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Our brains afford us the remarkable ability to remember past events from our lives, to 

travel back in time in our minds' eye and relive our memories anew. What are the brain 

processes that support this ability? In this thesis I investigated this question across three 

experiments. In Chapter 1, I examined how the brain regions previously linked to 

episodic cognition (i.e., the hippocampus, parahippocampal cortex, retrosplenial cortex, 

posterior cingulate cortex, precuneus, angular gyrus, and medial prefrontal cortex) 

support recollection by building a model that incorporates both region-specific and 

network-level contributions. I found that these brain regions form ventral and dorsal 

subnetworks and that their contributions to recollection outcomes are largely explained 

by subnetwork-level rather than region-specific engagement. In Chapter 2, I used an 

openly available MRI dataset to test whether individual differences in functional 

connectivity were related to individual differences in memory ability, finding that 

network connectivity outside of the classic episodic networks supports individual 

differences in our ability to remember. In Chapter 3, I tested a neuroscience inspired 

hypothesis that individuals would have different capacities to bind their memories around 

social-emotional and visual-spatial content, ultimately finding inconclusive evidence for 

or against my hypothesis. Together, these results help to solidify our understanding of the 

brain as an interconnected network of brain regions and shed new light on how these 

networks support individual differences in memory.
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INTRODUCTION 

About 3 years ago, I broke my arm riding my bike down Harvard Ave in Boston. I 

was in my second year of graduate school, and it was an unusually warm day for late 

February. It was late in the day, and I was in a rush to get back to my apartment before 

sunset. I was riding at speed, heading north on Harvard Ave, when I approached an 

intersection that had a traffic light that had just turned green. As I approached the 

intersection, I saw a car rapidly approaching from my right out of the corner of my eye. I 

instinctively grabbed at my brakes to avoid what I thought was going to be a collision. 

Unfortunately for me, I made the mistake of only using my front brakes to try and slow 

my momentum, causing me to tumble over the top of my handlebars, ultimately lying flat 

in the middle of the intersection. I can vividly recall much about that episode, from the 

searing pain in my left arm, the dark gray clouds overhead, the warm-for-February-but-

still-quite-cold temperature. Episodic memory is defined as our ability to “mentally time 

travel”, reexperiencing past events anew (Tulving, 1983, 2002). Episodic memories, 

unlike sensorimotor, semantic, or short-term memory, are bound to a specific time and 

place and are accompanied by a sense of autonoetic awareness – a distinctive awareness 

that you are reexperiencing something that has occurred before. It is this cognitive ability 

that is the focus of the present dissertation. The thing that particularly fascinates me about 

episodic memory is how the brain gives rise to this complex cognitive ability. Much like 

a mechanic, I have always been fascinated in getting “under the hood” of episodic 

memory, understanding the machinery that affords us this remarkable ability. In what 
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follows, I review the literature on the neural architecture of episodic memory, specifically 

focusing on how this neural machinery is organized and how it supports individual 

differences in our ability to remember past events. 

EPISODIC MEMORY AND THE BRAIN 

The study of the brain basis of episodic memory has traditionally taken a region 

focused approach, examining how brain regions individually contribute to episodic 

memory. This is largely because early cognitive neuroscience work consisted of studying 

patients who experienced cognitive deficits after damage to circumscribed brain areas. In 

the field of episodic memory, the hippocampus became the focus of intense research 

following the discovery of a patient (referred to as Patient H.M.) who developed a 

profound case of anterograde amnesia following resection of his hippocampus (and 

surrounding medial temporal lobe tissue) due to intractable epilepsy (Corkin, 2002; 

Scoville & Milner, 1957). Evidence began to mount supporting the necessary role of the 

hippocampus in episodic memory, with many more documented cases of amnesia 

following hippocampal damage (Damasio et al., 1985; see Spiers et al., 2001 for review; 

Zola-Morgan et al., 1986) and studies of non-human primates (e.g., Zola-Morgan & 

Squire, 1985, 1986) and rodents (e.g., O’Keefe et al., 1975; Sutherland & McDonald, 

1990) demonstrating memory deficits following surgical ablation of the hippocampus. 

More recent research has demonstrated not only the necessity of the hippocampus for 

memory, but also how the hippocampus is sufficient for driving memory retrieval. 

Specifically, recent research in rodents suggests that hippocampal neurons activated 
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during the formation of a fear memory that are tagged and subsequently artificially 

reactivated reinstates fear memories (Josselyn & Tonegawa, 2020; Ramirez et al., 2013). 

Later research expanded our knowledge of the neural architecture supporting 

episodic memory beyond the hippocampus to structures surrounding the hippocampus 

within the medial temporal lobes. Specifically, these studies implicated the cortical areas 

surrounding the hippocampus, including regions such as the entorhinal cortex, the 

parahippocampal cortex (PHC), and the perirhinal cortex (PRC), in episodic memory. 

Studies in rodents and primates, for example, noted that memory deficits can be induced 

by lesioning the surrounding MTL cortices (e.g., Zola-Morgan et al., 1989) and lesions 

including the hippocampus and other MTL regions led to the most profound memory 

deficits (e.g., Squire & Zola-Morgan, 1991). It was on the basis of this work that theorists 

proposed that the entire medial temporal lobe – including the hippocampus and the 

surrounding cortex – served together as an integrated declarative memory system (Squire, 

1992; Squire & Zola-Morgan, 1991). Early studies using functional magnetic resonance 

imaging (MRI) delegated mnemonic functions to the PHC and the PRC, with the PHC 

cooperating with the hippocampus to support memory that is accompanied with rich 

contextual details (i.e., based on a sense of recollection) and the PRC supporting memory 

that is acontextual (i.e., based on a sense of familiarity) (e.g., Davachi et al., 2003; Diana 

et al., 2010; Ranganath et al., 2004). Findings from these studies led theorists to propose 

an influential binding of items and contexts (BIC) model in which the PHC supports 

memory for contextual details, the PRC memory for specific items, and the hippocampus 

serving as the binding site for the two informational pathways (Diana et al., 2007; 

Ranganath, 2010). Importantly, these lines of research broadened the neural focus of 
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investigation for cognitive neuroscientists interested in episodic memory, suggesting that 

brain regions outside of the hippocampus serve complementary roles in the phenomenon. 

Extending this line of inquiry even further, recent research suggests that episodic 

memory is reliant on a wide network of regions outside of just the medial temporal lobes. 

FMRI studies of episodic memory find that activation in a core network of regions—

including the posterior parietal cortex, the medial prefrontal cortex, the retrosplenial 

cortex, and the precuneus—correlates with episodic memory success (H. Kim, 2011; 

Rugg & Vilberg, 2013; Spaniol et al., 2009). Further, these regions increase in their 

functional communication during successful memory retrieval (Fornito et al., 2012; Geib 

et al., 2017; King et al., 2015; Schedlbauer et al., 2014; Watrous et al., 2013). Perhaps 

most compellingly, there are documented cases of memory changes in patients with brain 

damage to the retrosplenial cortex, mammillary bodies, prefrontal cortex, and the 

posterior parietal cortex (Berryhill et al., 2007; Duarte et al., 2005; Gadian et al., 2000; 

Newsome et al., 2018; Simons et al., 2010; Valenstein et al., 1987). Interestingly, the 

PRC and the PHC show different patterns of whole brain functional connectivity and 

coactivation during tasks (Libby et al., 2012; Ritchey et al., 2014), leading to an 

influential proposal that they form the cores of anterior temporal (ATN) and posterior 

medial (PMN) hippocampal-cortical networks that support memory guided behavior 

(PMAT framework; Ranganath & Ritchey, 2012). 

The set of cortical regions associated with episodic retrieval have also been shown 

to be co-active during rest. Early cognitive neuroscience research using fMRI found that 

a group of regions displayed greater activation during periods of rest compared to 

attention demanding tasks (Mazoyer et al., 2001) leading to the hypothesis that these 
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regions constituted the “default mode” of brain organization (Raichle et al., 2001). These 

default mode regions also tended to cofluctuate during “resting-state” scans where 

participants were not given an explicit task (Greicius et al., 2003) and tended to 

coactivate in response to tasks that require internally directed attention (Spreng & Grady, 

2010), including tasks that require participants to recall an event from their lives (i.e., 

autobiographical memory tasks), tasks that require participants to imagine a future event 

(i.e., prospection tasks), and tasks that require participants to read and consider the states 

of mind of other people (i.e., theory of mind tasks). Further work refined the default 

mode network, noting that many default mode regions cofluctuate with the hippocampus 

during rest (Greicius et al., 2004; Vincent et al., 2006), leading to proposals that default 

mode network is also involved in episodic memory. The regions comprising the default 

mode network – the medial prefrontal cortex, posterior parietal cortex, the posterior 

midline, and the lateral temporal cortex – include the set of regions defined as part of the 

PMN in the PMAT framework (see Figure 1a,b). 
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Figure 1. The Major Nodes of the posterior medial network (PMN) and default mode network (DMN). 
Many of the regions of the PMN (panel A) are also regions of the DMN (panel B), with the DMN having a 
few additional regions that are not a part of the PMN. Both the PMN and the DMN can be broken down 
into subnetworks (panel C,D). Subnetworks C and A of the DMN are closely aligned with the ventral and 
dorsal PMN subnetworks. 

The latest research on brain wide neural networks supporting episodic memory 

suggests that these large-scale neural networks can be decomposed into highly related 

subnetworks. Evidence to this end has come from fMRI experiments examining 

functional connectivity during resting state scans (Andrews-Hanna et al., 2010; Barnett et 

al., 2021; Buckner & DiNicola, 2019; Yeo et al., 2011), patterns of whole brain 

functional connectivity during tasks (e.g., movie watching Cooper et al., 2021b), 

coactivation during tasks (Andrews-Hanna, Saxe, et al., 2014; DiNicola et al., 2020) and 

similar multivariate pattern information profiles during memory tasks (retrieval: Barnett 

et al., 2021; encoding: Ritchey et al., 2014). Cooper and colleagues (2021), for example, 

defined the nodes of the PM network using ROIs from a meta-analytic search for the term 

“episodic” in the NeuroSynth database. Cooper and colleagues (2021) then showed that 
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these regions clustered into ventral and dorsal subnetworks (see Figure 1c) based on their 

patterns of whole brain functional connectivity during a movie-watching task. They 

support this ventral/dorsal distinction by further showing that these subnetworks 

differentially respond during movie scene transitions. Evidence from clustering analyses 

on functional connectivity data similarly (Andrews-Hanna et al., 2010; Yeo et al., 2011) 

shows that the DMN can be decomposed into at least three different subnetworks – 

labeled by Yeo and colleagues (2011) as DMN “A”, “B”, and “C” (sketched in Figure 

1d). Importantly, the subnetworks of the PMN and the DMN seem to perform related but 

dissociable roles in cognition, with the more ventral subnetworks (the ventral PMN and 

DMN-C) playing a stronger role in episodic cognition and the more dorsal subnetworks 

(dorsal PMN and DMN-A) playing a stronger role in social cognition (DiNicola et al., 

2020). Interestingly, these subnetworks are highly overlapping, such that the ventral and 

dorsal PMN subnetworks are closely aligned with the DMN subnetworks C and A 

identified in other data (see Figure 1c,d). For the remainder of this dissertation, I will be 

considering the ventral and dorsal PMN and the DMN-C and DMN-A subnetworks as 

representing a parallel distinction with similar respective groupings of regions. 

Taken together, the literature just reviewed suggests that episodic memory is a 

brain wide phenomenon supported by more than just structures within the medial 

temporal lobe. What remains lacking, however, is an integrated understanding of how 

these brain regions contribute to episodic memory within the context of these larger 

networks. In Chapter 1, I report the results of an fMRI study where I explicitly test 

whether the brain regions of the default mode network make region-unique contributions 

that are independent of network-wide contributions. 
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INDIVIDUAL DIFFERENCES IN THE BRAIN 

Human brains display a remarkable amount of normativity and idiosyncrasy. All 

human brains, for example, have the same basic shape and structure. They all have folds 

in the cortex in the form of sulci and gyri; they all have four basic lobes of the cortex and 

the same subcortical structures. Human brains also display remarkable normativity in 

how the brain functions. Activation in cortical regions fluctuates in such a way that 

cortical regions form large scale brain networks that are largely consistent across 

individuals (Yeo et al., 2011); patterns of brain activation while watching movies and 

recalling events can be so consistent from individual to individual that brain patterns 

from one individual can predict patterns of brain activation in another individual while 

both individuals are watching or recalling the same event (“intersubject synchrony” Chen 

et al., 2017). On top of this normative structure, however, lies an equally remarkable 

number of individual differences in the brain’s structure and function. The size of the 

folds of the cortex, for example, can vary substantially from individual to individual (e.g., 

Im et al., 2006) and the pattern of functional connectivity of large scale neural networks 

is unique enough to each individual to allow for the identification of an individual from a 

group (i.e., a brain fingerprint Finn et al., 2015). Do individual differences in brain 

structure and function relate to individual differences in cognition? If so, which brain 

properties are related to individual differences in memory ability in healthy young adults? 

Individual differences in memory ability in healthy young adults have been 

hypothesized to be related to at least three different brain properties: gray matter volume 

of the hippocampus, the amplitude of BOLD responses during retrieval, and patterns of 

brain-wide functional connectivity. Some of the earliest studies linking individual 
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differences in memory to the brain studied the volume of the hippocampus. As reviewed 

earlier, the hippocampus has been the target of intensive study by cognitive 

neuroscientists following the discovery that hippocampal damage leads to profound cases 

of anterograde amnesia. Early studies using MRI to measure the volume of the 

hippocampus suggested that better rememberers have larger hippocampal volumes 

(Maguire et al., 2000; Mazzoni et al., 2019; Poppenk & Moscovitch, 2011). One 

influential example is a study on London taxi drivers. London Taxi drivers are required to 

memorize the dazzling complexity of London’s streets and landmarks. Maguire and 

colleagues (2000) collected structural MRI scans of a sample of London taxi drivers and 

found that London taxi drivers had larger posterior hippocampal volumes compared with 

controls. These findings, however, have been contradicted by more recent, higher 

powered studies which suggest that the relationship between hippocampal volume and 

memory ability is small to nonexistent in the healthy young adult population (Clark et al., 

2020; Van Petten, 2004). To date, it appears that although there are substantial individual 

differences in hippocampal volume it remains unclear whether these individual 

differences are related to memory ability in the healthy adult population. 

Another line of research suggests that there are substantial individual differences 

in the topology of neural activation during episodic retrieval (Donovan & Miller, 2008; 

M. B. Miller et al., 2002, 2009, 2012). As reviewed earlier, successful episodic retrieval 

is on average characterized by increased activation in a number of brain areas, including 

in the hippocampus, medial temporal lobes, posterior midline, medial prefrontal cortex, 

and lateral parietal cortex – regions that have also been associated with the default mode 

network (Buckner & DiNicola, 2019; Ritchey & Cooper, 2020). Individuals also deviate 
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from this average pattern, often substantially so. In fact, individuals often deviate so 

much from this average pattern that this average pattern often becomes a poor 

representation of the brain activation pattern of individual subjects. Patterns of activation 

during an episodic retrieval task correlate more strongly within individuals over time than 

across individuals completing the same episodic retrieval task over time (M. B. Miller et 

al., 2002). Furthermore, patterns of activation while participants complete different 

retrieval tasks are more similar than the patterns of activation of different participants 

completing the same retrieval task (M. B. Miller et al., 2009). In other words, knowing 

that a brain scan came from the same person can be much more important than knowing 

that a brain scan came from a particular task – in this case, successful episodic retrieval. 

The substantial individual variability in retrieval-related brain activation topology 

appears to be explained, in part, by individual differences in anatomy, cognitive style, 

and specific strategy used during the memory test but, importantly for the present 

purposes, not to individual differences in overall memory performance (e.g., giving 

verbal names to non-verbal content, M. B. Miller et al., 2012). Taken together, this line of 

research highlights the need to account for individual differences when studying the 

neural correlates of episodic memory. 

Measures of intrinsic functional connectivity, often obtained from resting-state 

scans that do not include an explicit cognitive task, have been widely used to study 

individual differences in cognition and are a strong candidate for explaining individual 

differences in memory ability. Studies of the resting-state have found that there is a 

normative pattern of functional connections in the brain, such that brain regions form 

stable networks (between 7-17, Yeo et al., 2011). Recent work suggests that the majority 
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of variability in the strength of these connections is attributable to stable individual 

differences away from this group-level pattern (as opposed to variation attributable to 

cognitive task or day-to-day variation (Gratton et al., 2018). Furthermore, the strength of 

intrinsic connections has been shown to be predictive of a number of different behavioral 

phenotypes including neuroticism and extraversion (Hsu et al., 2018), trait-level anxiety 

(Z. Wang et al., 2021), fluid intelligence (Finn et al., 2015), creativity (Beaty et al., 

2018), sustained attention (Rosenberg et al., 2016), and working memory ability (Avery 

et al., 2020). Patterns within the intrinsic functional connectome are so identifiable that 

they can be used to identify an individual from a group, acting a sort of “brain 

fingerprint” (Finn et al., 2015). Thus, it seems reasonable to hypothesize that individual 

differences in intrinsic functional connectivity would be related to episodic memory 

ability. 

Prior studies examining the relationship between functional connectivity and 

individual differences in memory have largely focused on the functional connectivity of 

the hippocampus due to its important role in memory function (Corkin, 2002; Riedel et 

al., 1999). These studies have generally found that increased hippocampal functional 

connectivity is associated with better memory ability, including its bilateral functional 

connectivity (L. Wang, Negreira, et al., 2010) and its functional connectivity with cortical 

areas such as the lateral occipital cortex (Tambini et al., 2010) and the posterior medial 

cortex (Touroutoglou et al., 2015; L. Wang, LaViolette, et al., 2010). This positive 

relationship between hippocampal connectivity and memory ability can be interpreted as 

reflecting greater responsiveness of the hippocampus to time-varying signals across the 

brain in individuals with better memory, or conversely, disruption in hippocampal 
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communication in individuals with worse memory. More recent experiments have looked 

at the relationship between memory and functional connectivity using larger samples 

(specifically of the hippocampus; Przeździk et al., 2019), incorporating a broader set of 

brain regions (Sneve et al., 2017; van Buuren et al., 2019), or both (King et al., 2015; Lin 

et al., 2021). These studies suggest that there is a complex, distributed pattern of whole 

brain functional connectivity that is related to individual differences in episodic memory 

ability, but the exact nature of this relationship has varied from study to study. Some 

studies have shown that intrinsic functional connectivity calculated during a resting-state 

scan is related to episodic memory ability, but with contrasting results (Sneve et al., 

2017; van Buuren et al., 2019). Some studies suggests that superior rememberers have 

default mode networks that are decoupled with perceptual regions of the brain (Sneve et 

al., 2017), whereas others suggest that superior rememberers are characterized by 

increased connectivity within the ventral default mode network and strong connectivity 

between the dorsal default mode network and the frontal-parietal control network (van 

Buuren et al., 2019). Still other studies suggest that functional connectivity calculated 

during a task is particularly important for predicting episodic memory ability (King et al., 

2015; Lin et al., 2021). One study suggests that regions commonly associated with 

episodic memory, including many regions in the default mode network, increase in their 

connectivity with each other and the rest of the brain in better rememberers (King et al., 

2015). Another study showed a similar pattern of results, but makes the additional note 

that functional connectivity limited to regions classically linked to episodic remembering 

were useful but not sufficient for predicting episodic memory ability (Lin et al., 2021). 
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Many of just reviewed studies, however, are underpowered, both in terms of the 

number of participants collected (Marek et al., 2022) and in terms of the amount of data 

collected per participant (Anderson et al., 2011; Gordon, Laumann, Gilmore, et al., 2017; 

Laumann et al., 2015). It has been recently demonstrated that brain-wide association 

studies require thousands of participants to achieve acceptable amounts of power (Marek 

et al., 2022), though this problem is mitigated by using a region of interest-based 

approach to reduce the number of comparisons or by focusing on multivariate patterns 

within the connectome. Functional connectivity studies may additionally benefit from 

more data being collected per participant, as it has been shown that at least 30 minutes of 

high quality MRI data is required to achieve good levels of reliability of the functional 

connectome (i.e., r > 0.85; Gordon and colleagues (2017)). This is important because the 

reliability of a measurement places a key constraint on the measurable effect size of the 

correlation between two constructs of interest (e.g., functional connectivity and 

behavior). Most existing studies relating functional connectivity to memory ability have 

typically used data from one MRI scan, often comprising 6-8 minutes of data. In Chapter 

2 of my dissertation, I report the results of an analysis where I build and improve upon 

previous work by utilizing an openly available fMRI dataset that contains data from 

hundreds of individuals completing many different MRI scans. 

INDIVIDUAL DIFFERENCES IN MEMORY ABILITY 

The cognitive neuroscience literature investigating individual differences in 

memory often assumes that memory ability is a unidimensional phenomenon – you are 

either a “good” rememberer or a “poor” rememberer. As a result, cognitive 
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neuroscientists often operationalize memory ability by observing how well participants 

perform on a single memory test. But is this all there is to say about individual 

differences in episodic memory ability? Do some people simply have better memory than 

others? Or can people differ in other, more nuanced ways? What does the psychometric 

literature say about how individual differences in memory ability are organized? 

Psychologists have long been interested in individual differences in memory 

ability. Indeed, some of the pioneering researchers in the study of mnemonic processes 

noted the extent to which individuals differed in their memory ability (Ebbinghaus, 

1885/1964). Many laboratory studies that sought to examine individual differences in 

memory ability have taken an exploratory approach, electing to administer extensive 

batteries of memory tests in order to measure people’s long-term memory ability (Malmi 

et al., 1979; Nyberg, 1994; Underwood et al., 1978; Unsworth, 2010; Unsworth & 

Brewer, 2009, 2010). In one of the most extensive reviews on the literature studying 

individual differences in long-term memory ability to date, Unsworth (2019) performed a 

best-evidence synthesis of decades of psychometric research on memory ability. 

Unsworth (2019) examined 5 previously published datasets that, in the author’s opinion, 

constituted the “best evidence” for examining the structure of individual differences in 

memory ability. Unsworth (2019) concluded that a model that organizes memory ability 

based on an overall memory ability subsumed by underlying memory test specific 

abilities was the best fit for the available data. In other words, Unsworth (2019) argues 

that individuals have an overall memory capacity whereby one person may have a better 

memory than another across different types of memory tests. Unsworth (2019) also 

argues that individuals also have specific capacities to perform on specific types of 
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memory tests. For example, Mary and Paul might have a similar overall memory 

capacity, but Mary might be better at a word-list free recall test than Paul, whereas Paul 

might be better at recognizing previously encountered faces than Mary. One oversight of 

the type of model suggested by Unsworth (2019) is that this model does not account for 

the underlying cognitive processes that underlie performance on different episodic 

memory tests. For example, presumably people do not have an “ability to freely recall 

words” but an underlying ability to implement a cognitive strategy that is particularly 

effective in that task. In support of this idea, Ngo and colleagues (2021) collected data 

that suggests that individuals systematically differ on their ability to perform two 

fundamental cognitive computations that underlie our long-term memory ability – the 

ability to “pattern separate” and our ability to “pattern complete”. A pattern separation 

ability refers to the ability to distinguish two highly similar representations in memory 

whereas a pattern completion ability is the ability to link disparate elements of an event 

together into a singular, coherent whole. 

Psychological research on individual differences in memory has also examined 

how individuals differ in recalling their autobiographical memories. In a review of 

individual differences in autobiographical memory, Palombo and colleagues (2018) 

focused specifically on two extreme cases of autobiographical memory ability: highly 

superior autobiographical memory (HSAM) and severely deficient autobiographical 

memory (SDAM). Both syndromes fall at the extremes in terms of the level of detail of 

people’s autobiographical memories. Individuals with HSAM can remember remote days 

from their lives in an extraordinary amount of detail, whereas individuals with SDAM are 

unable to vividly recollect events from their lives. Importantly, individuals with HSAM 
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and SDAM perform similar to controls on laboratory tests of their memory and other 

cognitive abilities, suggesting that their syndrome is specific to autobiographical 

memory. Palombo and colleagues (2018) suggest research on individual differences in 

autobiographical memory outside of these extreme cases is limited, but offer three 

component processes on which individuals in the less extreme ends of population may 

differ: their visual imagery ability, their amount of self-awareness or self-consciousness, 

and their ability to process affective (i.e., emotional) information. 

What is clear from the literature is that individuals differ on more than just a 

single memory continuum. What is interesting is that almost all of the research to date 

has not integrated an individual differences approach with what is known about the 

underlying neural architecture that underlies our episodic memory ability. And yet 

biological substrates should shape how individuals differ. Chapter 3 of my dissertation 

seeks to fill this gap in the literature by testing a neuroscience inspired hypothesis on how 

individuals differ in their memory ability, based on what is known about the organization 

of cortical networks involved in memory. 

CURRENT DIRECTIONS 

The aims of the present dissertation are threefold. In Chapter 1, I aim to examine 

the relationship between regional and network-level contributions to episodic memory. 

The study of episodic memory has traditionally taken either a region-focused approach 

(e.g., how does damage to the hippocampus affect memory?) or a network-focused 

approach (i.e., functional communication increases between which brain regions in 

support of memory?), but much less is known about how these network accounts relate to 
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prior work on individual regional contributions. In Chapter 1 I reexamine a previously 

published dataset from my laboratory and use a structural equation model (SEM) to 

simultaneously capture region-specific and network-common contributions to successful 

episodic retrieval. In Chapter 2, I aim to investigate the relationship between individual 

differences in memory ability and intrinsic measures of functional brain connectivity. 

