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Abstract  

This paper investigates the existence of omission bias in Major League Baseball’s home plate 

umpires. Omission bias describes the human tendency to prefer harm caused by inaction, or acts 

of omission, over equal harm caused by action, or acts of commission. For umpires, I define an 

act of commission as a call made by the umpire that ends the at-bat and an act of omission as a 

call that does not end the bat. By analyzing over 1.5 million pitches thrown between the years 

2018 and 2022, I find that MLB umpires display omission bias by systematically increasing the 

size of the enforced strike zone on three-ball counts and shrinking the size of the enforced strike 

zone on two-strike counts. Further, I find that omission bias exists separately from and is not 

impacted by other biases present in MLB umpiring, such as the biases favoring home batters and 

star batters. 

 

 

Three Base Hit by James Daugherty, 1917 

(via Whitney Museum of American Art)  
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1 Introduction 

In the world of professional baseball, it is often said that the best umpires are the ones 

whose names are not known. On its surface, this would seem to mean that an umpire should 

have zero impact on the outcome of a game outside of making the proper calls. But umpires are 

not robots (yet). They are imperfect human beings who are prone to making mistakes. 

Theoretically, if all umpires just made random errors, uncorrelated to in-game factors, there 

would be minimal impact on long-run outcomes. Existing literature suggests, though, that MLB 

umpires and officials across sports leagues display forms of “systematic bias” (Moskowitz and 

Wertheim, 2011), meaning that their errors are related to actual variables present in a given 

game, and thus impact the outcome of games in systematical ways. In fact, MLB umpires show 

bias in order to keep their names from being known.  

In this paper, I investigate this systematic bias found in Major League Baseball called 

omission bias. Omission bias describes the human tendency to prefer harm caused by inaction, or 

acts of omission, over equal harm caused by action, or acts of commission (Baron and Ritov, 

2004). When calling balls and strikes, MLB umpires display a form of omission bias by distorting 

the strike zone on counts with either three balls or two strikes to avoid ending the at-bat. On two-

strike counts, a called third strike creates an action in the form of a strike-out. On three-ball 

counts, a called ball creates an action in the form of a walk. Thus, a biased umpire will distort the 

strike zone to avoid creating action, opting to let the at-bat continue. In other words, all else 

equal, umpires prefer acts of omission, letting the at-bat continue, to acts of commission, ending 

the at-bat with a called ball or strike.   
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Through my analysis, I confirm the existence of this bias and build on existing literature 

by investigating the factors that contribute to its magnitude. I aim to answer the following 

questions regarding omission bias: 

1. Does omission bias exist in Major League Baseball umpiring and, if so, to what extent? 

2. Is the bias related to direct external pressure caused by the presence of fans at the games? 

How does the bias differ for umpiring home and away teams? 

3. How does the overall magnitude of the bias change as in-game factors and situational 

characteristics change? Do umpires’ displays of omission bias increase or decrease during 

relatively crucial moments or when perceived superstars are up to bat? 

The aim of this paper is to gain a better understanding of the sources of unconscious 

human biases generally, not just within the context of baseball. Baseball provides a context 

uniquely appropriate for examining behavioral biases. For one, home-plate umpires are put in a 

position to make hundreds of split-second judgments each game, providing a sample of hundreds 

of thousands of decisions over the course of just one season. Second, the in-game situation is 

constantly evolving, and each pitch provides a unique set of circumstances under which the 

umpire must make these decisions. Third, when calling balls and strikes, the umpire is either 

verifiably correct or incorrect due to the well-defined boundaries of the game’s strike zone. 

Thanks to modern pitch-tracking technology, the precise location of each pitch throughout the 

season is known, and since the rules clearly define balls and strikes, there is little ambiguity as to 

whether the umpire made the correct or incorrect judgment. Due to these characteristics, Major 

League Baseball is a specifically advantageous setting to study the influences on human 

behavior.  
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Baseball For Dummies 

In its rulebook, the MLB defines the strike zone as “the area over home plate from the 

midpoint between a batter's shoulders and the top of the uniform pants – when the batter is in his 

stance and prepared to swing at a pitched ball – and a point just below the kneecap” (Figure 1). If 

the pitched ball crosses over home plate anywhere within this zone, the pitch is, by definition, a 

strike. Likewise, if the ball crosses anywhere outside this zone, it is a ball. For the rest of the 

paper, I will refer to this defined area as the defined strike zone, or the strike zone as it is supposed to 

be enforced. In reality, though, the strike zone is not enforced strictly by these parameters. 

Umpires are less likely to call strikes that just graze the corner of the defined strike zone, for 

example. Thus, I will refer to the strike zone as it is actually enforced by umpires as the enforced 

strike zone for the remainder of the paper.  

 

 

Figure 1: The Defined Strike Zone, According to the MLB Rule Glossary (Bernier, 

2014) 
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When a batter swings at a pitch, there are dozens of potential outcomes, none of which 

involve a direct decision from the home-plate umpire, and are thus not relevant to umpire bias. 

When a batter does not swing at a pitch, there are generally two possible outcomes (ignoring if 

the batter is hit by the pitch, which is also not relevant). If the umpire deems the pitch to have 

crossed the plate outside of the defined strike zone, he will call the pitch a ball. If the umpire 

deems the pitch to have crossed the plate within the defined strike zone, he will call a strike. In 

other words, if the batter does not swing at the pitch, the home plate umpire must decide 

whether the pitch was a ball or a strike, and this decision will be either objectively correct or 

incorrect based on the defined strike zone. The batter is awarded first base if, within their at-bat, 

the pitcher throws four balls outside of the strike zone (resulting in a “walk”). The batter is called 

out if the pitcher throws three pitches in the strike zone (resulting in a “strikeout”) within a single 

at-bat. I will refer to counts with fewer than three balls and fewer than two strikes as neutral counts 

since the umpire cannot end the at-bat with a subsequent ball or strike call.   

Now that you understand the basics of how an at-bat works, close your eyes and imagine 

you are the home plate umpire for game seven of the World Series. Now, open your eyes so you 

can keep reading my paper. In this hypothetical dream world, it’s the bottom of the ninth inning 

and the bases are loaded. The manager calls for a pinch hitter, and out comes none other than 

Babe Ruth who decided to rise from the dead to take this single at bat. As soon as the at-bat is 

over, he will return to his eternal rest. The first two pitches are right down the middle. You have 

no choice but to call strike one and strike two. The third pitch whizzes into the catcher’s mitt at 

upwards of 100 miles per hour. Maybe the pitch barely clips the edge of the zone, but you are 

not sure. Unfortunately, you only have a split second to make the call. What then, dear reader, 

do you do? If you screw this up, it would be a pretty salient mistake, and you would have a direct 
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link to the end of the at-bat. Do you (a) call strike three, effectively depriving the world of seeing 

The Great Bambino swing the bat one last time, or do you (b) call a ball and let the at-bat 

continue? If you picked the second option, you may suffer from omission bias. 

 

My Approach 

For each at-bat, the most impactful calls an umpire can make occur when the batter has 

either three balls or two strikes, since the call may result in the end of the at-bat via a walk or a 

strikeout. Thus, an umpire who displays omission bias will be more likely to call a ball when the 

batter has two strikes and more likely to call a strike when the batter has three balls. A consistent 

difference in the likelihood of an umpire calling a strike based on the current ball-strike count, 

controlling for the precise location of the pitch, would thus be evidence of omission bias. More 

specifically, holding pitch-location constant, umpires who display omission bias will be more 

likely to call strikes on three-ball counts than on neutral counts and less likely to call strikes on 

two-strikes counts than during neutral counts. 

Next, if omission bias is, in some part, a response to direct external pressure, fan 

attendance should influence the occurrence of omission bias. I take advantage of within-season 

variance in fan attendance as well as the exogenous emptying of stadiums caused by the Covid-

19 pandemic to evaluate the influence of fans on the occurrence of omission bias in umpires. 

Alongside many sports leagues worldwide, Major League Baseball held their truncated 2020 

season entirely without fans. The season was delayed and ultimately shortened from 162 regular 

season games to just 60 for each team. Given that fan attendance is generally correlated with 

overall team success, previous literature has treated Covid-19’s impact on sports leagues as a 
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natural experiment to parse out the effect fans have on different sports outcomes, and I aim to 

implement a similar strategy in an attempt to identify the sources of umpire bias.   

Lastly, if omission bias is influenced by the relative salience of a potential mistake, 

situational characteristics that influence the perceived stakes of a given in-game moment will 

influence when umpires display omission bias. Simply put, an umpire will be more biased when 

the stakes are higher. Factors such as runners on base, current inning, quality of teams, score, 

and notoriety of the batter and pitcher all impact the perceived gravitas of the in-game situation 

and thus would affect an umpire’s reluctance towards making impactful calls.  

I find conclusive evidence in support of the existence of omission bias in Major League 

Baseball, as umpires are less likely to call strikes on two-strike counts and more likely to call 

strikes on three-ball counts relative to neutral counts. Further, I find that the bias is primarily 

isolated to relatively uncertain pitches. I find little evidence that fan attendance or in-game 

situational characteristics influence the occurrence of omission bias in MLB umpires.  

