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Heegaard Floer homology is a family of invariants in low dimensional topology due

originally to Ozsváth-Szabó. We discuss various aspects of Heegaard Floer homology

and give several link detection results for versions of Heegaard Floer homology for

links. In particular, we show that knot and link Floer homology detect various infinite

families of cable links. We also give classification results for the Heegaard Floer

theoretic invariants of a type of knot called an “almost L-space knot” and an infinite

family of detection results for annular Khovanov homology.
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Chapter 1

Introduction

We begin by providing some general background in knot theory, as well as a brief

discussion of the main results contained in this thesis.

1.1 Background and context

Let Y be a three manifold. A knot is an oriented embedding S1 → Y . A link is an

oriented embedding
⊔

S1 → Y . We are interested in studying knots and links up to

isotopy. Knots are natural objects of study in their own right and have been examined

mathematically since the early 19th century. They have also proven essential for

understanding low dimensional topology more generally – all three and four manifolds

can be encoded using appropriately decorated links by work of Kirby [Kir78].

The central goal of knot theory is to classify all knots, a task initiated in earnest

by the Scottish mathematician Tait in the 19th century. In some sense it is straight-

forward to verify that isotopic knots are indeed isotopic. Knots in R3 can be encoded

via diagrams in R2 by projecting onto the x-y plane and any isotopy can be realised

by a sequence of simple diagrammatic moves by work of Reidemeister [Rei27]. On

the other hand, showing that two knots are not isotopic is in general a difficult task.

To do so we build algebraic invariants. Examples of invariants include the Alexan-
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1.1. Background and context

der and Jones polynomials as well as knot Floer homology and Khovanov homology

which are stronger, vector space valued versions of the two preceding invariants.

Knot Floer homology, which is due independently to Ozsváth-Szabó [OS04b] and

J.Rasmussen [Ras03], is a member of the larger family of Heegaard Floer invariants.

These invariants are defined using Heegaard diagrams, symplectic topology and anal-

ysis. Remarkably each Heegaard Floer theoretic invariant turns out to be an invariant

of the underlying topological object, be that a knot or a 3 or 4-manifold.

We will be interested in the following question;

Question 1.1.1 (The Botany Question). Which links have knot Floer homology of

a given type?

If there is a unique link with given knot Floer homology, we say knot Floer ho-

mology “detects” that link. The first detection results given were for simple knots;

Ozsváth-Szabó showed knot Floer homology detects the unknot [OS04a], Ghiggini

proved that knot Floer homology detects the trefoil and figure eight knots [Ghi08].

New detection results have been given more recently by Farber-Reinoso-Wang [FRW22]

and Baldwin-Sivek [BNS22]. On the other hand there are infinite families of links

that are not distinguished by their knot Floer homologies, with examples given by

Hedden-Watson [HW18] and Wang [Wan20].

We are also interested in the following natural question;

Question 1.1.2 (The Geography Question). Which vector spaces arise as the knot

Floer homology of some link?

There are a number of known results in this direction, most notably restraints

on ĤFK(K) in terms of the genus of K by work of Ozsváth-Szabó [OS04a] and

whether or not K is fibered by work of Ghiggini [Ghi08], Ni [Ni07] and Baldwin-Vela-

Vick [BVV18].
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1.2. Summary of results

1.2 Summary of results

Some of the results in this thesis have appeared in two papers, one that was joint work

of the author and Martin [BM20], the other which was joint work with Dey [BD22a].

Results concerning almost L-space knots will appear in a forthcoming paper, while

the remaining results may or may not eventually appear in published form outside of

this thesis.

Knot Floer homology, link Floer homology and link detection

The paper “Knot Floer homology, link Floer homology and link detection” [BM20]

is concerned with providing link detection results for various simple links. The work

carried out in that paper which appears most directly in this thesis is the work on

Annular Khovanov homology discussed in Section 4.3

Cable links, annuli and sutured Floer homology

The paper “Cable links, annuli and sutured Floer homology” [BD22a] is concerned

with the study of links with the knot of link Floer homology type of certain cable

knots. It is the basis for Chapter 3. The main results include the following;

Theorem 3.0.1. SupposeK is a non-trivial L-space knot and ĤFK(L) ∼= ĤFK(K2,2n)

with n > 2g(K)− 1. Then L is isotopic to K ′
2,2n where K ′ is an L-space knot.