Because past research has typically not been well-powered to examine this question, here 

I examine an openly available dataset that contains data from a relatively large number of 

subjects and contains multiple fMRI scans. In Chapter 3, I aim to test a multidimensional 

hypothesis on the organization of individual differences in memory ability. Research on 

individual differences in memory ability has been performed by both cognitive 

neuroscientists and psychologists, but our understanding of the organization of individual 

differences in memory ability has not incorporated our understanding of how the brain is 

organized. In Chapter 3, I collect data on a novel behavioral paradigm designed to test a 

neuroscience inspired multidimensional hypothesis on how individuals differ in their 

memory ability.
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CHAPTER 1 

1.1 OVERVIEW 

As reviewed in the Introduction, there is a core set of brain regions that are 

reliably engaged in recollection and other forms of episodic construction, including the 

hippocampus, parahippocampal cortex, the retrosplenial cortex, the posterior cingulate 

cortex, the precuneus, the angular gyrus, and the medial prefrontal cortex. Exactly how 

this network supports episodic construction, however, remains unclear. Past research 

suggests that there are both regional- and network-level contributions of the PM network 

to episodic recollection. For instance, the hippocampus has long been known to be 

essential for episodic memory (Corkin, 2002; e.g., Riedel et al., 1999). Using 

neuroimaging to look beyond the hippocampus, however, it is apparent that the rest of the 

PM network is also reliably engaged during recollection (H. Kim, 2013; Rugg & Vilberg, 

2013; Spaniol et al., 2009). These regions are robustly structurally and functionally 

connected with the hippocampus, supporting the idea that they constitute an integrated 

functional network, yet how this network-level involvement relates to their individual 

functions remains an open question. Here, we use multilevel structural equation modeling 

(SEM) to examine heterogeneity in the function of the PM network during an episodic 

retrieval task. Specifically, we investigated the subnetwork architecture of the PM 

network, as well as the contributions of individual PM regions to predicting memory 

outcomes. 
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A great deal of research has focused on the roles of individual brain regions in 

supporting episodic construction, delineating specific roles for the hippocampus, angular 

gyrus, and other regions of the PM network (Ritchey & Cooper, 2020). The 

hippocampus, for example, is posited to support the binding together of contextual details 

in memory (Davachi, 2006; Diana et al., 2007; Eichenbaum et al., 2007) and is thought to 

perform a pattern completion function in which partial representations evoked by 

memory cues are “completed” by reinstating related information stored in memory 

(Horner et al., 2015; Marr, 1971; Norman & O’Reilly, 2003). The angular gyrus, on the 

other hand, is thought to support the representation of multimodal episodic details 

brought to mind during recollection (Humphreys et al., 2021; Ramanan et al., 2018; Rugg 

& King, 2018). Some fMRI studies have directly tested for cognitive and temporal 

dissociations among the regions of the PM network, finding evidence for functional 

specialization in the context of both episodic memory (Richter et al., 2016; Vilberg & 

Rugg, 2012, 2014) and imagination (Thakral et al., 2020). For example, Richter et al. 

(2016) used fMRI to identify brain activity that tracked the success, precision, and 

subjective vividness of episodic recollection. The authors modeled these measures jointly 

and found that the hippocampus uniquely tracked whether retrieval was successful, the 

angular gyrus uniquely tracked the precision of remembered information, and the 

precuneus uniquely tracked subjective memory vividness. These findings suggest that 

individual regions of the PM network make distinct contributions to the recollection 

process. 

Prior research has made it clear that activity in default mode network regions is 

related to memory and to one another, but it remains unclear whether their contributions 
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to memory are regionally specific or shared across the network. In other words, do any 

regions of the network make contributions to episodic recollection that go above and 

beyond those of the other regions of the network? Or can episodic recollection be better 

thought of as arising from joint coactivation of the network and it is this network wide 

coactivation that is contributing to episodic recollection? Structural equation modeling 

(SEM) is a well suited tool for delineating regional and network-level contributions to 

behavior (Bolt et al., 2018), allowing for the capturing of common, distributed, network-

level contributions by estimating latent variables that capture the covariance amongst 

regions of a network. Structural models can then estimate the statistical dependency 

between these network latent variables and some behavioral variable while also 

estimating the regional-specific effect of each of the regions, statistically controlling for 

their membership within larger networks. For instance, Bolt and colleagues (2018) used 

SEM to parse the unique contributions of the right dorsolateral prefrontal cortex to 

cognitive control from those of the larger frontoparietal control network, showing that the 

unit of behavioral significance for many common cognitive control tasks was not the 

right dorsolateral prefrontal cortex, but the shared contributions of the frontoparietal 

control network. This approach differs from common applications of SEM to study 

functional interactions supporting cognition (see McIntosh & Protzner, 2012 for a 

review), which in the context of episodic memory, have largely focused on building 

models of the effective connectivity among brain regions (Addis et al., 2010; Iidaka et al., 

2006; McCormick et al., 2010, 2015; Rajah & McIntosh, 2005; Rosenbaum et al., 2010). 

For instance, past work taking this approach has shown that episodic retrieval involves 

increased communication among left frontal and parietal regions (Iidaka et al., 2006) as 
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well as between the hippocampus and regions in the frontal lobes (McCormick et al., 

2010, 2015) and sensory cortex (McCormick et al., 2015). Here, rather than focusing on 

interactions among brain regions, I report a published study (Kurkela et al., 2022b) that 

applied SEM to estimate the specific regional and common network contributions to 

episodic remembering within a single statistical model. 

Taken together, the literature suggests that the regions of the PM network perform 

dissociable yet interrelated functions and, as a result, make separable contributions to the 

recollection process. It remains unclear, however, exactly how to combine the findings 

from experiments taking region-focused approaches and network-focused approaches—

highlighting the need for an approach that can simultaneously consider network-wide and 

region-specific contributions to episodic retrieval. The present study uses SEM to model 

heterogeneity of function of the PM network. We sought to model two key aspects of 

functional heterogeneity within the network: that larger networks fracture into related 

subnetworks and that regions of the network make extra network contributions to 

cognition. To this end, I first compared a single network model to a two related 

subnetworks model, motivated by previous evidence for dissociable ventral and dorsal 

PM subnetworks that exhibit distinct patterns of functional connectivity during movie-

watching (Cooper et al., 2021b). Next, I modeled region-specific contributions to 

behavior, controlling for network-level effects (c.f., Bolt et al., 2018), to determine 

whether any regions acted outside of their networks in support of episodic recollection. 
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1.2 METHODS 

1.2.1 Experiment 

1.2.1.1 Participants 

Twenty-eight participants from Cooper & Ritchey (2019) were included in the 

final set of analyses after excluding participants who did not complete the study or who 

had inadequate memory performance (see Cooper & Ritchey, 2019). Participants were 

selected such that they were between the ages of 18 and 35 (M = 21.82, SD = 3.57, 16 

females, 12 males) and had no history of neurological or psychiatric illness. Participants’ 

self-reported ethnicity was as follows: Not Hispanic or Latino (n = 22) and Hispanic or 

Latino (n = 6). Race was self-reported as White (n = 18), Asian (n = 3), More Than One 

Race (n = 3), Black or African American (n = 2), Other (n = 1), with one participant 

electing not to report their race (n = 1). Participants reported an average years of 

education of M = 15.2 years (SD = 1.67). Informed consent was obtained from all 

participants prior to the experiment and participants were reimbursed for their time. All 

procedures were approved by the Boston College Institutional Review Board. 

With respect to statistical power, our analyses focused on trial-to-trial variability 

in brain activity and memory outcomes. Our dataset had a total of 3888 trials nested 

within 28 subjects (22 subjects contributing 144 trials; 6 subjects contributing 120 trials – 

see Cooper & Ritchey 2019). Wolf and colleagues (2013) ran a series of Monte Carlo 

simulations to determine the minimum sample size required to achieve SEMs that had at 

least 80% power to detect nonzero parameters with an alpha = 0.05. To determine if our 

models were sufficiently powered, we compared the number of observations that we had 
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at the within subject, across trial level (i.e., 3888 observations) to the most conservative 

recommendations made for achieving adequate power in the Wolf simulations, which 

argue for 460 observations. However, we note that, unlike our study, the Wolf 

simulations did not use a multilevel model and they did not use categorical variables. 

There does not currently exist any published recommendations for the required N to 

achieve sufficient power using the type of multilevel SEM that we use in this manuscript. 

In the absence of alternative recommendations, we argue that our models are likely to be 

sufficiently powered given that our number of observations at the within subjects, across 

trials level far exceeds the most conservative recommendations made by Wolf and 

colleagues (2013). Although we have sufficient power to model trial-to-trial variability in 

this dataset, we remain underpowered to model between-subjects variability, and thus we 

refrain from interpreting any existing subject-to-subject variability in our analyses. 

1.2.1.2 Materials 

Memoranda consisted of 144 unique events that were constructed using a 

combination of 144 episode-unique object stimuli from Brady and colleagues (2013), 6 

panoramic scenes from the SUN 360 database (Xiao et al., 2012), and 12 sounds from the 

International Affective Digitized Sounds (IADS) database (Bradley & Lang, 2007). The 

grayscale object images were altered such that they took on 1 of 120 unique colors taken 

from the equally spaced positions in CIELAB color space. In a similar manner, the 360-

degree panoramic background images were transformed into 120 equally spaced 100° 

field of view images taken at regular intervals around the panorama. Events consisted of 

the simultaneous presentation of the colored object on top of a randomly chosen view 

from the panorama coupled with the presentation of one of the affective sounds. 
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Participants were encouraged to integrate the three features together into a single 

meaningful event. For example, a red radio could be placed on top of a beach scene with 

a view of the ocean while the sound of a woman screaming played in the background. 

See Cooper & Ritchey (2019) for further information. 

1.2.1.3 Procedure 

Participants completed six interleaved encoding and retrieval phases while 

undergoing MRI scanning (see Cooper & Ritchey, 2019). To summarize, during scanned 

encoding phases participants were told that they would encounter 24 events consisting of 

a foreground object, a background scene, and an emotionally evocative sound. 

Participants were asked to remember each of the events in as much detail as possible, 

with explicit instructions to try and remember the color of the foreground object, the 

position of the object within the background scene, and the emotional valence of the 

sound. During scanned retrieval phases, participants were tested on their ability to 

reconstruct episode features from memory. At the beginning of each retrieval trial, 

participants were shown grayscale versions of the object stimuli from the previous 

encoding phase. During this remember period, participants were asked to bring to mind 

the cued episode in as much detail as possible. Immediately after the remember period, 

participants were asked to report the emotional valence of the episode’s sound using a 

confidence scale. The confidence scale asked participants to identify their response to the 

emotional valence question as either with high confidence or with low confidence. After 

reporting the sound’s valence, participants were asked to report the quality of their 

memory for the remaining two features in a counterbalanced order. Specifically, 

participants were presented with the object image in a random color on top of a random 
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view from the correct background scene. Participants were instructed to reconstruct the 

color of the target image using an interactive 360-degree color wheel and to position the 

object within the background scene using a similar interactive 360-degree panoramic 

scale. 

1.2.1.4 FMRI data acquisition 

MRI scanning was performed at the Harvard Center for Brain Science using a 3T 

Siemens Prisma MRI scanner with a 32-channel head coil. Structural MRI images were 

collected using a T-1 weighted multiecho MPRAGE protocol with a field of view = 256 

mm, 1 mm isotropic voxels, 176 sagittal slices with an interleaved acquisition, TR = 2530 

ms, TE = 1.69/3.55/5.41/7.27 ms, flip angle = 7 degrees, phase encoding from anterior-

posterior, parallel imaging = GRAPPA, and an acceleration factor of 2. Functional 

images were acquired using a whole brain multiband echo-planar imaging sequence with 

a field of view of 208 mm, 2 mm isotropic voxels, 69 slices at T > C -25.0 with 

interleaved acquisition, TR = 1500 ms, TE = 28 ms, flip angle = 75 degrees, anterior-

posterior phase encoding, parallel imaging with GRAPPA, and an acceleration factor of 

2. A total of 6 scan runs were collected, each of which consisted of 466 TRs. 

1.2.2 Analyses 

1.2.2.1 Behavioral Data 

Behavioral data from the dataset consisted of trialwise error values measured in 

degrees for the object color and scene position features and of binary data (i.e., 1: correct; 

0: incorrect) for the sound valence feature (i.e., collapsed across confidence). For 
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consistency across behavioral measures, we transformed the object color and scene 

position measures into binary measures representing whether a response was correct (1) 

or incorrect (0), like what we have done previously (see Cooper & Ritchey, 2019). This 

was done by taking any trial with an error smaller than the accuracy threshold (see 

below) and giving it a score of 1 and taking any trial with an error greater than the 

accuracy threshold and giving it a score of 0. Descriptive statistics of our behavioral 

variables are detailed in Table 1. 

The accuracy threshold was determined by fitting two probability density 

functions to group aggregate data within a mixture modeling framework and is described 

in detail in Cooper and Ritchey (2019). In brief, Cooper and Ritchey (2019) estimated 

(for the color and scene features separately) the probability that each error resulted from 

the von Mises as opposed to the uniform distribution. Errors that had less than a 50% 

chance of fitting the von Mises distribution were labeled as incorrect. This analysis 

resulted in a threshold of +/- 57 degrees for the object color feature and +/- 30 degrees for 

the scene position feature and served as our threshold for labeling a response as “correct” 

or “incorrect”. 

1.2.2.2 MRI Preprocessing 

All preprocessing of the MRI data was performed using FMRIPrep v1.0.3 

(Esteban et al., 2019). Data were preprocessed using the same steps as in Cooper & 

Ritchey (2019). First, each T1w volume was corrected for intensity non uniformity and 

skull stripped. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical template 

version 2009c was performed through nonlinear registration, using brain-extracted 

versions of both the T1w volume and template. All analyses reported here use structural 
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and functional data in MNI space. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM), and gray-matter (GM) was performed on the brain-extracted T1w 

image. Functional data was slice time corrected, motion corrected, and corrected for field 

distortion. This was followed by co-registration to the corresponding T1w using 

boundary-based registration with 9 degrees of freedom. Physiological noise regressors 

were extracted using CompCor. A mask to exclude signals with cortical origin was 

obtained by eroding the brain mask, ensuring it only contained subcortical structures. Six 

aCompCor components were calculated within the intersection of the subcortical mask 

and the union of CSF and WM masks calculated in T1w space, after their projection to 

the native space of each functional run. Framewise displacement was also calculated for 

each functional run. No smoothing of the data was performed. For further details of the 

pipeline please refer to the online documentation: 

https://fmriprep.readthedocs.io/en/1.0.3/index.html. Entire scan runs were excluded from 

further analysis if more than 20% of frames had a framewise displacement exceeding 

0.3mm. Spike regressors were additionally created and added to our trialwise models 

(detailed below) by flagging all frames that had a framewise displacement greater than 

0.6mm. In total, 6 subjects had a single scan run excluded from further analysis due to 

excessive motion. 

1.2.2.3 Trialwise Response Estimates 

To estimate trialwise response estimates, we used a multi-model approach 

proposed by Mumford and colleagues (2012) and implemented in SPM12 

(https://www.fil.ion.ucl.ac.uk/spm/) using in house MATLAB 

(https://www.mathworks.com/products/matlab.html) scripts. In this approach, a separate 
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general linear model (GLM) is built to estimate the amplitude of the BOLD response for 

each trial by modeling the response for each trial using its own dedicated regressor and 

modeling all other trials as a separate regressor (including the following nuisance 

regressors: translation in the x, y, and z dimensions; rotation in pitch, roll, and yaw; the 

first 5 principal component from aCompCorr, framewise displacement, and spike 

regressors censoring high motion frames). In total, 3888 GLMs were constructed – one 

for each trial in our dataset. Encoding and retrieval phases for our experiment were 

interleaved, such that each scan run had 24 encoding trials followed by 24 retrieval trials. 

The GLMs for the current study were restricted to TRs encompassing the retrieval trials 

from Cooper and Ritchey (2019), i.e., excluding the encoding trials. Each retrieval trial 

was modeled by convolving SPM12’s hemodynamic response function with a stick 

function placed at the onset of the remember period of each retrieval trial. The statistic 

used as our estimate of the BOLD response was the t-statistic for the regressor 

corresponding to each individual trial. The t-statistic provides a more sensitive measure 

than beta values when searching for information within the brain (Misaki et al., 2010) and 

downweighs noisy voxels, allowing them to have a smaller influence on results. Trialwise 

response estimates were extracted from our regions of interest (ROIs) averaged within 

each ROI and submitted to further analysis. 

1.2.2.4 ROIs 

The ROIs for the present analysis are the same ones used in a previous study from 

our lab investigating interactions among PM regions (Cooper et al., 2021a). The ROIs 

were created using a combination of cortical ROIs from the ‘Default A’ and ‘Default C’ 

subnetworks from the Schaefer Atlas (Schaefer et al., 2018) and a hippocampal ROI from 



29 

a probabilistic parcellation (Ritchey et al., 2015). These anatomical ROIs were combined 

with a meta-analytic map generated using Neurosynth (Yarkoni et al., 2011) using the 

search term “episodic”. Functional peaks from this map within regions of the PM 

network were selected and ROIs were drawn around these peaks such that they were of 

equal size and each contained 100 contiguous voxels. These ROIs were additionally 

constrained to the left hemisphere because cortical memory retrieval effects are often 

found to be strongest in the left hemisphere of the brain, which was also evident in the 

meta-analytic map used to create the ROIs. The final set of ROIs included the posterior 

hippocampus (pHipp), the parahippocampal cortex (PHC), the retrosplenial cortex (RSC), 

the precuneus (Prec), posterior cingulate cortex (PCC), posterior angular gyrus (pAG), 

anterior angular gyrus (aAG), and the medial prefrontal cortex (MPFC). We previously 

examined the functional connectivity of these ROIs in an independent dataset (Cooper et 

al., 2021a). In a community detection analysis, we found evidence for subnetwork 

organization of the PM network, including a ventral PM subnetwork including RSC, 

PHC, and pAG and a dorsal PM subnetwork including the MPFC, pHipp, Prec, PCC, and 

aAG. Although there exist multiple possible subnetwork organizations of the PM 

network, we were motivated by these previous findings to examine a ventral-dorsal 

subnetwork architecture. We additionally note that this subnetwork grouping appears to 

align with correlations among the ROIs observed in the current dataset (see Table 1). 

1.2.2.5 Multilevel Structural Equation Modeling 

The present study took a multilevel structural equation modeling (SEM) approach 

to investigate functional heterogeneity in the PM network. Multilevel SEM allows for the 

estimation of latent constructs and for modeling of structural paths amongst those latent 
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constructs in datasets that have a nested structure. This approach is optimal for the 

current dataset that contains observations of ROI activity across trials that are nested 

within subjects. In our data, trials are the level-1 units and subjects are the level-2 units. 

Because of the nested structure, the data have two sources of variation: one due to the 

difference between trials within subjects and the other due to the difference between 

subjects. For the neural data, the former represents where the BOLD response estimate 

(i.e., the t value) is relative to that subject’s own average across all trials and the latter 

represents where each subject’s average t value compared to other subjects' average t 

values. Our primary interest was in modeling within-subject, trial-to-trial variability. The 

between-subject variability in the neural data could represent meaningful differences in 

individual characteristics, but we did not have a-priori hypotheses about these individual 

differences in the present sample. Therefore, in the multilevel model for the neural data 

(see below), the between-subject model is specified only so that this source of variability 

is accounted for and therefore the statistical validity of the within-subject model is not 

compromised. For the behavioral data, the two sources of variation represent differences 

in overall memory quality on a trial-to-trial basis and differences in overall accuracy 

across trials on a subject-to-subject basis. 

All modeling was performed using Mplus software version 8.2 (Muthén & 

Muthén, 1997-2017). Models were determined to have acceptable levels of model fit if 

they displayed the following fit indices: root mean squared error of approximation 

(RMSEA) < .06, comparative fit index (CFI) > .95, and a standardized root mean squared 

residual (SRMR) < .08 (Hu & Bentler, 1999). For SRMR, a separate index was 

calculated for the within cluster (i.e., within subject) and between cluster (i.e., between 
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subject) levels. I also report two information criterion per model to assist with model 

selection: Akaike information criterion (AIC) and the Bayesian information criterion 

(BIC). These criteria indicate the relative quality of model fit between candidate models.  

The model with the smaller AIC/BIC value indicates a better fitting model. The models 

were estimated using the MLR (maximum likelihood with robust standard errors) and the 

WLSMV (weighted least squares means and variances adjusted) estimators in Mplus. The 

cutoff values cited above are ones that are commonly applied in the SEM literature. We 

note that these values were originally determined based on simulations of SEMs on 

continuous variables estimated using a maximum likelihood estimator, whereas our 

behavioral data contains binary variables and all of our models that contain the 

behavioral variables use the WLSMV estimator. A recently published report by Xia and 

Yang (2019) suggests that models fit on categorical data using an estimator similar to 

MPlus’ WLSMV estimator may be overly optimistic when using traditional fit index 

cutoffs. In the absence of alternative model fit thresholds, we interpret our results with 

respect to traditional model fit index thresholds. We do, however, use caution and 

carefully examine all statistics available to make a judgment with respect to model fit. 

For a summary of all of the models fit in the current manuscript, see Supplemental 

Table 1. 

1.2.2.5.1 Preliminary Analyses 

Prior to performing our multilevel SEM analysis, we verified the necessity of a 

multilevel analysis by calculating intraclass correlations (ICCs) for each of our variables 

of interest and by fitting a “null” model designed to test if there is any structure in the 

between-subjects covariance matrix (see Jak et al., 2013). The ICC is a statistic that 



32 

reflects the proportion of variance of a variable that can be attributed to individual 

differences amongst our subjects. Datasets that contain variables that have ICCs close to 

0 will not see an additional benefit from multilevel modeling. In the null model, a 

saturated (i.e., a model that estimates parameters for all possible variances and 

covariances amongst variables) was specified for the within-subject covariance structure, 

and a null model in which all the variances and covariances are constrained to be zero 

was specified for the between-subject covariance structure. If this model fails to 

satisfactorily fit the data, it suggests that the between-subject variances need to be 

allowed in the model and therefore calls for a two-level model. If the ICCs are greater 

than 0.1 or the null model fits the data poorly, we will conclude that multilevel modeling 

is required for our dataset. 

1.2.2.5.2 Measurement Models 

After verifying the necessity of multilevel modeling, we examined the 

measurement structure underlying our eight ROIs. We tested two measurement models: a 

single-factor model for the integrated PM network hypothesis and a two-factor model for 

the two subnetworks hypothesis. In the single-factor model, the eight PM network 

regions loaded onto a single latent factor at the within-subject level. We did not impose 

any restriction at the between-subject level because we did not have a-priori hypotheses 

about the nature of the between-subject variability in neural data. In the two-factor 

model, RSC, PHC, and pAG loaded on one factor representing the ventral posterior 

medial network (vPMN), and MPFC, pHipp, Prec, PCC, and aAG loaded on the other 

factor representing the dorsal posterior medial network (dPMN) (see Figure 2). Again, 
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we did not impose any restriction at the between-subject level. For the measurement 

models for neural data, the MLR estimator was used. 

We next fit a two-level categorical factor model to the behavioral data. This 

model contained a single latent factor that loaded onto each of our memory measures 

(i.e., scene position memory, object color memory, and sound valence memory). We 

placed restrictions on this model such that it had cross-level metric invariance – the factor 

loadings for level 1 (i.e., within-subjects, across trials) of the model were set equal to the 

corresponding factor loadings for level 2 (i.e., between-subjects, across subjects) of the 

model. These restrictions were placed on the model for two reasons. First, the cross-level 

metric invariance model facilitates the interpretation of the latent construct at both levels 

as being the within-subjects and between-subjects components of the same underlying 

construct. In this context, the level 1 latent variable represents overall memory for each 

episode whereas the level 2 latent variable represents participant’s overall memory 

ability. Second, the cross-level metric invariance model limits the number of free 

parameters in the model, avoiding possible estimation problems common to 

overparameterized models (see Jak, 2019). Because the behavioral variables were binary, 

the WLSVM estimator in MPLUS was used to estimate this model. This behavioral 

model with cross-level metric invariance was then stitched together with the neural model 

to form our final measurement model. 

1.2.2.5.3 Structural Models 

After establishing good-fitting measurement models, the neural and behavioral 

models were stitched together to form a single model (see Figure 2). We subsequently fit 

a series of models to the data to quantify the contribution of the PM network (or PM 
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subnetworks) to memory quality and whether any of the regions made a region-specific 

contribution to memory quality over and above their network (or subnetwork) 

contribution. For these models, the WLSMV estimator was used. The baseline structural 

model contained a structural path from the PM Network (or PM subnetworks) latent 

variable(s) to the memory quality latent variable at the within-subjects level. After fitting 

the baseline model, a series of models were fit to test for region-specific contributions 

(i.e., one at a time). Each of these models included an additional structural path from the 

region to memory quality. This direct path reflects the predictive effect of the region after 

accounting for its participation in the network (or subnetwork). In a secondary set of 

analyses, we examined paths between the neural variables and memory outcomes for 

each individual event feature, allowing memory features to covary but removing the 

latent variable for overall memory quality. 
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mean sd min max ICC Correlations 

   
RSC PHC pAG aAG pHipp Prec PCC MPFC SCENE COLOR 

RSC 0.049 0.170 -0.567 0.808 0.138 
    

PHC -0.028 0.181 -0.763 1.048 0.155 0.324 
    

pAG -0.007 0.315 -1.292 1.232 0.138 0.296 0.330 
    

aAG 0.188 0.352 -1.346 1.648 0.184 0.296 0.119 0.295 
    

pHipp 0.077 0.156 -0.614 1.182 0.022 0.191 0.184 0.135 0.276 
    

Prec 0.116 0.215 -0.923 0.971 0.123 0.326 0.265 0.247 0.356 0.285 
   

PCC 0.144 0.218 -0.614 1.044 0.142 0.282 0.173 0.189 0.418 0.283 0.410 
   

MPFC 0.135 0.279 -1.176 1.308 0.036 0.162 0.101 0.066 0.342 0.285 0.282 0.402 
   

SCENE 0.675 0.468 0.000 1.000 0.205 0.194 0.130 0.086 0.050 0.051 0.094 0.055 -0.026 
  

COLOR 0.724 0.447 0.000 1.000 0.135 0.070 0.046 0.024 0.046 0.032 0.081 0.061 -0.033 0.251 
 

SOUND 0.758 0.429 0.000 1.000 0.118 0.091 0.070 0.034 0.039 0.066 0.099 0.078 0.021 0.229 0.170 

Table 1: Descriptive Statistics for Variables of Interest. Neural measures (RSC-MPFC) are the mean t-value across all voxels within that ROI from the single-
trial estimation step. Behavioral measures (SCENE, COLOR, SOUND) are binary, coded such that 1 = correct and 0 = incorrect. Correlations between neural 
measures are Pearson’s Correlation Coefficients. Correlations between the behavioral and neural variables are Point-Biserial Correlations Coefficients. All 
descriptive statistics, excluding the ICCs, were calculated ignoring the nested structure. Correlation values are highlighted such that greens indicate positive 
values and reds indicate negative values. pHipp = posterior hippocampus, Prec = precuneus, PCC = posterior cingulate cortex, MPFC = medial prefrontal cortex, 
PHC = parahippocampal cortex, RSC = retrosplenial cortex, aAG = anterior angular gyrus, pAG = posterior angular gyrus, SCENE = Scene Position Correct, 
COLOR = Object Color Correct, SOUND = Sound Valence Correct, sd = standard deviation, ICC = interclass correlation coefficient.
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1.3 RESULTS 

1.3.1 Preliminary Analyses 

The ICCs were larger than 0.1 for the neural measures, except for pHipp whose ICC was 

.022 and MPFC whose ICC was .036. The null model for the neural data did not fit the data well 

(Model 1: 𝝌2 = 2951.578, df = 36, p < .001, RMSEA = 0.144, CFI = 0.000, SRMRwithin = 0.047, 

SRMRbetween= 0.352, AIC = -10496.752, BIC = -10221.064). Thus, we concluded that multilevel 

modeling was appropriate for our neural data. For the behavioral measures, the ICCs ranged 

from .118 to .205, indicating that about 10 to 20% of the variance in the memory measures are 

due to between-subjects differences. The null model resulted in adequate fit to the data (Model 2: 

𝝌2 = 20.882, df = 6, p < .01, RMSEA = 0.025, CFI = 0.958, SRMRwithin = 0.000, SRMRbetween= 

0.634). However, the fit statistics for the behavioral null model were obtained with the WLSMV 

estimator (because the behavioral memory measures were binary) and applying the same criteria 

for the WLSMV fit statistics have been shown to be less sensitive to discover model-data misfit 

(Xia & Yang, 2019). Thus, considering the large ICC values and the limitation in the 

performance of the WLSMV fit statistics, we concluded that adopting a multilevel model was 

also appropriate for the behavioral data. 

