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Abstract

This dissertation consists of three chapters demonstrating how the current econometric problems

can be solved by using machine learning techniques. In the first chapter, I propose new approaches

to estimating large dimensional monotone index models. This class of models has been popular in

the applied and theoretical econometrics literatures as it includes discrete choice, nonparametric

transformation, and duration models. A main advantage of my approach is computational. For

instance, rank estimation procedures such as those proposed in Han (1987) and Cavanagh and

Sherman (1998) that optimize a nonsmooth, non convex objective function are difficult to use with

more than a few regressors and so limits their use in with economic data sets. For such monotone

index models with increasing dimension, we propose to use a new class of estimators based on

batched gradient descent (BGD) involving nonparametric methods such as kernel estimation or

sieve estimation, and study their asymptotic properties. The BGD algorithm uses an iterative

procedure where the key step exploits a strictly convex objective function, resulting in computational

advantages. A contribution of my approach is that the model is large dimensional and semiparametric

and so does not require the use of parametric distributional assumptions.

The second chapter studies the estimation of semiparametric monotone index models when the

sample size n is extremely large and conventional approaches fail to work due to devastating compu-

tational burdens. Motivated by the mini-batch gradient descent algorithm (MBGD) that is widely

used as a stochastic optimization tool in the machine learning field, this chapter proposes a novel

subsample- and iteration-based estimation procedure. In particular, starting from any initial guess



of the true parameter, the estimator is progressively updated using a sequence of subsamples ran-

domly drawn from the data set whose sample size is much smaller than n. The update is based on

the gradient of some well-chosen loss function, where the nonparametric component in the model is

replaced with its Nadaraya-Watson kernel estimator that is also constructed based on the random

subsamples. The proposed algorithm essentially generalizes MBGD algorithm to the semiparametric

setup. Since the new method uses only a subsample to perform Nadaraya-Watson kernel estimation

and conduct the update, compared with the full-sample-based iterative method, the new method

reduces the computational time by roughly n times if the subsample size and the kernel function are

chosen properly, so can be easily applied when the sample size n is large. Moreover, this chapter

shows that if averages are further conducted across the estimators produced during iterations, the

difference between the average estimator and full-sample-based estimator will be 1/
√
n-trivial. Con-

sequently, the averaged estimator is 1/
√
n-consistent and asymptotically normally distributed. In

other words, the new estimator substantially improves the computational speed, while at the same

time maintains the estimation accuracy. Finally, extensive Monte Carlo experiments and real data

analysis illustrate the excellent performance of novel algorithm in terms of computational efficiency

when the sample size is extremely large.

Finally, the third chapter studies robust inference procedure for treatment effects in panel data with

flexible relationship across units via the random forest method. The key contribution of this chapter

is twofold. First, it proposes a direct construction of prediction intervals for the treatment effect by

exploiting the information of the joint distribution of the cross-sectional units to construct counter-

factuals using random forest. In particular, it proposes a Quantile Control Method (QCM) using the

Quantile Random Forest (QRF) to accommodate flexible cross-sectional structure as well as high di-

mensionality. Second, it establishes the asymptotic consistency of QRF under the panel/time series

setup with high dimensionality, which is of theoretical interest on its own right. In addition, Monte

Carlo simulations are conducted and show that prediction intervals via the QCM have excellent cov-

erage probability for the treatment effects comparing to existing methods in the literature, and are

robust to heteroskedasticity, autocorrelation, and various types of model misspecifications. Finally,

an empirical application to study the effect of the economic integration between Hong Kong and

mainland China on Hong Kong’s economy is conducted to highlight the potential of the proposed

method.
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Chapter 1

Estimating High Dimensional

Monotone Index Models by Iterative

Convex Optimization

1.1 Introduction

Monotone index models have received a great deal of attention in both the theoretical and applied

econometrics literature, as many economic variables of interest are of a limited or qualitative nature.

A leading special case in this class is the binary choice model which is usually represented by some

variation of the following equation:

yi = I[XT
e,iβ

⋆
e − ui ≥ 0] (1.1)

where I[·] is the usual indicator function, yi is the observed response variable, taking the values 0

or 1 and Xe,i =
(
X0,i,X

T
i

)T is an observed p + 1 dimensional vector of covariates which effect the

behavior of yi. Both the scalar disturbance term ui with distribution function denoted by G(·),

and the (p + 1)- dimensional vector β⋆
e =

(
β⋆,β⋆T

)T
are unobserved, the latter often being the

parameter estimated from a random sample (yi,Xe,i), i = 1, 2, ...n.

The disturbance term ui is restricted in ways that ensure identification of β⋆
e. Parametric restrictions
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specify the distribution of ui up to a finite dimensional parameter and assume that ui distributed

independently of the covariates Xi. Under such a restriction, β⋆
e can be estimated (up to scale) using

maximum likelihood or nonlinear least squares. Estimators that are robust to these parametric

distributional assumptions have been proposed and analyzed resulting in a variety of estimation

procedures for β⋆
e.

An important class of semiparametric restrictions used in the literature were based on indepen-

dence/index restrictions. Estimation procedures under this restriction include those proposed by

Han (1987), Ichimura (1993), Klein and Spady (1993). These cover but are not limited to the above

binary response model. This class of index models have a robustness advantage over parametric

approaches, but estimators within this class are difficult to compute1 due to nonconvexity and in

some cases also nonsmoothness of their respective objective functions. For these objective functions,

even looking for a local optimum is generally NP-Hard, let alone the global optimum (Murty and

Kabadi, 1987). Furthermore the difficulty increases with the dimension of Xi. Recent work which

is motivated by computational concerns is Ahn, Ichimura, Powell, and Ruud (2018). However, their

two step procedure involves a fully nonparametric estimator in the first stage, so is also not suitable

for models with a large number of regressors.

A related drawback of all these procedures is that they are designed to estimate parameters in

models of a small and fixed dimension. A relatively recent and thriving literature in econometrics

and machine learning is recognizing the many advantages of allowing for large dimensional models or

models with a large set of controls. This class is a special case of models that consider the situation

when the dimension of xi is large, and this is now often modeled with its dimension increasing with

the sample size. Due primarily to its empirical relevance, there has been a burgeoning literature

on estimation and inference in certain econometric and statistics models with a large number of

regressors or a large number of moment conditions. For a surevey of examples in economics and

finance, see Fan et al. (2020). Recent papers include Newey and Windmeijer (2009), Chernozhukov

et al. (2017),Belloni et al. (2018), Cattaneo et al. (2018a), Cattaneo et al. (2018b),

Related to our work is the recent literature on estimating large dimensional binary choice or mono-

tone index models in Sur and Candès (2019) and Fan et al. (2020). Sur and Candès (2019) considers

inference in a large dimensional logit model, relying on the logistic distribution of the disturbance

1Other estimation of index models includes Stoker (1986) and Powell et al. (1989). While these are relatively
easy to compute, such derivative based estimators cannot be applied unless all components of Xe,i are continuously
distributed.
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term where it is shown that χ2 asymptotic approximations of the LR statistic are suspect when

the dimension of x is large. Fan, Han, Li, and Zhou (2020) on the other hand estimate parameters

by optimizing the objective function introduced in Han (1987), but with the number parameters

increasing with the sample size. Optimizing these rank based objective functions is unfortunately

hard even with recent developments in algorithms and search methods for optimizing non smooth

and/or non convex objective functions. See for example important recent work based on mixed

integer programming (MIP) as in, e.g. Fan et al. (2020) and Shin and Todorov (2021).

Therefore, in light of the drawbacks in the existing literature, this paper proposes a new estimation

procedure that is amenable to easier computattion. Specifically we aim to construct a computation-

ally feasible estimator for a semiparametric binary choice and monotone index models with increasing

dimension based on a convex objective function and then establish its asymptotic properties. As we

will discuss in detail in the next section, our algorithm uses an iterative estimator based on a batched

gradient descent (BGD) method, and we show how to use nonparametric methods to approximate

the distribution in each stage of the iteration. One is the method of sieves2, and the other is kernel

regression.

1.1.1 Notations

Throughout the rest of this paper, to facilitate the description and properties of estimation pro-

cedures we will be using the following notation. For any real sequences {an}∞n=1 and {bn}∞n=1, we

write an = o (bn) if lim supn→∞ |an/bn| = 0, an = O (bn) if lim supn→∞ |an/bn| < ∞, and an ∼ bn

if both an = O (bn) and bn = O (an). For any random sequences {an}∞n=1 and {bn}∞n=1, we write

an = Op (bn) if for any 0 < τ < 1 there are N and C > 0 such that P {|an/bn| > C} < τ holds

for all n ≥ N , we write an = op (bn) if for any C > 0, limn→∞ P {|an/bn| > C} → 0. For any

Borel sets A ⊆ Rk, denote its Lebesgue measure as m (A). For any symmetric matrix A, we write

A ≻ 0 if A is positive definite, and A ⪰ 0 if A is positive semi-definite. For any symmetric ma-

trices A and B, we write A ≻ B if A − B ≻ 0 and A ⪰ B if A − B ⪰ 0. For any matrix A, we

denote σ (A) as its singular value, and denote σ (A) and σ (A) as its largest and smallest singular

value. For any symmetric matrix A, we denote λ (A) as its eigenvalue, and denote λ (A) and λ (A)

as its largest and smallest eigenvalue. For any vector x = (x1, · · · , xp)T, we denote its Euclidean

norm as ∥x∥ =
√∑p

i=1 x
2
i . For any matrices A = (aij)n×m, we denote ∥A∥ =

√∑n
i=1

∑m
j=1 a

2
ij .

2See Chen (2007) who pioneered the use of sieve methods in econometrics.
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Note that when A is positive semi-definite, there holds ∥Ax∥ ≤ λ (A) · ∥x∥; for general square

matrix A, there holds ∥Ax∥ ≤ σ (A) · ∥x∥. Finally, for any function f (x) with domain D, define

∥f∥∞ = supx∈D f (x).

1.2 The BGD Estimator

To provide some intuition for our semiparametric estimators that will be introduced in the following

sections, in this section we consider a simplified version of the model where the cumulative distri-

bution function G (·) is completely known. Under such setup, we explore the batch gradient descent

estimator (BGD estimator) of β⋆
e when its dimensionality p may increase, which is also important on

its own right. Throughout the following analysis we assume that the data set satisfies the following

assumption.

Assumption 1.1. An i.i.d. data set Dn = {(Xe,i, yi)}ni=1 of sample size n is observed, where yi

is generated 3 by yi = I
(
X0,iβ

⋆
0 +XT

i β
⋆ − ui > 0

)
with unobserved shock ui that is independent of

Xe,i and has CDF G (·).

Given any loss function ℓG (βe,Xe, y) that depends on G and is a.s. differentiable with respect to

βe ∈ Be, the BGD estimator of β⋆
e is based on the following iteration,

βe,k+1 = βe,k −
δk
n

n∑
i=1

∂ℓG
(
βe,k,Xe,i, yi

)
/∂βe, (1.2)

where δk > 0 is the learning rate. Note that n−1
∑n

i=1 ∂ℓG (βe,Xe,i, yi) /∂βe constitutes a sample

analogue of the derivative ∂E [ℓG (βe,Xe, y)] /∂βe. Unlike the stochastic gradient descent (SGD)

algorithm, in the BGD algorithm, in each round of update we evaluate the derivative of the loss

function over all data points. This increases the computational burden but provides a more accurate

estimator for the derivative of the expected loss function. Given the initial guess of the parameter,

βe,1, we iterate based on (1.2) until some terminating conditions are reached.

In this paper, we consider the following loss function

ℓG (βe,Xe, y) =

∫ XT
e βe

−A

G (z) dz − yXT
e βe, (1.3)

3Here we are decomposing the vector Xe,i into a scalar component X0,i and the vector Xi, and decomposing
the vector of parameters β⋆

e into the scalar term β⋆
0 and the vector β⋆. As we will see this is done for notational

convenience when imposing scale normalizations.
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for some sufficiently large positive constant A. The loss function (1.3) was also considered in Agarwal

et al. (2014) and has many nice properties. For instance, under some mild conditions, we can show

that

∂E (ℓG (β⋆
e,Xe, y))

∂βe

= E
{(
G
(
XT

e β
⋆
e

)
− y
)
Xe

}
= E

{(
G
(
XT

e β
⋆
e

)
− E (y|Xe)

)
Xe

}
= 0,

and
∂2E (ℓG (βe,Xe, y))

∂βe∂β
T
e

= E
{
G′
(
XT

e βe

)
XeX

T
e

}
≻ 0,∀βe ∈ Be.

So β⋆
e uniquely minimizes EℓG (βe,Xe, y) over Be. Another desirable property of the loss function

(1.3) is that the derivative of (1.3) with respect to βe, which is
(
G
(
XT

e βe

)
− y
)
Xe, depends only on

G (·) instead of on its derivatives. So when we conduct a semiparametric iteration in the following

sections, we only need to nonparametrically approximate G (·), which is generally more robust

compared with approximating its derivatives. Based on loss function (1.3), the BGD estimator is

obtained based on the following iteration

βe,k+1 = βe,k −
δk
n

n∑
i=1

(
G
(
XT

e,iβe,k

)
− yi

)
Xe,i. (1.4)

We summarize our algorithm as follows in algorithm 1.

Algorithm 1: The BGD Estimator
input : Data set {(Xe,i, yi)}ni=1, sequence of learning rate {δk}∞k=1, initial guess βe,1,

CDF G (·), and terminating condition T
output: The BGD estimator β̂e

1 k ← 1;
2 while The terminating condition T is not satisfied do
3 βe,k+1 ← βe,k − δk

n

∑n
i=1

(
G
(
XT

e,iβe,k

)
− yi

)
Xe,i;

4 k ← k + 1;

5 β̂e ← βe,k;

Remark 1.1. Key to the above approach is the construction of a convex objective function that

facilitates computation even with high dimensions. This transformed convex objective works for any

monotone model. In particular, for any model of the form yi = G(x′iβ) + ϵ with E[ϵi|xi] = 0 and

monotone G(.), a similar convex criterion as in (1.3) can be used for inference on β.

We now describe the asymptotic properties of βe,k. We first make the following assumption.
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Assumption 1.2. (i) Xe = [−1, 1]p+1; (ii) Be is convex, and there exists some constant B0 > 0

such that for any βe ∈ Be, |βj | ≤ B0 for any 0 ≤ j ≤ p; (iii) there exists integer υG such that

G has up to υG-th bounded derivatives; (iv) Define Mn (βe) = 1
n

∑n
i=1G

′ (XT
e,iβe

)
Xe,iX

T
e,i and

M (βe) = E[Mn (βe)]. For any βe ∈ Be, there holds 0 < λe ≤ λ (M (βe)) ≤ λ (M (βe)) ≤ λe <∞.

Remark 1.2. Assumption 1.2(i) and Assumption 1.2(ii) are convenient normalizations that facil-

itate the assessment of our model. Note that to ensure that βe,k falls into a compact set for each

k, some form of truncation on βe,k+1 in (1.4) is needed. While according to our results below, as

long as Be is sufficiently large, it can be shown that βe,k will fall into Be for all k with probability

going to 1. We then assume that βe,k ∈ Be for all k. Assumption 1.2(iii) imposes some smoothness

conditions on G, where the requirement on υG will be stated in the following propositions and the-

orems. Assumption 1.2(iv) requires that the eigenvalue of Mn (βe) is bounded from both below and

above uniformly over Be.

For any βe ∈ Be, define ∆βe = βe − β⋆
e. Also define εi = yi − G

(
XT

e,iβ
⋆
e

)
, where E [εi|Xe,i] = 0.

When Assumption 1.1 and Assumption 1.2 hold, we have the following result.

Theorem 1.1. Suppose that Assumption 1.1 and Assumption 1.2 hold with υG = 3, that p5 (log p)2 n−1 →

0, that the learning rate is chosen such that δk = δ ≤ 2/
(
3λe
)
, and that βe is updated based on

algorithm 1. We have that

(i) Define

kBGD
1,n =

log
∥∥∆βe,1

∥∥+ 1
2 log (n/ (p log p))

− log (1− λeδ/2)
,

we then have

sup
k≥kBGD

1,n +1

∥∥∆βe,k

∥∥ = Op

(√
p (log p) /n

)
;

(ii) Define kBGD
2,n such that (1− λeδ)

kBGD
2,n
√
p log p→ 0, we have

sup
k≥kBGD

2,n +1

∥∥∥∥∥∆βe,k+kBGD
1,n
−M−1 (β⋆

e)
1

n

n∑
i=1

εiXe,i

∥∥∥∥∥ = op
(
1/
√
n
)
;

(iii) For any k ≥ kBGD
1,n + kBGD

2,n + 1, define β̂e = β̂k. Also define

Σ⋆
1 =M−1 (β⋆

e)E
[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

]
M−1 (β⋆

e) ,
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and

Σ̂1,n =M−1
n

(
β̂e

){ 1

n

n∑
i=1

Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i

}
M−1

n

(
β̂e

)
,

where G⋆
i = G

(
XT

e,iβ
⋆
e

)
and Ĝi = G

(
XT

e,iβ̂e

)
. Suppose further that E

(
Xe,iX

T
e,i

)
has uniformly

(with respect to p) upper bounded eigenvalues, there holds

∥∥∥Σ̂1,n − Σ⋆
1

∥∥∥→p 0.

(iv) For any p+1 vector ρ such that limn→∞ ∥ρ∥ <∞, limn→∞ ρTΣ⋆
1ρ = σ2 (ρ), and that ρTM−1 (β⋆

e)
1√
n

∑n
i=1 εiXe,i →d

N
(
0, σ2 (ρ)

)
, we have that

ρT∆β̂e/
√
σ̂2 (ρ) /n→d N (0, 1) ,

where σ̂2 (ρ) = ρTΣ̂1,nρ.

Proof of Theorem 1.1. See subsection 1.7.2.

When p is fixed, Theorem 1.1(i) implies that supk≥kBGD
1,n +1

∥∥∆βe,k

∥∥ = Op (1/
√
n) , and Theo-

rem 1.1(ii) implies that for k sufficiently large, the BGD estimator is an asymptotically linear

estimator, so there holds
√
n∆βe,k+kBGD

1,n
→d N (0,Σ⋆

1) by the central limit theorem. The asymp-

totic variance can be estimated based on Theorem 1.1(iii). The number of iterations required to

obtain root-n consistency, kBGD
1,n , is determined by many factors including the sample size n, the

distance between the true parameter and the initial guess ||∆βe,1||, as well as the lower bound of the

eigenvalues of Mn (βe). In general, kBGD
1,n is of order O (log n), but in practice when we apply the

above algorithm, the specific number of iteration is difficult to determine. For detailed discussion

of the number of iterations, see Remark 1.5 at the end of Section 1.4. The inference on β⋆
e based

on the BGD estimator is given by Theorem 1.1(iv). Note that for any given vector ρ, we require

that 1√
n
ρTM−1 (β⋆

e)
∑n

i=1 εiXe,i is asymptotically normally distributed. An alternative approach is

to apply the high-dimensional central limit theorem to 1
n

∑n
i=1M

−1 (β⋆
e)Xe,iεi (e.g., Chernozhukov

et al., 2017).

Before we conclude this section and move to semiparametric estimation, we further comment on

Theorem 1.1. Different from the stochastic gradient descent algorithm (e.g., Toulis and Airoldi,

2017), we show in Theorem 1.1 that the learning rate δk can be selected as a sufficiently small

constant. Indeed, in the following results, we show that δk can decay to zero at any rate as long
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as
∑∞

k=1 δk = ∞ holds, and the choice of δk will not change the asymptotic results displayed in

Theorem 1.1. In particular, we have the following proposition.

Theorem 1.2. Suppose that all the conditions in Theorem 1.1 hold and that βe is updated based

on algorithm 1. For any sequence of tuning parameters {δk}∞k=1 satisfying δk ≥ 0, δk → 0,

lim supk→∞ δk−1/δk <∞, and
∑∞

k=1 δk =∞, we have that

(i) Define k̃BGD
1,n such that

∑k̃BGD
1,n

k=1 δk ≥ λ−1
e

{
log (n/p (log p)) + 2 log

∥∥∆βe,1

∥∥} , and that supk≥k̃BGD
1,n +1 δk ≤

2/λe, then there holds

sup
k≥k̃BGD

1,n +1

∥∥∆βe,k

∥∥ = Op

(√
p (log p) /n

)
;

(ii) Define k̃BGD
2,n such that

∑k=k̃BGD
2,n

k=k̃BGD
1,n +1

δk/ log p→∞, then we have that

sup
k≥k̃BGD

2,n +1

∥∥∥∥∥∆βe,k+k̃BGD
1,n
−M−1 (β⋆

e)
1

n

n∑
i=1

εiXe,i

∥∥∥∥∥ = op
(
1/
√
n
)
;

(iii) For any k ≥ k̃BGD
1,n + k̃BGD

2,n + 1, define β̂e = β̂k. We have that Theorem 1.1(iii) and (iv) hold.

Proof of Theorem 1.2. See subsection 1.7.2.

Theorem 1.2 shows that the choice of the learning rate basically does not affect the convergence

rate as well as the asymptotic distribution of the BGD estimators. The main advantage of using

a sequence of decaying learning rates is that we do not need to choose the constant δ as required

in Theorem 1.1, since for k sufficiently large, δk ≤ 2/
(
3λe
)

will automatically hold. However,

the disadvantage of using decaying learning rates is that such procedure takes much longer time

to converge because the magnitude of the update in the k-th round decreases as k increases. For

instance, suppose that we choose δk ∼ k−υ for some 0 ≤ υ < 1, we have that
∑k

j=1 δj ∼ k1−υ. Then

to ensure that
∑k̃BGD

1,n

j=1 δj ≥ λ−1
e

(
log n+ 2 log

∥∥∆βe,1

∥∥), we need k̃BGD
1,n ∼ (log n)

1
1−υ . Obviously,

setting υ = 0 leads to k ∼ log n, which corresponds to the requirement in Theorem 1.1(i); when

υ > 0, we can see that more rounds of iteration is needed compared with required in Theorem 1.1(i).
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1.3 Semiparametric BGD Estimation

In the previous section, we focused on iterative estimators based on the BGD algorithm for the

parametric binary choice models. We show that when the CDF of the error term is known, the

iterative estimators based on the BGD algorithm are consistent and attain asymptotic normality

under mild conditions. However, having prior knowledge of the form of G is generally too strong an

assumption. In most applications, the source of the individual shock u in Assumption 1.1 is difficult

to justify, which makes it quite difficult, if not completely impossible, to know the exact expression

of G. In this scenario, the algorithm proposed in the previous section is infeasible. To overcome such

problem, this section generalizes the BGD estimator proposed in Section 1.2 to the semiparametric

setting where G is unknown.

In this setup, to ensure identification we set β⋆
0 to be 1, so our estimation target is β⋆. To simplify

our notation, we denote the space of X as X , and the corresponding parameter space of β as B.

Suppose that an initial guess for β⋆ is given by β1. In the k-th round of iteration, to update β based

on the BGD algorithm, we require the knowledge of G as in Section 1.2, which is infeasible when G is

unknown. A natural idea is that we can construct an estimator for G based on the index constructed

from the updated parameter in the previous round. More intuitively, suppose for a moment that in

the k-th round of iteration, βk happens to be identical to the unknown true parameter β⋆, then we

have that G (z) = E
[
y|X0 +XTβ⋆ = z

]
= E

[
y|X0 +XTβk = z

]
for any z ∈ R.

This motivates semiparametric estimation by using nonparametric methods to estimate G (·). We

consider kernel estimation and the method of sieves in each of the following subsections.

1.3.1 The KBGD Estimator

In this section we consider tkernel estimation to estimate G (·). The Nadaraya-Watson kernel esti-

mator of G (·) is of the form

Ĝ (z|βk) =

∑n
j=1Khn

(
z −X0,j −XT

j βk

)
yj∑n

j=1Khn

(
z −X0,j −XT

j βk

) , z ∈ R, (1.5)

where Kh (·) = h−1K (·/h), K (·) is some kernel function, and hn is some bandwidth parameter

depending on n. Given the estimated CDF Ĝ ( ·|βk), we can update the parameter as if it were the
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true CDF G (·). In particular, βk is updated as

βk+1 = βk −
δk
n

n∑
i=1

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xi. (1.6)

Keep updating βk based on (1.5) and (1.6), until some terminating conditions are reached. The

resulting estimator is labeled as the kernel-based batch gradient descent estimator (KBGD estimator).

We summarize our algorithm as follows in algorithm 2.

Algorithm 2: The KBGD Estimator
input : Data set {(Xe,i, yi)}ni=1, sequence of learning rate {δk}∞k=1, initial guess β1,

kernel function K, bandwidth hn, and terminating condition T
output: The KBGD estimator β̂

1 k ← 1;
2 while The terminating condition T is not satisfied do
3 for i← 1 to n do

4 Ĝ
(
X0,i +XT

i βk

∣∣βk

)
←

∑n
j=1 Khn(X0,i+XT

i βk−X0,j−XT
j βk)yj∑n

j=1 Khn(X0,i+XT
i βk−X0,j−XT

j βk)
;

5 βk+1 ← βk − δk
n

∑n
i=1

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xe,i;

6 k ← k + 1;

7 β̂ ← βk;

Remark 1.3. In essence, the KBGD estimator can not be classified as a BGD estimator based on

a semiparametric loss function. In the semiparametric setup, given any loss function ℓG (β,Xe, y)

(quadratic distance in Ichimura (1993), log-likelihood in Klein and Spady (1993), or loss function

given in (1.3)) with unknown function G, it’s a common practice to replace G with its nonparametric

estimator Ĝ and then minimize (or maximize) the resulting loss function to obtain the estimator of

β. Note that under the single-index framework, Ĝ usually involves the unknown parameter β, which

is of the form Ĝ (·) = Ĝ ( ·|β). In this scenario, the BGD estimator is constructed by the following

iteration

βBGD
k+1 = βBGD

k − δk
n

n∑
i=1

∂ℓĜ( ·|βBGD
k )

(
βBGD
k ,Xe,i, yi

)
∂β

,

where ∂ℓĜ( ·|βBGD
k )

(
βBGD
k ,Xe,i, yi

)
/∂β involves ∂Ĝ ( ·|βk) /∂β, a complicated functions of βk. In

particular, the BGD estimator under loss function (2.7) is given by

βk+1 = βk −
δk
n

n∑
i=1

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
+

∫ X0,i+XT
i βk

−∞

∂Ĝ (z|βk)

∂β
dz − yi

)
Xi.

Obviously, an additional term is introduced compared with (1.6). On the contrary, during the con-

struction (1.6), we take G as given when taking the first order derivative of the loss function and
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then replace the unknown G with its non-parametric estimator in the derivative. More specifically,

the KBGD estimator is updated as follows

βk+1 = βk −
δk
n

n∑
i=1

∂ℓG (βk,Xe,i, yi)

∂β

∣∣∣∣
G(·)=Ĝ( ·|βk)

,

so additional terms involving ∂Ĝ ( ·|βk) /∂β are avoided. Finally, as we discussed in Section 1.2, the

derivative of loss function (1.3) with respect to β depends only on G, so we also avoid approximating

the derivative of G, which has poorer finite-sample performance compared with approximating G.

Such update also ensures contraction map under some conditions, see ??.

For any fixed z and β, under mild conditions there holds Ĝ (z|β)→p E
[
y|X0 +XTβ = z

]
. Denote

such limit as L (z,β). Obviously, L (z,β⋆) = G (z) holds for any z ∈ R. Before we move to a formal

description of the statistical properties of the KBGD estimator based on (1.6), we first provide

some further discussion on L (z,β). For simplicity, in the following we only focus on the case where

all the covariates are continuous which permit continuous joint density function. We leave further

discussion of the case where some covariates are discrete to Remark 1.6. We point that when there

are discrete covariates, our algorithm can be directly applied without any modification, although

some further assumptions will be required.

When all the covariates are continuous, denote the joint density of Xe and X as fe (Xe) = fe (X0,X)

and f (X) =
∫
fe (X0,X) dX0, respectively. Denote z (Xe,β) = X0+XTβ. Also denote fX,z (X, z|β)

as the joint density of X and z (Xe,β) given β. Note that for any x and z,

P [X ≤ x, z (Xe,β) ≤ z] =
∫
X̃≤x,X̃0+X̃Tβ≤z

fe

(
X̃0, X̃

)
dX̃0dX̃

=

∫
X̃≤x

[∫
X̃0≤z−X̃Tβ

fe

(
X̃0, X̃

)
dX̃0

]
dX̃.

This implies that the joint density of X and z (Xe,β) given β is given by

fX,z (X, z|β) = fe
(
z −XTβ,X

)
, (1.7)

and the marginal density of z (Xe,β) is given by

fz (z|β) =
∫
X
fX,z (X, z|β) dX =

∫
X
fe
(
z −XTβ,X

)
dX. (1.8)
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Define fX|z (X| z,β) = fX,z (X, z|β) /fz (z|β) as the conditional density of X given z and β, we

have that

L (z,β) = E
(
G
(
z −XT∆β

)∣∣∣ z (Xe,β) = z
)

=

∫
X
G
(
z −XT∆β

)
fX|z (X| z,β) dX, (1.9)

where ∆β = β − β⋆.

Based on the above notations, now we formally study the asymptotic properties of the KBGD

estimator under increasing dimensions. We first introduce some further assumptions.

Assumption 1.3. The kernel function K (·) satisfies: (i) K is bounded and twice continuously

differentiable with bounded first and second derivatives, and the second derivative satisfies Lipschitz

condition on the whole real line; (ii)
∫
K (s) ds = 1; (iii) there exists positive integer υK such that∫

sυK (s) du = 0 for 1 ≤ υ ≤ υK − 1 and
∫
uυKK (u) du ̸= 0; (iv) K (s) = 0 for |s| > 1.

Assumption 1.4. (i) There exists some constant ζ > 1 such that ζ−1 ≤ fe (Xe) ≤ ζ holds for all

Xe ∈ Xe; (ii) there exists positive integer υf such that fe (Xe) has bounded up to υf -th derivatives.

Remark 1.4. Assumption 1.4(i) together with Assumption 1.2(i) is a commonly-used assumption

in the machine learning literature (e.g., Wager and Athey, 2018). It basically requires that the joint

density of Xe is uniformly bounded from both above and below over Xe, so the density does not

degenerate over Xe. Assumption 1.4(i) basically allows us to construct a subset of Xe such that

fz (z (Xe,β) |β) is uniformly lowered bounded from zero over such subset.

The following lemma will be useful in the proof of our theorem.

Lemma 1.1. Suppose that Assumption 1.1, Assumption 1.2(i)-(iii), Assumption 1.3, and Assump-

tion 1.4 hold with υG = 3, υK = 2, and υf = 3. Define ψ (n, p, h) = h−1
√

log (pnh−1) /n + h2. If

hn → 0 and p
5p+1

2(p+1)ψ
1

p+1 (n, p, hn)→ 0 further hold, we have that

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

Ĝ (z (Xe,i,β)|β)Xi − E [L (z (Xe,i,β) ,β)Xi]

∥∥∥∥∥ =Op

(
p

5p+1
2(p+1)ψ

1
p+1 (n, p, hn)

)
.

Proof of Lemma 1.1. See subsection 1.7.1.

Lemma 1.1 implies that 1
n

∑n
i=1 Ĝ (Z (Xe,i,β)|β)Xi will be closer to E [L (z (Xe,i,β) ,β)Xi] uni-

formly with respect to β as n increases. Note that such uniform convergence results are free of
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trimming; we do not need to trim Xe,i even when the density of z (Xe,i,β) is small. So even when

Ĝ (z (Xe,i,β)|β) is a poor estimator for L (z (Xe,i,β) ,β) for some Xe,i and β, our results are still

valid. While on the same time, the cost of not conducting any trimming is that our guaranteed con-

vergence rate depends heavily on the dimensionality. As is required in Lemma 1.1, the dimension p

must satisfy p
5p+1

2(p+1)ψ
1

p+1 (n, p, hn) → 0. Suppose that p/n → 0 and we choose hn = ((log n) /n)
1/6,

we have that ψ (n, p, hn) ∼ ((log n) /n)
1/3. This implies that when p is fixed, the convergence

rate in Lemma 1.1 is ((log n) /n)
1/3(p+1). When p increases with n, the dimension p should satisfy

p log p = O (log n), implying that p is allowed to increase only mildly with n. The restriction on p

basically comes from the fact that as Xe,i moves towards the boundary of Xe, the density of random

variable z (Xe,i,β) decreases faster towards zero given a larger p, which makes the convergence rate

sensitive to the increase of p.

For notational simplicity, in the following we denote z (Xe,i,βk) and z (Xe,i,β
⋆) as zi,k and z⋆i .

Based on the results in Lemma 1.1, we have that under all conditions as imposed in Lemma 1.1,

there holds

βk+1 = βk − δkE [(L (zi,k,βk)−G (z⋆i )) ·Xi] + δk · (small order terms) . (1.10)

Note that zi,k = z⋆i + XT
i ∆βk and L (zi,k,βk) =

∫
X G

(
zi,k −XT∆βk

)
fX|z (X| zi,k,βk) dX, so

(L (zi,k,βk)−G (z⋆i )) ·Xi equals to

{∫
X

[
G
(
z⋆i +XT

i ∆βk −XT∆βk

)
−G (z⋆i )

]
fX|z (X| zi,k,βk) dX

}
·Xi

=

∫ 1

0

∫
X

[
G′
(
z⋆i + t (Xi −X)

T
∆βk

)
fX|z (X| zi,k,βk)

(
XiX

T
i −XiX

T
)]

∆βkdXdt, (1.11)

where the integration is understood to be element-wise. To further simplify our notation, define

W
(
Xe, X̃e,β

)
= G′

(
z (Xe,β

⋆) +
(
X− X̃

)T
∆β

)
fX|z

(
X̃,
∣∣∣ z (Xe,β) ,β

)
,

V
(
Xe, X̃e,β

)
=
(
XXT −XX̃

T
)
W
(
Xe, X̃e,β

)
,

and

Λ (β) = E
[∫

X
V (Xe,i,Xe,β) dX

]
,
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we have that

E [(L (zi,k,βk)−G (z⋆i )) ·Xi] =

∫ 1

0

Λ (β⋆ + t∆βk)∆βkdt,

which indicates that

∆βk+1 =

{∫ 1

0

(Ip − δkΛ (β⋆ + t∆βk)) dt

}
∆βk + δk · (small order terms) .

To ensure that with probability going to 1 the above iteration shrinks ∥∆βk∥, we make the following

assumption.

Assumption 1.5. There hold

sup
β∈B

λ
(
Λ (β) + ΛT (β)

)
≤ λΛ <∞,

and

inf
β∈B

λ
(
Λ (β) + ΛT (β)

)
≥ λΛ > 0.

Based on the above assumptions, we have the following result.

Theorem 1.3. Suppose that Assumption 1.1, Assumption 1.2(i)–(iii), Assumption 1.3–?? hold with

υG = 3, υK = 2, and υf = 3, δk = δ such that δ < min
{
1/ (2λΛ) , 1/

(
4p2 ∥G′∥∞

)}
, and that β is

updated based on algorithm 2. Define

kKBGD
1,n =

log (∥∆β1∥)− log
(
p

5p+1
2(p+1)ψ

1
p+1 (n, p, hn)

)
− log (1− δλΛ/4)

.

Then if hn → 0 and p
5p+1

2(p+1)ψ
1

p+1 (n, p, hn)→ 0 hold, we have that

sup
k≥kKBGD

1,n +1

∥∆βk∥ = Op

(
p

5p+1
2(p+1)ψ

1
p+1 (n, p, hn)

)
.

In particular, if hn is chosen such that hn = ((log n) /n)
1/6, then

sup
k≥kKBGD

1,n +1

∥∆βk∥ = Op

(
p

5p+1
2(p+1)

(
log n

n

) 1
3p+3

)
.

Proof of Theorem 1.3. See subsection 1.7.2.

Theorem 1.3 implies that the iterative estimator based on (1.5) and (1.6) is consistent under in-
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creasing dimensions, no matter whether the starting point is close to the unknown true parameter

or not. However, the convergence speed heavily depends on the dimensionality of the problem, p,

even when p is fixed. This is not ideal under our single-index setup but is not surprising since our

algorithm does not involve any trimming procedure.

We proceed to establish the asymptotic normality of the KBGD estimator. Due to technical diffi-

culties, throughout the following analysis in this section we only consider the case where p is fixed.

As we can see in Theorem 1.3, even in the case of fixed dimensionality, the guaranteed convergence

rate of the KBGD estimator based on (1.5) and (1.6) is at best ((log n) /n)
1

3p+3 , which still depends

on p. To obtain asymptotic normality, we need to slightly modify our algorithm to get rid of the

dependence on dimensionality. In particular, we introduce trimming to our algorithm. When up-

dating the parameter, we only use observations that fall into a pre-selected region as did in Ichimura

(1993). In particular, the algorithm is modified as,

βk+1 = βk −
δk
n

n∑
i=1

Iϕi ·
(
Ĝ (zi,k|βk)− yi

)
Xi, (1.12)

where Ĝ (zi,k|βk) = Ĝ (z (Xe,i,βk)|βk) is defined in (1.5), Iϕi = I
(
Xe,i ∈ X ϕ

e

)
, and X ϕ

e is a subset

of Xe given by

X ϕ
e = {Xe ∈ Xe : |Xj | ≤ 1− ϕ, 0 ≤ j ≤ p} (1.13)

for some ϕ > 0 whose value will be determined later. Different from (1.6), the update of βk based

on (1.12) uses only a subset of the whole sample for which the covariate vector Xe,i falls into X ϕ
e .

The reason why we choose the trimming set as in (1.13) is that, as we show in the subsection 3.8.1,

for any 0 < ϕ < 1, there holds inf(Xe,β)∈Xϕ
e ×B fz (z (Xe,β)|β) ≥ Cϕpp−p for some constant C > 0

that depends on ϕ. When p and ϕ are both fixed, fz (z (Xe,β)|β) is uniformly lower bounded from

zero for any combination (Xe,β) ∈ X ϕ
e ×B, so the uniform estimation accuracy of L (z (Xe,i,β) ,β)

over Xe,i and β will be improved. Note that trimming will cause some efficiency loss by dropping

some observations, but such loss can be controlled to be small if we choose ϕ to be close to zero. We

also point that trimming is only applied to the update of the parameter; when nonparametrically

estimating G, we still use all the data points.

To simplify our following notation, given the trimming parameter ϕ, we denote Iϕ ·X as Xϕ. We

also define

Λϕ (β) = E
[
Iϕi ·

∫
X
V (Xe,i,Xe,β) dX

]
.
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The following theorem provides a counterpart to the results in Theorem 1.3.

Theorem 1.4. Suppose that all the assumptions and conditions on υG, υK , and υf in Theo-

rem 1.3 hold. Suppose moreover that hn → 0, δk = δ < min
{
1/ (2λΛ) , 1/

(
4p2 ∥G′∥∞

)}
, ϕ <

δλΛ/
(
16p2 ∥G′∥∞ ζ

)
, and that β is updated under (1.5) and (1.12) (the trimmed version of algo-

rithm 2). Define

k̃KBGD
1,n =

log (∥∆β1∥)− log (ψ (n, p, hn))

− log (1− δλΛ/8)
,

then there holds

sup
k≥k̃KBGD

1,n +1

∥∆βk∥ = Op (ψ (n, p, hn)) .

Proof of Theorem 1.4. See subsection 1.7.2.

Note that when p is fixed, ψ (n, p, hn) no longer depends on p asymptotically. The improvement

over the convergence rate basically comes from the improvement of the uniform convergence rate

of the kernel estimator due to trimming. Also note that under trimming, the minimum number of

iteration in Theorem 1.3(i), k̃KBGD
1,n , is of order log n as long as nhn →∞. This implies that under

trimming, a faster convergence rate is guaranteed with the minimum number of iterations being of

the same magnitude as that of the estimator without trimming.

We now proceed to establish the asymptotic normality of βk. Define

ξϕn =
1

n

n∑
i=1

(
Ĝ (z⋆i |β

⋆)− yi
)
Xϕ

i .

We note that

∆βk+1 = ∆βk −
δk
n

n∑
i=1

(
Ĝ (zi,k|βk)− yi

)
Xϕ

i ,

= ∆βk −
δk
n

n∑
i=1

(
Ĝ (zi,k|βk)− Ĝ (z⋆i |β

⋆)
)
Xϕ

i − δkξ
ϕ
n

=

∫ 1

0

Ip − δk
n

n∑
i=1

Xϕ
i

∂Ĝ (z (Xe,i,β)|β)
∂βT

∣∣∣∣∣
β=β⋆+t∆βk

 dt∆βk − δkξ
ϕ
n, (1.14)

where the integration is understood to be element-wise. To understand the properties of the above

algorithm, we need the following lemmas.

Lemma 1.2. Suppose that all the assumptions in Theorem 1.3 hold with υG = 4, υK = 3, and
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υf = 4. For any sequence of subset {Bn}∞n=1 with Bn ⊆ B, we have that

sup
β∈Bn

∥∥∥∥∥ 1n
n∑

i=1

Xϕ
i

∂Ĝ (z (Xe,i,β)|β)
∂βT

− Λϕ (β)

∥∥∥∥∥ = Op

(
h−2
n

√(
log
(
nh−1

n

))
/n+ h3n + sup

β∈Bn

∥∆β∥

)
.

Proof of Lemma 1.2. See subsection 1.7.1.

Lemma 1.3. Suppose that all the assumptions in Theorem 1.3 hold with υG = 4, υK = 3, and

υf = 4. If hn is chosen such that h6nn→ 0, we have that
√
nξϕn →d N

(
0,Σϕ

ξ

)
, where

Σϕ
ξ = E

[
(1−G (z⋆i ))G (z⋆i )

(
Xϕ

i − E
(
Xϕ

i

∣∣∣ z⋆i ))(Xϕ
i − E

(
Xϕ

i

∣∣∣ z⋆i ))T] .
Proof of Lemma 1.3. See subsection 1.7.1.

Now we are in a position to illustrate the results of the asymptotic normality of our KBGD estimator.

Theorem 1.5. Suppose that all the assumptions in Theorem 1.3 hold with υG = 4, υK = 3, and

υf = 4. Suppose moreover that δk = δ < min
{
1/ (2λΛ) , 1/

(
4p2 ∥G′∥∞

)}
, ϕ < δλΛ/

(
16p2 ∥G′∥∞ ζ

)
,

hn is chosen such that nh6n → 0 and h4nn/ (log n)
2 → ∞, and that β is updated under (1.5) and

(1.12). Then

(i) There holds

sup
k≥k̃KBGD

1,n +kKBGD
2,n +1

∥∆βk∥ = Op

(
n−1/2

)
,

where kKBGD
2,n is given by

kKBGD
2,n =

log
(
n1/2

)
+ log (ψ (n, p, hn))

− log (1− δλΛ/16)
;

(ii) Define β̂ = β̂k for any k − k̃KBGD
1,n − kKGBD

2,n →∞, we have that

√
n
(
β̂ − β⋆

)
→ N

(
0,Σϕ

β

)
,

where Σϕ
β = Λ−1

ϕ (β⋆) Σϕ
ξ

(
Λ−1
ϕ (β⋆)

)T
.

Proof of Lemma 2.3. See subsection 1.7.2.

We introduce the estimator for the variance matrix, based on which the confidence interval of β⋆
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can be then constructed.

Theorem 1.6. Suppose that all the assumptions and conditions in Theorem 1.5 hold. Suppose also

that β̂ is defined as in Theorem 1.5. Define

Σ̂ϕ
ξ =

1

n

n∑
i=1

(
Ĝi

(
1− Ĝi

)(
Xϕ

i − Ê
(
Xϕ

i

∣∣∣ ẑi))(Xϕ
i − Ê

(
Xϕ

i

∣∣∣ ẑi))T) ,
and

Λ̂ϕ

(
β̂
)
=

1

n

n∑
i=1

Xϕ
i

∂Ĝ
(
z
(
Xe,i, β̂

)∣∣∣ β̂)
∂βT

,

where

Ĝi =

∑n
j=1Khn

(ẑi − ẑj) yj∑n
j=1Khn

(ẑi − ẑj)
, Ê

(
Xϕ

i

∣∣∣ ẑi) =

∑n
j=1Khn

(ẑi − ẑj)Xϕ
j∑n

j=1Khn
(ẑi − ẑj)

,

and ẑi = X0,i +XT
i β̂. Then we have that

∥∥∥∥Λ̂−1
ϕ

(
β̂
)
Σ̂ϕ

ξ

(
Λ̂−1
ϕ

(
β̂
))T

− Σϕ
β

∥∥∥∥→p 0.

Proof of Theorem 1.6. See subsection 1.7.2.

We finally provide some remarks for the KBGD estimators.

Remark 1.5. We first provide some remarks on the implementation of our KBGD estimator. The

KBGD estimator might be sensitive to the data magnitude. So when implementing such an esti-

mator, we recommend first standardizing the data so that each covariate has zero mean and unit

variance. Note that when constructing the KBGD estimator, we normalize the coefficient of X0,i to

1, indicating that the coefficients of Xe,i can not all be zeros. So we need to test whether at least

one covariate affects the conditional probability of yi = 1. One option is to run a Logit or Probit

regression and test whether all the coefficients are equal to zero.

When applying our algorithm, it is also crucial to determine the learning rate δ, bandwidth of kernel

estimator hn, and terminating conditions of the algorithm. In Theorem 1.5, the tuning parameter

δ is required to be smaller than 1/ (2λΛ) and 1/
(
4p2 ∥G′∥∞

)
, neither of which is known. So we

recommend setting δ to be 1 in the first place, and gradually shrink it if the iteration does not

converge. For the choice of the bandwidth hn, Lemma 2.3 requires that hn is chosen such that

nh6n → 0 and nh4n/ (log n)
2 → ∞. As a rule of thumb, we recommend choosing hn = C · n−1/5.

For the choice of the constant C, we can choose C = Ck = std (zi,k) for the k-th round of iteration

18



and C = std (ẑi) when estimating the variance Σϕ
β. We finally discuss the terminating conditions.

As we show in Theorem 1.5, to obtain root-n consistency and asymptotic normality, the iteration

number is required to be only of order log (n). However, such rule can not be directly applied to

determine the number of iterations since the initial distance ∥∆β1∥ as well as the lower bounded on

the eigenvalues λΛ are both unknown. We recommend the terminating condition max1≤j≤p |β̂j,k+1−

β̂j,k| < ϱ for some predetermined tolerance ϱ. During the simulation, we choose ϱ = 10−5. Note

that in many cases, max1≤j≤p |β̂j,k+1 − β̂j,k| may not be monotonically decreasing with k; in some

extreme cases, max1≤j≤p |β̂j,k+1 − β̂j,k| may even be oscillating and does not shrink to zero. On

these condition, we recommend decreasing δ or choosing hn = C · n−1/5 with C = 1 when iterating.

If the maximum distance still oscillates, we recommend stop iteration when the maximum distance

achieves its minimum value.

Remark 1.6. Our previous discussion has be confined to the case where all the covariates are

continuously distributed, while our algorithm can be directly applied to the case where there are

discrete covariates without any modifications. The basic reason is that, in contrast to the average

derivative approach (Stoker, 1986; Powell et al., 1989) that uses the differentiation with respect to

covariates, the KBGD estimator performs differentiation with respect to the parameters, so it does

not impose requirements on the continuity of the covariates. It should be noted that we do require

at least one continuous covariate to guarantee identification of the parameters. For simplicity, we

recommend choosing a continuous covariate as the standardization covariate X0. Finally, we point

out that stronger assumption should be imposed to make our results valid when there are discrete

covariates. In particular, suppose that Xe =
(
XT

c ,X
T
d

)T, where Xc is the collection of all the

continuous covariates, whereas Xd is the collection of all the discrete covariates. Also denote the

density function of Xc conditional on Xd as fXc|Xd
(Xc|Xd). Then we require that all the conditions

imposed on the fe (Xe) hold for fXc|Xd
(Xc|Xd) for any realizations of Xd.

1.3.2 The SBGD Estimator

In the previous section, we introduced the KBGD algorithm, where the update of the parameter

is based on a BGD-type procedure while the unknown CDF is replaced with its Nadaraya-Watson

kernel estimator constructed by the initial parameter. In this section, we consider an alternative

nonparametric approximation for the unknown CDF based on the method of sieves. Given a set of

basis functions {rj (z)}∞j=0 that is complete in C (R) space, any smooth CDF G can be represented
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by G (z) =
∑∞

j=0 π
⋆
j rj (z) for any z ∈ R, where {π⋆

j }∞j=0 is the unknown coefficients of the basis

functions. In practice, to make our algorithm tractable, we truncate the sequence of the basis

functions and only use the first q+1 basis functions for approximation, where q increases with sample

size n at some rate. To approximate G, it then remains to provide an estimator for the unknown

coefficients of the basis functions {π⋆
j }

q
j=0. Our estimation procedure for {π⋆

j }
q
j=0 shares similar

intuition as the one that motivates the Nadaraya-Watson kernel estimator in the previous section. In

particular, suppose for a moment that in the k-th round of update, we start with βk, which happens

to be identical to the unknown true parameter β⋆. In this case, define rq(z) = (r0 (z) , · · · , rq (z))T

and π⋆
q =

(
π⋆
1 , · · · , π⋆

q

)T, we have that

yi = G (zi,k) + εi ≈ rTq (zi,k)π
⋆
q + εi,

where recall that zi,k = X0,i+XT
i βk. The above relationship motivates the following OLS estimator

for the sieve coefficients

π̂q,n,k =

(
n∑

i=1

rq (zi,k) r
T
q (zi,k)

)−1( n∑
i=1

rq (zi,k) yi

)
. (1.15)

Given the estimator of the sieve coefficients π̂q,n,k, the unknown CDF G in the k-th round of update

is approximated by

Ĝ (z|βk) = rTq (z) π̂n,q,k, −∞ < z <∞. (1.16)

Based on the estimated CDF Ĝ (z|βk), the update of the parameter can be carried out based on

(1.6). We iterate sequentially based on (1.15), (1.16) and (1.6) until some terminating conditions are

satisfied. The resulting estimator is then labeled as the sieve-based batch gradient descent estimator

(SBGD estimator). We summarize our algorithm as follows in algorithm 3.

Remark 1.7. In the above SBGD procedure, we update the sieve parameter based on the OLS-type

estimation. An alternative procedure can be based on the flexible Logit regression proposed by Hirano

et al. (2003). The advantage of using flexible Logit regression is that the estimated CDF Ĝ (z|βk)

always falls between 0 and 1 for all z, which makes the update more stable. While the disadvantage

of such update is that the flexible Logit regression is based on MLE, which does not allow for an

analytical solution. Using numerical optimization to solve for the sieve coefficients in each round of

update will add to additional computational burdens.

Remark 1.8. Compared with the KBGD algorithm, the SBGD procedure has at least two advantages.
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Algorithm 3: The SBGD Estimator
input : Data set {(Xe,i, yi)}ni=1, sequence of learning rate {δk}∞k=1, initial guess β1, the

order of sieves q, sieve functions r(z) = r0 (z) , · · · , rq (z), and terminating
condition T

output: The SBGD estimator β̂

1 k ← 1;
2 while The terminating condition T is not satisfied do
3 π̂q,n,k ←

(∑n
i=1 rq

(
X0,i +XT

i βk

)
rTq
(
X0,i +XT

i βk

))−1 (∑n
i=1 rq

(
X0,i +XT

i βk

)
yi
)
;

4 for i← 1 to n do
5 Ĝ

(
X0,i +XT

i βk

∣∣βk

)
← rTq

(
X0,i +XT

i βk

)
π̂q,n,k;

6 βk+1 ← βk − δk
n

∑n
i=1

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xe,i;

7 k ← k + 1;

8 β̂ ← βk;

On the one side, the sieve-based approximation for the unknown CDF is global and guarantees

uniform approximation error rate. This allows us to update the parameter without performing any

form of trimming as we did for the KBGD estimator. Moreover, this allows us to develop the

asymptotic distribution of the SBGD estimator for the case of increasing dimensionality. On the

otherhand, the KBGD procedure relies on the kernel estimation of CDF G at n data points, whose

computational complexity of each update is of order O
(
n2
)
. While the most time-consuming part

of the SBGD procedure is the OLS procedure (1.15), whose computational complexity is of order

O
(
nq2 + q3

)
. When q/

√
n → 0, the computational burden of SBGD estimator will be substantially

lower than that of KBGD estimator.

Define Rq (z) = G (z) − rT (z)π⋆
q , Γq,n (β) = 1

n

∑n
i=1 rq

(
X0,i +XT

i β
)
rTq
(
X0,i +XT

i β
)
, Γq,n,k =

Γq,n (βk), and Xq,n (z,β) =
1
n

∑n
i=1

(
rTq
(
X0,i +XT

i β
)
Γ−1
q,n (β) rq (z)Xi

)
. Through tedious algebra,

we can show that the SBGD procedure has the following representation,

βk+1 = βk −
δk
n

n∑
i=1

(Xi − Xq,n (zi,k,βk)) (G (zi,k)−G (z⋆i ))

− δk
n

n∑
i=1

Xir
T
q (zi,k) Γ

−1
q,n,k

 1

n

n∑
j=1

rq (zj,k)Rq (zj,k) +
1

n

n∑
i=1

rq (zj,k) εj


+
δk
n

n∑
i=1

(Rq (zi,k)Xi + εiXi) , (1.17)

where recall that z⋆i = X0,i +XT
i β

⋆. To study the properties of the above procedure, we introduce

some additional assumptions.