 

 

Baltimore Orioles’ Manager Earl Weaver, following ejection for arguing Balls and Strikes, circa 1970 

(via Sports Illustrated)  
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2 RELEVANT LITERATURE AND CONTEXT 

Umpire Performance 

 Controversy surrounding umpire performance has led to the creation and growing 

popularity of the Twitter account and website, UmpScorecards, which is “an online platform 

dedicated to measuring the accuracy, consistency, and favor of MLB umpires.” Created in 2019 

by Ethan Singer, an undergraduate at Boston University, the Twitter account has amassed over 

300,000 followers as of May 2023. Following each MLB game throughout the regular season and 

postseason, the account tweets a “scorecard” evaluating the performance of the game’s home 

plate umpire. Utilizing pitch-level data from the MLB, the scorecard includes measures of 

accuracy, consistency, a list of “impactful missed calls,” and an evaluation of “overall favor” that 

aims to measure which team benefitted from the Umpire’s error and by how much they 

benefitted (Figure 2). The website also keeps track of umpire-specific statistics, such as strikes 

called, average run impact, and overall accuracy, and their database includes all games since 

2015. To indicate whether a pitch was called correctly, they first calculate the likelihood that the 

pitch was a strike given the reported location of the pitch. They “consider a taken pitch to be 

incorrectly called if: the probability that the pitch was truly a strike was over 90%, and the 

umpire called it a ball; the probability that the pitch was a ball was over 90%, and the umpire 

called it a strike.”   

Thanks to the growing availability of and overall improvements to pitch-level data, 

Umpires are facing more scrutiny and pressure than ever before. Evidence shows, though, that 

this scrutiny may correlate with improved Umpire accuracy. Mills (2017) measures the change in 

umpire performance since the implementation of advanced pitch monitoring technologies in 

Major League Baseball. In 2001 the MLB began tracking the location of each pitch with a 
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monitoring system called QuesTec, though it was not until 2004 that the umpires’ union agreed 

to its use in evaluating umpire performance. In mid-2007, the MLB began using a more 

advanced system called  PITCHf/x to track pitch locations, and, unlike with QuesTec, this data 

was made available to the public. In 2009, the umpires’ union again agreed to the use of this data 

to train and evaluate the performance of MLB home-plate umpires. Figure 3 summarizes the 

timeline of the lead-up to the Pitch Tracking Era (2008 - Present). Using a difference-in-

difference model with umpire, year, and stadium fixed effects, Mills estimates the impact of the 

installation of the monitoring systems as well as their usage as evaluation tools. Comparing 

performance in stadiums with and without the technology installed, Mills finds that “there was 

little to no continued development in performance” upon the implementation of QuesTec’s 

tracking technology in 2001. On the other hand, following the implementation of the improved 

PITCHf/x system and corresponding training and evaluation in 2009, Mills finds that overall 

umpire accuracy improved “on average… nearly as much as a full percentage point per year.” 

Further, in 2008, umpires called strikes correctly 78.7% of the time. But by 2014, umpires were 

more than 87% accurate on called strikes.  

According to FanGraphs.com, this trend has only continued. Andrews (2023) finds that 

overall umpire accuracy has improved every year since the beginning of the Pitch Tracking Era 

from 81.3% overall accuracy in 2008 to 92.4% in 2022 (Figure 4). In fact, on October 29, 2022, 

in the second game of the World Series, umpire Pat Hoberg recorded the first “Perfect Game” 

according to UmpScorecards (Figure 5). Therefore, the data indicate that umpires are better 

than ever before. Still, they are quite far from perfect. Recently, the discussion of umpire 

performance in the MLB has become urgent, due to league-wide talks surrounding the 

implementation of the Automated Ball-Strike System (ABS) colloquially known as “robo umps.” 

MLB commissioner Rob Manfred said in June of 2022 that technology that automatically calls 
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balls and strikes could be implemented into Major League Ballparks as soon as 2024. In January 

2023, it was announced that the ABS will be used in all AAA minor league ballparks, though in a 

somewhat limited capacity. Half of the games at this level “will be played with all of the calls 

determined by an electronic strike zone, and the other half will be played with an ABS challenge 

system” where teams have the option to force a review of the home plate umpire’s call (Olney, 

2023).  

 

 

Figure 2: UmpScorecard from Baltimore Orioles vs. Boston Red Sox on May 30, 2022  
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Figure 3: Timeline of Leadup to Pitch Tracking Era (Mills, 2017) 

 

 

Figure 4: Improvement of Pitchers during the Pitch Tracking Era (Andrews, 2023) 
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Figure 5: UmpScorecard from Pat Hoberg’s “Perfect Game” 

 

Home-Field Advantage and the Covid-19 Pandemic  

Remember the pandemic? Well, just like every other facet of society, the MLB had to 

make adjustments and adapt to the new normal. After perpetual delays to the start of the 2020 

season, the MLB opted to play a shortened 60-game season beginning on July 23, 2020. Several 

star players and 11 umpires opted out of participating in the season entirely. Due to the 

Quarantine Act in place in Canada, the Canadian government denied the Toronto Blue Jays the 
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ability to play in their home parks, and they instead played their home games in Buffalo, New 

York. Like many other sports leagues around the world, the entirety of the season was played 

without any fans in attendance.  

 

 

Citi Field in Queens, NY filled with Cardboard Cutout Fans, circa 2020 

(via The New York Times) 

 

The lack of fans in attendance removes one crucial factor in the jumbled equation that 

makes up home-field advantage. While home-field advantage is a proven phenomenon 

throughout practically all sports (the home team has won about 55% of all MLB games since 

2000), there are countless factors theorized to contribute to its existence. Familiarity, lack of 

travel, and overall increased rest are posited factors. Perhaps even the cheering crowd affects the 

home team physiologically so that they perform better. Moskowitz and Wertheim (2011) argue 
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that the most important factor, though, is that the fans psychologically influence the umpires into 

calling the game more favorably for the home team, citing disparities in the officials’ treatment of 

home and away teams in the NFL, NHL, NBA, and MLB.  

Bilalić, Gula, and Vaci (2021) investigate the home-field advantage effect across 12 

different European soccer leagues and over 4,000 games pre- and post-Covid-19 and provide a 

model for the causes of home-field advantage called the Home Advantage Mediated (HAM) 

model (Figure 6). The HAM model exhibits the mechanisms through which the home-field 

advantage phenomenon could arise. They observe a significant spread between home and away 

teams’ total fouls, yellow cards, and red cards prior to the pandemic that disappears completely 

when the games are played without fans during the pandemic, suggesting that Soccer referees are 

influenced by home fans.  

Further, in the wake of the Covid-19 pandemic, several researchers have taken advantage 

of the exogenous variation in the number of fans in attendance to measure the impact fans have 

on sporting events. Nevertheless, a plurality of the research focuses on European soccer, and little 

is known about the impact on Major League Baseball. Cross and Uhrig (2022), for example, 

examine the effects of no fans on home-field advantage across European soccer leagues. The 

exogenous variation in attendance allows them to isolate the portion of home-field advantage 

attributable to the presence of fans. They find that “the change in home-field advantage 

decreases the probability a home team wins the game by 5.4 percentage points” (Figure 7), 

meaning that home-field advantage is 5.4 percentage points stronger when fans are in 

attendance. For their identification strategy, they control for Covid-19 case levels by geography, 

temperature to account for the delayed start to the season, and strength of schedule metrics. 

Further, they estimate the change in home-field advantage on realized and expected goals and 

find statistically significant decreases of 0.175 goals per game and 0.181 expected goals per game. 
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Still, they do not investigate why this decrease occurs when fans are not present. Thus, it is not 

clear whether this change is due to changes in referee or umpire behavior.  

 

 

Figure 6: The Home Advantage Mediated (HAM) Model (Bilalić, Gula, and Vaci, 2021) 

 

 

Figure 7: Effect of No Fans on Match Outcomes (Cross and Uhrig, 2022) 
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Gong (2022) examines NBA referee bias during the 2020-2021 season, when arenas were 

empty, to bias in the preceding seasons. He utilizes the NBA’s Last Two Minute Reports which 

evaluate the performance of referees in the last two minutes of close games. Ostensibly, these 

games would contain primarily high-leverage situations given that only games that have a point 

differential of three or fewer at any point in the final two minutes of regulation. Further, the 

dataset indicates the correctness of both fouls called and non-calls (or moments where the ref 

swallowed their whistle). By looking at foul calls at the play level as opposed to at the game level, 

the estimation avoids suffering from endogeneity issues resulting from a change in player 

behavior caused by fans. The results suggest that “crowd support does not cause referees to treat 

home and away teams differently in crucial situations during the NBA regular season.” 

