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Abstract

In the first chapter of this dissertation, I study the relative advantages of invest-

ment (upfront) and output (production-based) subsidies for rooftop solar Photovoltaic

(PV) adoption. While investment subsidies can be cost-effective due to adopters’

inter-temporal discounting (impatience), output subsidies are better targeted to site

quality. Using data from the California Solar Initiative, I estimate a dynamic discrete

choice model of solar adoption, then simulate counterfactual subsidy policies to find

an optimal balance of investment and output subsidy rates. The model estimates

adopters’ discounting factor and distribution of tastes, and hinges critically on the

observed distribution of site quality as data. Considerable variation in personal taste

(taste to be green) implies that the output subsidy can play a helpful role in incen-

tivizing otherwise hesitant property owners with high production potential, while not

overpaying eager adopters with lower potential.

The intertemporal discount factor, reflecting consumers’ impatience, is a critical

element in many models of consumer demand behavior. However, the discount factor

must usually be calibrated (assumed) rather than estimated, and if calibrated incor-

rectly, may yield serious miscalculations in empirical results and policy implications.

Therefore, in the second chapter of this dissertation, I estimate distinct values of



the discount factor for commercial and residential adopters of solar. In showing that

commercial adopters are only about one third as impatient as residential adopters,

this paper offers useful context for researchers seeking to make informed calibrations

of the discount factor in related settings. In the setting of rooftop PV solar adoption,

the difference in discount factors implies that the most cost-effective combination of

investment and output subsidies involves relatively higher output subsidy rates for

commercial properties, and relatively higher investment subsidy rates for residential

properties.
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1 Optimizing investment Vs. Output Subsidies for

Solar: Site Quality Vs. Personal Taste

1.1 Introduction

In order to reduce carbon emissions, governments around the world have insti-

tuted subsidies to encourage the adoption of renewable energy technologies. In this

paper I examine the case of rooftop solar photovoltaic (PV) technology, with the

goal of determining a government’s most cost-effective allocation of budget between

investment (upfront) and output (production-based) subsidies. The basic trade-off

that the government faces is the following. On the one hand, investment subsidies are

generally cost-effective due to the government’s ability to borrow at minimal interest

rates, and private entities’ relatively more risk-averse or myopic dispositions.1 On the

other hand, investment subsidies may be poorly targeted to site quality 2. Particu-

larly, there are cases in which the investment subsidy offers more than necessary to

adopters with low site quality, but high personal taste for solar (such as the desire

to be green),3 and less than necessary (to incentivize adoption) to potential adopters

with high site quality, but low personal taste. Personal taste is especially relevant to

the context of rooftop solar because the adopted technology is to be visibly present

on property owners’ homes - or on properties whose primary function is something

other than electricity production.4

This paper explores the trade-off between investment and output subsidies for

solar, with a special focus on the role played by the geographical distribution of

personal taste for solar and its correlation with site quality. I develop a dynamic
1See De Groote and Verboven (2019).
2See Sexton et al. (2021), Talevi (2022).
3The situation in which the agent would adopt solar even without receiving a subsidy, known as

“non-additionality," is a major concern with regard to reducing subsidy costs.
4If commercial adopters (firms) are less risk-averse or myopic than residential adopters (house-

holds) are, then the most cost-effective balance for firms may lean relatively more towards output
subsidies because firms are relatively less enticed by upfront certainty.
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discrete choice model of rooftop solar adoption, and an accompanying model of the

government’s policy objectives, to show how a few factors determine the relative

cost-effectiveness of the investment and output subsidies. These key factors include

potential adopters’ discount factor (impatience), the correlation between taste and

site quality, and how well the investment subsidy is targeted to site quality.

I estimate the model using detailed data on the rooftop solar market in California.

Rich variation over time in the incentive rates offered by the California Solar Initiative

for each subsidy type enable me to identify the key parameters of adopters’ demand

system. An estimated discount factor of 0.83, indicating that potential adopters of

solar are highly impatient, strengthens the relative cost-effectiveness of the invest-

ment subsidy. At the same time, a negative correlation (-0.28) between taste and site

quality in California strengthens the cost-effectiveness of the output subsidy. This

negative correlation stems from the geographical divergence in California between the

sun and populations most friendly to solar: while the sunniest areas to be inland, the

higher educated and more politically left leaning populations tend to cluster along the

coast. To weigh these countervailing factors against one another, I simulate counter-

factual subsidy rates, seeking the most cost-effective5 combination of investment and

output subsidy rates. Each simulation computes the total distribution of rooftop solar

adoption, electricity production and subsidy expenditure that would occur under each

hypothetical combination of subsidy rates, and hence gauges the cost-effectiveness of

each according to the model of the government’s policy objectives.

I combine two major data sources to yield a comprehensive view of the rooftop so-

lar market in California. First, the California Solar Initiative (CSI) program provides

detailed information on each solar PV adoption that occurred from 2007-2014. This
5Cost-effectiveness may viewed either as maximizing production with a fixed subsidy budget, or

as minimizing subsidy expenditure for a fixed production target. I build a model of the government’s
policy objectives in which the government has a willingness-to-pay parameter analogous to the social
cost of carbon. This policy model nests both version of cost-effectiveness (production maximization
and cost minimization), and also enables comparisons across a greater variety of outcomes. I eval-
uate outcomes according to this policy model, and also by cost minimization with assumed fixed
production targets.
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includes physical characteristics of each system adopted, the system installation price,

and subsidy type and amount paid to each, amongst other details.6 Second, because

the CSI database includes only properties whose owners chose to adopt solar, I employ

a powerful dataset from Google Project Sunroof7 to get a sense of how non-adopters’

production potential distribution differed from the adopters’ distribution.

In the dynamic discrete choice model of rooftop solar adoption developed in this

paper, individual potential adopters weigh their expected net financial benefit of

adopting solar on the one hand, against their own personal taste for solar on the other.

The net financial benefit is equal to the subsidy amount plus expected electricity cost

savings, less the system installation price. If the net financial benefit is negative,

then an individual needs an equally strong or stronger positive taste for solar (such

as desire to be green) in order to adopt. And if the net financial benefit is positive,

then the individual (excluding those waiting to adopt in a future time period) needs

an equally strong negative taste in order to not adopt.

A changing structure of the net financial benefits over time gives rise to the dy-

namic aspect of the model. While the subsidy rates under the CSI program were

declining in ten steps over time by design, system prices were also falling over time as

a function technological change. As such, each potential adopter in the model may

choose to adopt (with either of the two subsidy types) in any given time period, but

must also consider the option value of waiting and potentially adopting in a future

time period. On balance net financial benefits were typically increasing over time, as

declining system installation prices outweighed the CSI program’s declining subsidy

rate steps.

The dynamic discrete choice model of rooftop solar adoption and accompanying

model of the government’s policy objectives show how two crucial mechanisms influ-
6Under the CSI program, each individual was given a choice between an investment and output

subsidy. The investment subsidy (if chosen) was provided upfront, in an amount based on California’s
ex-ante approximation the system’s lifetime expected solar production. The output subsidy was paid
out on a rolling basis as a function of actual monthly production.

7Source: Google Project Sunroof data as of January 2023
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ence the relative cost-effectiveness of the investment and output subsidies. First, if

the intertemporal discounting factor is lower (individuals are more impatient), then

the output subsidy becomes less attractive to potential adopters in utility terms, and

therefore relatively less cost-effective as a subsidy. But second, as long as there is

any variation in the distribution of site quality that is independent of the distribu-

tion of personal taste, then the output subsidy has at least some advantage over the

investment subsidy in its ability to compensate potential adopters for their true site

quality. A negative correlation between site quality and personal taste will bolster

this relative advantage of the output subsidy, as higher quality sites will be less in-

clined to adopt in the absence of the better targeted subsidy. As such, the most

cost-effective combination of investment and output subsidy rates is very much an

empirical question.

The empirical results indicate that there are strong forces on both sides of the

trade-off (between the investment and output subsidies). In agreement with many

related studies, I find that residential rooftop solar adopters do discount the future

heavily.8 My estimated implicit annual discount factor at 0.83 is towards the lower

end but very much within the range of comparable estimates.9 It is well understood

that a discount factor far below 1, implying that potential adopters are impatient with

regards to benefits that will accrue in the future, strengthens the cost-effectiveness of

the investment subsidy relative to that of the output subsidy. I add to this, however,

both by showing the countervailing role of the correlation between taste and site

quality in theory, and empirically in showing that this correlation is negative in the

case of California at -0.28, implying a significant role for the output subsidy as well.

This stems from the geographical divergence in California between sunlight intensity

and populations most friendly to solar: while the sunniest areas to be inland, the

higher educated and more politically left leaning populations tend to cluster along
8See Burr (2016), De Groote and Verboven (2019), Snashall-Woodhams (2019).
9De Groote and Verboven (2019) estimate a discount factor of 0.85 for residential consumers of

solar PV in Flanders, Belgium. Snashall-Woodhams (2019) estimate a discount factor of 0.83 for
residential consumers in CA, USA.
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the coast.

To weigh the relative advantages of the investment and output subsidies against

one another, I conduct counterfactual simulations that compute outcomes over a

range of alternative subsidy rate policies.10 The first set of counterfactuals takes the

model estimation results as given, including the annual discounting factor of 0.83 and

correlation between taste and site quality of -0.28. By passing counterfactual subsidy

rates through the model with these parameter values, I find a cost-effective combi-

nation of investment and output subsidy rates for the actual setting of California.

I then conduct a second set of counterfactual simulations that are meant to reach

beyond the setting of California. That is, I repeat the first set of simulations, but

with altered values of the key model parameter values, shedding further light on the

role played by each parameter in influencing the cost-effectiveness of either subsidy.

The first set of counterfactual results show that the most cost-effective combina-

tion of rates for the setting of California is near to the rates actually offered by the

CSI program, but with a roughly 20% higher investment rate and 30% lower out-

put rate. Given the balance of the relative advantages between the investment and

output subsidies as they manifest in California, it is cost-effective to rely mainly on

the investment subsidy - as the CSI program did - offering a high enough investment

rate that the vast majority of adopters opt for it. Yet, it is nonetheless helpful - as

the CSI program also did - to offer a mild yet nonzero output subsidy that succeeds

in incentivizing a small group of very high quality potential adopters who would not

adopt otherwise.

Additional counterfactuals go beyond the setting of California by altering key

parameter values, and examining how the cost-effective combination of investment

and output subsidy rates shifts in response. First I increase the intertemporal dis-

counting factor, representing a setting in which potential adopters are less impatient.
10The purpose of each simulation is to compute the distribution of rooftop solar adoption de-

cisions, electricity production and subsidy expenditure that would occur under each hypothetical
combination of subsidy rates, and hence to gauge the cost-effectiveness of each subsidy.
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This increases the utility value of the output subsidy to potential adopters, yielding

a higher cost-effective output subsidy rate. Because lower impatience increases the

utility value of electricity cost savings as well, total adoption levels are considerably

higher in this setting.

Finally, I alter what may be the most important factor of all. The CSI program’s

investment subsidy is superior to a conceptually pure, flat investment subsidy, in that

it is adjusted for the state’s ex-ante approximation of site quality (the CSI Rating).

I examine the significance of this by replacing the CSI investment subsidy with a

flat investment subsidy, representing a setting in which the government is completely

unable to measure site quality ex-ante.11 In this case the cost-effective output subsidy

rate increases, as the output subsidy’s advantage in targeting to site quality becomes

more important. However, the total program cost needed to incentivize the same

level of adoption and solar electricity production as in the CSI program increases

considerably, as the investment subsidy no longer has the ability to incentivize higher

quality sites to adopt in a cost-effective way.

Most closely related to this paper are several others that have evaluated cost-

effective subsidy design for rooftop solar. My results concur with De Groote and

Verboven (2019), Snashall-Woodhams (2019) and Talevi (2022) in finding that be-

cause potential adopters of rooftop solar discount the future heavily, an investment

subsidy that is well-targeted to site quality is generally the most cost-effective op-

tion. I add to this however in showing that it may nonetheless yield mild gains to

cost-effectiveness to offer an output subsidy option alongside the investment subsidy

option, especially in settings such as California in which there is a negative correlation

between site quality and personal taste. Langer and Lemoine (2022) study efficient

subsidy design for rooftop solar with a focus on how the subsidy rate should be in-

creased or decreased over time - an aspect of the subsidy design that I do not dissect

in this paper.
11More abstractly, this can be thought of as decreasing the correlation between the CSI Rating

(or the state’s ex-ante approximation of site quality) and true site quality to zero.
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The remainder of this paper is organized as follows. Section 1.2 covers the relevant

industrial background, especially the most important details of the California Solar

Initiative (CSI) subsidy program. Section 1.3 describes my data sources, including

the CSI database and Google Project Sunroof, and the key variables contained in

each. Section 1.4 presents some reduced-form evidence to motivate the central ideas

in my model. Section 1.5, the longest section of the paper, defines and explains my

dynamic discrete choice model of rooftop solar adoption behavior, and also my model

of the government’s policy objectives. This includes multiple simplified examples

meant to help highlight key mechanisms that drive the relative cost-effectiveness of

the investment and output subsidies. Section 1.6 estimates the model using the

data described in Section 1.3, then presents counterfactual simulation results with

hypothetical subsidy policies, and finally also with altered key parameter values.

Section 1.7 concludes.

1.2 Industry Background

Subsidy programs for solar adoption in the US have been generous, both at the

federal and state levels. In addition, the costs of solar Photovoltaic (PV)12 systems

have reduced substantially in recent decades. Preferential financing and leasing op-

tions are also common. Despite all of these benefits, solar adoption rates remain lower

than most policy makers would like, as households and firms still face large upfront

costs, and uncertain future benefits. Subsidies fall into two broad categories: up-

front (investment) subsidies awarded at the time of adoption, and production-based

(output) subsidies awarded on a rolling basis post-adoption.

I examine solar PV adoption behavior under the California Solar Initiative (CSI),

a multi-billion-dollar program designed to incentivize solar adoption in CA. The CSI

program was distinctive in two ways that make it a rich setting for analyzing adopters’

demand behavior. First, CSI offered potential adopters a choice between either an
12PV systems are the most ubiquitous solar power harvesting technology.
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investment subsidy or an output subsidy, with investment and output subsidy rates

set as a function of region and time of adoption.13 Second, the investment and

output subsidy rates offered by the CSI program each declined in ten steps over time,

providing rich exogenous price variation that can identify the parameters of adopters’

demand model.

Taking effect in Jan 2007, the CSI program offered solar adopters a choice between

an investment subsidy, called the Expected Performance-Based Buydown (EPBB),

and an output subsidy called the Performance-Based Incentive (PBI). Both subsidies

were designed to reward higher-producing adopters and their chosen systems: How-

ever, whereas the EPBB is a one-time, upfront payment based on a system’s ex-ante

expected performance; PBI payments are paid according to the system’s actual per-

formance, measured and paid out over the course of the five years following adoption.

As such, although both subsidies offer more to properties with higher expected pro-

duction, the output subsidy (PBI) is better-targeted in this goal, in so far as there

is any error in the state’s ex-ante estimate of expected production which informs the

investment (EPBB) subsidy.

The CSI program’s subsidy options were available to all customers of California’s

three major Investor-Owned Utilities (IOUs) from 2007-2014, but with subsidy rates

that declined over time.14 Particularly, 10 rate steps for each of the two subsidies were

announced at the onset of the program: The highest rates were to be offered first -

so that the earliest adopters would receive the largest subsidies - and the rates would

decline monotonically thereafter. However, the timing of each rate change was not

entirely predictable, but based on the aggregate amount of solar adoption achieved in

each IOU region. As such, the rates changed at different times for each IOU, triggered
13Regardless of which CSI subsidy option is chosen, the adopter could also claim the federal

Investment Tax Credit (ITC), a tax credit valued at 30% of the system installation price.
14Dollar amounts of subsidies are equal to the rates multiplied by production or expected pro-

duction. In the case of the output subsidy (PBI), the rate (locked in at the time of adoption) is
multiplied by actual solar electricity production measured on a rolling basis over the course of five
years. In the case of the investment subsidy (EPBB), the rate is multiplied by the CSI Rating, which
serves as the state’s ex-ante estimate of an adopted system’s lifetime expected production.
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when each of the predetermined total adoption targets were achieved in each. Figure

17 plots the 10 EPBB subsidy rate steps ($/Watt) in red (right vertical axis),15 and

the corresponding cumulative solar capacity installed in blue (left vertical axis).

Figure 1: EPBB Subsidy Variation Over Time

A graph with the PBI rates in place of the EPBB rates in Figure 17 would look

similar, as the former also decline in ten steps (from $0.39/KWh to $0.02/KWh).16

More importantly with regards to analyzing adoption choices, Figure 18 displays how

each of the subsidy rates evolved over time in each of the IOUs.
15The full schedule of rates can be found in Table 2.5 in Appendix.
16See Table 2.5 in Appendix.
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Figure 2: Cross-sectional Subsidy Variation

Because each of IOUs reached their aggregate capacity targets at different times,

there is cross-sectional as well as time-series variation, that is, with rates differing

across IOUs in any given time period. These sharp changes provide very useful price

variation for evaluating adoption behavior.

That the subsidy rates were highest in the earliest years of the program begs

the question as to why many adopters would wait until later periods to adopt. A

countervailing factor, however, is that the prices of solar panels declined considerably

over the same time span, implying potential profit for many adopters in waiting,

despite the loss of subsidy. Furthermore, considerable idiosyncratic error must be

at play in the context of rooftop solar, as many property owners may be unaware

or insufficiently sold on the prospect of adopting solar in any given time period,

regardless of pure financial primitives.

1.3 Data

This paper examines the effects of subsidies on property owners’ choices of

whether to adopt rooftop solar. The needed data must therefore include information
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on property owners’ adoption decisions and the subsidies they were offered, as well

as any property characteristics likely to influence adoption decisions alongside the

subsidy offerings. The CSI database contains rich information on all of the above, so

forms the backbone of my dataset for this paper. A limitation of the CSI database

however is that it contains no information on properties whose owners refrained from

adopting solar, which presumably are different on average than the included properties

whose owners all did adopt. I therefore turn to Google Project Sunroof as second

major data source. Relative to the CSI database, Google Project Sunroof contains

less information per included property, but includes a much broader set of properties,

particularly non-adopters of solar as well as adopters.

1.3.1 CSI Database

As a subsidizer, the CSI program collected detailed information on each property

i to which it issued a subsidy. These include most importantly the investment subsidy

rate ru
i,t and the amount of the investment subsidy,

ru
i,t · ci,t (1)

that was paid to each adopter who opted to receive the investment subsidy; the output

subsidy rate rq
i,t and the total amount of output subsidy,

rq
i,t ·

5 years∑
τ=0

qi,t+τ (2)

that was paid out over time to each adopter who opted to receive the output subsidy;

and actual monthly solar electricity production qi,t+τ for each output subsidy recip-

ient. The CSI Rating ci,t, which serves as the state’s ex-ante estimate of expected

production, is present in the data for both investment and output subsidy recipients

(although actual production qi,t+τ is present only for output subsidy recipients). In-
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cluded also are the total installation price pI
i,t of each system, and several component

factor determinants of the CSI Rating, including system size si and number of invert-

ers, roof tilt and azimuth, module characteristics, and the recipient’s county and zip

code.