Assumption 1.6. (i) There holds max0≤j≤q ∥rj∥∞ ≤ Dq,0, max0≤j≤q

∥∥r′j∥∥∞ ≤ Dq,1, and max0≤j≤q

∥∥r′′j ∥∥∞ ≤
21



Dq,2; (ii) Define Γq (β) = E
(
rq
(
X0 +XTβ

)
rTq
(
X0 +XTβ

))
, there hold infβ∈B λ (Γq (β)) ≥ λΓ >

0 and supβ∈B λ (Γq (β)) ≤ λΓ < ∞ for all q; (iii) There hold supz∈R

∣∣G (z)− rT (z)π⋆
q

∣∣ ≤ Eq,0 and

supz∈R

∣∣∣G′ (z)− (r′ (z))
T
π⋆

q

∣∣∣ ≤ Eq,1, where r′(z) =
(
r′0(z), · · · , r′q(z)

)T.

For any −∞ < z <∞, define the population counterpart of Xq,n (z,β) as

Xq (z,β) = E
(
rTq (z (Xe,β)) Γ

−1
q (β) rq (z)X

)
.

Then we have the following lemma.

Lemma 1.4. Define χ1,n =
√
pq2D4

q,0 log (pqDq,0Dq,1n) /n, and χ2,n =
√
pqD2

q,0 (χ1,n + Eq,0) .

Suppose that Assumption 1.1, Assumption 1.2(i)-(iii), and Assumption 1.6 hold, and moreover,

υG ≥ 1 and the combination of p, q and υG guarantees that χ1,n → 0 as n→∞. Then the following

holds,

βk+1 = βk − δkE [(X− Xq (z (Xe,βk) ,βk)) (G (z (Xe,βk))−G (z (Xe,β
⋆)))] + δkRn,k,

where supk≥1 ∥Rn,k∥ = Op (χ2,n).

Proof of Lemma 1.4. See subsection 1.7.1.

Obviously, Lemma 1.4 provides a parallel result to (1.10). In particular, define

Ψq (t,β) = E
[
G′ (z (Xe,β

⋆) + tXT∆β
) (

XXT − Xq (z (Xe,β) ,β)X
T
)]
,

under all the conditions imposed in Lemma 1.4, we have that

∆βk+1 =

{∫ 1

0

(Ip − δkΨq (t,βk)) dt

}
∆βk + δkRn,k. (1.18)

Obviously, (1.18) is also a parallel result to (1.11). As a result, to ensure that (1.18) actually consti-

tutes a contraction for ∥∆βk∥, we impose the following assumption that is similar to Assumption 2.5.

Assumption 1.7. For any q ≥ 0, there hold

inf
0≤t≤1,β∈B

λ
(
Ψq (t,β) + ΨT

q (t,β)
)
≥ λΨ > 0,
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sup
0≤t≤1,β∈B

λ
(
Ψq (t,β) + ΨT

q (t,β)
)
≥ λΨ <∞.

Based on the above assumptions, we have the following result.

Theorem 1.7. Suppose that Assumption 1.1, Assumption 1.2(i)-(iii), Assumption 1.6 and As-

sumption 1.7 hold, υG ≥ 1, and the combination of p, q and υG guarantees that χ1,n → 0 as

n → ∞. Suppose moreover that the learning rate is chosen such that δk = δ with 0 < δ <

min
{
1/ (2λΨ) , λΨ/

(
2 ∥G′∥2∞ p2

{
1 + λ−1

Γ qD2
q,0

}2)}
, and that β is updated based on algorithm 3.

Define

kSBGD
1,n =

log (∥∆β1∥)− log (χ2,n)

− log (1− λΨδ/4)
,

then we have that

sup
k≥kSBGD

1,n +1

∥∆βk∥ = Op (χ2,n) .

Proof of Theorem 1.7. See subsection 1.7.2.

According to Theorem 1.7, when χ2,n → 0 as n→∞, the SBGD estimator is consistent as long as

the number of updates exceeds kSBGD
1,n . Based on such consistent estimator, we are ready to establish

the asymptotic normality of our SBGD estimator. Apply the mean value theorem to (1.17), we have

that

∆βk+1 =

{
Ip − δk

∫ 1

0

1

n

n∑
i=1

G′ (z⋆i + tXT
i ∆βk

) (
XiX

T
i − Xq,n (zi,k,βk)X

T
i

)
dt

}
∆βk

− δk
n

n∑
i=1

Xir
T
q (zi,k) Γ

−1
q,n,k

 1

n

n∑
j=1

rq (zj,k)Rq (zj,k) +
1

n

n∑
i=1

rq (zj,k) εj


+
δk
n

n∑
i=1

(Rq (zi,k)Xi + εiXi) .

Define Ψ⋆
q = E

[
G′ (z (Xe,β

⋆))
(
XXT − Xq (z (Xe,β

⋆) ,β⋆)XT
)]

and Vq = E
(
Xir

T
q (z⋆i ) Γ

−1
q (β⋆)

)
.

Similar to Lemma 1.2 and Lemma 1.3, we provide two additional lemmas that are useful to under-

stand the above algorithm.

Lemma 1.5. Suppose that Assumption 1.1, Assumption 1.2(i)-(iii), and Assumption 1.6 hold,

υG ≥ 2 and the combination of p, q and υG guarantees that χ1,n → 0 as n → ∞. Then for any
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sequence {Bn}∞n=1 with Bn ⊆ B we have that

sup
0≤t≤1,β∈Bn

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq,n (z (Xe,i,β) ,β)X

T
i

)
−Ψ⋆

q

∥∥∥∥∥
= Op

(
pqD2

q,0χ1,n +
√
p3q2D3

q,0Dq,1 sup
β∈Bn

∥∆β∥

)
.

Proof of Lemma 1.5. See subsection 1.7.1.

Lemma 1.6. Suppose that Assumption 1.1, Assumption 1.2(i)-(iii), Assumption 1.6, and Assump-

tion 1.7 hold, and the combination of p, q and υG guarantees that χ1,n → 0 as n → ∞. Define

rq,i,k = rq (zi,k), and Rq,i,k = Rq (zi,k). Also define

χ3,n =
√
p2qD2

q,1 log (pqDq,2n) /n,

then we have that

sup
k≥kSBGD

1,n +1

∥∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q,i,kΓ

−1
q,n,k

 1

n

n∑
j=1

rq,j,kRq,j,k +
1

n

n∑
j=1

rq,j,kεj

+

1

n

n∑
i=1

Rq (zi,k)Xi −
1

n

n∑
i=1

Xq (z
⋆
i ,β

⋆) εj

∥∥∥∥∥ = Op (χ4,n) ,

where χ4,n =
√
pqD2

q,0Eq,0 +
√
pqDq,0χ2,nχ3,n + χ2,n

√
p2q4D6

q,0D
2
q,1 (log q) /n.

Proof of Lemma 1.6. See subsection 1.7.1.

Based on the above two lemmas, we are now ready to study the asymptotic distribution of the SBGD

estimator.

Theorem 1.8. Suppose that Assumption 1.1, Assumption 1.2(i)-(iii), Assumption 1.6 and Assump-

tion 1.7 hold, υG ≥ 2, the combination of p, q and υG guarantees that χ1,n → 0 as n→∞, and that

β is updated based on algorithm 3. We have that

(i) There holds

∆βk+1 =
(
Ip − δΨ⋆

q

)
∆βk +

δ

n

n∑
i=1

(Xi − Xq (z
⋆
i ,β

⋆)) εi + R̃n,k,
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where supk≥kSBGD
1,n +1

∥∥∥R̃n,k

∥∥∥ = Op (χ5,n) with

χ5,n =
√
pqD2

q,0 (p+ qDq,0Dq,1)χ
2
2,n + χ4,n;

(ii) Define β̂ = βk+kSBGD
1,n +kSBGD

2,n +1 with

kSBGD
2,n =

− logχ2,n + log
√
n

− log (1− λΨδ/4)
,

and any k ≥ 1. If the combination of p, q and υG further guarantees that
√
nχ5,n → 0 as n → ∞,

we have that
√
n
(
β̂ − β⋆

)
= Ψ⋆−1

q

1√
n

n∑
i=1

(Xi − Xq (z
⋆
i ,β

⋆)) εi + op

(
n−

1
2

)
.

Then for any p × 1 vector ρ such that ∥ρ∥ < ∞ and 1√
n

∑n
i=1 ρ

TΨ⋆−1
q (Xi − Xq (z

⋆
i ,β

⋆)) εi →d

N
(
0, σ2

S (ρ)
)

with

σ2
S (ρ) = lim

n→∞
ρTΨ⋆−1

q E
{
G (z⋆i ) (1−G (z⋆i )) (Xi − Xq (z

⋆
i ,β

⋆)) (Xi − Xq (z
⋆
i ,β

⋆))
T
}(

Ψ⋆−1
q

)T
ρ,

there holds
√
nρT

(
β̂ − β⋆

)
→d N

(
0, σ2

S (ρ)
)

.

Proof of Theorem 1.8. See subsection 1.7.2.

We now provide the estimator for the variance.

Theorem 1.9. Suppose that all the conditions listed in Theorem 1.8 hold and pq2D4
q,0Eq,1 → 0

as n → 0. Let β̂ be as defined as in Theorem 1.8. Define r̂q,i = rq

(
z
(
Xe,i, β̂

))
, r̂′q,i =

r′q

(
z
(
Xe,i, β̂

))
, π̂q =

(∑n
i=1 r̂q,ir̂

T
q,i

)−1

(
∑n

i=1 r̂q,iyi) , Ĝi = r̂Tq,iπ̂, Ĝ
′
i = r̂′Tq,iπ̂q, Ψ̂

⋆
q,i =

1
n

∑n
i=1 Ĝ

′
i·(

XiX
T
i − Xq,n

(
ẑi, β̂

)
XT

i

)
, X̂q,i =

1
n

∑n
j=1 Xj r̂

T
q,jΓ

−1
q,n

(
β̂
)
r̂q,i, and

σ̂2
S (ρ) = ρTΨ̂⋆−1

q

1

n

n∑
i=1

{
Ĝi

(
1− Ĝi

)(
Xi − X̂q,i

)(
Xi − X̂q,i

)T}(
Ψ̂⋆−1

q

)T
ρ,
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Then for any p× 1 vector ρ such that ∥ρ∥ <∞, there holds

∣∣σ̂2
S (ρ)− σ2

S (ρ)
∣∣→p 0.

Proof of Theorem 1.9. See subsection 1.7.2.

We finally provide some remarks on the empirical applications of the SBGD estimator.

Remark 1.9. For the choice of sieve functions, we can use polynomial series for the case where the

error term ui has bounded support and Hermite polynomials for the case where ui has unbounded

support. Note that when using polynomial series
{
1, z, z2, · · · , zq

}
, the correlation between the sieve

functions increases as the approximation order q increases, which may lead to a violation of As-

sumption 1.6(ii). To improve the finite sample performance of our method, we recommend using

Chebyshev or Legendre polynomials. Moreover, in the case where ui has unbounded support, follow-

ing Bierens (2014), we recommend first conducting the following transformation G (z) = G̃ (T (z)),

where T : R 7→ [−1, 1] is a differentiable function, and then using standard Chebyshev or Legendre

polynomials to approximate G̃. For example, in our following simulations and empirical applications

in Section 3.6, we use T (z) = 2π−1 arctan (z). For the uniform error bound of truncated Legendre

polynomials, see Wang and Xiang (2012).

1.4 Monte Carlo Experiments

This section conducts Monte Carlo simulations to study the performance of our KBGD and SBGD

estimators. We focus on two aspects of our estimators. First we study the finite-sample properties

of the KBGD estimator, including the bias and the root mean squared error (RMSE). Let the

j-th argument of the true parameter be β⋆
j , and the simulation is repeated R times, where its

estimator in the r-th round of simulation is β̂r
j , then the bias and RMSE are respectively given

by Bias = | 1R
∑R

r=1(β̂
r
j − β⋆

j )| and RMSE =
√∑R

r=1(β̂
r
j − β⋆

j )
2/R. We also investigate whether

the confidence interval based on the asymptotic distribution has good coverage rate. We consider

nominal coverage rate α = 0.95, so the confidence interval for β⋆
j in the r-th round of repetition is

given by CIrj = [β̂r
j − 1.96 · ŝtd

r

j , β̂
r
j + 1.96 · ŝtd

r

j ], where ŝtd
r

j is the estimated standard deviation of

β̂r
j . The actual coverage rate is then given by CR = 1

R

∑R
r=1 I(β

⋆
j ∈ CIrj ).

We are also interested in how sensitive our estimators are to the initial guess of the true parameter.
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Table 1.1: Finite Sample Performance of KBGD and SBGD Estimators
Bias RMSE CR Bias RMSE CR

KBGD SBGD KBGD SBGD KBGD SBGD KBGD SBGD KBGD SBGD KBGD SBGD
n = 2500 n = 5000

β1 0.0024 0.0031 0.1193 0.1240 0.9600 0.9680 0.0047 0.0005 0.0844 0.0867 0.9500 0.9600
β2 0.0002 0.0055 0.1255 0.1336 0.9480 0.9500 0.0031 0.0074 0.0846 0.0878 0.9520 0.9540
β3 0.0136 0.0260 0.1544 0.1791 0.9480 0.9460 0.0004 0.0074 0.1053 0.1112 0.9320 0.9320
β4 0.0093 0.0213 0.1551 0.1706 0.9500 0.9440 0.0012 0.0095 0.1035 0.1117 0.9600 0.9500
β5 0.0257 0.0482 0.2511 0.2968 0.9540 0.9400 0.0007 0.0168 0.1648 0.1889 0.9400 0.9480
β6 0.0236 0.0477 0.2502 0.2860 0.9480 0.9580 0.0121 0.0269 0.1723 0.1931 0.9540 0.9360
β7 0.0500 0.0964 0.4513 0.5416 0.9640 0.9420 0.0051 0.0352 0.3083 0.3525 0.9440 0.9420
β8 0.0447 0.0920 0.4662 0.5441 0.9360 0.9520 0.0098 0.0394 0.3121 0.3477 0.9420 0.9440
β9 0.0242 0.0454 0.2921 0.3303 0.9480 0.9500 0.0072 0.0048 0.1840 0.1909 0.9540 0.9560
β10 0.0168 0.0338 0.1881 0.2223 0.9520 0.9440 0.0030 0.0147 0.1247 0.1402 0.9440 0.9380

NOTE: For KBGD estimator, we use fourth-order Epanechinikov kernel to construct the Nadaraya-Watson estimator.
We choose δ = 1. In each round of iteration, the bandwidth hn is chosen as hn = σẑ · n−1/5, where n is sample
size, σẑ is the standard deviation of zi,k, and zi,k = X0,i + XT

i βk. For SBGD estimator, we choose q = 9 and use
Legendre polynomials with transformation discussed in Remark 1.9. For both estimators, the stopping rule is either
max1≤j≤p |β̂j,k+1 − β̂j,k| < 10−5 or k ≥ 20000. The above also applies to our empirical analysis in Section 3.6.
Trimming is ignored during all the simulations. Due to the outliers of the simulation, we trim out the lower and upper
2% simulation results and calculate the bias and RMSE.

In each repetition of our simulation, we consider three different initial guesses: the true parameter

vector, the parameter vector estimated based on the Logit regression, and the parameter with all

elements being zeros. If the estimation results starting from different initial guesses are close or even

identical to each other, the estimation methods are insensitive to the initial guesses and thus are

robust in terms of computation. Denote β̂
r

T , β̂
r

L, and β̂
r

Z as the estimators with starting points being

true parameter, Logit estimator, and vector of zeros. We use SL =

√
1
R

∑n
i=1 ||β̂

r

L − β̂
r

T ||2 and SZ =√
1
R

∑n
i=1 ||β̂

r

Z − β̂
r

T ||2 as the measurement of the sensitivity. To compare the performance of our

method with the existing estimators, we also consider Ichimura’s semiparametric least squares (SLS)

estimator (Ichimura, 1993) and Klein and Spady’s semiparametric maximum likelihood (SMLE)

estimator (Klein and Spady, 1993).

We consider data generating process yi = I(X0,i + β⋆
1X1,i · · · + β⋆

10X10,i − ui > 0), i = 1, 2, · · · , n,

where data are i.i.d over i, and X0,i, X1,i, · · · , X10,i, ui are also independent. We set

β⋆ = (1, 0.5,−0.5, 1,−1, 2,−2, 4,−4, 1.5,−1.5)T,

Xj,i ∼ N (0, 1) for 0 ≤ j ≤ 8, X9,i ∼ Bernoulli (1/2), X10,i ∼ Poisson (2), and ui ∼ Cauchy. We

consider two sample sizes n = 2500 and 5000. Finally, for finite-sample performance, we repeat the

simulation 500 times; for sensitivity analysis, we repeat 100 times.

Table 1.1 reports the finite-sample properties of our estimators. It can be seen that our estimators
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Table 1.2: Sensitivity of KBGD and SBGD Estimators: Fixed Coefficients
Sensitivity Running Time

Method SL SZ True Logit Zeros

n = 2500

KBGD 0.0242 0.0198 113.21 79.120 158.91
SBGD 0.0175 0.0259 0.9504 0.9482 1.1587
SLS 0.8732 251.58 35.695 37.210 35.104

SMLE 0.9362 318.41 34.515 33.704 31.078

n = 5000

KBGD 0.0241 0.0175 157.48 87.954 230.07
SBGD 0.0189 0.0282 1.4644 1.4722 1.9074
SLS 0.6870 871.58 46.402 44.647 41.486

SMLE 0.7343 507.69 44.563 43.256 35.904
NOTE: SLS refers to semiparametric least squares estimator, and SMLE refers to semiparametric maximum likelihood
estimator. The running time is all in seconds. Due to the outliers of the simulation, we trim out the lower and upper
2% simulation results and calculate the corresponding results. The above also applies to Table 3.3.

Table 1.3: Sensitivity of KBGD and SBGD Estimators: Random Coefficients
Sensitivity Running Time

Method SL SZ True Logit Zeros

n = 2500

KBGD 0.0270 0.0214 122.00 74.433 166.94
SBGD 0.0123 0.0246 1.0132 0.8252 1.2044
SLS 0.9178 500.24 34.864 35.571 34.065

SMLE 0.9956 533.58 34.334 32.520 29.473

n = 5000

KBGD 0.0234 0.0232 163.74 91.449 247.49
SBGD 0.0077 0.0234 1.5529 1.4377 1.9217
SLS 0.6796 10737 43.935 41.420 46.449

SMLE 0.6821 698.63 43.616 44.825 37.763

work well in finite sample cases. Both estimators have small bias, whose RMSE decrease with the

increase of sample size. Moreover, the confidence interval constructed based on the asymptotic

variance and normal approximation has actual coverage rate that is quite close to the nominal rate

0.95.

Table 1.2 reports the sensitivity of our estimators to the starting points. We can see that for both

KBGD and SBGD estimators, SL and SZ are close to zero, indicating that the resulting estimators

starting from Logit estimator or zeros are almost identical to the ones starting from the unknown true

parameter. Such a result demonstrates that our algorithms are robust to different initial guesses.

On the contrary, the SLS and SMLE are both sensitive to the initial guess. As we can see, the

estimators starting from parametric Logit regression differ significantly from those starting from the

unknown true parameter, and such difference even explodes when we consider estimators starting

from the origin point. The above results highlight the numerical robustness of our estimators.

The robustness of our algorithm might also be sensitive to the setups of coefficients. To check whether

this is the case, instead of using the fixed parameters specified before, in each round of simulation

we randomly draw true parameter β⋆ as follows β⋆
1 , β

⋆
2 , β

⋆
9 , β

⋆
10 ∼ N (0, 1), β⋆

3 , β
⋆
4 , β

⋆
5 , β

⋆
6 ∼ 2N (0, 1),
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and β⋆
7 , β

⋆
8 ∼ 4N (0, 1). The simulation results are reported in Table 1.3. We can see that the results

are similar to those under fixed parameters, indicating that our algorithm is robust to initial point

under different parameter setups.

1.5 Empirical Application

As an empirical illustration of our new methods, this section applies our KBGD and SBGD esti-

mation procedures to study how education affects the risk aversion. In the existing researches, it’s

extensively documented that, on the individual level, risk aversion is significantly correlated with

the level of education, although the directions of correlation are mixed, see Outreville (2015) for

a comprehensive review. In this study, we investigate how educational background of the family

affects the risk aversion of the household as well as household-level investing behaviors. We use

the national survey data from 2019 China Household Financial Survey Project (CHFS) (Gan et al.,

2014), which provides household-level information over demographics, asset and debt, income and

consumption, social security and insurance, and various household’s subjective preferences. The

dependent variable we are interested in is the degree of risk aversion of the household. In particular,

yi is constructed to take value of 0 if the i-th household is completely against any form of risks and

thus is described as being extremely risk averse; it takes value of 1 if the family is willing to bear

some form of risks when making investments. We study how the probability of yi = 1 is affected

by a set of factors based on the binary choice model. The key factor that we are particularly in-

terested in is the educational backgrounds, which is defined as the year of education of the head of

the household. We also consider a set of other control variables including gender, ethnicity, health

conditions, marital status, region of residence, economic knowledge, total income and total asset,

whose impacts on the risk aversion are of interest on their own right. See Yao (2023) for detailed

discussion on the construction of the data sets.

Before estimation, we normalize all the continuous variables so that the resulting variables all have

zero mean and unity variance. To provide a comparison to the semiparametric estimation results,

we first conduct parametric Logit regression and report the normalized coefficients in regression (I)

in Table 1.4. We then conduct KBGD and SBGD estimation and report the estimated coefficients

of education in (II) and (III). As we can see from Table 1.4, no matter which estimation methods

we use, the coefficient of educational background is estimated to be positive with significance at

1% level. This implies that, holding other conditions fixed, on average an increase in the year of

29



Table 1.4: Estimation Results
(I) (II) (III)

Estd. Coefficients 2.5543∗∗∗

(0.1070)
2.4832∗∗∗

(0.3638)
2.4647∗∗∗

(0.3239)
Num. of Obs. 26906 26906 26906
Estimation Methods Logit KBGD SBGD
Running Time 1.4276 8573.1 40.9941
Num. of Iteration – 14996 12986

Note: For Logit regression, we report the coefficient of education divided by that of total asset.
For semiparametric estimation, we normalize the coefficient of total asset to be 1. The standard
deviations are reported in the brackets below the coefficients. ∗∗∗ indicates significance at 1%
level. For both KBGD and SBGD estimators, we choose δk = 1. For KBGD estimator, we choose
hn = C · n−1/5 with C = Ck = std(zi,k), and use the fourth-order Epanechinikov kernel. For
SBGD estimator, we choose q = 9 and use Legendre polynomials with transformation discussed in
Remark 1.9. The starting point of iteration for both KBGD and SBGD estimators is chosen as the
origin point with all arguments being 0. The stopping rule is set as max1≤j≤p |β̂j,k+1 − β̂j,k| < ϱ
with ϱ = 10−5. Finally, the running time is in second.

education of the head in the households leads to the increase of willingness to bear risks. Comparing

the semiparametric estimation results with that of Logit regression, we can see that the KBGD

and SBGD estimators are close to each other, which are both smaller than that of Logit regression,

indicating that parametric estimation might suffer from model misspecification and lead to an over-

estimation of the impacts of education on risk aversion. We finally compare the computation time

of each method. We can see that both KBGD and SBGD estimators take much longer to converge

compared with the parametric estimation. Comparatively, the SBGD algorithm is significantly faster

than the KBGD algorithm, which takes over two hours to converge. This result supports the use of

SBGD algorithm when there are data of large scale.

1.6 Conclusions

In this paper, we proposed new estimation procedures for binary choice and monotonic index models

with increasing dimensions. Existing semiparametric estimation procedures for this model cannot

be implemented in practice when the number of regressors is large. In contrast, our algorithmic

based procedures can be used for many regressor models as it involves convex optimization at each

iteration of the procedure. We show this iterative procedure also has desirable asymptotic properties

when the number of regressors increases with the sample size in ways that are standard in big data

literature.
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1.7 Technical Details

1.7.1 Lemmas and Proofs

This part provides some lemmas that will be used during the establishment of our results in the

main context. If not otherwise stated, the dimension p of covariate X is allowed to increase with

sample size n.

Lemma 1.7. Consider i.i.d. random variables {Ui}ni=1 on probability space (Ω,A , P ) and d1 × d2

matrix A (U, θ) : Ω×Θ→ Rd1×d2 with Θ ⊆ Rp being compact, supU∈Ω,θ∈Θ ∥As,t (U, θ)∥ ≤ DA,0 and

supU∈Ω ∥As,t (U, θ1)−As,t (U, θ2)∥ ≤ DA,1 ∥θ1 − θ2∥ uniformly for all 1 ≤ s ≤ d1 and 1 ≤ t ≤ d2.

Then there holds

sup
θ∈Θ

∥∥∥∥∥ 1n
n∑

i=1

A (Ui, θ)− EA (Ui, θ)

∥∥∥∥∥ = Op

√pd1d2D2
A,0 log (d1d2DA,1n)

n

 .

Proof of Lemma 1.7. Note that

sup
θ∈Θ

∥∥∥∥∥ 1n
n∑

i=1

A (Ui, θ)− EA (Ui, θ)

∥∥∥∥∥ ≤ max
1≤b≤B

∥∥∥∥∥ 1n
n∑

i=1

A (Ui, θb)− EA (Ui, θb)

∥∥∥∥∥
+ max

1≤b≤B
sup

∥θ−θb∥≤ C
p√

B

∥∥∥∥∥ 1n
n∑

i=1

A (Ui, θ)−
1

n

n∑
i=1

A (Ui, θb)

∥∥∥∥∥
+ max

1≤b≤B
sup

∥θ−θb∥≤ C
p√

B

∥EA (Ui, θ)− EA (Ui, θb)∥ .

For the first term, we have that

P

(
max

1≤b≤B

∥∥∥∥∥ 1n
n∑

i=1

A (Ui, θb)− EA (Ui, θb)

∥∥∥∥∥ > τ

)

≤
B∑

b=1

P

(∥∥∥∥∥ 1n
n∑

i=1

A (Ui, θb)− EA (Ui, θb)

∥∥∥∥∥ > τ

)

≤
B∑

b=1

P

(
max

1≤s≤d1

max
1≤t≤d2

∥∥∥∥∥ 1n
n∑

i=1

As,t (Ui, θb)− EAs,t (Ui, θb)

∥∥∥∥∥ > τ√
d1d2

)

≤
B∑

b=1

d1∑
s=1

d2∑
t=1

P

(∥∥∥∥∥ 1n
n∑

i=1

As,t (Ui, θb)− EAs,t (Ui, θb)

∥∥∥∥∥ > τ√
d1d2

)

≤
B∑

b=1

d1∑
s=1

d2∑
t=1

2 exp
(
−Cnτ2/

(
d1d2D

2
A,0

))
= 2 exp

(
C log (Bd1d2)− Cnτ2/

(
d1d2D

2
A,0

))
,

31



indicating that

max
1≤b≤B

∥∥∥∥∥ 1n
n∑

i=1

A (Ui, θb)− EA (Ui, θb)

∥∥∥∥∥ = Op

√d1d2D2
A,0 log (Bd1d2)

n

 .

On the other side, for the second term we have that

max
1≤b≤B

sup
∥θ−θb∥≤ C

p√
B

∥∥∥∥∥ 1n
n∑

i=1

A (Ui, θ)−
1

n

n∑
i=1

A (Ui, θb)

∥∥∥∥∥
≤
√
d1d2 max

1≤s≤d1

max
1≤t≤d2

sup
U∈Ω

sup
∥θ−θb∥≤ C

p√
B

|As,t (U, θ)−As,t (U, θb)| ≤
√
d1d2DA,1

p
√
B

.

The same bound holds for the third term. Then let B = (
√
nDA,1)

p, we finish the proof.

Lemma 1.8. If Assumption 1.1, Assumption 1.2(i)-(iii), and Assumption 1.4 hold with min {υG, υf} ≥

2, then there exists a constant C that does not depend on X, z,β such that the following hold

(i) supX,z,β |∂sfX,z (X, z|β) /∂zs| ≤ C for 0 ≤ s ≤ υf ;

(ii) supz,β |∂sfz (z|β) /∂zs| ≤ C for 0 ≤ s ≤ υf ;

(iii) supX,z,β ∥∂fX,z (X, z|β) /∂β∥ ≤ C
√
p;

(iv) supX,z,β

∥∥∥∂2fX,z (X, z|β) /∂β∂βT
∥∥∥ ≤ Cp;

(v) ∥∂fz (z|β) /∂β∥ ≤ C
√
p;

(vi)
∥∥∥∂2fz (z|β) /∂β∂βT

∥∥∥ ≤ Cp;
(vii) supz,β,fz( z|β) ̸=0 |∂sL (z,β) /∂zs| ≤ C for 0 ≤ s ≤ min {υG, υf};

(viii) supz,β,fz( z|β)̸=0 ∥∂L (z,β) /∂β∥ ≤ C√p;

(ix) supz,β,fz( z|β)̸=0

∥∥∥∂2L (z,β) /∂β∂βT
∥∥∥ ≤ Cp;

(x) supXe,β,fz( z(Xe,β)|β)̸=0

∫
X

∥∥∥∂W (
Xe, X̃e,β

)
/∂β

∥∥∥ dX̃ ≤ C√p.

Proof. To prove Lemma 1.8(i) and Lemma 1.8(ii), we note that for any 0 ≤ s ≤ υf ,

∂sfX,z (X, z|β)
∂zs

=
∂sfe (X0,X)

∂Xs
0

∣∣∣∣
X0=z−XTβ

,
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and
∂sfz (z|β)

∂zs
=

∫
X

[
∂sfX,z (X, z|β)

∂Xs
0

]
dX.

Since fe (Xe) has up to υf -th bounded derivatives over Xe according to Assumption 2.4(ii) and Xj

is bounded by 1 for all 1 ≤ j ≤ p according to Assumption 2.2(i), Lemma 1.8(i) and Lemma 1.8(ii)

hold.

Similarly, note that
∂fX,z (X, z|β)

∂β
= −

[
∂fe (X0,X)

∂X0

∣∣∣∣
X0=z−XTβ

]
X,

∂2fX,z (X, z|β)
∂β∂βT

=

[
∂2fe (X0,X)

∂X2
0

∣∣∣∣
X0=z−XTβ

]
XXT,

∂fz (z|β)
∂β

= −
∫
X

[
∂fe (X0,X)

∂X0

∣∣∣∣
X0=z−XTβ

]
XdX,

∂2fz (z|β)
∂β∂βT

=

∫
X

[
∂2fe (X0,X)

∂X2
0

∣∣∣∣
X0=z−XTβ

]
XXTdX,

we validate Lemma 1.8(iii)-Lemma 1.8(vi).

To prove Lemma 1.8(vii), note that

∣∣∣∣∂sL (z,β)

∂zs

∣∣∣∣ ≤ C s∑
j=0

∣∣∣∣∫
X
G(j)

(
z −XT∆β

) ∂s−jfX|z (X| z,β)
∂zs−j

dX

∣∣∣∣
≤ C

s∑
j=0

∥∥∥G(j)
∥∥∥
∞
·
(∫

X

∣∣∣∣∂s−jfX|z (X| z,β)
∂zs−j

∣∣∣∣ dX) .
According to Assumption 2.2(iii),

∥∥G(j)
∥∥
∞ is bounded for all 0 ≤ j ≤ υG. Then it remains to show

that
∫
X

∣∣∂s−jfX|z/∂z
s−j
∞
∣∣ dX is also upper bounded for all 0 ≤ j ≤ υf . When j = s, we have that∫

X

∣∣∂s−jfX|z (X| z,β) /∂zs−j
∣∣ dX = 1. When j = s−1, define X (z,β) =

{
X :

(
z −XTβ,X

)
∈ Xe

}
.

We have that

∫
X

∣∣∣∣∂fX|z (X| z,β)
∂z

∣∣∣∣ dX
=

∫
X

∣∣∣∣∣ ∂fX,z (X, z|β) /∂z∫
X fX,z (X, z|β) dX

−
fX,z (X, z|β)

∫
X (∂fX,z (X, z|β) /∂z) dX(∫

X fX,z (X, z|β) dX
)2

∣∣∣∣∣ dX
≤

2
∫
X |∂fX,z (X, z|β) /∂z| dX∫

X fX,z (X, z|β) dX
≤

2 ∥∂fX,z/∂z∥∞m (X (z,β))

ζ−1m (X (z,β))
≤ C

according to part (i) of this lemma. The proof of the case when j = s − 2, · · · , 0 are similar, so is
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omitted.

To prove Lemma 1.8(viii), note that

∥∥∥∥∂L (z,β)

∂β

∥∥∥∥ ≤ ∫
X

∥∥∥G′
(
z −XT∆β

)
fX|z (X| z,β)X

∥∥∥ dX
+

∫
X

∥∥∥∥G(Z −XT∆β
) ∂fX|z (X| z,β)

∂β

∥∥∥∥ dX.
Obviously, the first term on the RHS is bounded by ∥G′∥∞

√
p, and the second term is bounded by

∥G∥∞
∫
X

∥∥∂fX|z (X| z,β) /∂β
∥∥ dX. Note that

∫
X

∥∥∂fX|z (X| z,β) /∂β
∥∥ dX ≤ 2

∫
X ∥∂fX,z (X, z|β) /∂β∥ dX∫

X fX,z (X, z|β) dX

≤
2C
√
pm (X (z,β))

ζ−1m (X (z,β))
≤ C√p,

according to part (iii) of this lemma. This proves Lemma 1.8(viii). Lemma 1.8(ix) can be similarly

proved.

Finally, to show Lemma 1.8(x), we note that

∫
X

∥∥∥∥∥∥
∂W

(
Xe, X̃e,β

)
∂β

∥∥∥∥∥∥ dX̃
≤
∫
X

∥∥∥∥G′′
(
z (Xe,β

⋆) +
(
X− X̃

)T
∆β

)(
X− X̃

)∥∥∥∥ fX|z

(
X̃
∣∣∣ z (Xe,β) ,β

)
dX̃

+

∫
X

∣∣∣∣G′
(
z (Xe,β

⋆) +
(
X− X̃

)T
∆β

)∣∣∣∣
∥∥∥∥∥∥
∂fX|z

(
X̃
∣∣∣ z (Xe,β) ,β

)
∂β

∥∥∥∥∥∥ dX̃.
Obviously, the first term is bounded by 2

√
p ∥G′′∥∞, and the second term is bounded by ∥G′∥∞

∫
X

∥∥∥∂fX|Z

(
X̃, z (Xe,β)

∣∣∣β) /∂β∥∥∥ dX̃.

Note that

∫
X

∥∥∥∥∥∥
∂fX|z

(
X̃
∣∣∣ z (Xe,β) ,β

)
∂β

∥∥∥∥∥∥ dX̃ ≤
2
∫
X

∥∥∥∂fX,z

(
X̃, z (Xe,β)

∣∣∣β) /∂β∥∥∥ dX̃
fz (z (Xe,β)|β)

.
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We can see that

∂fX,z

(
X̃, z (Xe,β)

∣∣∣β)
∂β

=
∂fX,z

(
X̃, z

∣∣∣β)
∂z

∣∣∣∣∣∣
z=z(Xe,β)

X

+
∂fX,z

(
X̃, z

∣∣∣β)
∂β

∣∣∣∣∣∣
z=z(Xe,β)

,

according to (i) and (ii), we know that
∥∥∥∥∂fX,z

(
X̃, z

∣∣∣β) /∂z∣∣∣
z=z(Xe,β)

∥∥∥∥ is bounded, and
∥∥∥∥∂fX,z

(
X̃, z

∣∣∣β) /∂β∣∣∣
z=z(Xe,β)

∥∥∥∥
is bounded by C√p, so

∥∥∥∂fX,z

(
X̃, z (Xe,β)

∣∣∣β) /∂β∥∥∥ is bounded by C√p. So

∫
X

∥∥∥∂fX,z

(
X̃, z (Xe,β)

∣∣∣β) /∂β∥∥∥ dX̃
fz (z (Xe,β)|β)

≤
C
√
p ·m (X (z (Xe,β) ,β))

ζ−1 ·m (X (z (Xe,β) ,β))
= C
√
p.

This finishes the proof of Lemma 1.8(xii).

Lemma 1.9. Suppose that Assumption 2.1, Assumption 2.2(i)-(iii), 2.3 and Assumption 2.4 hold

with υG = 3, υK = 2, and υf = 3. Define

An,· (Xe,β) =
1

nhn

n∑
j=1

K ((z (Xe,β)− z (Xe,j ,β)) /hn) · (·j) ,

where · is y or 1. Also define A· (Xe,β) = limn→∞ EDnAn,· (Xe,β), where the expectation EDn is

taken with respect to the data set Dn. Then

(i) There holds

sup
(Xe,β)∈Xe×∈B

|An,· (Xe,β)− EDn
An,· (Xe,β)| = Op

(
h−1
n

√
p log

(
nph−1

n

)
/n

)
;

(ii) There holds

sup
(Xe,β)∈Xe×∈B

|EDnAn,· (Xe,β)−A· (Xe,β)| = Op

(
h2n
)
;

(iii) Define ψ (n, p, hn) = h−1
n

√
p log

(
nph−1

n

)
/n+ h2n, there holds

sup
(Xe,β)∈Xe×∈B

|An,· (Xe,β)−A· (Xe,β)| = Op

(
h−1
n

√
p log

(
nph−1

n

)
/n+ h2n

)
.

35



Proof. Lemma 3.5(i) is a direct result of Lemma 1.7 if we note that

|K ((z (Xe,β)− z (Xe,j ,β)) /hn) · (·j)| ≤ Ch−1
h

and

∥∂ (K ((z (Xe,β)− z (Xe,j ,β)) /hn) · (·j)) /∂β∥ ≤ C
√
ph−2

h .

To prove Lemma 3.5(ii), we only need to note that

EDn
[An,y (Xe,β)]

=
1

hn
EDn

[
K

(
z (Xe,β)− z (Xe,j ,β)

hn

)
yj

]
=

1

hn
EDn

[
K

(
z (Xe,β)− z (Xe,j ,β)

hn

)
G
(
z (Xe,j ,β)−XT

j ∆β
)]

=
1

hn

∫
K

(
z (Xe,β)− z

hn

)
G
(
z −XT

j ∆β
)
fX,z (Xj , z|β) dXjdz

=
1

hn

∫
K

(
z (Xe,β)− z

hn

)
fz (z|β) dz

∫
X
G
(
z −XT

j ∆β
) fX,z (Xj , z|β)

fz (z|β)
dXj

=
1

hn

∫
K

(
z (Xe,β)− z

hn

)
fz (z|β)L (z,β) dz

=

∫
K (z)L (z (Xe,β)− hnz,β) fz (z (Xe,β)− hnz|β) dz

= L (z (Xe,β)) fz (z (Xe,β)|β) +
h2n
2

[
∂2L (z (Xe,β) ,β) fz (z (Xe,β)|β)

∂z2

] [∫
K (z) z2dz

]
+
h3n
6

{∫
K (z) z3

[
∂3L (z̃,β) fz ( z̃|β)

∂z3

]
dz

}
,

and similarly,

EDn [An,1 (Xe,β)] =
1

hn
EDn

[
K

(
z (Xe,β)− z (Xe,j ,β)

hn

)]
=

1

hn

∫ [
K

(
z (Xe,β)− z

hn

)
fz (z|β)

]
dz

=

∫
K (z) fz (z (Xe,β)− hnz|β) dz

= fz (z (Xe,β)|β) +
h2n
2

[
∂2fz (z (Xe,β)|β)

∂z2

] [∫
K (z) z2dz

]
+
h3n
6

{∫
K (z) z3

[
∂3fz ( z̃|β)

∂z3

]
dz

}
,

where z̃ lies between z (Xe,β) and z. Note that according to Lemma 1.8 (i) and (ii), fz (z|β) and

L (z,β) fz (z|β) =
∫
X G

(
z −XT∆β

)
fX,z (X, z|β) dX both have up to third bounded derivatives
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with respect to z, so the results hold.

Finally, Lemma 3.5 (iii) is a combination of Lemma 3.5 (i) and Lemma 3.5 (ii).

Lemma 1.10. Suppose that Assumption 2.1, Assumption 2.2(i)-(iii), Assumption 2.3, and Assump-

tion 2.4 hold. Given any positive sequence {ϕn}∞n=1 satisfying pϕn ↓ 0, define

Xe,n = {Xe ∈ Xe : |Xj | ≤ 1− ϕn, 0 ≤ j ≤ p} .

Then

(i) 1− P (Xe ∈ Xe,n) = O (pϕn), and inf(Xe,β)∈Xe,n×B fZ (z (Xe,β)|β) ∼ ϕpnp−p;

(ii) If ψ (n, p, hn) = o (ϕpnp
−p) , there holds

sup
(Xe,β)∈Xe,n×B

∣∣∣Ĝ (z (Xe,β)|β)− L (z (Xe,β) ,β)
∣∣∣ = Op

(
ppϕ−p

n ψ (n, p, hn)
)
.

Proof. To prove Lemma 3.6(i), note that for pϕn < 1, m (Xe −Xe,n) = 1 − (1− ϕn)p ≤ pϕn. So∫
Xe−Xe,n

fe (Xe) dXe ≤ ζpϕn = O (pϕn) due to Assumption 2.4(i). To show the lower bound, note

that given any β ∈ B and Xe ∈ Xe,n, there holds |z (Xe,β) − X̃
T
β − X0| ≤

∑p
j=1 |βj | |Xj − X̃j |.

This implies that for any X̃, X̃ ∈ X (z (Xe,β) ,β) if

X̃ ∈

{
X̃ ∈ [0, 1]

p
:

(
sup
β∈B
|βj |

)∣∣∣Xj − X̃j

∣∣∣ ≤ ϕn/p} .
Since the above set has Lebesgue measure of order O (ϕpn/p

p), we have that

inf
(Xe,β)∈Xe,n×B

fz (z (Xe,β)|β)

≥ inf
(Xe,β)∈Xe,n×B

∫
X̃∈X(z(Xe,β),β)

fe

(
z (Xe,β)− X̃Tβ, X̃

)
dX̃ ∼ ϕpn/pp,

due to Assumption 2.4(i). This proves Lemma 3.6(i).

To prove Lemma 3.6(ii), note that for any Xe and β, we have Ĝ (z (Xe,β)|β) = An,y (Xe,β) /An,1 (Xe,β)
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and L (z (Xe,β) ,β) = Ay (Xe,β) /A1 (Xe,β). So

sup
(Xe,β)∈Xe,n×B

∣∣∣Ĝ (z (Xe,β)|β)− L (z (Xe,β) ,β)
∣∣∣

≤ sup
(Xe,β)∈Xe,n×B

|An,y (Xe,β)−Ay (Xe,β)|
An,1 (Xe,β)

+ sup
(Xe,β)∈Xe,n×B

L (z (Xe,β) ,β)
|An,1 (X,β)−A1 (X,β)|

A1 (X,β)
.

Obviously, since ψ1 (n, p, hn) = o (ϕpn/p
p),

sup
(Xe,β)∈Xe,n×B

|An,1 (Xe,β)−A1 (Xe,β)| = op (ϕ
p
n/p

p) ,

so inf(Xe,β)∈Xe,n×B A
−1
n,1 (Xe,β) = Op (p

pϕ−p
n ). Moreover, L (z (Xe,β) ,β) is upper bounded by

Lemma 1.8(vii). Then the results hold according to Lemma 3.5.

Proof of Lemma 1.1.

Proof. Note that

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

Ĝ (z (Xe,i,β)|β)Xi − E [L (z (Xe,i,β) ,β)Xi]

∥∥∥∥∥
≤ sup

β∈B

∥∥∥∥∥ 1n
n∑

i=1

(
Ĝ (z (Xe,i,β)|β)Xi − L (z (Xe,i,β) ,β)

)
Xi

∥∥∥∥∥ (1.1)

+ sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

L (z (Xe,i,β) ,β)Xi − E [L (z (Xe,i,β) ,β)Xi]

∥∥∥∥∥ . (1.2)

Obviously, (1.1) is bounded by

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

(
Ĝ (z (Xe,i,β)|β)Xi − L (z (Xe,i,β) ,β)

)
Xi

∥∥∥∥∥
≤ 1

n

n∑
i=1

sup
β∈B

∥∥∥Ĝ (z (Xe,i,β)|β)Xi − L (z (Xe,i,β) ,β)Xi

∥∥∥ · In,i (1.3)

+
1

n

n∑
i=1

sup
β∈B

∥∥∥Ĝ (z (Xe,i,β)|β)Xi − L (z (Xe,i,β) ,β)Xi

∥∥∥ · (1− In,i) , (1.4)
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where In,i = I (Xe,i ∈ Xe,n) and Xe,n is chosen as in Lemma 3.6. Note that (1.3) is bounded by

1

n

n∑
i=1

sup
β∈B

∥∥∥Ĝ (z (Xe,i,β)|β)Xi − L (z (Xe,i,β) ,β)Xi

∥∥∥ · In,i
≤ sup

(Xe,β)∈Xe,n×B

∥∥∥Ĝ (z (Xe,β)|β)X− L (Z (Xe,β) ,β)X
∥∥∥

= Op

(
pp+1/2ϕ−p

n ψ1 (n, p, hn)
)
,

according to Lemma 3.6. For (1.4), we have that

E
1

n

n∑
i=1

sup
β∈B

∥∥∥Ĝ (z (Xe,i,β)|β)Xi − L (Z (Xe,i,β) ,β)Xi

∥∥∥ · (1− In,i)
≤ C√pEI (Xe,i /∈ Xe,n) = O

(
p3/2ϕn

)
,

according to Lemma 3.6(i). Then we have that (1.3) is of order Op

(
pp+1/2ϕ−p

n ψ1 (n, p, hn) + p3/2ϕn
)
.

Now we go to (1.2). Similar to the above truncation, we have that

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

L (z (Xe,i,β) ,β)Xi − E [L (z (Xe,i,β) ,β)Xi]

∥∥∥∥∥
≤ sup

β∈B

∥∥∥∥∥ 1n
n∑

i=1

L (z (Xe,i,β) ,β)Xi · In,i − E [L (z (Xe,i,β) ,β)Xi · In,i]

∥∥∥∥∥ (1.5)

+ sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

L (z (Xe,i,β) ,β)Xi · (1− In,i)− E [L (z (Xe,i,β) ,β)Xi · (1− In,i)]

∥∥∥∥∥ . (1.6)

Obviously, (1.6) is Op

(
p3/2ϕn

)
. For (1.5), note that ∥L (z (Xe,i,β) ,β)Xj,i · In,i∥ is bounded by C

and ∂∥L (z (Xe,i,β) ,β)Xj,i · In,i/∂β∥ is bounded by C
√
p by Lemma 1.8(vii) and (viii), we have

that (1.5) is of order Op

(√
p2n log(pn)/n

)
using Lemma 1.7. Then

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

L (z (Xe,i,β) ,β)Xi − E [L (z (Xe,i,β) ,β)Xi]

∥∥∥∥∥
= Op

(√
p2 log (pn) /n+ p3/2ϕn

)
.

39



Together, we have that

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

Ĝ (z (Xe,i,β)|β)Xi − E [L (z (Xe,i,β) ,β)Xi]

∥∥∥∥∥
= Op

(
pp+1/2ϕ−p

n ψ1 (n, p, hn) +
√
p2 log (pn) /n+ p3/2ϕn

)
.

Then if we set ϕn = p
p−1
p+1ψ

1
p+1

1 (n, p, hn) , we have that

pϕn = ppϕ−p
n ψ1 (n, p, hn) = p

2p
p+1ψ

1
p+1

1 (n, p, hn) ≤ p
5p+1

2(p+1)ψ
1

p+1

1 (n, p, hn)→ 0,

and √
p2 log (pn) /n = o

(
p

5p+1
2(p+1)ψ

1
p+1

1 (n, p, hn)

)
,

so

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

Ĝ (z (Xe,i,β)|β)Xi − E [L (z (Xe,i,β) ,β)Xi]

∥∥∥∥∥ = Op

(
p

5p+1
2(p+1)ψ

1
p+1

1 (n, p, hn)

)
.

This finishes the whole proof.

Lemma 1.11. Suppose that p is fixed. If all the assumptions in Lemma 3.5 hold with υG = 4,

υK = 3, and υf = 4, we have that Lemma 3.5(i) holds. Moreover,

(i) There holds

sup
(Xe,β)∈Xe×∈B

|EDn
An,· (Xe,β)−A· (Xe,β)| = Op

(
h3n
)
;

(ii) There holds

sup
(Xe,β)∈Xe×∈B

|An,· (Xe,β)−A· (Xe,β)| = Op

(
h−1

√
log (nh−1) /n+ h3

)
.

Proof. The proof is similar to the proof of Lemma 3.5 so is omitted.

Lemma 1.12. Suppose that p is fixed. For any Xe ∈ Xe and β ∈ B, define

A′
n,· (Xe,β) =

1

nh2n

n∑
j=1

K ′ ((z (Xe,β)− z (Xe,j ,β)) /hn) (X−Xj) · (·j) ,

where · = 1 or · = y. If all the assumptions in Lemma 3.5 hold with υG = 4, υK = 3, and υf = 4,

then
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(i) There holds

sup
(Xe,β)∈Xe×B

∥∥A′
n,· (Xe,β)− EDnA

′
n,· (Xe,β)

∥∥ = Op

(
h−2
n

√
log
(
nh−1

n

)
/n

)
;

(ii) Define A′
y (Xe,β) = limn→∞ EDnA

′
n,y (Xe,β) and A′

1 (Xe,β) = limn→∞ EDnA
′
n,1 (Xe,β). We

have that A′
y (Xe,β) = ∂H1 (z,X|β) /∂z|z=z(Xe,β) and A′

1 (Xe,β) = ∂H2 (z,X|β) /∂z|z=z(Xe,β),

where

H1 (z,X|β) =
∫
X
G
(
z − X̃

T
∆β
)
fe

(
z − X̃

T
β, X̃

)(
X− X̃

)
dX̃,

H2 (z,X|β) =
∫
X
fe

(
z − X̃

T
β, X̃

)(
X− X̃

)
dX̃,

and the differentiation of H1 and H2 are element-wise. Moreover, there holds

sup
(Xe,β)∈Xe×B

∥∥EDnA
′
n,· (Xe,β)−A′

· (Xe,β)
∥∥ = Op

(
h3n
)
,

(iii) There holds

sup
(Xe,β)∈Xe×B

∥∥A′
n,· (Xe,β)−A′

· (Xe,β)
∥∥ = Op

(
h−2
n

√
log
(
nh−1

n

)
/n+ h3n

)
.

Proof. Lemma 3.8(i) is a direct result of Lemma 1.7 if we note that for each 1 ≤ l ≤ p, h−2
n K ′ ((z (Xe,β)− z (Xe,j ,β)) /hn) (Xl −Xl,j)·

(·j) is bounded by Ch−2
n and its derivatives with respect to β and X are both upper bounded since

p is fixed.

To prove Lemma 3.8(ii), we note that

EDn
A′

n,y (Xe,β)

=
1

h2n
EDn

[
K ′ ((z (Xe,β)− z (Xe,j ,β)) /hn) (X−Xj) ·G

(
X0,j +XT

j β
⋆
)]

=
1

h2n
EDn

[
K ′ ((z (Xe,β)− z (Xe,j ,β)) /hn) (X−Xj) ·G

(
z (Xe,j ,β)−XT

j ∆β
)]

=
1

h2n

∫
K ′ ((z (Xe,β)− z) /hn) dz

∫
X

[
G
(
z − X̃T∆β

)
fX,z

(
X̃, z

∣∣∣β)(X− X̃
)]
dX̃

=
1

h2n

∫
[K ′ ((z (Xe,β)− z) /hn)H1 (z,X|β)] dz

=
1

hn

∫
[K ′ (z)H1 (z (Xe,β)− hnz,X|β)] dz

Note that both G and fe have up to fourth bounded derivatives with respect to z, and the upper
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bounds hold uniformly with respect to z, X and β. This implies that each element of H1 (z,X|β)

has up to fourth bounded derivatives with respect to z. Also ote that
∫
K ′ (v) dv = K (v)|∞−∞ = 0,∫

vK ′ (v) dv = K (v)|∞−∞ −
∫
K (v) dv = −1,

∫
vsK ′ (v) dv = vsK (v)|∞−∞ − s

∫
vs−1K (v) dv = 0 for

s = 2, 3, and
∣∣∫ v4K ′ (v) dv

∣∣ <∞. This implies that

∥∥EDnA
′
n,y (Xe,β)−A′

y (Xe,β)
∥∥ = Op

(
h3n
)

uniform with respect to Xe and β. The proof of the uniform distance between EDn
A′

n,1 (Xe,β) and

A′
1 (Xe,β) is similar. So we finish the proof of Lemma 3.8(ii).

Finally, Lemma 3.8(iii) is a combination of Lemma 3.8(i) and Lemma 3.8(ii).

Lemma 1.13. Suppose that p is fixed. If all the assumptions in Lemma 3.5 hold with υG = 4,

υK = 3, and υf = 4, we have that

sup
(Xe,β)∈Xϕ

e ×B

∥∥∥∥∥∂Ĝ (z (Xe,β)|β)
∂β

− ∂H1 (z (Xe,β) ,Xe) /∂z

fz (z (Xe,β))

+L (z (Xe,β) ,β)
∂H2 (z (Xe,β) ,Xe) /∂z

fz (z (Xe,β))

∥∥∥∥ = Op

(
h−2
n

√
log
(
nh−1

n

)
/n+ h3n

)
,

where X ϕ
e is defined in (1.13) in the main text.

Proof. Note that

∂Ĝ (z (Xe,β)|β)
∂β

=
∂An,y (Xe,β) /∂β

An,1 (Xe,β)
− An,y (Xe,β)

An,1 (Xe,β)
· ∂An,1 (Xe,β) /∂β

An,1 (Xe,β)

=
A′

n,y (Xe,β)

An,1 (Xe,β)
− An,y (Xe,β)

An,1 (Xe,β)

A′
n,1 (Xe,β)

An,1 (Xe,β)
.

