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Abstract

This dissertation consists of two independent essays. In the first essay, Coordination in

Complex Environments, I introduce a framework to study coordination in highly uncertain

environments. Coordination is an important aspect of innovative contexts, where: the more

innovative a course of action, the more uncertain its outcome. To explore the interplay of

coordination and informational complexity, I embed a beauty-contest game into a complex

environment. I uncover a new conformity phenomenon. The new effect may push towards

exploration of unknown alternatives, or constitute a status quo bias, depending on the

network structure of the connections among players.

In the second essay, The Extensive Margin of Bayesian Persuasion, I study the persuasion

of a receiver who accesses information only if she exerts attention effort. The sender uses the

information to incentivize the receiver to pay attention. I show that persuasion mechanisms

are equivalent to signals. In a model of media capture, the sender finds it optimal to censor

high states.
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Part I

Essay 1: Coordination in Complex

Environments

1 Introduction

Coordination poses challenges in highly uncertain environments. Consider retailers that

share the same manufacturer and choose marketing strategies.1 Innovative advertisement

comes with uncertainty about the brand image of the manufacturer. Moreover, retailers

need to coordinate their advertisements and succeed in different markets. Does uncertainty

lead to a unified brand image, and do the marketing campaigns align with the interests of

the manufacturer? Coordination is also an important aspect of technological innovation.

Developers of messaging apps benefit from interoperability, as it addresses the uncertainty

surrounding which apps will be popular. Similarly, tech companies often converge on

standards for universal connectors. Do coordination motives lead to more exploration? This

paper studies coordination problems in the face of “incremental” uncertainty, referred to as

complexity, such that: the more innovative a decision is, the more uncertain its outcome

becomes.

I introduce a model of coordination within a complex environment. In the model, every

player wants the outcome of her action to be close to a target. The target of a player

combines her fixed favorite outcome with the individual outcomes of the opponents, leading

to a coordination-adaptation tradeoff. A given network of players determines how much

each target weighs each individual outcome. Analogous coordination motives arise in several
1 This type of marketing for the manufacturer’s product is known as co-op advertising with multiple

retailers (Jørgensen and Zaccour, 2014).
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settings, including financial markets, oligopolistic competition, organizations, and labor

markets (Keynes, 1936; Topkis, 1998; Marschak and Radner, 1972; Diamond, 1982).

Complexity is modeled by the uncertainty about how actions translate into outcomes,

to capture that more innovative actions lead to more volatile outcomes. This informational

complexity involves a status quo and a covariance structure. The status quo is an action

that implies relatively low uncertainty. The covariance structure describes the likelihood

that two actions yield similar outcomes. For example, this complexity is relevant when

deciding about a financial investment, the adoption of novel pricing strategies, and how

boldly to innovate in new technologies. In the model, players simultaneously choose policies,

and there is an outcome for every policy, given by an outcome function. Players know that

the outcome function is the realized path of a Brownian motion. The initial point of the

Brownian motion represents the status quo: a known outcome corresponds to the initial

policy. Instead, different policies than the status-quo (initial) policy lead to outcomes known

only up to a noise. The more an outcome differs in expectation from the status-quo outcome,

the higher its variance; this approach to modeling complex environments is introduced by

Callander (2011a).

I show that the interplay of coordination and complexity leads to a novel conformity

phenomenon. In particular, expected outcomes are closer across players than in an environ-

ment without complexity, in all equilibria when the network is complete. This conformity

occurs in addition to the status-quo bias identified by Callander (2011a) and the conformity

due merely to the presence of coordination motives. To separate the new conformity

from previously studied phenomena, I decompose equilibrium expected outcomes in terms

of more primitive objects: the equilibrium outcomes in a non-complex environment, the

status-quo bias absent strategic interactions, and a new strategic-uncertainty element due

to the interplay of complexity and coordination.
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The new element in the equilibrium characterization arises from an endogenous leader-

follower relationship among players introduced by the covariance structure. In the model,

the follower in a pair of players is the one with the closest policy to the status quo. Consider

the two ways in which the policy of a player influences the incentives of her opponents.

First, policies enter into the expected targets of players, due to standard coordination

motives. Second, the policy of a player determines the correlation between her outcome

and her opponents’ outcomes. Given a pair of players with different policies, the only

player whose policy directly affects the covariance is the follower, not the leader.2 As a

result, the follower has an extra incentive to explore by choosing a policy in the direction of

the leader. The new incentive of the follower is the source of conformity. In general, the

leader-follower relationship induces an asymmetry among players that interacts with the

exogenous structure of connections.

Conformity has a delicate interaction with the network of players. A player may exert

substantial influence on a follower player through the network. This influence can be so

strong that it steers the follower away from a third player. In this case, “counter-formity”

emerges, leading to expected outcomes that are more distant between certain players than

in the no-complexity case. In general, the leader-follower relationship is determined in

equilibrium. The equilibrium decomposition serves to verify that a certain leader-follower

structure can be sustained.

To illustrate the conformity phenomenon, I study applications of the model. In oligopolis-

tic competition, coordination motives arise from strategic complementarities whenever the

incentives to raise prices increase with the prices of competitors. Moreover, a pricing

algorithm may rely on data not available when algorithmic pricing is adopted (Brown and

2 This property is due to independent increments, a reasonable assumption in innovative contexts owing to
a maximum-uncertainty principle (Jovanovic and Rob, 1990). However, the covariance structures implied by
other Gaussian processes have features that reminisce about a leader-follower relationship; for instance, the
Ornstein-Uhlenbeck covariance between two “outcomes” is increasing only in one “policy” (Bardhi, 2023).
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MacKay, 2023). Hence, complexity arises when innovative pricing rules are associated with

high uncertainty. In this case, conformity takes the form of concentrated expected prices

across firms. The presence of conformity suggests a downward bias when firm heterogene-

ity is estimated from price data and the analyst does not control for complexity.3 The

equilibrium decomposition provides a tool for isolating the new conformity effect.

I show that conformity increases in the complexity of the environment, whenever two

players exist who are the leader and the follower for each of their opponents. This order of

players occurs in applications, such as in an oligopoly with two firms with extreme marginal

costs. The measure of complexity is the additional uncertainty implied by a change in

expected outcome away from the status quo.4 The intuition for this comparative statics

follows from the “first-order” effect of an increase in complexity. In particular, matching

the outcome of a leader becomes more “cost-effective” for a follower, relative to targeting a

favorite outcome. The reason is that the two outcomes are the same when players choose

the same policy, regardless of the level of complexity. This comparative statics is consistent

with findings in social psychology. Since Asch (1951), psychologists observe that conformity

“is far greater on difficult items than on easy ones.” The “difficulty” is typically obtained by

asking experimental subjects about their “certainty of judgement” (Krech et al., 1962).5

New coordination problems arise in complex environments. The source of equilibrium

multiplicity is the presence of endogenous “kinks” in payoffs. Intuitively, at the margin

there is a premium to choosing the same policy as another player, because two individual

outcomes are the same whenever policies are the same. Hence, coordination problems

3 Since Bresnahan (1987), a common empirical exercise is to infer the cost parameters from data, under
certain hypotheses about market structure and equilibrium behavior.

4 Letting µ and ω be the drift and variance parameters of the Brownian motion, the measure of complexity
is ω/(2|µ|).

5 I also show that conformity increases in the strength of coordination motives and the number of players,
matching the observation that “yielding to the group pressures” is easier for higher “group cohesion” and
“group size” Krech et al. (1962).
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are intimately linked to the leader-follower relationship: by choosing the same policy of

an opponent, a player neutralizes the asymmetry. The location of kinks is determined

in equilibrium: a player’s payoff has a kink at every policy of an opponent. To make

predictions for coordination in complex environments, I study an equilibrium-selection rule.

The coordination game admits a “potential” with a unique maximizer, which acts as an

equilibrium selection (Monderer and Shapley, 1996).6 I characterize the potential-maximizer

equilibrium, and I leverage the characterization in applications, as a means to study welfare,

select among multiple equilibria, and for comparison with the no-complexity case (without

complexity, the unique equilibrium maximizes the potential.)

I study the interaction between the conformity motive and the network of players’

connections. In a two-type network, a decrease in inter-group heterogeneity below a tipping

point triggers coordination problems: every player faces an interval of policies sustainable in

equilibrium. This result is important for policy interventions that change favorite outcomes of

players (Galeotti et al., 2020): certain interventions may bring about coordination problems.

For sufficiently high complexity, extreme conformity prevails: all players choose the same

policy. The equilibrium selection allows to retrieve the heterogeneity between groups given

such homogeneous behavior. In particular, extreme conformity is observationally equivalent

to the optimal choice of a representative player. The equilibrium selection pins down

the weighted average of favorite outcomes that constitutes the “representative” favorite

outcome.

Complexity has implications for management of organizations with decentralized author-

ity, which includes practices such as co-op advertising and multi-branding. In multi-division

organizations, a division manager trades off coordination with other managers and adap-

6 The uniqueness of a potential-maximizer equilibrium obtains jointly with the multiplicity of equilibria
because the potential is not smooth. Two papers study specific nondifferentiable potentials as counterexamples
to the results for smooth potentials (Radner, 1962; Neyman, 1997).
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tation to idiosyncratic needs. Moreover, communication frictions induce noise over the

implementation of managerial instructions. The noise is typically minimal if the instruction

is about maintaining the current situation. I show that an organization with decentralized

authority can implement profit maximization in sufficiently complex environments. Hence,

complexity is a rationale for decentralized organizations that leave the holding company

with only oversight authority.7

To investigate robustness of my results, I consider generalizations of the model. I establish

that the status-quo bias and the leader-follower intuition survive status-quo heterogeneity.

In particular, I study a general model that incorporates incomplete information about

a heterogeneous status quo across players. In the model, a vector of status-quo policies

is common knowledge and players have private information about their own status-quo

outcomes. The set of equilibria has a similar structure as in the homogeneous-status-

quo case: there exists a greatest and a least equilibrium, and they are in nondecreasing

strategies. In equilibrium, every player expects to be a leader for every opponent with a

certain probability.

I separately identify the role played by variance and covariance of the environment

in a general model in which players have “correlated” outcome functions. In particular,

the interplay between coordination and complexity takes the form of a linear combination

of two effects — in the decomposition of equilibrium expected outcomes. First, a pure

status-quo bias, which arises with uncorrelated outcomes across players. This effect pushes

every player towards the status quo, and is magnified by the network of players. Second, a

pure experimentation motive that arises only with correlated outcomes. This effect pulls

players away from the status quo and it is introduced by the correlation component.

7 This result complements the literature that studies informational asymmetries within organizations, see,
e.g., Alonso et al. (2008); Rantakari (2008); Dessein and Santos (2006); the present model is biased towards
favoring centralization because it abstracts away from division managers’ private information.
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Related Literature I borrow the model of complexity from the literature initiated

with Callander (2011a), which studies a dynamic exploration-exploitation tradeoff using a

Brownian motion. The main role of the covariance structure in the dynamic interaction is

to discipline learning over time. Cetemen et al. (2023) study a similar complex environment

in which discoveries are correlated over time and members of a team contribute resources

for exploration. I contribute to the complexity literature by studying coordination motives

and network games in a complex environment with the Brownian covariance structure.

I also show that the status-quo bias survives the introduction of coordination motives

and incomplete information about a heterogeneous status quo. Other work considers

strategic interactions and Gaussian processes. In particular, the covariance structure has

a direct role in the principal-agent settings of Bardhi and Bobkova (2023) and Bardhi

(2023), in which a principal incentivizes agents to provide information about an underlying

outcome function. These authors study covariance structures that are characterized by the

“nearest-attribute” property, including the Brownian covariance.8 My paper focuses on the

Brownian covariance because it has two characteristics. First, the Brownian covariance

preserves the strategic complementarities of the coordination game (Lemma 1); second,

such covariance contains a leader-follower asymmetry that leads to conformity (Section

3). Other covariances are “asymmetric” but not supermodular (e.g., squared-exponential

covariance), and vice versa (squared-polynomial). Garfagnini (2018) studies the rich welfare

properties of complexity in a network game, under an environment that does not exhibit a

covariance structure, because the decision-outcome mappings are drawn from player-specific

8 Other strategic settings include: the dynamic models in Callander and Matouschek (2019), Callander
and Hummel (2014), and Garfagnini and Strulovici (2016), which analyze intertemporal interactions; the
communication models in Callander (2008), Callander et al. (2021), and Aybas and Callander (2023), in
which a sender informs a receiver about the underlying outcome function; and the electoral competition in
Callander (2011b). Gaussian processes are used in a similar way as in the complexity literature to study
innovation, price rigidity, and in psychology (Jovanovic and Rob, 1990; Ilut and Valchev, 2022; Ilut et al.,
2020; Anderson, 1960).
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independent Brownian motions. In Section 6, I study the generalization of my model with

imperfectly correlated outcome functions that includes independent Brownian motions as a

special case.

The literature on coordination games with quadratic ex-post payoffs includes models of

oligopolistic competition, peer effects, and network games (surveyed in Choné and Linnemer

(2020) and Jackson and Zenou (2015).) I show that complexity introduces coordination

problems under a common upper bound on the strength of coordination motives maintained

in this paper, also for payoffs that admit a unique correlated equilibrium without complexity

(Neyman, 1997). Moreover, complexity makes best responses nonlinear. The nonlinearity is

due to the kinks in expected payoffs and it implies that equilibrium strategies are necessarily

without constant slope in the heterogenous-status-quo game. Instead, the leading models of

quadratic-payoff beauty contests with incomplete information admit a unique equilibrium,

and the unique equilibrium features linear strategies in player’s privately known types

(Radner, 1962; Morris and Shin, 2002; Angeletos and Pavan, 2007). As an implication, the

general game in this paper does not rely on results valid for incomplete-information beauty

contests with linear best replies. Instead, status-quo heterogeneity is modeled as an interim

Bayesian game (Van Zandt and Vives, 2007).9

Outline After introducing the model in Section 2, I study the conformity phenomenon

in Section 3, with an application to oligopoly pricing. Section 4 analyzes an equilibrium

selection and applications to network games and organizational economics. Section 5

contains the general model. Section 6 discusses further generalizations and directions for

future research.

9 The results of Van Zandt and Vives (2007) and Van Zandt (2010) cannot be applied off-the-shelf, so I
leverage the additional structure of preferences to establish measurability of the greatest-best-reply mapping.
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2 Model

2.1 Players and Payoffs

Every player i ∈ N := {1 . . . n} has preferences over outcome profiles.

Payoffs An outcome profile is a list of individual outcomes x = (x1, . . . , xn) ∈ Rn. The

payoff to player i from the outcome profile x is

πi(x) = −
(
xi − (1− α)δi − α

∑
j 6=i

γijxj

)2
,

in which α ∈ [0, 1) measures the strength of coordination motives, δi is the favorite outcome

of player i, and γij ≥ 0 is the weight of the connection between player j and player i.

Connections are symmetric, so γij = γji for all players i, j ∈ N . Payoffs reflect a desire for

coordination because αγij is nonnegative. Similar payoffs are used to model organizations

and peer effects (Jackson and Zenou, 2015).

Environment Every player i chooses a policy pi ∈ P = [p, p] simultaneously, for p, p ∈ R

with p < p. The outcome corresponding to policy p ∈ P is given by the outcome function

χ : R → R, evaluated at p. The outcome function is the realized path of a Brownian

motion with drift µ < 0, variance parameter ω > 0, and starting point (p0, χ(p0)).10 Figure

1 illustrates one such outcome function. Players know the status-quo policy p0 ∈ (p, p),

the corresponding status-quo outcome χ(p0) ∈ R, and the parameters of the Brownian

motion, µ and ω. The Brownian motion disciplines the beliefs of players about outcomes.

Player i believes that χ(p) and χ(q) are jointly Gaussian random variables, for all pairs

of policies p, q ∈ P \ {p0}. This structure of uncertainty captures a complex environment
10 See Definition 1.1 and 5.19 in Karatzas and Shreve (1998), Chapter 2, for the definition of a Brownian

motion with these parameters.
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p?1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

χ

policy (pi)

outcome

Figure 1: An outcome function, mapping individual policies to individual outcomes, given
by the realized path of a Brownian motion.

because a player is more certain about the outcome of a policy the closer the policy is to

the status-quo policy (Figure 2). This way of modeling the complexity of an environment is

first used by Callander (2011a). The measure of the complexity is k := ω
2|µ| .

Player i’s payoff from the outcomes corresponding to the policy profile p ∈ Pn is given

by πi(χ(p1), . . . , χ(pn)), which we denote by πi(χ(p)). Player i’s expected payoff from the

policy profile p given the status-quo outcome χ(p0) is denoted by Eπi(χ(p)).

2.2 Strategies and Equilibrium

The main focus of the paper is the game G(x0) in which the strategy space of player i

is the policy space P and player i’s utility is her expected payoff given the status-quo

outcome x0 ∈ R. In particular, I study the strategic-form game 〈N, {P,Eπi(χ(·))}i∈N 〉

given that χ(p0) = x0. An equilibrium is a profile of policies p such that: for every player i,

pi maximizes expected payoff of player i given that her opponents choose policies according

to p.11

11 In the equilibrium definition, “. . . , χ(pi−1), χ(qi), χ(pi+1), . . . ” denotes the outcome profile corresponding
to (χ(qi), (χ(pj))j∈N\{i}). Due to strict concavity of pi 7→ Eπi(χ(p)), player i’s best response is unique
(Appendix, Lemma 23); hence, focusing on pure strategies is without loss. The operator E denotes the
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p?1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(a) Expected value of outcomes.

p0
q

r

χ(p0)

policy (pi)

outcome

density

(b) Expected value and variance of outcomes.

Figure 2: Player i believes that outcomes are given by normal random variables. The
expectations of these random variables are determined by the drift line of the Brownian
motion (panel (a)). The closer the policy r is to the status-quo policy, the lower the variance
of outcome χ(r), as inpanel (b).

Definition 1. The policy profile p ∈ Pn is an equilibrium if:

Eπi(χ(p)) ≥ Eπi(. . . , χ(pi−1), χ(qi), χ(pi+1), . . . ), for all qi ∈ P and i ∈ N.

In the specific case of no complexity, which is the limit game when ω = 0, the policy-

outcome mapping is given by ψ : pi 7→ χ(p0) +µ(pi− p0), as argued in the next section, and

the profile of outcomes corresponding to the policy profile p is ψ(p). An equilibrium without

complexity is a a Nash equilibrium of the strategic-form game 〈N, {P, πi(ψ(·))}i∈N 〉.

2.3 Discussion and Interpretation

This section interprets the connections between players as arising from a network studies

certain implications of the Brownian-motion structure of uncertainty. The reader who is

interested in results and applications may skip the present section.

expectation given χ(p0) = x0.
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Network of Players The matrix of connections is Γ := [γij : i, j ∈ N ], which is

interpreted as the adjacency matrix of a network of players, letting γii = 0 for all i ∈ N . I

use δ for the column vector of favorite outcomes, I for the identity matrix and B(M) :=

(I −M)−1 for the Leontief inverse of the n-by-n matrix M , when I −M is nonsingular.

The Katz-Bonacich centrality of players in the network is useful in the study of equilibria.

Definition 2. The centrality of player i is the ith entry of the column vector β given by:

β = (1− α)B(αΓ)δ.

The graph of the network 〈N,Γ〉 offers an interpretation for centrality.12 The ij entry

of the Leontief inverse of αΓ counts the walks of every length from node i to node j and

discounts walks of length ` by α`, given that B(αΓ) =
∑∞
`=0 α

`Γ`. The centrality of player

i counts all “α-discounted” walks starting from i and weighs every walk to player j by

(1− α)δj .

Complexity The following formulas are useful to analyze the implications of the Brownian-

motion structure of uncertainty, derived in the Appendix (Section 11.2). The parameters of

the distribution of (χ(p), χ(q)), given the status-quo outcome χ(p0) are denoted by Eχ(p),

12 The matrix I −αΓ is positive definite due to Assumption 1 (next section) so centralities are well-defined
and B(αΓ) =

∑∞
`=0 α

`Γ`. Other definitions of Katz-Bonacich centrality do not adjust by (1− α) or use the
term “weighted” if δi 6= 1, i ∈ N .
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Vχ(p) and C(χ(p), χ(q)). For all policies p, q ∈ P , we have

Eχ(p) = χ(p0) + µ(p− p0),

Vχ(p) = |p− p0|ω,

C(χ(p), χ(q)) =


min{Vχ(p),Vχ(q)} if p, q ≥ p0 or p0 ≤ p, q,

0 if p > p0 > q or q > p0 > p.

Larger changes in individual expected outcomes are associated with high variance of the

corresponding outcomes. The measure of complexity, k, is the additional variance implied

by a marginal change of expected outcome, away from the status quo, scaled by 1/2. The

covariance expression is due to the independent-increments property of the Brownian motion,

and is determined by the closest policy to the status quo.

No-Coordination Benchmark When α = 0 there isn’t any strategic interaction. The

game reduces to a collection of decision problems and corresponds to the static version

of Callander (2011a). In that case, player i’s optimal policy p∗i trades off closeness of the

expected outcome to δi with the variance induced by the distance of p∗i from the status-quo

policy p0. Hence, player i does not optimally choose the policy p◦i such that Eχ(p◦i ) = δi;

except possibly in the knife-edge case in which χ(p0) = δi. Player i’s optimal policy reflects

a status-quo bias, because it’s closer to the status quo than the policy p◦i is. To find the

optimal policy, player i does not consider the correlation between outcomes of distinct

policies because only her own outcome is payoff-relevant. In particular, player i’s expected

13



p0 p∗i p◦i

δi

δi + k

(p0, x0)

Eχ(·)

policy (pi)

outcome

Figure 3: If α = 0, player i has a unique optimal policy p∗i . The policy p∗i trades off closeness
of the expected outcome to δi with the variance induced by the distance from the status-quo
policy p0. (For this figure: δi = 1, µ = −1/2, ω = 1/2, α = 0, p0 = 0 = p, χ(0) = 2.5, and
p ≥ 3.)

payoff is

Eπi(χ(p)) = −E(χ(pi)− δi)2

= − (Eχ(pi)− δi)2︸ ︷︷ ︸
quadratic

− Vχ(pi).︸ ︷︷ ︸
piecewise-linear

The first equality follows from the definition of πi and the second from mean-variance

decomposition. The variance term is a continuous and piecewise-linear function of player i’s

policy with a kink at the status-quo policy.13 The presence of this kink leads to a second

form of the status-quo bias: for an interval of status-quo outcomes, the optimal policy is

the status-quo policy (Callander (2011a) and Corollary 1.)

Coordination and Complexity Players take into account the correlation between

outcomes of different policies, because the outcomes of opponents are payoff-relevant. In
13 I adopt the convention of calling a function linear when it is affine.
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particular, the same distance in expected outcome from the status quo is “less expensive”

— in terms of uncertainty — if it implies a high covariance with the outcomes of other

players. The interplay of strategic interaction (α > 0) and complexity of the environment

(k > 0) gives rise to endogenous kinks in expected payoffs. Player i’s expected payoff in the

two-player case with δi = 0 and γij = 1, j 6= i, is as follows,

Eπi(χ(p)) = −E(χ(pi)− αχ(pj))2

= − (Eχ(pi)− αEχ(pj))2︸ ︷︷ ︸
quadratic

− Vχ(pi)︸ ︷︷ ︸
piecewise-linear

+ 2αC(χ(pi), χ(pj))︸ ︷︷ ︸
piecewise-linear

−α2 Vχ(pj).

If k > 0 and α > 0, the mean-variance decomposition is “kinked” due to the presence of

covariance terms. The location of kinks is endogenous: the expected payoff of player i has a

kink at the policy of player j. A second type of kink is located at the status-quo policy and

it leads to a status-quo bias (as in Callander (2011a) and similarly to Ilut et al. (2020).)

No-Complexity Benchmark The special case of the model without complexity is

essentially equivalent to the linear-best-response game S := 〈N, {R, πi}i∈N 〉, studied in the

literature on games played over networks (Ballester et al., 2006). There exists a unique Nash

equilibrium in S, under a commonly used upper bound on the magnitude of coordination

motives: the strategy profile (β1, . . . , βn) (Corollary 2). The result holds because the

best-reply mapping of the game S is affine and contractive. Furthermore, Neyman (1997)

establishes uniqueness of the correlated equilibrium. With complexity, best responses are

not as smooth because of endogenous kinks, and they admit a multiplicity of equilibria

under the same upper bound on coordination motives.

Notation The set of strategy profiles, Pn, and the set of profiles of opponents’ strategies,

Pn−1, are endowed with the product order. ≤ denotes all partial orders and < the
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asymmetric part of ≤. For posets S and T , the function g : S × T → R exhibits strictly

increasing differences if t 7→ g(s′, t) − g(s, t) is increasing for all s′, s ∈ S with s < s′. −i

denotes N \ {i}. The column vector corresponding to the list of real numbers (x1, . . . , x`)

is denoted by x, and the column vector of ones by 1. The Hadamard (element-by-element)

product of matrices A and B is denoted by A�B. Proofs are in the Appendix.

2.4 Analysis

Coordination motives often lead to multiple equilibria. The following requirement ensures

existence and uniqueness of an equilibrium absent complexity, and is common in the

literature on games played over networks (Jackson and Zenou, 2015).

Assumption 1. Let λ(Γ) denote the largest eigenvalue of Γ, then:

αλ(Γ) < 1.

This requirement upper bounds the magnitude of overall coordination motives and

isolates coordination problems induced by the introduction of complexity.14

The game G(x0) is of strategic complementarities.

Lemma 1 (Strategic Complementarities). For every player i, the expected payoff Eπi(χ(p))

exhibits strictly increasing differences in (pi,p−i).

Intuitively, the returns to choosing higher policies are increasing in the opponents’

policies. The key observation in the proof leverages the covariance structure given by the

Brownian motion discussed in Section 2.3. When opponents increase their policies, a higher
14 The square matrix Γ is nonnegative, so λ(Γ) is equal to the spectral radius of Γ (Theorem 8.3.1 in Horn

and Johnson (2013)). To see why the assumption imposes an upper bound on the magnitude of coordination
motives, note that λ(Γ) is nonnegative and nondecreasing in γij , so the upper bound on α is more stringent
when players are more interconnected.
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own policy implies (i) a closer expected outcome to the opponents’ expected outcomes,

(ii) a different volatility of own outcome, and (iii) a change in the covariance between the

outcomes of players. The willingness to incur volatility stems from variance and covariance

elements, and it varies with opponent’s policies. By the results discussed in Section 2.3, the

covariance between two outcomes is supermodular in the associated policies. The reason is

that only the player with the least-volatile outcome is “controlling” the covariance directly,

in every pair of players. Thus, if player i is a follower of player j — player i incurs less

volatility than player j —, then she has an incentive to adjust her policy towards player

j’s policy. Moreover, the incentives of the leader player — player i — are not affected by

player j’s policy, except via the target.

Due to strategic complementarities, the set of equilibria is nonempty and admits an

order structure.

Proposition 1 (Structure of the Equilibrium Set). There exist a greatest and least equilib-

rium.

Strategy spaces are compact intervals and the expected payoff function of player i

is strictly supermodular in (pi,p−i) by Lemma 1. A known argument based on Tarski’s

fixed-point theorem establishes existence (Milgrom and Roberts, 1990; Vives, 1990).

The following result offers a characterization of equilibria in the form of a decomposition

of equilibrium expected outcomes.

Proposition 2 (Equilibrium Decomposition). The profile of policies p ∈ (p, p)n is an

equilibrium if, and only if:

Eχ(p) = β + bk + α(I − αΓ)−1(Γ�A)1k,
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for a matrix A = [aij : i, j ∈ N ] and a vector b such that aij , bi ∈ [−1, 1] and

bi =


1 if pi > p0,

−1 if pi < p0,

and aij =


1 if pi > pj ,

−1 if pi < pj .

The decomposition is stated for equilibria in which all players choose interior policies.15

The decomposition provides a tool to verify whether a policy profile is an equilibrium via

the induced expected outcomes. If the expected outcomes satisfy the decomposition for a

matrix A, which is constrained by the induced location of players in the policy interval,

then the policy profile is an equilibrium.

The three summands that constitute equilibrium expected outcomes are labeled in order

to study the interplay between coordination and complexity:

Eχ(p) = β︸︷︷︸
equilibrium outcomes
without complexity

+ bk︸︷︷︸
status-quo

bias

+ α(I − αΓ)−1(Γ�A)1k︸ ︷︷ ︸
additional strategic-uncertainty

effect

.

If k = 0, the decomposition characterizes the unique equilibrium without complexity, which

is determined by the centrality vector (see Lemma 2 below.) If α = 0, the decomposition

characterizes the unique equilibrium without coordination motives, which is determined by

the vector of favorite outcomes and a status-quo-bias term (Corollary 1 below.) The interplay

of coordination motives and complexity generates an additional term: the endogenous matrix

A, which keeps track of leader-follower asymmetries in every pair of players.

The decomposition leaves room for multiple equilibria and coordination problems:

possibly for multiple policy profiles there exists a matrix A satisfying the decomposition.

Figure 4 shows that a two-player game admits an interval of policies that can be sustained

15 The complete characterization accounts for the boundary cases of players’ equilibrium best responses,
and it is stated in Appendix 13.
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(δ, p0)
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outcome (χ(p0))
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)

Figure 4: The grey area — including black lines and the point (δ, p0) — illustrates the
equilibrium set, represented by player i’s policy, for every status-quo outcome. In particular,
if n = 2 and δ1 = δ2 =: δ, then every equilibrium p is symmetric, i.e., p1 = p2. (For this
figure: n = 2, δ1 = δ2 = 0, µ = −1/2, ω = 1/2, α = 1/3.)

in equilibrium.

In order to attribute the multiplicity to the interplay between coordination motives

and complexity, the following results focus on the particular cases of no complexity and no

coordination motives. In both benchmark cases there exists a unique equilibrium.

Corollary 1 (No Coordination). Let α = 0. There exists a unique equilibrium of G(x0).

Moreover, the profile of policies p ∈ (p, p)n is an equilibrium of G(x0) if, and only if:

Eχ(p) = β + bk,

for a vector b such that bi ∈ [−1, 1] and

bi =


1 if pi > p0,

−1 if pi < p0.
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Corollary 2 (No Complexity). There exists a unique equilibrium of the game G(x0) without

complexity. Moreover, the profile of policies p ∈ (p, p)n is an equilibrium of G(x0) without

complexity if, and only if:

ψ(p) = β.

The following remark focuses on identical players. In contrast to the single-player case

(Callander (2011a), Corollary 1), there exist multiple equilibria. Moreover, coordination

problems increase in α: the equilibrium set grows in the inclusion sense as α increases

(Appendix, Corollary 3).

Remark 1 (n Identical Players). Let γij = γ and δi = 0 for all players i, j ∈ N with i 6= j. In

every equilibrium p, pi = pj for all players i, j ∈ N (proofs for this remark as in Appendix,

Section 14.) Moreover, let q(a) and q(a) be, respectively, the policies in the least and

greatest equilibrium when the degree of coordination motives is α = a. If α1 < α2 and

q(α1), q(α1), q(α2), q(α2) ∈ (p0, p), then q(α2) < q(α1) and q(α2) > q(α1). For intuition,

suppose the policy space is [p0, p]. Then, the least equilibrium decreases in α and the

greatest equilibrium increases in α for a complete network. As shown in the Appendix, the

equilibrium set for a complete network with δ = 0 gets larger in set inclusion as α increases.

As a result, the greatest equilibrium (i.e., the equilibrium with the least volatile outcomes)

gets closer to the status quo, and the least equilibrium (i.e., the equilibrium with the most

uncertain outcomes) involves more exploration, as α increases.

3 Conformity

This section uncovers a new conformity phenomenon. Conformity is due to the interplay

between coordination and complexity that is present in the decomposition of equilibrium
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expected outcomes (Proposition 2), via the endogenous matrix A that keeps track of

leader-follower relationships.

3.1 Example

To develop the intuition for how the conformity phenomenon arises, I start with a two-player

example, i.e., n = 2. Furthermore, assume that the favorite outcomes are sufficiently distinct,

δ1 − δ2 > 2kα/(1 − α). This ensures that the centralities are strictly ordered, β1 > β2,

there exists a unique equilibrium p?, and player 1 is the follower (p > p?2 > p?1 > p0, for

sufficiently large χ(p0) and p.)16 Recall that each policy choice implies a unique expected

outcome, hence, in what follows, I use the expected outcomes instead of the policies as the

players’ choice variable.

The best response of player i in the game without complexity is the expected outcome

(1− α)δi + αEχ(pj), (1)

which is a function of the expected outcome of player j. There exists a unique pair of

expected outcomes that induces an equilibrium:
(
β1, β2

)
(Corollary 2 and Panel (a) in

Figure 5.)17 The distance between equilibrium expected outcomes is given by centralities:

β1 − β2.

Complexity introduces two elements to the best-response analysis, a status-quo bias and

a leader-follower asymmetry, reflecting variance and covariance features of the environment.

First, consider a model with noisy and independent outcomes (which is illustrated in panel

(b) of Figure 5, see also Section 6.) In this case, the best response of player i is the expected

16 The remaining cases are considered in Appendix, Section 15.
17 To make the discussion simpler, best responses are restricted on

(
Eχ(p), χ(p0)

)
.
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p?1

β2

β1

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(a) The equilibrium in the game without com-
plexity. The expected outcomes are given by the
centrality of players, (β1, β2).

p∗1 p∗2p?1

↑ β2 + 1
1−αk

↑ β1 + 1
1−αk

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(b) Noisy and independent outcomes. The equi-
librium expected outcomes are given by central-
ity of players and the adjusted status-quo bias,
(β1 +mk, β2 +mk). The arrows indicate the equi-
librium status-quo bias: expected outcomes are
higher than in the game without complexity (panel
(a)).

p?1 p?2

↓ Eχ(p?2)

↓ Eχ(p?1)

↑ β1 + 1
1−αkEχ(BR(p∗2))

(p0, χ(p0))

Eχ(·)

policy (pi)

(c) Equilibrium in G(x0). The expected outcomes
are given by the decomposition in Proposition
2, which includes the leader-follower asymmetry,
(β1+k−k α

1+α , β2+k+k α
1+α ). The arrows indicate

the extra exploration induced by the covariance
structure: expected outcomes are lower than in
the game without correlation (panel (b)).

