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Abstract

The main Investor-Owned Utilities in California charge electricity prices that are way

above the social marginal cost of consuming electricity. This results in economic inefficiency

which previous studies prove to have negative implications for inequality and to slow down

the electrification of the transportation sector. This paper seeks to build on the existing

knowledge by investigating how the high electricity prices affect low and high income house-

holds’ electric vehicle adoption differently in California, and it aims to quantify the extent of

such difference. The results show that EV adoption among low income households would be

considerably higher under efficient retail pricing, and that low income households are more

negatively affected than their high income counterpart. However, the results relative to high

income households specifically are inconclusive, and therefore the extent to which the two

income groups are affected differently cannot be determined. Further research should tackle

this issue by including additional variables such as income by year and EV quality, as well

as more granular gasoline price data.
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1 Introduction

The transportation sector is a huge environmental threat in the U.S., representing the

largest contributor to greenhouse gas (GHG) emissions as it makes up 33% of the total

(US Department of Transportation, 2023). For this reason, it’s decarbonization through

wide spread electric vehicle (EV) adoption plays a central role in the overall battle against

climate change. In order to reduce the emissions related to the transportation sector, the

Biden Administration has approved a $174 billion investment in the EV market as part of

the American Jobs Plan (The White House, 2021).

When making the decision to buy a new car, consumers consider two factors: the up-

front purchase cost of the vehicle and the cost of owning it, that is the average cost of fuel

over a given time period. While the higher up front price of EVs with respect to internal

2



combustion engine vehicles (ICEVs) represents a financial deterrent, EVs have lower fuel and

maintenance costs to their advantage. Because EVs are cheaper to maintain and drive, over

time the higher up front cost is recovered and consumers end up saving money in the long run.

However, the time it takes consumers to recover the upfront cost depends on the electricity

prices at a given location. Borenstein and Bushnell (2021) find that in many parts of the US,

electricity prices are actually too high, averaging way above the social marginal cost (SMC)

of consuming electricity. In these places, among which are California and the North East,

the high electricity prices might hold consumers back in their decision to purchase an EV, as

the long term savings represented by the cheaper fuel cost are diminished. In California for

instance, it currently takes almost seven years to make up for the up front cost of an EV1,

but if retail electricity prices were efficient, that is if they equaled the social marginal cost of

consuming electricity, potential buyers would recover their initial investment in 4 years and

a half, which would result in more people considering the zero-emission option.

This paper focuses on California, where the reason why electricity prices are set way

above the social marginal cost of electricity is the three main Investor-Owned Utilities (IOUs)

in the state – Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San

Diego Gas and Electric (SDG&E)– recovering their operational costs by reversing them onto

consumers. As a consequence, the cost of owning an EV is set above the social optimum

resulting in a slow down of the electrification of the transportation sector and dispropor-

tionately affecting low-income households for three main reasons. First, as high income

households become energetically self-sufficient, the pool among which the IOUs operational

costs are recovered becomes smaller and predominantly low income (Borenstein, Fowlie, and

Sallee, 2021). Second, low income consumers already spend a higher share of their paycheck

1The calculations I did and assumptions I made are explained in the Appendix section and shown in
tables 7 and 8.
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to cover their electricity bill, and therefore they are more intensively affected by high prices

(Borenstein, Fowlie, and Sallee, 2022). Finally, like Muehlegger and Rapson (2021) find,

lower income households are more elastic to electricity prices than high income households,

which implies that low income consumers’ demand for EVs will be more elastic to changes

in prices both related to the up-front purchase cost and the cost of owning an EV. Because

low income consumers are more adversely affected by the high electricity prices and they

are also more elastic to prices in general, the inefficient retail prices that IOUs charge not

only represents a hurdle for widespread EV adoption in California, but also – and most

importantly – an obstacle for widespread EV adoption among low income consumers. This

ultimately results in an inequality issue on top of an economic inefficiency issue, and is in

contrast with the ambitious goal that California has set of achieving 100% of zero emission

vehicles (ZEV) sales by 2035 (California Air Resources Board, 2022).

The current literature agrees on the negative correlation between EV adoption and

electricity prices. For instance, (Bushnell, Muehlegger, and Rapson, 2022) find that a one

cent increase in electricity prices is correlated with a 0.4% decrease in EV adoption; and

Borenstein et al. (2022) conclude that recovering non-incremental costs through higher retail

electricity rates increases EV charging costs and substantially slows the pace at which the

transportation sector is electrified. This paper seeks to expand on the existing knowledge

about the relationship between electricity prices and EV adoption by differentiating between

the effect that California IOUs electricity prices have on high and low income consumers’

EV adoption. Additionally, this paper seeks to quantify the predicted EV adoption level

under efficient retail electricity prices for both high and low income consumers in order to

shed light on the extent to which the EV market growth is in fact hindered, and how this

differs by income.
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The electricity and gasoline price data used in this study come from the US Energy

Information Administration, The EV registration data is collected from the California Energy

Commission, and the income and population count data is retrieved from the US Census

Bureau. The different data sets are merged together to obtain a balanced panel data set at the

zip code and yearly level that covers the time period from 2009 to 2021. The paper employs

a variety of panel fixed effects regression models to investigate the relationship between EV

adoption and IOUs electricity for the two income groups. The empirical strategy is divided

in two main parts – one in which only electricity prices are considered as the explanatory

variable and one that also includes gasoline prices.

I find that EV registration in low income zip codes in 2021 would be considerably higher

under efficient electricity retail pricing both when electricity prices only are considered and

also when gasoline prices are introduced in the model. However, the relationship between

EV adoption and electricity prices in high income zip codes appears to be driven by an

upward sloping demand curve in both parts of the study. Therefore, the results related to

zip codes characterized as high income are inconclusive. This may be attributed to the fact

that other variables that have an effect on EV adoption are changing differently between

time and space and are therefore not captured by the models’ fixed effects. Future research

should include additional explanatory variables such as EV quality and income by zip code

in order to prevent omitted variable bias.

