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This dissertation comprises three essays on empirical industrial organization (IO) and ap-

plied econometrics. The first and third chapters focus on identification approaches in struc-

tural models, with the first chapter dedicated to addressing limitations in demand modeling,

while the third chapter studies identification in a triangular two-equation system. The sec-

ond chapter applies modern econometric tools to understand policy-related topics in IO.

The first chapter deals with identification in structural demand modeling, and general-

izes the current framework in the literature to achieve a more accurate estimation of differ-

entiated products demand. Within the framework of Berry (1994) and Berry, Levinsohn,

and Pakes (1995), the existing empirical industrial organization literature often assumes

that market size is observed. However, the presence of an unobservable outside option is a

common source of mismeasurement. Measurement errors in market size lead to inconsis-

tent estimates of elasticities, diversion ratios, and counterfactual simulations. I explicitly

model the market size, and prove point identification of the market size model along with

all demand parameters in a random coefficients logit (BLP) model. No additional data be-

yond what is needed to estimate standard BLP models is required. Identification comes

from the exogenous variation in product characteristics across markets and the nonlinearity

of the demand system. I apply the method to a merger simulation in the carbonated soft

drinks (CSD) market in the US, and find that assuming a market size larger than the true

estimated size would underestimate merger price increases.

Understanding consumer demand is not only central to studying market structure and



competition but also relevant to the study of public policy such as taxation. In the sec-

ond chapter, we examine household demand for sugar-sweetened beverages (SSB) in the

U.S. Our goal is to understand the distributional effect of soda taxes across demographic

groups and market segments (at-home versus away-from-home). Using a novel dataset that

includes at-home and away-from-home food purchases, we study who is affected by soda

taxes. We nonparametrically estimate a random coefficient nested logit model to exploit the

rich heterogeneity in preferences and price elasticities across households, including SNAP

participants and non-SNAP-participant poor. By simulating its impacts, we find that soda

taxes are less effective away-from-home while more effective at-home, especially by tar-

geting the total sugar intake of the poor, those with high total dietary sugar, and households

without children. Our results suggest that ignoring either segment can lead to biased policy

implications.

In the final chapter, we show that a standard linear triangular two equation system

can be point identified, without the use of instruments or any other side information. We

find that the only case where the model is not point identified is when a latent variable

that causes endogeneity is normally distributed. In this non-identified case, we derive the

sharp identified set. We apply our results to Acemoglu and Johnson’s (2007) model of

life expectancy and GDP, obtaining point identification and comparable estimates to theirs,

without using their (or any other) instrument.
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Chapter 1

Identification and Estimation of Market

Size in Discrete Choice Demand Models
LINQI ZHANG

1.1 Introduction

Aggregate demand models of differentiated products are crucial for analyzing market power

and firm competition in a wide range of industries. The most widely adopted estimation

approach developed by Berry (1994) and Berry, Levinsohn, and Pakes (1995) (hereafter

referred to as BLP) involves using observed aggregate market shares. Constructing mar-

ket shares requires researchers to observe the size of the market. Market size consists of

all observed sales (the inside goods) plus all potential purchases (the outside goods and

no-purchase). Potential purchases are generally unobservable and are therefore a source of

possible mismeasurement of market size.1

Many empirical results are sensitive to market size (see section 1.2 for details and ex-

amples). Yet how to choose market size in demand models has received limited formal
1For instance, when estimating airline demand, a market is typically defined as an origin-destination pair

of cities. This raises questions about how to determine the number of potential flyers – whether it comprises
only those currently traveling by other means, individuals who might opt for travel with lower prices, or the
entire population of end-point cities, some of whom may never travel to the destination.

1



attention in the literature. A few researchers have commented on this problem,2 but pro-

vide little guidance on what to do about unobserved or mismeasured market size.

A common empirical choice is to assume the market size equals the population of the

market times a constant.3 For example, in the demand for soft drinks, this constant repre-

sents the maximum amount an individual can potentially consume, which is not observed

or estimated in general but chosen ad hoc based on institutional background or consumer

behavior. It is important to note that this constant is not a free normalization as it affects

the estimates of preferences and counterfactual simulations.

This paper shows how to correct for the unknown market size in random coefficients

BLP and other related demand models. For example, in the case where market size is a

constant times the observed population, I provide sufficient conditions to point identify

and estimate this constant along with all the other parameters of the BLP model. More

generally, market size can be point identified and estimated when it is a general function

of observed variables and unknown parameters. So, for example, in an airline demand

model, market size can be a function of the population in the origin city, population in

the destination city, city characteristics like being a hub or not, and a vector of unknown

parameters that are identified and estimated along with the rest of the BLP model.

Identification exploits two important features: exogenous variation that shifts quantities

across markets and the nonlinearity of the demand model. It does not rely on other infor-

mation such as micro-moments or additional data beyond those typically used in standard

BLP. A key insight is that any exogenous changes in product characteristics affect the total

sales of inside goods, and the responsiveness of total sales to this variation depends on the

true size of the market. Why does this variation have extra identifying power for param-

eters beyond ordinary demand coefficients? In section 1.3, I show that the log of product
2For example, Berry (1994) states that “issues that might be examined include questions of how to

estimate market size when this is not directly observed”.
3Well-known examples include Nevo (2001), Petrin (2002), Rysman (2004), Berto Villas-Boas (2007),

Berry and Jia (2010), Ho, Ho, and Mortimer (2012), Ghose, Ipeirotis, and Li (2012), and Eizenberg and Salvo
(2015a), among others.
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share in the plain multinomial logit model is linear in product characteristics but nonlinear

in market size parameters, making identification possible. More formally, identification is

based on conditional moment restrictions and full rank conditions. By explicitly computing

the associated Jacobian matrix, I provide low-level assumptions on instruments that serve

to identify the market size.

In addition to proving this identification results, I also (a) derive the bias caused by

mismeasured market size; (b) establish a test to detect the relevance of instruments for

the market size parameter; (c) show identification in models where market size is an un-

known function of observed variables; (d) provide stronger conditions that permit point

identification and estimation of market size, even when the demand model is not known

or nonparametric (e.g., in Berry and Haile (2014)’s nonparametric BLP framework), which

allows for testing market size specifications without estimating the demand model; (e) offer

simpler identification results for the plain multinomial logit model, e.g., employing market

fixed effects.

I demonstrate how the proposed method is related to but different from commonly used

approaches – implement a nested logit model or market fixed effects – that aim to reduce

biases from unknown market size. I formally demonstrate that these existing approaches

have some theoretical basis and intuition. Nevertheless, they are not equivalent to my

approach and cannot eliminate all biases. Furthermore, I highlight that a special case of

nonparametric estimation of random coefficients is equivalent to estimating the market size,

but it requires imposing particular assumptions on the distribution of random coefficients.

Based on these identification results, I apply the proposed method to a merger simula-

tion of carbonated soft drink companies. I specifically select the soda market for several

reasons: First, it is a market frequently studied using structural methods that involve esti-

mating random coefficients logit models. Second, the existing literature lacks a consensus

on how to define market size. Third, this market satisfies the conditions for strong identifi-

cation, which I will state in the Monte Carlo simulation section. In the merger analysis, I

3



use both the proposed method and the standard BLP to estimate demand, while assuming

a Bertrand competition among firms. Using the estimated market size of 12 servings per

week, I predict a price effect that is 31% higher compared to the literature’s assumption

of 17 servings per week. This market size estimate also suggests that defining market size

based on per capita consumption of all non-alcoholic beverages (a common practice in the

literature) may be too large. Additionally, in Appendix 1.K, I present a second merger anal-

ysis using the constructed cereal data from Nevo (2000). These counterfactual simulations

demonstrate substantial gains from the proposed correction.

Furthermore, in the Monte Carlo simulations (Appendix 1.H), I examine what param-

eters are most sensitive to errors in market size measurements and assess whether adding

random coefficients helps mitigate bias. I also show that the proposed approach performs

well, particularly when the true share of the outside option is not extremely large, and so

my method will generally be useful in applications.

One argument for not correcting the market size issue is the belief that random coeffi-

cients or a nesting parameter can partially account for the bias. For example, Miller and

Weinberg (2017) state that the nesting parameter ensures that estimates are not too sensitive

to the market size measure. Some calculations, such as own- and cross-price elasticities,

may exhibit less sensitivity when the model includes random coefficients, as demonstrated

in Rysman (2004), Iizuka (2007), and Duch-Brown et al. (2017). However, my simulations

and empirical study reveal that more flexible demand models do not fully eliminate biases.

Biases are more pronounced in certain calculations, such as outside good elasticities, out-

side good diversion ratios, choice probabilities, and aggregate price elasticities.4 This can

lead to substantially different results for empirical questions, particularly those related to

the outside option share, such as the willingness-to-pay for a new good (see discussion in

Conlon and Mortimer 2021), tax or subsidy policies (dependent on aggregate elasticities),

and merger analysis (see section 1.2 for examples).
4See also Conlon and Mortimer (2021) Table 4, which shows that outside diversion ratios and aggregate

elasticities are sensitive to market size in both the BLP automobile application and Nevo’s cereal application.

4



Furthermore, in the Department of Justice (DOJ) documents, the word “market size”

appears at a high frequency, implying that the size of a market by itself is a piece of critical

and useful information for firms and regulators.5 This suggests that obtaining a consistent

estimate of the true market size is important in itself, in addition to its use in removing

model estimate biases.

The proposed method in this paper is transparent and simple to implement. It requires

estimating only a few extra nonlinear parameters, along with the standard BLP estimation.

Researchers may have tried to estimate market size, but the lack of identification theorem

and the unsatisfactory empirical performance or numerical issues with the estimator have

hindered the widespread adoption of market size estimation in applied work. I provide con-

ditions under which the market size is identified, discuss the data variation that facilitates

identification, and propose tests to assess the relevance of these instruments. I hope this

paper can alleviate researchers’ uncertainty about the market size. Moreover, whenever

the market size itself is important to practitioners or regulators, this method can serve as

a means to infer the size of the market. Note, that although the solution is simple, it goes

beyond merely adding a regressor or market fixed effects.

The next section is a literature review. In section 1.3, I start with a multinomial logit

demand model to illustrate the problem of mismeasured market size and provide identi-

fication results. In section 1.4, the results are generalized to the random coefficients logit

model. Section 1.5 provides extensions. Section 1.6 presents an empirical application. Sec-

tion 1.7 summarizes additional results provided in the supplemental appendix, and section

1.8 concludes.
5At the DOJ/FTC merger workshop, Newmark (2004) emphasizes the significance of market

size/population in price-concentration studies for merger cases. Additionally, firms predict product quan-
tities on the basis of potential market size. The Comments of DOJ on Joint Application Of American Airlines
Et Al. state that “To model the benefits of an alliance . . . Given a fixed market size, passengers are assigned
based on relative attractiveness of different airline offerings.”

5



1.2 Literature Review

In the empirical industrial organization literature, market size is often assumed rather than

observed or estimated. Notable examples include previous works that use the number of

households in the US as the market size in analyzing the automobile industry (such as BLP

and Petrin 2002). Some researchers realize this problem and conduct sensitivity analy-

sis. For instance, various merger analysis papers, including Ivaldi and Verboven (2005),

Weinberg and Hosken (2013), Bokhari and Mariuzzo (2018) and Wollmann (2018), per-

form robustness checks on market size assumptions, using different logit-based models

and demand specifications, and find that market size impacts simulated price changes and

consumer welfare.

Several other papers also recognize the issue and explicitly incorporate market size

estimation into demand models. Bresnahan and Reiss (1987) and Greenstein (1996) both

specify market size as a linear function of market characteristics, though theirs is a vertical

model rather than BLP. Berry, Carnall, and Spiller (2006) estimate a scaling factor similar

to this paper, however, they do not discuss identification as I do, and they do not allow

for market size being a more general function of multiple measures. Chu, Leslie, and

Sorensen (2011) utilize supply side pricing conditions as additional moments to estimate

market size. While their approach does not impose functional form assumptions, it requires

one to observe the marginal costs of firms. Sweeting, Roberts, and Gedge (2020) and Li

et al. (2022) estimate a generalized gravity equation and define market size as proportional

to the expected total passengers predicted from the gravity equation but leave the choice of

the proportionality factor to the researcher. Hortaçsu, Oery, and Williams (2022) estimate

a Poisson arrival process and use the arrival rate as a proxy measure of market size. Their

method applies to settings with individual choice data, whereas I focus on aggregate data.

The closest study to ours is Huang and Rojas (2014), which provides theoretically-

founded methods to deal with the market size problem in a random coefficients logit setting,

by approximating the unobserved market size as a linear function of market characteristics
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(Chamberlain’s device). They employ the control function method to handle price endo-

geneity as in Petrin and Train (2010). By doing so, the unobserved market size becomes

an additive term outside of the nonlinear part of the demand function. In contrast, ours is

built on the standard BLP framework, where market size enters the moment restrictions in

a nonlinear manner. Huang and Rojas (2014)’s method largely relies on the linear addi-

tivity and thus can not extend directly to the BLP framework.6 Their primary focus is on

removing bias, while this paper also aims to identify and estimate the market size.

Two other papers have looked at issues arising in constructing market shares. Gandhi,

Lu, and Shi (2020) handle the problem of zeros in market share data. Berry, Linton, and

Pakes (2004) take into account sampling errors in estimating shares from a sample of con-

sumers. While both papers deal with errors in aggregate market shares, the present paper

tackles a different problem, inherent to the model itself rather than features of the data sam-

ple. The goal of this paper is to address the more fundamental problem of the unobserved

share of the outside option and that all shares will be inconsistent in the limit. Unlike sam-

pling errors that diminish as the sample size increases, the errors I address persist and do

not vanish.

More recently, theoretical literature on the identification and estimation of random co-

efficients aggregate demand model has been growing. Berry and Haile (2014) and Gandhi

and Houde (2019) highlight that identification of BLP demand models requires instruments

for not only endogenous prices but also endogenous market shares. Other studies that dis-

cuss the role of instruments in BLP models include Reynaert and Verboven (2014), and

Conlon and Gortmaker (2020). I contribute to this literature by providing low-level condi-

tions on instruments for identification of random coefficients in the standard BLP model,

both with and without identifying market size.

Recent work generalizes the parametric demand models to more flexible nonparametric,
6Petrin and Train (2010)’s control function approach is an alternative to the BLP approach in dealing

with the price endogeneity; which method to use will be application-specific. This discussion is outside the
scope of the present paper.
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nonseparable demand systems. Nonparametric identification of aggregate demand models

is studied by Berry and Haile (2014), Gandhi and Houde (2019), Lu, Shi, and Tao (2021),

and Dunker, Hoderlein, and Kaido (2022), among others. This paper also provides condi-

tions for identification of market size in nonparametric specified demand models.

1.3 The Multinomial Logit Demand Model

I first briefly review the setup of a plain multinomial logit model without random coeffi-

cients or individual-level covariates. Throughout this section, I assume exogenous prices

to simplify the exposition and focus more on market size identification. I then propose

a simple model of market size. The model contains assumptions on the unobserved out-

side shares. Combining both models, I provide, in Theorem 1, assumptions under which

demand parameters and market size can be identified. In Appendix 1.E, Theorem 1 is ex-

tended to a nested logit model, highlighting the discrepancies and connections between a

nest structure and the market size model.

1.3.1 Demand Model

Suppose that we observe T independent markets. A market can refer to a single region in

a single time period. Let Jt = (1, · · · ,Jt) be the set of differentiated products in market

t, referred to as inside goods. Let j = 0 denote the outside option. As in Berry (1994),

I assume the indirect utility of consumer i for product j in market t is characterized by a

linear index structure

Ui jt = X 0
jtb + x jt + ei jt ,

which depends on a vector of observed market-specific product characteristics Xjt 2 L,

unobserved characteristics x jt , and idiosyncratic tastes of consumers ei jt . Consumer tastes

are assumed to be independently and identically distributed across consumers and products,

with extreme value type I distribution.

8



Let the average utility index of product j at market t be denoted as d jt = X 0
jtb + x jt ,

with the mean utility for the outside option being normalized as d0t = 0.

Let p jt denote the true conditional probability of choosing product j in market t. Each

consumer chooses the product that gives rise to the highest utility. This defines the set of

unobserved consumer tastes that corresponds to the purchase of good j. The probability of

choosing good j is obtained by integrating out over the distribution of consumer tastes ei jt .

Given the functional form and parametric assumptions, the true choice probability takes an

analytic form:

p jt =
exp(d jt)

1+ÂJt
k=1 exp(dkt)

8 j 2 Jt , and p0t =
1

1+ÂJt
k=1 exp(dkt)

.

In a plain logit context, the nonlinear demand system can be inverted to solve for d jt as a

function of choice probabilities, yielding

ln(p jt/p0t) = X 0
jtb + x jt 8 j 2 Jt . (1.1)

If the value of p jt and p0t were observed, parameters b can be consistently estimated by

regressing ln(p jt/p0t) on Xjt . Generalized Method of Moments (GMM) estimators can be

constructed based on the mean independence condition E(x jt | Xjt) = 0. The conditions I

have imposed so far are standard assumptions made in Berry (1994) and the empirical IO

literature, which are sufficient to identify the demand parameters b when the market size

is correctly measured and therefore p jt and p0t are observed without errors.

1.3.2 Market Size Model

In this subsection I provide modeling assumptions for the unobserved p jt and p0t . These

assumptions allow us to characterize the connection between unobserved probabilities and

measures of market size. I then combine these assumptions with the demand system to

obtain a new model which I will later prove identification.

Define r⇤jt by

r⇤jt =
p jt

ÂJt
k=1 pkt

8 j 2 Jt , (1.2)
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which is the true conditional choice probability of choosing product j, conditional on pur-

chasing any inside goods. Using equations (1.1) and (1.2), we have

ln
�
r⇤jt
�
= ln

✓
p0t

1�p0t

◆
+X 0

jtb + x jt 8 j 2 Jt . (1.3)

Let Njt be the observed sales of good j in market t, and let Ntotal
t = ÂJt

j=1 Njt denote

the total observed sales of all goods. We observe r jt , where r jt = Njt/Ntotal
t represents the

fraction of total purchases spent on good j in market t, and therefore does not depend on

the outside option or the size of the total market. I call these r jt relative shares, and assume

r jt = r⇤jt . In Appendix 1.C, I relax this assumption and allow the true r⇤jt to be unobservable,

introducing sampling errors or measurement errors in r jt .

In general, r jt would be observable along with Ntotal
t . In most empirical contexts, we

might directly observe Njt . For example, the number of passengers on flights by airline j

in city pair t, or servings of cereals of brand j sold in city t. From these observed Njt we

can calculate r jt and Ntotal
t . In other applications, r jt and Ntotal

t might come from separate

sources. For instance, r jt could be the fraction of a set of sampled consumers who buy

product j in time period t, and Ntotal
t could be separate estimates of total sales in time t.

The issue with not observing market size is not observing p0t . If the total market size

were directly observed, we could calculate p0t from the observed Ntotal
t and the market size.

However, observing only the relative shares r jt for all Jt goods does not provide sufficient

information to determine p0t . Therefore, we need to specify a model for the unobserved

outside share. Compared to equation (1.1), the model of equation (1.3) offers the advantage

that only the first term on the right side depends on the outside share, and thus it is easier

and more natural to impose assumptions on this additively separable term.

Let Mt be some observed population or quantity measure of market t that we believe is

related to the true market size. For instance, if a market is defined to be a city, Mt could be

the population size (e.g. Nevo 2001; Berto Villas-Boas 2007; Rysman 2004; Ho, Ho, and

Mortimer 2012; and Ghose, Ipeirotis, and Li 2012). Alternatively, Mt could be a prediction

of total product sales or the number of passengers on a flight (e.g. Sweeting, Roberts, and
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Gedge 2020; Li et al. 2022; and Backus, Conlon, and Sinkinson 2021). Let Wt = Mt/Ntotal
t

denote observed market to sales. As discussed earlier, it is both natural and necessary to

place assumptions on p0t . For now, I assume that

ln
✓

p0t

1�p0t

◆
= ln (gWt �1) (1.4)

for some constant g . In Appendix 1.C, I relax equation (1.4) by introducing a random noise

term vt , so that this relationship is approximate rather than exact. In section 1.4, I further

generalize the model by allowing p0t to depend on multiple g’s7.

The model of equation (1.4) is sensible for the following reasons. In the conventional

approach, market size is assumed to be a known constant g multiplied by an observed

population measure Mt . In this case, 1 � p0t = Ntotal
t /gMt would equal 1/ (gWt), and

thus ln (p0t/(1�p0t)) would equal ln (gWt �1). Equation (1.4) treats the usual constant

g as unknown rather than known. Furthermore, equation (1.4) is consistent with a deeper

economic model, which I elaborate on in section 1.5.1.

Putting the above equations and assumptions together we get the estimating equation

ln (r jt) = ln (gWt �1)+X 0
jtb + x jt 8 j 2 Jt (1.5)

In Appendix 1.B, I demonstrate the bias introduced in estimating b when employing

the conventional approach of equation (1.1) with a mismeasured market size. For exam-

ple, if the market size used in estimation is larger than the true size, the model exhibits a

positive correlation between the price of good j and the measurement error, and a negative

correlation between the price and its own market share. As a result, the estimated price

coefficient will be biased downward (in absolute value), indicating an underestimation of

price sensitivity.
7An alternative approach to relax this modeling assumption, which I do not explore in the present paper, is

to consider g as a function of observed market-level covariates that affect preferences. I leave this possibility
for future research.
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1.3.3 Identification

Here I provide identification of model (1.5). Unknown parameters in this model include

the market size parameter g and demand coefficients b . My approach allows for the iden-

tification of both the true market size and demand parameters, relying on variation across

multiple markets. To achieve this, one would need to observe data from many markets. In

Appendix 1.D, I present an alternative approach utilizing market fixed effects. However,

while the market fixed effects approach identifies demand parameters, it does not provide

identification of the market size.

Assumption 1. E (x jt | Qt ,X1t , . . . ,XJtt) = 0, where Qt represents instruments for Wt. Wt

and Qt are continuously distributed. The number of markets T ! •.

Assumption 1 assumes that the additive error x jt is mean independent of product char-

acteristics and some instrument Qt , and that the regressors have a continuous distribution.

Note that the nonlinear variable Wt in equation (1.5) is endogenous since it is a function

of quantities. The instrument Qt can take the form of a vector or a scalar. For the sake

of convenience, Theorem 1 employs a scalar Qt . The large T assumption is necessary as

the theorem is based on a conditional expectation conditioning on Qt , and the derivatives

of the conditional expectation. These derivatives would be estimated using nonparametric

regression techniques such as kernel regression or local polynomials (Li and Racine 2007).

Assuming Qt is continuous, it asymptotically requires observing all values of Qt on its

support, hence needs T to approach infinity. Moreover, this assumption implies that the

instrument Qt can not be a binary variable.

Theorem 1. Given Assumption 1 and equation (1.5), let G be the set of all possible values

of g , if

1. function f (c,q,x) is twice differentiable in (c,q) for every x 2 supp(Xjt), where

f (c,q,x) = E (ln (r jt)� ln (cWt �1) | Qt = q,Xjt = x) ,
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2. and ∂E
⇣
� Wt

cWt�1 | Qt = q,Xjt = x
⌘

/∂q > 0 or < 0 for all c 2 G,

then g and b are identified.

The proof of Theorem 1, provided in Appendix 1.A, works by showing that there exists

q and x such that g(c,q,x) = 0 has a unique solution c, where g(c,q,x) = ∂ f (c,q,x)/∂q.

To provide an idea of what the restrictions in the theorem entail, consider the simplest

(although not possible in theory) case where Wt is exogenous. Then Wt serves as an

instrument for itself, i.e. Qt = Wt , and so the sufficient condition ∂E(� Wt
cWt�1 | Qt =

q,Xjt = x)/∂q = ∂ (� w
cw�1)/∂w = 1/(cw� 1)2 > 0 is satisfied. On the other hand, if

Wt is endogenous but the instrument Qt is independent of Wt (conditional on Xjt), then

E(� Wt
cWt�1 | Qt = q,Xjt = x) = E(� Wt

cWt�1 | Xjt = x), which does not depend on q. There-

fore the derivative with respect to q would be zero, violating the condition. Generally, the

second condition in Theorem 1 is a nonlinear analog of the traditional relevance restriction

required in the classical linear IV model, requiring Wt to vary with Qt in a certain way.

Identification requires an instrument Qt , which varies with the market total sales and is

uncorrelated with the error term x jt . A simple candidate satisfying these conditions is the

sum of exogenous characteristics of all products in market t. Since product characteristics

affect the utilities consumers get and lead to variations in quantities across regions or time

periods, the relevance condition is in general satisfied. The exogeneity condition is also

satisfied because the error term x jt is not only mean independent of characteristics of prod-

uct j, but also of all other products in market t, making it mean independent of the sum

of all products. This resembles the standard BLP instrument, and a detailed discussion of

this type of instrument, known as “functions of inside regressors”, is deferred to the next

section.

An exogenous price change, perhaps driven by tax or subsidy policies, can also serve

as an external instrument to identify the market size. For example, to study the demand

for alcohol or soda, sin taxes on these products can be utilized to construct the required

instruments. Intuitively, after a tax implementation, one can observe the decrease in market
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quantity, which represents the proportion of consumers who switch to the outside option.

In a logit model, substitutions are proportional to the true market shares. The degree of

substitution to the outside option depends on the true market size. This suggests that if we

observe any variations in the outside diversion (due to changes in Qt), we can infer the true

market size.

Estimation of the model of equation (1.5) based on Theorem 1 is straightforward. It

could be done by a standard GMM estimation or nonlinear two-stage least squares estima-

tion using Qt as instruments.

Visual Intuition

After presenting the formal identification results, I offer visual intuition. As discussed

above, exogenous variations in characteristics across markets allow us to observe con-

sumers entering or exiting the outside option, enabling the identification of g . This ex-

ogenous variation is typically already present in the data. For example, in a market with

two goods like Coke and Pepsi, when the characteristics of Pepsi get worse, total quantities

decrease, leading to an increase in Wt . The identification of g follows from the relative in-

crease in Coke’s shares. If g is large, a significant number of Pepsi consumers might divert

to the outside option, resulting in minimal diversion to Coke. Conversely, if g is small, it

implies that fewer consumers are on the margin. Thus, when Pepsi worsens, more Pepsi

users would divert to Coke rather than the outside option.

Figure 1.1 illustrates the aforementioned intuition. In a simplified model where d jt =

�p jt + x jt , with two goods ( j = 1 Coke and j = 2 Pepsi), the space of ei j is partitioned

into three regions, each corresponding to the choice of j = 0,1,2 (Berry and Haile 2014

and Thompson 1989). The measure of consumers in each region, i.e. integral of e over the

region, reflects choice probabilities. For example, Pr( j = 1 | p,x ) = Pr(ei1 > p1�x1;ei1 >

ei2 + (p1 � x1)� (p2 � x2)). In Figure 1.1, panel (c) illustrates a larger probability of

choosing the outside option compared to panel (a), given a fixed known density function of
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ei j. Since the true choice probability p0 is unknown but only the relative inside good shares

r j are known, then the question we ask is whether the true data generating process (dgp)

corresponds to panel (a) or panel (c).

Panels (a) and (b) of Figure 1.1 depict a dgp where the true p0t is small. Panels (c)

and (d) show similar graphs but with large true p0t . When the price of good 2 increases,

the changes in choice probabilities p0t and p1t are captured by shaded boundaries S0 and

S1. In panel (b), the price increase prompts more consumers to switch to good 1, while

in panel (d), the same price change leads to more consumers switching to the outside op-

tion. The relative diversion to the outside option compared to good 1, which is known,

relies on the original sizes of each region, which is unknown, and this relationship provides

identification of the underlying market size.

In the logit model, we have (∂p1t/∂ p2t)/(∂p0t/∂ p2t) = p1t/p0t . As both sides of the

equation are ratios, the unobserved choice probabilities can be transformed into observed

sales, (∂N1t/∂ p2t)/(∂N0t/∂ p2t) = N1t/N0t . Note that ∂N0t/∂ p2t is observable since the

total sales decrease is just the increase in N0t , and vice versa. Thus, the ratio of derivatives

on the left side of the equation and N1t are all observed from data, which can help identify

the unobserved outside market size N0t .

With the inclusion of random coefficients in section 1.4, the simplified example de-

picted in Figure 1.1 may not hold anymore. This is because an observed increase in substi-

tution to good 1 could be attributed to good 1 and good 2 being closer substitutes. However,

the underlying intuition remains valid: even without the independence of irrelevant alterna-

tives (IIA) property, cross-product substitutions are still functions of the true choice proba-

bilities. Thus, the level of substitution to the outside good will depend on the true market

shares. Relative changes in quantities of inside versus outside goods can be exploited to

recover the true market size.
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Figure 1.1: Intuition for Identification in Multinomial Logit Demand Model

1.3.4 The Nested Logit Demand Model

In Appendix 1.E, I establish formal identification of market size in a nested logit demand

model. Here I briefly summarize the intuition. Consider the case where all goods are

divided up into two nests, one with the outside good as the only choice and the other

containing all inside goods. Using our notation, the estimating equation is a nonlinear

function of the market size parameter g and the nesting parameter r ,

ln (r jt) =
1

1�r
ln (gWt �1)+X 0

jt
b

1�r
+

x jt

1�r
,
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and the total derivative with respect to these two parameters has independent variation. I

leverage instruments that shift Wt to separately identify g and r .

1.4 The Random Coefficients Logit Demand Model

I generalize our previous results to the random coefficients demand model. I begin by in-

troducing the notation and model assumptions, and then present sufficient conditions for

model identification and suggest valid instruments. I then discuss the testing of instrument

relevance and provide intuition for identification. Additionally, I derive results for mar-

ket fixed effects and demonstrate that fixed effects would not be a viable solution for an

unknown market size.

1.4.1 Demand Model and Market Size

The utility of consumer i for product j in market t is now given by

Ui jt = X 0
jtbi + x jt + ei jt , (1.6)

where bi = (bi1, · · · ,biL). The individual-specific taste parameter for the l-th characteristics

can be decomposed into a mean level term bl and a deviation from the mean slnil:

bil = bl +slnil , with ni ⇠ fn(n)

where nil captures consumer characteristics. The consumer characteristics could be either

observed individual characteristics or unobserved characteristics. When estimating demand

models, what econometricians usually have are aggregate data, where no observed individ-

ual characteristics are available. Therefore, in the current analysis, I assume nil are some

unobserved characteristics with a known distribution fn . The extension to include observed

consumer characteristics will be straightforward if there are individual-level data.

As in section 1.3, let d jt denote the mean utility X 0
jtb + x jt . Combining equations we
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have

Ui jt = d jt +Â
l

slx
(2)
jtl nil + ei jt ,

where X (2)
jt = (x(2)jt1 , · · · ,x(2)jtL0) is a L0 ⇥1 subvector of Xjt that has random coefficients and

is the nonlinear components of the indirect utility function.

After integrating out over the logit error ei jt , the true aggregate choice probability is

p jt

⇣
dt ,X

(2)
t ;s

⌘
=
Z exp(d jt +Âl slx

(2)
jtl nil)

1+ÂJt
k=1 exp(dkt +Âl slx

(2)
ktl nil)

fn(n)dn , (1.7)

where the arguments in the choice probability function are mean utilities dt = (d1t , · · · ,dJtt),

nonlinear attributes X (2)
t = (X (2)

1t , · · · ,X (2)
Jtt ) and taste parameters s = (s1, · · · ,sL0). The

choice probability is written as a function of dt , X (2)
t and s in order to highlight its depen-

dence on the mean utilities, nonlinear attributes, and parameters of the model. I suppress

the dependence of the choice probability function on ni for brevity. The mean utility of

outside good is normalized to d0t = 0.

I next consider a general model of market size. Let Mt = (M1t , · · · ,MKt) be a vector of

measures of the market size, and g = (g1,g2), g1 = (g11, · · · ,gK1) and g2 = (g12, · · · ,gK2)

are two vectors of market size parameters. To ease the exposition, I again assume r⇤jt = r jt .

Observational errors in r jt and other disturbances in the mismeasurement are therefore

assumed away. Recall that Njt is the observed sales of each good and Ntotal
t is the total

sales of all inside goods. Assumption 2 formalizes the modeling assumption.

Assumption 2. (a) The observed Ntotal
t and Mt are linked to the unobserved true choice

probability p0t

⇣
dt ,X

(2)
t ;s

⌘
by

1�p0t

⇣
dt ,X

(2)
t ;s

⌘
=

Ntotal
t

ÂK
k=1 gk1Mgk2

kt
.

(b) The unobservable true conditional choice probability r⇤jt is equal to the observed r jt ,

i.e.
p jt

⇣
dt ,X

(2)
t ;s

⌘

ÂJt
k=1 pkt

⇣
dt ,X

(2)
t ;s

⌘ =
Njt

Ntotal
t

.

The market size formula Âgk1Mgk2
kt has several appealing features. Taking the airline
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market as an example, suppose M1t is the population of city A (a small market) and M2t

is the population of city B (a big market). The true size of a market defined by these two

end-point cities could be M2
1t + 3M2

2t . First, this formula allows for different coefficients

for each term. For instance, city B might have a larger coefficient due to being a major

transportation hub. Second, it accommodates nonlinearity in Mt . In the airline example,

larger metropolitan areas are more likely to have alternative transportation options, such

as high-speed rail or highways in multiple directions. Under Assumption 2, the implicit

system of demand equations in a given market t is given by

Nt

ÂK
k=1 gk1Mgk2

kt
= pt

⇣
dt ,X

(2)
t ;s

⌘
, (1.8)

where Nt = (N1t , · · · ,NJtt) and pt(·) = (p1t(·), · · · ,pJtt(·)) represent vectors of observed

quantities and choice probability functions.

1.4.2 Identification

In a standard BLP model, the link between the choice probability p jt(dt ,X
(2)
t ;s) predicted

by the model and the observed market shares is crucial. The key to identification and

estimation in a standard BLP model is to recover the mean utility dt as a function of the

observed variables and parameters, by the inversion of the demand equation system. This

paper builds on the same form of demand inversion while replacing observed market shares

with the unobserved ones.

The identification argument can be summarized into two parts: First, I show that for

any given parameters (g ,s) and data (Nt ,Mt ,Xjt), the implicit system of equations (1.8)

has a unique solution dt for each market8. This is supported by Proposition 1, which es-

tablishes the existence and uniqueness of demand inversion as shown in Berry (1994) and

Berry, Levinsohn, and Pakes (1995), adapted to our framework (see also Berry and Haile
8As equation (11) in Berry (1994) shows, the system of market shares used to solve for d consists of only

the inside goods j = 1, · · · ,J, not including s0t . However, the existence of good 0 is important both because it
has economic meaning, and also because it serves as a technical device, see Berry, Gandhi, and Haile (2013)
for a discussion.
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(2014) for demand inversion in nonparametric models). Second, once we have a unique se-

quence of inverse demand function d jt(Nt ,Mt ,X
(2)
t ;g ,s), we can construct a corresponding

sequence of residual function x jt(Nt ,Mt ,Xt ;g ,s ,b ), which will be defined later. Identifica-

tion is then based on conditional moment restrictions, and we will require unique solutions

to the associated unconditional moment conditions at the true parameter values.

Proposition 1. Let equations (1.7) and (1.8) hold. Define the function gt : RJt ! RJt ,

as gt(dt) = dt + ln(Nt)� ln(ÂK
k=1 gk1Mgk2

kt )� ln(pt(dt ,X
(2)
t ;s)). Given any choice of the

model parameters (g ,s) and any given (Nt ,Mt ,X
(2)
t ), there is a unique fixed point dt(Nt ,Mt ,X

(2)
t ;g ,s)

to the function gt in RJt .

The proof of Proposition 1 closely follows the contraction mapping argument in Berry,

Levinsohn, and Pakes (1995). I show that all the conditions in the contraction mapping

theorem are satisfied in our setting with the extra vector of g . Therefore, the function g(d )

is a contraction mapping.

Proposition 1 shows that there is a unique fixed point dt to the function gt(dt). Now, let

q = (g ,s ,b ) 2 Q be the full vector of model parameters of dimension dim(q ). Given the

inverse demand function d jt(Nt ,Mt ,X
(2)
t ;g ,s), I define the residual function as

x jt (Nt ,Mt ,Xt ;q ) = d jt

⇣
Nt ,Mt ,X

(2)
t ;g ,s

⌘
�X 0

jtb . (1.9)

The uniqueness of d jt(Nt ,Mt ,X
(2)
t ;g ,s) implies a unique sequence of x jt(Nt ,Mt ,Xt ;q ).

Following Berry, Levinsohn, and Pakes (1995), Berry and Haile (2014), and Gandhi and

Houde (2019), I will assume that the unobserved structural error term is mean independent

of a set of exogenous instruments Zt , based off which I will later construct unconditional

moment conditions. Specifically, I replace the exogenous restriction in section 1.3 with the

following conditional moment restriction.

Assumption 3. Let Zt = (Z1t , · · · ,ZJt). The unobserved product-specific quality is mean

independent of a vector of instruments Zt:

E (x jt(Nt ,Mt ,Xt ;q0) | Zt) = 0.
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Define h jt(q ) = x jt(Nt ,Mt ,Xt ;q )f j(Zt), where f j(Zt) is a m⇥ 1 vector function of the

instruments with m � dim(q ). Then the conditional moment restriction implies

E (h jt(q0)) = 0.

The instrument vector Zt typically includes a subvector of Xt that contains exogenous

characteristics and excluded price instruments such as cost shifters. The assumption posits

that the structural error is mean independent not only of the exogenous covariates of product

j but also of all other products. Similar to standard BLP models, two types of instruments

are generally required: (i) price instruments and (ii) instruments that identify nonlinear

parameters (s and g). I will discuss these instruments in detail in the next subsection.

Showing function gt(dt) has a unique fixed point dt is only a necessary condition for

identification. To complete the proof of point identification, we need conditions that are

sufficient for the existence of a unique solution to the moments.

Definition 1. q0 is globally identified if and only if the equations E (h jt(q )) = 0 have a

unique solution at q = q0. In other words,

E
�
h jt(q̃ )

�
= 0 () q̃ = q0, for all q̃ 2 Q (1.10)

q0 is locally identified if (1.10) holds only for q̃ in an open neighborhood of q0.

I formally define local identification in Definition 1. Assumption 4 in Berry and Haile

(2014) and equation (5) in Gandhi and Houde (2019) both impose a similar high-level

identification assumption to (1.10). Theorem 5.1.1 in Hsiao (1983) (in line with Fisher 1966

and Rothenberg 1971) provides sufficient rank conditions for the identification assumption

stated above to hold locally, which I summarize in Proposition 2.