1.3.2 Measurement Models 

The one factor model for the neural data resulted in the following fit statistics (Model 3: 

𝝌2 = 290.442, df = 20, p < .001, RMSEA = 0.059, CFI = 0.905, SRMRwithin = 0.063, SRMRbetween= 

0.005, AIC = -12584.469, BIC = -12208.530). The two-factor model fit the data well and better 
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than the one factor model (Model 4: 𝝌2 = 90.096, df = 19, p < .001, RMSEA = 0.031, CFI = 

0.975, SRMRwithin = 0.035, SRMRbetween= 0.003, AIC = -13145.343, BIC = -12763.138). To further 

compare model fits, we examined the estimated correlation between the two latent factors in the 

two-factor model and compared the estimated communality values of the two models. We 

reasoned that additional evidence in favor of the two-factor model would be seen if the 

correlation between the latent factors was estimated to be low-moderate and if the estimated 

communality values were all equivalent or higher for the two-factor model relative to the one 

factor model. We note that the correlation between the vPMN and dPMN latent variables was 

high, but not perfect (r = 0.630 or ~39.7% of variance shared) and the communality values in the 

two-factor model were all equivalent or higher compared with the one factor model (see Table 

2). Taken together, these results suggest that a two-factor model was a better model for the 

neural data. 

One Factor Two Factor 

param est se pval est se pval 

pHipp 0.188 0.024 < 0.001 0.193 0.025 < 0.001 

Prec 0.397 0.039 < 0.001 0.395 0.039 < 0.001 

PCC 0.437 0.029 < 0.001 0.479 0.024 < 0.001 

MPFC 0.251 0.030 < 0.001 0.286 0.032 < 0.001 

PHC 0.177 0.027 < 0.001 0.344 0.030 < 0.001 

RSC 0.231 0.036 < 0.001 0.391 0.035 < 0.001 

aAG 0.472 0.030 < 0.001 0.485 0.032 < 0.001 

pAG 0.215 0.038 < 0.001 0.363 0.036 < 0.001 
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Table 2: Communality Values. Communality value estimates from the One Factor and Two Factor measurement 
models. All of the estimated communality values are equivalent or higher in the Two Factor model compared with 
the One Factor model. param = parameter, est = estimate se = standard error, pval = p value. pHipp = posterior 
hippocampus, Prec = precuneus, PCC = posterior cingulate cortex, MPFC = medial prefrontal cortex, PHC = 
parahippocampal cortex, RSC = retrosplenial cortex, aAG = anterior angular gyrus, pAG = posterior angular gyrus. 

For the behavioral data, the two-level categorical single factor model with equality 

constraints on the factor loadings across levels fit the data well (Model 5: 𝝌2 = 0.163, df = 2, p < 

.9218, RMSEA = 0.000, CFI = 1.00, SRMRwithin = 0.001, SRMRbetween= 0.022). This model has 

cross-level metric invariance, meaning that the latent variables at each level can be interpreted as 

the within-subject and between-subject components, respectively, of the same construct “overall 

memory quality.” Cross-level metric invariance additionally allowed us to calculate the 

proportion of variance in the overall memory quality factor that is attributable to individual 

differences and trial-to-trial differences. The memory quality factor had an ICC of .329, meaning 

that 32.9% of the variability in memory quality comes from individual differences and 67.1% of 

the variability comes from trial-to-trial differences. This is advantageous for our purposes since 

our primary interest was explaining trial-to-trial variability in memory quality. 

After finding good fitting neural and behavioral measurement models, we proceeded to 

fit a joint measurement model by stitching the two-factor neural model and the cross-level metric 

invariance behavioral model together (see Figure 2; Model 6). At the between subjects level, the 

regions were allowed to covary with one another and allowed to covary with the between-subject 

memory quality factor. This joint measurement model fit the data adequately (Model 6: 𝝌2 = 

534.782, df = 59, p < .001, RMSEA = 0.046, CFI = 0.974, SRMRwithin = 0.034, SRMRbetween= 0.043). 

The key parameter estimates for the within-subjects part of this model are reported in Table 3. 

This is the model that we then incorporated into our SEM linking the neural and behavioral 

variables. 
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Figure 2: Measurement Model. A graphical representation of our combined measurement model including both 
neural and behavioral variables (Model 6), following the graphing conventions of E. Kim and colleagues (2016). 
Our measurement model contained two latent variables for the neural data at the within-subjects level, a single latent 
variable for the behavioral data at the within-subjects level, and a single latent variable representing the behavioral 
data at the between-subjects level. The factor loadings for the Memory latent variable were set equal across the 
levels. At the between subject level, the eight neural variables were allowed to covary with one another and with the 
Memory factor. See Table 3 for standardized parameters of the within-subjects part of the model. vPMN = ventral 
posterior medial network, dPMN = dorsal posterior medial network, Memory = overall memory quality, pHipp = 
posterior hippocampus, Prec = precuneus, PCC = posterior cingulate cortex, MPFC = medial prefrontal cortex, PHC 
= parahippocampal cortex, RSC = retrosplenial cortex, aAG = anterior angular gyrus, pAG = posterior angular 
gyrus, Scene = scene position feature correct, Color = object color feature correct, Sound = sound valence feature 
correct. 

 

paramHeader param est se pval 

vPMN.BY RSC 0.627 0.006 < 0.001 

 
PHC 0.567 0.008 < 0.001 

 
pAG 0.608 0.007 < 0.001 

dPMN.BY MPFC 0.516 0.006 < 0.001 

 
pHipp 0.437 0.008 < 0.001 

 
Prec 0.647 0.007 < 0.001 

 
PCC 0.685 0.004 < 0.001 
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aAG 0.711 0.005 < 0.001 

Memory.BY SCENE 0.707 0.057 < 0.001 

 
COLOR 0.465 0.044 < 0.001 

 
SOUND 0.460 0.030 < 0.001 

dPMN.WITH vPMN 0.634 0.008 < 0.001 

Memory.WITH vPMN 0.200 0.025 < 0.001 

 
dPMN 0.102 0.026 < 0.001 

Table 3: Measurement Model Standardized Parameter Estimates. Select standardized parameter estimates in the 
within-subject level model (Model 6). This table was created using the R package MplusAutomation (Hallquist & 
Wiley, 2018). Parameter headers (paramHeader) follow standard Mplus syntax, where the BY keyword indicates a 
loading parameter (lambda λ) and the WITH keyword indicates a covariance parameter (theta θ). param = 
parameter, est = estimate, se = standard error, pval = p value. See Figure 2 caption for abbreviations. 

1.3.3 Structural Models 

1.3.3.1 Overall Memory Quality Models 

We next estimated a series of structural models to tease apart network and region-specific 

contributions to overall memory. In the first model (Model 7), each of the two subnetworks was 

allowed to have a structural path to overall memory quality. In this baseline model, the vPMN 

uniquely (i.e., when statistically controlling for the dPMN) predicted the overall quality with 

which events were remembered while the dPMN did not (see Figure 3). When modeled 

separately, however, both the vPMN (𝛽 = 0.190, S.E. = 0.021, p < 0.001) and the dPMN (𝛽 = 

0.170, S.E. = 0.022, p < 0.001) predicted Memory Quality (i.e., in models that included only one 

of the two paths). Models estimating region-specific contributions to overall memory quality are 

depicted in Figure 3 and structural path parameter estimates for these models are reported in 

Table 4. Of the PM network regions, only the MPFC displayed a statistically significant region-

specific ability to predict Memory Quality when controlling for its participation in its PM 

subnetwork (see Table 4; alpha = 0.05, FWE corrected for multiple comparisons). Inspection of 
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the parameter estimates from this alternate model (Model 07MPFC) suggests that the MPFC had a 

negative relationship with Memory Quality when controlling for its participation in the dPMN. 

The absence of other region-specific effects suggests that the contributions of the other PM 

regions were well described by the subnetwork level effects. 

Title paramHeader param est se pval 

Model 07pHipp MEMQ.ON PHIPP 0.059 0.030 0.048 

Model 07Prec MEMQ.ON PREC 0.110 0.045 0.016 

Model 07PCC MEMQ.ON PCC 0.066 0.081 0.420 

Model 07MPFC MEMQ.ON MPFC -0.158 0.037 < 0.001 

Model 07PHC MEMQ.ON PHC 0.097 0.090 0.282 

Model 07RSC MEMQ.ON RSC 0.026 0.045 0.575 

Model 07aAG MEMQ.ON AAG 0.047 0.057 0.415 

Model 07pAG MEMQ.ON PAG -0.063 0.051 0.218 

Table 4: Key Parameter Estimates from Region-Specific Models. The table reports the key parameter estimates for 
the family of models delineating region-specific contributions. This table was created using the R package 
MplusAutomation (Hallquist & Wiley, 2018). Parameter headers (paramHeader) follow standard Mplus syntax, 
where the ON keyword indicates a path parameter (𝛽). param = parameter, est = estimate, se = standard error, pval = 
p value. See Figure 2 caption for abbreviations. Listed p values are uncorrected for multiple comparisons. 
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Figure 3: Path Diagram. Path diagram representing the within-subject level of our two-level baseline model (i.e., 
Model 7) with standardized parameter estimates (standard error in parentheses). The dotted line depicts the 
additional region-specific contribution path added in the region-specific family of models detailed in Table 4. See 
Figure 2 caption for abbreviations. * = p < .05, ** = p < .01, *** = p < .001. 

1.3.3.2 Memory Feature Models 

Our primary aim was to examine the region-specific and network-level contributions of 

PM regions to overall memory quality during retrieval. Our experimental design, however, also 

afforded us the opportunity to examine their contributions to the retrieval of different memory 

features (i.e., scene perspective, object color, sound valence). To examine this, we updated our 

joint measurement model so that the behavioral measures simply covaried with one another 

instead of loading onto a common factor. This updated measurement model fit the data well 

(Model 8: 𝝌2 = 683.198, df = 37, p < .001, RMSEA = 0.067, CFI = 0.965, SRMRwithin = 0.030, 

SRMRbetween= 0.000). Using this measurement model, we then fit a series of structural models to 

examine the network-level and region-specific contributions to each of the features of our events 

(see Figure 3). Key parameter estimates from this family of models can be found in Table 5. 
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The baseline model (Model 9; see Figure 4) suggests that there were statistically significant 

network-level contributions of the vPMN and the dPMN to scene feature memory, such that the 

vPMN contributed positively to scene memory whereas the dPMN contributed negatively. No 

other network-level effects were statistically significant, although it is worth noting that in 

contrast to its negative relationship with scene memory, the dPMN trended toward positive 

relationships with sound memory. Interestingly, the parameter estimates for the covariances 

amongst the residuals of the behavioral variables suggest that there remains a joint “holistic” 

remembering property that is not explained by PM network activity (see Supplemental Table 2 

for a full table of model parameters). The results from a family of models containing region-

specific paths from each region to each memory feature (see Figure 4, Table 5) suggest that the 

MPFC made a region-specific negative contribution to object color memory. No other regions 

made a region-specific contribution after controlling for family-wise error using a Bonferroni 

correction.  
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Figure 4: Memory Feature Model Path Diagram. Path diagram representing our feature specific memory model 
(Model 9) capturing network-level and region-specific contributions to feature memory. The baseline model 
contained paths from each subnetwork latent variable to each memory feature (i.e., 6 in total, solid lines). The 
region-specific models contained all of the paths from the baseline model with the addition of paths from a single 
region to each memory feature (i.e., 3 additional paths, dotted lines), iterated across the entire set of regions. See 
Table 5 for parameter estimates. 

Model paramHeader param est se pval 

Model 9 COLOR.ON VPMN -0.004 0.047 0.933 

 
COLOR.ON DPMN 0.041 0.050 0.417 

 
SOUND.ON VPMN 0.006 0.043 0.882 

 
SOUND.ON DPMN 0.114 0.059 0.052 

 
SCENE.ON VPMN 0.277 0.043 0.000 

 
SCENE.ON DPMN -0.147 0.040 0.000 

Model 9pHIPP COLOR.ON PHIPP 0.015 0.024 0.544 

 
SOUND.ON PHIPP 0.038 0.032 0.234 

 
SCENE.ON PHIPP 0.045 0.033 0.163 

Model 9PREC COLOR.ON PREC 0.073 0.049 0.135 
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SOUND.ON PREC -0.001 0.040 0.971 

 
SCENE.ON PREC 0.061 0.087 0.485 

Model 9PCC COLOR.ON PCC 0.026 0.050 0.600 

 
SOUND.ON PCC 0.014 0.078 0.863 

 
SCENE.ON PCC 0.083 0.126 0.511 

Model 9MPFC COLOR.ON MPFC -0.096 0.027 0.000 

 
SOUND.ON MPFC -0.040 0.036 0.272 

 
SCENE.ON MPFC -0.089 0.038 0.020 

Model 9PHC COLOR.ON PHC 0.012 0.105 0.907 

 
SOUND.ON PHC -0.004 0.094 0.966 

 
SCENE.ON PHC 0.052 0.046 0.261 

Model 9RSC COLOR.ON RSC -0.027 0.055 0.616 

 
SOUND.ON RSC 0.008 0.043 0.847 

 
SCENE.ON RSC 0.062 0.046 0.177 

Model 9PAG COLOR.ON PAG 0.025 0.060 0.674 

 
SOUND.ON PAG -0.004 0.037 0.923 

 
SCENE.ON PAG -0.079 0.033 0.016 

Model 9AAG COLOR.ON AAG 0.013 0.066 0.845 

 
SOUND.ON AAG -0.056 0.053 0.285 

 
SCENE.ON AAG 0.047 0.089 0.596 

Table 5: Memory Feature Models: Parameter Estimates. Key parameter estimates from a family of memory feature 
specific models. Statistically significant path estimates that survive a Bonferroni correction are highlighted in 
yellow. This table was created using the R package MplusAutomation (Hallquist & Wiley, 2018). Parameter headers 
(paramHeader) follow standard Mplus syntax, where the ON keyword indicates a path parameter from the variable 
listed in the “param” column to variable listed in the “paramHeader” column. param = parameter, est = standardized 
estimate, se = standard error, pval = p value. See Figure 2 caption for abbreviations. See Figure 4 for path diagram. 
Listed p values are uncorrected for multiple comparisons. 
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1.4 SUMMARY 

In Chapter 1, I examined heterogeneity in the function of the default mode network using 

a multilevel SEM framework. Supporting prior work, my measurement models indicated that a 

two-factor model with latent factors representing ventral and dorsal subnetworks was the better 

model for trialwise responses estimates than a single-factor model grouping all default mode 

regions together. My structural models indicated that the contributions of individual regions of 

the default mode network to memory quality are largely subsumed by subnetwork-level 

contributions, apart from the MPFC which made a unique, region-specific contribution to 

memory quality. Interestingly, the region-specific contribution of the MPFC was found to be 

negative, such that less MPFC activation (when controlling for subnetwork membership) was 

associated with more accurate recollections. Feature-specific analyses revealed that the 

dissociation between vPMN and dPMN was driven largely by their distinct contributions to 

memory for scene information, compared with object color or sound valence information. 

Together, these results reveal new insights into how memory outcomes can be explained by a 

combination of network-level and region-specific factors. I discuss these findings further and 

their implications for the neural organization of memory in the Discussion. 

The current set of analyses was able to capture variability at multiple levels (i.e., across 

trials and across subjects) across two domains (i.e., brain and behavior). This was a major 

strength of the current study and is something that has rarely been done in the cognitive 

neuroscience of memory. Unfortunately, due to a relatively small sample size at the across 

subjects level (n = 28), we were hesitant to draw strong conclusions about how default mode 

subnetwork function across subjects relates to individual differences in episodic memory ability. 

The next two chapters of this dissertation seek to address this level of analysis by using a higher-
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powered cognitive neuroscience dataset (Chapter 2) and by running a behavioral study (Chapter 

3).
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CHAPTER 2 

2.1 OVERVIEW 

Have you ever spoken with a family member about an event that happened long ago and 

admired the level of detail with which they could recall the event? While important differences 

exist at the extreme ends of the spectrum of memory ability, such as in patients with 

hippocampal damage (e.g., Patient H.M. Corkin, 2002) or in individuals with superior 

autobiographical memory (LePort et al., 2012; Parker et al., 2006), experiences like these 

reinforce that there is substantial variation within the neurotypical population in the ability to 

recall the details of past events. Interestingly, little is known about the brain processes that 

explain such individual differences within the healthy young adult population. As reviewed in 

the Introduction, one brain process that has been shown to be related to individual differences in 

cognition is the functional communication and connectivity of remote brain regions. The goal of 

Chapter 2 is to investigate the relationship between brain connectivity and memory ability found 

within the healthy adult population. 

Episodic memory has been linked to the default mode network (DMN), a set of brain 

regions that tend to be co-activated during rest and during tasks involving episodic construction 

(Buckner & DiNicola, 2019; Ritchey & Cooper, 2020). In particular, memory tasks have been 

shown to recruit a ventral subnetwork of the DMN that is strongly interconnected with the 

medial temporal lobes (Andrews-Hanna et al., 2010; Barnett et al., 2021; Buckner & DiNicola, 

2019). This DMN subnetwork, which has been labeled DMN-C in recent parcellations of the 

DMN (Schaefer et al., 2018; Yeo et al., 2011), consists of the retrosplenial cortex, 



49 
 

parahippocampal cortex, and the posterior angular gyrus. The DMN-C is commonly co-activated 

with an adjacent, more dorsal DMN subnetwork, labeled DMN-A, which consists of medial 

frontal and parietal regions. Recent work has shown that these two subnetworks are dissociable 

in terms of their functional connectivity during event perception (Cooper et al., 2021b) as well as 

their contributions to memory retrieval (Kurkela et al., 2022a). In the latter study, when both 

ventral and dorsal DMN regions were included in a model, only the ventral regions significantly 

predicted retrieval success (Kurkela et al., 2022a). Based on these findings, I hypothesize that the 

functioning of the DMN-C subnetwork may be central in determining individual differences in 

episodic memory ability. Specifically, I believe that the functional connectivity of this 

subnetwork may be crucial for determining an individual’s memory ability. 

The goal of Chapter 2 is to build upon previous efforts to elucidate the relationship 

between episodic memory ability and the intrinsic functional brain connectivity by coupling a 

series of hypothesis-driven analyses with a data-driven predictive modeling analysis. First, I 

examined whether connections within the DMN-C subnetwork (within-network), between the 

DMN-C and DMN-A subnetworks (between-network), and between DMN-C and other brain 

regions (extra-network) were predictive of individual differences in memory ability. I also 

examined whether hippocampal connections were predictive of memory ability given extensive 

evidence linking the hippocampus to memory. Second, I examined the entire functional 

connectome using connectome based predictive modeling (CBPM; Shen et al., 2017) -- a data-

driven approach that determined if there were any patterns of whole-brain connectivity that were 

predictive of memory ability. 
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2.2 METHODS 

To answer our research questions, we analyzed data from the Cambridge Center for 

Aging and Neuroscience (CamCAN) repository (available at http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/; Taylor et al., (2017), Shafto et al., (2014)). The CamCAN 

repository is a large-scale, cross-sectional, openly available cognitive neuroscience dataset 

collected by the University of Cambridge. Below we summarize the key characteristics of the 

CamCAN dataset, focusing specifically on the subsets of the dataset that were utilized in the 

present report. Analysis plans were preregistered on the Open Science Framework: 

https://osf.io/9xcu3/?view_only=1ac6856b773249cfa0767dd3d005a9ae. 

2.2.1 Participants 

Participants included 243 participants between the ages of 18 and 50 sampled from the 

original set of 653 CamCAN participants who had data available at the time of our access. 

Participants in the original set were equally sampled from each decile of age from 18-87 years of 

age with approximately equal numbers of men and women in each decile. They were required to 

be cognitively healthy, to not have a serious psychiatric condition, to have met hearing and 

English language requirements for experiment participation, and to be eligible for MRI scanning 

(Shafto et al., 2014). Of the 653 subjects, 7 were missing at least one of the five MRI scans (see 

“2.2.2 MRI Data”), 1 was missing data from Logical portion of the Wechsler Memory Scale, 341 

were missing data from the Emotional Memory data, 19 were missing Cattell Fluid Intelligence 

scores, and 1 subject was missing ACE-R data (see 2.2.4 Behavioral Data). To deal with 
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missing data, we took a listwise deletion approach such that if a participant was missing any of 

the variables of interest, they were removed from further analysis. 

Participants were excluded from the current set of analyses if they met the following 

exclusion criteria. First, participants were excluded from the analysis if they had 2 or more 

functional runs that had a mean framewise displacement greater than 0.3mm, to mitigate the 

effects of motion on functional connectivity estimates. Second, participants were excluded from 

the analysis if they were older than 50 years of age to mitigate the influence of advanced aging 

on our results. After applying these additional exclusion criteria, we were left with 243 subjects 

to analyze. These 243 subjects were on average 36.28 years old and 123 self-reported as female 

and 122 as male. 

2.2.2 MRI Data 

The subset of the CamCAN dataset analyzed in the present report contained a single high 

resolution T1-weighted anatomical scan, three functional scans, and a single field map to correct 

for magnetic field inhomogeneities. The three functional scans included a movie-watching scan, 

a resting-state scan, and a sensorimotor scan (detailed below). The anatomical and field map 

images were used during the preprocessing of the functional scans. The three functional scans 

were used to estimate each subject’s intrinsic functional connectome (see 2.3.3 Functional 

Connectivity). The anatomical scan was acquired using a Magnetization Prepared Rapid 

Gradient Echo (MPRAGE) sequence with the following parameters: Repetition Time (TR) = 

2250 ms; Echo Time (TE) = 2.99 ms; Inversion Time (TI) = 900 ms; flip angle = 9 degrees; field 

of view (FOV) = 256mm x 240mm x 192mm; voxel size =1mm isotropic; GRAPPA acceleration 

factor = 2; acquisition time of 4 min and 32 sec. The movie watching scan involved participants 
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watching an edited version of Alfred Hitchcock’s movie “Bang, You’re Dead”. A total of 193 

volumes were acquired using a multi-echo, T2*-weighted EPI sequence (TR =2470 milliseconds, 

five echoes [TE =9.4 milliseconds, 21.2 milliseconds, 33 milliseconds, 45 milliseconds, 57 

milliseconds], flip angle =78 degrees, 32 axial slices of thickness of 3.7 mm with an interslice 

gap of 20%, FOV =192mm × 192 mm, voxel-size =3 mm × 3mm × 4.44 mm) with an 

acquisition time of 8 minutes and 13 seconds. The resting-state scan involved participants resting 

in the scanner with their eyes closed. During the sensorimotor scan, participants were presented 

with visual checkerboards and auditory tones, either in isolation or simultaneously. They were 

instructed to respond with a button press when they were presented with any stimuli (either 

visual, auditory, or both visual and auditory). The resting state and sensorimotor scans had the 

same scanning parameters: a total of 261 volumes were acquired, each containing 32 axial slices 

acquired in descending order, slice thickness of 3.7 mm with an interslice gap of 20%; TR = 

1970 ms; TE = 30 ms; flip angle = 78 degrees; FOV =192 mm × 192 mm; voxel-size = 3 mm × 3 

mm × 4.44 mm) and an acquisition time of 8 min and 40 sec. The fieldmap consisted of an 

SPGR gradient-echo sequence with the same parameters as the resting state and sensorimotor 

tasks, but with two TEs (5.19 ms and 7.65 ms). 