Then

∥∥∥∥A′
n,y (Xe,β)

An,1 (Xe,β)
− ∂H1 (z (Xe,β) ,Xe) /∂z

fz (z (Xe,β))

∥∥∥∥ =

∥∥∥∥A′
n,y (Xe,β)

An,1 (Xe,β)
−
A′

y (Xe,β)

A1 (Xe,β)

∥∥∥∥
≤
∥∥∥∥A′

n,y (Xe,β)−A′
y (Xe,β)

An,1 (Xe,β)

∥∥∥∥ (1.7)

+

∥∥∥∥A′
y (Xe,β)

A1 (Xe,β)

An,1 (Xe,β)−A1 (Xe,β)

An,1 (Xe,β)

∥∥∥∥ . (1.8)

Now for any (Xe,β) ∈ X ϕ
e × B, A1 (Xe,β) is uniformly lower-bounded according to Lemma 3.6,

so A−1
n,1 (Xe,β) = Op (1) also uniformly holds. Moreover,

∥∥A′
y (Xe,β)

∥∥ is upper bounded, so
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∥∥A′
n,y (Xe,β)

∥∥ = Op (1) also uniformly holds. Then (1.7) is Op

(
h−2
n

√
log
(
nh−1

n

)
/n+ h3n

)
and

(1.8) is Op

(
h−1
n

√
log
(
nh−1

n

)
/n+ h3n

)
. Similar method can be used to show that

An,y (Xe,β)

An,1 (Xe,β)

A′
n,1 (Xe,β)

An,1 (Xe,β)
− L (z (Xe,β) ,β) ∂H2 (z (Xe,β) ,Xe) /∂z

fz (z (Xe,β))

is also Op

(
h−2
n

√
log
(
nh−1

n

)
/n+ h3n

)
. This finishes the proof.

Lemma 1.14. Suppose that p is fixed. If all the assumptions in Lemma 3.5 hold with υG = 4,

υK = 3, and υf = 4, then for any B ⊆ B, we have that

sup
(Xe,β)∈Xϕ

e ×B

∥∥∥∥∥∂Ĝ (Z (Xe,β)|β)
∂β

−
∫
W
(
Xe, X̃e,β

)(
X− X̃e

)
dX̃e

∥∥∥∥∥ ≤ α1,n + α2,

where α1,n = Op

(
h−2
n

√
log
(
nh−1

n

)
/n+ h3n

)
and α2 = Op

(
supβ∈B ∥∆β∥

)
.

Proof. We only need to show that

sup
(Xe,β)∈X e×B

∥∥∥∥∂H1 (z (Xe,β) ,Xe) /∂z

fz (z (Xe,β))
− L (z (Xe,β) ,β)

∂H2 (z (Xe,β) ,Xe) /∂z

fz (z (Xe,β))

−
∫
W
(
Xe, X̃e,β

)(
X− X̃

)
dX̃

∥∥∥∥ = O (∥∆β∥) .

Note that

∂H1 (z (Xe,β) ,Xe) /∂z − L (z (Xe,β) ,β) ∂H2 (z (Xe,β) ,Xe) /∂z

=

∫
G′
(
z (Xe,β)− X̃∆β

)
fe

(
z (Xe,β)− X̃

T
β, X̃

)(
X− X̃

)
dX̃

+

∫
G
(
z (Xe,β)− X̃

T
∆β
)(

∂fe

(
z (Xe,β)− X̃

T
β, X̃

)
/∂z

)(
X− X̃

)
dX̃

− L (z (Xe,β) ,β)

∫ (
∂fe

(
z (Xe,β)− X̃

T
β, X̃

)
/∂z

)(
X− X̃

)
dX̃

=

∫
G′
(
z (Xe,β)−XT∆β

)
fe

(
z (Xe,β)− X̃

T
β, X̃

)(
X− X̃

)
dX̃

+

∫ [
G
(
z (Xe,β)−XT∆β

)
−G (z (Xe,β))

] (
∂fe

(
z (Xe,β)− X̃

T
β, X̃

)
/∂z

)(
X− X̃

)
dX̃

− (L (z (Xe,β) ,β)−G (z (Xe,β)))

∫ (
∂fe

(
z (Xe,β)− X̃

T
β, X̃

)
/∂z

)(
X− X̃

)
dX̃.
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Note that

∥∥∥∥∫ [G(z (Xe,β)− X̃
T
∆β
)
−G (z (Xe,β))

] (
∂fe

(
z (Xe,β)− X̃

T
β, X̃

)
/∂z

)(
X− X̃

)
dX̃

∥∥∥∥
≤ C · sup

X̃∈X

∣∣∣G(z (Xe,β)− X̃T∆β
)
−G (z (Xe,β))

∣∣∣ ·m (X (z (Xe,β) ,X))

≤ C · ∥∆β∥ ·m (X (z (Xe,β) ,X)) ,

and according to our choice of X ϕ
e , we know that m (X (z (Xe,β) ,X)) > 0. On the other side,

∥∥∥∥(L (z (Xe,β) ,β)−G (z (Xe,β)))

∫ (
∂fe

(
z (Xe,β)− X̃

T
β, X̃

)
/∂z

)(
X− X̃

)
dX̃

∥∥∥∥
≤ C · |L (z (Xe,β) ,β)−G (z (Xe,β))| ·m (X (z (Xe,β) ,X))

= C · |L (z (Xe,β) ,β)− L (z (Xe,β) ,β
⋆)| ·m (X (z (Xe,β) ,X))

≤ C ·

(
sup
z,β
∥∂L (z,β) /∂β∥

)
· ∥∆β∥ ·m (X (z (Xe,β) ,X))

≤ C · ∥∆β∥ ·m (X (z (Xe,β) ,X))

due to the upper boundedness of ∥∂L (z,β) /∂β∥ according to Lemma 1.8(viii). Note that

fz (z (Xe,β)|β) > C ·m (X (z (Xe,β) ,X))

for some C > 0 due to Assumption 2.4(i) and the choice of X ϕ
e , so we have that

∥(∂H1 (z (Xe,β) ,Xe) /∂z − L (z (Xe,β) ,β) ∂H2 (z (Xe,β) ,Xe) /∂z) /fz (z (Xe,β)|β)

−
∫
G′
(
z (Xe,β)− X̃

T
∆β
)
fe

(
z (Xe,β)− X̃Tβ, X̃

)(
X− X̃

)
dX̃/fz (z (Xe,β)|β)

∥∥∥∥
= ∥(∂zH1 (z (Xe,β) ,Xe)− L (z (Xe,β) ,β) ∂zH2 (z (Xe,β) ,Xe)) /fz (z (Xe,β)|β)

−
∫
W
(
Xe, X̃e,β

)(
X− X̃

)
dX̃

∥∥∥∥ ≤ C · ∥∆β∥ .

This proves the results.

Now we prove Lemma 1.2 in the main text.
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Proof of Lemma 1.2. Note that

sup
β∈Bn

∥∥∥∥∥ 1n
n∑

i=1

Xϕ
i

∂Ĝ (z (Xe,i,β)|β)
∂β

− Λϕ (β)

∥∥∥∥∥
≤ sup

β∈Bn

∥∥∥∥∥ 1n
n∑

i=1

Xϕ
i

(
∂Ĝ (z (Xe,i,β)|β)

∂β
−
∫
W (Xe,i,Xe,β) (Xi −X) dX

)∥∥∥∥∥ (1.9)

+ sup
β∈Bn

∥∥∥∥∥ 1n
n∑

i=1

Xϕ
i

(∫
W (Xe,i,Xe,β) (Xi −X) dX

)
− Λϕ (β)

∥∥∥∥∥ . (1.10)

Obviously, (1.9) is of order Op

(
h−2
n

√
log
(
nh−1

n

)
/n+ h3n + supβ∈Bn

∥∆β∥
)

according to Lemma 3.2.

Using Lemma 1.7, we can show that (1.10) is Op

(√
(log n) /n

)
by noting that each element of∫

W (Xe,i,Xe,β) (Xi −X) dX is bounded and that
∫
X

∥∥∥∂W (
Xe, X̃e,β

)
/∂β

∥∥∥ dX̃ is uniformly up-

per bounded according to Lemma 1.8(x). This finishes the proof of Lemma 1.2.

Now we prove Lemma 1.3 in the main text.

Proof of Lemma 1.3. We first show that

ξϕn =
1

n2

n∑
i=1

n∑
j=1

Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

)
Xϕ

i + op

(
1√
n

)
,

Define f⋆z (z⋆i ) = fz (z|β⋆) and f⋆X,z (X, z) = fX,z (X, z|β⋆). Recall that z⋆i = z (Xe,i,β
⋆), so

ξϕn −
1

n2

n∑
i=1

n∑
j=1

Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

)
Xϕ

i

=
1

n

n∑
i=1

 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

)
(yj − yi)

[ 1
1
n

∑n
j=1Khn

(
z⋆j − z⋆i

) − 1

f⋆z (z⋆i )

]
Xϕ

i

=
1

n

n∑
i=1

 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

)
(yj −G (z⋆i ))

[ 1
1
n

∑n
j=1Khn

(
z⋆j − z⋆i

) − 1

f⋆z (z⋆i )

]
Xϕ

i (i)

− 1

n

n∑
i=1

εi

 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

)[ 1
1
n

∑n
j=1Khn

(
z⋆j − z⋆i

) − 1

f⋆z (z⋆i )

]
Xϕ

i (ii).

For term (i), due to truncation, we have that

max
1≤i≤n

∥∥∥∥∥
[

1
1
n

∑n
j=1Khn

(
z⋆j − z⋆i

) − 1

fz (z⋆i )

]
Xϕ

i

∥∥∥∥∥ = Op

(
h−1
n

√
log (n) /n+ h3n

)
.

We further provide a uniform bound for 1
n

∑n
j=1Khn

(
z⋆j − z⋆i

)
(yj −G (z⋆i ))X

ϕ
i over i. We first note
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that

EDn

 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

)
(yj −G (z⋆i ))X

ϕ
i

 = EDn

 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

) (
G
(
z⋆j
)
−G (z⋆i )

)
Xϕ

i

 ,
where the RHS is equivalent to

E

E

 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

) (
G
(
z⋆j
)
−G (z⋆i )

)
Xϕ

i

∣∣∣∣∣∣Xe,i


=
n− 1

n
E
{
Xϕ

i

∫
[Khn (z − z⋆i ) (G (z)−G (z⋆i )) f

⋆
z (z)] dz

}
=
n− 1

n
E
{
Xϕ

i 0

∫
[K (z) (G (z⋆i + zhn)−G (z⋆i )) f

⋆
z (zi + zhn)] dz

}
.

Now note that since G and f⋆z both have up to fourth order bounded derivatives, we have that

(G (z⋆i + zhn)−G (z⋆i )) f
⋆
z (zi + zhn)

=

(
G′ (z⋆i ) zhn +

1

2
G′′ (z⋆i ) z

2h2n +
1

6
G′′′ (z⋆i ) z

3h3n +O
(
z4h4n

))
(f⋆z (z⋆i ) +O (zhn))

= G′ (z⋆i ) f
⋆
z (z⋆i ) zhn +

1

2
G′′ (z⋆i ) f

⋆
z (z⋆i ) z

2h2n +
1

6
G′′′ (z⋆i ) f

⋆
z (z⋆i ) z

3h3n +O
(
z4h4n

)
.

So ∫
[K (z) (G (z⋆i + zhn)−G (z⋆i )) f

⋆
z (zi + zhn)] dz = O

(
h3n
)
,

where the bound does not depend on i. So

max
1≤i≤n

∥∥∥∥∥∥E
 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

) (
G
(
z⋆j
)
−G (z⋆i )

)
Xϕ

i

∥∥∥∥∥∥ = O
(
h3n
)
.

On the other side, we have that we have that

max
1≤i≤n

∥∥∥∥∥∥ 1n
n∑

j=1

Khn

(
z⋆j − z⋆i

)
(yj −G (z⋆i ))X

ϕ
i

−EDn

 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

)
(yj −G (z⋆i ))X

ϕ
i

∥∥∥∥∥∥ = Op

(√
(log n) /nh2n

)
.
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Together we have that

max
1≤i≤n

∥∥∥∥∥∥ 1n
n∑

j=1

Khn

(
z⋆j − z⋆i

)
(yj −G (z⋆i ))X

ϕ
i

∥∥∥∥∥∥ = Op

(
h−1
n

√
(log n) /n+ h3n

)
.

So ∥∥∥∥∥∥ 1n
n∑

i=1

 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

)
(yj −G (z⋆i ))

[ 1
1
n

∑n
j=1Khn

(
z⋆j − z⋆i

) − 1

fz (z⋆i )

]
Xϕ

i

∥∥∥∥∥∥
≤ max

1≤i≤n

∥∥∥∥∥∥ 1n
n∑

j=1

Khn

(
z⋆j − z⋆i

)
(yj −G (z⋆i ))X

ϕ
i

∥∥∥∥∥∥ max
1≤i≤n

∣∣∣∣∣ 1
1
n

∑n
j=1Khn

(
z⋆j − z⋆i

) − 1

fz (z⋆i )

∣∣∣∣∣
= Op

(
h−2
n (log n) /n+ h6n

)
= op

(
1/
√
n
)
,

according to our choice of hn, so term (i) is op (1/
√
n).

For term (ii), without of loss of generality, we assume that Xϕ
i = Xϕ

i is a scalar; the general case

can be proved similarly. We note that

E

 n∑
i=1

εi

 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

)[ 1
1
n

∑n
j=1Khn

(
z⋆j − z⋆i

) − 1

f⋆z (z⋆i )

]
Xϕ

i


= E

n∑
i=1

E

{
εi

[
1−

1
n

∑n
j=1Khn

(
z⋆j − z⋆i

)
f⋆z (z⋆i )

]
Xϕ

i

∣∣∣∣∣Xi

}
= 0

due to the fact that the data is i.i.d. and that E (εi|Xe,i) = 0 for all i. Moreover,

V

[
1

n

n∑
i=1

εi

[
1−

1
n

∑n
j=1Khn

(
z⋆j − z⋆i

)
f⋆z (z⋆i )

]
Xϕ2

i

]

=
1

n
E

G (z⋆i ) (1−G (z⋆i ))

[
1−

1
n

∑n
j=1Khn

(
z⋆j − z⋆i

)
f⋆z (z⋆i )

]2
Xϕ2

i


≤ C

n
E


 1

n

n∑
j=1

Khn

(
z⋆j − z⋆i

)
− f⋆z (z⋆i )

2

Xϕ2
i


=

C

n3
EXϕ2

i

 n∑
j ̸=i,k ̸=i,j ̸=k

E
[(
Khn

(
z⋆j − Z⋆

i

)
− f⋆z (z⋆i )

)
(Khn

(z⋆k − z⋆i )− f⋆z (z⋆i ))
∣∣Xϕ

i

]
+O

(
nh−1

n

)

Note that E
[(
Khn

(
z⋆j − Z⋆

i

)
− f⋆z (z⋆i )

)
(Khn (z⋆k − z⋆i )− f⋆z (z⋆i ))

∣∣Xϕ
i

]
is O

(
h6n
)

for all k ̸= j, j ̸= i,
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and k ̸= i. So the above term is of order O
(
h6n/n+ h−1

n /n2
)
, implying that

∥∥∥∥∥ 1n
n∑

i=1

εi

[
1−

1
n

∑n
j=1Khn

(
z⋆j − z⋆i

)
f⋆z (z⋆i )

]
Xϕ

i

∥∥∥∥∥ = Op

(
h3n/
√
n+ 1/

(
n
√
hn

))
= op

(
1/
√
n
)
,

according to the choice of hn. This proves the first result.

Now we obtain the asymptotic distribution of

1

n2

n∑
i=1

n∑
j=1

Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

)
Xϕ

i .

First note that

1

n2

n∑
i=1

n∑
j=1

Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

)
Xϕ

i

=
1

2n2

n∑
i=1

n∑
j=1

Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

Xϕ
i +

yi − yj
f⋆z
(
z⋆j
)Xϕ

j

)

=
1

n2

n−1∑
i=1

n∑
j=i+1

Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

Xϕ
i +

yi − yj
f⋆z
(
z⋆j
)Xϕ

j

)

=
n (n− 1)

2n2

n
2


−1

n−1∑
i=1

n∑
j=i+1

Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

Xϕ
i +

yi − yj
f⋆z
(
z⋆j
)Xϕ

j

)
.

Let Ej|i be the expectation with respect to the j-th observation conditional on the i-th observation.

Note that

Ej|i

[
Khn

(
z⋆j − z⋆i

) yj − yi
f⋆z (z⋆i )

Xϕ
i

]
=

Xϕ
i

f⋆z (z⋆i )
Ej|i

[
Khn

(
z⋆j − z⋆i

) (
G
(
z⋆j
)
− yi

)]
=

Xϕ
i

f⋆z (z⋆i )

∫
K (z) (G (z⋆i + hnz)− yi) f⋆z (z⋆i + hnz) dz

=
Xϕ

i

f⋆z (z⋆i )

∫
K (z)

(
G (z⋆i ) +G′ (z⋆i ) zhn +

1

2
G′′ (z⋆i ) z

2h2n +O
(
z3h3n

)
− yi

)
(f⋆z (z⋆i ) +O (zhn)) dz

=
Xϕ

i

f⋆z (z⋆i )

∫
K (z) (G (z⋆i )− yi) f⋆z (z⋆i ) dz +O

(
h3n
)
= Xϕ

i (G (z⋆i )− yi) +O
(
h3n
)
,
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and

Ej|i

[
Khn

(
z⋆j − z⋆i

)( yi − yj
f⋆z
(
z⋆j
))Xϕ

j

]

=

∫
1

hn
K

(
z − z⋆i
hn

)(
yi −G (z)

f⋆z (z)

)
Xϕf⋆X,z (X, z) dzdX

=

∫
K (z)

yi −G (z⋆i + hnz)

f⋆z (z⋆i + hnz)
Xϕf⋆X,z (X, z

⋆
i + hnz) dzdX

= (yi −G (z⋆i ))

∫
Xϕf⋆X|z (X| z

⋆
i ) dX+O

(
h2n
)

= (yi −G (z⋆i ))E
(
Xϕ
∣∣ z⋆i )+O

(
h3n
)
.

So

Ej|i

[
Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

Xϕ
i +

yi − yj
f⋆z
(
z⋆j
)Xϕ

j

)]
= −εi

(
Xϕ

i − E
(
Xϕ

i

∣∣∣ z⋆i ))+O
(
h3n
)
.

We also note that

E

∥∥∥∥∥Khn

(
z⋆j − z⋆i

)( yi − yj
f⋆z
(
z⋆j
))Xϕ

j

∥∥∥∥∥
2

≤ CE
(
K2

hn

(
z⋆j − z⋆i

))
= O

(
h−2
n

)
= o (n) ,

EiEj|i

[
Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

Xϕ
i +

yi − yj
f⋆z
(
z⋆j
)Xϕ

j

)]
= O

(
h3n
)
= o

(
1√
n

)
,

so according to Powell et al. (1989), we have that

√
n

n
2


−1

n−1∑
i=1

n∑
j=i+1

Khn

(
z⋆j − z⋆i

)(yj − yi
f⋆z (z⋆i )

Xϕ
i +

yi − yj
f⋆z
(
z⋆j
)Xϕ

j

)
.

= − 2√
n

n∑
i=1

εi

(
Xϕ

i − E
(
Xϕ

i

∣∣∣ z⋆i ))+ op (1) .

This implies that

√
nξϕn = − 1√

n

n∑
i=1

εi

(
Xϕ

i − E
(
Xϕ

i

∣∣∣ z⋆i ))+ op (1)→d N
(
0,Σϕ

ξ

)
.

Lemma 1.15. Suppose that Assumption 2.1, Assumption 2.2(i) and (ii), and Assumption 1.6 hold,
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we have that

sup
β∈B
∥Γq,n (β)− Γq (β)∥ = Op (χ1,n) .

Proof of Lemma 1.15. This is a direct result of Lemma 1.7 by noting that |rs (z) rs (z)| ≤ D2
q,0 and∥∥∂ (rs (X0 +XTβ

)
rs
(
X0 +XTβ

))
/∂β

∥∥ ≤ C√pDq,0Dq,1.

Lemma 1.16. Suppose that Assumption 2.1, Assumption 2.2(i) and (ii), and Assumption 1.6 hold,

and χ1,n → 0 as n→∞. We have that

sup
β∈B

∥∥Γ−1
q,n (β)− Γ−1

q (β)
∥∥ = Op (χ1,n) .

Proof of Lemma 1.16. First note that

sup
β∈B
|λ (Γq,n (β))− λ (Γq (β))| ≤ sup

β∈B
∥Γq,n (β)− Γq (β)∥ = Op (χ1,n) ,

and

sup
β∈B

∣∣λ (Γq,n (β))− λ (Γq (β))
∣∣ ≤ sup

β∈B
∥Γq,n (β)− Γq (β)∥ = Op (χ1,n) .

Since χ1,n → 0, we have that with probability going to 1, there holds

sup
β∈B

λ (Γq,n (β)) ≤
3λΓ
2
, inf

β∈B
λ (Γq,n (β)) ≥

λΓ
2
,

indicating that supβ∈B λ
(
Γ−1
q,n (β)

)
= Op (1).

Note that for any positive semi-definite matrices A and B, there holds min {λA ∥B∥ , λB ∥A∥} ≤

∥AB∥ ≤ max
{
λA ∥B∥ , λB ∥A∥

}
, so we have that

sup
β∈B

∥∥Γ−1
q,n (β)− Γ−1

q (β)
∥∥ = sup

β∈B

∥∥Γ−1
q,n (β) (Γq,n (β)− Γq (β)) Γ

−1
q (β)

∥∥
≤

(
sup
β∈B

λ
(
Γ−1
q,n (β)

))(
sup
β∈B

λ
(
Γ−1
q (β)

))
sup
β∈B
∥Γq,n (β)− Γq (β)∥ = Op (χ1,n) .

Lemma 1.17. Suppose that Assumption 2.1, Assumption 2.2(i) and (ii), and Assumption 1.6 hold,

and moreover χ1,n → 0 as n→∞. Define

Z =
{
z : z = X0 +XTβ for some Xe ∈ Xe and β ∈ B

}
.
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We have that

sup
z∈Z

sup
β∈B
∥Xq,n (z,β)− Xq (z,β)∥ = Op

(√
pqD2

q,0χ1,n

)
.

Proof of Lemma 1.17. Note that

sup
z∈Z

sup
β∈B
∥Xq,n (z,β)− Xq (z,β)∥

≤ sup
z∈Z

sup
β∈B

∥∥∥∥∥Xq,n (z,β)−
1

n

n∑
i=1

(
rTq
(
X0,i +XT

i β
)
Γ−1
q (β) rq (z)Xi

)∥∥∥∥∥
+ sup

z∈Z
sup
β∈B

∥∥∥∥∥Xq (z,β)−
1

n

n∑
i=1

(
rTq
(
X0,i +XT

i β
)
Γ−1
q (β) rq (z)Xi

)∥∥∥∥∥ .
For the first term, we have that

sup
z∈Z

sup
β∈B

∥∥∥∥∥Xq,n (z,β)−
1

n

n∑
i=1

(
rTq
(
X0,i +XT

i β
)
Γ−1
q (β) rq (z)Xi

)∥∥∥∥∥
=

1

n

n∑
i=1

sup
z∈Z

sup
β∈B

∥∥rTq (X0,i +XT
i β
) (

Γ−1
q,n (β)− Γ−1

q (β)
)
rq (z)Xi

∥∥
≤ C√pqD2

q,0

∥∥Γ−1
q,n (β)− Γ−1

q (β)
∥∥ = Op

(√
pqD2

q,0χ1,n

)
.

For the second term, we note that

sup
z∈Z

sup
β∈B

∥∥∥∥∥Xq (z,β)−
1

n

n∑
i=1

(
rTq
(
X0,i +XT

i β
)
Γ−1
q (β) rq (z)Xi

)∥∥∥∥∥
≤ sup

β∈B
sup
β̃∈B

sup
Xe∈Xe

∥∥∥∥∥Xq

(
X0 +XTβ̃,β

)
− 1

n

n∑
i=1

(
rTq
(
X0,i +XT

i β
)
Γ−1
q (β) rq

(
X0 +XTβ̃

)
Xi

)∥∥∥∥∥ ,
where uniformly for all β,β1,β2, β̃ ∈ B, Xe ∈ Xe, and Xi ∈ X , there hold

∣∣∣rTq (X0,i +XT
i β
)
Γ−1
q (β) rq

(
X0 +XTβ̃

)
Xi,j

∣∣∣ ≤ CqD2
q,0,

and ∥∥∥∥∥∥
∂rTq

(
X0,i +XT

i β
)
Γ−1
q (β) rq

(
X0 +XTβ̃

)
Xi,j

∂Xe

∥∥∥∥∥∥ ≤ C√pqDq,0Dq,1,

∥∥∥∥∥∥
∂rTq

(
X0,i +XT

i β
)
Γ−1
q (β) rq

(
X0 +XTβ̃

)
Xi,j

∂β̃

∥∥∥∥∥∥ ≤ C√pqDq,0Dq,1,
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∥∥∥rTq (X0,i +XT
i β1

)
Γ−1
q (β1) rq

(
X0 +XTβ̃

)
− rTq

(
X0,i +XT

i β2

)
Γ−1
q (β2) rq

(
X0 +XTβ̃

)∥∥∥
≤
∥∥∥(rTq (X0,i +XT

i β1

)
− rTq

(
X0,i +XT

i β2

))
Γ−1
q (β1) rq

(
X0 +XTβ̃

)∥∥∥
+
∥∥∥rTq (X0,i +XT

i β2

) (
Γ−1
q (β1)− Γ−1

q (β2)
)
rq

(
X0 +XTβ̃

)∥∥∥
≤ C√pqDq,0Dq,1 ∥β1 − β2∥+ CqD2

q,0 ∥Γq (β1)− Γq (β2)∥ ≤ C
√
pq2D3

q,0Dq,1 ∥β1 − β2∥ .

So we have that the second term is of order Op

(√
pχ1,n

)
. This finishes the proof.

Lemma 1.18. Suppose that Assumption 2.1, Assumption 2.2(i)-(iii), and Assumption 1.6 hold with

υG ≥ 1, and that χ1,n → 0 as n→∞, then we have that

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

(
Xi − Xq

(
X0,i +XT

i β,β
)) (

G
(
X0,i +XT

i β
)
−G

(
X0,i +XT

i β
⋆
))

−E
((
Xi − Xq

(
X0,i +XT

i β,β
)) (

G
(
X0,i +XT

i β
)
−G

(
X0,i +XT

i β
⋆
)))∥∥ = Op (

√
pχ1,n) .

Proof of Lemma 1.18. We only need to note that uniformly for all Xe,i, 1 ≤ j ≤ p, and β,β1,β2 ∈ B,

there hold

∣∣(Xi,j − EXe

(
rTq
(
X0 +XTβ

)
Γ−1
q (β) rq

(
X0,i +XT

i β
)
Xj

)) (
G
(
X0,i +XT

i β
)
−G

(
X0,i +XT

i β
⋆
))∣∣

≤ CqD2
q,0,

and

∥∥G (X0,i +XT
i β1

)
EXe

(
rTq
(
X0 +XTβ1

)
Γ−1
q (β1) rq

(
X0,i +XT

i β1

)
Xj

)
−G

(
X0,i +XT

i β2

)
EXe

(
rTq
(
X0 +XTβ2

)
Γ−1
q (β2) rq

(
X0,i +XT

i β2

)
Xj

)∥∥
≤
∥∥(G (X0,i +XT

i β1

)
−G

(
X0,i +XT

i β2

))
EXe

(
rTq
(
X0 +XTβ1

)
Γ−1
q (β1) rq

(
X0,i +XT

i β1

)
Xj

)∥∥
+
∥∥G (X0,i +XT

i β2

)
EXe

((
rTq
(
X0 +XTβ1

)
− rTq

(
X0 +XTβ2

))
Γ−1
q (β1) rq

(
X0,i +XT

i β1

)
Xj

)∥∥
+
∥∥G (X0,i +XT

i β2

)
EXe

(
rTq
(
X0 +XTβ2

) (
Γ−1
q (β1)− Γ−1

q (β2)
)
rq
(
X0,i +XT

i β1

)
Xj

)∥∥
+
∥∥G (X0,i +XT

i β2

)
EXe

(
rTq
(
X0 +XTβ2

)
Γ−1
q (β2)

(
rq
(
X0,i +XT

i β1

)
− rq

(
X0,i +XT

i β2

))
Xj

)∥∥
≤ C√pq2D3

q,0Dq,1 ∥β1 − β2∥ .

Lemma 1.19. Suppose that Assumption 2.1, Assumption 2.2(i)-(iii), and Assumption 1.6 hold with
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υG ≥ 1, and that χ1,n → 0 as n→∞, then we have that

sup
β∈B

∥∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q (z (Xe,i,β)) Γ

−1
q,n (β)

 1

n

n∑
j=1

rTq (z (Xe,j ,β))Rq (z (Xe,j ,β))

∥∥∥∥∥∥ = Op

(√
pqD2

q,0Eq,0
)
,

sup
β∈B

∥∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q (z (Xe,i,β)) Γ

−1
q,n (β)

 1

n

n∑
j=1

rTq (z (Xe,j ,β)) εj

∥∥∥∥∥∥ = Op (
√
pχ1,n) ,

and

sup
β∈B

∥∥∥∥∥ 1n
n∑

i=1

(Rq (z (Xe,i,β))Xi + εiXi)

∥∥∥∥∥ = Op

(√
pEq,0 +

√
p(log p)/n

)
.

Proof of Lemma 1.19. For the first result, we note that

sup
β∈B

∥∥∥∥∥∥Xir
T
q (z (Xe,i,β)) Γ

−1
q,n (β)

 1

n

n∑
j=1

rTq (z (Xe,j ,β))Rq (z (Xe,j ,β))

∥∥∥∥∥∥
= Op

(
√
p sup
β∈B,Xe∈Xe

∥rq (z (Xe,β))∥ sup
β∈B,Xe∈Xe

∥rq (z (Xe,β))Rq (z (Xe,β))∥

)

= Op

(√
pqD2

q,0Eq,0
)
.

For the second result, we first have that

sup
β∈B

∥∥∥∥∥∥ 1n
n∑

j=1

rTq (z (Xe,j ,β)) εj

∥∥∥∥∥∥ = Op

(√
pqD2

q,0 log (pqDq,1n) /n
)
,

due to the fact that |rl (z (Xe,j ,β)) εj | ≤ CDq,0 and ∥(∂rl (z (Xe,j ,β)) /∂β) εj∥ ≤ C
√
pDq,1 for all

0 ≤ l ≤ q. So

sup
β∈B

∥∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q (z (Xe,i,β)) Γ

−1
q,n (β)

 1

n

n∑
j=1

rTq (z (Xe,j ,β)) εj

∥∥∥∥∥∥
= Op

(√
pqDq,0

√
pqD2

q,0 log (pqDq,1n) /n
)
= Op (

√
pχ1,n) .

Finally for the third result, we have that
∥∥ 1
n

∑n
i=1Rq (z (Xe,i,β))Xi

∥∥ = Op

(√
pEq,0

)
and

∥∥ 1
n

∑n
i=1 εiXi

∥∥ =

Op

(√
p (log p) /n

)
.

Combine the above results, we finish the proof.

Now we are ready to prove Lemma 1.4 in the main text.
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Proof of Lemma 1.4. We note that

βk+1 = βk −
δk
n

n∑
i=1

(
Ĝ (zi,k|βk)− yi

)
Xi

= βk −
δk
n

n∑
i=1

(
rTq (zi,k) π̂q,n,k − rTq (zi,k)π

⋆
q

)
Xi −

δk
n

n∑
i=1

(G (zi,k)−G (z⋆
i ))Xi

+
δk
n

n∑
i=1

Rq (zi,k)Xi +
δ

n

n∑
i=1

εiXi.

Now we look at the π̂q,n,k − π⋆
q . Define Γq,n,k = Γq,n (βk), we have that

π̂q,n,k =

(
1

n

n∑
i=1

rq (zi,k) r
T
q (zi,k)

)−1(
1

n

n∑
i=1

rq (zi,k) yi

)

= π⋆
q − Γ−1

q,n,k

(
1

n

n∑
i=1

rq (zi,k) (G (zi,k)−G (z⋆
i ))

)
+ Γ−1

q,n,k

(
1

n

n∑
i=1

rq (zi,k)Rq (zi,k)

)

+ Γ−1
q,n,k

(
1

n

n∑
i=1

rq (zi,k) εi

)
.

Take the above expression of π̂q,n,k − π⋆
q into the update of βk, we have that

βk+1 = βk −
δk
n

n∑
i=1

(Xi − Xq,n (zi,k,βk)) (G (zi,k)−G (z⋆i ))

− δk
n

n∑
i=1

Xir
T
q (zi,k) Γ

−1
q,n,k

 1

n

n∑
j=1

rq (zj,k)Rq (zj,k) +
1

n

n∑
i=1

rq (zj,k) εj


+
δk
n

n∑
i=1

(Rq (zi,k)Xi + εiXi) .
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If we define

Rn,k = E (X− Xq (z (Xe,βk) ,βk)) (G (z (Xe,βk))−G (z (Xe,β
⋆)))

− 1

n

n∑
i=1

(Xi − Xq (z (Xe,i,βk) ,βk)) (G (z (Xe,i,βk))−G (z (Xe,i,β
⋆)))

+
1

n

n∑
i=1

(Xi − Xq (z (Xe,i,βk) ,βk)) (G (z (Xe,i,βk))−G (z (Xe,i,β
⋆)))

− 1

n

n∑
i=1

(Xi − Xq,n (z (Xe,i,βk) ,βk)) (G (z (Xe,i,βk))−G (z (Xe,i,β
⋆)))

− δk
n

n∑
i=1

Xir
T
q (zi,k) Γ

−1
q,n,k

 1

n

n∑
j=1

rq (zj,k)Rq (zj,k) +
1

n

n∑
i=1

rq (zj,k) εj


+
δk
n

n∑
i=1

(Rq (zi,k)Xi + εiXi) ,

we have that

βk+1 = βk − δkE [(X− Xq (z (Xe,βk) ,βk)) (G (z (Xe,βk))−G (z (Xe,β
⋆)))] + δkRn,k.

It remains to verify the order of supk≥1 ∥Rn,k∥, which is done based on Lemma 1.17, Lemma 1.18,

and Lemma 1.19.

Now we prove Lemma 1.5 and Lemma 1.6 in the main text.

Proof of Lemma 1.5. Recall that

Ψq (t,β) = E
[
G′ (z (Xe,β

⋆) + tXT∆β
) (

XXT − Xq (z (Xe,β) ,β)X
T
)]
.

We have that

sup
0≤t≤1,β∈Bn

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq,n (z (Xe,i,β) ,β)X

T
i

)
−Ψ⋆

q

∥∥∥∥∥
≤ sup

0≤t≤1,β∈B

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i + tXT
i ∆β

)
(Xq,n (z (Xe,i,β) ,β)− Xq (z (Xe,i,β) ,β))X

T
i

∥∥∥∥∥
+ sup

0≤t≤1,β∈B

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq (z (Xe,i,β) ,β)X

T
i

)
−Ψq (t,β)

∥∥∥∥∥
+ sup

0≤t≤1,β∈Bn

∥∥Ψq (t,β)−Ψ⋆
q

∥∥ .
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From Lemma 1.17, we know that

sup
z∈Z

sup
β∈B
∥Xq,n (z,β)− Xq (z,β)∥ = Op

(√
pqD2

q,0χ1,n

)
,

and as a result,

sup
0≤t≤1,β∈B

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i + tXT
i ∆β

)
(Xq,n (z (Xe,i,β) ,β)− Xq (z (Xe,i,β) ,β))X

T
i

∥∥∥∥∥
= Op

(
pqD2

q,0χ1,n

)
.

For the second term, we have that

sup
0≤t≤1,β∈B

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq,n (z (Xe,i,β) ,β)X

T
i

)
−Ψq (t,β)

∥∥∥∥∥
= Op

(√
p3q2D4

q,0 log (pqDq,0Dq,1n) /n
)
= Op (pχ1,n) ,

due to the fact that

∣∣G′ (z⋆i + tXT
i ∆β

) (
Xi,sXi,t − (Xq (z (Xe,i,β) ,β))sXi,t

)∣∣ ≤ CqD2
q.0,

and

∣∣G′ (z⋆i + tXT
i ∆β1

) (
Xi,sXi,t − (Xq (z (Xe,i,β1) ,β1))sXi,t

)
−G′ (z⋆i + tXT

i ∆β2

) (
Xi,sXi,t − (Xq (z (Xe,i,β2) ,β2))sXi,t

)∣∣
≤ C√pq2D3

q,0Dq,1 ∥β1 − β2∥ .

Finally,

sup
0≤t≤1,β∈Bn

∥∥Ψq (t,β)−Ψ⋆
q

∥∥
≤ sup

0≤t≤1,β∈Bn

∥∥E [G′ (z (Xe,β
⋆) + tXT∆β

)
−G′ (z (Xe,β

⋆))
(
XXT − Xq (z (Xe,β) ,β)X

T
)]∥∥

+ sup
β∈Bn

∥∥E [G′ (z (Xe,β
⋆))
(
Xq (z (Xe,β) ,β)− Xq (z (Xe,β

⋆) ,β⋆)XT
)]∥∥ .

Obviously the first term is bounded by C
√
p3qD2

q,0 supβ∈Bn
∥∆β∥, while the second term is bounded
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by

Cp sup
Xe,X̃e

∥∥∥(rTq (z (X̃e,β
))

Γ−1
q (β) rq (z (Xe,β))

)
−
(
rTq

(
z
(
X̃e,β

⋆
))

Γ−1
q (β⋆) rq (z (Xe,β

⋆))
)∥∥∥

≤ Cp sup
Xe,X̃e

∥∥∥∥(rq (z (X̃e,β
))
− rq

(
z
(
X̃e,β

⋆
)))T

Γ−1
q (β) rq (z (Xe,β))

∥∥∥∥
+ Cp sup

Xe,X̃e

∥∥∥∥rq (z (X̃e,β
⋆
))T (

Γ−1
q (β)− Γ−1

q (β⋆)
)
rq (z (Xe,β))

∥∥∥∥
+ Cp sup

Xe,X̃e

∥∥∥∥rq (z (X̃e,β
⋆
))T

Γ−1
q (β⋆) (rq (z (Xe,β))− rq (z (Xe,β

⋆)))

∥∥∥∥
≤ C

√
p3q2D3

q,0Dq,1 sup
β∈Bn

∥∆β∥ .

So

sup
0≤t≤1,β∈Bn

∥∥Ψq (t,β)−Ψ⋆
q

∥∥ = Op

(√
p3q2D3

q,0Dq,1 sup
β∈Bn

∥∆β∥

)
.

Combine the above results, we have that

sup
0≤t≤1,β∈Bn

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq,n (z (Xe,i,β) ,β)X

T
i

)
−Ψ⋆

q

∥∥∥∥∥
= Op

(
pqD2

q,0χ1,n +
√
p3q2D3

q,0Dq,1 sup
β∈Bn

∥∆β∥

)
.

Proof of Lemma 1.6. According to Theorem 1.7, we have that supk≥kSBGD
1,n +1 ∥∆βk∥ = Op (χ2,n).

To prove the lemma, we first show that

sup
k≥kSBGD

1,n +1

∥∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q,i,kΓ

−1
q,n,k

 1

n

n∑
j=1

rq,j,kRq,j,k +
1

n

n∑
i=1

rq,j,kεj −
1

n

n∑
i=1

r⋆q,jεj

∥∥∥∥∥∥
= Op

(√
pqD2

q,0Eq,0 +
√
pqDq,0χ2,nχ3,n

)
,

where χ3,n =
√
p2qD2

q,1 log (pqDq,2n) /n. Note that

sup
k≥kSBGD

1,n +1

∥∥∥∥∥ 1n
n∑

i=1

rq,i,kεi −
1

n

n∑
i=1

r⋆q,iεi

∥∥∥∥∥ = sup
k≥kSBGD

1,n +1

∥∥∥∥∥
{∫ 1

0

1

n

n∑
i=1

εir
′
q

(
z⋆i + tXT

i ∆βk

)
XT

i dt

}
∆βk

∥∥∥∥∥
≤ sup

β∈B

∥∥∥∥∥ 1n
n∑

i=1

εir
′
q

(
X0,i +XT

i β
)
XT

i

∥∥∥∥∥ sup
k≥kSBGD

1,n +1

∥∆βk∥ ,
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Obviously, we have that supβ∈B
∥∥ 1
n

∑n
i=1 εir

′
q

(
X0,j +XT

i β
)
XT

i

∥∥ = Op (χ3,n) due to the fact that∣∣εir′s (X0,i +XT
i β
)
Xt

∣∣ ≤ CDq,1 and
∥∥∂εir′s (X0,i +XT

i β
)
Xt/∂β

∥∥ ≤ C√pDq,2, so

sup
k≥kSBGD

1,n +1

∥∥∥∥∥ 1n
n∑

i=1

rq,j,kεj −
1

n

n∑
i=1

r⋆q,jεj

∥∥∥∥∥ = Op (χ2,nχ3,n) ,

which leads to the result if we further note that

sup
k≥kSBGD

1,n +1

∥∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q,i,kΓ

−1
q,n,k

 1

n

n∑
j=1

rq,j,kRq,j,k +
1

n

n∑
i=1

rq,j,kεj −
1

n

n∑
i=1

r⋆q,jεj

∥∥∥∥∥∥
= Op

√pqDq,0 sup
k≥kSBGD

1,n +1

∥∥∥∥∥∥ 1n
n∑

j=1

rq,j,kRq,j,k +
1

n

n∑
i=1

rq,j,kεj −
1

n

n∑
i=1

r⋆q,jεj

∥∥∥∥∥∥


= Op

(√
pqD2

q,0Eq,0 +
√
pqDq,0χ2,nχ3,n

)
.

Next we show that

sup
k≥kSBGD

1,n +1

∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q,i,kΓ

−1
q,n,k − E

(
Xir

T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q (β⋆)

)∥∥∥∥∥ = Op

(
p
√
q3D2

q,0Dq,1χ2,n

)
.

sup
k≥kSBGD

1,n +1

∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q,i,kΓ

−1
q,n,k −

1

n

n∑
i=1

Xir
T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q (β⋆)

∥∥∥∥∥
≤ sup

k≥kSBGD
1,n +1

∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q

(
X0,i +XT

i βk

)
Γ−1
q,n,k −

1

n

n∑
i=1

Xir
T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q,n,k

∥∥∥∥∥
+ sup

k≥kSBGD
1,n +1

∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q,n,k −

1

n

n∑
i=1

Xir
T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q (β⋆)

∥∥∥∥∥ .
The first term is obviously bounded in probability by

C sup
k≥kSBGD

1,n +1

∥∥∥∥∥ 1n
n∑

i=1

Xi

(
rq
(
X0,i +XT

i βk

)
− rq

(
X0,i +XT

i β
⋆
))T∥∥∥∥∥

≤ Cp√qDq,1 ∥βk − β⋆∥ = Cp
√
qDq,1χ2,n.
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The second term is bounded by

sup
k≥k∗

1,n

∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q

(
X0,i +XT

i β
⋆
)∥∥∥∥∥ sup

k≥k∗
1,n

∥∥∥Γ−1
q,n,k − Γ−1

q (β⋆)
∥∥∥

≤ C√pqDq,0 sup
k≥kSBGD

1,n +1

∥∥∥Γ−1
q,n,k − Γ−1

q (β⋆)
∥∥∥ .

Now we provide an upper bound for supk≥kSBGD
1,n +1

∥∥∥Γ−1
q,n,k − Γ−1

q (β⋆)
∥∥∥. Note that

sup
k≥kSBGD

1,n +1

∥∥∥Γ−1
q,n,k − Γ−1

q (β⋆)
∥∥∥ = Op

(
sup

k≥kSBGD
1,n +1

∥Γq,n,k − Γq (β
⋆)∥

)

= Op

(
sup

k≥kSBGD
1,n +1

∥Γq,n,k − Γq,n (β
⋆)∥+ ∥Γq,n (β

⋆)− Γq (β
⋆)∥

)

= Op (
√
pqDq,0Dq,1χ2,n + χ1,n) = Op (

√
pqDq,0Dq,1χ2,n) .

So

sup
k≥k∗

1,n

∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q,n,k −

1

n

n∑
i=1

Xir
T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q (β⋆)

∥∥∥∥∥
= Op

(
p
√
q3D2

q,0Dq,1χ2,n

)
,

and together

sup
k≥kSBGD

1,n +1

∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q,i,kΓ

−1
q,n,k −

1

n

n∑
i=1

Xir
T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q (β⋆)

∥∥∥∥∥ = Op

(
p
√
q3D2

q,0Dq,1χ2,n

)
.

Moreover, note that
∥∥ 1
n

∑n
i=1 Xir

T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q (β⋆)− E

(
Xir

T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q (β⋆)

)∥∥ =

Op

(√
p3D2

q,0 log (pn) /n
)
, so we have shown the results.
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Based on the above results, we have that

sup
k≥kSBGD

1,n +1

∥∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q,i,kΓ

−1
q,n,k

 1

n

n∑
j=1

rq,j,kRq,j,k +
1

n

n∑
i=1

rq,j,kεj

+
1

n

n∑
i=1

Rq (zi,k)Xi −
1

n

n∑
i=1

X (z⋆i ,β
⋆) εj

∥∥∥∥∥∥
≤ sup

k≥kSBGD
1,n +1

∥∥∥∥∥∥ 1n
n∑

i=1

Xir
T
q,i,kΓ

−1
q,n,k

 1

n

n∑
j=1

rq,j,kRq,j,k +
1

n

n∑
i=1

rq,j,kεj −
1

n

n∑
i=1

r⋆q,jεj

∥∥∥∥∥∥
+ sup

k≥kSBGD
1,n +1

∥∥∥∥∥
(
1

n

n∑
i=1

Xir
T
q,i,kΓ

−1
q,n,k − E

(
Xir

T
q

(
X0,i +XT

i β
⋆
)
Γ−1
q (β⋆)

))( 1

n

n∑
i=1

r⋆q,jεj

)∥∥∥∥∥
+ sup

k≥kSBGD
1,n +1

∥∥∥∥∥ 1n
n∑

i=1

Rq (zi,k)Xi

∥∥∥∥∥
= Op

(√
pqD2

q,0Eq,0 +
√
pqDq,0χ2,nχ3,n + p

√
q3D2

q,0Dq,1χ2,n

√
(qD2

q,0 log q)/n
)

1.7.2 Proofs of Theorems

Proof of Theorem 1.1

Proof. We first prove Theorem 1.1(i). Recall that ∆βe,k = βe,k−β⋆
e and εi = yi−G

(
XT

e,iβ
⋆
e

)
. We

have that

∆βe,k+1 = ∆βe,k −
δ

n

n∑
i=1

(
G
(
XT

e,iβe,k

)
−G

(
XT

e,iβ
⋆
e

)
− εi

)
Xe,i,

so ∥∥∆βe,k+1

∥∥ ≤ ∥∥∥∥∥∆βe,k −
δ

n

n∑
i=1

(
G
(
XT

e,iβe,k

)
−G

(
XT

e,iβ
⋆
e

))
Xe,i

∥∥∥∥∥+
∥∥∥∥∥ δn

n∑
i=1

εiXe,i

∥∥∥∥∥ .
Note that mean value theorem leads to

∆βe,k −
δ

n

n∑
i=1

(
G
(
XT

e,iβe,k

)
−G

(
XT

e,iβ
⋆
e

))
Xe,i

= ∆βe,k −
∫ 1

0

{
δ

n

n∑
i=1

G′
(
XT

e,iβ
⋆
e + tXT

e,i∆βe,k

)
Xe,iX

T
e,i∆βe,k

}
dt

=

∫ 1

0

{(
Ip+1 − δMn

(
β⋆
e + t∆βe,k

))
∆βe,k

}
dt,

where the integration is understood to be element-wise, and β⋆
e + t∆βe,k ∈ Be due to convexity of

Be.
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We next provide a uniform upper bound for λ (Ip+1 − δMn (βe)) and lower bound for λ (Ip+1 − δMn (βe))

with respect to βe ∈ Be in probability. Since Assumption 2.2 holds, we have that G
(
XT

e,iβ
)
Xi,tXi,s

is bounded by ∥G∥∞ and ∥∂G
(
XT

e,iβ
)
Xi,tXi,s/∂β∥ ≤ C

√
p. Then according to Lemma 1.7, we

have that

sup
βe∈B

∥Mn (βe)−M (βe)∥ = Op

(√
p3 log n

n

)
.

Since p5(log p)2n−1 → 0 holds,
√
p3 (log n) /n→ 0 holds, so

sup
βe∈B

∣∣λ (Mn (βe))− λ (M (βe))
∣∣ = op (1) ,

and

sup
βe∈B

|λ (Mn (βe))− λ (M (βe))| = op (1) .

Due to Assumption 2.2(iv), with probability going to 1, there holds,

λe/2 ≤ inf
βe∈B

λ (Mn (βe)) ≤ sup
βe∈B

λ (Mn (βe)) ≤ 3λe/2.

Since δ < 2/(3λe), we have that with probability going to 1, there holds

0 ≤ inf
βe∈B

λ (Ip+1 − δMn (βe)) ≤ sup
βe∈B

λ (Ip+1 − δMn (βe)) ≤ 1− λeδ/2.

Based on the above inequality, we have that with probability going to 1, there holds

∥∥∥∥∫ 1

0

{(
Ip+1 − δMn

(
β⋆
e + t∆βe,k

))
∆βe,k

}
dt

∥∥∥∥
≤
∫ 1

0

{
sup
βe∈B

λ (Ip+1 − δMn (βe))

}
dt ·

∥∥∆βe,k

∥∥ ≤ (1− λeδ/2) ·
∥∥∆βe,k

∥∥ .
So with probability going to 1, for all k there holds

∥∥∆βe,k+1

∥∥ ≤ (1− λeδ/2)
∥∥∆βe,k

∥∥+ δ

∥∥∥∥∥ 1n
n∑

i=1

εiXe,i

∥∥∥∥∥
≤ · · · ≤ (1− λeδ/2)

k ∥∥∆βe,1

∥∥+ δ

k∑
j=1

(1− λeδ/2)
j−1

∥∥∥∥∥ 1n
n∑

i=1

εiXe,i

∥∥∥∥∥
≤ (1− λeδ/2)

k ∥∥∆βe,1

∥∥+ 2λ−1
e

∥∥∥∥∥ 1n
n∑

i=1

εiXe,i

∥∥∥∥∥ .
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Note that for any τ > 0,

P

(∥∥∥∥∥ 1n
n∑

i=1

εiXe,i

∥∥∥∥∥ > τ

)
≤

p∑
j=0

P

(∣∣∣∣∣ 1n
n∑

i=1

εiXe,j,i

∣∣∣∣∣ > τ√
p+ 1

)

≤
p∑

j=0

2 exp
(
Cnτ2/p

)
= 2 exp

(
C1 log p− C2nτ

2/p
)
,

so ∥∥∥∥∥ 1n
n∑

i=1

εiXe,i

∥∥∥∥∥ = Op

(√
p (log p) /n

)
.

Then for k such that

(1− λeδ/2)
k ∥∥∆βe,1

∥∥ ≤√p (log p) /n,
or equivalently,

k ≥ kBGD
1,n =

log
∥∥∆βe,1

∥∥+ 1
2 log (n/ (p log p))

− log (1− λeδ/2)
,

we have that ∥∥∆βe,k+1

∥∥ = Op

(√
p (log p) /n

)
.

This proves Theorem 1.1(i).

Next we prove Theorem 1.1(ii). For any k ≥ kBGD
1,n + 1, there holds

∆βe,k+1 = ∆βe,k −
δ

n

n∑
i=1

(
G
(
XT

e,iβe,k

)
−G

(
XT

e,iβ
⋆
e

)
− εi

)
Xe,i,

=
(
Ip+1 − δMn

(
βe,k

))
∆βe,k +

δ

n

n∑
i=1

εiXe,i,

where βe,k is element-wise and lies between βe,k and β⋆
e. Since

∥∥∆βe,k

∥∥ = Op

(√
p (log p) /n

)
for

k ≥ kBGD
1,n + 1,

∥∥∆βe,k

∥∥ = Op

(√
p (log p) /n

)
also holds. Note that

∥∥Mn

(
βe,k

)
−M (β⋆

e)
∥∥ ≤ ∥∥Mn

(
βe,k

)
−Mn (β

⋆
e)
∥∥+ ∥Mn (β

⋆
e)−M (β⋆

e)∥ .

For the second term, ∥Mn (β
⋆
e)−M (β⋆

e)∥ = Op

(√
p2 (log p) /n

)
obviously holds. For the first term,

62



since G is twice differentiable with bounded derivatives, we have that

sup
k≥kBGD

1,n +1

∥∥Mn

(
βe,k

)
−Mn (β

⋆
e)
∥∥ ≤ sup

k≥kBGD
1,n +1

1

n

n∑
i=1

∥∥Xe,iX
T
e,i

∥∥ ∣∣G′′ (XT
e,iβ̌e,k

)∣∣ ∣∣XT
e,i∆βe,k

∣∣ .
≤ C

√
p3 sup

k≥kBGD
1,n +1

∥∥βe,k − β⋆
e

∥∥ = Op

(√
p4 (log p) /n

)
,

where β̌e,k lies somewhere between βe,k and β⋆
e and is also element-wise, and the second last in-

equality comes from the fact that
∥∥Xe,iX

T
e,i

∥∥ ≤ p and
∣∣XT

e,i∆βe,k

∣∣ ≤ ∥Xe,i∥
∥∥∆βe,k

∥∥. This implies

that

sup
k≥k1,n+1

∥∥Mn

(
βe,k

)
−M (β⋆

e)
∥∥ = Op

(√
p4 (log p) /n

)
.