Proposition 2 (Theorem 5.1.1 in Hsiao 1983). If q0 is a regular point, a necessary and

sufficient condition that q0 be a locally isolated solution is that the m⇥ dim(q ) Jacobian

matrix formed by taking partial derivatives of E (h jt(q )) with respect to q , —q E (h jt(q ))

has rank dim(q ) at q0.
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The idea of using full rank conditions to establish identification in nonlinear simulta-

neous equations models dates back to Fisher (1966) and Rothenberg (1971). See Hsiao

(1983) for a comprehensive review. The application of full rank conditions for achiev-

ing local identification is seen in various studies, including McConnell and Phipps (1987),

Iskrev (2010), Qu and Tkachenko (2012), Milunovich and Yang (2013), and Gospodinov

and Ng (2015). Using Proposition 2, I can now establish an identification theorem for the

random coefficients demand model with an unobserved market size.

Theorem 2. Under Assumptions 2 and 3, if the rank of

E

"

f j(Zt)
∂d jt(Nt ,Mt ,X

(2)
t ;g ,s)

∂g 0
f j(Zt)

∂d jt(Nt ,Mt ,X
(2)
t ;g ,s)

∂s 0 f j(Zt)X 0
jt

#

is dim(q ) at q0, then q is locally identified.

Standard BLP models require a rank condition similar to the one stated in Theorem 2,

but not the same because it does not have the extra g rows and columns in the Jacobian

matrix. These moments depend on the inverse demand function, which lacks a closed-form

expression, making it challenging to directly verify full column rank. However, I show

that the full rank condition is generally satisfied due to the high nonlinearity of the demand

system. The rank condition is testable using the test of the null of underidentification

proposed by Wright (2003).

Sufficient Conditions for Identification

I replace the high-level rank condition with some low-level conditions on instruments. The

identification theorem imposes an assumption regarding the rank of the Jacobian matrix.

This rank condition will generally hold because the total derivative of the demand system

(1.8) with respect to parameters exhibits independent variation. To verify the rank of the

Jacobian matrix, I calculate the derivatives of h jt(q ). The Jacobian matrix encompasses

four sets of derivatives: derivatives with respect to g1, g2, s and b , respectively. By utilizing

the implicit function theorem for a system of equations (Sydsæter et al. 2008) and applying
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the Cramer’s rule, the first two sets of derivatives can be explicitly computed as

J1 =
∂h jt(q )

∂gk1
=

�����������

∂p1t

∂d1t
. . .

∂p1t

∂dJt
... . . . ...

∂pJt

∂d1t
. . .

∂pJt

∂dJt

�����������

�1 �����������

∂p1t

∂d1t
. . . p1t . . .

∂p1t

∂dJt
... . . . ... . . . ...

∂pJt

∂d1t
. . . pJt . . .

∂pJt

∂dJt

�����������
| {z }
(p1t , · · · ,pJt)0 is in the j-th column

Mgk2
kt

Âk gk1Mgk2
kt

f j(Zt),

= Y jt

⇣
dt ,X

(2)
t ;s

⌘ Mgk2
kt

Âk gk1Mgk2
kt

f j(Zt), (1.11)

and

J2 =
∂h jt(q )

∂gk2
= Y jt

⇣
dt ,X

(2)
t ;s

⌘ gk1 ln(Mkt)M
gk2
kt

Âk gk1Mgk2
kt

f j(Zt) (1.12)

where J1 and J2 are m⇥1 vectors, and Y jt(dt ,X
(2)
t ;s) denotes the product of the first two

matrix determinants in equation (1.11). I emphasize its dependence on dt and X (2)
t be-

cause the partial derivatives of p jt with respect to d jt and dkt are functions of mean utilities

and characteristics of all products. I provide the calculation of these partial derivatives in

Appendix 1.L. The Jacobian determinant of (p1t , · · · ,pJt)0 with respect to (d1t , · · · ,dJt) is

different from zero, so the condition of implicit function theorem is satisfied.

Identification fails when two or more parameters enter the demand system in a manner

that makes it impossible to distinguish them. In such cases, the associated columns of the

Jacobian matrix become linearly dependent. For example: if Mt were independent of f j(Zt)

and all other components in the demand model, we would essentially have E(∂h jt/∂gk1) =

cE(∂h jt/∂gk2), for some non-zero constant c. This would make it impossible to separately

identify gk1 and gk2, neither could we distinguish gk1 and g j1 for j 6= k.To disentangle the

g vector, we require some instruments that change Mt exogenously. For example, if Mt is

population, then instruments could be expansions of highways in a city.
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The third group of derivatives is

J3 =
∂h jt(q )

∂sl
=

�����������

∂p1t

∂d1t
. . .

∂p1t

∂dJt
... . . . ...

∂pJt

∂d1t
. . .

∂pJt

∂dJt

�����������

�1 �����������

∂p1t

∂d1t
. . . �∂p1t

∂sl
. . .

∂p1t

∂dJt
... . . . ... . . . ...

∂pJt

∂d1t
. . . �∂pJt

∂sl
. . .

∂pJt

∂dJt

�����������
| {z }

(�∂p1t /∂sl , · · · ,�∂pJt /∂sl)
0 is in the j-th column

f j(Zt)

= F jt(dt ,X
(2)
t ;s)f j(Zt),

where I let the product of the two determinants of J3 be denoted as F jt(dt ,X
(2)
t ;s). Com-

paring J3 with J1 (or J2), the first determinant term of F jt(dt ,X
(2)
t ;s) and Y jt(dt ,X

(2)
t ;s)

are identical. The difference lies in the j-th column of the second determinant term, which

is (�∂p1t/∂sl , · · · ,�∂pJt/∂sl)0 for J3, and (p1t , · · · ,pJt)0 for J1 and J2. Observe that

the derivative ∂p jt(dt ,X
(2)
t ;s)/∂sl and p jt(dt ,X

(2)
t ;s) are not perfectly collinear9, im-

plying that Y jt(dt ,X
(2)
t ;s) is not perfect multicollinear with F jt(dt ,X

(2)
t ;s) in general.

The column vectors of the Jacobian matrix are therefore linearly independent as long as

we have a sufficient number of instruments that are correlated with Y jt(dt ,X
(2)
t ;s) and

F jt(dt ,X
(2)
t ;s), respectively.

Lemma 1. Suppose g is a scalar. Let f (1)
j (Zt) , f (2)

j (Zt) and f (3)
j (Zt) be subvectors of

f j(Zt). The rank condition for identification given in Theorem 4 is satisfied if E(f (1)
j (Zt)X 0

t )

is non-singular, the support of f j(Zt) does not lie in a proper linear subspace of dim(q ),

and there are instruments that satisfy

Cov
⇣

Y jt

⇣
dt ,X

(2)
t ;s

⌘
,f (2)

j (Zt)
⌘
6= 0, (1.13)

and

Cov
⇣

F jt

⇣
dt ,X

(2)
t ;s

⌘
,f (3)

j (Zt)
⌘
6= 0, (1.14)

9Specifically, for the j-th column of the above matrices, we have

p jt

⇣
dt ,X

(2)
t ;s

⌘
=
Z

p jti

⇣
dt ,X

(2)
t ;s

⌘
fn (n)dn for J1 (or J2), and

∂p jt

⇣
dt ,X

(2)
t ;s

⌘

∂sl
=
Z

p jti

⇣
dt ,X

(2)
t ;s

⌘ 
x(2)jtl �

J

Â
k=1

x(2)ktl pkti

⇣
dt ,X

(2)
t ;s

⌘!
nil fn (n)dn for J3.
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where f (2)
j (Zt) is of dimension one, and f (3)

j (Zt) has the same dimension as s .

Collectively, to identify market size parameters, two sets of instruments are required:

(1) shifters of market size measures Mt , and (2) variables that provide exogenous variations

in quantities. In the simple case where g2 = 0 and g1 is a scalar, we only need the second

set of instruments, which is the same as those needed for identifying random coefficients.

Note that for standard BLP, assumptions similar to those in Lemma 1 are necessary, but

we only need instruments that satisfy condition (1.14). However, when g is a vector of

dimension greater than one, we need an additional source of variation to identify elements

of the g vector, specifically through variation in measures of market size.

Valid potential instruments that satisfy (1.13) and (1.14) are functions of exogenous

product characteristics. This means that the proposed method can be implemented without

requiring a new class of outside instruments over and above those commonly used in BLP

models, or any additional independent variations in data. Examples of commonly used

instruments of this type include: (i) BLP instruments, which are sums of product character-

istics of other products produced by the same firm, and the sums of product characteristics

offered by rival firms, and (ii) differentiation instruments, which are sums of differences of

products in characteristics space (Gandhi and Houde 2019). The rationale behind Gandhi

and Houde’s differentiation instruments is that demand for a product is mostly influenced

by other products that are very similar in the characteristics space. However, the validity

of differentiation instruments depends on the symmetry property of the demand function,

which has not been shown in my model. Since the introduction of g breaks the symme-

try property that was used to derive these instruments, one can no longer treat the outside

option the same as inside goods. Therefore, in the empirical section, I use BLP-type in-

struments to obtain the main results and employ differentiation instruments as a robustness

check. Another set of valid instruments is Chamberlain’s (1987) optimal instrument, as

implemented in BLP by Reynaert and Verboven (2014). The optimal instrument is the ex-

pected value of the Jacobian of inverse demand function, which, in the context of this paper,
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is equivalent to using E(Y jt(dt ,X
(2)
t ;s) | Zt) and E(F jt(dt ,X

(2)
t ;s) | Zt) as instruments.

1.4.3 Relevance of Instruments

Gandhi and Houde (2019) show that the relevance of instruments in BLP models can be

tested by estimating a plain logit regression on product characteristics and instruments, with

the coefficients determining the strength of these instruments. I re-define the parameters

and show that the same test of instrument relevance can be applied in the setting of this

paper, for both the random coefficients and the market size parameter.

Gandhi and Houde (2019) use l to denote the vector of parameters that determine the

joint distribution of the random coefficients. Here I follow this notation and extend it to

include the market size parameters. Specifically, let ls = s , lg1 = g1�1 and lg2 = g2, and

l = (ls ,lg1 ,lg2) be the full vector of nonlinear parameters in the model. By absorbing lg

into the conditioning parameter vector, we rewrite equation (1.9) as

x jt (Nt ,Mt ,Xt ;q ) = d jt

⇣
Nt ,Mt ,X

(2)
t ;l

⌘
�X 0

jtb . (1.15)

Equation (1.15) encompasses equation (1.9) and is similar to equation (4) in Gandhi and

Houde (2019). Here I have (Nt ,Mt) instead of the observed market shares st in their func-

tion.

The endogenous problem arises for ls and lg because the inverse demand function

depends on quantities Nt (or market shares) of all products, and these endogenous quantities

interact nonlinearly with ls and lg in the inverse demand function. Therefore, we need

instrumental variables for quantities (or market shares) of products to identify ls and lg .

This is the nonlinear simultaneous equations model that has been previously studied by

Jorgenson and Laffont (1974) and Amemiya (1974). Unlike in linear models, where the

strength of instruments can be assessed by linear regression of endogenous variables on

excluded instruments, for nonlinear models, how to detect weak instruments is not obvious.

I use the method as in Gandhi and Houde (2019) to test the relevance of instruments
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for identifying ls and lg , which I summarize here. By equation (7) in Gandhi and Houde

(2019), the reduced form of the inverse demand function E
⇣

d jt(Nt ,Mt ,X
(2)
t ;l ) | Zt

⌘
can

be approximated by a linear projection onto functions of instruments:

E
⇣

d jt

⇣
Nt ,Mt ,X

(2)
t ;l

⌘
| Zt

⌘
⇡ f j(Zt)

0a .

Definition 1 in Gandhi and Houde (2019) provides a practical method referred to as

“IIA-test” to detect the strength of the instruments by evaluating the inverse demand func-

tion at l = 0 (suppose the true parameters are l0 6= 0). Evaluating the inverse demand

function at ls = lg1 = lg2 = 0, we have

E
⇣

d jt

⇣
Nt ,Mt ,X

(2)
t ;l = 0

⌘
| Zt

⌘
= E

 
ln

 
Njt

Mt �ÂJt
j=1 Njt

!
| Zt

!

⇡ X 0
jta1 +apP̂jt +f�X

j (Zt)
0a2,

where P̂jt is the projection of prices on Xt and price instruments, and f�X
j (Zt) is a subvector

of instruments excluding Xt . Note that P̂jt is constructed based on exogenous variables and

thus satisfied the mean independence restriction of Assumption 3. The regression relates

the observed product quantities to product characteristics and functions of instruments.

The null hypothesis of the test is that the model exhibits IIA preference and market shares

calculated by Njt/Mt are not mismeasured. One can reject the null hypothesis when the

parameter vector a2 in the reduced form regression is different from zero. On the other

hand, when a2 is close to zero, it indicates that the instruments are weak.

1.4.4 Intuition for Identification

I provide additional intuition for separately identifying g and s . First, I show how the

intuition for identification in a plain logit model can be applied here. Second, I provide a

brief numerical example to visually illustrate the identification.

In section 1.3, I show that g is identified in a plain logit model by the exogenous vari-

ation in Wt . Recall that Wt = Mt/Ntotal
t . Rewriting equation (1.5) gives us an alternative
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way of understanding g identification in the plain logit model:

ln
r jt

Wt
= lng + ln

 
exp(X 0

jtb + x jt)

1+ÂJt
k=1 exp(X 0

ktb + xkt)

!
.

The left side of the regression is observed, and it is linear in g , but nonlinear in b . As shown

earlier, g is identified in this regression. Same logic carries over to the random coefficients

case. For a scalar g , we can rewrite equation (1.8) as

ln
r jt

Wt
= lng + ln

 Z exp(X 0
jtb + x jt +Âl slx jtlnil)

1+ÂJt
k=1 exp(X 0

ktb + xkt +Âl slxktlnil)
fn(n)dn

!
,

which is again linear in g , but nonlinear in b and s . I can exploit the same nonlinearity as

in the simple logit case to distinguish g and (b ,s).

A Numerical Illustration

For the numerical illustration, I consider a model that has only one nonlinear parameter

s . The utility to consumer i for product j in market t is Ui jt = sniXjt + x jt + ei jt , and

the market size is parameterized by a single scalar g . Equation (1.8) can be written as
Njt
gMt

=
R exp(x jt+sniXjt)

1+ÂJ
k=1(xkt+sniXkt)

fn(n)dn .

If we do not have any additional conditional moment restrictions, g is not point iden-

tified. To see this, recognize that for a given wrong value g̃ , one can construct a correspond-

ing wrong x̃ jt that fits equally well by letting x̃ jt be given by Njt
g̃Mt

=
R exp(x̃ jt+sniXjt)

1+ÂJ
k=1(x̃kt+sniXkt)

fn(n)dn .

Put differently, for any value of g̃ , the implied x̃ jt will adjust to set the predicted choice

probabilities equal to the observed shares Njt/g̃Mt . That is why we need Assumption 3

E(x jt(q0) | Zt) = 0 to normalize the location of x jt . Following a similar idea in Gandhi

and Nevo (2021), in Figure 1.2, I visually illustrate the intuition for identification and why

one can distinguish g and s .

Figure 1.2 plots Xjt against the implied residual function x jt(s ,g) for different values

of (s ,g). As depicted in Figure 1.2(a), there is no correlation between x and the X at

the true parameter values. Figure 1.2(b) shows that when s is different from the truth, it

exhibits a hump-shaped correlation and Figure 1.2(c) shows that when g is different from

the truth, there is a linear correlation. For the wrong s or g to fit the data, x would have to
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be correlated with the instruments. Therefore once we assume that x is mean independent

of X , we are shutting down this channel (as in Gandhi and Nevo 2021). Only at the true

parameter values can we match the market shares. Furthermore, the graphs with wrong

s or wrong g have different shapes, which provide information to distinguish these two

parameters.

(a) s = s0,g = g0 (b) s > s0,g = g0 (c) s = s0,g > g0

Figure 1.2: Intuition for Identification in Random Coefficients Logit
Notes: The figure shows a scatter plot of x jt and the characteristics Xjt under three scenarios. (a)
s = s0 = 5,g = g0 = 1, (b) s = 15,g = g0 = 1, and (c) s = s0 = 5,g = 4.

1.4.5 Market Fixed Effects

In Appendix 1.D I show that in a plain logit model, by including market fixed effects in

the regression, one could obtain consistent estimators of b without observing or estimating

the true market size. Here, I briefly discuss why the same approach cannot be taken in the

random coefficients case. The more detailed derivation is provided in Appendix 1.G.

For plain multinomial logit, when the choice probabilities of all products are rescaled

by the same factor, it implies that the quality (mean utility d ) of inside goods has changed

by the same amount. These quality gaps can be captured using market dummies. In con-

trast, for random coefficients logit, the difference in choice probabilities is also driven by

consumer taste heterogeneity. Mean utilities d alone do not pin down choice probabilities.

Consequently, when rescaling shares, the implied quality gap varies across alternatives, de-

pending on individual heterogeneous preferences. Market fixed effects cannot fully capture

this additional preference variation.
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1.5 Extensions

1.5.1 Nonparametric Random Coefficients

In this section I show that identifying and estimating market size in the form of gMt can

be equivalent to nonparametric identification and estimation of a peculiar form of random

coefficients. It is in this unusual sense that one may rationalize the belief that random

coefficients can compensate for failure to correctly observe market size. More specifically,

consider a model with indirect utility given by equation (1.6) and bi ⇠ F(b ) follows an

unknown distribution. Identifying and estimating F(b ) can be done nonparametrically.

Following the approach of Fox, Kim, and Yang (2016a) (Example 1 in their paper), using

a sieve space approximation to the distribution of random coefficients, we can write

p jt(d jt ;s) =
R

Â
r=1

sr
exp (d jt +Âl hr

l x jtl)

1+ÂJt
k=1 exp(dkt +Âl hr

l xktl)
(1.16)

with restrictions
R

Â
r=1

sr = 1 and 0  sr  1,

where hl = (h1
l · · ·hR

l ) is a fixed grid of values chosen by researchers. Parameters to be

estimated are the weights s = (s1 · · ·sR). The associated maximum likelihood estimator

was originally proposed for estimation with individual choice data. Here instead I apply

this approach in a BLP setting where only aggregate level data is available.

Consider a special case where there are only two types of consumers (R = 2), and we

aim to identify the probability mass of each type of consumer. Suppose, without loss of

generality, that only the constant term has a random coefficient. Let h1 = �• and h2 = 0

(any values other than 0 would be absorbed into the constant term of d ). The model reduces

to

p jt(d jt ;s) = s2
exp (d jt)

1+ÂJt
k=1 exp(dkt)

,

where the equality follows from h1 = �• and h2 = 0. Note that s2 plays the same role as
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the scalar g discussed in section 1.3 for the simple logit model. This result can be extended

to R> 2. If an element of h is �•, it implies that certain consumers will never purchase any

inside goods under any circumstances. These consumers should not be considered potential

consumers and should be excluded from the measure of market size. In general, the most

flexible model of this kind can be approximated by a distribution with a probability mass at

negative infinity. Estimating random coefficients in this way allows for flexible consumer

tastes and accounts for the unobserved market size of the form gMt .

Nonparametric random coefficients can address the unknown market size issue if the

distribution follows the specified form. This might be where the intuition that random

coefficients can partially resolve the problem originates. In a standard BLP model (1.7)

with the common distributional assumption n ⇠ N(0,1), since the normal distribution has

unbounded support, if the estimated value of ŝ in model (1.7) is large, a random draw

ni with a large negative value from the normal distribution can result in ŝni approaching

negative infinity, similar to h1 = �•.

Identification of random coefficients distribution of this particular type (one that has a

probability mass point at negative infinity) would require strong assumptions. In the liter-

ature on nonparametric identification of random coefficients for aggregate demand, Berry

and Haile (2014) and Dunker, Hoderlein, and Kaido (2022) prove identification of random

coefficients without any restriction on the distribution (i.e., allow for infinite absolute mo-

ments). However, both require full/large support of product characteristics or prices (e.g.,

Assumption 3.3(i) in Dunker, Hoderlein, and Kaido 2022).

Moreover, estimating the random coefficients distribution using a sieve space approx-

imation might not be feasible in the BLP setting. While Wang (2022) proposes a sieve

BLP estimation for aggregate demand, the implementation differs significantly from the

approach in Fox, Kim, and Yang (2016a), and the choice probability cannot be expressed

in the form of equation (1.16). Furthermore, sieve BLP requires the number of instruments

to be at least the number of parameters, which corresponds to the dimension of the sieve
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space (unless we have a moment condition for each j instead of pooling across products,

like in Wang 2022). This suggests that an unfeasibly large amount of instruments would be

required.

1.5.2 Nonparametric Identification of Market Size

Under stronger conditions, the parametric model of market size considered in prior sections

can be extended to a more general specification where the true market size is an unknown

function of the vector of measures Mt 2 K . For the moment, I consider the plain logit

setting. I replace the model of true market size with s(Mt), where s(·) is an unknown

function. Under this assumption, the estimating equation becomes

ln (r jt) = ln
✓

s(Mt)

Ntotal
t

�1
◆
+X 0

jtb + x jt ,

which is a partially linear regression with an endogenous nonparametric part studied by Ai

and Chen (2003) (see also Newey and Powell 2003 and Chen and Pouzo 2009; see Robin-

son 1988 for an exogenous nonparametric part). Implicitly, I allow market size measures to

be endogenous in the sense that E(Mtx jt) 6= 0. Identification of b and s(·) can be achieved

by imposing assumptions similar to those in Ai and Chen (2003). I summarize it in the

following theorem.

Theorem 3. Let Lb
c(·) = {g 2 Lb(·) : kgkLb  c < •} be a Hölder ball with radius c,

where kgkLb is the Hölder norm of order b. Let Yt = (Ntotal
t ,Mt), Z jt = (Xjt ,Qt), and

dim(Qt) = dim(Yt) = K+1. Suppose the following hold: (i) E(x jt | Z jt) = 0; (ii) The con-

ditional distribution of Yt given Z jt is complete; (iii) s(·)2Lb
c(

K); (iv) E
⇣

ln
⇣

s(Mt)
Ntotal

t
�1
⌘
| Z jt

⌘
/2

linear span(Xjt), and E
⇣

XjtX 0
jt

⌘
is non-singular. Then b and s(·) are identified.

The proof follows from Newey and Powell (2003) and Proposition 3.1 in Ai and Chen

(2003), relying on the completeness of the conditional distribution10. Ai and Chen (2003)

propose a sieve minimum distance estimator to estimate b and s(·). By restricting the
10See Lehmann and Romano (2005) for the concept of statistical completeness. Andrews (2017) provides

examples of distributions that are complete.
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unknown function to a Hölder space, the function is smooth and one can approximate it

using a wide range of sieve basis.

1.5.3 Identification With a Nonparametric Demand Model

The identification and estimation in sections 3 and 4 are based on parametric demand mod-

els with logit error terms and known distribution of the random variable n . However, in

some applications, these distribution assumptions on individual tastes may appear to be ar-

bitrary and relatively strong. Thus, I generalize the results to a fully nonparametric model

of BLP in the spirit of Berry and Haile (2014) to accommodate less restrictive consumer

preferences. The demand system is as equation (1.8), but with an unknown function pt(·)

replacing the regular logit formula and an unknown function s(·) being the true market

size, yielding
Njt

s(Mt)
= p j

⇣
dt ,X

(2)
t

⌘
, j = 1, · · · ,J. (1.17)

The following results show that under a stronger exogeneity condition, (1) the market size

function s(·) can be identified up to scale, without even knowing the whole demand model,

and (2) the rest of the demand model can be identified nonparametrically.

Theorem 4. Assume that Mt is continuously distributed, and is independent of (xt ,Xt).

Assume that s(m) is differentiable in m. Then s(m) = e
R

g(m)c̃ is identified up to a constant

c̃, where g(m) = ∂E(ln(Njt) | m)/∂m.

To illustrate how we gain identification of g from outside of the demand model, I first

consider a market size model of the form Mg2
t . Taking log on both sides of the demand

equations, we have ln (Njt) = g2 ln (Mt)+ ln(p j(dt ,X
(2)
t )). Given that Mt is independent of

xt , Xt , and thus independent of dt and X (2)
t , we have the following conditional expectation

E (ln(Njt) | Mt) = g2 ln(Mt)+E
⇣

ln
⇣

p j(dt ,X
(2)
t )

⌘⌘
,

from which we can identify g2 by construction: that is, g2 = ∂E (ln(Njt) | Mt = m)/∂ ln(m).

When taking derivative with respect to ln(Mt), the demand function term p j drops out be-
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cause of the assumption that the market size measure Mt is exogenous. It means that if

the observed Njt increased more than double as we double Mt , the true market size must

be growing at an increasing rate in Mt . Moreover, we can use these estimates to test the

specification of the market size model, e.g., testing if a linear model of market size holds,

without estimating the whole BLP model.

A second example is when the true market size takes the form of M1t + g1M2t . Un-

der the same assumption that Mt is independent of xt and Xt , we can identify g1 by g1 =

(∂E(ln(Njt) | M1t = m1,M2t = m2)/∂m2)
�
(∂E(ln(Njt) | M1t = m1,M2t = m2)/∂m1) .

After establishing point identification of market size, the empirical shares on the left

hand side of equation (1.17) are identified. It would suffice to impose assumptions made in

Berry and Haile (2014) to obtain nonparametric identification of the demand model.

1.6 Empirical Application: A Merger Analysis

Market size plays a crucial role in merger analysis. The analysis of unilateral effects hinges

on whether an increase in the price of one product will lead consumers to choose an al-

ternative in the market; also important is whether the consumer will divert to an outside

option. Throughout this section, I assume that firms are under a static Nash-Bertrand pric-

ing game. As I show in Appendix 1.I, market shares (or market sizes) used in estimation not

only affect estimates of marginal effects (b 0s) but also enter firms’ first-order conditions for

pricing. Thus, assumptions about market size can influence firms’ markup and consumer

surplus. The formal pricing conditions of the firm’s problem are provided in Appendix 1.I.

Suppose there are two firms each producing a single product. According to Pakes

(2017), the upward pricing pressure (UPP) of good 1 depends on the substitution between

good 1 and good 2, as well as the markup of good 2. The size of the outside market matters

for a firm’s optimization problem and, therefore, has a substantial effect on the estimated

markup. More generally, in mergers involving multiple firms and products, the strategic
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complements result in all market participants increasing their prices, which in turn gener-

ates substitution to the outside option.

Intuitively, if the market size used in estimation is larger than the true size, the diversion

to the outside option tends to be overstated. In the case of a merger, overestimating the

outside option diversion suggests that the merged firm would maintain a relatively low price

to prevent consumers from switching to the outside alternative. For example, Weinberg

and Hosken (2013) study the breakfast syrup and motor oil industries using a plain logit

model and demonstrates that simulated price changes decrease as the potential market size

increases.

In this section, I apply the proposed method to analyze the price effects of a hypo-

thetical merger in the Carbonated Soft Drink (CSD) market. In Appendix 1.K, I have a

second merger analysis in the Ready-to-Eat Cereal market showing that our method works

in different empirical contexts.

1.6.1 Carbonated Soft Drink (CSD) Market

The soft drink market has received significant attention in the literature, primarily driven by

health and regulatory concerns. The conventional discrete choice model remains a widely

used approach in modeling consumer purchasing behavior in this field of research.

The soft drink market is suitable for this study due to three key factors. First, the

existing literature lacks a consensus on how to define market size. It is measured either by

multiplying the population by the potential maximum soft drinks consumption (Eizenberg

and Salvo 2015a assumed the constant to be six liters per week), or by multiplying the

population by the per capita consumption of non-alcoholic beverages (as in Lopez and

Fantuzzi 2012a, Liu, Lopez, and Zhu 2014; Lopez, Liu, and Zhu 2015; Liu and Lopez 2016;

and Zheng, Huang, and Ross 2019). In the former case, the maximum weekly consumption

can only be justified by considering consumer behavior, while for the latter case, it is not
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obvious which non-alcoholic beverages should be regarded as outside alternatives11.

Second, this industry is one where we generally believe the outside option is not too

large. Our simulation findings suggest that the proposed method achieves stronger identi-

fication in cases where the true choice probability of the outside option is not excessively

large. While one do not observe the true outside share ex-ante, goods with frequent pur-

chases tend to have a relatively small outside market. To see why, consider an extreme

scenario where the prices of all soft drink products drop to zero. Consumers who never

consume soda will not suddenly enter the market, even if the products are free, whereas

soda drinkers are already regular purchasers. Therefore, we would not anticipate a signif-

icant increase in total sales, indicating that the potential consumption in the market is not

exceptionally large12.

The third reason for applying our method to the soda market is the occurrence of several

horizontal mergers in the soft drink industry in recent years. For example, in 2018, the

Coca-Cola Company acquired Costa Coffee, and PepsiCo acquired SodaStream in the same

year.

1.6.2 Data

I use a panel of weekly scanner data from NielsenIQ for our analysis. The NielsenIQ

scanner data provides comprehensive information on prices, sales, and product attributes,

including package size, flavor, and nutritional contents. The dataset covers 202 designated

market areas (DMAs) in the US and spans 52 weeks, encompassing the period from January

2019 to December 2019. I aggregate the dataset from the retailer level to the market level.

Consistent with the literature, I define a market as a combination of a specific DMA and
11When one uses individual purchase data, the analogous definitions of market size could be slightly dif-

ferent. For example, Marshall (2015a) assumes the choice of outside options occurs when a trip is completed
without the purchase. Bonnet and Réquillart (2013a) assume a narrower outside option, which is observed
choices of alternative beverages.

12In contrast, the airline market is an example where the outside market can be substantial, reaching as
high as 99%. For instance, if all airline tickets become free, there would likely be a surge in demand for
airline flights.
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week, resulting in a total of 10504 DMA-week markets13.

In addition to the NielsenIQ data, I augment the dataset with input price information,

which serves as excluded price instruments. This includes raw sugar prices from the US

Department of Agriculture, Economic Research Service; local wage from the U.S. Bureau

of Labor Statistics; as well as electricity and fuel prices from the US Department of Energy,

Energy Information Administration.

Following Eizenberg and Salvo (2015a), I aggregate flavors and products in different

sized packages into 15 brand-groups, denoted as j = 1, · · · ,15 (e.g., Coca-Cola Cherry

12-oz and Coca-Cola Original 16.9-oz are treated as the same brand). Following Dubé

(2005a), I consider diet and regular drinks as separate brands due to their distinct target

demographics and separate advertising and promotion strategies within the industry. These

brand categories include 11 brands owned by the three leading companies. The 12th and

13th brand categories represent aggregate private label (PL) brands for regular and diet

drinks, respectively. To account for numerous niche brands (each with a volume share

below 1 percent), I aggregate them into the 14th and 15th brand categories for regular

and diet drinks, respectively. By doing so, I implicitly assume that product differentiation

among these small brands is not of importance in the context of our study. I limit the sample

to soft drinks sold in package types that have substantial sales, specifically including the

12-pack of 12-oz cans, 67.6-oz bottle, 6-pack of 16.9-oz bottles, 20-oz bottle, and 8-pack

of 12-oz cans. These five package sizes dominate in terms of volume sales compared to

other package types.

Table 1.1 shows volume shares of the carbonated soft drink category for each firm

averaged across DMAs. These shares represent the volume sold of brands produced by a

specific manufacturer divided by the total volume sold in the entire carbonated soft drink

category. The brands from the largest manufacturer hold a share of 35.07 percent.
13I drop markets with extremely large or small sales relative to their respective populations, leaving us

with 9,658 markets.
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1.6.3 Demand Model

As in section 1.4, the indirect utility of consumer i in market t from consuming brand j is

given by

Ui jt = d jt +sniPjt + ei jt .

The term d jt denotes a market-specific, individual-invariant mean utility from brand j:

d jt = X 0
jtb + aPjt + x jt . The vector Xjt includes in-store presence, brand fixed effects,

seasonal effects and region fixed effects. In-store presence is measured by the proportion

of stores within a market that carry a particular brand. Brand fixed effects capture the

time invariant unobserved product characteristics, while seasonal effects capture temporal

demand fluctuations. Pjt represents the price of brand j, and x jt denotes demand shocks

specific to a brand-market combination, observable to consumers but unobservable to the

econometrician. The second term sniPjt introduces consumer heterogeneity. ni follows a

standard normal distribution. Finally, the utility function includes the term ei jt , representing

consumer and brand-specific shocks that follow the Extreme Value Type I distribution and

are iid across consumers, brands, and markets14.

One issue is that in-store presence could be endogenous due to correlation with the

unobservables x jt . I address this potential endogeneity concern by flexibly controlling for

brand-, quarter- and region-specific fixed effects. With a rich set of fixed effects included,

the unobservables that remain are brand-region specific demand shocks that vary by time.

I assume retailers or firms do not observe these demand shocks when making product as-

sortment decisions. It is worth noting that in-store presence has been used as an exogenous

covariate in previous studies such as Eizenberg and Salvo (2015a). Similarly, in the airline

industry, carrier presence is often considered as an exogenous attribute. The economic in-

terpretation of in-store presence in the present context aligns closely with carrier presence
14One thing worth noting is that because each consumer i can appear more than once in a week, the

assumption that ei jt is independent across i might be violated. However, assuming independence is standard
in the literature, and we think random coefficients partly account for correlation for a consumer. Therefore,
in this analysis, I will not deal with correlation in e .
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in the airline market. Just as carrier presence may raise concerns of endogeneity, it has

typically been addressed through via fixed effects.

Table 1.2 provides summary statistics for prices and in-store presence in the dataset.

The prices and in-store presence are averaged across all UPCs within each brand, weighted

by the volume sales of UPCs. The last three columns of Table 1.2 show the percentage

of variance explained by brand, DMA, and month dummy variables. The results indicate

that a majority of the variation in prices and in-store presence is attributed to differences

between brands. After accounting for this brand-level variation, the remaining variation is

primarily driven by disparities across geographic areas.

1.6.4 Market Size Definition

I define one serving of soft drink as 12 ounces. In calculating the market share of the outside

good, Eizenberg and Salvo (2015a) assume a potential weekly consumption of 6 liters

(approximately 17 servings) per household. Similarly, Zheng, Huang, and Ross (2019) use

as g the documented average per capita consumption of non-alcoholic beverages, including

CSDs, water, juice, tea and sports drinks. The average consumption is around 30 ounces

per person per day, equivalent to 17.5 servings per week. Other studies, such as Lopez

and Fantuzzi (2012a), Liu, Lopez, and Zhu (2014), Lopez, Liu, and Zhu (2015), and Liu

and Lopez (2016), also utilize per capita consumption of non-alcoholic beverages as a

proxy for market size. The specific proportional factor varies depending on the inclusion

of different beverages as outside options. For example, Liu, Lopez, and Zhu (2014) include

milk consumption, while Zheng, Huang, and Ross (2019) do not. The per capita weekly

consumption of non-alcoholic beverages in Liu, Lopez, and Zhu (2014) reaches as high as

32 servings, nearly double the amount used in Zheng, Huang, and Ross (2019).

These choices of market size are somewhat subjective. Eizenberg and Salvo (2015a)

have shown that their results are not qualitatively sensitive to the market size assumption.

However, in alternative counterfactual exercises like merger simulations, the market size
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assumption could play a more substantial role. It is important to note that Eizenberg and

Salvo (2015a) use the scanner data from Brazil, while the study in this paper employs US

data. Therefore, the assumed value of g = 17 may be more appropriate for their dataset15.

The market size assumptions can be expressed in our notation as gMt , where Mt rep-

resents the total population in a DMA area. Throughout this section, all comparisons will

be made with regard to assuming g = 17 servings16. Specifically, I estimate g along with

other demand parameters and calculate elasticities and diversion ratios. I then simulate the

merger using two potential market sizes: one assumes a market size of 17 servings per

week, and the other assumes a market size of ĝ servings per week.

1.6.5 Instruments

To address the likely correlation of the demand errors x jt with prices, as well as identify the

random coefficients and market size parameters, I employ three sets of instruments. The

first two sets are standard excluded instruments suggested by Berry and Haile (2014) and

have been widely used in empirical studies (e.g. Eizenberg and Salvo 2015a; Petrin and

Train 2010; and Nevo 2001).

The first set of price instruments belongs to the Hausman-type instrument, proposed by

Hausman, Leonard, and Zona (1994). Specifically, the instrument for the price of brand j

in a given DMA is the average price of this brand in other DMAs belonging to the same

Census Region. These instruments provide variation across brands and DMAs, and are

valid due to the correlation of prices across geographic regions through a common cost

structure. However, the Hausman-type instruments could be problematic if demand unob-

servables are correlated across markets (e.g., launching a national campaign). To lessen this

concern, I control for DMA-specific, brand-level in-store presence, which partially absorbs
15Another distinction between Eizenberg and Salvo (2015a) and other papers that use the US data is that

the market size in Eizenberg and Salvo (2015a) is calculated based on the number of households, whereas
others use the population. Here, I adopt the population measure. A potential market size of 17 servings per
household is smaller than 17 servings per capita.

16I use 17 servings per week only as a baseline level to be compared to. It could be any other numbers.
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common demand shocks.

The second class of price instruments consists of cost shifters. Specifically, I use in-

put prices such as electricity prices, fuel prices and local wages. These cost shifters are

excluded from the demand equation but affect prices through the supply side.

The third set of instruments serves to identify random coefficients and market size pa-

rameters. Here I use the traditional BLP type instruments. Specifically, they involve sums

over exogenous characteristics of brands produced by the same company and sums over ri-

val brands. I construct this class of instruments based on in-store presence and fitted values

of prices. The fitted values of prices are obtained by regressing prices on Xjt and excluded

price instrument. The projection of prices on exogenous variables would be mean indepen-

dent of the unobservables x jt . This exogenous variation in price facilitates the identification

of the parameters associated with heterogeneity in price sensitivity. As a robustness check,

I also use the differentiation instruments proposed by Gandhi and Houde (2019).

To see why the constructed instruments (based on in-store presence17) identify market

size, consider a scenario where the in-store presence of 7Up increases. This change, pos-

sibly due to supply side factors like reduced transportation costs or the establishment of

a new distribution hub, results in consumers encountering 7Up more frequently on store

shelves. With this change in the physical environment of retail stores, one would observe

consumers switching from alternative drinks and outside option to 7Up. Assuming all other

factors remain constant, if we observe a substantial decrease in Sprite sales without an in-

crease in overall soda consumption, it suggests a small potential market size, because little

changes are from the extensive margin.
17If stores make assortment decisions after the realization of all demand shocks (as assumed in Ciliberto,

Murry, and Tamer 2021), fixed effects may not fully address the endogeneity of in-store presence. As an
alternative, though not explored in this paper, one can use exogenous changes in soda taxes as instruments.
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1.6.6 Results

Table 1.3 reports five sets of demand model estimates. The first two columns correspond

to plain logit and random coefficients logit models, where g is estimated along with other

demand parameters. Columns 3 to 5 are standard BLP estimates assuming g = 17. Column

3 replicates the specification of column 2, while column 4 introduces an additional random

coefficient on the constant term to capture unobserved preferences for the outside option.