   

Whistle Swallowing 

Moskowitz and Wertheim (2011) investigate a concept that they call “Whistle 

Swallowing” both in the MLB and throughout other professional sports. They argue that not 

only do referees tend to consistently display “omission bias” where officials “view acts of 

omission… as far less intrusive or harmful than acts of commission even if the acts are the same 

or worse”, but also that fans and leagues encourage this behavior. Looking at pitch-level data 

from the MLB, the authors analyze the actual strike zone (that is, as it was actually called by 

umpires) against the rule-mandated strike zone. They find that when the batter has a 3-0 count, 

the actual strike zone grows significantly, and, likewise, when the batter faces an 0-2 count, the 

size of the actual strike zone shrinks significantly (Figure 8). The result is a strike zone on 3-0 

counts that is “188 square inches larger than it is on 0-2 counts.” Further, they find that on an 0-

2 count, umpires have “more than twice” their overall error rate when calling balls and strikes 
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“in favor of the batter.”  When the batter faces a 3-0 count, they find that umpires will 

“erroneously call strikes.” 20 percent of the time, as opposed to their baseline error rate of 12.2 

percent. 

Similarly, Green and Daniels (2015) use a sample of over 1 million pitches from the years 

2009 to 2011 to evaluate the effect of “Impact Aversion,” or omission bias, on umpires’ ball and 

strike calls. Specifically, they investigate the likelihood of a ball or strike call based on “the 

relative impacts of the umpire’s two options” on “the expected number of runs that the batting 

team will score over the remainder of the half-inning.” They find that every umpire in their 

sample displayed impact aversion at a significant level, meaning that each umpire tended to 

relatively favor the judgment that had a lesser impact on expected runs scored (Figure 9). They 

also conclude that, as the pitch got closer to the edges of the strike zone, umpires displayed more 

caution when calling balls and strikes. Further, they include “measures of scrutiny” into their 

estimation such as whether the game is nationally televised and game attendance. They 

hypothesize that the more people watching the game, the more impact averse an umpire will be. 

Their results suggest that “there is no meaningful difference in the enforced strike zones for the 

home and away teams, and umpires are equally impact averse when the home and away teams 

are at bat,” but that “larger crowds are associated with a greater degree of impact aversion.”  
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Figure 8: Plot of the empirical strike zone (defined as any pitch called a strike at least 50% of the 

time by MLB umpires) on 3-0 vs. 0-2 counts (Moskowitz and Wertheim, 2011) 

 

 

Figure 9: Figure 4: Change in Enforced Strike Zone with Three Balls and with Two Strikes 

(Green and Daniels, 2015) 
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Omission Bias in Behavioral Psychology 

 Both Moskowitz and Wertheim (2011) and Green and Daniels (2015) look to behavioral 

psychology to explain the behavior they find in MLB umpires. Kordes-de Vaal (1996) helps 

answer the following question related to umpires preference for inaction: Why are omissions and 

commission “evaluated differently, given that the consequences are the same”?  Kordes-de Vaal 

argues that when omission is viewed as a “nondecision” as opposed to “a deliberate choice ‘not to 

act’” and thus, a negative outcome viewed as a result of nothing is viewed less negatively than a 

negative outcome resulting from a deliberate action.  Through a series of experiments, the paper 

shows that the omission bias stems primarily in the perceived causality of act of commission 

relative to acts of omission. In other words, since acts of commission are more salient than 

omission, the perceived causal link between the act and the outcome is higher for acts of 

commission.  

 The omission bias is closely tied to loss aversion, a concept first coined by Kahneman and 

Tversky (1979), who hypothesize that one’s “response to losses is stronger than the response to 

corresponding gains.” More relevant is the idea of the “action-effect,” a specific form of loss 

aversion presented by Kahneman and Tversky (1982). They cite experimental evidence that 

suggests that “the regret associated with a loss that was incurred by an action tends to be more 

intense than the regret associated with inaction or a missed opportunity.” They present the 

following hypothetical to support their hypothesis: 

Paul owns shares in Company A. During the past year he considered switching to stock in 

Company B, but he decided against it. He now finds that he would have been better off 

by $1,200 if he had switched to the stock of Company B. George owned shares in 

Company B. During the past year he switched to stock in Company A. He now finds that 
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he would have been better off by $1,200 if he had kept his stock in Company B. Who 

feels more regret? 

They find that individuals like George, who took direct action that led to their misfortune, tend 

to feel far more regret than individuals like Paul who, through inaction, was worse off. 

Another concrete example may help to clear up this concept. Brown et al. (2009) 

examines parents’ hesitancy towards their children to receiving a swine flu vaccination. In a 

questionnaire, Brown et al. had parents of young children rate the probability of occurrence, 

symptoms, and duration of a hypothetical disease and of a “vaccine adverse event (VAE).” They 

find that parents view the vast majority of equivalent factors as less favorable when they arise 

from a VAE compared to a disease (Figure 10). In other words, they find that equal negative 

outcomes are perceived as worse when they arise from an act of commission (taking a vaccine) 

than an act of omission (denying a vaccine and contracting a disease).  

 

 

Figure 10: Participant Ratings of Disease and Vaccine Reaction Characteristics  

(Brown et al., 2009)  
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 Baron and Ritov (2004) argue that, rather than an innate psychological bias present in 

every individual, the omission bias is more like a heuristic. Heuristics can be defined as rough 

rules-of -thumb that are applied to decision making when there is a limited amount of available 

information. This is supported by the high variance in the of the omission bias between different 

individual. In other words, some people rely far more heavily on the heuristic than others. They 

also argue that the directness of causality is crucial in determining the magnitude of the omission 

bias. That is, holding outcomes from acts of commission and omission equal, if the act of 

commission is perceived the directly cause the negative outcome, the omission bias will, on 

average, be higher. 
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3 DATA DISCUSSION 

MLB’s Statcast Pitch Data 

 Beginning with the introduction of PITCHf/x in 2007, the MLB has kept track of every 

pitch in every game of every season. In 2017, PITCHf/x was replaced by TrackMan, as part of 

Major League Baseball’s Statcast platform. The MLB’s Statcast platform, first introduced in a 

limited capacity in 2014 using PITCHf/x tracking, measures practically every facet of the game 

as it is being played, beyond just pitch location including a pitch’s maximum velocity, spin rate, 

and movement, as well as statistics of batted balls like launch angle, exit velocity, and hit distance.  

In 2020, TrackMan was replaced with Hawk-Eye, a camera system best known for its use 

in the instant replay system in professional tennis. The TrackMan, and Hawk-Eye systems are 

functionally the same in how they track pitch information. Several cameras are mounted around 

the ballpark pointed at home plate and the pitcher’s mound (Figure 11). Despite marginal 

improvements in accuracy mainly on batted balls, the two systems gather the same information.  

 

 

Figure 11: Typical Layout of Hawk-Eye Camera System (Jedlovec, 2020) 
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For my analysis, I will utilize Statcast’s pitching data from 2018 to 2022. The full sample 

includes over 3.1 million pitches from 10,548 games over the five-season span. Since my analysis 

is concerned with umpire behavior, I eliminated any pitch for which the home plate umpire had 

no decision to make. Balls in play,  foul balls, and swinging strikes, for example, do not require 

the home plate umpire to judge the pitch’s location and determine whether it was a ball or a 

strike since the pitch was swung at. In total, batters swung at 47.13% of pitches in the full sample. 

Likewise, automatic/intentional balls, balls in the dirt, pitchouts, and hit-by-pitches were 

removed as well, since they also do not require a judgment call from the home plate umpire. 

These outcomes made up just 3% of the entire sample. The remaining pitches are called balls 

(33.38%) and called strikes (16.48%) which make up over 1.5 million pitches, slightly less than 

half the total pitches thrown (Table 1). 

 

Pitch Outcome Freq. Percent Cum. 
Automatic Ball 10,690 0.34 0.34 
Ball 1,050,198 33.38 33.72 
Ball In Dirt 74,671 2.37 36.09 
Called Strike 518,366 16.48 52.57 
Foul 553,203 17.58 70.16 
Foul Bunt 6,736 0.21 70.37 
Foul Tip 28,900 0.92 71.29 
Hit By Pitch 8,900 0.28 71.57 
In play, no out 121,289 3.86 75.43 
In play, out(s) 350,929 11.15 86.58 
In play, run(s) 70,530 2.24 88.82 
Missed Bunt 1,394 0.04 88.87 
Pitchout 239 0.01 88.88 
Swinging Strike 327,487 10.41 99.28 
Swinging Strike (Blocked) 22,509 0.72 100.00 
Total 3,146,041 100.00  
 

Table 1: Tabulation of Full Sample (2018-2022) by Pitch Outcome 
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 Each pitch has a set of horizontal and vertical coordinates indicating where the center of 

the ball crosses home plate from the umpire’s perspective, precise to the hundredth of an inch. 

The horizontal coordinates are measured relative to the center of the plate, which has a value of 

zero. For example, a pitch eight inches to the right of the center from the umpire’s perspective 

would have a value of 8, while a pitch eight inches to the left of the center would have a value of -

8. The vertical coordinates indicate the number of inches above the ground where the pitch 

crosses the plate. Figures 12 and 13 show the distribution of pitches by their horizontal and 

vertical coordinates, respectively. In addition to the two-dimensional coordinates, the MLB 

reports the release position of the pitch, the release speed, the spin rate and direction, and the 

ball’s horizontal and vertical movement. 