Figure 5: Panel (a) illustrates the equilibrium in the game without complexity. Panel (b)
illustrates the equilibrium when outcomes are noisy but independent across policies, given
Vχ(p) = 0.5p and C(χ(p), χ(q)) = 0, for p, q > p0. Panel (c) illustrates the equilibrium in
the game G(x0) when ω = 1/2. (For the figures: δ1 = 2, δ2 = 0, µ = −1/2, ω = 1/2, α =
1/3, p0 = 0 = p, χ(0) = 2.5, p > 2.75.)
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outcome

(1− α)δi + αEχ(pj) + k. (2)

The best response shifts upwards, with respect to the case of no complexity, i.e., expression

(1), by the same amount as in the single-player game (Callander, 2011a). An incentive

to stay close to the status quo emerges and there is not any leader-follower asymmetry.

There exists a unique pair of equilibrium expected outcomes:
(
β1 +mk, β2 +mk

)
, in which

m = 1/(1−α) is the social multiplier, studied in network games (Jackson and Zenou, 2015).

The multiplier magnifies the status-quo bias identified by Callander: when player i moves

towards the status quo, player j has an incentive to do the same (due to the presence of

αEχ(pi) in the best response of player j.) Player 1 is a “follower” only in the sense that

she incurs less uncertainty than player 2. In equilibrium, the distance between expected

outcomes is pinned down by centralities, β1 − β2, because best responses shift by the same

amount. Hence, an increase in uncertainty alone does not lead to further conformity.

Consider the complex environment in the game G(x0), i.e., with noisy and correlated

outcomes according to the Brownian motion. The best response of player 1 is:

(1− α)δ1 + αEχ(p2) + k − 2αk, (3)

while the best response of player 2 is the same as with uncorrelated outcomes, i.e., expression

(2). The introduction of correlation makes player 1 willing to explore more. Hence, the

follower has an incentive to catch up with the leader, which clashes with the push towards

the status quo. This exploration motive is reflected by a downward shift of the best response

of player 1 — relative to the uncorrelated-outcomes case of expression (2). There is a

unique equilibrium p? for the given leader-follower relationship, described by the pair of
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expected outcomes
(
β1 + k − k α

1+α , β2 + k + k α
1+α

)
. In general, the equilibrium exhibits

three features, studied in the rest of this section.

(1) Conformity. Additional conformity arises due to complexity. In particular,

Eχ(p?1)− Eχ(p?2)− (β1 − β2) < 0.

(2) The new conformity increases (locally) in complexity. The difference in expected

outcomes, netting out β1 − β2, is:

Eχ(p?1)− Eχ(p?2)− (β1 − β2) = −2 α

1 + α
k.

Strict monotonicity is local. If complexity exceeds the cutoff implied by our requirement —

i.e., δ1 − δ2 > 2kα/(1− α)) —, then players have the same equilibrium expected outcome.

(3) The leader “pulls” the follower away from the status quo. With the introduction

of complexity, the follower is facing two new incentives. First, she is pushed towards the

status quo, via the status-quo bias that is present also without correlation in outcomes.

Second, she is pulled away from the status quo, via the conformity that is introduced by

the covariance structure. The interplay between the covariance of the environment and

coordination motives leads to an extra exploration incentive, when “controlling” for the

variance effect that is isolated in the uncorrelated-outcomes case (Figure 5).

In general, conformity is “scaled” by the correlation between outcomes. In particular,

suppose two Brownian motions, with same initial points, drift and variance, that are

correlated with parameter ρ (see Section 6.) While the best response of the leader is

identical to the no-correlation case (expression 2), the best response of the follower is

(1− α)δ1 + αEχ(p2) + k − 2αρk,
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in which the follower’s exploration motive is scaled by ρ. Hence, the higher the correlation,

the stronger the conformity effect. In particular, Eχ(p̃1)−Eχ(p̃2)− (β1− β2) = ρ(−2 α
1+αk),

in an equilibrium p̃. The presence of a nontrivial covariance structure induces players to

explore more without sacrificing coordination.

3.2 Pairwise Conformity

Under a complete network, complexity unambiguously leads to a strong form of conformity,

that holds for all pairs of players and equilibria of G(x0).

Lemma 2. Let γij = γ for all players i, j ∈ N with i 6= j, and p ∈ (p, p)n be an equilibrium.

If pi < pj, then:

Eχ(pi)− Eχ(pj) < βi − βj .

The above result compares the expected outcomes of every pair of players in equilibrium

to the no-complexity case, across all equilibria. The introduction of complexity makes

players choose closer policies.

An equilibrium p is ordered if it satisfies p0 < p1 < p2 < · · · < pn < p.18 For ordered

equilibria, conformity (locally) increases with the complexity of the environment.

Lemma 3. Let γij = γ for all players i, j ∈ N with i 6= j, and p ∈ (p0, p)n be an ordered

equilibrium. Then, for all i ∈ {1, . . . , n− 1},

Eχ(pi)− Eχ(pi+1) = βi − βi+1 − 2 αγ

1 + αγ
k.

18 Equilibrium actions are naturally ordered by the primitives of certain economic environments. In
oligopolistic competition, for instance, demand intercepts and marginal costs order equilibrium prices
(Section 3.5).
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Figure 6: The additional conformity is defined by Cij = Eχ(p?i ) − Eχ(p?j ) − βi + βj , for
players i, j ∈ N in an equilibrium p?. Suppose that there exists a “middle” player, player
2. In particular, player 2 is the follower to player 3 and the leader to player 1. When
the connection between player 1 and 2 is sufficiently weak (γ12 < γL), the middle player
values the pull of the “global leader” more than the push towards the status quo of the
global follower. As a result, counterformity arises between player 1 and 2. A similar
phenomenon occurs between player 2 and 3 when γ12 is sufficiently large. (For this figure:
n = 3, γ23 = 0.2, γ13 = 0, δ1 = 1, δ2 = 0, δ3 = −1, k = 2, α = 0.45, p0 = 0 = p and sufficiently
large χ(0), p.)

The comparative statics holds locally. If the conformity motive is sufficiently strong,

the difference in favorite outcomes does not sustain the leader-follower asymmetry. This

is the case, for instance, if complexity exceeds the cutoffs implied Lemma 3. In this case,

extreme conformity arises: the relevant players choose the same policy. A second instance

of complete conformity is when players are identical (Remark 1).

3.3 Counterformity

Conformity interacts with the network of players. A player may exert substantial network

influence on a follower player. If this influence is strong enough, it drives the follower away

from a third player. “Counter-Formity” emerges when equilibrium expected outcomes in

a pair of players are more distant than in a non-complex environment. This situation is

illustrated in Figure 6, with a three-player example.

In general, conformity has a delicate interaction with the network of players. Consider an
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ordered equilibrium. Player n is a leader for every other player, while player 1 is a follower

for every opponent. The first term of the infinite sum induced by α(I − αΓ)−1(Γ�A)1k,

i.e., αk(Γ�A)1k, represents a “first-order” conformity effect. While player n’s opponents

are choosing policies closer to the status quo than her, player 1’s opponents are incurring

more uncertainty than him.19 Hence, player n has an extra incentive than player 1 to

choose a policy close to the status quo. This incentive is an endogenous status-quo bias for

player n relative to player 1 because it is determined in equilibrium. I tentatively define the

“extra status-quo bias” for player n that takes into account the connections among players

by averaging the entries in the nth row of A, each weighted according to the connection of

player n with the corresponding opponent; this average yields

∑
j

anjγ
nj > 0.

The same intuition leads to an “extra exploration motive” for player 1,

∑
j

a1jγ
1j < 0.

The vector αk(Γ�A)1 collects these first-order incentives of all players, each scaled by αk.

The complete intuition takes into account how the extra status-quo biases and exploration

motives feed into the network of players. The resulting equilibrium strategic-uncertainty

effect is

(Γ�A)1αk + αΓ(Γ�A)1αk + (αΓ)2(Γ�A)1αk + . . . ,

which yields the vector B(αΓ)(αΓ �A)1k, present in the decomposition of equilibrium

19 This configuration of players implies that anj = 1, j 6= n, and a1k = −1, k 6= 1 (Proposition 2).
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expected outcomes. Thus, player i’s strategic-uncertainty effect counts all the discounted

walks starting from i and weighs each walk to player j by the endogenous status-quo bias

αk
∑
` aj`γ

j`.

As the next result suggests, heterogeneity in network connections is related to coun-

terformity. We say that Γ is a line if: (i) γii+1 = 1 for all i ∈ {1, . . . , n− 1}, (ii) γii−1 = 1

for all i ∈ {2, . . . , n}, and (iii) γij = 0 otherwise. In a line network, conformity emerges

pairwise, and it increases in complexity.

Lemma 4. Let Γ be a line, α ≤ 1/2, and p ∈ (p0, p)n be an ordered equilibrium. Then, for

all i ∈ {1, . . . , n− 1},

Eχ(pi)− Eχ(pi+1) = βi − βi+1 − cik,

for some ci > 0.

In Figure 6, Γ is a line only when γ12 = γ23, in which case there is “only” conformity.

Remark 2 (Interventions). The design of network interventions studies changes in favorite

outcomes that induce certain equilibrium behavior of players (Galeotti et al., 2020). Suppose

an ordered equilibrium in a complete network or in a line. Moderate changes in favorite

outcomes do not affect conformity. Hence, if a policymaker adopts a “small” intervention,

the presence of complexity does not lead to unintended consequences; the results about

optimal interventions under a “small budget” are robust to a low level of complexity.

Substantial interventions, on the other hand, change the leader-follower relationships, and,

so, the pattern of conformity.

28



3.4 Discussion

The conformity effect is not specific to the abstract coordination game G(x0). Incremental

uncertainty and coordination motives are present in many economic environments.

• In oligopolistic competition, firms that rely on algorithmic pricing face uncertainty

over their own listed prices. This uncertainty arises because an algorithm conditions

prices on data not available when the algorithm is selected (Brown and MacKay,

2023). Price competition exhibits strategic complementarities in many models of

oligopoly. In Section 3.5, we model firms that choose pricing policies knowing the

resulting listed prices up to some noise — which may reflect market uncertainty or

the recent introduction of algorithmic pricing. As the environment becomes more

complex, firms choose more similar pricing policies. This result suggests that, without

considering the complexity of the relevant industry, estimates of firm parameters from

price data show reduced heterogeneity across firms.

• In social psychology, it is documented that conformity increases in the difficulty of the

task and in the “cohesion” of the group (Krech et al., 1962). By the comparative statics

results, conformity increases in complexity, the strength of coordination motives, and

the number of players.20

• Peer recognition is important in scientific research (Partha and David, 1994). In

general, coordination motives are present in certain interactions in which exploration

of unknown alternatives is important. If society values exploration, conformity may

limit learning about the underlying outcome function.21 The presence of conformity
20 The main comparative statics is in Lemma 3, a simple corollary is that “overall” conformity increases in

the number of players: Eχ(p1)− Eχ(pn) = βi − βi+1 − 2(n− 1) α
1+αk. Similar results follow from Lemma 4.

21 In Brownian-motion models, however, learning occurs in two ways: radical and incremental experimen-
tation, given, respectively, by the extreme (max{p1, . . . , pn} and min{p1, . . . , pn}) and non-extreme policies
that are chosen (similarly to Garfagnini and Strulovici (2016).) If conformity increases, less is known about
radical experimentation, but, possibly, more about incremental experimentation.
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is important for the design of incentives for research and innovation.

• The management of every subsidiary owned by the same holding company coordinates

with other subsidiaries and adapts to idiosyncratic circumstances. Communication

frictions are a source of noise in the implementation of production processes. This

noise may be particularly relevant for the adoption of innovative technologies. In

Section 4.3, I show that an organization with decentralized decision-making — e.g., a

holding company with only oversight capacities — can implement profit maximization

in sufficiently complex environments. This result suggests that centralized decision-

making may be less desirable in the presence of coordination problems. The analysis

also points to a responsibility of the holding company’s management: leveraging the

coordination problems induced by the environment and making maximization of the

holding’s profits a focal point for the management of subsidiaries.

• In primary elections, career concerns determine the choice of platforms of politicians,

because the winner has authority over the campaign in a future general election.

Often, the consequences of extreme policies are unknown. In separate work, I study

elections under complexity, in which each competitor represents a combination of (i)

a constituency of voters and (ii) a career-concerned politician. I find that complexity

lessens the polarization of platforms. This result suggests that better information of

political parties about the policy-outcome mapping — from, e.g., lobbies and interest

groups — may increase political polarization.

In order to study different games in which a similar equilibrium analysis holds, I de-

fine an auxiliary utility function of player i over outcomes, vi(x) = 2(1 − α)δixi − x2
i +

2α
∑
j∈N γ

ijxixj . The next result studies the strategic-form game F (x0), in which players

and strategy spaces are the same as inG(x0) and utility functions are Ev1(χ(·)), . . . ,Evn(χ(·)).
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Lemma 5 (Equivalence). For every player i ∈ N , there exists a function gi : Pn−1×R → R

such that:

Eπi(χ(p)) = Evi(χ(p)) + gi(p−i, x0) for all p ∈ Pn, x0 ∈ R.

The game F (x0) has the same set of equilibria as G(x0) because the games are Von-

Neumann-Morgenstern equivalent (Morris and Ui, 2004). The applications in this paper

leverage the above result to apply the analysis in the preceding section.

3.5 Application 1: Oligopoly Pricing

I study the implications of conformity for oligopoly pricing. I model competition among

firms who set pricing policies, or algorithms, knowing the resulting price only in expecta-

tion. Conformity takes the form of closer pricing policies across firms in more complex

environments.

Model A representative consumer has quasi-linear preferences over bundles of n+1 goods,

which are represented by the quadratic utility function U such that

U(q1, . . . , qn,m) =
∑
i

aiqi −
1
2b
∑
i

q2
i −

1
2c

∑
i,j:j 6=i

qiqj +m,

in which m denotes the numéraire good, and b > c ≥ 0. The last condition is to study

substitute goods and a well-defined demand system leading to strategic complementarities

in the resulting price-setting firm interaction. The coefficients of the Marshallian demand

of the representative consumer are normalized so that the own-price coefficient is −1 in the
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demand for every good i ∈ {1, . . . , n}.22

Each price is set through the decision of one of n firms. Firm i has constant marginal

costs — parametrized by ci — and no fixed costs. We define a strategic-complementarity

coefficient ζ := 1−(b−c)
b−c ∈

[
0, 2

n−1

)
and the net demand intercept for product i, âi :=

ai − ci − ζ
∑
j 6=i(aj − cj).23 Given a profile of prices net of marginal costs, x, the profits of

firm i are

πBi (x) =

âi − xi + ζ
∑
j∈−i

xj

xi.
Each firm chooses a pricing policy pi. The function χ specifies the markup that is

eventually realized from every pricing policy.24 Firm i’s profits from the policy profile p

are given by πBi (χ(p)). Firms choose pricing policies simultaneously in the pricing game,〈
N,
{
EπBi (χ(·)), [p0, p]

}
i∈N

〉
. There exists a unique vector of equilibrium markups in the

pricing game without complexity, which we denote by βB (Lemma 2 and 5.)

Results Complexity leads to less dispersed expected prices across products, by leveraging

a natural ordering property of equilibrium policies. If the net demand intercepts are

sufficiently heterogeneous, then every equilibrium is ordered; which may arise in practice if

firms are sufficiently different in their production efficiency.

Proposition 3. Let p ∈ (p0, p)n be an equilibrium of the pricing game. If p1 < p2 ≤ · · · ≤
22 The Marshallian demand is well-defined because the Hessian of the quadratic form (q1, . . . , qn) 7→

U(q1, . . . , qn,m) is negative definite whenever b > c ≥ 0 Amir et al. (2017). The matrix of demand
coefficients arising from the representative consumer [Dij : i, j ∈ N ] is normalized via Dii = −1; see
Appendix 14.

23 The inequality ζ < 2
n−1 is the content of Assumption 1 in the pricing game under the normalization on

demand coefficients. The inequality ζ ≥ 0 is assumed following the normalization of demand coefficients.
These two constraints are not needed without the normalization, and the normalization is used only to ease
the connection between the game F (x0) and the pricing game; for a formal discussion, see Appendix 14.

24 The same structure can be applied to a model in which the outcome of policy pi is a price, and not a
markup, and the findings are qualitatively unchanged. The present section works with markups as outcomes
to ease the connection between the pricing game and the game F0.
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pn−1 < pn, then:

Eχ(p1)− Eχ(pn)− (βB1 − βBn ) = −(n− 1) ζ

2 + ζ
k.

Moreover, if âi − âi+1 > 2ζk for all i ∈ {1, . . . , n− 1}, then: every equilibrium p ∈ (p0, p)n

is ordered such that p1 < · · · < pn, and there exists at most one interior equilibrium.

The impact of complexity on conformity of markup policies is increasing in the level

of complexity and in the strategic-complementarity coefficient in ordered equilibria. The

more substitutable products, the greater the impact of complexity on price conformity,

measured by Eχ(pi) − Eχ(pj) − (βBi − βBj ). The reason is that the strength of strategic

complementarities (ζ) increases in product substitutability c.

Discussion The pricing game models quasi-Bertrand competition with differentiated

products in which negative quantities and prices are theoretically available, and the con-

sumer’s income is sufficiently large.25 A reason for the presence of correlated noise in the

mapping from pricing policies to listed prices — or, equivalently, to markups — is that

firms buy pricing services from the same provider.

4 Equilibrium Selection

4.1 Potential Maximizer

I propose an equilibrium selection based on the observation that the game G(x0) is a

potential game (Monderer and Shapley, 1996).

25 The probability of negative prices is made arbitrarily small, for sufficiently large status-quo price. The
terminology is inspired by Monderer and Shapley (1996), who refer to quantity competition as quasi-Cournot
competition when negative quantities are possible.
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A game is a common-interest game if all players have the same payoff function. A

game is a potential game if it is “best-response equivalent” to an auxiliary game that is a

common-interest game (definitions are in the Appendix.) For a potential game, the common

payoff function in the auxiliary game is called the potential function, which maps strategy

profiles into real numbers.

The potential is the function V : Pn → R given by

V (p) = E
[
2(1− α)δTχ(p)− χ(p)T(I − αΓ)χ(p)|χ(p0) = x0

]
.

I study the maximizers of the potential V . A potential maximizer is a policy profile p? that

maximizes the potential, so

p? ∈ arg max
p∈Pn

V (p).

Proposition 4. The following properties of the potential maximizer hold.

(1) If the policy profile p ∈ Pn is a potential maximizer, then p is an equilibrium.

(2) If P = [p0, p], there exists a unique potential maximizer.

For part (1), I establish von-Neumann-Morgenstern equivalence (Morris and Ui, 2004)

between the two strategic-form games played in the outcome space with utility functions

{π1, π2, . . . , πn} and {v, v, . . . , v}, in which v(x) = 2(1−α)δTx−xT(I −αΓ)x. This result

extends to the induced games played in the policy space, and so it establishes that G(x0)

is a potential game, a fortiori.26 Since a strategy profile that maximizes the potential is
26 In particular, for every player i ∈ N there exists a function gi : Pn−1 ×R → R such that: Eπi(χ(p)) =

Ev(χ(p)) + gi(p−i, x0) for all p ∈ Pn and x0 ∈ R. The last step of the proof verifies that von-Neumann-
Morgenstern equivalence is consistent with the definition of a potential game.
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necessarily an equilibrium of the potential game (Radner, 1962), part (1) follows. Moreover,

the potential for G(x0) is uniquely defined up to a constant term.27 These two observations

imply that the potential maximizer provides a valid equilibrium selection for G(x0).

The potential V is not differentiable whenever pi = pj for a pair of players, due to

the covariance structure (see Section 2.3 and 11.3.) However, strict concavity on [p0, p]

leads to existence and uniqueness of the potential maximizer. I study the (well-defined)

superdifferential of V to characterize the potential maximizer.

Proposition 5 (Potential Maximizer). Let P = [p0, p]. The policy profile p ∈ (p0, p)n is a

potential maximizer if, and only if:

Eχ(p) = β + 1k + α(I − αΓ)−1(Γ�A)1k,

for a skew-symmetric matrix A = [aij : i, j ∈ N ] such that aij ∈ [−1, 1] and aij = 1, if

pi > pj.

The decomposition for the potential maximizer has a similar structure as the equilibrium

decomposition. The main difference is the skew-symmetry property of the endogenous

matrix A that implies the uniqueness result.

The uniqueness and characterization of the potential maximizer allow to make predictions

about strategic interactions in complex environments using the potential maximizer as

equilibrium selection. With quadratic ex-post payoffs, the selection is useful precisely

due to complexity. If k > 0, the strictly concave potential is not smooth and there are

multiple equilibria. If k = 0, the strictly concave potential is differentiable everywhere and

27 In Appendix 13, I establish that V is an exact potential; Monderer and Shapley (1996) introduce
the notion of exact potential, a particular case of the weighted potential; Morris and Ui (2004) study
the equivalence between weighted potential games and potential games in connection with von-Neumann-
Morgenstern equivalence.
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there exists a unique equilibrium: the potential maximizer.28 It follows that studying the

potential maximizer is useful to compare G(x0) with the case in which k = 0.

I study the welfare in the game F (x0) using the tools developed for the maximization

of the potential of G(x0). The utilitarian welfare in F (x0) is given by the function

W : p 7→
∑
i Evi(χ(p)). A welfare maximizer is a policy profile pW that maximizes utilitarian

welfare in F (x0), so

pW ∈ arg max
p∈Pn

W (p).

The following result characterizes the welfare maximizer.

Proposition 6 (Welfare Maximizer). Let P = [p0, p] and 2αλ(Γ) < 1. There exists a

unique welfare maximizer. Moreover, the policy profile p ∈ (p0, p)n is a welfare maximizer

if, and only if:

Eχ(p) = (1− α)B(2αΓ)δ + 1k + 2αB(2αΓ)(Γ�A)1k,

for a matrix A = [aij : i, j ∈ N ] such that aij ∈ [−1, 1], aij = −aji, and aij = 1 if pi > pj.

In the proof, I leverage the known observation that utilitarian welfare maximization

in F (x0) is equivalent to maximization of the potential of an auxiliary game in which

the magnitude of cost externalities is doubled. The reason is that the game F (x0) is a

coordination game, by the results established for G(x0) (Lemma 1 and 5), in which players

do not internalize all the externality of their policy. This intuition resonates with the

results for games played over networks (Jackson and Zenou, 2015), and allows to use the

characterization of the potential-maximizer equilibrium in Proposition 5.
28 To establish this observation, it suffices that: if p◦ ∈ Pn satisfies ψ(p◦) = β, then it maximizes

p 7→ v(ψ(p)) on Pn. This claim is established by showing that p 7→ v(ψ(p)) is a potential for the game
G(x0) without complexity (Appendix).
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4.2 Application 2: Network of Players

This section presents a characterization of the potential-maximizer equilibrium for a class

of network games. For sufficiently high complexity, extreme conformity prevails: all players

choose the same policy. The equilibrium behavior is observationally equivalent to the

optimal choice of a single player with a favorite outcome that is characterized under the

potential-maximizer equilibrium selection.

I study the game in which every player is part of only one of two groups, A and B, and

players in the same group have the same favorite outcomes and connections. γ denotes the

connection between a player in group A and a player in B, by δg, γgg, βg and ng, respectively,

the favorite outcome, the weight of an intra-group connection, the centrality of a player

and the number of players for group g ∈ {A,B}.

The two-type network game is the game G(x0) with the restriction described in the

above paragraph. In every equilibrium of a two-type game, player i chooses the same policy

as player j if they are in the same group.29 Hence, an equilibrium is represented by a pair

(pA, pB), such that i ∈ A plays pA, and j ∈ B plays pB. I use αA := αγnB
1−αγAA(nA−1) and

αB := αγnA
1−αγBB(nB−1) . By Assumption 1, αA, αB ∈ [0, 1] and αA+αB−2αAαB

1−αAαB ∈ [0, 1].30

Lemma 6 (Two-Type Network). Let βA ≥ βB and (pA, pB) ∈ (p0, p)2 be the unique

potential maximizer of the two-type network game.

(1) If βA − βB ≥ αA+αB−2αAαB
1−αAαB k, then pA < pB and

Eχ(pA)− Eχ(pB) = βA − βB −
αA + αB − 2αAαB

1− αAαB
k.

29 The proof of this result uses the fact that the game G(x0) is a potential game, and that, for given
policies chosen in group g′, the “reduced potential” that includes only members of g is “symmetric”; see,
e.g., Vives (1999), Chapter 2, Footnote 23.

30 These results are established in the Appendix, Section 15.
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(2) If βA − βB ≤ αA+αB−2αAαB
1−αAαB k, then pA = pB and

Eχ(pA) = αB(1− αA)βA + αA(1− αB)βB
αB(1− αA) + αA(1− αB) + k.

The result shows that the strategic-uncertainty effect increases in the number of players.

In particular, Eχ(pA) − Eχ(pB) − (βA − βB) is decreasing in nA and nB. Moreover, for

sufficiently high complexity, conformity is extreme: all players choose the same policy. In

this case, the expected outcome is the same as if a representative player were choosing an

optimal policy, in isolation and with a favorite outcome equal to αB(1−αA)βA+αA(1−αB)βB
αB(1−αA)+αA(1−αB) ,

which is a weighted average of centralities in the two groups.

4.3 Application 3: Centralization in Organizations

This section considers a stylized model of an organization in which division managers choose

production processes knowing the produced quantity of alternative choices only up to some

noise.

Model A firm is made of two divisions, each producing a different good. When quantity

produced by division i is xi, the cost of division i is

cixi − gx1x2,

in which the parameter g > 0 measures the degree of cost externalities and ci > 0. An

increase in the quantity produced by one division reduces the marginal costs of the other

division, as in Alonso et al. (2015). The inverse demand function for product i is given by

ai −
1
b
xi,
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where b > 0 measures the price elasticity of demand. The profits of division i given the

profile of quantities x are

πOi (x) :=
(
ai −

1
b
xi − ci + gxj

)
xi.

The CEO’s objective is the maximization of total profits πO1 +πO2 . I impose an upper bound

on the strength of cost externalities for the CEO’s profit maximization to be well-behaved:

bg < 1.31

Each division manager chooses a production policy pi ∈ [p0, p]. The function χ specifies

the quantity produced by a division for every production policy. Division i’s profits given the

pair of policies p are given by πOi (χ(p)). The division managers set production policies simul-

taneously and independently in the production game,
〈
{1, 2}, {EπOi (χ(·)), [p0, p]}i∈{1,2}

〉
.

Results I investigate whether managerial incentives are compatible with total-profit

maximization. The rest of the analysis assumes that a1 − c1 = a2 − c2 =: â, which implies

that managers choose the same policy in equilibrium and for total-profit maximization; â is

the net demand intercept for the two goods.32

Proposition 7. There exists a unique policy profile pO that maximizes expected total profits.

Moreover, pO is an equilibrium of the production game if and only if:

â
b

1− bg ≤ 2k.

The result gives conditions under which pO is in the equilibrium set. First, I show that

the CEO’s objectives are well-defined by studying the maximization of total profits, which is

equivalent to the maximization of utilitarian welfare in the coordination game between the
31 The Hessian of total profits πOi + πOj is negative definite iff: bg < 1.
32 More general results are given in the Appendix, Section 15.
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division managers. The maximization of expected total profits is solved using the welfare

analysis in Proposition 6 and the equilibrium set is characterized using Proposition 2 and

Lemma 5.

The result associates multi-division firms with weaker cost externalities and operating

in more complex environments with an equilibrium that implements the CEO’s optimal

production policy. A necessary and sufficient condition to for maximization of total profits

to be implemented in equilibrium is that complexity exceeds the threshold â b
2(1−bg) . The

threshold increases in the net demand intercept â and price sensitivity of demand, reflecting

that the interests of division managers move farther apart from the CEO’s interests for

favorable individual market conditions. The threshold also increases in g, because the

“non-internalized” externalities increase in g.

Discussion A reason for the presence of noise in the mapping from production processes

to quantities is frictions in the command chain. Suppose that each division manager only

instructs lower-end division managers about production decisions, who in turn interact with

store managers, and so forth. The division manager is unsure about how her instructions are

communicated along the chain of command and finally implemented. Complexity captures

the noise perceived by the division manager; e.g., the longer the chain, the less predictable

the outcome of the original instruction. To capture that bold decisions are unpredictable, in

the model division managers do not know the shape of the mapping from production policies

to quantities, and there is a status-quo policy leading to a certain quantity. In particular, if

a division manager opts for the status-quo policy, the quantity produced by that division is

known to both managers and CEO. The status quo is common between divisions, which

may arise in practice if the two divisions are just starting to operate separately and have

operated under a centralized authority until now.
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5 Heterogeneous Status Quo

This section considers an incomplete-information extension of the game G(x0) introduced

in Section 2.

5.1 General Model

Ex-Post payoffs are the same as in Section 2.1. The following description of interim beliefs

defines a Bayesian game parametrized by a profile of status-quo policies, G(p0), which is

defined explicitly in the Appendix (Section 13).

Player i believes that the outcome function χ is the realized path of a Brownian motion

with drift µ < 0, variance parameter ω > 0 and starting point (pi0, χ(pi0)). Every player

knows the profile of status-quo policies p0 = (p1
0, . . . , p

n
0 ) ∈ Rn. The status-quo outcome

of player i is known to player i and not known to her opponents: χ(pi0) is player i’s type.

Beliefs are consistent with the limit of a common prior over a Brownian motion.33 I denote

by Pi the probability of an event and by Ei the expectation operator induce by player i’s

beliefs at a given type χ(pi0) (see the Appendix, Section 11.2, for more details.)

Every player simultaneously chooses a policy. In this section, Pi = [p
i
, pi] is the policy

space of player i, for p
i
, pi ∈ R with p

i
≤ pi0 ≤ pi, and P = ×iPi to ease readability, with a

slight inconsistency of notation with respect to the previous sections. A strategy for player

i is a measurable function σi : R → Pi. The set of strategies for player i is denoted by Σi,

the set of strategy profiles by Σ := ×i∈NΣi, and the set of profiles of strategies for players

other than i by Σ−i = ×i∈−iΣj ; Σi is endowed with the pointwise order to be a lattice, Σ−i

and Σ are endowed with the product order. The following notation is used, given a profile

33 Given a Brownian motion with starting point (0, z) and realized path denoted by ξ, suppose that each
player observes the point (pi0, ξ(pi0)) and a signal about z with Gaussian noise that is i.i.d. across players.
As the noise grows, player i’s belief about ξ(q) given ξ(pi0) = xi0 converges to her belief in G(p0) about χ(q)
when her type is χ(pi0) = xi0.
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of strategies of player i’s opponents σ−i:

(χ(pi), χ(σ−i)) = (. . . , χ(σi−1(χ(pi−1
0 ))), χ(pi), χ(σi+1(χ(pi+1

0 ))), . . . ),

The expected payoff of player i, given σ−i, is

Πi(pi, xi0;σ−i) := Ei[πi(χ(pi), χ(σ−i))]

An equilibrium of G(p0) is an interim Bayesian Nash equilibrium; the definition uses

ϕi(xi0;σ−i) := arg maxpi∈Pi Πi(pi, xi0;σ−i).

Definition 3. The strategy profile σ ∈ Σ is an equilibrium of G(p0) if, and only if:

σi(xi0) ∈ ϕi(xi0;σ−i), for all xi0 ∈ R, i ∈ N.

Remark 3. Consider the game G((p0, . . . , p0)), in which players have the same status-quo

policy p0. This game is effectively the collection of strategic-form games {G(x0)}x0∈R,

because the profile of status-quo outcomes is common knowledge. Hence, the game G(x0)

is the subgame of G((p0, . . . , p0)) starting at χ(p0) = x0.

5.2 Results

The assumption that status-quo policies are different across players is maintained in this

section.

Assumption 2 (Incomplete Information). Status-Quo policies are different across players:

pi0 6= pj0 for all i, j ∈ N with j 6= i.

Player i’s belief about χ(q) is nondecreasing in χ(pi0) in the sense of first-order stochastic

dominance (FOSD) and satisfies a translation-invariance property studied in Mathevet
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(2010).34

Lemma 7 (FOSD Monotonicity and Translation Invariance of Beliefs). Player i’s belief

about the outcome of policy q is nondecreasing in χ(pi0) according to first-order stochastic

dominance. Moreover, player i’s belief satisfies the following translation invariance property:

Pi{χ(q) < x|χ(pi0) = xi0} = Pi{χ(q) < x+ ∆|χ(pi0) = xi0 + ∆}, for all ∆ ∈ R.

FOSD monotonicity is used to establish the single-crossing property of expected payoffs

in own policy and type.

A more stringent upper bound on the strength of coordination motives than Assumption

1 is used to establish single-crossing of expected payoffs, which is used for the existence of

equilibria in monotone strategies.

Assumption 3. For every player i,

α
∑
j∈N

γij < 1.

Assumption 3 implies that I − αΓ has strictly dominant diagonal, which is a known

sufficient condition for Assumption 1.

The incomplete-information game G(p0) exhibits strategic complementarities.

Lemma 8 (Single Crossing and Strategic Complementarities). For all i ∈ N , the expected

payoff (p, χ(pi0)) 7→ Eiπi(χ(p)) exhibits strictly increasing differences in pi, pj, j ∈ −i, and

in (pi, χ(pi0)).

