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ABSTRACT
Autism Spectrum Disorder (ASD) displays uniquely in every individual, creating disparities in
symptom severity, genetics, and functional connectivity. Examining the relationship between
genetic and functional connectivity variability could help to better understand individual
differences in ASD. From this, improved diagnosis, treatment, and understanding of ASD can be
developed. To resolve individual differences in symptom severity and presentation, I generated
matrices of subject functional connectivity data and compared this to gene expression maps.
Multivariate regression analysis was performed on the data to anticipate ASD symptoms from
these correlation matrices and to establish which genes have the largest impact on these
predictions. The ANOVAs ran on the data were not significant, but there were several genes
implicated in specific aspects of ASD. STX1A, MVP, CDKL5, and RABEP2 were the only
genes correlated across more than one subtype of ASD. These results pave the way for future
research to investigate the roles of these genes in a larger size of ASD subjects.
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I. Introduction
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by

impairments in social situations, communication, and restrictive repetitive behaviors (RRB).

These can display as deficits in nonverbal communication, social reciprocation, and social

relationships, as well as fixated narrow interests, rigidity in routines, or hypersensitization to

sensory stimuli in the environment (APA Manual, 2019).

Autism is a spectrum due to the heterogeneity between individuals’ symptom

presentation and severity. This displays uniquely in every individual, creating disparities in

symptom severity, genetics, and functional connectivity (Georgiades, Szatmari, and Boyle,

2013). Lombardo et al (2019) is a review paper that tries to better comprehend and model these

data within the autism spectrum. The authors discussed the terminology used to describe ASD

and explained how simplifying it could further point to discerning the heterogeneity of different

types of models within it. There are several factors to weigh in when analyzing the variability

within ASD, such as development, which can lead to decomposing this variability in ASD.

Shifting to a focus on the evolution and history of diagnostic criteria, they noted how previous

research is not as expansive and inclusive as current findings. The historical idea of there being

one definitive type of autism to explain all has significantly affected treatment for individuals

with ASD. Treatment commonly follows an approach of “one size fits all”, which the paper

vehemently argues against. Interpreting heterogeneity is imperative for progress in precision

medicine. Problems associated with current ASD studies include small sample sizes, sample

bias, and a lack of available data. Variability from small sample sizes is often not a correct

representation of the ASD population, but typically an exaggeration of the effects of the true

population. Solutions they presented to fix this would be through the top down approach, bottom

up approach, and performing longitudinal studies. Despite the challenges in acquiring such data,
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the researchers remain optimistic that future research can prevent this trend and positively

support the ASD community by finding enhanced treatment. Disentangling this heterogeneity is

crucial to provide better diagnoses, treatment, and understanding of ASD. From this,

individualized treatments can be created. Recognizing the subtypes of ASD and identifying

potential genetic or functional connectivity biomarkers could help clarify these discrepancies.

Like ASD, depression is another disorder that shows high levels of heterogeneity and has

little research or knowledge widely known about it. Drysdale et al (2017) used Functional

Magnetic Resonance Imaging (fMRI) to divide depression into four subtypes, with the goal of

better treating and diagnosing patients with depression. Ultimately, they wished to resolve which

groups would respond best to Transcranial Magnetic Stimulation (TMS). Employing statistical

analyses, they clustered participants with similar levels of atypical functional connectivity in

resting state networks. After exclusion criteria were applied, the participants were placed in the

fMRI scanner. The researchers employed a seed based approach to estimate functional

connectivity to identify where the matrices are. From this, they were able to define depression

subtypes with similar clinical-symptom profiles and create connectivity biomarkers. These

connectivity biomarkers could predict how patients would respond to TMS and which regions to

effect to have a maximal response. They further tested this system on patients with generalized

anxiety disorder and schizophrenia, finding that it also placed them under one of the connectivity

subtypes. Using biomarkers to cluster subjects in both of these studies helped to generate more

individualized treatment, yet more research still needs to be conducted before treatment can be

subtyped. The discovery of identifiable biomarkers in depression proves that it is possible to find

them for other disorders that have the obstacle of individual differences. I hope to uncover
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particular genes in my research similar to how these biomarkers helped to identify individual

variation in subjects with depression.