 

 

Figure 12:  Histogram, Horizontal Position of Baseball (in.), 2-inch bins 
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The horizontal dimensions of the defined strike zone are fixed for every batter based on 

the 17-inch width of home plate. If any portion of the ball passes directly over home plate, it is, 

by rule, to be called a strike. Since the locational coordinates measure where the center of the 

ball passes home plate, I add the radius of a standard baseball, which is approximately 1.47 

inches, to both the left and the right side of the strike zone to get the horizontal boundaries for 

the defined strike zone (Boyle, 2018). The total width of my defined strike zone is 19.94 inches, 

with a left boundary of -9.97 inches and a right boundary of 9.97 inches.  

 

 

Figure 13: Histogram, Vertical Position of Baseball (in.), 2-inch bins 

  

The vertical dimensions of the strike zone are slightly more complicated since they vary 

based on each batter’s height and batting stance. Recall that, via the MLB’s rulebook, the top 

boundary of the strike zone is “the midpoint between a batter's shoulders and the top of the 



 29 

uniform pants” and the bottom boundary is the “point just below the kneecap” (Figure 1). Both 

of these boundaries are set “when the batter is in his stance and prepared to swing at a pitched 

ball.” Luckily, Statcast actually tracks these approximate boundaries for each pitch of each at-bat 

based on the batter’s stance.  The mean boundaries for the top and bottom of the strike zone are 

40.6 inches and 19.2 inches respectively. In order to get a consistent strike zone for all batters, I 

standardized the vertical position of each pitch based on its distance from the middle portion of 

the defined strike zone. The top boundary of the standardized zone is 42 inches and the bottom 

boundary is 18 inches, making the standard center of the zone 30 inches high. To standardize 

the vertical position of each pitch, I first found the vertical midpoint of the pitch’s captured strike 

zone. Depending on whether the pitch was thrown above or below this midpoint, I then 

calculated the distance from the midpoint relative to the nearest boundary. Using this 

calculation, I was then able to generate a vertical coordinate for every pitch relative to the 

standardized strike zone.  Figure 14 plots the standardized locational data for all pitches from a 

single game relative to my defined strike zone, and Table 2 provides basic summary statistics for 

these coordinates. 

Therefore, a pitch that has a standardized vertical point between 42 inches and 18 inches 

and a horizontal point between -9.97 inches and 9.97 inches is deemed a true strike. This 

designation is imperfect for a couple of reasons. First, the data itself are limited in that it 

measures in two dimensions, whereas,  in reality, the strike zone has a third dimension of depth. 

Given that pitches typically have both horizontal and vertical movement and that a baseball has 

a diameter of about three inches, a ball could initially hit the plate outside of the zone but fully 

cross with a portion of the ball inside the zone. This scenario would technically be a strike that 

the data would not capture as such. Second, the tracking capabilities are quite good but not 

perfect. The current Hawk-Eye camera system boasts accuracy “within 0.25 inches on average” 
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(Jedlovec, 2020). With the system capturing both the point at which the ball crosses the plate as 

well as the upper and lower boundaries of each batter’s strike zone, there is likely to be some level 

of measurement error.  

 

Figure 14: Called Pitch Locations for Baltimore Orioles vs. Boston Red Sox on May 30, 2022, 

Relative to Defined Strike Zone. Color Indicates Umpire’s Call. The Defined Strike Zone 

Marked by the Dotted Lines. Does Not Include Pitches with Swings. 

 
 Variable  Obs  Mean  Std. Dev.  Min  Max 
 Std. Vertical Position 1,511,978 28.244 13.919 0 158.06 
 Horizontal Position 1,511,978 .452 11.972 -116.04 109.32 
 

Table 2: Summary Statistics for Horizontal and Standardized Vertical Coordinates 

 

 Table 3 provides summary statistics for three dummy variables indicating if the pitch was 

called a strike, if the pitch was inside the defined strike zone, and if the pitch was called correctly. 
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In total, 33.9% of pitches in the sample were called strikes, while just 28.9% were located in the 

defined strike zone. Umpires called just over 90% of pitches correctly over the five-year span. 

Further, Umpires called true strikes as strikes 78.9% of the time. On true balls, umpires called 

balls 96.7% of the time (Table 4). Umpires tend to be more accurate in calling balls since many 

pitches are well outside the zone and thus very clearly balls (Mills, 2017). Figure 15 shows the 

density of incorrect calls relative to the defined strike. The areas with the highest density of 

incorrect calls neighbor the border of the strike zone.  

 
 Variable  Obs  Mean  Std. Dev.  Min  Max 
 Strike Called = 1 1,518,110 .339 .473 0 1 

 Pitch In Strike Zone = 1 1,518,110 .289 .453 0 1 

 Pitch Correctly Called = 1 1,518,110 .907 .291 0 1 

 
Table 3: Summary Statistics for if the Pitch was Called a Strike, if the Pitch was Inside the 

Defined Strike Zone, and if the Pitch was Called Correctly 
 

 

Umpire’s Call 
Umpire Called Pitch Correctly 

Incorrect Corrects Total 
Ball 32,998 970,304 1,003,302 

Strike 108,601 406,207 514,808 
Total 141,599 1,376,511 1,518,110 

 
Table 4: Cross Tabulation of  Umpire’s Call and Correctness of Call 
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Figure 15: Percent of Pitches Called Correctly by Location 

 

Table 5 shows the number of observations by the handedness of the batter, and Figure 16 

displays the locational density of each pitch location based on horizontal and standardized 

vertical coordinates as well as the batters’ handedness. A majority (58.19%) of pitches thrown in 

the sample are to right-handed batters. Further, the density plots for right and left-handed batters 

are near-mirror images of each other, as the lower, outside portion of the plate is the most 

populated for both groups of batters. This could imply that these are the most targeted zones by 

pitchers. Additionally, since the sample is limited to taken pitches, or pitches that the batter did 

not swing at, this could simply be a result of batters frequently opting not to swing at pitches in 

this portion of the zone.  
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Bat Side Freq. Percent Cum. 
Left 634,650 41.81 41.81 

Right 883,460 58.19 100.00 

Total 1,518,110 100.00  

 
Table 5: Tabulation of Sample by Batter Handedness 

 
 

 

Figure 16: Density of Pitch Location by Batter Handedness. The Defined Strike Zone Marked 

by the Dotted Lines.  

 

Situational Characteristics 

 Beyond tracking the paths of the ball and the player, Statcast also provides situational 

variables at the pitch, at-bat, inning, and game level. At the pitch level, most crucial to my 

analysis is the pre-pitch count, or the number of balls and strikes prior to the pitch being thrown. 

Table 6 provides the frequency at which each count occurs in the sample. In total, there are 12 

different combinations of balls and strikes possible for any given pitch. Unsurprisingly, 0-0 counts 

(0 balls and 0 strikes) are the most common, making up 35.18% of the sample, since every at-bat 
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must begin at this count. 3-0 counts are the least common and only make up 1.90% of the 

sample. 0-2 counts make up 5.48% of the sample. In total, 20.29% of pitches came with two 

strikes while just 6.43% of pitches came with three balls. Pitches on counts with 3 balls and fewer 

than 2 strikes make up 3.84% of the sample, while pitches on counts with 2 strikes and fewer 

than 3 balls make up 17.7% of the sample.  

 
At-bat Count Freq. Percent Cum. 
0-0 534,143 35.18 35.18 
0-1 188,661 12.43 47.61 
0-2 83,170 5.48 53.09 
1-0 170,019 11.20 64.29 
1-1 135,303 8.91 73.20 
1-2 106,689 7.03 80.23 
2-0 58,134 3.83 84.06 
2-1 65,516 4.32 88.38 
2-2 78,852 5.19 93.57 
3-0 28,806 1.90 95.47 
3-1 29,433 1.94 97.41 
3-2 39,384 2.59 100.00 
Total 1,518,110 100.00  

 
Table 6: Tabulation of Pre-Pitch Ball and Strike Count (# of balls - # of strikes) 

 

 Like handedness, the pitch count tends to influence the locations of pitches in the sample 

(Figure 17). 0-2 pitches, for example, are most densely populated in the areas surrounding the 

strike zone. 3-0 pitches, on the other hand, are highly condensed within the strike zone. In 

theory, a pitch will aim for the strike zone on 3-0 counts to avoid walking the batter. In an 0-2 

count, the pitcher will avoid the zone in an attempt to get the batter to swing at a pitch that is 

harder to hit.  
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Figure 17: Density of Pitch Location by Pre-Pitch Count. The Defined Strike Zone Marked by 

the Dotted Lines.  