As well as the following corollary;

Corollary 3.0.4. Knot Floer homology detects:

1. T (2, 2n) for all n ̸= 0

2. T (2, 3)2,2n for all n > 1

3. T (2, 5)2,2n for all n > 3

Here all of these links are oriented as the boundary of annuli.
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1.2. Summary of results

Almost L-space knots

Chapter 5 is largely based on a forthcoming paper concerning almost L-space knots.

The main result is the following;

Theorem 5.1.1. Let K be an almost L-space knot. Then CFK∞(K) has the filtered

chain homotopy type of one of the following complexes;

1. A staircase complex direct sum a box complex.

2. An almost staircase complex.

One consequence of this result – which can be proven using techniques similar to

those used to prove Theorem 3.0.1 – is the following proposition;

Proposition 5.8.9. Let K be an almost L-space knot. Suppose L is a link such that

ĤFL(L) ∼= ĤFL(Km,mn) with m > 2g(K) − 1. Then L is the (m,mn)-cable of an

almost L-space knot K ′ such that ĤFK(K ′) ∼= ĤFK(K).

Just as in the case of Theorem 3.0.1, this result yields a number of detection

results as corollaries;

Proposition 5.8.10. Link Floer homology detects the (m,mn)-cables of T (2,−3),

the figure eight knot and the mirror of 52 for n > 1.

Miscellaneous Results

Section 4 contains some material that has not appeared in papers to date and may or

may not eventually appear in the future. The main two such results are the following;

Theorem 4.0.1. Knot Floer homology detects T (2, 2n) for all n.

Note that here T (2, 2n) is not oriented as the boundary of an annulus, contrary to

the case in Corollary 3.0.4. This allows one to prove, using results that first appeared

in work of the author and Martin [BM20], the following result;

Theorem 4.3.1. Annular Khovanov Homology detects β̂2n for all n.
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1.3. Organization

Here βn is the braid σ1σ2 · · ·σn−1, where σi is the ith standard Artin generator

of the braid group. We note that special cases of the above two results appeared in

work of the author and Martin [BM20] as well as the author and Dey [BD22b].

1.3 Organization

This thesis is organised as follows; in Chapter 2 we survey background material on

sutured manifolds and various Heegaard Floer homology theories; in Chapter 3 we

discuss cables of L-space knots; in Chapter 4 we discuss involutions on know Floer

homology and applications to the geography problem; in Chapter 5 we discuss almost

L-space knots.

Conventions and notation

1. Y 3
q (K) denotes q-surgery on a knot K in a 3-manifold Y .

2. Kn denotes the core of n surgery on a knot K.

3. Symg(Σ) is the n-fold symmetric product of the space Σ
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Chapter 2

A Survey of Heegaard Floer

Homology

In this chapter we survey background material that will recur in subsequent chapters.

In particular we will discuss sutured manifolds and variants of Heegaard Floer homol-

ogy. The chapter is organised as follows: in Section 2.1 we discuss sutured manifolds,

in 2.2 we discuss sutured Floer homology; in Section 2.3 we review Heegaard Floer

homology for closed 3-manifolds; in Section 2.4 we review link Floer homology; and

in Section 2.5 we conclude by discussing knot Floer homology.

2.1 Topological Underpinnings

Sutured manifolds are a type of 3-manifold with boundary that were first studied by

Gabai, who used them to study foliations [Gab83].

Definition 2.1.1. A balanced sutured manifold is an oriented 3-manifold Y together

with a decomposition of ∂Y into three parts; R−, R+ and γ such that;

1. γ is a collection of annuli,

2. ∂R+ ∩ ∂R− = ∅,
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2.1. Topological Underpinnings

3. each annulus shares one boundary component with R+ and the other with R−,

4. and χ(R+) = χ(R−) for each connected compoennt of Y .

Here R+ is given the outward normal orientation induced by ∂Y and R− is given

the opposite orientation. We note that Gabai originally gave a more general definition

of a sutured manifold, allowing toroidal boundary componenets to count as sutured.

However, sutured Floer homology is only defined for balanced sutured manifolds,

whence we restrict our attention to balanced sutured manifolds. We duly suppress

the term “balanced”.

It is often helpful to consider the core of γ – i.e. the homologically essential simple

closed curve in γ – which we denote s(γ). Observe that ∂R+ induces an orientation

s(γ) and conversely an orientation on s(γ) induces orientations on γ, R+ and R−.