Overall, this paper successfully proves that IOUs electricity prices greatly hinder EV

adoption of low income households and that the effect is greater than that of high income

households. This is relevant because it shows that the regressivity of the current electricity

market in California translates into regressivity of the EV market as well. To ensure that

the state’s goal of decarbonization of the transportation sector is achieved and that lower
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income households are not left behind in the process, California should thoughtfully consider

adopting policies to best approximate an efficient electricity market in which the retail prices

consumers face get as close as possible to the social marginal cost of consuming electricity.

2 Literature Review

Borenstein and Bushnell (2021) provides the foundation to my thesis question by ex-

ploiting the inefficiently high electricity prices that California’s Investor-Owned Utilities

charge and by comparing them to the rest of the country. The paper examines the US

electricity industry from 2014 to 2016 by analyzing the relationship between the marginal

retail prices and the social marginal cost of supply. The study calculates the social marginal

cost of consuming electricity in California by averaging the private marginal cost and the

social marginal cost. Although the private marginal cost is among the higher in the country

– mostly between 3.83 to 4.20 cent per kWh – the external marginal cost is much lower than

most of the US – between 2.53 and 3.19 cent per kWh – due to the clean grid that charac-

terizes California. As a result, California has among the lowest SMCs in the US. In order to

estimate the dead-weight loss (DWL), Borenstein and Bushnell compare the social marginal

cost to the marginal price of electricity, which in California mostly ranges between 16 to 41.2

cent per kWh. The difference between the marginal electricity price and the average social

marginal cost in California is among the highest in the country together with parts of New

England 8. After normalizing each quantity of kWh to the one utilities would have sold if

price equaled SMC, the paper calculates that California’s three large investor-owned utilities

together make up 8% of the total US residential normalized quantity of kWh demanded, but

are responsible for 31% of the total DWL.
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Borenstein et al. (2021) argue that California IOU’s prices are high by both historical

and national standards, in fact SCE charges prices that are 45% higher than the national

average, PG&E about 80% higher, and the most expensive SDG&E prices are roughly double

the national average. The report estimates the marginal cost of electricity by considering

all the following factors: the cost of generating additional electricity, potential increases in

the cost for transmission and distribution capacity that scale with usage, the potential need

for additional generation capacity, and the cost of GHG emissions borne by society. The

results show that marginal cost is greatly lower than electricity rates, which exceed the social

marginal cost by two to three times. It follows that problematic incentives are created, since

over-pricing sends misleading signals about the true cost to society of consuming electricity,

discouraging its usage and causing DWL from under-consumption.

Diving deeper into how the high IOUs electricity rates affect the electrification of the

transportation and residential sectors, Borenstein et al. argue that such is discouraged by

the massive gap between the marginal cost that IOUs face and the retail price they charge

consumers. The gap has the same effect, and therefore can be defined as, an electricity

tax, and it leads to economic inefficiency. Borenstein et al. (2022) estimate that the annual

operating costs of driving an EV are on average $600 higher than the social marginal cost,

and the cost reaches a high of $900 for San Diego Gas & Electricity’ customers. The authors

conclude that the increased cost of driving an EV not only slows the pace at which the

transportation sector is electrified, but it also nearly neutralizes the subsidies implemented

to incentivize EV adoption.

In addition to an economic inefficiency issue, the tax on electricity represents an equity

issue for two main reasons. First, as higher income households are increasingly shifting to

solar PV panels and becoming energetically self-sufficient, the burden of the operational
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costs that IOUs face is covered by a base that is increasingly smaller and predominantly

made up of lower and middle-income households (Borenstein et al., 2021). Second, the tax

is regressive because lower income households pay a much larger share of their earnings in

electricity costs than higher-income households do (Borenstein et al., 2022).

Bushnell et al. (2022) tested how the electricity and gasoline prices in California affect

the marginal electric vehicle buyer’s decision to purchase an EV. The authors estimate

a coefficient for their dependent variable using two different regressions. In the first one

they look at how electricity and gasoline prices affect EV adoption while controlling for the

fixed effects of time and space, that is for the differences in moths and block census groups

respectively. The results show that a one cent increase in volumetric electricity prices is

associated with a monthly fall in EV demand of about 0.4%, and that a one cent increase

in gasoline prices is associated with a 0.5% monthly rise in EV demand. To compare the

coefficients in a meaningful way, the authors introduce the concept of engine efficiency by

considering a Toyota Camry, an ICE that gets 30 miles-per-gallon, and a Tesla Model 3,

which gets 4 miles-perkWh. The analysis estimates that consumers value gasoline price eight

times more than electricity prices when deciding whether to purchase an EV. The second

regression model insulates the effect of electricity prices by focusing the analysis on census

blocks located along the utility service territory boundaries, where households face similar

commutes and benefit from similar public charging infrastructure but they potentially face

very different electricity prices. When controlling for observable demographic characteristics

of the census block, the relationship between electricity prices and EV sales appears again

to be negative and significant. Bushnell et al. (2022) estimate that EV adoption would be

13% higher under efficient electricity pricing and 33% higher when considering households

living close to a service territory boundary, the larger estimate is due to those households
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being on average wealthier and less likely to live in multi-unit dwellings.

Previous studies agree on the negative relationship between EV adoption and electricity

prices, and on the positive relationship between EV adoption and gasoline prices and income.

Soltani-Sobh, Heaslip, Stevanovic, Bosworth, and Radivojevic (2016) conducted a cross-

sectional time series analysis to examine the effectiveness of state incentives and other socio-

economic factors in promoting EV adoption in the US. The authors confirm the hypothesis

that EV share increases as income grows. They also find a statistically significant and

negative relationship between EV share and electricity prices, and positive between EV share

and gasoline prices. Sheldon, DeShazo, Carson, and Krumholz (2017) studied the factors

affecting PEV sales in California and found that PEV purchases are positively correlated

with gas prices and that sensitivity to gas prices has increased in recent years, although the

results show no evidence of higher gasoline price sensitivity in lower income regions.