In order to evaluate property owners’ choices, it is necessary to quantify the

options that each forwent, alongside the options that each chose. As such, a minor

limitation of the CSI data is that it contains investment subsidy amounts only for

investment subsidy recipients, and output subsidy amounts only for output subsidy

recipients: It is necessary to quantify also the output subsidy amount that each

investment subsidy recipient forwent, and the investment subsidy amount that each

output subsidy recipient forwent. This can be remedied however, because of the

known constitution of each subsidy as given in (33) and (34). As discussed in Section

1.2, the subsidy rates ru
i,t and rq

i,t do not vary per every individual property i, but

rather per each i’s utility provider (IOU), per time period t. I therefore recover the

forgone output subsidy rates rq
z,t for investment subsidy recipients, and the forgone

investment subsidy rates ru
z,t for output subsidy recipients, as a function of the county

z in which each resides.17

The CSI database has two major limitations. First, although it has the CSI

Rating ci - that’s is the state’s ex-ante estimate of expected solar electricity production

per property i - for both investment and output subsidy recipients, the CSI database

has actual production qi,t+τ only for output subsidy recipients. This in itself is not as

severe a limitation as it may sound however, because property owners’ choices in any

case must hinge on (their own) ex-ante expected production, rather than on actual

production per se. To arrive at a proxy yi for property owners’ ex-ante estimate of

their own expected production (distinct from the state’s estimate ci of the same), I

will fit actual production qi as a nonlinear function of ci and sunlight intensity ℓi, with

slopes and intercepts varying by location z. Because the left hand side variable for
17Future period subsidy rates ru

i,t+τ and rq
i,t+τ likewise are not directly observed per individual i,

yet recoverable given i’s county of residence.
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this function exists only for output subsidy recipients, this approach of course hinges

on the assumption that the functional relationship between yi = q̂i and (ci, li, z) for

output subsidy recipients accurately reflects the same relationship for the broader

population of properties. That is, given the function fit yi = q̂i from output subsidy

recipients qi data, I can impute yi for investment subsidy recipients as well given their

predictive data (ci, li, z).

Second and most importantly, the CSI database contains no data at all on

properties whose owners elected not to adopt solar. Because part of my goal is to make

projections of adoption behavior under altered (counterfactual) subsidy policies and

scenarios, it is necessary to model the distribution of properties whose owners in fact

did not adopt, but might switch to adopting in the counterfactual. The distribution

of non-adopters properties’ could be assumed equal (in site quality measures ci, yi) to

the distribution of adopters’ properties. However this would be implausible in that

higher quality sites must be more likely to have adopted. In order to approximate

how adopters’ site quality distribution differed from that of the broader population

of properties, I therefore turn to Google Project Sunroof, which contains its own

measures of rooftop solar production potential, for 80-90% of all rooftops in California.

1.3.2 Google Project Sunroof

Although the CSI database contains most of the key information needed for

this study, it lacks one essential feature, that is the ability to compare the observed

distribution of solar adopters to the broader distribution of potential adopters. Be-

cause higher quality sites stand to receive both higher subsidy amounts and greater

electricity cost savings in the event of adopting solar, they must be more likely to

adopt than lower quality sites are. Because the CSI database contains information

only on adopters and none on non-adopters, any differences between these groups are

completely unobservable. This is important particularly for counterfactual analysis.

Although it may (arguably) be reasonable to estimate a model of adoption choice

13



behavior using data on adopters alone, any counterfactual analysis must explicitly

consider whether properties whose owners did not adopt would switch to adopting in

the counterfactual.

Google Project Sunroof18 contains its own measures of rooftop solar energy

production potential, and unlike the CSI database covers (and identifies) non-adopters

as well as adopters. I harness this data to obtain rough measurements of how the

site quality distribution of adopters in California differs from the broader underlying

distribution of potential adopters. I use these measurements to adjust the observed

distribution of adopters from the CSI database, arriving at an imputed distribution

which I take to represent the full spectrum of potential adopters for the purpose of my

model estimation and counterfactuals. Because the CSI database and Google Project

Sunroof do not contain exactly the same measures of site quality in common, this

adjustment cannot be rigorous. However, it is an improvement over the most natural

alternative, which would be to assume the distributions of adopters and non-adopters

are either exactly the same, or differing by a calibrated (guessed) factor.

Project Sunroof uses aerial imagery and 3D modeling to derive estimates of

maximum rooftop solar potential for each individual building, covering roughly 85%

of all properties in California. The inputs to Google’s maximum solar potential model

include the roof space area (sq ft) suitable for installing solar panels, projections

of shading on each point on the roof for each position of the sun in the sky, the

compass orientation and vertical angle of each roof plane, and local weather data.

Project Sunroof’s web interface accommodates the entry of any individual address,

as shown in Figure 19, returning various estimates related to the property’s rooftop

solar potential. I use an anonymized dataset of roughly 9 million such addresses,

shared through a Data User Agreement.
18Source: Google Project Sunroof data as of January 2023
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Figure 3: An Individual Property in Google Project Sunroof’s Web Interface.

Because I use the Project Sunroof data to approximate how the distribution of

rooftop solar adopters differs from the broader distribution of potential adopters, it

is necessary to distinguish in some way between adopters and non-adopters within

the Project Sunroof data itself. Fortunately, Project Sunroof’s aerial imagery does

identify properties with solar systems currently installed, enabling me to compare the

distributions of adopters and non-adopters directly.19 Figure 4 overlays the distri-

bution of maximum solar potential for (residential)20 adopters of solar (red) on the

distribution of the same for the whole (residential) population of potential adopters

(blue), with the height of each distribution reflecting total count.
19Because it is not known at what time each property in Project Sunroof with solar had its system

installed, it is possible that adopters during the time of the California Solar Initiative program (2008-
2014) have a different site quality distribution than that of the full set of adopters identified in Project
Sunroof. However my interest for this data is with the (presumably) much larger distinction between
adopters and non-adopters, not the presumably minor distinction between adopters during and after
CSI.

20Although the Project Sunroof data identifies which properties have adopted solar, it does not
identify which properties are residential. This is important because the distribution of commercial
properties has a heavy right tail, that is of very large commercial properties with vast roof space.
I isolate residential properties in the Project Sunroof data via a computationally intensive spatial
matching with California Assessor data, described in the upcoming Section 2.3.3.

15



Figure 4: Google Project Sunroof Distribution of Maximum Production Potential (gi)
for Residential Properties in California.

Notes: Google Project Sunroof distribution of maximum production potential (gi) for
residential properties in California. The red distribution is restricted to properties with
solar PV systems currently installed (adopters), a subset of overall distribution (blue).

It is visible in Figure 4 that adopters tend toward the right of the total distribution,

reflecting that properties with better site quality are more likely to adopt. But because

the adopters are a relatively small subset of the total, there are nonetheless many non-

adopters with comparable site quality across the whole distribution of adopters.

Although the maximum solar potential variable (gi) present in the Project Sun-

roof data enables me to compare the distributions of adopters and non-adopters as

displayed Figure 4, in order to make use of this comparison in my model estimation

I will need to make a mathematical mapping between gi and comparable site quality

measures present in the CSI data, particularly the CSI Rating (ci). Because there are

no observations of gi and ci in common, this mapping cannot be rigorous, but is meant

merely to adjust for the large average difference in site quality between adopters and

non-adopters. Although different especially in their scale, gi and ci are both measures
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of site quality, and as such do share their most important elements in common.21

In order to impute the ci distribution of non-adopters that I will use in my

model estimation, I assume that adopters form a similarly shaped subset of the total

distribution in ci as they do in gi. Three of the four distributions displayed in Figure

21 are observed data: the fourth is the imputed total ci distribution.

Figure 5: Non-adopters’ Site Quality Imputation

Notes: The left panel repeats Figure 4, showing the distribution of maximum solar
production potential (gi) for residential properties in blue, and the same restricted to
adopters in red. The right panel shows the observed distribution of production potential
(ci) for adopters in the CSI database in red, and the imputed overall ci distribution in
hollow blue.

The left panel of Figure 21 is only a repeat of Figure 4, with the distribution of

maximum solar potential (gi) for adopters in red, and the distribution for all potential

adopters (adopters and non-adopters together) in blue. The right panel displays the

ci distribution for adopters in red, and the imputed total ci distribution in hollow

blue. To arrive at the imputed distribution, I split each of the adopters’ distributions
21An important difference between gi and ci is that the former is a measure of maximum solar

production potential, whereas ci is the expected production of systems being actually installed. gi
is the property’s full ability to produce solar energy; ci is a function of property’s needs as well
as its ability. Properties with lower energy usage needs will choose smaller system sizes than the
maximum their roof can support, resulting in lower ci relative to gi. However larger properties will
tend to have both more roof space and higher energy usage needs, and gi and ci share most other
factors in common - roof angles, shading and local weather.
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into 50 bins h, where each bin coincides with 2 percentile points, and fit a log-linear

function of the bin cutoffs ch of the adopters’ ci distribution on the bin cutoffs gh of the

adopters’ gi distribution. I then pass the gi value for each non-adopter i through this

fitted function, yielding the imputed distribution as shown. Each of these imputed

values should not be viewed as the value of ci per individual non-adopter i; but I take

the distribution of these values to represent non-adopters’ ci distribution.

1.3.3 Additional Data Sources

While the CSI database and Google Project Sunroof together form the main

bulk of my data, I use a few auxiliary data sources as well to fill in some additional

needed variables. These auxiliary data are land use codes from California state as-

sessor data, socioeconomic data from the US American Community Survey (ACS),

political vote shares data from the MIT Election Data and Science Lab, and energy

prices data from the US Energy Information Agency (EIA). I use the assessor data to

identify residential properties, and the ACS and vote shares data to constitute proxies

for personal taste for solar. Electricity prices are essential for calculating expected

electricity cost savings, a key factor in the choice of whether to adopt solar.

I take land use codes from California state assessor data to identify residential

properties in the Google Project Sunroof data. The Project Sunroof data critically

enables me to compare the site quality distributions of adopters and non-adopters,

but it does not identify which properties are residential. This is important because the

site quality distribution of commercial properties has a particular right tail - of very

large commercial properties with vast roof space for solar - which does not belong

in the residential site quality distribution. I spatially match properties in Project

Sunroof to properties in the assessor data using latitude and longitude by nearest

neighbor matching with a distance error tolerance of 5 meters. Although there may

be some degree of error in the latitude and longitude coordinates, the matches do not

need to be exactly correct, because I am only interested in the land use codes from
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the assessor data - i.e. residential or commercial.

To proxy for personal taste for solar, I take socioeconomic variables from the

ACS, and political vote shares data from the MIT Election Data and Science Lab.

Personal taste is especially important for rooftop solar, and will play a central role

in my model, because solar panels (if adopted) will become visibly present on one’s

home. Individuals may have a negative taste if they dislike the appearance of solar

panels, or also a positive taste if they have a desire to be green or environmentally

friendly. Unfortunately, both of these are unobservable, but I assume that the latter -

the desire to be green - is correlated with observable covariates. Particularly I suppose

that higher earning, higher educated, and more politically left-leaning populations are

more likely to have positive taste for solar. From the ACS I take county level median

income, and propensity to be college educated, to capture earnings and education,

respectively. To capture political orientation, I calculate (from the MIT Election

Data and Science Lab data) county level average vote shares for major left-leaning

(Democrat and Green) party Presidential candidates, averaged over all elections from

2000 to 2016.

The choice of whether to adopt solar hinges in part on expected electricity cost

savings, which depend on current and expected future electricity prices. Expected

electricity cost savings are another component of the net financial benefit of adopting

solar, that is, in addition to the chosen subsidy. As such, electricity prices data, which

I take from the US Energy Information Agency (EIA), are essential for quantifying the

value of each choice option faced by potential adopters in each time period. I follow

De Groote and Verboven (2019) in assuming that each potential adopter conjectures

future electricity prices in each time period from a linear trend on past prices in their

respective region of residence.
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1.4 Empirical Evidence

Potential adopters of solar in my setting face three basic choice options: to not

adopt, to adopt with the investment subsidy, or to adopt with the output subsidy.

In this section I examine patterns of which properties select into each choice option.

Given that properties with higher solar production potential (site quality) stand to

incur greater electricity cost savings in the event of adopting, the propensity to adopt

should be increasing in site quality regardless of the choice of subsidy. But between

the two subsidies - because the output subsidy is better targeted to site quality, and

hence effectively offers something extra to the highest quality sites - the propensity

to adopt with the output subsidy should be increasing in site quality at an especially

steep rate. This section confirms that both of these patterns indeed occur in the data.

In addition to showing patterns of choice over the site quality distribution, this

section can help to clarify the essential roles played by each of my two major data

sources, that is the CSI database and Google Project Sunroof. While the CSI database

identifies which adopters selected each type of subsidy, Google Project Sunroof iden-

tifies non-adopters in contrast to adopters. Figure 6 plots the propensity to select

either subsidy type in the CSI data, for each decile of the site quality distribution.

Figure 6: Conditional Propensity to Adopt With Either Subsidy Type by ci Decile

Notes: ci is the CSI Rating, CA’s ex-ante estimate of each adopted system’s lifetime
expected production. The propensities are conditional on adoption, so sum to 1. The
output adoption probabilities are scaled 10x.
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Notice that because the CSI data does not contain non-adopters, the plotted prob-

abilities cannot be unconditional, but instead are conditional on adoption. As the

displayed (conditional) propensity to adopt with the output subsidy increases in site

quality, the propensity to adopt with the investment subsidy must decrease as a mir-

ror image of the former. This does not imply same for the unconditional propensity

to adopt with the investment subsidy - that is, including the choice to not adopt

at all. Figure 7 plots the unconditional probability of adoption for each site quality

decile in the Google Project Sunroof data.

Figure 7: Propensity to Adopt by gi Decile

Notes: gi is Google Project Sunroof’s estimate of the property’s maximum solar energy
production potential.

It is visible in Figure 7 that the propensity to adopt solar is increasing steadily in

site quality: but lacking any information on subsidy types, the Project Sunroof data

cannot dissect these adopters further.

It is only in harnessing both the CSI data and the Project Sunroof data together

that we can see the unconditional propensities to adopt with either subsidy. One can

roughly think of multiplying each of the conditional probabilities in Figure 6 by the

corresponding decile probability in Figure 7 to yield the unconditional probabilities
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in Figure 8 below.22

Figure 8: Unconditional Propensity to Adopt With Either Subsidy Type by ci Decile

Notes: Non-adopters ci values are imputed following the procedure given in Section 2.3.2.
The output adoption probabilities are scaled 25x.

Although the probability of choosing the investment subsidy conditional on adopting

is decreasing in site quality as shown in Figure 6, the probability of adopting as

shown in Figure 7 is increasing to such an extent that the combination of these two

is increasing. This is the unconditional probability of adopting with the investment

subsidy, shown as the orange series in Figure 8. The probability of adopting with

the output subsidy on the other hand is increasing through both channels - both

conditionally as given in Figure 6, and in the absolute as given in Figure 7 - so is

subject to an especially steep rise, visible particularly in the top decile. Each of these

patterns will form an essential part of the identifying variation for the model: While

adoption, regardless of subsidy type, increases in site quality due to electricity cost

savings, adoption with the output subsidy in particular increases at an especially steep

rate, due to the extra boost that it offers to the highest quality potential adopters.
22This is not exactly correct as the decile cutoffs in 6 are amongst adopters only, and hence

higher than the true cutoffs in 7. To create Figure 8, the Project Sunroof non-adopters’ production
potential gi values must first be translated into ci terms following the procedure given in Section
2.3.2.
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1.5 Model

This paper contains technically two models. The primary, Adoption Model is a

dynamic discrete choice model of solar technology adoption.23 I estimate the param-

eters of the Adoption Model assuming that potential adopters of solar are informed

rational agents, and therefore that their observed choices identify their underlying

tastes and objectives. The second, Policy Model parameterizes the government’s

tradeoff between the social benefit of increased solar energy production on the one

hand, and the financial cost of associated subsidy payouts on the other. I use the

Policy Model, in conjunction with the parameter estimates from the Adoption Model,

to compute optimal investment and output subsidy rates under a variety of counter-

factual scenarios.

1.5.1 Adoption Model

The success of any effort to promote rooftop solar energy production hinges on

the distribution of individuals’ choices of whether or not to adopt solar systems. I

develop a dynamic discrete choice model to encapsulate the most essential elements

of this choice. These essential elements comprise two main components: each individ-

ual’s (1) net financial benefit in the event of adopting solar, and (2) personal taste for

solar, such as the desire to be green. The net financial benefit in turn is composed of

three sub-components: (1a) subsidies, (1b) electricity cost savings, and (negatively)

(1c) the cost of the solar system. The balance of the net financial benefit and personal

taste determines the adoption decision for each individual. If the net financial benefit

is negative, an individual needs an equally strong positive taste for solar in order to

adopt. And if the net financial benefit is positive, the individual needs an equally

strong negative taste in order to not adopt.

The purpose of the Adoption Model is to clarify and quantify how the balance
23The Adoption Model is analogous to a typical discrete choice demand model in Industrial Or-

ganization.
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of net financial benefit and personal taste resolves per individual - including, most

importantly, how the investment and output subsidies may result in different resolu-

tions of that balance for different individuals. As such, the model both theoretically

defines, and provides the basis for estimating, a handful of key parameters that are

crucial in determining the distribution of adoption decisions. On the net financial

benefit side, the intertemporal discounting factor β adjusts the utility value of finan-

cial benefits that will accrue in the future. This is critical especially for determining

the relative values of investment versus output subsidies, as investment subsidies are

paid in the present, while output subsidies are paid in the future. On the personal

taste side, both the mean and variance of the taste distribution are influential, but

the covariance of taste with site quality also plays a particularly decisive role in de-

termining the relative cost-effectiveness of investment versus output subsidies. As I

show in section 1.5.7, a more negative correlation of taste with site quality increases

the relative cost-effectiveness of the output subsidy, as the output subsidy’s upside of

offering more to better sites becomes more important.

Individuals i in the model are potential adopters of rooftop solar - that is, owners

of properties with rooftops, whether residential or commercial.24 In each time period

t, the main choice d faced by each potential adopter i (who has not already adopted)

can be written as:

d =


0 : do not adopt

1 : adopt with investment subsidy

2 : adopt with output subsidy

The decision to adopt with either type of subsidy (d > 0) is a terminating action:25

but not adopting (d = 0) preserves the option of adopting in a later time period. Con-

ditional on the choice to adopt, i also chooses one of the available product contracts,
24I assume that only owner-occupied properties can consider adopting solar.
25The lifetime of a solar PV panel is about 20 years.
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j. i’s indirect utility is:

ud
i,j,t = νd

i,j,t + ξdz,j,t + ϵdi,j,t (3)

νd
i,j,t =


α ·Rd>0

i,j,t + θi if d > 0

ud=0 + β · Et[V̄i,t+1] if d = 0

Commonly as in many demand models, the structural error term ϵi,j,t follows a type

I extreme value distribution with respect to the choice options d, j, implying logit

choice probabilities. The empirical error term ξdz,j,t will be absorbed via fixed effects,

with z denoting i’s county or region of residence. The conditional value of adoption

νd>0
i,j,t is a balance (mediated by a willingness to pay parameter, α) between the net

financial benefit Rd>0
i,j,t (subsidy + electricity cost savings − system price) and i’s

personal (non-financial) taste θi for whether or not to have solar (including the desire

to be green). The conditional value of not adopting is the baseline flow utility ud=0

(this can be imagined as zero, with the value of adopting sometimes negative in

comparison) plus the option value of waiting in order to potentially adopt solar in a

future time period. The option value of waiting β ·Et[V̄i,t+1] is the expected value of

i’s best choice option in the next time period, discounted by β because that value is

to realize one period hence.