 

 At the at-bat level, the current inning, the number of outs, the runners on base, and the 

score contribute to the stakes of the in-game situation. All games in the sample have at least nine 

innings. In 2020 and 2021, when teams had to play two games in a single day (called a 

doubleheader), each game would only last seven innings. These games were dropped from the 

sample. If a game is tied after nine innings, the teams continue to play until one team leads after 

the completion of an inning.  98.46% of pitches in the sample come within the standard nine 

innings. Within each inning are half-innings. During the top half of the inning, the visiting team 

bats while the home team pitches. The reverse occurs in the bottom half of the inning. If the 

home team is leading after the top of the ninth inning, they win the game and do not bat in the 

bottom of the ninth. Since each batting team gets three outs per inning, the minimum number of 

pre-at-bat outs is zero and the maximum is two, and pitches per number of outs in the entire 

sample are roughly evenly distributed.  
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A common measure of each at-bat’s importance towards the outcome of a game that 

incorporates the four aforementioned in-game discrete variables is the Leverage Index (LI) 

created by Tom Tango. The LI for an at-bat depends on four factors: the inning, the run 

differential, the number of outs, and the number and location of runners on base. Tango (2006) 

arrived at the following for the index’s calculation: 

“You take the current base-out state, inning, and score and you find the possible changes 

in Win Expectancy that could occur during this particular plate appearance. Then you 

multiply those potential changes by the odds of that potential change occurring, add them 

up, and divide by the average potential swing in [win expectancy] to get the Leverage 

Index.”  

Simply put, the LI is a useful proxy for an at-bat’s stakes. The higher the LI, the more important 

the moment. An LI of 1 is considered the average, neutral moment. The highest LI in the sample 

is 10.9 which occurred for 51 at-bats. All of these at-bats featured a one-run deficit for the home 

team in the bottom of the ninth (or later ) with the bases loaded. Tango (2006) provides LI values 

for at-bats up to the ninth inning and with a run differential of four runs or fewer. Thus, at-bats 

beyond the ninth inning were treated as though they occurred in the ninth inning when assigning 

them an LI. Further, at-bats that occurred when the run differential was greater than four were 

assigned an LI of 0. The average LI in the five-year sample was 0.906, just below the neutral 

value of 1. 75% of at-bats had an LI below 1.2, and less than 10% of at-bats had an LI above 2 

(Table 7).   
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    N Mean  SD  Min  p25  Median  p75  Max 

 Leverage Index 1,516,770 .906 0.822 0 .4 .8 1.2 10.9 

 Number of Outs 1,518,110 .97 0.820 0 0 1 2 2 

 Inning 1,518,110 4.94 2.638 1 3 5 7 19 

 On First 1,518,110 .299 0.458 0 0 0 1 1 

 On Second 1,518,110 .162 0.368 0 0 0 0 1 

 On Third 1,518,110 .079 0.270 0 0 0 0 1 

 
Table 7: Summary Statistics for At-bat level Situational Characteristics 

   

 The Statcast data includes the identity of the batter for every Pitch.  For each batter, I 

gathered attributes illustrating their overall ability and perceived ability or their star power. The 

three measures of star power I use are (1) the batter’s salary, (2) if the batter was selected to the 

all-star game, and (3) the batter’s Batting Wins above Replacement (bWAR). These values hold 

constant for each batter during a single season, meaning, for example, that a single batter will 

have the same bWAR value in their first at-bat of a single season as in their final at-bat. Further, 

they are meant to be interpreted as proxies for star power. Table 8 and Table 9 provide 

summary statistics and a pairwise correlation matrix for these three variables, respectively. The 

three variables are all positively correlated with each other. Note that salary data is somewhat 

incomplete due to a lack of availability. 

 

    N  Mean  SD  Min  p25  Median  p75  Max 

 All-Star 1,517,720 .138 0.345 0 0 0 0 1 

 Batting WAR 1,517,720 1.784 2.055 -3.848 .195 1.33 2.98 11 

 Salary (in millions) 1,038,819 7.634 7.937 .1 1.275 4.667 11.7 40 

 
Table 8: Summary Statistics for All-Star Status, Batting WAR, and Yearly Salary (in millions) 
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  Variables   (1)   (2)   (3)   (4) 

 (1) Strike Called 1.000 

 (2) All-Star -0.019 1.000 

 (3) Batting WAR -0.021 0.553 1.000 

 (4) Salary (in millions) -0.012 0.262 0.250 1.000 

 

Table 9: Pairwise Correlation Matrix for Strike Called, All-Star Status, Batting WAR, and 

Yearly Salary (in millions) 

 
 All-Star team data was pulled from MLB.com for each of the five seasons. For each 

season, the nine starting hitters are chosen through fan voting, where the top vote-getter at each 

position is selected. Voting takes place between early June and early July of the season. The rest 

of the all-star team, the reserves, are selected using a combination of voting from fans, players, 

and the Commissioner’s Office. There are 20 roster spots for position players (meaning players 

that bat) on each of the American League and National League teams, so 40 total players are all-

stars each year. In 2020, despite the cancellation of the All-Star Game, the MLB released an 

unofficial starting lineup for the American and National League teams. Thus, only 18 batters are 

considered all-stars from that season. Overall, 13.8% of all pitches in the sample were thrown to 

all-star hitters. This number is positively skewed relative to the percent of all-stars in the total 

player population since all-stars tend to see more at-bats than non-all-stars.  

 Batting Wins Above Replacement, or bWAR aims to measure how many more wins a 

batter’s hitting is worth than a “replacement-level” player. In short, it combines all elements of a 

batter’s performance hitting the ball during a single season and estimates the number of wins that 

he is worth. For example, Aaron Judge has the highest bWAR in the sample for his 2022 season 
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at 11. Thus, his hitting was estimated to be worth 11 games won. The statistic is not precise but 

aims to capture and summarize a hitter’s total contribution to the season (Slowinski, 2010). 

Additionally, the statistic is standardized to a full 162-game season. A list of the top and bottom 

ten batters’ seasons in the sample is included in the appendix (Table A1). 

 For each game, the MLB reports the total number of fans in attendance. As mentioned 

prior, for every game in the year 2020, no fans were in attendance due to the Covid-19 

pandemic. Additionally, in 2021, several stadiums had capacity restrictions to start the season. By 

the end of July 2021, though, all stadiums were operating at full capacity. Still, 2021 had the 

lowest average attendance of any season other than 2020 in the sample due to the ongoing 

pandemic. Average attendance was at its highest in 2018 (Table 10).  

 

  year   N  Mean  SD  Min  Max 

 2018 353,370 28,910.867 10,838.495 2,429 56,310 

 2019 354,256 28,389.787 11,220.081 2,503 59,659 

 2020 130,450 0 0.000 0 0 

 2021 340,836 18,890.912 10,898.923 1,107 53,114 

 2022 339,198 26,905.319 11,293.918 2,467 53,432 

 

Table 10: Summary Statistics for Attendance by Year 

 Lastly, Statcast includes the identity of the home plate umpire for each game. The sample 

includes games called by 114 different umpires, and the umpires have varying degrees of total 

pitches called and call accuracy. There is a 4.3 percentage point difference between the accuracy 

of the “best” umpire (Alex MacKay, 93.10% accurate) and the “worst” umpire (Ted Barrett, 

88.80% accurate) (Table 11).  
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Rank Home Plate Umpire  N  % Correct 

1  Alex MacKay 857 93.10% 

2  Brock Ballou 1,016 92.50% 

3  John Libka 16,945 92.40% 

4  Adam Beck 8,853 92.20% 

5  Lew Williams 578 92.20% 

6  Pat Hoberg 18,622 92.00% 

7  Edwin Moscoso 12,354 91.90% 

8  Alex Tosi 6,238 91.80% 

9  Jansen Visconti 19,272 91.80% 

10  Alan Porter 18,473 91.70% 

… … … … 

105  Paul Nauert 9,443 89.60% 

106  Rob Drake 15,385 89.60% 

107  Kerwin Danley 10,119 89.50% 

108  Brian Gorman 8,066 89.40% 

109  Laz Diaz 17,967 89.30% 

110  Ed Hickox 15,265 89.20% 

111  Joe West 14,662 89.20% 

112  Doug Eddings 18,638 89.10% 

113  Mike Winters 6,480 89.10% 

114  Ted Barrett 18,936 88.80% 

 
Table 11: Most Accurate and Least Accurate Umpires  
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4 METHODOLOGY 

Baseline Probability Estimation 

 Before trying to investigate the existence of the omission bias, I calculate the baseline 

probability of a pitch being called a strike based on location and batter handedness alone. To do 

so, I select a 40-inch by 40-inch vertical plane directly above the front of home plate spanning 

vertically from 10 inches above the ground to 50 inches above the ground and horizontally from 

20 inches to the left of the center of home plate to 20 inches to the right of home plate. I then 

divide this plane into 1,600 1-inch by 1-inch squares. I repeat this process for pitches to left-

handed batters and pitches to right-handed batters to create 3,200 location- and batter-

handedness-specific zones. There are no called strikes in any location outside of these recognized 

zones in the sample. From there, I calculate the percentage of pitches that were called a strike 

within each of these zones. In this calculation, I include only pitches from neutral counts and thus 

exclude pitches that occurred during counts with two strikes and fewer than three balls as well as 

counts with three balls and fewer than two strikes. If three-ball and two-strike counts do, in fact, 

create umpire bias, then the baseline probability would also have contained this bias had I 

included these counts. On average, fewer than 400 pitches occupy each locational zone. Thus, to 

create a more robust estimate for the baseline probability that a pitch is called a strike, I use a 

simple weighted average including the zones directly surrounding the exact location of the pitch 

(Equation 1): 

(1) !"#$(&'"()*+) =
.
./
[4 ∗ 34+ + 2 ∗ (347 + 348 + 349 + 34:) + 

1 ∗ (3498 + 34:8 + 3497 + 34:7)] 



 42 

where, for pitches receive by batters of the same handedness, X=i is the percentage of strikes called 

in the exact locational zone of the pitch. Further,  X=L, X=R, X=U, and  X=D represent the percentage 

of strikes called in the locational zone directly to the left, to the right, underneath, and above the 

exact zone, respectively. Likewise, X=UR, X=DR, X=UL, and  X=DL represent the percentage of strikes 

called in the locational zone up and to the right, down and to the right, up and to the left, and 

down and to the left of the exact zone, respectively. Figure 18 provides a visual representation of 

the weights used in calculating the baseline probability of a strike being called based on location 

and handedness.  

