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ABSTRACT

“Simulations are like an experiment but on a computer.” – K. Kempa. Powerful

ideas can be explored in immense detail and unmatched flexibility through

computational resources. Combined with the beauty of electromagnetics, worlds

of situations and problems can be uncovered. Of the many interesting

phenomena available to study, a relatively recent explosion of engineered

plasmonic materials has benefitted greatly from numerical breakthroughs in

simulating Maxwell’s equations. Using these tools on novel metamaterial

systems, composite materials with precisely designed structural features, the

analysis and optimization probes the unique capabilities they have interacting

with light. Example phenomena from this work includes fundamental principle

breaking, extraordinary optical transmission, negative refraction, and

superconductivity enhancement. The systems that harbor such outstanding feats

fall into the umbrella term of metamaterials, each with distinct geometry and

contrasting electrical properties that allow for an engineered control of the

effective structural dielectric function. As the response to electromagnetic

radiation, manipulating the dielectric function is key to creating and discovering

the effects that control light, without changing any chemistry. This work scales

pedagogically through the different types of metamaterials, beginning first with

2D planar checkerboard structures with highly non-linear percolation. In



combination with spoofed plasmonics, the longstanding symmetry of the Babinet

principle is challenged. Layers of checkerboards are then stacked and translated

to create subwavelength gaps for which plasmonic coupling between layers aids

in optical transmission. In fact, there is similar physics controlling other layered

quasi-complementary structures shown by comparison to experimental

transmittance data. A further stage introduces photonic crystals constructed out

of 3D periodic lattice of nanoparticles. Photonic band structure calculations for

properly designed systems suggest the possibility of bandwidths of the IR

spectrum where the crystal has a negative refractive index. Such a material

property allows for the invention of lenses that beat the diffraction limit,

applicable to subwavelength imaging. Lastly, non-local extensions to plasmonics

are theoretically worked into expressions for superconductivity, creating a

resonant anti-shielding effect, in composite topological crystal/superconductor

layered arrangements. Applying this to known topics, like Bi2Se3 and MgB2,

show significant boost to electron pairing and thus rises in superconducting

critical temperature. Central to all the systems and effects explored are the

modifications made to the dielectric function of each effective medium.

Supported by electromagnetic simulations and theoretical efforts, the listed

engineered materials transform the dielectric environment purposefully to

originate the discussed exotic phenomena.



”New scientific ideas never spring from a communal body, however organized,

but rather from the head of an individually inspired researcher who struggles

with [their] problems in lonely thought and unites all [their] thought on one

single point which is [their] whole world for the moment.”

- Max Planck
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CHAPTER I

Introduction

Electromagnetics stands as a fundamental pillar of physics, something each and

every student of physical sciences finds themselves repeatably thrust into the

theory to gain the foundational knowledge. With several courseloads and

possibly one the most infamous textbooks to a graduate student in physics[1],

one can begin to recede any of the illusions that modern technology hides

behind. As simple as some products may seem to the consumer on the surface,

underlying are the complex exploitations of fascinating physical phenomena.

Take your current model of cell phone as an example, a device, at its current

numbers, out populates humans by nearly a factor of two[2]. At the core, a

smartphone contains several electrical components combined so sophisticatedly

the average user is nearly blind to fantastical feats of engineering that give it the

versatile functionality we desire. This is just one of many modern marvels easily

oversighted. Of course, supporting the base of these devices is electromagnetic

(EM) theory. Wireless communication, integrated circuits, magnetometers,

cameras, speakers, touch displays: only a few of the basic examples to get the

mind jogging. All individual pieces that start out by thinking about the physical

rules of nature, in particular EM, and transforming those properties into

practicality. Steps like these are not taken overnight, the cumulative research
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hours of many before progress into society. This dissertation is meant to serve as

a collection of time and research that adds but a small drop into the large ocean

of our collective human progression. By now, it can be understood that EM will

be the core, critical machinery with which this research is built upon. There is

no discussion of EM that doesn’t involve or start without Maxwell’s Equations

(1.1a)–(1.1d). The detailed breakdown of the relevant background physics,

including an understanding of Maxwell’s equations is done in Appendix A, but

for here, we simply need to come to the agreement with nature that classical EM

is constructed by the Lorentz force law and Maxwell’s equations[3]. Like any

differential equations, for Maxwell’s equations to adequately describe a situation,

proper conditions and boundaries need to be defined, aslo see Appendix A. It

should not be understated how amazing these four coupled partial differential

equations (and the Lorentz force law) can be solved for a complete

understanding about every problem in EM.

∇ · E =
ρe
ε0

Gauss’s Law (1.1a)

∇× E = −∂B

∂t
Faraday’s Law (1.1b)

∇ ·B = 0 Gauss’s Law for Magnetism (1.1c)

∇×B = µ0J+ µ0ε0
∂E

∂t
Ampère’s Law (1.1d)

Now, there is no statement that this is always easy, of course. Complex

geometries and enormous calculation domains come with the territory once you

move past some introductory problems. Computation must come into play now.

Maxwell’s equations, depending at what form they are in, are programable to

solve for the electromagnetic interactions and dynamics for a given environment.

Computational electromagnetics (CEM), as the field is referred to as, is a process

of modeling and calculating electric and magnetic field dynamics for systems that
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are too rigorous to solve analytically. Correct, these solutions are approximate,

most of the time, but have proven to be excellent in agreement with the physical

world[4]. There exists over a dozen commercial and open-source programs and

algorithms for CEM[5][6], each with unique advantages. Appendix B specifies

the particular software and algorithms used throughout this dissertation and an

overview of how each transforms Maxwell’s equations and a geometry into

specialized understandings of the EM. Dassaault Systemes publishes a

commercial CEM software, under their Simulia brand, called CST[7]. Through

this software working as this body of work’s primary computational tool, we’re

allowed to explore challenging and novel EM with trusted accuracy and

reasonable effort. Having reliable simulations as a mechanism leaves an open

world for exploring and understanding electromagnetic phenomena. This study

now becomes a matter of which EM and systems to analyze. Each CEM software

has its own individual technical limitations, but in general the forefront of

discovery is marked at these. The symbiotic relationship with commercial CEM

software and research help further both. Recent advancements in

nanofabrication and graphene for example have pushed demand for development

from software publishers, while terahertz devices and metamaterials have

received critical insight from CEM[8]. Specific shortcomings to some algorithms

is discussed elsewhere, Appendix B, but speaking broadly, the scope of CEM

improvements is focused towards higher frequency and multiphysics applications,

bettering computational performance (such as time and memory usage), and

multiscale models (where the wavelengths of interest have changing comparisons

to the model feature sizes). In this dissertation it will become apparent that

most of this work pushes close to one or more of these general CEM limitations,

all because it’s the perfect setting for new and interesting physics. Beginning in

Chapter II, structures that make up periodic lattices of metallic squares exhibit
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principle challenging transmission effects in optical and near-infrared (NIR)

frequencies. These structures can be seen as a checkerboard pattern in the

perfect scenario and host plasmonic effects that extend criteria to the Babinet

principle. The relatively short light wavelengths go through stretches of being

smaller, larger, and comparable to structure sizes, posing unique simulation

challenges. This leads nicely to Chapter III, that takes optical transmittance

effects to an extraordinary level. As an expansion on the Babinet principle

within the checkerboards, multi-layered structures add another dimension to the

physical phenomena taking place. Bi-layered, complimentary structures facilitate

extraordinary optical transmittance (EOT) effects at infrared (IR) wavelengths,

being placed in a similar computational territory as the checkerboard structures

with added geometrical complexity. The following chapter, Chapter IV,

continues the three-dimensional (3D) structure nature by exploring photonic

crystals in similar optical and NIR frequency ranges. Purposeful design of the

geometry and materials in these photonic crystals opens windows of negative

refractive index (NRI) in the simulated band structure. Calculated in a different

CEM algorithm, these structures push the current limits of 3D EM simulation

because of the feature size comparisons to the wavelength and sheer size of the

calculations. To conclude, Chapter V once again stretches the expectations of

commercial CEM software by considering non-local effects. Tying certain effects

of metamaterials to superconductivity provides new schemes and calculations for

superconducting critical temperatures with dramatic results. Each chapter

beyond being tied to CEM should also require an introduction to several key

players in these systems and effects. In those short chapter descriptions, there

are some technical terms and buzzwords, explained in further detail within the

specific chapter, but the common threads are continued here.
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1.1 Dielectric Function

Electromagnetics is already quite interesting in the absence of a medium. An

easily overlooked power but immensely critical understanding in EM,

electromagnetic waves can and do propagate in a vacuum. Important when

thinking about light and radiation reaching the Earth from the Sun across

roughly 150 million kilometers of empty, medium-less space, but consider most

interactions on Earth occur within a medium of some sorts. This is where we

build upon the foundations built in Appendix A and beginning now with EM

inside matter. Constitutive relations, describing a physical quantity in the

specific context of its response in a material versus without, of Maxwell’s

equations form the macroscopic viewpoint in Equations (A.10a)–(A.10d) where

bound charges have been wrapped up in displacement and auxilary fields, leaving

the free charges explicit. These relations can heavily depend on the material in

question. A large change from the microscopic Maxwell equations is the

introduction of the displacement field D. The relationship to the electric field is

straightforward,

D = ε0E+P (1.2)

where the electric field E summed with the polarization P, a density of the total

electric dipole moments inside the material. Now becomes the moment of

divergence depending on which materials we are talking about and those specific

discussions are to come. For the sake of an understanding of the displacement

field, we can strictly speak about linear, homogeneous, and isotropic dielectric

that has instantaneous responses to electric field changes. With this list of

qualifiers, the polarization density in our material can be written in terms of a
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direct proportionality to the electric field,

P = ε0χE (1.3)

where χ making up the proportionality constant is the materials electric

susceptibility. This allows a direct relationship between the displacement and

electric fields

D = ε0(1 + χ)E = εE (1.4)

and to clarify the pre-factors describing the material permittivity with ε = ε0εr

and εr = 1 + χ. We can see now that the manner of how the displacement field

behaves is directly related to the behavior of the electric field. Most materials

don’t obey all the qualifiers set out to derive this relationship, so we can begin to

peel back on those. For example, taking an anisotropic material instead turns the

constant ε into a matrix, while nonhomogeneous materials deal with a position

dependent permittivity. Interesting avenues to pursue in their own right, but let

us consider striping back the qualifier about instantaneous time response of the

internally induced electric fields. It is quite natural to suppose that when an

electric field is imposed on a given media that the resulting polarizations of the

molecules or atoms take some time to adjust. Albeit quite quick[1], just not

immediately. In such a case, the response function is the electric susceptibility

and when combined, in mathematics one would use convolved instead, with the

imposing electric field, the polarization density can easily be described in terms

of frequency. Following some mathematical rigor involving a Fourier transform

and we arrive at the following relationship of D and E,

D(ω) = ε(ω)E(ω) (1.5)
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qualified that the medium is linear and time-invariant, as well as the response is

local. We see that the constant permittivity that we started with has now turned

into a function of frequency ω. At this point, it becomes safe to call this

permittivity the dielectric function. It should also be stated that the dielectric

function in totality is not only a function of frequency but wavenumber as well.

This will be explored more with non-local systems in Chapter V. A medium

having a dielectric function is also described as material dispersion, a description

for the behavior of light waves propagating within the medium. The colloquial

view for light dispersion is the best-selling Pink Floyd album art for The Dark

Side of the Moon, where white light is slowed and spread within a material to

create the colorful rainbow on the other side. This is expected for optical

frequencies like glass for example because of material dielectric properties cause

different behaviors for differing frequencies. Many elementary problems in EM

will deal with a dielectric constant ε, because of the consideration that the

frequency band in question is narrow enough that the frequency dependance is

negligible. However, understand that in general all materials have a dispersion.

Why? The physical world is constrained by causality, mathematically known as

the Kramers-Kronig relations.

ε′(ω) =
1

π
P

∞∫
−∞

ε′′(ω′)

ω′ − ω
dω′ (1.6)

ε′′(ω) =
−1

π
P

∞∫
−∞

ε′(ω′)

ω′ − ω
dω′ (1.7)

Without diving too deep into complex analysis, these Kramers-Kronig relations

in Equations (1.6)–(1.7) can be thought of as synonymous with causality. Taking

some complex response function, the dielectric function in our case, the real and

imaginary parts can be interchangeably computed with one or the other. The
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special catch is that the function needs to be analytic and a function like this

being analytic implies causality in the physical system being described by the

function[9]. A little circular, but the argument boils down to a response function

is a causal function and is therefore analytic. One can then use the

Kramers-Kronig relations, needing analyticity as a requirement, and imply the

system is then therefore causal. A small divergence into some complex analysis

but we return back to the dielectric function knowing the rather simple

statement that for there to be any change in the internal electronics of a

material, there must first be a change in the applied field i.e., causality. Now

that we are constrained by the rules of time and the limitations have been set on

the frequency dependence of the dielectric function, we can ask: What does it

look like? We see now the polarization of a material, a constitute of the

Figure 1.1: -
The example model of the dielectric functions behavior as a function of
frequency, containing the exaggerated features at resonance and low/high
frequency. The black curve is representative of the real part, while the red

illustrates the complex (imaginary) part.

dielectric function, can only depend on electric fields at prior times, let’s look
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into the frequency dependence. The frequency under study is that of the

externally applied electric fields, light for example. Shown in Figure 1.1, is an

example plot describing the dielectric environment. Because the dielectric

function is representing the phase difference between the applied and induced

fields, it becomes convenient to describe it within the complex number language.

Plotted are the real and imaginary parts of the dielectric function as a function

of frequency in some example medium. Starting at low frequency, this is the

static limit where most of those introductory EM homework questions lie. The

real part of the dielectric function remains a constant for all intents and

purposes. Imagine an external electric field applied to a material that is

oscillating very slowing. This gives the corresponding displacement field, causally

lagging, enough time to keep up with the oscillations. There isn’t much of a time

delay in this scenario. If we go to the high frequency limit, the dielectric function

approaches another steady, constant state where the real part levels off at a

value referred to as ε∞. In this limit, the situation imagined before changes to

the external electric field, now so rapidly oscillating that the summation of all

the little fields induced in the molecules and atoms comprising the material can’t

react in time. The electric field changes back and forth so quickly that the

polarization in the material almost becomes frozen. By the time the internal

fields react to the external changes, it is already too late because the external

field has once again already changed. So these fields instead choose the happy

medium and hold in place, letting the external electric field continue its rapid

oscillations. It is only more interesting as we shift to some more dynamics at the

in-between frequencies. Examining this region on Figure 1.1, there are some

noticeable behaviors in the dielectric function that might seem bizarre at first

glance, some bumps and wiggles. As a rather complicated function, describing

the entire frequency dependent dispersion of a material, the dielectric function
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rises and falls at specific frequencies because of resonances with the medium.

Generally, these can be attributed to dielectric relaxations or atomic and

electronic resonances depending on the frequency scale. Isolating one of the

Figure 1.2: -
Zoomed view of one particular resonance, located at ωr of the model dielectric

function. The black curve is representative of the real part, while the red
illustrates the complex (imaginary) part and are offset from each other for

visualization.

resonances in the dielectric function, as shown in Figure 1.2, we return to a

microscopic description of the charges within the medium. On the left (lower

frequency side) of the resonance, the internal electric field arising from the

polarization will be countering an external electric field. The real part is sharply

increasing because the polarization process intensifies its response. Recall that

the permittivity built into the dielectric function is considered a measure of the
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strength of the relationship between the electric field and polarization. The

exchange between the two quantities bolsters, thus the permittivity increases.

This is described as a screening effect of these fields within the material. To

personify the situation a bit, the individual charges are feeling a weaker electric

field because the local electric field created by the responding other charges is

neutralizing some amount. This happens until we reach the singular resonant

frequency, ωr, where there is more contribution from the imaginary part. Aside

from these resonant frequencies, the dielectric function is approximately real. We

call this normal dispersion, where the real part is linked to increase as a function

of frequency. Now here at the resonance, the imaginary part becomes

substantial, and by Kramers-Kronig decreases the value of the real part. Having

a significant contribution from the imaginary part represents, physically,

appreciable EM energy dissipation in the material. Any decrease in the real part

like this is referred to as anomalous dispersion, nomenclature mainly used in

optics such as the aforementioned Pink Floyd prism. Returning to the

microscopic description, the charges in the medium have found a particular

frequency in which their oscillations and the oscillations of the external fields are

resonant. This causes the sharp spike seen in the dielectric function because of

the strong amplitude gains from being in resonance. Once on the other side of

the peak, the charges find themselves attempting to keep up with the external

fields but ultimately lagging behind once again. So much so, the field produced

by the charges goes from being nearly completely out of phase to suddenly so far

out phase that they have returned back to being in phase. Around a 360 degree

phase delay at this point has the two electric fields working together instead of

against each other. Instead of the screening effect before, this region harbors the

opposite anti-screening effect. A resonance can be associated with absorption in

this picture. This section has cartoonishly described the physical meaning of the
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dielectric function, of course painting over details with a broad brush. Certainly,

there has been little distinction between an insulator, full of bound and

polarizable charges, and a conductor, possessing extra charges with available

states to freely move to. This is purposeful. In the context of describing the

behavior of the dielectric function, and soon to see its relationship to

conductivity, especially in the static limit, the distinction is blurry. The

dielectric function plays the role in this story as the ‘costume’ each medium

‘wears’. Distinct and unique to them all and can even be artificially modified.

1.2 Plasmonics

Our previous description of the dielectric function was more conceptual. Now to

explore this in specific media, we can dive into some of the mathematics more.

In the simplest model of the dielectric function, the equation of motion

m[ẍ+ γẋ+ ω2
0x] = −eE(x, t) (1.8)

comes from taking Newton’s second law for an electron charge restrained by a

restoring force in an external electric field with some damping term coming with

γ. A couple standard approximations are taken, where effects from magnetic

fields are ignored and these harmonic oscillations are of small amplitude. The

primary purpose of these simplifications is to give a more averaged-out viewpoint

for the bound charge. Differential equation analysis suggests to solve this

equation of motion by considering solutions of the same form as the driving force

supplied by the electric field. The cases we care to consider are for

electromagnetic waves with a field varying harmonically in time with frequency

ω. For one electron in this scenario, we now have a solution for the average
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position.

x =
−e

m
(ω2

0 − ω2 − iωγ)−1E (1.9)

Broadening to the whole medium now with N molecules per unit volume, each

with Z electrons per molecule, we take Equation 1.9 into a dipole moment and

create an equation for the electric susceptibility. As we’ve seen previously the

relationship with the electric susceptibility, the dielectric function takes the form

ε(ω) = 1 +
4πNe2

m

∑
j

fj(ω
2
j − ω2 − iωγj)

−1 (1.10)

where we can generalize to many binding frequencies ωj and phenomenological

damping constants γj for fj electrons in each molecule. This needs to be

restricted by a sum rule where
∑

j fj = Z and voila, we have a manageable

mathematical description of atomic contributions to the dielectric function. To

the keen trained eye, it becomes quite clear where the low frequency, the high

frequency, and the resonant behavior arise from. In low frequency, contributions

from the sum are generally small and positive because the frequency factor in

the denominator will be positive for ω < ωj. But as more terms in the sum

contributing and the frequency increasing to a point beyond ω > ωj, the

denominator term begins to make negative contributions. Lastly, in the

resonances where ω = ωj, the denominator vanishes for the real part, while the

imaginary part dominates. Not bad for a simple model. There are no additions

or changes needed for the qualitative description in the previous section now that

we have some mathematical basis. Instead, we can further expand, specifically

into charges (of course at this point we can call them what they are inside

materials, electrons) that are considered ‘free’. The label ‘free’ for these electrons

simply means that they are not particularly bound to an atom. The atoms that
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make up the material are organized and bonded in a way that there are loose

electrons in the outer shells that have no assigned task. So these electrons form a

‘sea’ of delocalized charges that can go wherever they are needed. Of course, the

type of materials referred to here with such a sea of electrons are labeled

conductors or metals. For the purposes of this dissertation, we can avoid the

nuance of here about quasiparticles and effective mass[10]. The important thing,

instead, is when a fraction of electrons (per molecule) f0 are free, we can

separate the contributions in the dielectric function based on the descriptor of

electrons. The previously derived expression in Equation 1.10 becomes

ε(ω) = ε0 + i
4πNe2f0

mω(γ0 − iω)
(1.11)

where the lump contribution of all other dipoles in the medium are ε0. We are

all but a few simple steps away from the famous Drude model for conductivity

that, as an aside, which can be seen with detail[11]. The takeaway for the

dielectric function for this context is the relationship with conductivity.

Importantly for computational purposes, is that for a dispersive description of a

medium there are two equivalent attributes: a complex dielectric function or a

dielectric constant paired with a frequency dependent conductivity. Either will

work accurately and makes creating a simulation model from experimental data

rather straightforward. Armed with the model dielectric function in Equation

1.11, we can venture into plasmonics. By taking the limit of frequencies well

above all the resonant frequencies in the dielectric function, a simplification seen

in Equation 1.12 comes out where we’ve grouped together some material

properties, like n the charge carrier density, e the electron charge and m∗ the

effective carrier mass, and call it the plasma frequency, Equation 1.13.

ε(ω) ≃ 1−
ω2
p

ω2
(1.12)
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ω2
p =

4πNZe2

m
(1.13)

There are many ways to think about the concept of a plasma frequency for a

material but we see its consequences every day. Mirrors are one example to

conceptualize plasma frequency. To start, given Equation 1.12, there imposes a

limit of k the wavenumber.

ω2 = ω2
p + c2k2 (1.14)

Just like frequency is thought of as the inverse to a period (not how much time

to do one wiggle but how many wiggles in a unit time), wavenumber is analogous

but for wavelength (not how long in distance is a wiggle but instead how many

wiggles are done in a unit distance). When someone discusses a dispersion

relation, they generally mean this, a frequency that is a function of wavenumber.

Free space light propagation in a vacuum is the simplest example to compare to

where ω = ck. A standard linear line with the speed of light as the slope, known

as the light line. Referencing 1.3, the plasma dispersion relation at zero

frequency begins with the value ωp and increases from there. For there to be any

kind of mode or propagation of a mode, there needs to exist a dispersion

relation. With there being nothing of the sort besides the standard light line

below the plasma frequency, then these modes are forbidden to propagate, the

wavenumber is purely imaginary. This would manifest in the macroscopic as a

material (i.e., a metal) that is reflective below this frequency and can be

transparent above. A mirror happens to have a plasma frequency above optical

such that to us it appears reflective but ‘see-through’ at much higher energies

like the ultraviolet (UV) spectrum[12]. The nice thing about this formalism is

that this critical frequency is purely a property of the medium, which makes

creating simulation models once again easier. The modes that do follow the
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dispersion in Equation 1.14 do have a name. They go by as bulk plasmon waves

or just ‘plasmons’, propagations of collective charge oscillations in the metal.

Like other waves, they can be transverse or longitudinal where the latter only

arises for vanishing dielectric functions. There are also other ways for these

collective charge oscillations to propagate. For example, there is also a dispersion

for surface plasmons (SPs) that propagate on metallic-dielectric interfaces[13],

seen as well in Figure 1.3. This lower branch of the plasmon dispersion is long

Figure 1.3: -
A dispersion diagram shows the phase space of frequency (energy) versus

wavevector. Plotted in red are the dispersion constraints for bulk (solid) and
surface (dashed) plasmons where each is asymptotic to a particular plasma

frequency and the light line, shown in black.

lived unlike the upper branch where re-radiation occurs, thus sometimes giving

the distinction of bound and radiative modes respectively. Many other

mechanisms can hybridize the plasmon modes, most commonly, interacting with

phonons[14], teaming up with single electrons[15], and coupling with light to

establish the surface-plasmon-polaritons (SPPs)[16]. Each of these various
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couplings can augment system properties depending on the underlying

mechanism, such as optical and thermal. The optical transparency, as discussed

in the context of mirrors, is governed by the bulk plasmons[17] where we view

the medium as a large structure when compared to the wavelengths of the

incident radiation. However, different aspects come to the forefront when we

discuss the more interesting limit of metallic structures with sizes comparable to

the wavelength. Boundaries become the overseeing factor now due to the

confinement of sea of electrons to specific spaces. To continue this analogy, in

large structures the ocean knows really no bounds and gives the appearance of

endlessness, being lost at sea for example with no land in sight. In a confined

space now of smaller structures, we examine mechanics much closer to shore

where the sea of electrons is confined. These smaller structures can be labeled as

‘plasmonic structures’ and instead have the optical properties and physics

controlled by the surface plasmons. It is no stretch to think that a plasmon

bound to surfaces of metals will have a sensitivity to the geometry of those

surfaces. It becomes our goal now to explore the limits of what is possible for the

material optical properties through manipulation of the surface geometries.

1.3 Metamaterials

The electromagnetic spectrum is quite long with many different subdivisions,

shown in Figure 1.4. Each region has its own use with a multitude of reasons

why or why not. The ends of the spectrum are capped by the inverse relation

between wavelength and frequency, where for light in a vacuum goes like c = λf .