1.5.2 Value of Adopting Solar

The conditional value of adopting solar, νd>0
i,j,t = α · Rd>0

i,j,t + θi, is relatively

straightforward: because adoption is a terminating action, this value is equal to the

expected discounted utility of the adopted solar system in the present time period

(that in which the system is adopted). The intertemporal discount factor β critically

weighs the sub-components of the net financial benefit Rd>0
i,j,t against one another.
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Because the system installation price pI
z,j,t is due in the present,26 it is not weighted

by β in utility terms. The the same goes for the investment subsidy. But the output

subsidy as well as electricity cost savings accrue in the future, so must be weighted by

β in utility terms. For d = 1 (adoption with investment subsidy) and d = 2 (adoption

with output subsidy) respectively, the net financial benefits are,

Rd=1
i,j,t = ru

z,t · ci,j︸ ︷︷ ︸
Investment

Subsidy

+

20 years∑
τ=0

(δ · β)τ · Et[qi,j,t+τ ] · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

− pI
z,j,t︸︷︷︸

Installation
Price

(4)

Rd=2
i,j,t = rq

z,t ·
5 years∑
τ=0

(δ · β)τ · Et[qi,j,t+τ ]︸ ︷︷ ︸
Output
Subsidy

+

20 years∑
τ=0

(δ · β)τ · Et[qi,j,t+τ ] · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

− pI
z,j,t︸︷︷︸

Installation
Price

where ru, rq, pE, and pI denote the upfront subsidy rate, output subsidy rate, elec-

tricity price, and system installation price, respectively. The calibrated parameter δ

adjusts for solar panels depreciation as well as expected inflation of the US dollar.27

The output subsidy is paid out over 5 years, whereas electricity cost savings accrue for

an expectation of 20 years, reflecting the typical lifespan of solar panels. ci,j is the CSI

Rating, which serves as the state’s official estimate of the adopted system’s expected

lifetime total solar energy production, while Et[qi,j,t+τ ] is the potential adopter’s own

expectation of their own solar energy production per period t+ τ . Because the choice

of subsidy has no bearing on expected electricity cost savings, nor on system instal-

lation price, the net financial benefits Rd=1
i,j,t and Rd=2

i,j,t are identical except for the

subsidy.

The net financial benefit Rd>0
i,j,t of adopting solar may be either positive or neg-

ative, depending on whether the subsidy plus electricity cost savings outweigh the
26The system price is adjusted for the federal Investment Tax Credit (ITC).
27The time intervals t + τ may be either months or years, only δ and β need to be adjusted

accordingly.
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system price. The personal taste term θi may be either positive or negative, also,

depending on whether the desire to be friendly to the environment outweighs one’s

aesthetic distaste for having solar panels on one’s roof. However, unlike the net fi-

nancial benefit which consists of mostly observed components, taste θi is primarily

unobservable. Empirically, I proxy for θi with county (z) level socioeconomic indica-

tors likely to correlated with taste for solar: political leaning, education, and median

household income. That is,

θi = θpol · P pol
z,t + θedu · P edu

z,t + θinc ·X inc
z,t + θ̃i (5)

where P pol
z,t is the fraction of the local population in i’s county z who are politically

left-leaning, P edu
z,t is the fraction with at least four years of higher education, and X inc

z,t

is median household income. I leave the remaining unobserved portion of taste θ̃i

to merge with the model’s empirical error term ξz,j,t (absorbed in fixed effects), and

structural error term ϵi,j,t.

1.5.3 System Characteristics and Site Quality

Multiple elements of the net financial benefit of adopting solar, Rd>0
i,j,t , depend

on system size and other system j characteristics. A larger system will come with

both higher expected production and higher installation price. The CSI rating ci,j,

which serves as the state’s approximation of expected production, is equal exactly to

the system size sj multiplied by a Design Factor, c̃i.

ci,j = c̃i · sj (6)

The Design Factor c̃i is a unitless scalar that adjusts for local sunlight intensity,

azimuth (compass orientation of the roof on which the system is to be installed), tilt

(vertical angle of the roof), and shading. (The state’s estimate of expected production
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is

ci,j ·
∑
τ

h̄

where h̄ is a constant grand average number of hours of sun exposure per system

per time period.) The potential adopter’s own expectation of their own production

Et[qi,j,t+τ ], though not directly observed, should be closely related to ci,j and similarly

constituted, as both are essentially estimates of the same expected production.

The system installation price pI
z,j,t should also be a function of system charac-

teristics j, particularly system size sj. I model system price as a linear function of

size, with both the slope and intercept varying by region z as well as time period t:

pI
z,j,t = poI

z,t + psI
z,t · sj (7)

The intercept terms poI
z,t coincide with fixed costs. A 2kW system will be more than

half as expensive as a 4kW . Such decreasing average costs per kW size, implied by

the presence of positive fixed costs, imply that optimal system sizes will be larger for

properties i with higher site quality.

To reduce the complexity of the model, I assume that all factors driving the

choice of system j characteristics are exogenous. This implies that all j subscripts in

the model are superfluous: j characteristics are implications of the characteristics of

properties i or their associated regions z. (Similarly, a z subscript would be super-

fluous wherever there is an i.) As a simplest example, the Design Factor c̃i should

arguably be written as c̃i,j in theory, although it needn’t be in empirical execution.

The Design Factor includes system characteristics such as azimuth and tilt. My as-

sumption is that a system’s azimuth is not a free choice, but is instead implied by

the property i’s roof space and orientation. Each property has a predetermined set

of roof spaces, one of which is best oriented for solar regardless of other factors in the

model.

I assume that each chosen system size sj, and all other system j characteristics,
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all are implied by their associated property i’s exogenous characteristics, similarly

as is each system’s chosen azimuth. These exogenous i characteristics include the

household’s energy usage needs, roof space and orientation, sunlight intensity and

shading. Although theoretically unappealing, this assumption of exogenous system

characteristics helpfully simplifies the model, while preserving the vast bulk of what is

likely to be important in practice for the question at hand. For example, although it is

conceivable that optimal system sizes sj may respond to subsidy rates on a very small

margin, it is fair to assume that each property i’s chosen system size - conditional on

yes or no adoption - is (in the vast bulk) a function of its (exogenous) energy usage

needs and roof space. I assume the parameters of the system pricing function, poI
z,t

and psI
z,t, likewise to be exogenous. This precludes any price setting behavior amongst

solar supplier firms, but coincides with the vast bulk of what is likely to drive solar

installation prices - namely, equipment and labor costs.

The assumption of exogenous system characteristics has, amongst other upsides,

the benefit of simplifying the concept of site quality. Because expected production

follows from site i characteristics (which are exogenous) and system j characteristics

- and the j characteristics themselves follow from the i characteristics - expected

production is to be viewed as following entirely from site i characteristics. Therefore

expected production - conditional on yes or no adoption - is exogenous, and synony-

mous with site quality. As such the CSI rating ci,j = ci which is the state’s estimate

of i’s expected production, and i’s own estimate of their own expected production

Et[qi,j,t+τ ] = Et[qi,t+τ ], both measures of expected production, serve as alternative

measures of site quality. The extent to which these two measures disagree with one

another is critical in the model, as the investment subsidy amount follows from the

former, while the expected output subsidy amount follows from the latter.
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1.5.4 Hidden Site Quality

In the model as it is written, the output subsidy can have no possible advantage

over the investment subsidy unless the adopter i’s estimate Et[qi,t+τ ] of their own

site quality is more accurate than the state’s estimate ci of the same. To proxy

for Et[qi,t+τ ], I fit ex-post actual production qi,t in hindsight as a function of ex-ante

observable site and system characteristics, seeking maximal fit. I find in this empirical

case that ci does predict actual production qi,t (or qi - averaged over t) very well,28

but that the highest values of ci underestimate the highest values of qi. This is to say

that qi is an increasing function of ci rather than a linear function. I therefore fit a

nonlinear function of qi on ci, with intercepts co and slopes cq varying by region z:

log(qi) = co
z + cq

z · log(ci) + cℓ · log(ℓi)

yi = exp( ˆlog(qi))

(8)

where ℓi is sunlight intensity data from Google Project Sunroof. The fitted values -

which I call yi - serve as an additional measure of site quality. Particularly yi is the

most accurate available estimate, such as adopters i might have given full knowledge

of their own properties. I therefore use yi (iterated over time periods t+ τ) to proxy

for the adopters’ i estimate Et[qi,t+τ ] of their own expected production, that which is

more accurate than the state’s estimate ci of the same.
28I find a correlation of ci with qi of 0.79.
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Rd=1
i,t = ru

z,t · ci︸ ︷︷ ︸
Investment

Subsidy

+

20 years∑
τ=0

(δ · β)τ · yi · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

−
(
poI
z,t + psI

z,t · si
)

︸ ︷︷ ︸
Installation

Price

Rd=2
i,t = rq

z,t ·
5 years∑
τ=0

(δ · β)τ · yi︸ ︷︷ ︸
Output
Subsidy

+

20 years∑
τ=0

(δ · β)τ · yi · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

−
(
poI
z,t + psI

z,t · si
)

︸ ︷︷ ︸
Installation

Price

(9)

The use of the nonlinear function underlying yi as hidden site quality - known

to adopters but not to the state - begs the question as to why the state should not

simply update its ci measure to be equal to yi. However, yi should be thought of as an

over-fitted function, harnessing information on actual production in hindsight such

as should not be available to policy makers ex-ante in any practical setting. Themat-

ically, the idea is that even with an investment subsidy program that is adjusted for

site quality by the state ex-ante, the investment subsidy falls at least slightly short

of the output subsidy in targeting to site quality for the reason that no ex-ante eval-

uation can be perfect. Granted, the adopter’s evaluation of their own site quality is

also ex-ante, but presumed to harness intimate knowledge that cannot be available

to the state. This is to say that the output subsidy retains at least some small upside

relative to the investment subsidy, though not necessarily that this upside is enough

to overcome the output subsidy’s relative downside of intertemporal discounting. The

more accurate an investment subsidy program is in adjusting to site quality, the less

scope there can be for the output subsidy to yield gains in cost-effectiveness.

1.5.5 Model Solution

Potential adopters i may choose to refrain from adopting solar, either in order to

retain the option to adopt in a future time period, or to never adopt. The conditional

value of not adopting νd=0
i,t is equal to the baseline flow utility ud=0 plus the option
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value of waiting,

νd=0
i,t = ud=0 + β · Et[V̄i,t+1] (10)

where V̄i,t+1 is the value of behaving optimally from period t+1 onward, an aggregation

of the values νd>0
i,t+τ of all future options.

I follow De Groote and Verboven (2019), Scott et al. (2013) and Hotz and Miller

(1993) in substituting out for Et[V̄i,t+1] in the Conditional Choice Probability (CCP)

formulas. This will simplify the estimation of the dynamic discrete choice model.

I will not need to specify whether the adoption decision is a finite or infinite time

horizon problem, neither do I have to specify how agents believe the future states

to evolve. I only need to assume rational expectations on state transitions. By the

assumption that the structural error terms ϵdi,t are EV1 distributed, the conditional

choice probabilities P d
i,t for each choice option d take the logit forms,

P d
i,t = exp(νd

i,t)
/∑

d′

exp(νd′

i,t)

P d
i,t

/
P d′

i,t = exp(νd
i,t)
/
exp(νd′

i,t)

(11)

and the continuation value V̄i,t+1 takes the form,

V̄i,t+1 = γ + log
∑
d′

exp(νd′

i,t+1) (12)

where γ is Euler’s Constant. Following Scott et al. (2013), I assume that potential

adopters i predict V̄i,t+1 accurately up to a mean-zero error ηi,t,

Et[V̄i,t+1] = V̄i,t+1 − ηi,t (13)

Equations (42) - (45) can be combined to yield a non-recursive solution to the choice
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probabilities (43). To do this, first replace the Et[V̄i,t+1] in (42) with that in (45),

νd=0
i,t = ud=0 + β · (V̄i,t+1 + ηi,t)

then apply the V̄i,t+1 formula (44),

νd=0
i,t = ud=0 + β · (γ + log

∑
d′

exp(νd′

i,t+1)− ηi,t)

normalize ud=0 + β · γ = 0, and let −β · ηi,t merge into ξd=0
z,t and ϵd=0

i,t in (35). This

results in,

νd=0
i,t = β · log

∑
d′

exp(νd′

i,t+1) (14)

Now notice that, ∑
d′

exp(νd′

i,t+1)

is the denominator of the logit conditional choice probability formula (43) evaluated

for P d
i,t+1,

P d
i,t+1 = exp(νd

i,t+1)
/∑

d′

exp(νd′

i,t+1)

Inverted, this is,

log
∑
d′

exp(νd′

i,t+1) = νd
i,t+1 − logP d

i,t+1

which can applied in (46) to yield,

νd=0
i,t = β · (νd

i,t+1 − logP d
i,t+1) (15)

This equation is valid when evaluated for any given d choice,
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νd=0
i,t = β · (νd=0

i,t+1 − logP d=0
i,t+1)

= β · (νd=1
i,t+1 − logP d=1

i,t+1)

= β · (νd=2
i,t+1 − logP d=2

i,t+1)

Evaluating at d = 0 is not helpful though, as this yields only a solution for νd=0
i,t in

terms of νd=0
i,t+1, which in turn is solved only in terms of νd=0

i,t+2, and so on. However

νd=1
i,t+1 and νd=2

i,t+1, as νd=1
i,t and νd=2

i,t , have their own definitions as developed in 2.5.1

and 2.5.3,

νd=1
i,t = α ·

(
ru
z,t · ci︸ ︷︷ ︸

Investment
Subsidy

+

20 years∑
τ=0

(δ · β)τ · yi · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

−
(
poI
z,t + psI

z,t · si
)

︸ ︷︷ ︸
Installation

Price

)

+ θpol · P pol
z,t + θedu · P edu

z,t + θinc ·X inc
z,t︸ ︷︷ ︸

Taste for Solar

νd=2
i,t = α ·

(
rq
z,t ·

5 years∑
τ=0

(δ · β)τ · yi︸ ︷︷ ︸
Output
Subsidy

+

20 years∑
τ=0

(δ · β)τ · yi · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

−
(
poI
z,t + psI

z,t · si
)

︸ ︷︷ ︸
Installation

Price

)

+ θpol · P pol
z,t + θedu · P edu

z,t + θinc ·X inc
z,t︸ ︷︷ ︸

Taste for Solar
(16)

Therefore (47) evaluated at either d = 1 or d = 2 yields a non-recursive solution for

νd=0
i,t . Choosing d = 1, the solution

νd=0
i,t = β · (νd=1

i,t+1 − logP d=1
i,t+1) (17)

joins the νd>0
i,t expressions (48) to complete the model. The conditional choice prob-
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abilities (43) resolve as,

P d=0
i,t =

exp(β · (νd=1
i,t+1 − logP d=1

i,t+1))

exp(β · (νd=1
i,t+1 − logP d=1

i,t+1)) + exp(νd=1
i,t ) + exp(νd=2

i,t )

P d=1
i,t =

exp(νd=1
i,t )

exp(β · (νd=1
i,t+1 − logP d=1

i,t+1)) + exp(νd=1
i,t ) + exp(νd=2

i,t )

P d=2
i,t =

exp(νd=2
i,t )

exp(β · (νd=1
i,t+1 − logP d=1

i,t+1)) + exp(νd=1
i,t ) + exp(νd=2

i,t )

(18)

which alternatively can be written as,

P d=0
i,t =

1

1 + exp(νd=1
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1)) + exp(νd=2

i,t − β · (νd=1
i,t+1 − logP d=1

i,t+1))

P d=1
i,t =

exp(νd=1
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1))

1 + exp(νd=1
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1)) + exp(νd=2

i,t − β · (νd=1
i,t+1 − logP d=1

i,t+1))

P d=2
i,t =

exp(νd=2
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1))

1 + exp(νd=1
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1)) + exp(νd=2

i,t − β · (νd=1
i,t+1 − logP d=1

i,t+1))
(19)

where each ν term is function of data and the parameters to be estimated {α, β, θ̃, θpol, θedu, θinc},

as given by (48).29 The choice probabilities P for each choice option d are essentially

data, with the caveat that each individual potential adopter i may only realize one

choice (per time period), so that probabilities at the level of individuals i are observed

only indirectly.

I follow the approach of Arcidiacono and Miller (2011), that is of estimating (51)
29It should be noted that the choice probabilities (51) are conditional on having not already

adopted, so in unconditional terms apply strictly as written only for the initial period. All subsequent
t periods’ probabilities are to be multiplied by the unconditional d = 0 probability from the previous
period, iterated from the initial period.
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in two steps.30 In the first step, I approximate the right hand side probabilities P d=1
i,t+1

via a flexible logit predictive model. This is analogous to the familiar use of observed

market shares to approximate probabilities - but adjusted per individual i based on

individual characteristics (ci, yi) as well as location z.31 Taking the conditional choice

probabilities as given in the second stage, the estimation then reduces to an essentially

static multinomial logit criterion function with a precalculated offset term, as given

by (51). That is, I take the approximated P d=1
i,t+1 from the first step as data in the

second (main) step of estimating (51) via simplex grid search Maximum Likelihood

estimation. (As discussed earlier in this section, a few other components (yi, poI
z,t,

psI
z,t) of (51) are approximated as well in first steps of their own in parallel to P d=1

i,t+1.)

The resulting parameter estimates for {α, β, θpol, θedu, θinc} critically enable me to

project the distribution of adoption decisions and subsidy payouts under alternative

counterfactual policies and scenarios.

1.5.6 Policy Model

The Adoption Model of Section 1.5.1 determines the distribution of adoption

decisions as a function of subsidy rates, site qualities, and electricity and system

prices. Given estimates for the parameters of the Adoption Model, it is possible

to quantify the extent to which altered subsidy policies would result in altered dis-

tributions of adoption decisions. However, more generous subsidy rates that would

result in increased adoption would result in higher expenditure for the government

as well. Is it worth it to increase subsidy expenditure by an amount B in order to

increase adoption by an amount Q? The purpose of the Policy Model is to quantify

the government’s tradeoff between solar production and subsidy expenditure, thereby

enabling evaluation of which counterfactual outcomes are better than others.

The Policy Model must weigh total solar production Q against total subsidy
30De Groote and Verboven (2019) conduct an analogous two step estimation in their Online

Appendix
31The predictive model is a static analogue of (51) with added fixed effects and interaction terms,

meant to maximize fit rather than identify parameters.

36



expenditure B. I model total solar production as,

Q =
∑
i,t

(P d=1
i,t + P d=2

i,t ) · Yi (20)

where

Yi =
∑
τ

yi

is an individual property’s lifetime solar production. That is, each potential adopter i

produces Yi if they adopt, but zero if they do not adopt. Therefore each i’s contribu-

tion to total solar production is their probability of adopting (P d=1
i,t +P d=2

i,t ) multiplied

by their expected lifetime production Yi conditional on adopting; and total solar pro-

duction is the sum over individual i contributions. Whereas each i produces the same

Yi regardless of whether they adopt with the investment subsidy (d = 1) or with the

output subsidy (d = 2), expenditure is slightly more involved in that the payout per

individual depends on the choice of subsidy. Total subsidy expenditure is,

B =
∑
i,t

(P d=1
i,t · ruz,t · ci + P d=2

i,t · rqz,t · Yi) (21)

Because the adoption probabilities P d=1
i,t and P d=2

i,t are themselves functions of the

subsidy rates ruz,t and rqz,t as given by (51), both production Q and expenditure B

are increasing in the subsidy rates via the probabilities. But B is increasing in the

subsidy rates more directly as shown in (21) as well, in that the government must

pay the amount promised per individual who adopts.

The simplest version of the Policy Model would be to assume that the govern-

ment’s goal is to maximize solar production Q given a fixed subsidy budget target

B = B̄, or to minimize subsidy expenditure B given a fixed solar production target

Q = Q̄. However, because it is far from guaranteed that any given target will be met

in this context, the use of fixed targets can fail to provide meaningful comparisons

across many different outcomes. I assume instead that the government has a willing-
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ness to pay parameter αGov, analogous to the potential adopter’s willingness to pay

parameter α in (35), that translates expenditure dollars into the units of an indirect

utility function:

uGov = Q− αGov ·B

=
∑
i,t

(P d=1
i,t + P d=2

i,t ) · Yi − αGov ·
∑
i,t

(P d=1
i,t · ruz,t · ci + P d=2

i,t · rqz,t · Yi)
(22)

An appealing feature of (22) is that, although it is facially linear, it is fact concave

in the subsidy rates ruz,t and rqz,t, and thereby guaranteed to imply particular optimal

values. This is because, as remarked in the previous paragraph, while both Q and

B are increasing in the subsidy rates via the probabilities P d=1
i,t and P d=2

i,t , B is ad-

ditionally increasing in the rates via the subsidy payout per adoption. That is, as a

subsidy rate becomes more generous, both the number of adopters and the payout per

adopter increases. Thus subsidy expenditure B is a strictly steeper function of the

subsidy rates than production Q is. This enables both a cogent analytical solution

for the optimal subsidy rates under a linear approximation of the choice probabilities,

and grid searched optimal rates under the full model, without need of imposing fixed

targets.