Genetics play a role in the etiology of ASD, but the specific influences each gene has are

yet to be determined (Chaste and Leboyer, 2012). Exploring this link, Silva et al (2022) sought to

discover risk mechanisms across the genome implicated in the pathophysiology of

neurodevelopmental disorders. To investigate this, they used Genetic Copy Number Variants

(CNVs) present in a variety of neurodevelopmental disorders. Deletions and duplications at

specific genes can pose a risk and serve as biomarkers for distinct disorders. The researchers set

out to uncover how these established genes lead to a particular disorder and what factors

determine how someone acquires it. Neuroimaging methods in CNV cohorts were applied to

examine surface area, total brain volume, and cortical thickness. The genetic regions they

examined were 15q11.2, 16p11.2 distal, 16p11.2 proximal, 1q21.1 distal, 7q11.23 William

syndrome critical region, and 22q11.2 DiGeorge syndrome critical region. In the 15q11.2

deletion group, there was a smaller surface area and thicker cortices than the control. The

22q11.2 deletion group displayed reductions in surface area, primarily in the medial occipital and

anterior cingulate cortex. Overall, they found that subjects with gene deletions showed worse

cognitive performance in assessments than the control group. These results highlight the

importance of specific genes in neurodevelopmental disorders and open up future research in this

area. Convergence across CNVs, when better understood, will provide new treatment options and

enhanced diagnosing of these disorders.

Expanding upon these findings, Li et al (2012) intended to ascertain the exact genes

involved in ASD. This review paper presented an overview of 13 genes reported to be associated

with ASD through molecular, cytogenetic, and linkage studies. Significant genes reported were:
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GABR, NLGN, OXTR, MET, SLC25A12, RELN, and SLC6A4. These results were

corroborated by Ma et al, Quartier et al, Lerer et al, Skaar et al, and many others. These genes

discussed in this paper and Silva et al contributed as a framework for the genetic analyses in my

thesis. The issues of heterogeneity explained in all articles clarified the challenge of classifying a

genetic or functional biomarker, while serving as a concise background of current knowledge.

Implementing multiple levels of analysis, I aimed to predict ASD symptoms in

participants across four categories of the Autism Diagnostic Observation Schedule (ADOS):

Total, Social, Communication, and RRB. Despite the complexity of ASD, if there is a connection

between genetic variability and functional connectivity variability it could help improve

diagnosis and treatment selection. From this, individualized treatment strategies can be

established to enhance the quality of life of an autistic patient. I hypothesized that there would be

a correlation between genetic variability and functional connectivity variability. Specific genes

found in ASD will possibly be related to distinct ADOS categories (Total, Social,

Communication, and RRB). From this association, I can predict a subject’s ADOS score from the

relationship between their genetics and functional connectivity. The goal of this study is to

determine if using a multimodal approach of genetic and neuroimaging data can better capture

symptom individual variability than utilizing only one.

II. Methods
To examine functional connectivity, I acquired data from the Autism Brain Imaging Data

Exchange (ABIDE), which encompassed 699 ASD participants (Martino et al, 2014). Additional

data from the Simons Foundation Autism Research Initiative (SFARI) was also compiled,

consisting of 121 ASD participants (Simons Vip Consortium, 2012). This data reported the

ADOS symptoms of Total, Social, and RRB. There was no information on ADOS
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Communication. For this data, I exclusively used genes associated with 16p11.2 duplications and

deletions to match those of the subjects. This consisted of 34 genes, resulting in a 121 by 34

matrix. The statistical analyses mentioned above were applied again to this data.

The brain scans were then preprocessed using fMRI Prep (Esteban et al, 2018), a data

preprocessing pipeline that reads in raw fMRI data and produces preprocessed data ready for

analysis. Following this, the data were normalized to a Montreal Neurological Institute (MNI)

space, which designated the bounds of the brain. Each scans’ volumes were scrubbed, with a

threshold of 0.25mm, to correct for unwanted motion during the time of the scan. At each time

point, a subject’s movements were calculated and if they moved greater than 0.25mm, that

volume was dropped from their scan. The rest of the volumes were concatenated together. A

participant was removed if there was less than 4 minutes of resting state data. This was further

processed using CompCor (Behzadi et al, 2007), which corrects for noise in fMRI through the

input of the Echo Planar Imaging (EPI) signal and noise regions of interest from the scan. It takes

brain activity in regions of no interest, such as the ventricles, to predict activity in areas of

interest, like grey matter. All predictions were subtracted from the EPI signal and the remaining

areas were kept in the scan. After this removal, filtering was administered to narrow down to a

smaller band of blood-oxygen-level-dependent (BOLD) signal activity. Any activity outside of