In column 5, DMA-week specific fixed effects are included. The strength of instruments,

measured by the F-statistic of an IIA-test (as discussed in section 1.4.3), is 2819 with a

p-value of 0.00, rejecting the null hypothesis of weak instruments.

The estimated values of g are 12.478 and 11.767 for the plain logit and random coef-

ficients logit models, respectively18. These estimates are lower than the range assumed in

the literature (between 17.5 and 32), suggesting that a market size defined based on per

capita consumption of all non-alcoholic beverages may be too large. It implies that not all

beverage categories should be considered as outside alternatives to soda19.

In columns 1 and 2 of Table 1.3, the estimated price sensitivities are �8.748 and �9.86.

The estimate of random coefficient parameter s in column 2 is 1.952 and is statistically

significant, indicating a rejection of the plain logit model. Column 3, assuming g = 17,

exhibits higher price sensitivity (�13.033) and a larger standard deviation (4.395) in the

preference for price. This aligns with what one would expect when assuming a larger po-

tential market size. Column 4, which includes a second random coefficient on the constant

term, produces estimates comparable to column 3. The estimate of s for the constant term

is small in magnitude �0.09 and statistically insignificant. In the last column, with mar-
18To verify that the estimated g achieves global minimum for the random coefficients logit model, in

Appendix 1.J I plot the GMM objective function over a grid of values for g . The figure suggests that there are
no multiple minima within the specified interval. However, the function is not steep around the minimum,
which could pose challenges for numerical optimization.

19In 2019, the soft drink consumption per person per week in the US is approximately 107 ounces, or 8.9
servings. See: https://www.ibisworld.com/us/bed/per-capita-soft-drink-consu
mption/1786/. This reassures that our estimated value of potential consumption, which amounts to 12
servings, is reasonable.
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ket fixed effects, the estimate of price sensitivity is much lower. Precisely estimating s

becomes challenging, with extremely large standard errors, which is expected due to the

inclusion of near 10,000 dummy variables in the GMM estimation. Therefore, there is

limited exogenous variation to identify the random coefficient.

Table 1.4 provides estimated own-price elasticities and outside-good diversion ratios.

Column 1 reports the elasticities based on our estimate of ĝ = 12. The own-price elasticities

range from �3.651 to �1.887, which is consistent with previous literature20. Note that PLs

have lower own-price elasticities compared to other brands. This can be attributed to PLs

being composite brands consisting of numerous niche products. The demand for an entire

category are expected be less elastic than for each individual product. Furthermore, Steiner

(2004) and Hirsch, Tiboldo, and Lopez (2018), find that PLs face relative inelastic demand

due to limited interbrand substitution within a store. The outside-good diversion ratios

exceed 60% for all brands, with PLs exhibiting the highest diversion ratio. This indicates

that when faced with a price increase, iconsumers are more likely to cease purchasing rather

than switch to branded alternatives, which is what one would expect to see if there exists a

high degree of store loyalty.

The remaining columns in Table 1.4 are based on estimates from columns 3 to 5 of Table

1.3. Assuming g = 17 when the true value is g = 12, the biases in own-price elasticities are

small. However, the biases in outside diversion ratios are more substantial, with a difference

of 9 percentage points for PLs and approximately 3 to 4 percentage points for other brands,

indicating even less substitutions across brands. Including a second random coefficient on

the constant term yields results similar to those in column 2. This is mainly due to the

fact that the estimated s for the constant term is not significantly different from zero. The

inclusion of market fixed effects leads to slightly lower own-price elasticities and higher

outside diversion ratios. Although the results with market fixed effects are comparable to
20For example, the estimated own-price elasticities in Dubé (2005a) are in the range of �3 to �6. Lopez,

Liu, and Zhu (2015) report elasticities between �1 and �2. The magnitude of elasticities varies with the
aggregation level of product.
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our estimates, the standard error of the random coefficient estimate is so large that we can

not conclude any statistically significant results. The key takeaway from Table 1.4 is that

none of the commonly employed solutions produce elasticities and diversion ratios close

to those obtained using our estimated market size. Additionally, I provide estimates of

aggregate elasticities in Appendix 1.J, which allow one to assess the impact of hypothetical

soda taxes.

Finally, I simulate a merger between the largest manufacturer and private label man-

ufacturers. The merger simulation abstracts away from cost reduction, or changes in the

model of competition (e.g. coordination between other firms). Table 1.5 shows the percent-

age change in prices for the merging products. In column 1, the estimates (approximately

2.22% to 8.41% price increases) are reasonably comparable to those of Dubé (2005a), who

estimated the price effect after a simulated merger between two leading manufacturers. The

merger simulations predict larger price increases for the PLs than products of the leading

manufacturer. This results from the relatively lower own-price elasticities of PLs, and is

consistent with previous findings on higher pricing margins for PLs.

In columns 2 and 3, which assume g = 17, the price effects of the merger for brands

owned by the merging parties tend to be underestimated. The bias is the most pronounced

for PLs. Simulated price increases are approximately 8 percent when the market size pa-

rameter is estimated to be 12, while assuming g = 17 yields a price increase of 5.5 percent,

biased by 31%. For brands from the leading manufacturer, the simulated price effects are

relatively lower with the assumed g = 12, although I acknowledge that the differences are

not economically significant. In the last column, the estimate is relatively closer to our

estimates but is imprecisely estimated with large standard errors.

In summary, both the diversion ratios and merger simulations generated by different

market sizes vary and may lead to different policy evaluations. As the potential market size

increases, the simulated price changes display a monotonic decrease.
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1.7 Additional Results

The online supplemental appendix to this paper contains additional theoretical results, an-

other empirical application, proofs of Theorems, and an extensive set of Monte Carlo ex-

periments.

Some additional technical results include deriving the direction of bias, adding errors

to the market size specification, identifying market size in a nested logit model, analyses

of model identification with market fixed effects, and identification with a Bernoulli dis-

tributed random coefficient. There are also extra results for the CSD application, including

price elasticities of market demand, which is useful in evaluating a simulated soda tax.

The appendix also presents a second empirical analysis in the ready-to-eat cereal market to

verify the method’s applicability to different empirical contexts.

Three Monte Carlo experiments are conducted. The first evaluates whether random

coefficients remove bias induced by incorrect market size assumptions. The second ex-

plores how sensitive parameter estimates and elasticities are to market size assumptions in

a random coefficients logit model. The third experiment assesses the performance of our

proposed method. Simulation results suggest that our estimator works well, particularly

when the true outside good share is not too large.

1.8 Conclusions

This paper shows that market size is point identified in aggregate discrete choice demand

models. Point identification relies on observed substitution patterns induced by exogenous

variation in product characteristics and the nonlinearity of the demand model. The re-

quired data are conventional market-level data used in standard BLP estimation. I illustrate

the results using Monte Carlo simulations and provide an empirical application to merger

analysis in the soft drink industry. Our application shows that correctly measuring market

size is economically important. For instance, I find that assuming a market size larger than
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the true size leads to a non-negligible downward bias in the estimated merger price in-

crease, which could affect the conclusions of the merger evaluation. Apart from the merger

application, my results would also have important implications for social welfare, markup

calculations, tax and subsidy policies, and the entry of new firms.

Potential areas for future theoretical research include deriving conditions for strong

identification and instrument selection, extending the model to micro-BLP which uses in-

dividual choice data, and allowing for dependence among logit errors to make the results

applicable to panel data settings as in Khan, Ouyang, and Tamer (2021).

In the application, I consider a scalar g . A possible extension would be to allow g to vary

based on market characteristics, such as demographic composition and the number of retail

stores. It would also be useful to test my model in an industry where the true market size is

known, such as the pharmaceutical market, where researchers generally know the number

of patients, which can be considered as the potential market size. Another possibility for

further work is generalizing the model to empirical contexts where inside good quantity

rather than outside option is mismeasured or unknown, such as the consumption of informal

goods or services (Pissarides and Weber 1989).
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Table 1.1: Manufacturer-Level Volume Shares of Carbonated Soft Drink

Regular (%) Diet (%) Total (%)

Manufacturer A 22.19 12.88 35.07
Manufacturer B 12.25 6.87 19.12
Manufacturer C 7.17 2.7 9.87
Private Label 5.09 5.44 10.53
Others 13.04 12.36 25.4

Notes: Volume shares are the volume sold of a specific manufac-
turer divided by the total volume sold of the carbonated soft drink
category.

Table 1.2: Prices and In-store Presence of Brands in Sample

Mean Median Std Min Max Brand DMA Month
Variation Variation Variation

Prices 0.40 0.39 0.12 0.11 2.75 39.73% 39.50% 0.50%
($ per 12 oz.)
In-store Presence 0.50 0.51 0.22 0.01 1.00 75.12% 13.44% 0.06%

Notes: Variance contribution of brands, DMAs and months is the R-squared value added by
each variable when it is added to the regression of price (or in-store presence) on the other two
independent variables. In-store presence: the proportion of stores with the given brand in stock.
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Table 1.3: Baseline Demand Estimation Results

Estimate g Assume g = 17 servings

Plain Logit RC Logit RC Logit RC Logit RC Logit
with two RC’s with Market FE

Means b
Price -8.748 -9.860 -13.033 -12.793 -5.245

(0.084) (0.222) (0.289) (0.434) (0.311)
In-store Presence 3.281 3.311 3.309 3.314 5.061

(0.022) (0.022) (0.023) (0.024) (0.019)

Standard Deviations s
Price 1.952 4.395 4.257 0.007

(0.211) (0.155) (0.247) (53.834)
Constant -0.090

(1.189)

Market Size Parameter
g 12.478 11.767

(0.263) (0.210)

Product Fixed Effects Yes Yes Yes Yes Yes
Seasonal Effects Yes Yes Yes Yes No
Region Fixed Effects Yes Yes Yes Yes No
DMA-Week (Market) Fixed Effects No No No No Yes

Notes: This table reports demand model estimates. Columns 1 and 2 correspond to plain logit and random
coefficients logit models, and g is to be estimated. Columns 3 to 5 are standard BLP estimates assuming g = 17.
Column 3 replicates the specification of column 2. Column 4 introduces an additional random coefficient on
the constant term and column 5 includes market fixed effects. Standard errors in parentheses. Constant terms
are omitted due to collinearity with product fixed effects.

Table 1.4: Demand Elasticities and Diversion Ratios

RC Logit RC Logit RC Logit RC Logit
with two RC’s with Market FE

with ĝ = 12 Assuming g = 17 Assuming g = 17 Assuming g = 17

Own-Price Elasticities
Product 1 -3.398 -3.362 -3.351 -2.097
Product 2 -3.597 -3.493 -3.482 -2.224
Product 3 -3.651 -3.528 -3.518 -2.262
Private Label R -1.887 -2.181 -2.151 -1.000

Outside-Good Diversion Ratios
Product 1 62.8% 66.0% 66.5% 78.5%
Product 2 60.3% 63.0% 63.5% 77.2%
Product 3 59.8% 62.4% 62.9% 77.0%
Private Label R 68.4% 77.7% 77.7% 76.9%

Notes: This table reports estimates of elasticities and diversion ratio. Columns 1 is based on a random coeffi-
cients logit model with estimated g . Columns 2 to 4 assume g = 17. Column 2 replicates the specification of
column 1. Column 3 introduces an additional random coefficient on the constant term and column 4 includes
market fixed effects. To save space, only top-3 regular drink products are reported in the table. R represents
regular.
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Table 1.5: Simulated Percentage Price Effects for Merging Firms’ Brands

RC Logit RC Logit RC Logit RC Logit
with two RC’s with Market FE

with ĝ = 12 Assuming g = 17 Assuming g = 17 Assuming g = 17

Manufacturer A Products 2.33 1.65 1.65 2.80
2.37 1.66 1.67 2.85
2.22 1.58 1.58 2.66
2.49 1.73 1.73 3.01

Private Label R 8.41 5.64 5.66 10.14
Private Label DT 8.21 5.56 5.57 9.83

Notes: This table reports the percentage price change after a simulated merger between Manufacturer
A and private label manufacturers. Columns 1 is based on a random coefficients logit model with
estimated g . Columns 2 to 4 assume g = 17. Column 2 replicates the specification of column 1.
Column 3 introduces an additional random coefficient on the constant term and column 4 includes
market fixed effects. To save space, only merging firms’ brands are reported in the table. R represents
regular. DT stands for diet.
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Appendix

1.A Proofs

Proof of Theorem 1. By the mean independence condition given in Assumption 1, we have

E (ln (r jt) | Qt = q,Xjt = x) = E (ln (gWt �1) | Qt = q,Xjt = x)� x0b .

Taking derivative with respect to q yields

0 =
∂E (ln (r jt)� ln (gWt �1) | Qt = q,Xjt = x)

∂q
.

Let G be the set of all possible values of g . For any given constant c 2 G, define the function

g(c,q,x) =
∂E (ln (r jt)� ln (cWt �1) | Qt = q,Xjt = x)

∂q

We observe r jt , Wt , Qt and Xjt . For any constant c, observed q and x, we can therefore

nonparametrically identify g(c,q,x). In order to show point identification, we need to

verify that there exists at most one value of c 2 G such that g(c,q,x) = 0 for all observed

q 2 Supp(Qt) and x 2 Supp(Xjt). Taking the derivative of g(c,q,x) with respect to c, we

have

∂ 2E (ln (r jt)� ln (cWt �1) | Qt = q,Xjt = x)
∂c∂q

=
∂E
⇣
� Wt

cWt�1 | Qt = q,Xjt = x
⌘

∂q
.

The identification then follows from the assumption that there exists (q,x) on the support

of (Qt ,Xjt) such that ∂E
⇣
� Wt

cWt�1 | Qt = q,Xjt = x
⌘

/∂q is strictly positive or strictly neg-

ative for all c 2 G.

Given g , the model becomes equivalent to a standard multinomial choice model, and

therefore b is identified the same way.
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Lemma 2 is the contraction mapping theorem in the appendix from Berry, Levinsohn,

and Pakes (1995).

Lemma 2. Consider the metric space (RJ ,d) with d(x,y) = kx� yk. Let g : RJ ! RJ

have the properties:

(1) 8d 2 RJ, f (d ) is continuously differentiable, with, 8k and j,

∂gk(d )
∂d j

� 0,

and
J

Â
j=1

∂gk(d )
∂d j

< 1.

(2) min j infd g j(d ) = d >�•.(There is a lower bound to g j(d ), denoted d )

(3) There is a value d , with the property that if for any j, d j � d , then for some k,

gk(d ) < dk.

Then, there is a unique fixed point d ⇤ to g in RJ.

Proof of Proposition 1. The implicit system of equations is solved for each market, there-

fore we drop the t subscript in the proof to simplify the notation. We show the propo-

sition for a scalar g . Let s j = Nj/M and s0 = 1�Â j Nj/M. We obtain the generalized

proposition by replacing ln(s j/g) with ln(Nj/Âg1Mg2) Now we show that the function

g(d ) = d + ln(s)� ln(g)� ln(p(d ;s)) satisfies the three conditions in Lemma 2.

(1) The function g(d ) is continuously differentiable by the differentiability of the pre-

dicted choice probability function p(d ;s).

First we want to show that
∂g j(d )

∂d j
= 1� 1

p j(d ;s)
∂p j(d ;s)

∂d j
� 0
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Take the derivative of p j(d ;s) with respect to d j, we have
∂p j(d ;s)

∂d j

=
Z exp(d j +Âl slx jlnil)

⇣
1+ÂJt

k=1 exp(dk +Âl slxklnil)
⌘

⇣
1+ÂJt

k=1 exp(dk +Âl slxklnil)
⌘2

�
(exp(d j +Âl slx jlnil))

2

⇣
1+ÂJt

k=1 exp(dk +Âl slxklnil)
⌘2 fn(n)dn

=
Z exp(d j +Âl slx jlnil)

1+ÂJt
k=1 exp(dk +Âl slxklnil)

�
 

exp(d j +Âl slx jlnil)

1+ÂJt
k=1 exp(dk +Âl slxklnil)

!2

fn(n)dn

= p j(d ;s)�
Z  exp(d j +Âl slx jlnil)

1+ÂJt
k=1 exp(dk +Âl slxklnil)

!2

fn(n)dn

Then we can rewrite the derivative of function g j(d ) as
∂g j(d )

∂d j
= 1� 1

p j(d ;s)
∂p j(d ;s)

∂d j

=
1

p j(d ;s)

Z  exp(d j +Âl slx jlnil)

1+ÂJt
k=1 exp(dk +Âl slxklnil)

!2

fn(n)dn ,

which is non-negative because p j(d ;s) is strictly positive, and the integrand of the

second term is continuous and strictly positive, hence the integral over any closed

integral is strictly positive, so the same must hold over the entire real line.

Take the derivative of p(d ;s) with respect to d j, we have

∂pk(d ;s)
∂d j

= �
Z exp(dk +Âl slxklnil)exp(d j +Âl slx jlnil)

⇣
1+ÂJt

k=1 exp(dk +Âl slxklnil)
⌘2 fn(n)dn .

Therefore the derivative of gk(d ) with respect to d j is

∂gk(d )
∂d j

= � 1
pk(d ;s)

∂pk(d ;s)
∂d j

=
1

pk(d ;s)

Z exp(dk +Âl slx jlnil)exp(d j +Âl slx jlnil)
⇣

1+ÂJt
k=1 exp(dk +Âl slxklnil)

⌘2 fn(n)dn ,

which is non-negative because pk(d ;s) and the integrand of the second term are

strictly positive.
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To show the condition ÂJ
j=1 ∂gk(d )/∂d j < 1, note that increasing all the d j including

d0 simultaneously will not change the market shares, implying that ÂJ
j=0 ∂pk(d ;s)/∂d j =

0. Then
J

Â
j=1

∂pk(d ;s)
∂d j

= �∂pk(d ;s)
∂d0

> 0

We can therefore establish the condition that the derivatives of gk sums to less than

one
J

Â
j=1

∂gk(d )
∂d j

= 1� 1
pk(d ;s)

J

Â
j=1

∂pk(d ;s)
∂d j

< 1.

(2) Rewrite g j(d ) as

g j(d ) = ln(s j)� ln(g)� ln (D j(d )) ,

where D j(d ) =
Z exp(Âl slx jlnil)

1+ÂJt
k=1 exp(dk +Âl slxklnil)

fn(n)dn .

A lower bound of g j can be obtained by letting all of dk go to �•, then D j(d ) !
R

exp(Âl slx jlnil) fn(n)dn . So the lower bound on g j(d ) is

d ⌘ ln(s j)� ln(g)� ln

 Z
exp(Â

l
slx jlnil) fn(n)dn

!

(3) The proof of this part follows Berry (1994). He shows condition (3) of Lemma 2 is

satisfied by first showing that if for any product j, d j � d , then there is at least one

element k with pk(d ;s) > sk/g .

To construct a d that satisfies the above requirement, first set all of dk (other than good

j and outside good) to �•. Define d j to be the value of d j that makes p0(d ;s) =

1� (1� s0)/g . Then define d = max j d j.

Now if there is any element of d with d j > d , then p0(d ;s) < 1� (1� s0)/g . It

then follows from ÂJ
j=0 p j(d ;s) = 1 that ÂJ

j=1 p j(d ;s) > ÂJ
j=1 s j/g . Thus there is
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at least one good k with pk(d ;s) > sk/g , which implies gk(d ) < dk:

pk(d ;s) >
sk

g
() ln (pk(d ;s)) > ln(sk)� ln(g)

() ln(sk)� ln(g)� ln (pk(d ;s)) < 0

() gk(d ) = dk + ln(sk)� ln(g)� ln (pk(d ;s)) < dk

Proof of Theorem 2. Assuming enough regularity to take the derivative inside the expecta-

tion and applying the dominated convergence theorem, we have —q E (h jt(q )) =E (—q h jt(q )).

The Jacobian matrix is

E (—q h jt(q )) = E


∂h jt(q )
∂g 0

∂h jt(q )
∂s 0

∂h jt(q )
∂b 0

�

= E

"

f j(Zt)
∂d jt(Nt ,Mt ,X

(2)
t ;g ,s)

∂g 0
f j(Zt)

∂d jt(Nt ,Mt ,X
(2)
t ;g ,s)

∂s 0 f j(Zt)X 0
jt

#

Recall that h jt(q ) = (d jt(Nt ,Mt ,X
(2)
t ;g ,s)�X 0

jtb )f j(Zt). The first derivative of the above

matrix is an m⇥2K vector. ∂p jt(dt ;s)/∂s 0 is a 1⇥L row vector, so the second derivative

of the above matrix is an m⇥L matrix. Similarly, the dimension of the last derivative is

m⇥L. The identification proof follows directly from Lemma 2 and the rank condition that

the Jacobian matrix has rank K.

Proof of Lemma 1. To ease notation in the proof, we drop the subscript j and t and suppress

the dependence of F and Y on (dt ,X
(2)
t ;s), and the dependence of f on Z. We make a

simplifying assumption w.l.o.g.: Suppose X are exogenous and thus can serve as its own

instruments, i.e. f (1) = X . When g is a scalar, the Jacobian matrix reduces to
0

BBBBBBBB@

E

0

B@

0

B@
f (2)

f (3)

1

CA

0

B@
1
g Y

F

1

CA

01

CA E

0

B@

0

B@
f (2)

f (3)

1

CAX 0

1

CA

E

0

B@X

0

B@
1
g Y

F

1

CA

01

CA E (XX 0)

1

CCCCCCCCA

,
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and recall that

A = E

0

B@

0

B@
f (2)

f (3)

1

CA

0

B@
1
g Y

F

1

CA

01

CA B = E

0

B@

0

B@
f (2)

f (3)

1

CAX 0

1

CA

C = E

0

B@X

0

B@
1
g Y

F

1

CA

01

CA D = E (XX 0) ,

Let X = (1, X̃ 0)0. Denote W = (E(X̃ X̃ 0)�E(X̃)E(X̃ 0))�1, then we have

D�1 =

0

B@
1+E(X̃ 0)WE(X̃) �E(X̃ 0)W

�WE(X̃) W

1

CA ,

and

A�BD�1C =
1
g

0

B@Cov

0

B@

0

B@
f (2)

f (3)

1

CA , (Y,F)

1

CA�Cov

0

B@

0

B@
f (2)

f (3)

1

CA , X̃ 0

1

CAWCov (X̃ , (Y,F))

1

CA

For the Jacobian matrix to have full rank, we make a technical assumption that det(A�

BD�1C) 6= 0. This assumption is generically satisfied when

Cov

0

B@

0

B@
f (2)

f (3)

1

CA , (Y,F)

1

CA

has full rank. Note that given the regularity assumptions in the Lemma, when the above

matrix has full rank, det(A�BD�1C) equals zero only at a set of measure zero.

Proof of Theorem 4. Assuming Mt ? (xt , Xt), we take log and conditional expectation on

both sides

E (ln(Njt) | Mt) = ln(s(Mt))+E
⇣

ln
⇣

p j(dt ,X
(2)
t )

⌘⌘
.

Take derivative w.r.t. m

∂E (ln(Njt) | Mt = m)
∂m

=
∂ ln(s(Mt))

∂m
⌘ g(m),

from which g(m) is identified. Then ln(s(Mt)) =
R

g(m) + c is identified up to location.

Thus,

s(m) = e
R

g(m)c̃

is identified up to scale.
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Proof of Theorem 5. By Assumption 4, the conditional mean function is

E (ln (r jt) | Xjt = x) = kt + x0b 8t 2 (1, · · · ,T ).

If Xjt is continuous, then ∂E (ln (r jt) | Xjt = x)/∂x= b . If Xjt is discrete, then E (ln (r jt) | Xjt = x1)�

E (ln (r jt) | Xjt = x2) = (x1 � x2)0b . b is therefore identified given that the support of Xjt

does not lie in a proper linear subspace of dim(X) for t = 1, · · · ,T and Xit does not contain

a constant.

Now that we have shown b is identified, the conditional mean function becomes

E (ln (r jt) | Xjt = x)� x0b = kt 8t 2 (1, · · · ,T ).

The left hand side is identified, and each of the T equations pins down a unique kt . There-

fore (k1, · · · ,kT ) are identified.

Proof of Theorem 6. By the mean independence condition given in Assumption 1, we have

E (ln (r jt) | Qt = q,Xjt = x) =
1

1�s
E (ln (gWt �1) | Qt = q,Xjt = x)� x0

b
1�s

.

Taking first-order derivative with respect to q yields
∂E (ln (r jt) | Qt = q,Xjt = x)

∂q
=

1
1�s

∂E (ln (gWt �1) | Qt = q,Xjt = x)
∂q

. (1.18)

Taking second-order derivative with respect to q yields
∂ 2E (ln (r jt) | Qt = q,Xjt = x)

∂q2 =
1

1�s
∂ 2E (ln (gWt �1) | Qt = q,Xjt = x)

∂q2 . (1.19)

Define functions

g(q,x) =
∂E (ln (r jt) | Qt = q,Xjt = x)

∂q
,

and

h(g ,q,x) =
∂E (ln (gWt �1) | Qt = q,Xjt = x)

∂q
.

Dividing equation (1.19) by (1.18) yields

∂g(q,x)
∂q

1
g(q,x)

=
∂h(g ,q,x)

∂q
1

h(g ,q,x)
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Let G be the set of all possible values of g . For any given c 2 G, define function

f (c,q,x) =
∂h(c,q,x)

∂q
1

h(c,q,x)
� ∂g(q,x)

∂q
1

g(q,x)
.

We observe r jt ,Wt ,Qt and Xjt . For any constant c and observed q and x, we can therefore

nonparametrically identify f (c,q,x). In order to show point identification of g , we need to

verify that there exists at most one value of c 2 G such that f (cq,q,x) = 0 for all observed

q 2 Supp(Qt) and x 2 Supp(Xjt). Taking the derivative of f (c,q,x) with respect to c, we

have

∂ f (c,q,x)
∂c

=
∂ 2(h(c,q,x))

∂q∂c
1

h(c,q,x)
� ∂h(c,q,x)

∂q
h(c,q,x)

∂c
1

h(c,q,x)2

=
1

h(c,q,x)

∂ 2E
⇣

Wt
cWt�1 | Qt = q,Xjt = x

⌘

∂q2 �

1
h(c,q,x)2

∂ 2E (ln(cWt �1) | Qt = q,Xjt = x)
∂q2

∂E
⇣

Wt
cWt�1 | Qt = q,Xjt = x

⌘

∂q
.

The identification of g then follows from the assumption that there exists (q,x) on the

support of (Qt ,Xjt) such that ∂ f (c,q,x)
∂c is strictly positive or strictly negative for all c 2 G.

Given a unique g , and the assumption that h(g ,q,x)
g(q,x) 6= 0, we can solve for s explicitly as

s = 1� h(g ,q,x)
g(q,x)

.

Given g and s , the model reduces to a standard multinomial logit model, and b /(1�s)

is identified in a linear regression model. Given b /(1�s) and s , we can solve for b .

1.B Bias Caused by Mismeasured Market Size

I show that the usual approach that estimates demand based on equation (1.1) with a mis-

measured market size will lead to biased estimates of b . To see this, suppose the true

model is given by equation (1.5) with true value of g 6= 1. Without loss of generality, let

s jt = Njt/Mt and s0t = (Mt �Ntotal
t )/Mt denote the mismeasured market shares calculated

based on the incorrect assumption that market size is g̃Mt , with g̃ = 1. Define µ jt to be the

difference between the true choice probabilities ln(p jt/p0t) and the mismeasured market
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shares ln(s jt/s0t), so it gives the model that relates observed market shares to covariates

and errors

ln
✓

s jt

s0t

◆
= X 0

jtb + x jt + µ jt ,

with

µ jt = ln
✓

s jt

s0t

◆
� ln

✓
p jt

p0t

◆

= ln
✓

gWt �1
Wt �1

◆

= ln
✓

1
�✓

1
g
+

✓
1
g
�1
◆

1�p0t

p0t

◆◆

by construction. The first equality is by the definition of µ jt . The second equality follows

from the definition of mismeasured market shares and equations (1.1) and (1.5). The third

equality follows from equation (1.4). It is not reasonable to believe that p0t would be

independent of Xjt because by the model, p0t depends on the characteristics of all goods.

One possible technique to fix the problem is using a standard 2SLS regression or GMM

with appropriate instruments. In this case, a valid instrument should be correlated with

the demand covariates Xjt , and in the meanwhile, uncorrelated with p0t , which again is

a function of Xjt . In general, it is unlikely to construct an instrument that satisfies both

restrictions.

Using the relationship provided above, we can predict the direction of the bias: Suppose

that the observed market size is larger than the true size (i.e. g < 1), the model predicts that

the price of good j will be positively correlated with µ jt , and negatively correlated with its

own market share. Therefore, the estimate of the price coefficient will be biased downward

(in absolute value), implying an underestimated price sensitivity.

1.C Extension of the Simple Logit Case

r jt and r⇤jt are defined as in section 1.3. Now we assume

ln (r jt) = ln
�
r⇤jt
�
+ e jt .
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Here, e jt is the error in ln (r jt) that we will later assume to have mean zero. It can include

sampling errors, measurement errors, or aggregate unobserved heterogeneity in individual

utility.

Then we assume that the mismeasurement in Wt relative to p0t takes the form

ln
✓

p0t

1�p0t

◆
= ln (gWt �1)+ vt

for some constant g and some random mean zero noise vt . I add the error term vt to ac-

count for this relationship being approximate rather than exact. With the additional vt ,

1� p0t would approximately equal 1/ (gWt), and therefore ln (p0t/(1�p0t)) would ap-

proximately equal ln (gWt �1).

Putting the above equations and assumptions together we get the estimating equation

ln (r jt) = ln (gWt �1)+X 0
jtb + u jt 8 j 2 Jt

where

u jt = x jt + e jt + vt .

To achieve identification as in section 1.3, we only need to modify the mean indepen-

dence assumption such that E (u jt | Qt ,X1t , . . . ,XJtt) = 0, where everything else is defined

as in section 1.3.

1.D Market Fixed Effects Approach for Simple Logit

Returning to equation (1.5), observe that the term with the unknown p0t shows up addi-

tively, and it varies by market, not by product. I could allow for separate intercepts for

each market to capture the unknown p0t . The inclusion of the market level intercepts al-

lows for unobserved aggregate market effects of the kind introduced by the presence of

outside goods. Let (k1, · · · ,kT ) denote the aggregate market-varying and product-invariant

parameters, then we can rewrite the model of equation (1.5) as

ln (r jt) = kt +X 0
jtb + u jt for each t = 1, · · · ,T .
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Assumption 4. E(u jt | Xjt) = 0 for all t 2 (1, · · · ,T ). The support of Xjt does not lie in a

proper linear subspace of L.

The conditional mean in Assumption 4 takes expectation across all products j for a

fixed market t. Assumption 4 first assumes all Xjt are exogenous characteristics. Prices

are taken to be exogenous throughout the context of the plain logit model for expositional

purposes. I will relax this assumption in the next section. Assumption 4 also imposes no

multicollinearity requirements on Xjt .

Theorem 5. Let Assumption 4 hold. Let b 0 be the coefficient on the constant. Normalize

b 0 = 0. Then (k1, · · · ,kT ,b ) are identified.

The proofs are in the appendix. Theorem 5 indicates that all parameters are identified

except for the constant. This result has straightforward and important implications for how

one can deal with the unobserved market size. In particular, when we observe data from a

single market (T = 1), estimating kt resembles estimating the constant term. The desirable

thing is that it would only bias the estimate of the constant in the consumer’s indirect utility

function and does not affect estimates of elasticities. For T � 2, when there are repeated

measures of the same market/region over multiple time periods, or when we have cross-

sectional data from more than one market/region, including market or time dummies in the

model ensures consistent estimation of all parameters but the constant.

However, this method comes with some costs. First, it incurs efficiency loss because

the data variation across markets is not exploited. In addition, the choice probabilities will

not be identified because the true market size is not identified, which puts limitations on

the study of, for example, diversions, mergers, and product entry or exit as these questions

depend heavily on choice probabilities. Moreover, coefficients of market-level regressors

will not be identified, so we cannot estimate marginal effects of any market characteristics.

The biggest limitation is that this method relies on the functional form of the model speci-

fication. It works only in the plain logit model as a special case and cannot be generalized

to the random coefficients demand model (see section 1.4.5).
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1.E Identification of Market Size in Nested Logit Model

Following the nested logit framework in McFadden (1977) and Cardell (1997), we assume

the utility of consumer i for product j belonging to group g is

Ui jt = d jt + zigt +(1�r)ei jt ,

where d jt = X 0
jtb + x jt and ei jt is independently and identically distributed with extreme

value type I distribution as before. The unobserved group specific taste zigt follows a

distribution such that zigt + (1�r)ei jt is also distributed extreme value. r measures the

correlation of unobserved utility among products in group g. A larger value of r indicates

greater correlation within nest. When r = 0, the within group correlation of unobserved

utility is zero, and the nested logit model degenerates to the plain multinomial logit model.

Berry (1994) shows that demand parameters b and r can be consistently estimated from

a linear regression similar to the logit equation (1.1), with an additional regressor ln(p j|gt),

ln(p jt/p0t) = X 0
jtb +r ln(p j|gt)+ x jt , (1.20)

where p j|gt is the conditional choice probability of product j given that a product in group

g is chosen.

Consider the case where all goods are divided up into two nests, with the outside good

as the only choice in group g = 0 and all inside goods belonging to group g = 1. In this

case, p j|gt = r⇤jt for j 6= 0, where r⇤jt is defined in section 1.3.2. Then we can rewrite (1.20)

as

ln
�
r⇤jt
�
=

1
1�r

ln
✓

p0t

1�p0t

◆
+X 0

jt
b

1�r
+

x jt

1�r
.

Following the same exposition of the market size model as in section 1.3.2, we assume

equation (1.4) hold. Combining above equations and assumptions we get the estimating

equation for the nested logit model

ln (r jt) =
1

1�r
ln (gWt �1)+X 0

jt
b

1�r
+

x jt

1�r
. (1.21)
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Theorem 6. Given Assumption 1 and equation (1.21), let G be the set of all possible values

of g , if

1. all relevant first and second order derivatives exist,

2. ∂ f (c,q,x)/∂c > 0 or < 0 for all c 2 G, where

f (c,q,x) =
∂h(c,q,x)

∂q
1

h(c,q,x)
� ∂g(q,x)

∂q
1

g(q,x)
,

g(q,x) =
∂E (ln (r jt) | Qt = q,Xjt = x)

∂q
,

h(c,q,x) =
∂E (ln (cWt �1) | Qt = q,Xjt = x)

∂q
,

3. and h(c,q,x) 6= 0 for all c 2 G.

Then g , b and r are identified.

The proof of theorem 6 works by showing that there exists q and x such that f (c,q,x) =

0 has a unique solution of c. In practice, if Qt is a scalar random variable, we can use Qt

and any nonlinear function of Qt as instruments to estimate g and r . Nonlinear functions

of Qt (e.g.
p

Qt or Q2
t ) will have additional explanatory power to separately identify g and

r .

I exploit the variation in Wt and Qt , and the nonlinearity of the estimating equation

to identify the model. Though theoretically we can distinguish g and r , it can be seen

from equation (1.21) that separately identifying the two parameters is hard without strong

instruments. If gWt � 1 were close to zero or if the logarithm were not in the equation, r

tends to be not identified. I can also see this from a first order Taylor expansion around

Wt = W (White 1980), where W is the mean of Wt . The coefficient of the Taylor series

depends on both g and r . This result partly confirms the commonly held intuition that a nest

structure can mitigate biases caused by unknown market size. A Monte Carlo simulation

for the nested logit model is available upon request.

One might be concerned that the identification result of theorem 6 relies on the func-

tional form assumption we made in equation (1.4). There might exist some different func-
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tional form assumption of market size which would make g and r unidentified. For ex-

ample, the model would be unidentified by letting the true market size be (exp(gW̃t) +

1)Ntotal
t , for some variable W̃t . In this case, equation (1.21) reduces to ln (r jt) = 1/(1�r)gW̃t +

X 0
jtb /(1�r)+x jt . However, a market size model of this form is odd and lack of economic

meaning.

1.F RCL with Bernoulli Distribution

Suppose J = 1. Consumers choose either purchasing or not purchasing (i.e., the outside

good). Consumer i’s purchasing decision is given by

Yit = [b0i +Xtb1i + xt + eit � 0],

where Xt is a scalar random variable, eit is standard logistically distributed, xt are unob-

served random errors, and (b0i,b1i) are two random coefficients with b0i = b0 +s0ni and

b1i = b1 +s1ni.

To get an analytic formula for the predicted market share, we assume that ni follows a

Bernoulli distribution

ni =

8
>><

>>:

0, with probability 1
2

1, with probability 1
2 .

Let dt = b0 +Xtb1 + xt . The overall true market share in market t is

pt(dt ;s) = E


exp(b0i +Xtb1i + xt)
1+ exp(b0i +Xtb1i + xt)

| Xt ,xt

�

=
1
2
· exp(dt)

1+ exp(dt)
+

1
2
· exp(dt +s0 +Xts1)

1+ exp(dt +s0 +Xts1)
,

Now suppose that the true market size is gMt , and the observed market share is st =

Ntotal
t /Mt . Then the observed and true market share would be linked by st = gpt . Following

BLP, we can implicitly solve for dt by equating st
g = pt(dt ;s).

Identification would be based on a set of conditional moment restrictions E(xt | Zt) = 0,

where Zt is a vector of instruments.
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To simplify things and focus only on the constant term, suppose there were no X’s, so

pt(dt ;s0) =
1
2
· exp(dt)

1+ exp(dt)
+

1
2
· exp(dt +s0)

1+ exp(dt +s0)
,

and dt = b0 + xt . Assume that we have two instruments Z1t and Z2t satisfying

E

2

66664

xt

xtZ1t

xtZ2t

3

77775
= 0.

Since xt = dt �b0, we can rewrite the above moment conditions as

E

2

66664

dt �b0

(dt �b0)Z1t

(dt �b0)Z2t

3

77775
= 0. (1.22)

Note that dt is solved from the demand system, so it is a function of (s0,g). For the

unknown parameters (b0,s0,g) to be (locally) point identified, we would need there to be a

unique solution to the moment conditions (1.22). A sufficient condition is that the Jacobian

matrix with respect to (b0,s0,g) is non-singular.