A main challenge in making use of (22) it that it is of course sensitive to the

value of αGov, which may be elusive or arbitrary (although the values of fixed targets

B̄ or Q̄ would be no less arbitrary). However, we may look to the subsidy rates

that were offered by the CSI program in fact to place bounds on the value of αGov.

As the CSI program offered output subsidy rates of up to 0.39 $/kWh, it follows

the California government must value solar electricity production at 0.39 $/kWh or

more. The government’s willingness-to-pay parameter αGov would be the inverse of

this rate, and as such is bounded above at 2.56 kWh/$. Because estimates of the social

marginal cost of carbon (via electricity production) usually fall below 0.39 $/kWh,32

32Borenstein (2023) places the social marginal cost at 0.16 $/kWh.
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I assume that this bound holds, so that αGov = 2.56 kWh/$.

1.5.7 Analytical Solution under Linear Probabilities

Optimizing subsidy rates for the government’s policy tradeoff (22) cannot be

solved analytically under the full Adoption Model’s logit choice probabilities (51),

which instead require grid search optimization. However, a linear approximation of

the choice probabilities does yield analytical solutions. Although lacking the full

curvature of the logit model, this is nonetheless highly informative in demonstrating

the key parameters’ main impacts on the cost-effective values of the subsidy rates.

Especially, it has the almost magical quality of yielding the correlation between taste

and site quality explicitly in the optimal subsidy rate functions.

In order to arrive at the analytical solution to (22), I approximate the choice

probabilities P d=1
i and P d=2

i as being proportional to their respective subsidy values

per individual plus an individual taste θi. For ease of expression, I ignore the time t

dimension as well system prices and electricity cost savings, and express the output

subsidy as being paid in a single period in the future discounted by β. As such the

value of the output subsidy to the adopter is αβrqyi,

P d=1
i = k1(αr

uci + θi)

P d=2
i = k2(αβr

qyi + θi)
(23)

where k1, k2 are constants of proportionality. Thus (22) resolves as,

uGov =
∑
i

(k1αr
uciyi + k2αβr

q(yi)
2 + (k1 + k2)θiyi)

− αGov
∑
i

(k1α(r
uci)

2 + k2αβ(r
qyi)

2 + (k1r
uci + k2r

qyi)θi)

(24)

As discussed earlier, it is necessarily the case that uGov is a steeper function of ru and

rq in the negative (expenditure) part than it is in the positive (production) part, and
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therefore concave. In this case with linear probabilities, uGov is particularly linear in

ru and rq in production, and quadratic in ru and rq in expenditure. The first order

conditions,
∂uGov

∂ru = 0

∂uGov

∂rq = 0

(25)

solve as,33

ru∗ =
1

2

(
1

αGov

∑
i yici∑
i c

2
i

− 1

α

∑
i θici∑
i c

2
i

)

rq∗ =
1

2

(
1

αGov − 1

αβ

∑
i θiyi∑
i y

2
i

) (26)

Now because it is an accounting identity for any random variables xi and zi that,

∑
i xizi∑
i z

2
i

=
x̄ · z̄

σ2
z + z̄2

+
σx · σz

σ2
z + z̄2

· ρx,z (27)

the terms in (26) unpack into expressions involving the means (c̄, ȳ, θ̄), variances (σc,

σy, σθ) and correlations (ρy,c, ρθ,c, ρθ,y) characterizing the distributions of ci, yi and

θi,

ru∗ =
1

2

(
1

αGov

(
ȳ · c̄

σ2
c + c̄2

+
σy · σc

σ2
c + c̄2

· ρy,c

)
− 1

α

(
θ̄ · c̄

σ2
c + c̄2

+
σθ · σc

σ2
c + c̄2

· ρθ,c

))

rq∗ =
1

2

(
1

αGov − 1

α · β

(
θ̄ · ȳ

σ2
y + ȳ2

+
σθ · σy

σ2
y + ȳ2

· ρθ,y

)) (28)

As such even under simple linear approximations of the choice probabilities, all model

parameters as well as all aspects of all of the main variable distributions play roles in

influencing the optimal subsidy rates.

The optimal subsidy rate formulas (29) indicate the direction of each parame-
33As subsidy rates must be bounded below at zero, a negative optimal rate implies that the optimal

feasible rate is zero, or in other words that there is no useful subsidy to be offered.
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ter’s impact on each optimal rate. Although not fully representative of the complete

model with logit choice probabilities, these can be viewed first order impacts. Most

notably, under ordinary values of the means θ̄ and ȳ and variances σθ and σy, the

optimal output subsidy rate rq∗ is increasing in the intertemporal discounting factor

β and decreasing in the correlation between taste and site quality ρθ,y. A higher β

indicates that potential adopters are more patient with regards to the future. The

downside of the output subsidy - that it is paid in the future - therefore diminishes

with higher values of β.34 A more negative correlation of taste with site quality ρθ,y,

on the other hand, strengthens the upside of the output subsidy. This is that the

output subsidy is ideally targeted to site quality yi, and thus more needed as taste θi

is less aligned to the same end of incentivizing better sites to adopt.

The slightly more complex optimal investment subsidy rate ru∗ formula nests a

range of potential scenarios, as the state’s ex-ante measure of site quality ci may be

more or less aligned with true site quality ci. At one extreme the investment subsidy

may be flat (constant), that is ci = c̄ = ȳ and ρy,c = ρθ,c = σc = 0, then the formula

simplifies to,

ru∗ =
1

2

(
1

αGov − 1

α
· θ̄
ȳ

)
(29)

At the other extreme where the investment subsidy is calibrated perfectly to site

quality (ci = yi), the formula simplifies to the same as the optimal output subsidy

rate formula except as if β = 1.

1.5.8 A Simplest Possible Example

Going beyond the simplified linear choice probabilities of section 1.5.7, the fol-

lowing example illustrates the relevance of the correlation between taste and site

quality in perhaps the simplest possible setting. Suppose there are only two potential
34A countervailing effect of higher values of β is that adopters may be willing to accept lower

output subsidy rates as they are thus less discounted in utility terms. Indeed there are relatively
rare cases given by (26) in which this latter effect may dominate, such as if ρθ,y = −1 and σθ ·σy > θ̄·ȳ.
θ̄ and ȳ themselves should be strictly positive given their construction in (23).

41



adopters in the economy, one with high site quality (i = Sonny) and the other with

low site quality (i = Jett). The government’s policy objective as given by (22) is

to maximize total solar production minus total expenditure. As in 1.5.7, I ignore

the time t dimension as well as electricity cost savings, and suppose that the output

subsidy is paid in a single period in the future discounted by β. I suppose further

that the investment subsidy ru is flat (constant) - that is, not adjusted to site quality

at all - representing the most extreme version of an investment subsidy. I replace

choice probabilities with binary variables 1d=1
i and 1d=2

i indicating adoption with the

investment subsidy and adoption with the output subsidy respectively. As such (22)

can be rewritten as,

uGov =
∑
i

(1d=1
i + 1d=2

i ) · yi − αGov
∑
i

(1d=1
i · ru + 1d=2

i · rq · yi) (30)

I let there be only two values of site quality yi and two values of personal taste θi,

that is 0 and 1 for both, and system price constant at p = 2. Each i chooses the d

option that gives them the highest utility, which is given errorlessly as,

ud=0
i = 0

ud=1
i = ru − p+ θi

ud=2
i = β · rq · yi − p+ θi

(31)

Given that,

ySonny = 1

yJett = 0
(32)

I consider two scenarios regarding correlation between taste and site quality ρθ,y. In

the positive correlation case,

θSonny = 1

θJett = 0
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so ρθ,y = 1. In the negative correlation case,

θSonny = 0

θJett = 1

so ρθ,y = −1. In either case, because Jett’s site quality is 0, it can be seen in (30)

that the government can derive at most 0 utility from Jett. It follows that the only

subsidy worth considering is the minimum needed to incentivize Sonny to adopt: If

this does not yield positive uGov then the government’s best choice to offer no subsidy

at all. Because there can be only one minimum needed to incentivize Sonny to adopt,

it follows furthermore that at least one of the subsidies should not be offered.

First consider the case of positive correlation. That is, suppose Sonny who has

site quality yi = 1 has taste θi = 1; and Jett who has site quality 0 has taste 0. As

discussed in the previous paragraph, the government need only consider the minimum

needed to make Sonny adopt. The minimum investment subsidy amount needed to

make Sonny adopt will be 1. With ru = 1,

uSonny = 1− 2 + 1

uJett = 0− 2 + 1

Sonny will adopt, and Jett will not. The government’s utility follows as

uGov = 1− αGov

Offering the output subsidy instead, the minimum rate needed to make Sonny adopt

will be 1/β:

uSonny = β · 1 · 1
β
− 2 + 1

uJett = β · 0 · 1
β
− 2 + 0
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Again Sonny will adopt, and Jett will not. The government’s utility now will be

uGov = 1− αGov 1

β

which is smaller than the utility from offering the investment subsidy,

uGov = 1− αGov

unless β = 1 (i.e. unless there is no intertemporal discounting). In this (positive

correlation) case, the minimum subsidy to make Sonny adopt will not be enough to

make Jett adopt, regardless of whether it is the investment or output subsidy. Thus

the government’s better option is the cheaper investment subsidy.

Consider now the case of negative correlation. That is, suppose Sonny who has

site quality yi = 1 has taste θi = 0; and Jett who has site quality 0 has taste 1. The

minimum investment subsidy amount needed to make Sonny adopt will be 2:

uSonny = 2− 2 + 0

uJett = 2− 2 + 1

In this case both Sonny and Jett will adopt solar, and the government’s utility will

be

uGov = 1− αGov4

If instead the output subsidy is offered, the minimum rate needed to make Sonny

adopt is 2/β:

uSonny = β · 1 · 2
β
− 2 + 0

uJett = β · 0 · 2
β
− 2 + 1
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Sonny adopts, and Jett does not. For the government,

uGov = 1− αGov 2

β

which is larger than the utility from offering the investment subsidy,

uGov = 1− αGov4

if β > 0.5. In other words, in the negative correlation case, only the output subsidy

can make Sonny adopt without making Jett adopt also. Therefore the output subsidy

is cost-effective to the government in order to avoid paying out to Jett.

1.6 Empirical Results

To concretely quantify the balance of motives underlying potential adopters’

choices, I estimate the dynamic discrete choice Adoption Model (described in section

1.5.1). The estimation results both explain the factual pattern of adoption choices

observed in the data, and enable me to forecast counterfactual choice patterns that

would occur under different subsidy policies, or with some of the parameter values

changed. In all cases, the Policy Model weighs the total social benefit of the distri-

bution of solar adoptions against the total cost of the subsidy program. As such, the

Policy Model critically evaluates which counterfactual outcomes are more desirable

than others.

The upcoming section 1.6.1 presents and discusses the set of parameter estimates

that result from fitting the Adoption Model to the data. These parameter estimates

are “factual” in the sense that they represent the scenario that occurred in the data,

as opposed to projected counterfactual scenarios that would occur under different

subsidy rates or with some of the parameter values altered. Section 1.6.2 searches

for cost-effective subsidy rates - conditional on the factual parameter values - by
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simulating a variety of possible counterfactual rates, forecasting the distribution of

adoption decisions that would occur under each, and evaluating the corresponding

total solar production and subsidy expenditure according to the Policy Model. Section

1.6.3 goes further, searching for cost-effective subsidy rates as in 1.6.2 - but conditional

on counterfactual values of the key parameters rather than on the factual values. This

enables me to evaluate how the cost-effective balance of rates may resolve differently

under settings different than those in California.

1.6.1 Parameter Estimates

As discussed throughout Section 1.5, a few key parameters of the Adoption

Model are critical both in driving the distribution of adoption decisions, and in de-

termining the cost-effective balance of investment and output subsidy rates. While it

can be seen from the theoretical structure of the model alone that both (i) a higher

intertemporal discounting factor β and (ii) a more negative correlation of taste with

site quality ρθ,y will strengthen the value of the output subsidy relative to that of

the investment subsidy, concrete numerical values are needed in order to inform pol-

icy in practice. This section presents and discusses my estimates for these (and all

other) parameters of the Adoption Model, obtained via simplex grid search Maximum

Likelihood Estimation.

My estimates of β and ρθ,y - presented in Table 1.1 alongside my full set of

Adoption Model parameter estimates - indicate that a robust trade-off between the

relative upsides of the investment and output subsidies does exist empirically, as well

as merely in theory. On the one hand, a considerably low value of β = 0.82 indicates

that potential adopters of solar do discount the future substantially. This presents a

strong case for the investment subsidy, as money that is to be paid out to adopters in

the future via the output subsidy is somewhat wasted in utility terms. On the other

hand, a solid negative value of ρθ,y = −0.28 indicates that the investment subsidy

may be wasted in its own way, strengthening the case for the output subsidy. That is,
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bluntly targeted investment subsidy money may be wasted on lower quality adopters

who would have adopted regardless, while failing to sufficiently incentivize higher

quality potential adopters with conservative leaning tastes.

My estimate for the discount factor β is on the lower side, but very much in the

ballpark of estimates of the same in the related literature. As displayed in Table 1.1,

I estimate a monthly discount factor (for residential potential adopters of solar) of

0.98, which translates to a yearly discount factor of 0.82. In comparison, De Groote

and Verboven (2019) estimate a yearly discount factor of β = 0.85 for residential

solar adopters in Flanders, while Snashall-Woodhams (2019) finds the same result as

I do, β = 0.82 for residential adopters in California. As discussed in De Groote and

Verboven (2019), the intertemporal discount rate of 1−0.85 = 15% (or 1−0.82 = 18%

in the case of California) is considerably higher than most financial market interest

rates. This suggests that potential adopters view their investments in solar to be

considerably risky. But it also implies that the government stands much to gain

by offering the investment subsidy rather than the output subsidy, as the former is

riskless from adopters’ point of view, while only the latter suffers from this heavy risk

penalty.

Table 1.1: Adoption Model MLE (Residential)

Parameter Estimate
price sensitivity ($−110−5) α 6.6424 (0.026)
monthly discount factor βmonthly 0.9836 (0.004)
yearly discount factor βyearly 0.8209
mean taste for solar θ̄ -4.9979 (0.007)
cov(taste, Democrat) (10−4) θpol 8.3568 (0.234)
cov(taste, Income) ($−110−5) θinc 1.8327 (0.028)
cov(taste, Educated) (10−4) θedu 1.9871 (0.216)
corr(taste, site quality) ρθ,y -0.2885

Notes: Parameter estimates from the dynamic discrete choice Adoption Model
for residential solar adopters. Standard errors in parentheses.
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Unlike the discount factor β, the taste factors θ are somewhat unique to this

paper, so cannot be readily compared to corresponding estimates in the related lit-

erature. However, my results are intuitive: politically Left-leaning populations have

higher taste for solar, as do higher earning and more educated populations.35 Be-

cause the sunniest parts of the state tend to be inland while the more Left-leaning

and educated populations tend to cluster along the coast, this implies a negative

value of the correlation ρθ,y. The negative mean taste for solar θ̄ = −4.99 indicates

that the default inclination of most residential properties is to not adopt solar. The

decision to adopt requires either large positive net financial benefits, or unusually

high idiosyncratic tastes. Given the value of α = 6.64 · 10−5, the negative mean taste

is equivalent to roughly 4.99/(6.64 · 10−5) = $7, 500 worth of net financial benefit.

This large negative mean taste may reflect the average person’s visual distaste for the

appearance of solar panels on their rooftop.

While the discount factor β may be function of setting to some extent (higher

in Flanders than in California), the correlation ρθ,y between taste and site quality is

likely to be even more so. My negative result for ρθ,y is a reflection of California’s

particular geography. To illustrate this point, Figure 28 displays a geographical plot

of sunlight intensity (left) alongside a corresponding plot of political leaning (right).

While politically Left leaning populations tend to cluster along the coast (e.g. San

Francisco county), the sunniest areas in contrast tend to be more inland (e.g. San

Bernardino county). Given that politically Right leaning populations tend to have

lower taste for solar,36 their relatively greater presence in the sunnier parts of the

state (e.g. San Bernardino) coincides with the negative value of ρθ,y.

The geographical plots of Figure 28 can be taken as a companion to the theo-

retical examples given in sections 1.5.7 and 1.5.8 in illustrating the advantage of the

output subsidy. A potential adopter in San Bernardino, despite having outstanding
35Income refers to the median income per each potential adopter i’s county, while Democrat and

Educated refer to the fractions of the county population who are politically Left-leaning, and have
at least 4 years of higher education, respectively.

36This is evident in my estimate for θpol, as well as in numerous surveys.
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site quality, may be hesitant to adopt solar due to Conservative political leaning or

related taste factors. He therefore may need an especially high subsidy in order tip

his utility over the edge for making the decision to adopt: A high output subsidy

rate is ideal for this task, as it compensates him directly for his site quality. A high

investment subsidy could also tip the San Bernardinian over the edge to adopting, but

at the expense of over-compensating others. That is, the higher investment subsidy

would then also have to paid out to eager adopters in San Francisco with lower site

quality, who would have adopted regardless.

It is worth noting that the negative correlation ρθ,y between taste and site quality

does not necessarily imply that higher quality sites are less likely to adopt: rather,

as shown in Section 1.4, the opposite is true. This is because the net financial benefit

of adopting solar - another important component of the value of adopting solar,

distinct from taste - is increasing in site quality yi even while taste is decreasing in

yi. Furthermore, although the solid negative value of ρθ,y does strengthen the relative

advantage of the output subsidy, this does not necessarily imply that it outweighs

the relative advantages of the investment subsidy, which are themselves bolstered by

the considerably low β = 0.82. Counterfactual simulations of altered rate policies -

informed by the estimated values of β and ρθ,y, and evaluated in cost-effectiveness

terms according to the Policy Model - are needed to weigh the relative advantages of

either subsidy against one another in arriving at optimal policy.

1.6.2 Counterfactual Policy Designs

The California Solar Initiative paid out a total of roughly $0.75 billion to sub-

sidize residential rooftop solar systems that amounted to about 21.4 billion kWh in

electricity production. A hypothetical subsidy policy that would result in the same

production with lower expenditure, or higher production with the same expenditure,

would undoubtedly be preferable to the government than the policy that was run.

The Policy Model nests this consideration, while also enabling comparisons across sets
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of outcomes without exactly the same production or expenditure. Using the value

of αGov = 2.56 kWh/$ as described in Section 1.5.6, the factual outcomes coincide

with uGov = 21.4 billion kWh − $0.75 billion · 2.56 kWh/$ = 18.85 billion kWh (or

$7.36 billion) in utility terms. It follows that a counterfactual subsidy policy that

would result in uGov > $7.56 billion would be preferable to the government than the

policy that was offered, and vice versa.

First for conceptual simplicity, I search for a cost-minimizing combination of

subsidy rates amongst those that meet a given, fixed production target.37 I take as

the production target that which was achieved under the CSI program, roughly 21.4

billion kWh. In the CSI program, each of the (investment and output) subsidy rates

declined in ten steps over time:38 To hold this feature constant in my counterfactuals,

I multiply each of the original CSI rate schedules by a scalar ranging from 0 to 2.

Figures 9 and 10 display the total program cost that I calculate would result from

each combination of counterfactual subsidy rate schedules that meet the production

target of 21.4 billion kWh.
37This can viewed as a special case of maximizing the government’s objective function, as a lower

cost total with the same production total must imply a higher value of uGov regardless of the value
of αGov.