2.2.3 Regions of Interest 

Regions of interest (ROIs) were taken from the Schaefer cortical parcellation (Schaefer et 

al., 2018). Specifically, we used the 400-area resolution, 17-network parcellation. We focused 

our analyses a-priori on three sets of parcels from this atlas: DMN-C regions (number of parcels: 

left hemisphere = 7, right hemisphere = 6), DMN-A regions (number of parcels: left hemisphere 

= 18, right hemisphere = 16), and all other regions (number of parcels: left hemisphere = 176, 
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right hemisphere = 178). DMN-C regions consisted of the bilateral parahippocampal gyrus, 

bilateral retrosplenial cortex, and the bilateral posterior angular gyrus (see Figure 5a, blue 

regions). DMN-A regions included the bilateral posterior cingulate cortex, the bilateral 

precuneus, the bilateral medial prefrontal cortex, the bilateral anterior angular gyrus, and a 

bilateral section of the dorsal prefrontal cortex (see Figure 5a, yellow regions). We focused on 

regions in the DMN-C and DMN-A networks due to their roles in episodic memory and 

simulation (Buckner & DiNicola, 2019; Ritchey & Cooper, 2020). To supplement this cortical 

atlas, we included hippocampal ROIs created using the anatomical delineations from Ritchey and 

colleagues (2015). Specifically, we used hippocampal ROIs comprising the hippocampal head, 

the hippocampal body, and the hippocampal tail from the right and left hemispheres. These six 

hippocampal ROIs were added to the 400 cortical ROIs to form the functional connectome (i.e., 

406x406 ROI-to-ROI connectivity matrix). 

2.2.4 Behavioral Data 

Summary statistics for the behavioral and neural variables of interest are presented in 

Table 6. Behavioral data included performance on the following cognitive assessments: the 

logical memory subtest from the Wechsler Memory Scale Third UK edition (Weschler, 1999), 

the Addenbrook Cognitive Examination-Revised (variable name: ACER), and the Cattell Test of 

Fluid Intelligence (variable name: Cattell). The logical memory subtest from Wechsler Memory 

Scale involved having participants read two short passages and subsequently verbally recall as 

many story details as possible at two different time points: first immediately after reading the 

short passages and then again after a ~20 min delay. Verbal recalls were scored for the number 

of story details correctly recalled at each point in time. The number of story details recalled at 
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both points in time were averaged together to form a memory ability index (variable name: 

“memory”). The Addenbrook Cognitive Examination-Revised is a standardized cognitive battery 

originally designed for dementia screening. The battery is designed to test participants’ ability in 

5 different cognitive domains, including attention, memory, fluency, language, and visual-

spatial. The total score on this battery was used as an index of general cognitive functioning. The 

Cattell Test of Fluid Intelligence is a timed pen and paper task where participants are required to 

solve a series of non-verbal puzzles. Here we use the total score on this task as a general index of 

fluid intelligence.
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 Correlations 

Variable mean min max sd n memory Age Sex Cattell ACER fd within between extra 

memory 15.28 2.50 23 3.50 243          

Age 36.28 18.50 49.83 8.42 243 -0.13         

Sexa 0.50 0 1  243 0.14 -0.07        

Cattell 36.35 22 44 4.23 235b 0.35 -0.25 -0.19       

ACER 96.54 74 100 3.63 243 0.40 0.12 0.03 0.39      

fd 0.14 0.05 0.25 0.04 243 -0.10 0.23 0.02 -0.22 -0.14     

within 0.31 0.17 0.50 0.06 243 0.02 -0.21 0.02 0.09 0.04 -0.23    

between 0.15 0.03 0.26 0.05 243 0.04 -0.01 0.09 -0.06 0.03 -0.10 0.53   

extra -0.02 -0.06 0.02 0.01 243 -0.09 0.14 0.02 -0.06 -0.07 0.14 -0.55 -0.63  

hipp 0.00 -0.03 0.04 0.01 243 -0.10 -0.02 -0.18 0.01 -0.03 -0.07 0.02 -0.19 0.28 

aSex was coded such that Female = 1, Male = 0 

b8 Subjects Missing Cattell Scores 

Table 6: Cam Can Key Data Summary. Statistical summary of data analyzed for Chapter 2. memory = number of story details recalled in the logical portion of 
the Wechsler Memory task (immediate + delayed)/2, Cattell = total score on the Cattell Test of Fluid Intelligence, ACE-R = total score on the Addenbrook 
Cognitive Evaluation Revised (ACE-R), fd = mean framewise displacement, within = average functional connectivity estimate for within vPMN connections, 
between = average functional connectivity estimate for vPMN-dPMN connections, extra = average functional connectivity estimate for vPMN-rest of the brain 
connections, n = number of complete observations. Correlations were calculated using all available complete pairs of data. All values are rounded to two decimal 
places where appropriate.
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2.3 ANALYSIS 

2.3.1 MRI Quality Control 

The quality of the functional MRI data was assessed using the MRIQC software package 

(Esteban et al., 2017). Quality reports generated from this software package were visually 

inspected for scanner artifacts and motion-related corruption. All scans that had a mean 

framewise displacement greater than 0.3mm were excluded from further analysis. If subjects had 

2 or more scans with a mean framewise displacement greater than 0.3mm, then the subject was 

excluded from further analysis (see 2.2.1 Participants). This conservative approach was adopted 

in order to limit the effects of head motion on functional connectivity measures (see Cooper et 

al., 2021b for a similar exclusion criterion; Power et al., 2012, 2014). 

2.3.2 MRI Preprocessing 

MRI data were preprocessed using fMRIPrep 20.2.0 (Esteban et al., 2018, 2019). 

Processing steps for the T1w images included correction for intensity non-uniformity, skull 

stripping, brain tissue segmentation, and volume-based spatial normalization to the ICBM 152 

Nonlinear Asymmetrical template version 2009c. Processing steps for the 3 BOLD runs included 

slice-timing correction, realignment, using the fieldmap to optimize co-registration of the 

functional images to the anatomical reference image, normalization of the BOLD images to the 

ICBM 152 Nonlinear Asymmetrical template version 2009c, and the calculation of confounding 

time-series including basic 6 head-motion parameters (x,y,z translation; pitch, roll, yaw rotation), 

temporal derivatives and the quadratic terms of the head-motion parameters, noise components 
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from a principal components analysis based denoising routine (CompCorr), framewise 

displacement, and DVARS. For a much more detailed description of the processing pipeline 

please refer to S.3 FMRIPREP Boilerplate which contains the recommended fMRIPrep 

boilerplate. 

2.3.3 Functional Connectivity 

Functional connectivity analyses were performed using the CONN toolbox (Whitfield-

Gabrieli & Nieto-Castanon, 2012) in MATLAB (Inc., 2022). Confounds removed from each 

voxel’s time series included six head motion parameters and their temporal derivatives, up to the 

first six aCompCor components from a combined WM and CSF mask, framewise displacement, 

and the global signal1 as calculated by fMRIPrep. Additional spike regressors were included for 

any time points that exceeded a FD of 0.6 mm and/or a standardized DVARS of 2. After 

regression of motion confounds, BOLD data was band-pass filtered with a high-pass filter of 

0.008 Hz and a low-pass filter of 0.1 Hz. No additional modeling was performed for the movie-

watching and the resting state data. For the sensorimotor task, task-related activations were 

regressed out of the time series prior to calculation of functional connectivity. Specifically, task 

related activation was modeled in the sensorimotor task by convolving stick functions placed at 

stimulus onsets with SPM12’s hemodynamic response function using the CONN toolbox. ROI-

 
 

1 Global signal regression (GSR) was not included in the pre-registered analysis plan. However, since pre-
registration, we have been persuaded by recent publications suggesting that GSR optimizes predicting individual 
differences in behavior from functional connectivity estimates. We report the results without global signal regression 
in the S.4 Global Signal Regression. Note that the results are largely consistent across methods; however, without 
global signal regression hippocampal connectivity is inversely related to memory ability and the ability of the 
functional connectome to predict memory ability is substantially weaker. 



58 
 

to-ROI functional connectivity was calculated using the Pearson's correlation coefficient after 

denoising and task modeling. The ROI-to-ROI intrinsic functional connectivity estimates were 

created by averaging functional connectomes calculated from all available functional scans, 

resulting in a measure of “generalized” functional connectivity intrinsic to each individual 

(Elliott et al., 2019). The resulting ROI-to-ROI intrinsic functional connectomes were then 

summarized into three terms to test our research hypotheses. Within DMN-C connectivity was 

operationalized as the average of all functional connections among DMN-C nodes in the Schafer 

(2018) atlas, between subnetwork connectivity as the average connectivity between all DMN-C 

and DMN-A nodes, and extra network connectivity as the average of all connections between the 

DMN-C nodes and all other nodes not contained in DMN-C or DMN-A. See Figure 5b for an 

illustration. 
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Figure 5: Regions and Connections of Interest. A.) Regions of interest were based on the 400 parcel 17-network 
parcellation from the Schaefer atlas (Schaefer et al., 2018). Here we highlight the DMN-C (blue) and DMN-A 
(yellow) networks from this atlas. This visualization was created in freeview (citation) using the fsaverage inflated 
surface template provided in the Schaefer et al. (2018) atlas. B.) The lower triangle of the functional connectome. 
Connections of interest are highlighted, including “within” connections (blue), “between” connections (orange), and 
“extra” network connections (yellow) of the DMN-C. Connections of no interest are shown in gray. 

2.3.4 Connectome Based Predictive Modeling 

To complement the hypothesis driven approach described above, the current report used 

connectome based predictive modeling (CBPM; Shen et al., 2017) to determine if there is any 

pattern of connections in the functional connectome related to memory ability. CBPM involves 

calculating a functional connectome for each individual and determining which connections are 

statistically related to a behavioral variable of interest. All connections that are related to 

behavior above some arbitrarily defined threshold (e.g., at p < .01) are then summarized by 

separating out connections with a significant positive correlation with behavior from those that 

have a significant negative correlation with behavior. The connections in the connectome with 



60 
 

significant positive and negative correlations with behavior are then summed into separate 

positive and negative terms for use in a linear regression predicting behavior. The analysis 

method then estimates a linear regression using these summed positive and negative connection 

terms to predict the behavior of a left-out participant in a leave-one-out cross validation 

procedure. Successful prediction of a behavioral variable using the functional connectome is then 

determined by correlating the predicted behavioral scores for each participant with the observed 

behavioral scores with statistical significance determined using a null permutation procedure that 

reruns the entire analysis a given number of times, each time randomly pairing connectomes with 

behavioral scores and recording the correlation between predicted and observed behavior. For 

the current report, all CBPM analyses were performed using a connection selection threshold of 

p < .01 and the null distribution of correlations between observed and predicted behaviors using 

100 null simulations. Statistical significance of the CBPM analysis was determined by estimating 

the proportion of null simulations that resulted in better predictive performance than the actual 

analysis. All CBPM analyses were performed using modified analysis code published by Shen 

and colleagues (2017). To control for nuisance variables, the CBPM analysis code published by 

Shen and colleagues was modified to use the MATLAB function partialcorr when selecting 

connections used for prediction. See the accompanying GitHub repository for more detail 

(https://github.com/memobc/CamCAN_IndDifs). To determine which connections in the 

connectome the models were relying on to make their predictions, I also performed 

computational lesion analyses. In a computational lesion analysis, a predictive model is 

iteratively fit while excluding a set of features. If model performance is hindered by the removal 

of a set of features, then it is inferred that the model is relying on these features to make 

successful out-of-sample predictions. 
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2.3.5 Statistical Modeling 

All statistical models, tables, and figures were created using R (R Core Team, 2022). All 

Bayesian regressions were performed in R using the BayesFactor package (Morey & Rouder, 

2021) with interpretations of Bayes Factors made using the effectsize package’s (Ben-Shachar et 

al., 2020) interpret_bf function using the interpretation rules originally outlined by Jeffreys 

(1961). Bayes Factors represent the ratio of evidence in support of one model to evidence in 

support of a competing model. Bayes Factors equal to 1 represent no evidence for one model 

over another, Bayes Factors greater than 1 represent relatively more evidence in favor of the null 

model, and Bayes Factors less than 1 represent relatively more evidence in favor of an alternative 

model. Bayes Factors between 1 and 3 represent weak or “anecdotal” evidence in favor the null 

hypothesis, Bayes Factors between 3 and 10 “moderate” evidence in favor of the null hypothesis, 

and Bayes Factors between 10 and 30 “strong” evidence in favor of the null hypothesis. Similar 

interpretations can be made for evidence in favor of the alternative hypothesis by taking the 

inverse of these cutoff values (e.g., “anecdotal” evidence in favor of the alternative indicated by 

Bayes Factors between 1 and 1/3). Summary tables for the linear regressions were created using 

a combination of the R packages gtsummary (Sjoberg et al., 2021) and flextable (Gohel & 

Skintzos, 2023). All figures were created using the R package ggplot2 (Wickham, 2016). 

2.4 RESULTS 

2.4.1 Hypothesis Driven 

Average intrinsic functional connectivity within the Default C subnetwork does not 

predict memory ability. To answer our first research question, I conducted a set of regression 
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analyses to examine the relationship between memory ability and average within-DMN-C 

network connectivity. Average intrinsic functional connectivity among DMN-C regions was not 

related to memory ability (β = 1.08, SE = 3.86, t(241) = 0.28, p = 0.78; see Figure 6a). This 

pattern did not change after controlling for age, sex, and average framewise displacement (β = -

1.65, SE = 3.96, t(238) = -0.42, p = 0.68) or after also controlling for fluid intelligence and 

cognitive capacity (β = -0.99, SE = 3.59, t(228) = -0.28, p = 0.78). Because frequentist linear 

regression models cannot provide evidence in favor of the null hypothesis, I supplemented these 

linear regression models with a Bayesian regression model. Specifically, I ran a Bayesian 

regression model that was analogous to the first model without nuisance regressors (i.e., memory 

~ 1 + within). This Bayesian regression model suggested that there is moderate evidence in 

favor of the absence of an effect of DMN-C–DMN-C connectivity on memory ability (BF = 

6.86). 

Average intrinsic functional connectivity between the Default C and Default A 

subnetworks does not predict memory ability. To answer our second research question, we 

conducted a similar set of regression analyses. Average between-subnetwork connectivity did not 

predict memory ability on its own (β = 3.25, SE = 4.95, t(241) = 0.66, p = 0.51; see Figure 6b), 

nor did it predict memory ability when controlling for age, sex, and gross measure of in-scanner 

movement (β = 1.63, SE = 4.92, t(238) = 0.33, p = 0.74), nor did it predict memory ability when 

additionally controlling for fluid intelligence and cognitive capacity (β = 4.26, SE = 4.45, t(228) 

= 0.96, p = 0.34). As in the previous set of analyses, we conducted a Bayesian regression 

analysis to determine the strength of evidence in favor of the null hypothesis. Specifically, we 

ran a Bayesian regression model (i.e., memory ~ 1 + between). This Bayesian regression model 
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suggested that there is moderate evidence in favor of an absence of an effect of between 

subnetwork (DMN-C — DMN-A) connectivity on memory ability (BF = 5.81). 

Average intrinsic functional connectivity between the Default C subnetwork and all other 

brain regions does not predict memory ability. To answer our third research question, we again 

tested a similar set of regression analyses. The average strength of functional connections from 

DMN-C regions to regions in networks other than the DMN-A and DMN-C did not predict 

memory ability on its own (β = -23.6, SE = 16.98, t(241) = -1.39, p = 0.17; see Figure 6c), when 

controlling for age, sex, and frame displacement (β = -17.92, SE = 17.04, t(238) = -1.05, p = 

0.29), nor when additionally controlling for fluid intelligence and cognitive capacity (β = -18.92, 

SE = 15.37, t(228) = -1.23, p = 0.22). To determine the strength of evidence in favor of this null 

result, we ran a Bayesian regression model (i.e., memory ~ 1 + extra). This Bayesian 

regression model suggested that there was anecdotal evidence against the null hypothesis that 

extra network connections do not predict memory ability (BF = 1/2.86). 

Average intrinsic functional connectivity of the hippocampus does not predict memory 

ability. Although not part of my preregistered set of analyses, I decided to look at the relationship 

between memory ability and intrinsic functional connectivity of the hippocampus given prior 

research linking this region to individual differences in memory (Touroutoglou et al., 2015; L. 

Wang, LaViolette, et al., 2010; L. Wang, Negreira, et al., 2010). I set about testing this in a 

similar manner to our preregistered set of analyses. I found that the average strength of all 

hippocampal connections was not a significant predictor of memory ability on its own (β = -

27.21, SE = 18.09, t(241) = -1.5, p = 0.13; see Figure 6d). This result held when we statistically 

controlled for age, sex, and framewise displacement (β = -23.21, SE = 18.2, t(238) = -1.28, p = 

0.2), and when we further controlled for fluid intelligence and cognitive capacity (β = -21.02, SE 



64 
 

= 16.18, t(228) = -1.3, p = 0.2). To determine the strength of evidence in favor of this null result, 

I ran a Bayesian regression model (i.e., memory ~ 1 + hipp). This Bayesian regression model 

suggested that there was anecdotal evidence against the null hypothesis that hippocampal 

connections do not predict memory ability (BF = 1/2.45). 

 

Figure 6: Targeted Hypotheses. Scatter plots and best fit linear regression line of memory ability on average 
intrinsic connection strength A) among DMN-C regions, B) between DMN-C and DMN-A regions, C) DMN-C and 
all other regions, and D) the Hippocampus and all regions. I found little evidence to suggest that the strength of 
these connections was predictive of individual differences in memory ability. 

2.4.2 Data Driven 

The intrinsic functional connectome can predict memory ability. This finding appears to 

be driven by connectivity of the SomMotB network. In a planned exploratory analysis, I ran a 
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connectome based predictive modeling (CBPM) analysis to see if I could predict memory ability 

using the entire intrinsic functional connectome. The first analysis—where I used the entire 406 

x 406 intrinsic functional connectome to predict memory ability—resulted in a significant 

correlation between observed and predicted memory ability scores (r{observed, predicted} = 0.164, p = 

0.027). To ensure that this result was independent of age, sex, and in-scanner motion, I reran the 

CBPM analysis controlling for these variables when selecting connections to be used for 

predicting left out subjects (using the MATLAB function partialcorr, see Shen et al. 2017). I 

saw that predictive performance of the intrinsic connectome held when controlling for age, self-

reported biological sex, and average framewise displacement (r{observed, predicted} = 0.1498, p < 

0.01). 

To ensure the robustness of this predictive model, I reran the CBPM analysis under a 

couple of different conditions. First, I tested whether this result held when selecting different 

connection selection thresholds (see 2.3.4 Connectome Based Predictive Modeling). In line 

with previous reports that the CBPM method is robust to selection of threshold (Finn et al., 2015; 

Jangraw et al., 2018; Shen et al., 2017), rerunning the CBPM analysis controlling for age, sex, 

and framewise displacement using connection selection thresholds of p = [0.001, 0.005, 0.01, 

0.5, 0.1] had similar outcomes (see S.5 CBPM Connection Defining Threshold, Supplemental 

Figure 1). Next, I examined how combining functional connectomes from different tasks 

influenced the model. I reran the CBPM analysis on functional connectomes calculated using the 

movie watching, resting-state, and sensorimotor task scans separately. Models built using 

functional connectomes from each task individually underperformed compared to the model built 

using the combined intrinsic functional connectome. Among the three tasks, the model built 

using functional connectomes from the movie-watching scan was the only one able to predict 
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memory ability better than chance. Interestingly, models built using resting-state data performed 

particularly poorly, with almost no relationship between observed and predicted memory ability 

scores in out of sample data (see S.6 Combining Data Across Tasks, Supplemental Table 7). 

I was further interested in determining which features were driving performance. To 

figure out which network connections were driving model performance, I ran a computational 

lesion analysis. In the computational lesion analysis, I reran my CBPM analysis excluding each 

network from the analysis in turn. Network importance in this computational lesion analysis was 

determined via a significant drop in model performance with the exclusion of a network and its 

connections. The results of my computational lesion analyses are reported in Table 7. The 

SomMotB was the only network whose exclusion led to a significant drop in model performance. 

To further figure out which network connections were driving model performance, I created the 

matrices depicted in Figure 7. First, I looked at the average strength of intrinsic connections 

(Figure 7a) to get a baseline understanding of how different networks communicate with one 

another in my dataset. I next examined how network connections correlated with memory ability 

after controlling for age, sex, and average in-scanner motion (Figure 7b). Because the CBPM 

analysis approach selects connections that are statistically significantly correlated with behavior 

when building the predictive model (see 2.3.4 Connectome Based Predictive Modeling), I next 

decided to create the matrices displayed in Figure 7c,d. Specifically, I separated connections that 

were negatively correlated with memory from those that were positively correlated with 

memory, and I counted the number of connections that were statistically significant at my 

connection selection threshold of p < 0.01. I then calculated the difference between the number 

of statistically significant negatively and positively weighted features (Figure 7c). One issue 

with using a simple count to interpret which connections are driving model performance is that a 
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count measure may overrepresent the contribution of networks that simply have a larger number 

of regions and thus a larger number of connections. To combat this possibility, I calculated the 

proportion of connections between regions that were significantly positively related to memory 

ability and subtracted away the proportion of connections that were significantly negatively 

related to memory ability (Figure 7d). Figure 7b-d reveals that my CBPM model is relying on 

connections throughout the connectome to successfully predict memory ability in out-of-sample 

subjects. Connectivity between SomMotB and Default A and connectivity between SomMotB 

and VisPeri, however, appear to be the primary drivers of model performance given the results of 

my computational lesion analysis. Closer examination of the grand mean connectivity matrix 

(see Figure 7a) suggests that connectivity between these networks tends to be negative and 

positive respectively. Thus, it appears that my CBPM model is relying on decoupling between 

SomMotB and Default A regions and increased coupling of SomMotB and VisPeri regions when 

making successful model predictions.
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analysis results p 

VisCent_exclude 0.156 0.000 

VisPeri_exclude 0.152 0.010 

SomMotA_exclude 0.169 0.000 

SomMotB_exclude -0.012 0.386 

DorsAttnA_exclude 0.175 0.000 

DorsAttnB_exclude 0.143 0.000 

SalVentAttnA_exclude 0.168 0.000 

SalVentAttnB_exclude 0.165 0.000 

LimbicB_exclude 0.130 0.010 

LimbicA_exclude 0.143 0.000 

ContA_exclude 0.139 0.010 

ContB_exclude 0.155 0.000 

ContC_exclude 0.148 0.000 

DefaultA_exclude 0.169 0.000 

DefaultB_exclude 0.094 0.040 

DefaultC_exclude 0.166 0.000 

TempPar_exclude 0.133 0.010 

Hipp_exclude 0.154 0.000 

Table 7: Computational Lesion Analysis Results. Excluding SomMotB regions from the analysis resulted in a 
significant drop in model performance. analysis = network excluded, results = Pearson’s correlation between 
observed and predicted memory ability scores, p = proportion of null simulations that were more extreme than the 
observed.



69 
 

 



70 
 

Figure 7: Evaluating Feature Importance. A.) Average strength of network connections, measured as the Pearson’s correlation (r) between region time courses. 
B) The partial correlation of connection strength with memory ability after controlling for age, sex, and average in-scanner motion. C) The number of 
connections that are significantly positively correlated with memory ability at p < 0.01 minus the number of connections that significantly negatively correlated 
with memory ability at p < 0.01. D) The proportion of connections that are significantly positively correlated with memory ability at p < 0.01 minus the 
proportion of connections that significantly negatively correlated with memory ability at p < 0.01. Arrows highlight connections between SomMotB and Default 
A and SomMotB and VisPeri regions. 
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2.5 SUMMARY 

In Chapter 2, I examined how the functional connectome related to one’s episodic 

memory ability. I placed a theoretically driven focus on connections of the Default C subnetwork 

– a subnetwork of the larger default mode network that has been strongly implicated in high 

fidelity, successful episodic remembering (Kurkela et al., 2022b; Chapter 1). Using a large 

openly available dataset, I determined that the strength of intrinsic functional connections among 

Default C regions, connections between Default C and Default A regions, connections between 

Default C regions and all other brain regions, and connections involving the hippocampus were 

not reliably related to one’s episodic memory ability. In a data-driven predictive modeling 

approach, I found that there was information concerning memory ability found within the 

functional connectome. My connectome based predictive models relied on connections found 

throughout the connectome to make accurate predictions in out-of-sample subjects. A 

computational lesion analysis suggested that functional connections of the Somatomotor 

Network B were necessary for model success. Follow up analyses suggested the Somatomotor 

Network B regions decoupled with Default A regions and increased their communication with 

peripheral visual regions in individuals with better memory. This conclusion, however, contrasts 

with several previously published findings. As described in the Introduction, studies relating 

functional connectivity to memory have often implicated default mode regions or the 

hippocampus, though these findings have been somewhat mixed (King et al., 2015; Lin et al., 

2021; e.g., Sneve et al., 2017; van Buuren et al., 2019). 

One possible explanation for the current results is that there is a relationship between the 

functional connectome and memory ability, but the memory test data available in the CamCan 

dataset is inadequate to capture an individual’s episodic memory ability. Using only a single 
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measure of memory ability is typically seen as suboptimal when attempting to capture an 

individual’s overall memory ability. Unsworth (2019), for example, suggests that the factor 

structure underlying episodic memory is best characterized by a hierarchical structure, such that 

individuals have particular aptitudes for completing different types of memory tasks in addition 

to an overall memory capacity. If this is the case, then using any single task would be a biased 

estimation of an individual’s overall memory ability. Chapter 3 of this dissertation aims to tackle 

this exact problem of how to properly model individual differences in episodic memory ability.
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CHAPTER 3 

3.1 OVERVIEW 

The ability to remember the past is one of our most important and ubiquitous cognitive 

capacities. We can remember vast amounts of information from our lives and this ability is 

advantageous for us in making decisions and predicting the future. It is also apparent, however, 

that individuals vary greatly in the quality with which they can remember the past (Palombo et 

al., 2018; Unsworth, 2019). Some of us can remember passwords, recognize people we met at 

parties, or recall the family Christmas party in 1999 with relative ease and in great detail. Others 

struggle to remember the same information, often forgetting passwords, needing to be 

reintroduced to individuals that we have already met, and only vaguely remembering that Uncle 

Walter dressed up as Santa Claus at the family Christmas party in 1999. Importantly, these 

individual differences in memory ability can be seen within the neurologically healthy 

population. Chapter 3 seeks to better understand the nature of individual differences in memory 

ability by testing a specific neuroscience-inspired hypothesis on the organization of individual 

differences in memory ability. 