Define ωk =
(
Mn

(
βe,k

)
−M (β⋆

e)
)
∆βe,k. Obviously, there holds

sup
k≥kBGD

1,n +1

∥ωk∥ ≤

(
sup

k≥kBGD
1,n +1

∥∥Mn

(
βe,k

)
−M (β⋆

e)
∥∥)( sup

k≥kBGD
1,n +1

∥∥∆βe,k

∥∥)

= Op

(√
p5 (log p)

2
/n2

)
,

which is op
(
n−1/2

)
according to Assumption 2.

Based on the above result, we have that for any k ≥ 1,

∆βe,k+kBGD
1,n +1 =

(
Ip+1 − δMn

(
βe,k+kBGD

1,n

))
∆βe,k+kBGD

1,n
− δ

n

n∑
i=1

εiXe,i

= (Ip+1 − δM (β⋆
e))∆βe,k+kBGD

1,n
− δωk+kBGD

1,n
− δ

n

n∑
i=1

εiXe,i

= (Ip+1 − δM (β⋆
e))

k
∆βe,kBGD

1,n +1 − δ
k−1∑
j=0

(Ip+1 − δM (β⋆
e))

j
ωk+kBGD

1,n −j

− δ

k−1∑
j=0

(Ip+1 − δM (β⋆
e))

j

( 1

n

n∑
i=1

εiXe,i

)
.

For the first part on the RHS of the last equality, we have that

∥∥∥(Ip+1 − δM (β⋆
e))

k
∆βe,kBGD

1,n +1

∥∥∥ ≤ (1− λeδ)
k
∥∥∥∆βe,kBGD

1,n +1

∥∥∥
= (1− λeδ)

k
Op

(√
p (log p) /n

)
.

63



For the second part, we have that

∥∥∥∥∥∥δ
k−1∑
j=0

(Ip+1 − δM (β⋆
e))

j
ωk+kBGD

1,n −j

∥∥∥∥∥∥ ≤ δ
∞∑
j=0

(1− λeδ)
j
∥∥∥ωk+kBGD

1,n −j

∥∥∥
≤ λ−1

e sup
k≥1

∥∥∥ωk+kBGD
1,n

∥∥∥ = Op

(√
p5 (log p)

2
/n2
)

= op

(
n−1/2

)
.

For the third part, we have that

∥∥∥∥∥∥
k−1∑

j=0

δ (Ip+1 − δM (β⋆
e))

j

( 1

n

n∑
i=1

εiXe,i

)
−M−1

n (β⋆
e)

(
1

n

n∑
i=1

εiXe,i

)∥∥∥∥∥∥
≤

∞∑
j=k

δ (1− λeδ)
j

∥∥∥∥∥ 1n
n∑

i=1

εiXe,i

∥∥∥∥∥ = (1− λeδ)
k

∥∥∥∥∥ 1n
n∑

i=1

εiXe,i

∥∥∥∥∥
= (1− λeδ)

k
Op

(√
p (log p) /n

)
.

This implies that when (1− λeδ)
kBGD
2,n
√
p log p→ 0, we have that

sup
k≥kBGD

2,n +1

∥∥∥∥∥√n∆βe,k+kBGD
1,n
−M−1 (β⋆

e)
1√
n

n∑
i=1

εiXe,i

∥∥∥∥∥ = op (1) .

This proves Theorem 1.1(ii)

Now we prove Theorem 1.1(iii). We first note that for any square matrices A, B, and C, there hold

∥AB∥ ≤ σ (A) ∥B∥ and ∥ABC∥ ≤ σ (A) ∥BC∥ ≤ σ (A)σ (B) ∥C∥. So

∥∥∥M−1 (β⋆
e)−M−1

n

(
β̂e

)∥∥∥ =
∥∥∥M−1 (β⋆

e)
(
Mn

(
β̂e

)
−M (β⋆

e)
)
M−1

n

(
β̂e

)∥∥∥
≤ σ

(
M−1 (β⋆

e)
)
· σ
(
M−1

n

(
β̂e

))
·
∥∥∥Mn

(
β̂e

)
−M (β⋆

e)
∥∥∥ ,

due to the fact that M−1
n

(
β̂e

)
and Mn

(
β̂e

)
− M (β⋆

e) are both symmetric. Due to Assump-

tion 2.2(iv), we have that σ
(
M−1 (β⋆

e)
)
= λ

(
M−1 (β⋆

e)
)
≤ λ−1

e . Since
∥∥∥Mn

(
β̂e

)
−M (β⋆

e)
∥∥∥ =

op (1) holds according to the previous proof, we have that with probability going to 1, σ
(
M−1

n

(
β̂e

))
=

λ
(
M−1

n

(
β̂e

))
≤ 2λ−1

e . Then with probability going to 1, we have that

∥∥∥M−1 (β⋆
e)−M−1

n

(
β̂e

)∥∥∥ ≤ 2λ−2
e

∥∥∥Mn

(
β̂e

)
−M (β⋆

e)
∥∥∥ = Op

(√
p4 (log p) /n

)
.
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On the other side, we have that

∥∥∥∥∥ 1n
n∑

i=1

Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i − E

[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

]∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑

i=1

Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i −

1

n

n∑
i=1

G⋆
i (1−G⋆

i )Xe,iX
T
e,i

∥∥∥∥∥
+

∥∥∥∥∥ 1n
n∑

i=1

G⋆
i (1−G⋆

i )Xe,iX
T
e,i − E

[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

]∥∥∥∥∥
≤ C

√
p3
∥∥∥β̂e − β⋆

e

∥∥∥+Op

(√
p2 (log p) /n

)
= Op

(√
p4(log p)/n

)
.

Together, we have that

∥∥∥Σ̂1 − Σ⋆
1

∥∥∥ ≤ ∥∥∥M−1 (β⋆
e)E

[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

] (
M−1 (β⋆

e)−M−1
n

(
β̂e

))∥∥∥
+

∥∥∥∥∥M−1 (β⋆
e)

(
1

n

n∑
i=1

Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i − E

[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

])
M−1

n

(
β̂e

)∥∥∥∥∥
+

∥∥∥∥∥(M−1 (β⋆
e)−M−1

n

(
β̂e

))( 1

n

n∑
i=1

Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i

)
M−1

n

(
β̂e

)∥∥∥∥∥
≤ λ

(
M−1 (β⋆

e)
)
λ
(
E
[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

]) ∥∥∥M−1 (β⋆
e)−M−1

n

(
β̂e

)∥∥∥
+ λ

(
M−1 (β⋆

e)
)
λ
(
M−1

n

(
β̂e

))∥∥∥∥∥ 1n
n∑

i=1

Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i − E

[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

]∥∥∥∥∥
+ λ

(
M−1

n

(
β̂e

))
λ

(
1

n

n∑
i=1

Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i

)∥∥∥M−1 (β⋆
e)−M−1

n

(
β̂e

)∥∥∥ .
Note that λ

(
M−1 (β⋆

e)
)
≤ λ−1

e , λ
(
E
[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

])
≤ 1

4λ
(
E
[
Xe,iX

T
e,i

])
≤ C, λ

(
M−1

n

(
β̂e

))
≤

2λ−1
e with probability going to 1, and λ

(
1
n

∑n
i=1 Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i

)
≤ C with probability going

to 1, we have that

∥∥∥Σ̂1 − Σ⋆
1

∥∥∥ ≤ C ∥∥∥M−1 (β⋆
e)−M−1

n

(
β̂e

)∥∥∥
+ C

∥∥∥∥∥ 1n
n∑

i=1

Ĝi

(
1− Ĝi

)
Xe,iX

T
e,i − E

[
G⋆

i (1−G⋆
i )Xe,iX

T
e,i

]∥∥∥∥∥
= Op

(√
p4 (log p) /n

)
= op (1) ,

which validates the result.
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To prove (iv), we only need to show that σ̂2 (ρ)− σ2 (ρ) = op (1). Note that

∣∣σ̂2
n(ρ)− σ2(ρ)

∣∣ = ∣∣∣ρT (Σ̂1 − Σ⋆
1

)
ρ
∣∣∣ ≤ ∥ρ∥ ∥∥∥(Σ̂1 − Σ⋆

1

)
ρ
∥∥∥ ≤ ∥ρ∥2 ∥∥∥Σ̂1 − Σ⋆

1

∥∥∥→p 0

given that ∥ρ∥ <∞ for all n, which validates the result.

Proof of Theorem 1.2

Proof. We first show Theorem 1.2(i). Note that from the proof in Theorem 1.1, we know that with

probability going to 1, we have that

∥∥∆βe,k+1

∥∥ ≤ sup
βe∈B

λ (Ip+1 − δkMn (βe))
∥∥∆βe,k

∥∥+ δk

∥∥∥∥∥ 1n
n∑

i=1

εiXe,i

∥∥∥∥∥
≤ (1− λeδk/2)

∥∥∆βe,k

∥∥+ δk

∥∥∥∥∥ 1n
n∑

i=1

εiXe,i

∥∥∥∥∥ ≤ · · ·
≤

 k∏
j=1

(1− λeδj/2)

∥∥∆βe,1

∥∥+


k−1∑
j=0

δk−j

(
j−1∏
l=0

(1− λeδk−l/2)

)
∥∥∥∥∥ 1n

n∑
i=1

εiXe,i

∥∥∥∥∥ ,
(1.11)

where
∏j−1

l=0 (1− λeδk−l/2) = 1 if j = 0.

For the first term on the RHS of (1.11), since ex ≥ 1+x for all x, we have 1−λeδj/2 ≤ exp (−λeδj/2)

for all j. Define S0 = 0 and Sj =
∑j

l=1 δl for j ≥ 1, we have that

 k∏
j=1

(1− λeδj/2)

∥∥∆βe,1

∥∥ ≤ exp

−λe
2

k∑
j=1

δj

∥∥∆βe,1

∥∥ = exp

(
−λeSk

2

)∥∥∆βe,1

∥∥ .

Next we show that
∑k−1

j=0 δk−j

(∏j−1
l=0 (1− λeδk−l/2)

)
is upper bounded by exp (λeδk+1/2) up to
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some constant scale that is independent of k. Since lim supk δk−1/δk <∞, we have that

k−1∑
j=0

δk−j

(
j−1∏
l=0

(1− λeδk−l/2)

)
≤

k−1∑
j=0

δk−j exp

(
−λe

2

j−1∑
l=0

δk−l

)

≤ C
k−1∑
j=0

δk−j+1 exp

(
−λe (Sk − Sk−j)

2

)

= C exp

(
−λeSk

2

) k−1∑
j=0

(Sk−j+1 − Sk−j) exp

(
λeSk−j

2

)

≤ 2Cλ−1
e exp

(
−λeSk

2

) k−1∑
j=0

{
exp

(
λeSk−j+1

2

)
− exp

(
λeSk−j

2

)}
≤ C exp

(
λeδk+1

2

)
.

Then we have that

∥∥∆βe,k+1

∥∥ = Op

(
exp

(
−λeSk

2

)∥∥∆βe,1

∥∥)+Op

(
exp

(
λeδk+1

2

)√
p (log p) /n

)
.

When k ≥ k̃BGD
1,n + 1, we have that

exp

(
−λeSk

2

)∥∥∆βe,1

∥∥ ≤√p (log p) /n,
and

exp

(
λeδk+1

2

)
≤ e,

so
∥∥∆βe,k+1

∥∥ = Op

(√
p (log p) /n

)
. This validates Theorem 1.2(i).

For Theorem 1.2(ii), we know that for k ≥ k̃BGD
1,n + 1,

∥∥∆βe,k

∥∥ = Op

(√
p (log p) /n

)
holds, so we

have that

∆βe,k+1 =
(
Ip+1 − δkMn

(
βe,k

))
∆βe,k −

δk
n

n∑
i=1

εiXe,i

= (Ip+1 − δkM (β⋆
e))∆βe,k − δk

(
Mn

(
βe,k

)
−M (β⋆

e)
)
∆βe,k −

δk
n

n∑
i=1

εiXe,i,

where βe,k lies between βe,k and β⋆
e and is element-wise. Following the proof of Theorem 1.1, we

can easily show that

sup
k≥k̃BGD

1,n +1

∥∥Mn

(
βe,k

)
−M (β⋆

e)
∥∥ = Op

(√
p4 (log p) /n

)
.
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Recall that ωk =
(
Mn

(
βe,k

)
−M (β⋆

e)
)
∆βe,k, so

sup
k≥k̃BGD

1,n +1

∥ωk∥ = Op

(√
p5 (log p)

2
/n2
)

= op

(
n−1/2

)
.

We have that

∆βe,k+k̃BGD
1,n +1 =

(
Ip+1 − δk̃BGD

1,n +kM (β⋆
e)
)
∆βe,k+k̃BGD

1,n
− δk̃BGD

1,n +kωk̃BGD
1,n +k − δk̃BGD

1,n +k

1

n

n∑
i=1

εiXe,i

=

k−1∏
j=0

(
Ip+1 − δk̃BGD

1,n +k−jM (β⋆
e)
)
∆βe,k̃BGD

1,n +1

−
k−1∑
j=0

{
δk̃BGD

1,n +k−j

j−1∏
l=0

(
Ip+1 − δk̃BGD

1,n +k−lM (β⋆
e)
)}

ωk̃BGD
1,n +k−j

−
k−1∑
j=0

{
δk̃BGD

1,n +k−j

j−1∏
l=0

(
Ip+1 − δk̃BGD

1,n +k−lM (β⋆
e)
)} 1

n

n∑
i=1

εiXe,i,

where
∏j−1

l=0

(
Ip+1 − δk̃BGD

1,n +k−lM (β⋆
e)
)
= 1 if j = 0. For the first part, define Sk̃BGD

1,n ,k =
∑k̃BGD

1,n +k

j=k̃BGD
1,n +1

δj ,

we have that∥∥∥∥∥∥
k−1∏
j=0

(
Ip+1 − δk̃BGD

1,n +k−jM (β⋆
e)
)
∆βe,k̃BGD

1,n +1

∥∥∥∥∥∥ ≤
k−1∏
j=0

(
1− λeδk̃BGD

1,n +k−j/2
)∥∥∥∆βe,k̃BGD

1,n +1

∥∥∥
≤ exp

(
−λeSk̃BGD

1,n ,k/2
)∥∥∥∆βe,k̃BGD

1,n +1

∥∥∥
= Op

(
exp

(
−λeSk̃BGD

1,n ,k/2
)√

p (log p) /n
)
.

For the second term, we have that

∥∥∥∥∥∥
k−1∑
j=0

{
δk̃BGD

1,n +k−j

j−1∏
l=0

(
Ip+1 − δk̃BGD

1,n +k−lM (β⋆
e)
)}

ωk̃BGD
1,n +k−j

∥∥∥∥∥∥
≤


k−1∑
j=0

δk̃BGD
1,n +k−j

j−1∏
l=0

(
1− λeδk̃BGD

1,n +k−l/2
)

{
sup
k≥1

∥∥∥ωk̃BGD
1,n +k

∥∥∥}

≤ exp
(
−λeSk̃BGD

1,n +k/2
)

k−1∑
j=0

δk̃BGD
1,n +k−j exp

(
λeSk̃BGD

1,n +k−j/2
)

{
sup
k≥1

∥∥∥ωk̃BGD
1,n +k

∥∥∥}

= Op

(√
p5 (log p)

2
/n2
)
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according to the proof of Theorem 1.2(i). Now we look at the last term. Note that

Mk,n ≡:
k−1∑
j=0

{
δk̃BGD

1,n +k−j

j−1∏
l=0

(
Ip+1 − δk̃BGD

1,n +k−lM (β⋆
e)
)}

= δk̃BGD
1,n +kIp+1 + δk̃BGD

1,n +k−1

(
Ip+1 − δk̃BGD

1,n +kM (β⋆
e)
)
+ · · ·

+ δk̃BGD
1,n +1

(
Ip+1 − δk̃BGD

1,n +kM (β⋆
e)
)(

Ip+1 − δk̃BGD
1,n +k−1M (β⋆

e)
)
· · ·
(
Ip+1 − δk̃BGD

1,n +2M (β⋆
e)
)
,

so

Mk+1,n = δk̃BGD
1,n +k+1Ip+1 +

(
Ip+1 − δk̃BGD

1,n +kM (β⋆
e)
)
Mk,n.

Note that

Mk+1,n −M−1 (β⋆
e)

=Mk,n −M−1 (β⋆
e) + δk̃BGD

1,n +k+1M (β⋆
e)
(
M−1 (β⋆

e)−Mk,n

)
=
(
Ip+1 − δk̃BGD

1,n +kM (β⋆
e)
) (
Mk,n −M−1 (β⋆

e)
)
,

so

∥∥Mk+1,n −M−1 (β⋆
e)
∥∥ ≤ λ(Ip+1 − δk̃BGD

1,n +kMn (β
⋆
e)
)∥∥Mk,n −M−1 (β⋆

e)
∥∥

≤
(
1− δk̃BGD

1,n +kλe

)∥∥Mk,n −M−1 (β⋆
e)
∥∥

≤ exp
(
−λeSk̃BGD

1,n ,k

)∥∥M1,n −M−1 (β⋆
e)
∥∥ .

Then

k−1∑
j=0

{
δk̃BGD

1,n +k−1−j

j−1∏
l=0

(
I − δk̃BGD

1,n +k−1M (β⋆
e)
)} 1

n

n∑
i=1

εiXe,i

=M−1 (β⋆
e)

1

n

n∑
i=1

εiXe,i +Op

(
exp

(
−λeSk̃BGD

1,n ,k

)√
p (log p) /n

)
.

So we have

∥∥∥∥∥√n∆βe,k+k̃BGD
1,n
−M−1 (β⋆

e)
1√
n

n∑
i=1

εiXe,i

∥∥∥∥∥ = Op

(
exp

(
−λeSk̃BGD

1,n ,k/2
)√

p (log p) /n
)

+Op

(√
p5 (log p)

2
/n2

)
+Op

(
exp

(
−Sk̃BGD

1,n ,k

)√
p (log p) /n

)
.
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According to the definition of k̃BGD
2,n , we have that for k ≥ k̃BGD

2,n , there holds Sk̃BGD
1,n ,k/ log p → ∞,

this proves Theorem 1.2(ii).

The proof of Theorem 1.2(iii) and Theorem 1.2(iv) is the same as that in the proof of Theorem 1.1,

so is left out.

Proof of Theorem 1.3

Proof. Define

η1,n (β) =
1

n

n∑
i=1

Ĝ (z (Xe,i,β)|β)Xi − E [L (z (Xe,i,β) ,β)Xi] ,

η2,n =

(
1

n

n∑
i=1

G (z⋆i )Xi − E [G (z⋆i )Xi]

)
+

1

n

n∑
i=1

εi ·Xi.

Note that when β⋆ ∈ B and βk ∈ B, we have that β⋆ + t∆βk ∈ B for all 0 ≤ t ≤ 1, so

∥∥∆βk+1

∥∥ ≤ ∥∥∥∥∫ 1

0

(Ip − δΛ (β⋆ + t∆βk)) dt∆βk

∥∥∥∥+ δ ∥η1,n (βk)∥+ δ ∥η2,n∥

≤

{
sup
β∈B

σ (Ip − δΛ (β))

}
∥∆βk∥+ δ ∥η1,n (βk)∥+ δ ∥η2,n∥ .

Note that for any 1 ≤ s, t ≤ p,

∣∣∣(Λ (β))s,t

∣∣∣ = ∣∣∣∣E [∫
X
(Xs,iXt,i −Xs,iXt)W (Xe,i,Xe,β) dX

]∣∣∣∣
≤ 2 ∥G′∥∞ E

[∫
X
fX|z (X| z (Xe,i,β) ,β) dX

]
= 2 ∥G′∥∞ ,

so each element of ΛT (β)Λ (β) is bounded by 2p∥G′∥∞, and we have that

sup
β∈B

∣∣σ2 (Ip − δΛ (β))− λ
(
Ip − δ

(
Λ (β) + ΛT (β)

))∣∣
≤ sup

β∈B
δ2
∥∥ΛT (β)Λ (β)

∥∥ ≤ 2 ∥G′∥∞ p2δ2.

Then according to Assumption 2.5, we have that

sup
β∈B

σ2 (Ip − δΛ (β)) ≤ 1− δλΛ + 2 ∥G′∥∞ p2δ2.
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When δ < min
{
1/ (2λΛ) , 1/

(
4 ∥G′∥∞ p2

)}
, we have that

0 ≤ 1− δλΛ + 2 ∥G′∥∞ p2δ2 ≤ 1− δλΛ/2 < 1.

So

sup
β∈B

σ (Ip − δΛ (β)) ≤
√

1− δλΛ/2 ≤ 1− δλΛ/4,

and

∥∥∆βk+1

∥∥ ≤ (1− δλΛ/4) ∥∆βk∥+ δ ∥η1,n (βk)∥+ δ ∥η2,n∥

≤ · · · ≤ (1− δλΛ/4)
k ∥∆β1∥+ δ ·

k−1∑
j=0

(1− δλΛ/4)
j (∥∥η1,n (βj

)∥∥+ ∥η2,n∥)
≤ (1− δλΛ/4)

k ∥∆β1∥+ δ ·
∞∑
j=0

(1− δλΛ/4)
j

(
sup
β∈B
∥η1,n (β)∥+ ∥η2,n∥

)

= (1− δλΛ/4)
k ∥∆β1∥+ 4λ−1

Λ

(
sup
β∈B
∥η1,n (β)∥+ ∥η2,n∥

)
.

Note that

sup
β∈B
∥η1,n (β)∥ = p

5p+1
2(p+1)ψ

1
p+1 (n, p, hn)

according to Lemma 1.1, and

∥η2,n∥ = Op

(√
p (log p) /n

)
= op

(
p

5p+1
2(p+1) (ψ (n, p, hn))

1
3p+3

)

under any choices of hn → 0. This implies that when

(1− δλΛ/4)
k ∥∆β1∥ ≤ p

5p+1
2(p+1) (ψ (n, p, hn))

1
p+1 ,

or equivalently,

k ≥ kKBGD
1,n =

log (∥∆β1∥)−
5p+1
2(p+1) log p−

1
p+1 logψ (n, p, hn)

− log (1− δλΛ/4)
,

we have that supk≥kKBGD
1,n +1 ∥∆βk∥ = Op

(
p

5p+1
2(p+1)ψ

1
p+1 (n, p, hn)

)
.
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Proof of Theorem 1.4

Proof. We first note that

∥∥∥∥∫
X
V (Xe,i,Xe,β) dX

∥∥∥∥ ≤ 2p ∥G′∥∞
∫
X
fX|z (X| z (Xe,i,β) ,β) dX = 2p ∥G′∥∞ ,

for all Xe,i, so

sup
β∈B
∥Λϕ (β)− Λ (β)∥ ≤ 2p ∥G′∥∞ E

(
1− Iϕi

)
≤ 2ζp2 ∥G′∥∞ ϕ,

where the last inequality comes from the fact that m
(
X ϕ

e

)
= 1− (1− ϕ)p ≤ pϕ. So

sup
β∈B
∥Λϕ (β)− Λ (β)∥ ≤ δλΛ/8 (1.12)

holds under the choice of ϕ.

Based on (1.12), the following proof is similar to the proof of Theorem 1.3. Define

ηϕ1,n (β) =
1

n

n∑
i=1

Ĝ (z (Xe,i,β)|β)Xϕ
i − E

[
L (z (Xe,i,β) ,β)X

ϕ
i

]
,

ηϕ2,n =
1

n

n∑
i=1

G (z⋆i )X
ϕ
i − E

[
G (z⋆i )X

ϕ
i

]
+

1

n

n∑
i=1

εiX
ϕ
i .

We have that

∆βk+1 = ∆βk −
δ

n

n∑
i=1

(
Ĝ (zi,k|βk)− Yi

)
Xϕ

i

= ∆βk − δE
[
(L (zi,k,βk)−G (Z⋆

i ))X
ϕ
i

]
+ δ

(
ηϕ1,n (βk) + ηϕ2,n

)
=

∫ 1

0

{Ip − δΛϕ (β
⋆ + t∆βk)}∆βkdt+ δ

(
ηϕ1,n (βk) + ηϕ2,n

)
,

so

∥∥βk+1

∥∥ ≤ sup
β∈B

σ (Ip − δΛϕ (β)) ∥βk∥+ δ

(
sup
β∈B

∥∥∥ηϕ1,n (β)∥∥∥+ ∥∥∥ηϕ2,n∥∥∥
)
.

Obviously, since p is fixed, we have that
∥∥∥ηϕ2,n∥∥∥ = Op

(
n−1/2

)
. Due to trimming, we also have that
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supβ∈B

∥∥∥ηϕ1,n (β)∥∥∥ = Op (ψ (n, p, hn)). Note that (1.12) holds, so we have that

sup
β∈B
∥{Ip − δΛϕ (β)} − {Ip − δΛ (β)}∥ ≤ δλΛ/8.

According to the proof of Theorem 1.3, there holds supβ∈B σ (Ip − δΛ (β)) ≤ 1 − δλΛ/4 under the

choice of δ, so we have that

sup
β∈B

σ (Ip − δΛϕ (β)) ≤ 1− δλΛ/8.

Then based on the proof of Theorem 1.3, it remains to note that

sup
β∈B

(∥∥∥ηϕ1,n (β)∥∥∥+ ∥∥∥ηϕ2,n∥∥∥) = Op (ψ (n, p, hn))

holds under any fixed trimming parameter ϕ.

Proof of Lemma 2.3

Proof. Note that under the choice of δ and ϕ , supk≥k̃KBGD
1,n +1 ∥βk − β⋆∥ = Op (ψ (n, p, hn)) according

to Theorem 1.4. According to (1.14), we have that

∥∥∥∆βk+k̃KBGD
1,n +1

∥∥∥
≤ sup

k≥k̃KBGD
1,n +1,,t∈[0,1]

σ

Ip − δ

n

n∑
i=1

Xϕ
i

∂Ĝ (z (Xe,i,β)|β)
∂βT

∣∣∣∣∣
β=β⋆+t∆βk

 ∥∆βk∥+ δ
∥∥∥ξϕn∥∥∥ .

According to Lemma 1.2, we have that

sup
k≥k̃KBGD

1,n ,t∈[0,1]

∥∥∥∥∥∥
Ip − δ

n

n∑
i=1

Xϕ
i

∂Ĝ (z (Xe,i,β)|β)
∂βT

∣∣∣∣∣
β=β⋆+t∆βk


−{Ip − δΛϕ (β

⋆ + t∆βk)}∥ = δOp

(
h−2
n

√(
log
(
nh−1

n

))
/n+ h3n

)
, (1.13)

due to the fact that

sup
k≥k̃KBGD

1,n +1

∥∆βk∥ = Op (ψ1 (n, p, hn)) = op

(
h−2
n

√(
log
(
nh−1

n

))
/n+ h3n

)
,

when p is fixed and hn → 0.
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When nh6n → 0 and h4nn/ (log n)
2 →∞, we have that h−2

n

√(
log
(
nh−1

n

))
/n+ h3n → 0. So we have

that (1.13) is smaller than δλΛ/16 with probability going to 1. According to the choice of ϕ and δ,

we have that supβ∈B σ (Ip − δΛϕ (β)) ≤ 1 − δλΛ/8 according to the proof of Theorem 1.4. So as n

increases, with probability going to 1, there holds

sup
k≥k̃KBGD

1,n +1,t∈[0,1]

σ

Ip − δ

n

n∑
i=1

Xϕ
i

∂Ĝ (z (Xe,i,β)|β)
∂βT

∣∣∣∣∣
β=β⋆+t∆βk

 ≤ 1− δλΛ/16,

Then as n increases, with probability going to 1 there holds

∥∥∥∆βk+k̃KBGD
1,n +1

∥∥∥ ≤ (1− δλΛ/16)
∥∥∥∆βk+k̃KBGD

1,n

∥∥∥+ δ
∥∥∥ξϕn∥∥∥

≤ · · · ≤ (1− δλΛ/16)
k
∥∥∥∆βk̃KBGD

1,n +1

∥∥∥+ 16λ−1
Λ

∥∥∥ξϕn∥∥∥ .
According to Lemma 1.3,

∥∥∥ξϕn∥∥∥ = Op

(
n−1/2

)
. Also note that

∥∥∥∆βk̃KBGD
1,n +1

∥∥∥ = Op (ψ (n, p, hn)),

then if we choose kKBGD
2,n such that (1− δλΛ/16)

kKBGD
2,n −1 ≤ n−1/2ψ−1 (n, p, hn), or equivalently,

kKBGD
2,n ≥ −

log
(
n1/2

)
+ log (ψ (n, p, hn))

log (1− δλΛ/16)
+ 1,

we have that supk≥kKBGD
2,n +1

∥∥∥∆βk+k̃KBGD
1,n

∥∥∥ = Op

(
n−1/2

)
. This proves (i).

To prove (ii), we consider the following decomposition,

∆βk+1 = (Ip − δΛϕ (β
⋆))∆βk + δω1 (βk) + δω2 (βk)− δξ

ϕ
n,

where

ω1 (βk) =

∫ 1

0

Λϕ (β
⋆ + t∆βk)−

1

n

n∑
i=1

Xϕ
i

∂Ĝ (z (Xe,i,β)|β)
∂βT

∣∣∣∣∣
β=β⋆+t∆βk

 dt∆βk,

and

ω2 (βk) =

∫ 1

0

{Λϕ (β
⋆)− Λϕ (β

⋆ + t∆βk)} dt∆βk.

Obviously, according to Lemma 1.2,

sup
k≥k̃KBGD

1,n +kKBGD
2,n +1

∥ω1 (βk)∥ = Op

(
h−2
n

√(
log
(
nh−1

n

))
/n+ h3n

)
Op

(
n−

1
2

)
= op

(
n−

1
2

)
.

74



We also note that each element of matrix Iϕi ·
∫
X V (Xe,i,Xe,β) dX has bounded derivative with

respect to β for any Xe,i. This is because, if Xe,i /∈ X ϕ
e , Iϕi = 0 so each element will be zero and the

results hold; if Xe,i ∈ X ϕ
e , then fz (z (Xe,i,β)|β) > 0, so

∫
X ∥∂W (Xe,i,Xe,β) /∂β∥ dX is bounded

according to Lemma 1.8(x). This implies that

sup
k≥k̃KBGD

1,n +kKBGD
2,n +1

∥ω2 (βk)∥ ≤ C ∥∆βk∥
2
= op

(
n−

1
2

)
.

Then

∆βk+k̃KBGD
1,n +kKBGD

2,n +1

= (Ip − δΛϕ (β
⋆))

k
∆βk̃KBGD

1,n +kKBGD
2,n +1 + δ

k∑
j=1

(Ip − δΛϕ (β
⋆))

k−j
ω1

(
βk̃KBGD

1,n +kKBGD
2,n +j

)

+

k∑
j=1

(Ip − δΛϕ (β
⋆))

k−j
ω2

(
βk̃KBGD

1,n +kKBGD
2,n +j

)
− δ

k∑
j=1

(Ip − δΛϕ (β
⋆))

k−j
ξϕn.

Note that supβ∈B σ (Ip − δΛϕ (β)) ≤ 1− δλΛ/8, so

∥∥∥(Ip − δΛϕ (β
⋆))

k
∆βk̃KBGD

1,n +kKBGD
2,n +1

∥∥∥ ≤ (1− δλΛ/8)
k
∥∥∥∆βk̃KBGD

1,n +kKBGD
2,n +1

∥∥∥ ,
δ

∥∥∥∥∥∥
k∑

j=1

(Ip − δΛϕ (β
⋆))

k−j
ω1

(
βk̃KBGD

1,n +kKBGD
2,n +j

)∥∥∥∥∥∥ ≤ δ
∞∑
j=0

(1− δλΛ/8)
j

sup
k≥k̃KBGD

1,n +kKBGD
2,n +1

∥ω1 (βk)∥

= op

(
n−1/2

)
,

δ

∥∥∥∥∥∥
k∑

j=1

(Ip − δΛϕ (β
⋆))

k−j
ω2

(
βk̃KBGD

1,n +kKBGD
2,n +j

)∥∥∥∥∥∥ ≤ δ
∞∑
j=0

(1− δλΛ/8)
j

sup
k≥k̃KBGD

1,n +kKBGD
2,n

∥ω2 (βk)∥

= op

(
n−1/2

)
,∥∥∥∥∥∥Λ−1

ϕ (β⋆) ξϕn − δ
k∑

j=1

(Ip − δΛϕ (β
⋆))

k−j
ξϕn

∥∥∥∥∥∥ ≤ 8λ−1
Λ (1− δλΛ/8)

k+1
∥∥∥ξϕn∥∥∥ .

As k →∞, we have that λ−1
Λ (1− δλΛ/8)

k+1
∥∥∥ξϕn∥∥∥ = op

(
n−1/2

)
, so

∆βk+k̃KBGD
1,n +kKBGD

2,n
= Λ−1

ϕ (β⋆) ξϕn + op

(
n−1/2

)
.
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According to Lemma 1.3, we have that
√
nξϕn → N

(
0,Σϕ

ξ

)
, so we have that

√
n∆βk+k̃KBGD

1,n +kKBGD
2,n

= Λ−1
ϕ (β⋆)

√
nξϕn + op (1)→d N

(
0, Λ−1

ϕ (β⋆) Σϕ
ξ

(
Λ−1
ϕ (β⋆)

)T)
.

Proof of Theorem 1.6

Proof. We only need to show that
∥∥∥Λ̂−1

ϕ,n

(
β̂
)
− Λ−1

ϕ (β⋆)
∥∥∥ →p 0 and

∥∥∥Σ̂ϕ
ξ − Σϕ

ξ

∥∥∥ →p 0 both hold.

Note that Lemma 1.2 indicates that
∥∥∥Λ̂ϕ,n

(
β̂
)
− Λϕ (β

⋆)
∥∥∥→p 0, which implies that

∥∥∥Λ̂−1
ϕ,n

(
β̂
)
− Λ−1

ϕ (β⋆)
∥∥∥→p

0 also holds.

Now we show that
∥∥∥Σ̂ϕ

ξ − Σϕ
ξ

∥∥∥→p 0 holds. Our basic proof method is similar to that of Lemma 1.1.

In particular, let ϕn ↓ 0 and Xe,n be as defined as in the proof of Lemma 1.1. Then we have that

f⋆z (z⋆i ) ≥ Cϕpn as long as Xe,i ∈ Xe,n. Denote G⋆
i = G (z⋆i ), we have

∥∥∥Σ̂ϕ
ξ − Σϕ

ξ

∥∥∥ ≤ ∥∥∥∥∥ 1n
n∑

i=1

(
In,i · Ĝi

(
1− Ĝi

)(
Xϕ

i − Ê
(
Xϕ

i

∣∣∣ ẑi))(Xϕ
i − Ê

(
Xϕ

i

∣∣∣ ẑi))T)
−E

(
In,i ·G⋆

i (1−G⋆
i )
(
Xϕ

i − E
(
Xϕ

i

∣∣∣ z⋆i ))(Xϕ
i − Ê

(
Xϕ

i

∣∣∣ z⋆i ))T)∥∥∥∥ (1.14)

+

∥∥∥∥∥ 1n
n∑

i=1

(
(1− In,i) · Ĝi

(
1− Ĝi

)(
Xϕ

i − Ê
(
Xϕ

i

∣∣∣ ẑi))(Xϕ
i − Ê

(
Xϕ

i

∣∣∣ ẑi))T)
−E

(
(1− In,i) ·G⋆

i (1−G⋆
i )
(
Xϕ

i − E
(
Xϕ

i

∣∣∣ z⋆i ))(Xϕ
i − Ê

(
Xϕ

i

∣∣∣ z⋆i ))T)∥∥∥∥ . (1.15)

Note that Ĝi, G⋆
i , Xϕ

i , Ê
(
Xϕ

i

∣∣∣ ẑi), and E
(
Xϕ

i

∣∣∣ z⋆i ) are all upper bounded, so (1.15) is Op (ϕn).

Now we look at (1.14). Note that

Ĝi −
∑n

j=1Khn

(
z⋆i − z⋆j

)
yj∑n

j=1Khn

(
z⋆i − z⋆j

) =
∂Ĝ
(
z
(
Xe,i, β̃

)∣∣∣ β̃)
∂βT

∆β̂,

where β̃ lies somewhere between β̂ and β⋆. According to the proof of Lemma 3.1, we have that

sup
(Xe,β)∈Xe,n×B

∥∥∥∥∥∂Ĝ (z (Xe,β)|β)
∂βT

∥∥∥∥∥ = Op (1)

if ϕ−p
n

(
h−2
n

√
log
(
nh−1

n

)
/n+ h3n

)
→ 0, since

∥∥f−1
z (z (Xe,β)) ∂H1 (z (Xe,β) ,Xe) /∂z

∥∥ and
∥∥L (z (Xe,β) ,β) f

−1
z (z (Xe,β)) ∂H2 (z (Xe,β) ,Xe) /∂z

∥∥
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are both bounded for all β ∈ B and Xe ∈ Xe,n. So

max
1≤i≤n

∣∣∣∣∣
(
Ĝi −

∑n
j=1Khn

(
z⋆i − z⋆j

)
yj∑n

j=1Khn

(
z⋆i − z⋆j

) ) · In,i
∣∣∣∣∣ = Op

(
n−1/2

)
.

Also note that when ϕ−p
n

(
h−2
n

√
log
(
nh−1

n

)
/n+ h3n

)
→ 0,

max
1≤i≤n

∣∣∣∣∣
(∑n

j=1Khn

(
z⋆i − z⋆j

)
yj∑n

j=1Khn

(
z⋆i − z⋆j

) −G (z⋆i )

)
· In,i

∣∣∣∣∣ = Op

(
ϕ−p
n

(
h−1
n

√
log
(
nh−1

n

)
/n+ h3n

))
,

this indicates that

max
1≤i≤n

In,i ·
∣∣∣Ĝi −G (z⋆i )

∣∣∣ = Op

(
ϕ−p
n

(
h−1
n

√
log
(
nh−1

n

)
/n+ h3n

))
,

due to n1/2
(
h−1
n

√
log
(
nh−1

n

)
/n+ h3n

)
→ ∞ under the choice of hn. Using similar argument, we

can also show that

max
1≤i≤n

∥∥∥(Ê(Xϕ
i

∣∣∣ ẑi)− E
(
Xϕ

i

∣∣∣ z⋆i )) · In,i∥∥∥ = Op

(
ϕ−p
n

(
h−1
n

√
log
(
nh−1

n

)
/n+ h3n

))
.

So we have that (1.14) is of order Op

(
ϕ−p
n

(
h−1
n

√
log
(
nh−1

n

)
/n+ h3n

)
+ n−1/2

)
. It remains to

choose

ϕn = O

((
h−1
n

√
log
(
nh−1

n

)
/n+ h3n

) 1
p+1

)

to conclude the proof.

Proof of Theorem 1.7

Proof. The proof is similar to that of Theorem 1.3. Note that

sup
0≤t≤1,β∈B

∣∣σ2 (Ip − δΨq (t,β))− λ
(
Ip − δ

(
Ψq (t,β) + ΨT

q (t,β)
))∣∣

≤ δ2 sup
0≤t≤1,β∈B

∥Ψq (t,β)∥2 ≤ δ2 ∥G′∥2∞ p2
{
1 + λ−1

Γ qD2
q,0

}2
.
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So if δ2 ∥G′∥2∞ p2
{
1 + λ−1

Γ qD2
q,0

}2 ≤ 1
2λΨδ, or equivalently, δ ≤ λΨ/

(
2 ∥G′∥2∞ p2

{
1 + λ−1

Γ qD2
q,0

}2)
,

we have that

sup
0≤t≤1,β∈B

∣∣σ2 (Ip − δΨq (t,β))− λ
(
Ip − δ

(
Ψq (t,β) + ΨT

q (t,β)
))∣∣ ≤ λΨδ/2,

so

sup
0≤t≤1,β∈B

σ2 (Ip − δΨq (t,β)) ≤ 1− λΨδ/2 < 1,

and

sup
0≤t≤1,β∈B

σ (Ip − δΨq (t,β)) ≤ 1− λΨδ/4.

Then we have that

∥∥∆βk+1

∥∥ ≤ ∥∥∥∥∫ 1

0

(Ip − δΨq (t,βk))∆βdt+ δRn,k

∥∥∥∥
≤ sup

0≤t≤1,β∈B
σ (Ip − δΨq (t,β)) ∥∆βk∥+ δk ∥Rn,k∥ ≤ (1− λΨδ/4) ∥∆βk∥+ δ ∥Rn,k∥ ≤ · · ·

≤ (1− λΨδ/4)
k ∥∆β1∥+ δ

k∑
j=1

(1− λΨδ/4)
k−j ∥Rn,j∥

≤ (1− λΨδ/4)
k ∥∆β1∥+ 4/λΨOp

(
sup
k≥1
∥Rn,k∥

)
.

When (1− λΨδ/ 4)k ∥∆β1∥ ≤ χ2,n, or equivalently, k ≥ log(∥∆β1∥)−log(χ2,n)

− log(1−λΨδ/4)
= kSBGD

1,n , there holds∥∥∆βk+1

∥∥ = Op (χ2,n).

Proof of Theorem 1.8

Proof. We first prove Theorem 1.8 (i). Note that

∆βk+1 =

{∫ 1

0

(
Ip − δΨ⋆

q

)
dt

}
∆βk + δRn,k

=
(
Ip − δΨ⋆

q

)
∆βk +

δ

n

n∑
i=1

(Xi − Xq,i) εi + δ

{
Rn,k −

1

n

n∑
i=1

(Xi − Xq,i) εi

+

∫ 1

0

(
Ψ⋆

q −
1

n

n∑
i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq,n (z (Xe,i,β) ,β)X

T
i

))
dt∆βk

}
.
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Define

R̃n,k = Rn,k −
δ

n

n∑
i=1

(Xi − Xq,i) εi+

∫ 1

0

(
Ψ⋆

q −
1

n

n∑
i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq,n (z (Xe,i,β) ,β)X

T
i

))
dt∆βk.

According to Lemma 1.5, we have that

sup
k≥kSBGD

1,n +1

∥∥∥∥∥
∫ 1

0

(
Ψ⋆

q −
1

n

n∑
i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq,n (z (Xe,i,β) ,β)X

T
i

))
dt∆βk

∥∥∥∥∥
≤ sup

k≥kSBGD
1,n +1,0≤t≤1

∥∥∥∥∥Ψ⋆
q −

1

n

n∑
i=1

G′ (z⋆i + tXT
i ∆β

) (
XiX

T
i − Xq,n (z (Xe,i,β) ,β)X

T
i

)∥∥∥∥∥ sup
k≥kSBGD

1,n +1

∥∆βk∥

= Op

(
√
pqD2

q,0 (p+ qDq,0Dq,1) sup
k≥kSBGD

1,n +1

∥∆β∥2
)

= Op

(√
pqD2

q,0 (p+ qDq,0Dq,1)χ
2
2,n

)
.

According to Lemma 1.6, we have that

sup
k≥kSBGD

1,n +1

∥∥∥∥∥Rn,k −
δ

n

n∑
i=1

(Xi − Xq,i) εi

∥∥∥∥∥ = Op (χ4,n) .

This shows the result.

To prove Theorem 1.8(ii), we note that

∆βk+kSBGD
1,n +1 =

(
Ip − δΨ⋆

q

)
∆βk+kSBGD

1,n
+
δ

n

n∑
i=1

(Xi − Xq,i) εi + R̃n,k+kSBGD
1,n

,

=
(
Ip − δΨ⋆

q

)k
∆βkSBGD

1,n +1 +

k∑
j=1

(
Ip − δΨ⋆

q

)j−1

(
δ

n

n∑
i=1

(Xi − Xq,i) εi

)

+

k∑
j=1

(
Ip − δΨ⋆

q

)j−1
R̃n,k+kSBGD

1,n +1−j

= Ψ⋆−1
q

1

n

n∑
i=1

(Xi − Xq,i) εi +
(
Ip − δΨ⋆

q

)k
∆βkSBGD

1,n +1 +

k∑
j=1

(
Ip − δΨ⋆

q

)j−1
R̃n,k+kSBGD

1,n +1−j

+

∞∑
j=k+1

(
Ip − δΨ⋆

q

)j−1

(
δ

n

n∑
i=1

(Xi − Xq,i) εi

)
.

Then since ∥∥∥(Ip − δΨ⋆
q

)k
∆βkSBGD

1,n +1

∥∥∥ = Op

(
(1− λΨδ/4)

k
χ2,n

)
,
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∥∥∥∥∥∥
k∑

j=1

(
Ip − δΨ⋆

q

)j−1
R̃n,k+kSBGD

1,n +1−j

∥∥∥∥∥∥ ≤
∞∑
j=1

(1− λΨδ/4)
j−1

sup
k≥kSBGD

1,n +1

∥∥∥R̃n,k

∥∥∥ = Op (χ5,n) ,

and∥∥∥∥∥∥
∞∑

j=k+1

(
Ip − δΨ⋆

q

)j−1

(
δ

n

n∑
i=1

(Vqrq (z
⋆
i ) +Xi) εi

)∥∥∥∥∥∥ ≤ (1− λΨδ/4)
k

∥∥∥∥∥ 4

λΨn

n∑
i=1

(Xi − Xq,i) εi

∥∥∥∥∥
= Op

(1− λΨδ/4)
k

√
pqD2

q,0 (log p)

n


= Op

(
(1− λΨδ/4)

k
χ2,n

)
.

So as long as (1− λΨδ/4)
k
χ2,n ≤ n−1/2, or equivalently, k ≥ kSBGD

2,n =
− logχ2,n+log

√
n

− log(1−λΨδ/4)
, we have

that

sup
k≥kSBGD

2,n +1

∥∥∥∥∥∆βk+kSBGD
1,n +1 −Ψ⋆−1

q

1

n

n∑
i=1

(Vqrq (z
⋆
i ) +Xi) εi

∥∥∥∥∥ = op

(
n−

1
2

)
.

The following results hold trivially.

Proof of Theorem 1.9

Proof. Note that under all the conditions imposed in Theorem 1.8, we have that

∥∥∥β̂ − β⋆
∥∥∥ = Op

(√
pq2D4

q,0 (log p) /n
)
,

due to the fact that each element of (Xi − Xq,i) εi is bounded by CqD2
q,0 and Assumption 1.7 holds.

To prove the theorem, we first show that

sup
1≤i≤n

∣∣∣Ĝi −Gi (z
⋆
i )
∣∣∣ = Op

(√
p2q4D8

q,0 (log p) /n+ qD2
q,0Eq,0

)
.

Define ẑi = z
(
Xe,i, β̂

)
. To show the above result, note that

sup
1≤i≤n

∣∣∣Ĝi −G (z⋆i )
∣∣∣ ≤ sup

1≤i≤n

∣∣∣r̂Tq,i (π̂q − π⋆
q

)∣∣∣
+ sup

1≤i≤n

∣∣∣r̂Tq,iπ⋆
q −G (ẑi)

∣∣∣+ sup
1≤i≤n

|G (ẑi)−G (z⋆i )| .

Obviously, the second and third terms on RHS are of order Op (Eq,0) and Op

(√
p2q2D4

q,0 (log p) /n
)
,
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while the first term is bounded by √qDq,0

∥∥π̂q − π⋆
q

∥∥. Note that

π̂q − π⋆
q = Γ−1

q,n

(
β̂
)( 1

n

n∑
i=1

r̂q,i (G (ẑi)−G (z⋆i ))

)
+ Γ−1

q,n

(
β̂
)( 1

n

n∑
i=1

r̂q,iRq (ẑi)

)

+ Γ−1
q,n

(
β̂
)( 1

n

n∑
i=1

rq (ẑi) εi

)
.

So we have that
∥∥π̂q − π⋆

q

∥∥ = Op

(√
p2q3D6

q,0 (log p) /n+
√
qDq,0Eq,0

)
and the third term is of order

Op

(√
p2q4D8

q,0 (log p) /n+ qD2
q,0Eq,0

)
. This proves the first result.

We also note that according to the proof of Lemma 1.17, we have that

sup
1≤i≤n

∥∥∥Xq,n

(
ẑi, β̂

)
− Xq (z

⋆
i ,β

⋆)
∥∥∥ = Op

(√
p3q6D10

q,0D
2
q,1 log (pn) /n

)
.

Then we show that

max
1≤i≤n

∥∥∥∥Ĝi

(
1− Ĝi

)(
Xi − Xq,n

(
ẑ, β̂

))(
Xi − Xq,n

(
ẑ, β̂

))T
−Gi (1−Gi) (Xi − Xq (z

⋆
i ,β

⋆)) (Xi − Xq (z
⋆
i ,β

⋆))
T

∥∥∥∥
= Op

(√
p4q8D14

q,0 (log pn) /n (Dq,0 +Dq,1) + pq3D6
q,0Eq,0

)
.

Note that the above is bounded by

max
1≤i≤n

∥∥∥∥(Ĝi

(
1− Ĝi

)
−Gi (1−Gi)

)(
Xi − Xq,n

(
ẑ, β̂

))(
Xi − Xq,n

(
ẑ, β̂

))T∥∥∥∥
+ max

1≤i≤n

∥∥∥∥Gi (1−Gi)

((
Xi − Xq,n

(
ẑ, β̂

))(
Xi − Xq,n

(
ẑ, β̂

))T
− (Xi − Xq (z

⋆
i ,β

⋆)) (Xi − Xq (z
⋆
i ,β

⋆))
T

)∥∥∥∥ ,
where the first term is of order Op

(√
p4q8D16

q,0 (log p) /n+ pq3D6
q,0Eq,0

)
, while the second term is

of order Op

(√
p4q8D14

q,0D
2
q,1 (log pn) /n

)
. Together we show the result.

Next we show that

∥∥∥Ψ̂⋆
q −Ψ⋆

q

∥∥∥ = Op

(√
p4q4D4

q,0 log (pqDq,0Dq,1n) /n
)
.
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Since υG ≥ 2, we have that

sup
1≤i≤n

∣∣∣Ĝ′
i −G′ (z (Xe,i,β

⋆))
∣∣∣ ≤ sup

1≤i≤n

∣∣∣r̂′Tq,i (π̂q − π⋆
q

)∣∣∣
+ sup

1≤i≤n

∣∣∣r̂′Tq,iπ⋆
q −G′ (ẑi)

∣∣∣+ sup
1≤i≤n

|G′ (ẑi)−G′ (z⋆i )|

= Op

(√
p2q4D8

q,0D
2
q,1 (log p) /n+ qDq,0Dq,1Eq,0 + Eq,1

)
.

So

∥∥∥Ψ̂⋆
q −Ψ⋆

q

∥∥∥ ≤ ∥∥∥∥∥ 1n
n∑

i=1

(
Ĝ′

i −G′ (z⋆i )
)
·
(
XiX

T
i − Xq,n

(
ẑi, β̂

)
XT

i

)∥∥∥∥∥ ,
+

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i ) ·
((

Xq,n

(
ẑi, β̂

)
− Xq (z

⋆
i ,β

⋆)
)
XT

i

)∥∥∥∥∥
+

∥∥∥∥∥ 1n
n∑

i=1

G′ (z⋆i ) · Xq (z
⋆
i ,β

⋆)XT
i −Ψ⋆

q

∥∥∥∥∥
= Op

(√
p4q6D12

q,0D
2
q,1 log (pn) /n+ pq2D3

q,0Dq,1Eq,0 + pqD2
q,0Eq,1

)
,

which also implies that σ
(
Ψ̂⋆−1

q

)
= Op (1), and

∥∥∥Ψ̂⋆−1
q −Ψ⋆−1

q

∥∥∥ = Op

(√
p4q6D12

q,0D
2
q,1 (log pn) /n+ pq2D3

q,0Dq,1Eq,0 + qD2
q,0Eq,1

)

Now we are ready to demonstrate the consistency of the variance estimator. Note that

∣∣σ̂2
S (ρ)− σ2

S (ρ)
∣∣

≤ ∥ρ∥2
∥∥∥∥∥Ψ̂⋆−1

q

1

n

n∑
i=1

{
Ĝi

(
1− Ĝi

)(
Xi − Xq,n

(
ẑ, β̂

))(
Xi − Xq,n

(
ẑ, β̂

))T}(
Ψ̂⋆−1

q

)T
− Ψ⋆−1

q E
{
G (z⋆i ) (1−G (z⋆i )) (Xi − Xq (z

⋆
i ,β

⋆)) (Xi − Xq (z
⋆
i ,β

⋆))
T
}(

Ψ⋆−1
q

)T∥∥∥
≤ ∥ρ∥2

∥∥∥Ψ̂⋆−1
q −Ψ⋆−1

q

∥∥∥∥∥∥∥∥ 1n
n∑

i=1

{
Ĝi

(
1− Ĝi

)(
Xi − Xq,n

(
ẑ, β̂

))(
Xi − Xq,n

(
ẑ, β̂

))T}(
Ψ⋆−1

q

)T∥∥∥∥∥
+ ∥ρ∥2

∥∥∥∥∥Ψ⋆−1
q

(
1

n

n∑
i=1

{
Ĝi

(
1− Ĝi

)(
Xi − Xq,n

(
ẑ, β̂

))(
Xi − Xq,n

(
ẑ, β̂

))T}
−E

{
G (z⋆i ) (1−G (z⋆i ))

(
Xi − Xq,n

(
ẑ, β̂

))(
Xi − Xq,n

(
ẑ, β̂

))T})(
Ψ̂⋆−1

q

)T∥∥∥∥
+ ∥ρ∥2

∥∥∥Ψ⋆−1
q E

{
G (z⋆i ) (1−G (z⋆i )) (Xi − Xq (z

⋆
i ,β

⋆)) (Xi − Xq (z
⋆
i ,β

⋆))
T
}(

Ψ̂⋆−1
q −Ψ⋆−1

q

)∥∥∥ .
The first and the third terms are of orderOp

(√
p6q8D16

q,0D
2
q,1 (log pn) /n+ p2q3D4

q,0Dq,1Eq,0 + pq2D4
q,0Eq,1

)
,
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and the second term is of order Op

(√
p4q8D14

q,0 (log pn) /n (Dq,0 +Dq,1) + pq3D6
q,0Eq,0

)
. Together,

we have that

∣∣σ̂2
S (ρ)− σ2

S (ρ)
∣∣ = Op

(√
p6q8D16

q,0D
2
q,1 (log pn) /n+ pq3D4

q,0

(
pDq,1 +D2

q,0

)
Eq,0 + pq2D4

q,0Eq,1
)
,

which implies that
∣∣σ̂2

S (ρ)− σ2
S (ρ)

∣∣→p 0 under all the conditions.
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Chapter 2

Stochastic Learning of

Semiparametric Monotone Index

Models with Large Sample Size

2.1 Introduction

Consider estimating the unknown parameter in a monotone index model (Han, 1987; Cavanagh and

Sherman, 1998) using loss function L(Xe, y,βe|G) which is differentiable with respect to βe and

satisfies β⋆
e = argminβe∈Be

E[L(y,Xe,βe|G)], where y is the response variable, Xe =
(
X0,X

T
)T

=

(X0, X1, · · · , Xp)
T ∈ Xe is the covariate, β⋆

e =
(
β⋆
0 ,β

⋆T
)T

=
(
β⋆
0 , β

⋆
1 , · · · , β⋆

p

)T ∈ Be is the true pa-

rameter, andG(z) = E(y|XT
e β

⋆
e = z) is the monotone link function. WhenG is known, given data set

{(Xe,i, yi)}ni=1, the estimator of β⋆
e can be constructed as β̂e,n = argminβe∈Be

1
n

∑n
i=1 L(Xe,i, yi,βe|G).