38See Table 2.5.
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Figure 9: Total Subsidy Cost With Fixed Production Target (3D)

Notes: The investment and output subsidy rate axes plot the scalar by which the original
CSI subsidy rate schedule is multiplied to yield each counterfactual rate schedule. The
counterfactual subsidy program cost resulting from each rate schedule combination is
plotted in color as well as on the vertical axis. All combinations included in the graph
result in total solar electricity production roughly equal to 21.4 billion kWh, with a
tolerance of 1% (21.2 - 21.6 billion kWh).
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Figure 10: Total Subsidy Cost With Fixed Production Target

Notes: The investment and output subsidy rate axes plot the scalar by which the original
CSI subsidy rate schedule is multiplied to yield each counterfactual rate schedule. The
counterfactual subsidy program cost resulting from each rate schedule combination is
plotted in color. All combinations included in the graph result in total solar electricity
production roughly equal to 21.4 billion kWh, with a tolerance of 1% (21.2 - 21.6 billion
kWh).

Amongst subsidy rate schedule combinations that result in roughly 21.4 billion

kWh of solar electricity production, the lowest costing is visible in the left-most

(dark blue) corner of the plot in Figure 10. This lowest costing (investment, output)

combination is (1.21, 0.60) times the CSI schedule. Relative to the original CSI

schedule (1, 1), the cost-minimizing combination (1.21, 0.60) delivers savings of about

$140 million.

The investment subsidy rates in the original CSI program were already high

enough that the vast majority adopters opted for the investment subsidy rather than

the output subsidy. As such, these counterfactual results recommend an even more

extreme prioritization of the investment subsidy. Because adopters are impatient with

the low discount factor of 0.83, higher output subsidy rates are needed to achieve the

same effect on utility as relatively more modest investment subsidy rates. This makes
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the investment subsidy generally more cost-effective, despite the output subsidy’s

advantage in targeting to site quality.

As the cost-effective combination of subsidy rates is not guaranteed to be similar

across different production targets, I repeat the same exercise, and find the cost-

effective combination of rate schedules across multiple production targets. These

are displayed in Figure 11. Because lower subsidy rates cannot incentivize higher

adoption and production, at least one of the subsidy rate schedule multipliers given

on the vertical axis should be increasing for every higher value of production.

Figure 11: Cost-Minimizing Subsidy Rate Combinations

Notes: The vertical axis plots the scalar by which the original CSI subsidy rate schedule is
multiplied to yield each counterfactual rate schedule. For each production target as given
on the horizontal axis, the vertical axis plots the cost-minimizing combination of rate
schedules amongst combinations that achieve the given production target.

It is visible in Figure 11 that although varying, the cost-effective combinations of

rates are generally consistent across production targets, with investment subsidy rates

somewhat higher (relative to their counterparts in the original CSI schedule) than

the output subsidy rates. Figure 12 plots the minimum program cost - that which

corresponds to the cost-minimizing combination of rates - for each production target

in the left panel. The right panel then evaluates each set of outcomes in the left,
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assuming that the government values each additional 2.56 kWh of solar electricity

production at $1.

Figure 12: Minimum Subsidy Program Cost as a Function of Production Target

Notes: The left panel plots the minimum subsidy program cost needed to achieve each
production target. The right panel evaluates each set of outcomes using the assumed value
of αGov = 2.56 kWh/$, that is assuming the government values each additional 2.56 kWh
of solar electricity production at $1.

1.6.3 Counterfactual Settings

While the above results show that the CSI program’s offered subsidy were

roughly well designed given the setting in California, it is possible that the same

rates would not fare well in any other setting. In this section, I repeat the analy-

sis of Section 1.6.2, but with key parameter values shifted, representing alternative

settings. These key parameters are (1) the intertemporal discounting factor, which

coincides with potential adopters’ impatience and (2) the correlation between site

quality and the CSI Rating - or how well the investment subsidy is targeted to site

quality. Each of these should influence the relative advantages of the investment and

output subsidies, and therefore may shift the cost-effective balance of subsidy rates.

Because the output subsidy is to be paid out in the future, potential adopters’

impatience (discount factor) critically influences the utility value of any given output

subsidy. On the one hand, less impatience (encapsulated by a higher discount factor
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β), by increasing the utility value of the output subsidy, increases its cost-effectiveness.

On the other hand, a higher value of β needs to be compensated only by a lower output

subsidy rate to achieve the same level of utility.

To gauge the importance of adopters’ impatience in influencing the cost-effective

balance of subsidies, I repeat the counterfactual simulation described in Figure 10,

but now with a higher discount factor of β = 0.90. Figure 13 (like Figure 10 earlier)

shows the contour plot for different combinations of investment and output subsidies

that achieve the same production target, but vary in cost to the government. In this

setting, solar adoption and electricity production are much higher than in the setting

of β = 0.83, regardless of subsidies, because the higher discount factor increases

the utility value of electricity cost savings as well. As the production target for the

counterfactual simulations, I take the production that would occur in this setting

under the subsidy rates offered in the CSI program.

In this setting with lower impatience among potential adopters, the cost-minimizing

combination of investment and output subsidies is 1.24 and 0.77, respectively. This

contrasts with the cost-minimization result in the main counterfactual using estimated

demand parameters, where the cost-minimizing output subsidy is 0.60. A higher dis-

count factor (lower impatience) boosts the cost-effectiveness of the output subsidy by

increasing its utility value, thus resulting in an increased role for the output subsidy

in the cost-effective balance of rates. Note that this effect is mitigated in that a higher

discount factor also implies that the cost-effective output subsidy rate does not need

to be as high to yield the same utility, and hence to incentivize adoption.

55



Figure 13: Outcomes under Alternative Subsidy Rates, with β = 0.90

Notes: The investment and output subsidy rate axes plot the scalar by which the original
CSI subsidy rate schedule is multiplied to yield each counterfactual rate schedule. The
counterfactual subsidy program cost resulting from each rate schedule combination is
plotted in color. All combinations included in the graph result in total solar electricity
production roughly equal to 79.0 billion kWh, with a tolerance of 1% (78.2 - 79.8 billion
kWh).

Because the advantage of the output subsidy is in its ability to target to site

quality, perhaps the single most important factor influencing cost-effectiveness is the

investment subsidy’s ability to target to site quality. The CSI program’s investment

subsidy is not totally blind to site quality, as it is adjusted to each potential adopter’s

CSI Rating, which can be viewed as the state’s ex ante estimate of expected produc-

tion. The output subsidy retains an advantage over the investment subsidy in so far

as there is any error in the state’s estimate: but in the same sense, the accuracy of

the state’s estimate may limit the scope for the output subsidy to play a cost-effective

role.

To demonstrate the importance of the CSI Rating in targeting the investment

subsidy to site quality, I test the results of a conceptually pure, flat investment subsidy

that cannot be targeted to site quality at all. In this setting, the investment subsidy

is essentially equal to the investment subsidy rate: it is chosen freely by the state, but
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once chosen must be offered in the same amount to all potential adopters regardless

of their CSI Rating or site quality.

Figure 14: Outcomes under Alternative Subsidy Rates, with Flat Investment Subsidy

Notes: The vertical axis plots the scalar by which the original CSI subsidy rate schedule is
multiplied to yield each counterfactual rate schedule. For each production target as given
on the horizontal axis, the vertical axis plots the cost-minimizing combination of rate
schedules amongst combinations that achieve the given production target.

Figure 14, showing the cost-minimizing combination of investment and output

subsidy rates for each given solar electricity production target, is different from the

main counterfactual results in Figure 11 only in that the investment subsidy is now

flat - that is to say, cannot be targeted to site quality at all. The results in Figure

14 show two important things. First, they show that the output subsidy becomes

more important when the investment subsidy is not targeted to site quality. In

contrast to Figure 11, the output subsidy now plays a more critical role in encouraging

adoption and hence production. Second, to achieve the same production target of 21.4

Billion kWh as in the CSI program, the government has to offer higher rates for both

subsidies, driving up the total cost considerably compared to the factual CSI program

cost.

In this setting with a flat investment subsidy, the cost-minimizing combination

of (investment, output) subsidy rate schedule multipliers needed to achieve the CSI

program production target of 21.4 Billion kWh is (1.05, 1.39). The total cost to
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the government with this combination of rates is $1.02 Billion - considerably higher

than the CSI program cost of $0.8 Billion for residential adopters of solar. Note that

the investment subsidy rates here are not directly comparable to those in the main

counterfactual, where the investment subsidy was targeted based on expected solar

output via the CSI Rating. The output subsidy rate, on the other hand, is directly

comparable, and shows that the cost-minimizing rate should be significantly higher

than the factual rate offered under the CSI program (represented by the value 1).

1.7 Conclusion

In this paper, I find the most cost-effective allocation of the government’s bud-

get between investment subsidies which are paid at the time of adoption, and output

subsidies which are paid in the future based on actual electricity production. In line

with existing literature, I show that upfront subsidies are a more cost-effective sub-

sidy design for incentivizing rooftop Photovoltaic (PV) solar adoption, as residential

adopters of solar heavily discount future financial incentives. The upfront investment

subsidies have a further advantage if they are adjusted to expected solar electricity

production potential, that is, if they are well targeted. This paper has shown that it

may nonetheless yield gains to cost-effectiveness to offer potential adopters an output

subsidy option as an alternative. The cost-effective output subsidy option will be

offered at a low rate - so that the vast majority of adopters opt for the generally more

cost-effective investment subsidy - but succeeds in incentivizing a small handful of

the highest quality sites to adopt who would not do so otherwise. The cost-effective

combination of investment and output subsidy rates will be a function of setting, in-

cluding potential adopters’ impatience (discounting factor), the correlation between

site quality and personal taste, and the accuracy at which the government can target

the investment subsidy to site quality.

The analysis conducted in this paper may be extended in multiple ways. First,

the adoption model is simplified so that the output subsidy’s only advantage over the
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investment subsidy is in its superior targeting to site quality: But maintenance effort

(cleaning) of solar PV systems, as well heterogeneous discounting rates or overconfi-

dence, may provide additional mechanisms through which the output subsidy could

yield gains to cost-effectiveness. Second, while I focus only on the relative values of

the investment and output subsidy rates, without delving into the question of how

either rate should be increasing or decreasing over time,39 these two questions may be

combined to yield a richer (albeit higher-dimensional) search for cost-effective subsidy

policies. Third, it may be fruitful to consider still more creative subsidy designs, such

as offering adopters a mix of investment and output subsides together, rather than

requiring them to choose only one or the other.
39Langer and Lemoine (2022) focus on the latter question - how the subsidy rate should be

increasing or decreasing over time - but with only an investment subsidy, and no output subsidy
option.
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Appendix

Table 1.2: CSI Subsidy Schedule

Notes: This schedule gives the pre-determined CSI subsidy rates. Both the EPBB
(investment subsidy) and PBI (output subsidy) decline in 10 steps over time, based on the
cumulative capacity installed in the state.
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Figure 15: Sunlight Intensity and Political Leanings

Sunlight Intensity
Political Leaning

Notes: The map on the left shows variation in sunlight intensity across different regions of
California. The map on the right shows variation in the political leaning; regions in red are
more Republican leaning, while those in blue are more Democratic leaning. Together, the
maps show that in regions with higher sunlight intensity, and therefore with higher site
quality, property owners are more likely to be more Republican, and therefore to have
lower personal taste for solar.
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Figure 16: Bin Cutoffs Mapping

Notes: This figure shows the relationship between bin cutoffs of the distribution of site
quality (ci) as measured by the CSI program on the horizontal axis, and the corresponding
bin cutoffs of the distribution of site quality (gi) of PV solar adopters in Google Project
Sunroof.

2 Are Firms More Patient than Households? Evi-

dence from Rooftop Solar Adoption in California

2.1 Introduction

Research on how consumers make choices over time has shown significant dis-

parities between the estimated discount factor and commonly assumed benchmarks.40

Incorrect assumptions of the discount factor will lead policy makers and businesses to

over- or under-estimate consumers’ willingness to make investments in the present for

the sake of future payoffs. This is especially important in the area of green and en-

ergy efficient technology adoption, where large upfront investments are often needed

in order to install expensive devices that yield financial savings only gradually over

time.
40See Hausman (1979), Allcott and Greenstone (2012), De Groote and Verboven (2019).
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While the vast bulk of studies involving intertemporal choice behavior must

rely on calibrated (assumed) values of the discount factor, the rooftop solar adoption

market in California offers an unusual opportunity for discount factor estimation.

Under the California Solar Initiative (CSI), a state level subsidy program, potential

adopters of rooftop solar were offered a choice between either an investment subsidy

paid upfront at the time of adoption, or an output subsidy paid on a rolling basis per

unit of electricity produced. Because these two subsidy options offer payment either

in the present or in the future, adopters’ observed choices between the two options

identify their tradeoff between present and future financial benefits, and hence the

discount factor. Furthermore, CSI offered the choice between subsidy options to

commercial as well as residential adopters, enabling estimation of separate discount

factors between these two important types of consumers.

I estimate a substantially higher discount factor for firms (commercial adopters)

than for households (residential adopters), indicating that firms are more patient with

respect to financial benefits that will accrue in the future. The discount factor may

be defined in terms of pure impatience in a theoretical sense; but impatience per

se is generally indistinguishable from the combined influence of multiple sub-factors,

including myopia, uncertainty, risk aversion, and unobservable liquidity constraints.41

Although all of the above factors are likely to affect firms as well as households, I

reason that their impacts on firms should be less acute. Because this paper uses data

from the rooftop solar PV adoption market in California to estimate households’ and

firms’ discount factors, the empirical results are applicable strictly speaking only to

the setting of rooftop solar, and only that in California. But they offer useful context

wherever similar reasoning applies: And this paper’s estimates, indicating that firms’

are only about one third as impatient as households are in discount rate terms, may

serve as a best guess where none other is available.

I estimate the model using detailed data on the rooftop solar market in Cali-
41See Branker et al. (2011) for a discussion of how the discount factor may vary with sub-factors

and setting.
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fornia. Rich variation over time in the incentive rates offered by the California Solar

Initiative for each subsidy type enable me to identify the key parameters of adopters’

demand system. I estimate, at β = 0.94, a much higher yearly discount factor for

firms than for households (β = 0.82). These values of the discount factor, at 0.82

and 0.94, correspond to discount rate values of 0.22 and 0.06,42 respectively. These

indicate that firms are only about one third (29%) as impatient as households are in

their valuation of the future financial benefits of adopting solar, implying that policy

makers should treat firms and households very differently in seeking for cost-effective

subsidy schedules.

This paper’s results illustrate, in addition to the comparison of discount rates,

the different roles played by subjective taste in motivating household and firm deci-

sion making. Subjective taste plays an out-sized role in the context of rooftop solar,

particularly for residential adopters, because adopted solar systems will become vis-

ible on adopters’ own homes. Solar systems adopted by commercial properties will

become visible on business premises, however, and businesses may choose to internal-

ize the tastes of local households in order to cultivate brand image. I find that the

geographical correlation between subjective taste for solar and site quality is about

the same for firms (-0.26) as for households (-0.29), suggesting that firms do indeed

internalize local households’ tastes.43 However, because correlation does not have

any bearing on magnitude, I also compare typical magnitudes of the subjective taste

component in households’ and firms’ utility in relation to net financial benefits. I

find that taste plays a smaller role in this sense for firms than it does for households,

suggesting that the role of taste becomes diluted relative to that of objective financial

gains in the group decision making processes of firms.

To assess the policy significance of the difference between in firms and households
42The discount rate is 1/β − 1, where β is the discount factor. A lower discount factor (higher

discount rate) indicates more impatience, and vice versa.
43This negative correlation stems from the geographical divergence in California between the sun

and populations most friendly to solar: while the sunniest areas to be inland, the higher educated
and more politically left leaning populations tend to cluster along the coast.
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in their time preferences, I conduct counterfactual simulations that pass alternative

hypothetical subsidy rate schedules through the model as estimated, for commercial

and residential properties, respectively. I find that the cost-minimizing combination

of investment and output subsidy rates for firms is very different than that for house-

holds, with that for firms leaning relatively more towards output subsidies, and vice

versa. For residential properties, the cost-minimizing combination involves output

subsidy rates roughly 40% lower than in the original CSI schedule, and investment

subsidy rates 21% higher. For commercial properties, on the other hand, the cost-

minimizing combination involves 4% higher output subsidy rates paired with 29%

lower investment subsidy rates. That is, due to residential adopters’ low discount

factor at β = 0.82, money promised to adopters in the future in the form of output

subsidies is to a large extent wasted in utility terms, implying that it is cost-effective

to shift funds into the input subsidy instead: But the same is not true for commercial

adopters, for whom β = 0.94.44 These cost-minimizing subsidy schedules deliver sav-

ings to the government of about $160 and $140 million in commercial and residential

subsidies, respectively.

Studies of rooftop solar adoption have found that residential adopters tend to

be myopic, discounting future payoffs very heavily relative to financial market interest

rates. De Groote and Verboven (2019) estimate an implicit discount factor of 0.86 in

Belgium, while Snashall-Woodhams (2019) and Malhotra (2023) estimate a discount

factor of 0.82 for the rooftop solar PV market in California. However, there have

been very few attempts to estimate the intertemporal discount factor for commercial

adopters.45 Subsidy policies designed based on an assumption of a uniform discount

factor between households and firms are unlikely to be as cost-effective as they could

be.
44Because commercial adopters are not nearly as impatient the output subsidy’s relative advan-

tage of better targeting to site quality becomes more important than the input subsidy’s relative
advantage of being paid up front. See Malhotra (2023) for further discussion of the role of β and
other parameters in influencing optimal subsidy rate combinations.

45See Qiu et al. (2015).
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In addition to subsidy design, assumed values of the discount factor feature

importantly in theoretical analysis of the energy-efficiency gap (EEG), that is the

wedge caused by investment inefficiencies between the cost-minimizing level of energy

efficiency and the level actually realized (Allcott and Greenstone (2012)). Gerarden

et al. (2017) show that predictions founded on incorrect assumptions of the discount

factor could misstate the size of the EEG.46 While recent literature has shown that

there might be little to no undervaluation in markets with more mature technologies,

such as energy-efficient cars,47 undervaluation or myopia seem to be present in markets

for newer technologies such as solar PV systems.48

More broadly, this paper contributes to the literature on empirical intertemporal

choice, which studies how consumers value future payoffs. Although of particular

policy importance in the area of green technology adoption, assumed values of the

discount factor may play critical roles in many other domains as well - ranging from

land-use decisions49 and cellphone pricing,50 to valuations of real assets investments in

emerging markets51 and public project evaluation in developing countries.52 Yao et al.

(2012) for instance, who utilize consumers’ cellphone usage data over time to infer

the implicit discount rates they apply when making purchasing decisions, estimate

a weekly discount factor (0.90) that is significantly lower than commonly assumed

values in the literature (0.995). This leads to pricing recommendations that are

generally too high, potentially reducing potential revenue gains by as much as 76%.

In addition to Yao et al. (2012) and Malhotra (2023), estimations of the discount

factor in a wide variety of settings have generally found it to be lower than commonly
46See Leskinen et al. (2020) and Branker et al. (2011) for discussions of how wrongly reported

levelized cost of electricity (LCOE) values for new technologies can misguide policy initiatives.
Reported LCOE values depend on assumed values of the discount rate.

47See Allcott and Wozny (2014), Busse et al. (2013).
48See De Groote and Verboven (2019), Snashall-Woodhams (2019), Talevi (2022), Malhotra

(2023).
49Lloyd-Smith et al. (2021)
50Yao et al. (2012)
51Sabal (2004)
52Campos et al. (2015)
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assumed benchmarks.53

The remainder of this paper is organized as follows. Section 2.2 covers the rel-

evant industrial background, especially the most important details of the California

Solar Initiative (CSI) subsidy program. Section 2.3 describes the data sources, includ-

ing the CSI database and Google Project Sunroof, and the key variables contained

in each. Section 2.4 presents some reduced-form evidence to motivate the central

ideas in my model, and discusses how this evidence differs between firms and house-

holds. Section 2.5 defines and explains the dynamic discrete choice model of rooftop

solar adoption demand. Section 2.6 estimates the model using the data described in

Section 2.3. Section 2.7 presents counterfactual simulation results showing how the

cost-effective combination of investment and output subsidies differs between house-

holds and firms, due to the difference in their estimated discount factors. Section 2.8

concludes.

