p1_std_small 14381 14485 14381 14485 14391 14463 
n_5000_p2_std_small 14376 14480 14376 14480 14386 14458 
n_5000_p3_std_small 14370 14474 14370 14474 14380 14452 
n_10000_p1_std_small 28778 28893 28778 28893 28788 28867 
n_10000_p2_std_small 28773 28888 28773 28888 28783 28862 
n_10000_p3_std_small 28767 28882 28767 28882 28777 28857 
n_20000_p1_std_small 57550 57676 57550 57676 57560 57647 
n_20000_p2_std_small 57545 57672 57545 57672 57555 57642 
n_20000_p3_std_small 57539 57666 57539 57666 57550 57637 
n_5000_p1_std_mixed 21083 21188 21083 21188 21098 21169 
n_5000_p2_std_mixed 20806 20911 20806 20911 20820 20892 
n_5000_p3_std_mixed 20728 20833 20728 20833 20742 20814 
n_10000_p1_std_mixed 41942 42057 41942 42057 41956 42035 
n_10000_p2_std_mixed 41501 41616 41501 41616 41515 41594 
n_10000_p3_std_mixed 41358 41473 41358 41473 41371 41451 
n_20000_p1_std_mixed 83753 83879 83753 83879 83767 83854 
n_20000_p2_std_mixed 82914 83041 82914 83041 82928 83015 
n_20000_p3_std_mixed 82602 82728 82602 82728 82616 82702 
n_5000_p1_std_large 30630 30735 30630 30735 30660 30732 
n_5000_p2_std_large 30552 30657 30552 30657 30582 30654 
n_5000_p3_std_large 30473 30577 30473 30577 30502 30574 
n_10000_p1_std_large 61105 61220 61105 61220 61135 61214 
n_10000_p2_std_large 60992 61108 60992 61108 61022 61101 
n_10000_p3_std_large 60852 60968 60852 60968 60882 60961 
n_20000_p1_std_large 122023 122150 122023 122150 122053 122140 
n_20000_p2_std_large 121850 121977 121850 121977 121880 121967 
n_20000_p3_std_large 121593 121720 121593 121720 121623 121710 
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Table 19 

Three Categories: Average Accuracy Values for No Effect and True Effect Intersectional 

Groups, by Model  

 Interaction Categorical MAIDHA 
 True Effect No Effect True Effect No Effect True Effect  No Effect 

n_5000_p1_std_small 0.09 0.04 0.02 0.02 0.43 0.20 
n_5000_p2_std_small 0.06 0.02 0.04 0.03 0.37 0.19 
n_10000_p1_std_small 0.09 0.04 0.01 0.01 0.45 0.21 
n_10000_p2_std_small 0.06 0.02 0.02 0.02 0.41 0.20 
n_20000_p1_std_small 0.09 0.04 0.00 0.00 0.45 0.21 
n_20000_p2_std_small 0.06 0.02 0.01 0.01 0.43 0.20 
n_20000_p3_std_small 0.05 0.01 0.02 0.02 0.39 0.20 
n_5000_p1_std_mixed 0.51 0.21 0.29 0.10 0.88 0.42 
n_5000_p2_std_mixed 0.51 0.11 0.77 0.20 0.84 0.47 
n_10000_p1_std_mixed 0.47 0.21 0.23 0.07 0.88 0.43 
n_10000_p2_std_mixed 0.49 0.10 0.55 0.12 0.93 0.50 
n_20000_p1_std_mixed 0.44 0.20 0.20 0.06 0.88 0.43 
n_20000_p2_std_mixed 0.46 0.10 0.43 0.08 0.96 0.51 
n_20000_p3_std_mixed 0.21 0.19 0.25 0.15 0.73 0.43 
n_5000_p1_std_large 22.97 3.51 13.76 1.99 10.76 4.55 
n_5000_p2_std_large 12.99 1.73 17.02 3.18 8.83 4.25 
n_10000_p1_std_large 23.76 3.64 14.02 1.87 11.37 4.84 
n_10000_p2_std_large 15.54 1.96 18.26 3.14 11.43 5.24 
n_20000_p1_std_large 24.13 3.69 14.13 1.82 11.65 4.99 
n_20000_p2_std_large 16.59 2.06 18.29 3.08 12.44 5.67 
n_20000_p3_std_large 8.80 4.62 10.77 5.35 9.69 4.77 