The upper bound on coordination motives is key for increasing differences in own policy

and type. To establish this property, the right-derivative of pi 7→ Eiπi(χ(p)) is shown to be
34 For notational convenience, in the following result I use the symbol “—”, even though the beliefs of

players do not necessarily arise as conditional probabilities, because G(p0) is an interim Bayesian game.
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an affine function of xi0, where the coefficient on xi0 is 1− α
∑
j γ

ij (Appendix). The upper

bound on coordination motives is necessary for the single-crossing property of expected

payoffs in (pi, xi0), which associates higher policies to higher types.

The following result establishes existence of Bayesian Nash equilibrium in nondecreasing

strategies.

Proposition 8. There exist a greatest and a least Bayesian Nash equilibrium, σ and σ,

respectively. Moreover, σ and σ are profiles of nondecreasing strategies.

Because the type spaces are necessarily unbounded, results from the literature on

incomplete-information games with strategic complementarities do not apply directly.

However, I establish that the expected payoff function pi 7→ Πi(pi, xi0;σ−i) is strictly concave

for a profile of nondecreasing strategies σ−i. Given strict concavity of Πi, compactness of

Pi and strategic complementarities, type spaces can be compactified to establish similar

results as Van Zandt and Vives (2007). In particular, the greatest-best-reply mapping

xi0 7→ supϕi(xi0, σ−i) is measurable; see Lemma 26 in Appendix.)

Remark 4. Let α = 0. From the analysis in Callander (2011a) and Corollary 1, it follows

that: (i) there exists a unique Bayesian Nash equilibrium, and (ii) in the unique Bayesian

Nash equilibrium, the strategy of each player is nondecreasing in her type.

The following result shows a status-quo effect.

Lemma 9 (Status-Quo Bias). For every Bayesian Nash equilibrium in nondecreasing

strategies σ and player i, the following holds:

There exist cutoffs ci1, ci2 ∈ R with ci1 < ci2 such that: σi(x) = pi0 for all x ∈ [ci1, ci2], and

σi(x) 6= pi0 for all x ∈ R \ [ci1, ci2].

There are two takeaways. First, the reason why the slope of equilibrium strategies is not

constant is the presence of a status quo: if the status-quo outcome of player i is in an interval
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[xi1, xi2], player i prefers to stick to the status-quo policy, than to incur the uncertainty

implied by a change of expected outcome. This equilibrium behavior is consistent with the

optimal strategy in the game without coordination motives (Corollary 1).

Secondly, equilibrium strategies do not have a constant slope, differently from general

models of beauty contest under incomplete information. Strategies with constant slope are

either the focus or constitute the unique possibility in equilibrium in standard beauty-contest

models of incomplete information. In Lambert et al. (2018) — where the environment is

“informationally complex” because of the arbitrarily large, though finite, dimensionality

of the state and type profile —, the authors establish the existence of an equilibrium in

strategies with constant slope.

The following result offers a partial characterization of equilibria in nondecreasing

strategies, using χj for χ(σj(pj0)), given σj ∈ Σj and j ∈ N .

Lemma 10. Let Pi = [pi0,∞) for all i ∈ N . The profile of nondecreasing strategies σ is an

equilibrium if, and only if, the following condition holds. For all i ∈ N and xi0 ∈ R such

that σi(xi0) > pi0, there exists a vector [aij : j ∈ N ], such that:

Eiχi − α
∑
j∈N

γijEiχj = βi − α
∑
j∈N

γijβj + k + αk
∑
j∈N

γijaij ,

and aij ∈
[
2Pi{σj(χ(pj0)) < σi(xi0)|χ(pi0) = xi0} − 1, 2Pi{σj(χ(pj0)) ≤ σi(xi0)|χ(pi0) = xi0} − 1

]
.

The next result studies the multiplicity of equilibria, letting d denote the sup-norm

distance between two strategies for player i.35

35 The sup-norm of a strategy for a player is well-defined because policy spaces are bounded. Moreover,
in the Appendix I establish that (i) equilibrium strategies are continuous and (ii) type spaces can be
compactified, so that the sup can be replaced by the max in d by Weierstrass’ Theorem (Lemmata 24 and
25).
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Proposition 9. The following holds:

max
i∈N

d(σi, σi) ≤ 2kmax
i∈N

α
∑
j γ

ij

1− α
∑
j γ

ij

1
|µ|
.

By Proposition 8, all equilibria lie between two extreme strategy profiles, σ and σ.

Therefore, the distance between player i’s strategies in any two equilibria is at most the

distance between the extremal equilibria, i.e. d(σi, σi), which is upper bounded by the

Proposition.

In the Appendix, I study the game with finite policy spaces. With two players and

finite policy spaces, there exists a unique equilibrium in nondecreasing strategies. The

key step of the proof is the observation that increasing differences — which yield strategic

complementarities in G(x0) and single-crossing in G(p0) — are constant in own type.

This “constant-type” monotonicity, and the translation invariance and FOSD monotonicity

properties of beliefs suffice establish uniqueness by using the results in Mathevet (2010); the

author shows that under “translation-monotone” and FOSD-nondecreasing beliefs, a class

of coordination games admits a unique equilibrium because the best-response mapping to

nondecreasing strategies is a contraction.

6 Imperfectly Correlated Outcome Functions

In many strategic interactions, players face distinct decision-outcome mappings. Firms buy

pricing services from different providers, and pricing algorithms are trained on separate

datasets. Similarly, the communication noise may be only partially correlated across multiple

divisions of the same organization. To capture these features in the case of 2 players, suppose

that the outcome function of player 1 is X1 = Y 1, while the outcome function of player 2 is

X2 = ρY 1 +
√

1− ρ2Y 2, for ρ ∈ [0, 1] and a 2-dimensional Brownian motion (Y 1, Y 2) with
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common drift µ, variance parameter ω, and independent coordinates.36 The analysis in this

paper leads to the following characterization of equilibria.37 A policy profile p ∈ (p0, p)n is

an equilibrium if, and only if:

Eχ(p) = β + (I − αΓ)−1(I + ραΓ�C
)
1k,

for a matrix C such that Cij ∈ [−1, 0], Cij = 0 if pi > pj and Cij = −1 if pi < pj .

This general model allows for a finer decomposition that separates the two elements

of the complexity of the environment: variance of outcomes and covariance of pairs of

outcomes. The new term in the decomposition is a linear combination of two effects. First,

a pure status-quo bias, which arises with independent outcomes across players (i.e., the

positive vector (I − αΓ)−11k, discussed in Section 3.)38 This component pushes every

player towards the status quo, and is magnified by the network of players. Second, a pure

experimentation motive, that arises only with correlated outcomes (i.e., the nonpositive

vector (I − αΓ)−1(ραΓ�C
)
1k.) This component pulls players away from the status quo.

36 See Definition 5.19 in Karatzas and Shreve (1998), Chapter 2.
37 The model considered in this paragraph is constructed as in Section 2, except that p 7→ πi(Xi(pi), Xj(pj))

replaces p 7→ πi(χ(pi), χ(pj)). This construction generalizes forn players via a suitable linear combination
of the coordinates of an n-dimensional standard Brownian motion (Definition 5.1 in Karatzas and Shreve
(1998), Chapter 2); see Exercise 4.16 in Shreve (2004).

38 The vector (I − αΓ)−11k scales the “unweighted” centralities by the degree of complexity.
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Part II

Essay 2: The Extensive Margin of

Persuasion

7 Introduction

In the “information age,” consumers of information decide whether an information source

deserves attention because information acquisition is costly (Floridi, 2014; Simon, 1996).

The information-design literature studies a sender who supplies information to a receiver,

to persuade the receiver to take a certain action (Bergemann and Morris, 2019; Kamenica,

2019). When attention is costly, the sender faces the dual problem of (i) persuading the

receiver to take a certain action and (ii) inducing her to pay attention. In this paper, I

study the persuasion of a receiver who is privately informed about her cost and benefit of

information, in which the sender uses information to reward the receiver for her effort.

The intensive margin of persuasion captures intensity of the sender’s persuasion on the

receiver’s action decision, while the extensive margin of persuasion refers to whether or not

the receiver pays attention to the sender’s information. The study of the extensive margin

of persuasion is important to determine which consumers have access to information. In a

persuasion game, the sender effectively allocates information to a heterogeneous audience.

For instance, today’s central banks use “layered communication” to reach the general public,

characterized by heterogeneous and limited information-processing ability. In my model, I

investigate the following questions: Who accesses information? Does the receiver benefit

from the limit to her information-processing ability?

In order to study the extensive and intensive margin of persuasion, I model the persuasion
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of an inattentive receiver who takes a binary action, 1 or 0. There is a state θ unknown

to two players: Sender (he) and Receiver (she). Receiver chooses 1 only if she expects

the state θ to exceed her outside option. Sender wants Receiver to choose 1 regardless of

the state. In the baseline model, Sender designs a random variable S correlated with the

state θ, called signal. Knowing the signal S, but not its realization, Receiver chooses her

attention effort e: high effort is costly and increases the probability of observing the signal

realization. The choice of effort captures the choice of acquiring information about the

state, and the cost of effort may be monetary or psychological. The timing is as follows.

(1) Sender chooses signal S, without knowing the Receiver’s type, which includes her

effort cost and outside option.

(2) Receiver chooses her effort e;

(3) Receiver observes the realization of S with probability e, and observes an uninformative

signal with the remaining probability. She chooses action 1 or 0 given her posterior

belief.

For instance, let’s suppose that a university (Sender) wants its graduates to find employment

at a renowned firm (Receiver), regardless of their skills (state), while the firm finds it

profitable only to hire high-skill graduates. The university decides how to best advertise

its graduates to maximize the probability that the graduates are hired by the renowned

firm. The university’s marketing policy includes: grading policy, social-media presence,

advertisement of graduates’ achievements, and so on. There are two main forces that

determine the optimal marketing: the university wants the firm to (i) pay attention to the

marketing campaign, and (ii) hire the graduates. Paying attention refers to the extensive

margin of persuasion: is the firm reached by the marketing efforts? The hiring decision

refers to the intensive margin of persuasion: does the firm hire the graduates, given the
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information acquired from the marketing campaign? The private information of Receiver,

in this example, captures the fact that the university is not fully informed about (i) the

extent to which the firm is hiring, and the platforms where firms seek job candidates (cost

of effort); and (ii) the firm’s hiring process, including intervew questions and tests (outside

option).

The extensive margin of persuasion arises because Receiver is privately informed about

her type. In particular, the sender takes into account that increasing the correlation between

the state and the signal has two effects: on Receiver’s attention effort e — the extensive

margin of persuasion —, and on Receiver’s action if she observes the realization of S — the

intensive margin of persuasion.

I show the equivalence between persuasion mechanisms and signals. Let’s suppose that

Sender commits to a persuasion mechanism, which is a menu of signals S•, as opposed to

a single signal. Under a persuasion mechanism, Receiver reports a type and chooses an

effort level. In particular, Receiver chooses the probability with which to observe the signal

from the menu that corresponds to her reported type. A mechanism is incentive-compatible

if Receiver finds it optimal to report her type truthfully. For every incentive-compatible

persuasion mechanism S•, I construct a signal S that induces the same action and effort

distributions over Receiver types (Theorem 1). The key is to establish a supermodularity

property of type-t Receiver’s expected utility: the return from effort is increasing in a

t-specific informativeness order, which agrees with Blackwell’s order whenever possible. I

construct a single signal S that attaches to each Receiver’s type the same t informativeness

as the incentive-compatible mechanism S•. This result shows that Sender does not need to

offer a fine collection of information structures, and allows the study of persuasion to focus

on single signals.

I characterize the optimal information structure in commonly-studied applications,
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θ is revealed Pool

state (θ)0 1θ?

Figure 7: An upper censorship is a signal that reveals states below a cutoff state θ?, and
sends a single realization, Pool, if the state is above the cutoff.

θ is revealed Pool1 Pool2

0 1θ1 θ2

Figure 8: A bi-upper censorship is a signal that reveals low states and separates high from
very high states.

which censors high states. An upper censorship is a signal that reveals low states, and

censors high states, as in Figure 7. Upper censorships are optimal signals if the Receiver’s

outside option admits a single-peaked distribution (Theorem 2). Given the equivalence

between persuasion mechanisms and signals, we can focus on upper censorships to study

the extensive margin of the Sender’s persuasion in applications. I apply my results to the

problem of media censorship. If Sender knows Receiver’s attention cost and has preferences

over the extensive margin, inspired by models of media capture à la Gehlbach and Sonin

(2014), bi-upper censorships are optimal signals (see Figure 8). I study the effect of changes

in Receiver’s attention cost on the information provided by the Sender, measured à la

Blackwell, through the optimal upper censorship. I do so by isolating the effect of each of

the two dimensions of Receiver’s private information. Sender provides more information

as Receiver’s attention cost stochastically increases, if he knows Receiver’s outside option

(Proposition 11). Moreover, Sender provides more information as the Receiver’s attention

cost increases, if he knows the attention cost and that cost is sufficiently small (Proposition

12).
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Related Literature If the receiver’s attention is costless, prior work determines the

extent of a sender’s intensive margin of persuasion (Kamenica and Gentzkow, 2011; Kolotilin

et al., 2017). To study the extensive margin of persuasion, the model of this paper features

either the receiver’s attention cost, and the receiver’s private information. The attention

costs lead Receiver to decide whether to become informed, and the private information

captures the heterogeneity of attention choice in the audience of a sender. Persuasion of an

inattentive receiver has been studied in three models, which do not include Receiver’s private

information. Wei (2021) studies a receiver who incurs a cost to reduce her uncertainty

about the state. ? study a receiver who acquires costly information about the state from a

third party. Differently from these papers, I consider a receiver whose attention cost is not

within the rational-inattention paradigm. In the main model of Bloedel and Segal (2021),

the receiver bears a cost proportional to the mutual information between the sender’s signal

and the receiver’s signal about the sender’s one. In a separate model, the authors study the

same cost structure as in my paper.39 Differently from these models, I include Receiver’s

private information to study a rich extensive margin of persuasion. The connection with

these papers is further discussed in Section 8.

If attention effort is costless, optimality properties of upper-censorship signals are known

(Gentzkow and Kamenica, 2016; Kolotilin, 2018; Dworczak and Martini, 2019; Kleiner et al.,

2021; Kolotilin et al., 2022; ?), and the equivalence between persuasion mechanisms and

signals is shown by Kolotilin et al. (2017) (see also Guo and Shmaya (2019)). I generalize

these results to the case of receiver’s costly and privately known attention effort.

The literature on incomplete-information beauty contests studies the supply of Gaussian

39 Either in Wei (2021) and in the special case of Bloedel and Segal (2021), the analysis assumes that every
signal has at most two realizations with positive probability, which is without loss of generality, although for
different reasons in the two models. This assumption would imply a loss of generality in my model because
Receiver has private information.
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signals to inattentive receivers.40 The restriction to Gaussian signals renders many questions

about optimal information structures moot. The literature on media capture considers

the provision of information to receivers who are privately informed, either about the

opportunity cost of supporting an incumbent politician, or about their attention cost

(respectively, Kolotilin et al. (2022) and Gehlbach and Sonin (2014)).41

Outline I present the model in the next section. In Section 9.1, I describe the equivalence

between persuasion mechanisms and signals. In Section 9.2, I characterize the extensive

margin of persuasion. In Section 10.1, I study optimal signals and welfare implications of

changes in Receiver’s attention cost. In Section 10.2, I discuss implications for the theory

of media capture.

8 Model

A Sender (he) and a Receiver (she) play the following persuasion game. Before the state

θ ∈ Θ := [0, 1] is realized, players have a common prior µ0 ∈ ∆Θ, which admits an absolutely

continuous CDF F0.42 Receiver’s type t = (ζt, λt) ∈ T , where T = [0, 1]2, is distributed

independently of the state θ, according to a CDF H. ζt is Receiver’s threshold type, or

outside option, λt is Receiver’s attention type, or attention cost. Receiver’s material payoff

from taking action a ∈ {0, 1} is uR(a, θ, ζt) = a(θ − ζt), when her threshold type is ζt and

the state is θ. Receiver’s effort cost, if her attention effort is e ∈ [0, 1], is given by λtk(e),

where k is a continuous function. The Receiver’s utility is given by the difference between

40 Several models characterize the optimal supply of Gaussian signals to inattentive receivers, see Cornand
and Heinemann (2008); Chahrour (2014); Myatt and Wallace (2014); Galperti and Trevino (2020); see also
Nimark and Pitschner (2019), and references therein, for related models.

41 See Prat (2015) for a survey of the literature on media censorship.
42 ∆X denotes the set of Borel probability measures over the set X .
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her material payoff and her effort cost:

UR(a, θ, e; t) := uR(a, θ, ζt)− λtk(e).

Sender always wants Receiver to take action 1, and his utility when Receiver chooses action

a is US(a) = a.

The timing of the game is as follows.

• Sender publicly commits to a signal, which is a measurable function σ : Θ → ∆M ,

where M is an exogenous rich space of signal realizations.43

• Nature draws Receiver’s type t according to H.

• Receiver chooses an effort e ∈ [0, 1], knowing her type t.

• Nature draws the state θ according to µ0, and a message m ∈M ∪ {φ}. m is drawn

from σ(θ) with probability e, and m is equal to φ, where φ /∈M , with the remaining

probability.

• Receiver observes the message m, and then updates her belief about θ, using Bayes’

rule and knowledge of σ and the prior µ0. Given her posterior belief, she chooses an

action a ∈ {0, 1}.

We analyze Sender-optimal Perfect Bayesian Equilibria of this game, in line with the

literature on Bayesian persuasion. We denote by F the CDF corresponding to full mass at

x0 which is the prior mean of θ (see the Appendix for the defision of equilibrium.)

Receiver’s optimal action and effort Let’s describe type-t Receiver’s optimal action,

given her posterior belief µ ∈ ∆Θ. Letting t = (ζ, λ), the optimal action is 1 if the expected
43 It is sufficient that M = [0, 1].
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state according to µ, x, exceeds her threshold type ζ, and the optimal action is 0 if the

expected state according to µ is such that x < ζ.44 Thus, Receiver’s optimal action depends

on belief µ only through its mean xµ :=
∫

Θ θ dµ(θ). The Receiver’s material payoff at belief

µ is her expected material payoff when her belief is µ:

vt(µ) :=
∫ 1

0
uR([xµ ≥ ζ], ζ, θ) dµ(θ),

where [P ] is the Iverson bracket of the statement P : [P ] = 1 if the statement P is true, and

[P ] = 0 otherwise. We note that vt(µ) depends on the belief µ only through its induced

mean xµ.

Sender’s maximization problem After Sender chooses a signal that induces the dis-

tribution over posterior beliefs p ∈ ∆∆Θ, type-t Receiver chooses her effort to maximize

her expected utility. In particular, she faces the maximization problem given by

max
e∈[0,1]

e

∫
∆Θ

vt(µ) dp(µ) + (1− e)vt(µ0)− λtk(e). (4)

If k is smooth, the optimal effort is obtained by a simple marginal-cost-marginal-benefit

analysis. Type-t Receiver compares the marginal benefit of committing to observing the

signal with probability e to the marginal cost of such a commitment. The marginal benefit

is the difference between the expected material payoff when Receiver updates her beliefs

according to p and the material payoff at the prior belief:
∫

∆Θ vt(µ) dp(µ) − vt(µ0). We

refer to this difference as the marginal benefit of effort at the random posterior p.45 If

k is differentiable, the marginal cost of effort e is given by λt
∂k
∂e (e). Since vt(µ) depends

44 We break the Receiver’s indifference in favor of Sender. This assumption is without loss of generality
given our assumption that H is absolutely continuous. This assumption is necessary for Sender optimality
when Sender knows Receiver’s threshold type (see, e.g., Gentzkow and Kamenica (2016)).

45 The marginal benefit of effort at a random posterior p is commonly referred to as the value of the
information of the signal that induces p.
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on belief µ only through its induced mean, the random posterior p influences Receiver’s

effort decision only through the marginal benefit of effort. In particular, if the signal’s

informativeness increases in the Blackwell order, the marginal benefit of effort shifts upward

for every Receiver’s type; while the marginal cost of effort does not change. We denote by

E(p; t) the nonempty set of maximizers of the above program, which we study in Section

9.2.

Let’s describe the role of the extensive and the intensive margin of persuasion in the

Sender’s incentives. We use the formalism of random posteriors, as done in the literature on

persuasion. Let R be the set of feasible random posteriors: distributions of the Receiver’s

belief satisfying the martingale condition.46 We describe the Sender’s choice of a feasible

random posterior, which is without loss of generality.47 We define the Sender’s payoff at

belief µ using Receiver’s optimal action as: VS(µ; t) := [xµ ≥ ζt]. The Sender’s problem is:

sup
p,e(·)

∫
∆Θ

∫
T
e(t)(VS(µ; t)− VS(µ0; t)) dH(t) dp(µ)

s.t. p ∈ R and e(t) ∈ E(p; t) for all t ∈ T.

We decompose the persuasion of a Receiver’s type into two terms. The Receiver’s optimal

action depends only on the mean of the Receiver’s belief, which is either the (random)

posterior mean following the information policy p, or the prior mean
∫

Θ θ dµ0(θ) =: x0.

The effort chosen by Receiver is the probability that the mean of the Receiver’s belief

is the (random) posterior mean following the information policy p. Thus, the Sender’s
46 In particular:

R :=
{
p ∈ ∆∆Θ :

∫
∆Θ

µdp(µ) = µ0

}
.

47 Every signal induces a distribution in R, by the martingale property of Bayesian updating. Moreover, for
all p ∈ R, there exists a signal that induces p as the distribution of the posterior belief; see, e.g., Kamenica
and Gentzkow (2011) and Appendix C.2 in ?.
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expected payoff depends on the feasible random posterior p in two ways, which can be

ascribed to the intensive and the extensive margin of Bayesian persuasion. First, type t

acts if the posterior mean is higher than type-t outside option ζt. Letting a◦(t) = [x0 ≥ ζt]

and a?(µ, t) = [xµ ≥ ζt], and assuming maximum effort, the equilibrium expected action is

larger than under an uninformative signal by the following amount:48

∫
∆Θ

VS(µ; t) dp(µ)− VS(µ0; t) = E{a? − a◦ | t, e(p, t) = 1}.

Second, each type t has some probability of updating her belief, which is t’s effort decision

e(p; t). Letting e(p, t) be the effort chosen by type-t Receiver, the expected change in

Receiver’s action is:

e(p, t)︸ ︷︷ ︸
extensive margin

(∫
∆Θ

VS(µ; t) dp(µ)− VS(µ0; t)
)

︸ ︷︷ ︸
intensive margin

= E{a? − a◦ | t}︸ ︷︷ ︸
persuasion of type t

.

The term e(p, t) captures the extensive margin of persuasion: different posterior distributions

may lead to different effort decisions of type t. The second term captures the intensive

margin of persuasion: different posterior distributions may lead to different distributions of

a? − a◦, given Receiver’s type t.

Benchmark cases If infomation is costless, the model is equivalent to persuasion of a

privately informed receiver as studied in prior work (e.g., Kolotilin et al. (2017); Kolotilin

(2018)). The extensive-margin term in the persuasion decomposition is moot. If information

is costly and Receiver’s type t is known to Sender, our framework specifies to the model

48 The following conditional expectation given t is taken with respect to the random posterior that is
distributed according to p.
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studied by Bloedel and Segal (2021), in which Sender solves

sup
p,e

∫
∆Θ

e(VS(µ; t)− VS(µ0; t)) dp(µ) (5)

s.t. p ∈ R and e ∈ E(p; t). (6)

As Bloedel and Segal (2021) observe, we can use a first-order approach when k is sufficiently

smooth; moreover, there exists an optimal signal that is a binary signal by a revelation-

principle argument. The problem in Equation 5 is similar to that studied in the attention-

management literature (Lipnowski et al., 2020, 2022a; Wei, 2021). If we assume that the

attention-management Sender wants Receiver to take action 1 regardless of the state, the

maximization in 5 is a constrained version of the attention-management one.49 In particular,

in our model, Receiver effectively chooses an element from a specific set of garblings of

the posterior: the mixtures of the Sender’s signal and an uninformative signal. In the

attention-management literature, Receiver’s choice of garbling is unrestricted.

Information policies Receiver chooses her effort to maximize her expected utility (Prob-

lem 4), and the marginal benefit of effort depends on the random posterior p only through

the distribution of posterior means. Thus, we identify a feasible random posterior with the

induced posterior mean distribution, and here we formalize this representation (similarly

to, e.g., Gentzkow and Kamenica (2016)). Let D be the collection of CDF’s over [0, 1].

A CDF F is feasible if it represents the posterior mean distribution of a feasible random

posterior. By Blackwell’s theorem, a CDF F is feasible if, and only if: F is a mean preserving

49 Sender wants Receiver to take action 1 regardless of the state in Wei (2021), while Sender maximizes
Receiver’s material payoff in Lipnowski et al. (2020, 2022a). The optimal signal for a Sender who wants
action 1 regardless of the state is not characterized in attention management, except in the binary-state
case (Wei (2021)).
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contraction of F0. Let’s define the information policy of a CDF F ∈ D as:

IF : R+ → R+

x 7→
∫ x

0
F (y) dy.

The information policy of a feasible F , IF , is upper bounded pointwise by F0, due to

Blackwell’s theorem. IF is lower bounded pointwise by F , because the uninformative signal

does not change the mean of the receiver’s belief. Moreover, IF is convex because F is

nondecreasing. These are the only three constraints on feasible information policies, so we

identify a feasible random posterior with its induced information policy (Gentzkow and

Kamenica, 2016). The set of feasible information policies is:

I := {I : R+ → R+ | I is convex and IF0(x) ≥ I(x) ≥ IF (x) for all x ∈ R+}.

We analyze the Sender’s problem as a choice of an information policy I ∈ I. There are

two reasons why this choice of formalism pays off. First, I is a measure of the Blackwell

informativeness of the corresponding signal. In particular, σ is a more informative signal

than τ if, and only if, Iσ(x) ≥ Iτ (x), x ∈ [0, 1], where IS denotes the information policy

corresponding to the posterior mean’s CDF induced by signal S. Thus, the pointwise ranking

of information policies correspond to Blackwell’s information order. Second, information

policies offer a tractable characterization of optimal effort, as the next Lemma shows.

Preliminary results Receiver chooses effort by comparing her payoff from updating her

belief and her payoff from remaining uninformed. Let’s develop notation to deal with this
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comparison. We define the operator ∆ as:

∆: I 7→ I − IF .

We denote by ∆I the composite function ∆(I). For the information policy I, ∆I is a measure

of the “net” informativeness, where the Blackwell’s informativeness of the uniformative

signal, given by IF , is used as a benchmark. We characterize Receiver’s marginal benefit

of effort in terms of the Sender’s information policy I. For an information policy I, we

let I ′(x) denote the right derivative evaluated at x, which is the value attained by a CDF

evaluated at x, and I ′(x−) denote its left derivative.

Lemma 11 (Marginal Benefit of Effort). Receiver’s marginal benefit of effort given the

information policy I and her type (ζ, λ) is:

∫ 1

0
uR([x ≥ ζ], x, ζ) dI ′(x)−

∫ 1

0
uR([x ≥ ζ], x, ζ) dI ′

F
(x) = ∆I(ζ).

Proof. For an information policy I ∈ I:

∫ 1

0
uR([x ≥ ζ], x, ζ) dI ′(x) =

∫ 1

ζ
x− ζ dI ′(x)

= x0 − ζ + I(ζ)

The second equality follows from Riemann-Stjeltes integration by parts, using I ′(1) = 1 and

I(1) = 1− x0. �

The marginal benefit of effort is increasing in the informativeness of I, measured à la
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Blackwell. We define type-(c, λ) indirect utility V at the information policy I

V (∆I(c);λ) = max
e∈[0,1]

e∆I(c)− λk(e)− vt(µ0),

and we refer to V (∆I(c);λ) as the value of information policy I to type (c, λ). The optimal

effort of type (c, λ), given information policy I, is an element of E(∆I(c);λ), where:

E(∆I(c);λ) = arg max
e∈[0,1]

e∆I(c)− λk(e).

Type-t Receiver’s payoff is increasing in the Blackwell information of the Sender’s signal,

by Blackwell’s theorem. Thus, type-t Receiver’s value of information policyI is increasing

in the informativeness of I. This fact arises as an implication of monotone comparative

statics and the envelope theorem, stated in the next Lemma.

Lemma 12. Type-t Receiver’s value of information V (∆I(ζt), λt) is a nondecreasing,

absolutely continuous and convex function of ∆I(ζt).

Proof. We observe that f : (e,∆I(ζt)) 7→ e∆I(ζt) is supermodular. The result follows from

the envelope theorem for supermodular optimization (Lemma 57 in the Appendix). �

Unsurprisingly, this result states that Receiver’s payoff is increasing in the Blackwell

information of the Sender’s information policy. However, Blackwell’s order is incomplete.

We leverage the Lemma to construct a natural type-specific completion of the Blackwell

order over information policies. Let’s construct a t-specific informativeness order over

information policies: �t over I, such that

J �t I iff ∆J(ζt) ≤ ∆I(ζt), for every J, I ∈ I.

�t is a complete order that agrees with Blackwell’s order whenever possible. �t is a local
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informativeness measure that is a sufficient to caracterize a type-t Receiver’s behavior. To

prove Lemma 12, we leverage the fact that type-t Receiver’s expected utility is supermodular

in informativeness and effort, ordering informativeness by �t. In the next section we leverage

this observation to prove a strong equivalence between persuasion mechanisms and signals,

and in the following section we leverage this observation to study the extensive margin of

Bayesian persuasion.

9 Main Results

9.1 Equivalence of Persuasion Mechanisms and Signals

In this section, we consider a more general setup than the previous model. We expand the

Sender’s strategy space, to include “menues” of signals. We ask whether Sender attains a

larger payoff by committing to such a menu, so that each Recever’s type self-selects into

her preferred signal, than by choosing a single information policy.

A persuasion mechanism is a collection of information policies: (Ir)r∈T , where Ir ∈ I

for all reports r ∈ T . We refer to a persuasion mechanism as I•, omitting the reference to

reports. A persuasion mechanism I• is incentive compatible (IC) if:

V (∆It(ζt), λt) ≥ V (∆Ir(ζt), λt), for all types t ∈ T and reports r ∈ T .

We interpret a persuasion mechanism as a rule allocating a signal to every report of

Receiver’s type. Thus, a persuasion mechanism is IC if it is optimal for Receiver to report

her type truthfully. In particular, after her report r, Receiver chooses an effort optimally

given the information policy Ir. By a revelation-principle arguments, a Sender who commits

to a persuasion mechanisms can, without loss of optimality, commit to an IC persuasion

mechanism. We focus on IC persuasion mechanisms in what follows.
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The following two definitions characterize a notion of equivalence between an IC persua-

sion mechanism I• and a single information policy J . An IC persuasion mechanism I• and

an information policy J induce the same effort and action distributions if the following two

conditions hold.

(1)

E(∆It(ζt);λt) ⊆ E(∆J(ζt);λt), for all t ∈ T . (7)

(2)

∂It(ζt) ⊆ ∂I(ζt) if (0, 1] ∩ E(∆It(ζt);λt) 6= ∅.

The following result allows us to study effort and action distributions of persuasion mecha-

nisms via information policies, thus bypassing the screening problem.

Theorem 1. For every IC persuasion mechanism I• there exists an information policy J

such that: I• and J induce the same effort and action distributions.

Proof. Section 17 in the Appendix. �

There is a simple intuition for this result, which leverages the local informativeness

order �t. �t determines the choice of type-t Receiver from the collection of information

policies of a persuasion mechanism I•, by Lemma 12. Letting c be t’s threshold type, we

know that type t chooses that information policy I? from the mechanism (Ir)r∈T such that

∆I?(c) ≥ ∆Ir(c) for every r ∈ T . It is readily established that J := supr∈T Ir is a feasible

information policy: J is pointwise bounded by IF0 and IF because Ir is an information

policy for every r ∈ T , and J is convex because J the pointwise supremum of convex
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functions. In the proof we show that J replicates effort and action decisions of every type t

given the IC mechanism (Ir)r∈T .

In the next section we study Sender’s optimization by choice of a single information

policy. In light of Theorem 1, the following results are relevant to the study of persuasion

mechanisms. In particular, a takeaway of Theorem 1 is that single information policies are

without loss of generality for welfare analysis.

Remark 1. Let’s recall that type-t Receiver’s expected utility is supermodular in infor-

mativeness, as orderd by �t, and effort. As a confirmation that supermodularity the key

intuition for Theorem 1, in Section 17 of the Appendix, we prove the result assuming

supermodular Receiver’s interim payoff, as a function of informativeness and effort. This

specification nests the original model where Receiver’s ex-post utility is given by UR.

9.2 Characterization of the extensive margin

We characterize effort decisions assuming smoothness conditions on k.

Assumption 4 (Smooth Effort Cost). k is a differentiable convex function on [0, 1], and

satisfies: k′(1) > 1− x0.

Under Assumption 4, we denote by k′(e) the derivative of k at effort e.

Lemma 13. Let Assumption 4 hold, I ∈ I, and et be any element of E(∆I(ζt), λt).

∆I(ζt) ≤ λtk′(et),

with equality if et > 0.

Proof. Receiver maximizes a concave function over a compact set. A solution exists and,

by differentiability of k, we can use standard Lagrangean arguments to show that it has
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the prescribed form, so long as optimal effort is in [0, 1). Let’s see that the requirement

that k′(1) > 1− x0 assumes away boundary solutions at 1. Because I(1) = 1− x0, we have

∆I(ζ) ≤ 1− x0 < k(1), for every ζ ∈ [0, 1]. �

The marginal-cost-marginal-benefit analysis of Receiver’s effort decision is depicted

in Figure 9. Net informativeness ∆I defines a continuous function of Receiver’s outside

option, with a peak at the cutoff type that is equal to the prior mean x0. The proof of this

statement is in the Appendix (Lemma 54). The intuition for single-peakedness comes from

the observation that the marginal benefit of effort is ∆I(ζ), given I (Lemma 11). Type x0

finds it valuable to observe any signal about θ, in order to make a more informed choice than

if she is left at the prior. Extreme types have, instead, the least to gain from committing

to observe a signal: the ex-ante probability that a signal realization modifies t’s optimal

action is low because only extreme realizations of the state are pivotal for their optimal

action. If we intersect the marginal benefit of effort ∆I with λtk
′(0), we observe that, in

general, intermediate types will exert a positive effort, and extreme types will not exert

any effort. This result is depicted in figure 9, and implies that the set of Receiver types

who become informed is defined by the two cutoff types who are just indifferent between

exerting positive effort and not exerting any effort. Under Assumption 4, the cutoff types

given information policy I and attention cost λ are:

cλ(∆I) := min{c ∈ [0, 1] | ∆I(c) ≥ λk′(0)},

cλ(∆I) := max{c ∈ [0, 1] | ∆I(c) ≥ λk′(0)},

with the requirement that if either of the two sets is empty, the relevant cutoff type is x0.