One end of the spectrum is bounded by zero frequency, our static limit, having

electromagnetic waves with very long wavelengths. On the other end,

wavelengths can get extremely short, with high frequencies which is related to

high energies. Everything in between has amazing functionality and unique

17



advantages but, to keep the motivation of this work simple, there is no stretch of

the spectrum as relatable as optical. Naturally, due to the visible spectrum of

humans (between 380 and 750nm (788 and 400THz)), it is easy to find this

region as intuitive and less abstract. It’s safe to say that this is that way because

of our scale when compared to that of the EM radiation. Once we venture down

Figure 1.4: -
Labeled illustration of the electromagnetic spectrum with shortest

wavelengths/highest frequencies on the left and longest wavelengths/lowest
frequencies on the right. Inset is a zoomed-in scale of the visible spectrum with

color representation. Image credits[18].

to a scale comparable to that of the wavelength of light, the interactions can be

explosively compelling. Exceeding scales beyond the wavelength for the size of

objects and structures only compounds the fruitful physics. As mentioned, any

region of the EM spectra can be probed, but for the purposes of this discussion,

we will narrow in on the IR, TeraHertz, and visible windows generally thought of

as optical. One reasoning behind this is the ever-evolving achievement of

fabrication of structures at the scales comparable to the light in these spectral

windows. The field of nanomaterials and nanofabrication aren’t quite at the full

commercialization stage yet[19] but are becoming commodities[20]. With the
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assistance of CEM software, discovering the possibilities of the rare optical

properties in these nano-scale systems has never been more approachable. The

general sentiment being that with CEM software, many iterations of design and

tuning can be done cheaply and quickly before moving into the challenges faced

with fabrication of structures so small. With the solid agreement known between

CEM and experiment, this can be used predictively. The limitations are only

ingenuity and the laws of physics. Of the progressive ideas in the world, from this

field stems some of the more incredible and science-fiction-like realizations. The

works of manipulating light such that an object can be transparent in particular

frequencies. Actual cloaking technology where an object is engineered to guide

EM waves in such a way that the object is camouflaged as if it were not there[21].

This work[22] is considered the one of the sparks that ignited this field roughly

15-20 years before the writing of this dissertation. Along with stealth technology,

there is superlens technology that has been well explored[23]. To push past the

theoretical bounds thought to cap the furthest resolution of imaging, the

diffraction limit, a superlens can be designed to achieve resolution beyond

this[24]. The list continues to perfect absorbers[25], antenna improvements[26],

radar cross-section reduction[27], and much more. The common thread to the

physical accomplishment of all these technologies is metamaterials. Given the

Greek prefix ‘meta’ to denote the meaning of ‘beyond’ because these materials go

past the capabilities of standard media. Metamaterials are composite, signifying

that they’ve been purposefully engineered. The goal in mind is to provide

material properties otherwise not attainable in ordinary materials. However, the

catch is the novel properties are derived from physical structure, not chemistry.

Usually the constructed geometry is arranged in repeating patterns with the

crucial element scale being smaller than the wavelength of interest. In this

scaling, large wavelengths, when compared to the geometric scales of the
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metamaterial elements, will see the whole material as one homogeneous effective

medium. After precise design and fine tuning of the geometric parameters, the

metamaterial is adequate at influencing the behavior of incident EM radiation to

a specific designed purpose. Whether that purpose is for cloaking or beating the

diffraction limit is entirely up to the design and creativity input. With the realm

of possibilities seemingly endless and many ingenious concepts realized, one may

wonder where there is to move forward. It is not quite the picture painted here,

the hidden ‘Gotcha!’ moment has been lurking. In the current state of

nanofabrication, there are numerous restrictions on the possibilities that can be

made useful. For example, there exists no fabricable cloaking technology for

optical wavelengths. The science fiction dreams of wearing a coat and suddenly

disappearing from sight are still just dreams, at the timing of writing. However,

the concept is scalable. The references provided show working concepts for other

windows of the EM spectrum, microwave for example. To get devices down to

the scale to become meta-media for visible light, there needs to be

manufacturing on the tens of nanometers scale, which just hasn’t been

achievable. The driving idea of metamaterials is still the core working principle

and new concepts will continue to push the boundaries as the need arises. The

metamaterial label can specifically imply certain geometries and is generalized to

meta-media, nonetheless it is still common to use those terms interchangeably as

will be done here. It is not by chance that one can think up a metamaterial

design, simulate the EM effects, build a working prototype, and now have some

revolutionary technology. Light interacts in specific and calculable ways with

meta-media, generally following one simple analogous model, an RLC circuit.

One signature metamaterial design pattern, the split ring resonator (SRR)[28]

uses metallic features to create miniaturized versions of these circuits. As shown

in Figure 1.5, the ring models the inductor (L) behavior as a storage device for
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Figure 1.5: -
Left: Circuit diagram of a series RLC circuit that is analogus to disappating
electromagnetic oscillations. Right: A single unit cell a split ring resonator

metamaterial design that repeats as a lattice. The shaded region represents a
metal while the surrounding is the contrasting dielectric material, usually in a
stacked fashion. The placement of metal and dielectric can easily be reversed as

well.

magnetic energy while the open split section acts as the systems capacitor (C)

storing electrical energy. Naturally the resistance comes from having constructed

a design with a metal of finite conductivity, meaning that there is loss or a

resistance (R). Of course, in simulations however, we can take a perfect metal

and return to a more perfect case LC circuit model. The voltage source for this

circuit is the incident light where the oscillating EM fields work like an AC

voltage source and induce a current. Signature to an LC (or RLC) circuit would

be the resonant frequency ω0 =
1√
LC

that only depends on the values of the

circuit elements. Note that adding the resistance just adds damping, so we will

stick with LC circuits for the moment. In circuits, capacitance and inductance

are purely geometrical quantities that are designated by the size and shapes of

the elements. So in metamaterials, we get back to the central definition that

these special properties are arising solely from geometry. When the light,

working as the AC source, has a frequency tuned to the resonant frequency of
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the circuit, that is where large amplitude EM effects can take place. Harnessing

the magnifications of those fields is how metamaterials are able to manipulate

light. There are several other models and equivalent analogies for other types of

metamaterials, but the LC circuit is central to the definition. The big picture is

to bring plasmonics into play and return to the idea of confinement and dipoles

again. Taking the metallic elements of the metamaterial and shaping them in a

way such that the metal can act in an isolated fashion is one design technique.

Effectively making small polarizable dipole elements that work in the same way

the bound electrons in an insulator would, except on larger scales with stronger

fields. The specific interaction at play defines the class of metamaterial, such as

negative refractive index (NRI), single negative (SNG), hyperbolic (HMM),

bandgap, and so on to name the primary few to this work. Each class is further

defined and elaborated in the chapters relevant. Having a theme centered around

manipulation of the dielectric function that represents the effective meta-medium

ties back to the previously used personification for the dielectric function. We

see now that metamaterials are purposefully designed, which changes the

dielectric function that acted like the costume for a material. It contains all the

useful information to how the material will respond to EM fields. Now with

meta-media, that costume can be easily swapped out to serve many different

purposes. At the intersection of all the topics discussed in this introduction lies

the crux of the research within this dissertation. Using CEM software, alongside

analytical EM theory when applicable, this dissertation approaches the

modulation of the dielectric function through the geometric design of

metamaterials to achieve enhancement of desired plasmonic effects that can

create novel, exploitable optical phenomena. The chapters each approach this

general idea from a unique aspect and individualized outcome, featuring

published, unpublished, and yet-to-be published work.
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CHAPTER II

Periodic Plasmonic Checkerboard Series

Structures

2.1 Checkerboard Structures

One of the most fascinating components about plasmonic meta-media is design.

There is an art to it that isn’t captured completely by rigorous theory. It is

sometimes seen as a rarity in science but rest assured, artistic vision creeps into

many facets of scientific research. For example, most would consider material

synthesis to involve a lot of creativity. Device fabrication is right up there too.

There takes a certain touch and vision that a lot of success in these fields can be

attributed to Reference [29]. By reading through the literature in the

metamaterial field with this in mind, the origin of various abstract designs makes

a little more sense. Every physicist comes to understand how a capacitor and

inductor work. From those building blocks, next is how those components work

when together. That abstract idea is conceptualized via circuit diagrams and

schematics but, breaking that mold and applying those concepts in other ways is

the challenge that design and creativity make their mark. Thus forms the split

ring resonator (SRR) metamaterial, Appendix A goes deeper into the

background electromagnetics. So simple yet sophisticated, and the SRR achieves
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the exact design outcome. It doesn’t stop with the SRR design, the literature[30]

has rapidly expanded since a lot of the early work introduced in Chapter I. The

general outline starts with a goal in mind, what is this device meant to do, what

purpose will it serve. That can be thought of in terms of applications or on a

fundamental research level. Then it is asked, what designs and features get to

that outcome. How complex does the geometry need to be or is the simplest way

the best way. This can take fabrication limits into account but leads to the

ultimate exploratory tool, CEM. Countless iterations can be simulated and

explored at a fraction of the effort. With the path forward outlined, let’s start at

the beginning.

2.1.1 Basic Checkerboard Series

Chronologically, this section of the work was not the starting place but is the

intuitive beginning that will lead into the other chapters. This is an example of

when ambitions are too large, and one must take a step back to analyze the

simplest case. The goal is to computationally explore various plasmonic resonant

features created by geometrical conditions. Having the simplest structure makes

it realistic to have a complete understanding of the dynamics at play in the

system. Checkerboard designs have been studied in the literature[31] because of

its interesting tie to the Babinet Principle and as a critically percolated

structure, both of which are further defined below. Part of the intrigue of the

checkerboard as a plasmonic structure is in its simplicity, possessing that

geometric beauty humans have had design interest for centuries, well before even

the invention of chess in the 6th century. The pattern of repeating squares of two

competing domains is the minimalist’s idealization. With plasmonics in

particular, those differing domains form the borders that surface plasmons call

home. Consider the light squares of a checkerboard as the dielectric, vacuum,
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while the dark squares represent the metallic material. Each square is nearly

isolated from all its similar neighbors, with only the corners just barely touching.

In that configuration, the canonical checkerboard is referred to as the perfect

checkerboard, shown in Figure 2.1 middle panel. For many reasons, to be

discussed throughout this chapter, the perfect checkerboard exists mostly as a

concept. On nanofabrication scales, it is currently a challenge to achieve such

precision to have the corners of a square matched up with the precipice of every

single other square. Even computationally, the perfect checkerboard falls into a

bifurcation to where the squares must either be connected or isolated, leading to

strong numerical instabilities. Typical failings in CEM algorithms are attributed

to iterations being exponentially sensitive to initial conditions due to the chaos

of a singular geometry. In the classic logistic map problem, this would be

thought of as a Lyapunov exponent[32]. Because of these issues, studying this

system requires taking another approach, rather than the perfect checkerboard.

There are related structures that can be obtained by fixing the center positions

of each square, then subsequently adjusting their sizes. The first side is to reduce

the size of the dark squares while increasing the size of the light squares,

uniformly adjusting the edge lengths by the same fraction. Exampled in Figure

2.1 left panel, the dark squares have become islands in a connected sea of light.

Countering this by doing the opposite adjustment of sizes, where the dark

squares grow and the light squares shrink, there is the complementary structure.

The diagram of Figure 2.1 right panel illustrates the dark squares taking over

and leaving holes of light behind. One side, the first, is referred to as the island

structures while holes structures is the label for the other.

To formally give geometrical definitions to the adjustments made of the square

sizes, begin first with the perfect checkerboard case that will act as the barrier

between the two sets of structures. Since this is just simple scaling, let’s
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Figure 2.1: -
An example for each phase of the percolation checkerboard structures with

center to center distance a and metal and hole edge lengths lm and lh
respectively. Left: Underpercolated where the scaling parameter is less than one,
creating metallic islands. Center: The perfect checkerboard existing right at the
threshold. Right: Overpercolated where the scaling parameter is greater than

one, creating holes in a metallic sheet.

introduce a scaling factor s that by definition is bound by the condition

0 < s < 2 and sets s = 1 to signify the perfect checkerboard. The

square-to-square center distance, the period a, is kept as a fixed constant within

a checkerboard set. Scaling changes are then made to the edge lengths of the

squares, labeled as lm and lh for the metal and vacuum hole squares, respectively.

In the perfect checkerboard, these edge lengths are equal, lm = lh. For the island

series of structures, the metallic islands have a length set by lm = sa
2
controlled

by the scaling factor that is bound by 0 < s < 1. In the other series, hole

structures, the scaling factor is instead bound by 1 < s < 2 where the edge

length of the light, dielectric holes within a continuous dark, metal region is set

by lh = a(1− s
2
). Regardless of being in the island or hole structure series, the

periodicity is always a = lm + lh and the scaling parameter can be written as

s = 2lm
a

= 2(1− lh
a
). With the definition of the scaling parameter s, the two sets

of complementary structures can now undergo a parametric study to explore how

the geometric plasmonic effects change when diverging from the perfect
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checkerboard.

2.1.2 Bowtie Checkerboard Series

A simple modification to the standard checkerboard was to introduce a scaling

parameter that adjusts the sizes of the squares when they are fixed about their

respective centers. By changing how you view the unit cell, there is another

adjustment to the scaling of the checkerboard squares that yields a different set

of structures. Instead of the edge lengths scaled about fixed centers, what if they

were scaled about fixed corners? This would manifest as two squares of like

contrast, both dark or both light, being permanently asymptotically touching at

a corner. The square edge lengths would shrink or grow via the opposite corner

and the pattern would be made up of two squares making a bowtie or butterfly

shape. Thus, this particular structure series governed by this scaling is dubbed

the bowtie checkerboard where Figure 2.2 shows the planar geometry. The

scaling parameter s and all the geometrical definitions from the previous section

on the standard checkerboard continue to hold the same meaning as the bowtie

checkerboard. But by fixing the corners now, the resulting island (s < 1) and

hole (s > 1) series have paired up islands or holes. The perfect checkerboard,

Figure 2.2 middle panel, is still the dividing line between the topologically

distinct geometric series and is really the only commonality with the standard

checkerboard series. Whether on the island or hole side of the division, Figure

2.2 left and right panel respectively, there will always be doubled up squares that

nearly touch at their corners. It is this singularity that stands as the biggest

difference from the standard checkerboard. Each structure, independent of the

value of s, still holds that strong singularity of corner touching. In the standard

checkerboard, this feature is only present in the perfect situation at s = 1.

Plasmonically, this distinction would be expected to manifest differently in the
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Figure 2.2: -
An example for each phase of the percolation bowtie checkerboard structures
with center to center distance a and metal and hole edge lengths lm and lh
respectively. Contrasting to the standard checkerboard is the always present
corner to corner point contact. Left: Underpercolated where the scaling

parameter is less than one, creating metallic bowtie islands. Center: The perfect
checkerboard existing right at the threshold. Right: Overpercolated where the
scaling parameter is greater than one, creating bowtie holes in a metallic sheet.

spectra and will be an interesting point to compare.

2.2 Background

With the geometry defined and interest coming purely from the unique

symmetries and scaling of the checkerboard, it’s important to think of the

possible physical mechanisms at play. Just as metamaterial design looks for

equivalent circuit that becomes the analog from a theoretical perspective, the

checkerboard system needs a similar conceptualization. Exploring plasmonic

responses allows for simplicity since there are signatures in the optical spectra

(reflectance, transmittance, and absorbance), which are natural to calculate via

computational methods. There needs to be an understanding of how the

structure design will appear in these spectra, the physical principles and laws

that bridge the two.
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2.2.1 Percolation

By just glancing at the structures studied here, connectivity seems like a key

concept. Taking the standard checkerboard as an example (but the same goes for

the bowtie checkerboard), the perfect checkerboard is the division between two

sets of structures. One side stands disconnected. The scaling factor is less than

one and each metallic square becomes an isolated island. Trying to measure any

conductivity from one side of the square array to the other will yield nothing. On

the other side, the scaling factor greater than one makes a square array of holes

in a metallic sheet. Metal squares began to overlap and simply are just a single

connection now. Measuring the conductivity of this array is now achievable.

There is clearly a transition from a state of no long-range connectivity into a

state that does. There is an analogous problem to exactly this situation,

filtration. Canonically, people think about coffee or ground water. Movement of

fluids amongst this porous medium can be constricted if the density of the tiny

particles that make up the material is too large. For the coffee (or rainwater) to

be able to flow down and drip into a mug (an aquifer), the particle concentration

of the grounds (dirt) must be spacious enough. Percolation is this concept, and

it extends to many other examples, predominately in mathematics and networks.

In the scaling of the checkerboard, the sizes of the squares works exactly as the

‘concentration’ or ‘density’. The flow of electricity is restricted in the island

phase while the hole phase is connected. That point in the middle, the barrier of

the perfect checkerboard is known as the percolation threshold. Systems

involving percolation fall into a universality class, where people study

renormalization and fractals in the context of phase transitions and

criticality[33]. And that is exactly what is occurring in this system. A sharp

phase transition occurs at the perfect checkerboard, separating a conducting and

non-conducting phase. Conductivity is also notoriously tied to the dielectric
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function, see Appendix A, which of course has significant effect on the optical

spectra. This is more than just typical percolation as well. Percolation, think

particle concentration, is talking about creating a single path of connection

amongst the medium. Once there is one connection from end to end for the

system, that system has reached the percolation threshold. In the checkerboard

system however, every connection path opens at the same moment. There is not

just one path for electrons to flow, there are many. Withing the renormalization

group, this type of system shows different scaling than just percolation and is

aptly named explosive percolation[34]. The network of squares undergoes

instantaneous and simultaneous connection along every node when transitioning

through the percolation threshold of the scaling parameter s. Having a

connection to percolation and everything that comes with it, the checkerboard

systems, under this square edge length scaling, is a playground to interesting

mathematics and electromagnetics. One could suspect more beauty in the

physics than there is simplicity in the design.

2.2.2 Babinet Principle

Before even a rigorous collection of Maxwell’s equations were collected and

understood, there were fragmented conjectures that formulated classical EM.

One of the most fundamental being the Babinet Principle (BP)[35][36]. Proofs

have been given in a couple different manners since the heavy mathematical

machinery has evolved and is given in any standard EM textbook[1]. At its core,

the BP is quite general and intuitive. One of the standard forms gives a formula

for understanding the transmittance in complementary planar structures[1]. It is

assumed that these structures are defined by highly reflective films that need to

be considered thin. The structures can have any arbitrary planar geometry for

the holes/openings, in terms of shape, size, and number. Complementary
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structures are the inverse, or the negative, of one structure. Wherever an

opening exists, it is swapped with the screen material, while wherever the screen

material exists, it is swapped by an opening. An example of structures that are

complementary is shown in Figure 2.1, as well as the self-complementary

standard checkerboard. With the visualization of a pair of complementary

structures, it feels very initiative to think about how they are related.

Specifically in the context of transmittance, allowing EM radiation of frequency

f to pass perpendicularly through the plane, the structure has a total

transmittance of T (f) and the complement has Tc(f). Under the above specified

conditions and the plane wave polarization rotated by π/2 for the complement,

the relation for the transmittances is

T (f) + Tc(f) = 1 (2.1)

As mentioned, the BP is rather intuitive, simply stating that the light

transmitted through a planar, reflecting structure, is equal to the light blocked

from its complement. And vice-versa is true as well. After undergoing theoretical

scrutiny, the BP emerged to be generally valid for specifically planar structures

made only of perfect electrical conductor (PEC) that is vanishingly thin[1]. Even

conditioned further down by this, there still exists doubts in the literature[37]. In

the many proofs for the BP, each seem to lack nuance and detail about what

zero thickness and a PEC material physically mean. PEC is simply a theoretical

material that requires certain conditions be placed on the electric fields

surrounding it, mostly to make calculations simpler. One definition for a PEC is

to forcibly apply the condition of zero electric field in the tangential component

to the surface while near the surface. This is independent of the frequency of the
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electric fields and requires the charge carriers to react instantaneously, even if

the wave oscillations are fast. As a model material for high conducting metals,

PEC is quite accurate in generally small frequency ranges. Negligible loss and

retardation of the charge carriers no longer applies at higher frequencies, which

is why real metals experience plasmonic effects. Plasmonic effects certainly are

what ruin the BP, but the validity has stood up to experiments when well below

the plasmon frequencies with metamaterial structures made of good metals at

THz[38] and IR[39] frequency bands. The PEC material is inherently

non-plasmonic, aside from when specific geometric conditions are constrained

upon it. Since the definition prevents surface electric fields that are tangential

and no charge wave can form, then any resonances are forcibly caused by pure

standing waves of the structures geometry. Recent demonstrations give examples

of plasmonic response in certain structures made of non-plasmonic metals[40].

These structures are planar films that are perforated throughout and undergo

exposure to EM waves. Even these non-plasmonic metals, which includes PEC,

can create plasmonic effects when structured, referred to as ‘spoofing’. Similar to

standard plasmons, the ‘spoof’ plasmons are also obeying causality and thus are

naturally delayed responses. As was the case before, one would expect this

leading to a violation of the BP. Of these perforated metallic film structures,

there is a demonstration of a failure in the BP in a checkerboard structure. The

checkerboard, when in the perfect state of no scaling parameter (s = 1), is an

example of a self-complementary structure. For a structure to be its own

complement, following the rule of Equation 2.1 leads to the result

T (f) = Tc(f) =
1
2
, simple but extraordinary. For all frequencies and every period

length, the BP expects a constant transmittance for this structure. Structures

like this have been used as broadband radio antennas[41]. As mentioned

previously, the perfect checkerboard is mostly just a concept, as the structure is
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extremely singular[32]. Experiments have attempted to achieve this remarkable

result, though in relatively lower frequencies and larger sizes, but has proven to

be a difficult challenge[31]. In this reference, it is described in detail how the

self-complementary structure is actually a violation of the BP. Because of the

bifurcation into either connected or disconnected, slight imperfections require

masterful fabrication of the structure. One method, this reference has

remarkable success with, is to add resistive modifications as little contacts on the

corner-to-corner touching points for the whole array. The addition of some weak

coupling, via the lossy contacts, is exactly what is needed to be pulled away from

the percolation threshold. In turn, removing the singular behavior is what

restores the expectation of the BP, in sufficiently low frequencies[31]. Measuring

the transmittance in these modified checkerboards with weak coupling between

squares, the nearly constant transmittance spectra is observed, as expected by

the BP. All this to say, the BP has clear failings around the percolation

threshold of a singular structure, such as the checkerboard systems.

2.3 Babinet Principle in Checkerboard Series

With all this so far on the table, the checkerboard series, and bowtie series,

parameterized by a scaling factor to vary throughout the percolation threshold,

seem to be ideal candidates for possible violations of the BP. Even with the

conditions of infinitesimally thin PEC, spoofed plasmonic effects can still result

in violations from geometric resonances in the structure, which differ in origin for

the arrays that are complements. To start, take a few lessons from previous work

published in the literature. Analytical and computational analysis will avoid the

concept of the perfect checkerboard (s = 1). Using the BP in Equation 2.1, begin

by taking a frequency derivative (or two) to arrive at
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dT (f)

df
+

dTc(f)

df
=

d2T (f)

df 2
+

d2Tc(f)

df 2
= 0 (2.2)

which, on the surface level, limits the extrema of the transmittance spectra for

complementary pairs. For example, having a transmittance minimum in a

structure at a particular frequency automatically enforces a transmittance

maximum that corresponds one to one at that same frequency for the

complementary structure. Explore this first through a simple model for each

phase of the percolation threshold. In the hole side of the checkerboard

structures, the holes can be considered an array of square waveguides that are

subject to a cutoff frequency for waves propagating given by (derived in

Appendix A)

fc =
c

2

√
(
n

x
)2 + (

m

y
)2 (2.3)

where c is the speed of light, x and y are the rectangular dimensions of the

waveguide, and n and m are integers representing the mode numbers (n,m ≥ 0).

In the square checkerboard hole system, x = y = lh and the lowest fundamental

mode supported by the waveguides is TE10 (or TE01 since square), this formula

simplifies to [1]

λc =
c

fc
= 2lh (2.4)

As a consequence, one should expect transmittance to spike at this frequency fc,

which is purely dependent on the size of the hole. Adding the fact that these
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‘waveguides’ are just short holes would lead to corrections to this simple

approach, as well as any array effects coming from interactions between

waveguides. For now, stick to this simple idea and later include further details.