Note. Accuracy is shaded red if the average value is greater than 0.50 to represent flagged coefficients.  
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Table 20 

Three Categories: Average Bias Values for No Effect and True Effect Intersectional Groups, by 

Model  

 Interaction Categorical MAIDHA 
 True Effect No Effect True Effect No Effect True Effect No Effect 

n_5000_p1_std_small 0.18 0.18 0.00 0.00 0.65 0.28 
n_5000_p2_std_small 0.08 0.08 0.00 0.00 0.61 0.27 
n_10000_p1_std_small 0.18 0.18 0.00 0.00 0.65 0.28 
n_10000_p2_std_small 0.08 0.08 0.00 0.00 0.63 0.28 
n_20000_p1_std_small 0.18 0.18 0.00 0.00 0.66 0.29 
n_20000_p2_std_small 0.08 0.08 0.00 0.00 0.65 0.28 
n_20000_p3_std_small 0.06 0.06 0.00 0.00 0.63 0.28 
n_5000_p1_std_mixed 0.53 0.41 0.41 0.13 0.91 0.41 
n_5000_p2_std_mixed 0.51 0.24 0.58 0.15 0.91 0.42 
n_10000_p1_std_mixed 0.51 0.41 0.40 0.13 0.91 0.41 
n_10000_p2_std_mixed 0.51 0.24 0.56 0.15 0.96 0.44 
n_20000_p1_std_mixed 0.50 0.40 0.39 0.13 0.92 0.41 
n_20000_p2_std_mixed 0.49 0.23 0.54 0.15 0.97 0.44 
n_20000_p3_std_mixed 0.31 0.26 0.35 0.19 0.87 0.41 
n_5000_p1_std_large 3.31 1.94 3.10 0.77 3.10 1.36 
n_5000_p2_std_large 2.66 1.29 3.35 0.95 2.85 1.29 
n_10000_p1_std_large 3.37 1.99 3.17 0.78 3.19 1.41 
n_10000_p2_std_large 2.89 1.40 3.60 1.05 3.22 1.45 
n_20000_p1_std_large 3.40 2.00 3.19 0.78 3.23 1.43 
n_20000_p2_std_large 2.97 1.45 3.67 1.09 3.37 1.52 
n_20000_p3_std_large 2.13 1.36 2.64 1.16 3.02 1.39 

Note. Bias that exceeded 1/2 SE(B ̂ ) but was less than 2SE(B ̂ ) was flagged as moderate (light red) and bias that 

exceeded 2SE(B  ̂) was flagged as high (dark red). 
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Table 21 

Three Categories: Average Percent of coverage for True Effect and No Effect Intersectional 