The next observation is that the interval shape of the extensive margin generalizes. By

the supermodularity property of the Receiver’s value function, type-t’s optimal effort is
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Figure 9: The set of types c who exert positive attention effort is an interval.

nondecreasing in ∆I(ζt) without differentiability hypotheses.

Proposition 10. Let I be an information policy, and e(c, λ) ∈ E(∆I(c), λ) for every type

(c, λ). Then, e(·, λ) is single-peaked, with a peak at x0.

Proof. We observe that f : (e,∆I(ζt)) 7→ e∆I(ζt) is strictly supermodular. Thus, by

Lemma 11, we establish that every selection from the optimal effort correspondence is

nondecreasing, using monotone comparative statics results (Lemma 57 in the Appendix).

The result follows from single-peakedness of ∆I, with a peak at x0, established in Lemma

54 in the Appendix. �

By our result, every selection from the optimal effort correspondence exhibits cutoff

outside-option types, given an attention cost type. In particular, extreme types — whose

outside option is above or below the cutoffs — do not exert any effort.

67



9.3 Sender’s Value of an Information Policy

We now express the Sender’s problem as a maximization by choice of a feasible information

policy, using the previous results on the extensive margin. First, we describe the extensive

and intensive margins.

Lemma 14. The Sender’s maximization problem is given by:

sup−
∫
T
e(t)∆I ′(ζ−t ) dH(t) (8)

s.t. I ∈ I and e(t) ∈ E(∆I(ζt), λt) for all t ∈ T. (9)

Proof. Letting G be the marginal CDF of information cost consistent with H. Sender’s

value of I, given e(ζ, λ) ∈ E(∆I(ζ), λ) for all (ζ, λ) ∈ T , is:

∫
[0,1]

∫
[0,1]

(1− I ′(ζ−)− [ζ ≤ x0])e(ζ, λ) dH(ζ|λ) + (1−H(x0|λ)) dG(λ),

because type-t Receiver chooses action 1 when indifferent, by Sender-optimality. The

Lemma follows after normalizing Sender’s expected payoff from IF to 0, and the observation

that: 1− [ζt ≤ x0] = I ′
F

(ζ−). �

The Sender’s value of the information policy I depends on I in two ways: the intensive

and the extensive margin of Bayesian Persuasion. First, the probability that threshold type

c chooses action 1 is the probability that the posterior mean is higher than her outside option

c: 1−I ′(c−). We note that what matters for Sender is not the probability of action 1, but the

degree to which the information policy changes the prior action decisions towards action 1.

Thus, to 1−I ′(c−) we subtract [c < x0], and we note that: 1−I ′(c−)− [c < x0] = −∆I ′(ζ−).

Second, a Receiver’s type updates her beliefs with probability equals to her effort decision.

The next result re-writes the Sender’s problem in way to shows that Sender is effectively
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allocating information to Receiver’s types, without smoothness assumptions.

Lemma 15. Let H admit a PDF h that is decomposed as: h(ζ, λ) = hζ|λ(ζ|λ)hλ(λ), and

let the conditional PDF hζ|λ admit a derivative with respect to ζ, h′ζ|λ. The Sender’s

maximization problem is given by:

max
I∈I
−
∫

[0,1]

∫
[0,1]

V (∆I(ζ), λ)h′ζ|λ(ζ|λ)hλ(λ) dζ dλ. (10)

Proof. See Section 18 in the Appendix. �

Under the hypotheses of this Lemma, we define the Sender’s value of an information

policy I as v(I), which is the maximand in the optimization above. And we say that an

information policy I is optimal if it solves the maximization in 10. From the above result,

we know that Sender prefers to allocate (Blackwell) informativeness to a Receiver’s type

(ζ, λ) so long as the measure induced by h′ζ|λ(ζ|λ)hλ(λ) is positive, and he prefers to not

allocate informativeness to types such that h′ζ|λ(ζ|λ)hλ(λ) is negative. In the next section,

we make use of this intuition to solve for the optimal signal in applied models.

Remark 2. Shishkin (2023) uses a similar information-allocation intuition, in a model

without the extensive margin because Receiver’s attention is costless.

10 Applications

10.1 Single-Peaked Distribution of Receiver’s Outside Option

In applications, it’s common to assume that the distribution of Receiver’s outside option

is single-peaked (Shishkin (2023); Gitmez and Molavi (2023), and also particular cases

considered by Kolotilin (2018); Lipnowski et al. (2022b)).
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Assumption 5 (Single-Peakedness of Outside Option Distribution). (1) The attention

cost λ is independent of threshold c, and distributed according to the CDF H.

(2) The distribution of the threshold ζ admits an absolutely continuous quasiconcave PDF

f , with CDF F .

10.1.1 Optimality of Upper Censorships

Under Assumption 5, the two dimensions of Receiver’s type are independently distributed

and h′ζ|λ(ζ|λ) is nonpositive before a peak threshold type, and nonnegative after the peak

(Lemma 15). Thus, it is optimal to reveal a lot of information through low posterior

means, and not much information through high posterior means. There exists a class of

signals that achieve this “information allocation,” the class of upper-censorship signals. An

upper-censorship signal implies full revelation conditional on the state being lower than

a cutoff, and full censorship conditional on the state being above the cutoff (Figure 7).

Since we work in the space of information policies, we define an upper censorship as an

information policy which is induced by an upper-censorship signal.

Definition 4. The θ? upper censorship is the unique information policy Iθ? ∈ I such that:

Iθ?(x) =



IF0(x) , x ∈ [0, θ?]

IF0(θ?) + (x− θ?)F0(θ?) , x ∈ (θ?, x?]

IF (x) , x ∈ (x?,∞),

where x? =
∫ 1
θ? θ d F0(θ)

1−F0(θ?) .

The next result shows that upper censorships are optimal information policies un-

der independent cost and threshold types, whenever threshold types are single-peakedly

distributed.
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Theorem 2. Let Assumption 5 hold. There exists a θ? ∈ Θ such that the θ? upper

censorship is an optimal information policy.

Proof. Section 18.1 in the Appendix �

A reading of this result is as a revelation principle result. In particular, in order to

maximize Sender’s payoff, Sender can focus on upper censorships under single-peakedness

assumptions. A similar result can be proved using single-dipped distributions, where “lower

censorships” arise as optimal signals. In light of Theorem 1, we know that the study of

upper censorships informs us about properties of persuasion mechanisms. Theorem 1 nests

many known results about the optimality of upper censorships in models without Receiver’s

private information, or effort cost. The next remark discusses uniqueness issues.

10.1.2 Welfare Analysis

Does Receiver benefit from her attention cost? In particular, Receiver’s inattentiveness may

act as a bargaining power: Sender is forced to increase the informativeness of his signal

to induce Receiver to pay attention. This observation holds without Receiver’s private

information, as we establish in the Appendix (Section 18.3). In this section, we assume that

k is linear: k(e) = κe, κ > 0. In order to isolate the effect of each of the two dimensions of

Receiver’s private information, we ask whether Receiver is better off as her attention cost λ

increases in two separate cases: (1) when Sender knows Receiver’s outside option, and (2)

when Sender knows Receiver’s attention cost. In the first case, we study an increase of the

distribution of the attention cost in a stochastic order.

The next result characterizes the optimal upper censorship with known action threshold.

Proposition 11. Let the distribution of attention cost admit a log-concave CDF with

support [0, κ̄], and a continuous PDF, with κ̄ > 1− x0, and the outside option be known to
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Sender. Moreover, let’s assume that k is linear: k(e) = κe. There exists a solution to the

Sender’s problem that is a θ upper censorship, where θ ∈ {0, θ?, ζ} and θ? solves:

(1− F0(θ))(ζ − θ) = (χ(∆Iθ(ζ)))−1

Proof. Without loss of generality: κ = 1 and

K(λ) = exp
(
−
∫ κ̄

λ
χ(t) dt

)
,

for some χ : (0, κ̄) → R+ such that:
∫ κ̄
λ χ(t) dt < ∞ and limλ→0

∫ κ̄
λ χ(t) dt = ∞. Our

primitive is the nonincreasing reverse hazard rate χ. Without loss of optimality, Sender

maximizes his payoff by choice of an upper censorship (see Section 18 of the Appendix). In

particular, Sender’s optimization is:

max
I∈Iu

(
1− I ′(ζ−)

)
K(∆I(ζ)),

where Iu ⊆ I is the collection of upper censorships. Suppose there exists a solution I ∈ Iu,

such that I = Iθ? , for some θ? ∈ (0, 1). By definition of I, at y = I(ζ) the next condition

holds:

IF0(θ?) + F0(θ?)(ζ − θ?)− y = 0.

By the implicit function theorem, there exists a differentiable function t:

t : (0, 1)→ (0, 1)

y 7→ θ?,
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such that:

t′(y) =


1

(ζ−t(y))F ′0(t(y)) , 0 < ζ < t(y)

1
F ′0(t(y)) , 1 > ζ ≥ t(y).

Let the value of Iθ be:

v : (0, 1)→ [0, 1]

θ 7→
(
1− I ′θ(ζ−)

)
K(∆Iθ(ζ)).

Since I ′θ?(ζ−) = F0(θ?), v is differentiable in θ at θ?. Let ζ > θ?. Using the chain rule, the

derivative of v with respect to I(ζ) is nonnegative if:

(1− F0(θ?))(ζ − θ?) ≥ (χ(∆Iθ?(ζ)))−1,

and nonpositive if:

(1− F0(θ?))(ζ − θ?) ≤ (χ(∆Iθ?(ζ)))−1.

The function θ 7→ (1−F0(θ))(ζ − θ) is decreasing on (0, ζ), and the function θ 7→ χ(∆Iθ(ζ))

is decreasing on (0, ζ). As a result, finding the optimal θ? upper censorship is a concave

program. �

As a corollary to the above result, let full-information and no-information not be optimal

information policies when the reverse hazard rate is χ1 and when it is χ2. The optimal

upper censorship under χ1 has a lower censorship point than the optimal upper censorship

under χ2 if χ1(λ) ≤ χ2(λ) for all λ. Thus, if attention cost stochastically increases (in the
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reverse hazard rate order), the optimal upper censorship is more Blackwell informative.

This result is consistent with the symmetric-information special case of our model, where

Sender knows Receiver’s type.

Is it a robust feature of Bayesian persuasion that information costs increase Receiver’s

information? Let’s consider the case of symmetric information (about Receiver’s type,

in particular). As pointed out by Wei (2021); Bloedel and Segal (2021) and Matysková

and Montes (2023), the answer is no. In particular, under mutual-information cost the

informativeness of Sender’s signal is nonmonotone in the commonly known information-cost

parameter. To see this, consider the following two extremes. If information is costless,

Sender uses a partially informative signal, as established in the literature. If information

is prohibitevely costly, only poorly informative signals induce Receiver to acquire some

information. Our result uncovers a natural way to model larger cost in a stochastic sense

to maintain symmetric-information comparative statics, by using the reverse-hazard rate

dominance order.

Does Receiver benefit from small, known, attention cost? The next result shows that

Receiver benefits from a small, known, cost when she is privately informed about her belief

threshold for action.

Proposition 12. Let Assumption 5 hold, attention cost be known to Sender, and f be

strictly single-peaked. For a sufficiently small ε > 0:

(1) There exists a unique optimal upper censorship when λ = 0: I◦;

(2) There exists a unique optimal upper censorship when λ = ε: I?;

(3) I? is more Blackwell informative than I◦, that is: I◦(x) ≤ I?(x), x ∈ R+.

Proof. By Lemma 15, the derivative of the Sender’s value of the θ upper censorship with
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respect to the θ is:

∂F0/∂θ(θ)
∫ cλ

θ
(x− θ)∂h/∂ζ(x) dx ≤ ∂F0/∂θ(θ)

∫ 1

θ
(x− θ)∂h/∂ζ(x) dx,

where the inequality is strict if λ is sufficiently small, because h is decreasing on (p, 1], p < 1.

The right-hand side of the inequality is the derivative of the Sender’s value of the θ upper

censorship with respect to the θ when λ = 0. Because h is increasing on [0, p) and on (p, 1],

p < 1, and ε is small, both sides of the above inequality are decreasing in θ. As a result,

there exists a unique optimal upper censorship either when λ = 0, and when λ = ε.50 �

In Wei (2021), Receiver is better off with ε > 0 costs than with 0 costs, due to the

“bargaining-power” idea described above. In ?, Receiver is worse off with ε > 0 costs than

with 0 costs, because Receiver becomes arbitrarily informed at almost 0 cost. So, the welfare

analysis of attention cost is dependent on the information-cost model.

10.2 Media Censorship

Let’s suppose a government wants people to stay home, and has control over the media. If

media start to suggest to stay home, for instance by showing how bad a pandemic situation

is, individuals may change their behavior only so long as they paid attention to the media.

Thus the government must take into account that releasing information has two effects:

information impacts behavior if individuals are attentive, a change in the intensive margin

of persuasion; information determines attention decisions, a change in the extensive margin

of persuasion. We introduce an advertising market á la Gehlbach and Sonin (2014) in the

model of Kolotilin et al. (2022), thus providing a bridge between the two approaches to

model media censorship.
50 Uniqueness with costless information is readily established also using the tools from Kolotilin (2018);

Kolotilin et al. (2022).
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Assumption 6 (Media Censorship). We assume that:

(1) Sender knows Receiver’s attention-cost type λ.

(2) k is linear, and Assumption 5 (Single-Peakedness of Outside Option) holds.

(3) Sender’s payoff is given by:

UG(a, e; ·) = ψa+ γe.

Part (1) is isomorphic to binary effort decision, which is the assumption in Gehlbach

and Sonin (2014). Part (3) makes our model’s Sender correspond to the government of the

media censorship model of Gehlbach and Sonin (2014). Part (2) is made for tractability. ψ

captures the mobilizing character of the government. A larger mobilizing character implies

that Sender cares more about the support from the population of agents, where an agent is

identified by a Receiver’s type. γ captures the size of the media market. A larger market

implies that Sender cares more about providing information, due to larger advertising

revenues. If γ = 0, we know that an upper censorship is optimal, be previous results. Let’s

recall that an upper censorship leads to poorly informative large posterior means. Thus,

because Sender with γ > 0 cares more about the extensive margin, it may be suboptimal to

provide so little information as an upper censorship does. Let’s define a class of information

policies that nests upper censorships.

76



θ is revealed Pool1 Pool2

0 1θ1 θ2

Figure 10: A bi-upper censorship is a signal that reveals low states and separates high from
very high states.

Definition 5. A bi-upper censorship is an information policy I such that, for θ1, θ2 ∈ Θ:

Iθ?(x) =



IF0(x) , x ∈ [0, θ1]

IF0(θ1) + (x− θ1)F0(θ1) , x ∈ (θ1, x1]

IF0(x1) + (x− x1)F0(x1) , x ∈ (x1, x2]

IF (x) , x ∈ (x2,∞),

where x1 =
∫ θ2
θ1
θ d F0(θ)

F0(θ2)−F0(θ1) , x2 =
∫ 1
θ2
θ d F0(θ)

1−F0(θ2) .

Proposition 13. Let Assumption 6 hold, and the peak of the PDF of outside option be p,

with p ≥ x0. There exists an optimal signal that is a bi-upper censorship.

Proof. The definition of a bi-upper censorship and the proof are in Section 18.2. �

We can interpret the assumption that the peak of the PDF of ζ is sufficiently large as a

sufficiently high disagreement between Sender and the ex-ante Receiver (Shishkin (2023)).

The current results nests the media-censorship result in Kolotilin et al. (2022), which shows

that an upper censorship is an optimal signal without attention cost.

77



78



Part III

Appendix 1: Proofs for Essay 1
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11 Preliminaries

In this section, we study the properties of payoffs over outcomes defined in Section 2, the outcome
distribution discussed in Section 2.3, and the potential of G(x0). In Section 11.2.3, we extend the model
to study a common-prior model. The analysis maintains Assumption 1.

11.1 Ex-Post Payoffs

In this section, we study the ex-post payoff functions. Player i ∈ N = {1, . . . , n} has preferences over
outcome profiles x ∈ Rn that are represented by the payoff ui : Rn → R, which takes a quadratic-loss
form:

πi(xi, x−i) = −

xi − (1− α)δi − α
∑
j∈N

γijxj

2

,

in which δi ∈ R, α ∈ [0, 1), γij ≥ 0, and γii = 0.
We note that: πi(xi, x−i) = 2(1 − α)δixi − x2

i + 2α
∑
j∈N γ

ijxixj + hi(x−i), in which hi(x−i) is
constant with respect to xi. Player i’s effort-game payoff is: vi : Rn → R, with

vi(xi, x−i) = 2(1− α)δixi − x2
i + 2α

∑
j∈N

γijxixj .

We let δ and Γ be, respectively, the column vector of favorite outcomes (δ1, . . . , δn)T and the
interactions matrix [γij : i, j ∈ N ]. We let G := αΓ, Q := I −G, b := (1− α)δ. We define β := Q−1b.
1 and I denote, respectively, a column vector of ones and the n× n identity matrix. For a matrix A,
we let aij be the entry in the ith row and jth column of A, and ai• be the column vector corresponding
to the ith row of A.

We let x be the column vector given by the outcome profile (x1, . . . xn). We define the potential
v : Rn → R, such that

v(x) = 2(1− α)δTx− xT(I − αΓ)x.

We note that: v(x) = −(x− β)TQ(x− β) + βTQβ. The effort-game utilitarian welfare is
∑
i∈N vi, so

that ∑
i∈N

vi(x) = 2(1− α)δTx− xT(I − 2αΓ)x.

The following Lemma states that player i’s payoff is best-response equivalent to the effort-game payoff and
to the potential. In particular, we show that the three strategic-form games (N, (πi,R)i∈N ), (N, (vi,R)i∈N )
and (N, (v,R)i∈N ) are von Neumann–Morgenstern equivalent (Morris and Ui, 2004). We adopt the
following notational conventions: x denotes (xi, x−i), and −i := N \ {i}, for all i ∈ N .

Lemma 16 (VNM Equivalence). For all i ∈ N , there exist hi, gi : Rn−1 → R such that:

ui(x)− vi(x) = hi(x−i) and ui(x)− v(x) = gi(x−i) for all x ∈ Rn.

Proof. The second result is a consequence of symmetry of Γ. In particular, we note that:
∑

(i,j)∈N2 γijxixj−
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2
∑
j∈N γ

ijxixj is constant with respect to xi, and:

πi(x)− vi(x) = −

(1− α)δi + α
∑
j∈N

γijxj

2

,

v(x)− vi(x) =
∑
j∈−i

(
2(1− α)δjxj − x2

j

)
+ α

∑
(i,j)∈N2

γijxixj − 2α
∑
j∈N

γijxixj .

�

11.2 Interim Beliefs

In this section, we study player i’s beliefs in the game G(p0), given pi0 6= pj0, for all i, j ∈ N with i 6= j.
Every player knows the profile of status-quo policies (p1

0, . . . , p
n
0 ) ∈ Rn. Player i privately knows

the outcome corresponding to her own status quo policy: χ(pi0). Player i believes that the outcome
function χ : R → R is the realized path of a Brownian motion with drift µ < 0, variance parameter
ω > 0 and starting point (pi0, χ(pi0)). This belief structure is consistent with a common prior that is
studied in section 11.2.3

11.2.1 Expectation and Covariance

We define Ei,Vi,Ci as, respectively, the conditional expectation, variance and covariance operators given
knowledge of χ(pi0).

Lemma 17 (Interim expectation, variance, and covariance). The following formulas hold. For all
policies p, q ∈ R we have:

Eiχ(p) := E
[
χ(p) | χ(pi0)

]
= χ(pi0) + µ(p− pi0),

Viχ(p) := Var
[
χ(p) | χ(pi0)

]
= |p− pi0|ω,

Ci(χ(p), χ(q)) := Cov
[
χ(p), χ(q) | χ(pi0)

]
=

min{Viχ(p),Viχ(q)} if sgn(p− pi0) = sgn(q − pi0),
0 if p > pi0 > q or q > pi0 > p.

Proof. The formulas for the expectation and the variance operators are known in the experimentation
literature (Callander, 2011a). Let’s show that the covariance formula is a consequence of the Markov
property of beliefs. By the law of iterated expectations:

Ci(χ(p), χ(q)) =E
[
χ(p)E

[
χ(q) | χ(p), χ(pi0)

]
| χ(pi0)

]
− Eiχ(p)E

[
E
[
χ(q) | χ(p), χ(pi0)

]
| χ(pi0)

]
.

Moreover, if q ≥ p ≥ pi0, then: E
[
χ(q) | χ(p), χ(pi0)

]
= E[χ(q) | χ(p)], by the Markov property, so the
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covariance expression simplifies to

Ci(χ(p), χ(q)) =E
[
χ(p)E[χ(q) | χ(p)] | χ(pi0)

]
− Eiχ(p)E

[
E[χ(q) | χ(p)] | χ(pi0)

]
=E
[
χ(p)(χ(p) + µ(q − p)) | χ(pi0)

]
− Eiχ(p)E

[
χ(p) + µ(q − p) | χ(pi0)

]
=Viχ(p),

in which the second equality uses E[χ(q) | χ(p)] = χ(p) + µ(q − p). Instead, if q > pi0 > p, then:
E
[
χ(q) | χ(p), χ(pi0)

]
= E

[
χ(q) | χ(pi0)

]
, by the Markov property, so the covariance expression simplifies

to

Ci(χ(p), χ(q)) = E
[
χ(p)E

[
χ(q) | χ(pi0)

]
| χ(pi0)

]
− Eiχ(p)E

[
χ(q) | χ(pi0)

]
= 0.

Thus, the covariance formula holds. �

The Brownian motion structure implies that the conditional distribution of χ(p) and χ(q) given χ(pi0)
is jointly Gaussian, for all p, q ∈ R \ {pi0}. The CDF of χ(q) | χ(pi0) is denoted by F (·, q|χ(pi0), pi0). The
next result states that beliefs are monotone in status-quo outcome and admit an invariance property.

Proof of Lemma 7

Lemma 18 (FOSD and Translation Invariance of beliefs.). For all y, y′ ∈ R such that y ≥ y′, we have:

F (·, q|y, pi0) ≤ F (·, q|y′, pi0) pointwise for all q, pi0 ∈ R,

moreover: F (x+ ∆, q|y + ∆, pi0) = F (·, q|y′, pi0) for all ∆, x, y, q, pi0 ∈ R.

Proof. Letting Φ be the CDF of a standard Gaussian random variable, we observe that F (x′, q|y′, pi0) =
Φ
(
x′−y′−µ(q−pi0)√

|q−pi0|ω

)
. �

11.2.2 Derivatives of Variance and Covariance terms

We define the left and right derivatives of Viχ(p) and Ci(χ(p), χ(q)) with respect to p, using Iverson
brackets ([Y ] = 1 if Y is true, and [Y ] = 0 otherwise). First, let’s observe that:

Ci(χ(p), χ(q)) =



(
q − pi0

)
+ω if q < p and p ≥ pi0,

(p− pi0)ω if p ≤ q and p ≥ pi0,(
pi0 − p

)
ω if q < p and p < pi0,(

pi0 − q
)
+ω if p < q and p < pi0,
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from which it follows that:

∂−Viχ(p) =

−ω p ≤ pi0,
ω p > pi0,

∂+Viχ(p) =

−ω p < pi0,

ω p ≥ pi0,

∂−Ci(χ(p), χ(q)) =

[p ≤ q]ω p > pi0,

−[p > q]ω p ≤ pi0,
∂+Ci(χ(p), χ(q)) =

[p < q]ω p ≥ pi0,
−[p ≥ q]ω p < pi0.

In particular, we have that:

∂Ci(χ(p), χ(q)) =

∂p(min{p, q} − pi0)ω if p ≥ pi0,
−∂p(max{p, q} − pi0)ω if p < pi0.

=


(

1
2 −

1
2∂p|p− q|

)
ω if p ≥ pi0,(

−1
2 −

1
2∂p|p− q|

)
ω if p < pi0.

= 1
2
(
1− 2[p < pi0]− ∂p|p− q|

)
ω

∂Viχ(p) = 1− 2[p < pi0]

Lemma 19 (Concavity of VCV). The function pi 7→
∑

(i,j)∈N2 qij Cov[χ(pi), χ(pj) | χ(p?0) = x?0] is
convex on R for all i ∈ N and p?0 ∈ R, and

gi(pi, p−i) := ∂+pi
∑

(i,j)∈N2

qij Cov[χ(pi), χ(pj) | χ(p?0) = x?0]

= qT
i•1− 2qT

i•1[pi < pi0] + α
∑
j∈N

gij∂+pi |pi − pj |

= qT
i•1− 2qT

i•1[pi < pi0] + α
∑
j∈N

gij([pi ≥ pj ]− [pi < pj ]),

and gi(pi, ·) is nonincreasing on Rn−1. Moreover, the function p 7→
∑

(i,j)∈N2 qij Cov[χ(pi), χ(pj) |
χ(p?0) = x?0]n is convex on [p?0, p]n.

Proof. First, we show that the function f : pi 7→
∑

(i,j)∈N2 qij Cov[χ(pi), χ(pj) | χ(p?0) = x?0] is convex.
By definition of Q, we have that:

f(pi) =
∑
i∈N

Var[χ(pi) | χ(p?0) = x?0]−
∑

(i,j)∈N2

gij Cov[χ(pi), χ(pj) | χ(p?0) = x?0]

Thus, for all i ∈ N , assuming ω = 1 without loss of generality, we have:

∂+pif(pi) = 1− 2[pi < pi0]− α
∑
j∈N

gij(−∂+pi |pi − pj | − 2[pi < pi0])− α
∑
j∈N

gij

= qT
i•1− 2qT

i•1[pi < pi0] + α
∑
j∈N

gij∂+pi |pi − pj |.

Thus, ∂+pif is a nondecreasing function and sof is convex on R (Rockafellar, 1970).
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Let’s show the second part of the lemma. Let’s observe that:

p ∈ [p?0, p]n =⇒ f(pi) =
∑

(i,j)∈N2

qij min{pi − p?0, pj − p?0}ω.

Joint convexity follows. �

11.2.3 Common Prior

In this section, we define a common prior over the outcome function, parametrized by the amount
of noise about the initial value of the Brownian motion. As the noise grows unboundedly large, the
interim beliefs converge to the beliefs of the heterogeneous status quo game introduced in Section 5 and
analyzed in Section 12.

Timeline Let’s describe a timeline of a game. Every player knows the profile of status-quo policies
(p1

0, . . . , p
n
0 ) ∈ Rn.

(1) Nature draws the initial value X(0) from a normal distribution with mean 0 and variance σ2
0 ≥ 0.

(2) Nature draws the outcome function X : R → R from a Brownian motion with drift µ < 0, variance
parameter ω > 0 and starting point (0, X(0)).

(3) Player i privately observes the realization of signal Si about X(0) and the outcome corresponding
to her own status quo policy: X(pi0).

After (3), players update their beliefs using Bayes’ rule, and then simultaneously choose real-valued
policies. i’s payoff from the policy profile p is ui(X(p1), . . . , X(pn)). We assume that Si = X(0) + σεi,
for σ ≥ 0 and a standard Gaussian random variable εi, and that for all pairs of players i 6= k, εi is
independent from εk and from X(0). To ease on notation, we assume that ω = 1. In the limit as
σ0 →∞ and σ →∞, Bayes’ rule for jointly Gaussian random variables gives us

E[X(0) | I]→ X(pi0),
Var[X(0) | I]→ pi0.

To verify the second formula, let’s observe that X(pi0) − µpi0 is an unbiased signal about X(0), with
precision 1/pi0. In particular, for a Wiener process W (·), we have that:

X(pi0)− µpi0 = X(0) + ω(W (pi0)−W (0)),

and W (pi0)−W (0) is Gaussian, centered at 0, with variance pi0. W (pi0)−W (0) is independent of X(0)
and (εi)i∈N by our hypotheses.

Interim beliefs The information structure is parametrized by (σ0, σ). In this section, we derive
interim beliefs as a function of (σ0, σ) and study the behavior as (σ0, σ)→ (∞,∞). Beliefs are described
by Gaussian random variables, thus we study the expectation, variance and covariance terms of the
outcomes X(p), X(q) given the realization of (Si, X(pi0)) = I, for (p, q) ∈ R2, with q ≤ p. We claim that
E[X(p) | I]→ E

[
X(p) | X(pi0)

]
and Cov[X(p), X(q) | I]→ Cov

[
X(p), X(q) | X(pi0)

]
for all (p, q) ∈ R2.

Case 1: 0 ≤ pi0 ≤ q. By the Markov property: E[X(p) | I] = E
[
X(p) | X(pi0)

]
, E[X(q) | I] =

E
[
X(q) | X(pi0)

]
, and Cov[X(p), X(q) | I] = Cov

[
X(p), X(q) | X(pi0)

]
.
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Case 2: 0 ≤ q ≤ pi0 ≤ p. By the Brownian bridge properties, E[X(q) | I] = E
[
X(q) | X(pi0)

]
, using

E[X(0) | I] = X(pi0). By the Markov property: E[X(p) | I] = E
[
X(p) | X(pi0)

]
. By the law of iterated

covariance:

Cov[X(p), X(q) | I] = E[Cov[X(p), X(q) | X(0), I]|I]
+ Cov[E[X(p) | X(0), I],E[X(q) | X(0), I] | I],

By the Markov property, both terms on the right-hand side are 0.
Case 3: 0 ≤ q ≤ p ≤ pi0. By the Brownian bridge properties, E[X(q) | I]→ E

[
X(q) | X(pi0)

]
, using

the formula for E[X(0) | I]. Similarly, we obtain that E[X(p) | I] → E
[
X(p) | X(pi0)

]
. Towards using

the law of iterated covariance, we observe that, by the Brownian bridge properties

Cov
[
X(p), X(q) | X(pi0), X(0)

]
= (pi0 − p)q

pi0
.

Moreover, for a, b, c, d given by the Brownian bridge properties

Cov
[
E
[
X(p) | X(0), X(pi0)

]
,E
[
X(q) | X(0), X(pi0)

]
| X(pi0), Si

]
=

Cov
[
aX(0) + bX(pi0), cX(0) + dX(pi0) | X(pi0), Si

]
,

from which it follows that:

Cov
[
E
[
X(p) | X(0), X(pi0)

]
,E
[
X(q) | X(0), X(pi0)

]
| X(pi0), Si

]
= abVar[X(0) | I].

By the Brownian bridge properties ab = pi0−p
pi0

pi0−q
pi0

. Using the law of iterated covariance and the formula
for Var[X(0) | I], we observe that

Cov[X(p), X(q) | I]→ (pi0 − p)q
pi0

+ pi0 − p
pi0

(pi0 − q)

→ pi0 − p.

The remaining cases are dealt with similarly.

11.3 Potential

For a profile of policies p ∈ P , we denote the corresponding column vector of outcomes as χ(p), or χ if
the policy profile is unambiguous. In this section, we study the following function:

V (·, x0) : P → R
p 7→ E{v(χ(p))|χ(p0) = x0},

under the assumption that Pi = [p0, p] for all i ∈ N , for given p0, x0 ∈ R.

Definition 6. Let x0 ∈ R. An element of arg maxp∈[p0,p]n V (p, x0) is called the potential maximizer
given x0.

It will be useful to study f(p, x0) = −V (p, x0), and also to omit the dependence on x0 when it leads
to no confusion. Moreover, we let Eχ(p) = E[χ(p)|χ(p0) = x0].
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Lemma 20. f : p→ −V (p, x0) is a strictly convex function on Rn, and

f(p) = (Eχ(p)− β)TQ(Eχ(p)− β) + ωpTQ1 + ω
∑

(i,j)∈N2

gij
|pi − pj |

2 − βTQβ.

Proof. First, we observe that v is a quadratic function of the outcome profile. So, we have the next
chain of equalities:

V (p) = −(Eχ(p)− β)TQ(Eχ(p)− β)−
∑

(i,j)∈N2

qij(min{pi, pj} − p0)ω + βTQβ

= −(Eχ(p)− β)TQ(Eχ(p)− β)−
∑

(i,j)∈N2

qij(pi/2 + pj/2)ω+

+
∑

(i,j)∈N2

qij |pi − pj |ω/2 + βTQβ

= −(Eχ(p)− β)TQ(Eχ(p)− β)+

+
∑
i∈N

(1− gT
i•1)piω −

∑
(i,j)∈N2

gij |pi − pj |ω/2 + βTQβ.

The second equality expresses min{pi, pj} = pi+pj−|pi−pj |
2 , and the third uses the definition of Q. �

Towards finding the potential maximizer, we find the subdifferential of f , and ∂ denotes the
subdifferential operator with respect to the vector of policies p. By the above Lemma, we have that:

∂f(p) = 2µQ(Eχ(p)− β) +Q1ω + ω

2 ∂
∑

(i,j)∈N2

gij |pi − pj |

∂f(p)
2µ = Q(Eχ(p)− β − 1k)− k

2∂
∑

(i,j)∈N2

gij |pi − pj |.

The subdifferential of f is

∂f(p) =
{
y ∈ Rn : y

2µ = Q(Eχ(p)− β − 1k)− (G�A)1k, for some A such that

aij = −aji, pi > pj =⇒ aij = 1, pi = pj =⇒ aij ∈ [−1, 1]
}
.