2.2 Industry Background

I examine solar PV adoption behavior under the California Solar Initiative

(CSI), a multi-billion-dollar program designed to incentivize solar adoption in CA.

The CSI program was distinctive in two ways that make it a rich setting for analyzing

adopters’ demand behavior. First, CSI offered potential adopters a choice between

either an investment subsidy (like a down payment awarded at the time of adoption)

or an output subsidy (like a commission awarded on a rolling basis per unit of electric-

ity produced), with investment and output subsidy rates set as a function of region

and time of adoption.54 Second, the investment and output subsidy rates offered by

the CSI program each declined in ten steps over time, providing rich exogenous price

variation that can identify the parameters of adopters’ demand model.

Taking effect in Jan 2007, the CSI program offered solar adopters a choice
53Hausman (1979), Dubin and Mcfadden (1984), Gately (1980), Dube et al. (2009)
54Regardless of which CSI subsidy option is chosen, the adopter could also claim the federal

Investment Tax Credit (ITC), a tax credit valued at 30% of the system installation price.
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between either an investment subsidy, called the Expected Performance-Based Buy-

down (EPBB), and an output subsidy called the Performance-Based Incentive (PBI).

Both subsidies were designed to reward higher-producing adopters and their chosen

systems: However, whereas the EPBB is a one-time, upfront payment based on a

system’s ex-ante expected performance; PBI payments are paid according to the sys-

tem’s actual performance, measured and paid out over the course of the five years

following adoption. As such, although both subsidies offer more to properties with

higher expected production, the output subsidy (PBI) is better-targeted in this goal,

in so far as there is any error in the state’s ex-ante estimate of expected production

which informs the investment (EPBB) subsidy.

The CSI program’s subsidy options were available to all customers of California’s

three major Investor-Owned Utilities (IOUs) from 2007-2014, but with subsidy rates

that declined over time.55 Particularly, 10 rate steps for each of the two subsidies were

announced at the onset of the program: The highest rates were to be offered first -

so that the earliest adopters would receive the largest subsidies - and the rates would

decline monotonically thereafter. However, the timing of each rate change was not

entirely predictable, but based on the aggregate amount of solar adoption achieved in

each IOU region. As such, the rates changed at different times for each IOU, triggered

when each of the predetermined total adoption targets were achieved in each. Figure

17 plots the 10 EPBB subsidy rate steps ($/Watt) in red (right vertical axis),56 and

the corresponding cumulative solar capacity installed in blue (left vertical axis).
55Dollar amounts of subsidies are equal to the rates multiplied by production or expected pro-

duction. In the case of the output subsidy (PBI), the rate (locked in at the time of adoption) is
multiplied by actual solar electricity production measured on a rolling basis over the course of five
years. In the case of the investment subsidy (EPBB), the rate is multiplied by the CSI Rating, which
serves as the state’s ex-ante estimate of an adopted system’s lifetime expected production.

56The full schedule of rates can be found in Table 2.5 in Appendix.
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Figure 17: EPBB Subsidy Variation Over Time

A graph with the PBI rates in place of the EPBB rates in Figure 17 would look

similar, as the former also decline in ten steps (from $0.39/KWh to $0.02/KWh).57

More importantly with regards to analyzing adoption choices, Figure 18 displays how

each of the subsidy rates evolved over time in each of the IOUs.
57See Table 2.5 in Appendix.
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Figure 18: Cross-sectional Subsidy Variation

Because each of IOUs reached their aggregate capacity targets at different times,

there is cross-sectional as well as time-series variation, that is, with rates differing

across IOUs in any given time period. These sharp changes provide very useful price

variation for evaluating adoption behavior.

That the subsidy rates were highest in the earliest years of the program begs

the question as to why many adopters would wait until later periods to adopt. A

countervailing factor, however, is that the prices of solar panels declined considerably

over the same time span. This implies potential profit for many adopters in waiting,

despite the loss of subsidy. Furthermore, considerable idiosyncratic error must be

at play in the context of rooftop solar, as many property owners may be unaware

or insufficiently sold on the prospect of adopting solar in any given time period,

regardless of financial primitives.

2.3 Data

I combine two major data sources to yield a comprehensive view of the rooftop

solar market in California. First, the California Solar Initiative (CSI) program pro-
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vides detailed information on each solar PV adoption that occurred from 2007-2016.

This includes physical characteristics of each system adopted, the system installation

price, and subsidy type and amount paid to each, amongst other details.58 Second,

because the CSI database includes only properties whose owners chose to adopt solar,

I employ a powerful dataset from Google Project Sunroof59 to get a sense of how non-

adopters’ production potential distribution differed from the adopters’ distribution.

2.3.1 CSI Database

The CSI program was distinctive in two ways that make it a rich setting for

analyzing adopters’ demand behavior. First, CSI offered potential adopters a choice

between either an investment subsidy or an output subsidy, with investment and

output subsidy rates set as a function of region and time of adoption.60 Second, the

investment and output subsidy rates offered by the CSI program each declined in

ten steps over time, providing rich exogenous price variation that can identify the

parameters of adopters’ demand model.

As a subsidizer, the CSI program collected detailed information on each property

i to which it issued a subsidy. These include, most importantly, the investment

subsidy rate ru
i,t and the amount of the investment subsidy,

ru
i,t · ci,t (33)

that was paid to each adopter who opted to receive the investment subsidy; the output
58Under the CSI program, each property was given a choice between an investment and output

subsidy. The investment subsidy (if chosen) was provided upfront, in an amount based on California’s
ex-ante approximation the system’s lifetime expected solar production. The output subsidy was paid
out on a rolling basis as a function of actual monthly production.

59Source: Google Project Sunroof data as of January 2023
60Regardless of which CSI subsidy option is chosen, the adopter could also claim the federal

Investment Tax Credit (ITC), a tax credit valued at 30% of the system installation price.
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subsidy rate rq
i,t and the total amount of output subsidy,

rq
i,t ·

5 years∑
τ=0

qi,t+τ (34)

that was paid out over time to each adopter who opted to receive the output subsidy;

and actual monthly solar electricity production qi,t+τ for each output subsidy recip-

ient. The CSI Rating ci,t, which serves as the state’s ex-ante estimate of expected

production, is present in the data for both investment and output subsidy recipients

(although actual production qi,t+τ is present only for output subsidy recipients). In-

cluded also are the total installation price pI
i,t of each system, and several component

factor determinants of the CSI Rating, including system size si and number of invert-

ers, roof tilt and azimuth, module characteristics, and the recipient’s county and zip

code.

In order to evaluate property owners’ choices, it is necessary to quantify the

options that each forwent, alongside the options that each chose. As such, a minor

limitation of the CSI data is that it contains investment subsidy amounts only for

investment subsidy recipients, and output subsidy amounts only for output subsidy

recipients: It is necessary to quantify also the output subsidy amount that each

investment subsidy recipient forwent, and the investment subsidy amount that each

output subsidy recipient forwent. This can be remedied however, because of the

known constitution of each subsidy as given in (33) and (34). As discussed in Section

2.2, the subsidy rates ru
i,t and rq

i,t do not vary per every individual property i, but

rather per each i’s utility provider (IOU), per time period t. I therefore recover the

forgone output subsidy rates rq
z,t for investment subsidy recipients, and the forgone

investment subsidy rates ru
z,t for output subsidy recipients, as a function of the county

z in which each resides.61

The CSI database has two major limitations. First, although it has the CSI
61Future period subsidy rates ru

i,t+τ and rq
i,t+τ likewise are not directly observed per individual i,

yet recoverable given i’s county of residence.
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Rating ci - that’s is the state’s ex-ante estimate of expected solar electricity production

per property i - for both investment and output subsidy recipients, the CSI database

has actual production qi,t+τ only for output subsidy recipients. This in itself is not as

severe a limitation as it may sound however, because property owners’ choices in any

case must hinge on (their own) ex-ante expected production, rather than on actual

production per se. To arrive at a proxy yi for property owners’ ex-ante estimate of

their own expected production (distinct from the state’s estimate ci of the same), I

will fit actual production qi as a nonlinear function of ci and sunlight intensity ℓi,

with slopes and intercepts varying by location z. Because the left hand side variable

for this function exists only for output subsidy recipients, this approach hinges on the

assumption that the functional relationship between yi = q̂i and (ci, li, z) for output

subsidy recipients accurately reflects the same relationship for the broader population

of properties. That is, given the function fit yi = q̂i from output subsidy recipients qi

data, I can impute yi for investment subsidy recipients as well given their predictive

data (ci, li, z).

Second and most importantly, the CSI database contains no data at all on

properties whose owners elected not to adopt solar. In order to make projections of

adoption behavior under altered (counterfactual) subsidy policies and scenarios, it is

necessary to model the distribution of properties whose owners in fact did not adopt,

but might switch to adopting in the counterfactual. The distribution of non-adopters

properties’ could be assumed equal (in site quality measures ci, yi) to the distribution

of adopters’ properties. However, this would be implausible in that higher quality

sites must be more likely to have adopted. In order to approximate how adopters’

site quality distribution differed from that of the broader population of properties, I

therefore turn to Google Project Sunroof, which contains its own measures of rooftop

solar production potential, for 80-90% of all rooftops in California.
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2.3.2 Google Project Sunroof

Although the CSI database contains most of the key information needed for

this study, it lacks one essential feature, that is the ability to compare the observed

distribution of solar adopters to the broader distribution of potential adopters. Be-

cause higher quality sites stand to receive both higher subsidy amounts and greater

electricity cost savings in the event of adopting solar, they must be more likely to

adopt than lower quality sites are. As the CSI database contains information only

on adopters and none on non-adopters, any differences between these groups are

completely unobservable. This is important particularly for counterfactual analysis.

Although it may (arguably) be reasonable to estimate a model of adoption choice

behavior using data on adopters alone, any counterfactual analysis must explicitly

consider whether properties whose owners did not adopt would switch to adopting in

the counterfactual.

Google Project Sunroof62 contains its own measures of rooftop solar energy pro-

duction potential, and unlike the CSI database covers (and identifies) non-adopters

as well as adopters. I harness this data to obtain rough measurements of how the

site quality distribution of adopters in California differs from the broader underlying

distribution of potential adopters. I use these measurements to adjust the observed

distribution of adopters from the CSI database, arriving at an imputed distribution

which I take to represent the full spectrum of potential adopters. Because the CSI

database and Google Project Sunroof do not contain exactly the same measures of site

quality in common, this adjustment cannot be rigorous. However, it is an improve-

ment over the most natural alternative, which would be to assume the distributions

of adopters and non-adopters are either exactly the same, or differing by a calibrated

(guessed) factor.

Project Sunroof uses aerial imagery and 3D modeling to derive estimates of

maximum rooftop solar potential for each individual building, covering roughly 85%
62Source: Google Project Sunroof data as of January 2023
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of all properties in California. The inputs to Google’s maximum solar potential model

include the roof space area (sq ft) suitable for installing solar panels, projections

of shading on each point on the roof for each position of the sun in the sky, the

compass orientation and vertical angle of each roof plane, and local weather data.

Project Sunroof’s web interface accommodates the entry of any individual address,

as shown in Figure 19, returning various estimates related to the property’s rooftop

solar potential. I use an anonymized dataset of roughly 9 million such addresses,

shared through a Data User Agreement.

Figure 19: An Individual Commercial Property in Google Project Sunroof’s Web Interface

Because I use the Project Sunroof data to approximate how the distribution of

rooftop solar adopters differs from the broader distribution of potential adopters, it

is necessary to distinguish in some way between adopters and non-adopters within

the Project Sunroof data itself. Fortunately, Project Sunroof’s aerial imagery does

identify properties with solar systems currently installed, enabling me to compare the

distributions of adopters and non-adopters directly.63 Figure 20 overlays the distribu-
63Because it is not known at what time each property in Project Sunroof with solar had its system

installed, it is possible that adopters during the time of the California Solar Initiative program
(2008-2014) have a different site quality distribution than that of the full set of adopters identified in
Project Sunroof. However, my interest for this data is with the (presumably) much larger distinction
between adopters and non-adopters, not the relatively minor distinction between adopters during
and after CSI.
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tions of maximum solar potential for (residential and commercial)64 adopters of solar

(red) on the distribution of the same for the whole (residential and commercial) pop-

ulations of potential adopters (blue), with the height of each distribution reflecting

total count.

Figure 20: Site Quality Measure from Google Project Sunroof

Notes: The left panel repeats Figure 20, showing the distribution of maximum solar
production potential (gi) for residential properties in blue, and the same restricted to
adopters in red. The right panel shows the distribution of maximum solar production
potential (gi) for commercial properties in blue, and the same restricted to adopters in red.

It is visible in Figure 20 that in both cases (residential and commercial), adopters tend

toward the right of the total distribution, reflecting that properties with better site

quality are more likely to adopt. But because adopters are a relatively small subset

of the total in either case, there are nonetheless many non-adopters with comparable

site quality across the whole distribution of adopters.
64Although the Project Sunroof data identifies which properties have adopted solar, it does not

identify which properties are residential as opposed to commercial. This is important because
the distribution of commercial properties has a heavy right tail, that is of very large commercial
properties with vast roof space. I isolate residential and commercial properties in the Project Sunroof
data via a computationally intensive spatial matching with California Assessor data, described in
the upcoming Section 2.3.3.
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Although the maximum solar potential variable (gi) present in the Project Sun-

roof data enables me to compare the distributions of adopters and non-adopters as

displayed Figure 20, in order to make use of this comparison in my model estima-

tion, I will need to make a mathematical mapping between gi and comparable site

quality measures present in the CSI data, particularly the CSI Rating (ci). Because

there are no observations of gi and ci in common, this mapping cannot be rigorous,

but is meant merely to adjust for the large average difference in site quality between

adopters and non-adopters. Although different especially in their scale, gi and ci are

both measures of site quality, and as such do share their most important elements in

common.65

In order to impute the ci distribution of non-adopters that I will use in my

model estimation, I assume that adopters form a similarly shaped subset of the total

distribution in ci as they do in gi. Three of the four distributions displayed in Figure

21 are observed data: the fourth is the imputed total ci distribution.
65An important difference between gi and ci is that the former is a measure of maximum solar

production potential, whereas ci is the expected production of systems being actually installed. gi
is the property’s full ability to produce solar energy; ci is a function of property’s needs as well
as its ability. Properties with lower energy usage needs will choose smaller system sizes than the
maximum their roof can support, resulting in lower ci relative to gi. However, larger properties will
tend to have both more roof space and higher energy usage needs, and gi and ci share most other
factors in common - roof angles, shading and local weather.
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Figure 21: Non-Adopters’ Site Quality Imputation

Notes: The left panel repeats Figure 20, showing the distribution of maximum solar
production potential (gi) for commercial properties in blue, and the same restricted to
adopters in red. The right panel shows the observed distribution of production potential
(ci) for adopters in the CSI database in red, and the imputed overall ci distribution in
hollow blue.

The left panel of Figure 21 is only a repeat of Figure 20, with the distribution of

maximum solar potential (gi) for commercial adopters in red, and the distribution

for all potential commercial adopters (adopters and non-adopters together) in blue.

The right panel displays the ci distribution for adopters in red, and the imputed total

ci distribution in hollow blue. To arrive at the imputed distribution, I split each of

the adopters’ distributions into 50 bins h, where each bin coincides with 2 percentile

points, and fit a log-linear function of the bin cutoffs ch of the adopters’ ci distribution

on the bin cutoffs gh of the adopters’ gi distribution. I then pass the gi value for each

non-adopter i through this fitted function, yielding the imputed distribution as shown.

Each of these imputed values should not be viewed as the value of ci per individual

non-adopter i; but I take the distribution of these values to represent non-adopters’

ci distribution.
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2.3.3 Additional Data Sources

While the CSI database and Google Project Sunroof together form the main bulk

of my data, I use a few auxiliary data sources as well to fill in some additional needed

variables. These auxiliary data are land use codes from California state assessor data,

socioeconomic data from the US American Community Survey (ACS), political vote

shares data from the MIT Election Data and Science Lab, and energy prices data

from the US Energy Information Agency (EIA). I use the assessor data to identify

residential and commercial properties, and the ACS and vote shares data to constitute

proxies for personal taste for solar. Electricity prices are essential for calculating

expected electricity cost savings, a key factor in the choice of whether to adopt solar.

I take land use codes from California state assessor data to identify residential

and commercial properties in the Google Project Sunroof data. The Project Sunroof

data critically enables me to compare the site quality distributions of adopters and

non-adopters, but it does not identify which properties are commercial as opposed

to residential. I spatially match properties in Project Sunroof to properties in the

assessor data using latitude and longitude by nearest neighbor matching with a dis-

tance error tolerance of 5 meters. Although there may be some degree of error in

the latitude and longitude coordinates, the matches do not need to be exactly cor-

rect, because I am only interested in the land use codes from the assessor data - i.e.

residential or commercial.

To proxy for subjective taste for solar, I take socioeconomic variables from the

ACS, and political vote shares data from the MIT Election Data and Science Lab.

Commercial properties may have a negative taste if they believe potential customers

and employees will dislike the appearance of solar panels, or also a positive taste if

they wish to cultivate an appearance of being friendly to the environment. Unfor-

tunately, both of these are unobservable, but I assume that the latter - the value

of appearing to be friendly to the environment - is correlated with observable local

demographics. I suppose that higher earning, higher educated, and more politically
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left-leaning populations are more likely to yield positive taste for solar. From the

ACS I take county level median income, and propensity to be college educated, to

capture earnings and education, respectively. To capture political orientation, I cal-

culate (from the MIT Election Data and Science Lab data) county level average vote

shares for major left-leaning (Democrat and Green) party Presidential candidates,

averaged over all elections from 2000 to 2016.

The choice of whether to adopt solar hinges in part on expected electricity cost

savings, which depend on current and expected future electricity prices. Expected

electricity cost savings are another component of the net financial benefit of adopting

solar, that is, in addition to the chosen subsidy. As such, electricity prices data, which

I take from the US Energy Information Agency (EIA), are essential for quantifying the

value of each choice option faced by potential adopters in each time period. I follow

De Groote and Verboven (2019) in assuming that each potential adopter conjectures

future electricity prices in each time period from a linear trend on past prices in their

respective region of residence.

2.4 Empirical Evidence

Descriptive evidence from the CSI program shows that households and firms

responded very differently to the choice of subsidies. When faced with the same

choice options,66 17% of commercial adopters opted for the output subsidy, compared

to fewer than 1% of residential adopters.

Table 2.1: Choice of Subsidy by Consumer Type

Subsidy Type

Investment Subsidy Output Subsidy

Residential 118,309 648
Commercial 1,919 395

66Some commercial adopters were only given the option of the output subsidy, so I exclude them
from the data.
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Because the choice between the two subsidy options hinges on how consumers trade

off present and future financial benefits, the values in Table 2.1 provide evidence of a

substantial difference in time preferences between firms and households. This implies

that the optimal balance of investment and output subsidy rates for firms is likely to

be different than that for households.

For any given value of the discount factor, each property’s adoption choice

behavior should also be a function of its production potential or site quality. Because

properties with higher solar production potential stand to incur greater electricity

cost savings in the event of adopting, the propensity to adopt should be increasing

in site quality regardless of the choice of subsidy. But between the two subsidies -

because the output subsidy is better targeted to site quality, and hence effectively

offers something extra to the highest quality sites - the propensity to adopt with

the output subsidy should be increasing in site quality at an especially steep rate.