Moving on to the islands side of the threshold, the comparison will lie at what

frequency the transmittance will dip and what geometric dependency does it

have. According to the BP in Equation 2.2, this should complement the hole

mode and line up exactly. The island side of the structures can also be modeled

in a simple way, an large multi-core coax[42]. Already the physics on this side is

differing because now there are fewer restrictions on the EM modes supported

and the TEM mode can propagate. TEM modes do not have a cutoff frequency

and are known for broadband transmittance. To get towards the expected

transmittance minimum for this structure, according to the BP, consider the

array effects occurring in the free space between islands. Pure photonic

resonances create transmittance dips because the scattered waves can

constructively interfere. These standing waves are scaled by the spacing of the

islands. When that spacing is matched to multiples of the incident wavelength,

the resonance formula for large island period a is given approximately by

λr =
c

fr
≈ a′ (2.5)

where a′ = a√
2
is the distance to nearest neighbors. Resulting transmittance dips

on this side of the percolation threshold scales with the structure period

monotonically. Comparing back with the holes side, which was only dependent

with the hole size lh, there is completely different scaling on independent

structural parameters. All this means that there should be no expectation that

the transmittance extrema (maximum and minimum) should correspond between
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complementary structures. Each side of the percolation threshold would need

identical scaling in a situation where the BP is valid. Analytically, this structure

poses a wrinkle to the universality of the BP, but now it’ll be further

investigated in simulation. Modeling the checkerboard series is straightforward,

as the geometry is rather simple. To confirm the scaling proposed above for each

side of the threshold, numerical simulations can be done for structures made of

PEC that has zero thickness and fixed hole (or island) sizes to 1µm. Plotted in

Figure 2.3 is a simulated color map, corresponding to the transmittance spectra

for these structures across a frequency range while showing the dependence on

the unit cell size a. Simulations for this series of figures in this chapter are

primarily done implementing the finite integration technique (FIT) on CST

Studio Suite[7]. Models for the checkerboards use geometries made of PEC and

vacuum form a periodic array by boundary conditions that enforce a TEM mode

wave on a single unit cell. Results from the simulations are unaffected by

changing to TE or TM modes for the EM excitation, nor by in plane rotation by

π/4. For even further confirmation and cross-checking, there is agreement of

results between different solver algorithms in CST, which includes finite element

method (FEM) and transmission-line matrix (TLM) method. One further degree

of confirmation is achieved using a completely different CEM software by using

COMSOL Multiphysics[43], supplying the utmost confidence in the results

presented here. Beginning with Figure 2.3(a), the hole geometry is highly

non-transmitting except for a series of high frequency resonances, featuring a

strong transmittance maximum near 120THz. This marks the first cutoff

frequency in the waveguide model given previously, which was expected to be

independent of a, especially at when large. Having the hole size fixed, the

expectation is confirmed that hole structure checkerboards scale in this manner.

With that being said, the exact frequency calculated in the waveguide model
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(plotted as the vertical dashed line), is red-shifted nearly 20%. Naturally, there

are modifications that need to be accounted for in that simple model, such as the

short waveguide length and multiplicity of having an array. In the spoof plasmon

theory by Pendry et al.[40], the red-shift is consistent. That work uses structures

with subwavelength holes, like this checkerboard, and exhibits EOT

(extraordinary optical transmittance) because of plasma-like behavior being

spoofed by the array. They take a similar waveguide approach to explain the

dielectric function for the plane of the holed, thin film takes on a Drude formula

(ϵ ∼ 1− ω2
p

ω2 from Appendix A). The definition of the spoofed plasmon frequency

is ωp = 2πfh where fh is the cutoff frequency given in Equation 2.4. Following

from this formalism, they later arrive at a spoofed plasmon dispersion for the

holed, thin film involving this geometric plasma frequency. The main branch of

this dispersion naturally follows the light line at first in the small wavevector

region before asymptotically approaching the cutoff frequency[40]. Since the

spoof plasmon governing the transmission through the holes is bound to this

dispersion, its frequency will always be strictly smaller (red-shift) when

compared to the cutoff frequency, as is the case with the simulation.

On the other side of the perfect checkerboard percolation threshold, the

complementary islands structures, simulated and plotted in the same fashion, are

shown in Figure 2.3. As naively expected, the structures are highly transmitting

with pockets of minima at resonant locations. In complete contrast to the hole

structures, the resonant locations have strong, monotonic dependence on the

period a. Looking closer at the lowest resonance, the dependency derived back in

Equation 2.5 agrees quite well. The black star symbols on the plot designate the

frequencies calculated directly from Equation 2.5, where agreement with

simulation improves for larger a. To further support this, there is other work in

the literature that explores thin PEC arrays of circular discs through a dipole

37



Figure 2.3: -
Top: Transmittance heatmap for a checkerboard with lh = 1µm fixed in the hole
phase. The unit cell size is varied over the whole frequency range of a normal

incidence EM wave. The black dashed line marks the estimate resonant
frequency based on Equation 2.4. Bottom: Identical plot and setup to the above,
but for island phase checkerboards with lm = 1µm. The stars mark the estimate

resonant frequency based on Equation 2.5.

model[1]. In the limit of a small disc radius, each disc is thought of as an

individual electric dipole because they dwarf the strength of any induced

magnetic dipole moments created from circumferential surface currents.

Naturally, the structures are highly transmitting, they also observed a series of

near-zero transmittance minima corresponding to the expected model frequencies

given by Equation 2.5. Another conclusion from that study was observing no

dependency on the radius of the discs. Similarities between the disc structure
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and island checkerboard lead to agreement in the EM response, both simulated

and model expressions. All the evidence coming together can be summarized

simply by there being two completely different scalings on each side of the

percolation threshold in the checkerboard structure. Simulations and

independent theories, using spoofed plasmons and dipole models, have all

converged on the idea that there are severe violations to the BP when resonant

physics is split between complementary structures.

Figure 2.4: -
Color heatmap showing the transmittance spectra for many, infinitely thin PEC
checkerboard structures (a = 2µm) scaled by s through a broad frequency range

of normal incident EM waves polarized parallel to the squares edges. The
percolation threshold is replaced by the expected BP condition since

computation is bifurcated.

For this checkerboard series, the fundamental BP is failing on an enormous level.

Having different resonance scaling for the complementary pairs lies as the root

cause. A way to picture the distinction across the percolation threshold would be

to keep the unit cell fixed but vary the scaling parameter that tunes the
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island/hole sizes. The next structures simulated, plotted in Figure 2.4, keep the

period fixed to a = 2µm and parameterize the checkerboard percentage s. Colors

in the plot are identical in representation to the previous figure, mapping out the

parameter space of frequency and s by transmittance. Firstly, the data

representing the perfect checkerboard at s = 1 has not been simulated, because

of the aforementioned bifurcation difficulties, and is just assumed to be the

trivial self-complementary BP result of T (f) = 1
2
. In the plot, the main

resonances take shape and show their diminishing bandwidth as the structures

extend, either towards a complete metal sheet or towards empty space. Due to

this shape and coloring of the heatmap plot, these are referred to as ‘lobster

diagrams’, resembling the claws of a lobster. By rule of the BP that is defined in

Equation 2.1, a lobster diagram would necessarily be symmetric about the

central perfect checkerboard stripe. However, the simulation data shows

otherwise with sharp asymmetries in certain regions of the figure. Some of the

colormap appears to have great satisfaction of the BP, particularly at frequencies

below 100THz, and near BP agreement between 100 and 150THz. As for the

rest of the spectrum, especially above 200THz, the BP has completely broken

down. The most dramatic of differences is in the central resonances as the

structures stray further from the perfect checkerboard case. Resonances on the

hole side (right side) clearly follow the trend set by Equation 2.4, where

decreasing hole size, blue-shifts the peak. Even more egregious than that, the

island side (left side) has its next highest order resonance coming into the picture

at higher frequencies, of which the hole structure doesn’t have. Further

simulations showed that this result is unsensitive to changes in the film thickness,

given that the thickness is an order of magnitude or more below the wavelength.

Isolating a pair of complementary structures from this series and plotting them

together will illustrate the collapse of the BP. Figure 2.5 (left panel) takes the
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Figure 2.5: -
Simulated transmittance for BP complementary pairs, singled out from Figure
2.4. The green line is for islands while red is for holes and the combination
equating to the BP is the black dashed line. Left: Unit cell a = 2µm. Right:

Unit cell a = 100µm.

structures with a scaling parameter set to s = 0.6 (thin green line) and s = 1.4

(thick red line), a BP complementary pair, and plots their transmittance over

the same frequency range. The black, dashed line is the sum of the two

transmittances which by the general requirements of the BP, should obey

Equation 2.1. For low frequencies leading up to 100THz, the BP is mostly

satisfied, but then completely fails when reaching the resonant frequency

locations. There is a frequency location (210THz) where the sum reaches a point

where both structures are fully transmitting and a location (275THz) where the

sum shows the opposite. Figure 2.5, (right panel), shows the same calculation

done for checkerboard structures of the same scaling factor but with a fifty fold

increase to the geometric dimensions. Naturally, the frequency range has shifted

lower by roughly the same factor, but all the same spectral features are still
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present. This is of course expected because the structures are made of PEC and

the entire physics falls under the influence of EM field dynamics that is size

scalable. Checkerboard structures also violate the BP even at low frequencies.

Figure 2.6: -
Color heatmap showing the transmittance spectra for many, gold (20nm
thickness) checkerboard structures (a = 2µm) scaled by s through a broad

frequency range of normal incident EM waves polarized parallel to the squares
edges. The percolation threshold is replaced by the expected BP condition since

computation is bifurcated.

Failure in the BP for the checkerboard structures can be mainly attributed to

the different scaling of geometric resonances across the percolation threshold.

Hole structures interact intra-hole while on the island side the interaction is

inter-island. One could guess if the scaling were to be the same on both sides,

the BP could be salvaged. This is the case, with experimental demonstration, for

metamaterials with a SSR geometry. As mentioned in the introduction, the SRR

is the quintessential metamaterial design, where it is the analog to an LC circuit.

The spectral response of electric and magnetic fields is strongly tuned to the
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geometric resonance that is controlled by circumferential quantization. Multiples

of the structures circumference mark the allowed wavelengths for the

propagation of a spoofed plasmon mode along edges[44]. For this example, the

BP is approximately satisfied without much of an issue[38]. In the checkerboard

structure, however, the percolation threshold sits as a sharp discontinuous

boundary between the two distinct scalings and is irreconcilable. There appears

to be a topological distinction that can be seen in the spectral resonances.

Returning to the lobster diagram in Figure 2.4, the lowest resonance is present

on both sides of the threshold, just at different frequencies. Of course, the scale

differently but at least there is a one-to-one correspondence. Once reaching the

higher frequencies, there is a breaking of that topological complementarity

coinciding with the failure of the BP. To rule out the cause of this deriving from

the use of infinitely thin PEC, the same lobster diagram can be simulated using

a real, plasmonic metal with thickness. A color transmittance plot for the

checkerboard structures made of gold ,with dispersion parameters consistent

with experimental data[45], is shown in Figure 2.6. By inspection with the

lobster diagram for PEC, the two aren’t much different, in a general sense. The

same scaling, same topology, and the same collapse of the BP. Small differences,

like the appearance of a narrow transmittance window for the hold side

structures only faintly seen for PEC, add to further failure of the BP, not

resolving it. One redeeming trait about the switch to gold is the scaling, of the

lowest order resonance on each side of the perfect checkerboard, is closer to

symmetric. In total, both geometries have issues with the BP.

Without a doubt, the open-ended question left in the light of these theoretical

and simulation results is: Within the proof(s) of the BP, what issues amount to

the largely unrestricted criteria for the BP being overreaching? One assumption

used in the BP validation was the treatment of having zero thickness PEC. In
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Figure 2.7: -
Simulated transmittance peak wavelengths for a realistic checkerboard structure
with s = 0.95 and a = 1µm where weak coupling between islands is done through
a contact material with a parameterized plasma frequency Drude model. Model
in the inset and plasma frequency equal to that of measured gold is highlighted.

particular, how to treat the EM wave interaction at the infinitesimally thin

edges. On the vanishing cross-sectional edge, enforcement of the PEC condition

is glossed over and instead made that the incident wave scattering is also

disappearing. In theory, this strict boundary enforcement would surely disallow

standing waves and exhibit little to no back reflections. But, this is not the

correct enforcement of the consequences for a PEC material. Recall, PEC

requires zero penetration by fields and that the tangential component of the

electric field goes to zero at the material surface. This can be thought of as

identical to the waveguide condition for holes or the coax model for islands.

Having the electric field tangentially go to zero along the edges leads directly to

the validity of Equations 2.4 and 2.5. FIG dielectric phase map

fig:dielectricphase

Finding inconsistencies with the BP and edge effects, perhaps the bifurcated
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Figure 2.8: -
Simulated is the peak wavelength of the resonance in the transmittacne of
checkerboard structures that have either no dielectric material (red circles),
corner contact dielectric material (green triangles), or full coverage dielectric

material (blue stars). Insets show models with a = 1µm.

scaling can be literally bridged. As done before, resistive sheets were used to

weakly couple the perfect checkerboard into a more stable zone, dealing away

with these inconsistencies along the corners[32]. In a similar fashion,

computation allows exploration of the tunability of the addition of dielectric

contacts. Taking a slightly under-percolated checkerboard (0.9 < s < 1) and

adding dielectric corner contacts with a parameterized material plasma

frequency gives the results in Figure 2.7. Plotting the wavelength location of the

resonant peak against this tunable plasma frequency gives an abrupt step

function as the dielectric material reaches conductivity levels of metals. The

window of bridging between the bifurcated peak values is narrow on a log plot in

terms of the plasma frequency but does span a considerable gap in the peak

wavelength for this structure. One possible consideration for utilizing this effect
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would be in any sort of sensor device configuration where the dramatic change is

abrupt and two level. Going back to the BP, the dependency on the scaling

parameter is most important, so for a fixed plasma frequency (in the dielectric

regime) Figure 2.8 marks the explosive percolation transition. Using different

markers of the peak wavelength for three different structures, no contacts, corner

contacts, and full sheet contact, shows no major resolution to lining up the two

sides of the BP. The overall trend remains constant and so does the difference in

scaling across the phases. A study of interest now, would be to adjust the

material plasma frequency to higher, but intermediary values where possibility of

unification could be seen. Another route taken was to explore how dispersion

within the dielectric material changed the transmittance response. For example,

the inclusion of a resonant material, both on the peak frequency and away from

it. Displayed in Figure 2.9 is a multi-panel evolution through the percolation

threshold of an island checkerboard structure connected by resonant dielectric

contacts (model in panel (c)). Firstly, the Lorentzian model for the dielectric

function of the contact material is shown in the (b) panel. There are two

different structures tested, one where the dielectric function is resonant at the

same frequency/wavelength location as the transmittance and one which is off

resonance from that (at wavelengths of 4.6µm and 2.3µm respectively). The

figures main panel (a) is the transmittance spectra for both structures (red for

on and green for off resonance), as the structure is percolated. Initially, for

island structures under a scaling parameter of around s = 0.8, the spectra are

identical, mainly for their lack of major contact with the dielectric material. As

the overlap starts to increase with the resonant material, the main transmittance

peak splits for the on-resonance setup. The two structures meet back up across

the percolation threshold, essentially the same. Seeing the unique effect that the

insulating material having a resonant dielectric function has on the checkerboard
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spectra is quite interesting. There is a Fano-like split within the peak as the

value of epsilon diverges and forces a zero-transmittance condition on the whole

film at the resonant wavelength, which has been analogized as two coupled

oscillators[46]. A possibility could remain from further study on how dielectric

materials change and can manipulate the validity of the BP for complementary

structures like the percolated checkerboard.

Figure 2.9: -
Simulated in the same fashion as the previous work but the contact dielectric

material contains Lorentz model resonances in the dielectric function. (a) Three
panels showing the evolution of the transmittance peak for a = 1µm in the
percolation threshod region. Green curve is for the low wavelength resonance
(bottom panel of (b)) while red is for the high wavelength resonance (top panel
of (b)). (b) Dielectric function model (real and imaginary parts) for contact

material. (c) Model geometry.

Overall, the checkerboard structure is basic on a geometric level, but the

understanding of the interaction with electromagnetic waves holds many quirks.

Failure in the BP is the most striking of simulation observations, challenging a
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longstanding conjecture of EM theory. The percolation threshold and all its

non-linearities carry through to the separate scalings across the phase boundary,

making it difficult to reconcile the BP around plasmonic resonant frequencies.

Still, there remains a lot to understand further about this particular structure.

2.4 Other Complementary Structures

After some geometrical modeling mishaps, the bowtie checkerboard, as

previously introduced, contrasts with the regular checkerboard only when being

scaled by the scaling parameter. Squares are fixed by a corner instead of the at

the center, leading to the unique bowtie shapes for the islands and holes when

scaled past the percolation threshold. One interesting point to that island/hole

shape is constant singularity feature of corner to corner point contact, as seen in

Figure 2.2. Sending this bowtie checkerboard structure through the percolation

threshold and simulating the transmittance, in the same fashion as the regular

checkerboard, obtains the lobster diagram shown in Figure 2.10(b) that is meant

to directly compare back to the Figure 2.4 (re-printed in panel (a)) using the

same geometric sizes (unit cell length of a = 2µm). The further panels in the

figure, (c) and (d), take snippets of the bowtie lobster diagram and rescale them

to be on the same level as the above plots. The starkest of comparisons is

between the basic checkerboard and the low frequency (30− 180THz) of the

bowtie, panels (a) and (c). In nearly half of the frequency range, the bowtie

seems to reproduce, nearly identically, the same plasmonic resonances nearly

identically and the same BP violation as the standard checkerboard. Both sides

of the percolation threshold look to scale in the same fashion as the models

suggested previously for the hole and island sides of the basic checkerboard.

Higher frequency resonances in the bowtie pattern could be other geometric

resonances or could be high order standing waves produced in the finite size
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calculation domain, further computations are required for verification. However,

if indeed caused by the true EM interaction with the structure, there appears to

be some extensive quasi-fractality in the spectra. With each zoom in the pattern

seems to almost be reproduced in the same way, such that this gives impressions

of the self-similarity in a Hofstadter butterfly[47]. The original work plotted the

spectra for 2D Bloch electrons relying on periodicity but there have been

physical realizations as well. Particularly in EM, the microwave regime was used

for producing self-similar transmittance bands for an array of scatterers inserted

into a waveguide[48]. A continuation of exploring the similarities to this

experiment should be considered, where the bowtie checkerboard is brought into

the Bloch framework Hofstadter and others have used to try and get a similar

reproduction.

This idea is, however, not unique to just the bowtie structures but can be seen in

the basic ones as well. Seeing the similarities in between the two lobster

diagrams and the notable near factor of two bandwidth scaling suggests the two

structures might not be so different. Take the basic checkerboard for example,

and scale the unit cell by two to bring the periodicity to be double that of the

bowtie checkerboard. Figure 2.11 gives a direct comparison between the two set

up this way in the same simulated lobster diagrams, on the same frequency scale.

Finding differences in the spectra is an actual challenge. Only minor differences

in spurious resonances and feature sizes can be acknowledged as distinct from

one another. Beyond that, it is incredibly remarkable how alike the lobster

diagrams are. How can two different, albeit close, geometries show identical

transmittance spectra? One thought to be pursued is the idea of circumferential

quantization, mentioned in the previous section. Having the doubling of the unit

cell length being the only geometrical difference apart from the where the

squares are scaled from, lines up the circumference of the islands/holes. In the
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Figure 2.10: -
Simulated transmittance color maps for checkerboard structures done in the

same fashion as before. (a) Reproduction of Figure 2.4. (b) Lobster diagram for
the bowtie checkerboard of the same period as panel (a) (a = 2µm). (c) Zoomed

cropping taken from panel (b) to be compared with panel (a) highlighted in
green. (d) Zoomed cropping taken from panel (b) highlighted in yellow.

basic checkerboard, the island/holes are just one square, and therefore have a

circumference of four, square edge lengths. While in the bowtie checkerboard,

squares are always paired up and thus the island/hole circumference is eight,

square edge lengths, double that of the standard checkerboard. Now there seems

to be a bit more insight as to why the two spectra in Figure 2.11 are the same

when the basic is double the size of the bowtie. Though the exact one to one

correspondence requires further study and verification.

In similar fashion to the regular checkerboard, the idea of introducing weak

coupling to the percolation system in attempt to increase stability, can be
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Figure 2.11: -
Simulated transmittance color maps for checkerboard structures done in the

same fashion as before. (a) Scaled up to double the unit cell size for the regular
checkerboard. (b) Reproduction of the plot in Figure 2.10(b) to be compared

with panel (a).

carried over to the bowtie. For the bowtie though, the constant point to point

contact of the two squares that make up the bowtie shape is always a source of

non-linearities. Therefore, taking any under-percolated, island, structure and

attach more dielectric contacts that have a parameterized conductivity. Figure

2.12 is the heatmap for a collection of transmittance spectra for this bowtie

structure with s = 0.8 shown in the inset. The x-axis now serves as the

conductivity for the contacts, to explore the possibility of spectral changes

purely due to some connection across the bowtie. For the frequency dependence,

these spectra look much different than the PEC film cases before, just as the

regular checkerboard did. The coupling brings the structure to the other side of

the percolation threshold, showing broad minimal transmittance in the low

frequency before hitting a high frequency resonant spike. This feature remains

continual over the whole range of simulated contact conductivities, but a second

little transmittance bump is formed in the high contact conductivity range. It
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seems as if there is an onset of a change in the topology of the spectra as the

peak appears without suggestion of being there without the contacts. A lot

remains to be further tested and verified among this set of work however, but

there are signs of great exploitable properties for sensors of sorts suggested in

this one heatmap. Regardless, the inclusion of contacts playing the role of weak

couplers does give dramatic transformation to the spectra and is the ultimate

region of interesting physics at play with the phase change.

Figure 2.12: -
For a fixed value of s = 0.8 and a = 2µm bowtie checkerboard with contacts
placed on the bowtie corners with parameterized conductivity, the simulated
transmittance spectra over the same frequency range and manner. Inset shows

the model.

For the final set of investigated percolation structures, of which there are many

more, are checkerboards made of circles. Circles can be stacked into a lattice

array, in this case either triangular or square lattice, to make up another

island/hole pair. In the middle of the percolation threshold (s = 1), there is no

more self-complementarity and no more Babinet pairs across the threshold. The
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circles make up one side while the space between the circles is the other, in

shapes known as hypocycloids. Deltoids are the result of three touching circles,

in the triangular lattice, while in the square lattice of four touching circles, these

are astroids. In theory, this can extend further, increasing the amount of circles,

but in the next lobster diagrams shown in Figure 2.13 are just these two. At the

bottom of the figure shows the perfect, percolation threshold case for each

geometry, with left for deltoids and right for astroids. Each geometry has the

same unit cell length of 4µm but are simulated through the same frequency

range, consistent with the checkerboards. The complex shapes involved here

make modeling using the waveguide or dipole approaches previously fall a little

flat, so these lobster diagrams are meant to serve as a much more observational

set. There should be no expectation of symmetry along the vertical middle

point, since these structures don’t fall into the Babinet pair setup that easily

came with square checkerboards. Instead, the spectral behavior about the

percolation threshold should stand as the most interesting point. In both

diagrams, the middle is mostly a barren zero-transmittance zone across most

frequencies, despite tiny and sporadic resonances. Deeper study of these

structures goes down the path of exploring more of what occurs close the

percolation threshold, optically, as a structure is parameterized through it. What

looks to me the main plasmonic resonance, for both shapes, seems to be cut off

when too close to the threshold, only to recontinue later on the other side. These

structures could also further aid the weak coupling discussion. If contacts were

placed here to bridge the percolation threshold, perhaps continuity can be

restored the main plasmonic resonance. Without a doubt interesting but

straying a little too far from the central body of this work.
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Figure 2.13: -
Simulated transmittance color maps for checkerboard structures done in the
same fashion as before. (a) Deltoid structure geometry where the percolation

threshold schematic is seen at the bottom. (b) Astroid structure geometry where
the percoaltion threshold schematic is seen at the bottom.

2.5 Conclusions

The total summary of this work was meant to explore complementarity and the

BP. Checkerboard structures are the Occam’s Razor in studying this, for their

simplistic geometry and ability to be posed as toy analytical models. Having the

presence of the percolation threshold was known to cause some trickiness,

especially computationally, but adds a complex dimension to the underlying

physics. Collectively, the takeaway is about the failures in the thought to be all

encompassing BP. Even when all conditions are met, there are theoretical and

computational violations. The geometric resonances developed by standing wave

patterns of (spoofed) plasmons follow different scalings across the percolation

threshold. There is some irreconcilability, where contacts of various electrical

properties don’t show signs of bettering the expected symmetry. Even with other

geometries and structures, the BP does not always hold and is now the jumping
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off point for more complex studies.
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CHAPTER III

Extraordinary Optical Transmittance of Bilayer

Structures

One standard of detector schemes is to exploit the highly nonlinear in systems.

With rapid changes in a functional response of various physical properties, a

detector can employ a measurement that notices this change with high

sensitivity[49]. These types of nonlinearities are the product of systems

undergoing a phase transition, such as the mentioned percolation threshold[50].

It has been shown that undergoing a renormalization group transformation, this

threshold represents the critical fixed point, implying large nonlinear

response[51]. Previously discussed in Chapter II were checkerboard structures

that consisted of distributed conducting squares in some dielectric medium

(vacuum). The perfect checkerboard was considered the critical concentration of

metallic squares that reaches the percolation threshold where in the structure

parameter space there is a phase transition. That junction separates a

non-conducting phase of the structure with a conducting one. This radical

change in electric conductive response can serve as the backbone to an extremely

sensitive detector scheme for several physical properties like temperature,

pressure, particle/molecule concentration, optical radiation, etc. In addition, due

to the underlying connection between conductivity and the dielectric function
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[11], the percolation threshold can drastically alter optical response Ref. [52] as

already theoretically explored in Chapter II and Ref. [31] for planar checkerboard

structures. The thematic carry over remains the chaotic and nonlinear plasmonic

optical response. Such responses have non-trivial consequences to the

macro-scale optics. This chapter focuses on one such resulting effect called

extraordinary optical transmission (EOT), where plasmonics in periodic

metamedia facilitate increased sub-wavelength transmittance of light. Light is

assisted through a subwavelength aperture in an opaque surface (generally

metallic) by the presence of surface plasmon resonances[53]. Combined with

interference effects that come with the territory of apertures, particular

wavelengths of incident light, corresponding to resonances in the structural

geometry, enable the EOT. There exists analytical explanations of the

phenomenon in the cases of simple geometries of arrays of holes[54], but for more

complicated features CEM becomes a requirement for preliminary studying.