Let 0 be a column of zeroes and IS : Rn → R be the characteristic function of S ⊆ Rn. By strict
convexity of f and convexity of P , standard results in convex analysis (Rockafellar, 1970) imply that
the potential maximizer is the unique p ∈ P such that:

0 ∈ ∂f(p) + ∂IP (p).

Lemma 21. There exists a unique potential maximizer given x0 ∈ R. Moreover, p ∈ (p0, p)n is the
unique potential maximizer given x0 ∈ R if, and only if:

Eχ(p) = β + 1k + (I −G)−1(G�A)1k,
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for some skew-symmetric A = [aij : i, j ∈ N ] such that:

aij = 1 if pi > pj, and aij ∈ [−1, 1] if pi = pj , for all i, j ∈ N.

Proof. For interior p, it is necessary and sufficient that 0 ∈ ∂f(p). The result follows from the preceding
derivation. �

12 Proofs for Section 5

12.1 General Model

In this section, we study the heterogeneous-status-quo game. We formulate it as a Bayesian game and
study its Bayesian Nash equilibria. The definition of the Bayesian game and of Bayesian Nash equilibria
are in terms of interim beliefs, and follow closely the respective definitions in Van Zandt and Vives
(2007). The following definitions depend on a vector of status-quo policies p0 such that: pi0 6= pj0, for all
players i, j with i 6= j. Thus, the heterogeneous status-quo game given p0 is G(p0). In this section, we
maintain Assumption 3.

Components of the game

(1) The set of players is N .

(2) The type space of player i is (R,B), in which B is the Borel sigma-algebra; the typical type of
player i is denoted by xi0.

(3) Player i’s type-dependent beliefs are represented by an n − 1-dimensional Gaussian random
vector (χ(pj0))j∈−i with expectation and variance-covariance that are functions of i’s type. Let
j, k ∈ N \ {i}, and xi0 be i’s type, then: the expectation and variance-covariance of (χ(pj0))j∈−i
are given, respectively, by E

[
χ(pj0) | χ(pi0) = xi0

]
and Cov

[
χ(pj0), χ(pk0) | χ(pi0) = xi0

]
, which are

defined in Section 11.2. Let fi(·|xi0) : Rn−1 → R be the PDF of the Gaussian random vector
(χ(pj0))j∈−i with mean and variance-covariance as above. We note that fi is well-defined because
pi0 6= pj0, for all players i, j with i 6= j. Thus, player i’s type-dependent belief is such that: for
every measurable A ⊆ Rn−1 and type xi0 ∈ R, we have the following formula for the probability
of A:

P((χ(pj0))j∈−i ∈ A|xi0) =
∫
A
f(x−i0 |x

i
0) dx−i0 .

In particular, let’s define pi(xi0) as the probability measure on Rn−1 induced by the set-valued
mapping A 7→

∫
A f(x−i0 |xi0) dx−i0 . The function xi0 7→ pi(xi0) gives player i’s interim beliefs.

(4) The action set of player i is Pi = [p
i
, pi], for p

i
< pi, and p

i
, pi ∈ R; we let P := ×i∈NPi and

P−i := ×j∈−iPj .

(5) The payoff of player i is ui : P ×R → R, such that:

ui(p, xi0) = E
[
πi(χ(p1), . . . χ(pn)) | χ(pi0) = xi0

]
.
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Properties of the components of the game In this section, the superdifferential operator ∂ refers
to differentiation with respect to i’s policy pi.

Lemma 22 (Best-Response Equivalence). For all i ∈ N , there exist hi, gi : P−i ×R → R such that,
letting χ = (χ(p1), . . . , χ(pn)):

E
[
πi(χ) | χ(pi0) = xi0

]
− E

[
vi(χ) | χ(pi0) = xi0

]
= hi(p−i, xi0)

and E
[
πi(χ) | χ(pi0) = xi0

]
− E

[
v(χ) | χ(pi0) = xi0

]
= gi(p−i, xi0) for all p ∈ P, xi0 ∈ R.

Proof. Follows from VNM Equivalence established in Lemma 16. �

Proof of Lemma 8

Lemma 23 (Lemma 8). The function ui(·, xi0) exhibits strictly increasing differences in (pi, p−i) for all
xi0 ∈ R, and the function ui((·, p−i), ·) exhibits strictly increasing differences in (pi, xi0) for all p−i ∈ P−i.
Moreover, ui((·, p−i), xi0) is strictly concave.

Proof. First, we establish strict concavity of ui((·, p−i), xi0). For a profile of policies of i’s opponents p−i
and xi0 ∈ R, we study the function

p 7→ −(xi01 + µ(p− pi01)− β)TQ(xi01 + µ(p− pi01)− β)

−
∑

(i,j)∈N2

qij Cov[χ(pi), χ(pj) | χ(pi0) = xi0]

First, we observe that p 7→ −(xi01 + µ(p− pi01)− β)TQ(xi01 + µ(p− pi01)− β) is strictly concave on
Rn because Q is positive definite. Strict concavity follows from previous results and Best-Response
Equivalence.

Let’s establish strictly increasing differences in (pi, xi0). By absolute continuity of the concave
function ui((·, p−i), xi0):

ui((ri, p−i), xi0)− ui((qi, p−i), xi0) =
∫ ri

qi

∂−ui((pi, p−i), xi0) dpi.

By the formulas from Lemma 19

∂−ui(pi, p−i, xi0) = −2µqT
i•(E[χ | χ(pi0) = xi0]− β)

−qT
i•1ω + 2qT

i•1[pi < pi0]ω − α
∑
j∈N

gij∂−pi |pi − pj |ω.

We observe that: (i) monotonicity of F (·, pj ; ti, pi0) in i’s own type (Lemma 18) and (ii) strict diagonal
dominance of Q jointly imply that ∂−ui(pi, p−i, xi0) is strictly increasing in xi0, thus the function
ui((·, p−i), ·) has strictly increasing differences in (pi, xi0) for all p−i ∈ P−i.

Similarly, we establish that the function ui(·, xi0) has strictly increasing differences in (pi, p−i) for all
xi0 ∈ R by monotonicity of ∂−ui(pi, p−i, xi0) with respect to p−i, established in Lemma 19. �

Given the strategic complementarities established in Lemma 23, we draw on the toolset developed
by the literature on incomplete-information games with complementarities to show that a greatest and a
least equilibria exist and are in monotone strategies. Since payoffs in G(p0) are not necessarily bounded,
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we leverage strict concavity of expected payoffs in own action and compactness of action spaces to
establish similar results to (Van Zandt and Vives, 2007).

Remark 3. Let’s observe that: “Assumption 1.”, “Assumption 2.”, “Assumption 3.”, “Part (1) of
Assumption 4.”, and “Part (2) of Assumption 4.” from Van Zandt and Vives (2007) hold. Assumption 1.
holds because we endow the type space of player i, R, with the usual order. Assumption 2. holds because
Pi is a compact interval of the real line, and we endow Pi with the usual metric, so Pi is a lattice. Let’s
show that Assumption 3. holds by verifying that xi0 →

∫
A f(x−i0 |xi0) dx−i0 is measurable. Measurability

holds because f is a well-defined and a continuous real-valued function of xi0 on R. In particular, xi0
enters f only through the expected value of (χ(pj0))j∈−i. ui(p, ·) is a real-valued continuous function on
R for all p ∈ P , and ui(·, xi0) defines a real-valued continuous function on Rn by concavity of ui(·, xi0);
thus, parts (1) and (2) of Assumption 4. hold.

Strategies and equilibrium A strategy for player i is a measurable function σi : R → Pi. Let Σi

denote the set of strategies for player i. Let Σ := ×i∈NΣi denote the set of strategy profiles, and let
Σ−i = ×i∈−iΣj denote the set of profiles of strategies for players other than i. Σi is endowed with the
pointwise order to be a lattice, Σ−i and Σ are endowed with the product order and ≤ denotes every
partial order

We use the following shorthand notation given a profile of strategies of i’s opponents σ−i =
(. . . , σi−1, σi+1, . . . ):

χ−i = χ(σ−i) = (. . . , χ(σi−1(χ(pi−1
0 ))), χ(σi+1(χ(pi+1

0 ))), . . . )
(χi, χ−i) = (χ(pi), χ(σ−i)) = (. . . , χ(σi−1(χ(pi−1

0 ))), χ(pi), χ(σi+1(χ(pi+1
0 ))), . . . ),

and χ is the column vector of outcomes corresponding to (χi, χ−i).
The expected payoff of player i, given σ−i, is

Ui(pi, xi0;σ−i) := E{ui(χ(pi), χ(σ−i))|χ(pi0) = xi0}, xi0, pi ∈ R.

We use Ui(pi, xi0;σ−i,p0) when the particular status-quo policy profile is important; we note that
Ui(pi, xi0;σ−i,p0) depends on pj0 through F (·, pj0;xi0, pi0) if j 6= i. Let ϕi(xi0;σ−i) be the set of policies
that maximize Ui(pi, xi0;σ−i),

ϕi(xi0;σ−i) := arg max
pi∈Pi

Ui(pi, xi0;σ−i).

Then, we have that σ ∈ Σ is a Bayesian Nash equilibrium if, and only if:

σi(xi0) ∈ ϕi(xi0;σ−i), for all xi0 ∈ R, i ∈ N.

Let βi : Σ−i → Σi denote player i’s best-response correspondence

βi(σ−i) := {σi ∈ Σi : σi(xi0) ∈ ϕi(xi0;σ−i) for all xi0 ∈ R}.

Lemma 24. The expected payoff to player i is, up to a term that is constant with respect to i’s policy
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pi:

Ui(pi, xi0;σ−i) =− (E[χ | χ(pi0) = xi0]− β)TQ(E[χ | χ(pi0) = xi0]− β)
− V[χ(pi) | χ(pi0) = xi0]

− 2
∑
j∈−i

qij
∫
xj0∈R

Cov[χ(pi), χ(sj(xj0)) | χ(pi0) = xi0] dF (xj0, p
j
0;xi0, pi0).

Moreover:

(1) Ui(pi, xi0;σ−i) is strictly concave in pi.

(2) Ui(pi, xi0;σ−i) exhibits strictly increasing differences in (pi, xi0) if σ−i is a profile of nondecreasing
strategies.

Proof. First, we establish strict concavity using a result in Radner (1962) (“Lemma”, p. 863) and
Lemma 23.

Let’s establish strictly increasing differences in (pi, xi0). By absolute continuity of the concave
function Ui(·, xi0;σ−i), we have

Ui(ri, xi0;σ−i)− Ui(qi, xi0;σ−i) =
∫ ri

qi

∂−Ui(pi, xi0;σ−i) dpi.

We inspect monotonicity of ∂−Ui(pi, xi0;σ−i) with respect to ti, using the formulas in Lemma 23 and
Lemma 19. Our proof is complete given: (i) monotonicity of F (·, pj0;xi0, pi0) in the sense of FOSD with
respect to xi0 (Lemma 18), and (ii) strict diagonal dominance of Q. �

Remark 4. Item (2) in Lemma 24 implies that the Single Crossing Condition for games of incomplete
information (Athey, 2001) is satisfied in G(p0). The reason is that strictly increasing differences imply
the Milgrom-Shannon single-crossing property of incremental returns.

The following result restricts the type spaces to compact sets.

Lemma 25 (Compact type spaces). For all i, there exist types xi0, xi0 ∈ R, such that:

xi0 > xi0 =⇒ ϕi(xi0, σ−i) = {pi}, for all σ−i ∈ Σ−i
and xi0 < xi0 =⇒ ϕi(xi0, σ−i) = {p

i
}, for all σ−i ∈ Σ−i.

Proof. We establish the first claim. Let σ−i be the least element in Σ−i, which is given by a profile of
constant functions. Let xi0 be such that: pi ∈ ϕi(xi0, σ−i). xi0 is well-defined by an application of Topkis’
Theorem, because (i) ϕi(·, σ−i) is nonempty-valued and continuous correspondence (by strict concavity
of Ui(pi, xi0;σ−i) as a function of pi and Berge’s Theorem, respectively), and (ii) Ui(pi, xi0;σ−i) exhibits
strictly increasing differences in pi, xi0 on Pi×R. Ui(pi, xi0;σ−i) exhibits increasing differences in (pi, xi0)
(Lemma 24), thus xi0 > xi0 =⇒ ϕi(xi0, σ−i) = {pi}. The first follows because Ui(pi, xi0;σ−i) exhibits
increasing differences in (pi, σ−i). The second claim is established analogously. �

Lemma 26 (Measurability of GBR). The mapping xi0 → supϕi(xi0;σ−i) is measurable.

Proof. By strict concavity of Ui(·, xi0;σ−i), its maximizer on Pi exists and is unique, so supϕi(xi0;σ−i) =
ϕi(xi0;σ−i). Ui(pi, ·;σ−i) is continuous, so by Berge’s maximum theorem the unique selection from
ϕi(·;σ−i) is a real-valued continuous function on R. The claim follows from Corollary 4.26 in Aliprantis
and Border (2006). �
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Remark 5. Lemma 26 admits a different proof that is similar to the apprach taken by Van Zandt and
Vives (2007). Let’s observe that Ui(pi, ·;σ−i) is a continuous real-valued function on R by Lemma 24.
Let’s observe that Ui(·;σ−i) is continuous in i’s own policy, and measurable in i’s own type. Thus,
Ui(·;σ−i) is a Carathéodory function. Therefore, the Measurable Maximum Theorem (Aliprantis and
Border (2006), Theorem 18.19) holds.

If σi is a nondecreasing function, by Lemma 25 its generalized inverse σ−1
i is well-defined:

σ−1
i (pi) = inf

{
xi0 ∈ R : pi ≤ σi(xi0)

}
, pi ∈ Pi.

Moreover, if σi is nondecreasing, σ−1
i is nondecreasing, left-continuous and admits a limit from the right

at each point given Lemma 25. We define σ−i to be the generalized inverse of σi extended by continuity
to be a correspondence:

σ−i : Pi ⇒ R
pi 7→ [σ−1

i (pi), lim
p′i→p

+
i

σ−1
i (p′i)] =: [σ−i1(pi), σ−i2(pi)].

Proof of Lemma 9 The result is a consequence of the following Lemma.

Lemma 27. If σ is a Bayesian Nash equilibrium, the left and right derivatives of Ui(pi, xi0;σ−i) with
respect to pi and evaluated at pi = σi(xi0) are, respectively:

∂−Ui(pi, xi0;σ−i) =


−2µqT

i•(E[χ | χ(pi0) = xi0]− β)− qT
i•1ω−∑

j gij [2F (σ−1
j1 (pi), pj0;xi0, pi0)− 1]ω if pi > pi0,

−2µqT
i•(E[χ | χ(pi0) = xi0]− β) + qT

i•1ω−∑
j∈−i gij [2F (σ−1

j1 (pi), pj0;xi0, pi0)− 1]ω if pi ≤ pi0,

∂+Ui(pi, xi0;σ−i) =


−2µqT

i•(E[χ | χ(pi0) = xi0]− β)− qT
i•1ω−∑

j gij [2F (σ−1
j2 (pi), pj0;xi0, pi0)− 1]ω if pi ≥ pi0,

−2µqT
i•(E[χ | χ(pi0) = xi0]− β) + qT

i•1ω−∑
j gij [2F (σ−1

j2 (pi), pj0;xi0, pi0)− 1]ω if pi < pi0.

Proof. The result follows from Lemma 24 and the expression for the covariance in Section 11.2.2. �

Lemma 28. Let σ−i be a profile of nondecreasing strategies of i’s opponents. Then: ϕi(·;σ−i) is
nonempty-valued, uniquely-valued, continuous and nondecreasing in the strong set order.

Proof. ϕi(·; s−i) is nonempty-valued, uniquely-valued and continuous by Berge’s Theorem, since: (i) Pi
is nonempty and compact, and (ii) Ui(·, xi0;σ−i) is strictly concave (Lemma 24), and Ui(pi, xi0;σ−i) is a
continuous function of x0 (Lemma 24, noting that Ui(pi, x0; s−i) is a strictly concave function of x0).

ϕi(·;σ−i) is nondecreasing by Topkis’ Theorem (Topkis (1978), Theorem 6.3), because Ui(pi, xi0;σ−i)
exhibits strictly increasing differences in (pi, xi0) (Lemma 24). �

Lemma 29. The strategy profile of nondecreasing strategies σ is a Bayesian Nash equilibrium if, and
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only if, the following conditions are satisfied for all i ∈ N , xi0 ∈ R.

k
∑
j∈N

gij [2F (σ−1
j2 (σi(xi0)), pj0;xi0, pi0)− 1] ≥ qT

i•(E[χ | χ(pi0) = xi0]− β − 1k)

≥ k
∑
j∈N

gij [2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1] if σi(xi0) > pi0,

k
∑
j∈N

gij [2F (σ−1
j2 (σi(xi0)), pj0;xi0, pi0)− 1] ≥ qT

i•(E[χ | χ(pi0) = xi0]− β + 1k)

≥ k
∑
j∈N

gij [2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1] if σi(xi0) < pi0,

kqT
i•1 + k

∑
j∈N

gij [2F (σ−1
j2 (σi(xi0)), pj0;xi0, pi0)− 1] ≥ qT

i•(E[χ | χ(pi0) = xi0]− β)

≥ −kqT
i•1 + k

∑
j∈N

gij [2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1] if σi(xi0) = pi0.

Proof of Lemma 10

Proof. The result is a consequence of the above Lemma. Assuming p
i

= pi0, the strategy profile of
nondecreasing strategies σ is a Bayesian Nash equilibrium if, and only if, the following condition is
satisfied. For all i ∈ N and xi0 ∈ R such that σi(xi0) > pi0, there exists a matrix A = [aij ], such that:

E[χ | χ(pi0) = xi0] = β + 1k +Q−1G�A1k,

and aij ∈ [2F (σ−1
j1 (σi(xi0)), pj0;xi0, pi0)− 1, 2F (σ−1

j2 (σi(xi0)), pj0;xi0, pi0)− 1]. �

Existence of Bayesian Nash equilibria

Lemma 30 (Properties of GBR mapping). The following hold.

(1) βi(σ−i) has a greatest element, which we call βi(σ−i), for all σ−i ∈ Σ−i.

(2) For σ′−i, σ−i ∈ Σ−i such that σ′−i ≥ σ−i, we have that βi(σ′−i) ≥ βi(σ−i).

(3) If the strategies in σ−i are nondecreasing, then the unique strategy given by βi(σ−i) is nondecreasing
(in i’s type).

Proof. Ui(pi, xi0;σ−i) is continuous as a function of pi and has increasing differences in pi, σ−i because
increasing differences are preserved by integration. Thus, by “Lemma 7” in Van Zandt and Vives (2007),
ϕi(xi0;σ−i) is a nonempty complete lattice, and (2) holds.

(3) is established in Lemma 28.
(1) is a consequence of Lemma 26. �

Proof of Proposition 8

Lemma 31 (Proposition 8). There exist a greatest and a least Bayesian Nash equilibrium, and they
are in nondecreasing strategies.

Proof. ui(·, xi0) is a continuous real-valued function on the compact set P , so ui(·, xi0) is bounded. Given
Lemma 30, the proof follows from the same argument as that of “Lemma 6” in Van Zandt and Vives
(2007). �
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Proof of Proposition 9 The result is a consequence of the following result, which upper bounds the
distance between two equilibrium strategies of any player, in the sense of the sup norm.

Lemma 32. If σi(xi0)− σi(xi0) > c, for i ∈ N, xi0 ∈ R, c > 0, then:

ω > µ2 1
α
∑

j
gij

1−α
∑

j
gij

c

Equivalently, if ω ≤ v, then: maxi∈N |σi − σi| ≤ v
α
∑

j
gij

1−α
∑

j
gij
/(µ2).

Proof. Let σ, σ ∈ Σ be, respectively, the greatest and least Bayesian Nash equilibria, and suppose that
they are distinct elements of Σ. Let’s take i ∈ N be such that: i ∈ arg maxi′∈N max

xi
′

0 ∈R σi′(xi
′

0 )−σi′(xi
′

0 ).
First, we verify that i is well defined. By hypothesis, σi′ ≥ σi′ pointwise. Thus, xi′0 7→ σi′(xi

′
0 )− σi′(xi

′
0 )

is bounded below pointwise by a constant function that takes value 0, and bounded above pointwise
by a constant function that takes value maxj∈N pj − pj > 0. It follows that sup{σi′(xi

′
0 ) − σi′(xi

′
0 ) :

xi
′

0 ∈ [xi′0 , xi
′

0 ]} is well defined, and sup{σi′(xi
′

0 ) − σi′(xi
′

0 ) : xi′0 ∈ [xi′0 , xi
′

0 ]} = max{σi′(xi
′

0 ) − σi′(xi
′

0 ) :
xi
′

0 ∈ [xi′0 , xi
′

0 ]} because σi′ , σi′ are continuous by Berge’s Theorem (Lemma 28). By Lemma 25 result,
max{σi′(xi

′
0 )− σi′(xi

′
0 ) : xi′0 ∈ [xi′0 , xi

′
0 ]} ≥ max{σi′(xi

′
0 )− σi′(xi

′
0 ) : xi′0 /∈ [xi′0 , xi

′
0 ]} = {0}. It follows that

arg max
xi
′

0 ∈R σi′(xi
′

0 )− σi′(xi
′

0 ) ⊆ [xi′0 , xi
′

0 ]. Thus, maxi′∈N max
xi
′

0 ∈R σi′(xi
′

0 )− σi′(xi
′

0 ) has a solution. It
follows that i is well defined.

Let yi′ ∈ arg max
xi
′

0 ∈R σi′(xi
′

0 )− σi′(xi
′

0 ), for all i′ ∈ N . The problem maxi′∈N σi′(yi′)− σi′(yi′) has
a solution, which we denote by j, and we define t := yj . By definition of yi′ , i′ ∈ N , we have that
maxi′∈N σi′(yi′)− σi′(yi′) ≥ maxi′∈N max

xi
′

0 ∈R σi′(xi
′

0 )− σi′(xi
′

0 ). Therefore, i = j and t is the type (of
player i) for which σj(xj0)− σj(x

j
0) is maximized across players (j) and types (xj0). By the definition of

Bayesian Nash equilibrium, we have

∂+piUi(σi(t), t;σ−i) ≥ 0 and ∂−piUi(σi(t), t;σ−i) ≤ 0.

Therefore:

∂+piUi(σi(t), t;σ−i)− ∂−piUi(σi(t), t;σ−i) ≥ 0.

Let’s verify that:

A := −2µ
(
E
[
χ(σi(t))|χ(pi0) = t

]
− E

[
χ(σi(t))|χ(pi0) = t

]
−
∑
j

gijE
[
χ(σj(χ(pj0)))|χ(pi0) = t

]
− gijE

[
χ(σj(χ(pj0)))|χ(pi0) = t

])
< −2µ2cqT

i•1.

The claim follows from the next inequality,

A = −2µ2(σi(t)− σi(t)) + 2µ2∑
j

gijE
[
χ(σj(χ(pj0)))|χ(pi0) = t

]
− E

[
χ(σj(χ(pj0)))|χ(pi0) = t

]
≤ −2µ2(σi(t)− σi(t))qT

i•1,

which holds by definition of i and t.
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We have that:

∂+piUi(σi(t), t;σ−i)− ∂−piUi(σi(t), t;σ−i) =
A+B − [σi(t) > pi0]2qT

i•1ω + [σi(t) > pi0]2qT
i•1ω.

With:

B := −2ω
∑
j∈N

gijF (σ−1
j2 (σi(t)), pj0; t, pi0)− gijF (σ−1

j1 (σi(t)), p
j
0; t, pi0) ∈ [−2ω(1− qT

i•1), 2ω(1− qT
i•1)]

Then:

A+B − [σi(t) > pi0]2qT
i•1ω + [σi(t) > pi0]2qT

i•1ω > 0
B > −A

2ω(1− qT
i•1) > 2µ2cqT

i•1

ω
α
∑
j gij

1− α
∑
j gij

> µ2c

�

12.2 Finite Policy Spaces

12.2.1 Auxiliary results

The expected payoff of player i given symmetric information, σ−i, and a profile of status quo outcomes
(x1

0, . . . , x
n
0 )T = x0 ∈ Rn is

Ui(pi,x0;σ−i) := E{ui(χ(pi), χ(σ−i))|χ(p1
0) = x1

0, . . . , χ(pn0 ) = xn0},

for all pi ∈ R. We use Ui(pi,x0;σ−i,p0) when the status-quo policy profile is important.
We derive a second expression for the right and left derivatives of expected payoffs, based on vi. For

given policy p and nondecreasing strategy sj :

Ci(χ(p), χ(sj)) =


ω
∫
(−∞,s−j1(p)) sj(x

j
0)− pi0 dF i(xj0) + ω

[
1− F i(s−j1(p))

]
(p− pi0) , p > pi0,

0 , p = pi0,

ωF i(s−j2(p))(p− pi0)− ω
∫
(s−j2(p),∞) sj(x

j
0)− pi0 dF i(xj0) , p < pi0.

Thus, we have

∂Ci(χ(pi), χ(sj)) =


ω
[
1− F i(s−j (pi))

]
, pi > pi0,[

−ωF i(s−j2(pi0)), ω − ωF i(s−j1(pi0))
]

, pi = pi0

−ωF i(s−j (pi)) , pi < pi0.
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We express the left and right derivatives of the conditional expected payoff at pi 6= pi0 as follows.

∂−Ui(pi, xi0; s−i) ∝ Eiχ(pi)− δi − α
∑
j

γijEiχ(sj)−
1
−2µ

∂

∂pi
Viχ(pi)+

+2α 1
−2µ

∑
j

γij∂−Ci(χ(pi), χ(sj))

∂+Ui(pi, xi0; s−i) ∝ Eiχ(pi)− δi − α
∑
j

γijEiχ(sj)−
1
−2µ

∂

∂pi
Viχ(pi)+

+2α 1
−2µ

∑
j

γij∂+Ci(χ(pi), χ(sj)),

in which −2µ is the proportionality constant.

Lemma 33 (Continuity). Let s be a strategy profile and x0 := (x1
0, . . . , x

n
0 ) be the profile of status-quo

outcomes corresponding to status-quo policies p0 := (p1
0, . . . , p

n
0 ). Then:

(1) U i(pi, x0; s−i, p0) is a continuous function of (. . . , si−1(xi−1
0 ), pi, si+1(xi+1

0 ), . . . ).

(2) If · · · < p`−1
0 < p`0 < p`+1

0 < . . . , then: U i(pi, x0; s−i, p0) is a continuous function of p`0 on
(p`−1

0 , p`+1
0 ), ` ∈ N .

Proof. We prove (1) first. We have:

U i(pi, x0; s−i, p0) =
∫
· · ·
∫
ui(. . . , χ(si−1(xi−1

0 )), χ(pi), χ(si+1(xi+1
0 )), . . . )

dm(. . . , χ(si−1(xi−1
0 )), χ(pi), χ(si+1(xi+1

0 )), . . . ),

Where m is the distribution of a random vector that we describe in what follows. Because ui is quadratic,
the mean vector and the variance-covariance matrix of the random vector described by G determine
U i(pi, x0; s−i, p0). Thus, we prove (1) by means of the next two claims:

E
[
χ(q)|χ(p1

0) = x1
0, . . . , χ(pn0 ) = xn0

]
is a continuous function of q. By the properties of Brownian

bridges:

E
[
χ(q)|χ(p1

0) = x1
0, . . . , χ(pN0 ) = xn0

]
=

χ(p1) + χ(p2)−χ(p1)
p2−p1

(q − p1) p1 ≤ q ≤ p2, p1 = max{pi0 : pi0 ≤ q}, p2 = min{pi0 : pi0 ≥ q}
χ(max p0) + µ(q −max p0) q ≥ max p0

χ(min p0) + µ(q −min p0) q ≤ min p0

Cov
[
χ(q), χ(q′)|χ(p1

0) = x1
0, . . . , χ(pn0 ) = xn0

]
is a continuous function of q, q′. Let q ≤ q′:

Cov
[
χ(q), χ(q′)|χ(p1

0) = x1
0, . . . , χ(pn0 ) = xn0

]
=

ω (p2−q′)(q−p1)
p2−p1

p1 ≤ q ≤ p2, p1 = max{pi0 : pi0 ≤ q}, p2 = min{pi0 : pi0 ≥ q}
Cov[χ(q′), χ(q) | χ(max p0)] q′ ≥ q ≥ max p0

Cov[χ(q′), χ(q) | χ(min p0)] q ≤ q′ ≤ min p0

0 else.
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Let’s establish (2). Let p1
0 < p2

0 < . . . . The expressions above show that mean and covariance terms of
the pair of random variables χ(q), χ(q′) | χ(p1

0), . . . , χ(pn0 ) are locally continuous in p1
0, . . . , p

n
0 . �

12.2.2 Definitions and Assumptions

We consider the same interim Bayesian game as the heterogeneous status quo game, except that the
policy space of every agent is a finite nonempty set and that n = 2. In particular, we consider the
two-player heterogeneous status quo game F , for fixed status quo policy profile p0 ∈ R2 and the finite
policy spaces defined in what follows, under the maintained assumption that p1

0 6= p2
0.

Let Ai = {ai,1, . . . , ai,Mi}, for given Mi ∈ N and every i ∈ N . We define the following payoff
differences, towards studying strategic complementarities

dui(ai, a′i, a−i, xi0) =
∫ ai

a′i

ui(pi, a−i, xi0) dpi

δi(ai, a′i, a−i, a′−i, xi0) = dui(ai, a′i, a−i, xi0)− dui(ai, a′i, a′−i, xi0).

Lemma 34 (Dominance Region). There exists x, x ∈ R such that: x < x and, for all i ∈ N, a−i ∈ A−i
it holds that

dui(ai,Mi , a
′
i, a−i, x

i
0) > 0 if ai 6= ai,Mi and xi0 > x,

and dui(ai,1, a′i, a−i, xi0) > 0 if ai 6= ai,1 and xi0 < x.

Proof. The result follows from Lemma 25. In particular, in the notation of the aforementioned result,
we define

x := max{x1, x2}
x := max{x1, x2}.

�

Lemma 35 (Strategic Complementarities). The function ui(·, xi0) exhibits increasing differences in
(ai, a−i), for all i ∈ N and xi0 ∈ R.

Proof. The result follows from Lemma 23. �

Lemma 36 (Type Monotonicity). The function ui(·, a−i, xi0) exhibits strictly increasing differences in
(ai, xi0), for all i ∈ N and a−i ∈ A−i.

Proof. The result follows from Lemma 23. �

Lemma 37 (Constant Type Monotonicity). For all i ∈ N, a′′i , a′i ∈ Ai with a′′i > a′i, and all a′′−i, a′−i ∈
A−i with a′′−i > a′−i, the function δi(a′′i , a′i, a′′−i, a′−i, ·) is constant on R.

Proof. In the proof of Lemma 23, we show an expression for dui(ai, a′i, a−i, xi0), which we use to write:

δi(a′′i , a′i, a′′−i, a′−i, xi0) =∫ a′′i

a′i

−2µ(−gi−i)µ(a′′−i − a′−i)− gi−i(∂−|pi − a′′−i| − ∂−|pi − a′−i|)ω dpi.

The result follows. �
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Lemma 38 (Existence of Cutoffs). For all i ∈ N, a′′i , a′i ∈ Ai and all a−i ∈ A−i, there exists x̃ ∈ R
such that

dui(a′′i , a′i, a−i, x̃) = 0.

Proof. In the proof of Lemma 23, we show that ui is strictly concave in i’s policy. The result follows. �

Lemma 39 (Payoff Continuity). For all i ∈ N, ai ∈ Ai and a−i ∈ A−i, the function ui(ai, a−i, ·) is
continuous on R.

Proof. ui(ai, a−i, ·) is a strictly concave function of the column vector (E[χ(aj)|χ(pi0) = xi0],E[χ(a−j)|χ(pi0) =
xi0])T, for a given j ∈ N , by positive definiteness of Q. The result follows since ui(ai, a−i, xi0)
is a function of xi0 only through (E[χ(aj)|χ(pi0) = xi0],E[χ(a−j)|χ(pi0) = xi0])T, and the function
xi0 7→ (E[χ(aj)|χ(pi0) = xi0],E[χ(a−j)|χ(pi0) = xi0])T is affine. �

In F , a strategy for player i is a function αi : R → Ai. We study Bayesian Nash equilibria of F
defined at the interim stage.

12.2.3 Existence of Bayesian Nash Equilibria

The proof is an adaptation of the one in Athey (2001). For simplicity of exposition, we prove the theorem
in the where A := A1 = A2 and M1 − 1 =: M , so that we may relabel policies as in A = {a0, . . . , aM}.
We say that strategy α′i improves upon strategy αi given α−i if: Ui(αi(xi0), xi0;α−i) ≤ Ui(α′i(xi0), xi0;α−i)
for all xi0.

We define the set of i’s cutoffs as

Σ̂i := {(x1, . . . , xM ) ∈ (R ∪ {−∞,∞})M : x1 ≤ x2 ≤ · · · ≤ xM},

Σ̂ = ×i∈N Σ̂i, and Σ̂ = ×j∈−iΣ̂j , We say that a strategy αi has finite cutoffs if a0, aM ∈ αi(R).

Lemma 40 (Finite Cutoffs). Let’s fix i ∈ N . If αi does not have finite cutoffs, there exists strategy α′i
that has finite cutoffs and improves upon αi given some nondecreasing strategy profile of i’s opponents.