 

 

Figure 18: Visual Representation of Weights Used for Baseline Probability Estimation 

 

 Figure 19 illustrates the value of the baseline probability by location and batter 

handedness. Notably, the enforced strike zone for left- and right-handed batters differs 

significantly along the edges of the defined strike zone. For left-handed batters, the edge of the 
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plate surrounding -9.97 inches is more densely populated with called strikes than it is for right-

handed batters. This region represents the outside edge of the zone for lefties and the inside edge 

for righties. Further, the reverse is true on the opposite edge of the zone surrounding 9.97 inches 

from the center of the plate. Thus, the enforced strike zone is, in general, skewed towards the 

outside part of the zone, or the edge furthest from the batter, and fewer strikes are called on the 

inside part of the zone, or the edge closest to the batter.  

 

Figure 19: The Baseline Probability of a Called Strike based on Pitch Location and Batter 

Handedness 

 

 Over 50% of all pitches in the sample have a baseline probability of less than 10% that 

they are called a strike. Additionally, over 20% of all pitches have a probability of greater than 
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90% that they are called a strike (Figure 20). Hence, a majority of pitches in the sample are either 

near-certain balls or near-certain strikes based on location alone.  

 

 

 

Figure 20: Histogram of Baseline Probability of Strike Call 

 

Empirical Strategy 

 In order to investigate the impact of the omission bias on MLB umpires, I use a linear 

probability model to measure the distortion of the strike zone during two-strike and three-ball 

counts: 

Equation 2:  C(D+ = 1) = C+ + 3+E. + F(C+) ∗ 3+EG + H+EI + F(C+) ∗ H+EJ +	L+  
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where yi is an indicator for if the pitch is called a strike, pi is the baseline probability estimated 

using Equation 1, Xi is an indicator for counts with 2 strikes. (excluding full counts), and Zi is an 

indicator for counts with 3 balls (excluding full counts). I use a linear probability model as 

opposed to logit or probit models due to my large sample size. To account for changes in the 

omission bias relative to the uncertainty of the call, I weight the call indicators by w, a function of 

the baseline probability (Green and Daniels, 2015), where: 

Equation 3:   F(C+) = 1 − 2|C+ − 0.5|  

and whose value I will refer to as the Borderline Index for a given pitch.  For the most borderline 

pitches, or pitches with a baseline strike probability of 50%, the Borderline Index equals 1. 

Pitches with baseline strike probabilities of 0% or 100%, on the other hand, will have a 

Borderline Index of 0. The more borderline a pitch is, meaning the closer its baseline strike 

probability is to 50%, the closer its Borderline Index value is to 1, and all pitches have a 

Borderline Index value between 0 and 1. Thus,  E. + EG	can be interpreted as the change in 

probability of a called strike on a two-strike count for a pitch that is otherwise called a strike half 

of the time. Likewise, EI + EJ can be interpreted as the change in probability of a called strike on 

a three-ball count for a pitch that is otherwise called a strike half of the time. To control for the 

asymmetry in umpire skill and behavior (Table 11), I also utilize umpire fixed effects. Further, I 

incorporate a vector of pitch-level controls to account for the potentiality of increased umpire 

uncertainty caused by different types of pitches. The control variables included are the pitch’s 

spin rate, horizontal movement, vertical movement, horizontal (x-dimension) velocity, vertical (z-

dimension) velocity, and velocity towards the batter (y-dimension).  

 Next, I estimate the changes to the magnitude of the omission bias caused by immediate 

external pressure using the following equation: 
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Equation 4:  C(D+ = 1) = C+ + 3+E. + R+EG + ATEI + (3+ ∗ R+)EJ 

+[3+ ∗ R+ ∗ AT]EV +	L+ 

where pi is the baseline probability estimate, Xi is a count-specific indicator, Hi is an indicator for 

if the batter is on the home team, and Ai is the total attendance. Here, the models are specific to 

the effects on either two-strike or three-ball counts. Additionally, the sample is limited to pitches 

with a baseline strike probability between 25% and 75% (Figure 21). The model is run separately 

for pitches from the year 2020. In these iterations, EI and EV are dropped, since attendance 

always equals zero during that season. In theory, the effects of the crowd on the umpire will only 

be realized in favor of the home batter or against the away batter (Bilalić, Gula, and Vaci, 2021). 

Thus, I use interaction terms to separate the home and away effects. Similar to before, I 

incorporate umpire fixed effects and pitch-characteristic controls into my estimation.  

 Lastly, to estimate the change in the omission bias caused by in-game characteristics, I 

use the following: 

Equation 5:  	C(D+ = 1) = C+ + 3+E. + &+EG + (XT ∗ ST)EI +	L+  

where pi is the baseline probability estimate, Xi is a count-specific indicator, and Si is a situational 

characteristic. I repeat this model for three-ball counts and two-strike counts, and for the 

following situational characteristics: Batter is an All-Star, Batter’s Salary, Batter’s Wins Above 

Replacement, and at-bat’s Leverage Index. The first three characteristics aim to capture the 

importance of the batter’s perceived star power on the umpire’s behavior, whereas the final 

characteristic aims to capture the influence of the relative stakes of an at-bat on the umpire’s 

behavior. Again, the sample is limited to pitches with a baseline strike probability between 25% 

and 75% (Figure 21), and I incorporate umpire fixed effects and pitch-characteristic controls into 

my estimation.  
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Figure 21: Zones With a Baseline Strike Probability Between 25% and 75% (in Red) 
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5 RESULTS 

Existence of the Omission Bias  

Table 12 provides the results for the first set of regressions aimed at investigating the 

existence of omission bias in MLB umpires. Models (1.1-6) build towards Model (1.7), the full 

model presented in Equations Three. Overall, umpires are, on average, 2.7% less likely to call a 

strike on a two-strike count than on a neutral count and 2.8% more likely to call a strike on a 

three-ball ball count. Both of these estimates are statistically significant from zero at a 99% 

confidence level.  

Models (1.2) and (1.5) limit the sample to pitches with a baseline strike probability 

between 25% and 75%. In this subsample, the estimated size of the omission bias grows for both 

two-strike and three-ball counts. On average, umpires are 13.2% less likely to call pitches within 

these zones as strikes on two-strike counts than they are on neutral counts and 8.4% more likely 

to call pitches within these zones as balls on three-strike counts. Again, both of these estimates are 

statistically significant from zero at a 99% confidence level.  

Model (1.7) is simply just a combination of models (1.3) and (1.6), and the coefficients do 

not change substantially between these models. Using the full sample and controlling for pitch-

characteristics and umpire asymmetry, I find that a pitch that is typically called a strike 50% of 

the time during a neutral count is called a strike 31.3% of the time when the pitch occurs during 

a two-strike count. Further, I find that a pitch that is typically called a strike 50% of the time 

during a neutral is called a strike 60.2% of the time when the pitch occurs during a three-ball 

count. Figure 22 illustrates the average enforced strike zone for three-ball and two-strike counts. 

Figure 23 illustrates the difference between the strike during three-ball counts and two-strike 

counts versus neutral counts.  
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Figure 22: Predicted Strike Zone For 3-Ball Counts and 2-Strike Count, Model (1.7). Results 

are Averaged by Handedness. 

 

Figure 23: Difference in Predicted Strike Zone For 3-Ball Counts vs. Neutral Counts and 2-

Strike Counts vs. Neutral Counts, Model (1.7). Results are Averaged by Handedness. 
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Influence of Immediate External Pressure 

 Table 13 contains the results for the next set of models aimed at measuring the impact of 

immediate external pressure from fans in the stadium on strike calls, irrespective of the pitch 

count, but still controlling for umpire asymmetry and pitch characteristics. Model (2.1) finds that, 

for pitches with a baseline strike probability between 25% and 75% in all years of the sample 

except for 2020, umpires are 0.9% less likely to call a strike if the batter is on the home team. 