Episodic memory is supported by a set of interacting cortical and subcortical brain 

regions, including the hippocampus, the angular gyrus, the retrosplenial cortex, posterior parietal 

cortex, the precuneus, the parahippocampal cortex, and the medial prefrontal cortex. Collectively 

these regions have been referred to as the “recollection network” due to their activation during 

episodic recollection tasks (Rugg & Vilberg, 2013), as one of two large-scale hippocampal-

cortical networks that support memory guided cognition (Posterior Medial Network: Ranganath 
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& Ritchey, 2012; Ritchey & Cooper, 2020), or as subnetworks within the larger default mode 

network (Andrews-Hanna et al., 2010). Recent work focusing on this set of brain regions 

suggests that instead of comprising a single homogenous network, the regions fracture into two 

highly related subnetworks (Barnett et al., 2021; Buckner & DiNicola, 2019; Cooper et al., 

2021b; Kurkela et al., 2022a) that may support different cognitive processes (DiNicola et al., 

2020). Specifically, some studies have argued that the more dorsal network supports theory of 

mind and mentalizing tasks (Spunt et al., 2011) and the more ventral network more specifically 

supports episodic recollection (Andrews-Hanna, Saxe, et al., 2014; Andrews-Hanna, Smallwood, 

et al., 2014; DiNicola et al., 2020). Others have argued that the more ventral subnetwork 

supports memory for more detailed space/place information, while the other more dorsal 

subnetwork supports memory for more abstract socioemotional information (Gurguryan & 

Sheldon, 2019; Peer et al., 2015; Silson et al., 2019). We hypothesize that this distinction among 

neural systems may have implications for individual differences in memory abilities. If either of 

these accounts is true and the functioning of these subnetworks also naturally differs between 

individuals, then I would expect to see individuals differ in the primary function of each of these 

subnetworks. In other words, we expect to see dissociable individual differences in the ability to 

recall socioemotional information from memory and in the ability to recall detailed 

spatial/temporal information from memory.  

There is a relative dearth of studies that have investigated individual differences in long-

term episodic memory abilities among healthy young adults. The few that have suggest that 

individuals differ on either an overall memory capacity (Unsworth, 2019) or along several 

cognitive components of the episodic recollection process (Ngo et al., 2021; Palombo et al., 

2018). Recent research on the neurobiological architecture underlying episodic recollection 
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suggests that there are at least two highly related subnetworks that support different aspects of 

the recollection process. Specifically, these subnetworks may differentially support the 

processing of specific visual-spatial episodic information and more social-emotional information. 

It seems logical to hypothesize that individuals would differ in the effectiveness of their 

underlying brain networks and as a result may differ on the processing of visual-spatial and 

social emotional processing respectively. To the best of my knowledge, no study to date has 

systematically investigated individuals’ ability to recall spatial/temporal information from 

memory and more social information from memory in a highly controlled laboratory setting. 

Because the subnetworks of the default mode network are statistically dissociable but 

highly correlated (Kurkela et al., 2022a), I believe that the primary dimension along which 

people differ is an overall episodic memory dimension. This would be reflective of the efficiency 

with which both subnetworks function within an individual. The key to my hypothesis, however, 

is the existence of a second dimension along which people differ. This dimension is a visual-

spatial–social-emotional dimension, which is caused by naturally occurring differences in the 

relative efficiency of individuals' ventral and dorsal default mode subnetworks respectively. If 

this state of affairs is correct, then I would expect to see a consistent content bias in individuals’ 

memory such that some individuals are better at recalling events that are centered around places 

while others are better at recalling events that are centered around people. To test my hypothesis, 

I ran the following behavioral experiment in which I characterize the efficiency of individual 

episodic memory for different types of information (i.e., social-emotional/visual-spatial) using a 

well-established multielement episodic memory paradigm. 
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3.2 METHODS 

3.2.1 Participants 

A total of 60 participants were collected. Participants were recruited using the online 

platform Prolific (https://www.prolific.co/). Participants were recruited such that they resided in 

the United States, self-reported fluency in the English language, were between the ages of 18 and 

40 years of age (M = 31.6, SD = 5.7, min = 20, max = 40), and had a minimum approval rate of 

95% when completing studies on Prolific. Our sample of 60 participants were majority female (n 

= 35 or 58.33%), and majority White (White = 70%, Black = 8.33%, Asian = 8.33%, Mixed = 

8.33%, and Other = 5%). Informed consent was obtained from all participants prior to 

participating and participants were compensated for their time. All procedures were approved by 

the Boston College Institutional Review Board. The study methods were preregistered in 

advance of data collection; see: 

https://osf.io/nmjde/?view_only=8e5fa7b8949d45559884e1d0c8c8f887.  

60 participants were collected based on the results of a preregistered independent 

segments stopping procedure (J. Miller & Ulrich, 2021). The independent segments stopping 

procedure is a procedure designed to make efficient use of experimental resources when 

evaluating a scientific hypothesis. In this procedure, a maximum sample size is selected, and k 

equally sized and independent segments of this sample are collected one at a time. In each 

independent segment of data, a key statistical test of the scientific hypothesis is evaluated to 

determine if data collection continues to the next segment. Data collection continues if evidence 

for or against the null hypothesis is ambiguous. If the key statistical test determines that there is 

already strong evidence against the null hypothesis or very weak evidence against the null 
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hypothesis, data collection is stopped. Importantly, the parameters of this procedure are selected 

to control the overall alpha value of the entire procedure. For this experiment, we a-priori 

decided to collect a total possible sample of 240 subjects over 4 independent segments. To 

control the overall alpha value at 0.05, we stopped data collection if our key statistical test had a 

p-value less than 0.035 or a p-value greater than 0.282 in any segment. Here, this occurred in the 

first segment and thus data collection was stopped with a sample size of 60. The key statistical 

test of my hypothesis is described further in “Analysis” and the results of this test are reported in 

“Results”. 

3.2.2 Materials 

Memoranda were composed of sets of written English words. Each word came from one 

of three categories: famous persons, famous places, or common objects. A bank of the first and 

last names of 112 famous individuals was created via online searches. A bank of 84 famous 

place names were collected from the places images originally collected by Cooper and 

colleagues (Cooper et al., 2017) supplemented by a series of online searches. A bank of object 

names were collected from the Bank of Standardized Stimuli (BOSS) (Brodeur et al., 2010, 

2014) by filtering the database for images of non-living objects and selecting the 124 images that 

had the high modal name agreement. I expected images in this database with the designation 

non-living and high modal name agreement to be most likely to be common, easily identifiable 

objects. All stimuli to be used in the current proposal can be found in Supplemental Table 8. 

Memoranda were composed of a set of three written words presented in a triad (see Figure 8a). 

One half of the triads were composed of a famous person and two common objects, and the other 

half were composed of a famous place and two common objects. A total of 28 memoranda were 
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presented to each participant during each session (14 famous person–object–object triads; 14 

famous place–object–object triads). All words were unique to each triad. Participants also 

completed three questionnaires concerning their perceived episodic memory, visual imagery, and 

mentalizing abilities: the survey of autobiographical memory (Palombo et al., 2013), the 

Vividness of Visual Imagery Questionnaire (Marks, 1973), and the Interpersonal Reactivity 

Index (M. H. Davis, 1983). 

3.2.3 Procedure 

Participants completed two experimental sessions. Each session included a multi element 

episodic memory task (Horner & Burgess, 2014) designed to measure their episodic memory 

ability for events containing different types of information. Before the task began, participants 

completed surveys probing participant’s familiarity with the famous persons and famous places 

selected for the experiment. Each of the two surveys randomly selected 28 famous people or 28 

famous places, with separate stimuli chosen for each session. For each of the 28 famous 

persons/places, participants were given a Likert scale (1- unfamiliar – 6 - Very Familiar) to 

indicate how familiar they were with each stimulus. The familiarity ratings gathered in this 

survey were used to prescreen stimuli to be used during the multi element episodic memory task 

for each participant. Stimuli were selected for the experiment such that the top 14 most familiar 

persons and the top 14 most familiar places were used to construct the famous place and famous 

person triads described previously (see 3.2.2 Materials). This was done to ensure that all stimuli 

used in the memory task were familiar to participants. A total of 28 triads were constructed by 

randomly selecting 56 object names from my database of names, randomly pairing them, and 
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then randomly assigning each object pair to one of the 14 famous names and 14 famous places 

selected as familiar to each participant. 

After completing the famous person/places surveys, participants completed an encoding 

task. During the encoding task, participants were presented with each of the 28 triad memoranda 

(i.e., 14 famous person triads and 14 famous place triads) and they vividly imagined a scenario 

linking the elements of the triad together. Participants were given a total of 12 seconds to 

imagine a scenario for each triad. Following this 12 second period, participants were asked to 

indicate on a scale from 0-100 how successful they were in imagining a scenario linking the 3 

triad elements together. To get insight into what exactly participants were imagining during 

encoding, I randomly selected 2 of the 14 person triads and 2 of the 14 place triads to serve as 

catch trials. On these catch trials, participants imagined a scenario linking the 3 triad elements 

together, rated how successful they were in imagining a scenario, and then report using a written 

free text response exactly what they were imagining during the 12 second imagination interval 

(see Figure 8b). Memory for the triads from the 4 catch trials were not tested in subsequent 

retrieval rounds. 

After completing the encoding task, participants completed a backwards digit span task to 

get a measurement independent of the episodic memory task of their cognitive capacity and task 

engagement. In this task, participants were presented with a string of numbers one at a time. 

Each number was presented for 500ms with a 500ms intertrial interval. After the numbers were 

presented, participants were presented with a free text response box and were asked to report the 

number that they just saw in reverse order. For example, if participants were presented with the 

digits “1-1-8-9” then they were tasked with reporting back “9-8-1-1”. Backwards digit span trials 



80 
 

progressed in difficulty, from 3 digits to 7 digits. Participants completed two trials at each 

difficulty level, for a total of 10 trials. 

After completing the backwards digit span task, participants were tested on their memory 

for the previously presented triads. The retrieval task consisted of a series of cued free recall 

trials (see Figure 8c). Each trial was self-paced. Trials presented one of the three elements of the 

triads from the encoding task as a memory cue, asking participants to report the other two 

corresponding elements. Each element in the triads served as a memory cue. This results in 72 

total retrieval trials (24 triads that did not serve as catch trials during encoding x 3 triad 

elements). All retrieval trials were completely in a randomized presentation order. 

After completing the experimental tasks, participants completed questionnaires on their 

self-perceived episodic memory (Survey of Autobiographical Memory, Palombo et al., 2013), 

visual imagery ability (Vividness of Visual Imagery Questionnaire, Marks, 1973), and 

mentalizing ability (Interpersonal Reactivity Index, M. H. Davis, 1983). After completion of 

these questionnaires, participants were presented with a screen that invited them to participate in 

the next session of the experiment. The second session of the experiment was identical to Session 

1 of the experiment in their procedure, except for the completion of the demographics and 

individual differences questionnaires. A new set of famous person, famous place, and common 

object stimuli were used on each subsequent session. Participants completed two sessions of the 

experiment to estimate each participant’s intrinsic level of dependency in the famous person triad 

and famous place triad conditions (see 3.2.3 Analysis). 
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Figure 8: Triads Task Overview. A.) Example famous person (blue) and famous place (orange) memoranda. All 
memoranda were presented for 12 seconds during the encoding task, during which time participants imagined a 
scenario linking the 3 items together. B.) Example encoding trial. After spending 12 seconds imagining, participants 
rated on a scale of 0-100 how successful they were in imagining a scenario. For a subset of 4 catch trials (i.e., 2 
famous person trials and 2 famous place trials), participants described in writing what they were imagining during 
encoding. C.) During an immediate retrieval task, participants were cued with one of the items from the triads and 
attempted to report the two corresponding items from the triad. Each of the three items from the triads served as a 
memory cue for a total of 72 retrieval trials. 

3.2.3 Analysis 

All statistical analyses were run in the R statistical environment (R Core Team, 2022). 

All mixed effects models were fit using the R package lme4 (Bates et al., 2015), paired t-tests 

using the package stats (R Core Team, 2022), partial correlations using the ppcorr package (S. 

Kim, 2015), statistical reporting of paired t-tests and mixed models using the R package report 
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(Makowski et al., 2023), and all figures using ggplot2 (Wickham, 2016). All code needed to 

recreate the analyses from this experiment are publicly available in a GitHub repository which 

can be found here: https://github.com/memobc/indivTriadJS. 

Cued recall responses during retrieval were automatically graded using the agrepl 

function available in the base package in the R statistical environment (R Core Team, 2022). 

This function takes a string as input and tries to match it to a vector of strings using a fuzzy 

matching algorithm. The algorithm works by attempting to match the strings by limiting the 

number of substitutions, additions, or deletions necessary to make two strings match. For 

example, the pattern string “lasy” will match the string “lazy” when the algorithm is set to allow 

for 1 substitution, addition, or deletion (substituting “z” for “s”). The algorithm also allows the 

user to set the number of substitutions, additions, or deletions to be a proportion of the length of 

the pattern string. Written responses were considered correct IFF the correct response matched 

either of the subject’s written responses allowing for up to 30% of the correct answer’s length in 

substitutions, deletions, or additions with one exception. To match cued recall responses where 

the correct answer was a famous place, the algorithm was modified to allow for 65% of the 

correct answer’s length in substitutions, deletions, or additions. I reasoned that 30% was a 

reasonable amount of fuzziness to allow close typos and misspellings of the correct answer to be 

counted as correct. I made the exception for my famous place stimuli because my famous place 

stimuli included both the canonical name of the famous location alongside its geographical 

location (e.g., “Fenway Park, Boston”; see Supplemental Table 8). In a pilot sample of 14 

subjects, I noticed that most participants reported only the canonical name of the famous place 

during cued recall (e.g., “Fenway Park”). I reasoned that 65% allowed for enough fuzziness to 

capture these types of responses as being correct, at the risk of some false positives. The 
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feasibility of this automatic grading algorithm with the 30%/65% fuzziness parameters was 

tested in a pilot dataset of 14 subjects. The pilot dataset was first graded by a single human 

grader and the grades from this human grader were compared to those from the just described 

agrepl algorithm. Grades produced by the algorithm agreed with those from the human grader 

98.8% of the time. 

A key feature of episodic memory is the fact that representations of events are thought to 

be “coherent wholes”. This implies that when retrieving an event, retrieval of one element of the 

event should be dependent on the retrieval of the other elements of that same event. This idea is 

referred to as retrieval dependency (Horner & Burgess, 2014; Ngo et al., 2021) and can be 

measured in my multielement episodic memory task by examining contingency in participants' 

recalls (see Figure 9a). For the following explanation, each element of a triad will be arbitrarily 

represented by a letter (e.g., A-C), with a capital letter representing which element is serving as 

the memory cue and lower-case letters representing which element is being retrieved (example: 

Ab would be when element A is being used as a memory cue to retrieve element b; see Figure 

9a). Retrieval dependency is calculated by examining 6 contingency tables – three contingency 

tables when each element of a triad is used as a memory cue to retrieve the other two elements 

(AbAc, BaBc, CaCb) and three contingency tables where a common element is cued by the other 

two elements of a triad (BaCa, AbCb, AcBc). For each contingency table, the proportion of 

associations that were jointly remembered or jointly forgotten is calculated (in other words, the 

proportion of associations that fall into the top left and bottom right cells of each contingency 

table; see Figure 9). This proportion is averaged across the 6 contingency tables. This average 

proportion is then subtracted from the expected number of joint recalls under a model that 

assumes both associations in each contingency table are recalled independently (the independent 
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model). The expected number of joint recalls is calculated as a function of the probability of 

recalling each association in a contingency table across all events (see Figure 9b). Retrieval 

dependency was operationalized as the proportion of joint recalls observed in the data minus the 

expected proportion of joint recalls assuming independent retrieval. This value can theoretically 

range [-1, 1] with 0 indicating a complete absence of retrieval dependency (in other words, the 

independent model fits well), 1 indicating perfect retrieval dependency, and -1 indicating the 

opposite of retrieval dependency (i.e., retrieving an element of an event makes it less likely that 

you will retrieve the other element of an event). 

 

Figure 9: Calculation of Retrieval Dependency. A.) A visual aid for the calculation of retrieval dependency in the 
current design. Panel A illustrates an AbAc contingency table. B.) Table detailing the calculation of the expected 
proportion of retrievals in each cell of the AbAc contingency table under the assumption of independence. 
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If individuals differ in their ability to holistically remember social-emotional and visual-

spatial focused mnemonic representations respectively, then I would expect retrieval dependency 

for famous person triads in session 1 to be more strongly correlated with their retrieval 

dependency for famous person triads in session 2 than to their retrieval dependency for famous 

place triads on sessions 1 or 2. The same logic would apply to performance on famous person 

triads. Importantly, all correlations would be run across participants. In other words, a separate 

retrieval dependency score would be calculated for each condition (famous person, famous 

place) for each session (session 1, session 2) for each participant. I will test my hypothesis of 

interest in the following manner. I will use a pair of partial correlation tests. Specifically, I will 

perform the following two statistical tests: a.) the partial correlation of famous person 

dependency in session 1 on famous person dependency in session 2 controlling for famous place 

dependency in sessions 1 and 2; b.) the partial correlation of famous place dependency in session 

1 on famous place dependency in session 2 controlling for famous person dependency in session 

1 and 2. These partial correlation tests should succeed if participants have an intrinsic ability for 

holistically recalling one type of information versus the other. Importantly, these partial 

correlation tests should control for participant’s overall episodic memory ability and for a main 

effect of session. For the purposes of our independent segments stopping rule procedure (see 

3.2.1 Participants for more details), we will use the maximum p-value of these two tests as our 

critical p-value for determining whether to stop data collection. 
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3.3 RESULTS 

3.3.1 Overall Accuracy 

Overall accuracy refers to the proportion of cued recall response prompts that were given 

a correct answer. Participants performed moderately well but varied widely on the task (M = 

0.57, SD = 0.281, min = 0.01, max = 1). To determine if participants’ accuracy differed as a 

function of session (session 1, session2) and triad type (famous person, famous place), I fit a 

logistic mixed model to predict accurate cued recall using session and triad type. This model 

included triad type, session, and the trial type x session interaction as random effects (formula: 

~trial_type * session | subject_id). The model's total explanatory power was substantial 

(conditional R2 = 0.52) and the part related to the fixed effects alone (marginal R2) was 0.01. 

The effect of session [session2] was statistically non-significant and negative (𝛽 = -0.12, 95% CI 

[-0.39, 0.14], p = 0.357, Std. 𝛽 = -0.06). The effect of condition [famous place] was statistically 

significant and negative (𝛽 = -0.49, 95% CI [-0.76, -0.23], p < .001, Std. 𝛽 = -0.23). The effect of 

session [session2] × condition [famous place] was statistically non-significant and negative (𝛽 = 

-0.07, 95% CI [-0.36, 0.21], p = 0.601, Std. 𝛽 = -0.04). This model suggests that participants 

were more accurate when triads contained a famous person compared to when they contained a 

famous place (see Figure 10). 
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Figure 10: Overall Accuracy as a Function of Session and Triad Type. Participants performed moderately well and 
varied widely on the multielement episodic memory task. Our data suggest that participants were more accurate 
when triads contained a famous person than when they contained a famous place. 

3.3.2 Evidence for Content Biases in Retrieval Dependency 

Previous studies using the multielement episodic retrieval task consistently show that 

participants, on average, display evidence for retrieval dependency (Bisby et al., 2018; e.g., 

Horner & Burgess, 2014; Ngo et al., 2021). To determine if my data were consistent with these 

previous reports, I first determined if my sample of participants displayed evidence for retrieval 

dependency collapsed across my conditions. As expected, I found evidence that the proportion of 

joint retrieval observed in the data was greater than the estimated proportion of joint retrieval 

under the independent model (difference = 0.14, 95% CI [0.12, 0.16], t(59) = 13.85, p < .001, 
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Cohen's d = 1.79), indicating that my sample showed significant dependence in their retrieval. 

Next, I calculated an index called “dependency” by subtracting the estimated proportion of 

joined retrievals observed in the data from the estimated proportion of join retrievals under the 

independent model separately for each subject, session, and triad type (see 3.2.3 Analysis). To 

determine if participants’ retrieval dependency differed as a function of session (session 1, 

session2) and triad type (famous person, famous place), I fit a linear mixed model to predict 

dependency using session and triad type. The model included session and triad type as random 

effects (formula = ~ session + triad_type | subject_id). The model’s total explanatory power was 

substantial (conditional R2 = 0.73) and the part related to the fixed effects alone (marginal R2) 

was 0.02. The effect of session [session2] was statistically non-significant and positive (𝛽 = 

6.56e-04, 95% CI [-0.03, 0.03], t(229) = 0.04, p = 0.964, Std. 𝛽 = 6.17e-03). The effect of 

condition [famous place] was statistically significant and positive (𝛽 = 0.04, 95% CI [9.67e-03, 

0.06], t(229) = 2.68, p = 0.008, Std. 𝛽 = 0.34). The effect of session [session2] × condition 

[famous place] was statistically significant and negative (𝛽 = -0.04, 95% CI [-0.06, -7.22e-03], 

t(229) = -2.47, p = 0.014, Std. 𝛽 = -0.34). This model suggests that participants displayed greater 

retrieval dependency in the famous place triad condition. This effect was smaller in session 2 

compared with session 1 (see Figure 11). 
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Figure 11: Retrieval Dependency as a Function of Session and Triad Type. Participants overall displayed strong 
evidence for retrieval dependency in their cued recalls. Participants additionally displayed more retrieval 
dependency for the famous place triads compared with the famous person triads. This effect was smaller in session 2 
compared with session 1. 

Lastly, to see if my data provided evidence for my key hypothesis, I ran a pair of partial 

correlation tests (see 3.2.3 Analysis). Dependency in the famous person triad condition in 

session 1 was significantly correlated with dependency in the famous person triad condition in 

session 2 when controlling for dependency in the famous place triad condition in session 1 and 

session 2 (r = 0.500, t(56) = 4.318, p < 0.001). Conversely, dependency in the famous place triad 

condition in session 1 was significantly correlated with dependency in the famous place triad 

condition in session 2 when controlling for dependency in the famous person triad condition in 

session 1 and session 2 (r = 0.359, t(56) = 2.874, p = 0.006). As a result, data collection ceased 

after the first independent segment of N = 60 (see 3.2.1 Participants). To further understand 
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these results, I calculated a new measure, “person dependency bias” by subtracting retrieval 

dependency seen in the famous person triad condition from retrieval dependency seen in the 

famous place triad condition for each subject for each session. This measure essentially 

represents the slope of the lines seen in Figure 11. In Figure 12a, I plot person dependency bias 

measured in session 1 against person dependency bias measured in session 2. If person 

dependency bias is an intrinsic property of individuals, then I would expect person dependency 

bias measured in session 1 to be positively correlated with person dependency bias measured in 

session 2 -- indicating that participants remain consistent from session 1 to session 2. This was 

the case in my sample (r = 0.45, 95% CI [0.22, 0.63], t(58) = 3.80, p < .001). In Figure 12b, I 

plot participants’ dependency scores averaged over sessions in a scatterplot with the x-axis 

representing place dependency and the y-axis representing person dependency. Subjects that lie 

above and to the left of the diagonal in this plot (the red space) display a bias towards holistically 

remembering famous place triads and subjects that lie below and to the right of the diagonal (the 

blue space) display a bias towards holistically remembering famous person triads. Observing this 

space closely, it is evident that participants vary along the lower left to upper right diagonal, 

suggesting that there is an overall episodic memory capacity with some participants displaying 

overall more retrieval dependency than others. Importantly, it is also evident that participants 

vary off this diagonal, with some participants displaying a famous person or famous place bias in 

their holistic recollection. Taken together, these results suggest that participants differ in their 

intrinsic tendency to holistically recall information containing people and places, such that some 

individuals are better at holistically recalling triads containing famous places and some 

individuals are better at holistically recalling triads containing famous persons. 
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Figure 12: Content Biases in Retrieval Dependency. A.) Content biases in retrieval dependency are consistent over 
sessions, such that participants that have a content bias in session 1 tend to have a similar content bias in session 2. 
B.) Participants vary both in the overall amount of holistic retrieval (variability along the diagonal; black line) as 
well in their ability to holistically retrieve trads containing famous persons vs triads containing famous people 
(variability away from the diagonal). Bias = dependency in famous person triads – dependency in famous place 
triads. 

3.3.3 Dependency and Overall Accuracy Are Strongly Related 

As a follow up analysis, I wanted to determine if participants also displayed content 

biases in their overall cued recall accuracy. Before doing this, I wanted to better understand the 

relationship between retrieval dependency and overall cued recall accuracy. Retrieval 

dependency as reported in the literature is described as a measure that is independent from 

overall retrieval accuracy. This is because the calculation of retrieval dependency involves 

subtracting away the proportion of joint retrievals accounting for overall accuracy for different 

triad associations (i.e., the independent model; see 3.2.3 Analysis; see also Horner & Burgess, 

2014; Bisby et al. 2018; Ngo et al. 2021). However, this did not appear to be the case when 

considering variation across participants in my data. In Figure 13, I plot overall accuracy against 
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retrieval dependency across participants. As is evident from the figure, there is a strong quadratic 

relationship between overall accuracy and retrieval dependency such that participants who 

performed either at or near ceiling or at or near floor are the ones displaying little retrieval 

dependency. To statistically test for this, I fit a linear model of retrieval dependency 

(dependency) on overall accuracy (accuracy) containing a quadratic coefficient (model formula: 

dependency ~ accuracy + accuracy^2). The model's explanatory power was substantial (R2 = 

0.75, adj. R2 = 0.74). The effect of accuracy is statistically significant and positive (𝛽 = 0.93, 

95% CI [0.77, 1.08], t(57) = 12.18, p < .001, Std. 𝛽 = -0.32). The effect of accuracy^2 is 

statistically significant and negative (𝛽 = -0.89, 95% CI [-1.03, -0.75], t(57) = -12.87, p < .001, 

Std. 𝛽 = -0.92). 
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Figure 13: Dependency is a Quadratic Function of Overall Accuracy. Average retrieval dependency is a quadratic 
function of overall accuracy such that participants who are at or near ceiling or are at or near floor in terms of 
overall accuracy are also the participants who show the lowest retrieval dependency. 