With diffraction as a leading contributor to the EOT phenomenon[55], the

computations exist in a naturally tough regime for CEM where structure feature

sizes are nearly equivalent with that of the incident radiation. Because of this,

there lies a wealth of fundamental electromagnetics and a rather unexplored

parameter space of possible systems harboring unique, non-trivial effects.

This chapter is broken into two parts that separate different structure geometries

and their physics. The first part serves as a continuation of the checkerboard

idea, now shifting to bi-layered Babinet structures. The checkerboard geometries

are spaced by a layer of dielectric and laterally offset to give the appearance of

total coverage of normal incident radiation. Structures based on this scheme for

certain dimensions exhibit EOT, via simulations and preliminary experiments.

Light, through plasmonic responses of the structure, can transmit wavelengths

that seemingly wouldn’t naively fit. Tuning of the physical device properties has
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direct control over the EOT response and provides an interesting way to explore

novel optical filter and sensor applications. The second part of this chapter

considers a more practical and fabricable bi-layer system involving nanospheres.

Finding the critical point of the percolation threshold and adding weak couplings

that restore device stability is a sensible addition when considering applications.

Simulation results, matched with experimental data, give strong insight to the

physics of the bi-layer Babinet structures that feature a EOT plasmonic response

in the IR. All discussed structures show promising potentials for detection

schemes based on the effects studied.

The key concept remains as the manipulation of the dielectric function via

creating a metamaterial with an effective medium that is geometrically tunable.

Exploring with CEM techniques gives a study of non-trivial optical effects, such

as EOT, and the underlying plasmonic mechanisms at work in ‘difficult to

fabricate’ or novel systems. This chapter is fundamental to this dissertation as a

whole and does provide a significant progression towards future work in the field.

Let’s discover further the plasmonics on these systems and how beneficial the

resulting optical phenomena are in applications.

3.1 Multi-Layered Checkerboard Structures

Taking the lessons and results of the underlying Babinet physics explored with

the checkerboard structures in Chapter II, a higher level of abstraction on the

geometry can deepen the understanding of the EM mechanisms that allow for

sharp, narrow band transmission of light. One point of the checkerboard

structures was the extraordinary geometric resonances that harbor plasmons (or

spoofed plasmons) that can continue the forward propagation of light waves with

a wavelength larger than the orifice of the structure. These excitations capture

photons that naively are ‘too big’ to squeeze through a hole of the checkerboard
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and reemit them on the other side, in a simplistic picture. Edges play a critical

role in this phenomenon as the surfaces for propagation of the plasmon

excitations. Before, the concept was about the Babinet physics of complementary

pairs across a percolation threshold on the structures, but the abstraction taken

in this chapter aims to instead see these Babinet complements work together in

the same structure. By having two complementary structures stacked as layers

with one another provides an unique opportunity to understand the combined

Babinet behavior of complementary structures, with no better choice to start

with than the ultimate self-complementary structure, the checkerboard.

Figure 3.1: -
Two checkerboard complementary arrays have been stacked on top of one

another with a spacing buffer of a dielectric material and then offset such that
from a top down perspective gives total metallic coverage. Left: Side on view of

how a fabricated device would look. Right: CST model of a unit cell for a
bi-layered checkerboard with the top at 90% and bottom at 110% of a perfect

checkerboard.

Geometrical features between the checkerboards in Chapter II will carry over to

the structures in this section, including the definition of the checkerboards’

perfect percentage that works as an order parameter for percolation. For this

section, two separate checkerboard arrays will stack and then offset from each

other to produce the effect of having total metallic coverage when viewed top

down at normal incidence, shown in Figure 3.1. Each individual array is designed
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to be the complement to its counterpart in the structure with Figure 3.1 showing

the top layer at 90% and bottom layer at 110% of the perfect checkerboard. The

first layer lies on top of a substrate and built into the holes of that structure are

pillars of a dielectric material for which the second layer is built upon. The easy

parameters that can be tunned in this situation are the thickness (separation of

each layer) and the deviation from a perfect checkerboard for each array.

Both layers are under control of the Babinet physics of an individual

checkerboard, so one expects interesting EOT effects, despite there being full

metal coverage at normal incidence. One starts by examining these structures

with simple metamaterial arguments. The simplest model of Babinet

complementary pair layers can be cartoonishly sketched with dipoles

representing the holes and islands of each array, as before in Figure 3.2. Incident

light with an in-plane electric field component is assumed to have a wavelength

that is long in comparison to the structure’s geometrical features, effective media

approximation. By induction, these fields create an electron gas whose

displacement is confined by the metallic structures, seen as surface charge

buildup of competing polarizations per layer. Each island and corresponding

hole then are each represented as a dipole in this picture and are illustrated in

Figure 3.2 as darker rectangles at a particular phase of material polarization.

Separately, each array layer can be thought of as many antennas all being

simultaneously driven by the external fields of the light waves. As antennas do,

all the absorbed and induced EM radiation can be re-radiated as new light

waves. The top layer, in absence of its counterpart, tends to have a re-radiated

wave that would cancel the initial excitation wave moving forward at large

distances, in the farfield. Expected transmission would be vanishingly small and

contain a high back reflection signal. The addition of the complement layer

below undoes the cancelation. The bottom array, being the complement and
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Figure 3.2: -
Top Panel: Simple model illustration of the charge densities in an array of

metallic islands (darker rectangles) and its corresponding Babinet complement
stacked below. Bottom Panel: Simulated electric field magnitude color map

confirming the illustration in the top panel. Image credits [56].

having reversed charge polarization of its dipole representation, cancels out the

action of the first antenna layer. Where once the initial wave was blocked in the

farfield, now with layered complementary arrays that excitation radiation easily

navigates through the complex structure, relatively unperturbed. Simulation

affirms this explanation when examining the electric fields calculated by the FIT

algorithm in CST, shown in the second panel of Figure 3.2 for a different bi-layer

structure that is explored in the next section.

Under the expectation of stimulated transmittance in these structures compared

to the näıve expectations of having full metallic coverage, simulations provide

the ability to explore with minor consumption of the resources it would take for
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Figure 3.3: -
Using time domain simulations to have a transient understanding of the

transmittance for normal incidence TEM light waves. Both panels are of the
electric field magnitude in a side-on view cross-section and share the same
geometrical feature sizes and color scaling. Left: The wavelength of the

excitation is short, falling into the range of the fundamental resonance in the
transmittace spectra. Right: The wavelength of the excitation is long, located

deeper into the IR regime where the transmittance is near-zero.

fabrication. There are swaths of parameters in this system that can be tuned as

a control, but first return to the simple idea of Chapter II about the perfect

checkerboard percentage and percolation threshold. The constant for this

structure is ensuring total metallic coverage from a perspective of normal

incidence, that is to say the two layers of checkerboard are required to have

percentages of a perfect checkerboard that sum to 200%. If the checkerboard

percentages of each individual array are denoted by stop and sbot then the

relationship is fixed at 200% = stop + sbot. With the knowledge given so far about

percolation thresholds generally, applying that to this situation would simply

suggest that at the point of self-complementarity (stop = sbot = 100%) holds the

most dramatic optical response. To begin, simulations near that threshold,

enough away for stable calculations, can show the potential for discovering in

this structure. For the bi-layer checkerboard, the simulated electric fields paint
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the picture of how the waves interact with the structure for various frequencies.

Exampled in Figure 3.3, short and long wavelengths, in the context of the IR

spectrum, are incident normal on the self-complementary bilayer structure. For

the short wavelengths (of order of geometric features), strong fields form around

the edges of the top layer and are carried to be reemitted on the other side.

Lensing and funnel of the light is the contribution of the bottom layer, working

with an array of plasmonic dipoles that are completely out of phase with the top.

The net sum shows light at these wavelengths be forward scattered and emerge

from the structure with strong intensity. The comparison to long wavelengths is

stark. Long wavelengths (of order much larger than geometric features), are

stopped by the arrays, with only a weak intensity transmitting. The corners and

edges are the focal point for transmitting the electric fields, but only for

comparable wavelengths to the geometric structural features. The spectral

dependence is seen in detail by looking at simulated transmittance for these

structures in Figure 3.4. First order resonances appear in the structure series of

2µm unit cell at a wavelength around 4− 6µm. While nearly 70% transmission

isn’t remarkable on the surface level, one must consider that to the normal

incidence TEM mode waves in these simulations, the structure appears to be

completely reflecting as a plane of gold[45]. Further higher order resonances

appear at decreasing wavelengths, naturally. Dependency on the checkerboard

percentage of the complementary pairs shows that as the percentage of the top

array decreases (deviating more from the perfect checkerboard towards

disconnected islands), these resonances occur at shorter and shorter wavelengths.

This would suggest that the limitations placed on transmitted light are directly

tied to the geometric feature sizes of the top array. A systematic decrease in the

transmittance amplitude is expected for lowering percentage of the top array, as

one would expect when moving away from the strongly non-linear percolation
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threshold[52]. Additionally, as expected for any periodic structure, simulations

(not included) show that increasing the unit cell size will redshift the

corresponding resonance peaks in the transmittance deeper into the IR, with

marginal truncation of the percentage transmitted amplitude.

Figure 3.4: -
The inset gives the model geometry example for which the transmittance data

was simulated for. Transmittance is plotted against wavelength in the IR
spectral range with the four colors representing different checkerboard

percentages of the top array. One stark resonant peak for each percentage shows
a redshift as the two checkerboard arrays approach being identical, the

self-complementary phase. Higher order resonances are observed to the same
effect at shorter wavelengths (higher energy).

One possible idea for the explanation of a decently large transmittance response

in a near-full coverage metal sheet, is to look towards a well-studied family of

band pass filters. It all starts with the idea of a Fabry-Perot interferometer[57],

where light is forced to reflect multiple times by two parallel, flat mirrors spaced

by a movable distance. The creation of interference fringes from a single beam

increases the accuracy and resolution of other multiple beam interferometers.

Because of this specialization, many schemes have been introduced over the years

for light filter systems based on Fabry-Perot[58]. In order to get to the
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single-sourced multiple reflections, multi-layered systems are abundant. Physical

and geometric properties of these structures, layer spacing being critical, set the

optical path length which ultimately governs the interference band, creating

spectral regions of sharp transmittance changes ideal for a filter[59].

Metamaterial designs have been utilized for further improvement of the band

pass filter characteristics[60], which are not so dissimilar from the bi-layered

checkerboard structure. Looking at the simulated transmittance for these

systems throughout this chapter, it is possible an engineer with applications in

mind would see strong filter characteristics in the spectra. The results from a

parametric simulations of the bi-layer checkerboard with controlled dielectric

spacing height are shown in Figure 3.5. Models use a Drude formula with

literature values for gold[45] and a dispersion-less dielectric constant to represent

a standard fabrication spacer in titanium dioxide. Holding the unit cell size fixed

at 1µm and the scaling parameter of the top (and bottom) layer to 75% (125%),

the height of the spacing layer can be tuned, seen in the models inset to Figure

3.5. For these structures, a set of three transmittance spectra have been selected

to guide through the sweep of buffer layer height, throughout the NIR window.

On the plots are tracking arrows meant as a visual guide to the evolution of two

of the peaks. Although seeing the intermediary steps in the simulation truly

shows it best, the three stages picked out here give the impression of a strong

metamaterial filter. Beginning with the second labeled peak, it starts quite

broad at low spacer height with even a shoulder at longer wavelengths. These

features nearly disappear as the spacer height increases. As for the first labeled

peak, it starts out very unremarkable, existing below 20% transmittance until

after the spacer height is doubled twice which is when this peak reaches over

90% transmission levels. More important is the formation of a strict

zero-transmittance band around a wavelength of 1500nm. The first peak is
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shifted across that gap and stands as the clear defining line between nearly ‘all

or nothing’ transmittance. Since this gap forms for larger dielectric spacing

heights, it is reasonable to suspect that the structure has become sort of

band-gapped material. It is not too unfamiliar to see band pass filters made out

of metallic meshes in the IR[61]. For example, fabrication of pillared structures

with roughly similar geometric sizes to these checkerboards have produced the

effects of a periodic array of nanoantennas[62] via a plasmonic resonance

localized on the grating that creates a Rayleigh-Wood anomaly. Within such a

scenario, an effective diffraction grating steers the diffracted incident light

perpendicular to the surface normal of the film[63]. There has been already a lot

of work done in this area, both theoretically[64] and experimentally[65], where

the plasmonic understanding of the EOT taking place has some explanation.

Based on the symmetry between these examples and the bi-layered checkerboard,

it seems this structure would fall under this category and would be a worthwhile

follow-up to fabricate and test.

66



Figure 3.5: -
The evolution of the simulated transmittance spectra verus wavelength of the

periodic bi-layer checkerboard structure as the separtion thickness between layers
is changed provides a ton of insight. For each spectra, there is an inset showing
the structure geometry with the corresponding separation (pillar) height labeled
above in bold. The first plot gives global structural parameters that are fixed
while the middle plot provides a color legend for the model materials and

properties. Arrows in each plot are a visual aid for tracking the evolution of the
dominant peaks. A visual aid in the third plot focuses on an area of zero

transmittance for further analysis.

An extensive effort was put forward by collaborators to attempt to create a

fabrication procedure for cheap and reproducible bi-layered checkerboards coated
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in a metal. One workflow was found to be quite successful but measurements

from the FTIR (Fourier transform infrared) spectrometer were difficult to

capture the transmittance spectra in the same way as simulations. Figure 3.6

displays the results of the measurement to computation comparison. The top

panels are dedicated to highlight the SEM (scanning electron microscope) images

of the fabricated patterns and simulated 3D models. In total, three patterns

were used that kept the period fixed at 2µm and uniform pillar height (difficult

to determine exactly but within a tolerance range) while varying the percentage

of the complimentary top and bottom layer checkerboards. Respectively, Pattern

1 (red), Pattern 2 (green), and Pattern 3 (blue) have the top layer set to be at

105%, 85%, and 65% of the perfect checkerboard. Resulting measurements and

simulations make up the bottom half of the figure where three simulations

spanning the tolerance range of the spacer height are plotted to be compared on

the same transmittance scaling as FTIR measurements across the IR wavelength

range. Additional baseline measurements are provided since they set the

transmittance scaling for the FTIR to what is completely reflecting, thick gold,

and what is fully transmitting, germanium substrate. Immediately, the

agreement is abyssal for the comparison, which could be due to multiple issues

explored for another system later in this chapter (coming from a mismatch in the

amount of collected light in the FTIR), but is not void of information. The

pattern with the top layer closest to the percolation threshold, but approaching

from the island side, shows the most transmittance promise of any of the

patterns, in both cases of simulation and experiment. There is something that

can be said for the overall shape and behavior to the spectra for each pattern

when compared, just some major issues with the magnitude and wavelength

shifting. Pattern 1 and 2 in simulations are redshifted by nearly 20% and four

times smaller in height, while Pattern 3 is accurate in the absence of peaks in the
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whole explored IR range. Many intrigues arise from the checkerboard pattern,

and particularly the bi-layered system, so a lot more characterization should be

put forward for attempt to fully understand the extraordinary transmittance in a

seemingly full coverage, Babinet film with an offset.

Figure 3.6: -
For three different bi-layer checkerboard structures, shown as a model and SEM
image of fabricated patterns, the measured and simualted transmittance spectra

are plotted. Simulations have three separate calculations showing some
variability in spacer layer. Measurements show a base spectra for a Ge substrate
(black) and thick Au (yellow). Both model and fabricated patterns have a 2µm
period with top layer scaling parameters for Pattern 1 (red) s = 1.05, Pattern 2

(green) s = 0.85, and Pattern 3 (blue) s = 0.65.

3.2 Nanosphere Structures

After exploring the structure geometries of the checkerboard and its adjacent

configurations, then expanding that to a bi-level system of complementary

Babinet pairs, we take one further abstraction. In these multi-layer geometries,

the motivation continues to lie at exploiting extreme non-linear responses of
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systems lying around percolation threshold of some type. With the inspiration

from pre-cursor work[66], we progressively developed a fabrication technique of

nanosphere lithography (NSL) to create a bi-layer structure capable of being

Babinet complementary pairs. The expansion taken on the fabrication technique

allows weak links to be created in the form of ‘nano-bridges’ between spheres,

leaving us with two metallic arrays of either isolated islands or isolated holes.

This work parallels that in Chapter II except the complementary pairs are

instead stacked. Use of percolation structures in sensor applications is not a

trivial demonstration. The extreme nonlinear response is beneficially exploitable

for sensitivity purposes but comes at the cost of device instability. This is

notorious due to the critical nature of the threshold where small design

parameter changes can have significant effects on measurable characteristics. As

previously highlighted in the planar self-Babinet checkerboard structure with the

bifurcated optical response, the singularities in the geometry make this a near

impossible system to realize. One demonstrated solution for this issue is by

introducing weak links that gently settle away from the critical nature of the

threshold point[32]. Thus, the stability can be restored while still maintaining

the desired sensitivity. We show an EOT plasmonic response in the IR, both

measured experimentally and simulated via CEM, that has potential geometric

tunability and possible sensor applications by exploiting this logic.

Firstly, we begin with the structure geometry. The design does have fabricability

in mind, thus it follows a novel form of NSL. As a technique, NSL is quite

economical and consistent with the creation of a single layer of spheres in a

hexagonal array, typically made of polystyrene. Standard size scales fall under a

micron but over the commercialization of the methodology, diameters of the

spheres can be precisely controlled. One key component to the fabrication of

these periodic arrays, where an example is shown in Figure 3.7, is the utilization
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Figure 3.7: -
Four separate cross-sectional SEM images of 500nm PS spheres all etched for the

same time duration. Distinction between panels is the amount of styrene
concentration to an ethanol solution added to the NSL process where each is (a)

0%, (b) 5%, (c) 7.5%, and (d) 10%. Image credits [66].

of self-assembly. The ordering and organization of the arrays is all done

spontaneously and naturally, usually through adsorption. It’s simplicity has been

well explored and is standard for the production of various spectroscopic

templates[67][68], photonic crystals[69], catalysts[70][71], other plasmonic

nanostructures[72][73], and several other applications[74][75][76][77]. Each

possible application takes a particular modification to the template, with

variations on material deposition for example. Taking an array of nanospheres

and depositing a metal (via sputtering for example) on top serves as the basis for

the construction of the structures discussed in this chapter. Examining Figure

3.8 the top row of panels illustrates what the resulting metallic arrays come out

looking like. The spheres have introduced a shadowing effect where depositing

the metal collects on the tops of the spheres and falls into the cracks between

them. The top array, viewed from the top down, looks like circular, isolated

islands. Whereas the bottom array develops as the Babinet complement to the
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Figure 3.8: -
Top panels (a1-a3) give a top and side view of the simplified fabrication process
for disconnected nanosphere arrays while bottom panels (b1-b3) are for the

nano-bridged version. Nanosphere template begins the process in both cases (a1,
b1) where then plasma etching (a2) shrinks the sphere sizes while fixing their
center location. For the formation of nanobridges, there is a pre-treatment of
styrene solution (b2). Both structures are metalized in the same way, yeilding

the respective structures (a3, b3). Image credits [56].

top array. Notable the top array is disconnected metal while the bottom array

has long range connectivity (i.e. islands and holes). In this description of

Babinet pairs, the two arrays when placed over one another show total coverage.

Having the thought experiment of shining normal incident light appears to

naively conclude the light is completely blocked out. This is the central idea

behind having Babinet complementary pairs introduced last section and the

chapter previously. And similar to the previous discussion of layered

checkerboards, these layers are spatially separated by being stacked and having a

dielectric spacing. Other than the changing of squares and circles, there is a

subtler difference in the structures described in this section. Referring back to
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Figure 3.8, in the side view showing the deposition of a metal, such as gold, the

top layer on the spheres is curved. These metallic islands are really domed caps

on the spheres. All this to say, the geometry is no longer planar, there exists

some curvature. The effects of this will be discussed further but for now should

be taken as a unique variation to multi-layered structures with non-trivial

physics and computational challenges.

Acting as the contrast to the nanosphere structure in this study is the bridged

scheme of NSL. This work is in collaboration with a modification to the

conventional NSL fabrication technique where a controllable two-step process is

introduced[66]. By diluting the spin-coating with a styrene solution and then

followed up by oxygen plasma etching the template, the nanospheres create a

link with one another. We refer to this process as nano-bridged nanosphere

lithography (NB-NSL) as these links are consistent, uniform bridges between

each neighboring sphere. The process and differences with traditional NSL is

outlined in Ref. [66] where a similar schematic to Figure 3.8 in detail describes

the fabrication process. Similar to the standard template, the new bridged

version will also have metal deposited as a coating on top. Two arrays are once

again formed, the tops of the spheres and the underlying shadowing effect.

However, the connectivity of them is opposite from before. The top array now

has the nanobridges coated, serving as connections of the dome caps. There is

long range connectivity in this case. While on the surface of the substrate, the

nanobridges cast a shadow below them, isolating the gaps between the spheres.

The leftover structure is a 2D Kagome lattice of quasi-triangular shapes that are

electrically disconnected. The roles of the two layers has flipped, in terms of

connectivity, with the addition of nanobridges. Without nanobridges the top

array stands as the isolated islands with the bottom array as the connected

Babinet complement of an array of holes. With nanobridges, the opposite where
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the top array becomes connected via nanobridges while the bottom array is the

Babinet complement series of islands due to the nanobridge shadows. Each array

consequently consists of two plasmon active, periodic, metallic layers that are

only submicron distance separated in the vertical direction. The purpose of this

contrast is to explore how these structural distinctions manifest into the

plasmonic environment. This can be studied via EM simulations, and later

verified by experiment on fabricated devices, by looking at the optical

consequences of the underlying plasmonic physics.

Figure 3.9: -
Each panel gives a top-down view of an SEM image and an inset of a perspective

view of an SEM image for (a) a 690nm and (b) 702nm period nano-bridged
array and (c) a 690nm and (d) 702nm disconnected array, all with a 784nm

pitch. Image credits [56].

As simulations and experiment go hand in hand, the results and discussions are

lumped together in this section as a direct way to view the comparison and

better understanding the interworking physics at play. To begin, the morphology

of both arrays is shown in Figure 3.9 as scanning electron microscope (SEM)
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micrographs, with insets showing a magnified version. Sizes and dimensions of

the polystyrene (PS) spheres and pitch are determined prior to fabrication based

on anticipated plasmonic responses in the NIR. Multiple arrays were fabricated

to have sphere diameters varying around the range of 700nm. They are laid in a

closely packed, hexagonal lattice that collaborators conclude to only have a

1.94% error stemming from small divergences away from monodispersity.

Creating structures like these, vertically coupled Babinet complementary

plasmonic arrays, have been already demonstrated to accomplish applications

with visible light. Examples include plasmonic pixels and surface enhanced

Raman spectroscopy[78][79][80]. Taking one step further, there have even been

studies on the disconnected PS sphere structures that have been metallized into

two vertical arrays. The visible optical response revealed the possibility to

modulate plasmonic resonance wavelength location and enhancement of the

nanostructures EM fields[81]. Not only is there tunability previously

demonstrated for similar structures, but also EOT effects. In slightly adjacent,

but simpler structure, EM simulations exemplified a remarkable IR

transmittance peak[82]. Theoretical framework has lastly be laid out to give

understanding for the EOT at a plasmon resonance of a plasmonic pixel

device[83]. Because of the underlying Babinet physics of coupled complementary

layers, there was reduction in the spectral width of the resonance and

suppression of higher harmonics. The literature provides plenty of

documentation around similar structures, but none have taken the extra step of

including weak coupling, specifically in the form of nanobridges.