The upcoming Figures 22-24 confirm that both of these patterns indeed occur in the

data, and also can help to clarify the essential roles played by each of my two major

data sources. While the CSI database identifies which adopters selected each type

of subsidy, Google Project Sunroof identifies non-adopters in contrast to adopters.

Figure 22 plots the propensity to select either subsidy type in the CSI data, for each

decile of the site quality distribution.
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Figure 22: Conditional Propensity to Adopt With Either Subsidy Type

Notes: Commercial properties’ conditional propensity to adopt with either subsidy type by
ci decile, conditional on adopting. ci is the CSI Rating, CA’s ex-ante estimate of each
adopted system’s lifetime expected production. The propensities are conditional on
adoption, so sum to 100%. For comparability with Figures 23 and 24, however, the decile
cutoffs are designated with respect to the whole distribution of potential adopters, as
imputed from the Google data. Non-adopters ci values are imputed following the
procedure given in Section 2.3.2.

Notice that because the CSI data does not contain non-adopters, the plotted prob-

abilities cannot be unconditional, but instead are conditional on adoption. As the

displayed (conditional) propensity to adopt with the output subsidy increases in site

quality, the propensity to adopt with the investment subsidy must decrease as a mir-

ror image of the former. This does not imply same for the unconditional propensity

to adopt with the investment subsidy - that is, including the choice to not adopt at

all. Figure 23 plots the unconditional probability of adoption for each site quality

decile in the Google Project Sunroof data.
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Figure 23: Propensity to Adopt by gi Decile

Notes: Commercial properties’ propensity to adopt by gi decile. gi is Google Project
Sunroof’s estimate of the property’s maximum solar energy production potential.

It is visible in Figure 23 that the propensity to adopt solar is increasing steadily in

site quality: but lacking any information on subsidy types, the Project Sunroof data

cannot dissect these adopters further.

It is only in harnessing both the CSI data and the Project Sunroof data together

that we can see the unconditional propensities to adopt with either subsidy. One can

roughly think of multiplying each of the conditional probabilities in Figure 22 by the

corresponding decile probability in Figure 23 to yield the unconditional probabilities

in Figure 24 below.
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Figure 24: Unconditional Propensity to Adopt with Either Subsidy Type (Commer-
cial)

Notes: Commercial properties’ unconditional propensity to adopt with either subsidy type
by ci decile. Non-adopters ci values are imputed following the procedure given in Section
2.3.2.

Although the probability of choosing the investment subsidy conditional on adopting

is decreasing in site quality as shown in Figure 22, the overall probability of adopting

as shown in Figure 23 is increasing. Therefore, the unconditional probability of

adopting with the investment subsidy, shown as the orange series in Figure 24, may be

either increasing or decreasing. The probability of adopting with the output subsidy,

on the other hand, is increasing through both channels - both conditionally as given in

Figure 22, and in the absolute as given in Figure 23 - so is subject to an especially steep

rise. Each of these patterns will form an essential part of the identifying variation

for the model: While total (regardless of subsidy type) adoption increases in site

quality due to electricity cost savings, adoption with the output subsidy in particular

increases at an especially steep rate, due to the extra boost that it offers to the highest

quality potential adopters.
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Between commercial and residential properties, the patterns in adoption choice

behavior with respect to site quality are similar in kind, but not in degree. In both

cases, the overall propensity to adopt increases in site quality, while the conditional

propensity to adopt with the investment subsidy decreases relative to that of the

output subsidy: However, in the case of residential properties, the balance of these two

components is such that the unconditional propensity to adopt with the investment

subsidy is monotonically increasing in site quality alongside that of the output subsidy.

Figure 25 below is the analogue of Figure 24 for residential properties:

Figure 25: Unconditional Propensity to Adopt with Either Subsidy Type (Residential)

Notes: Residential properties’ unconditional propensity to adopt with either subsidy type
by ci decile. Non-adopters ci values are imputed following the procedure given in Section
2.3.2. The output adoption probabilities are scaled 25x.

That is, although residential properties’ propensity to adopt with the output subsidy

increases sharply in the top decile, it is not enough to overwhelm the general increase

for adoption with the investment subsidy as well. For commercial properties, on

the other hand (as shown in Figure 24), the increase in adoption with the output
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subsidy is so strong in the top two deciles that adoption with the investment subsidy

decreases, despite the sum of the two increasing. This may partly reflect just that

the highest deciles for commercial properties are higher than those for residential

properties, but also likely reflects that commercial properties are more responsive

to the output subsidy due to having a higher discount factor (less impatience). The

model estimation is needed to distinguish the roles played by each of these two factors

in driving commercial properties’ greater uptake of the output subsidy, and in so doing

to pin down the value of the discount factor.

2.5 Model of Rooftop Solar Adoption

Under the California Solar Initiative (CSI), commercial properties faced a choice

of whether to adopt rooftop solar, either with an investment subsidy or with an output

subsidy, or to not adopt. I develop a dynamic discrete choice model to encapsulate

the most critical factors in this choice. These factors split into two main groups: each

property’s (1) net financial benefit in the event of adopting solar, and (2) subjective

taste for solar, including the desire to be seen as environmentally conscious. The net

financial benefit is composed of three sub-components: (1a) subsidies, (1b) electricity

cost savings, and (negatively) (1c) the cost of the solar system. The balance of the

net financial benefit and subjective taste determines the adoption decision for each

property.

On the financial benefits side, the intertemporal discounting factor β adjusts the

utility value of financial benefits that will accrue in the future. β is linked particularly

to the relative values of the investment and output subsidies, because investment

subsidies are paid in the present, while output subsidies are paid in the future. If

β is lower (individuals are more impatient), then the output subsidy becomes less

attractive to potential adopters in utility terms, and therefore relatively less cost-

effective as a subsidy.

Many studies on rooftop solar adoption, including De Groote and Verboven
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(2019), Snashall-Woodhams (2019) and Malhotra (2023), have found that residential

adopters tend to have a very low value of β (relative to financial market rates),

indicating that they discount the future heavily in their choices of whether to adopt

solar. This paper is the first, to my knowledge, to estimate the analogous β for

commercial adopters. However, there are multiple reasons to expect that β should be

not quite as low for firms as it is for households. Relative to households, firms have

greater resources to assess long-term investments and risks, lower personal stakes in

the outcomes, and more collateral with which to secure loans. Therefore, myopia,

uncertainty, risk aversion, and unobserved liquidity constraints, all sub-factors of the

estimated discount factor, all should be less likely to sway the decisions of firms than

they are of households.

In addition to direct financial implications, subjective taste is also an important

factor in the decision of whether to adopt rooftop solar. Studying residential adopters,

Malhotra (2023) shows that there is a negative geographical correlation between taste

and site quality in California, and that this increases the relative incentivizing effect

of the output subsidy. Subjective taste for solar has a different meaning for firms than

it does for households, but may nonetheless factor in similarly. Household decision

makers are intimately affected by the choice of whether to install solar for the reason

that if installed, solar panels are to become visible on the roofs of their own homes.

Commercial decision makers are not thus personally affected, but nonetheless may

choose to internalize the tastes of their local customer pools in the interest of devel-

oping brand value. For instance, a firm located in San Francisco might benefit from

having a green-conscious reputation to target the large population of environmentally

conscious individuals in the area who could potentially become customers. On the

other hand, a firm in San Bernardino may not need such a reputation to attract

customers.

Individuals i in the model are potential adopters of rooftop solar - that is, owners
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of commercial properties with rooftops.67 In each time period t, the main choice d

faced by each potential adopter i (who has not already adopted) can be written as:

d =


0 : do not adopt

1 : adopt with investment subsidy

2 : adopt with output subsidy

The decision to adopt with either type of subsidy (d > 0) is a terminating action:68

but not adopting (d = 0) preserves the option of adopting in a later time period.

Conditional on the choice to adopt, i also chooses one of the available solar system

product contracts, j. i’s indirect utility is:

ud
i,j,t = νd

i,j,t + ξdz,j,t + ϵdi,j,t (35)

νd
i,j,t =


α ·Rd>0

i,j,t + θi if d > 0

ud=0 + β · Et[V̄i,t+1] if d = 0

Commonly as in many demand models, the structural error term ϵi,j,t follows a type

I extreme value distribution with respect to the choice options d, j, implying logit

choice probabilities. The empirical error term ξdz,j,t will be absorbed via fixed effects,

with z denoting i’s county or region of residence. The conditional value of adoption

νd>0
i,j,t is a balance (mediated by a willingness to pay parameter, α) between the net

financial benefit Rd>0
i,j,t (subsidy + electricity cost savings − system price) and i’s

subjective taste θi for whether or not to have solar (including the desire to be seen

as environmentally conscious). The conditional value of not adopting is the baseline

flow utility ud=0 (this can be imagined as zero, with the value of not adopting possibly
67I assume owning firms internalize the expenses and tastes of tenant firms.
68The lifetime of a solar PV panel is about 20 years.
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negative in comparison) plus the option value of waiting in order to potentially adopt

solar in a future time period. The option value of waiting β ·Et[V̄i,t+1] is the expected

value of i’s best choice option in the next time period, discounted by β because that

value is to realize one period hence.

2.5.1 Value of Adopting Solar

The conditional value of adopting solar, νd>0
i,j,t = α · Rd>0

i,j,t + θi, is relatively

straightforward: because adoption is a terminating action, this value is equal to the

expected discounted utility of the adopted solar system in the present time period

(that in which the system is adopted). The intertemporal discount factor β critically

weighs the sub-components of the net financial benefit Rd>0
i,j,t against one another.

Because the system installation price pI
z,j,t is due in the present,69 it is not weighted

by β in utility terms. The the same goes for the investment subsidy. But the output

subsidy as well as electricity cost savings accrue in the future, so must be weighted by

β in utility terms. For d = 1 (adoption with investment subsidy) and d = 2 (adoption

with output subsidy) respectively, the net financial benefits are,

Rd=1
i,j,t = ru

z,t · ci,j︸ ︷︷ ︸
Investment

Subsidy

+

20 years∑
τ=0

(δ · β)τ · Et[qi,j,t+τ ] · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

− pI
z,j,t︸︷︷︸

Installation
Price

(36)

Rd=2
i,j,t = rq

z,t ·
5 years∑
τ=0

(δ · β)τ · Et[qi,j,t+τ ]︸ ︷︷ ︸
Output
Subsidy

+

20 years∑
τ=0

(δ · β)τ · Et[qi,j,t+τ ] · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

− pI
z,j,t︸︷︷︸

Installation
Price

where ru, rq, pE, and pI denote the upfront subsidy rate, output subsidy rate, elec-

tricity price, and system installation price, respectively. The calibrated parameter δ

69The system price is adjusted for the federal Investment Tax Credit (ITC).
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adjusts for solar panels depreciation as well as expected inflation of the US dollar.70

The output subsidy is paid out over 5 years, whereas electricity cost savings accrue for

an expectation of 20 years, reflecting the typical lifespan of solar panels. ci,j is the CSI

Rating, which serves as the state’s official estimate of the adopted system’s expected

lifetime total solar energy production, while Et[qi,j,t+τ ] is the potential adopter’s own

expectation of their own solar energy production per period t+ τ . Because the choice

of subsidy has no bearing on expected electricity cost savings, nor on system instal-

lation price, the net financial benefits Rd=1
i,j,t and Rd=2

i,j,t are identical except for the

subsidy.

The net financial benefit Rd>0
i,j,t of adopting solar may be either positive or neg-

ative, depending on whether the subsidy plus electricity cost savings outweigh the

system price. The subjective taste term θi may be either positive or negative, also,

depending on whether the desire to be seen as environmentally conscious outweighs

the firm’s visual distaste for the appearance of solar panels. However, unlike the net

financial benefit which consists of mostly observed components, taste θi is primarily

unobservable. Empirically, I proxy for θi with county (z) level socioeconomic indi-

cators likely to correlated with local consumers’ average taste for solar:71 political

leaning, education, and median household income. That is,

θi = θpol · P pol
z,t + θedu · P edu

z,t + θinc ·X inc
z,t + θ̃i (37)

where P pol
z,t is the fraction of the local population in i’s county z who are politically

left-leaning, P edu
z,t is the fraction with at least four years of higher education, and X inc

z,t

is median household income. I leave the remaining unobserved portion of taste θ̃i

to merge with the model’s empirical error term ξz,j,t (absorbed in fixed effects), and

structural error term ϵi,j,t.
70The time intervals t + τ may be either months or years, only δ and β need to be adjusted

accordingly.
71I assume that firms internalize local consumers’ tastes in the interest of attracting potential

customers.
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2.5.2 System Characteristics and Site Quality

Multiple elements of the net financial benefit of adopting solar, Rd>0
i,j,t , depend

on system size and other system j characteristics. A larger system will come with

both higher expected production and higher installation price. The CSI rating ci,j,

which serves as the state’s approximation of expected production, is equal exactly to

the system size sj multiplied by a Design Factor, c̃i.

ci,j = c̃i · sj (38)

The Design Factor c̃i is a unitless scalar that adjusts for local sunlight intensity,

azimuth (compass orientation of the roof on which the system is to be installed), tilt

(vertical angle of the roof), and shading. (The state’s estimate of expected production

is

ci,j ·
∑
τ

h̄

where h̄ is a constant grand average number of hours of sun exposure per system

per time period.) The potential adopter’s own expectation of its own production

Et[qi,j,t+τ ], though not directly observed, should be closely related to ci,j and similarly

constituted, as both are essentially estimates of the same expected production.

The system installation price pI
z,j,t should also be a function of system charac-

teristics j, particularly system size sj. I model system price as a linear function of

size, with both the slope and intercept varying by region z as well as time period t:

pI
z,j,t = poI

z,t + psI
z,t · sj (39)

The intercept terms poI
z,t coincide with fixed costs. A 2kW system will be more than

half as expensive as a 4kW . Such decreasing average costs per kW size, implied by

the presence of positive fixed costs, imply that optimal system sizes will be larger for

properties i with higher site quality.
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To reduce the complexity of the model, I assume that all factors driving the

choice of system j characteristics are exogenous. This implies that all j subscripts in

the model are superfluous: j characteristics are implications of the characteristics of

properties i or their associated regions z. (Similarly, a z subscript would be super-

fluous wherever there is an i.) As a simplest example, the Design Factor c̃i should

arguably be written as c̃i,j in theory, although it needn’t be in empirical execution.

The Design Factor includes system characteristics such as azimuth and tilt. My as-

sumption is that a system’s azimuth is not a free choice, but is instead implied by

the property i’s roof space and orientation. Each property has a predetermined set

of roof spaces, one of which is best oriented for solar regardless of other factors in the

model.

I assume that each chosen system size sj, and all other system j characteristics,

all are implied by their associated property i’s exogenous characteristics, similarly

as is each system’s chosen azimuth. These exogenous i characteristics include the

property’s energy usage needs, roof space and orientation, sunlight intensity and

shading. Although theoretically unappealing, this assumption of exogenous system

characteristics helpfully simplifies the model, while preserving the vast bulk of what is

likely to be important in practice for the question at hand. For example, although it is

conceivable that optimal system sizes sj may respond to subsidy rates on a very small

margin, it is fair to assume that each property i’s chosen system size - conditional on

yes or no adoption - is (in the vast bulk) a function of its (exogenous) energy usage

needs and roof space. I assume the parameters of the system pricing function, poI
z,t

and psI
z,t, likewise to be exogenous. This precludes any price setting behavior amongst

solar supplier firms, but coincides with the vast bulk of what is likely to drive solar

installation prices - namely, equipment and labor costs.

The assumption of exogenous system characteristics has, amongst other upsides,

the benefit of simplifying the concept of site quality. Because expected production

follows from site i characteristics (which are exogenous) and system j characteristics
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- and the j characteristics themselves follow from the i characteristics - expected

production is to be viewed as following entirely from site i characteristics. Therefore

expected production - conditional on yes or no adoption - is exogenous, and synony-

mous with site quality. As such the CSI rating ci,j = ci which is the state’s estimate

of i’s expected production, and the commercial property i’s own estimate of its own

expected production Et[qi,j,t+τ ] = Et[qi,t+τ ], both measures of expected production,

serve as alternative measures of site quality. The extent to which these two measures

disagree with one another is critical in the model, as the investment subsidy amount

follows from the former, while the expected output subsidy amount follows from the

latter.

2.5.3 Hidden Site Quality

In the model as it is written, the output subsidy can have no possible advantage

over the investment subsidy unless the adopting firm i’s estimate Et[qi,t+τ ] of its own

site quality is more accurate than the state’s estimate ci of the same. To proxy

for Et[qi,t+τ ], I fit ex-post actual production qi,t in hindsight as a function of ex-ante

observable site and system characteristics, seeking maximal fit. I find in this empirical

case that ci does predict actual production qi,t (or qi - averaged over t) very well,72

but that the highest values of ci underestimate the highest values of qi. This is to say

that qi is an increasing function of ci rather than a linear function. I therefore fit a

nonlinear function of qi on ci, with intercepts co and slopes cq varying by region z:

log(qi) = co
z + cq

z · log(ci) + cℓ · log(ℓi)

yi = exp( ˆlog(qi))

(40)

where ℓi is sunlight intensity data from Google Project Sunroof. The fitted values

- which I call yi - serve as an additional measure of site quality. Particularly yi is
72I find a correlation of ci with qi of 0.79 amongst commercial adopters in the CSI data.
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the most accurate available estimate, such as adopting firms i might have given full

knowledge of their own properties. I therefore use yi (iterated over time periods t+τ)

to proxy for the adopters’ i estimate Et[qi,t+τ ] of their own expected production, that

which is more accurate than the state’s estimate ci of the same.

Rd=1
i,t = ru

z,t · ci︸ ︷︷ ︸
Investment

Subsidy

+

20 years∑
τ=0

(δ · β)τ · yi · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

−
(
poI
z,t + psI

z,t · si
)

︸ ︷︷ ︸
Installation

Price

Rd=2
i,t = rq

z,t ·
5 years∑
τ=0

(δ · β)τ · yi︸ ︷︷ ︸
Output
Subsidy

+

20 years∑
τ=0

(δ · β)τ · yi · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

−
(
poI
z,t + psI

z,t · si
)

︸ ︷︷ ︸
Installation

Price

(41)

The use of the nonlinear function underlying yi as hidden site quality - known

to adopting firms but not to the state - begs the question as to why the state should

not simply update its ci measure to be equal to yi. However, yi should be thought of

as an over-fitted function, harnessing information on actual production in hindsight

such as should not be available to policy makers ex-ante in any practical setting. The-

matically, the idea is that even with an investment subsidy program that is adjusted

for site quality by the state ex-ante, the investment subsidy falls at least slightly

short of the output subsidy in targeting to site quality for the reason that no ex-ante

evaluation can be perfect. Granted, the adopter’s evaluation of their own site quality

is also ex-ante, but presumed to harness intimate knowledge that cannot be available

to the state. This is to say that the output subsidy retains at least some small upside

relative to the investment subsidy, though not necessarily that this upside is enough

to overcome the output subsidy’s relative downside of intertemporal discounting. The

more accurate an investment subsidy program is in adjusting to site quality, the less

scope there can be for the output subsidy to yield gains in cost-effectiveness.
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2.5.4 Model Solution

Potential adopters i may choose to refrain from adopting solar, either in order to

retain the option to adopt in a future time period, or to never adopt. The conditional

value of not adopting νd=0
i,t is equal to the baseline flow utility ud=0 plus the option

value of waiting,

νd=0
i,t = ud=0 + β · Et[V̄i,t+1] (42)

where V̄i,t+1 is the value of behaving optimally from period t+1 onward, an aggregation

of the values νd>0
i,t+τ of all future options.

I follow De Groote and Verboven (2019), Scott et al. (2013) and Hotz and Miller

(1993) in substituting out for Et[V̄i,t+1] in the Conditional Choice Probability (CCP)

formulas. This will simplify the estimation of the dynamic discrete choice model.