Upon further reflection, it became evident that this quadratic relationship is baked into 

the calculation of retrieval dependency. Specifically, participants who perform near ceiling or 

near floor must necessarily have similar amounts of observed joined retrievals and estimated 

joined retrievals under the independent model. In other words, performance near the floor and 

ceiling limits the range of possible retrieval dependency scores, resulting in the U-shaped 

function seen in Figure 13. I believe that the dependency measure can still be a valid measure of 

holistic retrieval if participants near the performance floor/ceiling are removed from the analysis. 

To perform a quick thought experiment as to why this makes sense, imagine a participant who 

performs perfectly on the experiment (100% accuracy). The proportion of observed joint recalls 
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for this participant will necessarily be 100% and the expected proportion of joint recalls under 

the independent model will also be 100%, resulting in a dependency measure of 0. However, this 

participant is NOT displaying 0 retrieval dependency. I cannot observe this participant’s retrieval 

dependency because they performed so well on the experiment. We could, in theory, estimate 

their retrieval dependency on a more difficult retrieval test. A similar set of logic applies to 

participants near the performance floor. 

To attempt to correct for this accuracy-dependency confound, I winsorized my data by 

removing participants who had extreme accuracy in any one of my experimental conditions. 

Specifically, I first removed participants who accurately recalled below 5% or above 95%, then 

removed those that accurately recalled below 10% and above 90%, and finally those that recalled 

below 25% and above 75% of recall prompts in any one of my experimental conditions. 

Winsorizing my data in this way resulted in revised sample sizes of 40, 33, and 17 respectively. 

The 5%/95% and 10%/90% samples still displayed a significant quadratic relationship between 

overall accuracy and dependency, but the 25%/75% sample showed no relationship between 

overall accuracy and retrieval dependency. I thus decided to rerun my analyses on the 25%75% 

winsorized sample. The 25%/75% sample still displayed strong evidence for retrieval 

dependency (difference = 0.21, 95% CI [0.20, 0.23], t(16) = 24.94, p < .001, Cohen's d = 6.05). 

The results of the session x triad type model are unlike the original, with nonsignificant main 

effects of session and triad type and a non-significant interaction (see S.8 Results in winsorized 

Subsample for statistics). Dependency in the famous person triad condition in session 1 for this 

winsorized sample was not significantly correlated with dependency in the famous person triad 

condition in session 2 when controlling for dependency in the famous place TRIADs condition in 

session 1 and session 2 (r = 0.001, t(13) = 0.007, p = 0.99). Dependency in the famous place 
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triad condition in session 1 was also not statistically significantly correlated with dependency in 

the famous place triad condition in session 2 when controlling for dependency in the person triad 

condition in session 1 and session 2 (r =-0.081, t(13) = -0.454, p = 0.65). Thus, I am unable to 

reject the null hypothesis for either of my key statistical tests. Because I had to remove so many 

subjects, I may not have had sufficient statistical power remaining, and thus after this 

adjustment, my data are inconclusive with respect to my key hypothesis.
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3.3.3 Content Biases in Overall Accuracy 

Given the confound between overall accuracy and retrieval dependency, I decided to see 

if I could find evidence for intrinsic content biases in the overall accuracy data. Overall accuracy 

in the famous person triad condition in session 1 was significantly correlated with overall 

accuracy in the famous person triad condition in session 2 when controlling for overall accuracy 

in the famous place triad condition in session 1 and session 2 (r = 0.58, t(56) = 5.283, p < 0.001). 

Conversely, overall accuracy in the famous place triad condition in session 1 was significantly 

correlated with overall accuracy in the famous place triad condition in session 2 when controlling 

for overall accuracy in the famous person triad condition in session 1 and session 2 (r = 0.540, 

t(56) = 4.800, p < 0.001). Like with the analysis of retrieval dependency, I calculated a new 

measure “person accuracy bias” by subtracting overall accuracy in the famous person triad 

condition from overall accuracy seen in the famous place triad condition for each subject for 

each session. This measure essentially represents the slope of the lines seen in Figure 10. In 

Figure 14a, I plot person accuracy bias measured in session 1 against this person accuracy bias 

measured in session 2. If content bias in overall accuracy is an intrinsic property of individuals, 

then I would expect this person accuracy bias measured in session 1 to be positively correlated 

with person accuracy bias measured in session 2 -- indicating that participants remain consistent 

from session 1 to session 2. This was the case in my sample (r = 0.45, 95% CI [0.22, 0.63], t(58) 

= 3.80, p < .001). In Figure 14b, I plot participants’ cued recall accuracy averaged over sessions 

in a scatterplot with the x-axis representing accuracy in place triads and the y-axis accuracy in 

person triads. Subjects that lie above and to the left of the diagonal (the red space) display a bias 

towards recalling associations in famous place triads and subjects that lie below and to the right 
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of the diagonal (the blue space) display a bias towards accurately recalling associations from 

famous person triads. Observing this space closely, it is evident that there is an overall episodic 

memory capacity with participants displaying overall more accurate retrieval than others. In 

other words, participants are scattered along the lower left to upper right diagonal of this space. 

There is also evidence that participants vary off this diagonal, with some participants displaying 

a famous person or famous place bias in their overall accuracy. However, it appears that most of 

this variability lies below and to the right of this diagonal, reflecting the strong main effect of 

accuracy in the famous place condition compared with the famous person condition. 

 

Figure 14: Content Biases in Overall Accuracy. A.) Content biases in overall accuracy replicate are consistent over 
sessions, such that participants that have a content bias in session 1 tend to have a similar content bias in session 2. 
B.) Participants are biased to accurately recall associations in famous person triads compared with famous place 
triads. Bias = cued recall accuracy in famous person triads – cued recall accuracy in famous place triads. 

Because most participants showed a bias favoring memory for person triads, I 

additionally wanted to test whether there were other stimulus characteristics that could account 

for the retrieval accuracy results. Before completing the experiment, I asked participants to 

report their level of familiarity with each famous person and each famous place stimulus in the 
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experiment. As part of my experimental protocol, I selected the 14 (out of 28) most familiar 

famous person and famous place stimuli to serve as experimental stimuli for each participant (see 

3.2.3 Procedure). As a first step, I fit a linear mixed model to predict familiarity rating with 

session [session1, session2] and stimulus_type [famous person, famous place]. The model 

included stimulus_type as random effects (formula: ~stimType | subject_id). The model's total 

explanatory power was substantial (conditional R2 = 0.83) and the part related to the fixed 

effects alone (marginal R2) as 0.16. Within this model, the effect of session [session2] was 

statistically non-significant and negative (𝛽 = -4.49e-03, 95% CI [-0.13, 0.12], t(232) = -0.07, p 

= 0.944, Std. 𝛽 = -5.27e-03), the effect of stimulus_type [famous places] was statistically 

significant and negative (𝛽 = -0.58, 95% CI [-0.77, -0.39], t(232) = -6.08, p < .001, Std. 𝛽 = -

0.68), and the effect of session [session2] × stimulus_type [famous places] was statistically 

significant and negative (𝛽 = -0.20, 95% CI [-0.37, -0.02], t(232) = -2.17, p = 0.031, Std. 𝛽 = -

0.23). This model suggests that famous people were more familiar to participants than famous 

places. This effect was stronger in session two. 
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Figure 15. Familiarity of Famous Experimental Stimuli. My famous person stimuli were rated as much more 
familiar than my famous place stimuli. 

Given that the famous people in my experiment were more familiar than famous places 

(see Figure 15) and given that overall cued recall accuracy was greater for the famous person 

triads compared with the famous place triads (see Figure 10), I was interested in determining if 

familiarity moderated the effect of overall recall accuracy on triad type. To determine if 

familiarity moderated the effect of triad type [person triad, place triad] on recall accuracy, I fit a 

logistic mixed model to predict overall accuracy with triad_type, session and familarity_rating 

(formula: accuracy ~ triad_type * session + familarity_rating). The model included condition and 

rating as random effects (formula: ~condition * rating | subject_id). The model's total 

explanatory power was substantial (conditional R2 = 0.58) and the part related to the fixed 
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effects alone (marginal R2) was 0.01. Within this model, the effect of triad_type [famous place] 

was statistically significant and negative (𝛽 = -0.36, 95% CI [-0.59, -0.13], p = 0.002; Std. 𝛽 = -

0.36, 95% CI [-0.59, -0.13]), the effect of session [session2] was statistically non-significant and 

negative (𝛽 = -0.03, 95% CI [-0.14, 0.09], p = 0.634; Std. 𝛽 = -0.03, 95% CI [-0.14, 0.09]), the 

effect of familarity_rating was statistically significant and positive (𝛽 = 0.20, 95% CI [0.11, 

0.29], p < .001; Std. 𝛽 = 0.21, 95% CI [0.11, 0.31]), and the interaction effect of triad_type 

[famous place] × session [session2] was statistically non-significant and negative (𝛽 = -0.15, 

95% CI [-0.31, 3.59e-03], p = 0.056; Std. 𝛽 = -0.15, 95% CI [-0.31, 3.55e-03]). This model 

suggests that familiarity with a stimulus does not completely moderate the effect of triad type on 

overall cued recall accuracy. In other words, accuracy in famous person triads is greater than 

accuracy in famous place triads even after accounting for the difference in familiarity. 

3.4 SUMMARY 

In summary, in Chapter 3 I report the results of an online behavioral experiment designed 

to test a neuroscience inspired hypothesis of the organization of individual differences in 

episodic remembering. Previous research on individual differences in memory has largely 

progressed independently of the parallel lines of research on the neurobiology underlying 

episodic memory (but see Ngo et al., 2021). Recent research on the neural architecture 

underlying episodic memory suggests that the default mode network (particularly its ventral 

components linked with the medial temporal lobes) supports the phenomenon. Furthermore, the 

default mode network itself is likely composed of highly related subnetworks that support 

different aspects of episodic remembering – a dorsal default mode subnetwork that is more 

involved with social-emotional aspects of cognition and a more ventral subnetwork that is 
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involved in visual-spatial aspects of cognition. The organization of the network underlying 

episodic remembering should inform how individuals differ in their episodic memory capacity. 

Specifically, I hypothesize that individuals should have at least three different episodic memory 

capacities – a social-emotional episodic memory capacity that relies on the efficient functioning 

of dorsal default mode subnetwork, a visual-spatial episodic memory capacity that relies on the 

efficient functioning of the ventral default mode subnetwork, and an overall episodic memory 

capacity that results from the efficient functioning and cooperation of the two related 

subsystems. 

To test this hypothesis, I had a sample of 60 subjects complete a multielement episodic 

retrieval task. In this task, participants studied triads that contained either famous people or 

famous places across two sessions. The key measure from this memory task was retrieval 

dependency – a measure that has previously been used as an individual differences measure (Ngo 

et al., 2021) and a measure that I believed would closely index functioning of the ventral default 

mode network. The results of my experiment initially provided strong support for my hypothesis, 

but with a strong caveat. Upon further inspection of my data, I realized that the retrieval 

dependency measure – the key measure I used to test my hypothesis – had an unexpected 

inverted U-shaped relationship with overall cued recall accuracy. I showed that this was likely 

due to a mathematical necessity in the retrieval dependency calculation. After attempting to 

scrub my data of this confound, I found that evidence for my hypothesis was much weaker in the 

context of a much smaller sample size. Turning to overall accuracy, there was a strong bias for 

accurately retrieving association in famous person triads which persisted even when controlling 

for the fact that the famous person stimuli were rated as more familiar to participants than the 

famous place stimuli. Overall, the results were largely inconclusive, and it remains an open 
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question if individuals systematically differ in their ability to holistically recall different types of 

information from memory.
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DISCUSSION 

I had three key aims for this dissertation. My first aim was to dissociate region-specific 

from network-wide contributions to episodic retrieval success in brain regions previously related 

to episodic cognition. I found that trialwise activation clustered into ventral and dorsal 

subnetworks and that, for the most part, these brain regions did not make region-specific 

contributions to episodic retrieval outcomes. Instead, these regions made subnetwork-wide 

contributions, with the ventral subnetwork predicting memory outcomes above and beyond the 

dorsal subnetwork, but not vice versa. My second aim was to investigate the neural basis of 

individual differences in episodic memory ability, with a specific focus on functional 

connectivity. In a series of hypothesis driven analyses, I found that functional connectivity of 

networks traditionally associated with episodic retrieval success was not related to individual 

differences in episodic memory ability. I did find, however, that a pattern of functional 

connectivity across the entire brain characterized by decoupling of somatomotor regions from 

default mode regions was predictive of episodic memory ability. Finally, my third aim was to 

test a neuroscience inspired hypothesis on how individuals differ in their memory ability. I 

hypothesized on the basis of cognitive neuroscience work that individuals would display content 

biases in their memory, such that some individuals would be better at retrieving events that are 

centered around famous persons while other individuals would be better at retrieving events that 

are centered around famous places. The results of my experiment were ultimately inconclusive, 

leaving open the possibility that individuals have different capacities for remembering events 
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involving different types of information. I will discuss the results of each of these studies in turn 

and conclude with a discussion of the broader implications of the research and future directions. 

4.1 INTEGRATING REGIONAL AND NETWORK APPROACHES 

The results of Chapter 1 support the presence of dissociable subnetworks within the PM 

network (Andrews-Hanna et al., 2010; Barnett et al., 2021; Buckner & DiNicola, 2019; Cooper 

et al., 2021a). Previous studies have shown evidence for highly-related subnetworks during rest 

(Andrews-Hanna et al., 2010; Barnett et al., 2021) and during movie-watching (Cooper et al., 

2021a). Our results extend these findings, showing evidence that a similar subnetwork 

organization explains the trialwise involvement of PM regions during retrieval of multi-feature 

events. Our models also showed that the coactivation of the vPMN makes contributions to 

memory quality that go above and beyond those made by coactivation of the dPMN (see Figure 

3). The vPMN has previously been shown to modulate its connectivity in response to event 

transitions, and individual differences in episodic memory ability have been linked to dynamic 

changes in vPMN connectivity during movie watching (Cooper et al., 2021a). The vPMN 

regions have also been shown to represent similar information during a memory-guided decision-

making task (Barnett et al., 2021). The vPMN is strongly related to episodic retrieval and 

autobiographical remembering, while portions of the dPMN have been linked to mentalizing 

about the mental states of others (Andrews-Hanna, Saxe, et al., 2014; Andrews-Hanna, 

Smallwood, et al., 2014). Additional evidence suggests that the vPMN may be particularly 

responsive to remembering and orienting towards visual-spatial information and the dPMN 

towards people (Peer et al., 2015; Silson et al., 2019) and the thematic elements of 

autobiographical remembrances (Gurguryan & Sheldon, 2019). 
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The fact that the vPMN in our dataset was uniquely related to overall memory quality 

could be reflective of our experimental design, which required the recollection of fine grained 

visual-spatial details. At least two other aspects of our results seem to support this conclusion. 

First, memory for the scene feature—which in our experimental design requires the recollection 

of the fine grained visual-spatial details—loaded most strongly onto our overall memory quality 

factor (see Table 3). Second, the vPMN significantly contributed only to scene feature memory 

in our memory feature models (see Table 5). The specific role of the vPMN in supporting scene 

memory is consistent with recent frameworks proposing that the anterior hippocampus and 

anterior regions of the neocortex support memory for coarse, gist-level, schematic details in 

memory whereas posterior regions of the hippocampus and the neocortex— including PHC, 

RSC, and posterior AG— support memory for fine grained perceptual details, especially spatial 

details (Robin & Moscovitch, 2017; Sekeres et al., 2018; Sheldon et al., 2019). In contrast, the 

dPMN was negatively correlated with scene memory and tended to be positively related to sound 

memory, which may have been mediated by relatively coarse representations of the sound 

valence that were sufficient to drive memory for this feature. 

When taking into consideration the covariance among PM network regions, we did not 

find much evidence for independent, region-specific contributions, suggesting that the network-

level effects could adequately account for their roles in predicting memory outcomes. 

Nevertheless, we had expected that there might be more region-specific effects, based on 

evidence that many of these regions play specialized roles in recollection. There are several 

reasons for why we did not see the region-specific effects that we had hypothesized. One 

possibility is that there is something unique about our experimental paradigm that did not allow 

us to observe region-specific contributions. For example, the hippocampus may have emerged as 
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making a region-specific contribution if we had operationalized our measure of memory success 

to target the hippocampus’ proposed function more specifically. The hippocampus’ contribution 

to predicting overall memory success may be subsumed by the network level contribution, but 

this may not be the case if the measure was more specific to successful pattern completion, for 

instance. Another possibility lies in how we modeled the neural response. In the current report, 

we modeled the neural response by assuming that it was transient, starting at the presentation of 

the memory cue during our ‘remember’ periods. Previous research suggests that the memory-

related neural response in the angular gyrus is not transient with respect to the onset of recall, but 

is instead sustained throughout the duration of the recall period (Vilberg & Rugg, 2012, 2014). It 

is possible that modeling a sustained response throughout the recall period would allow for the 

identification of region-specific contributions of the angular gyrus. Our experimental design only 

allowed for 4 seconds for recall, so the responses captured here are likely to be similar to the 

transient responses seen in Vilberg & Rugg (2012, 2014). As an additional test of this possibility, 

all of our models were rerun using single trial estimates modeling the entire 4-second retrieval 

period. The key results of the current report remained unchanged. Another possible explanation 

is that the identification of region-specific contributions within our framework assumes that the 

operations and representations of individual regions can be decoupled. However, in a typically 

functioning brain, the activity of two brain regions may be highly correlated if the involvement 

of one brain region depends on the output of the other, even if they are performing otherwise 

separate functions. Thus, although the current results suggest strong evidence for network-level 

effects in the context of the typically functioning brain, the roles of individual brain regions may 

be better revealed in studies documenting the consequences of region-specific disruptions, such 

as studies of patients with focal brain damage (Corkin, 2002; Moscovitch & Winocur, 1992), or 
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in electrophysiological studies that can resolve fine temporal differences in information 

processing among regions in the same network (Fox et al., 2018; Treder et al., 2021). 

The one region in which we found a region-specific effect was the MPFC. The MPFC has 

been commonly described as part of the PM network (Ritchey & Cooper, 2020; Rugg & Vilberg, 

2013) and is thought to support the formation and retrieval of gist level, schema-based 

representations (Robin & Moscovitch, 2017; Schlichting & Preston, 2015; Sekeres et al., 2018; 

van Kesteren et al., 2012). Our results indicated that, after accounting for MPFC’s participation 

in the dPMN subnetwork, the MPFC had a region-specific negative relationship with memory 

quality. The negative relationship between MPFC and memory success is not without precedent, 

with fMRI experiments of memory encoding often finding that less MPFC activation is 

associated with greater subsequent memory, particularly for objective compared to subjective 

memory judgments (Maillet & Rajah, 2014). This MPFC activation is thought to be associated 

with mind-wandering or off-task thoughts (Christoff et al., 2009) which interferes with the 

formation of a lasting memory trace. The current experiment, however, was primarily focused on 

retrieval where previous reports have indicated a positive relation between MPFC activity and 

measures of subjective memory success (H. Kim, 2016; McDermott et al., 2009; Spaniol et al., 

2009). One possible explanation of this surprising result is that it reflects the role of the MPFC in 

schema-based memory. Our experimental design relies on participants arbitrarily associating 

event elements at a fine level of detail. If participants were relying on a schema to meet our task 

demands, this could potentially lead to decreased performance on the fine-grained memory 

measures in our experiment. However, in the absence of any independent measures of schema 

use in our experiment, another plausible interpretation is that the observed negative relationship 

may be the result of a statistical artifact. In the current study, the MPFC was only weakly 
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correlated with the quality with which events were remembered but was still positively 

correlated with other regions of the network (see Table 1). It was only after controlling for its 

subnetwork participation that we saw a strong negative contribution to memory. Thus, the result 

seen here could be the result of a conditioning-on-a-collider bias, also known as Berkson’s 

paradox (Berkson, 1946; Lübke et al., 2020). In this paradox, two variables that do not have a 

statistical association are induced to have a negative association by statistically controlling for a 

variable that they both cause. In the current scenario, it could be the case that MPFC activation 

and memory quality are (at least in part) correlated with increases in PM network coactivation, 

but memory quality and MPFC activation are not related to one another. 

The SEM methodology applied in Chapter 1 has several distinct advantages. Firstly, the 

current SEM approach has an advantage over previous reports of brain-behavior correlations in 

that it can simply and simultaneously capture the network-level and region-specific contributions 

of brain regions to behavioral phenomena. Second, the current report expanded upon previous 

deployments of this methodology (Bolt et al., 2018) by applying a multilevel SEM to 

simultaneously model within-subjects and between-subjects variation in the BOLD response, 

seeking to relate trial-by-trial, within-subjects variability in BOLD response to trial-by-trial 

variability in memory while controlling for individual differences. Thirdly, our dataset has a 

distinct advantage over previous studies of episodic remembering because it incorporates 

multiple measures of the quality of retrieval of an episode. This allowed us to model overall 

memory quality as a latent variable loading onto our measures of memory for 3 different features 

of each episode. By operationalizing memory success in this way, we were able to capture trial-

to-trial variability in the joint remembering of event features. This is key, because holistic 
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recollection is thought to be a key characteristic separating episodic remembering from other 

forms of memory (Tulving, 1983). 

Our SEM approach is related to, but distinct from, other methods for relating regions and 

networks to episodic remembering. For example, previous studies have used data-driven, 

hierarchical clustering methods to parcellate PMN subnetworks (Andrews-Hanna et al., 2010; 

Barnett et al., 2021; Cooper et al., 2021a), but did not relate trialwise coactivation within those 

subnetworks to episodic remembering. Another set of related methodological approaches is 

effective connectivity approaches. Specifically, some effective connectivity approaches also use 

SEM, but they use SEM to attempt to test hypothetical models of the underlying causal relations 

amongst regions of interest (e.g., McIntosh & Gonzalez-Lima, 1994; see McIntosh & Protzner, 

2012 for review). The latent variable modeling approach applied here, in contrast, does not 

attempt to make such causal inferences. Instead, our approach uses a latent variable to capture 

the coactivation seen within a network and relates this coactivation to a behavioral variable of 

interest. Lastly, the current approach is conceptually similar to partial least squares (PLS) 

analyses (Krishnan et al., 2011; McIntosh et al., 1996; McIntosh & Lobaugh, 2004). PLS 

involves maximizing the covariation between signal extracted from voxels of the brain and 

behavior, extracting latent variables reflecting distributed coactivation across the brain that 

explains variance in some behavior of interest. The SEM approach used in the current report is 

similar to PLS in that it also estimates a latent variable using the covariation of regional 

activation profiles but has the advantage of being exclusively hypothesis driven and 

computationally and conceptually simpler. Many PLS applications (but not all Krishnan et al., 

2011), in contrast, are data driven in nature. Additionally, PLS typically operates on all the 
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voxels collected during the course of an experiment, whereas the current approach operates on a 

set of hypothesized ROIs. 

This chapter makes an important contribution to the literature on the role of the PM 

network in episodic remembering. It does, however, have its limitations. Our multilevel approach 

allowed us to model trialwise neural activation and behavioral profiles while controlling for 

individual differences. Multilevel SEM, however, also allows researchers to build models of 

individual differences in neural activation and behavior beyond simply controlling for this 

important source of variability. We did not attempt to model individual differences in the current 

report in large part because our dataset would be underpowered to do so. Future research could 

utilize larger sample sizes to model individual differences related to particular participant 

characteristics (see Bolt et al., 2018 for an SEM application to individual differences). 

Additionally, the current analysis was focused on a set of a-priori ROIs that were the same 

across individuals. Although this is a good starting point and is a strategy often adopted by 

researchers, recent research in high-precision functional mapping suggests that individually 

defined ROIs may provide more accurate insights into network organization and function 

(Buckner & DiNicola, 2019; Gilmore et al., 2021). Finally, although our memory measures 

captured multiple aspects of each episode (specifically, memory for multiple episodic features), 

they may not have adequately captured the functioning of core alliances within the PM network 

(Ritchey & Cooper, 2020). 

4.2 FUNCTIONAL CONNECTIVITY AND MEMORY ABILITY 

Chapter 2 examined how individual differences in episodic memory ability related to 

intrinsic functional connectivity focusing specifically on the DMN-C subnetwork that has been 
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strongly implicated in episodic remembering (Ritchey & Cooper, 2020). Across a sample of 243 

individuals, we found little evidence that DMN-C connections were related to episodic memory 

ability. We also found little evidence that average strength of hippocampal connections was 

related to episodic memory ability. We did find evidence, however, that network-wide patterns 

of functional connectivity could predict individual differences in memory. These predictive 

models were robust to analytic decisions and remained significant after controlling for age, self-

reported biological sex, and average in-scanner movement. Probing these predictive models 

further revealed that superior memory ability was characterized by a decoupling of Somatomotor 

B regions and Default A regions and an increase in communication between Somatomotor B and 

visual processing regions. Together, these results suggest that there is limited evidence 

connecting individual differences in memory to measures of intrinsic functional connectivity 

among regions typically associated with memory function. 

Contrary to my hypotheses, I found little evidence that the strength of intrinsic functional 

connections of DMN-C and hippocampal regions supports episodic memory ability. This finding 

fails to conceptually replicate previous reports that suggest that changes in functional 

connectivity of default mode (King et al., 2015; Lin et al., 2021; Sneve et al., 2017; van Buuren 

et al., 2019) and hippocampal regions (Touroutoglou et al., 2015; L. Wang, LaViolette, et al., 

2010; L. Wang, Negreira, et al., 2010) scales with episodic memory ability. We believe that there 

are several possible reasons why this might be the case. One reason could be that the strength of 

“intrinsic” DMN-C and functional connections are not related to episodic memory ability, but the 

strength of “active” functional connections are. Measures of intrinsic functional connectivity, 

often obtained from resting-state scans that do not include an explicit cognitive task, have been 

widely used to study individual differences in cognition. Strong evidence has accumulated over 
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the years to suggest that these measures are related to behavioral phenotypes. Studies of the 

resting-state have found that there is a normative pattern of functional connections in the brain, 

such that brain regions form stable networks (between 7-17, Yeo et al., 2011). Recent work 

suggests that the majority of variability in the strength of these connections is attributable to 

stable individual differences away from this group-level pattern (as opposed to variation 

attributable to cognitive task or day-to-day variation; (Gratton et al., 2018). Furthermore, the 

strength of intrinsic connections has been shown to be predictive of a number of different 

behavioral phenotypes including neuroticism and extraversion (Hsu et al., 2018), trait-level 

anxiety (Z. Wang et al., 2021), fluid intelligence (Finn et al., 2015), creativity (Beaty et al., 

2018), sustained attention (Rosenberg et al., 2016), and working memory ability (Avery et al., 

2020). Patterns within the intrinsic functional connectome are so identifiable that they can be 

used to identify an individual from a group, acting a sort of “brain fingerprint” (Finn et al., 

2015). Thus, it seemed reasonable to hypothesize that individual differences in intrinsic 

functional connectivity would be related to memory ability. 