3 Background and Data

3.1 Background

This paper focuses on the effect that the electricity prices charged by Investor-Owned

Utilities in California have on electric vehicles. IOUs are privately owned, they issue stocks

owned by shareholders, and are larger than Publicly Owned Utilities (POUs), which are

instead run by government agencies and political subdivisions (EIA, 2019). IOUs provide

electricity to almost three fourth of US consumers, and the two largest ones in the US are

Pacific Gas and Electric and Southern California Edison, which count 5.48 and 5.07 million

consumers respectively (EIA, 2019). There is a total of six IOUs in California: Bear Valley

Electric Service, Liberty Utilities, Pacific Corp, Pacific Gas & Electric, San Diego Gas &
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Electric, and Southern California Edison. Figure 1 shows the area in which each operates.

This paper focuses on the three largest ones - PG&E, SCE, and SDG&E.

T:\Projects\Open Data Hub\ArcPro_Projects\Electric_IOU_Areas\Electric_IOU_Areas.aprx

California, 2020
Electric Investor Owned Utilities

PACIFICORP

LIBERTY
UTILITIES

SCE

SDG&E

BEAR VALLEY
ELECTRIC
SERVICE

PG&E

SCE: Southern California Edison

SDG&E: San Diego Gas & Electric

PG&E: Pacific Gas & Electric Company

PacifiCorp

Liberty Utilities

Bear Valley Electric Service

Figure 1: California IOUs Map (California Energy Commission, 2022a)

The electric vehicle market is evolving rapidly and there are currently four different

types of electric vehicles available: Battery Electric Vehicles (BEVs), Plug-In Hybrid Electric

Vehicles (PHEVs), Hybrid Electric Vehicles (HEVs), and Fuel Cell Electric Vehicles (FCEVs)

(US Department of Transportation, 2022). HEVs and FCEVs cannot be recharged from

external sources and are not capable of operating with zero tailpipe emissions. In fact, HEVs
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are powered by a combination of internal combustion engine and electric motors – which uses

energy stored in batteries (US Department of Energy) – and FCEVs power an electric motor

through a highly efficient electrochemical process that converts hydrogen into electricity

(US Department of Transportation). BEVs and PHEVs are recharged by an external power

and they differ in that, whereas BEVs run only on electricity, PHEVs also incorporate a

smaller internal combustion engine that can recharge the battery or even directly power the

wheels (US Department of Transportation). My analysis focuses on BEVs only and from

now on I will use the term EVs and BEVs interchangeably.

Like Bushnell et al. (2022) explain, the multitude of potential prices EV owners may

pay – linked to the potential charging locations such as home, work, or public charging

infrastructure — and the variety of prices they may face at each location, represent one of

the major challenges in understanding the effect of electricity prices on EV demand. Bushnell

et al. conclude that the majority of EV owners charge their vehicles fully or partially at

home via their home master electricity meter. In this paper I assume that EV owners charge

their vehicle in an area powered by the same utility that operates in the zip code in which

their vehicle is registered, whether that is at home or at a public charging infrastructure,

and that consumers pay the average electricity price charged annually by that utility.

3.2 Dataset Building

I constructed a panel data set that contains annual data from 2009 to 2021 at the

California zip code level. The main variables present in the dataset are EV registrations and

electricity prices – both collected at the annual and zip code level – average population data

count and median households income in 2021. The final electricity data set after eliminating

outliers contains a total of 15,353 observations, that is data for 1,181 zip codes each year,
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with each zip code appearing 13 times. Out of the zip codes, 740 are powered by PG&E

territory, 335 by SCE, and 106 by SD&E. The summary statistics of the electricity price data

set are displayed in table 1. I built a second data set – energy prices data set – containing

both electricity and gasoline prices. I added annual gas prices for zip codes corresponding to

the PG&E and SCE areas to the initial electricity prices only data set. As SDG&E zip codes

are not included in the gas data set, 1,378 data points are dropped and the new energy price

data set contains a total of 13,975 observations. Table 2 displays the summary statistics of

the energy prices data set.

I retrieved data on the yearly average electricity prices of the three IOUs from the

US Energy Information Administration. More specifically, I divided the electric revenue

from retail sales by the disposition of retail sales from the operational data sheet for each

year, obtaining the average electricity prices charged by the IOUs in any given year. I then

adjusted the electricity prices for inflation using 2021 as the base year and I matched each

IOU with the zip codes it powers to obtain the yearly retail electricity prices at the zip code

level. The graph at the top in Figure 2 shows the variation in the growth of electricity prices

over time by utility. The ranking of electricity prices across utilities corresponds to that of

the average annual electricity cost premium for EVs across utilities calculated by Borenstein

et al. (2022), which finds that SDG&E has the highest premium close to $900, followed by

PG&E at about $700 and SCE at $400.

I gathered data on BEV registration by zip codes from the California Energy Commis-

sion, which is a reasonable approximation of data on BEV sales by zip code. Therefore from

now on, I will use the terms EV registration and EV sales equivalently. I collected popula-

tion data count from the US Census Bureau, more specifically from American Community

Survey which offers data sets on population count updated every five years. I averaged the
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data from 2011 to 2015 with the data from 2016 to 2020 to estimate the average zip code’s

population over the time frame covered in my data set. I normalized the EV registration

count data by dividing it for the population count and therefore obtaining EV registration

per capita. In addition, to account for the growth in EV registration over time, I calculated

the cumulative sum of EV sales per capita. The graph at the bottom in figure 2 depicts the

growth in the cumulative sum of EV registration per capita by utility.