Groups, by Model  

 Interaction Categorical MAIDHA 
 True Effect No Effect True Effect No Effect True Effect No Effect 
n_5000_p1_std_small 99.96% 99.93% 61.45% 85.36% 86.67% 100.00% 
n_5000_p2_std_small 100.00% 100.00% 62.59% 85.68% 90.14% 99.99% 
n_10000_p1_std_small 99.52% 99.59% 59.34% 85.34% 84.58% 100.00% 
n_10000_p2_std_small 100.00% 100.00% 61.99% 85.52% 88.06% 100.00% 
n_20000_p1_std_small 96.02% 95.40% 57.13% 85.46% 82.74% 100.00% 
n_20000_p2_std_small 99.98% 100.00% 60.71% 85.29% 86.08% 100.00% 
n_20000_p3_std_small 100.00% 100.00% 60.07% 85.75% 87.52% 100.00% 
n_5000_p1_std_mixed 91.80% 95.99% 44.13% 87.68% 94.64% 99.57% 
n_5000_p2_std_mixed 95.98% 99.41% 46.58% 85.89% 94.28% 99.31% 
n_10000_p1_std_mixed 76.00% 88.69% 31.90% 85.17% 95.43% 99.67% 
n_10000_p2_std_mixed 86.44% 97.07% 36.52% 82.67% 94.87% 99.57% 
n_20000_p1_std_mixed 49.80% 85.49% 21.84% 81.76% 96.82% 99.89% 
n_20000_p2_std_mixed 64.58% 90.19% 27.04% 78.04% 96.00% 99.77% 
n_20000_p3_std_mixed 95.04% 85.79% 40.13% 80.48% 95.82% 99.37% 
n_5000_p1_std_large 35.96% 85.74% 23.01% 71.18% 87.48% 100.00% 
n_5000_p2_std_large 54.12% 95.06% 24.09% 74.67% 92.93% 99.93% 
n_10000_p1_std_large 17.76% 85.19% 16.53% 64.73% 86.23% 100.00% 
n_10000_p2_std_large 18.90% 85.96% 12.54% 64.35% 91.19% 100.00% 
n_20000_p1_std_large 1.26% 80.26% 14.94% 61.48% 86.58% 100.00% 
n_20000_p2_std_large 2.64% 84.73% 8.18% 55.28% 89.48% 100.00% 
n_20000_p3_std_large 27.96% 85.71% 20.44% 71.07% 91.12% 99.99% 

Note. Coverage was flagged when the true effect was in the 95% confidence interval less than 92.5% of the time.  
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Table 22 

Three Categories: Average Power Rate (Percent) for True Effect Intersectional Groups, by 

Model 

 Interaction Categorical MAIDHA 
n_5000_p1_std_small 81.06% 68.23% 76.06% 
n_5000_p2_std_small 93.98% 68.22% 73.13% 
n_10000_p1_std_small 81.08% 68.44% 80.73% 
n_10000_p2_std_small 98.60% 68.14% 79.06% 
n_20000_p1_std_small 81.32% 68.27% 84.40% 
n_20000_p2_std_small 99.94% 68.18% 82.91% 
n_20000_p3_std_small 81.50% 68.10% 73.83% 
n_5000_p1_std_mixed 81.72% 72.61% 73.96% 
n_5000_p2_std_mixed 86.18% 69.37% 69.33% 
n_10000_p1_std_mixed 83.08% 75.98% 78.48% 
n_10000_p2_std_mixed 90.46% 76.81% 78.59% 
n_20000_p1_std_mixed 86.02% 77.37% 84.13% 
n_20000_p2_std_mixed 97.14% 80.81% 81.86% 
n_20000_p3_std_mixed 82.04% 76.43% 73.57% 
n_5000_p1_std_large 82.24% 78.23% 75.43% 
n_5000_p2_std_large 89.74% 77.16% 71.34% 
n_10000_p1_std_large 83.90% 82.05% 81.10% 
n_10000_p2_std_large 95.86% 83.30% 79.42% 
n_20000_p1_std_large 87.04% 83.48% 85.58% 
n_20000_p2_std_large 99.60% 83.80% 82.90% 
n_20000_p3_std_large 83.64% 73.37% 76.06% 

Note. Power was flagged when the percentage of true effects detected was less than 80%, for coefficients/ intercepts 

designed to have an effect. 
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Table 23 

Three Categories: Average Type 1 Error Rate (Percent) for No Effect Intersectional Groups, by 

Model 

  Interaction Categorical MAIDHA 
n_5000_p1_std_small 60.50% 17.88% 60.04% 
n_5000_p2_std_small 39.23% 17.61% 48.44% 
n_10000_p1_std_small 76.03% 17.91% 70.48% 
n_10000_p2_std_small 47.66% 17.77% 57.27% 
n_20000_p1_std_small 86.27% 17.79% 77.33% 
n_20000_p2_std_small 59.04% 18.09% 65.63% 
n_20000_p3_std_small 39.43% 17.38% 57.11% 
n_5000_p1_std_mixed 42.34% 17.44% 45.69% 
n_5000_p2_std_mixed 31.04% 18.77% 41.68% 
n_10000_p1_std_mixed 54.84% 21.06% 60.81% 
n_10000_p2_std_mixed 38.86% 22.31% 52.09% 
n_20000_p1_std_mixed 71.04% 24.27% 70.27% 
n_20000_p2_std_mixed 47.76% 26.61% 60.66% 
n_20000_p3_std_mixed 35.00% 24.99% 51.28% 
n_5000_p1_std_large 58.44% 30.91% 57.85% 
n_5000_p2_std_large 37.04% 28.81% 47.70% 
n_10000_p1_std_large 77.60% 38.37% 70.87% 
n_10000_p2_std_large 47.16% 41.14% 60.26% 
n_20000_p1_std_large 89.41% 42.09% 78.28% 
n_20000_p2_std_large 58.71% 50.10% 69.44% 
n_20000_p3_std_large 40.50% 34.24% 61.79% 