Let p0
t ⌘ exp(dt)/(1+ exp(dt)) and p1

t ⌘ exp(dt +s0)/(1+ exp(dt +s0)). Let

g(b0,s0,g) =

0

BBBB@

dt �b0

(dt �b0)Z1t

(dt �b0)Z2t

1

CCCCA

denote the 3⇥1 function. The Jacobian matrix would be

E

2

666666664

�p1
t (1�p1

t )

p0
t (1�p0

t )+p1
t (1�p1

t )

1
g

�(p0
t +p1

t )

p0
t (1�p0

t )+p1
t (1�p1

t )
�1

�p1
t (1�p1

t )

p0
t (1�p0

t )+p1
t (1�p1

t )
Z1t

1
g

�(p0
t +p1

t )

p0
t (1�p0

t )+p1
t (1�p1

t )
Z1t �Z1t

�p1
t (1�p1

t )

p0
t (1�p0

t )+p1
t (1�p1

t )
Z2t

1
g

�(p0
t +p1

t )

p0
t (1�p0

t )+p1
t (1�p1

t )
Z2t �Z2t

3

777777775

,

where the first column is the derivative of E[g(b0,s0,g)] with respect to s0, the second

column is the derivative with respect to g and the third column is the derivative with respect

to b0. For the above Jacobian matrix to be non-singular, we would require some relevance
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assumptions:

Cov
✓

�p1
t (1�p1

t )

p0
t (1�p0

t )+p1
t (1�p1

t )
,Zt

◆
6= 0, Cov

✓
�(p0

t +p1
t )

p0
t (1�p0

t )+p1
t (1�p1

t )
,Zt

◆
6= 0.

When the relevance assumptions are satisfied, the Jacobian matrix is non-singular and

therefore the moment conditions (1.22) have a unique solution. In practice, we need enough

instruments that satisfy the mean independence assumption and also correlate with the mar-

ket shares. When there are X’s in the model and when there are more than one product,

potential extra instruments can be exogenous X’s of competing products in the same market

or the competitiveness of the market. This is because exogenous characteristics of compet-

ing products k 6= j enter the market share function of product j so would in general satisfy

the relevance assumption.

1.G RCL with Market Fixed Effects

By Assumption 3, we have E
h⇣

d jt(Njt ,Mt ,X
(2)
t ;g0,s0)�X 0

jtb0

⌘
f j(Zt)

i
= 0. I can rewrite

the moment condition as

E
h⇣

d jt

⇣
Njt ,Mt ,X

(2)
t ; g̃ ,s0

⌘
�X 0

jtb0 + d jt

⇣
Njt ,Mt ,X

(2)
t ;g0,s0

⌘

�d jt

⇣
Njt ,Mt ,X

(2)
t ; g̃ ,s0

⌘⌘
f j(Zt)

i
= 0, (1.23)

where g̃ 2 G can be any value in the parameter space of g . Suppose one assumes the

market size coefficient is g̃ and implements the estimation following the standard BLP pro-

cedure, then the probability limit of the empirical moment used in estimation would be

E
h⇣

d jt(Njt ,Mt ,X
(2)
t ; g̃ ,s0)�X 0

jtb0

⌘
f j(Zt)

i
. Now we explore the possibility of consis-

tently estimating the parameters b and s by adding market-level fixed effects like what we

did in the plain logit case. The question then arises as to whether the term showing up in

equation (1.23), d jt(Njt ,Mt ,X
(2)
t ;g0,s0)�d jt(Njt ,Mt ,X

(2)
t ; g̃ ,s0), is invariant across prod-

ucts in a given market. If yes, then this gap can be captured by a product-invariant parameter

kt , and the true moment condition (1.23) would be E
h⇣

d jt

⇣
Njt ,Mt ,X

(2)
t ; g̃ ,s0

⌘
�X 0

jtb0 �kt

⌘
f j(Zt)

i
=
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0, from which we can consistently estimate s and b by including market-level dummies,

and the choice of g̃ would be a free normalization.

I verify this by looking at the changes in d jt resulting from changes in g . First consider

the plain logit model, where d jt has an analytic form. For a scalar g , the derivative with

respect to g is

∂d jt

⇣
Njt ,Mt ,X

(2)
t ;g

⌘

∂g
= �1

g
� Âk(Nkt/Mt)

g2 � g Âk(Nkt/Mt)
,

which depends only on t, implying that the variation in d jt as g changes is not product

specific and thus d jt(Njt ,Mt ,X
(2)
t ;g0)� d jt(Njt ,Mt ,X

(2)
t ; g̃) can be captured by kt . This is

the reason why we can use market fixed effects to capture the unobserved outside option in

the logit model.

Now consider random coefficients logit. Suppose J = 2, we have

∂d1t

⇣
Njt ,Mt ,X

(2)
t ;g ,s

⌘

∂g
=

�������

∂p1t

∂d1t

∂p1t

∂d2t
∂p2t

∂d1t

∂p2t

∂d2t

�������

�1 ��������

p1t

g
∂p1t

∂d2t
p2t

g
∂p2t

∂d2t

��������
,

and
∂d2t

⇣
Njt ,Mt ,X

(2)
t ;g ,s

⌘

∂g
=

�������

∂p1t

∂d1t

∂p1t

∂d2t
∂p2t

∂d1t

∂p2t

∂d2t

�������

�1 ��������

∂p1t

∂d1t

p1t

g
∂p2t

∂d1t

p2t

g

��������
,

respectively. The denominators are identical for j = 1,2. When j = 1, the determinant in

the numerator is 1
g (
R

p1ti fn(n)dn) (
R

p2ti(1�p2ti) fn(n)dn)+ 1
g (
R

p2ti fn(n)dn) (
R

p1tip2ti fn(n)dn).

Similarly, when j = 2, the determinant in the numerator is 1
g (
R

p2ti fn(n)dn) (
R

p1ti(1�p1ti) fn(n)dn)+
1
g (
R

p1ti fn(n)dn) (
R

p1tip2ti fn(n)dn). The two are equivalent only when n is not random

and the individual choice probabilities are identical. I can see that it is the individual hetero-

geneity which enters through the random coefficients that makes ∂d jt(Njt ,Mt ,X
(2)
t ;g ,s)/∂g

depend on j. Overall, d jt(Njt ,Mt ,X
(2)
t ;g0,s0)�d jt(Njt ,Mt ,X

(2)
t ; g̃ ,s0) would have a j sub-

script and cannot be captured market fixed effects.
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1.H Monte Carlo Simulations

The data generating process for the simulation datasets follows closely that in Armstrong

(2016), but we only consider small J environments to avoid the weak instruments problem

Armstrong raised. Prices are endogenously generated from a demand and supply model,

where firms compete a la Bertrand in the market. In the baseline design of the Monte Carlo

study, the number of products varies across markets. 2/3 of markets have 20 products per

market, and the remaining 1/3 of markets have 60 products in the market. Each firm has 2

products. Other choices of number of products per firm do not significantly alter the results.

I consider a relatively small sample size of T = 100. I use R = 1000 replications of each

design.

Consumer utility is given by the random coefficients model described in Section 1.3

Ui jt = b0 +(bp +sni)Pjt +b1X1, jt + x jt + ei jt , (1.24)

where ni is generated from a standard normal distribution. Firm marginal cost is MCjt =

a0 +a1X1, jt +a2XS, jt +h jt . x jt and h jt are generated from a mean-zero bivariate normal

distribution with standard deviations sx = sh = 0.8 and covariance sx h = 0.2. X1, jt and

the excluded cost shifter XS, jt are drawn from a uniform (0,1) distribution and independent

of each other. All random variables are independent across products j and markets t.

The true values of cost parameters are (a0,a1,a2) = (2,1,1). Demand coefficients and

the random coefficient take different values depending on designs.

I compute the true choice probabilities p jt in accordance with equation (1.7). By equa-

tions (1.4), we can compute Njt/Mt = gp jt , where the true value is g = 1 throughout the

Monte Carlo exercise. In the estimation, one assumes a possibly wrong g̃ and uses the

mismeasured s jt ⌘ Njt/g̃Mt as the observed market shares.

The instruments we use in the GMM estimation in all experiments are

Z jt = (1,X1, jt ,
Jt

Â
k=1

X1,kt , Â
k2J f

X1,kt ,XS, jt ,X2
S, jt),

where product j is produced by firm f and J f is the set of all products produced by firm f .
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I include BLP-type instruments or Gandhi and Houde differentiation instruments as well as

functions of excluded cost instruments. The optimization algorithm we use for the GMM

estimation is the gradient-based quasi-Newton algorithm (fminunc in MATLAB).

1.H.1 Random Coefficients on Constant Term and Price

The first simulation is designed to assess whether and to what extent random coefficients

removes the biases induced from the wrong market size. I generate data from a plain

logit model (s = 0 in the model of equation (1.24)). It is widely believed that random

coefficients partly take over the role of g and can fix issues caused by unobserved market

size. To see if this is true, for each of the 1,000 simulated datasets, we consider three values

of g̃ (g̃ = 1,2,4) and estimate both the correctly specified plain logit model and the random

coefficients model with a random coefficient on the constant term and price, respectively. I

assume that the true demand coefficients are b = (2,�1,2).

Tables 1.6 to 1.8 report results from estimating the plain logit model and the more

flexible random coefficients models. Each table shows results for three different assumed

market size g̃ . I report estimates of b ,s , and nonlinear functions of demand parameters,

including the own- and cross-price elasticities, and diversion ratios averaged across prod-

ucts for the first market. Reported summary statistics of each parameter estimate across

simulations are the mean (MEAN), the standard deviation (SD), and the median (MED).

In Table 1.6, comparing to estimates for the specification with correctly measured mar-

ket size (g̃ = 1) in the first three columns, the means of b ’s change monotonically as we

increase the assumed market size, and their standard deviations change as well. The im-

plied elasticities and diversion ratios are all sensitive to the assumed market size. When

we quadruple the assumed market size, the mean of the own-price elasticity increases from

�5.99 to �4.17, the cross-price elasticity decreases from 0.077 to 0.028, the individual

diversion ratio falls by half and the diversion to the outside good rises from around 17% to

79%.
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Table 1.7 shows the results for estimating the random coefficients model with a random

coefficient on the constant term. Although the incorrectly assumed market size results in

biased estimates of b ’s, the own-price elasticities and individual diversion ratios of g̃ =

2,4 are comparable to the ones of g̃ = 1. The cross-price elasticities of the model with

incorrectly assumed market size are also closer to those of g̃ = 1, relative to the plain

logit model in Table 1.6 (decreases from 0.078 to 0.069 versus from 0.077 to 0.028). In

contrast, the biases in the outside good elasticity and outside good diversion ratio remain

large. When we quadruple the assumed market size, the mean of outside good diversion

ratio rises from roughly 17% to 27% and the outside-good price elasticity decreases from

0.077 to 0.007.

In Table 1.8, we estimate the model with a random coefficient on price. Including the

random coefficient improves especially the estimates of own- and cross-price elasticities as

well as individual diversion ratios, similar to those in Table 1.7.

Although not shown in the table, we also experimented with different numbers of prod-

ucts per market. The design where the number of products varies across markets generally

yields larger biases than the design where the number of products is fixed.

Finally, in Table 1.9, we report the estimates from our proposed method of equation

(1.5). Results are based on the IV-GMM estimation that uses cost shifters and sum of

characteristics as instruments for both price and the observed market to sales variable Wt

defined in Section 1.3. Estimates of b and g are very close to the true values, with small

standard deviations. The implied elasticities and diversion ratios are quite comparable to

the estimates of the logit model with correctly assumed market size shown in the first three

columns of Table 1.6.

To summarize, we find that including a random coefficient on either term accounts for

the incorrectly assumed g̃ , so that the biases in certain calculations are relatively small.

This finding is consistent with the intuition that s partly corrects for the mismeasured

market size. However, biases in other substitution patterns such as cross-price elasticities,
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outside-good elasticities and diversion ratios are not fully removed.

Table 1.6: Monte Carlo Results: Plain Logit, True g = 1

g̃ = 1 g̃ = 2 g̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

b0 2 1.99 0.318 2.006 -1.205 0.534 -1.192 -2.401 0.594 -2.379
bp -1 -0.998 0.056 -1.002 -0.731 0.094 -0.732 -0.688 0.105 -0.691
b1 2 1.998 0.076 2 1.725 0.105 1.724 1.681 0.114 1.681
Own-Elasticity -5.994 0.354 -6.006 -4.415 0.584 -4.418 -4.17 0.649 -4.181
Cross-Elasticity 0.077 0.005 0.077 0.028 0.004 0.028 0.013 0.002 0.013
Outside-Good Elasticity 0.077 0.005 0.077 0.028 0.004 0.028 0.013 0.002 0.013
Diversion Ratio 0.014 0 0.014 0.007 0 0.007 0.003 0 0.003
Outside-Good Diversion 0.167 0.027 0.166 0.587 0.013 0.586 0.794 0.007 0.794

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED) of the
demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM estimates are
based on 1,000 generated data sets of sample size T = 100 and varied J. The true model is a plain logit model, with
g = 1. Parameters are estimated from the plain logit model assuming g̃ = 1,2,4.

Table 1.7: Monte Carlo Results: Random Coefficient on Constant Term, True g = 1

g̃ = 1 g̃ = 2 g̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

s 0 0.037 0.273 0 3.998 0.168 3.992 5.116 0.172 5.11
b0 2 2.039 0.343 2.05 0.86 0.333 0.862 -1.806 0.321 -1.79
bp -1 -1.003 0.057 -1.005 -1.001 0.058 -1.003 -1.001 0.058 -1.003
b1 2 2.003 0.076 2.005 2.004 0.078 2.005 2.004 0.078 2.005
Own-Elasticity -6.022 0.357 -6.031 -6.018 0.364 -6.029 -6.02 0.365 -6.03
Cross-Elasticity 0.078 0.005 0.078 0.069 0.005 0.069 0.068 0.005 0.068
Outside-Good Elasticity 0.077 0.005 0.077 0.017 0.001 0.017 0.007 0 0.007
Diversion Ratio 0.014 0 0.014 0.013 0 0.013 0.012 0 0.012
Outside-Good Diversion 0.166 0.027 0.165 0.255 0.01 0.255 0.271 0.009 0.271

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED) of the
demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM estimates are
based on 1,000 generated data sets of sample size T = 100 and varied J. The true model is a plain logit model, with
g = 1. Parameters are estimated from a random coefficients model with the random coefficient on the constant term,
assuming g̃ = 1,2,4.
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Table 1.8: Monte Carlo Results: Random Coefficient on Price, True g = 1

g̃ = 1 g̃ = 2 g̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

s 0 0.013 0.064 0 0.712 0.057 0.712 0.92 0.044 0.919
b0 2 2.063 0.534 2.057 2.946 0.417 2.951 2.879 0.408 2.88
bp -1 -1.005 0.074 -1.006 -1.39 0.071 -1.389 -1.86 0.084 -1.858
b1 2 2.006 0.09 2.006 2.013 0.08 2.013 2.013 0.08 2.014
Own-Elasticity -6.034 0.434 -6.031 -6.005 0.402 -6.013 -6.026 0.403 -6.032
Cross-Elasticity 0.078 0.007 0.078 0.065 0.006 0.065 0.063 0.005 0.063
Outside-Good Elasticity 0.078 0.005 0.078 0.025 0.002 0.025 0.01 0.001 0.01
Diversion Ratio 0.014 0 0.014 0.012 0 0.012 0.011 0 0.011
Outside-Good Diversion 0.167 0.027 0.165 0.308 0.019 0.308 0.329 0.02 0.329

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED) of the
demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM estimates are
based on 1,000 generated data sets of sample size T = 100 and varied J. The true model is a plain logit model, with
g = 1. Parameters are estimated from a random coefficients model with the random coefficient on price, assuming
g̃ = 1,2,4.

Table 1.9: Monte Carlo Results: Estimating g in the Plain Logit Model

TRUE MEAN SD MED

g 1 1.001 0.011 1.001
b0 2 1.99 0.341 1.993
bp -1 -0.999 0.058 -1
b1 2 1.999 0.077 2
Own-Elasticity -5.996 0.362 -6.004
Cross-Elasticity 0.077 0.005 0.077
Outside-Good Elasticity 0.077 0.005 0.077
Diversion Ratio 0.014 0 0.014
Outside-Good Diversion 0.168 0.028 0.167

Notes: The table reports the empirical mean (MEAN), the
standard deviation (SD), and the median (MED) of the de-
mand parameters, the implied price elasticities and diversion
ratios for the first market. The GMM estimates are based on
1,000 generated data sets of sample size T = 100 and varied
J. The true model is a plain logit model. Parameters b and g
are estimated from IV-GMM estimations using excluded cost
shifters and BLP instruments.

1.H.2 Sensitivity to Market Size Assumption

The second experiment complements the first experiment. I now generate data from a

random coefficients model, with a random coefficient for the price. More specifically,

we assume that b = (2,�2,2), and s = 1. For each of the 1,000 simulated datasets,

we estimate the random coefficients model and consider four values of g̃ (g̃ = 1,2,4,8).
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This experiment is designed to assess how parameter estimates and the implied substitution

patterns vary with market size assumptions in a random coefficients logit model.

Table 1.10 shows results of demand estimates and the implied statistics. Some gen-

eral tendencies stand out. First, consumer heterogeneity (s ) and disutility for price (bp)

tend to be overestimated as g̃ increases. The direction of biases in b0 is ambiguous. Sec-

ond, the implied elasticities and diversion ratios give similar results as those in Table 1.8.

The outside-good elasticities and the outside-good diversion ratios are most sensitive to the

choice of g̃ . The cross-price elasticities are also affected, but not as sensitive as the former

two calculations. However, biases in elasticities and diversion ratios tend not to be mono-

tonic in g̃ . For instance, g̃ = 2 leads to an upward bias of the diversion to outside good

(from around 17% to 20%), but g̃ = 4 gives a modest downward bias of the outside-good

diversion (from 17% to 16%). The extreme case, which imposes g̃ = 8, results in a much

larger bias (from 17% to 25%). Hence, imposing different assumptions of the market size

is not a simple rescaling of the calculations. This again confirms that random coefficients

logit models do not correct for all biases induced by wrong market size assumptions.
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Table 1.10: Sensitivity to Market Size Assumptions in Random Coefficients Logit, True
g = 1

g̃ = 1 g̃ = 2 g̃ = 4

TRUE MEAN SD MED MEAN SD MED MEAN SD MED

s 1 1 0.034 0.999 1.413 0.036 1.413 2.646 0.173 2.629
b0 2 2.012 0.447 1.999 1.431 0.396 1.418 2.164 0.604 2.143
bp -2 -2.001 0.068 -2 -2.68 0.069 -2.681 -4.604 0.273 -4.577
b1 2 1.998 0.054 2.001 1.984 0.055 1.987 2 0.055 2.001
Own-Elasticity -7.095 0.328 -7.079 -6.922 0.334 -6.913 -7.025 0.392 -6.986
Cross-Elasticity 0.077 0.005 0.076 0.071 0.004 0.071 0.075 0.005 0.074
Outside-Good Elasticity 0.029 0.003 0.029 0.011 0.001 0.011 0.004 0 0.004
Diversion Ratio 0.014 0 0.014 0.014 0 0.014 0.014 0.001 0.014
Outside-Good Diversion 0.175 0.025 0.176 0.201 0.022 0.201 0.167 0.033 0.168

g̃ = 8

s 1 2.427 0.048 2.426
b0 2 -1.252 0.416 -1.247
bp -2 -4.307 0.091 -4.306
b1 2 1.91 0.066 1.909
Own-Elasticity -5.84 0.445 -5.826
Cross-Elasticity 0.052 0.004 0.052
Outside-Good Elasticity 0.002 0 0.002
Diversion Ratio 0.013 0 0.013
Outside-Good Diversion 0.247 0.023 0.246

Notes: The table reports the empirical mean (MEAN), the standard deviation (SD), and the median (MED) of the
demand parameters, the implied price elasticities and diversion ratios for the first market. The GMM estimates are
based on 1,000 generated data sets of sample size T = 100 and varied J. The true model is a random coefficients logit
model with a random coefficient for price, with g = 1. Parameters are estimated from the random coefficients model,
assuming g̃ = 1,2,4,8.

1.H.3 Market Size Estimation in Random Coefficients Logit

The third experiment enables us to assess the performance of our proposed method. As we

discussed in Section 1.3, it suffices to use the same set of BLP-type instruments to estimate

the market size parameter g in addition to the random coefficient parameter s .

The baseline design (design 1) is the same as before: 2/3 of markets have 20 products

per market and the rest of markets have 60 products in the market. The true values of

demand parameters are b = (2,�2,2). I consider two alternative designs, changing either

the market structure or demand parameters. In design 2, we use the same set of parameters

b = (2,�2,2) as design 1, but assume all markets have 20 products. This leads to less

variation in the true outside share p0t across markets. In design 3, we use the same market
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structure as design 1, but assume b = (2,�3,2). This particular choice of parameters leads

to larger true outside share p0t , and less variation of p0t in design 3 than in design 1. The

average p0t across 1,000 simulated samples is 0.55 for design 1, while 0.9 for design 3.

Tables 1.11 and 1.12 report results from each design. In addition to the mean, the

standard deviation, and the median, we also report the 25% quantile (LQ), the 75% quantile

(UQ), the root mean squared error (RMSE), the mean absolute error (MAE), and the median

absolute error (MDAE).

Table 1.11 shows results for the baseline design. The primary parameter of interest, g ,

tends to be estimated precisely, with the RMSE being 0.2. Estimates of b and s are mostly

close to the true parameter values, and the RMSEs are small. Only the estimate of the con-

stant term coefficient b0 is somewhat variable, having a larger RMSE of 0.9. Although not

reported in the main tables, we have estimated the same specification replacing BLP-type

instruments with Gandhi and Houde differentiation instruments. The resulting estimates

are qualitatively similar overall but somewhat more precise with smaller RMSEs.

In Panel A of Table 1.12, estimates from design 2 are generally noisier than those in

design 1, with most RMSEs in the range of 0.7 to 1.3. The median of estimates remains

close to the true values. Although g and demand parameters are less precisely estimated in

design 2, our proposed estimation is still more preferable to making wrong assumptions of

the market size. As shown in the table, the mean of g estimates is 1.447, which is closer to

the true value than any g̃ > 1.5. Panel B provides results for design 3. g , s and bp appear

to be difficult to be precisely estimated, with large standard deviations. Intuitively, when

the shares of the outside option are too large, the variation of market shares of inside goods

is squeezed. The limited variation in data leads to the poor performance of the estimator.

This confirms that our proposed estimator works well particularly in cases where the

true outside good share is not too large and has enough variation across markets.
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Table 1.11: Estimating g in the Random Coefficients Logit Model, Design 1

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

g 1 1.032 0.211 0.861 1.004 1.195 0.213 0.178 0.173
s 1 0.969 0.226 0.805 1.019 1.16 0.228 0.19 0.169
b0 2 1.655 0.924 1.146 1.842 2.296 0.985 0.704 0.517
bp -2 -1.956 0.358 -2.26 -2.036 -1.686 0.361 0.303 0.273
b2 2 1.989 0.059 1.95 1.994 2.026 0.06 0.047 0.038

Notes: The table report summary statistics of the demand parameters. The GMM es-
timates are based on 1,000 generated data sets of sample size T = 100 and varied J.
The true model is a random coefficients logit model with a random coefficient for price.
Parameters b , s and g are estimated from IV-GMM estimations using excluded cost
shifters and BLP instruments. Design 1: b = (2,�2,2), varied number of products per
market.

Table 1.12: Estimating g in the Random Coefficients Logit Model, Alternative Designs

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE

Panel A: Design 2
g 1 1.447 1.188 0.887 1.006 1.711 1.269 0.607 0.222
s 1 1.169 0.712 0.913 1.034 1.291 0.732 0.312 0.156
b0 2 1.744 0.835 1.285 1.771 2.287 0.873 0.663 0.511
bp -2 -2.273 1.109 -2.483 -2.052 -1.863 1.142 0.502 0.255
b2 2 1.991 0.077 1.936 1.994 2.044 0.078 0.062 0.052

Panel B: Design 3
g 1 2.234 2.143 0.67 1.011 3.452 2.472 1.574 0.457
s 1 2.518 5.15 0.795 0.994 2.223 5.367 1.743 0.287
b0 2 1.844 1.511 1.309 1.835 2.305 1.518 0.659 0.511
bp -3 -5.351 7.901 -4.938 -2.988 -2.665 8.24 2.731 0.537
b2 2 1.989 0.119 1.958 1.994 2.028 0.12 0.046 0.034

Notes: The table report summary statistics of the demand parameters. The GMM es-
timates are based on 1,000 generated data sets of sample size T = 100 and varied J.
The true model is a random coefficients logit model with a random coefficient for price.
Parameters b , s and g are estimated from IV-GMM estimations using excluded cost
shifters and BLP instruments. Design 2: b = (2,�2,2), fixed number of products per
market. Design 3: b = (2,�3,2), varied number of products per market.

1.I Pricing Conditions in Merger Analysis

Assume that firms are under a static Nash-Bertrand pricing game. Following the steps and

notation in Weinberg and Hosken (2013), let J f denote the set of all products produced

by firm f . The first-order condition for product j produced by firm f can be written as

Â
k2J f

✓
pk �mck

pk

◆
hk, jpk +p j = 0, (1.25)
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where mc is the marginal costs, and hk, j is the elasticity of product k with respect to the

price of j. This yields a system of J equations in each market. Using observed prices,

market shares, and the price elasticities computed from the estimated demand, one can

solve for the marginal costs.

After a merger, firms’ profit functions change and the equilibrium prices firms opti-

mally choose would also change. If firm f merged with firm g, holding the characteristics

and marginal costs of all their products constant, the merged firm’s first-order conditions

become:

Â
k2J f

✓
pk �mck

pk

◆
hk, jpk + Â

h2Jg

✓
ph �mch

ph

◆
hh, jph +p j = 0,

based off which one can use the recovered marginal costs and estimated demand to solve

for the post-merger equilibrium prices.

To demonstrate how a wrong market size can undermine the conclusion of a merger

analysis, we substitute the formula of price elasticities into equation (1.25), giving

� Â
k2J f

(pk �mck)
Z

bpip jipkidF(bpi)+p j = 0.

The market size affects three things: the estimated random coefficient on price bpi, the

estimated individual choice probabilities p ji and pki, and the share p j itself.

1.J Additional Results for the CSD Application

1.J.1 Aggregate Price Elasticity

I provide additional results for the soft drink application. First, we calculate the price

elasticity of aggregate demand, which is the percentage change in total sales for soft drinks

when the prices of all soft drinks increase. Note that we can link aggregate demand directly

to the outside share, by recognizing that without an outside option defined in the model,

the aggregate market demand is perfectly inelastic. More formally, in a simple logit model,

the price elasticity of aggregate demand can be calculated by ap0 p̂, where a is the price
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coefficient and p̂ the average price.

This aggregate elasticity can be thought of as the market-level response to a propor-

tional tax imposed on all products. It is economically important, for example, when poli-

cymakers aim to evaluate the effectiveness and targeting of soda taxes.

Figure 1.3 illustrates the estimated aggregate elasticities of demand in each market

when g = 17 and 12, respectively. With a larger market size, the aggregate elasticity falls

(in absolute value). The direction of bias is same as those found in Conlon and Mortimer

(2021). Moreover, it not only changes the mean level but also the overall distribution

across markets. This finding confirms that market size definition is relevant for questions

that affect all products in a market.

Figure 1.3: Distribution of Aggregate Elasticities across Markets
Notes: The figure shows the aggregate elasticities of demand across markets
for g = 12 and 17.

1.J.2 Profiled GMM Objective Function

I plot the GMM objective function while keeping g fixed over a grid of values and re-

optimizing the remaining parameters with the weighting matrix fixed. There are no mul-

tiple minima within the specified interval. However, the function is not steep around the

minimum, which could pose challenges for numerical optimization. Stronger instruments

may help improve parameter identification and numerical optimization.

77



Figure 1.4: Profiled GMM Objective
Notes: The figure shows the profiled GMM objective. g is fixed while the
remaining parameters are re-optimized.

1.K Merger Analysis: Ready-to-Eat Cereal Market

The data in Nevo (2000) is simulated from a model of demand and supply, and consists

of 24 brands of the ready-to-eat cereal products for 94 markets. Nevo’s specification con-

tains a price variable and brand fixed effects. The variables that enter the non-linear part

of the model are the constant, price, sugar content and a mushy dummy. For each market

20 iid simulation draws are provided for each of the non-linear variables. In addition to the

unobserved tastes, ni, demographics are drawn from the current population survey (CPS)

for 20 individuals in each market. It allows for interactions between demographics such

as income and the child dummy with price, sugar content and the mushy dummy, captur-

ing heterogeneity on the tastes for product characteristics across demographic groups. To

instrument for the endogenous variables (prices and market shares), Nevo (2000) uses as

instruments the prices of the brand in other cities, variables that serve as proxies for the

marginal costs , distribution costs and so on.

A market is defined as a city-quarter pair and thus the market size is the total potential

number of servings. Nevo assumes the potential consumption is one serving of cereal per
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day. Using notations in this paper, the assumed market potential is therefore 1 ·Mt , where

Mt is the population in city t in this case.

The baseline specification replicates that in Nevo (2000). I calculate the estimated own-

and cross-price elasticities and diversion ratios, which are the mean of all entries of the

elasticity/diversion ratio matrix over the 94 markets. The results demonstrate the average

substitution patterns between products. On the basis of the baseline estimation, we consider

a hypothetical merger analysis between two multi-products firms. Post-merger equilibrium

prices are solved from the Bertrand first order condition. Consumer surplus claculations are

provided to show the impacts of the hypothetical merger. Next, we consider an alternative

choice of potential market size. I rescale the market shares for all inside goods by a factor

of 1/2, which is equivalent to taking the potential market size to be double as large as in

the baseline case. I resimulate the merger using the rescaled market shares. Finally, we

assume the true market size is g servings per person per day, estimate g and repeat the

merger simulation.

Table 1.13 reports the demand coefficients and the implied mean elasticities and diver-

sion ratios. The baseline estimation replicates the results in Nevo (2000). Interestingly,

doubling the market size has little impact on the estimates of demand coefficients b and

s . The baseline estimation has a price coefficient of �32 and the rescaled of �28.9. How-

ever, translating it to elasticities and diversion ratios, we see a substantial increment in

the diversion to outside option. In particular, the average outside-good diversion increase

from 37.5% to 60.2%. These estimates imply that, if one assumed a larger market size,

more consumers would switch to outside good rather than alternative substitutes upon an

increase in price of inside goods. The third column presents the estimated g and the as-

sociated demand estimates. ĝ = 0.78 means that the true market size is a potential daily

consumption of 0.78 servings per person. The implied market size is smaller than the base-

line case, leading to a lower true diversion ratio. My estimate of g makes economic sense

and has a small standard error. Given g estimate being 0.78, we can calculate the outside
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share is about 40%. It is a relatively small outside share so the identification is strong in

the current context.

In order to quantify the overall effect of uncertainty in market size on merger analysis,

we look at the impact on both the simulated prices and consumer surplus. Figure 1.5 plots

the distribution of percentage price changes pre- and post-merger, where the three curves

plot the baseline case, rescaled case and the case for our estimate of g . Predicted price

increase is the smallest when we assume g = 2. When the potential market size is two times

the baseline case, prices of the merging brands respond relatively less to the merger, with

a median increase of 5.4%. While in the baseline case, the median price increase is 10.7%

for the merging brands. Under the true estimated market size ĝ = 0.78, the predicted price

increase is larger than assuming g = 1. This is consistent with our intuition: when there

are less people substitute to outside good, the merging firms will have a greater increase in

market power.

Next we consider the implications of our estimates for the consumer surplus change

after the merger.21 As expected, we predict a larger decrease in consumer surplus when the

price increase is high. Overall, different market sizes affect how much we predict a merger

harms consumer welfare.
21The consumer surplus is the expected value of the highest utility one can get measured in dollar values.

It is calculated by CS = ÂNS
i=1 witCSit , where the consumer surplus for individual i is

CS = ln

 
1+ Â

j2Jt

expVi jt

!�✓
�∂Vi1t

∂ p1t

◆
, and Vi jt ⌘Ui jt � ei jt .
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Table 1.13: Parameter Estimates for the Cereal Demand

Baseline (Mt ) Rescaled (2Mt ) Estimate g

bprice -32 -28.9 -35.817
(2.304) (3.294) (7.055)

scons 0.375 0.245 0.684
(0.120) (0.156) (0.329)

sprice 1.803 3.312 2.134
(0.920) (0.972) (1.737)

ssugar -0.004 0.016 -0.029
(0.012) (0.014) (0.029)

smushy 0.086 0.025 0.173
(0.193) (0.192) (0.269)

scons⇥inc 3.101 3.223 4.119
(1.054) (0.875) (1.799)

scons⇥age 1.198 0.7 2.118
(1.048) (0.682) (1.755)

sprice⇥inc 4.187 -2.936 8.979
(4.638) (5.155) (152.358)

sprice⇥child 11.75 10.87 14.495
(5.197) (4.747) (7.515)

ssugar⇥inc -0.19 -0.143 -0.295
(0.035) (0.032) (0.081)

ssugar⇥age 0.028 0.027 0.024
(0.032) (0.033) (0.038)

smushy⇥inc 1.495 1.396 1.526
(0.648) (0.470) (0.898)

smushy⇥age -1.539 -1.251 -1.919
(1.107) (0.677) (1.675)

g 0.779
(0.062)

Mean own-elasticity -3.702 -3.682 -3.804
Mean cross-elasticity 0.095 0.061 0.121
Mean outside-good diversion 0.375 0.602 0.226

Notes: The first column is the baseline estimation where market potential is
1 serving per person per day. The second column is the rescaled estimation
where the market potential is 2 servings per person per day. In the third col-
umn we estimate the market size parameter g .
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Figure 1.5: Equilibrium Price Changes
Notes: The figure shows changes in equilibrium prices after a merger be-
tween firms 1 and 2.

Figure 1.6: Consumer Surplus Changes
Notes: The figure shows changes in equilibrium prices after a merger be-
tween firms 1 and 2.
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1.L Additional Derivations

Partial Derivatives of p jt

The partial derivatives of p jt with respect to d jt and dkt are functions of mean utilities and

characteristics of all products:
∂p jt

∂d jt
=
Z

p jti

⇣
dt ,X

(2)
t ;s

⌘⇣
1�p jti

⇣
dt ,X

(2)
t ;s

⌘⌘
fn(n)dn ,

∂p jt

∂dkt
= �

Z
p jti

⇣
dt ,X

(2)
t ;s

⌘
pkti

⇣
dt ,X

(2)
t ;s

⌘
fn(n)dn ,

where

p jti

⇣
dt ,X

(2)
t ;s

⌘
=

exp
⇣

d jt +Âl slx
(2)
jtl nil

⌘

1+ÂJt
k=1 exp

⇣
dkt +Âl slx

(2)
ktl nil

⌘ .

The partial derivatives of p jt with respect to sl is

∂p jt

⇣
dt ,X

(2)
t ;s

⌘

∂sl
=
Z

p jti

⇣
dt ,X

(2)
t ;s

⌘ 
x(2)jtl �

J

Â
k=1

x(2)ktl pkti

⇣
dt ,X

(2)
t ;s

⌘!
nil fn(n)dn

Relevance of Instruments

The legitimacy of treating lg and ls alike in section 1.4.3 is shown below. I first recognize

that for any given (Nt ,Mt ,Xt) and model parameters, the residual function in equation (1.9)

can be rewritten as

x jt

0

@ Nt

Âk(lgk1 + 1)M
lgk2
t

,Xt ;ls ,b

1

A= d jt

0

@ Nt

Âk(lgk1 + 1)M
lgk2
t

,X (2)
t ;ls

1

A�X 0
jtb . (1.26)

When lg1 = lg2 = 0, and let st denote the usual observed shares Nt/Mt , the residual func-

tion reduces to

x jt(st ;ls ,b ) = d jt(st ;ls )�X 0
jtb ,

which is equivalent to equation (4) in Gandhi and Houde (2019). When lg is different from

zero, the residual function would depend nonlinearly on lg as well. The residual function

is not linear in lg because ∂d jt/∂lg is a function that depends on lg .

The linear approximation in section 1.4.3 can also be obtained from linearizing the
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inverse demand function around the true l0

d jt

⇣
Nt ,Mt ,X

(2)
t ;l

⌘
⇡ d jt

⇣
Nt ,Mt ,X

(2)
t ;l0

⌘
+Â

l
(lsl �lsl0) f s

l, jt +Â
k
(lgk �lgk0) f g

k, jt

= X 0
jtb0 + x jt +Â

l
(lsl �lsl0) f s

l, jt +Â
k
(lgk �lgk0) f g

k, jt ,

with f s
l, jt = ∂d jt(Nt ,Mt ,X

(2)
t ;l0)/∂sl , f g

k, jt = ∂d jt(Nt ,Mt ,X
(2)
t ;l0)/∂gk. Note that f s

l, jt

and f g
k, jt depend on the vector of dt and X (2)

t .
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Chapter 2

Who is Most Affected by Soda Taxes?

Evidence from Purchases At-Home and

Away-From-Home
XIRONG LIN AND LINQI ZHANG

2.1 Introduction

It is well known that sugary drinks can have negative effects on health, including a corre-

lation with diabetes, heart disease, and childhood obesity (Currie 2009, Currie et al. 2010,

Gortmaker, Long, and Wang 2009, Griffith et al. 2020, Cutler, Glaeser, and Shapiro 2003).

Experts suggest that in the developed world sugar consumption is far above the recom-

mended level. Therefore, the resulting individual and social costs of the internalities (that

is, the ignored future costs of current consumption) and externalities (costs that are borne

by others) of sugar consumption have attracted policymakers’ concern. Many countries

have implemented taxes on sugar-sweetened beverages (SSB) in order to discourage soft

drink consumption.1 Soft drinks are also a main contributor to the sugar consumption of
1See Allcott, Lockwood, and Taubinsky 2019b for a summary of countries that implement sugar-

sweetened beverage taxes.
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vulnerable individuals: the young, high sugar consumers, and the poor. Whether soda taxes

can be effective in reducing sugar consumption and improving welfare depends crucially

on how demand responses vary across different demographic groups and may also vary

across consumption locations (at-home versus away-from-home).

In this paper, we assess whether soda taxes are effective at lowering the sugar consump-

tion of households by taking into account all channels (at-home, on-the-go, and restaurants)

of households’ SSB consumption. We account for heterogeneity in household taste for

SSB and price sensitivity in these different channels in order to comprehensively and pre-

cisely estimate the demand responses of households who are targeted by the policy (i.e.,

households with children, high sugar consumers, SNAP (Supplemental Nutrition Assis-

tance Program) participants, and non-SNAP-participant poor). We reveal new evidence on

the important but understudied away-from-home segment (on-the-go and restaurants) of

the market. With novel data, we can estimate a model of consumer choice in both at-home

and away-from-home segments. We uncover household preferences in each segment, and

we then simulate the impacts of a soda tax, allowing for different pass-through rates in each

segment.

Extending the existing literature, we make two main advances in this paper. First,

we document descriptive patterns of household SSB purchases at-home, on-the-go, and

in restaurants. We use a unique dataset, USDA’s National Household Food Acquisition

and Purchase Survey (FoodAPS). The main advantage of FoodAPS, as compared to other

popular scanner datasets like Nielsen Homescan Data, is its complete coverage of all food

purchased from all sources and of both packaged and random-weight items.2 FoodAPS

was filed between April 2012 and January 2013, which was before the enactment of any

SSB taxes in the U.S.. Hence, we cannot exploit any variation in tax policy by time or

region. Instead, we utilize the rich demographic information to build a demand model and
2Nielsen Homescan Data are known to under-report at-home purchases, not record random-weight pur-

chases with sufficient product detail to understand diet behavior, and not provide any away-from-home infor-
mation (Zhen et al. 2023).
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simulate counterfactual tax experiments.