However, when G is unknown, the estimation problem becomes semiparametric, and the above esti-

mator can not be constructed directly. One solution is to replace the unknown G with its Nadaraya-

Watson estimator

Ĝn(z|βe) =
1

nhn

∑n
j=1K((z −XT

e,jβe)/hn)yj
1

nhn

∑n
j=1K((z −XT

e,jβe)/hn)
,
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where K is the kernel function and hn is the bandwidth parameter. Then the estimator of β⋆
e can

be constructed by minimizing the new plug-in loss function

β̂e,n = arg min
βe∈Be

1

n

n∑
i=1

L(Xe,i, yi,βe|Ĝn(·|βe)). (2.1)

Ichimura (1993); Härdle et al. (1993); Klein and Spady (1993); Rothe (2009) consider different

loss funcctions and provide sufficient conditions that guarantee 1/
√
n-consistency and asymptotic

normality of β̂e,n in (2.1).

This paper investigates the computational aspect of semiparametric estimation (2.1) under an ex-

tremely large n setup. In this scenario, hundreds of thousands of or even millions of data points

are available for estimation. Indeed, due to the rapid development of technology in data collection

and data storage, it’s becoming more and more common nowadays for data analysts to deal with

data set with extraordinary amount of observations (Wang et al., 2018). This offers the researchers

opportunities to more precisely understand the potential mechanism lurking behind the data, while

on the same time brings about a series of new challenges. Among others, the key challenge is the

extremely heavy computational burdens and exhaustive computational time that make the existing

statistical methods numerically prohibitive. Consequently, it’s more urgent than ever before to study

estimation methods that is applicable in the big-data era. In the recent literature, many methods for

large n estimation have been extensively studied, including subsample-based optimization (Forneron,

2022; Toulis and Airoldi, 2017) and estimation (Wang et al., 2018; Wang, 2019).

To get a brief idea of the computational difficulty associated with the semiparametric estimator

(2.1), we note that to numerically solve the optimization problem in (2.1), gradient-based methods

are generally applied. In particular, starting from an initial guess of β̂e,n, βe,1, the following Batch

Gradient Descent (BGD) iterations are repeatedly performed until some terminating conditions are

satisfied (Ruder, 2016; Bottou et al., 2018)

βe,k+1 = βe,k −
δk
n

n∑
i=1

∂L(Xe,i, y,βe,k|Ĝn(·|βe,k))

∂βe

, (2.2)

where δk > 0 is the learning rate. Note that the gradient of L(Xe, y,βe|Ĝn(·|βe)) with respect to βe

generally depends on Ĝn(·|βe), ∂Ĝn(z|βe)/∂z, and ∂Ĝn(·|βe)/∂βe. For example, let L(Xe, y,βe|G) =
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(y −G(XT
e βe))

2 as in Ichimura (1993), there obviously holds

∂L(Xe, y,βe|Ĝn(·|βe))

∂βe

= 2(Ĝn(X
T
e βe|βe)− yi)

 ∂Ĝn(z|βe)

∂z

∣∣∣∣∣
z=XT

e βe

Xe +
∂Ĝn(z|βe)

∂βe

∣∣∣∣∣
z=XT

e βe

 .

Due to the nature of Nadaraya-Watson kernel estimator, for each input z, evaluating Ĝn(z|βe),

∂Ĝn(z|βe)/∂z, and ∂Ĝn(z|βe)/∂βe involves performing summations over n data points, so requires

computational time of order O(n). This implies that evaluating the gradient of the plug-in loss

function at merely one data point requires computational time of order O(n). Consequently, evalu-

ating the gradient functions at all data points and performing a single update based on (2.2) require

computational time of order O(n2). Such computational complexity increases too fast with the

sample size n, and makes, as was pointed out by Ichimura (1993), solving (2.1) roughly n times

more numerically complicated compared with worst-case parametric estimation with differentiable

loss function1. This renders semiparametric estimation numerically infeasible even in the modest n

scenario.

Nevertheless, it is straightforward to use stochastic optimization strategies to alleviate the devastat-

ing computational burden of the above semiparametric estimation when n is extremely large (Ruder,

2016; Bottou et al., 2018). For example, instead of using the full data set to perform the update in

(2.2), one may resort to using only a subset of the data. In particular, Mini-Batch Gradient Descent

(MBGD) suggests the following update (Ruder, 2016; Bottou et al., 2018; Forneron, 2022),

βe,k+1 = βe,k −
δk
B

∑
i∈IB,k

∂L(Xe,i, yi,βe,k|Ĝn(·|βe,k))

∂βe

, (2.3)

where B is the subsample size and IB,k is the subsample index set that is randomly drawn from

{1, 2, · · · , n} with replacement and is independent over k. Under MBGD algorithm, the gradient of

the plug-in loss function is evaluated over B data points, so the computational time for each update

is of order O(nB). Obviously, nB ≪ n2 if we choose B/n → 0, so the computational burden is

relieved to some extent if we choose B diverging more slowly than n. While when pursuing 1/
√
n-

consistent estimators, it’s generally required that B/
√
n → ∞ (Forneron, 2022), so the updating

time is still of order at least O(n
√
n), which is

√
n times more complicated than the worst-case

1When the loss function is smooth and differentiable with respect to the parameter, each single update of the
parameter based on BGD algorithm requires computational time of order O(n) (Ruder, 2016; Bottou et al., 2018).
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parametric estimation with differentiable loss function. This is still numerically difficult when n is

extremely large. Moreover, different from the conventional stochastic optimization approach that

imposes less pressure on the computer memory requirement2, in the above semiparametric setup,

even if stochastic optimization (2.3) is applied, all the data points have to be stored in the memory

because each evaluation of the kernel estimator (or its gradient with respect to βe) requires access

to all the data points. This imposes heavy burden on the computer memory when there are millions

or even trillions of data points.

Motivated by the extremely heavy computational burdens and intensive memory requirement caused

by large sample size, this paper proposes a novel computationally friendly estimation procedure for

semiparametric monotone index models. We propose a new iterative algorithm whose computational

complexity for each update can be made sufficiently close to O(n), which is the worst-case parametric

updating complexity. Based on the new algorithm, the semiparametric estimator can be constructed

within several minutes even when there are millions of data points. Moreover, when conducting the

new algorithm, only roughly O(
√
n) data points have to be stored in the computer memory in each

round of update, so it substaintially alleviates the memory requirement. More importantly, we show

that the new estimator is 1/
√
n-trivial with respect to the full-sample-based estimator constructed

based on (2.2), implying that there will be no loss of estimation accuracy despite the substantial

improvement in the computation speed.

The key technique adopted to relive the devastating computational burden is subsampling. Such

technique is similar in spirit to but essentially different from the existing MBGD algorithm that we

discussed before. According to our previous discussion, the heavy computational burden in update

(2.2) is caused by full-sample-based update and Nadaraya-Watson kernel estimation. Even though

stochastic optimization approach such as MBGD algorithm uses a small portion of data points to

perform the update, full-sample-based Nadaraya-Watson kernel estimation still takes up a huge

amount of computation time and memory requirement. Motivated by such observation, our new

algorithm is fully subsample-based. In other words, in each round of update we will randomly draw

a subsample IB,k, and then use such subsample to both construct the Nadayara-Watson kernel

estimators and perform the update. To be specific, in the k-th round of iteration we start with

parameter βe,k, then consider the following Nadaraya-Watson kernel estimator of G(z) constructed

2This is becuase, for example, when using MBGD algorithm to update the parameter, only B data points need to
be accessed in each update, so only B data points have to be effectively stored in the computer memory.
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based on the data points in subsample IB,k,

Ĝn

(
z|βe,k, IB,k, cf

)
=

1
B

∑
i∈IB,k

K
((
z −XT

e,iβe,k

)
/hn

)
yj{

1
B

∑
i∈IB,k

K
((
z −XT

e,iβe,k

)
/hn

)}
∨ cf

, (2.4)

where K and hn are all similarly defined as before, and cf > 0 is some sufficiently small constant.

Such subsample-based kernel estimator is constructed as if we only observe the data points in the

subsample IB,k. Note that for both the numerator and denominator of (2.4), summation is only

performed over B data points, so the computational time for evaluating the kernel estimator is of

order O(B). Given (2.4), we perform the following subsample-based update

βe,k+1 = βe,k −
δk
B

∑
i∈IB,k

∂L(Xe,i, yi,βe,k|Ĝn

(
·|βe,k, IB,k, cf

)
)

∂βe

, (2.5)

Obviously, the computational time required for update in (2.5) is of order O(B2). According to our

theoretical results, B can be chosen close to
√
n, indicating that the computational complexity of

each update based on (2.5) is close to the order O(n), which is almost linear in sample size n and is

numerically feasible when n is large.

This paper contributes to the literature of semiparametric estimation of monotone index models. The

existing estimation methods can be roughly classified into two categories: M-estimation approach

and direct construction approach. For the first category, the estimator is obtained by optimiz-

ing some objective functions. The standing estimators include maximum score estimator (Manski,

1975, 1985; Horowitz, 1992), maximum rank correlation estimator (Han, 1987; Sherman, 1993; Ca-

vanagh and Sherman, 1998; Fan et al., 2020), semiparametric least squares estimator (Härdle et al.,

1993; Ichimura, 1993), semiparametric maximum likelihood estimator (Cosslett, 1983; Klein and

Spady, 1993), and more recently KBGD and SBGD estimators (Khan et al., 2023). Apart from

M-estimation, the second class of estimation methods features direct construction of the estimators,

which includes average derivative estimator (Stoker, 1986; Powell et al., 1989; Horowitz and Härdle,

1996; Hristache et al., 2001), special regressor approach (Lewbel, 2000) and eigenvalue approach

(Ahn et al., 2018). Unfortunately, almost all the existing methods can not be effectively applied

when the sample size is extremely large. Moreover, apart from intensive computational burdens,

there are many other crucial limitations that prohibit the use of existing methods in the empirical

applications3.

3For M-estimation, the objective functions are usually heavily discontinuous and/or non-convex with respect to the
parameter. In this case, even looking for a local optimum is generally NP-Hard (Murty and Kabadi, 1987), let alone the
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In principle, the general idea of our methodological development in this paper can be applied to

any loss functions such as least squares (Ichimura, 1993) or maximum likelihood (Klein and Spady,

1993) loss functions , but to make our discussion more intuitive, we adopt the loss function used

in Khan et al. (2023) (KLTY hereafter). KLTY consider a less commonly-used loss function whose

derivative with respect to the parameter depends only on G(·) itself. They then propose an iterative

algorithm that deviates from the conventional practice of gradient-based approach. In particular,

instead of plugging the kernel estimator of G(·) into the loss function and then calculate the gradient

of the plug-in loss function, they first calculate the gradient of the loss function as if G(·) is known.

Then they replace the unknown G(·) in the gradient function with its Nadaraya-Watson kernel

estimator or sieve estimator, and use the plug-in gradient to perform the update. They argue that

the twisted algorithm ensures that the update effectively forms a contraction map for the parameter,

and the resulting estimator based on such update is numerically robust to the choice of the initial

guess. Similar to all of the semiparametric M-estimators such as those in Ichimura (1993) and Klein

and Spady (1993), the key bottleneck of KLTY’s method in the large n setup lies in the heavy

computational burden, as we have discussed earlier. Indeed, when using kernel estimators as the

replacement of the unknown function, n kernel estimators have to be evaluated in each update and

each kernel estimator is constructed based on the full sample. This leads to a computational burden

of order O(n2), making such method computational infeasible even for modest n, say, n = 50000.

Similar to the development from deterministic optimization to stochastic optimization, this paper

develops a fully subsample-based estimation procedure based on KLTY’s algorithm, where the non-

parametric estimation as well as the update are all based on a random subsample from the full data

set. Inheriting from the advantages of KLTY’s method, our proposed method does not suffer from

optimization issue and can be applied to the case where there are many covariates with mixture of

both discrete and continuous ones. The key theoretical challenge arising from such methodological

development lies in the sizable bias caused by subsample-based kernel estimation. In particular,

when using subsamples to construct (2.4), subsample-based summations appear in both the denomi-

nator and the numerator, making (2.4) a biased estimator of the full-sample-based Nadaraya-Watson

global optimum. This makes the optimization procedure computationally infeasible (Khan et al., 2023). On the other
side, the direct construction approach generally imposes more structure on the covariates. For example, the average
derivative approach requires that the covariates are all continuous, so can not be directly applied to discrete covariates
such as dummy variables. Moreover, the application of such method usually involves nonparametric estimation of the
density functions or their partial derivative of some random variables conditional on the covariates. Such estimation
becomes an intractable problem even when the number of covariates is modest. Although there have been some
attempts to reduce the dimensionality of conditional density estimation (e.g., Hall et al. (2004)), the methods are still
computationally-intensive, which may not be applicable in a data-rich environment, see Ouyang and Yang (2023) and
references therein.
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estimator. Such bias dampens the 1/
√
B-convergence rate of the subsample-based estimator, mak-

ing it converge at a much slower rate than standard subsample-based estimators4. We then proceed

to decompose the bias. We find that the first-order bias has 1/
√
n-trivial conditional mean (condi-

tioned on the subsamples in the previous updates and the data set), while the second-order bias is

uniformly 1/
√
n-trivial as long as we update sufficiently many times. This motivates us to follow

Polyak and Juditsky (1992) and use average to eliminate the first-order bias and accelerate the

convergence rate. In particular, after some burn-in rounds of updates, all the estimators produced

during the following updates are averaged. We show that as long as the numbers of burn-in and

follow-up updates are both large enough, the averaged estimator will converge at 1/
√
n rate and is

asymptotically normally distributed. Such a result demonstrates that our subsample-based method

not only improves the computational speed, it also maintains the estimation accuracy on the same

time.

Since the subsample-based estimator is asymptotically normally distributed after averaging, inference

on the true parameter can be conducted if some consistent estimator of the asymptotic covariance

matrix is available. Unfortunately, when sample size n is extremely large, estimating the covariance

matrix based on the full sample also requires large amount of time because it involves evaluating a

large number of nonparametric estimators. To faciliate the inference, we also propose a subsample-

based estimator of the covariance matrix, which subtantially improves the computation speed. We

show that the subsample-based estimator is a consistent estimator of the unknown covariance matrix,

so the inference using such subsample-based estimator will be asymptotically valid.

The main contribution of this paper to the econometric and machine learning literature is that it

proposes a novel computationally friendly algorithm that can be used to semiparametrically estimate

the monotone index models even when the sample size is extremely large. Our new algorithm

essentially generalizes the mini-batch estimation approach to the semiparametric setup. It can be

easily applied when there are tens or hundreds of covariates and hundreds of thousands of or even

millions of data points. Essentially, it bridges the gap between semiparametric estimation theories

and empirical applications in the data-rich environment.

The remainder of the paper is arranged as follows. In section 2.2, we formally introduce the two-step

fully subsample-based updating algorithm. In section 2.3, we develop the asymptotic properties of

the proposed algorithm, and we also propose a subsample-based inference procedure. In section 3.4,

4For conventional MBGD estimators, 1/
√
B-consistency is a standard convergence rate.
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we illustrate the performance of new algorithm by conducting some Monte Carlo experiments. In

section 3.5, we illustrate the empirical applicability of our new algorithm by analyzing three real

world data sets. Finally, section 3.7 concludes. All the proofs of the lemmas and theorems are

arranged to the Appendix.

2.1.1 Notations

For any real sequences {an}∞n=1 and {bn}∞n=1, write an = o (bn) if lim supn→∞ |an/bn| = 0, an =

O (bn) if lim supn→∞ |an/bn| < ∞, and an ∼ bn if both an = O (bn) and bn = O (an). For any

random sequences {an}∞n=1 and {bn}∞n=1, write an = Op (bn) if for any 0 < τ < 1 there exist N and

C > 0 such that P {|an/bn| > C} < τ holds for all n ≥ N , I write an = op (bn) if for any C > 0,

P (|an/bn| > C)→ 0. For any Borel set A ⊆ Rk, denote its Lebesgue measure as m (A). Denote Ip

as the p-dimensional identity matrix. For any symmetric matrix A, we write A ≻ 0 if A is positive

definite, and A ⪰ 0 if A is positive semi-definite. For any symmetric matrices A and B, I write

A ≻ B if A−B ≻ 0 and A ⪰ B if A−B ⪰ 0. For any matrix A, denote σ (A) as its singular value,

and denote σ (A) and σ (A) as its largest and smallest singular value. For any symmetric matrix

A, denote λ (A) as its eigenvalue, and denote λ (A) and λ (A) as its largest and smallest eigenvalue.

For any vector x = (x1, · · · , xp)T, denote its Euclidean norm as ∥x∥ =
√∑p

i=1 x
2
i . For any matrices

A = (aij)n×m, denote ∥A∥ =
√∑n

i=1

∑m
j=1 a

2
ij .

2.2 The Algorithm

To fix idea, throughout this paper we will focus on the following binary choice model

y = 1
(
X0β

⋆
0 +XTβ⋆ − u > 0

)
, (2.6)

where 1 (·) is indicator function and u is the unobserved individual shock with CDF G (·). Binary

choice model is a leading example of monotone index models, which has a wide range of applications

in many areas such as economics, business, and biostatistics. We also emphasize that all of the

conclusions obtained in the following paper can be applied to general class of monotone index

models without any modifications of the algorithm.

We make the following assumptions regarding the data generating process (2.6) and the data set we
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observe.

Assumption 2.1. An i.i.d. data set Dn = {(Xe,i, yi)}ni=1 of sample size n is observed, where yi

is generated by yi = 1
(
X0,i +XT

i β
⋆ − ui > 0

)
with unobserved shock ui that is independent of Xe,i

and has CDF G (·).

Assumption 2.2. (i) Xe = [−1, 1]p+1; (ii) Be is convex, and there exists some constant B0 > 0

such that for any βe ∈ Be, |βj | ≤ B0 for any 0 ≤ j ≤ p; (iii) The CDF G has up to (D+1)-th order

bounded derivatives.

To make the illustration of the new algorithm more intuitive, we start with a special case where the

CDF function G(·) is known. Following Agarwal et al. (2014) and Khan et al. (2023), we consider

the loss function

L (Xe, y,βe|G) =
∫ XT

e βe

−A

G (z) dz − yXT
e βe, (2.7)

for some sufficiently large positive constant A. Khan et al. (2023) show that loss function (2.7) has

many properties such as global minimization at true parameter β⋆ and positive definite Hessian

matrix with respect to βe. Based on the MBGD updating rule (2.3) and loss function (2.7), the

MBGD estimator of β⋆
e is constructed based on the following iteration procedure:

βe,k+1 = βe,k −
δk
B

∑
i∈IB,k

(
G
(
XT

e,iβe,k

)
− yi

)
Xe,i, (2.8)

where βe,1 is given, B is a positive integer and is the sbusample size. For each k, δk > 0 is the

learning rate, and

IB,k = {ik,1, ik,2, · · · , ik,B} (2.9)

is an index set that is randomly drawn from {1, 2, · · · , n} with replacement and is independent over

k. In other words, under MBGD algorithm, in each iteration we randomly draw a subset of size B,

and then update the estimator based on such subsample.

Now we turn to the case of semiparametric estimation, which is the main focus of this paper. To

ensure identification, we set β⋆
0 to be 1, so the estimation target now is β⋆. To simplify notation,

denote the space of X as X , and the corresponding parameter space of β as B.

Remark 2.1. Here we provide some discussion on the choice of the normalized covariate. The

covariate whose coefficient is normalized to 1 must have nonzero and positive true coefficient. Since
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the true coefficient is unknown, we recommend choosing the covariate based on economic theories.

However, there could be scenarios where the (unknown) actual coefficient has the opposite sign as

to that implied by economic theories. So it’s also recommend to conduct a preliminary estimation

based on Logit or Probit to provide some additional insights. In particular, it’s suggested to choose

covariate whose coefficient is significantly different from zero. If the estimated coefficient is negative,

then use the negative value of such covariate for estimation. Finally, it’s also recommended using

continuous variable as the normalized covariate.

Note that the MBGD algorithm (2.8) relies on the nonparametric component G (·) as a key input,

which is unavailable in the current semiparametric setup. So the conventional MBGD algorithm is

infeasible. To make the update feasible, a natural idea is to replace the unknown component with its

nonparametric estimator. However, as we have discussed in section 2.1, if we use the conventional

Nadaraya-Watson kernel estimator as did in Khan et al. (2023), even evaluating one estimator will

take up O(n) computational time, which leads to O(Bn) computational time for a single update.

To further relieve the computational burden, we propose to use the novel subsample-based kernel

estimator (2.4). In particular, at the beginning of the k-th round of update, the initial point is given

by βk. Then using the subsample-based kernel estimator of G (z), consider the following update of

βk,

βk+1 = βk −
δk
B

∑
i∈IB,k

(
Ĝ
(
X0,i +XT

i βk

∣∣βk, IB,k, cf
)
− yi

)
Xϕ

i , (2.10)

where Xϕ
i = Xi · 1(Xe,i ∈ X ϕ

e ), and X ϕ
e = {Xe ∈ Xe : |Xj | ≤ 1− ϕ, 0 ≤ j ≤ p} for some 0 < ϕ < 15.

Since the above algorithm generalizes the conventional MBGD procedure to the semiparametric

setup, we label the new algorithm the Kernel-Based Mini-Batch Gradient Descent Algorithm (KM-

BGD). The algorithm is summarized in algorithm 4.

We provide two more remarks.

Remark 2.2. We provide some comparisons between the KMBGD algorithm and the KBGD al-

gorithm proposed in KLTY. Basically, the latter algorithm is a full-sample-based algorithm; if we

choose IB,k = {1, · · · , n} for all k, then KMBGD degenerates to KBGD. For computational burden,

we obviously have that KBGD has computational complexity of order O(n2) in each update, while the

update of KMBGD has complexity of order O
(
B2
)
. If we choose B close to 1/

√
n, the computational

complexity of KMBGD will be close to n, which is linear in the sample size and is roughly n times

5Such truncation is basically used to improve the uniform convergence speed of kernel estimation. Similar method
is applied in many research such as Ichimura (1993), Klein and Spady (1993), and Khan et al. (2023).
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Algorithm 4: The KMBGD Estimator
input : Data set {(Xe,i, yi)}ni=1, sequence of learning rate {δk}∞k=1, initial guess β1,

kernel function K, bandwidth hn, subsample size B, number of iterations T ,
trimming parameter ϕ and cf

output: The KMBGD estimator β̂

1 k ← 1;
2 while k ≤ T do
3 Generate index set IB,k;
4 for l← 1 to B do
5 Ĝ

(
X0,ik,l

+XT
ik,l

βk

∣∣∣βk, IB,k, cf

)
←

1
B

∑
j∈IB,k

Khn

(
X0,ik,l

+XT
ik,l

βk−X0,j−XT
j βk

)
yj{

1
B

∑
j∈IB,k

Khn

(
X0,ik,l

+XT
ik,l

βk−X0,j−XT
j βk

)}
∨cf

;

6 βk+1 ← βk − δk
B

∑
i∈IB,k

(
Ĝ
(
X0,i +XT

i βk

∣∣βk, IB,k, cf
)
− yi

)
Xϕ

i ;

7 k ← k + 1;

8 β̂ ← βT+1;

smaller than that of KBGD. This implies that when n is extremely large, KMBGD is a better option.

Remark 2.3. Similar to the KBGD algorithm, our method is also iteration-based and does not rely

on any optimization procedure, so it can be easily implemented when the number of the covaraites

p is also large. In other words, the KMBGD estimator applies to the scenario where both n and p

are large. However, since in this paper we mainly focus on the scenario where the sample size n is

extremely large, in my following theoretical analysis we will take p as being fixed.

2.3 Asymptotic Properties of KMBGD Estimator

In this section, we formally develop the statistical properties of the proposed KMBGD estimator.

Under some regularity conditions, we first show that as long as we update the parameter sufficiently

many times, the KMBGD estimator is consistent. However, the convergence rate is slower than

1/
√
n if we choose B ≪ n. Indeed, such rate is even slower than 1/

√
B, which is the convergence

rate of general mini-batch estimators. Then we will show that although KMBGD estimator itself

converges at a slow rate, we can conduct averages across all the estimators produced during updates

to accelerate the convergence rate. In particular, we show that if we properly choose subsample

size, bandwidth prameter, order of kernel function, and number of iterations, the average estimator

obtains 1/
√
n-consistency.

Before we illustrate the main results, we first introduce some notations. Let fe (Xe) and f (X)
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denote the joint density of Xe and X6. Define z (Xe,β) = X0 + XTβ. Let fX|z (X| z,β) be the

conditional density of X given z (Xe,β) = z and β. Define

W
(
Xe, X̃e,β

)
= G′

(
z (Xe,β

⋆) +
(
X− X̃

)T
∆β

)
fX|z

(
X̃
∣∣∣ z (Xe,β) ,β

)
,

V
(
Xe, X̃e,β

)
=
(
XXT −XX̃

T
)
W
(
Xe, X̃e,β

)
,

Λϕ (β) = E
[
1
ϕ
i ·
∫
X
V (Xe,i,Xe,β) dX

]
.

The following additional technical assumptions are imposed.

Assumption 2.3. The kernel function K (·) satisfies: (i) K is bounded and twice continuously

differentiable with bounded first and second derivatives, and the second derivative satisfies Lipschitz

condition on the whole real line; (ii)
∫
K (s) ds = 1; (iii)

∫
sυK (s) du = 0 for 1 ≤ υ ≤ D − 1 and∫

uDK (u) du ̸= 0; (iv) K (s) = 0 for |s| > 1.

Assumption 2.4. (i) There exists some constant ζ > 1 such that ζ−1 ≤ fe (Xe) ≤ ζ holds for all

Xe ∈ Xe; (ii) fe (Xe) has up to (D + 1)-th order bounded derivatives.

Assumption 2.5. There hold supβ∈B λ
(
Λ0 (β) + ΛT

0 (β)
)
≤ λΛ <∞, and infβ∈B λ

(
Λ0 (β) + ΛT

0 (β)
)
≥

λΛ > 0.

All the above assumptions are also imposed in KLTY. Based on the above assumptions, now we

formally study the statistical properties of the iterative estimator βk based on iteration (2.4) and

(2.10). We first introduce some further notations. Let P denote the probability measure of the data

set Dn. Let P∗ be the probability measure corresponding to random variables {IB,k}∞k=1 and P∗
k be

probability measure corresponding to {IB,k′}∞k′≥k conditional on the observation of {IB,k′}k−1
k′=1 for

k ≥ 2 and P∗
1 = P∗. Let E∗ and E∗

k be the expectation with respect to P∗ and P∗
k. Finally, let P be

the probability measure of {Dn, IB,1, IB,2, · · · }, where Dn is the data set.

Recall that the Nadaraya-Watson kernel estimator for E
(
y|X0 +XTβ = z

)
based on the full data

is given by Ĝ (z|β). For any β ∈ B, define ∆β = β − β⋆. We obviously have the following

6By assuming Xe has joint density function, we require that Xe is continuous, which facilitates our following
discussion. However, we point out that our analysis can be trivially extended to the case where there are some
discrete covariates, see KLTY.
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decomposition for the KMBGD update (2.10),

∆βk+1 = ∆βk −
δk
n

n∑
i=1

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xϕ

i

− δk
1

B

∑
i∈IB,k

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xϕ

i −
1

n

n∑
i=1

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xϕ

i︸ ︷︷ ︸
π1,n,k

− δk
1

B

∑
i∈IB,k

(
Ĝ
(
X0,i +XT

i βk

∣∣βk, IB,k, cf
)
− Ĝ

(
X0,i +XT

i βk

∣∣βk

))
Xϕ

i︸ ︷︷ ︸
π2,n,k

. (2.11)

It’s not difficult to see that if π1,n,k = π2,n,k = 0, then (2.11) degenerates to the full-sample-based

KBGD algorithm. Indeed, π1,n,k describes the randomness caused by updating using only a subset

of the data, whereas π2,n,k describes the randomness caused by performing nonparametric kernel

estimation using only a subset of the data points. Essentially, π1,n,k is shared by all the mini-batch

estimators, while π2,n,k is specific to the semiparametric setup we consider in this paper. We have

the following lemma describing the properties of π1,n,k and π2,n,k.

Lemma 2.1. Suppose that Assumption 2.1–Assumption 2.5 hold with D ≥ 4. Suppose also that cf

is chosen such that infz∈Zϕ,β∈B fZ (z|β) ≥ 3cf . If βk is update based on (2.4) and (2.10), We have

that

P

[
sup
k≥1

E∗
(
∥π1,n,k∥2

)
≤ C

B

]
→ 1,

and

P

[
sup
k≥1

E∗
(
∥π2,n,k∥2

)
≤
C log

(
Bh−2

n

)
Bh2n

]
→ 1,

for some C that does not depend on n,B, hn, and k.

Lemma 2.1 immediately yields the following result.

Theorem 2.1. Suppose that Assumption 2.1–Assumption 2.5 hold with D ≥ 4. Suppose also that cf

is chosen such that infz∈Zϕ,β∈B fZ (z|β) ≥ 3cf . Suppose moreover that δk = δ < min{1/ (2λΛ) , 1/
(
4p2 ∥G′∥∞

)
},

ϕ < δλΛ/
(
16p2 ∥G′∥∞ ζ

)
, hn is chosen such that hnn1/2D → 0 and hnn1/6/ log1/3 (n) → ∞. If βk

is update based on (2.4) and (2.10), define

kn =

 log
(
h2Dn +

√
log
(
Bh−2

n

)
/Bh2n

)
− log

(√
E∗ ∥∆β1∥

2

)
log (1− δλΛ/8)

 ,
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we have that

sup
k≥kn+1

E∗
(
∥∆βk∥

2
)
= Op

(
h2Dn +

log
(
Bh−2

n

)
Bh2n

)
.

According to Theorem 2.1, if we choose B ≪ n to improve computational speed, the upper bounded

on the estimation error E∗ (∥∆βk∥) will be of rate slower than n−1/2 even when the order of the

kernel function is large. The slower convergence rate is a common feature of all the mini-batch

estimators. Indeed, the mini-batch estimators converge at the rate 1/
√
B at best, see, for example,

Lemma 2 in Forneron (2022). However, different from the conventional mini-batch estimator, my

KMBGD estimators are guaranteed to converge no faster than
√

log(n)/Bh2n. If I choose B = 1/
√
n

and hn = n−1/6, then the convergence rate would be
√
log(n)n−1/12, which is much slower than

1/
√
B = n−1/4.

The slower convergence rate of the KMBGD estimator is mainly due to the fact that we use sub-

samples to construct the kernel estimator. In this case, the subsample-based gradient is no longer

an unbiased estimator (conditional on the previous subsamples) of the full-sample-based gradient,

that is, E∗(π2,n,k) ̸= 0. The bias makes the convergence rate of KMBGD estimator slower than

1/
√
B. However, surprisingly, in the following we will show that if we appropriately choose the

kernel function and bandwidth parameter, even with B ≪ n, we can still obtain 1/
√
n by following

Polyak and Juditsky (1992) and conducting average across KMBGD estimators produced during

iterations.

To formally show the above results, we first further decompose the KMBGD dynamics. To ease

our following exposition, for any z and β denote An,y (z,β) = 1
n

∑n
i=1Khn

(
z −X0,i −XT

i β
)
yi,

An,1 (z,β) =
1
n

∑n
i=1Khn

(
z −X0,i −XT

i β
)
, An,y (z,β| IB,k) =

1
B

∑
i∈IB,k

Khn

(
z −X0,i −XT

i β
)
yi,

and An,1 (z,β| IB,k) =
1
B

∑
i∈IB,k

Khn

(
z −X0,i −XT

i β
)
. We have the following lemma.

Lemma 2.2. Suppose that all the assumptions and conditions in Theorem 2.1 hold. Suppose more-

over that B · min{h6n/ log
2(n), h2n/(

√
n log(n))} → ∞. Define ξϕn = 1

n

∑n
i=1(Ĝ (z⋆i |β

⋆) − yi)X
ϕ
i ,

where z⋆i = z (Xe,i,β
⋆). Also define zi,k = z(Xe,i,βk). If βk is update based on (2.4) and (2.10),
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we have that

∆βk+1 = (Ip − δΛϕ (β
⋆))∆βk − δξ

ϕ
n + δΩϕ

k

− δ 1
B

∑
i∈IB,k

(
Ĝ (zi,k|βk)− yi

)
Xϕ

i −
1

n

n∑
i=1

(
Ĝ (zi,k|βk)− yi

)
Xϕ

i︸ ︷︷ ︸
ϱ1,n,k

− δ 1
B

∑
i∈IB,k

Xϕ
i

An,1 (zi,k,βk)
· (An,y (zi,k,βk| IB,k)−An,y (zi,k,βk))︸ ︷︷ ︸

ϱ2,n,k

+ δ
1

B

∑
i∈IB,k

An,y (zi,k,βk)X
ϕ
i

A2
n,1 (zi,k,βk)

· (An,1 (zi,k,βk| IB,k)−An,1 (zi,k,βk))︸ ︷︷ ︸
ϱ3,n,k

,

where supk≥kn+1 E∗
∥∥∥Ωϕ

k

∥∥∥ = op
(
n−1/2

)
.

We now provide some intuitive discussion for Lemma 2.2. Basically, if there are no noise terms

ϱ1,n,k, ϱ2,n,k, and ϱ3,n,k, then the dynamics of ∆βk simply degenerate to the full-sample-based

KBGD algorithm in KLTY as implied in Lemma 2.3 in Appendix. However, since we use subsamples

to perform the update, additional noises due to subsampling are introduced into the update and

these noises are captured by the above three terms. Basically, ϱ1,n,k describes the impacts of using

subsamples instead of full sample to perform the update. Such error is shared by all the mini-

batch-based methods. While the remaining two terms ϱ2,n,k and ϱ3,n,k describe the impacts of using

subsamples instead of full sample to construct the Nadaraya-Watson kernel estimator, so are specific

to my algorithm only. Simple calculation leads to E∗ (ϱ1,n,k) = 0, E∗ (ϱ2,n,k) = Op (1/Bhn) , and

E∗ (ϱ3,n,k) = Op (1/Bhn) uniformly with respect to k. The above implies that for k sufficiently large,

the first-order difference between KBGD and KMBGD estimators almost constitute a martingale

difference sequence. By “almost” we mean that the conditional expectation is of order Op(1/Bhn),

which can be made n−1/2-trivial if we choose B ≫ n1/2h−1
n .

Lemma 2.2 implies that although the KMBGD estimator itself does not obtain 1/
√
n-consistency

due to noises caused by subsample-based kernel estimation and update, we can follow Polyak and

Juditsky (1992) to conduct average across the estimators produced during iterations to eliminate

these noises. Similar to the conventional mini-batch gradient estimator, the resulting estimator will

be 1/
√
n-consistent as long as we choose B that diverges at some rate. In particular, let k∗ be the

number of burn-in iterations and T be the number of follow-up iterations. The averaged KMBGD
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estimator (AKMBGD) is defined as follws,

β =
1

T

T∑
t=1

βk∗+t. (2.12)

We summarize the algorithm in algorithm 5.

Algorithm 5: The AKMBGD Estimator
input : Data set {(Xe,i, yi)}ni=1, sequence of learning rate {δk}∞k=1, initial guess β1,

kernel function K, bandwidth hn, subsample size B, number of burn-in
iterations k∗, number of follow-up iterations T , trimming parameter ϕ and cf

output: The AKMBGD estimator β

1 k ← 1;
2 while k ≤ k∗ + T do
3 Generate index set IB,k;
4 for l← 1 to B do
5 Ĝ

(
X0,ik,l

+XT
ik,l

βk

∣∣∣βk, IB,k, cf

)
←

1
B

∑
j∈IB,k

Khn

(
X0,ik,l

+XT
ik,l

βk−X0,j−XT
j βk

)
yj{

1
B

∑
j∈IB,k

Khn

(
X0,ik,l

+XT
ik,l

βk−X0,j−XT
j βk

)}
∨cf

;

6 βk+1 ← βk − δk
B

∑
i∈IB,k

(
Ĝ
(
X0,i +XT

i βk

∣∣βk

)
− yi

)
Xϕ

i ;

7 k ← k + 1;

8 β ← 1
T

∑T
t=1 βk∗+t;

Now we provide the theoretical properties of the AKMBGD estimator.

Theorem 2.2. Suppose that all the assumptions and conditions in Theorem 2.1 hold. Suppose

moreover that B ·min{h6n/ log
2(n), h2n/(n

1/2 log(n))} → ∞. Let k∗ = kn+[− log(n)/ log(1−δλΛ/8)].

If βk is update based on (2.4) and (2.10), for any T ≥ 1, we have that

∆β = −Λ−1
ϕ (β⋆) ξϕn +OP

(
1√
Bh2nT

+
log1/4(n)

Bhn

)
.

If T is chosen such that Bh2nTn−1 →∞, we have that

√
n∆β →d N

(
0,Σϕ

β

)
,

where Σϕ
β = Λ−1

ϕ (β⋆) Σϕ
ξ

(
Λ−1
ϕ (β⋆)

)T
and

Σϕ
ξ = E

[
(1−G (z⋆i ))G (z⋆i )

(
Xϕ

i − E
(
Xϕ

i

∣∣∣ z⋆i ))(Xϕ
i − E

(
Xϕ

i

∣∣∣ z⋆i ))T] .
Theorem 2.2 is the key result of this paper. It demonstrates that even though we only use a random
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subsample whose size is substaintially smaller than the full sample size to conduct kernel estimation

and perform update in each round of iteration, the average of estimators produced during iterations

will be equivalent to the full-sample estimator up to some small order terms. The small order

terms will be uniformly 1/
√
n-trivial as long as we choose B ≫ max{log2(n)h−6

n ,
√
n log(n)h−2

n }

and T ≫ nB−1h−2
n . This implies that as long as we choose kernel function properly, the KMBGD

estimator will be as efficient as the one based on the full sample, despite the fact that we only use

a much smaller subsample to perform the update in each round.

Theorem 2.2 also suggests that the computational speed of each update can be improved by appro-

priately choosing the kernel function. In particular, since hn must satisfy hn ≪ n−1/2D according

to the conditions required in the theorem, then B ≫ max{n3/D log2(n), n1/2+1/D log(n)} must hold,

so the computational complexity will be of order at least O(max{n6/D log4(n), n1+2/D log2(n)}).

Obviously, to improve the computational speed, we can choose a high-order kernel function. For

example, if we choose a 8-th order kernel, the computational complexity is of order O(n5/4 log2(n));

if we choose a 12-th order kernel, the computational complexity is of order O(n7/6 log2(n)). If we

can choose sufficiently large D, then the computational complexity is lower bounded by n log2(n),

which is almost the linear rate O(n).

We finally discuss the total computational time of KBGD and KMBGD estimation. Suppose k∗

updates are necessary to eliminate the impacts of the initial guess, then the full-sample-based KBGD

algorithm requires O(k∗n2) computational time in total, while the KMBGD algorithms requires

O(k∗B2+B2T ). Since Theorem 2.2 requires that T ≫ nB−1h−2
n , then the total computational time

of KMBGD will be at least O(k∗B2 + nBh−2
n ). If we choose B ≫

√
nh−2

n log n and hn ≪ n−1/2D,

then k∗B2 + nBh−2
n ≫ k∗n1+2/D log2(n) + n3/2+2/D. So the upper bound on the ratio between the

total computational time of KBGD and KMBGD is of order

n1−2/D log−2(n) + k∗n1/2−2/D.

Obviously, when D ≥ 6, the above ratio diverage at rate n2/3 + k∗n1/6. More crucially, the above

rate will be large when k∗, the number of burn-in updates, is large, which will often be the case

when the number of covariates is large and Λ/Λ is small,

Remark 2.4. We provide some guidance on the applications of the KMBGD estimation. We recom-

mend standardizing all the covariates7 before estimation to improve the numerical performance. Re-

7For any covariate w, the standardized covariate is given by (w − w)/σw, where w is the sample mean of w and
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garding the choice of the tuning parameter, we recommend choosing δk = 1 for all k in the first place,

and if the iteration does not converge (around a fixed point), gradually shrink it towards zero, say, try

δk = 0.1 and δk = 0.01. For the choice of B, we recommend choosing B = max{3000,
√
nh−2

n log(n)}.

For the stopping rule, we recommend updating until the mean of the estimators produced during

iterations is stable. For example, let T and gap be two positive integers. First update the param-

eter T + gap rounds. Then for each k > T + gap, compare two average estimators 1
T

∑T
j=1 βk−j

and 1
T

∑T
j=1 βk−j−gap. If the maximum distance between arguments of the above two estimators is

smaller than some given tolerance ϱ, then stop and use the average of last T + gap estimators as

the final estimator. For another example, we can choose some pre-specified numbers of burn-in and

follow-up updates, as long as both are sufficiently large.

We finally discuss the inference-related issues when the sample size n is large. According to Theo-

rem 2.2, the AKMBGD estimator is asymptotically normally distributed, so inference on the true

parameter β⋆ can be conducted if we can consistently estimate the asymptotic covariance matrix

Σϕ
β. In their paper, KLTY provide a consistent estimator for the covariance matrix based on the

full sample. However, to construct such estimator, we need to construct nonparametric estimators

for conditional expectation E(Xϕ
i |z⋆i ) for each i, which may cost large amount of time when both n

and p are large.

To solve the above inference issue in the large n scenario, this section provides a subsample-based

estimator for the covariance matrix. Let {IB,r}Rr=1 be a sequence of random index sets defined in

(2.9). For each 1 ≤ r ≤ R, define

Σ̂ϕ,r
ξ =

1

B

∑
i∈IB,r

(
Ĝr

i

(
1− Ĝr

i

)(
Xϕ

i − Êr
(
Xϕ

i

∣∣∣ ẑi))(Xϕ
i − Êr

(
Xϕ

i

∣∣∣ ẑi))T) ,
and

Λ̂r
ϕ

(
β
)
=

1

B

∑
i∈IB,r

Xϕ
i

∂Ĝ
(
z
(
Xe,i,β

)∣∣β, IB,r, cf
)

∂βT
,

where

Ĝr
i =

1
B

∑
j∈IB,r

Khn
(ẑi − ẑj) yj{

1
B

∑
j∈IB,r

Khn
(ẑi − ẑj)

}
∨ cf

, Êr
(
Xϕ

i

∣∣∣ ẑi) =

1
B

∑
j∈IB,r

Khn
(ẑi − ẑj)Xϕ

j{
1
B

∑
j=∈IB,r

Khn
(ẑi − ẑj)

}
∨ cf

,

σw is the sample standard deviation.
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and ẑi = X0,i +XT
i β. Also define

Σ̃ϕ
β =

(
1

R

R∑
i=1

Λ̂r
ϕ

(
β
))−1(

1

R

R∑
r=1

Σ̂ϕ,r
ξ

)(
1

R

R∑
r=1

Λ̂rT
ϕ

(
β
))−1

. (2.13)

Then we have the following result.

Theorem 2.3. Suppose that all the assumptions and conditions in Theorem 2.2 hold. If Bh2n →∞,

we have that ∥∥∥P∗limR→∞Σ̃ϕ
β − Σϕ

β

∥∥∥→P 0,

where P∗ and P are defined in section 2.3. Moreover,

Σ̃
ϕ−1/2
β

√
n∆β →d N (0, Ip).

2.4 Monte Carlo Experiments

This section conducts some Monte Carlo experiments to evaluate the finite-sample performance of

the KMBGD algorithm. We consider the following data generating process

yi = 1 (X0,i + β⋆
1X1,i + · · ·+ β⋆

9X9,i − ui > 0) , 1 ≤ i ≤ n, (2.14)

where n is the sample size, and (X0,i, · · · , X9,i, ui) is iid over i. For all 1 ≤ i ≤ n, X0,i ∼ N (0, 1),

X1,i ∼ Bernoulli(1/2), X2,i ∼ Poisson(2), and Xj,i ∼ (χ2(1) − 1)/
√
2 for 3 ≤ j ≤ 9. So we have a

mixture of both continuous and discrete covariates. Moreover, Xj,i is independent over j for each

i. ui is the random error with cumulative distribution function G(u), which is independent of the

covariates. We consider four setups of error distrubtion: Cauchy, t(4), χ2(3), and N (0, 1). We

set the true parameter vector as β⋆ = (1, 1, 0.5, 2, 5,−0.5,−1,−2,−5)T . Finally, in the following

simulations, whenever we conduct kernel estimation, we use eighth-order Epanechnikov kernel to

construct the Nadaraya-Watson estimator, where the kernel function is given by K(u) = 16.15(1−

u2)(0.1667− 1.5u2 + 3.3u4 − 2.043u6) · 1 (|u| ≤ 1).
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Table 2.1: Finite Sample Performance of Kernel-Based Estimators

ui ∼ Cauchy

β1 β2 β3 β4 β5 β6 β7 β8 β9

n = 50000
Bias 0.0051 0.0010 0.0016 0.0042 0.0088 0.0003 0.0015 0.0041 0.0100
RMSE 0.0533 0.0314 0.0309 0.0610 0.1305 0.0258 0.0326 0.0549 0.1222
CR 0.9570 0.9520 0.9490 0.9660 0.9660 0.9590 0.9580 0.9550 0.9670

n = 100000
Bias 0.0006 0.0007 0.0003 0.0004 0.0016 0.0003 0.0009 0.0012 0.0036
RMSE 0.0366 0.0208 0.0206 0.0425 0.0924 0.0173 0.0229 0.0379 0.0879
CR 0.9580 0.9590 0.9530 0.9490 0.9540 0.9640 0.9540 0.9570 0.9480

ui ∼ t(4)

n = 50000
Bias 0.0023 0.0003 0.0000 0.0014 0.0019 0.0002 0.0004 0.0011 0.0019
RMSE 0.0362 0.0201 0.0187 0.0397 0.0869 0.0169 0.0213 0.0357 0.0805
CR 0.9420 0.9490 0.9470 0.9600 0.9450 0.9430 0.9520 0.9470 0.9530

n = 100000
Bias 0.0001 0.0001 0.0000 0.0004 0.0003 0.0003 0.0001 0.0005 0.0011
RMSE 0.0245 0.0138 0.0135 0.0273 0.0588 0.0115 0.0148 0.0248 0.0559
CR 0.9490 0.9470 0.9490 0.9470 0.9600 0.9540 0.9580 0.9530 0.9650

ui ∼ χ2 (3)

n = 50000
Bias 0.0018 0.0015 0.0005 0.0008 0.0033 0.0001 0.0007 0.0001 0.0038
RMSE 0.0429 0.0246 0.0225 0.0482 0.1076 0.0217 0.0289 0.0458 0.1077
CR 0.9590 0.9400 0.9490 0.9430 0.9380 0.9520 0.9450 0.9410 0.9420

n = 100000
Bias 0.0001 0.0000 0.0002 0.0008 0.0020 0.0002 0.0001 0.0004 0.0002
RMSE 0.0301 0.0163 0.0159 0.0322 0.0718 0.0149 0.0197 0.0300 0.0707
CR 0.9480 0.9540 0.9550 0.9490 0.9550 0.9620 0.9520 0.9650 0.9550

ui ∼ N (0, 1)

n = 50000
Bias 0.0006 0.0001 0.0001 0.0004 0.0007 0.0004 0.0005 0.0006 0.0021
RMSE 0.0315 0.0166 0.0167 0.0347 0.0762 0.0145 0.0182 0.0306 0.0712
CR 0.9500 0.9580 0.9570 0.9540 0.9500 0.9480 0.9590 0.9470 0.9420

n = 100000
Bias 0.0001 0.0003 0.0008 0.0012 0.0007 0.0002 0.0002 0.0000 0.0000
RMSE 0.0214 0.0120 0.0119 0.0247 0.0534 0.0104 0.0134 0.0219 0.0506
CR 0.9510 0.9590 0.9430 0.9480 0.9540 0.9510 0.9410 0.9560 0.9590
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2.4.1 Finite-Sample Performance

We first study the finite sample performance of our AKMBGD estimator. We consider two sample

sizes: n = 50000, and n = 100000. We report the bias, root mean squared error (RMSE), and

coverage rate of AKMBGD estimators for β⋆
1 to β⋆

9 . Suppose that the simulation is repeated R

times, in the r-th round the estimator of β⋆
j is denoted as β̂r

j . Then the bias and RMSE of β⋆
j is

defined by

Bias =

∣∣∣∣∣ 1R
R∑

r=1

β̂r
j − β⋆

j

∣∣∣∣∣ , RMSE =

√√√√ 1

R

R∑
r=1

(
β̂r
j − β⋆

j

)2
.

We consider nominal coverage rate 0.95, so the actual coverage rate is given by

CR =
1

R

R∑
r=1

1
(
β̂r
j − 1.96σ̂r

j ≤ β⋆
j ≤ β̂r

j + 1.96σ̂r
j

)
,

where σ̂r
j is the subsample-based estimator of the variance of β̂r

j .

The learning rate is chosen as γk = 1 for all k. The bandwidth used in the k-th round of update

is hn = ck · h−1/10
n , where ck = std (zi,k) and zi,k = X0,i + XT

i βk. The initial guess is chosen as

the Logit estimator. When constructing the AKMBGD estimator, I first run 2000 burn-in updates.

Then the stopping rule is chosen as that in Remark 2.4 with T = 10000, gap = 1000, and ϱ = 0.001.

The subsample size B is chosen as 3000 for both estimation and inference. Finally, when conducting

inference, i randomly draw 200 subsamples to construct the variance estimator.

The simulation results are reported in Table 2.1. It can be seen that the AKMBGD estimators have

small bias, whose RMSE decreases with sample size almost at rate
√
n. Moreover, the confidence

interval constructed based on the subsample-based variance has actual coverage rate that is quite

close to the nominal rate 0.95. This demonstrates that the AKMBGD estimators and subsample-

based variance estimator have great finite-sample performance.

2.4.2 Computational Efficiency

This subsection formally compares the computational efficiency of several gradient-based estimators

for semiparametric montone index models. In particular, I compare KMBGD estimator with the

KBGD and SBGD estimators proposed by Khan et al. (2023).

I first compare the updating speed of each algorithm under different setups of sample sizes. In partic-
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Table 2.2: Comparing Updating Speed

Sample Size Method KBGD SBGD KMBGD

n = 2500
Unparalleled 0.0475 0.0003 0.0081
Parallel 0.0412 – 0.0321

n = 5000
Unparalleled 0.2009 0.0004 0.0078
Parallel 0.0669 – 0.0292

n = 10000
Unparalleled 0.8335 0.0006 0.0078
Parallel 0.1822 – 0.0302

n = 20000
Unparalleled 3.2828 0.0027 0.0075
Parallel 0.6166 – 0.0293

n = 500000
Unparalleled – 0.1267 0.0508
Parallel – – 0.0374

n = 1000000
Unparalleled – 0.2602 0.1530
Parallel – – 0.0574

Note: All running time in seconds. Parallel computation is conducted over 6 cores. B = 1000 when n ≤ 20000,
B = 3000 when n = 500000, and B = 5000 when n = 1000000.

ular, for each algorithm, I keep updating 100 times and report the average running time of each single

update. For kernel-based updates (KBGD and KMBGD), I consider two computation strategies: un-

paralleled and parallel computation. When using parallel computation, kernel estimators are simul-

taneously calculated over 6 cores. I consider six sample sizes: n = 2500, 5000, 10000, 20000, 500000,

and 1000000. For SBGD estimation, the sieve functions follow those used in Khan et al. (2023).

The order of sieves is chosen as q = 9 when n = 2500 and 5000, q = 11 when n = 10000 and 20000,

and q = 31 when n = 500000 and 1000000. The subsample size B is chosen as B = 1000 when

n ≤ 20000, B = 3000 for n = 500000, and B = 5000 for n = 1000000. The simulation results are

reported in Table 2.2.

It can be seen that without parallel computation, the updating time of full-sample-based KBGD

algorithm increases roughly at rate n2, which is in linear with the previous discussion. In particular,

when sample size is 2500, each single update requires 0.0475 seconds, which amounts to 21 updates

within one second. However, such updating time increases to 0.2 seconds when sample size is

5000, which amounts to only 5 updates each second. When the sample size is 20000, without

parallel computation, each single update of KBGD requires more than 3 seconds, indicating that

1000 updates may cost around 1 hour of computational time. For extremely large sample sizes

n = 500000 or 1000000, KBGD is practically infeasible, so the computational time is not reported.

It can also be seen that parallel computation may significantly decrease the updating time when n

is large (n = 10000, 20000), but the updating time is still too long to be practically feasible.