Note. Type 1 error was flagged when effects were detected over 5% of the time, for coefficients/ intercepts designed 

to have no effect.  
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Table 24 

Three Categories: Interaction Model Percentage of Flags by Outcome 

  Accuracy Bias Coverage Power Type1Error 
n_5000_p1_std_small 0.00% 100.00% 0.00% 20.00% 100.00% 
n_5000_p2_std_small 0.00% 66.67% 0.00% 20.00% 85.71% 
n_10000_p1_std_small 0.00% 100.00% 0.00% 20.00% 100.00% 
n_10000_p2_std_small 0.00% 66.67% 0.00% 0.00% 100.00% 
n_20000_p1_std_small 0.00% 100.00% 0.00% 20.00% 100.00% 
n_20000_p2_std_small 0.00% 66.67% 0.00% 0.00% 85.71% 
n_20000_p3_std_small 0.00% 66.67% 0.00% 20.00% 100.00% 
n_5000_p1_std_mixed 25.00% 100.00% 16.67% 20.00% 85.71% 
n_5000_p2_std_mixed 16.67% 75.00% 8.33% 20.00% 85.71% 
n_10000_p1_std_mixed 25.00% 100.00% 33.33% 20.00% 100.00% 
n_10000_p2_std_mixed 16.67% 83.33% 25.00% 20.00% 100.00% 
n_20000_p1_std_mixed 25.00% 100.00% 41.67% 20.00% 100.00% 
n_20000_p2_std_mixed 16.67% 83.33% 33.33% 0.00% 100.00% 
n_20000_p3_std_mixed 8.33% 83.33% 16.67% 20.00% 100.00% 
n_5000_p1_std_large 91.67% 100.00% 41.67% 20.00% 100.00% 
n_5000_p2_std_large 66.67% 83.33% 41.67% 20.00% 71.43% 
n_10000_p1_std_large 91.67% 100.00% 50.00% 20.00% 100.00% 
n_10000_p2_std_large 66.67% 83.33% 50.00% 20.00% 71.43% 
n_20000_p1_std_large 91.67% 100.00% 58.33% 20.00% 100.00% 
n_20000_p2_std_large 66.67% 83.33% 50.00% 0.00% 71.43% 
n_20000_p3_std_large 58.33% 91.67% 50.00% 20.00% 100.00% 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 
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Table 25 