Both structures, disconnected and nano-bridged, are under control of the

Babinet physics as discussed in other work. This leads to the expectation of

interesting EOT effects, despite being highly metalized structures with nearly

full metal coverage at normal incidence. One starts by examining these
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structures with simple metamaterial arguments, as done in the previous section

for stacked checkerboards. The simplest model of Babinet complementary pair

layers can be cartoonishly sketched with dipoles representing the holes and

islands of each array, as before in Figure 3.2. But, metamaterial analysis only

can loosely ascertain the innerworkings of these more complex structures and

expected high transparency. More rigorously, in an effective medium picture

there can be analytical expressions for the response function of the structures as

a whole [31]. The effective electric susceptibility can be written as a

superposition sum of each individual array

χeff (ω) = χi(ω) + χh(ω) (3.1)

where the island and hole array contributions are χi(ω) = Ω2 A
B
and

χh(ω) = − ωd

Ωω
2B
A
respectively. The parameter Ω is a constant along with

ωd = 2c/d being only dependent on the thickness of the ‘film’ (d). The other

parameters A and B are products of all the possible harmonic resonances,

written out as A =
∏

n(ω
2
0n − ω2) and B =

∏
n(ω

2
rn − ω2). Now, the effective

susceptibility can be plotted, showing only the real part if we are to take the

metallic losses to be negligible. Figure 3.10 has the top panel graphing all the

susceptibilities against frequency ω where the thick solid line (red) is Equation

3.1 built out of the individual susceptibilities χi(ω) as the thin solid line (black)

and χh(ω) as the dashed line (blue). Using the effective susceptibility in an

effective picture, the total transmittance through the pair of structures is given

by

Ttot =
1

1 + ( ω
ωd
)2χ2

eff (ω)
(3.2)

and is sketched out in the bottom panel of Figure 3.10. A story begins to unravel
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now of the origins of EOT within a structure defined in this way. Large peaks,

maximizing Ttot ≈ 1, are occurring at near-zero and vanishing values of |χeff (ω)|

when the two plots in Figure 3.10 are compared. This is because of the effective

medium approximation being taken saying that the combined structure thickness

d is much smaller than the light wavelength λ, seen through ( ω
ωd
)2 = π2( d

λ
)2 ≪ 1.

One condition for the presence of surface plasmons in an effective medium falls

right into this region of the susceptibility, requiring |χeff (ω)| = 2. Evidence

strongly suggests that these surface plasmon excitations are critical in achieving

surprising transmittance maxima, as is the case in conventional EOT. Looking

back to the transmittance plot in Figure 3.10, this is a quantity that is

standardly simulated, as seen throughout this dissertation. Using FDTD solvers,

specifically FIT, a reproduction of these successive maxima and minima of the

transmittance spectra can be given for the specific nano-bridged and

disconnected nanosphere structures. Displayed in the main plot of Figure 3.11 is

the simulated transmittance for a model of both types of structures studied here,

where the solid line represents the separated sphere array and dashed line

representing the nano-bridged array. Simulations utilized the appropriate

boundary conditions that approximate a normal incident wave in the TEM

mode. The model consisted of dielectrics for PS spheres and the CaF2 substrate

modeled as dispersionless medium with an index of refraction of n = 1.6 and 1.4

respectively. Metal coating used a Lorentz-Drude model for gold based on

literature parameters[45]. For each of the two structures, the focus of the

simulated transmittance spectra is the maximum peak and the local minimum.

At these spectral locations, the simulated electric field profiles on each structure

are also shown in the figure with arrows pointing to the particular energy (eV )

location. Two panels are exampled for both structures at each point of interest

where the upper panel gives a perspective view of the top of the PS spheres and
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Figure 3.10: -
Top Panel: Plots of the susecptibilities versus frequency ω for the Babinet arrays

where there is (thin-solid black line) χi, (thin-dashed blue line) χh, and
(thick-solid red line) χeff . Bottom Panel: Plotted Ttot against frequency ω for

complementary Babinet pair arrays. Image credits [56].

the bottom panel gives a top-down view of the base layer structure. Absolute

electric field strength is signified by color, following the provided qualitative

scaling bar. These simulation figures give identification to the points of the

structure that harbor the strong (and weak) fields to give insight to the

underlying EM mechanisms. To begin dissecting the field profiles, examine the

minima first. Transmittance is at its local lowest value, with light not making it

through the structure well. The corresponding field profiles are displayed below

the transmittance spectra and show strong field activity on the gold coating of

the spheres near where they come closest to each of their neighbors. Intuitively,
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this can be thought of as interaction amongst spheres, both in bridged and

separated structures. When looking at the Babinet bottom array on the

substrate, the absolute electric field is weak or absent. The fields are telling the

story here that only the top array of the metal coating on top of the spheres is

active when transmittance is at a minimum, fitting exactly into the expectations

of the dipole cartoon picture discussed previously. Switching to examining the

peaks in transmittance now, which are notable large, the electric field profiles

look more active than when at the minima. Particularly, the Babinet bottom

arrays have significantly stronger electric fields around the near-touching points

of neighboring spheres. Both the top and bottom arrays are active when at the

maxima, as suggested by the simulations. This fits nicely into the same narrative

theorized in the effective medium framework. To have maximal transmittance in

these multi-layer systems, it is a requirement for both layers to be active and

provide some field cancelation with one another. Simulations provide insight to

the main physics of these systems and completely back the theoretical

explanations.

Since the nano-bridged and separated arrays have been, from the start,

considering fabrication capabilities, collaborators can perform optical

characterization using a Fourier-transform infrared (FTIR) spectrometer to

compare to simulation, highlighted in detail in our paper[56]. Plotted in Figure

3.12 (panels (a) and (b)) are the experimental results for each structures

transmittance with vacuum wavelength along the x-axis. Simulated comparisons

matching the dimensions fabricated are plotted below those (panels (c) and (d)).

The last panels of Figure 3.12 replots the measured spectra after correcting for a

measurement artifact (panels (e) and (f)). Similarities within the measurements

and simulations include main peak locations and peak widths but noticeably

they differ in the overall strength of transmittance, independent of structure.
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Experimental transmittance is significantly weaker than expectations from

simulations. The attribution of this discrepancy goes to scattering. On top of

this, in the measured spectra there are also vibrational modes coming from the

atmospheric environment (water vaper and CO2) causing slight fluctuations.

Figure 3.11: -
Plotted in the middle is the transmittance spectra simulated for the (thin-dashed

line) nano-bridged and (thick-solid line) separated sphere (702nm diameter)
arrays plotted versus energy in eV . Arrows direct the surrounding electric field
magnitude plots to the energy (frequency) location that was simulated at. Each
model gives a perspective view of the whole structure and a top-down view of

the isolated bottom substrate layers. Image credits [56].

Calculating the stray/non-forward scattering alone in simulations and taking
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that out is a much more difficult task than a phenomenological model since the

models will necessarily require defects and a lack of periodicity that is

computationally costly. Mathematically the expression for incorporating

scattered light is written as Teff = Texpσ where σ is a model for relative

scattering cross section. The dominant scattering phenomena would be Rayleigh

and Mie types and have already been computational explored [80]. A simple

model for the scattering cross section within these mechanisms looks like

σ = A
1+Bλ4 with A and B being phenomenological parameters. Just as what

occurs for the blue color of the sky, Rayleigh scattering is the dominant effect for

large wavelengths due to the large exponent. For large λ or large B the formula

for the scattering cross section model is simplified to σ = A
Bλ4 and shows short

wavelength components of a transmittance spectra drowning out compared to

the longer wavelengths. Exactly as seen in the blue sky. Mie scattering, on the

other hand, handles the lower wavelength or smaller B regions[84]. In this limit

the cross section approaches equaling the value of A. Scattering of this type

happens for larger particles/scatterers with little dependence on λ and leads to

generally larger effective transmitted light. Through using this phenomenological

model to account for any non-forward scattered light in the experimental setup,

the plots shown in the bottom panels (panels (e) and (f)) of Figure 3.12 can be

obtained. For the nano-bridged structures, they contain very small scatterers

that the separated array does not have, the nanobridges themselves. In this case,

Rayleigh scattering will have a strong effect, so the model used is a mixed

Rayleigh-Mie limit (B = 0.001µm−4). The separated structures were set to lie

completely in the Mie limit (B = 0) for some presence of large scatterers in the

spheres. For the values of A, they were calculated by optimization with

simulations derived via least square fitting to be fully consistent with scattering

theory. Experiment and computation are now much more comparable to see the
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levels of which EOT exists in these structures and what role the nanobridges

play.

Both structures exemplify an advantageous transmittance peak in the IR

deriving from the EOT physics of the presence of surface plasmons. But when

comparing nano-bridged to separated structures, the nano-bridged have a much

more exploitable feature within the peak, quite large slope. An example

application scheme would involve a fixed wavelength (frequency), using 4µm for

example, and there is an easy to measure transmittance value that is readily

changed by structural geometric parameters. The fabrication process is

additionally consistent and considered inexpensive, allowing detector devices to

be developed in an intuitive way. Once again comparing the spectra for the two

structures, the effect that the nanobridges contributes is quite drastic. The weak

coupling they provide to the top array gives some enhanced sensitivity while

stability remains integral. Underlying plasmonic physics is non-trivial in these

systems but even with simple explorations of effective medium approaches being

paired with CEM, one can arrive at a comprehensive understanding of these

complex innerworkings. These methodologies explored here are scalable to other

systems and provides a starting point for further understanding and development

of unique optical phenomena in novel systems.
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Figure 3.12: -
Spanning some of the IR spectra are the transmittance plots for (panels (a) and
(b)) experimental FTIR data, (panels (c) and (d)) FIT simulation results, and
(panels (e) and (f)) corresponding experiemntal spectra that are corrected for
missing phenomenological scattering all split into (left) separated and (right)

nano-bridged arrays each parameterized with sphere diameters. Model
parameters used for (e) are: B = 0, and A = 5 (702nm diameter), A = 4.5
(690nm diameter). Model parameters used for (f) are: B = 0.001µm−4, and

A = 0.0013 (733nm diameter), A = 0.0012 (702nm diameter), A = 0.002 (690nm
diameter). Image credits [56].
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CHAPTER IV

Negative Refractive Index Capabilities of

Photonic Crystals

4.1 Background

For the coming chapter, a pattern of the work presented here has emerged.

Slowly, the structure geometries have been building up in dimensionality.

Checkerboards with infinitely thin PEC are 2D planar sheets but given a

thickness when converted to real metals. Elevated further with the addition of

another checkerboard layer in the bi-layered structures. That physics was carried

to the nanosphere structures, 3D but solely a monolayer. By following the

pattern, the next structures are just lattices of nanospheres. While not incorrect,

the geometric ‘step up’ falls into an entirely different class of metamedia,

photonic crystals, though they exist in 1D, 2D, and 3D. Take a simple atomic

crystal, ordered elements arranged in a periodic pattern across all 3D space, and

imagine that scaled up to the nano and even micro level. Albeit quite näıve, but

for how light propagates within the crystal, natural and photonic crystals behave

the same way. The scale difference only changes the regime of light wavelengths

that diffract and scatter within the lattices. On atomic scales, Bragg diffraction

is primarily concerned with EM waves in the x-ray spectra. While in photonic
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crystals, the spectral region of interest is entirely the engineering purpose behind

it. Photonic crystals can be natural themselves. For example, photonic crystals

could be thought of as biomimicry, where nature provides a blueprint. Such a

demonstration is seen on the wings in some butterflies, refracting optically, and

in the UV, with vibrant colors and opalescence[85]. In fact, opal itself is a

periodic microstructure of silica (SiO2) molecules that exhibits the same optical

effects. Generally, opal is polycrystalline at best for jewelry purposes, which is

why the light refractions are all over place, defining the opalescence attribute.

The composition of photonic crystals, like metamaterials, is up to the parameters

and applications with various mixes of metal and dielectric. Periodicity is a

powerful geometric constraint. A common analogy for the way periodicity in

photonic crystals influence EM waves is the behavior of electrons under periodic

potentials of semiconductors. This bridges many attributes between the uses of

photonic crystals and semiconducting solar cells, a possible way to boost solar

cell efficiency[86]. Inside the photonic crystal, the underlying effective dielectric

function repeats contrasting high and low dielectric environments, which as a

direct effect on the index of refraction of the crystal by n =
√
ε (when the

permeability is normal). Here interference effects dictate the light propagation,

considering the wavelength is around the same size as the lattice periodicity. In

the same fashion as semiconductor electrons a particular band structure full of

allowed and disallowed states, so too do photonic crystals. EM waves in a

photonic crystal are modes that are either allowed or forbidden to propagate

along certain directions and for specific frequencies (energies). One common

signature in many photonic crystals, just as in semiconductors, is the existence

of a band gap. Interesting optical phenomena can arise from more complicated

photonic band structures, designed to manipulate light flow.

One such example is achieving a negatively refracting material (n ≤ −1). A
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Figure 4.1: -
Snell’s law defines the geometric optics of refraction at the interface of two

materials. (a) Positive index materials, anything naturally existing, refract light
about the surface normal. Light entering a higher index material slows down and

adjusts to propafating in a new medium. (b) Negative index materials,
engineered metamaterials, refract abnormally along the surface normal,

appearing to bend backwards.

material of this type is truly an anomaly to how we view the world. Snell’s law is

the geometric optics guiding principle for light refraction between two different

mediums, as shown in Figure 4.1(a). Enjoyed and taught for its simplicity,

n1sin(θ1) = n2sin(θ2), Snell’s law determines the refraction angle of light going

from one medium to another based on the two indices of refraction. A classic

visualization is when a straw is placed in a glass of water and viewed from the

side, giving the illusion that the straw has been bent slightly at the water’s

surface. The interesting twist is when one of the indices of a material is negative

instead, causing the resulting refraction angle to bend along the surface normal

in the opposite way. For the straw example, the bend in the straw at the water’s

surface would look nearly unphysical, no longer a slight kink but a full bend in
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the other direction, just like Figure 4.1(b) suggests. Simple focusing lenses can

be created from a flat slab of a negative index material (NIM). Photonic crystals

with the ability to produce bandwidths of negative refractive index have been

shown[87], with variability in scheme[88]. One of many discoveries by Pendry,

utilizes a NIM in a lens that can triumph over the diffraction limit. Any

conventional optical system has its best resolution capped by the law of physics.

There is a direct proportionality between the wavelength of the imaging light

and the smallest observable feature size[58], preventing any clear resolution for

microscopes, telescopes, etc. A superlens was Pendry’s proposition for capturing

these fine details, with the physical basis behind it being negative refraction[23].

Metamaterials, such as the SRR, can also achieve this feat[28][89], but strong

efforts in nanofabrication suggest easy scalability in photonic crystals.

Neighboring idea polaritonic crystals, which can nearly be used interchangeably

with photonic crystals, utilize charge polarization of customizable nanoparticles

to produce similar dielectric response[90]. Commonly through any of these

systems, is the crystalline structure of the engineered material. The lattice

consists of spheres of one material (perhaps even coated) while surrounding them

in a matrix of another material, forming a typical crystal structure like FCC

(face-centered cubic) for the unit cell. An cubic example in 2D is shown in

Figure 4.2 for reference where the size scaling could be on the nano- to micro-

level depending on interested frequencies. Contrast amongst the various indices

of refraction for the materials is generally welcomed and associated with larger

photonic band gaps. Using the FCC lattice, Brillouin zone (BZ) plotted in the

second panel of Figure 4.2, gives one of the closest Brillouin zone’s to being

isotropic. In other words, the truncated octahedron is nearly spherical, giving

the advantage that along all possible directions of propagation the EM waves

disperse similarly. Given all this information about the crystal, theoretical

87



studies can be conducted in parallel to fabrication efforts to explore the

possibility of a NIM superlens.

Figure 4.2: -
Spheres consisting of one material, possibly coated, inside a matrix of another
material form a 2D cubic lattice of a photonic or polaritonic crystal in the left
panel. When scaled up to 3D, tightly stacking spheres in a unit cell is the FCC

latice which has the Brillouin zone (BZ) in the right panel. The BZ is a
momentum space mapping of the crystal lattice with the high symmetry points
denoted by letters (Γ , L, U, X, W, and K). Some propagation paths are denoted

in green Greek letters. (BZ) Image credits [91].

4.2 Band Structure Calculations

As mentioned previously, light in photonic crystals has an analogy to the

electrons of semiconductors, which is why band structure calculations are

critical. In a semiconductor, bands are the allowed energies and momentum of

an electron for a given direction. Analogously, bands are the frequency (energy)

and momentum dictating the allowed wavelength bands for light propagation in

a given direction of the photonic crystal. Generally thought of as dispersion in
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photonics, the modes of the band structure map out all the details of the

parameter space needed to understand the behavior of the EM waves. Photon

dispersion takes the form of ω = kc/
√

ε(ω) in a non-magnetic medium (µ = 1)

where ω is frequency, k is photon momentum, and c is the speed of light (in

vacuum). The dielectric function ε(ω) can be replaced by its Drude form from

Chapter I or Appendix A to give the plasmon-polariton dispersion. This hybrid

of a plasmon and photon has a simple form for when the dampening scattering

frequency in the imaginary part of the dielectric function is taken to zero.

ω =
√

ω2
p/ε+ k2c2/ε (4.1)

The plasma frequency ωp is the standard ωp =
√
4πne2/m, but is ωp = 0 when

no plasmons are present. Following through with Equation 4.1 gives the allowed

acoustic branch (massless photon) dispersion ω = kc, otherwise known as the

lightline. In the existence of plasmons ωp ̸= 0, the dispersion switches from a

linear to quadratic relationship ω = ωp√
ε
+ k2c2

2ωp
√
ε
near the gap that has opened up.

Size of the gap is given by ωp/
√
ε and from the dispersion the photon has

accumulated mass by coupling to the plasmon. This can be expanded to all band

edges for the high symmetry points of the BZ, creating the isometric conditions

necessary for good superlenses[92]. Using CEM methods, central to this

dissertation, the photonic band structure of a designed crystal can be calculated.

Within commercial CEM software CST Studio Suite, an eigenmode calculator,

based on methods discussed in Appendix B, is used on the discretized model

geometry of a until cell with appropriate periodic boundary conditions[7]. In

short, the fundamental EM modes and corresponding field patterns are

calculated for an excitation-less system. Various material combinations were

simulated using dispersion-less and data modeled dielectric information.
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Examples include using combinations of SiO2, polystyrene, TiO2,

semiconductors like Si and Ge, air, PbTe, and water. Using the band structure

calculations for various models, built up a small library of ∼ 20 datasets with the

hopes of applying that towards training material of a machine learning algorithm

(discussed later). Primary focus was realizing, computational and experimentally,

a NIM based on the photonic crystal for the purposes of subwavelength imaging.

Figure 4.3: -
Calculated eigenmodes for each momentum space direction form the photonic
band structure for a crystal made of SiO2 nanoparticles in an air matrix,

diameter d = 0.725µm and period a = 1µm (model shown in the inset). Each
band is represented by different colors with red for lowest frequency up to violet
for the highest. The high symmetry paths of the FCC BZ are plotted on top of
each other to compare directly, each with differing line segments. Grouping of
negatively sloping Umklapp bands show a refractive index of n = −2.8 from

slope fitting.

An opal-like single crystal of silica nanoparticles is one of many examples that

showed computational promise and was desired because of the simpler

fabricability. One of the band structure calculations is given as an example in

Figure 4.3 for a photonic crystal of silica particles in an air matrix, organized in

an FCC lattice. This particular example, unit cell model shown in the inset,
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used spheres with a diameter of d = 0.725µm and index n = 1.4, with a lattice

period of a = 1µm. Seven modes were calculated, considering some degeneracies,

and span multiple directions of momentum space stemming from the high

symmetry Γ point, each represented by a different color with low frequency on

the red end of the spectrum moving towards violet for the higher frequency

modes. For someone accustomed to examining crystal band structures, Figure

4.3 might look a bit strange in presentation. Each directional path in momentum

space exists separately as lines of different dashing and thickness. Interest for

this project was not to map out the band structure all possible modes of

propagation but to strictly find isotropic negative refractive index (NRI), all

angle negative refraction, amongst all the possible cuts of a real crystal.

Therefore, the paths of interest all start at the Γ point towards the other high

symmetry points on the surface of the BZ. Due to the non-spherical geometry of

the FCC BZ, the momentum distance from the Γ point differs slightly for some

directions but is close to uniform, denoted along the x-axis in units of π/a where

a is the lattice period. As a visual aid, the lightline for vacuum is plotted on top

as a scale for the relative refractive index. The first modes of the band structure

(red and the degenerate orange) represent the lightline of the material.

Discussed above, the acoustic branch disperses with a slope of ∂ω
∂k

= c√
ε
= c

n
for

the assumption the refractive index is constant over the frequency range ∂n
∂ω

= 0.

These material lightlines can be used to calculate the expected refractive index

for the medium anywhere the mode disperses through. Diffraction and internal

interference adjust this slightly depending on which direction of propagation is

taken through the crystal lattice, but generally group together. Periodicity

enforces strict boundary conditions on the dispersion at the BZ edge. Umklapp

scattering is the process that conserves momentum of wavevectors in periodic

systems, stating that any modal point existing outside the BZ, must also exist
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within the BZ[11]. Following the German instructions of the word ‘umklappen’,

the bands ‘turn over’ upon reaching the BZ edge and continue on to higher

energies as higher order modes. In Figure 4.3, the third (and degenerate fourth)

modes for each direction work as the upper branch Umklapp of the lower branch.

Noticeably, these modes have a negative slope in the dispersion, which following

the relationship of the slope with refractive index implies the material is

negatively refracting for that frequency range. Reaching higher frequencies

(energies) than these are the higher order modes of which play an insignificant

role. Light coupling to higher dispersion modes like those is a higher order effect

and intrinsically less common, but are calculated to have some sense of overlap

with any lower order modes. With applications in mind, grouping of the

negatively slopped bands is desired and is one property of optimization. Having

each mode with a nearly identical slope, thus a nearly identical refractive index,

prevents any chromatic aberrations at the lens level. By toying with the

materials and geometric features, it becomes possible to tune this band structure

into a desired frequency range for a desired refractive index. This is just one of

many band structure calculations that have now become nearly automated in

setup and post-processing, allowing for rapid understanding of light dispersion

properties for a desired crystal. In fact, reported band structures in the

literature have been reproduced to add to this small library. The overall

appearance of the band structure in Figure 4.3 is consistent with the literature.

One in particular that investigates an opal-like structure in the visible spectrum

achieved excellent agreement with these simulated band structures when using

the same parameters[93]. Additionally, that reference saw experimental

verification of the negative refraction at the expected frequency range and serves

as a good guide to future endeavors on this project.

92



4.3 Full Wave Simulations

Band structures are informational but not necessarily demonstrative. Behavior

of the bands provides the insight for the effects of the photonic crystal but

doesn’t mean a whole lot outside of index calculations. Which is why a common

staple of the literature on this type of topic is to pair band structures with wave

simulations[94]. Some examples take an effective media approach by simulating a

material with an effective index of refraction that is matched to band structure

calculations. Microscopic details of the photonic crystal are washed over and

assumed to be working as expected by the band structure. Other examples keep

these details but only simulate in 2D because of the demanding computational

costs with explicitly simulating many unit cells of a photonic crystal. All these

simulations are great and capture the power of negative refraction by showing

image formation[92] and superlensing[90]. Even better would be demonstrating

these negative refraction capabilities on a full 3D model of a photonic crystal,

constructed of the unit cell details. The challenges of doing this are heavy, which

is why scouring the literature yields no results. For several of the photonic

crystals alluded to in the previous section, this work made incredible strides in

achieving such a visualization. One example is shown in Figure 4.4 with a PbTe

coated, silica sphere in air matrix photonic crystal that was used to match up to

the expectations of NRI geometric optics. A dipole source, oriented vertically for

uniform radiation incident on the crystal, is placed a unit cell distance away.

Transient electric fields show the propagation of EM waves at a constant

frequency. For the crystal chosen to be displayed, silica spheres are coated with a

thin PbTe shell and arranged to be touching in an FCC lattice. Band structure

calculations determined the expectation of negative refraction for the chosen

frequency. In the 3D electric field simulations of Figure 4.4, the visualization

plane is taken right through the middle of the crystal, aligned with the position
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of the dipole. As discussed earlier in this chapter, a NIM can create lensing as a

flat structure and when the crystal thickness is large enough, an image is formed

both internally and externally. The top field map shows the propagation at a

moment in time where the internal image is fully being formed, while in the

bottom panel the external image comes into focus. Simulations of this caliber are

rigorous, thus limiting the amount of unit cells used to replicate the exact crystal

structure. Only three unit cells with periodic boundary conditions to each side

are for the plane tangential to the plot and eight unit cells in length. These

limitations prevent sharp, crisp images from forming, which have been improved

by expanding for simpler geometries of photonic crystals that are not shown.

Using Snell’s law, the expressions added to Figure 4.4 are well known geometric

optics expressions for ray paths provided as visual guides. The index of

refraction was calculated from the slope of the simulated band structure for this

crystal and was used to determine where the internal and external dipole images

would be located given the distances set up in the simulation. For a successful

image formation, the dipole location and crystal thickness play critical roles and

have been chosen to be the best possibility of simulating a flat lens effect.

Numbers from the geometric optics formulas are in excellent agreement with the

simulated electric fields. Despite the supreme challenges faced with achieving a

result like this that hasn’t been seen before, there are still several improvements

that can be made to strengthen this work much more.

Seeing the criticality that the crystal thickness has for successful image

formation from a flat NIM lens, the switch to standard 2D simulations can be

made. The goal of constructing a NIM lens takes more than just the verification

of NRI in a material, the optics involved in image formation are essential. Figure

4.5 comes into play now for assessing the focusing power for such a lens.

Simulations were performed by a colleague Rule Yi, using COMSOL
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Figure 4.4: -
Full 3D EM simulations of a dipole source (one unit cell away) incident on an

eight unit cell thick slab of photonic crystal. The top plot shows time condisered
t ≈ 0 where the bottom is a half-period time step later. This photonic crystal
model uses silica particles coated in PbTe in an air matrix. Negative refractive
index is expected for this crystal at the frequency of the dipole excitation shown.