Figure 2 provide a preview of the relationship between the utilities’ electricity prices

and EV registration. SDG&E consistently charges the highest electricity prices out of the

three IOUs over the entire time period. As expected, the zip codes powered by SDG&E

have the lowest EV registration count and growth over time. The areas powered by Pacifc

Gas and Electric experience the highest EV registration count regardless of PG&E charging

the highest electricity prices out of the three IOUs. This could be due to third factors such

as higher income on average in the areas powered by PG&E. Finally, Southern California

Edison charges the lowest electricity prices and places second after PG&E in EV adoption

over time.
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Figure 2: IOUs prices vs EV registration over time

I retrieved data on the median household income by zip code from the US Census Bu-

reau, particularly from the table with code B19013, which displays an average data of 2021 in

2021 inflation-adjusted dollars. The distribution of income is skewed to the right, as shown

in figure 9 and the mean is $87,023.58. I determined high and low income zip codes as any

income respectively above and below the mean. Out of the 1,181 total zip codes present

in the data set, 678 are defined as low income and 503 as high income zip codes. For each

income group I created a binary variable. Figure 3 shows that EV adoption took off in 2013
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and since then EVs have been increasingly registered in neighborhoods characterized as high

income over low income ones. Additionally, figure 10 shows that the relationship between

EV sales and income in 2021 is strong and positive.

Figure 3: EV adoption by income level and IOUs

Table 1 contains the summary statistics of the main variables in the electricity data

set by IOUs.
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PG&E SCE SDG&E

Zip Codes 740 335 106

mean sd mean sd mean sd

Population 18,842.33 19,883.56 37,272.6 21,502.49 34,974.24 21,257.14

Income 86,180.62 39,247.01 85,715.95 30,173.06 97,040.95 29,192.29

Electricity Prices (cent/kWh) - Total 19.411 2.910 16.147 1.039 21.631 2.961

Electricity Prices (cent/kWh) - 2021 23.636 0 18.860 0 27.151 0

EV per capita - Total* 10.438 21.393 12.361 23.971 14.88 23.947

EV per capita - 2021* 33.899 39.259 48.813 48.303 57.748 42.368

% of Low Income Zip Codes 0.605 0.489 0.564 0.496 0.387 0.487

EV per capita (Low Income) - 2021* 14.198 17.824 22.568 18.480 26.688 20.807

*EV registration is cumulative sum per capita per 10,000 population

Table 1: Electricity Prices Data Set - Summary Statistics

I collected yearly retail gasoline prices for the cities of San Francisco and Los Angeles

from the US Energy Information Administration website. I adjusted the data in 2021 dollars

and I assigned the San Francisco retail gasoline prices to the zip codes powered by PG&E,

and the gasoline prices in LA to the zip codes powered by SCE, as the areas approximately

overlap. Now that the data points for SDG&E are dropped, there is a total of 1,075 zip

codes, 5,694 of which characterized as high income and 8,281 as low income. Figure 4 shows

the growth in gasoline prices by utility area. There appears to be nearly zero variation

among the two region’s gasoline prices in any given year.
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Figure 4: Gas prices over time by area

Finally, to compare the electricity and gasoline prices, I multiplied the two by the

average kWh and gallons needed to drive one mile respectively in order to transform them

in the same unit of measure – one cent per mile. The values correspond to 0.33 kWh for

EVs2, and 0.045 gallons for ICEV3. Additionally, I computed the ratio between the cost

to drive one mile in an EV and the cost to drive one mile in an ICEV. The ratio indicates

the relative cost to drive an EV with respect to an ICEV. Figure 6 shows that it has been

consistently more expensive to drive an EV in San Francisco than in Los Angeles, with the

gap increasing in 2015 but getting smaller since 2020. Table 2 provides a summary statistic

of the newly added variables.

2(Eco Cost Savings, 2022)
3(Idaho National Laboratory, n.d.)
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Figure 5: Price ratio over time by area

SCE PGE

mean sd mean sd

Electricity Prices (cent/kWh) 16.147 1.039 19.411 2.910

Gasoline Prices (cent/gal) 373.581 28.496 374.227 31.351

EV cent per mile 5.329 0.343 6.406 0.960

ICEV cent per mile 16.811 .282 16.840 1.411

Price Ratio 0.318 0.026 0.379 0.030

Table 2: Energy Prices Data Set - Summary Statistics

3.3 Dataset Considerations

The electricity prices data set is very representative of the entire population – that is all

the zip codes powered by SCE, PG&E, and SDG&E – as only few zip codes that represented

outliers in the data were dropped. The energy prices data set drops all zip codes powered
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by SDG&E as it does not include gasoline price data in the San Diego area. However, if we

consider the new population as the zip codes in the SCE and PG&E domain only, the data

set is still representative of the overall population.

Although representative of the overall population, there are many ways in which my

data set could have been improved. First, a better data set would contain more granular

data such as EV registration at the block census group and monthly level, as well as monthly

electricity and gasoline prices rather than annual averages only, like is the case in Bushnell

et al. (2022). That way, I would be able to conduct a more precise analysis. Second, by

including gasoline prices for the San Diego area in the energy price data set, data points

would not be dropped and the analysis would consider the zip codes in all the three utilities’

domain. Finally, by accounting for the annual income data by zip code rather than the

median income by zip code in 2021, the analysis would account for non-constant growth in

income that is not captured by the fixed effects model. I will expand more on this issue in

the results section of this paper.

4 Methodology

To answer my research question I will employ a variety of fixed effect panel regression

models. The dependent variable of all models is the cumulative sum of EV registration per

capita multiplied by 10,000, and the unit of observation in the data is EV registration by zip

code and by year. I am considering the running total – that is each year’s EV registration is

summed to the EV registration count of previous years in that zip code – to account for the

growth of EVs over time and for the total contribution at any point in time. Additionally, I

am considering EVs per capita to normalize the amount of EVs registered by the zip code’s
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population. Finally, I multiply the EV registration variable by 10,000 to facilitate the results’

interpretation, as not only it matches Bushnell et al.’s (2022) independent variable, but it

also allows me to work with numbers that are bigger in magnitude. The main explanatory

variables in the model are electricity prices, gasoline prices, and two binary variables for low

and high income zip codes.