Most papers on SSB taxes look at only one of the segments, at-home (Allcott, Lock-

wood, and Taubinsky 2019a, Bollinger and Sexton 2018), on-the-go (Dubois, Griffith, and

O’Connell 2020), or in restaurants (Moran et al. 2019). In fact, the latter two channels

have rarely been studied although they actually constitute a large fraction of household ex-

penditures. For example, Americans drink 52% of SSB calories at-home and 48% of SSB

calories away-from-home.3 Different from in other countries, U.S. households purchase a

considerable amount of SSB from the nation’s largest chain restaurants, particularly when

combination meals or kids’ menu items are ordered (Moran et al. 2019).4 These facts imply

that any SSB tax analysis missing one of the segments will be an incomplete documentation

of the impact of soda taxes on household sugar intake.

Second, we estimate a discrete choice demand model by adapting the nonparametric

framework of Fox et al. 2011 and Fox, Kim, and Yang 2016b. Prior work that uses a simi-

lar approach includes Nevo, Turner, and Williams 2016 and Blundell, Gowrisankaran, and

Langer 2020. The estimation technique is nonparametric in the sense that it estimates the

distribution of random coefficients over a fixed grid of potential values, rather than assum-

ing that the random coefficients are drawn from a known distribution. This is important

given the recent empirical finding in Dubois, Griffith, and O’Connell 2020 that preferences

vary with demographics in ways that would be difficult to capture by specifying a priori

the distribution of random coefficients.5 Our model allows us to use the rich demographic

information in FoodAPS, including SNAP participation and eligibility and household in-

come and composition, in order to reveal the diverse preferences and elasticities across

household types.
3See Kit et al. 2013.
4For example, in the U.K. data from Dubois, Griffith, and O’Connell 2020, on-the-go purchases are three

times as large as that of restaurant purchases, while the U.S. sample shows the opposite pattern.
5Dubois, Griffith, and O’Connell 2020 overcome this problem by estimating an individual-level demand

model using U.K. households SSB purchases on-the-go. We cannot follow the same strategy because it is not
possible to have individual-level consumption information at-home and in restaurants. Hence, we choose the
framework of Fox et al. 2011 and Fox, Kim, and Yang 2016b as a middle ground. Throughout the paper, we
compare our model, findings, and implications to Dubois, Griffith, and O’Connell 2020.
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The only other paper we know that investigates SSB taxes with FoodAPS is Zhen et

al. 2023. They estimate the Exact Affine Stone Index model (Lewbel and Pendakur 2009)

of food and study the correlation between obesity and food consumption. We instead es-

timate a characteristics type of demand model of SSB consumption. We emphasize on

the heterogeneity of SSB demand in terms of SNAP participation and income inequality.

The similarity between us is that we both point out the importance of away-from-home

consumption in household demand and policy implications.

We find that preferences and elasticity vary with demographics in terms of SNAP par-

ticipation, income, the existence of children, and household dietary sugar. Consistent with

previous literature, low-income households have the strongest preferences for SSB. But

among the poor, SNAP eligible nonparticipants have weaker preferences than SNAP poor

and are the most elastic to price among all groups. Elder households and those without

children have weaker preferences for SSB and are more sensitive to price. Lastly, SSB

preferences exhibit an increasing relationship with dietary sugar while price elasticity ex-

hibits a decreasing relationship with dietary sugar.

In terms of heterogeneity among segments, we find that consumers have diverse pref-

erences and elasticity at-home versus away-from-home. For example, low-income house-

holds have strong preferences for SSB at-home while high-income households prefer more

SSB in restaurants. Those with higher dietary sugar from SSB obtain much more SSB

at-home than away-from-home and vice versa. In terms of price responsiveness, overall

the average elasticity across all groups at-home is larger than that away-from-home. For

heterogeneity along the line of SNAP participation and income, elasticities vary widely

across groups both at-home and away-from-home. But for heterogeneity in the dimension

of total dietary sugar from SSB, there is minimal variation in elasticities away-from-home

but large differences in elasticities at-home.

Our findings suggest that on average, the current taxes of the form and size imple-

mented in the U.S. lead to reductions of around 18.12 percent, 5.75 percent, and 14.53
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percent in the total sugar intakes from SSBs at-home, away-from-home, and in total. We

find that soda taxes are less effective away-from-home and there is little variation in re-

sponses across households. One reason is that households (mainly the high-income house-

holds) who have strong preferences for SSB away-from-home are also less price sensitive

and hence have small reductions in sugar intake from SSB. In contrast, we find substantial

variation in demand responses at-home across households. Soda taxes are relatively effec-

tive at targeting the total sugar intake of the poor, those with high sugar consumption, and

households without children.6 Lastly, our results suggest that ignoring any segment will

lead to biased policy implications. For example, Dubois, Griffith, and O’Connell 2020 find

that the soda tax is less successful at targeting those with high total dietary sugar for the

on-the-go segment. However, we find that the total (at-home and away-from-home) reduc-

tion in sugar intake from SSB is largest for those households if we account for all segments

(the reduction almost doubles that of the high-income households).

One major debate about SSB taxes is the concern that they are regressive, i.e., the

poor spend a disproportionately large fraction of expenditures on SSB and they end up

bearing the largest share of the tax burden. We use compensating variation (the amount

of money that an individual needs to reach her pre-tax utility level after the imposition

of an excise tax) as our welfare measure for soda taxes and compare it across household

groups by income and SNAP participation. Unlike the previous literature which often finds

a larger compensating variation for low-income households, we find that even though low-

income households obtain more added sugar from SSB, their compensating variation is not

much higher than that of high-income households. That is because soda taxes are based

on volume rather than the amount of sugar in each drink. Given the fact that, high-income

households obtain more soft drinks away-from-home, this was not accounted for by the
6Following previous literature like Dubois, Griffith, and O’Connell 2020, we measure the effectiveness

of SSB tax in terms of the level reduction, rather than percentage reduction in sugar from SSB. For example,
those with high total dietary sugar have the strongest preferences for SSB while the lowest price elasticity.
However, the soda tax is effective at targeting these households because their level-reduction in sugar from
SSB is still the largest across groups even though their percentage reduction in sugar from SSB is the lowest.
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previous literature. Meanwhile, both groups can obtain similar amounts of soft drinks

while the sugar amount in each drink is much higher in low-income households. These

findings suggest that household preference heterogeneity in each purchase segment (at-

home or away-from-home) and their preference for the specific drink types (in terms of the

amount of sugar) together determine the welfare cost of a soda tax. Ignoring either segment

can lead to biased policy implications of soda taxes.

Literature Review This paper belongs to a burgeoning literature on the effect of soda

taxes.7 One strand of this literature exploits a specific SSB tax implementation or reform,

used as quasi experiments, in order to estimate the effects of those reforms on household

SSB expenditures (Seiler, Tuchman, and Yao 2021, Rojas and Wang 2017, Bollinger and

Sexton 2018). Most of these studies use retailer-side scanner data in order to study the

overall impact of an SSB tax on prices and consumption. The findings speak to the effect

of the specific reform and there are different results for different places. For example,

Seiler, Tuchman, and Yao 2021 find that a soda tax in Philadelphia is passed through at an

average rate of 97% and demand decreases by 46%. However, accounting for cross-border

shopping reduces the demand response by 20%. Rojas and Wang 2017 compare SSB tax

pass-through rates and volume sales in Washington DC and Berkeley CA. They find that

both retail price and volume sales in Washington react sharply while in Berkeley retail price

reacts only marginally with no effect on the volume of sales. Yet, these empirical studies

do not provide any mechanisms that explain the conflicting findings or allow further re-

valuation of alternative reforms in order to derive the most effective policy. Moreover,

Allcott, Lockwood, and Taubinsky 2019b and Rozema and Rees-Jones 2018 point out that

interest groups’ advertising campaigns and public debates can also confound the effects of

SSB taxes.

In contrast, our paper belongs to the other strand of the literature that include papers

with structural models of household demand for SSB and that simulates counterfactual ex-
7See Allcott, Lockwood, and Taubinsky 2019a and Cawley et al. 2019 for overviews of the theory and

evidence of an SSB tax.
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ercises of alternative tax policies. These include Dubois, Griffith, and O’Connell 2020,

Allcott, Lockwood, and Taubinsky 2019a, Wang 2015, Bonnet, Requillart, et al. 2012,

Harding and Lovenheim 2017, and Chernozhukov, Hausman, and Newey 2019. We com-

plement these papers by exploiting a novel dataset with consumer SSB consumption in all

segments as well as rich demographic information on the policy targeted groups. Our non-

parametric demand model estimates and the counterfactual findings have meaningful impli-

cations for the effectiveness of soda taxes. Similar to Ramsey 1927, Diamond and Mirrlees

1971a, 1971b, and Miravete, Seim, and Thurk 2020, we find that preference heterogeneity

among consumers and variation in demand elasticities by segments are important aspects

in the design of optimal tax schemes.

Our paper also complements the literature on food and beverage consumption with con-

sumer side scanner data at-home (Aguiar and Hurst 2007, Lin 2023, and Dubois, Griffith,

and Nevo 2014), away-from-home (Dubois, Griffith, and O’Connell 2020, O’Connell and

Smith 2020, and Griffith, Jin, and Lechene 2022, Saksena et al. 2018, Moran et al. 2019),

or both (Okrent and Alston 2012).

The rest of this paper is structured as follows. In Section 2.2 we describe the data and

the soft drinks market. We present a detailed descriptive analysis of the consumption pat-

terns across diverse demographic groups and retail segments. In Section 2.3 we present

the demand model, the identification, the nonparametric estimation, and the empirical esti-

mates of the model parameters. In section 2.4 we simulate the counterfactual tax exercise

and discuss its implications on effectiveness, targeting, and regressivity of an SSB tax.

Section 2.5 concludes.

2.2 The Nonalcoholic Drinks Market

We model household behavior in the nonalcoholic drinks market. Nonalcoholic drinks

include soft drinks (e.g., carbonated drinks, commonly referred to as soda, fruit drinks,
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sport and energy drinks, and sweetened coffee and tea), alternative sugary drinks (fruit and

vegetable juice, unsweetened coffee and tea, flavored milk), and bottled water. soda taxes

are typically imposed on soft drinks that contain added sugar. Diet drinks and drinks with

natural sugar like fruit juice are normally exempted from soda taxes .

We focus on household purchases at-home (grocery store, supermarket, pharmacy, club

store, dollar store, gas station/market), on-the-go (convenience store, vending machine, and

retail store), and in the restaurants (coffee shop and care, fast-food outlet, restaurants, drink-

ing places, other store and farmers market). Drinks market at-home have been extensively

studied in the literature, while there are not many studies on drinking away-from-home.

But it is very important to study this segment because near half of the nonalcoholic drinks

are purchased away-from-home in the U.S. (Table 2.2). We document the purchase behav-

ior in the three segments separately in this section. However, due to the small fraction of

the on-the-go segment out of total SSB expenditures (10%), in the demand estimation, we

aggregate drinks on-the-go and restaurants into one segment, that is, drinks away-from-

home.

We start by documenting household nonalcoholic drinks purchases in the FoodAPS

dataset, e.g., the prices paid, expenditures and expenditure shares, products bought, and

places types. We then relate the purchase behavior to household demographic character-

istics such as household income, age, the existence of children, and overall dietary sugar

intake from SSB.

2.2.1 FoodAPS

The data that we use is the Food Acquisition and Purchase Survey (FoodAPS), which was

fielded from April 2012 through January 2013. The FoodAPS data collect information

on foods that all household members acquired from all sources over a 7-day period, for a

sample of 4,826 US households.8

8For more information regarding the collection of the data, please refer to the Appendix Section 2.A.

92



There are three main advantages of FoodAPS. First, to our knowledge, the FoodAPS

away-from-home survey is unique. Second, FoodAPS includes packaged and random-

weight food (like fruit and vegetables), which are not available in other scanner data.9

Third, Clay et al. 2016 compare FoodAPS to other scanner datasets and find that FoodAPS

suffers less from underreporting due to missing items scanned or unrecorded shopping

trips.10

Another nice feature of FoodAPS is its classification of households into four groups:

(1) SNAP participants, (2) Households with income below the poverty line but do not

participate in SNAP, (3) Households with income at or above 100 percent and less than 185

percent of the poverty guideline, and (4) Households with income equal to or greater than

185 percent of the poverty guideline. Other scanner data like Nielsen Homescan Data do

not have information on SNAP eligibility or participation.

One caveat of FoodAPS is that it only collects information over a 7-day period and

households might not purchase all items in need in that given period. However, households

in FoodAPS are surveyed in different time from April 2012 through January 2013. We

expect the spread of household purchases across different weekdays, weekends, months,

and seasons will mitigate the concern.11 The average SSB volume consumption at-home

in FoodAPS is 43 and 70 liters per year (imputed from weekly volume) for high and low

income households (Figure 2.2a). The numbers are 50 and 85 liters per year in Allcott,

Lockwood, and Taubinsky 2019a Figure 1. The lower volume found in FoodAPS can be

due to the short survey period and infrequency of purchase.

Table 2.1 describes the distribution of place types where households purchase SSB.

In total, the sample contains 3,556 households who make any SSB purchases during the

data collection week. Among them, 514 households buy SSB on-the-go, 1,837 households
9For example, Nielsen Homescan Data only collects information of random-weight items for a subset of

households in certain years.
10For example, they find that the mean at-home spending in the Consumer Network scanner panel is 26%

lower than that of FoodAPS.
11We utilize this feature to incorporate time controls in the demand model.
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buy SSB at-home, and 2,115 households make SSB purchases in restaurants. We observe

more than 50 percent of households purchasing SSB only in one of the three segments.

For households who make SSB purchases in only two of the three segments, most of them

make it at-home and in restaurants. Only 11 percent of the households purchase SSB in

all three segments during the week. We describe some key features of the data in the next

section.12

Table 2.1: Place Types

At-home Restaurant On-the-go At-home At-home Restaurant At-home
+ Restaurant + On-the-go + On-the-go + Restaurant

+ On-the-go

Number of households 745 989 124 914 178 212 394
Percent of sample 20.95 27.81 3.49 25.7 5.01 5.96 11.08

Notes: The table shows different place type combinations at which households make any SSB purchases during the
data collection week. Columns 1 to 3 show the number of households who purchase SSB in only one of the three
place types. Columns 4 to 6 show the number of households who purchase SSB in two out of the three place types.
The last column is the number of households who purchase SSB in all three place types.

2.2.2 Places, Prices, and Products

Places

Consumers visit different retailers when they shop at-home, on-the-go, or in restaurants.

This implies that the prices and choice sets that they are faced with in a choice occasion

will also differ. In Table 2.2, we describe the types of retailers and the expenditure share

of drinks at each type. In total, the away-from-home segment accounts for 46% of the total

SSB spending, while that number is 54% for the at-home segment. Previous literature that

ignore the away-from-home drinks spending miss a large fraction of household total spend-

ing on drinks. Under the away-from-home segment, convenience store, vending machine,

and retail store together can be classified as the on-the-go segment. They account for only

18% of spending in the away-from-home segment. This suggests that previous literature

like Dubois, Griffith, and O’Connell 2020 and O’Connell and Smith 2020 who only study
12For more details, please refer to Appendix section ??
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SSB at-home or on-the-go overlook 38% of household total SSB spending that happens in

restaurants and cafes.

Table 2.2: Expenditure share (%)

Away-from-home 46% At-home 54%

Convenience store 10% Combination grocery/other 3%
Retail store 6% Dollar store 4%
Coffee shop and cafe 15% Convenience store 4%
Fast-food outlet 34% Gas station/market 2%
Restaurants 31% Grocery store, large 1%
Drinking place 1% Grocery store, medium 1%
Vending machine 2% Pharmacy 2%
Other store and farmers market 0% Super store 44%

Supermarket 35%
Club stores 4%

Notes: Numbers are % of drinks spending, in at-home and away-from-
home segments, by retailer.

We do not model household choices over which place to shop in. We assume that the

decision is driven by factors such as the proximity of nearby super stores or restaurants

and overall preferences for different segments and place types (for which we control in

demand). We assume away from the possibility that consumers choose places in order

to search for a temporarily low price for a specific drink. The assumption is reasonable

because we find that consumers tend to choose nearby places to shop in FoodAPS. Previous

evidence also shows that fixed shopping costs lead consumers to undertake their grocery

shopping in one or a small number of stores. Similar assumption is also made in O’Connell

and Smith 2020.

Products

In Table 2.6, we describe the products of soft drinks available in the U.S. market, their

percentage of transactions, and mean prices.13 The current SSB tax is placed on the first

four categories: soft drinks, fruit drinks, sport and energy drinks, and sweetened coffee and
13For more details about the construction of products, please refer to the Appendix section 2.B.
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tea.14 We classify whether a product is purchased in one of the two segments: at-home

or away-from-home (on-the-go, or in restaurants). We also allow products to differ by

packaging formats (regular, large, or multi-pack).15 As a result, a product in the demand

estimation is defined as either a category-package-segment, or a category-segment combi-

nation, for fruit juice, unsweetened coffee and tea, flavored milk and water, we aggregate

across different sizes. In total, these non-SSB beverage categories account for less than 16

percent of the market.

From Table 2.6, we find that households in our sample on average purchase an SSB

product in 34 percent of choice occasions. Among them, at-home purchases of SSB prod-

ucts account for around 16 percent of choice occasions, while away-from-home purchases

of SSB products account for around 18 percent of choice occasions. The most frequently

purchased product is the regular soft drinks away-from-home, which account for 9.4 per-

cent of choice occasions. When consumers do not purchase any of the drinks during a

choice occasion, we assume them to choose the “outside options”: either the household

purchases other food (e.g. meat or snacks) if it was a trip to a food store, or the household

purchases a meal without ordering drinks if it was a trip to an eating place.

Unlike most of the previous literature where a product is defined as a brand-size com-

bination (e.g., Dubé 2005b, Marshall 2015b, Dubois, Griffith, and O’Connell 2020), we

abstract away from the substitution across brands because brand information is not avail-

able in the public file of FoodAPS. Also in the away-from-home segment, most items have

missing UPCs. Instead, we aim to measure how consumers substitute between regular coke

and diet coke rather than between regular Cola and regular Pepsi.
14For details regarding the construction of products, please see Section 2.B in the Appendix.
15Regular size is defined as a container size smaller than 32 ounces. Large size is defined as a container

size larger than 32 ounces.
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Prices

For each transaction, we observe the type of store the consumer shops and the total expen-

ditures on each UPC. We calculate the transaction price as the expenditure on a UPC per

unit purchased. In Figure 2.6, we show the average prices of all SSB purchased across all

choice occasions in each segment by household income, age of the primary respondent, and

total added sugar from SSB. First, panel (a) shows that overall, SSB prices are the highest

in restaurants, second highest on-the-go, and the lowest at-home. There is a positive rela-

tionship between prices and income in all three segments. The slope is the steepest in the

restaurants segment. In other words, richer households buy much more expensive SSB in

restaurants. Second, panel (b) shows that the age of the primary respondent is positively

correlated with SSB prices in restaurants while negatively correlated with SSB prices on-

the-go. Together with panel (a), this implies that richer and older households pay much

higher price for SSB products in restaurants. Lastly, SSB price is negatively correlated

with weekly added sugar from SSB in all three segments. In other words, those with higher

dietary sugar buy cheaper SSB products, no matter at-home, on-the-go, or in restaurants.

Price varies across products, time period and retailer type. The price of beverage prod-

ucts sold in a meal bundle is imputed by the price of other items of the same product within

the same place category. Specifically we apply a linear interpolation of transaction price

on package size for missing values of price, and perform this calculation separately for

each product-place category combination. Figure ?? in the Appendix shows the variation

in price across demographic groups.

For details about the composition of household SSBs purchases, please refer to Ap-

pendix section 2.B.
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2.2.3 Demographics

Income

In Figure 2.1, we show that income is negatively correlated with household shares of SSB

expenditures on food at-home while positively correlated with household shares of SSB

expenditures in restaurants. This pattern mainly reflects two commonly found evidence in

the empirical literature. First, poor people are more likely to have a less healthy diet, like

high dietary sugar. Second, income and restaurant expenditures are positively correlated.

Figure 2.1 also shows that household SSB expenditure shares on-the-go do not vary much

across the deciles of household income.

The above findings have significant implications on how current literature on SSB con-

sumption could go wrong by using only data on food at-home. For papers that only use

food at-home SSB expenditures, they will miss the important asymmetry of income and

SSB expenditures. First, they will mistakenly conclude that lower-income households pur-

chase more SSB than higher-income households. Second, their elasticities estimates will

also miss the heterogeneity in household demand responses by household income and seg-

ments. For papers that only use on-the-go SSB expenditures, they will not find any income

effect in SSB demand, which is certainly not true from the evidence of Figure 2.1. More-

over, in the US, SSB consumption on-the-go constitutes very small shares, only 10%, of

households overall SSB expenditures.

Another important implication from Figure 2.1 is related to regressivity of an SSB

tax. Empirical evidence suggests that poor households spend more on SSB than richer

households.16 This implies that an SSB tax will fall disproportionately more on the poor.

However, we see that high-income households actually spend more on SSB in restaurants

than poor households. So the overall regressivity of an SSB taxes is unknown when we

account for both food at-home and food away-from-home.
16For example, Allcott, Lockwood, and Taubinsky 2019b find that in the Nielsen Consumer Panel dataset,

households with annual income below $10,000 purchase about 101 liters of SSB per adult each year, while
households with income above $100,000 purchase only half that amount.
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Figure 2.1: Average share of SSB expenditures with respect to income

SSB Consumption in Volume

Figure 2.2 plots the average purchased volume of SSB per adult equivalent per week with

respect to household income and the age of the primary respondent.

Similar to Figure 2.1, income and SSB volume consumption are still negatively corre-

lated. However, different from Figure 2.1, there is much smaller in magnitude the increas-

ing trend between income and SSB volume consumption in restaurants. It implies that the

steeper positive trend between income and SSB budget shares in restaurants in Figure 2.1

is mainly due to the price effect. That is, richer households buy slightly more SSB products

in restaurants but much more expensive products there.

Panel (b) in Figure 2.2 turns out to be very different from Figure 2.7. First, across all

age groups, the volume consumption of SSB in restaurants is much lower than that at-home.

Combined with the similar budget shares of SSB at-home and in restaurants in Figure 2.2,

this finding implies that prices should be much higher for SSB products in restaurants than

at-home. Second, there is an inverted U-shape relationship between the age of the primary

respondent and SSB volume purchased at-home. In other words, middle age families buy
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the most SSB at-home. There is a decreasing trend between age and SSB volume purchased

in restaurants. This is consistent with the evidence found in Martin et al. 2020.

(a) By deciles of household annual income (b) By age of the primary respondent

Figure 2.2: SSB volume consumption at-home, on-the-go, and in restaurants
Notes: The figure shows weekly SSB purchases (in oz.) per adult equivalent at different
places varies by distribution of household equivalized income and age groups. In plot (a),
the household annual income is equivalized by the OECD-modified equivalence scale. In
plot (b), age groups are classified according to the same cutoffs as in the FoodAPS dataset.

SNAP Poor and Non-SNAP Poor

FoodAPS dataset has direct information on SNAP participation and income. They classify

households into four types: SNAP participants, SNAP non-SNAP-participant poor (income

< 100% of the Federal Poverty Guideline), medium (income >= 100% and income <

185% of FPG) and higher (income >= 185% of FPG) income households.17 Table 2.3

reports the descriptive statistics for each group. Compared to SNAP participants, the non-

SNAP poor have much lower household income, slightly older primary respondent, and

fewer children.

First, in terms of the SSB consumption, we find that SNAP households have the largest

volume consumption, SSB expenditures, and total grams of added sugar from SSB. In con-
17As reported by the Census, in 2019, 17% of those who were eligible for SNAP benefits did not

participate in the program (see https://www.census.gov/library/stories/2021/02/demographic-snapshot-not-
everyone-eligible-for-food-assistance-program-receives-benefits.html). The finding that non-SNAP poor
households have lower income than SNAP participants is consistent with a previous study that documents
SNAP patterns using CPS data (Gundersen 2021).
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trast, non-SNAP-participant poor have the lowest value for all the previous three variables.

In other words, SNAP participants eat the least healthy while SNAP non-SNAP-participant

poor eat the most healthy, even compared to higher income households. This finding con-

tradicts with previous evidence that low-income households in general eat less healthy than

higher income households. However, this evidence is possibly driven by the fact that a

large fraction of low income households are SNAP participants and SNAP benefits cover

soft drink purchases. Previous literature find that SNAP households’ shopping cart consist

of lots of soda.18

Second, non-SNAP rich households turn out to have the second highest SSB consump-

tion in volume and expenditures, as well as total added sugar from SSB. This finding is also

very different from previous analyses that only look at consumption at-home. They nor-

mally find rich households to spend less on SSB. Rich households turn out to eat healthy

at-home but unhealthy away-from-home. This finding highlights the importance of ac-

counting for away-from-home consumption in order to evaluate households’ overall diet

quality and sugar intake.

Figure 2.3 provides a breakdown of the SSB consumption by places. It shows that

SNAP households consume the highest ounces of SSB per adult equivalent per week at-

home. Non-SNAP poor have similar SSB consumption at-home as higher income house-

holds. In terms of SSB consumed in restaurants, higher income households have higher

ounces purchased. These findings suggest that the main difference in SSB consumption

between SNAP and non-SNAP poor is driven by at-home purchases. Again, this can be

driven by the fact that SNAP benefits can be spent on soft drinks.
18See O’Connor (2017) https://www.nytimes.com/2017/01/13/well/eat/food-stamp-snap-soda.html
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Figure 2.3: SSB volume consumption with respect to targeted group

2.2.4 Summary

To summarize, prices of SSB are the highest in restaurants, middle on-the-go, and the

lowest at-home. Higher income households purchase more expensive soda drink in all three

segments and buy drinks in restaurants more frequently. SNAP participants buy more SSB

compared to nonparticipant poor, whose spending on SSB is even lower than higher-income

households. Heavy sugar consumers tend to be lower income households and purchase

less expensive soda drinks in all three segments. Once we account for drinks away-from-

home, the regressivity concern of soda taxes becomes less serious because higher income

households will be taxed more in restaurants while lower income households will be taxed

more at-home. Who bares the most tax burden is ambiguous unless we have a demand

model that accounts for all three segments. Section 2.C in the Appendix also shows how

SSB purchases vary by age and existence of children.

Previous literature normally focus on the poor, children, and heavy sugar consumers as

the main targets of soda taxes . For these three types of households, restaurants purchases
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seem to be less important for them compared to at-home purchases. However, these house-

holds still buy certain amount of soda drinks away-from-home. We may underestimate the

effect of taxes on their total SSB demand if we ignore away-from-home purchases. On the

other hand, they can have different price elasticities in the at-home and away-from-home

segment. For example, if they are more price sensitive in the at-home segment, then we

may overestimate the effectiveness of taxes because they may still buy a certain part of SSB

from the away-from-home segment.

The other main critical benefit of including restaurants data in the analysis is the finding

that higher income households will also be largely affected by an SSB taxes because they

purchase more SSB, and potentially more expensive SSB, in restaurants. This finding sug-

gests that the regressivity concern of an SSB taxes may be less serious than we expect. We

will calculate the regressivity in the next chapters by predicting households’ counterfac-

tual SSB expenditure shares in terms of total expenditures on food and drinks in the three

segments when we simulate tax incidences.

2.3 Model and Estimated Coefficients

In this section we estimate a structural model of non-alcoholic beverage demand. We em-

ploy a random coefficients nested logit model to create more flexible substitution patterns.19

We estimate the random coefficient flexibly following Fox et al. 2011 and Fox, Kim, and

Yang 2016b, for two reasons: First, Dubois, Griffith, and O’Connell 2020 finds that un-

observed preferences might not be fully captured by specifying a priori the distribution

of random coefficients. Thus, we relax the often-made assumption of normal distribution

in BLP applications. Second, the method of Fox et al. 2011 and Fox, Kim, and Yang

2016b has the advantage of achieving a flexible distribution while maintaining computa-

tional tractability. We then use the model to evaluate counterfactual tax policies that could
19See Grigolon and Verboven 2014 for a comprehensive comparison between the random coefficients

nested logit, random coefficients logit and nested logit models.
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reduce SSB consumption.

2.3.1 A Model of Non-Alcoholic Beverage Demand

We index consumers by i 2 {1, · · · ,N}. Each consumer visits a retailer r 2 {1, · · · ,R} at

time t and makes a transaction or incurs choice occasion t 2 {1, · · · ,T }. Let r(t) and t(t)

denote the specific retailer and time that the consumer visits the retailer. Notice that the

retailer here can be grocery stores, convenience stores, vending machines, or restaurants.

We index the non-alcoholic beverage products by j 2 {1, · · · ,J}, as those defined in Table

2.6.

When making a decision, the choice set facing consumers contains purchasing options

that are available to the consumers on each specific trip. This means that when a consumer

visits a grocery store, she only considers drinks available at the store. Similarly, on a trip

to the food at-home place, the choice sets facing the consumer only include food at-home

drink products. We denote the choice set by Wr(t).

We allow for the possibility that a consumer instead chooses either other non-beverage

products like meat or snacks in a store, or purchases a meal without ordering any drinks in

a restaurant. We refer to these as “outside options”. We indicate outside options by j = 0,

and the choice set Wr(t) includes the outside option. 20

We partition the choice set Wr(t) to two disjoint subsets denoted by C0 and C1. They are

also called nests. C0 is the nest of outside options. C1 is the nest of all available products

in the choice set. The indirect utility of a consumer i on choice occasion t from product j

in the nest Cg where g 2 {0,1} is given by

Ui jt = Vi jt + ei jt (2.1)

where

Vi jt = ai p jr(t)t(t) +his j + x0i jb , (2.2)

20Our definition of outside options is most close to that of Marshall 2015b, assuming the outside option
is chosen when a shopping trip is observed with no purchase of any inside goods.
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and the utility obtained from choosing the outside options is

Ui0t = ei0t . (2.3)

The term p jr(t)t(t) denotes the price of product j, which varies over time t and across

retailer types r.21 The variable s j is an indicator variable of an SSB product. xi j is a vector

of observed product characteristics (including the constant term) and their interactions with

household demographics. Specifically, xi j include package size (measured in ounces),22

an indicator variable of products in pack, indicator variables of drink categories, season

fixed effects, and retailer-drink category fixed effects.23 ei jt is an error term following the

generalized extreme value distribution, with cumulative distribution of the following form

exp

0

@�
1

Â
g=0

 

Â
j2Cg

e�ei jt /l

!l
1

A ,

which gives rise to the nested logit structure. For this distribution of ei jt , the idiosyncratic

error terms are correlated within a given nest. For any two products belonging to different

nests, the error terms are uncorrelated. The nest parameter l measures dissimilarity among

products within a nest. A value of l = 1 indicates that ei jt are uncorrelated within nests

and the model degenerates to the standard logit model. As l decreases, the correlation

within nests rises. The nested logit assumption implies that products in the same nest are

closer substitutes than products in different nests. In our context, the two nests are the

outside options and all products in the choice set, respectively. This modeling assumption

implies that all available products are considered closer substitutes than the outside option.

Allowing for preference heterogeneity is essential in capturing realistic demand fea-

tures. The demand model here is flexible in that it incorporates preference heterogeneity
21Even though the price paid varies across households (Figure 2.6), we do not construct household-level

prices for products because of the endogeneity concern. That is, the individual-level prices can be correlated
with the error term ei jt . The practice is common in demand estimation with scanner dataset (e.g., Griffith
et al. 2020, Lin 2023). For details regarding the construction of p jr(t)t(t), please see Section 2.D in the
Appendix.

22For details about the construction of package size, please refer to Appendix section 2.B.
23Retailers are defined in Table 2.2. Drink categories are defined in Table 2.7.
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through two aspects. The first is through the idiosyncratic error component ei jt , as we

previously discussed. The second is through the taste heterogeneity for product attributes.

Specifically, we let taste parameters like ai and hi vary by household observed and unob-

served characteristics. We define the marginal (dis)utility of price and taste for SSB as the

following24

ai = a0 + v0ia1 + µi hi = v0ih1,

where µi ⇠ F(µ).

vi denotes observed household demographics, and µi is a random coefficient and cap-

tures unobserved preference related to prices. By allowing ai and hi to depend on house-

hold characteristics, we allow different consumers to have different price sensitivity when

making purchases for at-home and away-from-home consumption and different tastes for

SSB products.

The observed household demographics vi include a joint variable of household income

and SNAP participation, the age of the primary respondent, whether the household has

children, and the household’s overall sugar intake.25 The unobserved household character-

istics, or random coefficient µi can include individual household information that affects

the purchasing decision, yet unobservable to econometricians.26 Prior empirical work on

random coefficients logit model usually make parametric assumptions on the distribution

of the random coefficient F(µ), e.g., a normal distribution. We will relax this assumption

and estimate F(µ) using a fixed grid approach, following Fox et al. 2011 and Fox, Kim,
24We do not put a constant term h0 in the hi function because xi j contains indicator variables of drink

categories, which leads to the mean level of the taste coefficient for SSB h0 unidentified due to perfect
collinearity problem.

25The correlation between “SNAP households” indicator and “households with children” indicator is only
�0.2 and hence we include both indicators in the model. We also find that the average age of children is
similar across sugar intake groups and hence we do not include it in the model.

26Following Bonnet and Dubois 2010 and Eizenberg and Salvo 2015b, among others, we only have a
random coefficient on price.
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and Yang 2016b, to allow for more flexible unobserved taste heterogeneity.27

Conditional on the unobservable µi, the joint probability of a consumer choosing a

product j is

Pi jt(µi) = Pi jt|Cg(µi)PiCgt(µi),

where Pi jt|Cg(µi) is the probability of choosing a product j conditional on a product in the

nest Cg being chosen. PiCgt(µi) is the marginal probability of choosing a product in the nest

Cg, conditional on the unobservable µi. As shown in McFadden 1978, the joint probability

of choosing product j 2Cg (conditional on µi) takes the nested logit formula

Pi jt(µi) =
eVi jt (µi)/l

⇣
Âk2Cg eVikt (µi)/l

⌘l�1

Â1
l=0
�
Âk2Cl eVikt (µi)/l�l . (2.4)

The unconditional probability of consumer i choosing product j 2Cg in a choice occasion

t is

Pi jt =
Z eVi jt (µ)/l

⇣
Âk2Cg eVikt (µ)/l

⌘l�1

Â1
l=0
�
Âk2Cl eVikt (µ)/l�l dF(µ). (2.5)

2.3.2 Identification

Our identification is similar to Dubois, Griffith, and O’Connell 2020 except that we only

know retailer types as those in Table 2.2 rather than specific retailers.28

The main identification challenge is to isolate the causal effect of price on demand for

at-home and away-from-home products. That is, the parameter vector a . We rely on two

sources of variation to identify the price effects. First, conditional on time and retailer-

drink type effects, we exploit the variation in prices of the same product in different retailer

types across time. The identification assumption is that consumers do not choose retailers

when they make consumption choices for a specific product. Instead, retail choices are
27Birchall and Verboven 2022 and Miravete, Seim, and Thurk 2022 highlight that the functional form of

the indirect utility function implicitly imposes restrictions on demand curvature. Miravete, Seim, and Thurk
2022 specifically suggest that incorporating a flexibly distributed price random coefficient not only offers
greater flexibility in substitution patterns, but also allowing for a wider range of estimable demand curvature.

28FoodAPS does not have brand information and we are not able to exploit consumers’ taste differentials
across Pepsi versus Coca Cola.
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more driven by convenience factors like distance to school and workplace.29 Second, we

utilize price variation for the same product in the same retailer at the same time but across

different containers and sizes.

To address potential endogeneity bias arising from the correlation between the unob-

served error term ei jt and prices, we control for time and retailer-drink category fixed

effects. These fixed effects capture demand shocks that vary at these levels, which could

have driven price fluctuations. By including these fixed effects, we capture most of the

unobservable factors, leaving only time-varying shocks specific to the retailer-drink type

combination; for example, consumers may exhibit a growing preference for soda relative to

fruit juice at convenience stores. The assumptions we adopt are that stores do not observe

such demand shocks in the current period when making price decisions, and that any resid-

ual retailer-drink type-specific price variation across time reflects supply-side changes, such

as differences in transportation costs due to adapting a new distribution network. There-

fore, the inclusion of a rich set of fixed effects in our demand model should mitigate any

bias resulting from unobservable factors that might be correlated with prices.

2.3.3 Estimation

Following recent literature, we estimate the at-home and away-from-home segment sepa-

rately and obtain distinct preferences parameters for these two segments.30 We refer to the

method of Fox et al. 2011 and Fox, Kim, and Yang 2016b to estimate the random coeffi-

cients. The method has the advantage of achieving a flexible distribution, while maintaining
29A survey conducted by the National Retail Federation or NRF showed that 93 percent of

shoppers said they are more likely to choose to shop at a specific retailer based on convenience
(https://www.nasdaq.com/articles/convenience-is-priority-for-consumers:-survey-2020-01-15)

30The other papers that estimate different food segments separately include O’Connell and Smith 2020
and Dubois, Griffith, and O’Connell 2020, both studying the at-home and on-the-go segments. They follow
Browning and Meghir 1991 to test for non-separabilities between segments and find no evidence of demand
dependence between the two segments. Following them, we also conduct a separability test (see Section
2.E in the Appendix). The results support separability between at-home and away-from-home soft drinks
consumption. Meanwhile, we have also tried to estimate the two segments jointly. The computation is
burdensome due to the large choice set included.
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computational tractability.

Consider a fixed grid MR = (µ1, · · · , µR), where R represents the number of grid points.

One can interpret R as the number of discrete household types.31 We assume each µi is a

draw from the set of values (µ1, · · · , µR) and each grid point µr occurs with probability gr,

for r = 1, · · · ,R. Given the choice of MR, we estimate the weights g = (g1, · · · ,gR) on the

grid points. We impose the constraints 0  gr  1,8r, and ÂR
r=1 gr = 1, such that µ has a

well-defined distribution.

For each household type r, we can rewrite choice probability (2.4) by replacing µi with

µr:

Pi jt(µr) =
eVi jt (µr)/l

⇣
Âk2Cg eVikt (µr)/l

⌘l�1

Â1
l=0
�
Âk2Cl eVikt (µr)/l�l . (2.6)

Let a = (a0,a1) and h = h1. Denote by q = (a ,b ,h ,g) the vector of preference

parameters. Using choice probabilities defined above, we calculate the likelihood function

defined by

L (q ) = Â
i

Â
t

Â
j2Wr(t)

di jt log

 
R

Â
r=1

grPi jt(µr)

!
, (2.7)

where q is the vector of parameters to be estimated and di jt is an indicator variable equal to

one if consumer i chose product j on choice occasion t and zero otherwise. The parameters

are estimated using maximum likelihood estimator.