0.1Hz to 0.01Hz, or between 10 and 100 seconds, was removed. Frequencies outside of this

metric were likely to be noise, such as cardiac and respiratory oscillations (Heuvel and Pol,

2010). Once the scans had been fully preprocessed, functional connectivity was extracted using

an atlas of 51 regions (Yeo et al, 2011). This was employed to measure the interaction between

time series of these areas. A pairwise correlation was calculated across this time series, creating a

51 by 51 functional connectivity matrix.
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Connectivity matrices can differ across age (Xie et al, 2020), IQ (Dubois et al, 2018),

gender (Sie et al, 2019), and personality (Dubois et al, 2018). Some of these variables can be

shared between the ASD and typically developed (TD) populations, such as age (Tecoulesco et

al, 2019) and IQ (Leno et al, 2017). But there is still variability specific to ASD (Harlalka et al,

2019). Shared variability must be controlled to conclude which of the differences amongst

participants are particular to ASD.

To resolve this issue, I implemented contrastive variational autoencoders (CVAE) (Abid

and Zou, 2019) that separate shared features from ASD specific ones in the population to design

reconstructed functional connectivity matrices (Aglinskas et al, 2022). A TD twin, that has the

same brain as the subject but without ASD, was configured from the shared features. The

reconstructed and TD twin matrices were subtracted to build a difference matrix, or diffmat.

Through this process, these diffmats exhibited the functional connections altered by ASD. I

compared the results of these diffmats to correlation matrices that included both the shared and

specific features, referred to as cmats. There were no significant differences between the cmats

and diffmats, so I will only report on the results of the latter.

For the genetic component, I obtained gene expression maps from Neurosynth.org. These

create a map of where a certain gene is expressed in the brain, based on findings from numerous

research studies. They measure the relative intensity of how much that gene is expressed. To

decide which genes to use, I researched genes known to be linked to ASD from various studies. I

applied the same 13 genes that Li et al (2012) highlighted in their results and the CNV regions

described in Silva et al (2022). From these papers, I identified 122 genes connected to ASD that I

downloaded into JupyterLab.
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I then proceeded to make a correlation matrix of genes and diffmat data to better relate

functional connectivity and genetic variability. A gene vector was generated from the gene

expression in select Regions of Interest (ROI). The diffmat data were then averaged by row to

create the functional connectivity vector. For each region, the gene vector contained the amount

of gene expression and the functional connectivity vector consisted of the amount of connectivity

change. These two vectors were flattened to be the same size, allowing comparisons to be made

between them. Gene expression similarity maps then needed to be established, to determine

where the selected genes were expressed in these subjects. ROI expression, as previously

concluded by the EPI signal, was subtracted from both the genemaps and diffmats. Next, I

correlated the gene vector with the functional connectivity vector, which was constructed from

the gene expression similarity maps to construct a more compressed form of data. I added this to

a correlation array with the subject and gene information. Altogether, this produced a large

correlation matrix of data that I could utilize to perform statistical analyses on (Figure 1).
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Figure 1: A gene vector was made by the average gene expression, as determined by the genemaps. A

functional connectivity (fcMRI) vector was developed from subject diffmat data. Both vectors were

correlated to make a correlation matrix. The columns are the correlations for every participant and the

rows are the correlations for each gene. Each matrix coordinate corresponds to the correlation of the

expression of a specific gene with the functional connectivity data for a certain subject.

Multivariate regression was carried out on the data to predict ASD symptoms and

establish which genes have the largest impact on these predictions. For each ADOS measure, I

calculated a scatter plot of the predicted score versus the actual score, plotted the correlation

coefficients of each gene, and computed the variance explained. Analysis of Variance (ANOVAs)

were also run on the data to conclude if behavioral symptoms are predicted by exclusive genes or

groups of genes correlated in the gene-fMRI correlation matrix. Following these results, I added

more genes from Silva et al and completed the same statistical procedure.