To answer the research question I will employ OLS regression models that build on

regression 1, which represents the most basic model used to establish a baseline estimate of

the impact that electricity prices have on EV adoption. In all regressions I control for the

fixed effects of year and zip code. Controlling for fixed effects ensures that all the variables

that could potentially have an effect on predicting the independent variable are accounted

for as long as these variables or the rate at which they change remains constant over time.

4.1 Electricity Prices

BEV SalesPerCapitazt = β0 + β1Pezt + ηt+ θz + µ (1)

BEV SalesPerCapitazt = β0+β1Pezt∗LowIncomez+β2Pezt∗HighIncomez+ηt+θz+µ (2)

Regression 1 is the baseline model and its only explanatory variable is the price of

electricity. Regression 2 builds on regression 1 as the low and high income binary variables

are added to the model. The low income binary variable equals 1 for all the zip codes that

have median households income below the mean, whereas the high income binary variable

is defined as 1 for those zip codes with 2021 median household income above the mean. The

two binary variables allow to differentiate the effect that electricity prices have on the two

income groups’ EV adoption. The expectation is that both coefficient have a negative sign,
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and that the coefficient for low income is characterized by a greater absolute value. This

is because, as low income people are more elastic to changes in price, one would expect a

one cent increase in electricity prices to affect EV registration in low income zip codes more

negatively (Muehlegger and Rapson, 2021).

In order to estimate what the current EV adoption level would be if California IOUs

were charging consumers efficient volumetric prices, I run a prediction model based on model

2. I establish the efficient electricity prices according to Borenstein et al., who find that they

are equal to half of the current SCE prices and one third of current PG&E and SDG&E

prices.

4.2 Gasoline Prices

I add gasoline prices to the model in order to prevent the results from being affected

by omitted variable bias. I consider both electricity and gasoline prices variable in the cost

in cent it takes to drive one additional mile. Therefore, the variables BEV cent x mile and

ICEV cent x mile indicate the effect of a one cent increase in the cost to drive an additional

mile with an EV and an ICEV respectively. The same unit of measure enables me to compare

the coefficients in a meaningful way and to account for their relative effect through the price

ratio variable.

BEV SalesPerCapitazt = β0+β1BEV centx1milezt+β2ICEV centx1milezt+ηt+θz+µ (3)

BEV SalesPerCapitazt = β0 + β1PriceRatioηt+ θz + µ (4)

BEV SalesPerCapitazt = β0 + β1BEV centx1milezt + β2PriceRatioηt+ θz + µ (5)

21



In model 3, the cost to drive one additional mile in an EV and in an ICEV seek

to explain the variation in EV sales linearly and separately. Model 4 looks at how the

relative change of electricity and gasoline prices affects EV adoption through the price ratio

variable, which is computed by dividing BEV cent x mile by ICEV cent x mile. The price

ratio coefficient indicates the effect of a one cent increase in the ratio between the two

energy prices. Looking at the change in prices as a proportion rather than linearly might

be beneficial for the model’s effectiveness, especially given the lack of variation in gasoline

prices data. Model 5 is an iteration of models 3 and 4 as it brings together the linear and

relative models, and it looks at how effective a combination of the two previous models is

at explaining the variation in EV adoption. In general, I expect the BEV cent x mile and

price ratio coefficients to be negative, and the ICEV cent x mile coefficient to be positive,

coherently with what Bushnell et al. (2022) finds.

BEV SalesPerCapitazt = β0 + β1BEV centx1milezt ∗ LowIncomez+

+ β2BEV centx1milezt ∗HighIncomez + β3ICEV centx1milezt ∗ LowIncomez+

+ β4ICEV centx1milezt ∗HighIncomez + ηt+ θz + µ (6)

BEV SalesPerCapitazt = β0 + β1PriceRatio ∗ LowIncomez+

+ β2PriceRatio ∗HighIncomez + ηt+ θz + µ (7)
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BEV SalesPerCapitazt = β0 + β1BEV centx1milezt ∗ LowIncomez+

+ β2BEV centx1milezt ∗HighIncomez + β3PriceRatio ∗ LowIncomez+

+ β4PriceRatio ∗HighIncomez + ηt+ θz + µ (8)

Models 6 through 8 build on models 3 to 5 by interacting each previous models’ variables

with both the high and low income binary variables. The interaction terms allow to quantify

how energy prices affect the two income groups’ EV adoption differently.

Additionally, similarly to model 2, I predict the EV adoption level in 2021 under

efficient retail pricing by running a prediction of model 7, which I expect to be the best at

explaining EV adoption variation. To run the prediction model I once again divided the

electricity prices in the LA area, that is SCE prices, by 2 and electricity prices in the SF

area, that is PG&E prices, by 3. After recomputing the BEV cent x mile and the price ratio

under efficient pricing, I estimate the predicted level of EV adoption.

BEV SalesPerCapitact = βeP e
ct + βgP g

ct + ηc + θt + µct (9)

The models in this study are inspired from and build on model 9, employed by Bushnell

et al. (2022). Therefore, the expectation is that the results of this paper’s model align with

those of regression 9, that is the EV related price coefficient should be negative and the

ICEV related price coefficients should be positive. On top of that, like previously explained,

I expect the magnitude of the low income coefficients to be bigger.

Although this paper and its models are inspired by Bushnell et al.’s model, there are

some important differences between the two studies that is worth pointing out as they could

be the cause of differing results. First, the units of observations in (Bushnell et al., 2022)
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are more granular. In fact, the spatial unit of the paper is census block group which is

a geographical unit smaller than zip code. In addition, the authors estimate a version of

regression 9 at both the monthly and annual level, getting therefore more specific results. A

third difference is that Bushnell et al. do not include an income variable, and therefore look

at the effect that energy prices have on EV adoption for the overall population. On the other

hand, models 6 through 8 all distinguish between the effect on households characterized as

low and high income.