We give two examples of sutured manifolds which we will be interested in in

subsequent sections and chapters.

Example 2.1.2. The exterior of a link L can be endowed with the structure of a

sutured manifold be taking s(γ) to be a collection of pairs of meridians for each link

component.

Example 2.1.3. The exterior of a surface with boundary Σ in a 3-manifold Y can be

endowed with the structure of a sutured manifold by taking as sutures neighborhoods

of appropriate push-offs of the boundary components.

Definition 2.1.4. Let Y be a 3-manifold. The Thurston norm is a map; | − | :

H2(Y, ∂Y ) → Z given by

|[α]| = min{−χ(Σ), 0 : Σ is a surface embedded in Y such that [Σ] = α} (2.1)

This definition was introduced by Thurston [Thu86] and can be thought of a

generalization of the Seifert genus of a knot.
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2.1. Topological Underpinnings

We can now give the following definition;

Definition 2.1.5. A sutured manifold (Y, γ) is taut if Y is irreducible and R± are

Thurston norm-minimizing in H2(Y, γ).

We will in fact only be interested in taut sutured manifolds for the reason that

the sutured Floer homology – an invariant we will define in Section 2.2 – of sutured

manifolds which are not taut vanish [Juh08, Proposition 9.18].

We will be interested in a variety of surfaces properly embedded in sutured man-

ifolds. In particular we will need the following definition;

Definition 2.1.6. A decomposing surface in a sutured manifold (Y, γ) is a compact,

oriented surface with boundary (S, ∂S) ⊂ (Y, ∂Y ) such that for every component a

of ∂S ∩ γ and we have that either;

1. a is a properly embedded non-separating arc in γ.

2. a is a circle which is essential in the component γi of γ it is contained in. In

this case we require that the orientation of a agrees with that of s(γi).

Decomposing surfaces are useful because they allow us to construct new sutured

manifolds from old sutured manifolds. For the following let ν(S) denote a tubular

neighborhood of a surface S in some ambient 3-manifold.

Definition 2.1.7. Let (Y, γ) be a sutured manifold and S be a decomposing surfaces

S. Define a new sutured manifold (Y ′, γ′) by setting Y ′ = Y − ν(S) topologically.

Let S± be positive and negative push offs of S. Set R± = (R± ∩ ∂Y ′)∪ S±, and let γ

be the remaining components of the boundary.

Note that technically Y ′ has corners. We smooth them and suppress any men-

tion of such. This operation is called sutured decomposition. We us the short hand

(Y, γ)
Σ
⇝ (Y ′, γ′) to indicate that (Y ′, γ′) is obtained by decomposing (Y, γ) along the

decomposing surface Σ.
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2.1. Topological Underpinnings

One of the primary examples of a sutured manifold decomposition that we will be

interested in is the following;

Example 2.1.8. If Σ is a Seifert surface for a link L then the exterior of L, viewed

as a sutured manifold as in Example 2.1.2, admits a sutured decomposition along

Σ ∩X(L) to the exterior of Σ, viewed as a sutured manifold as in Example 2.1.3.

We will be especially interested in decomposing sutured manifolds along especially

well behaved surfaces. We need the following definitions;

Definition 2.1.9. A curve c in a surface Σ is boundary coherent if either

1. [c] ̸= 0 ∈ H1(Σ)

2. [c] = 0 and c is oriented as the boundary of the component of Σ − c that is

disjoint from ∂Σ.

Definition 2.1.10. Two parallel arcs or curves, c1, c2 in a surface Σ are coherently

oriented if [c1] = [c2] ∈ H1(Σ, ∂Σ).

For a given sutured manifold (Y, γ) (equipped with a Riemannian metric) there

exists a non-vanishing vector field v0 on ∂Y that points out of Y on R+ and into Y

along R− and is the gradient of a height function γ ∼= s(γ)× [0, 1] → R.

Definition 2.1.11. A nice surface in a sutured manifold (Y, γ) is a surface Σ with

non-empty boundary such that:

1. There is a v0 as above such that v0 is nowhere parallel to the normal vector field

of Σ.

2. For each component r of R+ ∪ R− the set of closed components Σ ∩ r consists

of parallel coherently oriented, boundary coherent simple closed curves.