Three Categories: Categorical Model Percentage of Flags by Outcome 

  Accuracy Bias Coverage Power Type1Error 
n_5000_p1_std_small 0.00% 0.00% 19.51% 0.00% 31.03% 
n_5000_p2_std_small 0.00% 0.00% 19.51% 0.00% 48.28% 
n_10000_p1_std_small 0.00% 0.00% 19.51% 0.00% 27.59% 
n_10000_p2_std_small 0.00% 0.00% 19.51% 0.00% 17.24% 
n_20000_p1_std_small 0.00% 0.00% 19.51% 0.00% 34.48% 
n_20000_p2_std_small 0.00% 0.00% 19.51% 0.00% 34.48% 
n_20000_p3_std_small 0.00% 0.00% 19.51% 0.00% 37.93% 
n_5000_p1_std_mixed 9.76% 48.78% 31.71% 0.00% 13.79% 
n_5000_p2_std_mixed 19.51% 53.66% 46.34% 8.33% 55.17% 
n_10000_p1_std_mixed 9.76% 63.41% 46.34% 0.00% 41.38% 
n_10000_p2_std_mixed 12.20% 63.41% 58.54% 0.00% 62.07% 
n_20000_p1_std_mixed 7.32% 78.05% 58.54% 0.00% 58.62% 
n_20000_p2_std_mixed 12.20% 75.61% 68.29% 0.00% 72.41% 
n_20000_p3_std_mixed 9.76% 70.73% 78.05% 8.33% 82.76% 
n_5000_p1_std_large 51.22% 58.54% 48.78% 16.67% 37.93% 
n_5000_p2_std_large 78.05% 60.98% 60.98% 25.00% 48.28% 
n_10000_p1_std_large 48.78% 73.17% 58.54% 8.33% 48.28% 
n_10000_p2_std_large 68.29% 65.85% 60.98% 0.00% 62.07% 
n_20000_p1_std_large 48.78% 75.61% 63.41% 0.00% 68.97% 
n_20000_p2_std_large 65.85% 68.29% 68.29% 0.00% 62.07% 
n_20000_p3_std_large 65.85% 58.54% 60.98% 16.67% 51.72% 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 
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Table 26 

Three Categories: MAIDHA Model Percentage of Flags by Outcome 

  Accuracy Bias Coverage Power Type1Error 
n_5000_p1_std_small 19.05% 90.48% 7.14% 33.33% 93.33% 
n_5000_p2_std_small 19.05% 90.48% 7.14% 33.33% 80.00% 
n_10000_p1_std_small 19.05% 92.86% 7.14% 25.00% 93.33% 
n_10000_p2_std_small 19.05% 92.86% 7.14% 33.33% 90.00% 
n_20000_p1_std_small 19.05% 95.24% 7.14% 16.67% 93.33% 
n_20000_p2_std_small 19.05% 92.86% 7.14% 16.67% 93.33% 
n_20000_p3_std_small 19.05% 92.86% 7.14% 33.33% 96.67% 
n_5000_p1_std_mixed 28.57% 88.10% 7.14% 33.33% 80.00% 
n_5000_p2_std_mixed 28.57% 85.71% 14.29% 50.00% 83.33% 
n_10000_p1_std_mixed 28.57% 88.10% 7.14% 33.33% 86.67% 
n_10000_p2_std_mixed 28.57% 85.71% 9.52% 25.00% 93.33% 
n_20000_p1_std_mixed 28.57% 88.10% 4.76% 25.00% 90.00% 
n_20000_p2_std_mixed 28.57% 90.48% 7.14% 25.00% 93.33% 
n_20000_p3_std_mixed 28.57% 90.48% 11.90% 33.33% 100.00% 
n_5000_p1_std_large 83.33% 90.48% 7.14% 33.33% 80.00% 
n_5000_p2_std_large 80.95% 88.10% 7.14% 33.33% 90.00% 
n_10000_p1_std_large 85.71% 90.48% 7.14% 25.00% 93.33% 
n_10000_p2_std_large 88.10% 88.10% 7.14% 25.00% 96.67% 
n_20000_p1_std_large 85.71% 90.48% 7.14% 16.67% 93.33% 
n_20000_p2_std_large 88.10% 88.10% 7.14% 25.00% 96.67% 
n_20000_p3_std_large 83.33% 88.10% 7.14% 25.00% 96.67% 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 
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Table 27 