Due to the large amount of genes in the analysis, I applied Principal Components

Analysis (PCA) to the data (Lever et al, 2017). The PCA reduced the gene-fMRI correlation

matrix to 10 by 699 participants, instead of 122 by 699. The same statistical analysis was carried

out, producing data with ten variables instead of 122.

III. Results
3.1 ABIDE Data

From the diffmats in the ABIDE data, none of the ANOVAs were significant and 19 out

of 122 genes were significantly correlated with functional connectivity activity from the

diffmats. In the ADOS Total category, PRKAB2, CDKL5, STX1A, SYN2, P2RX6, and MVP

showed significance in correlating with the diffmats. For ADOS Communication: CDIPT,
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YPEL3, STX1A, CLDN5, WBSCR22, KCTD13, and MVP. ADOS Social and RRB had fewer

genes each: ZDHHC8, CDKL5, and SYN2 for Social; EN2, NIPA2, BCL9 for RRB. The

scatterplots for each metric did not vary from one another, each resulting in an R2 value around

0.3 (Figure 2). Additionally, there were no significant P values: ADOS Total, R2 = 0.29, P =

0.434; ADOS Communication, R2 = 0.297, P = 0.995; ADOS Social, R2 = 0.302, P = 0.428;

ADOS RRB, R2 = 0.314, P = 0.637. Percent variance explained for these scores ranged from

28.95% to 31.36%. ADOS Total had the least variance explained, at 28.95%, while ADOS RRB

had the greatest at 31.36%. ADOS Communication had 29.65%, while ADOS Social was

30.19%.

A) B)

C) D)
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Figure 2 (A-D): For each ADOS score in the ABIDE data, a scatterplot compared the actual ADOS score

from subject data to the predicted score. The predicted score was obtained from the results of the

multivariate linear regression performed on the matrix correlating gene and fMRI data. R2 average was

0.3, meaning that 30% of the variability in the ADOS scores is explained by the predictor variable. This

low value demonstrates that a small portion of the variability was explained by this model. Overall, the

results of the multivariate linear regression analysis on the ABIDE data is not significant.

3.2 Principal Components Analysis

None of the ANOVAs performed on the ten principal components were significant

(Figure 3). Percent variance demonstrated low values, with all scores between 1.33% and 2.27%.

ADOS Social had the most variance explained at 2.27%, and ADOS Communication had the

lowest at 1.33%. ADOS Total was 1.61% and ADOS RRB was 1.99%.

A)

B)
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C)

D)

Figure 3 (A-D): Due to the large amount of predictors, a Principal Components Analysis was applied. It

made ten principal components (PC) from the initial 122 genes. The correlation coefficient for each

ADOS score was measured across these PCs. Correlation coefficient values were determined by the

multivariate regression calculated on the data. None of the ANOVAs performed on the PCs were

significant. Each produced a low R2 and high P value, indicating that the data was not statistically

significant in general.

The scatterplots for each ADOS score displayed less of a trend compared to the ABIDE

data (Figure 4). R2 values were close to 0 for each metric and there was no significance from the
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correlation coefficients: ADOS Total, R2 = 0.016, P = 0.740; ADOS Communication, R2 = 0.013,

P = 0.861; ADOS Social, R2 = 0.023, P = 0.501; ADOS RRB, R2 = 0.020, P = 0.739.

A) B)

C) D)

Figure 4 (A-D): A scatter plot developed from the multivariate linear regression calculated on the

Principal Components Analysis. It was created from the actual ADOS scores of each subject and the

predicted score, which came from the results of the multivariate linear regression operated on the matrix

correlating gene and fMRI data. The average of R2 was 0.018, lower than that of the ABIDE and SFARI

data. Equating out to 1.8%, this model explains a limited portion of the variability. Along with the results
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of the correlation coefficient graph, these scatterplots reinforce that the multivariate regression analysis

on the Principal Components Analysis of the ABIDE data is not significant.

3.3 SFARI Data

The SFARI data delivered more definitive results, with 7 of 34 genes correlated (Figure

5). But once again, none of the ANOVAs operated on the data were significant. ADOS Total and

ADOS RRB only had one correlated gene each: RABEP2 for Total and SH2B1 for RRB. ADOS

Social had five genes with significance: ATP2A1, PPP4C, RABEP2, SPN, and DOC2A.