2.3.4 Estimated Coefficients and Elasticities

In Table 2.4 and 2.5, we summarize the estimated at-home and away-from-home preference

parameters obtained by maximizing the likelihood function (equation (2.7)). The baseline

group in the coefficient of a and h is SNAP participants without children with zero sugar
31In our estimation, we varied the choice of R and the results did not change qualitatively. The range of

MR is chosen to be of a similar magnitude to the price coefficients estimated from an initial regression of
plain logit model without random coefficients.
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intake.32 The estimates of consumers’ disutility of price and taste for SSB parameters

reveal a large degree of heterogeneity across households, who differ by income, SNAP par-

ticipation, the existence of children, and total sugar intake. More importantly, the patterns

are very different at-home versus away-from-home. We describe how the parameters differ

across households and between the two segments in details below.

Price Disutility For the at-home segment (Table 2.4), Non-SNAP low income and

medium income households are even more price sensitive than the baseline households,

as suggested by the interaction coefficients -0.074 and -0.038. In contrast, the positive

interaction coefficient 0.072 of high income households implies that they are less price

sensitive compared to the baseline group.

The picture is different for the away-from-home segment (Table 2.5). Nonparticipants

low income households are slightly even more price sensitive than participants (-0.031).

Medium and high income households are both less price sensitive than the baseline group

(0.079 and 0.13). Households with children are less price sensitive both at-home (0.056)

and away-from-home (0.026) than the baseline group.

There is a decreasing relationship between price sensitivity and household total sugar

intake from SSB at-home. The difference in the marginal disutility of price between high

and low sugar households is 0.21 (0.257 minus 0.044). In contrast, the difference becomes

very small across low and high sugar taking households away-from-home (ranging from

0.13 to 0.147 for low and higher sugar households).

Taste for SSBs. First, we find that there is a decreasing relationship between the taste

for SSB and household income, both at-home and away-from-home.33 Second, comparing

SNAP participants and nonparticipant poor, we find that the latter has weaker taste for SSB,
32We interact the coefficients of price and taste for SSB with four demographic variables. They are income

and SNAP participation joint variable (SNAP participants, nonparticipants low income households, medium,
and high income households), the age of the primary respondent, an indicator variable for households with
children, and household total added sugar intake (from SSB) groups (zero sugar households, low, medium,
and high sugar consuming households).

33This is suggested by the negative coefficients of the interaction between SSB and household income and
SNAP participation status (-0.017 to -0.481 at-home and -0.093 to -0.164 away-from-home).
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both at-home (-0.017) and away-from-home (-0.093). Lastly, SNAP participants turn out to

have the strongest taste for SSB no matter at-home or away-from-home. This is consistent

with the empirical evidence that SNAP participants buy a lot of SSB because SNAP benefits

are allowed to be spent on SSB.34

There exists a positive linear relationship between the taste for SSB and household to-

tal sugar intake from SSB. The difference in the marginal utility from SSB between high

and low sugar households is as large as 1.57. For the away-from-home segment, we find

that across all sugar intake groups of households, they all have very large positive marginal

utility from SSB (coefficients ranging from 4.889 to 5.548) compared to the at-home seg-

ment. High sugar consuming households still have slightly larger marginal utility of SSB

compared to low sugar consumers.

Other Parameters of Interest We then look at the right panel of Table 2.4 and 2.5.

Multi-pack has a negative impact on households marginal utility (-0.341) at-home. Package

size has a positive effect (0.006) on households marginal utility at-home but a large negative

effect away-from-home (-0.037). This finding is intuitive as we expect that consumers

prefer small convenient package size on-the-go or in restaurants compared to in the grocery

stores.

The nesting parameter l is 1 in the at-home segment (Table 2.4). This implies that the

nests are not significant and the demand model degenerates to a random coefficients logit

model without nest structure. The interpretation is that when a specific drink product in the

at-home segment (e.g., grocery store) becomes unavailable, the probabilities of choosing

another drink product and choosing other grocery item such as meat and dairy would in-

crease by the same proportion. The nesting parameter l is 0.832 in the away-from-home

segment (Table 2.5). The value implies that when consumers visit the away-from-home

segment (e.g., restaurants), they are more likely to switch between drink products than to
34The article “In the Shopping Cart of a Food Stamp Household: Lots of Soda“ can be found on

https://www.nytimes.com/2017/01/13/well/eat/food-stamp-snap-soda.html
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switch from drink products to a dish.35

Table 2.4: Random Coefficients Nested Logit Demand Estimates, At-Home

Estimate SE Estimate SE

a b
Price -0.285 0.011 Constant -2.791 0.048
Price ⇥ non-SNAP poor -0.074 0.003 Multi-pack -0.341 0.024
Price ⇥ non-SNAP med -0.038 0.002 Package size 0.006 0.000
Price ⇥ non-SNAP rich 0.072 0.04
Price ⇥ age -0.009 0.002
Price ⇥ child 0.056 0.003 l
Price ⇥ sugar low 0.044 0.008 Nesting parameter 1.000 0.008
Price ⇥ sugar med 0.137 0.008
Price ⇥ sugar high 0.257 0.008 µ Weight

-0.1 0.74
h -0.078 0.24
SSB ⇥ non-SNAP poor -0.017 0.029 -0.056 0.01
SSB ⇥ non-SNAP med -0.226 0.023
SSB ⇥ non-SNAP rich -0.481 0.027 Drink category FE Yes
SSB ⇥ age -0.032 0.008 Retailer-drink category FE Yes
SSB ⇥ child 0.284 0.027 Time FE Yes
SSB ⇥ sugar low 1.014 0.059
SSB ⇥ sugar med 1.778 0.052
SSB ⇥ sugar high 2.584 0.051 Number of choice occasions 23384

Notes: We estimate demand on a sample of 4,412 households on 23,384 At-home choice occasions.
Consumers choose from the products in At-home segments including the outside options. The ref-
erence group is SNAP households that consumed zero added sugar from SSB within a week. The
coefficients of interaction between price and other demographic groups represent the change relative
to the baseline level. Non-SNAP income group indicators are constructed by ERS, using household
income measures and adjusted by poverty guidelines. The level of sugary diet is constructed based
on weekly total added sugar from SSB a household has. We include a random coefficient for price.
We report three µr with the highest estimated weights.

Elasticities We report aggregate price elasticities for the at-home and away-from-home

segment by demographic groups in Table 2.13.36

We find substantial differences in elasticities across demographic groups and between

the two segments. In Panel A of Table 2.13, SNAP participants are more elastic away-
35For more discussion on the demand estimates, please see Section 2.F in the Appendix.
36Specifically, we simulate a one percent increase in the price of all SSBs in any segment to predict SSB

(own demand effect) and non-SSB purchases (cross demand effect). The elasticities are then calculated as
the change in quantity demand divided by the price change. We also show the product-level price elasticity
for the at-home and away-from-home segment in Tables 2.14 to 2.17 in Appendix Section 2.G.
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Table 2.5: Random Coefficients Nested Logit Demand Estimates, Away-From-Home

Estimate SE Estimate SE

a b
Price -0.515 0.031 Constant -0.903 0.044
Price ⇥ non-SNAP poor -0.031 0.007 Package size -0.037 0.001
Price ⇥ non-SNAP med 0.079 0.006
Price ⇥ non-SNAP rich 0.130 0.007
Price ⇥ age 0.041 0.004
Price ⇥ child 0.026 0.008 l
Price ⇥ sugar low 0.130 0.008 Nesting parameter 0.832 0.019
Price ⇥ sugar med 0.134 0.006
Price ⇥ sugar high 0.147 0.008 µ Weight

-0.1 0.79
h -0.011 0.10
SSB ⇥ non-SNAP poor -0.093 0.047 -0.078 0.05
SSB ⇥ non-SNAP med -0.020 0.035
SSB ⇥ non-SNAP rich -0.164 0.026 Drink category FE Yes
SSB ⇥ age -0.099 0.008 Retailer-drink category FE Yes
SSB ⇥ child 0.089 0.024 Time FE Yes
SSB ⇥ sugar low 4.889 0.196
SSB ⇥ sugar med 5.336 0.201
SSB ⇥ sugar high 5.548 0.204 Number of choice occasions 23539

Notes: We estimate demand on a sample of 3,977 households on 23,539 away-from-home choice
occasions. Consumers choose from the products in away-from-home segments including the outside
options. The reference group is SNAP households that consumed zero added sugar from SSB within
a week. The coefficients of interaction between price and other demographic groups represent the
change relative to the baseline level. Non-SNAP income group indicators are constructed by ERS,
using household income measures and adjusted by poverty guidelines. The level of sugary diet is
constructed based on weekly total added sugar from SSB a household has. We include a random
coefficient for price. We report three µr with the highest estimated weights.

from-home while all other three non-SNAP poor, medium, and higher income households

are more elastic at-home. In Panel B, households without children are more elastic at-home

and are more elastic than household with children. In Panel C, households across all levels

of sugar intake from SSB are more elastic at-home. The low sugar intake households are

the most elastic while the high sugar intake households are the least elastic. This pattern is

consistent with findings from Dubois, Griffith, and O’Connell 2020, who find that the soda

taxes is less effective in targeting households with high total dietary sugar.

Discussion On one hand, our estimated elasticities for SSB at-home are of a similar
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magnitude to the existing literature on SSB demand with highly aggregated level of prod-

ucts. For example, Lopez and Fantuzzi 2012b estimate an own price elasticity of �0.58 for

all caloric carbonated soft drinks (these are SSBs in our paper but excluding juice, energy

drink, and sweetened tea and coffee). Andreyeva, Long, and Brownell 2010 collect own

price elasticities for soft drink categories from 14 studies. The mean own price elasticities

across the 14 studies is �0.79, with a 95% confidence interval of [�0.33,�1.24].37

On the other hand, the demand for an aggregate-level category defined as in Table 2.13

here would in general be less elastic than the demand estimated from more disaggregated

brand-level individual products. For example, Bonnet and Réquillart 2013b report a brand

specific own price elasticities to be between �2.13 and �3.95. Dubé 2005b estimates a

brand-level own price elasticities ranging between �2 and �4. The reason is that compared

to a broadly defined category, brand-level products have more competition and substitution

across each other.

2.4 Effects of a soda taxes on Sugar Intake

We use our demand estimates to simulate the introduction of a tax levied on SSB. We

consider a tax rate of 1 cent per ounce. This is similar to the level of tax under the U.S. Soft

Drinks Industry Levy.38

Let WSSB denote the set of SSB products, r a soda taxes rate and q j the volume in ounce.

We assume the post-tax prices, ppost
j are given by

ppost
j =

8
>><

>>:

ppre
j + rq j 8 j 2 WSSB

ppre
j 8 j /2 WSSB

We study the impact of the tax on household at-home and away-from-home sugar con-
37Their definition of soft drink categories are slightly different from ours. Their narrowest definition is

carbonated soft drinks, and the broadest definition is non-alcoholic beverages.
38As of 2022, seven cities and counties in the United States have introduced an SSB taxes. The level of

current excise taxes on SSB ranges from 1 to 2 cents per ounce, with five out of the seven cities being 1 cent
per ounce.
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sumption. Our main results assume 100 percent pass-through of soda taxes for both seg-

ments, given the evidence of almost 100 percent pass-through.39 We also try setting the

pass-through rate of soda taxes for the away-from-home segment to be 70 percent given

the empirical finding in Cawley et al. 2021 using restaurants data in Boulder Colorado.

They are reported in the Appendix. The counterfactual results are quite similar in both

settings.

2.4.1 The Effectiveness of an SSB Tax

Our tax simulations suggest that consumers who purchase SSB will, on average, lower the

amount of sugar they purchase from SSB at-home by 14.39g per week, away-from-home

by 2.56 per week, and in total by 15.72g.40 The average percentage reduction is 18.12

percent at-home and 5.75 percent away-from-home. The distribution of reductions in sugar

in total is right skewed with the seventy-fifth, ninetieth, and ninety-fifth percentiles being

20.48g, 34.80g, and 47.61g.

An important aspect about the effectiveness of an SSB tax is whether it successfully

achieves the reductions in sugar amongest the targeted groups of consumers: low-income

households, in particular, SNAP participants and SNAP-eligible nonparticipants, house-

holds with children, and those with high total weekly dietary sugar. In Figure 2.4, we show

how the effect of tax vary across these demographic characteristics. Panel (a) to (f) show

how the mean reduction in sugar and the percentage reduction in sugar varies across SNAP

status and income level, households with or without children, and total weekly dietary
39The literature that estimate SSB tax pass-through rate includes Cawley and Frisvold 2017, Grogger

2017, Berardi et al. 2016, Bergman and Hansen 2019, and Falbe et al. 2015. They tend to find that taxes
are fully shifted to consumers, or even overshifted. The most recent papers like Cawley et al. 2021 find a
pass-through rates of 71.1% on taxed drinks in Boulder, Colorado using hand-collected retail store data and
74.2% using restaurant data. Marinello et al. 2021 find similar price increases (82%) of bottled regular soda
and diet soda in fast-food restaurants in Oakland, CA.

40Note that the total reduction in level (15.72g) is lower than the sum of the reduction at-home (14.39g)
and the reduction away-from-home (2.56g). This is because the at-home, away-from-home, and the total
segment is calculated based on a sample of 4412 households, 3977 households, and 4683 households respec-
tively. There are some households with no purchase in one of the two segments, and hence for them the total
reduction in SSB only comes from the other segment where they have made purchases.
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sugar, separately for the at-home and away-from-home segment.

Panel (a), (c), and (e) show that the tax on sugary soft drinks achieves relatively large

reductions in total sugar (at-home and away-from-home) among low-income households,

households without children, and households with high weekly added sugar intake from

SSB.

However, if we look at the at-home and away-from-home segments separately, we see

very diverse patterns between the two segments. The reduction in sugar away-from-home

is much smaller than that at-home, and it is small for all demographic groups. In other

words, there is not much variation in the reduction in sugar away-from-home for all groups

because the reduction is small: only around 3g per adult equivalent per week or 156g per

adult equivalent per year. The percentage reduction in sugar is around 6 percent for all

demographic groups (panel (a) and (b)).

The small variation in the effect of SSB tax on sugar intake away-from-home is sup-

ported by our previous descriptive findings in section 2.2.3. Households across income

groups have similar share of SSB expenditures on-the-go. However, high-income house-

holds have much higher share in restaurants compared to low-income households. Mean-

while, the elasticity estimates in Table 2.13 show that high-income households are less price

sensitive and hence their reduction in sugar in restaurants given the soda taxes is low. Both

results lead to the finding here that the reduction in sugar of the high-income households is

similar to that of the low-income households away-from-home.

Given the small impact of the tax on sugary soft drinks on the away-from-home seg-

ment, all variations in the reduction in total sugar (at-home and away-from-home) across

demographic groups is driven by the variation of that in the at-home segment.

Low-income households are both more likely to be impacted by the policy and, condi-

tional on this, have higher reductions in total SSB consumption than high-income house-

holds (panel (a)). The total reduction in sugar of SNAP and non-SNAP poor is around 21g

per adult equivalent per week, which doubles the reduction in sugar of the high-income
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households. Panel (b) shows that while the average percent reduction in total sugar is

slightly lower for the SNAP households (17 percent versus 23 percent across non-SNAP

poor and medium-income households), this group obtains a relatively large amount of sugar

from products targeted by the tax. This means their level reductions is large.

Panel (c) and (d) show that households without children exhibit higher reduction in

both the average level, as well as the average percent in total sugar from SSBs. Our finding

implies that the effectiveness of soda taxes for the young might not be as large as being

found in Dubois, Griffith, and O’Connell 2020.

Panel (e) shows that the level reduction in total sugar is positively associated with

household total sugar intake from SSBs. In particular, the difference in the reduction in

total sugar between high and low total dietary sugar households is as large as 20g per adult

equivalent per week.

We find that their response to soda taxes is smaller in percentage terms (panel (f)): for

instance, the reduction for households with high decile of added sugar intake from SSB is

over 14 percentage points below that for the low decile. They find that the reduction for

the top decile of the dietary sugar distribution is over 4 percentage points below that for the

bottom decile).

The difference in response across demographic groups can be supported by the pattern

of preference variation. Even though the low-income households, those with children, and

with high levels of sugar from SSB all have relatively strong SSB preferences, unlike the

other groups those with children are less sensitive to prices. For more counterfactual results,

please refer to Appendix section 2.H.
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(a) By SNAP status and income level (b) By SNAP status and income level

(c) By households with or without children (d) By households with or without children

(e) By weekly added sugar intake (f) By weekly added sugar intake

Figure 2.4: Reductions in Sugar From Drinks
Notes: The at-home segment is calculated based on 4,412 households in the sample, the
away-from-home segment is based on 3,977 households, and the total is based on 4,683
households. Figures show how average reductions in SSB consumption varies across
SNAP status and income groups, households with or without children and level of sugary
diet. Figures (a), (c) and (e) show declines in level; figures (b), (d) and (f) show declines
in percentage. In all figures, the pass-through rates is 100 percent in the at-home and
away-from-home segments. 119



2.4.2 Consumer Welfare and Redistribution

The final question that we ask in this paper is: given the impact of SSB tax on household

SSB demand, how will the tax affect consumer welfare? In particular, the tax will create

an economic burden on consumers since it raises the price consumers pay. Moreover, with

a higher price consumers can obtain less SSBs under the same total expenditure compared

to under no tax regime. It is likely that for consumers who purchase SSBs, they will incur

a welfare loss through this channel.

To answer this question, we use the standard Small and Rosen 1981 formula to calculate

the compensating variation: the additional amount of money an individual would need to

reach their initial utility following a change in prices. The compensating variation for a

consumer i on choice occasion t is given by
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where Vikt is defined in Section 2.3.1. We then integrated CVit over the distribution of ran-

dom coefficients and choice occasions to obtain the weekly (per adult equivalent) average

compensating variation.

In Figure 2.5 panels (a)-(c) we describe how average compensating variation varies

across SNAP status and income groups, households with or without children, and weekly

added sugar intake. Compensating variation is determined by how exposed is the consumer

to the tax (that is, whether the consumer buy a lot of the taxed goods) and how willing

the consumer is to substitute towards other goods. In the at-home segment, low-income

households and those with high weekly added sugar from SSB obtain more sugar from

soft drinks and therefore are more exposed to the tax. Even without accounting for any

behavioral effect, they would have higher compensating variation. After accounting for

the behavioral effect, Figure 2.5 shows that the compensating variation remains high for

low-income households and those with high weekly added sugar from SSB.
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For the away-from-home segment, the picture is slightly reversed if we look at panel

(a). The compensating variation is higher for higher-income households even though the

difference is not as large as that in the at-home segment. Notice that even though Figure

2.4 panel (a) shows that the reductions in sugar from SSBs is similar across income groups

in the away-from-home segment, the price of SSB is higher in this segment. In other

words, higher-income households purchase more SSBs and more expensive SSBs away-

from-home than poor households. That is why their compensating variation in the away-

from-home segment is slightly higher than that of the poor households. Overall, the total

compensating variation (accounting for both segments) is higher for low-income especially

SNAP households. Panel (c) shows that high sugar diet households would have higher

compensating variation in both the at-home and way-from-home segments. The difference

in compensating variation between high and low sugar diet households is much larger in the

at-home than the way-from-home segment. This finding is also consistent with previous

result in Figure 2.4 panel (e) that the reduction in sugar is the highest for household with

higher weekly added sugar intake from SSB, especially in the at-home segment.

The other thing to notice is that although the level of sugar reduction in Figure 2.4 is

relatively low for the away-from-home segment, the associated compensating variation is

somewhat comparable to that of the at-home segment. This is also due to the higher price of

the away-from-home sugary drinks. In other words, for a similar level of economic burden,

the tax in the away-from-home segment reduces sugar intake by a much smaller amount.

For example, Figure 2.5 panel (c) shows that, in order to retrieve the utility before the

tax, a medium sugar diet consumer would require a compensating variation of $0.26 and

$0.23 for a 6 ounces and 1 ounce reduction in sugar from SSB for the at-home and away-

from-home segment respectively. Furthermore, given that the SSB tax is based on volume,

the benefits from tax revenue would be similar in the two segments. These imply that the

welfare cost will be larger in the away-from-home segment than the at-home segment for a

similar level of sugar reduction from SSB.
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Even though the findings here suggest that the compensating variation is the highest

among low-income households and those with high total dietary sugar, it does not imply

that the total negative effect of the tax is the largest for these groups or the tax harms these

groups the most. This is because consumers might purchase too much sugary soft drinks

without considering the associated future costs (internality). Compensating variation only

reflects part of the total consumer welfare effect of a sugary tax.

Policymakers are particularly concerned with low-income households. To provide an

intuitive sense of the quantitative measure here, we find that in response to the tax con-

sumers who have low income (regardless of SNAP participation), on average, reduce at-

home sugar consumption from SSB by 21g per adult equivalent per week (annual: 21⇥

52 = 1092g) and have average compensating variation of $0.33 (annual: $0.33⇥ 52 =

$17.16). They reduce away-from-home sugar consumption from SSB by 3g per adult

equivalent per week (annual: 3⇥ 52 = 156g) and have average compensating variation

of $0.15 (annual: $0.15⇥52 = $7.8). The total reduction in sugar consumption from SSB

is 24g per adult equivalent per week (annual: 24⇥ 52 = 1248g) and have average total

compensating variation of $0.43 (annual: $0.43⇥52 = $22.36).

Following Dubois, Griffith, and O’Connell 2020, we use a typical sugary soft drink (a

can of Coca-Cola), as our standard unit of comparison; a can of Coca-Cola in the United

States is 12 oz (355 ml) and contains 35g of sugar. If we assume that consumers receive

no benefits from the tax revenue raised, then this implies that the internality from a can of

Coca-Cola would need to be at least $0.55 ( that is 17.16⇤ (35/1092) ) at-home and $0.22

( that is 7.8 ⇤ (35/1248) ) away-from-home for this group on average to benefit from the

tax. The value $0.55 at-home is over 5 times larger than the average internality from sugar

sweetened soft drinks estimated in Allcott, Lockwood, and Taubinsky 2019a.41

However, we have not accounted for any benefits from the tax revenue raised or any
41The value found in Dubois, Griffith, and O’Connell 2020 for the on-the-go segment only is over 7 times

larger than the average internality from sugar sweetened soft drinks estimated in Allcott, Lockwood, and
Taubinsky 2019a.
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savings from the averted externalities (for example, the health care costs). We could further

compare the CV to the calculated tax revenue per consumer for each group. For example,

on average, the current tax raises $15.79 per adult equivalent over a year at-home.42 The

annual CV of SNAP consumers, $17.68, is only slightly higher than the average tax revenue

$15.79. If the tax revenue can be distributed lump-sum back to the consumers, there only

need to be a small positive amount of internality from the reduced soda consumption so

that the SNAP participants can benefit from the tax. A similar calculation shows that the

average tax revenue per consumer is $7.32 away-from-home, which is very closed to the

CV of SNAP consumers ($7.8), implying a higher probability of the tax to be beneficial to

them.
42Average tax revenue is calculated based on the post-tax volume consumption of SSB predicted by the

model estimates and then multiplied by a tax rate of $0.01 per ounce. The calculation method is similar to
Dubois, Griffith, and O’Connell 2020.
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(a) By SNAP status and income level (b) By households with or without children

(c) By weekly added sugar intake

Figure 2.5: Revealed Consumer Welfare Effect
Notes: The at-home segment is calculated based on 4,412 households in the sample, the
away-from-home segment is based on 3,977 households, and the total is based on 4,683
households. Figures show how average compensating variation varies across SNAP sta-
tus and income groups, households with or without children and level of sugary diet. In
all figures, the pass-through rate is 100 percent in the at-home and away-from-home seg-
ments.

Another concern about excise taxes is that they are regressive: lower-income house-

holds consume more of the taxed goods and hence bare more of the tax burden compared to

higher-income households. Figure 2.1 confirms that, in the case of sugary soft drinks, low-

income households are more likely to be soft drink purchasers and to get more sugar from

these products; those in the bottom half of the distribution and who purchase soft drinks on

average obtain 25 percent more sugar from these products. Notice that previous literature
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that only look at at-home or on-the-go segment along might overestimate this regressiv-

ity concern because low-income households have higher SSB shares at-home compared to

high-income households. However, Figure 2.1 shows that high-income households obtain

more SSB shares in restaurants and this finding mitigates the regressivity concern.

In sum, we find that the total CV is not largely different across income and SNAP par-

ticipation group. Only SNAP households have 10 percent higher CV than other groups. In

other words, we do not find the soda taxes to be regressive when we account for both at-

home and away-from-home segments. Why is it the case that, low-income households ob-

tain more total sugar (at-home plus away-from-home) from SSB, but their CV is not much

larger than higher-income households? The reason is that higher-income households obtain

more soft drinks and more expensive drinks away-from-home. Even though low-income

households obtain more sugar from SSB especially at-home, but the tax is based on volume

rather than the amount of sugar contained in each drink. In other words, low-income and

high-income households might buy similar amount (ounces) of soft drinks across segments

but the sugar amount in each drink is much higher for low-income households.

2.5 Conclusion

Beyond the focus on alcohol, tobacco, and gambling, sin taxes recently have been focused

on the promotion of healthy eating. That is, the government has extended taxes to food and

drinks. There is one main question related to assessing an effective an SSB tax. Who are

most affected by a soda tax, and who bears the most of a soda taxes burden. This question

is critical in assessing the effectiveness of an SSB tax in deterring excess levels of sugar

intake and the welfare change of consumers due to a soda tax.

In this paper, we study the above questions by exploiting a novel dataset that cover

household SSB demand from all channels (at-home, on-the-go, and in restaurants) for a

representative sample of U.S. households. We utilize the rich demographic information
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on SNAP participation and eligibility and household income and composition, and non-

parametrically estimate a flexible random coefficient nested logit model to document the

heterogeneity in preferences and elasticity across household groups.

We find that preferences and elasticity vary with demographics in terms of SNAP par-

ticipation, income, the existence of children, and the household total sugar from SSB. Such

variation pattern is also different for the at-home and away-from-home segment. We find

that soda taxes are less effective away-from-home and there is little variation in responses

across households. In contrast, we find substantial variation in demand responses at-home

across households. soda taxes are relatively effective at targeting the total sugar intake of

the poor, those with high sugar consumption, and households without children for the at-

home segment. Lastly, our results suggest that ignoring any segment will lead to biased

policy implications on the targeting and effectiveness of soda tax.

We also find that, contrary to previous literature, the SSB tax is not highly regressive.

The difference in compensating variation is much smaller than the difference in total sugar

reduction across household income groups, especially when accounting for the away-from-

home segment.

Firms will respond by adjusting their product types, pricing, advertising, the invention

of new products, etc. Our results therefore only speak to the short to medium term effect of

an SSB tax. Future research on incorporating the firm side responses into the picture will

be very interesting and worth exploring.
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Appendix

2.A FoodAPS Data Collection Process

Households in the FoodAPS data use scanners to scan all grocery purchases brought into

the home. In both the food at-home and food away-from-home surveys we know what

products (at the bar code, UPC level) were purchased, the product attributes, and the trans-

action price. We also observe information on the household and individual attributes, such

as household size and composition, demographic characteristics, income, and participation

in food assistance programs.

A screening interview determined whether the household at a sampled residence was

eligible to participate in FoodAPS based on household income and SNAP participation.

If eligible, the FoodAPS screener identified the main food shopper or meal planner in the

household and invited him or her to participate in the week-long data collection.

The PR was asked to complete two in-person interviews and to call the study’s tele-

phone center for three brief telephone interviews regarding food acquisition events over

the course of one week. The PR food book included both Blue pages to report details for

“food at home” and Red pages to report “food away from home” acquisitions. The PR was

responsible for recording food acquisitions by members under 11 years old.

Households were asked to scan barcodes on foods, save their receipts from stores and

restaurants, and write information in their food books. For food-at-home acquisitions, the

scanned barcodes were intended to be the primary source of item-level descriptions, while
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the receipts were intended to provide the price or expenditure information for each item.

The Food Book (Blue) pages would provide the rest of the information and saved receipts

would be used to verify this information and/or fill in missing information from the Blue

page. For food-away-from-home acquisitions, the phone calls were intended to be the main

source of item descriptions, details about the event, and price/expenditure information. The

Red pages were reviewed to identify and capture any information that had not been reported

during a phone call.

2.B Details of Data Construction

We measure the SSB consumption as the sum of all purchases of SSB in ounces during the

data collection week. Similarly, we measure the SSB expenditure as the total spending on

SSB during a seven-day period. We further construct the fraction of SSB expenditures spent

at-home, in the restaurants, and on-the-go respectively, given by the SSB expenditures in

each segment divided by the total SSB expenditures. The deciles of income are constructed

using the household average monthly income.43

In our estimation, we separately estimate the at-home and away-from-home demand

for soft drinks. We use information on the food at-home purchases of 4,412 households

and food away-from-home purchase of 3,977 households. For either segment, we define a

choice occasion as a trip in which a household makes a purchase of any good (including

SSB drinks, non-SSB drinks or foods). When purchasing drinks for consumption at home,

households choose a single item 51 percent of the time, whereas for consumption outside

the home, 83 percent of the time the households choose a single item. On the remaining

trips, the household chooses more than one type of drink product. In these cases, we treat

each purchase in the multi-purchase transaction as a separate choice occasion. We observe

households on an average of 9.7 choice occasions in our estimation sample. In total, the
43We did the same exercise using household equivalized income to account for household size and com-

position. It does not lead to significant difference.
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sample contains 46,921 choice occasions. For over 95 percent of households we observe

more than five choice occasions.

Product

The way we construct products is the following. We aggregate millions of UPCs (bar code)

into ten product categories defined by the FoodAPS: soft drinks, fruit drinks, sport and

energy drinks, sweetened coffee and tea, diet drinks, fruit and vegetable juice, unsweetened

coffee and tea, flavored milk, flavored water, and water. By comparing the definition of

drinks in the FoodAPS and the definition of taxable non-alcoholic drinks in the city and

county websites in the U.S., we conclue that the current SSB tax is placed on the first four

categories: soft drinks, fruit drinks, sport and energy drinks, and sweetened coffee and

tea.44

We further classify whether a product is purchased in one of the two segments: at-

home or away-from-home (on-the-go, or in restaurants). We also allow products to differ

by packaging formats (regular, large, or multi-pack).45 As a result, a product in the de-

mand estimation is defined as either a category-package-segment, or a category-segment

combination46.
44Information regarding the taxable non-alcoholic beverages can be found in the city and county websites.

See, e.g., https://www.seattle.gov/license-and-tax-administration/business-
license-tax/other-seattle-taxes/sweetened-beverage-tax..

45Regular size is defined as a container size smaller than 32 ounces. Large size is defined as a container
size larger than 32 ounces.

46As in Dubois, Griffith, and O’Connell 2020, for fruit juice, unsweetened coffee and tea, flavored milk
and water, we aggregate across different sizes. In total, these non-SSB beverage categories account for less
than 16 percent of the market.
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Table 2.6: Products

Product Percentage Price Product Percentage Price
(dollar) (dollar)

AH Regular Soft Drinks 1.387 1.457 AFH Regular Soft Drinks 9.409 1.505
AH Large-Bottle Soft Drinks 3.335 1.337 AFH Large-Bottle Soft Drinks 1.176 1.684
AH Pack Soft Drinks 3.097 3.507 AFH Fruit Drinks 1.703 2.055
AH Regular Fruit Drinks 1.473 1.294 AFH Large-Bottle Fruit Drinks 0.102 2.201
AH Large-Bottle Fruit Drinks 2.630 2.141 AFH Regular Sport and Energy Drinks 0.663 1.974
AH Pack Fruit Drinks 1.174 2.611 AFH Large-Bottle Sport and Energy Drinks 0.051 3.069
AH Regular Sport and Energy Drinks 1.552 1.171 AFH Regular Sweetened Coffee and Tea 4.288 2.097
AH Pack Sport and Energy Drinks 0.460 6.406 AFH Large-Bottle Sweetened Coffee and Tea 0.258 1.682
AH Regular Sweetened Coffee and Tea 0.431 1.624 AFH Regular Diet Drinks 2.421 1.506
AH Large-Bottle Sweetened Coffee and Tea 0.810 2.485 AFH Large-Bottle Diet Drinks 0.318 1.528
AH Pack Sweetened Coffee and Tea 0.104 5.000 AFH Fruit and Vegetable Juice 0.825 1.703
AH Regular Diet Drinks 0.603 1.359 AFH Unsweetened Coffee and Tea 4.245 1.666
AH Large-Bottle Diet Drinks 1.147 1.486 AFH Flavored Milk 1.023 2.095
AH Pack Diet Drinks 0.961 3.970 AFH Flavored and Enhanced Water 0.151 1.728
AH Fruit and Vegetable Juice 3.331 3.064 AFH Water 2.231 1.245
AH Unsweetened Coffee and Tea 0.311 1.997
AH Flavored Milk 0.654 2.471 AH Outside Options 22.292 0.000
AH Flavored and Enhanced Water 1.485 1.439 AFH Outside Options 21.300 0.000
AH Water 2.596 2.506 Total Number of Choice Occasions 46921 46921

Notes: At-home segment is abbreviated as AH. Away-from-home segment is abbreviated as AFH. Regular size is defined as a
container size smaller than 32 ounces. Large size is defined as a container size larger than 32 ounces. Multi-pack is defined as
a pack with more than one unit of bottles/cans. AH (AFH) outside options refer to any foods or drinks except for nonalcoholic
bevarages that are obtained from AH (AFH) segment. The second column shows the percentage of choice occasions where
the indicated product is purchased, based on transactions made by the 4,683 households in the estimation sample. Prices are
averaged across choice occasions.
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Prices

(a) By deciles of household annual income (b) By age of the primary respondent

(c) By total added sugar from SSB

Figure 2.6: Average price of SSB
Notes: The figure shows how purchase price varies across households with or without
children, age groups, and total added sugar from SSB. In plot (a), the household annual
income is equivalized by the OECD-modified equivalence scale. In plot (b), age groups
are classified according to the same cutoffs as in the FoodAPS dataset. Plot (c) is restricted
to households who have positive amount of added sugar from SSB. The cutoff levels are
the terciles of the total sugar from SSB.

Package Size

For a given UPC, the multi-pack information is not provided in the FoodAPS data. That

is, we do not observe how many of those goods appear in a given pack (e.g. a 6 pack of

soda). The pkgsize variable is the multiplication of the size of individual packaging and the
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number of individual packaging. Thus it measures the size of an item defined by a given

UPC. There is another variable quantity in the item level data, which indicates how many

of that item is purchased.

First, we restrict the sample to households who purchased a single item. Sometimes the

pkgsize and quantity information is inconsistent with the UPC information. For example,

an item is a 20 oz bottle-8 counts according to the UPC, so the correct item-level size

should be 20⇤8 oz. However, in the FoodAPS data, some of them are incorrectly recorded

as pkgsize = 160 and quantity = 8, yielding a size of 160 ⇤ 8 oz. It is hard to identify

items with wrong size information like this. Therefore we eliminate all transactions with

quantity > 1. The fraction of households buying multiple units of a given item is small

(around 5%). By doing so, we abstract away multi-units purchasing behavior. Note that we

did not eliminate multi-pack items. For example, we allow for the households to buy a 6

pack of coke, but we don’t allow for 6 bottles of single-bottle coke.

Second, we look up the UPC code to recover the multi-pack information using the

pkgsize variable. Almost always, a given pkgsize corresponds to a unique combination of

number of goods in a pack and the size of the individual packaging good. Thus we are able

to identify whether the item is a multi-pack product and the size of each single bottle using

the pkgsize variable.

Third, near 15% of SSB transactions have missing package size information. Only

less than 10% of the missing package size information might be imputed using UPC code.

There are two things we need to impute: (a) package size, i.e., size of the item in ounces;

(b) package type, i.e., regular single-bottle, large single-bottle, or multi-pack. We impute

the missing package size by linear interpolation of package size on transaction price. This

calculation is performed separately for each drink category within a given month. Products

with imputed weight less than or equal to 32 ounces are classified as regular-size single-

bottle. Products with imputed weight less than or equal to 32 ounces are either large single-

bottle or multi-pack. In order to impute the missing information of package type, we take
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the subsample of observations that are either large single-bottle or multi-pack with non-

missing information on the package type and fit a random forest classification model of

package type (either large-bottled or multi-pack) on package size in ounce and transaction

price. Based on the estimated model, we predict the package type for the set of observations

with missing values.

Composition

Table 2.7 shows the average share of non-alcoholic beverage expenditures allocated at each

type of products. For SSB purchased at-home, the top three purchased products, mea-

sured by shares of total beverage expenditures, are soft drinks (26.7%), fruit and vegetable

juice (18.1%), and fruit drinks (17.7%). For SSB purchased away-from-home, the top

three purchased products are soft drinks (42.6%), sweetened coffee and tea (18.9%), and

unsweetened coffee and tea (12.7%). In total, SSB (the first four types) accounts for 54.4%

of beverage expenditures in at-home market segment and it accounts for 72.4% in away-

from-home purchases.

Tables 2.8-2.11 show the share of beverage expenditures in different products at-home

or away-from-home by demographic groups. We find that different demographic groups

have very different basket of goods under at-home and away-from-home categories. For

example, Table 2.8 shows that households with no children purchase more diet drinks at-

home and unsweetened coffee and tea away-from-home than households with children.

This suggests that households with children have stronger taste for sugary drinks. Table 2.9

shows that demand differ by age, and different patterns for at-home and away-from-home

products. For at-home segment, younger households purchase more soft drinks and fruit

drinks at-home while older households purchase more fruit and vegetable juice. For away-

from-home segment, all households like soft drinks but older households don’t purchase

much fruit drinks as younger households and tend to drink more unsweetened coffee and

tea. Table 2.10 shows that households with different level of sugary diet also have different
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baskets. The higher the total added sugar from SSB a household has, the more soft drinks

and fruit drinks this household purchases. Instead, low sugary diet households purchase

more diet drinks and water at-home. They also purchase more sweetened and unsweetened

coffee and tea away-from-home than high sugary diet households.

Table 2.7: Average Share of Non-alcoholic Beverage Expenditures Allocated at Different
Products

At-home Away-from-home

Soft drinks 0.267 0.426
Fruit drinks 0.177 0.083
Sport and energy drinks 0.054 0.026
Sweetened coffee and tea 0.046 0.189
Diet drinks 0.098 0.065
Fruit and vegetable juice 0.181 0.022
Unsweetened coffee and tea 0.010 0.127
Flavored milk 0.029 0.036
Flavored and enhanced water 0.034 0.004
Water 0.105 0.022

Notes: The table shows how share of non-alcoholic bev-
erage expenditures are allocated at ten product types for
at-home and away-from-home, respectively. The expen-
diture shares are averaged across all households.