Proof. Let’s suppose a0 ∈ αi(R) and aM /∈ αi(R). Let’s define b = inf{xi0 ∈ R : αi(xi0) = maxαi(R)}.
There exists k > 0 such that ∂−Ui(AM , b + k;α−i) > 0, because ∂−U ′i(AM , ·;α−i) is increasing for
nondecreasing α−i Let’s define the strategy α′i for player i as follows:

α′i : y 7→

αi(y) , y ≤ b+ k

aM , y > b+ k

The other cases can be dealt with similarly. �

Definition 7. (i) Given a nondecreasing strategy αi, x ∈ Σ̂i represents αi if the following holds for all
m ∈ {0, . . . ,M}.

xm =∞ if am > maxαi(R), xm = −∞ if am < minαi(R), and:

xm = inf{xi0 ∈ R : αi(xi0) ≥ am}, otherwise.
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(ii) Given a vector x ∈ Σ̂i, strategy αi is consistent with x if:

αi(xi0) =



a0 , xi0 ≤ x1

a1 , x1 < xi0 ≤ x2
...
aM , xM < xi0.

For fixed cutoff profile of i’s opponents, X−i = (xj)j∈−i ∈ Σ̂−i, we denote i’s expected payoff from
policy p as her expected payoff from (χ(p), χ(α−i(x−i0 ))), in which αj is consistent with xj , j ∈ −i; thus,
we have

Ûi(p, xi0;X−i) := Ui(p, xi0;α−i).

We define the best response to X−i of i as:

âBRi (xi0, X−i) = arg max
a∈Ai

Ûi(a, xi0;X−i)

Lemma 41 (Bounds of best-response cutoffs). There exists t, t such that the following holds. For every
i ∈ N,X−i ∈ Σ̂−i, nondecreasing selection ζ from âBRi (xi0, X−i) and cutoffs xi ∈ Σ̂i representing ζ, we
have:

−∞ < t ≤ xi1 ≤ · · · ≤ xiM ≤ t <∞.

Proof. The result follows from Lemma 25. �

Proposition 14 (Existence in Discrete Game). In the game F , there exists an equilibrium in nonde-
creasing strategies.

Proof. We apply Kakutani’s theorem to the following correspondence. Let’s define the set of cutoff
vectors that represent best response strategies to the profile X:

Γi(X−i) = {y ∈ Σ̂i : there exists a strategy for i consistent with y that
is a selection from aBRi (·, X−i)}.

We claim that there exists a fixed point of the correspondence (Γ1, . . . ,ΓI) : Σ→ Σ, where:

Σ := ×i∈NΣi and Σi := {x ∈ [t, t]M : x1 ≤ x2 ≤ · · · ≤ xM}.

Σi is compact, convex subset of RnM . Γ is nonempty-valued because action spaces are finite and the
Single Crossing Condition for games of incomplete information holds. Γ is convex-valued due to “Lemma
2” in Athey (2001), and the Single Crossing Condition for games of incomplete information. Γ has
closed graph, as established in the proof of “Lemma 3” in Athey (2001). Thus, by Kakutani’s theorem,
there exists a fixed point of Γ.

Next, we claim that a fixed point of Γ is an equilibrium of F . It follows from Lemma 41, because if
a strategy is a best-response against X−i, than it admits a representation with finite uniformly bounded
cutoffs. �
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Remark 6. We note that the proof of existence of Bayesian Nash equilibria in F does not rely on the
assumption that n = 2. Thus, it also establishes existence with finite policy spaces and n players.

Remark 7 (Existence in G(p0)). Following the approach in Athey (2001), there is a second existence
proof for nondecreasing strategy equilibria in G(p0), which uses a purification argument given existence
of an equilibrium in nondecreasing strategies in F .

Lemma 42. In G(p0), there exists an equilibrium in which every player’s strategy is nondecreasing.

Proof. For each player i, let’s consider a sequence of action spaces P •i , in which

P ki =
{
p
i
+ m

10k (pi − pi) : m = 0, . . . , 10k
}

, k ∈ N.

For every k, the game where finite action spaces P k1 , P k2 , . . . replace A1, A2, . . . has an equilibrium,
by Lemma 14. Let’s fix a sequence of equilibria in nondecreasing strategies, s•. Because action spaces
P k1 , P

k
2 , . . . are bounded by min p

i
and max pi, s• is a sequence of uniformly bounded nondecreasing

functions. By Helly’s selection theorem, s• admits a pointwise convergent subsequence, so we define
s? := lim s•. Because sk is an equilibrium, it holds that Ui(ski (xi0), xi0; sk−i) ≥ Ui(p, xi0; sk−i), for all k and
p ∈ P ki . Ui(p,x0; sk−i) is a continuous function of (. . . , ski−1(xi−1

0 ), ski+1(xi+1
0 ), . . . ), by lemma 63. Thus,

Ui(p, xi0; sk−i), which is the expectation of Ui(p,x0; sk−i), converges as k →∞. Therefore: it holds that
Ui(s?i (ti), xi0; s?−i) ≥ Ui(p, xi0; s?−i), for all p ∈ Pi. s? is an equilibrium of the game G(p1

0, . . . , p
N
0 ). �

12.2.4 Uniqueness of Bayesian Nash equilibria with 2 players

First, we establish two properties of beliefs in F , which we leverage to establish uniqueness of non-
decreasing strategy equilibrium.

Let Ci denote the space of nondecreasing strategies for player i ∈ N , in which a nondecreasing
strategy is identified by its finite sequence of “real cutoffs” (Mathevet, 2010). For k > 1, let’s compute
the probability that i attaches to her opponent playing strictly less than g = a−i,k ∈ A−i, given that i’s
type is xi0 and −i’s strategy is α−i:

Φ

α−−i1(g)− xi0 − µ(p−i0 − pi0)√
ω|pi0 − p

−i
0 |

,
in which α−−i1(g) is the real cutoff between a−i,k−1 and a−i,k implied by α−i. For k = 1, that probability
is 0.

Towards a definition of the above probability as a function of real cutoffs, we make the following
definitions. Given a policy g ∈ A−i, we let k−i(g) be such that: g = a−i,k−i(g). A real cutoff between
a−i,k and a−i,k+1 is denoted by cr−i,k, for k ∈ {1, . . . ,Mi − 1} (the interpretation for cr−i,k is that types
below cr−i,k play a−i,k and types above cr−i,k play a−i,k+1).

Given a nondecreasing strategy c−i ∈ C−i, g ∈ A−i, xi0 ∈ R, we define:

Λi(g|c−i, xi0) =


Φ
(
cr−i,k−i(g)−1−x

i
0−µ(p−i0 −p

i
0)√

ω|pi0−p
−i
0 |

)
if k−i(g) > 1,

0 if k−i(g) = 1.
.
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Lemma 43 (FOSD and Translation Invariance). For all i ∈ N , and yi0, xi0 ∈ R with yi0 > xi0, we have:

Φ

s− yi0 − µ(p−i0 − pi0)√
ω|pi0 − p

−i
0 |

 < Φ

s− xi0 − µ(p−i0 − pi0)√
ω|pi0 − p

−i
0 |

.
Moreover, let c−i be a column vector real cutoffs with M−i columns corresponding to an element of C−i,
we have that

Λi(g|c−i + ∆1, xi0 + ∆) = Λi(g|c−i, xi0),

for all i ∈ N, g ∈ A−i and ∆ ∈ [0, x− x].

Proof. The first part follows from Lemma 18. The second part follows from the definition of Λi. �

Proposition 15. In the game F , there exists a unique equilibrium in nondecreasing strategies.

Proof. Given that we established existence of an equilibrium in nondecreasing strategies, it suffices to
establish that there exists at most one equilibrium in nondecreasing strategies. The proof uses the
same argument as “Proposition 2” and “Theorem 1” in Mathevet (2010). In particular, Lemmata 34
through 39 imply “Assumptions 1, 2, 3, 4, 5, 6” in Mathevet (2010), and beliefs in F satisfy FOSD and
Translation Invariance. �

Remark 8. This remark explains why the results for G(p0), either for existence and for the charac-
terization of extremal equilibria, are not used in F . This remark is informed by the approach taken in
Mathevet (2010) to establish uniqueness. For notational convenience, our next definition is valid under
the assumption that Ai ⊆ Pi for all i ∈ N ,

ϕFi (xi0, α−i) = arg max
pi∈Ai

Ui(pi, xi0;α−i).

We note that ϕFi differs from ϕi because the respective optimization problems have different feasible sets:
Ai and Pi, respectively. If the mapping xi0 → supϕFi (xi0, α−i) is measurable, then there exists a unique
equilibrium in F .51 However, ϕFi (xi0, α−i) is not necessarily single-valued, so the Caratheodory-function
argument used in G(p0) does not hold in F .

13 Proofs for Section 2

Proof of Lemma 1.

Proof. By strict concavity of expected payoff in own policy (Lemma 23), it is enough to verify that, up

51 Here is the reason. Let’s order individual strategies and strategy profiles in F as in the heterogeneous status quo game.
To establish uniqueness, by Proposition 15, it suffices to establish that there exists a largest and a smallest equilibrium, and
that they are in nondecreasing strategies. Once we establish that the “GBR” mapping is measurable — ie, the equivalent
in F of Lemma 26 in G(p0) —, the same argument that we adopt to establish Proposition 31 in G(p0) is valid in F .
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to a positive proportionality constant of −2µ, the right derivative of expected payoff in own policy is:

∂pi+Eπi(χ(p)) ∝ Eχ(pi)− βi − α
∑
j

γij(Eχ(pj)− βj + ∂pi+|pi − pj |k)

−

1− α
∑
j

γij

 1
−2µ∂pi+Vχ(pi),

which follows from the independent Proposition 16. The result follows because p−i 7→ ∂pi+Eπi(χ(p))
is increasing (this step is shown explicitely in the proof of 23, and it is omitted here for the sake of
brevity.) �

Proof of Proposition 1.

Proof. In G0, strategy spaces are compact intervals and player i’s payoff function is continuous in pi for
all p−i (Lemma 23) and strictly supermodular in (pi, p−i) (Lemma 8). The result follows from Tarski’s
fixed point theorem, and the argument is known in the literature on supermodular games (Milgrom and
Roberts, 1990; Vives, 1990). �

Proof of Proposition 2.

Proof. Without loss of generality, we set p0 = 0 to ease on notation. By right and left differentiation of
the strictly concave expected payoff of player i in own payoff (Lemma 23), at policy profile p, and by the
best-response equivalence established in Lemma 16, the best response constraints for i are equivalent to
the following pair of inequalities:

Eχ(pi)− βi − α
∑
j

γij(Eχ(pj)− βj) ≤ ([pi ≥ 0]− [pi < 0])k

+α
∑
j

γij([pi ≥ pi]− [pi < pj ])k

and ([pi < 0]− [pi ≤ 0])k + α
∑
j

γij([pi < pi]− [pi ≥ pj ])k ≥ Eχ(pi)− βi

−α
∑
j

γij(Eχ(pj)− βj),

which are found by left and right differentiation of the strictly concave potential, separately in each
individual policy (i.e. for all pi’s). The result follows from rearranging the above inequalities in matrix
notation. �

Proof of Lemma 2.

Proof. The result follows directly from the results in Belhaj et al. (2014), and also the analysis in
Ballester et al. (2006). �

Proof of Corollary 1.

Proof. The result follows from the analysis of Callander (2011a), or the same arguments leading to
Lemma 1 and Proposition 2. �
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14 Proofs for Section 3

Proofs of Section 3

Proof of Lemma 2.

Proof. The present proof uses the notation described in Section 11. By the equilibrium decomposition:

QEχ = b+Q1k + (G�A)1k

Thus:

qT
i•Eχ = bi + qT

i•1k +
∑
j

gijaijk

So, by symmetry of G

(Eχ(pi)− Eχ(pj))(1 + gij) = bi − bj + qT
i•1k − qT

j•1k+

+
∑

`/∈{i,j}
(gi` − gj`)Eχ` +

∑
`/∈{i,j}

(gi`ai` − gj`aj`)k + gij(aij − aji)k

Which simplifies to:

(Eχ(pi)− Eχ(pj))(1 + gij) = bi − bj + αγ
∑

`/∈{i,j}
(ai` − aj`)k − 2gk

From the equilibrium decomposition, it holds that: (i) ai`− aj` ∈ [−2, 0] if pi < pj , and (ii) ai`− aj` = 0
only if: p` ∈ {pi, pj} or p` ∈ Pi \ [pi, pj ]. The result follows. �

Proof of Lemma 3

Proof. We use the notation developed in Section 11. We have that, for all i,m ∈ N

Eχ(pi) = βi + k + (I −G)−1
ii

∑
`∈N

gi`ai`k+

+
∑

j∈N\{i,m}
(I −G)−1

ij

∑
`∈N

gj`aj`k + (I −G)−1
im

∑
`∈N

gm`am`k.

Thus:

Eχ(pi)− Eχ(pm) = βi − βm +
[
(I −G)−1

ii − (I −G)−1
mi

]∑
`∈N

gi`ai` −
∑
`∈N

gm`am`

k
Letting g := αγ, by computation of (I −G)−1, we have that the diagonal element is 1−g(n−1)+g

(1−g(n−1))(1+g)
and the off-diagonal element is: g

(1−g(n−1))(1+g) , so that:

(I −G)−1
ii − (I −G)−1

im = 1
1 + g

.
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Thus, by the preceding equality we have:

Eχ(pi)− Eχ(pm) = βi − βm + g

1 + g

∑
`∈N

ai` −
∑
`∈N

am`

k
= βi − βm −

g

1 + g
2k + g

1 + g

 ∑
`∈N\{i,m}

ai` − am`

k.
The result follows from the equilibrium decomposition in Proposition 2 and the hypotheses on p. �

Proof of Lemma 5.

Proof. The result follows from Lemma 16. �

Towards the proof of Lemma 3, we establish an auxiliary result. We say that Γ is complete if:
γij = 1 for all j ∈ N \ {i} and γii = 0 for all i ∈ N . We say that the equilibrium p is ordered if:
p1 < p2 < · · · < pn, and a the equilibrium p is interior if: pi ∈ (p0, p), i ∈ N .

Lemma 44. Let Γ be complete. Then, Assumption 1 is satisfied if, and only if: α < 1/(n−1). Moreover,
if p ∈ (p0, p)n is an ordered equilibrium and i ∈ {1, . . . , n− 1}, then

Eχ(pi)− Eχ(pi+`) = βi − βi+` − 2` α

1 + α
k, ` ∈ {1, . . . , n− i}.

Furthermore, if δi − δi+1 > 2 α
1−αk, then: every interior equilibrium is ordered, and there exists at most

one ordered interior equilibrium.

Proof. Assumption 1 is satisfied if, and only if: α < 1/(n− 1). The result follows from the largest
eigenvalue of Γ being λ(Γ) = n− 1.

“Moreover” part. By the Decomposition of equilibrium expected outcomes, pi < pj implies

Eχ(pi)− Eχ(pj) = βi − βj + α

1 + α

∑
`∈N\{i,j}

(ai` − aj`)k − 2 α

1 + α
k,

in which ai`, aj` are elements of the matrix A in the decomposition, and we used the properties of the
complete Γ. The formula for Eχ(pi)− Eχ(pi+`) in the Lemma follows from the properties of A stated in
the decomposition given that p is ordered.

It remains to verify that Eχ(pi) ≥ βi. We set α̂ = α(n − 1) for α̂ ∈ (0, 1) — if α̂ = 0, then
Eχ(pi) = βi + k ≥ βi. After computation of the Leontieff inverse B, it is established that:

1 + α̂
∑
j∈N

Bijaij = 1− (n− 1)(1− α̂) + α̂

(n− 1 + α̂)(1− α̂) α̂+ α̂

(n− 1 + α̂)(1− α̂) α̂(n− 1),

using the properties of the matrix A for an interior ordered equilibrium p (and the entries of B,
described in the proof of Proposition 3).

We verify that

1 + α̂
∑
j∈N

Bijaij ≤ 0 ⇐⇒ (n− 1)(1− α) + α+ 2α2(n− 2) ≤ 0

Since the left-hand side of the above inequality is always positive, the result follows.
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“Furthermore” part. This result is established in the proof of Proposition 3. �

Proof of Lemma 3.

Proof. The result is an implication of Lemma 44 �

Towards the proof of Lemma 4, we establish an auxiliary result. We say that Γ is a line if: (i)
γii+1 = 1 for all i ∈ {1, . . . , n− 1}, (ii) γii−1 = 1 for all i ∈ {2, . . . , n}, and (iii) γij = 0 otherwise. We
say that the equilibrium p is ordered if: p1 < p2 < · · · < pn.

Lemma 45. Let Γ be a line and 0 < α < 1/2. Then, Assumption 1 is satisfied. Moreover, if p ∈ (p0, p)n
is an ordered equilibrium and i ∈ {1, . . . , n− 1}, then

Eχ(pi)− Eχ(pi+`) = βi − βi+` − a(i, `, n, α)k, ` ∈ {1, . . . , n− i},

for some a(i, `, n, α) > 0.
Furthermore, Eχ(pi) ≥ βi.

Proof. (1) Characterization of the inverse of I − αΓ using Toeplitz matrices.
We have that I − αΓ =: S = [Sij : i, j ∈ N ] in which (i) Sii+1 = −α for all i ∈ {1, . . . , n− 1}, (ii)

Sii−1 = −α for all i ∈ {2, . . . , n}, (iii) Sij = 1 and (iv) Sij = 0 otherwise. This matrix S Toeplitz
becase it is constant on each diagonal. We study the following transformation T of S.

T = 1
α
S,

so that T in which (i) T ii+1 = −1 for all i ∈ {1, . . . , n − 1}, (ii) T ii−1 = −1 for all i ∈ {2, . . . , n},
(iii) T ij = a := 1/α and (iv) T ij = 0 otherwise. T is Toepliz, and the entries of its inverse can be
characterized starting from the two solutions to r2−ar+ 1 = 0. If 0 < α < 1/2, there exists two distinct
roots, defined as:

r− :=1−
√

(1 + 2α)(1− 2α)
2α

r+ :=1 +
√

(1 + 2α)(1− 2α)
2α .

It is straightforward to establish that 0 < r− < 1 < 1/α < r+ < 1/α + 1. By the characterization of
inverse of Toeplitz matrices (e.g., Theorem 2.8 in Meurant (1992)), we have: T−1 = [T−1

ij : i, j ∈ N ] and

T−1
ij =

(ri+ − ri−)(rn−j+1
+ − rn−j+1

− )
(r+ − r−)(rn+1

+ − rn+1
− )

, j ≥ i.

(2) Characterization of vector αΓ�A1k, given an ordered equilibrium. We have that:

αΓ�A1k = α



−1
0
...
0
1

k.
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(3) Characterization of vector e := (I − αΓ)−1αΓ �A1k, given an ordered equilibrium. By
using the definition of T−1, and e = [ei : i ∈ N ] we have that:

ei = −k
(
−

ri+ − ri−
rn+1

+ − rn+1
−

+
rn−i+1

+ − rn−i+1
−

rn+1
+ − rn+1

−

)

= −
rn−i+1

+ − ri+ − rn−i+1
− + ri−

rn+1
+ − rn+1

−
k.

It follows that

ei − ei+` ∝ −
(
rn−i+1

+ − rn−i−`+1
+ − ri+ + ri+`+ − rn−i+1

− + rn−i−`+1
− + ri− − ri+`−

)
,

which is a positive number. We take:

a(i, `, n, α) =
rn−i+1

+ − rn−i−`+1
+ − ri+ + ri+`+ − rn−i+1

− + rn−i−`+1
− + ri− − ri+`−

rn+1
+ − rn+1

−
.

(4) Largest Eigenvalue of Γ. The adjacency matrix Γ is Toeplitz. By known results (Theorem 2.2
in Kulkarni et al., 1999), the largest eigenvalue is

λ(Γ) = −2 cos(πn/(n+ 1)) ∈ [0, 2).

“Furthermore” Part. We verify that ei ≥ −k. In particular,

−ei/k > 1 ⇐⇒ rn−i+1
+ − ri+ − rn−i+1

− + ri− > rn+1
+ − rn+1

−

⇐⇒ −ri+ + ri− > rn+1
+ (1− r−i+ )− rn+1

− (1− r−i− ).

The right-hand side of the above inequality is positive and the left-hand side is negative, by definition
of r+, r− and α ∈ (0, 1/2), i ∈ N . Thus, it holds that −ei/k ≤ 1. �

Proof of Lemma 3.

Proof. The result is an implication of Lemma 45. �

Proofs for section 3.5

A representative consumer has quasi-linear preferences over bundles of n+1 goods, which are represented
by the quadratic utility function U such that

U(q1, . . . , qn, z) =
∑
i

âiqi −
1
2b
∑
i

q2
i −

1
2c

∑
i,j:j 6=i

qiqj + z,

in which r denotes the numéraire good. Let B = c11T + (b − c)I be the matrix with b on the main
diagonal and c in off-diagonal entries.

Lemma 46. Let b > c > 0. Then: B is a symmetric and positive definite matrix. Its inverse
B−1 is symmetric, positive definite, its entries given by b−c+(n−1)c

(b−c)[(n−1)c+b] on the main diagonal, and
− c

(b−c)([(n−1)c+b]) in off-diagonal entries.
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Proof. B is symmetric. The eigenvalues of 1
bB are 1− c/b and 1 + n−1

b c, so B is positive definite. Then,
B−1 is well-defined, positive definite and has eigenvalues (b− c)−1 and (b+ (n− 1)c)−1.

We verify that B−1 = r11T + 1
b−cI, for r = − c

(b−c)((n−1)c+b) . Let’s observe that 11T11T = n11T,
and:

BB−1 = I ⇐⇒ r11Tc11T + I + r(b− c)11TI + c

b− c
11TI = I

⇐⇒ rcn11T +
[
r(b− c) + c

b− c

]
11T = I − I

⇐⇒ r = − c

(b− c)((n− 1)c+ b) .

�

By normalizing the main-diagonal entries of B−1 to 1, the off-diagonal elements are 1− 1
b−c . We

note that 1− 1
b−c < 0 ⇐⇒ 1− (b− c) > 0. Thus, in what follows we assume 1 > b− c. Moreover, we

assume that ζ := 1−(b−c)
b−c < 2

n−1 . Our parameter assumptions are summarized as follows

Assumption 7 (Demand System 2). We assume that

(1) Goods are utility-substitute and U is strictly concave, which is equivalent to what is assumed in
the main body of the text.

(2) Own-price coefficients of demand are all equal to −1 and that the degree of utility substitutability
c is bounded above by b− n−1

n+1 .

The two assumptions are jointly represented by:

c ≥ 0 and 1 > b− c > n− 1
n+ 1 .

b > c ≥ 0 is equivalent to requiring that the following two conditions jointly hold: (i) goods are utility-
substitute (U is submodular) and (ii) U is strictly concave. The requirement 1 > b−c is needed following
the normalization that own-price coefficient of demand is −1, and 1−(b−c)

b−c < 2
n−1 is the content of

Assumption 1 in the current setup after the normalization (we note that 1−(b−c)
b−c < 2

n−1 ⇐⇒ b−c > n−1
n+1).

In the following remark, we verify that the additional assumptions can be dispensed of, which justifies
that in the main text we only assume b > c ≥ 0.

Remark 9 (Comparison of Assumption 7 with the model of oligopoly in Section 3). Under our assump-
tions, goods are mutually direct substitutes (Weinstein, 2022), substitutes in the sense of Hedgeworth
and Marshallian demand satisfies the Law of Demand (Amir et al., 2017). Moreover, for a positive
price vector v and sufficiently large income, demand for the goods excluding the numeraire is given by
B−1(â− x).

Let’s show that under b > c ≥ 0 the analysis goes through without the extra content in Assumption 7.
First, let’s observe that the concavity assumption on demand — positive definiteness of B following from
b > c ≥ 0 according to Lemma 46 — guarantees positive definiteness of B−1, and induces a contractive
property on the best-response mapping of the game

〈
N, {πBi ,R}i∈N

〉
. Letting Diag(M) return an n× n

diagonal matrix whose entries are the n elements in the main diagonal of matrix M , such best-response
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mapping follows form first-order conditions and is given by:

BR(x) = −2 Diag(B−1)x+
[
Diag(B−1)−B−1

]
x+B−1â+ Diag(B−1)x̂

= −
[
Diag(B−1) +B−1

]
x+B−1â+ Diag(B−1)x̂.

The Jacobian of BR(x) is given by −
[
Diag(B−1) +B−1], which is negative definite iff Diag(B−1)+B−1

is positive definite. The diagonal entries of B−1 are positive (Lemma 46). Thus, the best-reply mapping
is a contraction.

Secondly, to establish that the normalization on demand coefficients is innocuous, we show that the
coefficients of B−1 are negative, shown in Lemma 46.

We assume that each of the prices of n goods is set by one of n firms that compete in prices. Each
of n firms has constant marginal costs and no fixed costs. Let D := −B−1 = [Dij : i, j ∈ N ] be the
matrix of demand coefficients. Given a profile of prices x̂ and marginal costs m̂, profits of firm i are:

πBi (x̂) := (x̂i − m̂i)

∑
j∈N

Dij(x̂j − âj)


=

m̂i + âi −
∑
j∈−i

Dijaj

x̂i − x̂2
i +

∑
j∈−i

Dij x̂ix̂j + F,

for a term F = −m̂i

(
âi −

∑
j∈−iDij âj

)
− m̂i

∑
j∈−iDij x̂j that is constant with respect to x̂i. We can

equivalently express profits in terms of markups, x := x̂− m̂, letting a := â− m̂, to write

πBi (x) :=

ai − ζ ∑
j∈−i

aj

xi − x2
i + ζ

∑
j∈−i

xjxi,

for ζ = 1−(b−c)
b−c . In particular, we note that we may set:

2αγij = ζ

2(1− α)δi =

ai − ζ ∑
j∈−i

aj

.
So that the largest eigenvalue of Γ is ζ

2(n− 1) and the content of Assumption 7 is justified in light of
Assumption 1.

Proof of Proposition 3.

Proof. First, the pricing game has the same set of equilibria as the particular case of G(x0) in which:
p− p0, the favorite outcome of i is âi/[2(1− α)], coordination motives are ζ/2 and Γ is the adjacency
matrix of a network in which γij = 1, i ∈ N, j ∈ −i, which we refer to as a complete network for
the present proof. This result follows from Lemma 5. This observation implies the first part of the
proposition via Lemma 3.

Second, let’s establish a property of equilibria. Let p be an equilibrium. By the decomposition in
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Proposition 2, if the network is complete and pi = pj , then

(1 + α)[Eχ(pi)− Eχ(pj)] = (1− α)(δi − δj)−mαk,

for m ∈ [0,M ], in which- M = |{` ∈ N : p` ∈ [pi, pj ]}|. In particular, a similar derivation is described in
the proof of Lemma 2, and it is omitted in the present proof. From the above equality it follows that:
pi = pj implies that mαk ≥ (1− α)(δi − δj). In the pricing game, then, pi = pj implies that

mζk ≥ âi − âj . (11)

Third, we establish that: if mini∈N,j∈−i |âi − âj | > 2ζk, the no two players choose the same policy
in equilibrium. In what follows, we fix an equilibrium p? ∈ (p0, p), and a policy p ∈ (p?1, . . . , p?n) that is
played in equilibrium by a number of players m ∈ {2, n}. For fixed number of players m ∈ {2, . . . , n}
who play the same policy p in equilibrium p?, there exist players i′, j′ who play p and with

âi′ − âj′ > (m− 1) min
i∈N,j∈−i

|âi − âj | (12)

In particular, this observation holds by taking i′, j′ to be the players choosing, respectively, min{p?1, . . . , p?n}
and max{p?1, . . . , p?n}. Let’s observe that: if mini∈N,j∈−i |âi − âj | > 2ζk, then mini∈N,j∈−i |âi − âj | >
m′

m′−1ζk for all m′ ∈ {2, . . . , n}, so:

(m− 1) min
i∈N,j∈−i

|âi − âj | > mζk.

Hence, if mini∈N,j∈−i |âi − âj | > 2ζk, inequality 11 contradicts inequality 12.
Fourth, we show that the only interior equilibrium in which no two players choose the same policy is

p1 <, . . . , < pn if mini∈N,j∈−i |âi − âj | > 2ζk. By the proof of Lemma 2, if the network is complete and
p ∈ (p0, p)n is an equilibrium with p0 < p1 < · · · < pn < p, then

(1 + α)[Eχ(pi)− Eχ(pj)] = (1− α)(δi − δj)− 2αk,

whenever pi < pj . We note that α < 1 under a complete network, by Assumption 1.
Hence, if mini∈N,j∈−i |âi − âj | > 2ζk and p ∈ (p0, p)n is an equilibrium of the pricing game, then

p0 < p1 < · · · < pn < p up to a permutation of players. Moreover, by the decomposition in Proposition
2, if mini∈N,j∈−i |âi − âj | > 2ζk there exists at most one interior equilibrium.

�

Proofs for Remark 1 We say that players have the same unweighted centrality if u := (I − αΓ)−11
is such that ui = uj for all players i, j ∈ N . An equilibrium p ∈ Pn is symmetric if pi = pj for all
players i, j ∈ N .

Lemma 47. Let players have the same centrality, same unweighted centrality, and p = p0. If χ(p0) and
p are sufficiently large, there exist a greatest and a least symmetric equilibrium, respectively q and s.
Moreover:

Eχ(q) = β + 1k
Eχ(s) = β + 21k − uk.
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Proof. Application of the Decomposition of Equilibrium Expected Outcomes
Let ([pi < pj ], i, j ∈ N) and ([pi ≤ pj ], i, j ∈ N) be two n-by-n matrices, in which [Y ] is the Iverson
bracket of the statement Y , so [Y ] = 1 if the statement Y is true, and [Y ] = 0 otherwise. We define
Γ+(p) = Γ � ([pi < pj ], i, j ∈ N) and Γ−(p) = Γ � ([pi ≤ pj ], i, j ∈ N). By the decomposition in
Proposition 2, p ∈ (p0, p)n is an interior equilibrium if, and only if:

k(I − 2αΓ−(p))1 ≤ (I − αΓ)(Eχ(p)− β) ≤ k(I − 2αΓ+(p))1.

Implications of symmetric equilibria
If p ∈ (p0, p)n, then:

β + (I − αΓ)−1(I − 2αΓ−(p))1k = β + 21k − uk
β + (I − αΓ)−1(I − 2αΓ+(p))1k = β + 1k.

(The first equality follows from the definition of B.)
The result follows. �

Corollary 3. Let δi = 0 for all i ∈ N and players have the same unweighted centrality. Then,
p ∈ (p0, p)n is an equilibrium if, and only if:

Eχ(p) ∈ [(21− u)k,uk].

Moreover: uk is increasing in α and k, (21− u)k is decreasing in α, and (2− ui)k is increasing in k

iff ui < 2.

Proof of Lemma 1

Proof. The first part of the proof is a consequence of an observation made in Vives (1999), Chapter
2, Footnote 23, and the potential structure of the game (Proposition 22.) The second part follows
from Corollary 3, after noting that players have the same unweighted centralities under a complete
network. �

15 Proofs for Section 4

Proofs for Section 4.1

Towards the proof of Proposition 4, introduce a definitions and several lemmata.

Definition 8 (Monderer and Shapley (1996)). The game in strategic form 〈I, {Si, ui}i∈I〉 is a potential
game if there exists a function U : ×i Si → R such that, for all i ∈ I, s−i ∈ ×j 6=iSj and si, s′i ∈ Si:

ui((si, s−i)) > ui((s′i, s−i)) iff U((si, s−i)) > U((s′i, s−i));

the function U is called a potential for the game.

Towards the study of a selection rule for equilibria of G(x0), we introduce a function that is related to
the potential of the game without complexity. The no-complexity potential is the function v : Rn → R
given by

v(x) = 2(1− α)δTx− xT(I − αΓ)x.
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And the expected no-complexity potential V : Pn → R is given by

V (p) = Ev(χ(p)), for all p ∈ Pn.

The expected no-complexity potential, or potential, provides a potential for the game G(x0), as
established by the next results. The function v is the potential of the game S defined in Section 2.3;
this result is a corollary to Proposition 16 and is known (Jackson and Zenou, 2015).

Lemma 48. The game G(x0) is a potential game. Moreover, for every player i ∈ N there exists a
function gi : Pn−1 ×R → R such that:

Eπi(χ(p)) = Ev(χ(p)) + gi(p−i, xi0) for all p ∈ Pn and x0 ∈ R,

and a potential for G(x0) is the expected no-complexity potential V : p 7→ Ev(χ(p)) given the status-quo
outcome x0.

Proof of Lemma 48.

Proof. We first establish von-Neumann-Morgenstern equivalence (Morris and Ui, 2004) between the two
strategic-form games S and 〈N, {P, v}i∈N 〉. Thus, we show that: for all i ∈ N , there exists a function
hi : Rn−1 → R such that

πi(x)− v(x) = hi(x−i) for all x ∈ Rn.

The claim is a consequence of Γ being a symmetric matrix. In particular, we note that
∑

(i,j)∈N2 γijxixj−
2
∑
j∈N γ

ijxixj is constant with respect to xi, and:

v(x)− vi(x) =
∑
j∈−i

(
2(1− α)δjxj − x2

j

)
+ α

∑
(i,j)∈N2

γijxixj − 2α
∑
j∈N

γijxixj .

The second part of the Lemma follows, by observing that vi(x)− πi(x) is constant in x−i, as shown in
Section 11, and taking expectations given the status-quo outcome.

It remains to establish that von-Neumann-Morgenstern equivalence betweenG0 and 〈N, {P,Ev(χ(p))}i∈N 〉
implies that G0 is a potential game according to the definition in Monderer and Shapley (1996). We
prove a stronger statement: V is a w-potential for G(x0) with wi = 1 for all i ∈ N , that is, G(x0) is
an weighted and exact potential game, and V is a weighted and exact potential. The intuition for the
observation is the same underlining Lemma 1 in Morris and Ui (2004), we include a proof solely because
the authors assume finite strategy spaces.

Let Πi(qi, p−i) := Eπi(χ(p1), . . . , χ(qi), χ(pi+1), . . . ). By the definitions of Monderer and Shapley
(1996), pages 127-128, V is an exact potential for G(x0) if Πi(pi, ·)−Πi(p′i, ·) = V ((pi, ·))− V ((p′i, ·)) for
all pi, p′i ∈ P . By our preceding results:

Πi(pi, p−i)− V ((pi, p−i)) = gi(p−i, x0) and Πi(p′i, p−i)− V ((p′i, p−i)) = gi(p−i, x0).