This effect disappears for pitches thrown during the shortened, fan-less 2020 season, as shown in 

Model (2.2).   

Model (2.3) incorporates total fan attendance, finding that, as the home crowd grows, so 

does the disparity in how umpires call strikes (Figure 24). When there are fewer than 20 thousand 

fans in attendance, I estimate no significant difference between the likelihood of a called strike for 

a home batter and a visiting batter. As the number of fans in attendance exceeds 25 thousand, 

though, I find that the likelihood of a called strike differs for home batters and away batters 

significantly at a 95% confidence level. Still, when there are 50 thousand fans in attendance, I 

estimate that umpires are only 3% less likely to call a strike for home batters than they are for 

away batters, holding all else equal.  

Table 14 contains the results for the models related to the effect of immediate external 

pressure on the omission bias. All three models are limited to pitches with a baseline strike 

probability between 25% and 75% and incorporate umpire fixed effects and pitch-characteristic 

controls. Model (2.4) shows no statistically significant impact of home-field advantage on the 

omission bias for either two-strike counts or three-ball counts for all seasons except 2020. 

Unsurprisingly, Model (2.5) likewise shows no statistically significant impact of home-field 

advantage on the omission bias.  
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Figure  24: Effects of Game Attendance on Strike-Call Probability, Home vs. Away 

 

Model (2.6), represented by Equation 4, incorporates total attendance and finds no 

evidence that home-field advantage influences the magnitude of umpires’ omission bias during 

three-ball counts, even as the number of fans in attendance increases. I estimate that home 

attendance increases the magnitude of the omission bias on two-ball counts, reducing the 

probability of a called strike for the home batter by 0.1% for every thousand fans, on average. 

This effect is significant at a 90% confidence level, but lacks any practical significance in 

magnitude.  

 

Influence of Situational Characteristics 

 Table 15 contains the results for the set of models aimed at measuring the impact of 

situational characteristics on strike calls, irrespective of the pitch count, but still controlling for 

umpire asymmetry and pitch characteristics. For pitches with baseline strike probabilities 
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between 25% and 75%, all three proxies for a batter’s perceived star power have negative 

coefficients and are statistically significant at the 95% level or higher. Called strikes are, on 

average, 1.3% less likely for all-star batters, 0.1% likely for every million-dollar increase in a 

batter’s salary, and 0.1% less like for every full-point increase in Batter Win Above Replacement. 

Likewise, I estimate that for every full-point increase in an at-bat’s Leverage Index, the 

probability of a strike falls by 0.2%. 

 Table 16 contains estimates for the influence of selected situational characteristics on 

umpires’ omission bias during two-strike counts. I find that the batter’s all-star status, the batter’s 

salary, and the at-bat’s leverage index are not associated with a significant change in the 

magnitude of the umpire’s omission bias for two-strike counts. Every full-point increase in the 

batter’s bWAR, on the other hand, is associated with a -0.3% decrease in the likelihood of a 

called strike, all else equal.   

 Table 17 contains estimates for the influence of selected situation characteristics on 

umpires’ omission bias during three-ball counts. I find that the batter’s all-star status, the batter’s 

salary, the batter’s bWAR, and the at-bat’s leverage index are not associated with a significant 

change in the magnitude of the umpire’s omission bias for two-strike counts. 
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    (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) (1.7) 
    strike strike strike strike strike strike strike 

 Two-Strike Count -.027*** -.132*** -.003***    -.003*** 
   (.001) (.003) (.001)    (.001) 

 2 Strikes * Borderline Index   -.185***    -.184*** 
     (.002)    (.002) 

 Three-Ball Count    .028*** .084*** .012*** .007*** 
      (.001) (.005) (.001) (.001) 

 3 Balls * Borderline Index      .095*** .095*** 
        (.004) (.004) 

 Observations 1518110 206493 1499257 1518110 206493 1499257 1499257 

 R-squared .746 .129 .753 .746 .123 .751 .753 

 Controls & Ump FE     yes     yes yes 

Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
 

Table 12: Results, Part 1. Models (1.1) and (1.4) show overall estimate of omission bias for all two-strike and all three-ball pitches 

respectively. Models (1.2) and (1.5) show overall estimate of omission bias for all two-strike and all three-ball pitches with a baseline 

strike probability ≥0.25 and ≤0.75, respectively. Models (1.3) and (1.6) introduce Borderline Index weights, Umpire Fixed Effect, and 

Pitch-Characteristic Controls to full sample estimation. Model (1.7) is full model found in Equation 2.   
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      (2.1)   (2.2)   (2,3) 
       strike    strike    strike 

 Home Batter -.009*** .001 .012** 
   (.002) (.008) (.006) 

 Game Attendance (in thous.)   .001*** 
     (0) 
 Home Batter * Attend.    -.001*** 

     (0) 

 Observations 163735 15471 163735 

 R-squared .105 .111 .106 

Covid Year (2020) no yes no 
Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
 

Table 13: Results, Part 2. Models (2.1) and (2.2) exclude pitches from 2020. Model (2.2) is limited to pitches from 2020. Models (2.1), 

(2.2), and (2.3) include only pitches with a baseline strike probability ≥0.25 and ≤0.75 and incorporate Umpire Fixed Effect and Pitch-

Characteristic Controls. 
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      (2.4)   (2.5)   (2.6) 
       strike    strike    strike 

 Home Batter -.009*** .001 -.009*** 
   (.003) (.008) (.003) 
 Two-Strike Count -.122*** -.137*** -.122*** 
   (.005) (.017) (.005) 
 2-Strike Count * Home Batter -.005 -.008 .014 
   (.007) (.024) (.013) 
 Three-Ball Count .07*** .077*** .07*** 
   (.008) (.025) (.008) 

 3-Ball Count * Home Batter .009 .016 .008 
   (.011) (.036) (.02) 

Game Attendance (in thous.)   .0003*** 
     (0) 
 3-Ball Count * Home Batter * Attend.   0 
     (.001) 
 2-Strike Count * Home Batter * Attend.   -.001* 
     (0) 
 Observations 163735 15471 163735 
 R-squared .113 .121 .113 
Covid Year (2020) no yes no 
Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
 

 

Table 14:  Results, Part 2 (cont.). All Models are limited to pitches with a baseline strike probability ≥0.25 and ≤0.75. Models (2.4) 

and (2.6) exclude pitches from 2020. Model (2.5) is limited to pitches from 2020. All Models include only pitches with a baseline strike 

probability ≥0.25 and ≤0.75 and incorporate Umpire Fixed Effect, and Pitch-Characteristic Controls  
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      (1)   (2)   (3)   (4) 
       strike    strike    strike    strike 

 All Star -.013***    
   (.003)    
 Salary (in mil.)  -.001***   
    (0)   
 Batting WAR (per 162 games)   -.001**  

     (.001)  
 Leverage Index    -.002* 
      (.001) 
 Observations 204903 139810 204903 204751 
 R-squared .129 .13 .129 .129 
Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
 

Table 15: Results, Part 3. Effect of Situational Characteristics on Called Strike Probability. Model includes only pitches with a 

baseline strike probability ≥0.25 and ≤0.75 and incorporate Umpire Fixed Effect and Pitch-Characteristic Controls. 
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      (1)   (2)   (3)   (4) 
       strike    strike    strike    strike 

 All Star -.013***    
   (.003)    
 Two-Strike Count -.128*** -.135*** -.124*** -.131*** 
   (.003) (.005) (.004) (.005) 
 2 Strikes * All Star -.012    
   (.01)    
 Salary (in mil.)  -.001***   
    (0)   
 2 Strikes * salary  0   
    (0)   
 Batting WAR (per 162 games)   -.001**  
     (.001)  
 2 Strikes * bWAR   -.003**  
     (.002)  
 Leverage Index    -.003** 
      (.001) 
 2 Strikes * LI    .002 
      (.004) 
 Observations 204903 139810 204903 204751 
 R-squared .136 .137 .136 .136 
Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
 
Table 16: Results, Part 3 (cont.). Effects of Situational Characteristics on Omission Bias for Two-Strike Counts. All Models include 

only pitches with baseline strike probability ≥0.25 and ≤0.75 and incorporate Umpire Fixed Effect and Pitch-Characteristic Controls. 
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      (1)   (2)   (3)   (4) 
       strike    strike    strike    strike 

 All Star -.014***    
   (.003)    
 Three-Ball Count .09*** .087*** .092*** .087*** 
   (.005) (.008) (.007) (.008) 
 3 Balls * All Star .01    
   (.014)    
 Salary (in mil.)  -.001***   
    (0)   
 3 Balls * salary  0   
    (0)   
 Batting WAR (per 162 games)   -.001**  
     (.001)  
 3 Balls * bWAR   0  
     (.002)  
 Leverage Index    -.003** 
      (.001) 
 3 Balls * LI    .005 
      (.006) 
 Observations 204903 139810 204903 204751 
 R-squared .131 .131 .131 .131 
Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  
 