Using geometric optics and Snell’s law, visual guides are given to see the
expected agreement with a NIM flat lens.

Multiphysics[43] to calculate the electric field magnitude of a plane wave incident

on a single slit. The 6µm aperture acts as a point source, emitting isotropic EM

waves of constant frequency (100THz) into a slab of material with an adjustable

thickness. These slabs do not explicitly simulate the microscopic details of the

photonic crystals, but instead use an effective refractive index for the whole lens.

Two comparisons are done between a positive index and a negative one

determined from earlier band structure calculations, as well as different crystal

slab thicknesses. The thinnest thickness, at 10µm is given in Figure 4.5(a) and

(b) where the refractive index is set to be 1.4 and −2.9 respectively. Despite the

sharp distinction in the material properties, these two plots don’t look distinct

from one another when comparing the overall field profile after emerging from

slab lens. Negative refraction focusing power is not seen for crystals that are too

95



thin, which gives direction to fabrication down the line. Instead, contrasting

simulations of Figure 4.5(c) and (d), where the slab thickness is now quadrupled

to 40µm, show strong differences. Just between them, the same indices were

used and now the lensing advantages of a NIM are fully seen. Whereas for the

positive index material, the EM waves continue spreading and diverging, the

negative index focuses the electric field into a concentrated point before

diverging. The thicker NIM slab provides the ideal lensing expected from a

converging lens made of a normal material. Results from these simulations

provide guidance to fabrication once the microscopic details of the photonic

crystal are easily produced. Since this work was done in parallel with

experimental and fabrication efforts, the following section will touch on the

achievements on that front and confirming simulation/theoretical results.

4.4 Towards Fabrication

Efforts on the fabrication and confirmation side of this project were done by

Nanolab Inc, famous for carbon nanotube production which is used to make one

of the blackest black paints, ‘Singularity Black’. Using simulation and theoretical

insights, the first step is creating a crystal expected to have a NRI in a

measurable bandwidth. Their work has utilized common fabrication technologies

and novel processes to attempt creating self-assembled networks of spheres that

can ultimately be set into an FCC lattice. Some models possess coatings on top

of the spherical particles to add contrasting indices of refraction. This adds to

the list of accomplishments their team pushed for fabrication of the proposed

photonic crystal lenses. Shaping the lens becomes another challenge altogether,

involving centrifugation. In total, the fabrication efforts are to be discussed in

another place and beyond the scope of this dissertation, other than a little flavor.

Example spheres on the micron-scale self-forming into a triangular lattice are
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Figure 4.5: -
Using 2D computational methods, the electric field magnitude is simulated for a
100THz plane wave incident on an aperture. Materials are an effective medium
with the microscopic details of the crystal not being explicitly simulated. Plots
(a) and (b) compare positive and negative index materials at that frequency for
a flat lens thickness of 10µm. Plots (c) and (d) show the same but for thicker
flat lenses at 40µm, highlighting the criticality of thickness on lens focusing.

Simulations performed by Rule Yi.

shown in Figure 4.6 as SEM images. Just as the problem with natural opal,

these synthetic opal crystals show large domain boundaries. These grain

boundaries inhibit the negative refraction properties that are deeply tied to the

Umplapping of a BZ edge in a periodic crystal. Combined with fabrication, an

experiment needs to be designed as a probe for the NRI property, both to

observe and determine the value of it. The working idea is based upon literature

methodologies that have set relatively straightforward procedures to the

characterization of negatively refracting photonic crystals[95][96]. The general

idea is to couple light directly into a photonic crystal, set up as a flat lens, where

Snell’s law expects a focus somewhere internally and externally of the crystal. A

screen/detector is adjustable placed to be able to locate the focal point. Central
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to the experiment, a material with a positive refractive index will not be able to

reproduce this phenomenon and serves as an excellent control to the experiment.

Figure 4.6 includes schematics that show successful and unusable setups for the

experiment, simply based on geometric optics. As inspired by the work of Figure

4.5, the thickness of the photonic crystal flat lens is vital to the production of a

focal point external to the crystal. Additionally, the relationship with the

substrate for which the crystal is placed also influences the possibility of

observing negative refraction. Relative thickness between the substrate and

crystal, as well as the order of the two in which light is directed, dictates if and

how far the focus will be for the detector to observe it. One consistent criterion

for a successful observation is sufficiently thick photonic crystal, especially

compared to standard substrate thicknesses. The success of similar experiments

in the literature, coupled with the illuminating simulations, gives strong hope for

the basis of negative refraction in the photonic crystals explored in this project.

Transitioning all the way up to 3D systems has been quite successful from a

computational and theoretical standpoint and paves the way for future work to

be discussed as conclusions later.
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Figure 4.6: -
Four schematics provide the rays following Snell’s law for a NIM and substrate
experiment where light is directly coupled at the bottom to propagating upward.
The order of the two layers and thicknesses are changed, showing which setups
provide the possibility of observing a focusing point due to the NIM. At the
bottom are micron-scale SEM images of silica particles used in the fabrication

efforts of photonic crystals. SEM images taken by Nanolab Inc.
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CHAPTER V

Non-Local Plasmonics

Throughout this body of work, strong definitions for the range of physical

interactions have not been so explicit. For example, back in Chapter II about the

checkerboard system, there was never a need to discuss the formal distinction

between the inter-island(hole) and intra-island(hole) interactions. There is

something to be careful of hidden in the details which is locality. As for the

purposes in this work, locality is referring to the physical distance for the range

of the interactions amongst objects. Electromagnetics as a whole can be thought

of as non-local when compared to mechanics, simply since the forces and

influences objects have on one another typically act at some separated distance.

Coulomb’s Law forces have far more range than say a pair of Newton’s Third

Law forces from two objects touching. Similarly in the checkerboard, plasmonic

effects arising from island-to-island (hole-to-hole) interactions have a longer

range than that of the internal island (hole) self-interactions. Though in this

example, the reach is not considered to be quite large. Non-local interactions are

strong interactions among neighboring unit cells of a metamaterial or even

natural crystal[97][98]. Various optical phenomena can be explained by the

strong electron interactions considered non-local because of a mean-free path on

the scale of nanometers[99]. Quantum effects begin to show up. This is why,
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generally speaking, all the work presented thus far exists in the local, or

quasi-local realm where things can be taken to be local enough for a good

approximation. In fact, commercial computational techniques used throughout

and detailed further in Appendix B are all inherently local and can handle

quasi-local problems to a good approximation. Demystifying non-local

plasmonics effects requires better handling of mesh cell sizes that dip below a

nanometer and the increased computational costs. To deal with anything outside

those boundaries, one typically would use models based on hydrodynamics or

some non-local extensions[100]. Development work is ongoing to implement

non-local hydrodynamics to FDTD codes[101] as to better capture the non-local

plasmonics of small feature sizes coming with the continuous improvement of

nanofabrication techniques. Regardless of this computational limit for the time

being, massive progress to the field still continues using non-local extensions[102]

and what exactly are the differences by considering non-locality[103]. Which is

exactly the case for the rest of the work detailed in this chapter, involving

primarily systems where non-local effects must be considered and

electron-electron interactions are strong.

5.1 Ginzburg-Kirztnitz

Superconductivity has been well-studied, and well-funded, since the very early

stages of theoretical push and experimental discovery. Primarily, focuses have

been about understanding how to increase the critical temperature (Tc) at which

a material demonstrates the Meisner effect and has its electrical resistance drop

to zero. The search for a room temperature superconductor has been extensive,

which if ever fruitful, would be one of the most celebrated achievements of

modern physics. Beginning with the breakthrough of cuprate superconductors of

the late 1980’s, critical temperatures experienced a large spike in the right
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direction, up to ∼ 90K. With reinvigoration and dedication, the cuprate family

was able to produce superconducting critical temperatures up to 133K by

1993[104] but showing little improvement since. Theoretical explanations have

even come up unclear for the driving principles and interactions of type II

superconductivity displayed by cuprate materials. The central mechanism, in the

conventional theory of Bardeen-Cooper-Schrieffer (BCS), is the condensation of

paired electrons becoming boson carriers that are mediated by

electron-phonon-electron interactions. It has already been shown that there are

no expected physical limitations on BCS superconductivity blocking a push to

room temperature superconductivity by Ginzburg and Kirzhnits[105]. Written

first in Feynman Diagram form and then within the random phase

approximation (RPA) is the full, dressed Ginzburg-Kirzhnits electron-electron

interaction potential shown in Figure 5.1. It consists of two separable terms,

Coulomb and Fröhlich, which specify the screened electron-electron interaction

and the phonon (with frequency ωq) mediated electron-phonon-electron

interaction, respectively. The main point meant to draw attention to is the

dependency on the material electrical environment properties, the dielectric

function[106]. Now shown as a function of both frequency (ω) and momentum

(q), due to the inclusion of non-locality, it appears in both terms in opposite

flavors. Being squared in the Fröhlich term ensures that a negative dielectric

environment remains strictly positive. Whereas in the standard Coulomb

interaction, a negative dielectric function causes like-charges to attract and

opposites to repel. There are essentially competing interactions along with

thermal noise drowning out the desired electron pairing mechanisms and takes

sufficiently low temperatures to induce superconductivity[107].

Coincidentally, as discussed throughout this dissertation, metamaterials are an

excellent way to engineer and manipulate the dielectric function. With the
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Figure 5.1: -
Feynman diagrams describing the dressed electron-electron interaction. It

consists of two terms, Coulomb for the direct electron-electron interaction, and
Fröhlich for the phonon mediated electron-electron interaction. Both terms are
written out within the RPA formalism, with special attention to the role of the

dielectric function.

reformulation of BCS theory in terms of an effective dielectric function ε(q, ω)

shown in Figure 5.1, there have been propositions[108] and demonstrations[109]

of using metamaterials (HMM) as a way to modify the dielectric environment for

a metal to improve the critical temperature. The possible exotic optical

properties sponsored by metamedia have already been demonstrated in this

work, which one manifestation can be an effective dielectric function with a small

magnitude[110]. In the demonstrations of this combination of theory and

metamaterials, it produced modest critical temperature enhancements[111] that

is attributed to the locality of the effective metamedia dielectric function. So in

return to the equation of Figure 5.1, there indeed is potential for boosting

electron pairing but the competing interactions prove to be difficult to tip the

scales sharply in favor of electron pairing.

5.2 Resonant Anti-Shielding

The anti-shielding effects a metamaterial can provide to an electron system are

weak when only involving standard metamaterial effects A boost is needed. This
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is where the introduction of some other effects could have the potential for better

critical temperature improvement. First, let’s more rigorously understand the

physics of anti-shielding. Equation 5.1 takes the previous expression for the

dressed electron-electron interaction potential and places it inside a jellium

metal[112] consistent with Migdal-Eliashberg theory.

Vq

ε
+ |gq

ε
|2 2ωq

(ω2 − ω2
q ) + iδ

=
Vq

εeff
(5.1)

In the equation, ε is the dielectric function for the environment, gq represents

electron-phonon scattering as a matrix element that has been averaged over all

electronic states, ωq is the phonon dispersion, δ is a small loss factor which is

constant, and lastly the standard Vq = 4πe2/q2 for the bare Coulomb

electrostatic potential. This equation represents the effective dielectric function

εeff given the two interaction terms of Coulomb and Fröhlich. As described in

the previous section, pairing of electrons is boosted by |ε| < 1, anti-shielding, but

Equation 5.1 also shows pairing possibilities for frequencies around the phonon

frequency ω ≈ ωq. A resonance can form which combined with an extreme

dielectric environment (|ε| ≪ 1) creates the optimal conditions for pairing,

described as resonant anti-shielding (RAS). Achieving these conditions with

solely just a superconductor is impossible because this metal will only have a

dielectric function strictly greater than one. In the same breath, metamaterial

structures alone won’t be able to meet the requirements either. Sure, the

resonance condition can be met, having near-zero ε when ω ≈ ωq, but this not

practical for keeping locality intact. For the resonance to be met in a

metamaterial, the momentum (a measure of locality) would be at q ∼ kF (the

Fermi wavevector). This places a geometric constraint on the metamaterial

design, forcing the smallest feature sizes to be on the same order as 1/kF [100].
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In all, there are still two competing interactions, with the Fröhlich term

accumulating the most strength by diverging 1/|ε2| edging out the 1/ε.

Figure 5.2: -
(a) Dispersion of two collective modes, α mode (blue line) and acoustic phonon

mode (red line), for the 2D electron gas for the topological crystal Bi2Se3
surface. Boundary of the BZ marked and the largest frequency difference. (b)
Example calculation of the dielectric function, real part (solid red line) and
imaginary part (dashed blue line), using the derived relationship with the

Eliashberg function. The example of a normalized step function was used for
α2F and κ = 1. Corresponding frequencies from Bi2Se3 carries over as vertical

lines. Image credits [113].

Another way of achieving the conditions required for RAS is necessary now.

Discussed in Appendix A, one set of solutions to Maxwell’s equations find

longitudinal modes for plasmon excitations that have ε(q, ω) = 0 but at different

frequencies than the phonon frequency when the momentum is on the same order

as the Fermi wavevector( q ∼ kF ). Which is why typically plasmon modes won’t

suffice for the RAS conditions, unless they are quite abnormal. One example

observed recently in the topological crystal Bi2Se3 is called the α mode[114].

Dispersion for this particular plasmon mode is oddly linear (ω ∝ q) which makes

it some fixed phonon mode that will cross the Brillouin zone (BZ) without an
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Umklapp folding over a mirror image due to periodicity. Plotted in Figure 5.2(a)

is the interpolated experimental data for the dispersion of the α mode (blue line)

alongside the typical acoustic phonon mode (red line). Follow-up work on this

anomalous topological mode showed miniscule damping at a near constant rate

for a wide band of momentum space that standard plasmon modes are not

seen[115]. The α mode was also shown in this work to be clearly tied to the

topological nature of Bi2Se3 since it was missing from the spectra for the other,

doped form of Bi2Se3 that is non-topological. Instead, a typical transverse

acoustic phonon mode took its place, looking similar to the Figure 5.2(a) red

curve[114]. In the same theoretical follow-up study, that was consistent with

experiment, the weak damping of the α mode was attributed to the forward and

backward scattering being close to identical and in turn causing no Umklapp at

the BZ[115]. With all these deductions about the nature of the α mode, it was

reasonable to assume it lined up with the description of a plasmon-polaron,

known as the collective excitation of a hybrid transverse acoustic phonon and the

plasmon excitation of surface Dirac electrons[116]. This α mode in particular is

tied to the topology via the 2D Dirac band surface states of Bi2Se3 with

collective spin-charge fluctuations which makes the mode also analogous to a

phonon-polariton. As a hybrid photon and phonon mode, the polariton

dispersion is derived from that of photons (i.e., the light line) ω = qc/
√
ε [117],

then substituting in the dielectric function from a Lyddane-Sachs-Teller phonon

ε = εeff =
ω2
LO−ω2

ω2
TO−ω2 [118]. Switching sides on the analogy, for a plasmon-polaron

the starting dispersion will instead be a topological 2D Dirac plasmon[115] and

now Equation 5.1 stands in as the effective dielectric function. If things are kept

simple by limiting the range of phase space to only that which applies for RAS
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(ω ∼ ωq and q ∼ kF ), one will arrive at

εTI(q, ω) ≈ 1 + κ|gq|2
2ωq

(ω2 − ω2
q ) + iδ2

≈ (ω2 − ω̄q
2)

(ω2 − ω2
q ) + iδ2

(5.2)

for the effective dielectric function. The parameter κ is dimensionless is scaled by

κ ∼ kF/ε̄
2 > 0 with kF specific to the electrons of Bi2Se3 and the frequency of

the plasmon-polaron is labeled ω̄q
2 ≈ ω2

q–2κ|gq|2ωq making it strictly smaller

than the phonon frequency (ω̄q < ωq). Having this inequality means the

plasmon-polaron mode will always follow the acoustic phonon mode up to the

BZ edge, but be ‘lagging’ behind in frequency as Figure 5.2(a) shows.

Experiment and theory from the previous references on this mode confirm the

negative depolarization shift in frequency.

To model and exploit the expected dielectric properties of discussed, an example

sketch of a superlattice consisting of the topological crystal Bi2Se3 and a

superconducting metal film is provided in Figure 5.3. Central to the argument is

creating a dielectric environment following Equation 5.2 that is capable of

promoting the RAS effect in this effective medium. Only one critical assumption

is made to be a rule for this structure: the sandwiched superconducting film has

a sufficiently small thickness to allow the RAS effect to permeate throughout the

whole bulk of the superconducting metal (tsup < 1/q ∼ 1/kF ). The idea being

that the electrons of the superconductor need to feel and experience the effective

dielectric function. For that dielectric environment within this configuration, the

electrons would respond according to ε̄sup(q, ω) ≈ εsup + (εTI(q, ω)− 1) as a

combination of the standalone bulk superconductor ε = εsup and the

polarizability influence of the Bi2Se3 electrons in parentheses. Focus can now be

shifted to the superconductor’s phonons for control over the behavior of the

plasmon-polaron. All the influential phonon bands in this part of phase space
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Figure 5.3: -
Schematic showing metamaterial super lattice of a topological crystal (TX, in
orange) and a superconductor (SC, in blue). (a) Taking advantage of the

periodicity, the structure is designed to facilitate the resonant anti-shielding
(RAS) effect. (b) Zoomed in to show further detail of the expotentially decaying

amplitudes away from the interfaces of the electric field produced by the
plasmon-polaron propagating with the (yellow) arrows. (c) A possible

optimization to the structure includes buffer layers of a phonon modifer (in
gray), allowed by the topological proximity effect pushing the plasmon-polaron

still to the superconducting surfaces. Image credits [113].

can be introduced to Equation 5.2 while simultaneously reducing the constraint

of the jellium model. After the algebra is cleared up, which can be seen in more

detail in Reference [113], the main takeaway from the new ε̃sup(ω) is the

transformation of the electron scattering matrix element into a form of the

Eliashberg function, essentially the phonon density of states. The Eliashberg

function, α2F (ω), is dimensionless, has been renormalized, and is now directly

proportional to the imaginary part of the dielectric function when in the limit of

increasingly smaller loss δ. For many materials, the Eliashberg function is

known, either through measurements or theoretical calculations. This makes the

parameter κ the main ‘unknown’ within the effective dielectric function of the
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Figure 5.3 topological crystal-superconductor metamaterial. Estimates can be

taken from standalone experiments on the topological crystal (Bi2Se3). For now,

it is left as a tunable parameter for calculations but started with the assumption

will be that κ = 1. An example Eliashberg function can be plugged in to get a

feel for what the dielectric behavior will look like such as a single rectangular

peak that maxes out at α2F (ω) = 1 for a set frequency range, otherwise is

α2F (ω) = 0. Returning to Figure 5.2(b), the total effective dielectric function

has the real (solid red line) and imaginary (dashed blue line) parts plotted. Both

panels of the figure come together by seeing for the value q = 0.53Å−1 (partial

vertical dashed blue line of Figure 5.2), the difference between the phonon

frequency and plasmon-polaron frequency is in agreement, ∆ = ωq−ω̄q

ωq
≈ 20%.

This window of frequency shown in Figure 5.2 as thin, vertical, black lines

provides the optimal window for RAS with this model effective dielectric

function. Now the Eliashberg function is screened and can be written as

¯α2F (ω) = α2F (ω)/|ε̃sup(ω)|2. What’s left to do is apply this formalism to a real

example and calculate the effects on superconducting critical temperature.

5.3 Enhancment of Superconductivity via RAS

While the scheme just outlined to modify the dielectric environment for the

superconducting electrons is novel, applying that to calculate critical

temperatures is well established. Ab initio calculations of the coupled Eliashberg

equations[119][120][121] are solved directly and used to calculate the

supercoducting critical temperature[122]. Detailed steps are provided in the

guiding paper for this chapter of work and its corresponding supplemental

material[113]. One main note for these calculations is the differences between the

two possible equation system solvers, isotropic and anisotropic. Both solvers deal

with some known inaccuracies where the isotropic tends to underestimate Tc
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while the anisotropic overestimates Tc by roughly the same amount. It felt better

to take the more conservative approach, so the isotropic solver was used, keeping

the anisotropic results as self-consistent verification. In support of these

calculations, there is the additional Tc calculation idea of the ab initio Leavens

scaling method[123] to achieve an accurate electron-phonon coupling function

that reduces any RAS randomness. The basis of this method is to provide the

upper limit to the critical temperature and not Tc directly, seen in Equation 5.3.

Tmax
c = c(µ∗)

∞∫
0

α2F (ω)dω (5.3)

The function c(µ∗) is of the Coulomb pseudopotential µ∗ that is dependent on

the Fermi energy, double Fermi surface average of the screened Coulomb

potential, and density of electrons for the superconductor. Overall, this term is

monotonically decreasing as a function of the Coulomb pseudopotential and can

be determined from looking at experimental results on a material-by-material

basis[122][123]. Rewriting Equation 5.3 now using the anti-shielding formulism

for the Eliashberg function gives

Tmax
c = c(µ∗)

∞∫
0

¯α2F (ω)dω = c(µ∗)

∞∫
0

α2F (ω)

|ε̃sup(ω)|2
dω =

c(µ∗)

κπ

∞∫
0

Im(
1

ε̃sup(ω)
)dω

(5.4)

using the relationship established between the superconducting dielectric

function and the Eliashberg function. Using both critical temperature

calculation methods, each having the RAS scheme implanted, select materials

can be used as an example to see if RAS gives any enhancement. Sticking to

conventional BCS superconductors first, MgB2 has been renowned as the highest

Tc material (at standard pressure) of the BCS type. The layer stack-up of Figure

5.3 now considers the interfacing of MgB2 and Bi2Se3 where literature gives the
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value of µ∗ = 0.16 to be plugged in for MgB2[122][123]. Resulting calculations

for Tmax
c by the Leavens approach (solid colored lines) and for Tc by the ab initio

Eliashberg calculations (filled red circles) are plotted in Figure 5.4(a) against the

parameter κ. Recall κ represents the strength of the screening effects in RAS,

beginning at κ = 0 where there is no screening at all. This would represent the

expected critical temperature under standard conditions with no RAS. For

MgB2, experiments have routinely shown Tc = 39K, significantly lower than the

isotropic Eliashberg equation approach solution of Tc = 23K. Of course, an

underestimate was expected so it is important to check what the anisotropic

solver for what the overestimate is, seen as the open red circle at κ = 0 and

Tc = 54K on Figure 5.4. As κ increases, the critical temperature increases until

a sharp maximum at κ = 1.3 where afterwards is a dramatic fall off. After

hitting roughly 100K (4-fold enhancement), the critical temperature

immediately dips below 10K getting to κ = 1.4. In the second method of

solutions, Leavens scaling, the trend is clearly similar. Keeping in mind this is

Tmax
c now, for no shielding effects (κ = 0) the critical temperature is remarkably

close at Tmax
c = 43K. The curves follow along the ab initio Eliashberg points

well, with deviations only occurring at the most significant point of the

maximum to minimum area of κ = 1.3. Mathematically, Equation 5.4 is

diverging at the RAS condition of ε̃sup(ω) becoming extremely close to zero. The

screened Eliashberg function becomes singular which can be resolved by

artificially adding some dampening in an imaginary term to the effective

dielectric function. A way to think about this contribution is by considering the

inserted iζ term as scattering from impurities with the idea in mind to damp

down the divergence to something more numerically appropriate. For the

different colored lines plotted in Figure 5.4 using the Leavens method, the factor

for ζ was changed, leaving the general behavior the same.
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Figure 5.4: -
Using the resonant anti-shielding (RAS) with both the ab initio Eliashberg

equation formalism and Leavens sscaling method, the critical temperatures can
be calculated for a real superconductor in the superlattice scheme. Eliashberg
equations give solutions for Tc (solid red circles for isotropic, open circle for
anisotropic), while Leavens method gives Tmax

c (lines for different damping
parameter ζ), both in Kelvin. Along the x-axis is the coupling parameter κ. (a)
MgB2 where the arrow gives the experimental Tc. ζ: 0 (blue line), 0.005 (red
line), 0.008 (green line), and 0.01 (black line). (b) MgB2 with phonon modifier
layer of Y BCO. ζ: 0.01 (dashed red line), 0.05 (purple line), 0.1 (blue line), 0.15

(red line), 0.2 (black line), and 0.25 (green line). Image credits [113].