I then look at the updating speed of SBGD and KMBGD. Apparently, when sample size is small
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Table 2.3: Comparing KMBGD and SBGD Estimators

Distribution Sample Size Method RMSE Running Time

u ∼ Cauchy
n = 500000

SBGD 0.0620 0.8417 3.2841
KMBGD 0.0628 0.4719 0.1042

n = 1000000
SBGD 0.0398 1.7304 13.921
KMBGD 0.0407 0.5002 0.0968

u ∼ t (4)
n = 500000

SBGD 0.0390 0.8219 3.3434
KMBGD 0.0390 0.3954 0.1045

n = 1000000
SBGD 0.0273 1.6701 13.893
KMBGD 0.0276 0.4158 0.4059

u ∼ χ2 (3)
n = 500000

SBGD 0.0475 0.7016 3.3534
KMBGD 0.0475 0.4098 0.1047

n = 1000000
SBGD 0.0319 1.4244 14.196
KMBGD 0.0330 0.3703 0.3515

u ∼ N (0, 1)
n = 500000

SBGD 0.0341 0.8261 3.3310
KMBGD 0.0341 0.3930 0.1056

n = 1000000
SBGD 0.0216 1.6498 14.134
KMBGD 0.0218 0.3500 0.3542

NOTE: All running time in hours.

or modest, SBGD exhibits excellent performance: when sample size is 2500, 5000, and 10000, each

single update of SBGD requires only 0.0003, 0.0004, and 0.0006 seconds, which amounts to 3300,

2500, and 1600 updates within one second. Even when sample size is 20000, each update of SBGD

requires only 0.0027 seconds, so 370 updates can be conducted within one second. This suggests

that SBGD significantly outperforms KMBGD when the sample size n is small or modest. However,

when the sample size n is extremely large, KMBGD starts dominating SBGD. In particular, when

n = 500000 and 1000000, the updating speed of KMBGD (with parallel computation) is roughly 4

and 5 times faster than that of SBGD.

Of course, the reduction of computational time of each single update of KMBGD compared with

that of SBGD may come at the cost of longer total running time or large estimation error. To study

whether it is the case, I then compare the total running time of SBGD and KMBGD. I also consider

four setups of random error distributions as I did in subsection 2.4.1. I consider two extreme sample

sizes: n = 500000 and n = 1000000. The subsample size B = 3000 when n = 500000 and B = 5000

when n = 1000000. The stopping rule for SBGD is max1≤j≤9 |βj,k+1 − βj,k| < 10−6 and that for

KMBGD is the same as before. For both updates, the initial guess is located at Logit estimator,

and the maximum number of updates is 20000. For inference, I choose subsample size B = 3000

when n = 500000 and B = 6000 when n = 1000000. The number of subsamples is chosen as 200.

Finally, I note here that for both estimation and inference, unparalleled computation is considered.
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Table 2.4: Comparing True and Estimated Variance

ui ∼ Cauchy
β1 β2 β3 β4 β5 β6 β7 β8 β9

n = 500000
True Std 0.0173 0.0102 0.0099 0.0193 0.0442 0.0079 0.0105 0.0159 0.0411
Est Std 0.0173 0.0099 0.0097 0.0203 0.0444 0.0082 0.0107 0.0177 0.0409

n = 1000000
True Std 0.0114 0.0064 0.0069 0.0142 0.0260 0.0057 0.0083 0.0115 0.0264
Est Std 0.0123 0.0070 0.0068 0.0143 0.0313 0.0058 0.0075 0.0124 0.0287

ui ∼ t(4)

n = 500000
True Std 0.0118 0.0059 0.0063 0.0126 0.0280 0.0052 0.0074 0.0113 0.0261
Est Std 0.0110 0.0062 0.0060 0.0124 0.0275 0.0053 0.0068 0.0111 0.0257

n = 1000000
True Std 0.0071 0.0045 0.0040 0.0084 0.0196 0.0041 0.0047 0.0077 0.0180
Est Std 0.0078 0.0044 0.0043 0.0088 0.0194 0.0037 0.0048 0.0079 0.0182

ui ∼ χ2 (3)

n = 500000
True Std 0.0120 0.0074 0.0066 0.0149 0.0316 0.0067 0.0093 0.0137 0.0321
Est Std 0.0135 0.0076 0.0071 0.0148 0.0332 0.0068 0.0089 0.0143 0.0325

n = 1000000
True Std 0.0092 0.0045 0.0047 0.0107 0.0226 0.0049 0.0061 0.0096 0.0214
Est Std 0.0096 0.0053 0.0051 0.0105 0.0235 0.0048 0.0063 0.0101 0.0230

ui ∼ N (0, 1)

n = 500000
True Std 0.0099 0.0053 0.0049 0.0113 0.0246 0.0048 0.0059 0.0098 0.0225
Est Std 0.0096 0.0054 0.0053 0.0109 0.0240 0.0046 0.0060 0.0097 0.0225

n = 1000000
True Std 0.0068 0.0038 0.0035 0.0072 0.0146 0.0036 0.0040 0.0061 0.0139
Est Std 0.0068 0.0038 0.0037 0.0077 0.0170 0.0033 0.0042 0.0069 0.0159

I report the RMSE and running time of both estimation and inference in Table 2.3. As can be seen

from the table, for all combinations of error distributions and sample sizes, the RMSE of SBGD and

KMBGD are almost identical, indicating that updates based on subsamples do not result in loss of

estimation accuracy. When looking at the running time, it’s impressive to see that, the estimation

time of KMBGD is substantially shorter compared with that of SBGD. When n = 500000, KMBGD

decreases the running time by roughly half, while when n increases to 1000000, the reduction of

estimation time is more significant: running time of KMBGD is only around one forth of that of

SBGD. It is also interesting to see that, when the sample size increases and I use a larger subsample

size, the running time of KMBGD even slightly decreases. This implies that although using a larger

subsample size may make updating speed slightly slower, it makes convergence faster because the

amount of noises in the update is decreased.

I finally look at the computational burden of inference based on different methods. As can be seen

from Table 2.3, the operational time of variance calculation of SBGD is over 3.2 hours without

parallel computation when n = 500000, and it rises to around 14 hours when n = 1000000. This

implies that even SBGD may have adequate computational efficiency in terms of estimation, it may

still cost a large amount of time to conduct inference. When turning to the subsample-based infernece
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under KMBGD, it can be clearly seen that variance estimation only requires around 0.1 hours (10

min) when n = 500000 and 0.4 hours (40 min) when n = 1000000, which significantly improves

the speed of inference. I also report in Table 2.4 the true standard deviation and subsample-based

estimator of the standard deviation of each estimator, which are close to each other. This implies

that subsample-based inference improves the speed while does not suffer from much accuracy loss.

2.5 Real Data Analysis

2.5.1 Run_or_walk_information

This section applies the KMBGD algorithm to data set Run_or_walk_information from OpenML8.

The data set contains 88,588 observations, each of which has 6 features. So the data set is medium-

sized. The binary response y is provided in the data set. We model y and the set of features as a

semiparametric binary choice model as in (2.6) and use KMBGD estimation procedure to estimate

the model.

When conducing the estimation, we standardize all the covaraites. For the setup of iteration, we

choose δk = 1, B = 3000, k∗ = 10000, gap = 1000, tolerance ϱ = 0.005, and the maximum number

of iterations as 50000. We normalize the coefficient of acceleration_y to be 1 because preliminary

Probit and Logit regression indicate that its coefficient is strictly positive. Whenever we construct

kernel estimators, we use eighth-order Epanechnikov kernel function given by K(u) = 16.15(1 −

u2)(0.1667− 1.5u2 + 3.3u4 − 2.043u6) · 1 (|u| ≤ 1), and the bandwidth is chosen as hn = ck · n−1/13,

where ck is the standard deviation of the index in the k-th round of iteration. We use Logit estimator

as the starting point. Finally, in each update, parallel computation over 6 cores is performed when

calculating subsample-based kernel estimators over different data points.

The estimation procedure takes 7.78min in total, where around 11,000 rounds of iterations are

conducted. We plot the estimated coefficients based on Probit, Logit, and KMBGD in Figure 2.1.

We can see that the KMBGD estimators converge very quickly to be fluctuating closely around the

AKMBGD estimatros. Moreover, the estimated coefficients based on KMBGD and AKMBGD differ

significantly from those using Probit or Logit, which suggests potential model misspecification under

parametric setup.

8https://www.openml.org/. Data ID: 40922.
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Figure 2.1: Estimated Coefficients of Walk_or_run_information
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The sizable difference between parametric estimation results and KMBGD estimators suggests po-

tential gain of the use of semiparametric estimation. Observing this, we use different estimation

methods to predict the outcome of the binary response variable. In particular, we randomly split

the data set into a training set and a testing set, where the latter contains 10,000 observations.

Then we use different methods including Probit, Logit, and KMBGD to estimate the training set,

and use the estimation results to predict the outcome of the observations in the testing set9. We

plot the ROC curves of different methods in Figure 2.2. We can see that the ROC curve of KM-

BGD almost always lies above those of Probit and Logit, indicating better predicting performance.

More precisely, the AUC10 of Probit, Logit and KMBGD are given by 0.8841, 0.8841 and 0.9112,

respectively. This implies that KMBGD significantly outperforms the parametric methods in terms

of prediction accuracy.
9When estimating the conditional probability using AKMBGD estimators, we use second order Epanechnikov

kernel function with bandwidth hn = ck · n−1/5. This also applies to subsection 2.5.2 and subsection 2.5.3.
10Area under the ROC curve. The large AUC is, the better prediction accuracy it indicates.
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Figure 2.2: ROC of Probit, Logit and KMBGD for Walk_or_run_information
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2.5.2 simulated_adult

This section applies our method to data set simulated_adult from OpenML11. The original data

set contains 5.1 million observations, each of which has 14 features. The binary response is con-

structed as y = 1 if the class is “>50K” and y = 0 otherwise. We model y and the set of features

as a semiparametric binary choice model as in (2.6) and use KMBGD estimation procedure to esti-

mate the model. Before we estimate the model, we perform the following data clearing. We leave

out observations whose native-country is not United-States, workclass is Without-pay, occupation is

Armed-Forces, or race is not White. This leaves us with a data set of 4,734,097 observations, which

is an extremely large data set. We generate 5 dummies for workcalss, 12 dummies for occupation,

one dummy for marital status, and one dummy for gender12. After constructing all the dummies

11Data ID: 45689.
12We provide more details of the construction of the dummy variables. For workcalss, after dropping Without-pay,

we are left with 6 types of workcalss, then we leave out the last type of workcalss for identification. For occupation,
after dropping Armed-Forces, we are left with 13 types of occupations, then we leave out the last type of occupation.
For marital status, we generate a dummy which is 1 if the marital status is Married-AF-spouse, Married-civ-spouse,
or Married-spouse-absent, and is 0 otherwise. Finally, for gender, we generate a dummy that equals 1 if the gender is
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Figure 2.3: Partial Estimated Coefficients for Simulated_adult
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variables, we have 25 regressors in the model, which include age, workclass dummies, fnlwgt, eudca-

tional years, marital status dummy, occupation dummies, gender dummy, capital-gain, capital loss,

and hours-per-week. When conducting estimation, we standardize all the covaraites including the

dummy variables as we did in the previous section.

For the setup of iteration, we normalize the coefficient of age to be 1 because preliminary Probit

and Logit estimation suggest its coefficient is strictly positive. Since we are now working with an

extremely large data set, we now choose B = 5000. All other setups are the same with those in the

previous section.

The estimation procedure takes 16.64min in total. We plot partial estimation results in Figure 2.3.

We can see that when we have more covariates, the convergence of the estimated parameters takes

more rounds of iterations compared with that in subsection 2.5.1. We can also see that for some

male, and 0 otherwise.
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covariates such as Capital Gain, AKMBGD estimators deviate from the Probit or Logit estimators,

indicating potential model misspecifications. We finally randomly divide the data set into training

and testing sets, where the latter contains 400,000 observations, and compare the prediction accuracy

based on different methods. Similar to subsection 2.5.2, we find that the predicting results based

on KMBGD are similar to those based on Probit or Logit. The ROC curves of Probit, Logit, and

KMBGD almost coincide with each other, with AUC being 0.9227, 0.9226, and 0.9227, respectively.

2.5.3 Revisiting Helpman et al. (2008)

In this section, we will illustrate the empirical applicability of the KMBGD algorithm by revisiting

the data set used in Helpman et al. (2008). In their paper, Helpman et al. (2008) consider estimating

the following model,

Pr (Tij = 1| observed variables) = G
(
γ⋆0 + ξ⋆j + ζ⋆i + γ⋆dij + κ⋆Tϕij

)
,

where Tij is an indicator of whether country j exports to country i, ξ⋆j is the exporter fixed effect of

the j-th country, ζ⋆i is the importer fixed effect of the i-th country, dij is the natural logarithm of

the geographic distance between countries i and j, and ϕij is a vector of covariates that describe the

variable country-pair fixed trade cost. The full sample contains a total of 248,060 observations and

336 covariates, which features both large n and p. The covariates contain 10 key variables including

Distance, Land Border, Island, Landlock, Legal, Language, Colonial Ties, Currency Union, FTA,

and Religion, and 158 exporter fixed effects, 158 importer fixed effects, and 10 year fixed effects.

When estimating the model based on the full sample, Helpman et al. (2008) consider a parametric

Probit setup, where G is specified to be the CDF of standard normal distribution. In this section, we

reestimate the model without assuming the functional form of G by applying the KMBGD algorithm.

When estimating the model, we standardize all the covaraites including the dummies as we did

before. We also leave out as few fixed effects as possible to ensure that the covariate matrix is

nonsingular. We choose to normalize the coefficient of negative distance to be 1 since economic

theories indicate that a larger geographic distance is generally associated with higher trading costs

and such covarite has negative impacts on the conditional probability of the presence of trades

between two countries13 (Helpman et al., 2008). Finally, all the setups of the iteration are the same

13When we apply Logit or Probit to estimate the model, the estimated coefficient of Distance is significantly
negative.
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Figure 2.4: Partial Estimated Coefficients for Data in Helpman et al. (2008)
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as those in subsection 2.5.1 except that the initial guess of the parameter is fixed at the Probit

estimator.

The estimation procedure takes 25.04min in total. We plot partial estimation results in Figure 2.4.

Obviously, since the number of covariates considered in the example is large, the convergence of

the estimated parameter is slower compared with that in the previous examples, taking over 20,000

rounds of iterations. We can also see that for some covariates such as Island or Landlock, AKMBGD

estimators deviate from the Probit or Logit estimators, indicating potential model misspecifications.

We finally randomly divide the data set into training and testing sets, where the latter contains

24806 observations, and compare the prediction accuracy based on different methods. Similar to

subsection 2.5.2, we find that the predicting results based on KMBGD are similar to those based on

Probit or Logit. The ROC curves of Probit, Logit, and KMBGD almost coincide with each other,

with AUC being 0.9388, 0.9391, and 0.9389, respectively.

2.6 Concluding Remarks

This paper investigates semiparametric estimation of monotone index models in a large-n environ-

ment, where the number of observations is extremely large. We propose a novel subsample- and

iteration-based estimation procedure. Essentially, starting from an initial guess of the parameter, in

each round of iteration a subsample is randomly drawn and then used to update the parameter based

on the gradient of some well-chosen loss function, where the unknown nonparametric component is

replaced with its subsample-based kernel estimator. The proposed algorithm essentially generalizes

the idea of mini-batch-based algorithms to the semiparametric setup. Compared with the KBGD

algorithm proposed in KLTY, the computational speed of the new estimator substantially improves,

so can be easily applied when the sample size n is extremely large. We also show that further aver-

aging across the estimators produced during iterations yields a 1/
√
n consistent and asymptotically

normally distributed estimator.

Some issues in this paper remain to be addressed in the future studies. For example, similar to

Ichimura (1993), we show that a particular sequence of bandwidth satisfying some order conditions

guarantees all the theorems. However, in the theorem the bandwidth is assumed to be unchanged

across iterations. Obviously, as the updates proceed, the magnitude of the index value also changes,

so a bandwidth adjusted to such change in index value in each round of iteration may lead to a
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better kernel estimator and improve the updating results. Similarly, other tuning parameters such

as the learning rate δ and subsample size B are all assumed to be given, while their optimal choices

remain to be studied.

Another potential future research direction is to generalize the noval subsample-based updating tech-

inque to the full-sample-based SBGD algorithm proposed in KLTY. Different from the kernel-based

learning approach, the SBGD algorithm relies on the full sample to update the sieve coefficient in

each iteration. So it is still unclear whether using subsamples to perform the update will also yield

1/
√
n-consistent estimator. However, since the SBGD algorithm runs significantly faster than the

KBGD algorithm, developing subsample-based SBGD algorithm may further improve the computa-

tional speed, which deserves further study.

2.7 Appendix

Lemma 2.3. Suppose that Assumption 2.1–Assumption 2.5 hold with D ≥ 4. Suppose moreover

that δk = δ < min
{
1/ (2λΛ) , 1/

(
4p2 ∥G′∥∞

)}
, ϕ < δλΛ/

(
16p2 ∥G′∥∞ ζ

)
, hn is chosen such that

hnn
1/2D → 0 and hnn

1/6/ log1/3 (n) → ∞. If βk is updated under (2.4) and (2.10) with IB,k =

1, · · · , n, then

(i) There exists some positive integer kKBGD such that

sup
k≥kKBGD

∥∆βk∥ = Op

(
n−1/2

)
;

(ii) Define ξϕn = 1
n

∑n
i=1(Ĝ (z⋆i |β

⋆)− yi)Xϕ
i , where z⋆i = z (Xe,i,β

⋆). There holds

∆βk+1 = (Ip − δΛϕ (β
⋆))∆βk − δξ

ϕ
n + δΩ̃ϕ

k ,

where supk≥kKBGD
∥Ω̃ϕ

k ∥ = op
(
n−1/2

)
. Define β̂ = βk for any k such that k− kKBGD →∞. There

holds ∆β̂ = −Λ−1
ϕ (β⋆) ξϕn + op(n

−1/2), and

√
n∆β̂ →d N

(
0,Σϕ

β

)
,
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where Σϕ
β = Λ−1

ϕ (β⋆) Σϕ
ξ

(
Λ−1
ϕ (β⋆)

)T
and

Σϕ
ξ = E

[
(1−G (z⋆i ))G (z⋆i )

(
Xϕ

i − E
(
Xϕ

i

∣∣∣ z⋆i ))(Xϕ
i − E

(
Xϕ

i

∣∣∣ z⋆i ))T] .
Proof of Lemma 2.3. See Khan et al. (2023).

Proof of Lemma 2.1

Proof. We start with the proof of the first result. Define ψ(n, hn, D) =
√

log(n)/nhn + hDn . Khan

et al. (2023) show that

sup
z∈Zϕ,β∈B

∣∣∣Ĝ (z|β)− E
(
y|X0 +XTβ = z

)∣∣∣ = Op (ψ (n, hn, D)) .

Define event

e1,n =

{
sup

z∈Zϕ,β∈B

∣∣∣Ĝ (z|β)
∣∣∣ ≤ 2

}
,

then P (e1,n) → 1 since ψ (n, hn, D) → 0 according to the choice of hn. Over event e1,n, we have

that

E∗
k

∥∥∥∥∥∥ 1

B

∑
i∈IB,k

(
Ĝ
(
X0 +XT

i βk

∣∣βk

)
− yi

)
Xϕ

i −
1

n

n∑
i=1

(
Ĝ
(
X0 +XT

i βk

∣∣βk

)
− yi

)
Xϕ

i

∥∥∥∥∥∥ ≤ C

B
.

Now we prove the second result. Recall thatAn,y (z,β) =
1
n

∑n
i=1Khn

(
z −X0,i −XT

i β
)
yi, An,1 (z,β) =

1
n

∑n
i=1Khn

(
z −X0,i −XT

i β
)
, An,y (z,β| IB,k) =

1
B

∑
i∈IB,k

Khn

(
z −X0,i −XT

i β
)
yi, andAn,1 (z,β| IB,k) =

1
B

∑
i∈IB,k

Khn

(
z −X0,i −XT

i β
)
. According to Khan et al. (2023),

sup
z∈Zϕ,β∈B

|An,1 (z,β)− fZ (z|β)| = Op (ψ (n, hn, D)) .

Note that infz∈Zϕ,β∈B fZ (z|β) ≥ 3cf and supz∈Zϕ,β∈B fZ (z|β) ≤ cf , where cf is some sufficiently

large positive constant, define event

e2,n =

{
2cf ≤ inf

z∈Zϕ,β∈B
An,1 (z,β) ≤ sup

z∈Zϕ,β∈B
An,1 (z,β) ≤ 2cf

}
.

Since ψ (n, hn, D)→ 0, we have that P (e2,n)→ 1. Moreover, P (e1,n ∩ e2,n)→ 1 and over e1,n∩e2,n,
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we have that

sup
z∈Zϕ,β∈B

|An,y (z,β)| ≤ sup
z∈Zϕ,β∈B

|An,1 (z,β)| · sup
z∈Zϕ,β∈B

∣∣∣Ĝ (z|β)
∣∣∣ ≤ 4cf .

Define

eϵ3,n,k =

{
sup
z∈Zϕ

|An,y (z,βk| IB,k)−An,y (z,βk)| < ϵ

}
and

eϵ4,n,k =

{
sup
z∈Zϕ

|An,1 (z,βk| IB,k)−An,1 (z,βk)| < ϵ

}
.

For ϵ = ϵ (ζ) = 2cf/ζ with ζ > 2, we have that over e1,n ∩ e2,n ∩ eϵ3,n,t ∩ eϵ4,n,t, there holds

sup
z∈Zϕ

∣∣∣∣An,y (z,βk| IB,k)

An,1 (z,βk| IB,k)
− An,y (z,βk)

An,1 (z,βk)

∣∣∣∣
≤ sup

z∈Zϕ

∣∣∣∣An,y (z,βk| IB,k)−An,y (z,βk)

An,1 (z,βk)

∣∣∣∣+ sup
z∈Zϕ

∣∣∣∣An,y (z,βk| IB,k) (An,1 (z,βk| IB,k)−An,1 (z,βk))

An,1 (z,βk| IB,k)An,1 (z,βk)

∣∣∣∣
≤ 1

2cf
sup
z∈Zϕ

|An,y (z,βk| IB,k)−An,y (z,βk)|+
4cf + 2cf/ζ(

2cf
) (

2cf − 2cf/ζ
) sup

z∈Zϕ

|An,1 (z,βk| IB,k)−An,1 (z,βk)|

≤ c1 (ζ) ϵ,

where

c1 (ζ) =
1

2cf
+

4cfζ + 2cf
4c2f (ζ − 1)

≤ c∞1 ,

and c∞1 is a positive constant depending only on cf and cf . Moreover, when ϵ = cf/ζ is cho-

sen such that ζ > 2, there holds 2cf/ζ < cf , so over e1,n ∩ e2,n ∩ eϵ3,n,k ∩ eϵ4,n,k, there holds

infz∈Zϕ An,1 (z,βk| IB,k) ≥ cf , and Ĝ
(
z|βk, IB,k, cf

)
= An,y (z,βk| IB,k) /An,1 (z,βk| IB,k).

Since
∣∣Khn

(
z −X0,i −XT

i βk

)∣∣ ≤ Ch−1
n , we have that for any fixed z and ϵ,

P∗
k (|An,1 (z,βk| IB,k)−An,1 (z,βk)| > ϵ) ≤ 2 exp

(
−CBh2nϵ2/2

)
,

and

P∗
k (|An,y (z,βk| IB,k)−An,y (z,βk)| > ϵ) ≤ 2 exp

(
−CBh2nϵ2/2

)
,
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Also note that

sup
z∈Zϕ

|An,1 (z,βk| IB,k)−An,1 (z,βk)|

≤ max
1≤s≤S

|An,1 (zs,βk| IB,k)−An,1 (zs,βk)|+ Ch−2
n /S,

for any positive integer S and a set of well-chosen points z1, · · · , zS in Zϕ, where the positive constant

C does not depend on βk, the index set IB,k, S, and the choice of z1, · · · , zS . Let S be such that

Ch−2
n /S < ϵ, we have that

P∗
k

(
sup
z∈Zϕ

|An,1 (z,βk| IB,k)−An,1 (z,βk)| > ϵ

)

≤
S∑

s=1

P∗
k

(
|An,1 (zs,βk| IB,k)−An,1 (zs,βk)| > ϵ− Ch−2

n /S
)

≤ 2 exp
(
logS −Bh2n

(
ϵ− Ch−2

n /S
)2
/2
)
. (2.15)

Using similar method, we can show that

P∗
k

(
sup
z∈Zϕ

|An,y (z,βk| IB,k)−An,y (z,βk)| > ϵ

)
≤ 2 exp

(
logS −Bh2n

(
ε− Ch−2

n /S
)2
/2
)
. (2.16)

Now consider E∗
k ∥π2,n,k∥

2 when e1,n ∩ e2,n occurs. We first have that

E∗
k ∥π2,n,k∥

2
= E∗

k

(
∥π2,n,k∥2

∣∣∣ eϵ3,n,k ∩ eϵ4,n,k)P∗
k

(
eϵ3,n,k ∩ eϵ4,n,k

)
+ E∗

k

(
∥π2,n,k∥2

∣∣∣ (eϵ3,n,k ∩ eϵ4,n,k)C)P∗
k

((
eϵ3,n,k ∩ eϵ4,n,k

)C)
.

For ϵ < 2cf/ζ with ζ > 2, we have that

E∗
k

(
∥π2,n,k∥2

∣∣∣ eϵ3,n,k ∩ eϵ4,n,k) ≤ c∞2
1

∥∥Xϕ
∥∥2
∞ ϵ2 = Cϵ2.

On the other side, according to (2.15) and (2.16), we have that

E∗
k

(
∥π2,n,k∥2

∣∣∣ (eϵ3,n,k ∩ eϵ4,n,k)C)P∗
k

((
eϵ3,n,k ∩ eϵ4,n,k

)C)
≤ Ch−2

n P∗
k

((
eϵ3,n,k ∩ eϵ4,n,k

)C) ≤ Ch−2
n exp

(
C logS − CBh2n

(
ϵ− Ch−2

n /S
)2
/2
)
.
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Together we have that over e1,n ∩ e2,n, there holds

E∗
k ∥π2,n,k∥

2 ≤ C
(
ϵ2 + h−2

n exp
(
C logS − CBh2n

(
ϵ− Ch−2

n /S
)2
/2
))

.

If we choose

S = 2C

√
Bh−2

n

log
(
Bh−2

n

) , ϵ =
√

8
(
log
(
h−2
n

)
+ log

(
4C2Bh−2

n

)
+ log (8Bh2n)

)
Bh2n

,

we have that Ch−2
n /S ≤ ϵ/2 and ϵ < 2cf for n sufficiently large, and

E∗
k ∥π2,n,k∥

2 ≤ C
log
(
Bh−2

n

)
Bh2n

.

Since supk≥1 E∗
k ∥π2,n,k∥

2 ≤ C implies that supk≥1 E∗ ∥π2,n,k∥2 ≤ C, we have that

P

(
sup
k≥1

E∗ ∥π2,n,k∥2 ≤ C
log
(
Bh−2

n

)
Bh2n

)
≥ P

(
sup
k≥1

E∗
k ∥π2,n,k∥

2 ≤ C
log
(
Bh−2

n

)
Bh2n

)

≥ P (e1,n ∩ e2,n)→ 1.

This proves the result.

Proof of Theorem 2.1

Proof. Note that

∥∥∆βk+1

∥∥ ≤ sup
β∈B

σ (Ip − δΛϕ (β)) ∥∆βk∥+ δ

(
sup
β∈B
∥η1,n (β)∥+ ∥η2,n∥+ ∥π1,n,k∥+ ∥π2,n,k∥

)

≤ (1− δλΛ/16) ∥∆βk∥+ δ

(
sup
β∈B
∥η1,n (β)∥+ ∥η2,n∥+ ∥π1,n,k∥+ ∥π2,n,k∥

)
,

where

η1,n (β) =
1

n

n∑
i=1

Ĝ (z (Xe,i,β)|β)Xi − E [L (z (Xe,i,β) ,β)Xi] ,

η2,n =

(
1

n

n∑
i=1

G (z⋆i )Xi − E [G (z⋆i )Xi]

)
+

1

n

n∑
i=1

εi ·Xi.
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Using Minkovski inequality, we have that

(
E∗ ∥∥∆βk+1

∥∥2)1/2 ≤ (1− δλΛ/16)
(
E∗ ∥∆βk∥

2
)1/2

+ δ sup
β∈B
∥η1,n (β)∥+ δ ∥η2,n∥

+ δ
(
E∗ ∥π1,n,k∥2

)1/2
+ δ

(
E∗ ∥π2,n,k∥2

)1/2
≤ (1− δλΛ/16)

(
E∗ ∥∆βk∥

2
)1/2

+ δ sup
β∈B
∥η1,n (β)∥+ δ ∥η2,n∥

+ CB−1/2 + C

(
log
(
Bh−2

n

)
Bh2n

)1/2

.

This implies that

(
E∗ ∥∥∆βk+1

∥∥2)1/2 ≤ (1− δλΛ/16)
k
(
E∗ ∥∆β1∥

2
)1/2

+ C

sup
β∈B
∥η1,n (β)∥+ ∥η2,n∥+

(
log
(
Bh−2

n

)
Bh2n

)1/2
 .

Then when k ≥ kn + 1, we have that

(1− δλΛ/16)
k
(
E∗ ∥∆β1∥

2
)1/2

≤ sup
β∈B
∥η1,n (β)∥+ ∥η2,n∥+

(
log
(
Bh−2

n

)
/Bh2n

)1/2
,

implying that
(
E∗
∥∥∆βk+1

∥∥2)1/2 = Op

(
supβ∈B ∥η1,n (β)∥+ ∥η2,n∥+

(
log
(
Bh−2

n

)
/Bh2n

)1/2). Fi-

nally, Khan et al. (2023) show that supβ∈B ∥η1,n (β)∥+ ∥η2,n∥ = Op(ψ(n, hn, D)). Since B ≤ n, we

have that

E∗ ∥∥∆βk+1

∥∥2 = Op

(
h2Dn +

log
(
Bh−2

n

)
Bh2n

)
.
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Proof of Lemma 2.2

Proof. Note that

∆βk+1 =

∫ 1

0

(Ip − δΛϕ (β
⋆ + τ∆βk)) dτ∆βk − δξ

ϕ
n

− δ
∫ 1

0

 1

n

n∑
i=1

Xϕ
i

∂Ĝ
(
X0,i +XT

i β
∣∣β)

∂βT

∣∣∣∣∣
β=β⋆+τ∆βk

− Λϕ (β
⋆ + τ∆βk)

 dτ∆βk(i)

− δ

 1

B

∑
i∈IB,k

(
Ĝ (zi,k|βk)− yi

)
Xϕ

i −
1

n

n∑
i=1

(
Ĝ (zi,k|βk)− yi

)
Xϕ

i

 (ii)

− δ

 1

B

∑
i∈IB,k

(
Ĝ
(
zi,k|βk, IB,k, cf

)
− Ĝ (zi,k|βk)

)
Xϕ

i

 (iii).

For (i), we have that

sup
k≥kn+1

E∗
k ∥(i)∥ = Op

((
h−2
n

√
log (n)

n
+ hDn

)(
hDn +

√
log (n)

Bh2n

)
+ h2Dn +

log
(
Bh−2

n

)
Bh2n

)

= Op

√ log2 (n)

nBh6n
+ hD−2

n

√
log (n)

n
+

log
(
Bh−2

n

)
Bh2n

+ h2Dn

 .

This implies that given the choice of B and hn, E∗ ∥(i)∥ is op(n−1/2) uniformly with respect to k.

Now we look at (iii). To further simplify our notations, we denote An,y (zi,k,βk) = An,y,i,k,

An,1 (zi,k,βk) = An,1,i,k, An,y (zi,k,βk| IB,k) = AI
n,y,i,k, An,1 (zi,k,βk| IB,k) = AI

n,1,i,k. We have

that

(iii) =
1

B

∑
i∈IB,k

(
AI

n,y,i,k

AI
n,1,i,k ∧ cf

− An,y,i,k

An,1,i,k

)
Xϕ

i

=
1

B

∑
i∈IB,k

Xϕ
i

An,1,i,k
·
(
AI

n,y,i,k −An,y,i,k

)
(iv)

− 1

B

∑
i∈IB,k

An,y,i,kX
ϕ
i

A2
n,1,i,k

(
AI

n,1,i,k ∧ cf −AI
n,1,i,k

)
(v)− 1

B

∑
i∈IB,k

An,y,i,kX
ϕ
i

A2
n,1,i,k

(
AI

n,1,i,k −An,1,i,k

)
(vi)

− 1

B

∑
i∈IB,k

Xϕ
i

Ã2
n,1,i,k

(
AI

n,y,i,k −An,y,i,k

) (
AI

n,1,i,k ∧ cf −AI
n,1,i,k

)
(vii)

− 1

B

∑
i∈IB,k

Xϕ
i

Ã2
n,1,i,k

(
AI

n,y,i,k −An,y,i,k

) (
AI

n,y,i,k −An,y,i,k

)
(viii)

+
2

B

∑
i∈IB,k

An,1,i,kX
ϕ
i˜̃

A
3

n,1,i,k

(
AI

n,y,i,k −An,y,i,k

)2
(ix),
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where Ã2
n,1,i,k and ˜̃

A
3

n,1,i,k both lie between AI
n,1,i,k ∧ cf and An,1,i,k. Define mathbbE∗

k{|j} as

the conditional expectation with respect to P∗
k holding the j-th index ik,j fixed. Note that for any

1 ≤ j ≤ B and k,

E∗
k

{(
AI

n,y,ik,j ,k
−An,y,ik,j ,k

)2∣∣∣∣ j}

= E∗
k


(

1

B

B∑
b=1

Khn

(
zik,j ,k − zik,b,k

)
yib −

1

n

n∑
b=1

Khn

(
zik,j ,k − zb,k

)
yk,b

)2
∣∣∣∣∣∣ j


≤ C


(
yik,j

Bhn
− 1

Bn

n∑
b=1

Khn

(
zik,j ,k − zb,k

)
yb

)2

+
B − 1

B2

1

n

n∑
b=1

K2
hn

(
zik,j ,k − zb,k

)
y2b

 ≤ C

Bh2n
,

for some positive constant C that does not depend on k and j. Similarly, we have that for all

1 ≤ j ≤ B and k,

E∗
k

{(
AI

n,1,ik,j ,k
−An,1,ik,j ,k

)2∣∣∣∣ j} ≤ C

Bh2n
.

So with probability going to 1, for all k

E∗
k ∥(viii)∥ ≤

C

B
E∗
k

 ∑
i∈IB,k

∣∣(AI
n,y,i,k −An,y,i,k

) (
AI

n,1,i,k −An,1,i,k

)∣∣
≤ C

B
E∗
k

 B∑
j=1

E∗
k

(∣∣∣(AI
n,y,ik,j ,k

−An,y,ik,j ,k

)(
AI

n,1,ik,j ,k
−An,1,ik,j ,k

)∣∣∣∣∣∣ j)


≤ C

B
E∗
k

 B∑
j=1

√
E∗
k

{(
AI

n,y,ik,j ,k
−An,y,ik,j ,k

)2∣∣∣∣ j}
√
E∗
k

{(
AI

n,1,ik,j ,k
−An,1,ik,j ,k

)2∣∣∣∣ j}


≤ C

B
E∗
k

 B∑
j=1

C

Bh2n

 ≤ C

Bh2n
.

Similarly, we have that E∗
k ∥(ix)∥ ≤ C/Bh2n for all k with probability going to 1. Due to the choice

of B and hn, we have that E∗ ∥(viii)∥ and E∗ ∥(ix)∥ are both op(n
−1/2) uniformly with respect to

k. On the other side, note that

E∗
k ∥(vii)∥ ≤ CE∗

k

 1

B

B∑
j=1

√
E∗
k

{(
AI

n,y,ik,j ,k
−An,y,ik,j ,k

)2∣∣∣∣ j}
√
E∗
k

{(
AI

n,1,ik,j ,k
∧ cf −An,1,ik,j ,k

)2∣∣∣∣ j}


≤ CE∗
k

 1

B

B∑
j=1

(
C√
Bh2n

)√
E∗
k

{(
AI

n,1,ik,j ,k
∧ cf −An,1,ik,j ,k

)2∣∣∣∣ j}
 .
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Note that

E∗
k

{(
AI

n,1,ik,j ,k
∧ cf −An,1,ik,j ,k

)2∣∣∣∣ j} ≤ Ch−2
n P∗

k

(
AI

n,1,ij ,k < cf

∣∣∣ j) .
Now consider P∗

k

(
AI

n,1,ik,j ,k
< cf

∣∣∣ j). Note that

AI
n,1,ik,j ,k

< cf =⇒ 1

B

B∑
b=1

Khn

(
zik,j ,k − zib

)
yib −

1

n

n∑
i=1

Khn

(
zik,j ,k − zi,k

)
yi

< cf −
1

n

n∑
i=1

Khn

(
zik,j ,k − zi,k

)
yi

=⇒ 1

B

B∑
b̸=j

Khn

(
zik,j ,k − zik,b

)
yik,b

− 1

n

n∑
i=1

Khn

(
zik,j ,k − zi,k

)
yi < −cf −

yik,j

Bhn

=⇒ sup
z∈Zϕ

∣∣∣∣∣∣ 1B
B∑
b̸=j

Khn

(
zik,j ,k − zik,b

)
yik,b

− B − 1

B

1

n

n∑
i=1

Khn

(
zik,j ,k − zi,k

)
yi

∣∣∣∣∣∣ > cf +
C

Bhn
.

This implies that

P∗
k

(
AI

n,1,ij ,k < cf

∣∣∣ j)
≤ P∗

k

 sup
z∈Z

∣∣∣∣∣∣ 1B
B∑
b ̸=j

Khn

(
zik,j ,k − zik,b

)
yik,b

− B − 1

B

1

n

n∑
i=1

Khn

(
zik,j ,k − zi,k

)
yi

∣∣∣∣∣∣ > cf +
C

Bhn

∣∣∣∣∣∣ j


≤ 2 exp

(
logS −Bh2n

(
cf +

C

Bhn
− Ch−2

n /S

)2

/2

)

for any sufficiently large positive integer S. Let S = Bh−1
n , we have that for n sufficiently large, we

have that

exp

(
logS −Bh2n

(
cf −

C

Bhn
+

C

h2nS

)2

/2

)
≤ C exp

(
C
(
log
(
Bh−1

n

)
−Bh2n

))
,

implying that

E∗
k

{(
AI

n,1,ik,j ,k
∧ cf −An,1,ik,j ,k

)2∣∣∣∣ j} ≤ Ch−2
n exp

(
C
(
log
(
Bh−1

n

)
−Bh2n

))
.

So uniformly with respect to k, there holds

E∗
k ∥(vii)∥ ≤

C exp
(
C
(
log
(
Bh−1

n

)
−Bh2n

))√
Bh4n

.

Similarly, we have that E∗
k ∥(v)∥ ≤ Ch−1

n exp
(
C
(
log
(
Bh−1

n

)
−Bh2n

))
for all k. Given the choice of
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B and hn, we have that E∗ ∥(vii)∥ and E∗ ∥(v)∥ are both op(n−1/2) uniformly with respect to k.

We finally note that uniformly for all k,

E∗
∥∥∥∥(∫ 1

0

Λϕ (β
⋆ + τ∆βk) dτ − Λϕ (β

⋆)

)
∆βk

∥∥∥∥ ≤ CE∗ ∥∆βk∥
2
= Op

(
h2Dn +

log
(
Bh−2

n

)
Bh2n

)
.

This finishes the proof.

Proof of Theorem 2.2

Proof. Define

Ξϕ
1,k =

1

B

∑
i∈IB,k

(
Ĝ (zi,k|βk)− yi

)
Xϕ

i −
1

n

n∑
i=1

(
Ĝ (zi,k|βk)− yi

)
Xϕ

i ,

Ξϕ
2,k =

1

B

∑
i∈IB,k

Xϕ
i

An,1 (zi,k,βk)
(An,y (zi,k,βk| IB,k)−An,y (zi,k,βk)) ,

and

Ξϕ
3,k =

1

B

∑
i∈IB,k

An,y (zi,k,βk)X
ϕ
i

A2
n,1 (zi,k,βk)

(An,1 (zi,k,βk| IB,k)−An,1 (zi,k,βk)) .

We obviously have that supk E∗
k

∥∥∥Ξϕ
1,k

∥∥∥2 ≤ C/B, so supk E∗
∥∥∥Ξϕ

1,k

∥∥∥2 ≤ C/B holds. Moreover,

E∗
k

(
Ξϕ

1,kΞ
ϕT
1,k′

)
= 0 for all k ̸= k′, so E∗

(
Ξϕ

1,kΞ
ϕT
1,k′

)
= 0 for all k ̸= k′. We then show that

sup
k≥kn+1

E∗
∥∥∥Ξϕ

2,k

∥∥∥2 = Op

(
1

Bh2n

)
, sup

k≥kn+1
E∗
∥∥∥Ξϕ

3,k

∥∥∥2 = Op

(
1

Bh2n

)

and

sup
k,k′≥kn+1,k ̸=k′

∥∥∥E∗Ξϕ
2,kΞ

ϕT
2,k′

∥∥∥ = Op

(√
log n

B2h2n

)
, sup

k,k′≥kn+1,k ̸=k′

∥∥∥E∗Ξϕ
3,kΞ

ϕT
3,k′

∥∥∥ = Op

(√
log n

B2h2n

)
.
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We will only show the results for Ξϕ
2,k. The results for Ξϕ

3,k can be similarly proved. For the first

result, according to the proof of Lemma 2, we note that with probability going to 1,

E∗
∥∥∥Ξϕ

2,k

∥∥∥2 ≤ 1

B2

B∑
j=1

B∑
l ̸=j

E∗

(∥∥∥∥∥ Xϕ
ik,j

XϕT
ik,l

An,1,ik,j ,kAn,1,ik,l,k

∥∥∥∥∥ ∣∣∣(AI
n,1,ik,j ,k

−An,1,ik,j ,k

)(
AI

n,1,ik,l,k
−An,1,ik,l,k

)∣∣∣)

+
1

B2

B∑
j=1

E∗

(∥∥∥∥∥X
ϕ
ik,j

XϕT
ik,j

A2
n,1,ik,j ,k

∥∥∥∥∥(AI
n,1,ik,j ,k

−An,1,ik,j ,k

)2)

≤ C

B2

B−1∑
j=1

B∑
l=j+1

1

Bh2n
+

C

B2

B∑
j=1

1

Bh2n
≤ C

Bh2n
.

The derivation of the second result is more complicated. Without loss of generality, we assume that

Ξϕ
2,k is one-dimensional and k < k′. Then E∗Ξϕ

2,kΞ
ϕ
2,k′ = E∗

(
E∗
kΞ

ϕ
2,k

(
E∗
k′Ξ

ϕ
2,k′

))
. We first look at

E∗
kΞ

ϕ
2,k for general k. We have that

E∗
kΞ

ϕ
2,k

=
1

B

B∑
j=1

E∗
k

[
Xϕ

ik,j

An,1

(
zik,j ,k,βk

)E∗
k

{
An,y

(
zik,j ,k,βk

∣∣ IB,k

)
−An,y

(
zik,j ,k,βk

)∣∣ j}]

=
1

B

B∑
j=1

E∗
k

[
Xϕ

ik,j

An,1

(
zik,j ,k,βk

) {E∗
k

{
1

B

B∑
l=1

Khn

(
zik,j ,k − zik,l,k

)
yik,l
− 1

n

n∑
l=1

Khn

(
zik,j ,k − zl,k

)
yl

∣∣∣∣∣ j
}}]

,

Obviously, for l ̸= j, we have that E∗
k

{
Khn

(
zik,j ,k − zik,l,k

)
yik,l

∣∣ j} = 1
n

∑n
l=1Khn

(
zik,j ,k − zl,k

)
.

So

E∗
k

{
1

B

B∑
l=1

Khn

(
zik,j ,k − zik,l,k

)
yik,l
− 1

n

n∑
l=1

Khn

(
zik,j ,k − zl,k

)
yl

∣∣∣∣∣ j
}

=
1

B

(
K (0) yik,j

− 1

n

n∑
l=1

Khn

(
zik,j ,k − zl,k

)
yl

)
.

So

E∗
kΞ

ϕ
2,k =

1

B

B∑
j=1

E∗
k

(
1

B

Xϕ
ik,j

(
K (0) yik,j

− 1
n

∑n
l=1Khn

(
zik,j ,k − zl,k

)
yl
)

An,1

(
zik,j ,k,βk

) )

Now define z⋆i = X0,i +XT
i β

⋆, we have that with probability going to 1, there holds

∣∣∣∣∣∣
Xϕ

ik,j

(
K (0) yik,j

− 1
n

∑n
l=1Khn

(
z⋆ik,j

− z⋆l
)
yl

)
An,1

(
zik,j ,k,βk

) −
Xϕ

ik,j

(
K (0) yik,j

− 1
n

∑n
l=1Khn

(
z⋆ik,j

− z⋆l
)
yl

)
An,1

(
z⋆ik,j

,β⋆
)

∣∣∣∣∣∣
≤ C ∥∆βk∥ ,
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Then

∣∣∣∣∣∣E∗
kΞ

ϕ
2,k −

1

B

B∑
j=1

E∗
k

 1

B

Xϕ
ik,j

(
K (0) yik,j

− 1
n

∑n
l=1Khn

(
z⋆ik,j

− z⋆l
)
yl

)
An,1
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Based on such result, we have that
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uniformly for all k. This proves the desired result.

Now denote k̃ = [− log (n) / log (1− δλΛ/8)], so k∗ = kn + k̃. We have that

∆βk∗+1+t

= (I − δΛϕ (β
⋆))

t+k̃
∆βkn+1 + δ

t+k̃−1∑
k=0

(I − δΛϕ (β
⋆))

t+k̃−1−k
Ωϕ

kn+1+k

− δ
t+k̃−1∑
k=0

(I − δΛϕ (β
⋆))

t+k̃−1−k
ξϕn − δ

t+k̃−1∑
k=0

(I − δΛϕ (β
⋆))

t+k̃−1−k
(
Ξϕ

1,kn+1+k +Ξϕ
2,kn+1+k −Ξϕ

3,kn+1+k

)
.

127



So

1

T

T∑
t=1

∆βk∗+1+t =
1

T

T∑
t=1

(I − δΛϕ (β
⋆))

t+k̃
∆βkn+1 +

δ

T

T∑
t=1

t+k̃−1∑
k=0

(I − δΛϕ (β
⋆))

t+k̃−1−k
Ωϕ

kn+1+k

− Λ−1
ϕ (β⋆) ξϕn −

1

T

T∑
t=1

δ t+k̃−1∑
k=0

(I − δΛϕ (β
⋆))

k − Λ−1
ϕ (β⋆)

 ξϕn

− δ

T

T∑
t=1

t+k̃−1∑
k=0

(I − δΛϕ (β
⋆))

t+k̃−1−k
(
Ξϕ

1,kn+1+k +Ξϕ
2,kn+1+k −Ξϕ

3,kn+1+k

)
.

We look at the above terms separately. We have that
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We finally look at the last term. We will focus on δ
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We have that
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This proves the result.

Proof of Theorem 2.3

Proof. To prove the result, it remains to show that
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where Σ̂ϕ
β is the full-sample-based covariance matrix estimator prposed in Khan et al. (2023). In

particular, define
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show that, with probability going to 1,
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as R increases to infinity. This can be easily done using the previous proof method.
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Chapter 3

Quantile Control via Random Forest

3.1 Introduction

Estimating treatment effects in panel data with only one treated unit has attracted a large amount

of research attention in applied work. Due to the limitation of the real data, it is not uncommon

that the econometrician may fail to observe the key factors that drive the evolution of the outcomes

of the treated and untreated units. This motivates the use of the outcomes of the control units

in the panel as proxies for these unobserved factors to predict the outcome of the treated unit.

Popular methods include synthetic control method (SCM, Abadie and Gardeazabal, 2003; Abadie

et al., 2010, 2015) and regression control method (RCM, Hsiao et al., 2012; Hsiao and Zhou, 2019)1.

Collectively, these methods are sometimes known as “synthetic control methods” (Cattaneo et al.,

2021) or “counterfactual and synthetic control methods” Chernozhukov et al. (2021b).

Despite their great popularity among empirical researchers, statistical inference for these methods

is still an active research area. The first contribution of this paper is on studying robust inference of

treatment effects under the SCM framework that accommodates flexible relationship across different

units as well as high dimensionality. Compared with the existing methods such as those in Cher-

nozhukov et al. (2021b) and Cattaneo et al. (2021), our proposed method is a more robust approach.

In particular, we do not make assumptions over the functional relationship between the outcomes

1Since Hsiao et al. (2012) use regression to construct the counteractual control unit, we coin the term “regression
control method” in the same spirit as “synthetic control method”. Gardeazabal and Vega-Bayo (2017) and Wan
et al. (2018) compare the empirical performance of synthetic control method and regression control method using
simulations and real datasets, but reach different conclusions.
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of the treated and control units, nor do we restrict the behavior of the projection error (such as ho-

moskedasticity). Instead, we only require that there is a stable distributional relationship between

the outcomes of the treated unit and the control units, so that information on the quantiles of the

treated unit can be inferred from the observations of the control units. Our inference procedure does

not depend on the assumption of random assignment of interventions or the symmetry assumption,

nor does it require a large number of post-treatment periods. To accommodate such a general model

structure, we propose to use a machine learning technique called “Quantile Random Forest” (QRF),

also known as “Quantile Regression Forest” (Meinshausen, 2006), to efficiently and robustly estimate

the conditional distribution of treatment effects. The proposed method is robust to heteroskedastic-

ity, autocorrelation and various types of model misspecifications. Since our proposed method uses

quantile regression and QRF in particular to construct a synthetic counterfactual control unit as

well as its relevant quantiles, we call it “Quantile Control Method” (QCM). Our Monte Carlo sim-

ulations show that, comparing to methods in the existing literature, prediction intervals via QCM

have excellent coverage probability for the treatment effects even in small samples.

Meinshausen (2006) originally proposes the QRF and develops a framework to establish its consis-

tency. Recently, Athey et al. (2019) propose “Generalized Random Forest”, which offers an alternative

algorithm to estimate the conditional quantile function via Random Forest based on the gradient

of the check function as in Koenker and Bassett (1978) and established its asymptotic property for

“honest” trees. In our unreported simulations, the performance of generalized random forest is simi-

lar to the original QRF by Meinshausen (2006). Therefore, we stick with the latter for the simplicity

of its algorithm.2

As another contribution of this paper, we formally establish the asymptotic validity of the QRF under

the setup of weak dependence and high dimensionality, which nests SCM as a special case but also

applies to general high-dimensional time series scenarios. Despite its track record as one of the best

predictive algorithms and huge popularity among data scientists and practitioners, the asymptotic

theory for Random Forest is still a growing area. Breiman (2004) offers heuristics for the consistency

of a simplified version of Random Forest. Biau (2012) formalizes Breiman (2004)’s approach, and

provides a proof of consistency based on similar assumptions. Scornet et al. (2015) provide a more

general proof of consistency at the cost of imposing an additive regression model. Mentch and

2A related literature to the high dimensional quantile regression is the penalized quantile regression approach (He
et al., 2013; Wang et al., 2012). For example, Belloni and Chernozhukov (2011) derived an error bound for sparse
high dimensional linear quantile regression with the L1-penalty. Wang et al. (2012) studied such regressions based on
nonconvex penalties MCP and SCAD. Various extensions are developed along this direction, see Belloni et al. (2017)
for additional discussions on high-dimensional quantile regression methods and related literature.
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Hooker (2016) derive the asymptotic distribution of Random Forest by replacing bootstrapping

with subsampling and making use of the theory of U-statistic. Wager and Athey (2018) also develop

asymptotic normality of random forests, based on a different set of assumptions that require the trees

to be “honest” and “regular”. Meinshausen (2006) provides a framework to establish the consistency

of the QRF. Despite its novelty, there are some theoretical limitations in his framework that limit the

potential use of the QRF. For example, in Meinshausen (2006)’s work, the data is required to be iid

and fixed-dimensional. This leads to a question of whether the QRF can be applied to the data with

weak dependence and high dimensionality. Moreover, when constructing trees, it is assumed that

each covariate will be selected as splitpoint with probability bounded from below, which leaves the

tree growing procedure a “black box”. It is important to answer whether such high-level assumption

will actually hold when the proposed algorithm is empirically applied.

In this paper, we address these issues and formally establish the validity of the QRF algorithm for

data with weak dependence and high dimensionality. We show that, under the algorithm proposed

by Breiman (2001), almost all trees in the forest will choose signal variables with increasing number

of times under some sparsity conditions. Our proof first applies the “approximating rectangles”

method proposed by Wager and Walther (2016) to show concentration of forest prediction. However,

different from Wager and Walther (2016), we do not impose a Guess-and-Check tree structure when

analyzing the bias of forest prediction as well as showing the consistency of QRF. Indeed, the Guess-

and-Check procedure is designed to screen out noise covariates that are independent of the response

variable. While under the time series/panel data setup such as SCM, although some variables do

not directly affect the response, they are not necessarily independent of the response. For example,

when analyzing Hong Kong’s economic growth, Hsiao et al. (2012) find that only Austria, Italy,

Korea, Mexico, Norway and Singapore have nonzero impacts, but this does not imply that Hong

Kong’s economic growth is completely independent of the growth of the US. In fact, as long as the

US economy has impacts on the economic growth of the above six countries, such impacts could be

transmitted to Hong Kong’s economic growth, which leads to correlation between Hong Kong’s and

the US’s economic growth. Above analysis implies that Guess-and-Check procedure may choose too

many noise covariates due to their dependence with the response and lead to too many splits along

them. To deal with this issue, we follow the original splitting procedure proposed by Breiman (2001).