Thus, we have

Πi(pi, p−i)− V ((pi, p−i)) = Πi(p′i, p−i)− V ((p′i, p−i)),
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which we rearrange to write:

Πi(pi, p−i)−Πi(p′i, p−i) = V ((pi, p−i))− V ((p′i, p−i)).

�

Lemma 49. If U is a potential for the game G(x0), there exists a constant c ∈ R such that

U(p) = V (p) + c, for all p ∈ Pn.

Moreover, if p is a potential maximizer, then p is an equilibrium of G(x0).

Proof of Lemma 49.

Proof. Let p ∈ Pn be a potential maximizer and i ∈ N, qi ∈ P such that

Eπi(χ(p)) < Eπi(. . . , χ(pi−1), χ(qi), . . . ).

By Lemma 48, we have

Ev(χ(p)) < Ev(. . . , χ(pi−1), χ(qi), . . . ),

Which contradicts the definition of p.
The second part of the Lemma follows from Lemma 2.7 in Monderer and Shapley (1996) if G(x0)

is an exact potential game, using a definition in Monderer and Shapley (1996), pages 127-128. In the
proof of Lemma 48, we establish that G(x0) is an exact potential game when we show that V is an
exact potential for G(x0). �

Proposition 16. The game G(x0) is a potential game and V : Pn → R is a potential for G(x0).
Moreover,

(1) If U : Pn → R is a potential for G(x0), there exists a constant c ∈ R such that

U(p) = V (p) + c, for all p ∈ Pn.

(2) If the policy profile p ∈ Pn maximizes V , then p is an equilibrium of G(x0).

Proof of Proposition 16

Proof. The Proposition follows directly from Lemmata 48 and 49. �

We establish an auxiliary Lemma towards the proof of Proposition 5. Towards a characterization
of the potential maximizer, we note that the no-complexity potential can be expressed as v(x) =
−(x− β)T(I − αΓ)(x− β) + βT(I − αΓ)β, which directly implies the following expression for V .

Lemma 50. For all policy profiles p ∈ Pn, we have that

V (p) = −(Eχ(p)− β)T(I − αΓ)(Eχ(p)− β)−
∑
i∈N

Vχ(pi) + α
∑
i,j∈N

γijC[χ(pi), χ(pj)],

up to a term that is constant in p.
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Proof of Lemma 50.

Proof. We observe that the potential function v is a quadratic form, so V (p) = −(Eχ(p) − β)T(I −
αΓ)(Eχ(p)− β)− tr((I − αΓ)Ω) + βT(I − αΓ)β, in which Ω is the variance-covariance matrix of χ(p)
given χ(p0) = x0, which is well-defined by joint Gaussianity of outcomes and ω > 0. �

Proposition 17 (Potential Maximizer). Let P = [p0, p]. There exists a unique potential maximizer.
Moreover, the policy profile p ∈ (p0, p)n is a potential maximizer if, and only if:

Eχ(p) = β + 1k + α(I − αΓ)−1(Γ�A)1k,

for a skew-symmetric matrix A = [aij : i, j ∈ N ] such that aij ∈ [−1, 1] and aij = 1, if pi > pj.

Proof of Proposition 17.

Proof. The first part of the result is a consequence of standard tools in convex analysis. First, we claim
that there exists at most one potential maximizer. This follows from strict concavity of V , proved
in Section 11.3. For existence given strict convexity of −V see, e.g., Proposition 9.3.2, part (iv), in
Briceño-Arias and Combettes (2013), stated in a game-theoretic environment.

The characterization of the potential maximizer is established in Lemma 21. �

Proof of Proposition 4.

Proof. Part (1) follows from Proposition 16. Part (2) follows from Proposition 17. �

Proof of Proposition 5.

Proof. The result follows from Proposition 17. �

Proof of Proposition 6.

Proof. We use the notation developed in Section 11, in which we define vi as the “effort-game ex-post
payoff”, defined over outcome profiles. It holds that:

v(x) =
∑
i

vi(x)− αxTΓx.

Thus, we have that:

W (p) = E
[
v(χ(p)) + αχ(p)TΓχ(p)|χ(p0) = x0

]
.

Strict concavity of W on [p0, p]n follows from the same argument as Lemma 19. Thus, the superdifferential
of W is well-defined. By standard subgradient calculus (Rockafellar, 1970), we write the following
expression for ∂W , using + for (Minkowski) set addition,

∂W (p) = ∂V (p) + ∂E
[
αχ(p)TΓχ(p)|χ(p0) = x0

]
.

Using the decomposition of expectation of quadratic forms, we have:

∂W (p) = ∂V (p) + 2αΓ∂E[χ(p)] + α∂
∑

(i,j)∈N2

γij C(χ(pi), χ(pj)),
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for which we also apply symmetry of Γ. The result follows from the characterization of ∂V (p) in Lemma
21, in which we also characterize ∂

∑
(i,j)∈N2 γij C(χ(pi), χ(pj)). �

Proofs for Section 4.2 and Section 4.3

In this section, we assume that P = [p0, p].

Lemma 51. Let |a1 − c1 − a2 + c2| ≤ −gk. For sufficiently large χ(p0), total profits are maximized by

Eχ(pi) = min
{
b
a− c1 + a− c2

4(1 + gb) + k, χ(p0)
}
.

The maximization of total profits is implemented in equilibrium if, and only if: a− c1 + a− c2 ≤ 1+bg
b 2k.

Proof. By Lemma 5, we find the set of equilibria using Proposition 2. By Proposition 6 and Lemma 5,
we find the maximizer of total profits by using 52 and 2g in place of g. �

Dyad

We assume that N = 2, and we use α̂ := αγ12. We use χi := χ(pi), χ for the column vector of
outomes (χ(p1), χ(p2))′, and ∂pi for the subdifferential with respect to pi. The expectation operators are
conditional on χ(p0) = x0. Let y+ := max{β1, β2}+ k

(
1− α̂

1+α̂

)
, y− := min{β1, β2}+ k

(
1 + α̂

1+α̂

)
.

Lemma 52 (Dyad). Let y+ ≥ x0 and Eχ(p) ≥ y−. The following hold.

(1) If (1−α)(δ2− δ1) ≥ 2α̂k, then there exists a unique equilibrium in G|x0
. Moreover, in equilibrium:

Eχ1 = β1 + k

(
1 + α̂

1 + α̂

)
Eχ2 = β2 + k

(
1− α̂

1 + α̂

)
,

which imply

Eχ2 − Eχ1 = β2 − β1 − 2 α̂

1 + α̂
k.

.

(2) If (1− α)(δ2 − δ1) < 2α̂k, then there exist multiple equilibria in G|x0
. Moreover, in equilibrium:

(1− α)(δ2 − δ1) = α̂(d1 − d2), for some d2, d1 ∈ [−1, 1]

Eχ1 = Eχ2 = β1 + β2
2 + k + α̂

1− α̂
d1 + d2

2 k

∈
[
β1 + β2

2 + k − α̂

1− α̂k,
β1 + β2

2 + k + α̂

1− α̂k
]
.

(3) If 0 ≤ (1− α)(δ2 − δ1) < 2α̂k, then there exists a unique potential maximizer in G|x0
. Moreover,
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in the potential maximizer: (1− α)(δ2 − δ1) = 2α̂d1k, d1 ∈ [0, 1), and:

Eχ1 = β1 + k

(
1 + α̂

1 + α̂
d1

)
Eχ2 = β2 + k

(
1− α̂

1 + α̂
d1

)
,

which imply

Eχ1 = (β1 + β2)/2 + k.

Proof. The expected effort-game payoff to player i is:

Evi(χi, χj) = 2(1− α)δiEχi − (Eχi)2 + 2α̂EχiEχj − Vχi + 2α̂Cχiχj ,

up to a term that is constant with respect to pi. The superdifferential of Evi(χi, χj) with respect to pi
is:

2µ(1− α)δi − 2µEχi + 2µα̂Eχj − ω + α̂ω − α̂ω∂pi |pi − pj |.

In any interior equilibrium p:

0 ∈
(

1 −α̂
−α̂ 1

)
Eχ− (1− α)δ −

(
1 −α̂
−α̂ 1

)
1k − α̂

(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k

Thus, we obtain the following interior equilibrium condition. p ∈ (p0, p) is an equilibrium if, and
only if:

Eχ ∈ 1− α
1− α̂2

(
1 α̂

α̂ 1

)
δ + k1 + α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k,

and in an equilibrium in which p1 > p2 the last term simplifies to a singleton:

α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k =

{
α̂

1 + α̂

(
1
−1

)
k

}
.

In an equilibrium p in which p1 = p2, the last term can be written as:

α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k = α̂

1− α̂2

(
∂p1 |p1 − p2|+ α̂∂p2 |p2 − p1|
∂p2 |p2 − p1|+ α̂∂p1 |p1 − p2|

)
k.

In the potential maximizer p, we have that: ∂p1 |p1 − p2| = −∂p2 |p2 − p1|, and so the last term simplifies
to:

α̂

1− α̂2

(
1 α̂

α̂ 1

)(
∂p1 |p1 − p2|
∂p2 |p2 − p1|

)
k = α̂

1 + α̂

(
1
−1

)
∂p1 |p1 − p2|k.

�
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Two-Type Network

We assume that there are two groups of players, A and B, such that: N = A ∪B, and A ∩B = ∅. We
let nG := |G|, G ∈ {A,B}, and G(`),−G(`) denote, respectively, the group of player ` and the other
group. Moreover, we assume that: δ` = δG(`), and

γ`k = γG(`)G(k), for all `, k ∈ N.

We note that, by our maintained assumptions: γAB = γBA, and: γGF = o(n), because nFγGF +
(nG − 1)γGG ≤ 1, for all G,F ∈ {A,B}, G 6= F .

The potential function is such that: G(i) = G(j) =⇒ v(x1, . . . xi, . . . xj , . . . xn) = v(x1, . . . xj , . . . xi, . . . xn),
so every equilibrium is represented by a pair (pA, pB), such that i ∈ A plays pA, and j ∈ B plays pB . We
let EχG(i) = Eχi in the potential maximizer p. We use αA := αγABnB

1−αγAA(nA−1) and αB := αγBAnA
1−αγBB(nB−1) .

We note that: αA ≤ αγABnB
αγABnB+αγAA(nA−1)−αγAA(nA−1) = 1, and, similarly, αB ≤ 1.

We note that αA+αB−2αAαB
1−αAαB ∈ [0, 1], because:

αA + αB − 2αAαB > 0 ⇐⇒ αA
1− αA

+ αB
1− αB

> 0,

and

αA + αB − 2αAαB
1− αAαB

= 1− (1− αA)(1− αB)
1− αAαB

.

Also, we note that ∂
∂αG(i)

αA+αB−2αAαB
1−αAαB =

(1−α−G(i)
1−αAαB

)2
.

Lemma 53. Let Γ be a two-type network, such that: βA ≥ βB, and let x0 ≥ βA+k−αA(1−αB) 1
1−αAαB k

and βB + k + αB(1− αA) 1
1−αAαB k ≥ Eχ(p).

(1) If βA−βB ≥ αA+αB−2αAαB
1−αAαB k, then pA ≤ pB in the unique interior potential maximizer. Moreover:

EχA = βA + k − αA(1− αB) 1
1− αAαB

k

EχB = βB + k + αB(1− αA) 1
1− αAαB

k,

which imply:

EχA − EχB = βA − βB −
αA + αB − 2αAαB

1− αAαN
k.

(2) If βA−βB < αA+αB−2αAαB
1−αAαB k, then pA = pB in the unique interior potential maximizer. Moreover:

EχA = βA + k − αA(1− αB)
1− αAαB

dk

EχB = βB + k + αB(1− αA)
1− αAαB

dk, d ∈ [0, 1].
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and βA − βB = αA+αB−2αAαB
1−αAαB dk, which imply:

EχA = αB(1− αA)βA + αA(1− αB)βB
αB(1− αA) + αA(1− αB) + k.

Proof. The superdifferential of Evi(χ1, . . . , χn) with respect to pi, i ∈ A, evaluated at an equilibrium, is:

2µ(1− α)δA − 2µEχi + 2µαγAA(nA − 1)EχA + 2µαγABnBEχB+
−ω + αγAA(nA − 1)ω + αγAB(nB)ω − αγAA(nA − 1)∂pi |pi − pA|ω − αγABnB∂pi |pi − pB|.

If p is the potential maximizer, then: pi = pG(i), and:

0 ∈ 2µ(1− α)δA − 2µEχA + 2µαγAA(nA − 1)EχA + 2µαγABnBEχB+
− ω + αγAA(nA − 1)ω + αγAB(nB)ω − αγABnB∂pA |pA − pB|

0 ∈ 2µ(1− α)δB − 2µEχB + 2µαγBB(nB − 1)EχB + 2µαγBAnAEχA+
− ω + αγBB(nB − 1)ω + αγBA(nA)ω − αγBAnA∂pB |pB − pA|.

We use αA := αγABnB
1−αγAA(nA−1) and αB := αγBAnA

1−αγBB(nB−1) . We note that: αA ≤ αγABnB
αγABnB+αγAA(nA−1)−αγAA(nA−1) =

1, and, similarly, αB ≤ 1. Thus, if p is the potential maximizer, then pi = pG(i), and, for some
d ∈ ∂pA |pA − pB|:

0 = 2µ(1− α)
( δA

1−αγAA(nA−1)
δB

1−αγBB(nB−1)

)
− 2µ

(
1 −α1
−α2 1

)(
EχA
EχB

)
−
(

1 −α1
−α2 1

)
1ω +

(
αA
−αB

)
ωd.

Thus, p ∈ (p0, p)n is the unique potential maximizer if, and only if: pi = pG(i), i ∈ N , and:

(
EχA
EχB

)
=
(
βA
βB

)
+ k1 +

(
1 −αA
−αB 1

)−1(
−αA
αB

)
kd, d ∈ ∂pA |pA − pB|.

In the unique potential maximizer for pA < pB, we have:(
1 −αA
−αB 1

)−1(
−αA
αB

)
kd = 1

1− αAαB

(
−(1− αB)αA
(1− αA)αB

)
k,

and:

EχA − EχB = βA − βB −
αA + αB − 2αAαB

1− αAαB
k.

�
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Part IV

Appendix 2: Proofs for Essay 2
16 Mathematical preliminaries

Let D be the set of distributions over [0, 1] identified by their cumulative distribution functions, F0 ∈ D
be continuous, and x0 :=

∫ 1
0 θ dF0(θ). Let’s define the information policy of F ∈ D as

IF : R+ → R+

x 7→
∫ x

0
F (y) dy.

We define the set of feasible cumulative distribution functions as

F := {F ∈ D : IF (1) = IF0(1), and IF (x) ≤ IF0(x) for all x ∈ R+}.

In order to use information policies to represent feasible CDF’s, we use the following notation. Let
(·)+ := max{·, 0}, and F : x 7→ (x− x0)+; we note that F ∈ F . The set of information policies is:

I := {I : R+ → R+ : I is convex and IF0(x) ≥ I(x) ≥ IF (x) for all x ∈ R+}.

For a function I, we denote the right and left derivatives by, respectively, ∂+I and ∂−I, and the
subdifferential of I by ∂I. Let I ∈ I, then: (i) ∂+I(x) exists for all x ∈ [0,∞), and (ii) ∂−I(x) exists for
all x ∈ [0,∞), once I is extended to take value 0 at x < 0. We define I on nonnegative reals to simplify
the exposition, so, when we write ∂−I(x), we implicitely assume that I is extended to take value 0 on
(−∞, 0). For two convex functions, the subdifferential of I + J at x is the (Minkowski) addition of ∂I(x)
and ∂J(x), we denote it by ∂(I + J)(x). We also use I ′(x) and I ′(x−) for, respectively, ∂+I and ∂−I.

Fact 1. The following hold:

(1) If F ∈ F , then IF ∈ I;

(2) If I ∈ I, then I ′ ∈ F , once I is extended to take value 0 at every x < 0.

Proof. See Gentzkow and Kamenica (2016) and Kolotilin (2018). �

We define the operator ∆ as:

∆: I 7→ I − IF .

And we denote by ∆I the composite function ∆ ◦ I.52 It holds that 0 ≤ ∆I(x) ≤ 1 − x0, x ∈ R, by

52 Information policies are also called “left side integrals” (An, 1995; Bagnoli and Bergstrom, 2005) and “integral CDFs”
(Shishkin, 2023). A belief distribution that has barycenter equal to a given prior belief (e.g., the distribution induced by
the cumulative distribution function F0,) is also called an information policy (Lipnowski and Mathevet, 2018; Lipnowski
et al., 2020; Lipnowski and Ravid, 2020; Lipnowski et al., 2022a; Lipnowski and Ravid, 2023; Lipnowski et al., 2024). Ravid
et al. (2022) use the notation “IF ” for, in our notation, the function IF0 − IF .
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definition of I. The set of information allocations is:

A := {A : R+ → R+ : A is convex on [0, x0], A is convex on [x0, 1],
A is continuous at x0, A(x) ≤ IF0(x)− IF (x) for all x ∈ R+,

there exist m ∈ [0, 1) and m′ ∈ [m, 1] such that ∂−A(x0) = m and
∂+A(x0) = m′ − 1}.

Lemma 54. The following hold:

(1) If A ∈ A, then: A+ IF ∈ I.

(2) If I ∈ I, then ∆I ∈ A.

Proof. The only non trivial step is to show convexity of A+ IF . We note that m, in the definition of A,
is a subgradient of A+ IF at x0. �

Remark 10. We note that any element of F , I and A can be identified with its restriction on [0, 1],
which without loss has codomain [0, 1]. By the previous lemmata, there exists a bijection between any two
of F , I, and A; e.g., take F 7→ IF , with inverse I 7→ I ′. Moreover, if we endow F with the Blackwell
order and use the component-wise order for A and F , then the bijection is an order isomorphism.

We state a result from convex analysis.

Fact 2 (Subdifferential of Convex Functions). Let S ⊆ R, f : S → R be convex, and ϕ : R → R be a
nondecreasing convex function on the range of f .

(1) The function ϕ ◦ f is convex on S.

(2) For all y ∈ S, letting t = f(y), we have:

{αu : (α, u) ∈ ∂ϕ(t)× ∂f(y)} = ∂ϕ ◦ f(y).

Proof. See Proposition 8.21 and Corollary 16.72 in Bauschke and Combettes (2011). �

We endow I with the component-wise order, we use ≤ to denote all partial orders and < for the
asymmetric part of ≤. The next result appears also in Curello and Sinander (2024).

Lemma 55 (Lattice Structure of I). I, endowed with the component-wise order, is a complete lattice.

Proof. First, (I,≤) is a poset because ≤ is reflexive, asymmetric and transitive on I.
Second, we show that H : x 7→ max{I(x), J(x)} is well-defined, it is equal to sup{I, J} pointwise, and

H ∈ I. H is well-defined by boundedness of I, J ; H is convex being the upper envelope of a nonempty
family of proper convex functions, and H satisfies the Blackwell bounds, i.e., IF ≤ H ≤ IF0 . Thus, H ∈ I.
By definition, H ≥ sup{I, J}. If H > K, K ∈ I and K ≥ sup{I, J}, then K(x) < max{I(x), J(x)} for
some x ∈ R. Thus, H = sup{I, J}.

Third, we show that the lower convex envelope C of M : x 7→ min{I(x), J(x)} is well-defined, it is
equal to inf{I, J} pointwise, and C ∈ I. The definition of C is:

C(x) = sup{h(x) : h is convex and h(y) ≤M(y) for all y ∈ [0, 1]}, x ∈ [0, 1],
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and C(x) = I(x) on R \ [0, 1]. C is well-defined because: (i) M is well-defined, and (ii) IF lower bounds
M and it is convex. C is the pointwise sup of a family of convex functions, so C is convex. IF is a
convex lower bound of M , so C satisfies the lower Blackwell bound, and C satisfies the upper Blackwell
bound by definition: C ≤M ≤ IF0 . Thus, C ∈ I. If C < K ≤ inf{I, J}, for some K ∈ I, then C is not
the pointwise maximum of all convex functions that lie below I, J .

It remains to show that I is complete. We claim that every set C ⊆ I has a sup and inf in I. This
claim is established following the same steps as above. �

Definition 9. The θ upper censorship, for θ ∈ [0, 1), is the unique information policy Iθ ∈ I such that:

Iθ(x) =


IF0(x) , x ∈ [0, θ]
IF0(θ) + (x− θ)F0(θ) , x ∈ (θ, xθ]
IF (x) , x ∈ (xθ,∞),

in which xθ =
∫ 1
θ θ̃ d F0(θ̃)

1−F0(θ) ; the 1 upper censorship is IF .

The next lemma shows a property of upper censorships, a version of which appears in Lipnowski
et al. (2021).

Lemma 56. Let I ∈ I, ζ ∈ [0, 1], and F0 be continuous. There exists θ ∈ [0, ζ] such that:

(1.) Iθ(ζ) = I(ζ).

(2.) I ′θ(ζ−) ≤ I ′(ζ−) and:

Iθ(x)− I(x) ≥ 0, x ∈ [0, ζ]
Iθ(x)− I(x) ≤ 0, x ∈ [ζ,∞).

.

Proof. Let ζ ∈ [0, 1]. Let M := {m ∈ [0, I ′(ζ−)] | I(ζ) + m(x − ζ) ≤ IF0(x) for all x ∈ [0, ζ]}, and
m := minM . We construct an information policy starting from the line x 7→ I(ζ) +m(x− ζ), via the
next three claims.

(1) m is well-defined. (i) M is nonempty, because 0 ≤ I ′(ζ−) ≤ 1 (which follows from I ∈ I),
I ′(ζ−) ∈ ∂I(ζ−) and I(x) ≤ IF0(x) for all x; (ii) M is closed, becase the mapping m 7→ I(ζ) +m(x− ζ)
is a continuous function on [0, I ′(ζ−)]; (iii) M is bounded because I ′(ζ−) ≤ 1, since I ∈ I.

(2) There exists θ ∈ [0, ζ] such that IF0(θ) = I(ζ) +m(θ − ζ). If m = 0, then 0 = IF0(0) ≥ I(ζ) ≥ 0.
Hence, taking θ = 0 verifies our claim. Let m > 0, and suppose there does not exist θ ∈ [0, ζ] such
that IF0(θ) = I(ζ) + m(θ − ζ). There exists ε > 0 such that: I(ζ) + (m − ε)(x − ζ) < IF0(x) for all
x ∈ [0, ζ] and 0 < ε ≤ ε. Moreover, for a sufficiently small ε > 0, we have m− ε ∈M . Thus, we have a
contradiction with the definition of m.

(3) m ∈ ∂IF0(θ) and I(ζ) + m(x − ζ) = IF0(θ) + (x − θ)F0(θ) for all x. First, we argue that
m ∈ ∂IF0(θ). By convexity of IF0 and definition of θ, x 7→ I(ζ) +m(x− ζ) is tangent to IF0 at θ. Thus,
m is a subgradient of IF0 at θ. Now, we argue that I(ζ) +m(x− ζ) = IF0(θ) + (x− θ)F0(θ) for all x.
m = F0(θ) because IF0 is differentiable (by the fact that F0(x−) = F0(x), x ∈ R.) The equality follows
because x 7→ I(ζ) +m(x− ζ) is equal to IF0 at x = θ.
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We define the following function.

Iu : R+ → R+

x 7→


IF0(x) , x ∈ [0, θ]
I(ζ) +m(x− ζ) , x ∈ (θ, ζ]
max{I(ζ) +m(x− ζ), IF (x)} , x ∈ (ζ,∞).

Now, we claim that Iu = Iθ. It suffices to show that: (i) for some xu ∈ [0, 1]

Iu(x) =


IF0(x) , x ∈ [0, θ]
IF0(θ) + (x− θ)F0(θ) , x ∈ (θ, xu]
IF (x) , x ∈ (xu,∞),

and (ii) Iu ∈ I. We claim that (i) holds by means of the next three claims.
There exists xu ∈ [ζ, 1] such that:

I(ζ) +m(x− ζ) ≥ IF (x) , x ∈ [0, xu] (13)
I(ζ) +m(x− ζ) ≤ IF (x) , x ∈ (xu, 1]. (14)

Let’s note that: (a) I(ζ) ≥ IF (ζ); (b) by m ∈ ∂IF0(θ) and IF0(1) = IF (1), we have that IF (1) ≥
I(ζ)+m(1−ζ), and (c) the two functions, x 7→ I(ζ)+m(x−ζ) and IF , are affine with slopes, respectively,
m and 1, such that: m ≤ 1.

We proceed to verify that (ii) holds, i.e. Iu ∈ I, via the next two claims.
(1) IF (x) ≤ Iu(x) ≤ IF0(x) for all x ∈ R+ and Iu locally convex at all x /∈ {θ, xu}. If x ∈ [0, θ),

Iu is locally convex and IF (x) ≤ Iu(x) ≤ IF0(x). If x ∈ (θ, ζ), Iu is affine, IF (x) ≤ I(x) ≤ Iu(x)
by construction of Iu and definition of I, and Iu(x) ≤ IF0(x) by m ∈ ∂IF0(x). If x ∈ [ζ,∞), I is
locally convex (because it is the maximum of affine functions), IF (x) ≤ Iu(x) by construction of Iu,
Iu(x) ≤ IF0(x) because: (i) m ∈ ∂IF0(ζ) and (ii) IF (x) ≤ IF0(x). To verify global convexity, it suffices
to verify the next claim.

(2) Iu is subdifferentiable at x ∈ {θ, xu}. First, we argue that m is a subgradient of Iu at θ. This
follows from the fact that the slope of Iu at θ is a subgradient of IF0 at θ, and Iu(θ) = IF0(θ). On [0, θ],
Iu = IF0 , and on [θu,∞] Iu is above the line x 7→ I(ζ) +m(x− ζ). Thus, m ∈ ∂Iu(θ). Second, the fact
that m is a subgradient of Iu at xu follows from the claim in (13).

We have established that Iu = Iθ. (1.) and (2.) hold by construction. �

For posets S and T , the function g : S × T → R exhibits increasing differences if t 7→ g(s′, t)− g(s, t)
is nondecreasing for all s′, s ∈ S with s < s′; the function g : S × T → R exhibits strictly increasing
differences if t 7→ g(s′, t) − g(s, t) is increasing for all s′, s ∈ S with s < s′; the function g : S → R is
single-crossing from above if: (i) g(s) ≤ 0 implies g(s′) ≤ 0 and (ii) g(s) < 0 implies g(s′) < 0 for all
s′, s ∈ S with s < s′. The function g : S → R is strictly single-crossing from above if: (i) g(s) ≤ 0 implies
g(s′) < 0 for all s′, s ∈ S with s < s′.

The following lemma states known facts from the envelope theorem and monotone comparative
statics.

Lemma 57. Let f : [0, 1]× [0, 1]→ R2 exhibit increasing differences, and be such that: f(·, a) is upper
semi-continuous for all a ∈ [0, 1], f(e, ·) is nondecreasing for all e ∈ [0, 1], the derivative with respect to
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the variable a, ∂f/∂a(e, ·), exists and is bounded for all e ∈ [0, 1]. The following hold:

(1) arg maxe∈[0,1] f(e, a) 6= ∅ for all a ∈ [0, 1]:

(2) a 7→ maxe∈[0,1] f(e, a) is nondecreasing and absolutely continuous.

(3) If a 7→ ∂f
∂a (e, a) is nondecreasing for all e ∈ [0, 1], a 7→ maxe∈[0,1] f(e, a) is convex.

(4) If f exhibits strictly increasing differences, a 7→ ∂f
∂a (e, a) is nondecreasing, f(e, ·) is increasing for

all e ∈ (0, 1], arg maxe∈[0,1] f(e, a) ∩ (0, 1] 6= ∅, and 1 ≥ a′ > a ≥ 0, then:

max
e∈[0,1]

f(e, a′) > max
e∈[0,1]

f(e, a).

Proof. By upper semi-continuity of f , arg maxe∈[0,1] f(e, a) 6= ∅, so (1) holds. Then, by the increasing-
differences property of f , there exists a nondecreasing selection e? : a 7→ arg maxe∈[0,1] f(e, a) on [0, 1]
(Milgrom and Shannon, 1994). By our hypotheses, we apply the envelope theorem (Milgrom and Segal,
2002), letting V (a) := maxe∈[0,1] f(e, a), to establish that V is absolutely continuous and

V (a) = V (0) +
∫ a

0
∂f/∂a(e?(ã), ã) dã.

Since ∂f/∂a is nonnegative, V is nondecreasing. Hence, (2) holds.
Let’s establish that V is convex if a 7→ ∂f

∂a (e, a) is nondecreasing. By the increasing-differences
property of f : (i) e 7→ ∂f/∂a(e, a) is nondecreasing, and (ii) there exists a nondecreasing e? : a 7→
arg maxe∈[0,1] f(e, a). As a result, a 7→ ∂f

∂a (e?(a), a) is nondecreasing. Thus, V is convex (Theorem 24.8
in Rockafellar (1970), noting that a 7→ ∂f/∂a(e?(a), a) is uni-dimensional.) Hence, (3) holds.

Let a′ > a, for a′, a ∈ [0, 1], and e′ ∈ arg maxe∈[0,1] f(e, a) ∩ (0, 1]. Then: V (a′) − V (a) =∫ a′
a ∂f/∂a(e∗(ã), ã) dã for every selection e∗ of arg maxe∈[0,1] f(e, a) ∩ (0, 1]. We have the following

chain of inequalities under the additional hypotheses stated in part (4):

V (a′)− V (a) ≥
∫ a′

a
∂f/∂a(e′, ã) dã

≥
∫ a′

a
∂f/∂a(e′, a) dã,

in which the first inequality follows from the strict increasing-differences property of f and the definition
of e′, the second inequality holds because a 7→ ∂f

∂a (e, a) is nondecreasing (for the first inequality, in
particular, we note that: (i) every selection e∗ of arg maxe∈[0,1] f(e, a)∩ (0, 1] is nondecreasing, (ii) there
exists a selection e∗ of arg maxe∈[0,1] f(e, a) ∩ (0, 1] such that e∗(a) = e′.) Since

∫ a′
a ∂f/∂a(e′, a) dã =

(a′ − a)∂f/∂a(e′, a), (4) holds. �

17 Proofs for Section 9.1

In this section, we prove Theorem 1 in a more general setup than that of Section 9.1.
For this section, we fix a function f : [0, 1]× [0, 1]→ R2 that satisfies strictly increasing differences,

and such that: f(·, a) is upper semi-continuous for all a ∈ [0, 1], f(e, ·) is nondecreasing for all e ∈ [0, 1],
the derivative with respect to the variable a, ∂f/∂a(e, ·), exists, is nonnegative and bounded for all
e ∈ [0, 1], and f(e, ·) is increasing for all e ∈ (0, 1]. We define the value of an information policy I ∈ I
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as Vλ(e,∆I(c)) := f(e,∆I(c))−K(e, λ), and we use the shorthand t = (ct, λt). Let’s define the set of
optimal efforts as

Eλt(∆I(ζt)) := arg max
e∈[0,1]

Vλt(e,∆It(ζt))

Definition 10. (1) A persuasion mechanism is a menu of information policies (Ir)r∈R, with Ir ∈ I for
all reports r ∈ R, and R = T .

(2) A persuasion mechanism (Ir)r∈R is incentive compatible (IC) if:

t ∈ arg max
r∈R

{
max
e∈[0,1]

f(e,∆Ir(ζt))−K(e, λt)
}
, for all types t ∈ T .

Definition 11. An IC persuasion mechanism (Ir)r∈R and an information policy I induce the same
effort and action distribution if:

(1)

Eλt(∆It(ζt)) ⊆ Eλt(∆I(ζt)) for all t ∈ T . (15)

(2)

∂It(ζt) ⊆ ∂I(ζt) if (0, 1] ∩ Eλt(∆It(ζt)) 6= ∅.

Proposition 18. For every IC persuasion mechanism (Ir)r∈R there exists an information policy J such
that (Ir)r∈R and J induce the same effort and action distributions.

Proof. Let’s fix an IC persuasion mechanism (Ir)r∈R. First, we define an information policy J , and
then we show that it induces the same effort and action distributions as (Ir)r∈R.

(1) Definition of information policy J . Let’s fix an IC persuasion mechanism (Ir)r∈R. Let’s define
the function I : [0, 1]→ R+ as follows:

I(c) := sup
r∈R

Ir(c), c ∈ [0, 1] (16)

I(c) is well defined because 0 ≤ Ir(c) ≤ IF0(c) ≤ 1 − x0, c ∈ [0, 1]. I is the pointwise supremum of
a family of convex functions, so I is convex. It holds that IF (c) ≤ I(c) ≤ IF0(c), c ∈ [0, 1], because
Ir ∈ I, r ∈ R. We extend I on (1,∞), so that the resulting extended function J : R+ → R+ is an
information policy, by defining J(c) = IF0(c), c ∈ (1,∞), and J(c) = I(c), c ∈ [0, 1]. We have that
J ∈ I.

(2) Effort distribution.
There are two cases.

1. Eλt(∆It(ζt)) ∩ (0, 1] 6= ∅.

2. Eλt(∆It(ζt)) = {0}.

First, we consider case (1.). By envelope theorem, we have:

Vλt(a)− Vλt(∆It(ζt)) =
∫ a

∆It(ζt)

∂f

∂e
(ã, e(ã)) dã,
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for a selection e of Eλt . Because f exhibits strictly increasing differences, e(ã) ≥ e(∆It(ζt)) if ã ≥ ∆It(ζt).
By the assumption that ∂f

∂e (ã, ·) > 0 on (0, 1] for all ã

Vλt(a)− Vλt(∆It(ζt)) > 0, for all a > ∆It(ζt).