Other work critiques this line of research, however, suggesting that “intrinsic” functional 

connectivity calculated in the resting-state is less useful for predicting individual differences 

compared with “active” functional connectivity calculated while participants complete cognitive 

tasks (Greene et al., 2018, 2020; Lin et al., 2021). An analogy would be examining two cars and 

trying to determine which one is the better race car — you may not be able to tell the difference 

between an expensive race car and a Toyota civic by looking under the hood when they are 

sitting in a garage, but you may be able to tell the difference when you examine how their parts 

perform when engaged in a race. Supporting this idea, Greene and colleagues (2018) performed 

an analysis of a large openly available dataset where they attempted to predict individual 
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differences in fluid intelligence using functional connectivity calculated during a pair of resting 

state scans and functional connectivity calculated during each of 7 difference cognitive task 

scans. Greene and colleagues (2018) showed that predictive performance improved dramatically 

when using the functional connectivity calculated during the cognitive tasks (from about 6% 

explained variance for resting-state connectivity to 20% explained variance for task 

connectivity), despite the fact that the cognitive tasks were not direct measures of fluid 

intelligence and had about half the amount of data compared with the resting-state task scans. 

Further work from Greene and colleagues (2020) suggests that this increase in predictive utility 

is due to the fact task scans increase inter-subject consistency in brain connectivity to an optimal 

point, whereby noise is minimized without obscuring important individual differences. The 

results of one of our supplemental analyses support these findings, with out-of-sample 

performance being significantly worse using the resting-state scan compared with the movie-

watching or sensorimotor task data. Lin and colleagues (2021) came to a similar conclusion as 

Greene and colleagues (2018, 2020), suggesting that the functional connectomes calculated 

during encoding have greater predictive utility for predicting memory ability compared with 

resting-state scans. A closely related critique also questions the use of resting state networks for 

understanding how the brain supports cognition. This critique specifically puts forth the idea that 

the most important unit of analysis when relating brain measures to cognition is not networks 

identified via low-frequency coactivation during rest, but networks identified via high frequency 

coupling while participants complete highly controlled cognitive tasks (Cabeza & Moscovitch, 

2013; S. W. Davis et al., 2017; Moscovitch et al., 2016). These high frequency couplings have 

been termed “process specific alliances” or PSAs. PSAs are small “teams” of brain regions that 

dynamically assemble to support a very specific cognitive operation. Key to the definition of 
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PSAs that differentiates them from resting-state networks is the rapidity with which they 

assemble and disassemble. Additionally, these PSA are often composed of nodes from resting-

state networks, but can often straddle resting-state networks definitions. For example, a PSA 

involving the hippocampus and the left ventrolateral prefrontal cortex is thought to support 

successful episodic encoding (e.g., Wing et al., 2013), despite the fact that hippocampus is 

typically a member of the default mode network and left ventrolateral PFC is not (S. W. Davis et 

al., 2017). Thus, it could be the case that individual differences in behavior manifest themselves 

in individual differences in the strength of these high frequency and cognition specific PSAs and 

not in strength of low-frequency and cognition agnostic resting state networks. Thus, although 

we did not find a relationship between memory ability and intrinsic (i.e., task-independent) 

measures of functional connectivity in memory related brain regions, we hypothesize that this 

relationship may only be apparent when measuring brain activity while participants complete a 

memory-related task. 

While we did not find evidence that hippocampal or DMN-C connections were related to 

memory ability, we did find that a multivariate brain-wide pattern of functional connectivity 

could predict memory ability reliably out-of-sample. Our predictive analyses suggest that the 

brains of superior rememberers are characterized by decoupling of somatomotor regions and 

DMN-A regions and increased communication between somatomotor regions and visual 

processing regions. This decoupling of default and sensory regions is in line with previous 

results from Sneve and colleagues (2017) who likewise showed evidence the superior 

rememberers were characterized by decoupling between default mode and sensory networks. 

However, contrary to this pattern, other studies have shown that increases in DMN connectivity 

are related to episodic memory ability. King and colleagues (2015), for example, showed that the 
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brains of superior rememberers were characterized by an increase in functional connectivity 

between hippocampal and DMN-C regions and the rest of the brain during episodic retrieval 

tasks. Van Burren and colleagues (2019) showed that lower MTL-DMN connectivity and higher 

DMN-frontal-parietal control regions predicted episodic memory ability. Lin and colleagues 

(2021) performed a similar computational lesion approach to the one performed in Chapter 2 and 

showed that the removal of any one network resulted in negligible decrements in predictive 

power, suggesting that the information contained within the functional connectome is widely 

distributed. What is clear from the results of Chapter 2 and the literature to date is that 

information about memory ability is likely contained within the functional connectome beyond 

brain networks classically linked to episodic remembering. The exact pattern of whole brain 

connectivity that predicts memory ability, however, remains inconsistent from study to study. 

An important factor that may have influenced our results is our choice of memory 

measure. Here, we used a standard neuropsychological measure of memory that assessed an 

individual’s ability to recall the details of a written short story – the logical memory subtest of 

the Weschler Memory Scale (Weschler, 1999). The logical memory subtest of the Weschler 

Memory Scale was chosen because it was available for the largest number of subjects in the 

CamCan dataset, compared to other included memory measures, and this measure has been 

previously shown to correlate with individual differences in brain activity in response to event 

boundaries during the CamCan movie watching scan (Reagh et al., 2020). Reliance on a single 

memory measure to capture an individual's memory ability, however, may be problematic given 

previous research suggesting that individuals have aptitudes for different types of memory tasks 

(Unsworth, 2019). We speculate that differences in how memory ability is operationalized could 

explain the mixed state of the literature – all of the previous research relating individual 
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differences in memory ability and functional connectivity have taken a unique approach to 

operationalizing memory ability (King et al., 2015; Lin et al., 2021; Sneve et al., 2017; van 

Buuren et al., 2019). King and colleagues (2015) and Sneve and Colleagues (2017) relied on 

performance in source memory recognition tasks; Lin and colleagues (2021) relied on 

performance on a remember/know/new recognition memory paradigm; van Burren and 

colleagues (2019) relied on performance on an object-location memory task; Setton and 

colleagues (2022) used the number of internal details generated during an autobiographical 

memory interview. It is currently unclear how performance on these different memory tasks 

relates to one another. Future research on individual differences in memory ability should, 

ideally, use multiple memory measures to get an unbiased measure of individuals’ overall 

memory ability. 

While these previous studies have considered individual differences in objective 

evaluations of participants’ memory, other studies have looked at measures of individuals’ 

subjective evaluations of their own memory when relating individual differences to brain 

function (Petrican et al., 2020; Sheldon et al., 2016). Sheldon and colleagues (2016), for 

example, examined the relationship between the strength of functional connectivity of the 

parahippocampal cortex and subjects reports of episodic memory tendencies measured by the 

Survey of Autobiographical Memory (SAM) survey (Palombo et al., 2013). The SAM measures 

participants’ self-reported mnemonic traits, measuring their tendency, for example, to remember 

specific event and contextual details when recalling events (episodic subscale) versus their 

tendency to remember facts about oneself, events, or the world that lack contextual detail 

(semantic subscale). There is some evidence that individual differences in self-reported 

mnemonic traits measured by the episodic subscale of the SAM relies on a similar resting-state 



117 
 

functional connectivity profile as individual differences measured using a visual, laboratory 

based episodic memory task (Petrican et al., 2020). Future work should consider the relationship 

between subjective and objective measures of memory function (e.g., Cooper & Ritchey, 2022), 

as well as how these measures relate to individual differences in brain function. 

Another important consideration for individual differences research is how to approach 

controlling for covariates of no interest.  Here, we controlled for the influence of age, sex, and 

subject motion. Subject motion has long been known to be a major source of variability in 

functional connectivity (Power et al., 2012). Far fewer reports, however, attempt to control for 

age and sex when doing individual differences research. Age, for example, is known to have a 

strong relationship with intrinsic functional connectivity (Dosenbach et al., 2010) and with 

various measures of personality and cognition. Recent research also supports the idea that males 

and females engage different neural networks when remembering information (Spets et al., 2019; 

Spets & Slotnick, 2021). If researchers are interested in the direct relationship between 

functional connectivity and memory, we feel it is crucial to control for age even in age restricted 

samples of younger adults. In addition to statistical controls for both age and sex, we additionally 

attempted to maximize our statistical power by 1.) using a large openly available dataset and, 

crucially 2.) collapsing data across functional runs when calculating the functional connectome. 

This last point we feel is what really sets our analysis apart from previous literature. We were 

persuaded by recent findings suggesting that intrinsic individual differences dominate task 

differences in terms of variance explained in functional connectivity and findings that showed 

that 6-8 minutes of data is often underpowered for detecting a functional connectome that is 

intrinsic to individuals – an assumption that previous studies have made when utilizing a single 

resting-state scan. 
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An intriguing future direction is to look at other facets of brain connectivity and how they 

may be related to episodic memory ability. There are at least three facets of brain connectivity 

that could theoretically support individual differences in cognition: variability in connectional 

strength, variability in the spatial localization of brain regions, and variability in large-scale 

network topology (i.e., large scale networks have different sets of constituent nodes across 

subjects (Gordon & Nelson, 2021). The current study, like many of studies that have come 

before, focused on how variability of the strength of functional connections related to individual 

differences in memory ability. Recent work, however, suggests that there are substantial 

individual differences in the size and organization of functional brain areas (Gordon, Laumann, 

Adeyemo, et al., 2017; Gordon & Nelson, 2021; Kong et al., 2019; Laumann et al., 2015). 

Gordon and Nelson (2021) display a striking example of this type of idiosyncrasy, where the 

posterior medial precuneus node of the default mode network for one subject is translated along 

the cortical surface such that the node wraps around to the lateral side of the brain. These 

differences in the spatial topography of functional nodes on the cortical surface also appear to 

have behavioral relevance. Kong and colleagues (2019) estimated individual specific network 

topologies and showed that they could successfully predict behavioral outcomes by using both 

similarities in overall network topology and similarity in the size of different networks as 

predictors. Recent work has also identified individual differences in large-scale network 

topology, such that nodes that are the same across individuals are a part of different large scale 

networks (Gordon & Nelson, 2021; Laumann et al., 2015; Seitzman et al., 2019). Laumann and 

colleagues (2015) for example analyzed data from a case study where a single individual was 

scanned over 100 times. They showed that this individual has a small cortical region in the 

lateral frontal cortex that is a part of the frontal-parietal control network in most individuals, but 
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for this individual is a part of the cingulo-opercular network. This phenomenon has recently been 

termed a “network variant” (Seitzman et al., 2019). Network variants appear to occur in specific 

regions of the brain, particularly in default mode regions, and are observed in some datasets in 

approximately 33% of individuals. Like with individual differences in node size and location, the 

behavioral relevance of these network variants is unclear (but see Kong et al., 2019). Another 

intriguing possibility is that individual differences in memory ability could be related to the 

presence or absence of network variants in default mode regions. 

In conclusion, we found little evidence in support for a relationship between memory 

ability and intrinsic functional connectivity among cortical and hippocampal networks 

commonly associated with episodic memory. We did find a multivariate brain wide pattern of 

functional connectivity that was predictive of memory ability, characterized by decoupling of 

somatomotor regions from default mode regions. Our findings agree with previous research that 

suggests that information about memory ability is contained in functional connections in regions 

outside of regions classically linked to episodic memory. The exact nature of this brain 

connectivity pattern that predicts memory ability remains unclear. We believe this is due to 

variability in how memory ability is operationalized and the low power of previous studies both 

in terms of number of subjects collected and in the amount of data collected per subject. Future 

research on the relationship between individual differences in memory and functional brain 

networks should incorporate multiple measures to operationalize memory ability unbiased 

toward a particular task (Unsworth, 2019), collect a large amount of data (Gordon, Laumann, 

Adeyemo, et al., 2017; Marek et al., 2022), ideally task-related data (Greene et al., 2018), and 

examine facets of brain organization other than functional connectivity strength (Gordon & 

Nelson, 2021). 
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4.3 NEURAL INSPIRED ORGANIZATION OF MEMORY ABILITY 

In Chapter 3 I reported the results of an online behavioral experiment designed to test a 

neuroscience inspired hypothesis of the organization of individual differences in episodic 

remembering. In general, the results were inconclusive, and it remains an open question if 

individuals systematically differ in their ability to holistically recall events centered around 

different types of information from memory. The study reported in Chapter 3 was focused on 

individual differences in memory based on the content of the memoranda, i.e.,  person and place 

information. Previous psychometric studies have looked at individual differences in performance 

for different types of memory content, but memory content was operationalized along different 

dimensions than the one used in Chapter 3. Some studies, for example, had participants complete 

tests for pictorial and verbal content (item recognition words vs item recognition pictures; 

Unsworth & Brewer, 2009) and others have had participants complete tests for nonsensical 

content and meaningful content (Carroll, 1993“meaningful memory” vs “visual memory”; e.g., 

Hakstian & Cattell, 1974-- “associative memory” vs “meaningful memory”; Kelley, 1954“route 

memory” vs “meaningful memory”). Evidence compiled across studies looking at the factor 

structure of memory abilities, however, is largely consistent with the idea of a hierarchical factor 

structure with an overall memory ability and separate abilities for different types of criterial tasks 

(Unsworth, 2019). It remains to be seen, however, whether there are individual capacities for 

remembering visuo-spatial versus socio-emotional information. In addition, prior studies have 

not investigated how memories are bound around different kinds of content, as we did here with 

the retrieval dependency measure (but see Ngo et al., 2021). 

I chose the dependency measure for this experiment because this measure best captures 

the integrative, (re)constructive, multielement binding processes that are attributed to the default 
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mode network and the posterior medial network (Ritchey & Cooper, 2020). What is appealing 

about this measure is that it is described as being a “pure” measure of episodic binding that is 

independent of overall memory performance. Overall memory performance, relative to 

dependency, may be more likely to be driven by individual differences in motivation and 

attention paid during the task. Because the dependency measure accounts for overall memory 

performance in its calculation (Bisby et al., 2018; Horner & Burgess, 2013, 2014; James et al., 

2020), I believed that it was also likely to be dissociable from nuisance variables like motivation, 

attention, and simple task engagement. It has also been successfully used in an individual 

differences context previously (Ngo et al., 2021). Chapter 3 of my dissertation discovered, 

however, that this measure is closely related to memory accuracy, displaying a quadratic 

relationship with dependency. A recent publication that performed a simulation study examining 

the statistical characteristics of 6 different retrieval dependency calculations supports my 

conclusion drawn here, noting that the retrieval dependency measure used here, although a valid 

way to measure dependency on average across conditions or subjects, is highly related to 

memory accuracy when used as an individual differences measure (Schreiner & Meiser, 2022). 

Future studies interested in testing this hypothesis should try and identify a behavioral measure 

that can capture the integrative, constructive, multielement binding processes of the default mode 

network independent of overall performance on the task. 

In light of these observations, I decided to look for evidence for my hypothesis by 

looking at a secondary measure: overall cued recall accuracy. I did not find, however, strong 

evidence for my neuroscience inspired hypothesis when analyzing the overall performance 

measure. Although participants displayed a content-specific bias in their overall accuracy that 

replicated over sessions and was independent of overall performance, this content-specific bias 
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did not span the entire famous person, famous place space like my original hypothesis predicted. 

Instead, my overall performance findings suggest that participants displayed a consistent bias for 

remembering associations from famous person triads over famous place triads.  

Why did the results of this overall accuracy analysis not turn out as predicted? One 

possibility is that the assumptions of my hypothesis were not met with this analysis – perhaps, 

for example, cued recall accuracy for associations from famous people and famous places is not 

a great indicator of dorsal and ventral DMN function respectively. Future studies would need to 

be run with behavioral measures that are more strongly related to ventral and dorsal PMN 

function respectively. Another possibility is that the overall accuracy measure was strongly 

related to participants' familiarity with the famous person and famous place stimuli used in this 

analysis. Follow up analyses suggested that this might be a possibility because the famous person 

stimuli used in my experiment were consistently rated as more familiar to participants and this 

fact partially explained why associations from famous person triads were remembered better than 

those from famous place triads. Future research should attempt to equate preexperiment 

familiarity with person and place triads to rule of a familiarity based explanation of the results. 

Previous psychometric research suggests that individuals have particular capacities for 

different types of memory tests (see Unsworth, 2019 for review). In Chapter 3 of my dissertation, 

I tested an alternative hypothesis on individual differences in memory ability that was rooted in 

the cognitive neuroscience literature, although my findings were ultimately inconclusive. 

Specifically, the cognitive neuroscience literature suggests that episodic memory retrieval is 

supported by the default mode network, specifically two subnetworks of the default mode 

network that are closely related to the hippocampus and the medial temporal lobes. These two 

subnetworks of the default mode network are often linked to different cognitive operations that 
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differ on the specific operation and, importantly, on the content that is being processed. The 

more dorsal of the default mode subnetworks, for example, if often linked to tasks involved in 

theory of mind – a cognitive operation that relies on memory for and processing of a person and 

their mental states. The more ventral subnetwork, on the other hand, is often linked to tasks 

involved in spatial navigation – a cognitive operation that relies on memory for and the 

processing of complex, associative spatial layouts. Given this difference in cognitive operation of 

these mnemonic networks, I hypothesized that individuals would, as a result, systematically 

differ on a task that taxed the episodic memory system when episodic representations differed on 

the content that they contained – in this case a famous person and a famous place. This is 

because biological substrates should shape how individuals differ because biological substrates 

are what are ultimately responsible for our behavior.  

To better understand the logic of this prediction, consider the following analogy in a 

different context – athletics. Human beings are capable of performing a range of athletic feats 

and these athletic feats are supported by the biology of our muscular system. The muscular 

system is composed of two interrelated but dissociable types of muscle fibers – fast twitch 

muscle fibers and slow twitch muscle fibers. These muscle fibers support two different types of 

physical activity – short bursts of physical effort and long, sustained amounts of physical effort 

respectively. This biological reality explains the ways in which athletes differ – some athletes, 

like weightlifters, are great at short bursts of athletic performance. Other athletes, like marathon 

runners, are great at long bouts of sustained athletic output. In other words, a good model of 

athletic ability is one in which we place athletes in an athletic space spanned by two dimensions 

related to the muscular system – a dimension composed of performance on short bursts of 

athletic performance and a dimension composed of sustained performance over longer periods of 
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time. I hypothesize that individual differences in memory ability should work in the same way as 

individual differences in athletic ability. 

If given the opportunity, I would redesign the experiment by greatly expanding the 

amount of data collected per subject. Specifically, I would replicate the experiment over three 

sessions and I would include a number of additional memory tests that contained social-

emotional and visual-spatial content. By having replications over more sessions, I can be more 

confident that I have precisely captured a true trait-like measure of participants’ performance on 

particular tasks. More importantly, additional replications and more types of memory tests would 

allow me to use a structural equation model to more directly examine the fit of the hierarchical 

model implied by my hypothesis. Specifically, I would have participants complete memory tests 

that are common in the cognitive neuroscience literature, like old/new recognition, free recall, 

and the multi elemental continuous reconstruction task used in Chapter 1, on events that contain 

social-emotional and visual-spatial content. By having such a wide variety of memory tests 

completed across events that systematically varied in their type of content, I could compare the 

fit of at least three different theoretical models – a model that contains only a single overall 

memory capacity that loads onto all tasks, a model that contains two latent variables that load 

onto memory tests that contain social-emotional information and visual-spatial information 

respectively that themselves load onto a higher-order overall memory capacity latent variable, 

and a model that contains latent variables for the criterial tasks that is analogous to the one from 

Unsworth (2019). 



125 
 

4.4 FUTURE DIRECTIONS & CONCLUDING THOUGHTS 

Across three studies, I investigated the cognitive and neural bases of episodic memory. In 

Chapter 1, I found that brain regions related to episodic cognition formed ventral and dorsal 

subnetworks across the trials of an episodic retrieval task and that the contributions of these 

regions to episodic recollection were largely made at the subnetwork level. In Chapter 2, I found 

that individual differences in memory ability were not related to functional connectivity of brain 

regions related to memory, but instead related to a whole brain pattern of functional connectivity. 

In Chapter 3, I found inconclusive evidence when testing a neuroscience inspired hypothesis on 

how individuals differ in their memory ability. Given all of these findings, what are the running 

themes and takeaways from my dissertation? Where should research go from here? I believe that 

there are three themes that run throughout my dissertation that I discuss in turn: 1) The brain 

should be studied as a series of networks. 2) More cross talk needs to occur between cognitive 

neuroscience and psychometric research. Finally, 3) Future research needs to do a better job of 

addressing methodological issues to ensure replicability. 

The brain should be studied as a series of networks. We have learned a lot about studying 

individual brain regions. Studies of neuropsychological patients with focal brain damage, 

including the famous patient H.M., have been highly influential on our current understanding of 

how the brain works. Future work, however, needs to continue to embrace the 

multidimensionality of the brain. Across Chapter 1 and Chapter 2 I took network-based 

approaches to studying the neural correlates of memory. Chapter 1 specifically challenges the 

idea that memory-related brain regions make unique contributions to memory retrieval outside of 

their participation in dissociable subnetworks. Chapter 2 follows up on and expands this idea in 

an individual differences context. When restricting analyses to only memory-related brain 
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regions, I was unable to build a model to predict memory ability. However, when incorporating 

information from the brain as a whole, I was able to predict memory ability. Both of these 

findings emphasize that although individual regions have strong links to cognitive processes 

(e.g., the hippocampus and memory), these regions do not support cognitive processes in 

isolation, and we must consider how they are embedded within a broader neural context 

(McIntosh, 2000). 

More cross talk is needed between cognitive neuroscience and psychometrics. Across 

Chapter 2 and Chapter 3 I studied individual differences in episodic memory ability. In Chapter 

2, I took a close look at the cognitive neuroscience literature, attempting to predict memory 

ability using neural data. In Chapter 3, I took a close look at the psychometric literature on 

memory ability. What surprised me is how little cross talk there was between these two lines of 

literature – cognitive neuroscientists often do not factor in the psychometric properties of the 

behavioral tasks that they use while psychologists often do not factor in the underlying brain 

networks that support their cognitive abilities of interest. If we take the philosophical stance that 

the brain gives rise to cognition, then we must consider how the brain is structured when 

thinking about how individuals differ. Future research should attempt to map out the 

psychometric properties of influential cognitive neuroscience of memory tasks, including the 

multi element retrieval task, mnemonic similarity task, classic recognition tasks, source 

memory/associative memory tasks, and autobiographical memory tasks. Interesting recent work 

towards this end suggests that cognitive neuroscientists should begin to predict phenotypes that 

express themselves as a pattern across behavioral variables, instead of just as a single variable 

(e.g., He et al., 2022). Future research in the psychology of memory should likewise incorporate 

what we know about neural networks into their models and theories of how individuals differ. 
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Methodological issues present in psychology and cognitive neuroscience research. Much 

cognitive neuroscience research has progressed without a thorough understanding of the basic 

psychometric properties of the behavioral tests and neural measures that they use. For example, 

we have limited understanding of how cognitive neuroscience memory tasks relate to one 

another, how reliable our memory tasks are, how many trials we typically need to achieve good 

reliability in our behavioral measures, and how much data we need to achieve reliability in our 

neural measures. This is beginning to change, however. Recent studies have shown that we need 

to collect more trials per subject for many tasks used in cognitive neuroscience studies in order to 

achieve adequate reliability (Kadlec et al., 2023). A recently completed study scanning the same 

individual 100s times has mapped out the reliability curve for functional connectivity measures 

(Laumann et al., 2015). Future cognitive neuroscience studies on individual differences in 

cognition should take note of these recent methodological demonstrations to collect a) more 

subjects, b) more/longer scans per subject, c) a sufficient number of trials per subject, and d) a 

variety of different tasks that are all thought to tap into a cognitive ability of interest. 

In summary, the brain is simultaneously composed of large-scale brain networks and 

individual regions composing those networks. Future research on the cognitive neuroscience of 

memory should factor in the network organization of memory processes, as interactions among 

brain regions may be better predictors of memory quality than individual brain regions alone. 