Under some regularity conditions, we show that as long as all the noise variables are conditionally

independent of the response variables, and almost all of them contain less “information” compared

with the signal variables, then for almost all trees, each signal variable will be selected as the
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splitting point with increasing number of times as the tree grows, and hence the consistency of QRF

holds. Our results not only facilitate the inference of the treatment effect based on the panel/time

series data environment in SCM, but also are applicable to general time series analysis with high

dimensionality.

We conduct extensive Monte Carlo experiments to investigate the performance of our method. We

compare the proposed method with other methods in the literature. The simulation results show

that confidence intervals via QCM have excellent coverage probability for the treatment effects even

in small samples, and is robust to the presence of heteroskedasticity, autocorrelation and nonlinear

functional forms. Under a variety of DGPs including linear or nonlinear factor models, as well as

models free of factor structures with or without sparsity, the proposed QCM prediction intervals

enjoy outstanding performance across the board.

The proposed QCM approach provides a useful inferential tool for applied work of policy evaluations.

As an illustration, we apply QCM to revisit the example on studying the effect of the economic

integration between Hong Kong and mainland China on Hong Kong’s economy (Hsiao et al., 2012).

QCM can be easily implemented by using forthcoming packages qcm in both R and Stata.

3.1.1 Literature Review

A popular way of inference for SCM or RCM relies on design-based placebo test (Abadie et al., 2010;

Gardeazabal and Vega-Bayo, 2017). This in-space placebo test is akin to permutation tests used

by classical randomization inference when the intervention is randomly assigned, which, however, is

not a probable setting especially in the contexts with aggregate units. Hahn and Shi (2017) point

out that the validity of permutation tests depends on the symmetry assumption, which may not

hold in the case of SCM. Also see Carvalho et al. (2018); Galiani and Quistorff (2017); Firpo and

Possebom (2018); Ferman and Pinto (2017) for other work on placebo tests. Another approach of

statistical inference focuses on average treatment effect (ATE) for the single treated unit over the

entire post-treatment periods, such as Carvalho et al. (2018); Chernozhukov et al. (2018); Li (2020);

Shi and Huang (2021). The asymptotic theories require the number of post-treatment periods to be

large, which may not be satisfied in empirical work.

For pointwise inference, Fujiki and Hsiao (2015) provide a simple textbook formula for the standard

errors and confidence bands of the treatment effects based on a strong assumption of i.i.d. errors.
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Xu (2017) uses the interactive fixed effects model to impute treated counterfactuals, and proposes

a parametric block bootstrap of the residuals to obtain uncertainty estimates of the average treat-

ment effect on the treated (ATT) based on assumptions of correctly specified parametric model and

homoskedastic error terms. Arkhangelsky et al. (2021) combine insights from difference in differ-

ences and SCM in a “synthetic difference in differences” estimator and propose a variance estimator

based on placebo tests similar to Abadie et al. (2010). This “placebo variance estimator” also relies

fundamentally on homoskedasticity across units. In addition, Bayesian approaches have also been

adopted to tackle the issue of statistical inference for SCM, such as Amjad et al. (2018); Kim et al.

(2020); Pang et al. (2022).

In a recent paper, Chernozhukov et al. (2021b) study the inference of SCM based on the assumption

that the underlying model is able to generate a mean-unbiased proxy P 0
t for the counterfactual

outcome of the treated unit in the absence of the policy. They investigate several models regarding

the specification of P 0
t , Based on these models, they consider testing hypotheses about the treatment

effect θt. The proposed method chooses a fine grid of values of θt, say, {θ∗1 , · · ·, θ∗G}. For each

candidate value θ∗g , the mean-unbiased proxy P 0
t can be estimated based on the model and the

corresponding null restricted data. Then a conformal inference of hypothesis testing by permuting

blocks of estimated residuals is proposed. In another recent paper, Cattaneo et al. (2021) consider

a linear model between the features of the treated unit, at, and features of the untreated units and

control variables pt. They consider the linear least square problem β̂ = argminβ
∑T0

t=1 (at − p′tβ)
2,

and the predictive interval of the treatment effect are constructed by approximating the uncertainty

in pTT (β− β̂) and eT , where eT is the projection error. Cattaneo et al. (2021) propose to approximate

the uncertainty in pTT (β− β̂) using simulation approximation based on random draws from Gaussian

variates with an appropriate estimator of the covariance matrix. Based on different assumptions

on the model structure, Cattaneo et al. (2021) discuss model specifications corresponding to iid,

stationary, and unit root nonstationary data. Approximating the out-of-sample uncertainty in eT

requires additional strong distributional assumptions. Cattaneo et al. (2021) discuss three different

strategies to assess the uncertainty based on progressively stronger restrictions. Such assumptions,

“however, are difficult to avoid” (Cattaneo et al., 2021).

Finally, we would like to make a comment on nonstationarity. The current paper focuses on the

case where the data is stationary over t. Cattaneo et al. (2021) and Chernozhukov et al. (2021b)

discussed models with certain types nonstationarity such as cointegration. For example, Cattaneo

et al. (2021) considered the nonstationary case where the pre-treatment outcomes are integrated
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process. In such cases, the pre-treatment outcomes are differenced so that stationarity can be

achieved. The variance of the (stationary) differenced data can be estimated and random samples

can be drawn from a normal distribution with appropriate estimated variance matrix. Note that

under appropriate assumptions on the form of nonstationarity, we may transform the nonstationary

data into stationary one, and then our proposed method may be applied to the transformed data.

However, when the nature of nonstationarity is unknown, such transformations are infeasible and

existing methods will generally be invalid3.

3.1.2 Organization

The rest of this paper is arranged as follows. Section 3.3.2 formally introduces the setup of our

problem. Section 3.3 presents the inference procedure for the treatment effects via QCM. Section

3.4 proves the asymptotic consistency of the QCM. Section 3.5 reports Monte Carlo simulations

to demonstrate the small-sample properties of QCM. As an empirical illustration of our proposed

method, Section 3.6 applies the proposed method to study the effect of the economic integration

between Hong Kong and mainland China on Hong Kong’s economy. Finally, Section 3.7 concludes.

Additional results for simulation and empirical applications, and auxiliary results for theoretical

establishment are rearranged to the Supplementary Material to this paper.

3.2 The Model

Suppose that we observe panel data with outcome variables Yit for individuals i = 1, ..., n + 1 (for

example, “regions” in regional policy evaluation, such as countries, states or cities), over periods

t = 1, · · ·, T0, T0 + 1, · · ·, T0 + T1 :≡ T . The time dimension T is divided into two parts: T0 + T1,

where T0 is the number of pre-treatment periods (from period 1 through period T0), and T1 is the

number of post-treatment periods (from period T0 + 1 through period T0 + T1). Without loss of

generality, assume that the first individual is the only treated unit, while all other individuals are

control units, which form a donor pool4. In other words, a policy intervention or treatment happens

to the first unit from period T0+1 through period T0+T1, while all other units receive no treatment
3Indeed, Chernozhukov et al. (2021b) point out that “both unrestricted patterns of nonstationarity and misspecifi-

cation is not possible in general. To obtain valid inferences with nonstationary data, one has to either rely on correct
specification and consistency or impose assumptions on the particular structure of the non-stationarity, which allow
for preprocessing the data to make them stationary.”

4The case of multiple treated units can be accomodated by applying the same procedure to each treated unit
separately.
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throughout.

Following Rubin’s causal model, denote Y 1
it and Y 0

it as the potential outcomes with and without

treatment for individual i in period t. The observed outcome is given by Yit = ditY
1
it + (1− dit)Y 0

it ,

where dit is a dummy indicating the treatment status for unit i in period t. The treatment effect for

unit i in period t is defined as ∆it = Y 1
it − Y 0

it . Our basic interest is to make period-wise inference

on the treatment effect of the first unit based on the data we observe. A fundamental problem of

the inference is that we do not simultaneously observe both Y 0
1t and Y 1

1t at the same time. Note that

Y1t = Y 0
1t for t ≤ T0, and Y1t = Y 1

1t for t ≥ T0 + 1. To make inference on the treatment effects on

the first treated unit, we need information on the unobservable Y 0
1t in the post-treatment periods.

Let Z1t, ..., Zpt be covariates that can be used to predict Y 0
1t, and N = n+ p. To ease our notation,

we denote Yt = Y 0
1t and Xt = (Y2t, · · · , Yn+1,t, Z1t, · · · , Zpt)

T . A key operating assumption in the

existing literature for treatment effect estimation and inference under the SCM framework is that

there exists a cross-sectional relationship between Yt and Xt. In this paper, we assume that the

relationship between Yt and Xt is characterized by

Yt|Xt ∼ f (Y |X) , t = 1, · · · , T, (3.1)

where f ( ·| ·) is an unknown conditional density function. Equation (3.1) implies that if the treatment

never occurs, the distribution of the outcomes of the treated unit conditional on all the control units

will remain stable throughout time.

Now we make some comparisons between our setup in (3.1) and the setup in the conventional SCM.

The conventional SCM assumes that there is a linear relationship between the outcomes of the

treated and control units (Abadie et al., 2010; Hsiao et al., 2012; Amjad et al., 2018; Cattaneo et al.,

2021), that is,

Yt = XT
t W0 + εt, (3.2)

where W0 is the (pseudo) true linear projection parameter and εt is the error term. To predict

the (conditional) mean of Yt, it remains to estimate W0; see Cattaneo et al. (2021) for an excellent

review for the estimation methods of W0. While such linear setup makes the SCM easy to implement

and interpret, it misses some important information. On the one side, some latent factors may

have asymmetric impacts on different individuals, rendering (3.2) misspecified. Even though in

many situations we may view linear synthetic control as a reasonable approximation for the true
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process5, distributional information on the quantiles is inevitably ignored when we focus on the mean

prediction. For example, a region is more likely to experience negative shocks when its neighboring

regions are in economic downturns, indicating that the distribution of the region’s economic growth

is shifted leftwards and may have a thick left tail when we observe negative growth rates of its

neighboring regions. If we focus on conditional mean only, such useful information might be missed.

Comparatively, our setup (3.1) is a natural generalization of the conventional SCM. It demonstrates

that the distributional information of the outcome of the first unit without treatment can be deduced

from the observations of the outcomes of the control units. Apart from stable conditional distribu-

tion, it does not impose any model structure on the cross-sectional dependence between the treated

and control units. What mainly distinguishes our setup (3.1) from the setup of the conventional

SCM is that (3.1) goes beyond conditional mean and provides information over the quantiles, so the

distribution of Yt is completely determined after we have observed the outcomes of the units in the

donor pool. Given such distributional information, we can construct the prediction interval for Yt,

which we will show later can be used to make inference on the period-wise treatment effects. We

also point out that the specification in equation (3.1) is in fact very general such that it encompasses

both factor and non-factor based models. In particular, factor models as used by Abadie et al.

(2010) and Hsiao et al. (2012) are special cases of (3.1).

Remark 3.1. We make two additional comments on the setup (3.1). First of all, although (3.1)

assumes that the conditional distribution is stable throughout time, we do not rule out time depen-

dence. See Assumption 3.1 and Assumption 3.2 in section 3.4 below. Second, the conventional

SCM estimator for the treatment effect can be expressed as a functional of estimated f (Y |X). In

particular, if we have an estimator for f (Y |X), denoted as f̂ (Y |X), then the point estimate of

treatment effect is given by ∆̂1t = Y1t − Ŷ 0
1t, where Ŷ 0

1t =
∫
yf̂ (y|X) dy. In addition, based on the

point estimate of the treatment effect ∆̂1t, the average treatment effect on the first unit from period

T0 + 1 to period T0 + T1 can be estimated as ∆̂1 ≡ 1
T1

∑T0+T1

t=T0+1 ∆̂1t.

3.3 The Quantile Control Method

In the case of linear models specified in (3.2), the original papers of both SCM (Abadie and Gardeaz-

abal, 2003) and RCM (Hsiao et al., 2012) rely on informal inference. In many empirical applications,

5For example, Cattaneo et al. (2021) define W0 and εt as the pseudo true linear projection parameter and residual
that satisfy W0 = argminW E((Yt −XT

t W )2|H), where H is an information set, and εt = Yt −XT
t W0.
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the predicted outcome for the first unit before treatment closely tracks its observed outcome, which

lends support to the trustworthiness of the imputed counterfactual outcome for the first unit after

treatment. Typically, a “gap graph” is drawn to reveal the divergence between the observed and

counterfactual outcomes after treatment (in contrast to their closeness before treatment), as a way

to showcase the presumably significant treatment effects. However, this type of informal inference is

unsatisfactory. First, the pre-treatment in-sample fit may not be a reliable indicator of the model’s

ability to predict future data that it has not yet seen, which is widely known as “overfitting” in the

machine learning literature. Second, it is possible that despite an imperfect pre-treatment fit, the

estimated treatment effects are still significant. Consequently, requiring perfect pre-treatment fit

unnecessarily restricts the applicability of synthetic control methods in applied work6. Both issues

can be remedied if we could provide valid prediction intervals for the treatment effects. For exam-

ple, even if the predicted outcome for the first unit does not track the actual outcome before the

treatment very well, the treatment effects might nevertheless be significant if the prediction intervals

do not contain zero for some periods after the treatment, as these confidence intervals have already

taken into account the uncertainty from the imperfect pre-treatment fit.

Motivated by our model setup (3.1), in this paper we propose to estimate the conditional quan-

tiles/distribution of unobserved Y 0
1t given the observation of Y 0

2t, · · · , Y 0
n+1,t, Z1t, · · · , Zpt, and then

construct the prediction intervals for the treatment effects via quantile regression (Koenker and Bas-

sett, 1978; Koenker, 2005). The usefulness of quantile regression as a way to construct prediction

intervals have long been recognized and proven in the statistics literature (e.g. Zhou and Portnoy,

1996; Koenker, 2005).

3.3.1 Prediction Intervals Based on Quantile Regression

We first introduce the general framework based on which we construct the prediction intervals for

the treatment effect. Recall that we denote Y 0
1t as Yt and (Y2t, · · · , Yn+1,t, Z1t, · · · , Zpt)

T as Xt. To

construct a point-wise prediction interval of ∆1t for t ≥ T0 + 1 with a confidence level (1− 2α), we

start with the α and (1 − α) quantiles of the counterfactual outcome Yt. Denote QYt
(α|Xt) and

6Ben-Michael et al. (2021) propose to de-bias the synthetic control estimator with imperfect pre-treatment fit
via ridge regression. However, Ferman and Pinto (2021) warn that when the pre-treatment fit is imperfect, synthetic
control estimators are generally biased if treatment assignment is correlated with time-varying unobserved confounders,
even when the number of pre-treatment periods goes to infinity. Nevertheless, Ferman (2021) shows that this bias
goes away if both the number of pre-treatment periods and the number of control units tend to infinity.
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QYt (1− α|Xt) as the α and (1− α) conditional quantiles of Yt, respectively. Then we have

P (QYt (α|Xt) ≤ Yt ≤ QYt (1− α|Xt)|Xt) = 1− 2α.

Since Yt = Y 0
1t, we have that ∆1t = Y 1

1t − Yt, and

P
(
QYt

(α|Xt) ≤ Y 1
1t −∆1t ≤ QYt

(1− α|Xt)
∣∣Xt

)
= 1− 2α,

which is equivalent to:

P (Y1t −QYt
(1− α|Xt) ≤ ∆1t ≤ Y1t −QYt

(α|Xt)|Xt) = 1− 2α. (3.3)

(3.3) provides a theoretical prediction interval with confidence level (1− 2α) for the treatment

effect ∆1t. If QYt
(α|Xt) and QYt

(1− α|Xt) were known, the prediction interval for ∆1t can

be readily constructed. In practice, suppose that we obtain consistent estimators Q̂Yt
(α|Xt) and

Q̂Yt (1− α|Xt), then

P
(
Q̂Yt (α|Xt) ≤ Yt ≤ Q̂Yt (1− α|Xt)

∣∣∣Xt

)
→p1− 2α

and an asymptotic (1− 2α) prediction interval for ∆1t can be constructed by

[
Y1t − Q̂Yt

(1− α|Xt) , Y1t − Q̂Yt
(α|Xt)

]
. (3.4)

In the special case where f ( ·| ·) in (3.1) belongs to some parametric model family, we may use a

parametric (usually linear) quantile regression to estimate the α- and (1−α)-th conditional quantiles

of Yt. But a parametric quantile relationship may be generally misspecified in practice. Indeed,

even if E (Yt|Xt) is a linear function of Xt as in (3.2), when the error term has heteroskedasticity

and/or autocorrelation of unknown forms, the linear quantile regression could be inappropriate and

the estimated quantiles will be poor. Furthermore, Monte Carlo simulations (unreported to save

space) show that even under correct model specification, prediction intervals based on linear quantile

regressions converge too slowly to have satisfactory coverage probability in finite samples. Also see

Chernozhukov et al. (2021a) for related discussion on the “plug-in” approaches.

To overcome these theoretical and practical issues based on traditional quantile regressions, we
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consider the most general setup as specified in (3.1) and propose a method based on Random

Forest. Suppose that we can obtain a (uniformly) consistent estimator for the conditional distribution

function F (Y |X), denoted as F̂ (Y |X), then given any observation Xt in the post-treatment period,

the conditional α-quantile of Yt given Xt can be constructed as

Q̂Yt
(α|Xt) = inf

{
y : F̂ (y|Xt) ≥ α

}
. (3.5)

Then we can plug (3.5) into (3.4) and the prediction interval is constructed. The above analysis

implies that all the problems now boil down to how we can construct a consistent estimator for

F (Y |X). When N is very small and T0 is large, nonparametric estimation procedure such as kernel

method can be readily applied. However, when using SCM for policy evaluations, the number of

pre-treatment periods is often moderate, and at the same time, the number of control units is

relatively large. Both of the problems make conventional nonparametric procedure infeasible in the

applications. To address the above concerns, we propose to use the Quantile Random Forest (QRF,

Meinshausen, 2006) for the construction of Q̂Yt (α|Xt), which will be discussed in detail in the next

subsection.

3.3.2 Quantile Random Forest

Before we discuss the QRF method, we first briefly introduce the regression trees and Random

Forest. Given a training set {Yt,Xt}T0
t=1, the regression tree and Random Forest both aim to predict

E (Y |X) at the test point X. Denote the N -dimensional feature space of Xt as χ ⊆RN , the popular

CART (Classification and Regression Tree) algorithm grows a tree by recursive binary axis-parallel

partition of χ. In the case of regression trees for continuous response Yt, the partitioning rule at each

node is to minimize the mean squared errors by selecting the best splitting variable and splitting

position (also known as “cut”). In particular, given any node (rectangle) R =
⊗N

i=1[r
−
i , r

+
i ] ⊆ χ,

define ri,λ = λr−i + (1− λ) r+i and

̂I (R, i, λ) = σ̂2 (Y |R)− #(R ∩ {Xi < ri,λ})
#R

σ̂2 (Y |R ∩ {Xi < ri,λ})

− #(R ∩ {Xi ≥ ri,λ})
#R

σ̂2 (Y |R ∩ {Xi ≥ ri,λ}) , (3.6)

where σ̂2 (Y |R) = Ŷ 2 (R)− (Ŷ (R))2, Ŷ (R) = 1
#R

∑
Xt∈R Yt, Ŷ

2 (R) = 1
#R

∑
Xt∈R Y

2
t , and #R =

|{t : Xt ∈ R}|. Let (̂i, λ̂) = argmax1≤i≤N,λ
̂I (R, i, λ), then R is split into two subsets RL =
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R ∩ {Xî < r̂i,λ̂} and RR = R ∩ {Xî ≥ r̂i,λ̂}. After many rounds of cuts, χ is partitioned into a

number of hyper-rectangles known as “terminal nodes” or “leaves”. The prediction by a single tree

at X is just the average of all Yt’s falling into the same leaf as X.

In general, the prediction based on a single tree is a discontinuous function of the data and the new

test point, which has large variance. To improve the prediction accuracy, Breiman (2001) proposes

Random Forest as an ensemble learning algorithm by injecting randomness into the tree-building

process, and then taking the average of the resulting randomized trees. Specifically, M resamples

based on bootstrap are obtained from the original training data to grow M trees. To further diminish

the correlations among these trees, random feature selection is conducted. In particular, at each

node of an individual tree, only mtry features are randomly chosen out of all N features as candidate

splitting variables, where mtry is a tuning parameter7. Since the panel data evolves over the time

dimension, we skip the bootstrap procedure and simply use the original sample to preserve its time

series nature8.

Due to the randomization in growing the forest, each tree in the forest can be denoted as T (θm),

m = 1, ...,M , where θm is an iid random object characterizing the randomness in the m-th tree9. For

each tree, its leaves are determined by the training data as well as the randomness during partition

described by θm. For any test point X ∈ χ, there is a unique leaf that contains X. We denote such

leaf as R (X, θm). Basically, R(X, θm) contains all the feature vectors that are close to X under the

m-th tree. Then the prediction of E (Y |X) based on tree T (θm) is obtained by averaging over the

observed values of Yt in the leaf R(X, θm). Alternatively, we can view the prediction as a weighted

average of all Yt in the sample, where observations in the same leaf as X receive equal weights that

sum to one, and all other observations receive zero weights. Thus, the prediction based on tree

T (θm) can be written as

m̂(X, θm) =

T0∑
t=1

wt(X, θm)Yt, (3.7)

where the weight wt(X, θm) is given by

wt(X, θm) =
1(Xt ∈ R (X, θm)

#{s : Xs ∈ R (X, θm)}
, (3.8)

7For regression forest, mtry is by default set to be [N/3] in R or Matlab.
8In our unreported simulations, we find that the performance of using the original sample is similar or even slightly

better than using bootstrap samples. This is consistent with Breiman (2004)’s claim that “omitting the bootstrapping
of the training set has very little effect on the error rate”.

9For example, when the bootstrap procedure is omitted, the randomness in each tree lies only in the procedure of
feature selection, then θm is a collection of random sets of indices, indicating the sets of covariates that are considered
for maximization of (3.6) at each parent node in the tree.
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where 1(·) is the indicator function. Finally, Random Forest predicts E (Y |X) based on the com-

bination of the prediction results from the M trees. Define wt(X) as the average of wt(X, θm) over

these trees,

wt(X) =
1

M

M∑
m=1

wt(X, θm). (3.9)

The prediction from the Random Forest is then given by

m̂(X) =

T0∑
t=1

wt(X)Yt. (3.10)

Remark 3.2. Based on Random Forest, given the pre-treatment training set {Ys,Xs}T0

s=1 and post-

treatment observations of Xt, t ≥ T0 + 1, the prediction of the conditional mean of the first unit

without treatment is given by Ŷt = m̂ (Xt). Then the point estimate of the treatment effect of period

t is given by ∆̂1t = Y1t − Ŷt = Y1t − m̂ (Xt) , t ≥ T0 + 1.

Next we consider QRF, which is also known as “Quantile Regression Forest” (Meinshausen, 2006),

as an efficient and robust implementation of quantile regression. Inheriting from all the merits of

Random Forest algorithm, QRF is free of restrictive assumptions on functional form and thus is

robust to heteroskedasticity and/or autocorrelation of unknown forms as well as various types of

model misspecifications. Basically, QRF aims to estimate QY (α|X) via Random Forest. Assuming

that the response variable Yt is continuous, as we showed in (3.5), the estimator of QY (α|X) can be

constructed as the inverse of the estimated conditional distribution function F (y|X). Note that for

any y ∈ R, F (y|X) can be written as

F (y|X) = P (Y ≤ y|X) = E1 (Y ≤ y|X) ,

where 1 ( ·|X) is the indicator function conditional on the observation X. Similar to how we predict

E (Y |X) by a weighted combination of Yt’s in the Random Forest algorithm, to predict the con-

ditional expectation E1 (Y ≤ y|X), we can similarly define the estimator by the weighted average

over the observations of 1 (Y ≤ y) given X:

F̂ (y|X) =

T0∑
t=1

wt (X)1 (Yt ≤ y) , (3.11)

where the weights wt (X)’s are the same as those for Random Forest defined in (3.9). The QRF esti-

mator Q̂Y (α|X) is obtained by plugging F̂ (y|X) to (3.5), based on which the estimated prediction
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interval can be constructed based on (3.4).

We summarize the proposed QCM Algorithm for convenience of application.

Algorithm QCM

Data: {Yit}, where i = 1 is the treated unit, and i = 2, ..., n+1 are control units; Zjt, j =

1, · · · , p, are covariates; t = 1, ..., T0, are pretreatment periods, and t = T0+1, ..., T0+T1,

are posttreatment periods. Denote Yt ≡ Y1t and Xt ≡ (Y2t, ..., Yn+1,t, Z1t, · · · , Zpt)
′.

Algorithm: (1−α) Prediction intervals of treatment effects for post-treatment periods

t = T0 + 1, ..., T0 + T1.

1. Using pretreatment data, run quantile regression of {Yt}T0

t=1 on {Xt}T0

t=1 via random

forest (QRF)10 at quantiles α/2 and 1− α/2.

2. For each posttreatment period t = T0 + 1, ..., T0 + T1, compute conditional quantiles

Q̂Yt
(α/2|Xt) and Q̂Yt

(1−α/2|Xt) using results from Step 1 and posttreatment data for

control units {Xt}T0+T1

t=T0+1.

3. For each posttreatment period t = T0 + 1, ..., T0 + T1, compute (1 − α) prediction

intervals of treatment effects as
[
Yt − Q̂Yt

(1− α/2|Xt), Yt − Q̂Yt
(α/2|Xt)

]
.

Remark 3.3. The estimated quantile function provides an alternative point estimator for the treat-

ment effect. In particular, given the Random Forest estimator of F (y|X), F̂ (y|X), we can obtain

the mean prediction based on m̂(X) =
∫
ydF̂ (y|X), and thus the estimator of the treatment effect

is given by ∆̂1t = Y1t − m̂ (Xt). Alternatively, if we set α = 0.5, then Q̂Yt
(α|Xt) corresponds to

the median prediction of Yt conditional on Xt. Based on the median prediction of the counterfac-

tual outcome, we can also construct the median prediction of the treatment effect, which is given by

∆̂1t = Y1t−Q̂Yt
(0.5|Xt). Compared with the mean prediction of Yt given in Remark 3.2, the median

prediction Q̂Yt (0.5|Xt) is often more robust to outliers of the data set.

Remark 3.4. In Athey et al. (2019)’s approach, the gradient of the check function as in Koenker

and Bassett (1978) is used to define a pseudo-outcome, which is then used for splitting and growing

regression trees. Their gradient tree-based approach requires the trees to be “honest”, which is ac-

complished by splitting the training set into two distinct parts, one part for growing trees only (i.e.,

estimating the tree structure), and the other part for computing the mean value within each leaf.
10To guarantee the asymptotic validity of the QRF, additional assumptions will be needed when constructing the

trees and forests. See Section 3.4 for more details.
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3.4 Asymptotic Properties of The QCM

In this section we study the asymptotic properties of the proposed QCM. The validity of the proposed

prediction interval depends crucially on the consistency of QRF in the presence of weak dependence

and high dimensionality. In the following analysis, for any new test point X0, we use F̂θ (y|X0) =∑T0

t=1 wt (X0, θ)1 (Yt ≤ y) to denote the prediction of F (y|X0) based on an individual tree with

random feature selection procedure θ, where the weight wt (X0, θ) is defined in (3.8). Obviously, the

prediction from an ensemble of M trees is given by F̂M (y|X0) = M−1
∑M

m=1 F̂θm (y|X0) , where

θm is the random feature selection procedure of the m-th tree. We also define the theoretical forest

prediction as EθF̂θ (y|X0) =
∫
F̂θ (y|X0) dΘ(θ), where Θ(θ) is the CDF of the random object θ.

Essentially, the theoretical forest prediction is the expectation of tree prediction with respect to the

random object θ conditional on the data set. Note that when θm is iid over m, Law of Large Numbers

indicates that limM→∞ Pθ

(∣∣∣F̂M (y|X0)− EθF̂θ (y|X0)
∣∣∣ > ε

)
= 0 for any ε > 0, where Pθ is the

probability with respect to θ. So in this section we will focus on the consistency of EθF̂θ (y|X0).

Throughout the following discussion, the following notations will be frequently used. For any positive

sequences {an}∞n=1 and {bn}∞n=1, an = o (bn) if lim supn an/bn = 0 holds, and an = O (bn) if

lim supn an/bn < C holds for some constant C ≥ 0. We also write an ∼ bn if both an = O (bn)

and bn = O (an). For any X = (X1, ..., XN )
T ∈ χ and any index set Q ⊆ {1, 2, · · · , N}, define

[X]Q = (Xj1 , ..., Xj|Q|)
T , where j1 < j2 < · · · < j|Q| and ji ∈ Q for all i. For any X, X′, and Q,

define V = [X]Q
⊗

[X′]QC , where V = (V1, V2, · · · , VN )
T , and for each i, Vi = Xi if i ∈ Q and

Vi = X ′
i if i ∈ QC . So X = [X]Q

⊗
[X]QC holds for all X. For any subset R ⊆ χ, define [R]Q ={

[X]Q : X ∈ R
}
. If R =

{
X = (X1, · · · , XN ) : r−i ≤ Xi ≤ r+i

}
, then we write R =

⊗N
i=1[r

−
i , r

+
i ].

For an arbitrary set A, define diam (A) = supV,V′∈A ∥V −V′∥.

To highlight the theoretical findings of this section, we informally state our main theorem as follows:

Theorem. Suppose that some regularity conditions hold and that |Y | ≤ 1 holds almost surely. Then

we have that

sup
X0∈X

sup
−1≤y≤1

∣∣∣EθF̂θ (y|X0)− F (y|X0)
∣∣∣→p 0,

and

sup
X0∈X

sup
0≤α≤1

∣∣∣Q̂Y (α|X0)−QY (α|X0)
∣∣∣→p 0.

Readers of interest may refer to the theoretical development of the above theorem in the following
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subsections. Basically, the above theorem demonstrates the asymptotic consistency of the QRF

under time series setup and high dimensionality, and hence, the asymptotic validity of our QCM

method. The proof of the above theorem basically consists of three steps. In the first step, we

show that EθF̂θ (y|X0) concentrates around EθF (y|R (X0, θ)), where F (y|R (X0, θ)) is the true

cumulative distribution of Y conditional on X ∈ R (X0, θ). In the second step, we show that the

difference between EθF (y|R (X0, θ)) and our target F (y|X0) is upper bounded. Finally, in the

third step, we show that such upper bound degenerates to zero as the number of splits increases.

3.4.1 Concentration of Forest Prediction

This subsection is devoted to the derivation of the concentration bounds of the forest prediction.

We first make the following technical assumptions.

Assumption 3.1. The feature space is χ = [0, 1]
N . (Yt,Xt) is identically distributed over t with

joint density f (Y,X). Moreover, there exists ζ > 1 such that ζ−1 < fX (X) < ζ, where fX (X) is

the marginal density of Xt.

For convenience, we standardize the feature space χ to [0, 1]
N . This is a common practice in the

literature (Meinshausen, 2006; Biau, 2012; Scornet et al., 2015) since the forest prediction is invariant

to any monotone transformation of the feature space. Assumption 3.1 also requires that the marginal

density of Xt is bounded from below and above, a standing example of which is that Xt is uniformly

distributed over χ. In general, it rules out the situation where Xt has zero probability on a subset

of χ with positive Lebesgue measure.

Remark 3.5. The stationary distribution requirement imposed in Assumption 3.1 is standard in the

literature of Random Forest, while it rules out the existence of nonstationarity such as cointegration.

As argued in Section 3.3.1, under appropriate assumptions on the nature of nonstationarity, we

can transform the data to restore stationarity, and apply our proposed method to the transformed

data. Of course, additional assumptions about the model are needed to pursue investigation along

this direction. In the current paper, we focus our attension on the stationary data.

Assumption 3.2. {Yt,Xt}∞t=1 is α-mixing with mixing parameters αt satisfying

αt ≤ C1 · ρ−t, (3.12)

where C1 is a constant and ρ > 1.

146



Assumption 3.2 requires that {Yt,Xt}∞t=1 is a strong mixing process with exponentially decaying

mixing parameters, which nests many commonly used time series processes such as ARMA(p, q)

processes. As shown in Liebscher (1996), the tail behavior of the sum of α-mixing dependent

random variables relies on the α-mixing parameters. So this assumption is mainly used to obtain

the exponential bound on the tail probability for the sums of random variables. In principle, such

an assumption can be weakened to αt ≤ C · t−β for some β > 0, but on this condition we have to

require that the dimension of covariate N to increase at a slower rate than that in Assumption 3.4.

Next we make assumptions on the tree structure. Define splitting level as the maximum number

of nodes that any input has to pass to reach the terminal node. A tree is called balanced if the

maximum and minimum numbers of nodes that inputs have to pass to reach the terminal nodes are

equivalent. We make the following assumptions.

Assumption 3.3. The tree is balanced. For any parent node
⊗N

i=1[r
−
i , r

+
i ] and splitting direction

j, the splitting point lies within the interval

[(
1− ξ−1

)
r−j + ξ−1r+j , ξ

−1r−j +
(
1− ξ−1

)
r+j
]

with some ξ > 2.

Assumption 3.3 imposes two restrictions on the structure of the individual trees. The first require-

ment of balanced tree can be easily weakened to restrictions on the minimum and maximum cutting

numbers for each terminal node. While for convenience, we stick with the balanced-tree assumption

in the following development. Assumption 3.3 also requires that any potential splitting point lies in

the
[
ξ−1, 1− ξ−1

]
region with ξ > 2 for any node and splitting direction, which seems to slightly

deviate from the existing literature. In the existing literature, it is usually assumed that each child

node contains at least ξ̃−1 proportion of the total observations in the parent node for some ξ̃ > 2

(Meinshausen, 2006; Wager and Walther, 2016). However, in the Appendix, we show the following

proposition11.

Proposition 3.1. Suppose that Assumption 3.1, Assumption 3.2, and Assumption 3.4 hold, then:

(A) If further, in each round of split, each child node must contain at least ξ̃−1 proportion of

the data points in the parent node, where ξ̃ > 2, then with probability going to 1, for any par-

ent node R =
⊗N

i=1[r
−
i , r

+
i ] and splitting direction j, the splitting point lies within the interval

11We thank one anonymous referee for motivating us to think about how our Assumption 3.3 is connected to the
existing literature. Such connection is formally stated in Proposition 3.1.
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[(
1− ξ−1

)
r−j + ξ−1r+j , ξ

−1r−j +
(
1− ξ−1

)
r+j
]

where ξ > 1.1ζ2ξ̃; (B) If Assumption 3.3 further

holds, then with probability going to 1, each child node contains at least ξ̃−1 proportion of data

points in the parent node, where ξ̃ > 0.9−1ζ2ξ.

Proposition 3.1 shows that asymptotically, our Assumption 3.3 is equivalent to the conventional

assumptions made in the existing literature. In principle, Assumption 3.3 provides a convenient

control for the decreasing speed of the volume of the terminal nodes. Note that under Assumption 3.1

and Assumption 3.3, for any node R that may appear in the first k rounds of splits, we have that

µ (R) ≥ ξ−k, where µ(·) is the Lebesgue measure, and consequently, P (R) ≥ ζ−1ξ−k.

Finally, we assume the following.

Assumption 3.4. The splitting level k and the dimension of covariates N satisfy: (A) there exists

a constant β ∈
(
0, 13

)
such that N = O(exp(T β

0 )), and (B)

π (k,N, T0) :≡ (2ξ)
k ·

√
(log k + logN) log3 T0 (log log T0)

T0
→ 0, (3.13)

Assumption 3.4(A) restricts the increasing speed of the dimension of the covariates. We allow for

ultrahigh-dimensional data set. Assumption 3.4(B) mainly controls the increasing speed of the

splitting level k. It requires that 2 log (2ξ) k+ log logN +3 log log T0 + log log log T0− log T0 → −∞.

So the splitting level increases at a speed no faster than log T0 − log logN .

Based on the above assumptions, we have the following result.

Theorem 3.1. Under Assumption 3.1–Assumption 3.4, there exists a positive constant C such that

lim
T0→∞

P

[
sup
X0∈χ

sup
y∈R

∣∣∣EθF̂θ (y|X0)− EθF (y|R (X0, θ))
∣∣∣ ≤ C · π (k,N, T0)] = 1. (3.14)

Theorem 3.1 indicates that uniformly with respect to the input X0 and y, the deviation of forest pre-

diction EθF̂θ (y|X0) from EθF (y|R (X0, θ)) is at most at the rate of π (k,N, T0), which degenerates

to zero according to Assumption 3.4. When N = O(Tα
0 ) for some 0 < α <∞, the convergence rate

simplifies to (2ξ)
k
log2 T0

√
log log T0/T0. Note that given N and T0, the splitting level k affects the

convergence rate π (k,N, T0) exponentially. This is mainly because as k increases, the volume of each

terminal leaf decreases exponentially. A smaller node contains fewer observations, based on which

the estimation results of the conditional distribution may be more inaccurate. The dimension of
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the covariate N affects the convergence rate mainly through complicating the set of terminal leaves.

As the number of potential terminal leaves increases, the space over which the supreme operator is

performed becomes more complicated, and finally the maximum deviation increases.

We finally compare our results with those in the existing literature. In Wager and Walther (2016),

the concentration of forest prediction is of order
√
log(T0/ς)(log(Nς) + log log(T0))/ς, where ς is the

minimum leaf size. Since Wager and Walther (2016) assumes that each child node contains at least

α proportion of the data points in parent node, there holds ς ≥ αkT0, where k is the number of

splits according to our notation. When the equality holds exactly, we have that

√
(log(T0/ς)(log(Nς) + log log(T0))) /ς

=
(√

1/α
)k√

(log(1/α)k(logN + k log(α) + log T0 + log log(T0))) /T0

≥ C
(√

1/α
)k√

(k(logN + log T0)) /T0.

for T0 sufficiently large.

3.4.2 Bounds on the Bias

In the previous subsection, we have shown that the forest prediction EθF̂θ (y|X0) concentrates

around EθF (y|R (X0, θ)). In principle, the concentration bounds demonstrate how fluctuating our

QRF estimator is, while EθF (y|R (X0, θ)) is still different from our primary target F (y|X0). The

task of this subsection is to provide a simple upper bound on the deviation of EθF (y|R (X0, θ))

from F (y|X0). In particular, we will work on the following distance

sup
X0∈X

sup
y∈R
|EθF (y|R (X0, θ))− F (y|X0)| . (3.15)

Before we proceed, we make some further restrictions on the signal structure under high dimension-

ality.

Assumption 3.5. There exists an index set Q such that for any X and Y , there holds

fY |X (Y |X ) = fY |[X]Q

(
Y
∣∣[X]Q

)
,
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where fY |V is the density of Y conditional on V. Moreover, for any X, X′, and X′′, there holds

∣∣∣f (Y, [X]Q

⊗
[X′′]QC

)
− f

(
Y, [X′]Q

⊗
[X′′]QC

)∣∣∣ ≤ L (Y ) ·
∥∥[X]Q − [X′]Q

∥∥ , (3.16)

with
∫
R L (y) dy = L <∞ for any Y ∈ R.

Assumption 3.5 first restricts the signal structure of the true data generating process. Under As-

sumption 3.5, we have

f [X]QC ,Y |[X]Q
( [X]QC , Y | [X]Q) = f [X]QC |[X]Q

( [X]QC | [X]Q) fY |[X]Q (Y | [X]Q) .

So Y is independent of [X]QC conditional on [X]Q. When the index set Q is fixed while the di-

mension of X is allowed to increase with sample size T0, such an assumption can be interpreted as

a sparsity condition, which is generally used to deal with high-dimensional case. Assumption 3.5

also requires that for any fixed Y , the joint density of (Y,X) is L (Y )-Lipschitz with respect to

[X]Q. Define fQ
(
Y, [X]Q

)
as the joint density of

(
Y, [X]Q

)
. Under Assumption 3.5, we have∣∣fQ (Y, [X]Q

)
− fQ

(
Y, [X′]Q

)∣∣ ≤ L (Y ) ·
∥∥[X]Q − [X′]Q

∥∥, so fQ (Y, [X]Q) is also L (Y )-Lipschitz

with respect to [X]Q. Moreover, define f[X]Q

(
[X]Q

)
as the marginal density of [X]Q. There holds∣∣∣f[X]Q

(
[X]Q

)
− f[X]Q

(
[X′]Q

)∣∣∣ ≤ L ·∥∥[X]Q − [X′]Q
∥∥, which implies that f[X]Q

(
[X]Q

)
is L-Lipschitz.

Based on Assumption 3.5, we have the following result.

Theorem 3.2. Under Assumption 3.1 and Assumption 3.5, there exists a constant C such that

sup
X0∈X

sup
y∈R
|EθF (y|R (X0, θ))− F (y|X0)| ≤ C · sup

X0∈X
Eθdiam

(
[R (X0, θ)]Q

)
.

Theorem 3.2 implies that based on the sparsity assumption, we can construct an upper bound for the

bias of the forest prediction that depends only on the signal variables. In the following subsection,

we will show that such upper bound degenerates to 0 under some further conditions, and hence

prove the consistency of the QRF.

3.4.3 Consistency

In the previous subsection we have shown that the bias of the QRF is, up to a constant term, bounded

by supX0∈X Eθdiam([R (X0, θ)]Q). When the number of the covariates is fixed and each covariate is
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split with a probability bounded away from 0 (e.g. Meinshausen, 2006), supX0∈X Eθdiam([R (X0, θ)]Q)→

0 as k → ∞ naturally holds under Assumption 3.3. While in the high-dimensional scenario where

N ≫ k, if we do not distinguish between the signal variables and noise variables (for example, pick

each covariate with the same probability), we may end up making too many splits along the noise

variables, which does not effectively decrease the bias.

Many attempts have been made to avoid the above problem. For example, in Wager and Walther

(2016), a Guess-and-Check tree structure is imposed to screen out noise variables that are indepen-

dent of the response. However, such framework does not directly apply to our setup. For the panel

data driven by common factors, noise variables are not necessarily independent of the response. On

this condition, when a noise variable is picked, splitting on it will lead to significant child nodes’

differences, hence the noise variable will be unblocked and we may end up making too many cuts

along the noise variables.

Going back to the tree splitting algorithm discussed in Section 3.3.2, we now consider a specific

test input X0 and one individual tree with random feature selection vector θ. When splitting a

parent node that contains X0, mtry features are randomly selected based on the realization of θ

and then compared. For some fixed positive integer d, suppose that mtry ∼ N and we conduct k

rounds of splits. Then the probability that the j-th covariate is selected as a candidate for split

with less than or equal to d times goes to 0 as k →∞. This implies that as the split proceeds, the

number of rounds in which a particular signal variable is taken as the potential splitting direction

will increase to infinity with probability going to 1 (probability with respect to θ). So the remaining

task is to investigate whether each signal variable is indeed selected and split with growing number

of times. For simplicity, we assume that |Y | ≤ 1 throughout this section. Such upper bound can be

replaced with any positive constant. The upper boundedness of the response is for technical proofs

and is mainly used to obtain exponential concentration inequalities for dependent data. Similar

boundedness assumption is also imposed in Wager and Walther (2016). It is possible to replace such

condition by sub-Gaussianity of Yt.

As was discussed in Section 3.3.2, given any rectangle R =
⊗N

i=1

[
r−i , r

+
i

]
⊆ χ, the splitting criterion

is to maximize ̂I (R, i, λ) with respect to i and λ. Define the population counterpart of ̂I (R, i, λ) as
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follows

I (R, i, λ) = σ2 (Y |R)− P (R ∩ {Xi < ri,λ}|R)σ2 (Y |R ∩ {Xi < ri,λ})

− P (R ∩ {Xi ≥ ri,λ}|R)σ2 (Y |R ∩ {Xi ≥ ri,λ}) . (3.17)

(3.17) is obviously the splitting criterion we would maximize if we were able to observe the whole

population. According to Lemma 3.7 in the Appendix, the empirical criterion (3.6) constitutes

a good approximation of (3.17) uniformly with respect to rectangles R, splitting direction i, and

splitting location λ. Motivated by such result, to guarantee that each signal variable can be selected

and cut for increasing number of times, we only need to impose more restrictions on I (R, i, λ). This

is done by the following Assumption 3.6 and Assumption 3.7.

Assumption 3.6. Q is fixed. Define

δ (η) = inf
i∈Q

inf
{R=

⊗N
j=1[r

−
i ,r+i ]⊆χ:r+i −r−i =η}

I (R, i, 1/2) , (3.18)

there holds δ (η) > 0 for any η > 0.

Assumption 3.6 imposes restrictions on the lower bound of I (R, i, λ) for signal variables. It requires

that the total variation of Y contributed by the variation of signal Xi can not be fully explained

by the combination of the remaining covariates, and the unexplained variation is uniformly lower-

bounded by a positive function depending only on the length of the interval where Xi takes value.

So even after we have split along the same signal variable for sufficiently many times, we will still

find significantly different child nodes if we continue to cut along such direction.

Remark 3.6. We provide two examples for Assumption 3.6. Consider the following linear model

Y =
∑

i∈QXi+ ε, where Xi’s and ε are mutually independent. For any R =
⊗N

j=1[r
−
j , r

+
j ], we have

that σ2 (Y |R) =
∑

i∈Q σ
2
(
Xi|Xi ∈

[
r−i , r

+
i

])
+ σ2

ε . Suppose further that Xi ∼ U (0, 1), we have

I (R, i, 1/2) =
(
r+i − r

−
i

)2
/16. Consider another example Y =

∏
i∈Q(1 +Xi) + ε, where Xi’s and ε

are mutually independent, and Xi ∼ U(0, 1). For any R =
⊗N

j=1[r
−
j , r

+
j ], we have that I(R, i, 1/2) =

(
∏

j∈Q,j ̸=i(1+ (r+j + r−j )/2))((1+ r+i /4+3r−i /4)
2/2+ (1+3r+i /4+ r−i /4)

2/2− (1+ r+i /2+ r−i /2)
2).

Then due to the fact that (1 + x1)
2/2 + (1 + x2)

2/2 − (1 + (x1 + x2)/2)
2 = (x1 + x2)

2/4, we have

that I(R, i, 1/2) ≥ (
∏

j∈Q,j ̸=i(1 + (r+j + r−j )/2)) · (r
+
i − r

−
i )

2/16 ≥ (r+i − r
−
i )

2/16.

We finally make another assumption on the information of the noise variables.
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Assumption 3.7. If N is diverging, there exists a fixed set Q1 ⊇ Q such that for any R ⊆ χ

and i /∈ Q1, there holds supξ−1≤λ≤1−ξ−1 I (R, i, λ) < ωmaxj∈Q1
supξ−1≤λ≤1−ξ−1 I (R, j, λ) , where

0 < ω < 1. Let Q1 = {1, 2, · · · , N} when N is fixed. For N either fixed or diverging, the Lipschitz

condition (3.16) also holds for Q1

Assumption 3.7 implies that, when there is increasing number of covariates, although splitting on a

noise variable can lead to larger differences in the child nodes compared with splitting on any of the

signal variables, there are not infinitely many such covariates. Note that such an assumption does

not rule out the possibility that all the noise variables are correlated with the response; instead, we

only require that the number of “more informative” noise variables is finite. On this condition, if

we had observed the whole population, we would never split on the covariates outside Q1 if we can

choose from all the variables in Q1.

Remark 3.7. Assumption 3.7 can be regarded as an extension of the scenario where all the noise

variables are independent of the response. In fact if so, we have σ2 (Y |R ∩ {Xi < ri,λ}) = σ2 (Y |R ∩ {Xi ≥ ri,λ}) =

σ2 (Y |R) for any R and i /∈ Q, so I (R, i, λ) = 0 for any λ ∈ [0, 1]. If Assumption 3.6 further holds,

we have 0 = I (R, i, λ) < ωI (R, j, 1/2) ≤ supξ−1≤λ≤1−ξ−1 I (R, j, λ) for any j ∈ Q.

Based on the restrictions on the population splitting criterion as were made in Assumption 3.6 and

Assumption 3.7, we study the behavior of the empirical splits and the bias of QRF. We first provide

two lemmas that are useful when N is diverging. Define Ψ(X0, k, d) as the collection of θ such that

in the first k rounds of splits along the nodes that contain X0, there are at least d rounds in which all

the covariates in Q1 are simultaneously selected as candidates. Note that if we we choose mtry ∼ N ,

since N → ∞, mtry ≫ |Q1| for N sufficiently large and hence limk→∞ Pθ [Ψ (X0, k, d)] = 1 for any

fixed d. Moreover, given the feature selection procedure θ and the total number of splits k, define

N (X0, θ, k, j) as the number of cuts over covariate j, which is a random variable. We have the

following result.

Lemma 3.1. Suppose Assumption 3.1–Assumption 3.7 hold. Suppose moreover |Y | ≤ 1 holds almost

surely, N is diverging, and mtry ∼ N . For any fixed k and d ≤ k, there holds

lim
T0→∞

P

 inf
X0∈X :Ψ(X0,k,d)̸=∅

inf
θ∈Ψ(X0k,d)

∑
j∈Q1

N (X0, θ, k, j) ≥ d

 = 1.

The idea of Lemma 3.1 is intuitively discussed as follows. Under Assumption 3.7, when all covariates
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in Q1 are selected, we will choose one covariate in Q1 to split if we can observe (3.17). So if Q1

is selected d times, there must be at least d rounds in which splits take place in Q1. Although in

practice we can not observe (3.17), its empirical counterpart (3.6) constitutes a good estimate for

(3.17), so the split based on (3.6) will be asymptotically identical to that based on (3.17).

In the Appendix, we also show that I (R, i, λ) with i ∈ Q1 decreases exponentially uniformly with

respect to R and λ as the number of splits along such covariate increases. Combine such result with

the lower bound on I (R, i, λ) as assumed in Assumption 3.6, it is then intuitive to expect that as

long as d is sufficiently large, each covariate in Q will be cut with no less than a predetermined

number of times. Such a result is formally stated in the following lemma.

Lemma 3.2. Suppose Assumption 3.1-Assumption 3.7 hold. Suppose moreover |Y | ≤ 1 holds almost

surely, N is diverging, and mtry ∼ N . For any fixed d ∈ N, let d∗ satisfy 2C ·
(
1− ξ−1

)d∗−1
<

infη≥ξ−(d−1) δ (η), where C = C (d∗) is a constant depending on d∗. For any fixed k, there holds

lim
T0→∞

P

[
inf

X0∈X :Ψ(X0,k,|Q1|·max{d,d∗})̸=∅
inf

θ∈Ψ(X0,k,|Q1|·max{d,d∗})
min
j∈Q
N (θ, k, j) ≥ d

]
= 1.

Based on Lemma 3.1 and Lemma 3.2, we have the following result which is crucial in showing the

consistency of QRF.

Lemma 3.3. Suppose Assumption 3.1–Assumption 3.7 hold. Suppose moreover |Y | ≤ 1 holds almost

surely, mtry ∼ N and k →∞. Then for any positive integer d > 0, we have

p limT0→∞ inf
X0∈X

Pθ

[
min
j∈Q
N (X0, θ, k, j) ≥ d

]
= 1,

where Pθ is the probability measure with respect to θ.

Lemma 3.3 is the key result of this section. It demonstrates that under the QRF algorithm, no

matter whether the number of covaraites N is diverging or fixed, as the number of split k increases

the average (with respect to θ) number of splits over each signal variable will increase to exceed any

fixed integer with probability going to 1. Such a result implies that with probability going to 1, the

average number of splits over signals will go to infinity, and consequently, the bias also degenerates

to 0 according to Theorem 3.2.

Based on Lemma 3.3, now we can demonstrate the consistency of the QRF.

Theorem 3.3. Suppose Assumption 3.1–Assumption 3.7 hold. Moreover, suppose |Y | ≤ 1 holds
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almost surely, mtry ∼ N and k →∞. Then we have that

sup
X0∈X

sup
−1≤y≤1

∣∣∣EθF̂θ (y|X0)− F (y|X0)
∣∣∣→p 0.

Suppose further that supX0∈X ,y Fy (y|X0) < ∞, infX0∈X ,|y|≤c Fy (y|X0) > 0 for all 0 < c < 1 and(
infX0∈X ,|y|≤c Fy (y|X0)

)−1 · (1− c) · supX0∈X ,|y|≥c Fy (y|X0)→ 0 for c→ 1, where Fy(y|X0) is the

partial derivative of F (y|X0) with respect to y. Then

sup
X0∈X

sup
0≤α≤1

∣∣∣Q̂Y (α|X0)−QY (α|X0)
∣∣∣→p 0.

Remark 3.8. (A) Our proof technique can be easily extended to prove the point consistency of

the Random Forest prediction of the conditional mean in the high-dimensional scenario. So under

the similar conditions, we can show the consistency of the treatment effect estimator discussed in

Remark 3.2. Such a result is not trivial compared with Wager and Walther (2016) since we do not

impose Guess-and-Check strcture. (B) The high-level assumptions we use throughout the proof are

Assumption 3.6 and Assumption 3.7. In general, both assumptions are difficult to break down to

more primitive assumptions, while it is easy to verify them when given specific setups of the data

generating processes. Note that when η = 1, Assumption 3.6 is equivalent to the Assumption 4

(monotone signal) in Wager and Walther (2016). (C) Note that the above asymptotic consistency

results hold for any fixed index set Q. It’s also not difficult to see that there exists a slowly increasing

sequence of index sets {QT0}∞T0=1 such that limT0→∞ |QT0 | = ∞, and that the consistency results

still hold.

3.5 Simulations

In this section, we investigate the finite sample performance of the proposed method via Monte Carlo

simulations. We consider a wide-range of data-generating processes, including those in Hsiao et al.