5 Results

5.1 Electricity Prices

Table 3 shows the results of regressions 1 and 2. Regression 1’s coefficients appear to be

significant only when neither the fixed effect of year and zip code are accounted for, therefore

not allowing to draw any meaningful conclusion about the relationship between EV adoption

and electricity prices that accounts for difference among years and zip codes. In regression

2, where the low and high income binary variables are introduced as interaction terms with

electricity prices, the coefficients become statistically significant at the 99% confidence level

when the fixed effect of both year and zip code are accounted for. Additionally, the R2

increases from 60 to 70, indicating that introducing the income variable in the regression

betters the model as the independent variables now explain a higher share of the variance of

EV sales per capita.

With regard to the direction of the relationship between EV adoption and electricity

prices in model 2, it appears that electricity prices are negatively correlated with EV adoption

for low income households and positively correlated with EV adoption for high income ones.
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The results can be interpret as follows: a one cent increase in electricity prices leads to 12.26

more high income households and 10 less low income households purchasing an EV.

The relationship between electricity prices and EV adoption in low income zip codes

is as expected, and so is the comparison between high and low income zip codes as a one

cent increase in electricity prices affects low income households more negatively. However,

the positive coefficient for high income consumers suggests that the demand curve for high

income households is upward sloping, which cannot be the case. In fact, there must be

omitted variable bias in the model that results in an overestimation of the coefficient. I will

thoroughly discuss this issue later in the results section.
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Dependent Variable: BEV registration

Model: (1) (2) (3) (4) (5) (6)

Variables

Constant -153.5∗∗∗ -149.1∗∗∗

(4.023) (3.695)

price 10.36∗∗∗ 0.1423 -0.4596

(0.2125) (0.1805) (0.3674)

price × low income 8.671∗∗∗ -1.879∗∗ -9.966∗∗∗

(0.1977) (0.6220) (1.730)

price × high income 12.07∗∗∗ 1.602∗∗∗ 12.26∗∗∗

(0.1977) (0.4450) (1.757)

Fixed-effects

year Yes Yes Yes Yes

zip_code Yes Yes

Fit statistics

Observations 15,353 15,353 15,353 15,353 15,353 15,353

R2 0.13409 0.27768 0.60116 0.26986 0.41999 0.70438

Within R2 1.65× 10−5 0.00010 0.19702 0.25888

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 3

As discussed in the literature review, California’s IOUs recover their total system costs
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by charging high volumetric prices that deceive consumers about the true cost of consuming

electricity as prices greatly exceed social marginal cost. I run a prediction model to estimate

the extent to which inefficient electricity prices hinder EV adoption for each income group.

Figure 6 shows that the amount of EVs registered from 2009 to 2021 would have been

consistently and increasingly higher among low income households for all IOUs if retail

electricity prices equaled social marginal cost. Table 4 shows the actual and the predicted

means of EVs registered under efficient pricing by utility in 2021. The difference between

means is also displayed and it shows that there would be on average 126 more EVs in

each low-income zip codes powered by SCE, 187 more in low-income zip codes powered by

PG&E, and 178 additional EVs in zip codes powered by SDG&E. The weighted average

indicates that there would be a total of about 167 additional EVs every 10,000 households

in each zip code characterized as low income across the three IOUs territories. On the other

hand, the difference between predicted and actual EV adoption in zip codes characterized

as high income is negative for all three IOUs, and the growth over time would have been

consistently lower under efficient pricing for high income households, as shown in figure 10

in the appendix. These results are coherent with the negative of sign of the β3 coefficient in

model 2.
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Figure 6: Low Income Consumers’ Predicted EV Adoption Under Efficient Pricing vs Actual

ACTUAL PREDICTED DIFFERENCE (P-A)

Low Income High Income Overall Low Income High Income Overall Low Income High Income Overall

SCE 66.5 282.7 160.7 192.5 100.3 152.3 126 -182.4 -8.4

PG&E 51.1 265.5 135.7 238.4 43.3 161.4 187.3 -222.2 25.7

SDG&E 76.2 267.4 193.4 254 25.9 114.1 177.8 -241.5 -79.3

*EV sales: cumulative sum for 10,000 households

Table 4: Mean EV Registration in 2021: Actual vs Predicted
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5.2 Introducing Gasoline Prices

Table 5 shows the results of models 3 through 8 in order. The R2 is around 0.60 for

the models in which the income variables are not included, and it increases to 0.70 when

the income binary variables are included, although it only increases to 0.63 for regression

7. Overall, it looks like adding the gasoline price variable does not increase the share of the

dependent’s variable variance explained by the independent variables with respect to when

only electricity prices are considered.

The coefficients of models 3 and 6 are shown in columns 1 and 4 of table 5. Whereas

the coefficients of model 3 appear statistically insignificant, model’s 6 β2 and β3 coefficients

are significant at the 95% confidence level and can be interpreted as follows: as it becomes

one cent more expensive to drive one additional mile in an EV, 23.36 more high income

households will purchase one, and as driving one mile in a gasoline-powered car becomes

one cent more expensive, 22 fewer high income households will purchase an EV each year.

The direction of the relationship between the cost of driving an EV and an ICEV and EV

adoption is opposite to what I expected and to what previous literature found. In fact, the

authors of Energy Prices and Electric Vehicle Adoption find that an increase in one cent per

kWh results in a drop of annual EV sales of about 0.6%, and a one cent increase per gallon

of gasoline increases EV registration by about 1.5% (Bushnell et al., 2022). Although I

differentiate for income levels, I would expect the direction of the relationship to be coherent

with Bushnell et al. (2022)’s results and to potentially only differ in magnitude, with low

income consumers’ showing bigger magnitudes of their coefficients. Because of inconsistency

with expectations and previous research, I conclude that models 3 and 6 fail at explaining

the variation in EV adoption, probably due to their linearity which is not ideal given the

lack in gasoline price variation in the data.
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Columns 3 and 6 show the coefficients of models 5 and 8, which mix linear and propor-

tional explanatory variables in an attempt to explain the variation in EV adoption. Both

models’ β1 coefficients are statistically significant and negative, and can be interpreted as

follows: as the cost to drive one mile with an EV increases by one cent, 32.5 less consumers

will purchase one and 70.9 fewer low income consumers will purchase an EV. However, the

positive price ratio coefficient that characterizes both regressions indicates that, as it be-

comes more expensive to drive an EV with respect to an ICEV, more overall consumers and

low income consumers respectively will purchase an EV. Therefore, combining linear and

proportional explanatory variables also fails to properly describe EV adoption in a way that

is coherent with the expectations and with previous literature.