Three Categories: Percentage of Flags, Averaged Across Outcomes 

 Interaction Categorical MAIDHA 
n_5000_p1_std_small 44.00% 10.11% 48.67% 
n_5000_p2_std_small 34.48% 13.56% 46.00% 
n_10000_p1_std_small 44.00% 9.42% 47.48% 
n_10000_p2_std_small 33.33% 7.35% 48.48% 
n_20000_p1_std_small 44.00% 10.80% 46.29% 
n_20000_p2_std_small 30.48% 10.80% 45.81% 
n_20000_p3_std_small 37.33% 11.49% 49.81% 
n_5000_p1_std_mixed 49.48% 20.81% 47.43% 
n_5000_p2_std_mixed 41.14% 36.60% 52.38% 
n_10000_p1_std_mixed 55.67% 32.18% 48.76% 
n_10000_p2_std_mixed 49.00% 39.24% 48.43% 
n_20000_p1_std_mixed 57.33% 40.50% 47.29% 
n_20000_p2_std_mixed 46.67% 45.70% 48.90% 
n_20000_p3_std_mixed 45.67% 49.93% 52.86% 
n_5000_p1_std_large 70.67% 42.63% 58.86% 
n_5000_p2_std_large 56.62% 54.66% 59.90% 
n_10000_p1_std_large 72.33% 47.42% 60.33% 
n_10000_p2_std_large 58.29% 51.44% 61.00% 
n_20000_p1_std_large 74.00% 51.35% 58.67% 
n_20000_p2_std_large 54.29% 52.90% 61.00% 
n_20000_p3_std_large 64.00% 50.75% 60.05% 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 

  



 182 

Table 28 

Three Categories: Percentage of Flagged Coefficients/Intercepts by Model and Outcome 

 Interaction Categorical MAIDHA 
Accuracy 31.75% 24.16% 44.22% 
Bias 87.30% 43.55% 89.91% 
Coverage 24.60% 43.90% 7.71% 
Power 16.19% 3.97% 28.57% 
Type1Error 93.20% 47.45% 91.11% 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 

 
  
  



 183 

Table 29 

Three Categories: AIC and BIC 

 Interaction Categorical MAIDHA 
 AIC BIC AIC BIC AIC BIC 

n_5000_p1_std_small 14897 15053 119013 119361 119130 119232 
n_5000_p2_std_small 14580 14737 81532 81880 81571 81673 
n_10000_p1_std_small 29774 29947 57661 58009 57674 57776 
n_10000_p2_std_small 29154 29327 121757 122105 121878 121980 
n_20000_p1_std_small 59492 59681 42751 43068 42788 42882 
n_20000_p2_std_small 58269 58459 28870 29187 28882 28976 
n_20000_p3_std_small 57873 58063 61364 61681 61484 61577 
n_5000_p1_std_mixed 21951 22107 84319 84667 84361 84464 
n_5000_p2_std_mixed 21697 21853 57638 57986 57651 57753 
n_10000_p1_std_mixed 43264 43437 42646 42963 42690 42784 
n_10000_p2_std_mixed 42865 43038 57684 58032 57696 57799 
n_20000_p1_std_mixed 85693 85883 14453 14740 14467 14551 
n_20000_p2_std_mixed 84774 84963 30942 31229 31060 31145 
n_20000_p3_std_mixed 81741 81931 21586 21873 21633 21718 
n_5000_p1_std_large 31361 31518 120999 121347 121116 121218 
n_5000_p2_std_large 31131 31288 84618 84966 84654 84757 
n_10000_p1_std_large 61953 62126 28893 29210 28905 28999 
n_10000_p2_std_large 61744 61917 60982 61299 61098 61191 
n_20000_p1_std_large 123039 123229 14476 14763 14489 14573 
n_20000_p2_std_large 122536 122725 30917 31203 31032 31117 
n_20000_p3_std_large 119354 119544 21715 22002 21754 21839 
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Table 30 

Average Percentage of Flagging Across Two and Three-category Scenarios 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. The six scenario combinations dropped from the three-category model are not included.  No shading 

represents excellent performance, light orange shading (20-39%) represents moderate performance, medium orange 

shading (40-59%) represents fair performance, dark orange shading (60-79%) represents poor performance, and 

bright red shading (80-100%) represents extremely poor performance. 