A)

B)
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C)

Figure 5 (A-C): Correlation coefficients were calculated with 34 genes in the SFARI data, as determined

by multivariate regression analysis. Seven out of 34 genes were significant across the three ADOS scores,

ADOS Social had the highest amount of significant genes. The average of R2 was 0.79, the highest of any

previous data. However, the analyses executed on the SFARI data were not significant after correcting for

multiple comparisons.

R2 values were higher and P values were lower than previous datasets (Figure 6): ADOS

Total, R2 = 0.792, P = 0.107; ADOS RRB, R2 = 0.749, P = 0.237; and ADOS Social, R2 = 0.816,

P = 0.059. Percent variance explained encompassed 74.911% to 81.61%: ADOS Total = 79.23%,

ADOS RRB = 74.91%, and ADOS Social = 81.61%. A high percent variance without

statistically significant data connotes that there may be too many predictors. The high amount of

predictors can cause the model to be unable to identify the specific contribution of the predictor

variable to the outcome measure. The adjusted R2 on this data averages to be 0.33: ADOS Total,

R2 = 0.351; ADOS RRB, R2 = 0.216; and ADOS Social, R2 = 0.425. Considering that the

adjusted R2 attempts to correct for any overestimation from R2, these results suggest that there

may be too many predictors in this data.
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A) B)

C)

Figure 6 (A-C): In the SFARI data, a scatterplot was constructed that compared the actual ADOS score,

acquired from participant data, to the predicted score, determined from the multivariate linear regression

carried out on the matrix correlating gene and fMRI data. R2 average was the highest and the P value

was the lowest of any data. The high R2 value indicates that 79% of variability from this data was

explained by the model. Although each ADOS score produced promising results, only ADOS Social was

significant.
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IV. Discussion
This study aimed to determine the connection between genetic variability and functional

connectivity variability. From my results, there was no significant correlation found. Several

genes were correlated to subject functional connectivity in the ABIDE and SFARI data, but there

were no significant genes across every ADOS score. In the ABIDE data, three genes were

significant for two ADOS metrics. STX1A and MVP were significant for ADOS Total and

Communication, while CDKL5 was significant in both ADOS Total and ADOS Social. Despite

several correlated genes, this data generated low R2 values and high P values. Percent variance

explained remained less than 32%, implying that the actual ADOS scores are not well explained

by the predicted scores.

The PCA performed on this data also produced non-significant results. For every

principal component across every ADOS score, none were significant. The aim of applying a

PCA to the data was to reduce the number of variables, 122 genes, and the dimensions used in

the analysis. Although this did lessen the amount of variables, it ultimately displayed no

significant findings. This indicates that the simplification of the PCA was not able to capture the

complex relationship between the genes and fMRI.

Although the ANOVAs run on the SFARI data were not significant, it yielded more

promising results. RABEP2 was the only gene correlated to more than one ADOS score, in

ADOS Total and ADOS Social. Out of each metric, ADOS Social had the most genes correlated

and was statistically significant. R2 values were considerably higher in this data, averaging 0.79.

As was the percent variance explained, which had a mean of 79%. Although the prior data was

not significant, the results of ADOS Social in this data demonstrated that the correlation between

gene expression and functional connectivity predicts individual variation in behavioral

symptoms.
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These results emphasize the importance of further data collection through additional

research into the genes found to be correlated from this evidence. Narrowing down each gene’s

role in ASD through their connection to functional connectivity could help better understand

these individual differences. Matching gene expression and functional connectivity within the

same participant would produce more accurate and potentially more significant results.

Combined with a selective search of specific genes, this would eliminate the problem of

heterogeneity. Using the same subjects’ functional connectivity data and gene expression of the

aforementioned genes would generate improved findings, proving that additional data collection

must be made.

These findings have produced a select few genes that may be important in the link to

functional connectivity variability. Future research can expand on these results by investigating

the interplay between genetics and the brain through these genes. Specially focusing on

PRKAB2, CDKL5, STX1A, SYN2, P2RX6, MVP, CDIPT, YPEL3, CLDN5, WBSCR22,

KCTD13, ZDHHC8, EN2, NIPA2, BCL9, RABEP2, SH2B1, ATP2A1, PPP4C, RABEP2, SPN,

and DOC2A. Applying these genes to a larger sample size, such as 3000, would be a better, more

targeted approach to establishing their function in ASD. I employed a sample size of 699 in the

ABIDE data and 121 in the SFARI data, which is far too small to answer my research question

fully. Further analyses carried out on these genes should utilize a much larger sample size to

better grasp the relationship between genetics and functional connectivity variability.