Models 4 and 7, which fully disregard the linear model and consider the price ratio

as the only explanatory variable, appear to be the best models at explaining the variation

in EV adoption. In fact, regression 4’s results indicated that, as it becomes relatively more

expensive to drive one additional mile in an EV with respect to an ICEV, about 46 fewer

consumers will purchase an EV. When the income variables are also included in the model,

the relationship between the price ratio and EV adoption remains negative for low income

zip codes but it becomes positive for high income ones. More specifically, as the cost to

drive an EV with respect to an ICEV increases by one cent, 550 more low income and 670

more high income households will purchase an EV. Similarly to the results of model 2, the

relationship between low income households’ EV adoption and energy prices is as expected,

but that between high income people’s EV adoption and electricity prices seems to be guided

by an upward sloping demand curve which cannot be the case in real life. Therefore, the

high income coefficient must be disregarded since it must be influenced by other variables

not captured in the model.
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Dependent Variable: BEV registration

Model: (1) (2) (3) (4) (5) (6)

Variables

BEV_centxmile -0.4232 -32.54∗∗

(1.279) (13.75)

ICEV_centxmile -12.35

(7.025)

price_ratio -46.23∗ 592.4∗∗

(24.72) (263.3)

BEV_centxmile × low_income -13.70 -70.85∗∗∗

(7.819) (15.73)

BEV_centxmile × high_income 23.36∗∗ 31.93∗∗∗

(10.50) (8.763)

ICEV_centxmile × low_income -22.12∗∗

(7.825)

high_income × ICEV_centxmile 1.564

(6.038)

low_income × price_ratio -550.3∗∗ 1,033.2∗∗∗

(210.1) (263.4)

high_income × price_ratio 670.1∗∗ -139.6

(267.0) (325.8)

Fixed-effects

year Yes Yes Yes Yes Yes Yes

zip_code Yes Yes Yes Yes Yes Yes

Fit statistics

Observations 13,975 13,975 13,975 13,975 13,975 13,975

R2 0.59470 0.59413 0.59482 0.70979 0.63389 0.70996

Within R2 0.00169 0.00028 0.00198 0.28517 0.09821 0.28559

Clustered (year) standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 5
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I run a prediction model based on regression 7 to estimate the current EV adoption level

when accounting for gasoline prices. Figure 8 shows the actual and the predicted growth

in EV registration by area. For both Los Angeles and San Francisco areas, the mean of

predicted EV registration over time is consistently and considerably higher under efficient

retail pricing, with the gap between actual and predicted EV sales increasing with time and

peaking in 2021. Table 6 shows the actual and mean EV registration levels by area in 2021.

If IOUs charged efficient prices, in LA and SF there would currently be an average of 136

and 201 more EVs in each low income zip codes respectively. By computing the weighted

average, the result indicates that there would currently be on average 181 additional EVs

registered in all zip codes characterized as low income.

With regard to high income zip codes, the model actually predicts that there would be

less, and at times negative, EV adoption over time, like shown in graph 12 in the appendix.

This is coherent with the positive β2 coefficient of regression 7 and is similar to the EV

registration prediction in high income zip codes of model 2.
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Figure 7: Low Income Consumers’ Predicted EV Adoption Under Efficient Pricing vs Actual

ACTUAL PREDICTED DIFFERENCE (P-A)

Low Income High Income Overall Low Income High Income Overall Low Income High Income Overall

Los Angeles 66.5 282.7 160.7 202.5 82.5 150.2 136 -200.2 -10.5

San Francisco 51.1 265.5 135.7 251.9 21.9 161.1 200.8 -243.6 25.4

Table 6: Mean EV Registration in 2021: Actual vs Predicted

5.3 Discussion

The main limitation of this study is its inability to draw conclusions with regard to the

relationship between EV adoption and electricity prices in zip codes characterized as high

income. In fact, the relationship looks like it is driven by an upward sloping demand curve,
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which in general would indicate that as a good becomes more expensive, consumers will

purchase more of it. An upward sloping demand curve cannot be the case in real life as it

goes against the negative relationship between price and demand, one of the main principles

of economics. A probable reason why both parts of the study show this positive relationship

is the presence of omitted variable bias in the data. Although controlling for the fixed effects

of year and zip code should account for the variables not included in the model that could

have an effect on EV adoption, this is only the case if these variables do not change over

time or change at a constant rate. However, if variables that have an effect on EV adoption

change at a varying rate over time, the fixed effects will not account for them. I suspect this

to be exactly what is going on in the data, as the relatively low R2 — which in none of the

models exceeds 0.70 – also indicates that key variables are missing.

An example of a variable of which effect is not captured by the models is variation of

income. In fact, if rich regions are becoming increasingly wealthier over time, consumers in

these regions will gain higher disposable income and as a consequence they will be willing

to purchase an EV regardless of the increasing electricity prices. As the increase is likely

to not be constant among regions, by only accounting for one income observation – the

median household income in 2021 – the income growth effect is not captured and its effect

on EV adoption is mistakenly attributed to electricity prices. A way that this could have been

prevented is by collecting data on median household income at the annual level. Additionally,

in areas that are getting richer and in which consumers are purchasing EVs at an increasing

rate, this effect could be further amplified by the network effect. Essentially, as more people

in the vicinity of a consumer purchase an EV, that consumer’s utility from owning one will

also increase.