Thus, in case (1.) IC implies that

sup
r∈R

∆Ir(ζt) = ∆It(ζt).

Let’s consider case (2.), and, towards a contradiction, let’s assume 0 /∈ Eλt(∆J(ζt)). By Berge’s
Maximum Theorem, Eλt is upper hemi continuous. Therefore, there exists a ∈ (∆It(ζt),∆J(ζt)) and
f > 0 such that f ∈ Eλt(a). By the assumption that ∂f

∂e (ã, ·) > 0 on (0, 1] for all ã

Vλt(∆J(ζt))− Vλt(a) > 0.

The above inequality and the envelope theorem imply that

Vλt(∆J(ζt))− Vλt(∆It(ζt)) > 0.

Hence, IC does not hold, which is a contradiction.
Towards a contradiction, let’s assume f ∈ Eλt(∆J(ζt)) and f > 0. By the same steps as above:

Vλt(∆J(ζt))− Vλt(∆It(ζt)) > 0.

Hence, IC does not hold, which is a contradiction.
Action distribution. Let’s suppose that d ∈ ∂Is(ζs) and d /∈ ∂J(ζs) for some type s ∈ T . Because Is

and J are information policies, they have the same extension on (−∞, 0) and ζs > 0. We have that d
is a subgradient of Is at ζs, and d is not subgradient of J at ζs; since J(ζs) = Is(ζs) — as established
above —, there exists x ∈ R such that

Is(x) ≥ Is(ζs) + d(x− ζs) > J(x),

which implies Is(x) > J(x). The last inequality contradicts the definition of J . �

18 Optimal signal characterization

After a lemmata, we prove a result (Lemma 62) that implies Lemma 10.

Model Primitives Receiver’s material payoff from taking action a ∈ {0, 1}, when the state is θ ∈ [0, 1],
is a(θ − c), for the Receiver’s outside option c ∈ [0, 1]. Receiver’s cost of effort e ∈ [0, 1] is K(e, λ) for a
lower semi continuous function K(·, λ) and the Receiver’s attention cost λ ∈ R. We define the Receiver’s
ex-post payoff as her material payoff net of effort cost, u(θ, a, e, c, λ) = a(θ − c)−K(e, λ). We let the
Receiver’s type (c, λ) be supported on T and its distribution admit a conditional density function, so
that the probability density function is (c, λ) 7→ g(c, λ) = gc|λ(c|λ)gλ(λ).

Given that θ 7→ u(θ, a, e, c, λ) is affine, the value of Recever’s optimal action at a posterior belief

123



with mean x is:

U(x, e, c, λ) := max
a∈{0,1}

u(x, a, e, c, λ).

Given F ∈ F and an effort e ∈ [0, 1], we define e� F = eF + (1− e)F , and note that e� F ∈ F . An
equilibrium is a tuple 〈F, e, α〉, in which F ∈ F is the Sender’s choice of experiment, e(·, F̂ ) : T → [0, 1] is
measurable for all F̂ ∈ F , α(·, x) : T → [0, 1] is measurable for all x ∈ [0, 1], and α(c, λ, ·) : [0, 1]→ [0, 1]
is measurable for all (c, λ) ∈ T , such that:

(1) α satisfies a Opt:

α(c, λ, x) > 0 only if 1 ∈ arg max
a∈{0,1}

u(x, a, e, c, λ) for all x ∈ [0, 1], (c, λ) ∈ T.

(2) e satisfies e Opt:

e(c, λ, F̂ ) ∈ arg max
e∈[0,1]

∫
[0,1]

U(x, e, c, λ) d(e(c, λ, F )� F )(x), for all (c, λ) ∈ T, F̂ ∈ F .

(3) F is rational for Sender, given (α, e), that is: F maximizes

F 7→
∫

R

∫
[0,1]

∫
[0,1]

α(x, c, λ) d(e(c, λ, F )� F )(x) dGc|λ(c|λ) dGλ(λ), on F .

53

18.0.1 Properties of Equilibrium Objects

Lemma 58 (Value of Information). The following holds:∫
[0,1]

U(x, e, c, λ)− U(x0, e, c, λ) dF̂ (x) = ∆IF̂ (c), for all c, λ, e, F̂ .

Proof. By definition of U , letting α(c, x) be any distribution over {0, 1} such that α(c, x)
(
arg maxa∈{0,1} a(x− c)

)
=

1, we have:∫
[0,1]

U(x, e, c, λ) dF (x) +K(e, λ) =
∫

[c,1]
x− cdF (x)− (1− α(c, c)({1}))(F (c)− F (c−))(c− c)

=
∫

[c,1]
x− cdF (x).

By Riemann-Stieltjes integration by parts:∫
[c,1]

x− cdF (x) = (1− c)− F (c)(c− c)−
∫

[c,1]
F (x) dx.

53 The last condition implicitely assumes that Sender cannot signal what she does not know. The reason is that Sender
directly chooses a Bayes-plausible Receiver’s belief distribution, i.e., an element of F . One could extend the notation to
allow Sender to choose a distribution supported on F . This extension does not change our results, since Sender does not
signal what she does not know, and the choice of random experiment is publicly committed to. By the definition of a Opt,
α denotes the probability of action 1.
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By continuity of IF : ∫
[c,1]

x− cdF (x) = 1− c− IF (1) + IF (0) + IF (c). (17)

Since IF (1) = 1− x0 and IF (0) = 0, we have that:∫
[0,1]

U(x, e, c, λ) dF̂ (x)−
∫

[0,1]
U(x, e, c, λ) dF (x) = ∆IF̂ (c)

Since
∫

[0,1] U(x, e, c, λ) dF (x) = U(x0, e, c, λ), the result follows. �

Lemma 59 (Recever’s Rationality). If 〈F, e, α〉 is an equilibrium, then:

(1) 1−
∫

[0,1] α(c, λ, x) dF̂ (x) ∈ ∂IF̂ (c), for all (c, λ) ∈ T and F̂ ∈ F ;

(2) e(c, λ, F̂ ) ∈ arg maxe∈[0,1] e∆IF̂ (c)−K(e, λ), for all (c, λ) ∈ T, F̂ ∈ F .

Proof. For part (1), we observe that, by a Opt:

1−
∫

[0,1]
α(c, λ, x) dF̂ (x) ∈

[∫
[0,c)

dF̂ (x),
∫

[0,c]
dF̂ (x)

]
.

For part (2), we use Lemma 58 to express e Opt, given F , as:

e(c, λ) ∈ arg max
e∈[0,1]

e∆IF (c) + U(x0, e, c, λ).

By the derivation in the proof of Lemma 58 (Equation 17) and
∫

[0,1] U(x, e, c, λ) dF (x) = U(x0, e, c, λ),
we have:

e∆IF (c) + U(x0, e, c, λ) = e∆IF (c) + 1− c− IF (1) + IF (0) + IF (c)−K(e, λ)

Using IF (1) = 1− x0 and IF (0) = 0:

e∆IF (c) + U(x0, e, c, λ) = e∆IF (c) + x0 − c+ IF (c)−K(e, λ).

Part (2) follows because x0 − c+ IF (c) is a constant with respect to e. �

Lemma 60. There exist: (i) a measurable selection from (c, λ) 7→ maxa∈{0,1} u(x, a, e, c, λ) for all
e, x ∈ [0, 1], (ii) a measurable selection from x 7→ maxa∈{0,1} u(x, a, e, c, λ) for all (c, λ) ∈ T, e ∈ [0, 1],
and (iii) a measurable selection from (c, λ) 7→ arg maxe∈[0,1] e∆IF (c)−K(e, λ) for all F ∈ F .

Proof. The nontrivial part is to show (iii). By Lemma 59, Receiver is maximizing a real-valued function
that is continuous in c, λ, and the choice variable e. Thus, the Measurable Maximum Theorem
(Aliprantis and Border (2006), Theorem 18.19) holds. �

Definition 12. The Receiver’s value of an experiment F ∈ F is Vλ(e,∆IF (c)) := e∆IF (c)−K(e, λ).

Lemma 61 (Interval Structure of the Extensive Margin). If 〈F̂ , e, α〉 is an equilibrium, and e?λ : c 7→
e(c, λ, F ), F ∈ F , then: e?λ((0, 1]) is an interval.
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Proof. Let 〈F̂ , e, α〉 is an equilibrium. First, we make the preliminary observation that: e(·, λ, F ), in the
statement of the lemma, is equal to e∗◦∆IF for some selection e∗ from ∆IF (c) 7→ arg maxe∈[0,1] Vλ(e,∆IF (c)).

Every selection e∗ from ∆IF (c) 7→ arg maxe∈[0,1] Vλ(e,∆IF (c)) is nondecreasing, because Vλ satisfies
strictly increasing differences on [0, 1]2 and ∆IF (c) ∈ [0, 1]. Since ∆IF is nondecreasing on [0, x0] and
∆IF is nonincreasing on [x0, 1], e∗ ◦∆I is nondecreasing on [0, x0], and nonincreasing on [x0, 1]. We
define:

c := inf{c ∈ [0, x0] : e∗ ◦∆I(c) > 0}
c := sup{c ∈ [x0, 1] : e∗ ◦∆I(c) > 0},

if the relevant set is nonempty; we set c = x0 and c = x0 if the relevant set is empty. The claim follows
from the next two observations. First, we note that e∗ ◦∆I(c) > 0 only if: c ∈ [c, c]. Second, we note
that: c ∈ (c, c) only if e∗ ◦∆I(c) > 0. �

Definition 13. (1) F̂ ∈ F is an equilibrium experiment if there exists an equilibrium 〈F, e, α〉 with
F̂ (x) = F (x) for all x ∈ R. (2) The Receiver’s value from the experiment F ∈ F is: Vλ(∆IF (c)) :=
maxe∈[0,1] V̂λ(e,∆IF (c)), in which V̂λ(e,∆IF (c)) = e∆IF (c) − K(e, λ). (3) F ∈ F is an optimal
experiment if:

F ∈ arg max
F̂∈F

∫
R

∫
[0,1]

Vλ(∆IF̂ (c))
∂gc|λ
∂c

(c|λ) dcdGλ(λ).

(4) We say that there are multiple Sender’s payoffs if: there exist distinct equilibria 〈F, e, α〉 and 〈F̂ , ê, α̂〉
such that:∫

[0,1]

∫
[0,1]

α(x, c, λ) d(e(c, λ)� F )(x) dGc|λ(c|λ) 6=
∫

[0,1]

∫
[0,1]

α̂(x, c, λ) d(ê(c, λ)� F̂ )(x) dGc|λ(c|λ).

Lemma 62 (Uniqueness of Sender’s Payoff). F ∈ F is an equilibrium experiment if, and only if: F is
an optimal experiment. Moreover: if Gc|λ(·|λ) and gc|λ(·|λ) are absolutely continuous for all λ, then
there are not multiple Sender’s payoffs.

Proof. We show that: F is optimal if, and only if: F is rational for Sender, given (α, e), α satisfies a
Opt, and e satisfies e Opt. This is accomplished by establishing that the mapping Dλ(·, α, e) such that

Dλ(·, α, e) : F 7→
∫

[0,1]

∫
[0,1]

α(x, c, λ) d(e(c, λ, F )� F )(x) dGc|λ(c|λ)−
∫

[0,1]
Vλ(∆IF̂ (c))

∂gc|λ
∂c

(c|λ) dc

is constant (in F ,) for all λ. As a preliminary step, we note that e(c, λ, F ) = e∗λ(∆IF (c)), for all c ∈ [0, 1]
and a selection e∗ from arg maxa∈{0,1} e∆I(c)−K(e, λ), by e Opt, given F .

First, let’s write W (F ) :=
∫

[0,1]
∫

[0,1] α(x, c, λ) d(e∗λ(∆IF (c))� F )(x) dGc|λ(c|λ) as follows:

W (F ) =
∫

[0,1]

∫
[0,1]

e∗λ(∆IF (c))(α(x, c, λ)− α(x0, c, λ)) dF (x) dGc|λ(c|λ) +
∫

[0,1]
α(x0, c, λ) dGc|λ(c|λ).

Thus, by Lemma 59, there exists a selection d1
I from the subdifferential of ∆IF on [0, x0] and a selection
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d2
I from the subdifferential of ∆IF on (x0, 1] such that:

−
(
W (F )−W (F )

)
=
∫

[0,x0]
e∗λ(∆IF (c))d1

I(c) dGc|λ(c|λ) +
∫

(x0,1]
e∗λ(∆IF (c))d2

I(c) dGc|λ(c|λ)

By the envelope theorem (Lemma 57), e∗λ is a selection from the subdifferential of the convex and
nondecreasing function Vλ. By ∆IF ∈ A, ∆IF is: (i) convex on [0, x0], and (ii) convex on (x0, 1]. Hence:
by the rules of subdifferential calculus (Fact 2), there exists a selection d from the subdifferential of
Vλ ◦ ∆IF such that: d(c) = e∗λ(∆IF (c))d1

I(c), for all c ∈ [0, x0], and d(c) = e∗λ(∆IF (c))d2
I(c), for all

c ∈ (x0, 1]. Hence:

−
(
W (F )−W (F )

)
=
∫

[0,x0]
d(c) dGc|λ(c|λ) +

∫
(x0,1]

d(c) dGc|λ(c|λ)

=
∫

[0,x0]
d(c) dGc|λ(c|λ) +

∫
[x0,1]

d(c) dGc|λ(c|λ),

in which the second equality uses absolute continuity of Gc|λ(·|λ). By Fact 2, the composition Vλ ◦∆IF
is a convex function on [0, x0], so Vλ ◦∆IF is the integral of any selection from the its subdifferential
(Corollary 24.2.1 in Rockafellar (1970)) on [0, x0]. Similarly, Vλ ◦∆IF is a convex function on [x0, 1].
By absolute continuity of gc|λ(·|λ), we integrate by parts to obtain:

−
(
W (F )−W (F )

)
= Vλ ◦∆IF (1)gc|λ(1|λ)− Vλ ◦∆IF (0)gc|λ(0|λ)−

∫
[0,1]

Vλ ◦∆IF (c)
∂gc|λ
∂c

(c|λ) dc.

Since ∆IF (1) = ∆IF (0) = 0, we have:

−
(
W (F )−W (F )

)
=
(
gc|λ(1|λ)− gc|λ(0|λ)

)
Vλ(0)−

∫
[0,1]

Vλ ◦∆IF (c)
∂gc|λ
∂c

(c|λ) dc.

Hence:

W (F ) =
∫

[0,1]
Vλ ◦∆IF (c)

∂gc|λ
∂c

(c|λ) dc+W (F )−
(
gc|λ(1|λ)− gc|λ(0|λ)

)
Vλ(0).

So:

Dλ(F, α, e) =
∫

R

(
gc|λ(1|λ)− gc|λ(0|λ)

)
Vλ(0) +

∫
[0,1]

α(x0, c, λ) dGc|λ(c|λ) dGλ(λ).

Hence, Dλ(·, α, e) is constant on F . Hence, F is optimal if, and only if: F is rational for Sender, given
(α, e), α satisfies a Opt, and e satisfies e Opt. It follows that: if 〈F̂ , e, α〉 is an equilibrium, then F̂ is
optimal.

For the second direction, let F be optimal. By Lemma 60, there exist e and α that satisfy the
equilibrium measurability conditions, a Opt, and e Opt, given F . Since F is optimal, F is rational
for Sender, given (α, e), by the above equivalence (i.e., because Dλ(·, α, e) is constant on F .) Thus,
〈F, e, α〉 is an equilibrium.

Let’s verify that there are not multiple Sender’s payoff. Suppose that there are multiple Sender’s
payoffs, given by distinct equilibria 〈F, e, α〉 and 〈F̂ , ê, α̂〉. By the above result, F and F̂ are optimal.
Hence:

∫
RDλ(F, α, e) dGλ(λ) 6=

∫
RDλ(F̂ , α̂, ê) dGλ(λ). Since Dλ is constant in the experiment, it

must be that Dλ(F, α, e) varies when e and α are substituted by ê and α̂, for some λ. However,

127



Dλ(F, α, e) = Dλ(F, α, ê), and gc|λ(·|λ) is absolutely continuous. Hence, Dλ(F, α, e) = Dλ(F, α̂, ê). As
an implication, there are not multiple Sender’s payoff. �

Lemma 63. The real-valued function

W : F 7→
∫

R

∫
[0,1]

Vλ(∆IF (c))
∂gc|λ
∂c

(c|λ) dc dGλ(λ)

is continuous on F , endowed with the L1 norm.

Proof. Let’s fix λ, δ > 0 and F ∈ F , and define pλ :=
∫

[0,1]

∣∣∣∂gc|λ∂c (c|λ)
∣∣∣ dc ≥ 0.

Let’s define ε = δ
pλ

if pλ > 0, and let ε be an arbitrary positive number otherwise. Let H ∈ F such
that: ∫

[0,1]
|H(x)− F (x)| dx < ε.

The proof consists of three steps.
First, we stablish the preliminary claim that: |Vλ(∆IH(c))− Vλ(∆IF (c))| < ε. By definition of Vλ

and the envelope theorem (Lemma 57), there exists a selection e from c 7→ arg maxe∈[0,1] e∆IF (c)−K(e, λ)
such that:

|Vλ(∆IH(c))− Vλ(∆IF (c))| =
∫

[min{∆IH(c),∆IF (c)},max{∆IH(c),∆IF (c)}]
e(a) da.

Since the codomain of e is [0, 1], by the above equality:

|Vλ(∆IH(c))− Vλ(∆IF (c))| ≤ |∆IH(c)−∆IF (c)|.

We have the following chain of inequalities,

|Vλ(∆IH(c))− Vλ(∆IF (c))| ≤
∣∣∣∣∣
∫

[0,c]
H(x)− F (x) dx

∣∣∣∣∣
≤
∫

[0,c]
|H(x)− F (x)| dx

≤ ε,

which establishes the preliminary claim.
Second, we establish the continuity of the function Wλ : F 7→

∫
[0,1] Vλ(∆IF (c))∂gc|λ∂c (c|λ) dc on F .

We have the following chain of inequalities:

|Wλ(H)−Wλ(F )| ≤
∫

[0,1]

∣∣∣∣Vλ(∆IH(c))
∂gc|λ
∂c

(c|λ)− Vλ(∆IF (c))
∣∣∣∣∣∣∣∣∂gc|λ∂c

(c|λ)
∣∣∣∣ dc

≤ εpλ
≤ δ.
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Thirdly, we have the following chain of inequalities:

|W (H)−W (F )| ≤
∫

R
|Wλ(H)−Wλ(F )|dG(λ)

≤ δ.

�

Proposition 19. An equilibrium exists.

Proof. First, we observe that the set F , when we identify functions that are equal almost everywhere, is
compact in the topology induced by the L1 norm (this result is a known consequence of Helly’s Selection
Theorem, see, e.g., Proposition 1 in Kleiner et al. (2021).)

The result follows from Weierstrass’ Theorem and Lemma 62 via upper semi continuity of the
Sender’s maximand function in the definition of an optimal experiment (Lemma 63). �

Remark 11. The L1 norm metrizes weak convergence (Lemma 1 in Machina (1982).)

18.0.2 Optimality Properties of Upper Censorships

Definition 14. (1) The distribution of Receiver’s type (c, λ) satisfies single-peakedness if: (i) gc|λ(·|λ)
is absolutely continuous for all λ, and (ii) there exists p ∈ [0, 1] such that: for all λ, gc|λ(·|λ) is
nondecreasing on [0, p] and nonincreasing on [p, 1]. (2) The distribution of Receiver’s type (c, λ) satisfies
strict single-peakedness if: (i) gc|λ(·|λ) is absolutely continuous for all λ, and (ii) there exists p ∈ [0, 1]
such that: for all λ, gc|λ(·|λ) is increasing on [0, p] and decreasing on [p, 1]. (3) The distribution of
Receiver’s type (c, λ) satisfies conditional single-peakedness if: (i) gc|λ(·|λ) is absolutely continuous
for all λ, and (ii) for all λ, there exists pλ ∈ [0, 1] such that gc|λ(·|λ) is nondecreasing on [0, pλ] and
nonincreasing on [pλ, 1].

Remark 12. Log-Concave probability density functions are quasi-concave (An (1995), and references
therein.) Hence, if the conditional density of c given λ is absolutely continuous and log-concave for all
λ, then (c, λ) satisfies single-peakedness. A second sufficient condition is that: (i) the joint distribution
of (c, λ) is log-concave, and (ii) the conditional density of c given λ is absolutely continuous. Single-
Peakedness implies conditional single peakedness but the converse does not necessarily hold.

Lemma 64. Let the distribution of Receiver’s type (c, λ) satisfy single-peakedness. There exists an
optimal experiment that is an upper censorship.

Proof. By Lemma 62, the optimal experiment maximizes W defined as:

W (F ) : F 7→
∫

R

∫
[0,p]

Vλ(∆IF̂ (c))
∂gc|λ
∂c

(c|λ) dc+
∫

[p,1]
Vλ(∆IF̂ (c))

∂gc|λ
∂c

(c|λ) dcdGλ(λ).

Suppose two experiments F,H ∈ F have information policies given by I = IF , J = IH such that:
I(x) ≥ J(x) for all x ∈ [0, p] and I(x) ≤ J(x) for all x ∈ [p, 1]. Because (i) Vλ is nondecreasing, (ii)
∂gc|λ
∂c (·|λ) is nonnegative on [0, p] and nonnpositive on [p, 1], it follows that IF ≥ IH , it follows that
W (F ) ≥W (H).

The result follows from Lemma 56. �
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18.1 Proof of Proposition 2

Proof. If an optimal information policy exists, the Proposition follows from Lemma 15 and Lemma 56.
Existence established. �

18.2 Proof of Proposition 13

We prove several lemmata.
Lemma 65. Let I ∈ I such that p ≥ c(∆I), there exists another information policy I? such that:

(FEAS) I? is feasible: I? ∈ I,

(EM) I? produces the same extensive margin as I: c(∆I?) = c(∆I), c(∆I?) = c(∆I).

(IMPR)

∆I?(x) ≥ 0, for all x ∈ [c(∆I), c̄(∆I)]

.

(CENS) There exist x`, θ`, θm, xm such that 0 ≤ x` ≤ θ` ≤ θm ≤ xm ≤ 1, and:

I?(x) =



IF (x) , x ∈ [0, x`]
IF0(θ`) + F0(θ`)(x− θ`) , x ∈ (x`, θ`]
IF0(x) , x ∈ (θ`, θm]
IF0(θm) + F0(θm)(x− θm) , x ∈ (θm, xm]
IF (x) , x ∈ (xm,∞].

Proof. We use the following notation: c(I − I) =: c, c(I − I) =: c. In the first step, we prove the
lemma in the case where there is a feasible information policy that is a straight line between the points
p := (c, I(c)) and p := (c, I(c)). In the second step, we prove the lemma in the case where there is not a
feasible information policy that is a straight line between the points p and p.

First Step. Let’s define the line line i such that x 7→ I(c) + λ∗(x − c), with slope λ∗ := I(c)−I(c)
c−c .

We claim that i?(x) := max{i(x), I0(x)} satisfies all properties. It is FEAS by hypothesis. It is EXT
because i(c) = I(c) and i(c) = I(c). It is IMPR because I is convex and i? is EXT. It is CENS with
θ` = θm = xm, because: (i) EXT of i? and convexity of I imply that i? is affine in [c, c], (ii) λ∗ ∈ [0, 1] and
EXT imply, with I ∈ I0 that there are intersections x̃1, x̃2, with x̃1 ≤ c ≤ c ≤ x̃2, where: i?(x) = I(x) if
x ∈ [0, x̃1] ∪ [x̃2, 1].

Second Step. In this case, i? is not FEAS. Since i? satisfies FEAS at x if x ≤ c and if x ≥ c, there is
a point x∗ ∈ (c, c) such that i(x∗) > IF0(x∗).

L := {λ ∈ [I ′(c), 1] | I(c) + λ(x− c) ≤ IF0(x) for all x ∈ [c,∞)},
M := {λ ∈ [0, I ′(c)] | I(c) + λ(x− c) ≤ IF0(x) for all x ∈ [0, c̄]}.

` := maxL, m := minM . We define two lines:

y` is: x 7→ I(c) + `(x− c)
ym is: x 7→ I(c̄) +m(x− c̄).
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We prove a lemmata.

Lemma 66. `,m are well-defined.

Proof. L is nonempty because I ′(c) ∈ L, which follows from: (i) IF0(x) ≥ I(x) for all x and (ii)
I ′(c) ∈ ∂I(c). M is nonempty because I ′(c) ∈M , which follows from: (i) IF0(x) ≥ I(x) for all x and
(ii) I ′(c) ∈ ∂I(c). L,M are closed because IF0 is continuous. L,M are bounded. �

Lemma 67. that there exists a unique pair of numbers (θ`, θm) ∈ [c, 1]× [0, c̄] such that:

y`(θ`) = IF0(θ`)
ym(θm) = IF0(θm)

Proof. Suppose there does not exists such a `. There exists a sufficiently small ε > 0 such that: (i)
`+ ε ∈ L and (ii) I(c) + (`+ ε)(x− c) < IF0(x) for all x ∈ [c,∞); we note that ` = 1 contradicts ` ∈ L
because I ′F0

(x) < 1 if x < 1. Uniquenss of ` follows from convexity of IF0 .
Suppose there does not exists such an m. There exists a sufficiently small ε > 0 such that: (i)

` − ε ∈ M and (ii) I(c̄) + (m − ε)(x − c̄) < IF0(x) for all x ∈ [0, c̄); we note that m = 0 contradicts
I 6= IF . Uniquenss of m follows from convexity of IF0 . �

Lemma 68. θ` ≤ θm.

Proof. Let’s prove that it suffices to show that: ` ≤ m. Suppose ` ≤ m, then: since ` ∈ ∂IF0(θ`) and
m ∈ ∂IF0(θm), and IF0 is strictly convex, we have: θ` ≤ θm.

First, we show that ` ≤ λ∗. Suppose that: ` > λ∗. Then: I(x) + `(x− c) > I(c) + λ∗(x− c) for all
x > c. Therefore, since ` > 0:

IF0(x∗) ≥ I(c) + λ∗(x∗ − c).

We reached a contradiction with the definition of x∗, so: ` ≤ λ∗.
Let’s prove that m ≥ λ∗. Suppose m < λ∗. Then: I(x) +m(x− c) > I(c) + λ∗(x− c) for all x < c.

Therefore, since m > 0:

IF0(x∗) ≥ I(c) + λ∗(x∗ − c).

We reached a contradiction with the definition of x∗, so: m ≥ λ∗. Therefore, we have m ≥ λ∗ ≥ `,
which implies θm ≥ θ`. �

We define a candidate I? and we verify that it has the desired properties.

I?(x) :=


max{IF (x), I(c) + `(x− c)} , x ∈ [0, θ`]
IF0(x) , x ∈ [θ`, θm]
max{IF (x), I(c) +m(x− c)} , x ∈ [θm,∞]

Let’s first verify that I? is well-defined. We know that ` ∈ ∂IF0(θ`) and m ∈ ∂IF0(θm). Since
I(c) + `(0 − c) < IF0(0) and I(c) ≥ IF0(c), max{IF0(x), I(c) + `(x − c)} = IF0(x) if x < x0; and
max{IF0(x), I(c) + `(x− c)} = I(c) + `(x− c) if x > x0; for some x0 ∈ [0, θ`]. In a similar way, we can
show that there exists a x2 ∈ [θm, 1] such that: max{IF0(x), I(c) +m(x− c)} = IF0(x) if x > x2, and
max{IF0(x), I(c) +m(x− c)} = I(c) +m(x− c) if x < x2.

131



(CENS) follows from the definition of I? and its well-definedness, using y0 = x0, y1 = x1 , y2 = x3, y3 = x4,
and α1 = λ1 and α2 = λ3.

(IMPR) IMPR on [c, x1] and [x3, c] follows from convexity of I, and on [x1, x3] follows from FEAS of I in
that region.

(EM) follows from I?(c) = I(c) + λ1(x− c), and I?(c) = I(c) + λ3(x− c).

(FEAS) First, I? is always above I0. Second I? is always below I0, which follows from λ` ∈ ∂I0(x`) for all
` ∈ {1, 3}. The maximum of affine functions is convex, and I0 is convex. Global convexity then
follows if I? is subdifferentiable at x1 and x3. We now claim that λ` ∈ ∂I?(x`) for all ` ∈ {1, 3}.
This claim follows from λ` ∈ ∂I0(x`) for all ` ∈ {1, 3}, and the fact that I0(x1) = I(c) +λ1(x1− c)
and I0(x3) = I(c) +λ3(x3− c) (together with convexity of I? in [0, x1] and [x3, 1]). We established
that the subdifferential of I? at x1 and x3 nonempty, which finalizes the proof that I? is globally
convex.

�

Proof of Proposition 13

Proof. By the previous lemmata, to prove Proposition 13 we only need to prove the following claim.
Let I ∈ I such that p < c(∆I), there exists another information policy I◦ such that:

(FEAS) I◦ is feasible: I◦ ∈ I,

(EM) I◦ produces the same extensive margin as I: c(∆I◦) = c(∆I), c(∆I◦) = c(∆I).

(IMPR)

∆I◦(x) ≥ 0, for all x ∈ [c(∆I), c̄(∆I)]

.

(CENS) There exist x`, θ`, θm, xm, θu, xu such that 0 ≤ x` ≤ θ` ≤ θm ≤ x◦m ≤ xu ≤ 1, and:

I◦(x) =



IF (x) , x ∈ [0, x`]
IF0(θ`) + F0(θ`)(x− θ`) , x ∈ (x`, θ`]
IF0(x) , x ∈ (θ`, θm]
IF0(θm) + F0(θm)(x− θm) , x ∈ (θm, x◦m]
IF0(θu) + F0(θu)(x− θu) , x ∈ (x◦m, xu]
IF (x) , x ∈ (xu,∞).

The claim follows from taking I? from the previous lemmata until the point x◦m where I? intercepts the
line j: x 7→ I(c) + I ′(c)(x− c), and max{IF , j} after x◦m. �

132



18.3 Known ζ and κ

We assume, in this section only, that Sender knows both ζ and κ. If ζ > 1, any information policy is
optimal. If ζ ≤ θ0, IF is optimal. Let 1 ≥ ζ ≥ θ0.

The Sender’s problem is:

max
I∈I

(
1− I ′(ζ−)

)
[∆I(ζ) ≥ κ].

Lemma 69. There exists a solution to the Sender’s problem I ∈ I such that: for θ ∈ [0, ζ], I is the θ
upper censorship and:

∆Iθ ≤ κ,

with equality if θ > 0.

Proof. Let Iu := {I ∈ I : I = Iθ, for some θ ∈ [0, 1] such that θ ≤ ζ}. Suppose the solution is not
IF0 . The Sender’s problem is, without loss of optimality by lemma 56:

max
I∈Iu

(
1− I ′(ζ−)

)
[∆I(ζ) ≥ κ].

Suppose there exists a solution I ∈ Iu, such that I = Iθ? , for some θ? ∈ (0, 1). We distinguish three
cases.

(1) If ∆I(ζ) < κ, then IF achieves the same Sender payoff. (2) If ∆I(ζ) = κ, the lemma holds. (3)
Let’s suppose ∆I(ζ) > κ. By definition of I, at y = I(ζ) the next condition holds:

IF0(θ?) + F0(θ?)(ζ − θ?)− y = 0.

By the implicit function theorem, there exists a differentiable function t:

t : (0, 1)→ (0, 1)
y 7→ θ?,

such that:

t′(y) =


1

(ζ−t(y))F ′0(t(y)) , 0 < ζ < t(y)
1

F ′0(t(y)) , 1 > ζ ≥ t(y).

Let the value of Iθ be:

v : (0, 1)→ [0, 1]
θ 7→

(
1− I ′θ(ζ−)

)
Because I ′θ?(ζ−) = F0(θ?), v is differentiable in θ at θ?. Using the chain rule, the derivative of v with
respect to I(ζ) is:

−F ′0(t(I(ζ))) 1
(ζ − t(I(ζ)))F ′0(t(I(ζ))) ,
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whenever ζ > t(I(ζ)), and −1 otherwise. It follows that we can consider without loss solutions I ∈ Iu
that satisfy: ∆Iθ(ζ) = κ and I = Iθ, or ∆I(ζ) < κ. �
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eds.), 143–159, Springer New York.

Brown, Zach Y. and Alexander MacKay (2023), “Competition in pricing algorithms.” American Economic
Journal: Microeconomics, 15, 109–56, URL https://www.aeaweb.org/articles?id=10.1257/mic.20210158.

Callander, Steven (2008), “A theory of policy expertise.” Quarterly Journal of Political Science, 3, 123–140,
URL http://dx.doi.org/10.1561/100.00007024.

Callander, Steven (2011a), “Searching and learning by trial and error.” American Economic Review, 101,
2277–2308, URL https://www.aeaweb.org/articles?id=10.1257/aer.101.6.2277.

Callander, Steven (2011b), “Searching for good policies.” The American Political Science Review, 105,
643–662, URL http://www.jstor.org/stable/23275345.

Callander, Steven and Patrick Hummel (2014), “Preemptive policy experimentation.” Econometrica, 82,
1509–1528, URL https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA10616.

Callander, Steven, Nicolas S. Lambert, and Niko Matouschek (2021), “The power of referential advice.”
Journal of Political Economy, 129, 3073–3140, URL https://doi.org/10.1086/715850.

Callander, Steven and Niko Matouschek (2019), “The risk of failure: Trial and error learning and long-run
performance.” American Economic Journal: Microeconomics, 11, 44–78, URL https://www.aeaweb.org/
articles?id=10.1257/mic.20160359.

Cetemen, Doruk, Can Urgun, and Leeat Yariv (2023), “Collective progress: Dynamics of exit waves.”
Journal of Political Economy, 131, 2402–2450, URL https://doi.org/10.1086/724321.

Chahrour, Ryan (2014), “Public communication and information acquisition.” American Economic Journal:
Macroeconomics, 6, 73–101.
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