Table 17: Results, Part 3 (cont.). Effects of Situational Characteristics on Omission Bias for Three-Ball Counts. All Models include 

only pitches with baseline strike probability ≥0.25 and ≤0.75 and incorporate Umpire Fixed Effect and Pitch-Characteristic 

Controls. 
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6 Discussion 

My results indicate that umpires significantly alter their behavior based on the ball-strike 

count. All else equal, on three-ball counts, umpires are more likely to call a strike, and, on two-

strike counts, umpires are more likely to call a ball. In other words, umpires prefer inaction to 

action. Additionally, instances of omission bias are generally isolated to the borderline of the 

strike zone. Umpires remain fairly consistent on pitches well within or outside of the strike zone 

regardless of the count. When the pitch is near the borderline, though, omission bias has a sizable 

impact on umpires’ calls. Intuitively, this result makes sense. On the most obvious pitches, 

umpires have little to no discretion. Errors on clear balls or strikes will be salient enough on their 

own, regardless of the ball-strike count. Further, these pitches are easier to call correctly, so there 

is little need to rely on an additional rule of thumb. On the other hand, pitches located around 

the border of the strike zone allow for more umpire discretion, given the high variability in 

umpires’ enforced strike zone in these areas. For neutral counts, errors on these pitches are much 

less salient than errors on pitches well within or outside the zone. It is only when the error leads 

to an action, either a strike-out or a walk, that errors of borderline pitches become salient. Thus, 

when umpires have some magnitude of discretion, they generally prefer inaction to action. 

Likewise, if the umpire is truly unsure of the correct call, they may rely on their aversion to 

impact as a rule of thumb when deciding what to call. The closer the pitch is to the border of the 

strike zone, the more likely that the umpire is uncertain of the correct call.  

Ignoring their impact on umpires’ omission bias, my results indicate a slight bias in favor 

of home batters, or a home-field advantage, on borderline pitches overall. Umpires were slightly 

less likely to call borderline pitches as strikes for home batters than they were for away batters. 

This advantage disappeared during the 2020 season, when fans were not in attendance. Further, 
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home-field advantage via a reduction in called strikes increases when more fans were in 

attendance. Nevertheless, the actual magnitude of the advantage given to home batters by 

umpires is rather small, as there was less than a 1% difference in the likelihood of a strike call on 

borderline pitches for home and away batters for games with an average attendance. Beyond this 

initial advantage, there is no further advantage granted to home batters on two-strike or three-

ball counts. On three-ball and two-strike counts, umpires distort the strike zone similarly for both 

home and away teams. My results indicate that, perhaps, the strike zone shrinks slightly more for 

home batters on two-strike counts as attendance increases. Still, the practical significance of this 

additional distortion is little to none.  

Similarly, my results indicate that star players get slightly favorable treatment from home 

plate umpires overall, but that there is little difference in umpires’ omission bias towards 

superstar batters. Additionally, in higher leverage moments, umpires are slightly less likely to call 

strikes, but this bias is unchanged by the count. On any given count, all-star batters are, on 

average, 1.3% less likely to receive a called strike relative to non-all-stars on borderline pitches. 

Similarly, every additional million dollars in salary and each additional bWAR point are 

associated with a 0.1% decrease in the likelihood of a called strike on borderline pitches.  On 

three-ball counts, there is no statistically significant difference in the distortion of the enforced 

strike zone for all-star batters, batters with higher salaries, or batters with a higher bWAR. On 

two-strike counts, neither all-star status nor salary are associated with a significant difference in 

the distortion of the enforced strike zone. Each additional point of a batter’s bWAR, on the other 

hand, is associated with a 0.3% reduction in the likelihood of a called strike on borderline pitches 

coming on two-strike counts.  
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7 Conclusion 

Omission bias is the most statistically and practically significant bias I observe. The pre-

pitch count has a larger impact on the enforced strike zone than the game’s stakes, the stardom of 

the batter, the game’s attendance, and if the home team is batting. Further, there is little 

evidence to suggest that omission bias is impacted by external pressure or in-game characteristics. 

Instead, I find that omission bias exists separately from and is not impacted by other biases 

present in MLB umpiring, such as the biases favoring home batters and star batters. Lastly, 

instances of omission bias are largely isolated to the border of the strike zone and increase in 

frequency at locations with relatively higher levels of uncertainty, suggesting that omission bias is 

used as a rule of thumb when the umpire is otherwise uncertain of the correct call (Baron and 

Ritov, 2004).  

On March 30, 2023, I had the opportunity to go to the Red Sox opening day at Fenway 

Park against the Baltimore Orioles. If you have not figured it out by now, I am a pretty big 

Orioles fan. It was freezing cold that day and the wind was absolutely ripping. My buddy Ben 

and I were sitting pretty far up in the grandstand past foul territory in right field. That game 

came over six months after I began this project. Lance Barksdale was the home plate umpire, 

and he is typically pretty good, with a correct call rate of 91.2%.  

In the 7th inning, Red Sox relief pitcher Kaleb Ort was facing off against Orioles infielder 

Adam Frazier. The first three pitches of the at-bat were easy balls. On the fourth pitch, Ort tosses 

a four-seam fastball chest-high. The pitch looks close, but, from my angle, it was a ball. 

Barksdale, of course, calls a strike, screwing the Orioles out of a baserunner. Of course, I was 

furious, given that I had just run some preliminary regressions confirming the existence of this 

bias. To be fair though, I was likely four or five Sam Adams deep at that point, and we did not 
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have the best sightline to the strike zone (our view was blocked almost completely by one of those 

giant green poles. Side note, but why do people think Fenway is so great? I get it has history or 

whatever, but Camden Yards is far superior in terms of actual experience!). Long story short, it 

did not matter, as Adam Frazier smacked a double into right-center field a couple of pitches 

later, and the Orioles went on to win the game 10 to 9. In other words, Barksdale let the boys 

play it out, and something exciting happened. No one remembers that call from opening day 

(except for me), and, in that moment, Barksdale escaped criticism from everyone in the ballpark 

(except from me).  

 

 

 

3-0 Pitch from Ort to Frazier, Called A Strike. You be the judge!  

(via MLB Film Room) 
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Appendix:  

 

 
 

Figure A1: Photo I took of the Baltimore Orioles and Boston Red Sox Game on May 30, 2022. 

Final Score: Orioles 10, Red Sox 0  

  



 68 

 
Rank Batter/Team/Year  Plate Appearances  bWAR 

1  Aaron Judge/Yankees/2022 696 11.00 

2 Mookie Betts/Red Sox/2018 614 10.59 

3 Mike Trout/Angels/2018 608 9.71 

4 Alex Bregman/Astros/2019 690 8.495 

5 Cody Bellinger/Dodgers/2019 661 8.165 

6 Mike Trout/Angels/2019 600 8.145 

7 Alex Bregman/Astros/2018 705 7.95 

8 José Ramírez/Guardians/2018 698 7.785 

9 Nolan Arenado/Cardinals/2022 620 7.59 

10 Marcus Semien/Athletics/2019 747 7.495 

… … … … 

761  Maikel Franco/Orioles/2021 403 -1.13 

762  Spencer Torkelson/Tigers/2022 404 -1.135 

763  Hunter Dozier/Royals/2022 500 -1.18 

764  Miguel Cabrera/Tigers/2022 433 -1.245 

765  Lewis Brinson/Marlins/2018 406 -1.25 

766  Kole Calhoun/Rangers/2022 424 -1.31 

767  Victor Martinez/Tigers/2018 508 -1.49 

768  Alcides Escobar/Royals/2018 531 -1.53 

769  Hunter Dozier/Royals/2021 543 -1.77 

770  Chris Davis/Orioles/2018 522 -2.93 

 
Table A1: Best and Worst bWAR Seasons, 2018-2022 (min. 400 Plate Appearances) 
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Rank Home Plate Umpire  N  % Strike Called 

1 John Libka 255 24.7% 

2 Gerry Davis 119 25.2% 

3 Carlos Torres 256 25.4% 

4 David Rackley 234 26.1% 

5 Alan Porter 234 27.4% 

6 Jordan Baker 272 27.9% 

7 Shane Livensparger 147 27.9% 

8 Mark Ripperger 255 28.6% 

9 Alfonso Marquez 296 29.1% 

10 Scott Barry 165 29.1% 

 
Table A2: Most Biased Umps on Two-Strike Borderline Pitches (Min. 100 Pitches) 

 

Rank Home Plate Umpire  N  % Strike Called 

1 Joe West 91 70.3% 

2 Nick Mahrley 88 69.3% 

3 Lance Barrett 81 69.1% 

4 Chad Whitson 79 67.1% 

5 Sean Barber 78 66.7% 

6 Ted Barrett 99 66.7% 

7 Vic Carapazza 88 65.9% 

8 Bill Welke 81 65.4% 

9 Mark Ripperger 75 65.3% 

10 Ryan Additon 80 65.0% 

 
Table A3: Most Biased Umps on Three-Ball Borderline Pitches (Min. 75 Pitches) 