Table 2.8: Average Share of Non-alcoholic Beverage Expenditures Allocated at Different
Products, by Households with or without Children

At-home Away-from-home

No Children Have Children No Children Have Children

Soft drinks 0.241 0.290 0.386 0.465
Fruit drinks 0.149 0.203 0.072 0.093
Sport and energy drinks 0.044 0.064 0.022 0.029
Sweetened coffee and tea 0.052 0.040 0.197 0.181
Diet drinks 0.119 0.078 0.082 0.048
Fruit and vegetable juice 0.208 0.155 0.020 0.025
Unsweetened coffee and tea 0.013 0.007 0.166 0.091
Flavored milk 0.026 0.032 0.033 0.039
Flavored and enhanced water 0.042 0.026 0.003 0.006
Water 0.105 0.105 0.020 0.024

Notes: The table shows how share of non-alcoholic beverage expenditures are allocated
at ten product types for at-home and away-from-home, respectively. The expenditure
shares are averaged across households with or without children.
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Table 2.10: Average Share of Non-alcoholic Beverage Expenditures Allocated at Different
Products, by Total Added Sugar from SSB

At-home Away-from-home

Total added sugar level Low Medium High Low Medium High

Soft drinks 0.168 0.268 0.409 0.436 0.472 0.492
Fruit drinks 0.155 0.208 0.214 0.089 0.094 0.088
Sport and energy drinks 0.052 0.075 0.057 0.020 0.032 0.032
Sweetened coffee and tea 0.041 0.044 0.064 0.233 0.195 0.189
Diet drinks 0.142 0.074 0.053 0.052 0.047 0.048
Fruit and vegetable juice 0.210 0.172 0.087 0.020 0.017 0.017
Unsweetened coffee and tea 0.011 0.011 0.008 0.101 0.089 0.073
Flavored milk 0.046 0.022 0.018 0.030 0.030 0.036
Flavored and enhanced water 0.048 0.025 0.022 0.003 0.003 0.006
Water 0.128 0.101 0.067 0.015 0.019 0.018

Notes: The table shows how share of non-alcoholic beverage expenditures are
allocated at ten product types for at-home and away-from-home, respectively.
The expenditure shares are averaged across households of different levels of
total added sugar from SSB.

Table 2.11: Average Share of Non-alcoholic Beverage Expenditures Allocated at Different
Products, by Household Annual Income

At-home Away-from-home

Income level Low Medium High Low Medium High

Soft drinks 0.339 0.276 0.192 0.492 0.439 0.369
Fruit drinks 0.167 0.182 0.179 0.081 0.080 0.087
Sport and energy drinks 0.048 0.054 0.060 0.025 0.029 0.023
Sweetened coffee and tea 0.043 0.047 0.046 0.152 0.189 0.212
Diet drinks 0.074 0.095 0.122 0.055 0.064 0.072
Fruit and vegetable juice 0.161 0.182 0.196 0.033 0.019 0.019
Unsweetened coffee and tea 0.010 0.009 0.010 0.108 0.113 0.155
Flavored milk 0.027 0.023 0.040 0.029 0.040 0.036
Flavored and enhanced water 0.020 0.031 0.048 0.005 0.005 0.003
Water 0.109 0.101 0.107 0.020 0.022 0.023

Notes: The table shows how share of non-alcoholic beverage expenditures are
allocated at ten product types for at-home and away-from-home, respectively.
The expenditure shares are averaged across households of different income
groups.
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2.C Age, Existence of Children, and Overall Added Sugar

Figure 2.7 shows the average share of SSB expenditures at-home, on-the-go, and in restau-

rants by whether households have children, the age of the primary respondent, and overall

added sugar from SSB.

First, compared with households without children, households with children spend

slightly larger shares (50%) of SSB at-home and slightly smaller shares (41%) of SSB

in restaurants. Both groups spend 9% of SSB expenditure on-the-go. Second, there is an

increasing trend of the age of the primary respondent with respect to SSB shares at-home,

while a decreasing trend of that with respect to SSB shares on-the-go. There is barely any

significant relationship between SSB shares in restaurants and primary respondent’s age.

Lastly, on average, households with a higher sugar intake are more likely to spend SSB

budget shares at home while less likely to spend SSB shares in restaurants. Combined with

previous evidence that lower-income households consume more at home than in restau-

rants, the finding here simply reflects that poor households spend larger expenditure shares

at home, eat less healthy diet, tend to have higher sugar intake, and are more likely to pur-

chase SSB at home. There is little variation in SSB purchases on-the-go across groups of

overall added sugar intake.

2.D Price Construction in Demand Estimation

We construct the average price p j for each product type j defined in Table 2.6. We average

the transaction prices of all UPCs belonging to a particular product type in a given month

in a specific retailer across all consumers. More specifically, each product type contains

K j UPCs indexed by k = 1, ...,K j. We denote the price paid by consumer i for each UPC

at time t in a retailer r as pk j(i,r(t), t(t)) and the price index for each product type j as

p jr(t)t(t). We will discuss the notation in more detail in Section 2.3. The resulting price for

each product type is a product-month-retailer tuple. For example, assume the total number
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(a) By households with or without children (b) By age of the primary respondent

(c) By total added sugar from SSB

Figure 2.7: Average share of SSB expenditures allocated at-home, on-the-go, and in restau-
rants

Notes: The figure shows how average share of SSB expenditures allocated at different
places varies across households with or without children, age groups, and total added
sugar from SSB. In plot (b), age groups are classified according to the same cutoffs as in
the FoodAPS dataset. Plot (c) is restricted to households who have positive amount of
added sugar from SSB. The cutoff levels are the terciles of the total sugar from SSB.
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of transactions under product type j happened at time t in a retailer r is T jr(t)t(t), we

compute the product price index as

p jr(t)t(t) =
1

T jrt

T jrt

Â
t=1

K j

Â
k=1

pk j(i,r(t), t(t))

If there are no transactions happened for a product-month-retailer tuple, we impute the

price using the average price of the same product in the same retailer in last month. If

a product-retailer type involves no transactions in all time periods, we treat the price as

a missing value. For example, purchases of large-bottle fruit drinks are never observed

in drinking places. In the later section where we introduce the demand model, we will

assume that products with missing prices are not included in consumers’ choice set. In

the previous example, this assumption implies that if a consumer visits a drinking place,

large-bottle fruit drinks are not on the menu. We present details of data construction and

how missing values are dealt with in Appendix Section 2.B.

A typical problem faced by researchers in discrete choice demand estimation is that

the prices of products not chosen by the consumers are not observed. Using the mean

prices to proxy for these unobserved prices may induce measurement error problem. These

errors are “Berkson” errors (Berkson 1950). Schennach 2013 proposes a solution to fix the

measurement error in prices in continuous demand models. Methods that can be applied

to the discrete choice framework is an interesting research question that is worth future

research.

2.E Separability Test

We consider two sets of separability tests. First, we include the average price of away-

from-home soda in the at-home demand equations and vice versa. Second, we include a

dummy for whether there were any away-from-home SSB purchases, and vice versa. More

specifically, we estimate

qAH
i = x0ib + g pAFH

i + ei,
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and

qAH
i = x0ib +adAFH

i + ei,

and similar for the away-from-home demand equations. qAH
i is the volume consumption of

SSB at-home for household i, pAFH
i is the average prices of away-from-home soda, and dAFH

i

is a dummy variable that equals one if there were any away-from-home purchases of SSB.

Endogeneity might arise because households that demand more soda at-home might have

unobserved characteristics that also cause them to purchase soda away from home, or visit

places that offer low (or high) price soda. Due to the short time period of the data, it is

infeasible to include a full set of household fixed effects to control for the unobservables.

Instead, We include a rich set of household characteristics, xi, to deal with potential endo-

geneity. xi include the constant term, household size, whether the household has children,

income, age of primary respondent, average BMI, diet status, and knowledge of nutrition.
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Table 2.12: Separability Tests

AH Demand AFH Demand AH Demand AFH Demand

At-home price -98.90*** 0.892 -87.79***
(8.410) (2.295) (6.581)

Away-from-home price 2.135 -12.52*** -13.05***
(5.911) (1.613) (1.188)

At-home soda purchased 2.884
(3.823)

Away-from-home soda purchased 19.99
(16.44)

Child 59.60* 11.58 51.43** 8.334
(23.46) (6.401) (19.55) (4.788)

Household size 26.37*** 8.649*** 31.51*** 9.769***
(7.053) (1.925) (5.877) (1.507)

Age -0.535 0.0298 -0.371 -0.0623
(0.633) (0.173) (0.499) (0.123)

BMI 5.118*** 0.535 4.540*** 0.616*
(1.296) (0.354) (1.069) (0.272)

Constant 240.0** 51.26* 161.3** 51.43***
(74.91) (20.45) (57.40) (14.85)

Income group Yes Yes Yes Yes
Diet status Yes Yes Yes Yes
Nutrition fact Yes Yes Yes Yes

Notes: Standard errors in parentheses. Estimates of categorical variables are omitted from the table. *
p < 0.05 ** p < 0.01 *** p < 0.001

In Table 2.12, we report our results. For example, column 1 shows that the estimated

value of g is 2.135, with a large standard error 5.911, suggesting that the price of away-

from-home soda has insignificant effect on the demand at home. Similarly, column 3 shows

that whether there were any away-from-home soda purchases has no significant impact on

the amount of soda consumed at home (â = 19.99 and standard error is 16.44). The results

supporting separability here are consistent with other results in the literature.
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2.F Discussion on Demand Estimates

The price coefficients we obtained in both segments are quite small in magnitude compared

to prior work.47 However, this can be explained by two facts. The first is that the nesting

parameter rescales all demand parameters. Grigolon and Verboven 2014 find that to make

the price coefficient in a nested logit model comparable to the ones from standard logit

model, the price parameter should be rescaled by a/l . Thus, with a nesting parameter

less than 1, the rescaled price coefficient should be larger in magnitude than those reported

in Table 2.4 and 2.5. The second main reason is due to our definition of “products”. Instead

of choosing among specific brands or narrowly defined products, we define “products” in

our analysis as drink categories such as regular soft drinks, large-bottle diet soft drinks,

a pack of juice drink, etc. Furthermore, the magnitude of estimated coefficients varies

depending on the unit of the variables. Therefore, it would be more meaningful to consider

price elasticities rather than parameter values.

2.G Additional Results of Price Elasticity

In this section we show product level elasticities. Tables 2.14 and 2.15 report the demand

change for alternative drink options resulting from a 1% price increase of each product.

Tables 2.16 and 2.17 provide the full matrix of own- and cross-price elasticities for all

products. For example, Tables 2.14 shows that a 1% increases in price of the regular sized

soft drink category would result in a reduction of demand of 0.25% while demand for

non-SSB drinks would rise by 0.012%.
47Using supermarket data in a developing country, Marshall 2015b reports an average marginal (dis)utility

of price of �6.15. Dubois, Griffith, and O’Connell 2020 uses data in UK covering on-the-go purchases to
study soda demand. Their estimate of mean level of price preference is �3.15,
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Table 2.14: At-Home Product Level Price Elasticities

Own FAH SSB FAH non-SSB

Soft Drinks -0.247 0.014 0.012
Large-Bottle Soft Drinks -0.235 0.018 0.016
Pack Soft Drinks -0.467 0.031 0.025
Fruit Drinks -0.245 0.008 0.007
Large-Bottle Fruit Drinks -0.341 0.016 0.013
Pack Fruit Drinks -0.488 0.009 0.008
Sport and Energy Drinks -0.239 0.005 0.005
Pack Sport and Energy Drinks -0.875 0.011 0.008
Sweetened Coffee and Tea -0.252 0.002 0.002
Large-Bottle Sweetened Coffee and Tea -0.427 0.005 0.005
Pack Sweetened Coffee and Tea -0.619 0.005 0.004
Diet Drinks -0.368 0.003 0.005
Large-Bottle Diet Drinks -0.390 0.004 0.007
Pack Diet Drinks -0.854 0.007 0.010
Fruit and Vegetable Juice -0.702 0.027 0.040
Unsweetened Coffee and Tea -0.447 0.001 0.003
Flavored Milk -0.545 0.004 0.006
Flavored and Enhanced Water -0.377 0.005 0.008
Water -0.559 0.022 0.032

Notes: For each of the products we compute the change in demand for that product, for
other SSB alternatives and for non-SSB alternatives resulting from a 1% price increase.
Numbers are averaged across time and place types.
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Table 2.15: Away-From-Home Product Level Price Elasticities

Own FAFH SSB FAFH non-SSB

FAFH Soft Drinks -0.277 0.065 0.049
FAFH Large-Bottle Soft Drinks -0.374 0.016 0.011
FAFH Fruit Drinks -0.442 0.016 0.011
FAFH Large-Bottle Fruit Drinks -0.557 0.004 0.003
FAFH Sport and Energy Drinks -0.423 0.011 0.008
FAFH Large-Bottle Sport and Energy Drinks -0.738 0.003 0.002
FAFH Sweetened Coffee and Tea -0.410 0.048 0.034
FAFH Large-Bottle Sweetened Coffee and Tea -0.382 0.005 0.004
FAFH Diet Drinks -0.364 0.020 0.027
FAFH Large-Bottle Diet Drinks -0.396 0.004 0.005
FAFH Fruit and Vegetable Juice -0.443 0.006 0.008
FAFH Unsweetened Coffee and Tea -0.348 0.033 0.044
FAFH Flavored Milk -0.431 0.006 0.008
FAFH Flavored and Enhanced Water -0.426 0.002 0.003
FAFH Water -0.343 0.012 0.017

Notes: For each of the products we compute the change in demand for that product, for other
SSB alternatives and for non-SSB alternatives resulting from a 1% price increase. Numbers are
averaged across time and place types.
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2.H Additional Counterfactual Results

(a) Level reductions, at-home 100% pass-
through, away-from-home 100% pass-through

(b) Percentage reductions, at-home 100% pass-
through, away-from-home 100% pass-through

(c) Level reductions, at-home 100% pass-
through, away-from-home 70% pass-through

(d) Percentage reductions, at-home 100% pass-
through, away-from-home 70% pass-through

Figure 2.8: Reductions in SSB Purchases by SNAP Status and Income Level
Notes: Figures show how average reductions in SSB consumption varies across SNAP
status and income groups. In all figures, the pass-through rates is 100 percent in the at-
home segment. Figures (a) and (b) show the results with 100 percent pass-through rates in
away-from-home, and (c) and (d) are 70 percent pass-through rates in away-from-home.

146



Ta
bl

e
2.

16
:A

t-H
om

e
Pr

od
uc

tL
ev

el
O

w
n-

an
d

C
ro

ss
-P

ric
e

El
as

tic
iti

es

So
ft

L
So

ft
P

So
ft

Fr
ui

t
L

Fr
ui

t
P

Fr
ui

t
Sp

or
t

P
Sp

or
t

Sw
C

of
fe

e
L

Sw
C

of
fe

e
P

Sw
C

of
fe

e
D

ie
t

L
D

ie
t

P
D

ie
t

Ju
ic

e
U

ns
w

C
of

fe
e

M
ilk

Fl
av

W
at

er
W

at
er

So
ft

-0
.2

47
0.

01
4

0.
01

4
0.

01
4

0.
01

4
0.

01
5

0.
01

4
0.

01
3

0.
01

4
0.

01
4

0.
01

1
0.

01
2

0.
01

2
0.

01
3

0.
01

2
0.

01
2

0.
01

2
0.

01
2

0.
01

2
L

So
ft

0.
01

8
-0

.2
35

0.
01

8
0.

01
8

0.
01

8
0.

01
8

0.
01

8
0.

01
7

0.
01

8
0.

01
8

0.
01

4
0.

01
6

0.
01

6
0.

01
6

0.
01

6
0.

01
6

0.
01

6
0.

01
5

0.
01

6
P

So
ft

0.
03

1
0.

03
1

-0
.4

67
0.

03
1

0.
03

1
0.

03
3

0.
03

1
0.

02
9

0.
03

1
0.

03
1

0.
02

8
0.

02
4

0.
02

4
0.

02
8

0.
02

5
0.

02
4

0.
02

4
0.

02
4

0.
02

4
Fr

ui
t

0.
00

8
0.

00
8

0.
00

8
-0

.2
45

0.
00

8
0.

00
8

0.
00

9
0.

00
8

0.
00

8
0.

00
8

0.
00

9
0.

00
7

0.
00

7
0.

00
7

0.
00

7
0.

00
7

0.
00

7
0.

00
7

0.
00

7
L

Fr
ui

t
0.

01
6

0.
01

6
0.

01
6

0.
01

6
-0

.3
41

0.
01

5
0.

01
6

0.
01

5
0.

01
6

0.
01

6
0.

01
7

0.
01

3
0.

01
3

0.
01

3
0.

01
3

0.
01

3
0.

01
3

0.
01

3
0.

01
3

P
Fr

ui
t

0.
01

0
0.

00
9

0.
00

9
0.

00
9

0.
00

9
-0

.4
88

0.
01

0
0.

00
9

0.
00

9
0.

01
0

0.
01

0
0.

00
7

0.
00

7
0.

01
0

0.
00

8
0.

00
7

0.
00

7
0.

00
7

0.
00

8
Sp

or
t

0.
00

6
0.

00
6

0.
00

5
0.

00
6

0.
00

6
0.

00
6

-0
.2

39
0.

00
5

0.
00

6
0.

00
6

0.
00

4
0.

00
5

0.
00

5
0.

00
6

0.
00

5
0.

00
5

0.
00

5
0.

00
5

0.
00

5
P

Sp
or

t
0.

01
1

0.
01

1
0.

01
1

0.
01

1
0.

01
1

0.
01

2
0.

01
1

-0
.8

75
0.

01
1

0.
01

1
0.

01
2

0.
00

7
0.

00
7

0.
00

9
0.

00
8

0.
00

8
0.

00
8

0.
00

7
0.

00
8

Sw
C

of
fe

e
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

3
0.

00
2

0.
00

2
-0

.2
52

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

L
Sw

C
of

fe
e

0.
00

5
0.

00
6

0.
00

5
0.

00
6

0.
00

6
0.

00
6

0.
00

6
0.

00
5

0.
00

6
-0

.4
27

0.
00

4
0.

00
4

0.
00

5
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
4

0.
00

5
P

Sw
C

of
fe

e
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
5

0.
00

4
0.

00
5

0.
00

5
0.

00
5

0.
00

5
-0

.6
19

0.
00

3
0.

00
3

0.
00

3
0.

00
4

0.
00

4
0.

00
4

0.
00

3
0.

00
4

D
ie

t
0.

00
4

0.
00

3
0.

00
3

0.
00

4
0.

00
3

0.
00

4
0.

00
4

0.
00

3
0.

00
4

0.
00

3
0.

00
2

-0
.3

68
0.

00
6

0.
00

6
0.

00
5

0.
00

6
0.

00
6

0.
00

6
0.

00
6

L
D

ie
t

0.
00

5
0.

00
5

0.
00

4
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
4

0.
00

5
0.

00
5

0.
00

4
0.

00
8

-0
.3

90
0.

00
8

0.
00

7
0.

00
8

0.
00

8
0.

00
8

0.
00

8
P

D
ie

t
0.

00
8

0.
00

8
0.

00
7

0.
00

8
0.

00
7

0.
00

9
0.

00
8

0.
00

6
0.

00
8

0.
00

7
0.

00
6

0.
01

1
0.

01
1

-0
.8

54
0.

01
0

0.
01

1
0.

01
0

0.
01

1
0.

01
0

Ju
ic

e
0.

02
8

0.
02

8
0.

02
6

0.
02

8
0.

02
7

0.
02

7
0.

02
9

0.
02

2
0.

02
8

0.
02

7
0.

02
8

0.
04

2
0.

04
2

0.
03

9
-0

.7
02

0.
04

1
0.

04
0

0.
04

2
0.

04
0

U
ns

w
C

of
fe

e
0.

00
2

0.
00

2
0.

00
1

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

1
0.

00
2

0.
00

2
0.

00
1

0.
00

3
0.

00
3

0.
00

2
0.

00
2

-0
.4

47
0.

00
3

0.
00

3
0.

00
3

M
ilk

0.
00

4
0.

00
4

0.
00

4
0.

00
4

0.
00

4
0.

00
4

0.
00

4
0.

00
3

0.
00

4
0.

00
4

0.
00

4
0.

00
7

0.
00

7
0.

00
7

0.
00

6
0.

00
7

-0
.5

45
0.

00
7

0.
00

7
Fl

av
or

ed
W

at
er

0.
00

5
0.

00
5

0.
00

4
0.

00
5

0.
00

5
0.

00
5

0.
00

5
0.

00
4

0.
00

5
0.

00
5

0.
00

5
0.

00
8

0.
00

8
0.

00
9

0.
00

7
0.

00
8

0.
00

8
-0

.3
77

0.
00

8
W

at
er

0.
02

4
0.

02
4

0.
02

2
0.

02
4

0.
02

3
0.

02
2

0.
02

4
0.

01
8

0.
02

4
0.

02
2

0.
02

1
0.

03
5

0.
03

5
0.

03
1

0.
03

2
0.

03
4

0.
03

3
0.

03
5

-0
.5

59

N
ot

es
:F

or
ea

ch
of

th
e

at
-h

om
e

pr
od

uc
ts

w
e

co
m

pu
te

th
e

ow
n-

an
d

cr
os

s-
pr

ic
e

el
as

tic
iti

es
.N

um
be

rs
ar

e
av

er
ag

ed
ac

ro
ss

tim
e

an
d

pl
ac

e
ty

pe
s.

147



Ta
bl

e
2.

17
:A

w
ay

-F
ro

m
-H

om
e

Pr
od

uc
tL

ev
el

O
w

n-
an

d
C

ro
ss

-P
ric

e
El

as
tic

iti
es

So
ft

L
So

ft
Fr

ui
t

L
Fr

ui
t

Sp
or

t
L

Sp
or

t
Sw

C
of

fe
e

L
Sw

C
of

fe
e

D
ie

t
L

D
ie

t
Ju

ic
e

U
ns

w
C

of
fe

e
M

ilk
Fl

av
W

at
er

W
at

er

So
ft

-0
.2

77
0.

06
7

0.
06

6
0.

06
6

0.
06

6
0.

06
5

0.
06

6
0.

07
5

0.
05

0
0.

05
5

0.
04

9
0.

04
8

0.
05

1
0.

05
0

0.
05

0
L

So
ft

0.
01

6
-0

.3
74

0.
01

5
0.

01
8

0.
01

6
0.

01
3

0.
01

6
0.

02
0

0.
01

2
0.

01
4

0.
01

3
0.

01
1

0.
01

3
0.

01
2

0.
01

3
Fr

ui
t

0.
01

6
0.

01
6

-0
.4

42
0.

01
5

0.
01

6
0.

01
2

0.
01

6
0.

01
5

0.
01

1
0.

01
0

0.
01

1
0.

01
1

0.
01

1
0.

01
1

0.
01

1
L

Fr
ui

t
0.

00
4

0.
00

5
0.

00
4

-0
.5

57
0.

00
4

0.
00

2
0.

00
4

0.
00

4
0.

00
3

0.
00

3
0.

00
3

0.
00

3
0.

00
4

0.
00

3
0.

00
3

Sp
or

t
0.

01
1

0.
01

2
0.

01
1

0.
01

2
-0

.4
23

0.
02

0
0.

01
1

0.
01

3
0.

00
8

0.
01

0
0.

00
9

0.
00

8
0.

00
9

0.
00

8
0.

00
9

L
Sp

or
t

0.
00

3
0.

00
3

0.
00

3
0.

00
4

0.
00

3
-0

.7
38

0.
00

3
0.

00
4

0.
00

2
0.

00
3

0.
00

2
0.

00
2

0.
00

3
0.

00
2

0.
00

2
Sw

ee
te

ne
d

C
of

fe
e

0.
04

8
0.

05
1

0.
04

6
0.

05
5

0.
04

7
0.

01
8

-0
.4

10
0.

02
4

0.
03

8
0.

01
8

0.
03

6
0.

03
4

0.
04

0
0.

03
7

0.
03

6
L

Sw
ee

te
ne

d
C

of
fe

e
0.

00
5

0.
00

6
0.

00
5

0.
00

6
0.

00
5

0.
00

5
0.

00
5

-0
.3

82
0.

00
4

0.
00

5
0.

00
4

0.
00

4
0.

00
4

0.
00

4
0.

00
4

D
ie

t
0.

02
0

0.
01

4
0.

02
0

0.
01

6
0.

02
0

0.
01

9
0.

02
0

0.
01

6
-0

.3
64

0.
02

1
0.

01
9

0.
02

7
0.

02
2

0.
03

0
0.

01
9

L
D

ie
t

0.
00

4
0.

00
4

0.
00

4
0.

00
4

0.
00

4
0.

00
4

0.
00

4
0.

00
5

0.
00

5
-0

.3
96

0.
00

5
0.

00
5

0.
00

5
0.

00
5

0.
00

5
Ju

ic
e

0.
00

6
0.

00
7

0.
00

6
0.

00
6

0.
00

6
0.

00
6

0.
00

6
0.

00
7

0.
00

7
0.

01
0

-0
.4

43
0.

00
9

0.
00

8
0.

00
7

0.
01

0
U

ns
w

ee
te

ne
d

C
of

fe
e

0.
03

4
0.

03
6

0.
03

2
0.

03
7

0.
03

3
0.

02
5

0.
03

3
0.

02
4

0.
04

6
0.

03
2

0.
04

5
-0

.3
48

0.
04

8
0.

04
4

0.
04

7
M

ilk
0.

00
6

0.
00

7
0.

00
6

0.
00

8
0.

00
6

0.
00

4
0.

00
6

0.
00

5
0.

00
9

0.
00

7
0.

00
9

0.
00

8
-0

.4
31

0.
00

9
0.

00
9

Fl
av

or
ed

W
at

er
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

2
0.

00
2

0.
00

1
0.

00
3

0.
00

2
0.

00
2

0.
00

3
0.

00
2

-0
.4

26
0.

00
2

W
at

er
0.

01
3

0.
01

4
0.

01
2

0.
01

0
0.

01
2

0.
00

5
0.

01
2

0.
01

4
0.

01
1

0.
01

9
0.

01
9

0.
01

7
0.

01
3

0.
01

1
-0

.3
43

N
ot

es
:F

or
ea

ch
of

th
e

aw
ay

-f
ro

m
-h

om
e

pr
od

uc
ts

w
e

co
m

pu
te

th
e

ow
n-

an
d

cr
os

s-
pr

ic
e

el
as

tic
iti

es
.N

um
be

rs
ar

e
av

er
ag

ed
ac

ro
ss

tim
e

an
d

pl
ac

e
ty

pe
s.

148



(a) Level reductions, at-home 100% pass-
through, away-from-home 100% pass-through

(b) Percentage reductions, at-home 100% pass-
through, away-from-home 100% pass-through

(c) Level reductions, at-home 100% pass-
through, away-from-home 70% pass-through

(d) Percentage reductions, at-home 100% pass-
through, away-from-home 70% pass-through

Figure 2.9: Reductions in SSB Purchases by Households with or without Children
Notes: Figures show how average reductions in SSB consumption varies across house-
holds with or without children. In all figures, the pass-through rates is 100 percent in the
at-home segment. Figures (a) and (b) show the results with 100 percent pass-through rates
in away-from-home, and (c) and (d) are 70 percent pass-through rates in away-from-home.
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(a) Level reductions, at-home 100% pass-
through, away-from-home 100% pass-through

(b) Percentage reductions, at-home 100% pass-
through, away-from-home 100% pass-through

(c) Level reductions, at-home 100% pass-
through, away-from-home 70% pass-through

(d) Percentage reductions, at-home 100% pass-
through, away-from-home 70% pass-through

Figure 2.10: Reductions in SSB Purchases by Weekly Added Sugar Intake
Notes: Figures show how average reductions in SSB consumption varies across level of
sugary diet. In all figures, the pass-through rates is 100 percent in the at-home segment.
Figures (a) and (b) show the results with 100 percent pass-through rates in away-from-
home, and (c) and (d) are 70 percent pass-through rates in away-from-home.
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Chapter 3

Identification of a Triangular Two

Equation System Without Instruments
ARTHUR LEWBEL, SUSANNE M. SCHENNACH, AND LINQI ZHANG

3.1 Introduction

Consider a standard linear triangular structural model

Y = X 0b1 + e1 (3.1)

W = gY +X 0b2 + e2 (3.2)

for some endogenous variables Y and W , exogenous covariates X , and unobserved errors

e1 and e2. For example, W could be a worker’s wages or earnings and Y could be her level

of schooling. Or, as in our later empirical application, W could be a country’s GDP growth

and Y a health measure like growth in life expectancy. The primary goal is identification

of g , the direct causal effect of Y on W , though we will also obtain identification of b1, b2,

and the joint distribution of the errors.1

1Throughout this paper we focus on the traditional homogeneous effects model where g is a constant,
rather than a heterogeneous treatment effects model.
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The main obstacle to identification and estimation of g is that e1 and e2 may be corre-

lated, because both depend on a common unobserved U (ability in the case of schooling

and wages, technology in the case of GDP and health). That is, in its simplest form,

e1 =U +V and e2 = bU +R (3.3)

where U , V , and R are unobserved, mutually independent (conditional on X) random vari-

ables and b is a constant. After projecting off covariates X , the V and R errors represent

idiosyncratic shocks to Y and W , while U is what makes Y an endogenous regressor in the

W equation.

Similar triangular structural models arise whenever we have one variable Y affecting

another variable W , and a common unobservable that affects them both. For example,

consider a two period dynamic model with autocorrelated errors. In this case W equals Y

in a subsequent time period, and U represents the autocorrelation in the errors. Another

example is production, where W could be a firm’s value-added output per unit of capital, Y

is the firm’s labor per unit of capital, and U is unobserved entrepreneurship, which affects

both productivity and the chosen level of inputs.

Such models are traditionally identified in econometrics by finding an instrument, i.e.,

a variable that correlates with Y but not e2, or equivalently, a variable that correlates with

V but not U or R. However, such instruments can be difficult to find. For example, Card

(1995), Card (2001) and others propose using measures of access to schooling, such as

distance to or cost of colleges in one’s area, as wage equation instruments, while others

raise objections to the validity of these instruments, e.g. Carneiro and Heckman (2002).

Other wage equation instruments may raise fewer questions of validity but can be weak, like

Angrist and Krueger (1991) and Angrist and Krueger (2001) quarter of birth instruments.

Similarly, Acemoglu and Johnson (2007) propose using changes in predicted mortality,

constructed based on innovations in health care, as an instrument for life expectancy growth

Y in their regression of GDP growth W on Y . However, such health innovations could be

correlated with other technological advances that increase GDP, leading to instrument in-
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validity. Comparable questions can be raised regarding the instruments or identifying side

information in other similar studies, such as Aghion, Howitt, and Murtin (2010), who find

a positive g , in contrast to Acemoglu and Johnson (2007) negative g . Ecevit (2013) sum-

marizes results from eleven similar studies, finding estimates of g that range from strongly

negative to insignificant to strongly positive. This range of estimates raises serious ques-

tions regarding the validity of instruments or other side information that different authors

use to identify g .2

Rather than propose any new instrument, we address the more fundamental question of

whether and when this model can be point identified and estimated without side information

such as instruments whose validity can be hard to ascertain (noting that the alternative of

a randomized experiment is not feasible for a macro question like this). If so, then we

can estimate the model without relying on side information, and/or test the validity of side

information like instruments via overidentification tests.

We provide conditions for point identification of the model

Y =U +V (3.4)

W = gY +bU +R (3.5)

with U , V , and R being unobserved, mutually independent random variables with unknown

distributions. The same identification theorem can then be applied conditioning on covari-

ates X , to show point identification of more general models, where the entire distributions

of U , V , and R could depend nonparametrically on X . A special case of this general identi-

fication result is then identification of equations (3.1), (3.2) and (3.3). In this special case,

variables V and R that depend nonparametrically on X in equations (3.4) and (3.5) are in-

stead replaced with X 0b1 +V and X 0b2 +R, where these new V and R do not depend on
2Of course, differences are also due to variation in data sets and in how Y and W are defined and con-

structed. As another way to explain these differing results, Cervellati and Sunde (2011) suggest that the true
effect might be non-monotonic.
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X .3

Our main result is surprising: under minimal regularity assumptions, the coefficients

g and b , and the distributions of U , V , and R (and b1 and b2 in that model) are all point

identified without instruments or other side information, unless either U or V is normally

distributed (after appropriately conditioning on or projecting off covariates X). So, for

example, Y having bounded support would be a sufficient condition for point identification,

since that would rule out normality of U or V .

In addition to proving this general identification result, we also: 1. Provide a few low

order moments yielding simple GMM estimators of the model, 2. Show how infinitely

many additional moments conditions can be systematically constructed to provide identifi-

cation under weaker conditions, 3. Provide the sharp identified set for the coefficients g and

b in the case where either U or V is normal and hence point identification fails, 4. Investi-

gate the behavior of these GMM estimators in some Monte Carlo exercises, and 5. Provide

an empirical application where we establish that our identification and estimation strategy

is viable even with a very small sample size. Specifically, we estimate the Acemoglu and

Johnson (2007) model without using any instruments, and obtain estimates that are very

similar to what they found with their instrument.

Instrumental variables estimation of the model has the advantage that it only requires

assumptions regarding first and second moments of the covariates, errors, and instruments.

In contrast, our assumptions regarding U , V , and R are, implicitly, restrictions on all mo-

ments. However, there are a number of mitigating factors. First, some of our results,

such as Lemma 3 below, only rely on lower order moments. Second, our main theorem

works via convolutions, and so our independence assumptions can be relaxed to subinde-

pendence, as defined and described in Schennach (2019), who points out that subindepen-

dence is arguably as weak as a conditional mean assumption in terms of the dimensionality
3More generally, U , V and R could be heteroskedastic, or otherwise have higher moments that depend

in unknown ways on X , but estimation would then become more complicated. One possibility would be
replacing the GMM estimators we provide with conditional moment GMM, conditioning on X . More simply,
heteroskedasticity could be parameterized, with parameters estimated as part of the GMM.
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of the restrictions imposed. Third, our independence assumption is actually conditional

on other covariates, so, e.g., the identification can handle arbitrary heteroskedasticity and

dependence of higher moments on regressors. Similarly, if, e.g., U is ability, then identi-

fication only requires ability to be conditionally (sub)independent from other unobserved

factors, conditional on covariates. Nevertheless, given our required assumptions, these re-

sults should be most useful when instruments either don’t exist, or might be invalid.

The identification of equations (3.4) and (3.5) without instruments has been previously

considered by Rigobon (2003), Klein and Vella (2010), and Lewbel (2012), but these results

neither nest nor are nested by ours because they require that the errors be heteroskedastic,

and identification is obtained by imposing varying restrictions on the structure of that het-

eroskedasticity.4

A number of special cases of our results do appear in the literature, but all of them

assume g = 0, and so they omit the most important feature of the model in applications like

ours. Kotlarski (1967) is the special case of our model where it is known that g = 0 and b =

1, and in that case Kotlarski’s Lemma shows that point identification of the distribution of

all the latent variables holds even under normality. Similarly, Reiersøl (1950) uses a special

case of our model where it is known that g = 0 and Y plays the role of a measurement of U

contaminated by an error V and establishes conditions under which b would be identified.

As noted in Lewbel (2022), with g = 0 and Reiersøl’s identification of b , one could rewrite

Reiersøl’s model as Y = U +V and W /b = U +R/b , and then apply Kotlarski’s lemma
4Rigobon (2003) and Klein and Vella (2010) impose different parametric restrictions on the error vari-

ances, while Lewbel (2012) imposes a nonparametric restriction. For simplicity we assume homoskedastic
errors, but by conditioning our identification theorems on X , we could allow for general heteroskedastity as
well, at the expense of likely weaker identification and more complicated estimators.
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to the joint distribution of Y and W /b to identify the distributions of U , V , and R.5

Our results, showing necessary and sufficient conditions to identify the more general

model of equations (3.4) and (3.5) with unknown nonzero g , turns out to be a difficult

extension. In particular, the methods of proof used by Reiersøl (1950) and Kotlarski (1967)

do not extend to our problem. The proof of our main result instead relies on similar tools

as Khatri and Rao (1972) or Rao (1966) and Rao (1971) (see also Comon (1994) reference

to Darmois (1953)).

Some limitations of our results should be acknowledged upfront. We assume that the

coefficients g and b are constants. So, e.g., our results do not immediately extend to random

coefficients, such as treatment effects with unobserved heterogeneity, or to nonlinearity in

the dependence of W on Y . However, this limitation may be mitigated to some extent

by allowing the distributions of the unobservables to be unknown functions of covariates.

Another important restriction on our results is that we require U to be a scalar. While

this is a common assumption (as in the examples cited earlier), there are other situations

where one might expect a vector of unobservable shocks like U to affect both Y and W , and

our identification results would then not apply. We provide examples in Supplement D.

Finally, a limitation for empirical work is that our estimators depend on higher than second

moments of the data, and such moments can lead to very imprecise estimates when sample

sizes are small.

In section 3.2, we provide a few simple moments that will often suffice to point iden-

tify our model, and can be used to construct a correspondingly simple GMM estimator.

In section 3.3, we present our general identification results, including constructing more
5A special case of non-normality is when the components U and V are asymmetric. Lewbel (1997) and

Erickson and Whited (2002) exploit asymmetry to construct simple estimators for the Reiersøl (1950) model.
See also Bierens (2012). Other papers propose estimators for models like equations (3.4) and (3.5) with
g = 0, by assuming that coefficients like b are point identified using higher moments, but without explicitly
characterizing when that is possible. Examples include Bonhomme and Robin (2010), Fruehwirth, Navarro,
and Takahashi (2016), and Navarro and Zhou (2017). A related result, showing identification of direction
of causality in models under nonnormality, is Peters, Janzing, and Schölkopf (2017). Generalizations of
Kotlarski’s lemma to models with more components (but again still assuming g = 0) include Székely and
Rao (2000) and Li and Zheng (2020). A nonlinear extension of Reiersøl (1950) is Schennach and Hu (2013).
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moments like those in section 3.2, and showing that, with minimal regularity, the model

is point identified as long as both U and V are not normal. In sections 3.4 and 3.5 we

derive the sharp identified set when either U or V is normal, and derive some inequalities

regarding our model relative to ordinary least squares. Section 3.6 provides a Monte Carlo

analysis of our simple GMM estimators. In section 3.7 we provide an empirical applica-

tion based on Acemoglu and Johnson (2007), in which we obtain estimates comparable

to theirs, without using their (or any other) instrument. Section 3.8 concludes with some

suggestions for further work.

3.2 Simple Identification and Estimation

We begin with a simple special case of our general results, by providing some moments

that can easily be used to identify and estimate (by standard GMM) the models described

in the introduction. These results are not as general as our main identification theorem, but

are likely to suffice for many empirical applications.