(2012), then add heteroskedasticity, cross-sectional heteroskedasticity, autocorrelation or within-

panel autocorrelation, and nonlinear transformations, followed by DGPs free of any factor structure

with or without sparsity. In particualr, following Cattaneo et al. (2021), Chernozhukov et al. (2021b)

and Hsiao et al. (2012), we consider the following 13 different data generating processes:

(1) DGP1 (sparse weights). We model the potential outcome without treatment for the first treated
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unit as a sparse linear function of the other control units:

y01t = αi +

N+1∑
j=2

wjy
0
jt + ut,

where αi, y0jt and ut are iid random draws from N(0, 1), and

(w2, ..., wN+1) = (0.2, 0.2, 0.2, 0.2, 0.2, 0, ..., 0).

(2) DGP2 (even weights). As a variation of DGP1, consider DGP2 with small effects for all cross-

sectional units:

y01t = αi +

N+1∑
j=2

wjy
0
jt + ut,

where αi, y0jt and ut are iid random draws from N(0, 1), and (w2, ..., wN+1) = ( 1
N ,

1
N , ...,

1
N ).

(3) DGP3 (single iid factor). The third DGP has a simple i.i.d. factor (r = 1):

y0it = αi + bift + uit, ft ∼iid N(0, 1),

where αi, uit, and ft are random draws from N(0, 1), while factor loadings b′is are random draws

from N(1, 1).

(4) DGP4 (two stationary factors). The fourth DGP consists of two (r = 2) stationary factors:

y0it = αi + bi1f1t + bi2f2t + uit,

with

f1t = 0.3f1,t−1 + ε1t, f2t = 0.6f2,t−1 + ε2t,

where αi, ε1t and ε2t are random draws from N(0, 1), factor loadings bi1 and bi2 are random draws

from N(1, 1), while we let uit = χ2(1)− 1 as a variation.

(5) DGP5 (DGP1 + sine). DGP5 applies a nonlinear sine transformation of DGP1:
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y01t = sin

αi +

N+1∑
j=2

wjy
0
jt

+ ut,

where αi, y0jt and ut are iid random draws from N(0, 1),

(w2, ..., wN+1) = (0.2, 0.2, 0.2, 0.2, 0.2, 0, ..., 0),

and sin(·) is the sine function.

(6) DGP6 (DGP1 + cube). DGP6 applies an unbounded cubic transformation of DGP1:

y01t =

αi +

N+1∑
j=2

wjy
0
jt

3

+ ut,

where αi, y0jt and ut are iid random draws from N(0, 1), and

(w2, ..., wN+1) = (0.2, 0.2, 0.2, 0.2, 0.2, 0, ..., 0).

(7) DGP7 (DGP2 + sine). DGP7 applies a nonlinear sine transformation of DGP2:

y01t = sin

αi +
N+1∑
j=2

wjy
0
jt

+ ut,

where αi, y0jt and ut are iid random draws from N(0, 1), and (w2, ..., wN+1) = ( 1
N ,

1
N , ...,

1
N ).

(8) DGP8 (DGP2 + cube). DGP8 applies an unbounded cubic transformation of DGP2:

y01t =

αi +

N+1∑
j=2

wjy
0
jt

3

+ ut,

where αi, y0jt and ut are iid random draws from N(0, 1), and (w2, ..., wN+1) = ( 1
N ,

1
N , ...,

1
N ).
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(9) DGP9 (cubic transformation with sparse weights). DGP9 considers the following nonlinear data

generating process:

y01t =

α1 +

N+1∑
j=2

wj(y
0
jt)

3 + ut

1/3

,

where α1, y0jt and ut are i.i.d.random draws from N(0, 1), and

(w2, ..., wN+1) = (0.2, 0.2, 0.2, 0.2, 0.2, 0, ..., 0).

(10) DGP10 (cubic transformation with equal weights). DGP10 considers the following nonlinear

data generating process:

y01t =

α1 +

N+1∑
j=2

wj(y
0
jt)

3 + ut

1/3

,

where α1, y0jt and ut are i.i.d.random draws from N(0, 1), and (w2, ..., wN+1) = ( 1
N ,

1
N , ...,

1
N ).

(11) DGP11 (DGP4 + heteroskedasticity). DGP11 is a variation of DGP4 with cross-sectional

heteroskedasticity, but without within-panel autocorrelation:

y0it = αi + bi1f1t + bi2f2t + 0.2hiuit,

with

f1t = 0.3f1,t−1 + ε1t, f2t = 0.6f2,t−1 + ε2t,

where h′is are random draws from uniform distribution U(0, 10), factor loadings bi1 and bi2 are

random draws from N(1, 1), while αi, uit, ε1t and ε2t are random draws from N(0, 1).

(12) DGP12 (DGP4 + autocorrelation). DGP12 is a varation of DGP4 with within-panel autocor-

relation, but no cross-sectional heteroskedasticity:
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y0it = αi + bi1f1t + bi2f2t + uit, uit = ρiui,t−1 + vit

with

f1t = 0.3f1,t−1 + ε1t, f2t = 0.6f2,t−1 + ε2t,

where vit are random draws from N(0, 1), while ρ′is are random draws from uniform distribution

U(0, 1). Note that uit is standardized to have unit variance in order to maintain homoskedasticity

across units.

(13) DGP13 (DGP4 + HAC). DGP13 is a variation of DGP4 with both cross-sectional heteroskedas-

ticity and within-panel autocorrelation:

y0it = αi + bi1f1t + bi2f2t + 0.2hiuit, uit = ρiui,t−1 + vit

f1t = 0.3f1,t−1 + ε1t, f2t = 0.6f2,t−1 + ε2t,

where h′is are generated as in DGP9, while vit and ρi are generated as in DGP10, and uit is again

standardized to have a unit variance.

In all simulations, the true treatment effect of size 1 is assumed to impact the first unit after the

treatment, while all other units receive no treatment. The nominal coverage rate is 95%. The

coverage probability (i.e., empirical coverage) is computed as the frequency that the constructed

prediction intervals contain the true treatment effect in 1000 simulations. When using the R package

quantregForest for the implementation of quantile random forest, we set the number of trees to be

1000, the minimum size of terminal nodes to be 10, and turn of the bootstrap part of the algorithm12.

Table 3.1 reports the performance of the QCM approach by varying the number of pretreatment

periods from 10 through 90, with N = 30. To save space, additional results with different number

of control units N are reported in the Supplementary Material13. The results are quite similar. The

results reported in Table 3.1 demonstrate great finite-sample properties of QCM prediction intervals

across different DGPs. The coverage probabilities reach around 0.9 even with T0 = 20. Overall,

the coverage probabilities appear to approach the nominal coverage rate of 0.95 as T0 becomes
12We find that the minimum size of terminal nodes of 10 is slightly better than the default setting of 5 for our data

structure.
13The readers are also referred to an earlier version of this paper for more results on the Monte Carlo experiments.
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Table 3.1: Coverage Probabilities of QCM (N = 30)
DGP T0 = 10 T0 = 20 T0 = 30 T0 = 40 T0 = 50 T0 = 60 T0 = 70 T0 = 80 T0 = 90

1 0.822 0.908 0.921 0.916 0.921 0.929 0.918 0.935 0.929
2 0.829 0.888 0.927 0.911 0.91 0.925 0.947 0.942 0.925
3 0.799 0.889 0.92 0.917 0.943 0.943 0.933 0.947 0.943
4 0.781 0.877 0.911 0.919 0.934 0.947 0.953 0.948 0.956
5 0.814 0.895 0.918 0.912 0.903 0.927 0.921 0.917 0.934
6 0.838 0.892 0.908 0.925 0.937 0.923 0.944 0.945 0.932
7 0.821 0.909 0.904 0.917 0.925 0.92 0.927 0.922 0.935
8 0.808 0.883 0.923 0.925 0.921 0.933 0.947 0.94 0.936
9 0.826 0.887 0.911 0.923 0.922 0.917 0.945 0.92 0.927
10 0.816 0.892 0.926 0.929 0.924 0.928 0.928 0.916 0.919
11 0.798 0.883 0.922 0.925 0.934 0.945 0.955 0.96 0.96
12 0.778 0.879 0.928 0.914 0.937 0.948 0.96 0.937 0.953
13 0.786 0.865 0.909 0.93 0.938 0.941 0.952 0.96 0.943

Note: T0 is the number of pretreatment periods. The nominal coverage rate is 95%.

large. These simulations confirm that QCM prediction intervals have excellent coverage properties

even in small samples with the number of pretreatment periods as small as 30. Moreover, QCM

prediction intervals are shown to be robust to heteroskedasticity, autocorrelation, sparsity and model

misspecification, since quantile random forest is nonparametric by nature as an ensemble learning

based on decision trees.

Next, we compare the performance of the prediction intervals derived from the quantile control

method (QCM) with existing approaches in the literature. In particular, we compare the finite sam-

ple performance of the proposed procedure with those of Cattaneo et al. (2021) and Chernozhukov

et al. (2021b). Cattaneo et al. (2021) propose three approaches to measure the out-of-sample un-

certainty of synthetic control methods: the sub-Gaussian approach using concentration inequalities

under subgaussian distribution, the location-scale approach relying on location-scale model, and the

quantile regresssion approach applying linear quantile regression to the residuals. 14 Chernozhukov

et al. (2021b) adopt a conformal inference relying on moving-block permutation of the estimated

residuals to hypothesis testing for synthetic control methods, and builds prediction intervals indi-

rectly by test inversion. For the three approaches by Cattaneo et al. (2021), we use the R package

scpi provided by the authors for implementation. For the implementation of conformal approach

by Chernozhukov et al. (2021b), we use the R package scinference provided by the authors.

In addition to the above methods, two other methods based on stronger assumptions are also con-

sidered in our Monte Carlo. In particular, Fujiki and Hsiao (2015) proposes confidence intervals for

regression control method (RCM) under the assumptions of linear factor model, iid disturbances
14As commented in Cattaneo et al. (2021), one may also consider using nonparametric quantile regression.
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and normality. Bai and Ng (2021) proposes a Tall-Wide algorithm to impute counterfactual out-

comes in a similar panel data setting, as well as confidence intervals relying on assumptions of linear

factor model, identical distributions (homoskedasticity) and normality. We also include these two

procedures for the comparison of the QCM with existing methods.

The sample size is T0 = 30, and the number of control unitsn is N = 30. We choose these sizes

because they are close to those in empirical applications in the literature, for example, the pre-

treatment periods for the California tabacco control study (Abadie et al., 2010) and the Germany

reunification study (Abadie et al., 2015) are only 19 and 30 respectively. The simulation results are

presented in Table 3.2 and Figure 3.1. Under a small-sample setting with N = 30 and T0 = 30,

the coverage probabilities of QCM are all above 0.9, and not far from the nominal coverage rate of

0.95. In comparison, prediction intervals of the Gaussian, Location-Scale and Quantile Regression

approaches generally undercover, with coverage probabilities being generally below 0.9, sometimes

dipping down below 0.8. Moreover, the performance of conformal approach seems unstable, with

coverage probabilities fluctuating between severe overcover (e.g., CP reaching 0.999 in DGP7) and

severe undercover (e.g., CP dropping to 0.709 in DGP3), despite great performance in DGP8 and

DGP12. The RCM-based method performs poorly when the sample size T0 is small, and undercover

in general. The Tall-Wide algorithm based approach has reasonable performance for some sim-

ple DGPs, but generally undercover in complicate models. As shown in Figure 3.1, the prediction

intervals of QCM clearly dominate other approaches in terms of coverage probabilities.

We finally compare large-sample properties of different approaches by considering the case with

T0 = 100 and N = 30. While T0 = 100 is unrealistically large in practice, it is helpful for in-

vestigating the consistency of prediction intervals. The results are reported in Table 3.3. With a

larger T0, the performance of Gaussian, Location-Scale and Quantile Regression approaches have

all improved. In particular, the performance of Location-Scale and Quantile Regression approaches

are now comparable to QCM, and even slightly outperform the performance of QCM under simple

linear or linear index setups (for example, DGPs 1, 2, 5, 7, and 8). However, these methods are

generally dominated by the QCM when the data generating process displays severe nonlinearity (for

example, DGPs 9, 10, 11, and 12). Both the RCM-based method and the Tall-Wide algorithm based

approach improve when T0 is large, but still undercover when nonlinearity increases. Such results

highlight the robustness of our proposed method. Finally, we note that the coverage probabilities of

conformal approach remain unstable and are far away from the nominal rate of 0.95 in many cases.
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Figure 3.1: Comparing Prediction Intervals
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3.6 Empirical Application

In this section, we study the impact on Hong Kong’s real GDP growth rate with the implementation

of CEPA between mainland China and Hong Kong using quarterly data from 1993Q1 to 2008Q1

for 25 countries and regions including Hong Kong (Hsiao et al., 2012). In June 2003, Hong Kong

signed the Closer Economic Partnership Arrangement (CEPA) with mainland China, which went

into effect on January 1st, 2004. CEPA aimed to strengthen the linkage between mainland China and

Hong Kong by liberalizing trade in services, enhancing cooperation in the area of finance, promoting

trade and investment facilitation and mutual recognition of professional qualifications. Using AICC

information criterion, Hsiao et al. (2012) select six countries including Austria, Italy, Korea, Mexico,

Norway and Singapore, and use OLS to construct the counterfactual GDP of Hong Kong if CEPA

was not implemented.

Some preliminary results based on the OLS regression control method are provided in Section B of

Supplementary Material. In particular, we replicate Hsiao et al. (2012)’s results with Hong Kong’s

actual GDP and its OLS prediction (the gap graph), and report it in Figure B.1. Moroever, Figure

B.2 presents the point estimates of the treatment effects using RCM (based on OLS). While the

estimated treatment effects remain positive throughout the post-treatment periods, we are unsure

whether they are statistically significant, since no pointwise standard errors, confidence intervals or

p-values are given in Hsiao et al. (2012).

We next revisit this dataset using the proposed QCM to study the effect of the economic integration

between Hong Kong and mainland China. When implementing Random Forest (using R package

randomForest) and QRF (using R package quantregForest), we again set the number of trees to

be 1000, and turn off the bootstrap part of the algorithm. Since there are only 24 control units, we

use the default value of 5 for the minimum size of terminal nodes. We also provide a Stata command

qcm available froom SSC for easy implementation of QCM.

Figure 3.2 graphs Hong Kong’s actual GDP and its Random Forest prediction (i.e., using Random

Forest for point estimation, as we discussed in Remark 3.2), where the pre-treatment R2 reaches

0.970. It is interesting to observe that while the Random Forest prediction has a better overall pre-

treatment fit than RCM prediction (which is 0.931, see Figure B.1 in Supplementary Material), the

former actually misses some of the deep trough and subsequent sharp rebounce following the political

integration of Hong Kong with mainland China in 1997Q3. Since the event of political integration
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with mainland China presumably only impacted Hong Kong to a large extent, the fluctuation of

Hong Kong’s GDP following 1997Q3 in Figure 3.2 is not supposed to be fully explained by other

control countries or regions’ GDP movements. In light of this, the near perfect RCM prediction

following 1997Q3 appears to be overfit, which may reduce its ability to generalize to future unseen

data.

Figure 3.2: Actual Outcomes versus Random Forest Prediction

Figure 3.3 graphs the point estimates of treatment effects by Random Forest, as well as the 95%

prediction intervals by QCM. It is clear from Figure 3.3 that only the treatment effect for the second

period after the treatment (i.e., 2004Q2) is statistically significant at the 5% level, since its associated

prediction interval does not contain zero; whereas prediction intervals for all other post-treatment

periods contain zero. This is reminiscent of the effects of temporary boom in West Germany’s

GDP following the German reunification (Abadie et al., 2015). However, the effects of the economic

integration with mainland China on Hong Kong’s GDP remained in the positive territory afterwards,

despite losing their economic and statistical significance over time.

In Figure 3.3, the point estimates of the mean treatment effects via Random Forest appear to be

mostly centered in the QCM confidence intervals, which may not always be the case if the conditional
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Figure 3.3: Mean Treatment Effects by Random Forest with 95% CI

distribution is not symmetric. Alternatively, one could use “median treatment effects” estimated by

QRF at the 50% quantile as point estimates, as we discussed in Remark 3.3. The results are presented

in Figure B.3 in Section B of Supplementary Material, which are very similar to Figure 3.3.

Detailed information behind Figure 3.3 and Figure B.3 are also presented in the Supplementary

Material. As robustness checks, in Section B of Supplementary Material, we also conduct in-space

and in-time placebo tests, which yield results consistent with QCM. Moreover, when we restrict

the pre-treatment periods to avoid potential confounding events, the results from QCM are still

robust, as reported in the Supplementary Material. Comparing to the empirical results based on the

RCM, the proposed QRF method indicates smaller treatment effects of the CEPA on Hong Kong’s

economic growth.
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3.7 Conclusion

In this paper, we study robust inference for treatment effects in panel data under SCM framework.

We propose a simple way to construct pointwise confidence intervals for the treatment effects via

QRF. As a nonparametric ensemble learning based on decision trees, the greatest strength of QRF

lies in its robustness to heteroskedasticity, autocorrelation and model misspecification. Since this

approach uses quantile regression and QRF in particular to construct a counterfactual control unit

with its relevant quantiles, we call it QCM. Under some regularity conditions, we prove that the

proposed method is asymptotically valid under our panel and time-series setting. Monte Carlo

simulations show that QCM confidence intervals have excellent coverage probability close to the

nominal rate even in small samples, which are robust to heteroskedasticity, autocorrelation, and

model misspecification. We also revisit the case study of the economic integration between Hong

Kong and mainland China to demonstrate the usefulness of QCM.

The basic idea of our proposed inference via QCM is straightforward for empirical practitioners.

Moreover, QCM can be easily implemented by using forthcoming packages qcm in both R and Stata.

We hope that practitioners would find QCM a reliable and robust approach of inference while

estimating treatment effects for a single treated unit with panel data.

3.8 Technical Details

3.8.1 Approximating Rectangles

The proof of the consistency of QRF will be based on the technique of approximating rectangles de-

veloped by Wager and Walther (2016). For any data-dependent node R (X0, θ), Wager and Walther

(2016) propose to use a set of rectangles to approximate it, where the rectangles are predetermined

and do not depend on the data. This section introduces some basic results of approximating rect-

angles.

For a balanced tree, there are 2k terminal nodes at splitting level k. For any positive integer k

and 1 ≤ l ≤ 2k, the l-th terminal node Rl can be represented as Rl =
⊗N

j=1[r
−
l,j , r

+
l,j ]

15, where

15Note that in practice, Rl =
⊗N

j=1 Rl,j , where Rl,j could be [r−l,j , r
+
l,j ], (r−l,j , r

+
l,j ], [r−l,j , r

+
l,j) or (r−l,j , r

+
l,j). For

notational ease, we do not distinguish between all of these situations.
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0 ≤ r−l,j < r+l,j ≤ 1. For any node (rectangle) R =
⊗N

j=1[r
−
j , r

+
j ], define the support of R as S (Rl),

where

S (R) =
{
j ∈ {1, 2, · · · , N} : either r−j > 0 or r+j < 1

}
.

Intuitively, the support of a terminal node is the collection of all j’s such that along the j-th covariate

R was cut at least once.

Denote s = min {N, k}. At splitting level k, there obviously holds |S (Rl)| ≤ s. Let S ⊆ {1, 2, · · · , N}

such that |S| = s. According to Wager and Walther (2016), each terminal node Rl with support in

S can be approximated by a set of rectangles RS,w,ε in the sense that, for any terminal node Rl, if

µ is the Lebesgue measure and µ (Rl) ≥ w, we can find R+, R− ∈ RS,w,ε such that R− ⊆ Rl ⊆ R+,

and

e−εµ
(
R+
)
≤ µ (Rl) ≤ eεµ

(
R−) . (3.19)

Consequently, let

RN,k,w,ε = ∪S⊆{1,2,··· ,N},|S|=sRS,w,ε.

If min1≤l≤2k µ (Rl) ≥ w, then any Rl can be approximated by RN,k,w,ε in the sense of (3.19).

Wager and Walther (2016) demonstrate that if |S| = s, then

|RS,w,ε| =
1

w

(
8s2

ε2

(
1 + log2

[
1

w

]))s

· (1 +O (ε)) .

When µ (Rl) ≥ ξ−k for all l, taking w = ξ−k and ε = o (1) implies that for T0 sufficiently large,

there holds |RN,k,w,ε| ≤ 2

 N

s

 · ξk · (Cs2kε−2
)s. Tedious algebra leads to

log |RN,k,w,ε| ≤ Ck
(
logN + log k + log ε−1

)
,

for any combination of N and k.

Finally, when w = ξ−k and ε = o (1) hold, there holds

min {µ (R) : R ∈ RN,k,w,ε} ≥ (2ξ)
−k
.

This is because, consider R ∈ RS,w,ε, according to Wager and Walther (2016), the rectangle has

length at least w2τj along covariate j, where j ∈ S, τj ∈ 0, 1, · · · ,
[
log2 w

−1
]

and
∑

j∈S τj ≥
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(s− 1) log2
(
1
w

)
− s. So the volume of R is at least16

∏
j∈S

(w2τj ) = ws2
∑

j∈S τj ≥ ws

(
1

w

)s−1

2−s = w2−min{N,k}

≥ ξ−k2−k = (2ξ)
−k
.

3.8.2 Additional Lemmas

This section displays the auxiliary lemmas that will be useful in the proof of our main results, whose

proof can be found in Section C of Supplementary Material to this paper.

Lemma 3.4. Under Assumption 3.1–Assumption 3.4, taking w = ξ−k and ε = π (k,N, T0) , then

there exists a constant C > 0 such that

lim
T0→∞

P

[
sup

R∈RN,k,w,ε

sup
y∈R

∣∣∣∣∣ 1

#R

∑
Xt∈R

1 (Yt ≤ y)− F (y|R)

∣∣∣∣∣ ≤ C · π (k,N, T0)
]
= 1.

Lemma 3.5. Under Assumption 3.1–Assumption 3.4, if w and ε are taken as in Lemma 3.4, then

there exists a constant C > 0 such that

lim
T0→∞

P

[
sup

R1⊆R2∈RN,k,w,ε

∣∣∣∣#R1 −#R2

#R2
− P (R1)− P (R2)

P (R2)

∣∣∣∣ ≤ C · π (k,N, T0)
]
= 1.

Lemma 3.6. Under Assumption 3.1–Assumption 3.4, if w and ε are taken as in Lemma 3.4, then

there exists a constant C > 0 such that

lim
T0→∞

P

 sup
R−⊆R+∈RN,k,w,ε

µ(R+)≤e2εµ(R−)

∣∣∣∣#R+ −#R−

#R+

∣∣∣∣ ≤ C · π (k,N, T0)
 = 1.

Lemma 3.7. Suppose that Assumption 3.1–Assumption 3.4 hold and |Y | ≤ 1 almost surely, then

there holds

sup
µ(R)≥ξ−(k−1),i,ξ−1≤λ≤1−ξ−1

∣∣∣ ̂I (R, i, λ)− I (R, i, λ)
∣∣∣ = Op (π (k,N, T0)) .

16Note that in Wager and Walther (2016), the approximating rectangles have the form R =
⊗N

j=1[r
−
j , r+j ], and

moreover, taking j for an example, when r−j +w2τj > 1, r+j is truncated to 1. This implies that when r−j is close to 1,
µ (R) < (2ξ)−k may occur since r+j − r−j < w2τj . To deal with this problem, we can slightly enlarge R by expanding
[r−j , 1] to [r−j , r−j +w2τj ]. Then (3.19) still holds, and min

{
µ (R) : R ∈ RN,k,w,ε

}
≥ (2ξ)−k holds at the same time.
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Lemma 3.8. Suppose that Assumption 3.1, Assumption 3.5 and Assumption 3.6 hold, |Y | ≤ 1 holds

almost surely, and k is fixed, then infa≤η≤1 δ (η) > 0 holds for any 0 < a < 1.

Lemma 3.9. Suppose that Assumption 3.1 and Assumption 3.5 hold and |Y | ≤ 1 holds almost

surely, then for any rectangle R =
⊗N

i=1[r
−
i , r

+
i ] and j ∈ Q1, we have

I (R, j, λ) ≤ C ·
(
r+j − r

−
j

)
,

where C is a constant independent of R, j, and λ.

3.8.3 Proofs of Main Results

Proof of Theorem 3.1

Proof. Take w and ε as those in Lemma 3.4. According to Wager and Walther (2016), under As-

sumption 3.1-Assumption 3.4, for any terminal node Rl with µ (Rl) ≥ w, we can find approximating

rectangles R+, R− ∈ RN,k,w,ε such that R− ⊆ Rl ⊆ R+, and e−εµ (R+) ≤ µ (Rl) ≤ eεµ (R−) .

Denote such pair of R+ and R− as R+
l and R−

l . Then we have

sup
X∈χ

sup
y∈R

∣∣∣F̂θ (y|X)− F (y|X ∈ R (X, θ))
∣∣∣

≤ sup
l

sup
y∈R

∣∣∣∣∣∣ 1

#Rl

∑
Xt∈Rl

1 (Yt ≤ y)−
1

#R+
l

∑
Xt∈R+

l

1 (Yt ≤ y)

∣∣∣∣∣∣ (i)
+ sup

l
sup
y∈R

∣∣∣∣∣∣ 1

#R+
l

∑
Xt∈R+

l

1 (Yt ≤ y)− F
(
y|X ∈ R+

l

)∣∣∣∣∣∣ (ii)
+ sup

l
sup
y∈R

∣∣F (y|Xt ∈ R+
l

)
− F (y|X ∈ Rl)

∣∣ (iii).
For (i), we have that

(i) ≤ sup
l

sup
y∈R

∣∣∣∣∣ 1

#Rl

∑
Xt∈Rl

1 (Yt ≤ y)−
1

#R+
l

∑
Xt∈Rl

1 (Yt ≤ y)

∣∣∣∣∣+ sup
l

sup
y∈R

∣∣∣∣∣∣∣
1

#R+
l

∑
Xt∈(R+

l −Rl)

1 (Yt ≤ y)

∣∣∣∣∣∣∣
≤ 2 sup

l

∣∣∣∣#R+
l −#Rl

#R+
l

∣∣∣∣ ≤ 2 sup
R−⊆R+∈RN,k,w,ε

µ(R+)≤e2εµ(R−)

∣∣∣∣#R+ −#R−

#R+

∣∣∣∣ .
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For (ii), we have

(ii) ≤ sup
R∈RN,k,w,ε

sup
y∈R

∣∣∣∣∣ 1

#R

∑
Xt∈R

1 (Yt ≤ y)− F (y|X ∈ R)

∣∣∣∣∣ .
For (iii), we have for T0 sufficiently large,

(iii) ≤ sup
l

sup
y∈R

∣∣∣∣∣
∫
X∈Rl

∫ y

−∞ f (Y,X) dY dX

P
(
X ∈ R+

l

) −
∫
X∈Rl

∫ y

−∞ f (Y,X) dY dX

P (X ∈ Rl)

∣∣∣∣∣
+ sup

l
sup
y∈R

∣∣∣∣∣∣
∫
X∈(R+

l −Rl)
∫ y

−∞ f (Y,X) dY dX

P
(
X ∈ R+

l

)
∣∣∣∣∣∣ ≤ sup

l
sup
y∈R

2

∣∣∣∣∣P
(
X ∈ R+

l

)
− P (X ∈ Rl)

P
(
X ∈ R+

l

) ∣∣∣∣∣
≤ sup

l
sup
y∈R

2

∣∣∣∣∣P
(
X ∈ R+

l

)
− P

(
X ∈ R−

l

)
P
(
X ∈ R+

l

) ∣∣∣∣∣ ≤ 2ζ2
(
1− e−2ε

)
≤ 8ζ2ε.

The above implies that for T0 sufficiently large,

sup
X∈χ

sup
y∈R

∣∣∣EθF̂θ (y|X)− EθF (y|Xt ∈ R (X, θ))
∣∣∣

≤ 2 sup
R−⊆R+∈RN,k,w,ε

µ(R+)≤e2εµ(R−)

∣∣∣∣#R+ −#R−

#R+

∣∣∣∣+ sup
R∈RN,k,w,ε

sup
y∈R

∣∣∣∣∣ 1

#R

∑
xt∈R

1 (Yt ≤ y)− F (y|Xt ∈ R)

∣∣∣∣∣+ 8ζ2ε.

From Lemma 3.4, Lemma 3.5, and Lemma 3.6, let C = 2C3 + C2 + 8ζ2, we have

P

[
sup
x∈χ

sup
y∈R

∣∣∣EθF̂θ (y|X)− EθF (y|Xt ∈ R (X, θ))
∣∣∣ > C · π (k,N, T0)

]

≤ P

2 sup
R−⊆R+∈RN,k,w,ε

µ(R+)≤e2εµ(R−)

∣∣∣∣#R+ −#R−

#R+

∣∣∣∣ > 2C3π (k,N, T0)


+ P

[
sup

R∈RN,k,w,ε

sup
y∈R

∣∣∣∣∣ 1

#R

∑
Xt∈R

I (Yt ≤ y)− F (y|Xt ∈ R)

∣∣∣∣∣ > C2π (k,N, T0)

]
→ 0.

This finishes the proof of Theorem 3.1.
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Proof of Theorem 3.2

Proof. Note that under Assumption 3.1, we have ζ−1 ≤ f[X]Q

(
[X]Q

)
≤ ζ holds for any X ∈ χ. For

F (y|R (X0, θ)), we have that

F (y|R (X0, θ)) =

∫
X∈R(X0,θ)

∫ y

−∞ fY |X (Y |X ) fX (X) dY dX

P (X ∈ R (X0, θ))

=

∫
X∈R(X0,θ)

fX (X) dX
∫ y

−∞ fY |[X]Q

(
Y
∣∣[X]Q

)
dY

P (X ∈ R (X0, θ))

=

∫
X∈R(X0,θ)

fX (X) dX
∫ y

−∞ fY |[X]Q

(
Y
∣∣[X0]Q

)
dY

P (X ∈ R (X0, θ))

+

∫
X∈R(X0,θ)

fX (X) dX
∫ y

−∞
{
fY |[X]Q

(
Y
∣∣[X]Q

)
− fY |[X]Q

(
Y
∣∣[X0]Q

)}
dY

P (X ∈ R (X0, θ))

For the first term on the RHS of the last equality, we have

∫
X∈R(X0,θ)

fX (X) dX
∫ y

−∞ fY |[X]Q

(
Y
∣∣[X0]Q

)
dY

P (X ∈ R (X0, θ))
=
F
(
y
∣∣[X0]Q

)
· P (X ∈ R (X0, θ))

P (X ∈ R (X0, θ))

= F
(
y
∣∣[X0]Q

)
.

The remaining task is to obtain an upper bound for the second term. Note that

∣∣fY |[X]Q

(
Y
∣∣[X]Q

)
− fY |[X]Q

(
Y
∣∣[X0]Q

)∣∣ = ∣∣∣∣∣fQ
(
Y, [X]Q

)
f[X]Q

(
[X]Q

) − fQ
(
Y, [X0]Q

)
f[X]Q

(
[X0]Q

) ∣∣∣∣∣
≤

∣∣∣∣∣fQ
(
Y, [X]Q

)
f[X]Q

(
[X]Q

) − fQ
(
Y, [X0]Q

)
f[X]Q

(
[X]Q

) ∣∣∣∣∣+
∣∣∣∣∣fQ

(
Y, [X0]Q

)
f[X]Q

(
[X]Q

) − fQ
(
Y, [X0]Q

)
f[X]Q

(
[X0]Q

) ∣∣∣∣∣ .
For the first term on the RHS of the inequality, we have

∣∣∣∣∣fQ
(
Y, [X]Q

)
f[X]Q

(
[X]Q

) − fQ
(
Y, [X0]Q

)
f[X]Q

(
[X]Q

) ∣∣∣∣∣ ≤ L (Y ) ·
∥∥[X]Q − [X0]Q

∥∥
f[X]Q

(
[X]Q

) ≤ ζL (Y ) ·
∥∥[X]Q − [X0]Q

∥∥ .
For the second term, we have

∣∣∣∣∣fQ
(
Y, [X0]Q

)
f[X]Q

(
[X]Q

) − fQ
(
Y, [X0]Q

)
f[X]Q

(
[X0]Q

) ∣∣∣∣∣ ≤ fQ (Y, [X0]Q
)
·
∣∣f[X]Q

(
[X]Q

)
− f[X]Q

(
[X0]Q

)∣∣
f[X]Q

(
[X0]Q

)
f[X]Q

(
[X]Q

)
≤
LζfQ

(
Y, [X0]Q

)
·
∥∥[X]Q − [X0]Q

∥∥
f[X]Q

(
[X0]Q

) .
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Since
∥∥[X]Q − [X0]Q

∥∥ ≤ diam
(
[R (X0, θ)]Q

)
, we have

∣∣∣∣∣
∫
X∈R(X0,θ)

f[X]Q (X) dX
∫ y

−∞
{
fY |[X]Q

(
Y
∣∣[X]Q

)
− fY |[X]Q

(
Y
∣∣[X0]Q

)}
dY

P (X ∈ R (X0, θ))

∣∣∣∣∣
≤

∫
X∈R(X0,θ)

f[X]Q (X) dX
∫ y

−∞ ζL (Y ) · diam
(
[R (X0, θ)]Q

)
dY

P (X ∈ R (X0, θ))

+

∫
X∈R(X0,θ)

f[X]Q (X) dX
∫ y

−∞
LfQ(Y,[X0]Q)·diam([R(X0,θ)]Q)

f[X]Q([X0]Q)
dY

P (X ∈ R (X0, θ))

≤

∫
X∈R(X0,θ)

f[X]Q (X) dX
∫∞
−∞ ζL (Y ) · diam

(
[R (X0, θ)]Q

)
dY

P (X ∈ R (X0, θ))

+

∫
X∈R(X0,θ)

f[X]Q (X) dX
∫∞
−∞

LfQ(Y,[X0]Q)·diam([R(X0,θ)]Q)
f[X]Q([X0]Q)

dY

P (X ∈ R (X0, θ))

≤ ζLdiam
(
[R (X0, θ)]Q

)
+ ζLdiam

(
[R (X0, θ)]Q

)
= Cdiam

(
[R (X0, θ)]Q

)
.

As a result, we have

|F (y|R (X0, θ))− F (y|X0)| ≤ Cdiam
(
[R (X0, θ)]Q

)
.

So

|EθF (y|R (X0, θ))− F (y|X0)| ≤ Eθ |F (y|X ∈ R (X0, θ))− F (y|X0)|

≤ CEθdiam
(
[R (X0, θ)]Q

)
.

Taking supreme for both sides with respect to X0, this finishes the proof of Theorem 3.2.

Proof of Lemma 3.1

Proof. We only need to show that

lim
T0→∞

P

 inf
X0∈X :Ψ(X0,k,d)̸=∅

inf
θ∈Ψ(X0,k,d)

∑
j∈Q1

N (X0, θ, k, j) ≤ d− 1

 = 0.
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Note that inf
X0∈X :Ψ(X0,k,d)̸=∅

inf
θ∈Ψ(k,d)

∑
j∈Q1

N (X0, θ, k, j) ≤ d− 1


⊆

{
sup

R⊆χ:µ(R)≥ξ−(k−1)

[
sup
i/∈Q1

sup
ξ−1≤λ≤1−ξ−1

̂I (R, i, λ)− sup
j∈Q1

sup
ξ−1≤λ≤1−ξ−1

̂I (R, j, λ)

]
≥ 0

}
.

Since

sup
R⊆χ:µ(R)≥ξ−(k−1)

[
sup
i/∈Q1

sup
ξ−1≤λ≤1−ξ−1

̂I (R, i, λ)− sup
j∈Q1

sup
ξ−1≤λ≤1−ξ−1

̂I (R, j, λ)

]

≤ sup
R⊆χ:µ(R)≥ξ−(k−1)

[
sup
i/∈Q1

sup
ξ−1≤λ≤1−ξ−1

I (R, i, λ)− sup
j∈Q1

sup
ξ−1≤λ≤1−ξ−1

I (R, j, λ)

]

+ sup
R⊆χ:µ(R)≥ξ−(k−1)

sup
i/∈Q1

sup
ξ−1≤λ≤1−ξ−1

∣∣∣ ̂I (R, i, λ)− I (R, i, λ)
∣∣∣

+ sup
R⊆χ:µ(R)≥ξ−(k−1)

sup
j∈Q1

sup
ξ−1≤λ≤1−ξ−1

∣∣∣ ̂I (R, j, λ)− I (R, j, λ)
∣∣∣ .

According to Lemma 3.8 and Assumption 3.7, we have

sup
R⊆χ:µ(R)≥ξ−(k−1)

[
sup
i/∈Q1

sup
ξ−1≤λ≤1−ξ−1

I (R, i, λ)− sup
j∈Q1

sup
ξ−1≤λ≤1−ξ−1

I (R, j, λ)

]

≤ − (1− ω) sup
R⊆χ:µ(R)≥ξ−(k−1)

sup
j∈Q1

sup
ξ−1≤λ≤1−ξ−1

I (R, j, λ) ≤ − (1− ω) inf
η≥ξ−(k−1)

δ (η) .

According to Lemma 3.7, we have

sup
R⊆χ:µ(R)≥ξ−(k−1)

sup
i/∈Q1

sup
ξ−1≤λ≤1−ξ−1

∣∣∣ ̂I (R, i, λ)− I (R, i, λ)
∣∣∣ = Op (π (k,N, T0)) ,

and

sup
R⊆χ:µ(R)≥ξ−(k−1)

sup
j∈Q1

sup
ξ−1≤λ≤1−ξ−1

∣∣∣ ̂I (R, j, λ)− I (R, j, λ)
∣∣∣ = Op (π (k,N, T0)) .

The above implies that

lim
T0→∞

P

[
sup

R⊆χ:µ(R)≥ξ−(k−1)

[
sup
i/∈Q1

sup
ξ−1≤λ≤1−ξ−1

I (R, i, λ)− sup
j∈Q1

sup
ξ−1≤λ≤1−ξ−1

I (R, j, λ)

]

> −1

2
(1− ω) inf

η≥ξ−(k−1)
δ (η)

]
= 0.

This leads to the desired result.
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Proof of Lemma 3.2

Proof. First note that since the total number of splits is fixed at k, with probability going to 1,

we only split on the covariates within set Q1 when all the covariates in Q1 are simultaneously

selected as candidates. For any fixed X0 such that Ψ(X0, k, |Q1| · max {d, d∗}) ̸= ∅ and any fixed

θ ∈ Ψ(X0, k, |Q1| ·max {d, d∗}), since the total number of rounds in which all covariates in Q1 are

simultaneously selected as candidates is |Q1|·max{d, d∗}, then at least one covariate j1 ∈ Q1 is chosen

and split for no less than d∗ times within the rounds in which all the covariates in Q1 are selected

as candidates. Suppose there is some covariate j2 ∈ Q such that it was split with less than d times,

then supξ−1≤λ≤1−ξ−1 I(R, j2, λ) is lower bounded by infη≥ξ−(d−1) δ (η) according to Lemma 3.8.

Consider the round where all the covariates in Q1 are selected as candidates and the last split

of j1 takes place. In this round, supξ−1≤λ≤1−ξ−1 I(R, j1, λ) is upper bounded by C ·
(
1− ξ−1

)d∗−1

according to Lemma 3.9, which is strictly smaller than 1
2 infη≥ξ−(d−1) δ (η). So the difference between

supξ−1≤λ≤1−ξ−1 I(R, j1, λ) and supξ−1≤λ≤1−ξ−1 I(R, j2, λ) is at least 1
2 infη≥ξ−(d−1) δ (η). Moreover,

Lemma 3.7 implies the estimation error degenerates to zero uniformly with respect to all the nodes

that may appear in the first k rounds of splits. So j2 should be split instead of j1 with probability

going to 1, which leads to a contradiction. Note that the above argument does not depend on the

specific X0 or θ, so we prove the result.

Proof of Lemma 3.3

Proof. We first prove the result under diverging N . Note that for any fixed k, Lemma 3.2 leads to

lim
T0→∞

P

[
Ψ(X0, k, |Q1| ·max {d, d∗}) ⊆

{
θ : min

j∈Q
N (X0, θ, k, j) ≥ d

}
for all X0

]
= 1,

which implies that

lim
T0→∞

P

[
Pθ [Ψ (X0, k, |Q1| ·max {d, d∗})] ≤ Pθ

[
min
j∈Q
N (X0, θ, k, j) ≥ d

]
for all X0

]
= 1,

and

lim
T0→∞

P

[
inf

X0∈X
Pθ [Ψ (X0, k, |Q1| ·max {d, d∗})] ≤ inf

X0∈X
Pθ

[
min
j∈Q
N (X0, θ, k, j) ≥ d

]]
= 1.
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Note that in each round of random feature selection, a total of mtry features are selected. So in a

single round, the probability of drawing all covariates in Q1 simultaneously is given by

C
mtry−|Q1|
N−|Q1|

C
mtry

N

=

(
1− |Q1|

N

)(
1− |Q1|

N − 1

)
· · ·
(
1− |Q1|

mtry

)

≥
(
1− |Q1|

mtry

)N−mtry

=

((
1− |Q1|

mtry

)mtry
)N−mtry

mtry

≥ e
1
2

(
lim infN→∞

(
1− N

mtry

))
≡ P > 0

for N large. Then for N sufficiently large, we have that

Pθ [Ψ (X0, k, |Q1| ·max {d, d∗})] ≥ 1−
|Q1|·max{d,d∗}−1∑

j=0

Cj
k(1− P )

k−jP j .

Note that the RHS does not depend on X0, so we have that

inf
X0∈X

Pθ [Ψ (X0, k, |Q1| ·max {d, d∗})] ≥ 1−
|Q1|·max{d,d∗}−1∑

j=0

Cj
k(1− P )

k−jP j .

Take limit with respect to k for both sides, we have that

lim
k→∞

inf
X0∈X

Pθ [Ψ (X0, k, |Q1| ·max {d, d∗})] ≥ 1− lim
k→∞

|Q1|·max{d,d∗}−1∑
j=0

Cj
k(1− P )

k−jP j

= 1.

Then for any 0 < c < 1, for k that is sufficiently large, we have that

lim
T0→∞

P

[
inf

X0∈X
Pθ

[
min
j∈Q
N (X0, θ, k, j) ≥ d

]
> c

]
= 1

holds. As a result, we have

p limT0→∞ inf
X0∈X

Pθ

[
min
j∈Q
N (X0, θ, k, j) ≥ d

]
= 1.

Now we prove the result under fixed N , in which case Q1 = {1, 2, · · · , N}. We will only consider

mtry > 1, otherwise the proof is trivial. We first assume that we observe I(R, j, λ) directly. Note

that showing the result is equivalent to showing that

lim
k→∞

sup
X0∈X

Pθ

[
min
j∈Q
N (X0, θ, k, j) < d

]
= 0
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for any fixed d. Note that

Pθ

[
min
j∈Q
N (X0, θ, k, j) < d

]
≤
∑
j∈Q

Pθ [N (X0, θ, k, j) < d] ,

so we only need to show that

lim
k→∞

sup
X0∈X

Pθ [N (X0, θ, k, j) < d] = 0

for each j ∈ Q. Suppose the above result does not hold, then for some fixed d and some j∗ ∈ Q,

there holds

lim infk→∞ sup
X0∈X

Pθ [N (X0, θ, k, j
∗) < d] > 0.

Define Φ(X0, k, j
∗, N · s) as the collection of θ such that any covariate j ̸= j∗ is simultaneously

selected with j∗ with no less than N · s times. Then for any θ ∈ Φ(X0, k, j
∗, N · s), at least one

covariate is split with more than s times when it is jointly selected with covariate j∗ (such covariate

can be j∗ itself). Now let s = max{d, d∗}, where d∗ is specified in the proof of Lemma 3.2. If

for such θ, covariate j∗ is split with no less than max{d, d∗} times, then such θ can not be con-

tained in set {θ : N (X0, θ, k, j
∗) < d}. If for such θ, some covariate other than j∗ is split with no

less than max{d, d∗} times, then consider the last round where covariate j is selected with j∗ and

is split over. If at that point covariate j is split with less than d times, then supλ I(R, j, λ) ≤

1/2 infη≥ξ−(d−1) δ(η) while supλ I(R, j∗, λ) ≥ infη≥ξ−(d−1) δ(η), implying that in that round j∗, in-

stead of j, should be split, which leads to a contradiction. This also implies that θ can not be in the set

{θ : N (X0, θ, k, j
∗) < d}. So together {θ : N (X0, θ, k, j

∗) < d}
⋂

Φ(X0, k, j
∗, N · max{d, d∗}) = ∅.

Then

1 ≥ sup
X0∈X

Pθ [{The Collection of All θ}] ≥ sup
X0∈X

Pθ [Φ(X0, k, j
∗, N ·max{d, d∗})]

+ sup
X0∈X

Pθ [N (X0, θ, k, j
∗) < d] .

Taking lim inf for both sides with respect to k, we have that

lim infk→∞ sup
X0∈X

Pθ [Φ(X0, k, j
∗, N ·max{d, d∗})] = 1

and this leads to a contradiction if lim infk→∞ supX0∈X Pθ [N (X0, θ, k, j
∗) < d] > 0. So it can not

happen. Note that above proof requires that we observe I(R, j, λ), but again, Lemma 3.7 implies
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that the estimation error is uniform bounded for any fixed k, this finishes the proof.

Proof of Theorem 3.3

Proof. According to Theorem 3.1 and Theorem 3.2, it remains to show that

sup
X0∈X

Eθdiam
(
[R (X0, θ)]Q

)
→p 0.

Since

sup
X0∈X

Eθdiam
(
[R (X0, θ)]Q

)
≤ sup

X0∈X
Eθ

{
diam

(
[R (X0, θ)]Q

)∣∣min
j∈Q
N (X0, θ, k, j) ≥ d

}
Pθ

(
min
j∈Q
N (X0, θ, k, j) ≥ d

)
+ sup

X0∈X
Eθ

{
diam

(
[R (X0, θ)]Q

)∣∣min
j∈Q
N (X0, θ, k, j) < d

}
Pθ

(
min
j∈Q
N (X0, θ, k, j) < d

)
≤
(
1− ξ−1

)d
+ sup

X0∈X
Pθ

(
min
j∈Q
N (X0, θ, k, j) < d

)
,

and according to Lemma 3.3, we have that supX0∈X Pθ (minj∈QN (X0, θ, k, j) < d)→p 0 as T0 →∞

and k →∞, so

lim
T0,k→∞

P

[
sup

X0∈X
Eθdiam

(
[R (X0, θ)]Q

)
≤ 2

(
1− ξ−1

)d]
= 1.

Since this holds for any d, we have supX0∈X Eθdiam
(
[R (X0, θ)]Q

)
→p 0, and hence the uniform

consistency result is proved.

To prove that the conditional quantile estimator is uniformly consistent, we first show that

sup
X0∈X ,0≤α≤1

∣∣∣EθF̂θ(Q̂Y (α|X0)|X0)− α
∣∣∣→p 0.

Suppose that the above does not hold, we can find a sequence of XT0
0 and αT0 and some positive

constant υ such that

lim infn→∞P
(
EθF̂θ(Q̂Y (α

T0 |XT0
0 )|XT0

0 )− αT0 ≥ υ
)
> 0.

Note that according to the definition of quantile function, EθF̂θ(Q̂Y (α
T0 |XT0

0 ) − ϱ|XT0
0 ) < αT0 for
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arbitrary small ϱ > 0. Then

υ <
∣∣∣EθF̂θ(Q̂Y (α

T0 |XT0
0 )− ϱ|XT0

0 )− EθF̂θ(Q̂Y (α
T0 |XT0

0 )|XT0
0 )
∣∣∣

≤
∣∣∣EθF̂θ(Q̂Y (α

T0 |XT0
0 )− ϱ|XT0

0 )− F (Q̂Y (α
T0 |XT0

0 )− ϱ|XT0
0 )
∣∣∣

+
∣∣∣EθF̂θ(Q̂Y (α

T0 |XT0
0 )|XT0

0 )− F (Q̂Y (α
T0 |XT0

0 )|XT0
0 )
∣∣∣

+
∣∣∣F (Q̂Y (α

T0 |XT0
0 )− ϱ|XT0

0 )− F (Q̂Y (α
T0 |XT0

0 )|XT0
0 )
∣∣∣

≤ 2 sup
X0∈X ,y

∣∣∣EθF̂θ (y|X0)− F (y|X0)
∣∣∣+ sup

X0∈X ,y
Fy (y|X0) · ϱ

Obviously, we can choose ϱ small such that supX0∈X ,y Fy (y|X0) · ϱ < υ/2. Then the above implies

that supX0∈X ,y

∣∣∣EθF̂θ (y|X0)− F (y|X0)
∣∣∣ > υ/4. But such event has probability going to zero

according to the uniform consistency of the conditional CDF estimator. This leads to a contradiction

and hence proves our result.

Now we prove our theorem. For any a and positive constant c, define (a)c = a if −c ≤ a ≤ c,

(a)c = −c if a < −c and (a)c = c if a > c. We have that,

EθF̂θ(Q̂Y (α|X0)|X0)− α = EθF̂θ(Q̂Y (α|X0)|X0)− F (QY (α|X0)|X0)

= EθF̂θ(Q̂Y (α|X0)|X0)− F (Q̂Y (α|X0)|X0) + F (Q̂Y (α|X0)|X0)− F ((Q̂Y (α|X0))c|X0)

+ F ((Q̂Y (α|X0))c|X0)− F ((QY (α|X0)c|X0) + F ((QY (α|X0))c|X0)− F (QY (α|X0)|X0).

Define Lc = infX0∈X ,−c≤y≤c Fy(y|X0), which is strictly positive for any positive c < 1, then

sup
X0∈X ,0≤α≤1

∣∣∣(Q̂Y (α|X0))c − (QY (α|X0))c

∣∣∣
≤ L−1

c

{
sup

X0∈X ,0≤α≤1

∣∣∣EθF̂θ(Q̂Y (α|X0)|X0)− F (Q̂Y (α|X0)|X0)
∣∣∣

+ 2

(
sup

X0∈X ,|y|≥c

Fy(y|X0)

)
· (1− c) +

(
EθF̂θ(Q̂Y (α|X0)|X0)− α

)}
,

where the RHS comes from the fact that |(a)c − a| ≤ (1 − c) for any |a| ≤ 1 and 0 < c < 1. Since

(infX0∈X ,−c≤y≤c Fy (y|X0))
−1 · (1 − c) · supX0∈X ,|y|≥c Fy (y|X0) → 0 for c → 1 , we have that for

any ε,

2L−1
c

(
sup

X0∈X ,|y|≥c

Fy(y|X0)

)
· (1− c) < ε/2

for c sufficiently close to 1. Since supX0∈X ,α

∣∣∣EθF̂θ(Q̂Y (α|X0)|X0)− F (Q̂Y (α|X0)|X0)
∣∣∣ →p 0 and
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EθF̂θ(Q̂Y (α|X0)|X0)−α→p 0, we have that for the above mentioned fixed c, with probability going

to 1,

L−1
c · sup

X0∈X ,0≤α≤1

∣∣∣EθF̂θ(Q̂Y (α|X0)|X0)− F (Q̂Y (α|X0)|X0)
∣∣∣ < ε/4,

and

L−1
c ·

(
EθF̂θ(Q̂Y (α|X0)|X0)− α

)
< ε/4.

So supX0∈X ,0≤α≤1

∣∣∣(Q̂Y (α|X0))c − (QY (α|X0)c

∣∣∣ is bounded by ε for c sufficiently close to 1 with

probability going to 1. Finally, note that

sup
X0∈X ,0≤α≤1

∣∣∣Q̂Y (α|X0)−QY (α|X0

∣∣∣ ≤ ∣∣∣(Q̂Y (α|X0))c − (QY (α|X0)c

∣∣∣+ 2(1− c).

So for c sufficiently close to 1 with probability going to 1, there holds

sup
X0∈X ,0≤α≤1

∣∣∣Q̂Y (α|X0)−QY (α|X0)
∣∣∣ ≤ ε+ 2(1− c).

Finally, since ε and c are both arbitrary, we prove the result.

3.8.4 Proof of Proposition 3.1

We first list a lemma, whose proof can be found in the proof of Lemma 3.7 in the Supplementary

Material.

Lemma 3.10. Suppose that Assumption 3.1, Assumption 3.2, and Assumption 3.4 hold, we have

that

sup
R′⊆R,µ(R)≥ξ−(k−1),µ(R′)≥ξ−k

∣∣∣∣#R′

#R
− P (R′)

P (R)

∣∣∣∣ = Op (π(k,N, T0)) .

Based on Lemma 3.10, we can prove the Proposition 3.1 in the main context.

Proof of Proposition 3.1. Let’s consider any set R =
⊗N

i=1[r
−
i , r

+
i ] such that µ(R) ≥ ξ−(k−1). Define

Rj = R ∩ {Xj : r−i ≤ Xj ≤
(
1− ξ−1

)
r−j + ξ−1r+j }. Obviously, there hold µ(Rj) ≥ ξ−k and

P (Rj)/P (R) ≤ ζ2ξ−1. According to Lemma 3.10, with probability going to 1, there holds

#Rj

#R
≤
P (Rj)

P (R)
+ 0.1ζ2ξ−1 ≤ 1.1ζ2ξ−1.

Then since 1.1ζ2ξ−1 < ξ̃−1, we have that #Rj/#R < ξ̃−1, which indicates that to ensure that

181



the child node contains at least ξ̃−1 proportion of the observations in the parent node R, the

splitting point along direction j can not be smaller than
(
1− ξ−1

)
r−j + ξ−1r+j . Similar argu-

ments directly lead to that the splitting point along direction j can not be larger than ξ−1r−j +(
1− ξ−1

)
r+j , either. It then remains to use induction to show that starting from χ, for any par-

ent node R =
⊗N

i=1[r
−
i , r

+
i ] and splitting direction j, the splitting point lies within the interval[(

1− ξ−1
)
r−j + ξ−1r+j , ξ

−1r−j +
(
1− ξ−1

)
r+j
]
. Then (A) is proved. The proof of (B) can be done

similarly, so is omitted.
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