Viewing the results from both calculation methods, particularly the divergence

within the Leavens scaling approach, it seems the structure stack-up can use

some optimization. Having the superconducting material phonons in total

control of the plasmon-polaron behavior, consequence of relaxing the jellium

model constraints, is too dominant when the dielectric function vanishes. Figure

5.3(c) shows a new idea that introduces an intermediary layer to the topological

crystal (Bi2Se3) and superconductor (MgB2) sandwich. This layer is to serve

the purpose of being a phonon modifier and should ideally be a non-phonon

mediated superconductor. Enough phonon damping should be introduced yet

leave the dielectric environment roughly the same. Introducing this extra
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consideration to the metamaterial involves the experimental data for the

Eliashberg function of Y Ba2Cu3O7−δ (Y BCO), a well-known high Tc

superconductor[124]. Y BCO, and the rest of the cuprate family, fall into the

mysterious typing of superconductors with the exact mechanism of

superconductivity still being an active research topic. On top of the Eliashberg

data, Y BCO can also be found to have c(µ∗) = 0.2 [122][123] making it possible

to evaluate the ab initio Eliashberg function calculation in Equation 5.2 and

then use the Leavens scaling approach in Equation 5.4. Figure 5.4(b) plots the

results for this configuration of the metamaterial, beginning first with the

absence of screening (κ = 0). Experimental results give 92K for the Y BCO

critical temperature while calculations of the metamaterial scheme of Figure

5.3(c) estimate a maximum of 80K. Similarly to the previous case, the coloring

on the curves varies ζ the damping parameter. Once again, the region of interest

with the largest Tmax
c that rapidly falls off is at κ = 1.3 but in this scheme there

is more of a plateau for the highest max critical temperatures. The sharp

divergence for the higher values of κ is significantly reduced with the

incorporation of larger ζ values, becoming a smooth curve for ζ ≥ 0.1. Taking

the modest reaches for these curves, one could suspect that these structures are

capable of providing room temperature superconductivity (Tc > 300K).

Evidence suggesting superconductivity within already studied materials can be

enhanced, raising the critical temperature, by this metamedium approach is tied

to the parameter κ. The primary way for this to be adjusted is directly through

the topological crystal. Since the plasmon-polaron is harbored within, the

dispersion features really set the coupling parameter. Controlling the Fermi

surface of the topological insulator, by playing with doping levels, affects kF and

in turn the direct proportionality of κ. Otherwise, indirectly messing with the

metamaterial superlattice geometric properties, like thicknesses and/or extra
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dispersive materials, can result in changes to the background dielectric constant

ε̄. Future work set on realization of these materials could be investigating further

these parameter spaces. One such unique effect that has recently come to

attention, the topological proximity effect, could help couple the

plasmon-polaron of the topological crystal better to the phonons of the

superconductor. Seen at the interface of a sibling material to the topological

crystal explored here, T lBiSe3, and BCS superconductor Pb, the topological

state was able to bleed into the 20 monolayers of the Pb superconducting film

without any state mixing[125]. Combining this with the phonon modifier layers

concept would also expect a strengthened coupling of the quasi-particles and

increase to a more homogeneous dielectric environment. Such materials could be

made chemically versus through nano-engineering though. The previously

discussed cuprate family of superconductors are known for their CuO2 layers

surrounded by the non-conducting heavy metal oxide layers (yttrium, bismuth,

etc.). These already have a familiar look when compared to the structures

proposed in Figure 5.3. If some topological characteristics could be incorporated

(chalcogenide layers), then these materials might have a similar dielectric

environment capable of hosting RAS. One trick to all this was covered up a little

by the use of MgB2 as the superconductor. The Eliashberg function of MgB2 is

active at higher frequencies than other superconductors, Pb for example.

Phonons are more active in the relevant phonon frequencies, allowing for such a

large effect to take place. Nonetheless, this should only begin the worthwhile

study of applying the coupling of a topological crystal surface plasmon-polaron

and electron-electron interaction of a superconductor. Resonant anti-shielding

(RAS) is effective regardless of the mediation and pairing mechanism for the

Cooper pairs. The possibility of superconducting critical temperatures being

enhanced through a fabricable geometry is theoretically shown, leaving

114



experimental verification up in the air.
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CHAPTER VI

Conclusions

6.1 Reflection, Discussion, and Outlook

As the bookend to this sequence of extensive work, I thought it would be nice to

shift the voice and break the narration character I’ve stuck to throughout this

dissertation. I want to make my conclusions from my own voice and perspective.

A significant amount of effort has been put into it from the very start of my

research, even the start of my higher physics education, and I would like the

chance to wrap it up. In my mind, it is safe to say that from covering these

topics over the years and pushing on the forefront of research, my knowledge is

among the best. Not in a bragging way, but in a way to establish my credentials

further. It’s no secret that I enjoy educating others on these topics and

physics/EM as a whole. My hope is that in reading this, you have taken

something away. Whether that is practical and can be applied to your work or

even just as an interesting bit of knowledge you found consumable, either way

accomplishes what I’ve set out to do. The rest of this chapter will be working to

fill in that gap in case you are still unsatisfied. For each chapter, my thoughts

and ideas, at the end of writing each, will cap off the topic. I’ll provide a little

outlook on the future, suggesting possible directions to go. Each chapter holds

merit to me, and I thoroughly support anything that builds off it. Comments,
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expansion, criticism, whatever, it’s all valid and appreciated.

6.1.1 Checkerboard Series Plasmonics

For myself, the work on checkerboard structures will be one of my most favorite

projects. Not only did the origin feel organic, but it also felt personal. Little did

I know how much work out there was already done on the structure, and even by

my own advisor. It felt natural to jump into it. As an avid chess player for some

time now, though not great, the geometry of the board is so simple but can be

used in the most mind blowing of ways. Indeed, it was not so surprising to find

that even in plasmonic ways, this simple checker pattern can really make you

think. For starters, I couldn’t even get the unit cell correct without a little extra

thought. The bowtie series of patterns spawned out of this and found an

interesting spot to have as a novel comparison. But spanning through the

percolation threshold really interested me. You can immediately see the phase of

the structure change and the physicist in you will scream that there must be

interesting physics there. The same simplicity but hidden complexity in an idea

can be carried over to the Babinet principle. Without much thought, the special

circumstance of the checkerboard being self-complimentary is a connection

between the two that holds much intrigue. Fascinating but seemingly trivial, a

flashlight on a sheet of checkerboard and holes gets half the intensity through.

Then taking that to the interesting length scales only further entrenched the

plasmonics standpoint. Arriving at the colormaps for the transmittance, I’m

astounded how vibrant those came out. A plot like that I think right away is

depicting good science and great data. Lobster diagrams have become something

for me that I see something new and interesting each time I look one over.

There’s a lot of data to appreciate in color plots like this that made seeing one in

the literature more captivating. Breaking the Babinet principle was unexpected,
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but the hints had been there from some of the other work that is tied to Chapter

III. This is one thing that you need to double check, again and again, to ensure

that you’re getting the right results. When everything you’ve tried continues to

come to the same conclusion, a certainty builds up. Resemblence to the

Hofstadter butterflies in the literature is remarkable and shows just how much

more there could be to explore on such a simple topic. This is one project I want

the most discussion from. There needs to be questions and debate, all leading to

further testing. That would really excite me to follow where it goes and what

can be uncovered. Frequencies in the EM spectra span a great deal of ranges. It

would be nice to see what else can be explored on other scales. Geometry clearly

wasn’t all tied to the square shape. Various other lattices of geometric patterns

could be designed to add a whole other layer of complexity, like with the

hypocycloids. Additional dielectric pieces set into the geometry added a welcome

twist. Really honing in on what role dielectrics can add and optimimizing those

material properties stands as a good future project. Especially gearing towards

the semiconductor type of corner contacts. I think there is an engineering

problem there at this point about explore the ways to exploit the doping of a

material making up the contacts of an underpercolated checkerboard. To sum up

this work, it really was the combination of two simple ideas and finding the right

way to combine them. The literature on this topic is quite enjoyable. References

with Chapter II make for a good push to expand on the topic. I’d like to know,

what did you appreciate the most in this chapter?

6.1.2 Multi-layer Structure Extraordinary Optical Transmittance

With my feelings towards the standard checkerboard patterns of Chapter II, the

care and effort put into the scaled up multilayer series should come as no shock.

Chronologically, first came the work on the nanosphere structures. Once again

118



there is something so trivial, where normal incidence looks to be completely

reflecting. However, the added height gained from their being two

complementary layers stacked on each other throws doubt into the simplicity.

Stemming from the novel fabrication techniques touched on in the chapter,

having a system ready to be modeled so that simulations can be compared to

already performed experiments is a fun approach. The refinement of the model,

the mesh, and the constant comparisons felt like an untraditional method of

running simulations. It always feels like calculations are naturally run first. Of

course, designed to help prototyping and narrowing down on a design before

production, simulations also need their benchmark moments. This was certainly

it. Comparisons directly were very tough because creating the exact conditions

of the experiment on the computer was not straightforward. The decision of

incorporating the missing scattering into the experiment is tricky. Typically,

experimental data is the gospel. I’ve heard before a couple times now that

everyone believes in an experiment except for who performed it, and no one

believes simulations except for who set them up. In this example, modifying the

experimental data to better reflect what the simulations were calculating felt like

the better choice. Not only was it easier to incorporate phenomenological

scattering, but it also makes more sense than to un-consider it in simulations.

Cutting something out of the accurate model of reality is to compare to an

experiment which ignored that something feels like an omission of truth.

Typically, models are an overly simplified system, but in this case, it took fewer

assumptions. Really, it is just unfortunate that we couldn’t figure out a setup or

redo any experiment that better captured the whole system. All this and still I

think there is exceptional agreement between simulation and experiment.

Unfortunately, the same can’t be extended to the multilayer checkerboards. My

feeling is that there can be a lot done to better the modeling and simulation side.
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I find that there a still several inconsistencies with the checkerboard

transmittance calculations that need to be resolved before criticizing any

experiment. There is a relationship to the scaling parameter of the checkerboard

complimentary pairs that doesn’t seem correct the further you dive into it. One

of the parts that does hold a lot of promise would be how the thicker spaced

models show the Rayleigh-Woods anomaly feature. There are strong similarities

with the checkerboards that have a large spacing and the systems typically

discussed with the Rayleigh-Woods anomaly. I would suggest continuing with

this topic for some interesting plasmonics to arise and other EOT testing

grounds. Overall, the EOT effect is interesting but not unexpected. Though the

systems in Chapter III are simple to the näıve, toy models and literature searches

tell you that these multilayered structures are dip into a broader understanding

of the underlying plasmonics. CEM proves to be invaluable when exploring such

areas. Nothing is more powerful though when simulations can be combined with

measurement. Agreement on two fronts makes any study that much more

respectable. As with most of the work in this dissertation, I wish to see more

experimental follow up and comparison to simulations. For the nanospheres, it

becomes closer to an engineering problem now. There is preliminary work on

using devices like those studied here as different types of sensors. Use of the

checkerboards in possible filter applications can be a significant push pending

better investigation. Nanodevices and structures are capable of some really cool

feats and technologies based on them could become groundbreaking. It feels

good to contribute to that effort. I’ll be curious to see what turns into common

use out of this field. With that though I’ll leave off with a question to you the

reader, what is most promising for applications in this work?
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6.1.3 Negative Refractive Index Photonic Crystals

There is a natural line of logic that follows from learning about Snell’s law,

which is taught typically fairly early in physics curriculum. After seeing

diffraction and putting math to the phenomenon you see in the world quite

often, the fact that the index of refraction is bound to being only 1 for a vacuum

and strictly greater for ‘any other’ medium is quite odd. This, of course, is

rooted in Maxwell’s equations being relativistic with no fuss and that anything

other than that bound on the index of refraction would allow for faster than light

speeds. It feels like a very hard and set rule that can’t be broken. Seeing any

other index of refraction, negative for example, feels like an absolute violation of

relativity. But then as a student you move on to see how the index of a material

is related to the electric and magnetic properties. In this case particularly, the

dielectric function of a material is the critical component to the frequency

dependence of the index. Moving into my line of work, where manipulating the

dielectric function is the entire purpose, the strange possibilities seem more

attainable. In fact, negative refractive index is not some fable or fantasy or even

some inconsistency, the literature has been showing it repeatedly since the

seminal work of Pendry. Conceptually, the idea of light bending backwards when

refracting can seem a little rough around the edges. I think that when you start

to see the animations and color plots, 2D and now 3D, of the electric field

patterns inside a capable material, it begins to click. The wave patterns evolving

over the course of the crystal lattice, bouncing around until focusing, is a great

demonstration. Probably is the reason why it is so common in the literature for

the topic. All this work is done with collaboration, something that makes

reporting specific data and exact numbers a little touchy. So, excuse my

vagueness in that chapter for this reason. But with the amount data collected,

there is a small library to peruse through when getting involved with this work.
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Numerous combinations of materials and geometric sizes with the goal in mind

working towards training data for a machine learning algorithm. Designing and

fabricating a negative refraction lens is one feat, but another is to have the

design so parameterizable that with the machine learning algorithm any set of

important qualities can be input. Perhaps there is a specific frequency band of

interest or an exact lens size that must be considered. Ideally, given a vast

library of data on photonic crystal band structures, the algorithm could search

for the right geometries and materials to give a band structure that meets the

specifications. This is a real long term and will require a lot deeper of an

understanding on the connection the band structure has to the operability of a

lens constructed out of the given parameters. Near term steps is the reproduction

of the experiments suggested in Chapter IV. Seeing negative refraction in a

designed crystal and measuring the index of refraction to match simulations is a

monumental step. Our collaborators are working hard on the fabrication and

measurement side, so there is hope that this can be realized soon. Improvements

can definitely be made on the simulation end. Simulations of the full 3D crystal

and lensing effect are not trivial, as discussed in the chapter. Several steps can

be taken to better those and create really outstanding images and movies of the

phenomenon. Band structure calculations on the other hand are like clockwork.

Nearly automated and fit well when compared to similar structures in the

literature. Plotting the band structures in an unconventional way is one thing

that requires adjustment. If you’re used to seeing plots like this in the context of

real crystals, perhaps with semiconductors or topological crystals, it feels like

overkill. But ensure the best possible lens requires true isotropy that avoids any

chromatic aberrations. Understanding these plots isn’t about the behavior of

each band on its own, but about how the bands group together. A unique twist

to any condensed matter physicists typical view on the topic. Nonetheless, I find
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the material to be easy to explain and of course even better to demonstrate via

simulations. My hope is that you’ve see how straightforward something as

alien-like as negative refraction is. Snell’s law and band structures are things

well understood to many of my readers but are just taken to a different level.

One question I have for you, how exotic do you really find negative refraction?

6.1.4 Non-Local Plasmonics

I know the chapter was dedicated to non-local plasmonics and the application

was to superconductivity, but how can we not discuss superconductivity more.

Superconductors are fascinating to me. It is somewhat of a shame that

superconductivity hasn’t become formally entrenched in the physics curriculum.

We hear about it all the time, in many contexts, yet still there isn’t a common

course, or even dedicated chapter of a course, offered that really builds up the

well-studied topic. Until it possibly comes up in your research, there is mostly

only self-teaching on the subject. However, in the academic community,

superconductivity remains very active. Throwing in the little twist of

metamaterials and plasmonics, there has been enough shown to hint at some

valuable work to be had in this crossover. For this chapter, more ‘pen and paper’

theory needs to guide along any computational efforts. Since commercial CEM

softwares are limited without non-local extensions, the same conveniency as

some of the previous work isn’t afforded. But that doesn’t make exploring the

topic impossible. Using two calculation schemes here, one calculating the critical

temperature while the other finds its limit, adds some self-consistency I find

necessary in simulations. Traditionally, using different algorithms in opposite

domains is a strong way to get a good check on results. As done for work in the

previous chapters, comparisons between two sources of data boost the confidence

of the results significantly more, especially when opening up to the community.
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Although, declaring results that might be a little too good to be true was

certainly a fear. There is always a constant search for an error being made when

you want to claim something as illustrious as ‘room temperature

superconductivity’. I’d like to take the opportunity to be clear again about this

though, the calculation estimates the maximum critical temperature. It is

entirely possible for one reason or another, impurities, approximations, etc., that

measurements won’t see such peak values. Speaking of measurements, this would

be the obvious follow-up to our work. Whether using the suggested systems or

venturing into the organic, naturally layered high temperature superconductors,

there is the expectation of interesting evidence in support of the calculations.

Fabrication of the topological insulator and superconductor sandwich lattice

would take effort and numerous attempts. Then measuring transport, 4-probe

for example, is equally challenging to set up, but could be very worthwhile. That

is ultimately what I hope to have shown to you. The experimental push and

pursuit of this endeavor would be fruitful, either confirming or disagreeing with

the theory. A more recent development on this topic is once again a cross-over

back to the tried-and-true checkerboard pattern. Taking a look at the calculated

dielectric function of the effective layer made up of checkerboard, similar

desirable qualities are noticed that can be applied in RAS. Simulations show

scaling of the checkerboard geometry to be consistent with scaling of the spectral

features, so shifting to applicable energy (frequency) ranges of the Eliashberg

function is not out of the question. Perhaps the addition of hole structure

geometry to the metamaterial structure would only bring benefit to the onset of

superconductivity via phonon coupling. With the connection between the

checkerboard and nearly all the work presented in this dissertation, it feels like it

should be in the title. The real physics though, lies in the hidden plasmonic

intricacies of the structure and has made for an enlightening system to test out
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strange optics, and more. I appreciate all the work of the collaborations involved

with the projects in Chapter V and know that there is hopefully more to come

on the project. For my final question to the audience, I’d be interested in

hearing, how potentially game-changing can you see this approach being?

6.2 Closing Remarks

Collecting and compiling all my graduate schoolwork into one centralized

location has been satisfying. Not often do I feel like a full-on scientist but in

seeing all the accomplishments come together, it’s hard not to feel like there has

been advancement. Certainly, on my individual level this is true. I dream of

advancement in a broader sense, pushing the forefront of knowledge. The

contributions made to a doctorate reach this level of achievement, so my hope is

you walk away feeling that is true. Each project I’ve worked on has been

intellectually challenging and rewarding. I’ve always found interest in what I do

and hope that has carried over into writing this piece. I am proud to forever be

attached to this work. If even one person can use something gained from

learning from me, the goal will be accomplished. Science progresses, and to will

that continue to be passed down, as it has to me. One quote I’ve come across

that perfectly concludes any body of scientific work is by René Decartes, an

extraordinary mathematician. So as the for closure and the last thought, I leave

his words as a wonderful finale.

”I hope that posterity will judge me kindly, not only as to the things which I’ve

explained, but also to those which I have intentionally omitted so as to leave to

others the pleasure of discovery.”

-René Decartes
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APPENDIX A

Introduction to Electrodynamics and Relevant

Physics Background

A.1 Introduction to Electrodynamics and Relevant

Physics Background

Electromagnetics, as a field of study, predominately started solely as empirical

observations of near-magic, invisible phenomena. Even magicians in modern

times still utilize electromagnetic effects in attempts to hide the underlying trick.

However, no trick can go unexplained now. After a rigorous 19th century

revolution in mathematics, physicists began to accurately describe these

mysterious electromagnetic forces and have developed one of dominate theories

in all of physics, classical electromagnetism. As a pillar of modern physics, every

student of the subject finds themselves taking multiple classes on EM. While this

appendix is no attempt to supplant that information, it should serve to supply

enough relevant background on EM for a comprehensive understanding of this

dissertation.
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A.2 Maxwell’s Equations

At the foundation of EM, the mathematical framework for which electrical and

optical technologies are built upon, are Maxwell’s equations (A.1a)–(A.1d)

(differential form) and the Lorentz force law (A.2). Under Maxwell’s description

of EM, the intense tangling between electricity and magnetism is quickly noticed.

On both sides of the equations there are electric fields (E) and magnetic fields

(B) that make this classical field theory work in harmony. The equations

themselves can be written in several different equivalent forms, including integral

and within a given media, but written as coupled partial differential equations,

we can come to a heuristic understanding.

∇ · E =
ρe
ε0

Gauss’s law (A.1a)

∇× E = −∂B

∂t
Faraday’s law (A.1b)

∇ ·B = 0 Gauss’s law for magnetism (A.1c)

∇×B = µ0J+ µ0ε0
∂E

∂t
Ampère’s law (A.1d)

F = qE+ qv ×B (A.2)

In descending order, first, there is Gauss’s law that relates an electrical source to

its corresponding field. Electrical charges, defined as a charge density (ρ), are the

standard producers of electric fields as explained by Gauss’s law. The divergence

operator (∇) takes the vector (directional) electric field and gives in its place the

scalar (single number) field that corresponds to the quantity of sources (to the

vector field) for each point, i.e., charge density. Equivalently seen in the integral

form Gauss’s law, one can imagine a closed surface (Gaussian surface) or study
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the illustration of Figure A.1, encompassing some charge, and the net flow

electric field produced by those charges going through that surface is directly

proportional to how much charge is enclosed. The constant of proportionality is

the permittivity of free space (ε0), a universal constant describing the density of

electric fields permitted from a source of charges in a vacuum. Predominately

used in standard unit systems as a unit place holder, so we can treat it as such

like any notorious theorist. Beyond this, Gauss’s law serves as one of the top

headaches for plenty of introductory students.

Figure A.1: -
Illustration for a Gaussian sphere surrounding charges. Gauss’s law states that

the flux of electric field through any imagined Gaussian surface is directly
proportional to the amount of charge enclosed.

Second on the list doesn’t really go by a name but is being adopted more

regularly as Gauss’s law for Magnetism due to the similar appearance of the

divergence operator. Now magnetic fields take center stage as the operated on

vector field but with one striking asymmetry to electrical Gauss’s law: instead of
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a charge distribution there is nothing. Profound ideas can be drawn from

asymmetries, seen in this dissertation, but few rival the conclusion of this

Maxwell equation. This zero in the equation states that there are no magnetic

analogues for electrical charge. Electric charge comes in two flavors, positive and

negative, each of which can be isolated as a monopole. In magnetism, north and

south, magnetic flavors, cannot exist individually. Instead, magnetic fields are

attributable to dipole sources. Thinking about the integral form of this equation,

it becomes easy to see why this must be the case. The flux of magnetic fields

through a surface enclosing some magnetic ‘charges’ being strictly equal to zero

leads to saying the total magnetic charges sum up to zero. In other words, they

must always come in pairs as to cancel each other out, for any and all closed

surfaces you can imagine. Magnetic fields being constructed of solely dipoles

additionally gives a great way to view the distinction from electric and magnetic

fields now. Magnetic dipoles are generally represented by loops of current (or

inseparable north and south poles). By drawing the magnetic field lines of a

dipole, it’s seen that they are simply just loops, with no beginning or end. This

counters electric fields which have positive and negative charges as the start and

end points for the electric field lines, respectively. It is well worth pointing out

that there has been (and to some extent still is) an extensive search for isolated

magnetic monopoles[3]. This is one way to help answer questions about charge

quantization, but for our purposes, there are no magnetic monopoles.

Transitioning back to electric fields, the third Maxwell equation is known as

Faraday’s law. Michael Faraday sparked the investigation into electromagnetics,

mainly empirically, and is rewarded with bearing name to a fabled Maxwell

equation. Faraday’s law might possibly be the hardest subject matter

introductory students face in EM. From the conceptual nature of Lenz’s law to

the now intertwining of electric and magnetic fields, by far students struggle.

130



Here however, stripping down Faraday’s law will begin with the new operation

the del operator is taking on the electric field, the curl. Mathematically, taking

the curl of a vector field, an electric field in this case, returns another vector field

where the length and directions correspond to strong circulation of the electric

field. A circulation density if you will. We see that is equivalent to the time rate

of change for the magnetic field. Moving away from the more mathematical

language, this is called induction. Spatial circulation changes of an electric field

directly correspond to time-varying magnetic fields. Taking this a step further

and looking at the integral form of Faraday’s law, a changing magnetic flux can

create and change an electric field, while spatial changes in the electric field can

create and change magnetic flux. It takes work to move a charge around a closed

loop, and by Faraday’s law, this is equal to the rate of change of magnetic flux

through the enclosed surface. Some can overgeneralize this to the point where we

can electric fields can induce magnetic fields and vice versa. Induction is widely

used in modern electronics as a scheme to transition one form of energy into

another (mechanical into electrical energy for example). The connection between

electricity and magnetism cannot be overstated. We see now that one doesn’t

exist without the other, they go hand in hand. Things are now stunningly

interesting in the world of EM, with still one Maxwell equation to go.

Last and certainly not least of Maxwell’s equations is Ampère’s law. Applying

the curl operator now to the magnetic field gives us the last building block of

EM theory. Once again, it is easy to notice how different the equation appears

when compared to its electric counterpart, Faraday’s law. Magnetic fields just

have one more layer of complexity to them it seems. On one side we have the

curl operation on the magnetic field representing that vector field of infinitesimal

circulations within the magnetic field. The other side has now two terms to

describe the corresponding to this equivalence. Historically, Ampère’s law only
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had the singular term that introduced magnetic sources to the picture. Similar

to Gauss’s law where there were electrical sources, magnetism uses current as its

source, denoted as current density (J). This also introduces, in the standard unit

system, another universal constant. This time for magnetism, the permeability

of free space (µ0) serves as a quantifier for the relative strength of magnetic fields

produced by currents. In the original Ampère’s law, it is quite similar to Gauss’s

law but instead for equating the generation of magnetic fields with the amount of

current inside a closed loop (where it was charges and closed surfaces for

electricity). In the form stated in Equation A.1d, there is an additional term

necessary that was apparent to Maxwell (Maxwell’s Correction). In static cases,

Ampère’s law didn’t make much sense, prompting the introduction of the

displacement current. This shows that not only electric currents are associated

with magnetic fields, but now these displacement currents, which refer to electric

flux, do as well. This now completes the circle of self-generation of fields.