Technology improvements is another variable that could be relevant to explain EV
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adoption, especially among high income households. In fact, these consumers could value

EVs more over time because of technological improvements such as a longer driving range

and a quicker charging time that make EVs a more valuable good. As a consequence,

consumers would be willing to purchase one regardless of the electricity prices getting more

expensive, as the overall utility they gain from owning an EV has increased. Similarly to

income, by not including such variable in the data, the regressions’ results will attribute the

higher EV adoption rate to electricity prices, leading to an over-estimation of the electricity

price coefficient. The technology improvements lurking variable would be mostly relevant

for high income consumers because as they are less price elastic than low income ones,

and are therefore likely to place greater value on non-monetary factors such as EV quality

(Muehlegger and Rapson, 2021).

Finally, A further limitation of the study is represented by the gasoline prices which

show close-to-zero variation among the San Francisco and Los Angeles areas in any given

year. Since there is such little variation, it is complicated to estimate the effect of gasoline

prices on EV adoption among the two regions considered, and it is in fact not surprising

that the direction of the relationship between the two income groups’ EV adoption does not

change when gasoline prices are introduced in the model. The root of this issue stands in

approximating the gasoline prices. SF and LA have similar gasoline prices, which are then

reflected on the entirety of the areas covered by PG&E and SCE. Since PG&E and SCE

extend beyond the two cities of SF and LA, it results in very similar prices among the entire

population considered. This could have been improved if more spatially granular gasoline

prices, ideally at the zip code level, were available.

specify that values are multiplied by 10,000 in summary tables
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6 Conclusion

In this paper I investigate how the inefficiently high electricity prices charged by the

three major IOUs in California affect EV adoption differently among zip codes character-

ized as low and high incomes. A main goal of my research is to quantify what the current

EV registration level would be among each income group if electricity prices equaled social

marginal cost. The existing literature agrees on the negative relationship between electric-

ity prices and EV adoption (Bushnell et al., 2022). Additionally, low income consumers

have been defined as more price elastic in the electricity market (Muehlegger and Rapson,

2021). Therefore, when differentiating among income groups, the expectation is for such

relationships to stay negative for both income levels, and low income consumers’ coefficient

is expected to be bigger in magnitude.

I conduct various panel fixed effect regression models, first considering electricity prices

only, and then adding gasoline prices to the model as well. As expected, the results show a

strong and negative relationship between electricity prices and EV adoption in low income

zip codes. Additionally, the coefficient for low income zip codes does in fact appear to be

consistently and significantly smaller than that of high income zip codes. However, the study

fails to quantify the extent to which low income households are more adversely affected, as

the coefficient for high income zip codes appears to be consistently positive. A positive

coefficient implies the existence of an upward sloping demand curve and therefore the results

relative to high income consumers are deemed inconclusive.

Although the results of this paper are partially inconclusive, the study is still relevant

as it finds that current EV registration levels would be significantly higher under efficient

retail electricity pricing in low income zip codes. This is significant because it shows that

setting electricity prices above social marginal cost greatly slows down the electrification of
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the transportation sector. Additionally, the positive coefficient for high income households

indicates the presence of uncontrolled lurking variables in the model, such as income growth

and technological progress, which are affecting high income consumers’ decision to purchase

an EV. This shows that low income consumers do in fact place more weight on electricity

prices than their high income counter parts, and that the high electricity prices represent an

inequality concern in the California EV market.
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Appendices

Table 5 shows the calculations I computed to find how many years it takes to make up

for the higher up front cost of an EV. I found the average price of an EV and an ICEV on

Kelley Blue Book, and I subtracted the minimum federal EV tax credit amount of $2,500 to

obtain an average EV purchase price of $49,032. I assumed that the average California driver

travel 12,524 miles per year (Meyer, 2023) and I found that the average fuel needed to drive

one mile in an EV is 0.33kWh (Eco Cost Savings, 2022) and in an ICEV it is 0.045 gallons

(Idaho National Laboratory, n.d.). The average fuel prices are for the year 2021. I calculated

the average price of electricity by averaging the prices the three main IOUs charged in 2021

according to my data, and I retrieved the price of gasoline in 2021 in California from the

US Energy Information Administration (2023). Given that the cost to own a car is the

addition between the purchase price of the car and the yearly cost to fuel it, which can be

found by multiplying the average miles driven in a year by the fuel necessary per mile and

the fuel price, I calculated that it costs on average $1,302.8 more to power a conventional

car compared to an EV. By dividing the difference in up front price by the difference in the

cost to drive the two vehicles over a year, I calculate that it takes 6.7 years to make up for

the upfront cost of an EV.

Price of car Miles x year Fuel x 1 mile Fuel price Price of fuel x year cost to own

ICEV $40,326 12,524 miles 0.045 gal $4.013 gal $2,261.65 $42,588

EV $49,032 12,524 miles 0.33kWh $0.232 kWh $958.84 $49,991

Table 7: Cost to own: EV vs. ICEV under actual electricity pricing

When considering efficient electricity pricing, that is by diving SCE prices by 2 and
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PG&E and SDG&E by 3, the efficient electricity prices can be computed (Borenstein et al.,

2021). When considering the efficient prices it now costs $1898.5 more to power an ICEV

every year, and it takes consumers 4.6 years to make up for the upfront cost of an EV.

Price of car Miles x year Fuel x 1 mile Fuel price Price of fuel x year cost to own

EV $ 49,032 12,524 miles 0.33 kWh 0.0879 kWh $ 363.134 $ 49,395

Table 8: Cost to own: EV vs. ICEV under efficient electricity pricing

The areas in blue are pricing above SMC, while the areas in red are pricing below SMC.

Figure 8: (Borenstein and Bushnell, 2021) Marginal Price minus Average Social Marginal
Cost per kWh, considering SCC equal to $50/ton
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Figure 9: Income Distribution

Figure 10: EV sales per capita over time
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Figure 11: High Income Consumers’ Predicted EV Adoption Under Efficient Pricing vs
Actual - electricity prices
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Figure 12: High Income Consumers’ Predicted EV Adoption Under Efficient Pricing vs
Actual - energy prices
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