We first consider identification and estimation of equations (3.4) and (3.5) without co-

variates X , and then we extend the results to equations (3.1) and (3.2).

Assumption 5. We observe the joint distribution of two real valued, nondegenerate random

variables Y and W.

With data, we could assume independent, identically distributed observations of Y and

W , and then identify their joint distribution to satisfy Assumption 5 using the Glivenko

Cantelli theorem.

Assumption 6. The unobserved real valued random variables U, V , and R are mean zero

and mutually independent,6 with unknown distributions.

Assumption 7. R has finite variance, and U and V each have finite fourth moments.
6Independence can be weakened to subindependence (Schennach (2019)).
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Assumption 8. The unknown constants g and b are real valued, finite, and b > 0.

We can assume our data Y and W have been demeaned, rationalizing the assumption

that the unobservables have mean zero. To see why we need a sign restriction on b , observe

that we can rearrange equations (3.4) and (3.5) to get W = (g +b )Y � bV + R, which,

except for the sign of b , is observationally equivalent to the original model, switching

the roles of V and U . Usually, the sign of b should be clear from the economics of the

application, e.g., in a returns to schooling model, b > 0 is a natural assumption, since it

says that unobserved ability that increases (decreases) education outcomes will increase

(decrease) wages. If we instead believed b was negative, we could just replace Y with �Y

everywhere to make b positive (redefining g , U , and V accordingly).

We also rule out b = 0, because if b = 0 then it would be pointless to separately identify

V and U . Moreover, having b = 0 is nonsensical in the types of applications we consider,

since it would mean that Y is exogenous, making identification and estimation of g trivial.

Substituting equation (3.4) into equation (3.5) gives the reduced form expression for W

W = gV +aU +R with a = g +b (3.6)

The following Lemma provides two moments that can often suffice to point identify g and

a , which then trivially also point identifies b .

Lemma 3. Let Assumptions 5-8 and equations (3.4) and (3.5) (and therefore also equation

3.6) hold. Then

E [(W � gY ) (W �aY )Y ] = 0 (3.7)

cov
⇥
(W � gY ) (W �aY ) ,Y 2⇤�2E

�
WY � gY 2�E

�
WY �aY 2�= 0 (3.8)

Proofs are all in Supplement A. The proof of Lemma 3 works by substituting W �gY =

bU +R and W �aY = �bV +R into equations (3.7) and (3.8), and then uses the mutual

independence of U , V , and R to verify that these equations hold.
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Lemma 3 provides two equations in the two unknowns a and g . If we solve the first

equation for a and substitute that into the second, we obtain a quadratic in g . The sign

restriction that b > 0 then determines which root is the correct one for g .

We later provide the formal conditions under which these two equations suffice to point

identify a and g . The main condition, derived in Theorem 7 below, is equation (3.21).

Equation (3.21) shows that the main cases in which equations (3.7) and (3.8) by themselves

fail to provide point identification are when U and V have the exact same distribution, or

when both are symmetrically distributed, or if either U or V is normally distributed. We

later show that infinitely many additional equations in a , g , Y and W can be constructed,

based on higher moments of Y and W than those used in Lemma 3. These higher moments

can help identify a and g in applications where Lemma 3 does not suffice.

A simple estimator for a and b can be constructed by rewriting equations (3.7) and

(3.8) as moment conditions, and applying standard method of moments or GMM. One can

immediately check that these equations take the form

E (YW �µyw) = 0, E(Y 2 �µyy) = 0 (3.9)

E [(W � gY ) (W � (g +b )Y )Y ] = 0 (3.10)

E
⇥
(W � gY ) (W � (g +b )Y )

�
Y 2 �µyy

�
�2 (µyw � gµyy) (W � (g +b )Y )Y

⇤
= 0

(3.11)

where µyw = E (YW ) and µyy = E
�
Y 2�. The parameters µyw and µyy are estimated along

with g and b by putting equations (3.9), (3.10), and (3.11) into any standard GMM estima-

tion routine. One could replace b with eb in these equations to impose the sign restriction

that b > 0.

Lemma 3 uses up to fourth moments of the data. Based on results derived in the next

section, in Supplement B we provide additional equations (using up to fifth moments)
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that can provide overidentification of g and b , or point identification in some cases where

Lemma 3 does not suffice.

Let s2
U , s2

V , and s2
R denote the variances of the error components U , V , and R. It

may be of economic interest to estimate these variances, to identify how much of the vari-

ance of the model errors is due to unobserved ability U versus the idiosyncratic compo-

nents V and R. From the model we have E ((W � gY )Y ) = bs2
U , E

�
Y 2� = s2

U +s2
V , and

E
⇣
(W � gY )2

⌘
= b 2s2

U +s2
R, which implies

s2
U = E ((W � gY )Y )/b , s2

V = E
�
Y 2��s2

U , s2
R = E

⇣
(W � gY )2

⌘
�b 2s2

U (3.12)

Given estimates of b and g , we can replace the expectations in equation (3.12) with sample

averages to estimate these variances.

Alternatively, we can estimate these variances jointly with the model parameters by

observing that

µyy = s2
U +s2

V , µyw = bs2
U + g

�
s2

U +s2
V
�

. (3.13)

So, in equations (3.9), (3.10), and (3.11) we can replace µyy and µyw with their expres-

sions in equation (3.13), and apply GMM using those equations along with the additional

equation

E
⇣
(W � gY )2 �b 2s2

U �s2
R

⌘
= 0 (3.14)

to simultaneously estimate b , g , s2
U , s2

V , and s2
R. We can further replace s2

U with s2
U = etU

and similarly for s2
V and s2

R, to impose the constraint that variances are positive. See

Supplement B for details on these moments.

Higher moments of U , V , and R can be estimated analogously. Alternatively, as dis-

cussed later, once we have have identified and estimated b and g , we can apply Kotlarski’s

Lemma to recover the entire distributions of U , V , and R.

We can also easily extend this identification and associated estimation to allow for

covariates. Suppose we have the model

Y = b01X +U +V (3.15)
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W = gY + b02X +bU +R (3.16)

where X is exogenous and is therefore uncorrelated with U , V , and R. The reduced form

for W is now

W = (gb1 + b2)
0X +(g +b )U + gV +R

So we can estimate the coefficient vectors b1 and b2 along with g and b by replacing Y and

W in equations (3.9), (3.10), and (3.11) with Y �b01X and W � (gb1 + b2)
0X , respectively

and estimate those moments along with the moments

E
��

W � (gb1 + b2)
0X
�

X
�
= 0, E ((Y �b01X)X) = 0 (3.17)

The complete set of moments for estimating this model via GMM, which we use in our

empirical application, is provided in Supplement B.

Although we did not find this to be the case in our application, when GMM models are

substantially overidentified (many more moments then parameters) it is sometimes prefer-

able to only use a subset of available moments for estimation. Since our estimator takes the

form of standard GMM, in these cases the existing literature on empirical choice of mo-

ments in standard GMM estimation might be applied. See, e.g., Andrews and Lu (2001),

Caner (2009), and Liao (2013).

For simplicity, these estimators assumed the errors U , V , and R are homoskedastic, and

similarly have higher moments that do not depend on X . This could be relaxed to allow

higher moments of these errors to depend in unknown ways on X , by letting the assump-

tions of Lemma 3 hold conditional on X , thereby replacing the unconditional moments of

equations (3.7) and (3.8) with conditional moments. Corresponding estimators would then,

however, be much more complicated, and parameters like the error variances would need

to be replaced by nonparametric functions of X .
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3.3 General Point Identification

We now provide a more general and systematic analysis of the identification of our

model, using more information than the low order moments of Lemma 3. We provide four

main results. First, we show that it is possible to construct infinitely many moments like

those of Lemma 3, which can be used to construct simple GMM estimators, and we give the

conditions under which these moments point identify the coefficients a and g (equivalently,

b and g). Second, we apply Kotlarski’s lemma to point identify the distributions of U , V ,

and R given point identification of a and g . Third, we demonstrate that, using the entire

joint distribution of Y and W (instead of just some moments) the only case where point

identification is not possible is when U or V (or both) are normal. Finally, in the not point

identified case, we fully characterize the sharp identified set.

We make extensive use of the characteristic function and its logarithm. Knowing the

(log) characteristic function of a vector of random variables is equivalent to knowing the

joint distribution of those variables (Theorem 3.1.1 in Lukacs (1970)).

Definition 2. Given two random variables Y and W, let fY ,W (z ,x )⌘ E
h
eizY+ixW

i
denote

their joint characteristic function. Similarly for a single random variable, let fY (z ) ⌘

E
h
eizY

i
. Moreover, let FY ,W (z ,x ) ⌘ lnfY ,W (z ,x ) and FY (z ) ⌘ lnfY (z ) denote log

characteristic functions (which are also called cumulant generating functions).

Definition 3. Given two random variables Y and W, define the cumulant of order k,`

(Lukacs (1970), p. 27) as

Fk,`
Y ,W ⌘


∂ k+`FY ,W (z ,x )

ik+`∂z k∂x `

�

z=0,x=0
.

Similarly for a single random variable, define the cumulant of order k as

Fk
Y ⌘


∂ kFY (z )

ik∂z k

�

z=0
.

All cumulants can be expressed in terms of standard moments, as obtained by an explicit

differentiation of the log characteristic function and by exploiting the characteristic func-
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tion moment theorem (e.g. E
⇥
Y k⇤ =

h
∂ kf (x )
ik∂x k

i

x=0
)7. Also note that the joint and marginal

characteristic functions as well as the corresponding cumulants are directly related, e.g.,

fY (z ) = fY ,W (z ,0), FY (z ) = FY ,W (z ,0) and Fk
Y = Fk,0

Y ,W .

With these tools in hand, we are ready to state a general identification result based on

moment constraints. As in Lemma 3, we start by rewriting the model of equations (3.4)

and (3.5) in the reduced form of equations (3.4) and (3.6), and focus on the parameters a

and g .

Theorem 7. Let Assumptions 5, 6, and Equations (3.4) and (3.6) hold. Assume �• < g <

a < • and let

Mp (a ,g) ⌘ F1+p,2
Y ,W �a2F3+p

Y � (g +a)
⇣

F2+p,1
Y ,W �aF3+p

Y

⌘
. (3.18)

Let q, q̃2N ⌘ {0,1, . . .} with q< q̃. If E
h
|U |q̃

i
, E
h
|V |q̃

i
and E

h
|R|q̃
i

exist and F3+q̃
Y F2+q,1

Y ,W 6=

F3+q
Y F2+q̃,1

Y ,W (or, equivalently, if F3+q̃
U F3+q

V 6= F3+q̃
V F3+q

U ), then the moment constraints

Mq (a ,g) = 0 (3.19)

Mq̃ (a ,g) = 0 (3.20)

point identify the parameters of the model as (a ,g) = (a+,a�), where

a± =
F3012

2F3021 ±

s✓
F3012

2F3021

◆2
+

F1221

F3021

and where Fabcd ⌘ Fa+q̃,b
Y ,W Fc+q,d

Y ,W �Fa+q,b
Y ,W Fc+q̃,d

Y ,W .

The proof, provided in Supplement A, proceeds by a judicious choice of cumulants of

(Y ,W ) that do not depend on cumulants of R, and by exploiting the fact that cumulants of

(Y ,W ) of order k,` that share the same value of k+ ` involve the same cumulants of U and

V with prefactors that only differ in how they depend on a and g . These observations then

lead to specific functions of cumulants that can be analytically solved for a and g .

Note that Theorem 7 also relies on Assumption 4, here rephrased as �• < g < a < •.

Had we assumed �• < a < g < • instead, then essentially the same Theorem would hold
7For high-order cumulants, these otherwise tedious algebraic manipulations could be handled with sym-

bolic algebra packages.
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except that now a and g would be point identified by (a ,g) = (a�,a+). We next formally

show that Theorem 7 contains Lemma 3 as a special case.

Corollary 1. The assumptions of Theorem 7 with q = 0 and q̃ = 1 imply that the assump-

tions of Lemma 3 hold. Equations (3.19) and (3.20) in Theorem 7 with q = 0 and q̃ = 1 are

equivalent to equations (3.7) and (3.8) in Lemma 3.

Equations (3.9), (3.10), and (3.11), used for GMM estimation of a and g , were obtained

by converting equations (3.7) and (3.8) into moments suitable for GMM. Equivalently,

equations (3.9), (3.10), and (3.11) could have been directly derived from M0 (a ,g) = 0 and

M1 (a ,g) = 0. This is done explicitly in the proof of Corollary 1.

As noted above, all cumulants can be expressed in terms of standard moments, specifi-

cally, cumulants equal sums of products of moments. To fit within a GMM framework, the

cumulants in the expressions Mp (a ,g) = 0, after being converted to functions of moments,

must be linearized. This is done by introducing nuisance parameters. To illustrate, the cu-

mulant F4
Y appears in the equation M1 (a ,g) = 0. Now F4

Y equals E
⇥
Y 4⇤� 3

⇥
E
�
Y 2�⇤2,

so, e.g., to convert the expression F4
Y = c into a form suitable for GMM, we rewrite this ex-

pression as E
⇥
Y 4 �3Y 2µYY � c

⇤
= 0 and E

⇥
Y 2 �µYY

⇤
= 0, using the nuisance parameter

µYY that was introduced in the previous section.

Theorem 7 shows that one can obtain any number of additional, potentially overiden-

tifying, moments to use for GMM estimation, based on the fact Mp (a ,g) = 0 holds for

any nonnegative integer p (as long as the associated moments of U , V , and R exist). We

illustrate this in Supplement B, where, in addition to the moments based on Lemma 3, we

provide the additional moments suitable for GMM estimation that are obtained from p = 2.

In our later Monte Carlo simulations and empirical application, we provide results using

the exactly identifying set of GMM moments based on p = 0 and 1, and also using the

generally over identifying set of GMM moments based on p = 0,1 and 2.

Theorem 7 provides explicit conditions under which any pair of cumulant functions

Mq (a ,g) = 0 and Meq (a ,g) = 0 suffice to identify the parameters a and g . In particular,
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point identification based on the moments in Lemma 3, corresponding to M0 (a ,g) = 0 and

M1 (a ,g) = 0, requires that F4
U F3

V 6= F4
V F3

U , or equivalently
⇣

E
�
U4��3

⇥
E
�
U2�⇤2

⌘
E
�
V 3��

⇣
E
�
V 4��3

⇥
E
�
V 2�⇤2

⌘
E
�
U3� 6= 0. (3.21)

The left-hand side of (3.21) turns out to be proportional to the determinant of the Jacobian

of the moment conditions (3.7) and (3.8) evaluated at the true value of the parameters:

b

2

64
E
⇥
V 3⇤ �E

⇥
U3⇤

E
⇥
V 4⇤�3

�
E
⇥
V 2⇤�2 �E

⇥
U4⇤+ 3

�
E
⇥
U2⇤�2

3

75 . (3.22)

This connection is expected, since having a nonsingular Jacobian at the true parameter

values is a necessary condition for point identification.

Condition (3.21) is violated, for instance, if either U or V is normal, or if both U and V

are symmetric, or if both U and V have the exact same distribution. If we add the additional

moments corresponding to M2 (a ,g) = 0, then point identification only requires that at least

one of the inequalities F4
U F3

V 6= F4
V F3

U , F5
U F3

V 6= F5
V F3

U , or F5
U F4

V 6= F5
V F4

U , hold. For

example, if the second of these holds then Theorem 7 applies with q = 0 and eq = 2. If more

than one of these inequalities holds, then we are generally overidentified.

Once the parameters a and g have been identified, the full distribution of all unobserv-

ables can be determined under the following Assumption.8

Assumption 9. The characteristic functions of U ,V and R are nonvanishing on the real

line.

Corollary 2. If Assumptions 5, 6, 9 and Equations (3.4) and (3.6) hold, E [|Y |] < • and if

a ,g are point identified, then the distributions of U, V and R are point identified from the
8This can be relaxed to nonvanishing everywhere, except at isolated points, under slightly stronger mo-

ment existence conditions; see Schennach (2004) and Evdokimov and White (2012).
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joint distribution of Y and W through

FV (x ) =
Z x

0

E
h
iYeiz W�aY

g�a
i

E
h
eiz W�aY

g�a
i dz (3.23)

FU (z ) = FY (z )�FV (z )

FR (x ) = FW (x )�FU (ax )�FV (gx ) .

A more explicit expression for the distributions of these unobserved variables can be

obtained by an inverse Fourier transform. For instance, if V admits a density, it is given by

fV (v) = (2p)�1
Z •

�•
exp (FV (x ))e�ix vdx (3.24)

and similarly for the other densities. More general distributions (e.g. discrete and/or sin-

gular) can be recovered as well, if equation (3.24) is interpreted in the appropriate measure

theoretic sense.

Although Theorem 7 is quite general, it does require the condition F3+q̃
U F3+q

V 6=F3+q̃
V F3+q

U

to deliver identification, so it is natural to ask whether this is fundamentally necessary. It is

in fact possible to formulate an estimation strategy that relaxes this condition. For instance,

as discussed above, one could stack the moment conditions of the form (3.19) and (3.20)

obtained with different values of (q, q̃). The resulting moment conditions would only fail

to identify (a ,g) if the condition F3+q̃
U F3+q

V 6= F3+q̃
V F3+q

U fails simultaneously for all the

choices of q and q̃ considered.

An even more general strategy could be to start from the fundamental relationships be-

tween the log characteristic functions of the observables and unobservables (FY ,W (z ,x ) =

FU (z +ax )+FV (z + gx )+FR (x )) and cast identification as an optimization problem

that minimizes deviations between the observed quantities (i.e. FY ,W (z ,x )) and predicted

quantities:

(a ,g ,FU ,FV ,FR) (3.25)

= arg min
(a ,g ,FU ,FV ,FR)

Z •

�•

Z •

�•
|FU (z +ax )+FV (z + gx )+FR (x )�FY ,W (z ,x )|2 dx dz ,

subject to a � g , zero mean constraints (F0
U (0) = 0,F0

V (0) = 0,F0
R (0) = 0) and that
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(FU ,FV ,FR) be valid log characteristic functions. This approach circumvents requiring

existence of the moments E
h
|U |q̃

i
, E
h
|V |q̃

i
and E

h
|R|q̃
i
. However, the introduction of

nuisance functions (FU ,FV ,FR) would complicate estimation, as these would have to be

parameterized by series or other expansions to construct a corresponding sieve estimator.

An estimator based on Equation (3.25) would be obtained replacing FY ,W (z ,x ) by its

sample analogue and trimming or downweighting the high-frequency tails in the integral.

The question remains, do there exist situations where neither this nor any other estima-

tor can consistently estimate the model, due to lack of point identification? The following

theorem fully addresses this question, by showing that there exist cases that are not point

identified. However, all such cases are when U or V (or both) are normal.

This differs from, and is simpler than, Reiersøl (1950) well-known result in linear uni-

variate errors-in-variables models, where the nonidentified cases arise when the model

contains normal factors (see below). However, the required methods of proof differ sig-

nificantly. For instance, the presence of two slope parameters a and g (instead of one),

and the presence of both latent variables U and V in both equations of the model, prevents

us from using Reiersøl’s proof method, which is based on the fact that two functions of

different variables that are equal to each other must be constant. In our case, we have sums

of many different functions of different variables on each side of an equality, and possible

cancellation between terms that complicates the argument significantly.

Assumption 10. E
h
|U |3

i
,E
h
|V |3

i
,E
h
|R|3
i

are finite.

Theorem 8. Let Assumptions 5, 6, 9, 10 and Equations (3.4) and (3.6) hold and assume

that �• < g < a < •. If neither U nor V are normally distributed, then a ,g are uniquely

determined by the joint distribution of Y and W by Equation (3.25).

Note that U or V normal implies Y has full real line support, so having the support of Y

be bounded is a simple sufficient condition for point identification. In the next section, we

address what happens when either U or V (or both) are normally distributed.
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3.4 Set Identification

In the case where Theorem 8 does not apply, so that the parameters are not point iden-

tified, the objective function of Equation (3.25) is maximized over a set rather than at a

single point. In order to precisely characterize this identified set, we first need to introduce

the notion of factor, which is used by Reiersøl (1950) and by Schennach and Hu (2013).

Definition 4. If a random variable Z can be decomposed as Z = Z1 +Z2 where Z1 and Z2

are independent, then Z1 and Z2 are called factors of Z. (The term factor can also be used

to refer to the distributions of these variables.)

While for given characteristic functions fZ1 (x ) and fZ2 (x ), we automatically have

that fZ (x ) = fZ1 (x )fZ2 (x ) by the convolution theorem, the notion of factor embodies the

fact that, if one is instead given the two characteristic functions fZ (x ) and fZ1 (x ), it is

not automatic that there exists a random variable Z2 with characteristic function fZ2 (x ) =

fZ (x )/fZ1 (x ). The inverse Fourier transform of fZ2 (x ), may not actually yield a proper

probability measure (it could assign negative weights to some sets, for instance).

Next we consider what it means for a random variable to have a normal factor.

Lemma 4. Let Z be an observed zero mean random vector. Then Z admits a unique de-

composition into two unobserved zero mean independent factors

Z = Zg +Zn, (3.26)

where Zg is Gaussian with variance L̄ and Zn has no Gaussian factors. Furthermore, the

variance of Zg is determined (from the observed distribution of Z) from the unique L̄ such

that

L̄�L is positive semidefinite () fZ (x )exp (x 0Lx /2) is a characteristic function.

(Note that either Zg or Zn or both could be zero.)

Intuitively, Lemma 4 indicates that the decomposition into a Gaussian and a non-

Gaussian factor can, in principle, be found by attempting to deconvolve Z by a Gaussian
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of variance L and seeking the “largest” (in a positive definite sense) possible L that will

still yield a proper distribution. In Fourier representation, this amounts to dividing fZ (x )

by exp (�x 0Lx /2) and checking if the result is a valid characteristic function (e.g., by

verifying if the inverse Fourier transform is a nonnegative measure). An alternative check

for the validity of a given function f (x ) to be a valid characteristic function can be based

on Bochner’s Theorem (Theorem 4.2.2 in Lukacs (1970): f is a characteristic function iff
n

Â
i=1

n

Â
j=1

cic⇤jf (xi �x j) � 0 for all c1, . . . ,cn 2 C for all x1, . . . ,xn 2 R for all integer n � 1

(Bochner’s Theorem also includes the conditions that f (x ) be continuous and f (0) = 1

but these are automatically satisfied in our context.)

Using Lemma 4, we can decompose the observed Z = (Y ,W ) into Gaussian (g) and

non-Gaussian (n) factors

(Y ,W ) = (Yg,Wg)+ (Yn,Wn) (3.27)

This decomposition can be accomplished without the knowledge of a or g . The non-

Gaussian or Gaussian nature of the two factors is important in our context, because it is

associated with the features that can or cannot be point-identified. This type of decompo-

sition is not a purely theoretical construct; it can be empirically implemented. Independent

Component Analysis techniques, which are widely used in signal processing, (see Hyväri-

nen and Oja (2000) for a review) specifically rely on such decompositions into Gaussian

and non-Gaussian components.

Define

Bs =
E [WsYs]
E [Y 2

s ]
(3.28)

Ds =
E
⇥
W 2

s
⇤

E
⇥
Y 2

s
⇤
� (E [WsYs])

2

(E [Y 2
s ])

2 � 0 (3.29)

where the subscript s is either set to “g” , or to “n” , or is removed. We can now state our

set-identification theorem:

Theorem 9. Let Assumptions 5, 6 and Equations (3.4) and (3.6) hold and assume that

E
⇥
Y 2⇤, E

⇥
W 2⇤, E

⇥
R2⇤< • and that �• < g < a < •. Then, the following bounds (illus-
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trated in Figure 3.1) are sharp:

1. If both U and V are Gaussian (and E
⇥
Y 2⇤> 0), then

a � Bg (3.30)

Bg �
Dg

a �Bg
 g  Bg. (3.31)

2. If V is Gaussian but U is not (and E
⇥
Y 2

n
⇤

, E
⇥
Y 2

g
⇤
> 0), then

a = Bn (3.32)

Bg �
Dg

a �Bg
 g  Bg. (3.33)

3. If U is Gaussian but V is not (and E
⇥
Y 2

n
⇤

, E
⇥
Y 2

g
⇤
> 0), then

g = Bn (3.34)

Bg  a  Bg +
Dg

Bg � g
. (3.35)

For each of the possible values of (a ,g) in the set given by Theorem 9, there corre-

sponds a unique implied distribution for U , for V , and for R, given by Corollary 2. To

distinguish between the three cases in Theorem 9, we have that case 1 holds only if Y is

normal, in case 2 Bn > B, and in case 3 Bn < B.

Although the quantities Bn,Bg,Dn,Dg are, in principle, observable quantities, they may

be difficult to estimate. For this reason, we also provide below a coarser bound that is only

based on the covariances matrix of the observed Y and W :

Corollary 3. The following bounds on a ,g always hold:

a � B

B� D
a �B

 g  B.

It is no accident that these bounds have the same form as Case 1 of Theorem 9: Both

are solely based on covariance information, but in the Gaussian case, covariances exhaust

all available information and yield sharp inequalities while, in general, that is not the case.

This looser bound is also related to the measurement error bounds in Frisch (1934). If one
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is willing to rely on this relaxed bound, then a simple GMM estimator for the resulting

identified set could be obtained based on the moment conditions

E
⇥
a2s2

U + g2 �Y 2 �s2
U
�
+s2

R �W 2⇤ = 0 (3.36)

E
⇥
as2

U + g
�
Y 2 �s2

U
�
�YW

⇤
= 0 (3.37)

while optimizing over a ,g ,s2
U ,s2

R, subject to the constraints g < a (equivalent to b > 0),

s2
U � 0 and s2

R � 0. These moment conditions are obtained from Equations (66) and (67)

in the proof of Theorem 9, without extracting the Gaussian parts. The bounds of Corollary

3 are also obeyed in the case of point identified models, since they are obtained solely

from positive variance considerations that must always be satisfied. This implies that, if

one is unsure whether Y is normal or not, the moment conditions (3.36) and (3.37) could

be stacked with the ones of Theorem 7 to yield an estimator that is robust to loss of point

identification.9

3.5 Ordinary Least Squares

It is instructive to analyze in more detail how the parameters of our model relate to

the slope coefficient of a naive OLS regression (in the population limit). The coefficient

B given by Equation (3.28) is the slope coefficient of the least-square regression of W on

Y (in the population limit). Regardless of whether the model is point identified or not, an

implication of the model (i.e., of equations (3.4) and (3.5)) is that B always lies between g

and a . This can be immediately verified by observing that

B =
E [YW ]
E [Y 2]

=
E [(U +V ) (aU + gV )]

E
h
(U +V )2

i =
aE
⇥
U2⇤+ gE

⇥
V 2⇤

E [U2]+E [V 2]
= al + g (1�l ) (3.38)

where l = E
⇥
U2⇤/

�
E
⇥
U2⇤+E

⇥
V 2⇤� and so lies between zero and one. So in particular,

if b > 0 we get g  B  a .

This type of inequality has been noted before in the context of estimating returns to
9In this case the maximizing estimands could be sets rather than points, requiring nonstandard inference.
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education (e.g. by Card (2001), in a more detailed model that allows for some individual

heterogeneity). In particular, in the returns to schooling context, we would expect both b

and g to be positive (because unobserved ability U should affect schooling Y and wages

W in the same direction, and increased schooling should increase wages). By the above

analysis, this in turn means that we would expect 0 < g  B.

However, as noted by Card (2001), most returns to schooling empirical applications

yield estimates of g , using instrumental variables methods, that are greater than B, which

contradicts this inequality and hence also contradicts the model. One possible explanation

for this contradiction is that, in the returns to schooling context, Y may also contain sig-

nificant measurement error. Standard attenuation bias under classical measurement error

implies that the ordinary least squares coefficient B is biased towards zero relative to g ,

which if 0 < g would imply B < g . If the model is correct for returns to education, but in

addition Y is mismeasured, then B could be either larger or smaller than g , depending on

the relative magnitude of the measurement error.

3.6 Monte Carlo

To assess the finite sample performance of our simple GMM estimators, we generate data

from the model of equations (3.4) and (3.5) without covariates. All of our designs are

chosen to satisfy equation (3.21), so the model is point identified just from the moments

in Lemma 1.10 The true values of the coefficients are g = b = 1. It is widely recognized

that estimators based on higher moments can behave poorly with small sample sizes, so to

see if our estimators suffer from these issues, we work with relatively small sample sizes

of n = 100 and n = 400.

We generate 5,000 replications of four different designs. In design 1, U is log normal

while V and R are each standard Gumbel. In design 2, U is log normal while V and R are
10In particular in all of our designs, U and V have different, non-normal distributions, and at least one is

asymmetically distributed. U , V , and R are also mutually independent and centered at mean zero.
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uniform. We then reverse these, making U Gumbel and V and R log normal in design 3, and

making U uniform with V and R log normal in design 4. For each design, we report results

using two different estimators. The exactly identified estimator is GMM using moments

corresponding to Lemma 1, given by equations (77), (78), and (79) (without covariates,

so eY = Y and eW = W ), as given in Supplement B. The over-identified estimator is GMM

using these same equations, plus equations (81) and (82) of Supplement B.

Tables C1 to C4 of the Supplement report results from designs 1 to 4, respectively.

Each Table has four panels, corresponding to the two different GMM estimators, each with

the two different sample sizes. We report estimates of g , b , the error component variances

s2
U , s2

V , and s2
R, and, when over-identified, µWW . Reported summary statistics of each

parameter estimate across the simulations are the mean (MEAN), the standard deviation

(SD), the 25% quantile (LQ), the median (MED), the 75% quantile (UQ), the root mean

squared error (RMSE), the mean absolute error (MAE), and the median absolute error

(MDAE).

Some general tendencies stand out in these simulations. First, consider the trade off

between the exactly identified vs over identified estimators. The latter uses more informa-

tion, but that information takes the form of up to fifth order moments, which can be noisy

and more sensitive to outliers. In general we find that the overidentified estimator performs

better than the exactly identified estimator, particularly at the larger sample size.

The primary parameter of interest, g , tends to be estimated reasonably precisely in all

of the designs, with most RMSEs in the range of .3 to .7. In contrast, b is generally much

less precisely estimated, often having much larger RMSEs (except in design 2). Estimates

of the variances s2
U , s2

V , and s2
R, are mostly similar to each other, usually being less precise

than g but more than b . The estimate of µWW is noisier, since it only appears in the

highest order moment equations of the over identified model. The designs where U was log

normal (designs 1 and 2) generally had more accurate estimates than the other designs. We

conclude that our estimator performs reasonably well even with rather small sample sizes.
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3.7 GDP and Life Expectancy

There is a long literature studying the causal effect of health on economic growth. Exam-

ples include Acemoglu and Johnson (2007) (which we will hereafter refer to as AJ), Well

(2007), Lorentzen, McMillan, and Wacziarg (2008), Aghion, Howitt, and Murtin (2010),

Cervellati and Sunde (2011), Ecevit (2013), Bloom, Canning, and Fink (2014), and Bloom

et al. (2019).

Based on a neo-classical growth model, AJ estimate a model in the form of equations

(3.1) and (3.2), where Y is the change in the log of a country’s life expectancy at birth

between 1940 and 1980, W is the change in that country’s log GDP in the same time span,

and X is either just a constant, or a constant and a measure of the country’s quality of

institutions, or a constant and GDP per capita in 1930. The main goal is estimation of g ,

the coefficient of Y in the W equation.

AJ observe that ordinary least squares estimation of the W equation is inconsistent, be-

cause the health measure Y is endogenous, with improvements and investments in a coun-

try’s productive technology over time positively impacting both health outcomes and GDP.

This technology change corresponds to our unobserved factor U (with b > 0) in equa-

tions (3.15) and (3.16), while V and R are the idiosyncratic shocks to health and economic

outcomes, respectively.

To deal with the endogeneity caused by U , AJ construct an instrument, called predicted

mortality, that combines each country’s 1940 mortality rates from specific diseases with a

set of global interventions that addressed those diseases. As noted in the introduction, one

may question the validity of such constructed instruments.

In Table 3.1, columns labeled 2SLS1, 2SLS2, and 2SLS3 in Panel A are replications

of selected results appearing in Table 9 of AJ.11 These are AJ’s estimates using two stage

least squares (2SLS) with the above listed combinations of covariates X , and using their
11Our data are provided by AJ. Life expectancy is from UN data sources and the League of Nation reports.

Pre-war GDP data are from Maddison (2003), and post-war data are from the UN. See AJ for details.
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predicted mortality instrument. AJ’s ordinary least squares (OLS) estimate of g (corre-

sponding to B in the previous section) is �0.81, while their 2SLS estimates of g are consid-

erably larger in magnitude, ranging from �1.316 to �1.643. As we noted earlier, having

g < B, as AJ find, is an implication of our model when b > 0. Note that the sample size

is quite small in this application, with only 47 countries. Nevertheless, AJ’s estimates of g

are statistically significant.12

Now suppose we had not observed predicted mortality, or we are uncertain of its validity

as an instrument. We can instead consider applying our GMM estimators. First, consider

the distribution of Y . Assuming (measured) life expectancy is bounded away from zero,

log life expectancy is bounded, which suffices for point identification since it rules out U

or V being normal.13 We therefore attempt to apply our GMM estimators.

In Table 3.1, we report two sets of GMM estimates along with AJ’s 2SLS results.

Columns labeled GMM1, GMM2, and GMM3 are GMM estimates of equations (3.15) and

(3.16), which do not make use of the predicted mortality instrument in any way. Specifi-

cally, these are estimates based on the over-identifying set of moments given by equations

(77) to (82) in Supplement B. The last three columns of Table 3.1 then give GMM estimates

that use both our over-identifying set of moments and the additional moment given by AJ’s

instrument (as discussed at the end of Supplement B).14

Panel A in Table 3.1 reports the main parameter of interest g , and also reports b2,

the other covariate coefficients in equation (3.16). The variables in columns (4) and (7)
12Our standard errors in columns (1)-(3) of Table 3.1 differ from those reported by AJ. AJ’s estimates are

from ivreg in Stata 9. We use ivregress 2sls, which replaced ivreg as of Stata 10. ivreg and ivregress can
give different robust standard error estimates, because ivreg uses HC1 (MacKinnon and White 1985) robust
standard errors while ivregress 2sls uses HC0 (Huber-White). Also, to reduce the number of coefficients in
GMM estimation, we differenced the data while AJ used level data with fixed effects. Since T=2, these are
asymptotically equivalent estimators.

13More heuristically, if Y is close to normal, then it may be that U or V is close to normal. Y has a
skewness of 0.170 and a kurtosis of 1.791, which is reasonably far from normal in terms of the low order
moments our GMM estimator is based on. The p-value of a Shapiro-Wilk test of normality of Y is .02,
rejecting normality, and even lower if one tests the residuals after regressing Y on either of the covariates in
X .

14These GMM models are estimated in Stata, using the vce(robust) option to compute standard errors.
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have been demeaned so there is no constant.15 Our main takeaway from Panel A of Table

3.1 is that our estimates of g are quite comparable to AJ’s. In GMM1 and GMM2, the

estimates of g are �1.984 and �1.241, virtually the same range as AJ’s 2SLS estimates,

and are statisically significant. GMM3 gives an estimate of a lower magnitude �0.383,

but this estimate is statistically insignificant with a very large standard error, suggesting

that our higher moment based estimator is imprecise for this particular combination of

covariates and small sample size. The last three columns of Table 3.1, which combine

both our moments and the AJ instrument, give estimates very close to those of AJ, with

somewhat smaller standard errors, which is exactly what one would expect to see if both

sets of moments are valid and if AJ’s instrument is strong. In the bottom row of Table

3.1 we report Hansen’s J-test; we do not reject validity of the joint set of overidentifying

restrictions in any of the GMM estimates.

Panels B and C of Table 3.1 provide the other estimated parameters of the model. Panel

C gives the estimated b1 coefficients from equation (3.15), while Panel B gives the estimates

of b and the estimated variances of our error components. b appears to be difficult to

precisely estimate, with large standard errors16. In the specifications where g is statistically

significant, the variance of U (the source of endogeneity in the model) is much smaller than

the variances of the idiosyncratic components V and R, but very precisely estimated with

small standard errors.

Later tables have the same format as Table 3.1, providing additional results. In Table

3.2, we re-estimate the model using the exactly identified set of moments from Lemma

3. As expected with fewer moments, these estimates are less efficient, and turn out to be

quite a bit noisier than those of Table 3.1. GMM5, with the quality of institutions as the

covariate, is still reasonably comparable to AJ with g of �1.401, while now both GMM4
15In Supplement B: Moments for GMM Estimation, it is noted that “For the model without covariates,

one can replace b1 and b2 with zero in the above expressions, and drop equation (80). Note that in this case
Y and W should be demeaned.” . In columns (4) and (7), we don’t have covariates so Y and W are demeaned.

16In contrast a is, like g , much more precisely estimated, but apparently the difference b ⌘a�g is harder
to pin down.
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and GMM6 are insignificant and more variable. The estimates combining these moments

with AJ’s instrument behave as before.

We also perform a number of robustness checks in Supplement D, using alternative

outcome variables that AJ considered in their Tables 8-9. These additional outcomes are

log population, log births, percentage of population under age 20, log GDP, and log GDP

per working age population. Some of the alternative outcomes suffer from the issue that U

might also contain measurement error, and in those cases, our identification results would

not apply. The results of our GMM estimators with other outcomes are generally more

erratic than with log per capita GDP. The estimates that combine our moments and the AJ

instrument remain comparable to AJ’s 2SLS estimates.

We conclude that, in all specifications where the standard errors were small enough to

yield statistically significant results, our estimates based on higher moments, without side

information, are very close to those obtained by AJ that required an instrument.

3.8 Conclusions

We have shown that a standard linear triangular structural model is generally point

identified, without an instrument or other side information that is generally used to identify

such models. We illustrate the result with Monte Carlo simulations and in an empirical

application. Our application shows that, without using an instrument, GMM estimation of

moments based on the model yields estimates close to those that were obtained by previous

authors using an instrument. Even when instruments are available, our estimator could be

usefully combined with instrument based moments to either increase estimation precision

by adding more moments to the model, or to provide overidentifying moments that might

be used for specification testing.

What makes point identification possible is the assumed error structure, which takes the

standard form of a scalar common component U in each equation, plus additional scalar
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idiosyncratic components V and R. One goal for future work could include deriving alter-

native estimators for the model. These could include estimators that allow U , V , and R to

depend nonparametrically on covariates X (e.g., allowing heteroskedasticity of unknown

form), and estimators that make direct use of all the information in Theorem 8, perhaps

based directly on characteristic functions rather than moments. Other possibilities for fur-

ther work include extending the model to more equations, allowing the common component

U to affect outcomes nonlinearly, and extending the model to also allow for measurement

error in Y . Based on Card (2001), this last extension would likely be needed for returns to

education applications.
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