Electric fields changing to induce magnetic fields. Magnetic fields changing to

induce electric fields.

Electromagnetics has now come full circle, finally arriving at the personal

conclusion drawm from Maxwell’s equations: electricity and magnetism are

synonymous. Don’t take this super literally, for what is being conjectured is that

there is not a discussion of one without the other, they must go together. These

are not two separate phenomena, but instead one, with carefully intertwined and

twisted components. And while it can be thought of as the comnclusion of EM

theory since everything is encapsulated here, this is also the start. From here,

the rules have been layed out and the game can begin. Now, electromagnetic

theory can explode.
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A.3 Electromagnetic Waves

To start on EM waves, a quick description of a wave in general would be helpful.

A wave is the collective disturbance of some medium, which is about as general

and vague as it gets. Since waves come in many shapes and types, it’s hard to

really define them all in one shot. They can be propagating, like transverse and

longitudinal waves, or a standing wave which doesn’t propagate at all. The wave

velocity isn’t necessarily fixed that depends on the medium. A medium may not

even be required at all, as is the case with EM waves. Many more qualifiers can

be attached, so it is better to start with repetition of the disturbance.

Mathematically, this looks something like f(z, t) = f(z − vt, 0) = g(z − vt) which

simply states that whatever shape of this waves disturbance f is, it gets repeated

at some time later after a distance shift of vt where v is the wave velocity

propagating in the +z-direction. Many functions adhere to this simple constraint

and can all be considered valid waves. However, the truest test to get narrow

down the specific waves that can exists for a system, is if they are solutions to

the wave equation.

∂2f

∂z2
=

1

v2
∂2f

∂t2
(A.3)

Here is the classical wave equation in 1D, a linear, second-order differential

equation. All solutions are of the form described broadly above and since

Equation A.3 is linear, then the sum of any two solution is also a valid solution.

Without diving too much into the specifics of wave physics, for which there are

textbooks and courses worth of material, this can be applied to EM immediately

for the purposes of this appendix. Taking Maxwell’s equations (A.4a)–(A.4d) in

the source-less context, with no charge or current, and in vacuum, they can be

algebraically massaged to decouple the two fields E and B.
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∇ · E = 0 (A.4a)

∇× E = −∂B

∂t
(A.4b)

∇ ·B = 0 (A.4c)

∇×B = µ0ε0
∂E

∂t
(A.4d)

Starting by applying a curl operator to both Equation A.4b and Equation A.4d

and using some differential calculus identities

∇× (∇×E) = ∇(∇·E)−∇2E = ∇×−∂B

∂t
= − ∂

∂t
(∇×B) = −µ0ε0

∂2E

∂t2
(A.5)

and

∇× (∇×B) = ∇(∇ ·B)−∇2B = ∇× µ0ε0
∂E

∂t
= µ0ε0

∂

∂t
(∇× E) = −µ0ε0

∂2B

∂t2

(A.6)

Finally applying the other equations in the set, Equation A.4a and Equation

A.4c arrives at

∇2E = µ0ε0
∂2E

∂t2
, ∇2B = µ0ε0

∂2B

∂t2
(A.7)

3D, separated wave equations for E and B. They are of the exact form of

Equation A.3 where the velocity then becomes v = 1√
µ0ε0

= c = 2.99× 108m/s.

Light is an EM wave and better yet is forcible transverse, meaning that there is

no oscillation in the direction of propagation, due to the pair of Gauss’s laws.

Faraday’s law takes the relationship of the two fields even further. Recall how E

and B are co-generating each other, as concluded earlier from Faraday’s and

Ampère’s law. From this the relation between the amplitude of the two
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oscillating fields that are forcibly in phase and mutually orthogonal is

B0 = E0/c. To aid in visualization of the wave, Figure A.2 shows a simple

example of an x-direction polarized EM wave propagating in the z-direction. The

wavelength and frequency of an EM wave are related through f = c/λ and spans

the whole EM spectra presented in Chapter I. By imposing boundary conditions

on the wave equations and understanding how they differ for each medium (see

the next section), virtually any problem can be approached.

Figure A.2: -
Using the solutions to the wave equation, one possibility is a transverse plane
wave where the electric and magnetic fields oscillate in orthogonal directions,
while propagating perpendicular to both. In a vacuum, c is the speed of light
and the field magnitudes are related by B0 = E0/c. This example shows the

electric field polarized to in the x-direction.

The first condition applied to the EM waves that extends to real world problems,

like those of Chapter II and III, is guided waves. A waveguide is assumed to

135



continue to infinity and be made of PEC such that the hard boundary condition

of no fields penetrating the material is enforced (E∥ = 0 and B⊥ = 0). Maxwell’s

equations in the set of (A.4a)–(A.4d) still make the rules for the waves confined

in this manner but are also constricted to the boundary conditions. One big

difference with confined waves now is the possibility of being longitudinal, having

oscillating field components in the direction of propagation. Figure A.3 sets the

example geometry for the waveguide. So, in the wave equation that has the 3D

∇2 operator, each component can have a term. Solving the wave equation this

generally requires the use of the separation of variables technique and is going to

yield deeply coupled field equations. By knowing the longitudinal components,

the rest can be determined with some differentiation, so by following the details

of Reference [1] or [3], those components are plugged into Maxwell’s equations to

arrive at the uncoupled form

[
∂2

∂x2
+

∂2

∂y2
+ (ω/c)2–k2

]
Ez = 0,

[
∂2

∂x2
+

∂2

∂y2
+ (ω/c)2–k2

]
Bz = 0 (A.8)

These equations determine what are the allowed forms to waves that conform to

the boundary conditions of a waveguide. For example, taking Ez = 0 are the

transverse electric (TE) modes where there is no electric field component in the

propagation direction. Counter to this is the solution when Bz = 0 with no

magnetic field component in the propagation direction, designated as transverse

magnetic (TM) modes. For a hollow waveguide, as illustrated in Figure A.3, no

TEM mode can exist since there is no valid solution if both propagation

direction components are non-existent. This can be remedied if a separate

conductor is placed in the middle of the waveguide, creating a coaxial

transmission line type of situation. In such a case, TEM modes can exist since

the potentials of the walls and center surfaces aren’t necessarily equivalent.
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Figure A.3: -
A rectagular waveguide with edge lengths a and b supports the propagation of

fundamental propagating modes like TE and TM.

To solve Equations A.8 for the particular geometry of Figure A.3, separation of

variables is once again applied to both the Ez and Bz equations. This insures

separable x and y solutions for the fields which after the algebra comes to a

general solution of f(i) = Asin(kii) +Bcos(kii) for both terms i = x, y. Required

by the earlier boundary conditions, the waves need to disappear at x = 0, y = 0,

x = a, and y = b. Forcibly, coefficient A needs to vanish as will since a sine wave

with no phase isn’t capable of abiding by this. In the end, only suitable values of

k will suffice to fit in the waves, leaving the final conditions that

kx = mπ/a (m = 0, 1, 2, . . . ), ky = nπ/b (n = 0, 1, 2, . . . ) (A.9)

Values of the integers m and n signify the mode number for the TEmn modes

and a similar derivation can be done for the corresponding TMmn modes.

Returning the conditions of Equation A.9 to the general separation of variables

solution, gives the exact expression of Equation 2.3 in Chapter II telling exactly
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what frequency waves will have exponential attenuation in the waveguide. The

details and derivations are beyond what is necessary here are outside the scope

and illustration accompaniment this appendix has for this work. Feel free to

reach out to any favorite EM textbook[1][3] to satisfy any missing curiosities.

A.4 Within a Medium

Matter, of course, adds dramatic effects to EM behavior. If everything happened

in a vacuum, there’d be nothing fun to study. Generally, and for the purposes of

this work, materials fall into two lump categories: conductors and insulators.

Conductors, like metals, have free valence electrons, allowing them to

disassociate from any nucleus and move about the material wherever necessary.

Insulators on the other hand, do not permit their electrons to have the same

luxury. Materials such as dielectrics have only bound charges and only have an

atomic sized amount of wiggle room to work with. The contrasting behavior of

these two classes of mediums is what makes the metamaterials that combine the

two studied in this work so interesting. Confinement is something electrons in

either material can experience, whether that is around an atom for insulators or

the edges of metallic structures for conductors. This is what makes these two

material types polarizable. That is to say, if an external electric field is applied,

the electrons necessarily respond (importance of the dielectric function), shifting

to an energetically favorable location. In conductors, the electrons will travel to

the furthest edge they can, following the potential gradient. The resulting

positive ions left behind and shifted electrons form a dipole like concept bound

to the metallic structure. Depending on the shape of said structure, more exotic

fields can be created for on an oversimplified example, the structure has become

polarized into a dipole. Similar in dielectrics as well, only on the smaller scale of

being bound to an atom. Electrons being tied to the nucleus with only small
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shifts the electron cloud possible, creates built up negative and positive charges

on opposite ends of the atom/molecule. Miniature dipoles with the material are

formed in this external electric field that when all summed together for the

collective medium, effectively create an induced dipole of the whole insulating

system. Atomic polarizability is the term used in this situation which can be

used to determine the internal, induced electric field within the material. More

pertinent details on the dielectric response of a material have already been

supplied in Chapter I the introduction. The parallel discussion about an external

magnetic field acting on a medium is omitted, as the details aren’t directly

related to the interest of this work. Albeit quite interesting themselves, standard

EM[1] or solid state[11] textbooks go into much better detail than what can be

provided here.

General discussions of EM in matter are hard to do without either getting into

specific qualifiers or taking up chapters of work. To refrain from either, this

section is meant to just give enough background material for the work provided

in this dissertation. The previous section began EM waves from their origin in

Maxwell’s equations. However, inside a medium other than vacuum, there first

are adjustments to this equation set. Firstly, the displacement field takes the

place of the electric field within a material and differentiates it from any external

field. Similarly, the same goes for the magnetic field, which is turned into the

auxiliary field when inside matter. Cumulations of bound charges and currents

within materials make it more convenient to use that notion instead. The

reasoning being that those bound sources an intrinsic to the materials response

and not directly controlled, thus rewriting Maxwell’s equations to refer explicitly

only to the free charge and currents that are controlled makes it simpler. Which

is when the smoke clears of including the polarization and magnetization,

Maxwell’s equations become Equations (A.10a)–(A.10d) for inside a medium.
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Further simplification can be made if generality is lost and the material is

assumed to be linear or has a frequency dependent response or is away from any

free charge/current, as seen in Chapter I.

∇ ·D = ρfree Gauss’s law (A.10a)

∇× E = −∂B

∂t
Faraday’s law (A.10b)

∇ ·B = 0 Gauss’s law for magnetism (A.10c)

∇×H = Jfree +
∂D

∂t
Ampère’s law (A.10d)

Under the assumption that the material is indeed linear (D = εE and H = 1
µ
B),

is where the adjustment happens for how fast light moves once in a medium.

The free space permittivity and permeability now take into account the

materials response and then EM wave velocity becomes

v =
1

√
εµ

=
c

n
(A.11)

where the index of refraction is defined as n ≡
√

εµ
ε0µ0

. This becomes particularly

important in Chapter IV when relating the materials dielectric response function

to the index of refraction. In most cases, including those important to this work,

again the magnetic response is not of keen interest and for the materials in

question µ ≃ µ0 (and for most materials). Leaving the index of refraction of a

medium as n ∼=
√
ε. The consequence of this is that light inside a medium is

nearly always less than c, therefore slower, aside from a few special

circumstances. For EM waves at the interface between two mediums, there are

two possibilities: reflect or transmit. This forms a simple conservation statement

that whatever percentage of the wave goes either direction, the total must be
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equal to what was incident. Coefficients are given to the reflection and

transmission, R and T respectively, to serve as a measure of the energy that falls

into either category. By energy conservation, R+ T = 1 for the interface between

two contrasting indices of refraction. More complicated systems, like the

reflection and transmission through a whole material (or metamaterial) also will

have the additional absorption coefficient since there is more than the one

interface. For now, R and T are ratios of the intensity at that interface. Intensity

is the average power per unit area and is directly proportional to the square of

the field (E for example). Through careful consideration of the boundary at the

interface and the material properties on either side, expressions for the

coefficients can be written down explicitly in terms of the indices of refraction.

R ≡ IR
II

=

(
E0

R

E0
I

)2

=

(
n1–n2

n1 + n2

)2

(A.12)

T ≡ IT
II

=
ε2v2
ε1v1

(
E0

T

E0
I

)2

=
4n1n2

(n1 + n2)2
(A.13)

These expressions are for normal incidence. Switching the assumption to an

oblique angle if incidence is how the law of reflection, Snell’s law (law of

refraction), Fresnel’s equations, and Brewster’s angle can be derived, as done in

an EM textbook[1][3]. The point being that the multitude of geometric optics

expressions are explicitly derived from EM and are rather straightforward

compared to other subfields. Work in optics goes hand in hand with the rules of

EM, and only becomes more involved and intertwined from here when other

considerations are met (non-linearities for example).

References cited in this chapter serve as the basis for material presented with the

select chose topics meant to only scratch the surface of EM but be sufficient in

covering most details used in this work. For any additional questions and reading

on the background material, the references are highly suggested and warrant a
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massive amount of credit for the understanding necessary to get to this point.
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APPENDIX B

Techniques in Computational Electromagnetics

B.1 Techniques in Computational Electromagnetics

Maxwell’s equations are the governing analytical expressions for a theoretical

understanding of EM in virtually any system, see Appendix A. While in

principle this is outstanding, in practice there are complications that can make

achieving a thorough analytical solution quite rigorous, in some cases borderline

impossible. There are longstanding fields dedicated to exploring accurate and

reasonable approximations that have their place but when it comes to problems

with complex geometries, tricky scaling, and intense interactions, searching for

analytical expressions seems insane. And it is! The amount of work it would take

to understand solely the electric fields of a single SRR at one particular

frequency is already daunting. Let alone including other calculable quantities,

parametric adjustments, interactions, broadband sweeping, etc. would compound

the effort. By giving up on the pipedream of arriving at a closed form solution to

Maxwell’s equations the world becomes immediately more explorable.

Algorithms in CEM step in to make all of these problems a lot more tractable.

143



The multiple forms and representations of Maxwell’s equations, combined with

numerous mathematical techniques, form the several standard algorithms that

are used in CEM. In general, and covering the usage within this dissertation, the

formulation revolves around discretizing space and time into a meshed cell grid

where Maxwell’s equations can be solved for each point. Electric and magnetic

fields throughout the calculation grid are the typical results for which numerous

other properties can then be determined. With the various approaches and

approximations splitting off from there, the main branches will be detailed

further. Two, generally competing, strategies are divided by calculation

domains. There is the time domain, with EM excitations and responses

calculated transiently in discrete time steps. There is also the frequency domain,

with Maxwell’s equations written in a Fourier transform to be expressed and

solved as functions of frequency. With other approaches out there beyond just

these two, each algorithm focuses on its advantages to fit into a particular niche

of problems. Mathematics within each method of solution tends to bode well for

certain problems compared to others. The problem parameter space is usually

depicted along two orthogonal axes. One is how electrically large the system of

study is which provides a gauge for the amount of computational power required,

in terms of memory, needed to solve the problem. To put it into different terms,

this scale is also an identification for the size of electrical features in the

problems, how intricate the details are. For the other axis in this parameter

space, the problem can be categorized by the size of the bandwidth being

investigated. Problems with sharp resonant features would require only narrow

windows of frequency to be probed while other systems might require a bigger

picture of the spectra. Regardless of the demands of the problem, the point is

that there exists an optimal algorithm to investigate, and that choice is indeed

important. Of course, there is overlap between these solvers, which provides a
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unique window to have added verification and self-consistency within these

problems. In each of the following sections, the solvers used in this dissertation

are broken down to provide an overview into the calculations performed and

algorithmical advantages.

B.2 Time Domain

Calculations within the time domain are colloquially clustered under the banner

name FDTD (finite-difference time domain) and is quite common and popular

because of its ease of use. This is a full wave solver, meaning that there are no

simplifications made to Maxwell’s equations at the beginning and the full EM

wave propagation is calculated. Additionally, the discretization of space and

time is done volumetrically into a lattice grid, comprised usually of hexahedrons.

Maxwell’s equations are taken in their form of partial differential equations with

respect to space and time and discretized by a mathematical method known as

central difference approximations. With the collection of the mesh cell grid and

partial differential equations allocated to each cell, the solutions are formed by

leapfrogging. Exampled in Figure B.1, leapfrogging is where the solution at one

particular field (electric or magnetic) is built upon the previous time step of that

field and the intermediary time step of the opposite field (magnetic or electric).

The process is done until a predetermined stop criteria is reached. Due to the

transient nature of the calculation and stepping forward in time, the stop criteria

is usually some desired steady state of the EM fields. This for example could be

energy based, like in the TD calculations in this dissertation, where there needs

to be a set energy decay from the domain, normalized to the peak value.

Methods following this general approach have been around for a long time in

other contexts, fluid dynamics for example[126], so there exists many offshoots

that trying to focus on certain strengths or improving upon weaknesses.
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Advantages of FDTD, beyond its ease of use for starters, stem around the

transient dynamics of the algorithm. Problems where there is a transient effect

trying to be understood have a more direct means of calculation in this domain

when compared to others. This adds a strong versatility to types of problems

that can be solved where they can both be wide ranging in electrical size and

size of the bandwidth. In terms of computational resources, the cost of solving

problems this way scales linearly with the amount of mesh cells and allows for

easy to implement GPU acceleration techniques[7]. Disadvantages in this domain

arise because of the transient nature. For example, in systems with multiple

excitations, each individual source is typically calculated in series with one

another. For large systems, this could cost plenty of time. Similarly, with the

time domain being advantageous for broadband calculations, narrowband poses

some difficulties. The time signal pulses, usually Gaussian, have a length in time

that is inversely proportional to the frequency band under investigation. In these

narrowband problems, the time signal pulse could be extraordinarily lengthy and

take a long simulation time to reach the stop energy decay criteria. Exactly in

the same resonant structures could also create issues. The stop criteria requiring

energy to decay to an appropriate amount for an adequate solution significantly

goes against resonant behavior having energy be trapped in the system some.

More nuanced pros and cons exist for time domain EM calculations, which can

be saved to be explored in further resources[127], but for this is satisfactory for a

surface level understanding desired in this appendix.

Specific to the commercial software used for this dissertation, there are two, time

domain, full wave solvers for EM in CST Studio Suite. The flagship solver being

based on the finite integration technique (FIT) that has its foundations in

topologically protecting conserved quantities like energy and charge. Instead of

using Maxwell’s equations as partial differential equations, the FIT algorithm

146



Figure B.1: -
Diagramatically showing how time domain solvers leapfrog in time. Each field at
a particular time step is dependent on the corresponding field at the previous

time step and differing field at the previous half time step.

takes them in the integral form on a hexahedral mesh grid discretization. There

is flexibility in the modeling and material properties that make the FIT

algorithm one of the most versatile, and when combined with leapfrogging,

achieves a computational resource efficient protocol. The other critical solver

algorithm used with this bod of work, usually for verification purposes, is the

transmission line matrix (TLM) method. A matrix/grid is set up to be a network

representation of electric circuit elements, essentially working off an analogy

between EM fields and transmission line grids. A similar versatility to the FIT

algorithm and is quite powerful in specific applications/models. Achieving

agreement between FIT and TLM solvers is not necessarily a challenge, generally,

but stands as a useful resource for obtaining confidence in CEM solutions.
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B.3 Frequency Domain

Within the frequency domain, this general class of algorithms is dubbed FDFD

(finite-difference frequency domain). Transforming Maxwell’s equations into a

reciprocal representation in frequency space opens a cluster of other

mathematical techniques and tricks for numerically arriving at a solution.

Algorithms following this sequence are also an industry staple and widely used in

the applied world. As will any of the differential, not integral, solution methods

in the time domain, the basis is finite-difference approximations taken on the

partial differential equations. Each derivative operator is replaced by tiny

differences where the approximation improves the closer these differences get to

infinitesimally small. With the equations transformed into frequency space,

solutions for the fields are determined for a single constant frequency. This

allows for a matrix representation where the advantages of linear algebra can be

exploited. To solve for a range of frequencies, algorithms can employ various

interpolation or discretization strategies[128]. Discretization is still critical, with

the necessity mirroring that of time domain methods for all the same reasons:

uniform handling of boundaries, increasing mathematical ease for manipulating

curl equations, and a conscious avoidance of divergences. Of course, there are no

time steps in this method, differing from FDTD. This allows calculations to be

done out of sequence which can be a double-edged sword. Compared to the time

domain counterpart, FDFD methods can be computationally costly. Computers

do handle large linear systems with many unknowns quite well, but there can be

system and model complexities that compound the resources required, especially

memory. This scaling between the electrical system size and the computational

resources depends on whether the frequency solver is taking an iterative or a

direct approach, but regardless scales faster than time solvers. With this in mind,

the ideal calculation is traditionally narrow in bandwidth. Because the frequency
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solver is working at a constant frequency for a set resolution of sampling points,

the wider the bandwidth creates a significantly longer simulation time. The

advantage of this is seen when looking at resonant structures, a weakness in the

time domain. Scanning narrow bandwidths allows for supreme resolution for

sharp peaks caused by system resonances. Additionally, the stop criteria is based

off residuals instead of energy decay in the domain, allowing for more accurate

and quicker calculations when the electric energy is more efficiently stored by the

system for longer time scales. A further unique advantage in the frequency

domain is when a system has multiple excitations. By not taking time steps,

each excitation can be simulated simultaneously with ease, counter to the time

domain where this is sequential. There are a significant portion of problems that

fall standard to FDFD algorithms because of this. Overall, it is important to

consider both time and frequency domain solvers for a problem at the beginning

and allow for specifics to narrow the ideal methodology.

Within the work for this dissertation, the commercial software CST Studio Suite

has a frequency domain solver using the FEM (finite element method). The

corresponding meshing is based on tetrahedrons, which is not as robust as the

hexahedral mesh used in the time domain[129]. However, for the applications

and models simulated in this body of work, there is a lot of overlapping coverage

between frequency and time methods. Of course each has their advantages, but

because these problems can be approached by both types of algorithms, one can

use them as self-check. The power in CEM is being able to test and study a

system with unparalleled ease and with high accuracy. There’s no better

consistency in these terms than achieving agreement on multiple solvers, using

completely different meshes and mathematical techniques. Theoretically,

Maxwell’s equations are the ultimate truth for EM, and showing that a problem

gets to the same numerical answer via distinct solutions provides enormous
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confidence moving forward with experiments. CEM is toolbox with many tools

inside that can get the job done, and ultimately to provide the guidance and

support to strong experimental verification.

B.4 Miscellaneous

Beyond time and frequency domain calculations, there are some lesser used

solvers but still serving equal importance. Just as there are strengths and

weaknesses to the previously outlined solvers, the various other miscellaneous

solvers have their areas applications. For example, some other solver methods

widely used are: MoM (method of moments), BEM (boundary element method),

FMM (fast multipole method), PEEC (partial element equivalent circuit),

MLFMM (multilevel fast multipole method), SBR (shooting bouncing ray)

method, AKS (advanced Krylov subspace) method, JDM (Jacobi-Davidson

method), and so many more. This large handful of an even more massive set of

solvers that exist, each with unique application spaces. Some are still based in

frequency space, MoM and MLFMM for example, with others falling under

completely different categorization[130]. In some way or another, this list of

numerical methods has some effect on the work in this dissertation, albeit small

in many cases. The purpose of this section is to give some light to some of the

lesser-known solvers and their impact on this body of work.

A powerful analysis for investigating systems without excitations uses either

AKS or JDM algorithms. Calculations of fundamental EM modes and their

corresponding field patterns can provide insight into certain effective media,

which would be calculated using one of these methods. Beyond EM applications,

these solvers expand into sensitivity analysis by calculating structural

deformation from detuning effects. Meshing is naturally still critical but allows

for more freedom of choice between hexahedral and tetrahedral meshes. In
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general, these methods are categorized as eigenmode solvers. A fitting name

because they essentially are just solving eigenvalue equations for the electric and

magnetic fields[131]. By combining Maxwell’s equations to form the notorious

wave equations for both fields, and writing them as functions of frequency, these

methods solve for those eigen-frequencies and corresponding eigenmodes.

Specific to the AKS method, input parameters are required to give estimates for

the highest eigenmode desired. On the other hand, JDM is more robust but

more computationally costly for calculating more numbers of modes. It can

handle degenerate modes quite well, which makes it a prime candidate for

applications in photonic band structure calculations for photonic crystals.

Nonetheless, the eigenmode solvers are still iterative like many of the listed CEM

methodologies, so nailing down an accurate answer will always take some

physical intuition of the system.

From the very first codes and algorithms to the modern, high-powered solvers

with parametric 3D graphics, computation of electromagnetics has found its base

as an integral step for any analysis of EM systems. Whether the applications are

for a new product or for fundamental research, there is power in taking the

initiative to understand the problem from the perspective that is the closest

representation to pure theory. Numerical methods are only improving and being

able to handle more complex models. Being able to explore a system, making

countless changes, at a fraction of the fabrication costs and time, is something

that benefits all our further advancement of knowledge. When used properly,

with the strong understanding of EM, there is no doubt that high accuracy

results can be achieved, with confidence.
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