These interactions may be best understood in a task context, as the intrinsic functional 

connectivity of memory networks does not appear to predict individual differences in overall 

episodic memory ability. Future work should seek to expand our knowledge of individual 

differences in both brain and behavior by conducting high quality replicable research that 

precisely measures individuals’ brain function and their cognitive abilities.  
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SUPPLEMENTAL MATERIAL 

S.1 Chapter 1 Model Summaries 

Model Description Estimator Chi-square 
(df) 

RMSEA CFI SRMR_W SRMR_B 

Preliminary         

1 Neural Preliminary MLR 2951.578 
(36), p<.001 

.144 .000 .047 .352 

2 Behavioral Preliminary WLSMV 20.882 (6), 
p=.002 

.025 .958 .000 .634 

Measurement models         

3 One Factor Neural MLR 290.442 (20), 
p<.001 

.059 .905 .063 .005 

4 Two Factor Neural MLR 90.096 (19), 
p<.001 

.031 .975 .035 .003 

5 Latent Variable 
Behavioral 

WLSMV 0.163 (2), 
p=.922 

.000 1.000 .001 .022 

6 Stitched Model WLSMV 534.782 (59), 
p<.001 

.046 .974 .034 .043 

8 Stitched Model Without 
Behavioral Latent 
Variable 

WLSMV 683.198 (37), 
p < .001 

.067 .965 .030 .000 

Structural models         

7 Behavioral Latent 
Variable 

WLSMV See Table 4 and Figure 3 

9 Without Behavioral 
Latent Variable 

WLSMV See Table 5 and Figure 4 
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Supplemental Table 1. Summaries of all Models Included in Chapter 1. The preliminary models were used to 
establish the appropriateness of the multi-level modeling approach for the neural (Model 1) and behavioral (2) data. 
The measurement models characterized the loading of individual measures onto their corresponding latent variables, 
separately for the neural (3, 4) and behavioral (5) data. Measurement models were stitched together into combined 
models with (6) and without (8) the latent variable for overall memory quality. Finally, structural models were used 
to test the paths connecting the neural and behavioral latent variables with each other and with the individual 
measures, for both the overall memory quality (7) and memory feature (9) analyses.  
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S.2 Memory Feature Model Parameters 

paramHeader param est se pval 

VPMN.BY RSC 0.627 0.006 < 0.001 

 
PHC 0.567 0.008 < 0.001 

 
PAG 0.608 0.007 < 0.001 

DPMN.BY MPFC 0.516 0.006 < 0.001 

 
PHIPP 0.438 0.008 < 0.001 

 
PREC 0.647 0.007 < 0.001 

 
PCC 0.685 0.004 < 0.001 

 
AAG 0.711 0.005 < 0.001 

SCENE.ON VPMN 0.277 0.043 < 0.001 

 
DPMN -0.147 0.040 < 0.001 

COLOR.ON VPMN -0.004 0.047 0.933 

 
DPMN 0.041 0.050 0.417 

SOUND.ON VPMN 0.006 0.043 0.882 

 
DPMN 0.114 0.059 0.052 

DPMN.WITH VPMN 0.634 0.008 < 0.001 

SCENE.WITH COLOR 0.340 0.025 < 0.001 

 
SOUND 0.313 0.026 < 0.001 

COLOR.WITH SOUND 0.232 0.026 < 0.001 

Variances VPMN 1 0 999 

 
DPMN 1 0 999 

 
PHIPP 0.809 0.007 < 0.001 

 
PREC 0.581 0.009 < 0.001 

 
PCC 0.531 0.006 < 0.001 

 
MPFC 0.734 0.006 < 0.001 

 
PHC 0.679 0.009 < 0.001 
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RSC 0.607 0.008 < 0.001 

 
AAG 0.495 0.007 < 0.001 

 
PAG 0.630 0.008 < 0.001 

Supplemental Table 2: Parameter Estimates for the within-subjects Part of our Feature Specific Memory Model 
(Model 9; see Figure 4). This table was created using the R package MplusAutomation (Hallquist & Wiley, 2018). 
Parameter headers (paramHeader) follow standard Mplus syntax, where the ON keyword indicates a path parameter 
from the variable listed in the “param” column to variable listed in the “paramHeader” column, the BY keyword 
indicates a loading parameter (lambda λ), and the WITH keyword indicates a covariance parameter (theta θ). param 
= parameter, est = standardized estimate, se = standard error, pval = p value. See Figure 2 caption for abbreviations. 

S.3 FMRIPREP Boilerplate 

The following is an edited version of the recommended boilerplate output by fMRIPrep 

after processing the data. The original boilerplate contained redundant descriptions of the 

operations performed by the software. What appears below is a detailed description of the 

processing steps with the redundant descriptions removed. 

Results included in this manuscript come from preprocessing performed using fMRIPrep 

20.2.0 (Esteban et al., 2019), which is based on Nipype 1.5.1 (Esteban et al., 2017; Gorgolewski 

et al., 2011). 

S.3.1 Anatomical data preprocessing 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset. The 

T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008), 

and used as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped 

with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast 
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(FSL 5.0.9; Zhang et al., 2001). Volume-based spatial normalization to one standard space 

(MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration 

(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The 

following template was selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical 

template version 2009c (Fonov et al., 2009 TemplateFlow ID: MNI152NLin2009cAsym). 

S.3.2 Functional data preprocessing 

For each of the 3 BOLD runs found per subject (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped version 

were generated from the shortest echo of the BOLD run using a custom methodology of 

fMRIPrep. A B0-nonuniformity map (or fieldmap) was estimated based on a phase-difference 

map calculated with a dual-echo GRE (gradient-recall echo) sequence, processed with a custom 

workflow of SDCFlows inspired by the epidewarp.fsl script and further improvements in HCP 

Pipelines (Glasser et al., 2013). The fieldmap was then co-registered to the target EPI (echo-

planar imaging) reference run and converted to a displacements field map (amenable to 

registration tools such as ANTs) with FSL’s fugue and other SDCflows tools. Based on the 

estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference was 

calculated for a more accurate co-registration with the anatomical reference. The BOLD 

reference was then co-registered to the T1w reference using flirt (FSL 5.0.9, Jenkinson & Smith, 

2001) with the boundary-based registration (Greve & Fischl, 2009) cost-function. Co-registration 

was configured with nine degrees of freedom to account for distortions remaining in the BOLD 

reference. Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD runs were slice-
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time corrected using 3dTshift from AFNI 20160207 (Cox & Hyde, 1997). The BOLD time-

series (including slice-timing correction when applied) were resampled onto their original, native 

space by applying a single, composite transform to correct for head-motion and susceptibility 

distortions. These resampled BOLD time-series will be referred to as preprocessed BOLD in 

original space, or just preprocessed BOLD. A T2* map was estimated from the preprocessed 

BOLD by fitting to a monoexponential signal decay model with nonlinear regression, using 

T2*/S0 estimates from a log-linear regression fit as initial values. For each voxel, the maximal 

number of echoes with reliable signal in that voxel were used to fit the model. The calculated 

T2* map was then used to optimally combine preprocessed BOLD across echoes following the 

method described in (Posse et al., 1999). The optimally combined time series was carried 

forward as the preprocessed BOLD. The BOLD time-series were resampled into standard space, 

generating a preprocessed BOLD run in MNI152NLin2009cAsym space. Several confounding 

time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), 

DVARS and three region-wise global signals. FD was computed using two formulations 

following Power (absolute sum of relative motions, Power et al., 2014) and Jenkinson (relative 

root mean square displacement between affines, Jenkinson et al., 2002). FD and DVARS are 

calculated for each functional run, both using their implementations in Nipype (following the 

definitions by Power et al., 2014). The three global signals are extracted within the CSF, the 

WM, and the whole-brain masks. Additionally, a set of physiological regressors were extracted 

to allow for component-based noise correction (CompCor, Behzadi et al., 2007). Principal 

components are estimated after high-pass filtering the preprocessed BOLD time-series (using a 

discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and 

anatomical (aCompCor). tCompCor components are then calculated from the top 2% variable 
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voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM and 

combined CSF+WM) are generated in anatomical space. The implementation differs from that of 

Behzadi et al. in that instead of eroding the masks by 2 pixels on BOLD space, the aCompCor 

masks are subtracted a mask of pixels that likely contain a volume fraction of GM. This mask is 

obtained by thresholding the corresponding partial volume map at 0.05, and it ensures 

components are not extracted from voxels containing a minimal fraction of GM. Finally, these 

masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the original 

implementation). Components are also calculated separately within the WM and CSF masks. For 

each CompCor decomposition, the k components with the largest singular values are retained, 

such that the retained components’ time series are sufficient to explain 50 percent of variance 

across the nuisance mask (CSF, WM, combined, or temporal). The remaining components are 

dropped from consideration. The head-motion estimates calculated in the correction step were 

also placed within the corresponding confounds file. The confound time series derived from head 

motion estimates and global signals were expanded with the inclusion of temporal derivatives 

and quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 

mm FD or 1.5 standardized DVARS were annotated as motion outliers. All resamplings can be 

performed with a single interpolation step by composing all the pertinent transformations (i.e. 

head-motion transform matrices, susceptibility distortion correction when available, and co-

registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). 
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Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al., 2014), mostly 

within the functional processing workflow. For more details of the pipeline, see the section 

corresponding to workflows in fMRIPrep’s documentation. 

S.4 Global Signal Regression 

Global signal regression (GSR) involves statistically removing the global mean signal 

from the timecourse of each voxel in the brain prior to calculating functional connectivity 

between brain regions (see Murphy & Fox, 2017 for a review). GSR was originally thought to be 

an effective way to remove artifactual signals (e.g., motion) from voxel time series and was 

implemented in task-based fMRI experiments. This preprocessing step, however, mathematically 

mandates negative connectivity estimates between brain regions (Murphy et al., 2009), 

muddying the interpretation of resulting anti-correlations. Recent research, however, suggests 

that GSR helps analyses whose aim is to predict behavior using functional connectivity estimates 

(Finn & Bandettini, 2021; Li et al., 2019). In our pre-registration, we did not include GSR in our 

preprocessing pipeline, though we have since been convinced that this step may be important for 

individual difference analyses. For completeness, we reran our analyses excluding GSR from our 

preprocessing pipeline and report the results below. Removing GSR had no impact on our pre-

registered, hypothesis-driven analyses targeting the DMN-C (see Supplemental Table 3-5). 

However, there were two differences in the other results: First, removing GSR results in a 

statistically significant relationship between average hippocampal connectivity on memory 

ability, whereby average hippocampal connectivity was inversely related to memory ability (see 

Supplemental Table 6). Second, removing GSR resulted in a substantially weaker ability to 

predict memory ability in the CBPM analysis (r{observed, predicted} = 0.081, p = 0.099).
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  Model 1 Model 2 Model 3 
Characteristic Beta1 SE2 Beta1 SE2 Beta1 SE2 
within -0.29 0.225 -0.27 0.225 -0.18 0.204 
age   -0.05 0.027 -0.05 0.026 
sex3   -0.91* 0.446 -1.0* 0.414 
fd   -6.4 5.70 2.0 5.21 
acer     1.1*** 0.243 
cattell     0.83*** 0.237 
No. Obs. 243  243  235  
R² 0.007  0.048  0.238  
1*p<0.05; **p<0.01; ***p<0.001 
2SE = Standard Error 
3Female = 0, Male = 1. 

Supplemental Table 3. Regression Results of Average Within DMN-C Connectivity on Memory Ability Removing 
GSR from Our Analysis Pipeline. within = average strength of connection among DMN-C regions; acer = cognitive 
capacity score, cattell = fluid intelligence score. 

 

  Model 4 Model 5 Model 6 
Characteristic Beta1 SE2 Beta1 SE2 Beta1 SE2 
between -0.35 0.224 -0.22 0.231 -0.07 0.208 
age   -0.04 0.027 -0.05 0.026 
sex3   -0.95* 0.444 -1.0* 0.414 
fd   -5.6 5.86 1.9 5.33 
acer     1.1*** 0.244 
cattell     0.82*** 0.237 
No. Obs. 243  243  235  
R² 0.010  0.046  0.235  
1*p<0.05; **p<0.01; ***p<0.001 
2SE = Standard Error 
3Female = 0, Male = 1. 

Supplemental Table 4: Regression Results of Average DMNC--DMNA Connectivity on Memory Ability Removing 
GSR from Our Analysis Pipeline. between = average strength of connection between DMNC and DMNA regions; 
acer = cognitive capacity score, cattell = fluid intelligence score.
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  Model 7 Model 8 Model 9 
Characteristic Beta1 SE2 Beta1 SE2 Beta1 SE2 
extra -0.60** 0.222 -0.40 0.252 -0.31 0.230 
age   -0.04 0.028 -0.04 0.026 
sex3   -0.85 0.449 -0.94* 0.417 
fd   -3.2 6.15 4.3 5.57 
acer     1.1*** 0.243 
cattell     0.84*** 0.237 
No. Obs. 243  243  235  
R² 0.030  0.052  0.241  
1*p<0.05; **p<0.01; ***p<0.001 
2SE = Standard Error 
3Female = 0, Male = 1. 

Supplemental Table 5: Regression Results of Average DMNC Connectivity with the Rest of the Brain on Memory 
Ability Removing GSR from Our Analysis Pipeline. extra = average strength of connection between DMNC regions 
and regions not in the DMNC or DMNA; acer = cognitive capacity score, cattell = fluid intelligence score. 

 

  Model 10 Model 11 Model 12 
Characteristic Beta1 SE2 Beta1 SE2 Beta1 SE2 
hipp -0.74*** 0.220 -0.57* 0.241 -0.44* 0.218 
age   -0.04 0.027 -0.04 0.026 
sex3   -0.73 0.451 -0.84* 0.421 
fd   -2.4 5.95 4.8 5.39 
acer     1.1*** 0.242 
cattell     0.81*** 0.235 
No. Obs. 243  243  235  
R² 0.044  0.065  0.249  
1*p<0.05; **p<0.01; ***p<0.001 
2SE = Standard Error 
3Female = 0, Male = 1. 

Supplemental Table 6: Regression Results of Average Hippocampal Connectivity on Memory Ability Removing 
GSR from Our Analysis Pipeline. hipp = average strength of connection of hippocampal regions; acer = cognitive 
capacity score, cattell = fluid intelligence score.
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S.5 CBPM Connection Defining Threshold 

Our study used Connectome Based Predictive Modeling (CBPM; Shen et al., 2017) to 

determine if information contained within the functional connectome is useful for predicting 

memory ability. This approach involves setting an arbitrary threshold for defining which 

connections are used to make behavioral predictions. Analyses reported in this manuscript used a 

connection selection threshold of p <= .01. It is unclear, however, whether this arbitrary choice 

of threshold has any impact on our results. We reran our key CBPM analysis (i.e., predicting 

memory ability while controlling for age, sex, and average framewise displacement) using a 

range of connection selection thresholds: p = [0.001 0.005 0.01 0.05 0.1]. Results are reported in 

Supplemental Figure 1. Analyses using all selection thresholds were statistically significant 

with one exception – when the selection threshold was set to p < 0.005. It is currently unclear 

why this specific analysis failed — selecting an even stricter threshold (i.e., p < 0.001) resulted 

in restored predictive performance. We take this pattern of results as evidence that the CBPM 

approach is robust to connection selection threshold, in line with previous reports (Finn et al., 

2015; Jangraw et al., 2018; CBPM; Shen et al., 2017). 
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Supplemental Figure 1: CBPM Results are Robust to Selection of Connection Selection Threshold. Red diamonds 
indicate observed results, black dots indicate results of 100 null simulations. *** p <= 0.001, ** p <= 0.01, * p <= 
0.05, ns = p > 0.05. 

S.6 Combining Data Across Tasks 

Our analyses combined data across tasks to increase the reliability of our functional 

connectivity estimates (Elliott et al., 2019). This approach assumes that intrinsic functional 

connectivity would not vary substantially across tasks. Indeed, a recent study suggests that 

variability in the functional connectome is dominated by a normative pattern, patterns unique to 

individuals, and patterns unique to how individuals complete certain tasks (Gratton et al., 2018). 

To test the validity of this approach, we calculated the functional connectome separately for each 

task for each subject (i.e., movie watching, rest, sensorimotor) and correlated the resulting task-

specific functional connectomes. Supplemental Table 7 displays the mean, standard deviation, 

minimum, and maximum similarity for each pair of tasks across our sample of 243 subjects. All 

correlations between tasks were performed on the subset of subjects that had a pair of valid 

scans. The movie-watching connectome was notably less similar to the rest and sensorimotor 

task connectomes. We suspect that this could be due to stimulus-driven changes in brain 

activation. 
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Task Pair N min max mean sd 

movie-smt 240 0.20 0.69 0.51 0.06 

rest-movie 227 0.18 0.66 0.49 0.06 

rest-smt 226 0.47 0.79 0.63 0.07 

Supplemental Table 7: How Similar are Connectomes Calculated Using Data from Different Tasks? Similarity 
between connectomes was calculated using a Pearson's correlation. 

To see how this impacted our results, we reran our CBPM analyses using functional 

connectomes calculated using only the movie-watching data (“movie”), only the resting-state 

data (“rest”), and only the sensorimotor (“smt”) tasks data. The results of these CBPM analyses 

are reported in Supplemental Figure 2. Functional connectomes calculated using the resting-

state (r{observed, predicted} = -0.007, p = 0.39) and sensorimotor task (r{observed, predicted} =  0.083, p = 

0.12) data were insufficient for predicting memory ability. Functional connectomes calculated 

using the movie watching data, however, were sufficient for predicting memory ability (r{observed, 

predicted} = 0.113, p = 0.03). Interestingly, all the task specific predictive models performed worse 

compared with our predictive model that used a combined “intrinsic” connectome for each 

subject by averaging across tasks (r{observed, predicted} = 0.1498, p < 0.01). 

 

Supplemental Figure 2: How do Predictive Models built using Connectomes from Individual Tasks Compare? 
Movie = movie watching, rest = resting-state, smt = sensorimotor task. 
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S.7 Experimental Stimuli 

 
object 

famous people 
 

famous places  first last 

1 bowling ball 1 Adam Sandler 1 The Acropolis of Athens 

2 bowling pin 2 Adele  2 The Amazon River, Brazil 

3 brick 3 Albert Einstein 3 Alcatraz, San Francisco 

4 button 4 Amy Poehler 4 Arc de Triomphe, Paris 

5 calculator 5 Amy Schumer 5 The Bank of England, London 

6 candle 6 Angelina Jolie 6 Big Ben, London 

7 chalk 7 Anne Hathaway 7 The Bird's Nest, Beijing 

8 dart board 8 Ariana Grande 8 The Blue Domes of Santorini 

9 earrings 9 Audrey Hepburn 9 The Brandenburg Gate, Berlin 

10 envelope 10 Barack Obama 10 The British Museum, London 

11 hammer 11 Beyonce  11 The Brooklyn Bridge, New York 

12 handcuffs 12 Bill Clinton 12 Buckingham Palace, London 

13 harmonica 13 Bill Gates 13 Burj Al Arab, Dubai 

14 horseshoe 14 Brad Pitt 14 Burj Khalifa, Dubai 

15 mail box 15 Bradley Cooper 15 Capitol Hill, Washington D.C. 

16 ring 16 Bruce Willis 16 Carnegie Hall, New York 

17 ruler 17 Bruno Mars 17 Central Park, New York 

18 scissors 18 Charli Damelio 18 Chichen Itza, Mexico 

19 screw 19 Chris Hemsworth 19 Cristo Redentor, Rio de Janeiro 

20 skateboard 20 Chris Pratt 20 The CN Tower, Toronto 

21 snowman 21 Condoleezza Rice 21 The Colosseum, Rome 

22 wrench 22 The Dalai Lama 22 Easter Island, Chile 

23 surf board 23 Daniel Radcliffe 23 Edinburgh Castle, Scotland 

24 toothbrush 24 Denzel Washington 24 The Eiffel Tower, Paris 

25 umbrella 25 Dwayne Johnson 25 Epcot Center, Orlando 

26 windmill 26 Ellen Degeneres 26 The Empire State Building, New York 
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27 zipper 27 Emily Blunt 27 Fenway Park, Boston 

28 dog house 28 Emma Watson 28 The Forbidden City, Beijing 

29 football 29 George Clooney 29 The Gateway Arch, St. Louis 

30 golf ball 30 Halle Berry 30 The Gherkin, London 

31 guitar case 31 Hillary Clinton 31 
The Golden Gate Bridge, San 
Francisco 

32 kite 32 Hugh Jackman 32 The Grand Canal, Venice 

33 lawn mower 33 Idris Elba 33 The Grand Canyon, Arizona 

34 light switch 34 Jamie Foxx 34 La Grande Arche, Paris 

35 locker 35 Jennifer Aniston 35 The Great Buddha, Japan 

36 mattress 36 Jennifer Lawrence 36 The Great Sphinx of Giza 

37 pool table 37 Jennifer Lopez 37 The Great Wall of China 

38 school bus 38 Jimmy Fallon 38 Hagia Sophia, Istanbul 

39 soccer ball 39 John Krasinski 39 The Hollywood Sign, Los Angeles 

40 swing 40 John Travolta 40 The Kremlin, Moscow 

41 wheelchair 41 John F. Kennedy 41 La Sagrada Familia, Barcelona 

42 accordion 42 Julia Roberts 42 
The Lincoln Memorial, Washington 
D.C. 

43 binoculars 43 Julianne Moore 43 The London Eye 

44 dice 44 Julie Andrews 44 The Louvre, Paris 

45 fire hydrant 45 Justin Bieber 45 Machu Picchu, Peru 

46 fork 46 Keira Knightley 46 Mecca, Saudi Arabia 

47 funnel 47 Kevin Hart 47 Mount Everest, Nepal 

48 key 48 Kim Kardashian 48 Mount Fuji, Japan 

49 lipstick 49 Kristen Wiig 49 Mount Rushmore, South Dakota 

50 microscope 50 Lady Diana 50 Neuschwanstein Castle, Germany 

51 pencil 51 Lady Gaga 51 Niagara Falls 

52 staples 52 Leonardo Dicaprio 52 One World Trade Center, New York 

53 thermometer 53 Liam Hemsworth 53 The Palm Islands, Dubai 

54 toaster 54 Liam Neeson 54 The Pentagon, Washington D.C. 

55 violin 55 Lindsay Lohan 55 Pompeii, Italy 

56 nunchucks 56 Madonna  56 The Pont du Gard, France 
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57 apron 57 Mahatma Gandhi 57 The Pyramids of Giza 

58 banjo 58 Margot Robbie 58 The Sistine Chapel, Vatican City 

59 basketball 59 Marilyn Monroe 59 The Space Needle, Seattle 

60 battery 60 Mark Zuckerberg 60 The Spanish Steps, Rome 

61 belt 61 Martin Luther King 61 The Statue of Liberty, New York 

62 bow 62 Matt Damon 62 Stonehenge, United Kingdom 

63 chain 63 Matthew 
McConaughe
y 63 Table Mountain, South Africa 

64 cigarette 64 Meghan Markle 64 The Taj Mahal, India 

65 drum sticks 65 Melissa McCarthy 65 Times Square, New York 

66 exit sign 66 Meryl Streep 66 Tower Bridge, London 

67 frisbee 67 Michael Jackson 67 The Tower of Pisa, Italy 

68 ladder 68 Michael Jordan 68 Uluru, Australia 

69 lighter 69 Michael Phelps 69 
United Nations Headquarters, New 
York 

70 compass 70 Michelle Obama 70 Vatican City, Italy 

71 
measuring 
cup 71 Miley Cyrus 71 The Palace of Versailles, France 

72 parachute 72 Mindy Kaling 72 The Western Wall, Jerusalem 

73 rubik cube 73 Morgan Freeman 73 Westminster Abbey, London 

74 sand castle 74 Mother Teresa 74 The White House, Washington D.C. 

75 scarf 75 Nelson Mandela 75 Windsor Castle, United Kingdom 

76 screwdriver 76 Nicholas Cage 76 
Old Faithful, Yellowstone National 
Park 

77 
sewing 
machine 77 Nicole Kidman 77 The Hoover Dam, Nevada 

78 shirt 78 Octavia Spencer 78 The Las Vegas Strip 

79 snowboard 79 Oprah  79 Napa Valley, California 

80 stapler 80 Orlando Bloom 80 Notre-Dame, Paris 

81 telescope 81 Paul McCartney 81 The University of Oxford, England 

82 tennis ball 82 Penelope Cruz 82 The Sahara Desert, Africa 

83 broom 83 Prince William 83 The Serengeti, Africa 

84 mouse trap 84 Queen Elizabeth 84 
The Washington Monument, 
Washington D.C. 
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85 anchor 85 Rachel McAdams   

86 arrow 86 Reese Witherspoon   

87 bird house 87 Rihanna    

88 blender 88 Robert Deniro   

89 bullet 89 Robert Downey Jr.   

90 cannon 90 Robert Pattinson   

91 cash register 91 Robin Williams   

92 disco ball 92 Rosa Parks   

93 
dream 
catcher 93 Ryan Reynolds   

94 hockey stick 94 Samuel L. Jackson   

95 hula hoop 95 Sandra Bullock   

96 nutcracker 96 Sandra Oh   

97 toolbox 97 Scarlett Johansson   

98 trampoline 98 Sean Connery   

99 tricycle 99 Selena Gomez   

100 trophy 100 Serena Williams   

101 ashtray 101 Shakira    

102 cd 102 Stephen Curry   

103 clock 103 Stephen Hawking   

104 eraser 104 Steve Carell   

105 eye patch 105 Steve Jobs   

106 iron 106 Taylor Swift   

107 lamp 107 Timothee Chalamet   

108 match 108 Tom Cruise   

109 paint brush 109 Tom Hanks   

110 plate 110 Whoopi Goldberg   

111 sandal 111 Will Smith   

112 spoon 112 Zendaya    

113 toilet paper      

114 tile      
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115 wheelbarrow      

116 book      

117 bridge      

118 bumper car      

119 cigar      

120 escalator      

121 fly swatter      

122 helicopter      

123 rake      

124 lighthouse      

Supplemental Table 8: Famous Person, Famous Place, and Common Object Stimuli Used in Chapter 3. 

S.8 Results in winsorized Subsample 

To determine if participants’ dependency differed as a function of session (session 1, 

session2) and triad type (famous person, famous place) in the 25%/75% winsorized sample, I fit 

a linear mixed model to predict dependency using session and triad type. The model included 

session and triad type as random effects (formula = ~ session + triad_type | subject_id). The 

model’s total explanatory power is substantial (conditional R2 = 0.58) and the part related to the 

fixed effects alone (marginal R2) is 0.03. The effect of session [session2] is statistically non-

significant and positive (𝛽 = -1.74e-03, 95% CI [-0.04, 0.03], t(149) = -0.09, p = 0.925, Std. 𝛽 = 

-0.02). The effect of triad type [famous place] is statistically non-significant and positive (𝛽 = 

0.03, 95% CI [-5.74e-03, 0.07], t(149) = 1.67, p = 0.098, Std. 𝛽 = 0.31). The effect of session 

[session2] × triad type [famous place] is statistically significant and negative (𝛽 = -0.04, 95% CI 

[-0.08, -2.18e-03], t(149) = -2.08, p = 0.039, Std. 𝛽 = -0.43).  
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