I will not need to specify whether the adoption decision is a finite or infinite time

horizon problem, nor to specify how agents believe the future states to evolve. I only

need to assume rational expectations on state transitions. By the assumption that

the structural error terms ϵdi,t are EV1 distributed, the conditional choice probabilities

P d
i,t for each choice option d take the logit forms,

P d
i,t = exp(νd

i,t)
/∑

d′

exp(νd′

i,t)

P d
i,t

/
P d′

i,t = exp(νd
i,t)
/
exp(νd′

i,t)

(43)

and the continuation value V̄i,t+1 takes the form,

V̄i,t+1 = γ + log
∑
d′

exp(νd′

i,t+1) (44)

where γ is Euler’s Constant. Following Scott et al. (2013), I assume that potential
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adopters i predict V̄i,t+1 accurately up to a mean-zero error ηi,t,

Et[V̄i,t+1] = V̄i,t+1 − ηi,t (45)

Equations (42) - (45) can be combined to yield a non-recursive solution to the choice

probabilities (43). To do this, first replace the Et[V̄i,t+1] in (42) with that in (45),

νd=0
i,t = ud=0 + β · (V̄i,t+1 − ηi,t)

then apply the V̄i,t+1 formula (44),

νd=0
i,t = ud=0 + β · (γ + log

∑
d′

exp(νd′

i,t+1)− ηi,t)

normalize ud=0 + β · γ = 0, and let −β · ηi,t merge into ξd=0
z,t and ϵd=0

i,t in (35). This

results in,

νd=0
i,t = β · log

∑
d′

exp(νd′

i,t+1) (46)

Now notice that, ∑
d′

exp(νd′

i,t+1)

is the denominator of the logit conditional choice probability formula (43) evaluated

for P d
i,t+1,

P d
i,t+1 = exp(νd

i,t+1)
/∑

d′

exp(νd′

i,t+1)

Inverted, this is,

log
∑
d′

exp(νd′

i,t+1) = νd
i,t+1 − logP d

i,t+1

which can applied in (46) to yield,

νd=0
i,t = β · (νd

i,t+1 − logP d
i,t+1) (47)
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This equation is valid when evaluated for any given d choice,

νd=0
i,t = β · (νd=0

i,t+1 − logP d=0
i,t+1)

= β · (νd=1
i,t+1 − logP d=1

i,t+1)

= β · (νd=2
i,t+1 − logP d=2

i,t+1)

Evaluating at d = 0 is not helpful though, as this yields only a solution for νd=0
i,t in

terms of νd=0
i,t+1, which in turn is solved only in terms of νd=0

i,t+2, and so on. However,

νd=1
i,t+1 and νd=2

i,t+1, as νd=1
i,t and νd=2

i,t , have their own definitions as developed in 2.5.1

and 2.5.3,

νd=1
i,t = α ·

(
ru
z,t · ci︸ ︷︷ ︸

Investment
Subsidy

+

20 years∑
τ=0

(δ · β)τ · yi · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

−
(
poI
z,t + psI

z,t · si
)

︸ ︷︷ ︸
Installation

Price

)

+ θpol · P pol
z,t + θedu · P edu

z,t + θinc ·X inc
z,t︸ ︷︷ ︸

Taste for Solar

νd=2
i,t = α ·

(
rq
z,t ·

5 years∑
τ=0

(δ · β)τ · yi︸ ︷︷ ︸
Output
Subsidy

+

20 years∑
τ=0

(δ · β)τ · yi · Et[p
E
z,t+τ ]︸ ︷︷ ︸

Electricity Cost Savings

−
(
poI
z,t + psI

z,t · si
)

︸ ︷︷ ︸
Installation

Price

)

+ θpol · P pol
z,t + θedu · P edu

z,t + θinc ·X inc
z,t︸ ︷︷ ︸

Taste for Solar
(48)

Therefore (47) evaluated at either d = 1 or d = 2 yields a non-recursive solution for

νd=0
i,t . Choosing d = 1, the solution

νd=0
i,t = β · (νd=1

i,t+1 − logP d=1
i,t+1) (49)
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joins the νd>0
i,t expressions (48) to complete the model. The conditional choice prob-

abilities (43) resolve as,

P d=0
i,t =

exp(β · (νd=1
i,t+1 − logP d=1

i,t+1))

exp(β · (νd=1
i,t+1 − logP d=1

i,t+1)) + exp(νd=1
i,t ) + exp(νd=2

i,t )

P d=1
i,t =

exp(νd=1
i,t )

exp(β · (νd=1
i,t+1 − logP d=1

i,t+1)) + exp(νd=1
i,t ) + exp(νd=2

i,t )

P d=2
i,t =

exp(νd=2
i,t )

exp(β · (νd=1
i,t+1 − logP d=1

i,t+1)) + exp(νd=1
i,t ) + exp(νd=2

i,t )

(50)

which alternatively can be written as,

P d=0
i,t =

1

1 + exp(νd=1
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1)) + exp(νd=2

i,t − β · (νd=1
i,t+1 − logP d=1

i,t+1))

P d=1
i,t =

exp(νd=1
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1))

1 + exp(νd=1
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1)) + exp(νd=2

i,t − β · (νd=1
i,t+1 − logP d=1

i,t+1))

P d=2
i,t =

exp(νd=2
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1))

1 + exp(νd=1
i,t − β · (νd=1

i,t+1 − logP d=1
i,t+1)) + exp(νd=2

i,t − β · (νd=1
i,t+1 − logP d=1

i,t+1))
(51)

where each ν term is function of data and the parameters to be estimated {α, β, θ̃, θpol, θedu, θinc},

as given by (48).73 The choice probabilities P for each choice option d are essentially

data, with the caveat that each individual potential adopter i may only realize one

choice (per time period), so that probabilities at the level of individuals i are observed

only indirectly.

I follow the approach of Arcidiacono and Miller (2011), that is of estimating (51)
73It should be noted that the choice probabilities (51) are conditional on having not already

adopted, so in unconditional terms apply strictly as written only for the initial period. All subsequent
t periods’ probabilities are to be multiplied by the unconditional d = 0 probability from the previous
period, iterated from the initial period.
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in two steps.74 In the first step, I approximate the right hand side probabilities P d=1
i,t+1

via a flexible logit predictive model. This is analogous to the familiar use of observed

market shares to approximate probabilities - but adjusted per individual property i

based on individual characteristics (ci, yi) as well as location z.75 Taking the condi-

tional choice probabilities as given in the second stage, the estimation then reduces

to an essentially static multinomial logit criterion function with a precalculated offset

term, as given by (51). That is, I take the approximated P d=1
i,t+1 from the first step as

data in the second (main) step of estimating (51) via simplex grid search Maximum

Likelihood estimation.76 The resulting parameter estimates for {α, β, θpol, θedu, θinc}

encapsulate commercial adopters’ demand behavior for rooftop solar.

2.6 Empirical Results

I estimate the dynamic discrete choice model of rooftop solar adoption de-

scribed in Section 2.5 in order to quantify the balance of motives underlying poten-

tial adopters’ choices. The estimation results explain the factual pattern of adoption

choices observed in the data, and shed light on potential adopters’ tastes and prefer-

ences (demand parameters). By estimating the model separately for commercial and

residential properties, critically, I am able to compare distinct values of each of the

demand parameters across these two important types of consumers.

As discussed throughout Section 2.5, a few key parameters of the demand model

are critical in driving the distribution of adoption decisions. Most of all, the intertem-

poral discount factor β measures how potential adopters weigh financial benefits in

the present against those that will accrue in the future, influencing households’ and

firms’ propensities to adopt and to select the output subsidy rather than the invest-
74De Groote and Verboven (2019) conduct an analogous two step estimation in their Online

Appendix.
75The predictive model is a static analogue of (51) with added fixed effects and interaction terms,

meant to maximize fit rather than identify parameters.
76As discussed earlier in this section, a few other components (yi, poI

z,t, psI
z,t) of (51) are approxi-

mated as well in first steps of their own in parallel to P d=1
i,t+1.
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ment subsidy. As shown in Table 2.2, I estimate a much higher yearly discount factor

for firms (β = 0.94) than for households (β = 0.82). This indicates that firms are a

great deal less impatient than households are in their valuation of the future finan-

cial benefits of adopting solar, implying that policy makers should treat firms and

households very differently in seeking for cost-effective subsidy schedules.

Table 2.2: Solar Adoption Model MLE Parameter Estimates

Parameter Residential
Estimate

Commercial
Estimate

price sensitivity (per $105) α 6.642 4.661
(0.026) (0.007)

monthly discount factor βmonthly 0.984 0.995
(0.004) (0.012)

yearly discount factor βyearly 0.821 0.940
intercept taste for solar θ̄ -4.998 -4.733

(0.007) (0.009)
d(taste)/d(Democrat) θpol 0.836 1.125

(0.234) (0.112)
d(taste)/d(Income) (per $105) θinc 1.833 3.650

(0.028) (0.061)
d(taste)/d(Educated) θedu 0.199 0.246

(0.216) (0.010)
corr(taste, site quality) ρθ,y -0.289 -0.261

Notes: Parameter estimates from the dynamic discrete choice rooftop solar adoption
demand model for residential and commercial properties in CA, respectively. Stan-
dard errors in parentheses.

In addition to the discount factor β, the correlation between taste and site

quality (ρθ,y) also plays a crucial role in shaping solar adopters’ choice behavior and

responsiveness to the subsidy options.77 In contrast to the discount factor, where my

estimates indicate a large difference in patience between firms and households, my

estimates for ρθ,y indicate a similarity between firms and households in tastes. The
77Malhotra (2023) shows that in particular a negative value of ρθ,y will strengthen the cost-

effectiveness of the output subsidy relative to that of the investment subsidy.
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value of ρθ,y = −0.29 in Table 2.2 encapsulates the fact that in California, the most

environmentally conscious or left-leaning households in California tend to live in the

least sunny areas (e.g. San Francisco), and vice versa (e.g. San Bernardino). The

not far off value of ρθ,y = −0.26 in Table 2.2 suggests that firms mirror or internalize

the tastes of local households. That is, firms in (for example) San Francisco and

San Bernardino exhibit about the same difference in subjective taste for solar as

households do across the same locations. This may reflect local firms’ incentive to

cultivate brand images in accord with their local customer bases.

Although the correlation between taste and site quality is similar for firms and

households, it should be noted that correlation does not indicate anything about the

magnitude of the taste. Potential adopters’ demand function78 weighs this subjective

taste (θ) against their expected net financial gain in the event of adopting solar, me-

diated by the willingness to pay parameter α. To get a sense of magnitudes, Table

2.3 below scales each of the estimated taste parameter values by the correspond-

ing value of α: This effectively translates the taste parameters into values in dollar

terms, against which potential adopters weigh their expected net financial gain in

their decision of whether to adopt solar.

Table 2.3: Taste Parameter Estimates in Dollar Terms

Parameter Residential
Estimate

Commercial
Estimate

intercept taste for solar θ̄ -$75,200 -$107,000
d(taste)/d(Democrat) (per % Dem) θpol $126 $268
d(taste)/d(Income) (per $1000 Inc) θinc $276 $783
d(taste)/d(Educated) (per % Edu) θedu $30 $53

Notes: Dollar term estimates are obtained by dividing the taste parameter estimates in
Table 2.2 by α. % Democrat, Income, and % (College) Educated refer to the average or
median amongst households in the county in which the household or firm is located.

It is evident in Table 2.3 that the magnitude of every taste parameter value is slightly
78See Section 2.5.
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higher for firms than the corresponding value for households. However, it must be

remembered that the role of this subjective taste is to weigh against the expected

net financial gain in the event of adopting solar, and that the magnitudes of financial

gains are typically much larger for firms than for households. As such, subjective

taste plays a much smaller overall role in firms’ decision making than in households’.

Table 2.4: Comparison of Main Parameter Estimates

β ρθ,y med(R) med(θ)
Residential 0.82 -0.29 $28,600 -$50,100
Commercial 0.94 -0.26 $41,000 -$44,900

Notes: Dollar term estimates are obtained by dividing the taste param-
eter estimates in Table 2.2 by α. Med(R) refers to median financial
benefits and med(θ) refers to median taste for solar.

The comparisons in Table 2.4 reveal important differences in the underlying de-

mand parameters between residential and commercial adopters of photovoltaic (PV)

systems. First, the annual discount factor β (discount rate = 1/β − 1) indicates

that firms are only about one third as impatient as households in their investment

decisions, suggesting that commercial entities are not as myopic when evaluating the

financial benefits of PV adoption. Second, the negative correlation between subjective

taste and site quality (ρθ,y) is similar in magnitude across the two adopter groups,

suggesting that firms internalize the preferences of local residential households. Com-

parison of the magnitudes of the subjective taste and net financial gain as components

of utility, however, shows that the taste plays a smaller role for firms than it does

for households. The median financial gain (R) is higher for commercial adopters,

as they typically have more roof space on which they can install larger PV systems.

That their subjective taste is not also larger in magnitude, but in fact smaller, may

reflect that commercial adopters are not as personally affected by the presence of

solar panels on business premises as residential adopters are on their own homes, or

simply that commercial adopters’ decision making is more focused on the financial
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bottom line. Overall, these findings highlight that firms exhibit greater patience and

prioritize financial considerations to a larger degree than residential consumers, who

tend to be more influenced by personal taste factors.

These findings have significant policy implications for subsidies related to the

adoption of solar photovoltaic (PV) technology. Malhotra (2023) analyzes the coun-

terfactual scenario for residential users and shows that the most cost-effective subsidy

design to achieve the same production level 79 involves a higher investment subsidy

rate paired with a lower output subsidy rate. However, the cost-effective balance of

investment and output subsidies will differ for firms compared to residential adopters.

The cost-effectiveness of investment subsidies for residential adopters is driven mainly

by their low discount factor (high impatience) with regard to future financial benefits,

including any output subsidy payments. Because output subsidies are more efficient

in targeting to site quality in both cases, the lack of impatience as a countervailing

force in the case of firms particularly makes them the more cost-effective choice. In

both cases, the estimated negative correlation between personal taste and site quality

provides an additional boost the cost-effectiveness of output-based subsidies, making

them the better subsidy design for firms in this setting even though they are not for

households.

2.7 Policy Implications

The California Solar Initiative paid out a total of roughly $2.2 billion to sub-

sidize commercial and residential rooftop solar systems, about one third of which

went to residential adopters. The subsidized systems amounted to about 50.9 billion

and 21.4 billion kWh in electricity production amongst commercial and residential

properties, respectively. A hypothetical subsidy policy that would result in the same

production with lower expenditure, or higher production with the same expenditure,

would undoubtedly be preferable to the government than the policy that was run.
79The total solar production targeted in California Solar Initative.
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The model estimation results obtained in Section 2.6 enable counterfactual simula-

tions to predict how adoption choice behavior would respond under such alternative

hypothetical subsidy policies.

I search for a cost-minimizing combination of subsidy rates amongst those that

meet a given, fixed production target. I take as the production target that which was

achieved under the CSI program, roughly 50.9 billion kWh for commercial properties

and 21.4 billion for residential properties. In the CSI program, each of the (investment

and output) subsidy rates declined in ten steps over time:80 To hold this feature

constant in my counterfactuals, I multiply each of the original CSI rate schedules

by a scalar ranging from 0 to 2. However, where the CSI program offered the same

set of rates to commercial as to residential properties, I allow for a separate rate

schedule scalar for commercial and residential properties, for each of the two subsidy

types. Figures 26 and 27, for commercial and residential properties, respectively,

display the total program cost that I calculate would result from each combination

of counterfactual subsidy rate schedules that meet the respective production targets

of 50.9 billion and 21.4 billion kWh.
80See Table 2.5.
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Figure 26: Total Subsidy Cost With Fixed Production Target: Commercial Properties

Notes: The investment and output subsidy rate axes plot the scalar by which the original
CSI subsidy rate schedule is multiplied to yield each counterfactual rate schedule. The
counterfactual subsidy program cost resulting from each rate schedule combination is
plotted in color. All combinations included in the graph result in total solar electricity
production roughly equal to 50.9 billion kWh, with a tolerance of 1% (50.4 - 51.4 billion
kWh).
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Figure 27: Total Subsidy Cost With Fixed Production Target: Residential Properties

Notes: The investment and output subsidy rate axes plot the scalar by which the original
CSI subsidy rate schedule is multiplied to yield each counterfactual rate schedule. The
counterfactual subsidy program cost resulting from each rate schedule combination is
plotted in color. All combinations included in the graph result in total solar electricity
production roughly equal to 21.4 billion kWh, with a tolerance of 1% (21.2 - 21.6 billion
kWh).

While the counterfactual cost plots (above) are of roughly similar shape for

commercial as for residential properties, it is the values on the axes that are most

important. The axis values give the scalar by which the original CSI investment

or output rate subsidy schedule was multiplied to arrive at each given counterfac-

tual subsidy schedule. The darkest blue color, representing the lowest program cost,

identifies the most cost-effective combination of subsidy schedules.

Most important to note are the axis values at which the cost-effective rate combi-

nation falls in each of the two plots (Figures 26 and 27). For residential properties, the

cost-minimizing combination falls at roughly (0.60, 1.21), indicating output subsidy

rates 40% lower than in the original CSI schedule, and investment subsidy rates 21%

higher. For commercial properties, on the other hand, the cost-minimizing combina-

tion indicates a roughly 4% higher output subsidy paired with a 29% lower investment
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subsidy. That is, due to residential adopters’ low discount factor at β = 0.82, money

given to adopters in the future in the form of output subsidies is to a large extent

wasted in utility terms, implying that it is cost-effective to shift funds into the input

subsidy instead. However, because commercial adopters are not nearly as impatient,

at β = 0.94, the output subsidy’s relative advantage of better targeting to site quality

becomes more important than the input subsidy’s relative advantage of being paid

up front. These cost-minimizing subsidy schedules deliver savings to the government

of about $160 and $140 million in commercial and residential subsidies, respectively.

2.8 Conclusion

This paper exploits an unusual opportunity, offered by the California Solar

Initiative, to estimate values of the intertemporal discount factor for commercial as

well as residential adopters of rooftop solar. Correct values of the discount factor

are crucial for the design of cost-effective subsidy policies to encourage the adoption

of new green technology. This paper’s results suggest that subsidy policies aimed

at firms should assume higher discount factors (less impatience) than those aimed at

households. In the context of green technology adoption, this implies that commercial

properties should be offered relatively higher output subsidy rates, and residential

properties relatively higher investment subsidy rates. The finding that firms are only

about one third as impatient as households in the setting of rooftop solar adoption

may serve as a best guess in other related settings as well.

This research can be extended in several ways. First, while this paper assumes

a single discount factor for each of households and firms, the discount factor may be

modeled as heterogeneous amongst firm, perhaps as a function firm size. Whether

smaller firms behave more similarly to households than larger firms do, for example,

may help shed light on deeper underlying reasons for households’ exhibited impa-

tience. Second, the model could be expanded to include unobserved heterogeneity in

subjective taste for solar, beyond that which can be accounted for in demographic
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observables. Third, it may be worth exploring the role of peer effects in the adoption

of green technologies amongst firms: Adoption choices amongst major firms like Ama-

zon, Apple and Google may influence the choices of other firms. Incorporating these

additional dimensions of firm characteristics and behavior may further help policy

makers to distinguish optimal incentive policies for different segments of the market.
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Appendix

Table 2.5: CSI Subsidy Rates

Notes: This schedule gives the pre-determined CSI subsidy rates. Both the EPBB
(investment subsidy) and PBI (output subsidy) decline in 10 steps over time, based on the
cumulative capacity installed in the state.
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Figure 28: Sunlight Intensity and Political Leanings

Sunlight Intensity
Political Leaning

Notes: The map on the left shows variation in sunlight intensity across different regions of
California. The map on the right shows variation in the political leaning; regions in red are
more Republican leaning, while those in blue are more Democratic leaning. Together, the
maps show that in regions with higher sunlight intensity, and therefore with higher site
quality, property owners are more likely to be more Republican, and therefore to have
lower personal taste for solar.
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