 
 
 
 
 
 
 
 
 
 
 
 

  Interaction Categorical MAIDHA 
  2 cat. 3 cat 2 cat 3 cat 2 cat 3 cat 
n_5000_p1_std_small 20.00% 44.00% 12.50% 10.11% 19.37% 48.67% 
n_5000_p2_std_small 25.00% 34.48% 5.00% 13.56% 19.37% 46.00% 
n_10000_p1_std_small 25.00% 44.00% 15.00% 9.42% 19.37% 47.48% 
n_10000_p2_std_small 25.00% 33.33% 7.50% 7.35% 19.37% 48.48% 
n_20000_p1_std_small 30.00% 44.00% 10.00% 10.80% 19.37% 46.29% 
n_20000_p2_std_small 25.00% 30.48% 12.50% 10.80% 19.37% 45.81% 
n_20000_p3_std_small 20.00% 37.33% 5.00% 11.49% 19.37% 49.81% 
n_5000_p1_std_mixed 50.00% 49.48% 60.00% 20.81% 20.79% 47.43% 
n_5000_p2_std_mixed 50.00% 41.14% 56.92% 36.60% 23.81% 52.38% 
n_10000_p1_std_mixed 50.00% 55.67% 60.00% 32.18% 20.79% 48.76% 
n_10000_p2_std_mixed 50.00% 49.00% 60.00% 39.24% 23.81% 48.43% 
n_20000_p1_std_mixed 50.00% 57.33% 60.00% 40.50% 20.79% 47.29% 
n_20000_p2_std_mixed 50.00% 46.67% 60.00% 45.70% 25.24% 48.90% 
n_20000_p3_std_mixed 50.00% 45.67% 56.92% 49.93% 27.46% 52.86% 
n_5000_p1_std_large 41.67% 70.67% 51.35% 42.63% 26.51% 58.86% 
n_5000_p2_std_large 43.33% 56.62% 42.69% 54.66% 29.37% 59.90% 
n_10000_p1_std_large 46.67% 72.33% 58.46% 47.42% 27.94% 60.33% 
n_10000_p2_std_large 38.33% 58.29% 51.35% 51.44% 27.94% 61.00% 
n_20000_p1_std_large 46.67% 74.00% 61.54% 51.35% 25.08% 58.67% 
n_20000_p2_std_large 43.33% 54.29% 60.00% 52.90% 29.37% 61.00% 
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Table 31 

Percentage of Flagged Instances Two versus Three Categories 

  Interaction Categorical MAIDHA 
  2 cat 3 cat 2 cat 3 cat 2 cat  3 cat 
Bias 50.00% 31.75% 56.13% 24.16% 78.57% 44.22% 
Accuracy 11.11% 87.30% 13.68% 43.55% 23.81% 89.91% 
Coverage 50.00% 24.60% 55.84% 43.90% 0.00% 7.71% 
Power 0.00% 16.19% 0.00% 3.97% 2.96% 28.57% 
Type1Error 85.19% 93.20% 79.17% 47.45% 21.90% 91.11% 

Note. No shading represents excellent performance, light orange shading (20-39%) represents moderate 

performance, medium orange shading (40-59%) represents fair performance, dark orange shading (60-79%) 

represents poor performance, and bright red shading (80-100%) represents extremely poor performance. 
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Table 32 

Chapter 5 Results 
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Figure 9 

Two Categories: Distribution of Accuracy Flags 
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Figure 10 

Two Categories: Distribution of Moderate Bias Flags 
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Figure 11 

Two Categories: Distribution of Extreme Bias Flags 
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Figure 12 

Two Categories: Distribution of Coverage Flags 

 
  



 192 

Figure 13 

Two Categories: Distribution of Power Flags 
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Figure 14 

Two Categories: Distribution of Type 1 Error Flags 
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Figure 15 

Percentage of Small Standard Deviation Flagged Instances 

 

 
 
Figure 16 

Distribution of Outcomes Across Models 

 
Figure 17 
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Three Categories: Distribution of Accuracy Flags 
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Figure 18 

Three Categories: Distribution of Moderate Bias Flags 
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Figure 19 

Three Categories: Distribution of Extreme Bias Flags 
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Figure 20 

Three Categories: Distribution of Coverage Percent 
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Figure 21 

Three Categories: Distribution of Power Flags 
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Figure 22 

Three Categories: Distribution of Type 1 Error Flags 

 
 
 
  



 201 

Figure 23 

Three Categories: Percentage of Small Standard Deviation Flagged Instances 

 
 
 

 
Figure 24 

Three Categories: Distribution of Outcomes Across Models 

 
 