Previous research has uncovered connections between these genes and ASD. Two studies

from Nakamura et al report that STX1A has elevated expression in ASD. Their first article from

2008 compared subjects with high functioning ASD and TD controls, discovering that those with

ASD had a greater expression of STX1A. They imply that STX1A plays a role in the disruption
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of serotonin synthesis during an early childhood stage of neurodevelopment. In 2011, these same

researchers conducted a replication study further investigating STX1A in ASD. Shifting to

post-mortem brains, they determined that there was decreased expression of STX1A in the

anterior cingulate gyrus (ACG) region in ASD brains compared to the control group. This work

supports my conclusion of STX1A’s involvement in ASD and the ACG, an area associated with

emotion and behavior regulation. ADOS Communication measures emotional regulation, and

this metric is one that I found STX1A to be significant in.

KCTD13 likewise has prior research supporting its involvement in ASD. The KCTD

gene family has evidence advocating for its relationship with various psychiatric disorders.

KCTD13 is implicated in ASD and schizophrenia, while KCTD12 is linked to bipolar disorder

and KCTD17 in movement disorders (Teng et al, 2019). KCTD13 is also a major proponent

leading to phenotypes associated with the 16p11.2 CNV that contributes to the development of

ASD (Golzio et al, 2012). This specific CNV is highly suspected to be unique to ASD, opening

up research in this area. Dysregulation of the KCTD13-Cul3RhoA pathway in layer 4 of the

inner cortical plate is a driver for the deletion of 16p11.2 CNV (Lin et al, 2015). Further research

supports KCTD13 in 16p11.2 deletion (Madison et al, 2020). As I centered my genes around this

CNV, several articles highlighted the importance of 16p11.2. Applying my results to these

studies, future research targeting the 16p11.2 CNV could advance current knowledge of ASD.

EN2 is another gene that has a lot of backing evidence for its role in ASD. Choi et al

(2014) operated a post-mortem analysis inspecting EN2 mRNA levels in ASD, discovering

increased EN2 levels in ASD brains. A small study of ten patients with ASD identified a

heterozygous variant within the EN2 gene in two patients (Hnoonual et al, 2016). Another article

investigating ASD in the Chinese Han population linked EN2 to the predisposition of the
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disorder (Wang et al, 2008). These papers examining human models of ASD demonstrate a clear

connection between EN2 and ASD. Several knockout mice studies have further cemented EN2’s

involvement in ASD. EN2 knockout mice display neurobehavioral and neurochemical alterations

similar to humans with ASD, seen through impairments in spatial learning, memory, and

locomotor activity tasks (Cheh et al, 2006). These mice also show deficits in social interactions,

through lack of socialization as an adult, as well as immobility in tests that measure prepulse

inhibition and grip strength (Breilmaier et al, 2012). Although these human and rodent studies

implicate EN2 in all aspects of ASD, the impairments in motor activity align with my findings of

EN2’s significance in ADOS RRB. Future investigation into RRB and EN2 can demystify this

component of ASD.

Prior work has illuminated the potential of STX1A, KCTD13, and EN2 in ASD. Further

research using gene expression maps of these genes with a larger sample size could unveil the

secrets behind heterogeneity. The connection of genetics and functional connectivity with the

genes now known to be implicated would better elucidate this problem of individual differences.

These findings will be critical because they can aid in diagnosis, predict future outcomes, and

assist in treatment. Discovering a genetic and functional biomarker pattern displayed in ASD

would considerably facilitate this goal. Previous work, such as that of Silva et al (2022) and Li et

al (2012), has looked into uncovering a genetic or functional biomarker but has rarely explored

the relationship between the two. Revealing this connection is one step closer to discovering how

the brain mediates genetics and behavior. This will highlight the underlying mechanisms

involved and provide improved treatment from it. Ultimately, these results will help better

understand ASD heterogeneity by connecting another facet of ASD to previously established

findings.
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