Decomposition along nice decomposing surfaces will play nicely with sutured Floer

homology, as we will see in Theorem 2.2.22.
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2.2. Sutured Floer Homology

2.2 Sutured Floer Homology

In this section we review aspects of Sutured Floer homology which will be relevant

in later sections. We refer the reader to [Juh06] and [Juh08] for details. This section

is organized as follows; in Subsection 2.2.1 we discuss Heegaard diagrams for sutured

manifolds, in Subsection 2.2.2 we discuss the definition of sutured Floer homology,

and in Subsection 2.2.3 we discuss some properties of Sutured Floer homology.

2.2.1 Sutured Heegaard Diagrams

Heegaard diagrams for closed three manifolds have been of interest to topologists

for some time, given that every closed three manifold admits a Heegaard diagram

and that any two Heegaard diagrams for a three manifold are related by a sequence

of simple moves. In this subsection we discuss a version of Heegaard diagrams for

sutured manifolds.

Definition 2.2.1. A sutured Heegaard diagram is a surface with boundary Σ and

collections {α1, α2, · · · , αn} {β1, β2, · · · , βn} of pairwise disjoint simple closed homo-

logically essential curves in Σ.

From a sutured Heegaard diagram one can obtain a sutured manifold.

Example 2.2.2. A sutured Heegaard diagram (Σ, α, β) encodes a sutured manifold

(Y, γ) as follows;

1. As a topological manifold Y is obtained from Σ × [−1, 1] by attaching 3-

dimensional 2-handles along each αi × {−1}, βi × {1} for all i.

2. γ is given by ∂Σ × [−1, 1] while R± consists of the component of ∂Y − γ con-

taining (x,±1) for all x ̸∈ αi, βi for all i.

It might seem that sutured manifolds that are obtained by the above process are

special but in fact they are not, by the following result of Juhasz;
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2.2. Sutured Floer Homology

Proposition 2.2.3. [Juh06, Proposition 2.13] Every sutured manifold admits a su-

tured Heegaard diagram.

This can be proven using techniques from Morse theory, just as the more classical

case of closed manifold can be proven. In fact, a given sutured manifold can be

represented by infinitely many sutured Heegaard diagrams. Fortunately any two

such diagrams can be related by a sequence of relatively simple moves. We describe

one of these operations now;

Definition 2.2.4. Consider (S1×S1, a, b) where a, b are essential simple closed curves

in S1 × S1 which intersect transversely at a single point. Given a Heegaard diagram

(Σ, α, β), the stabilization ofH is given by (Σ#S1×S1, α∪a, β,∪b), where the connect

sum is taken away from the α, β, a, b curves.

It is straightforward to see that stabilization and destabilization do not change

the underlying sutured manifold.

Theorem 2.2.5. [Juh06, Proposition 2.15] If H and H ′ are sutured Heegaard di-

agrams representing the same sutured manifold then H and H ′ are related by a

sequence of the following moves;

1. Isotopies of the α and β curves.

2. Handleslides of α-curves over α-curves.

3. Handleslides of β-curves over β-curves.

4. Stabilizations and destabilizations.

This can again be proven using techniques from Morse theory.

Let Sn denote the symmetric group on n letters. Let ×nY denote the n fold

Cartesian product of a space Y . Note that Sn acts naturally on ×nY .
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2.2. Sutured Floer Homology

Definition 2.2.6. Given a surface Σ we can define the symmetric product, Symn(Σ),

as ×nΣ/Sn.

Given a sutured Heegaard diagram (Σ, α, β) We will be interested in two subman-

ifolds of Symn(Σ). Let Tα denote the image of α1 × α2, · · · × αn in Symg(Σ) and Tβ

denote the image of β1 × β2 × · · · × βn in Symg(Σ)

Proposition 2.2.7. [Per08] Symn(Σ) admits a symplectic structure such that Tα

and Tβ are Lagrangian submanifolds.

Symplectic manifolds and their Lagrangian submanifolds are objects of interest to

a wide variety of mathematicians. We can then define sutured Floer homology essen-

tially as the Lagrangian Floer homology of the two Lagrangian submanifolds Tα,Tβ

in Symg(Σ). Note that defining sutured Floer homology in this way is ahistorical;

Perutz’s result followed a number of years after the introduction of Heegaard Floer

homology and sutured Floer homology. In the original version of Heegaard Floer

homology Tα and Tβ were not Lagrangians, but rather similar objects called totally

real tori. We discuss sutured Floer homology more thoroughly in the next section.

2.2.2 Sutured Floer homology

Sutured Floer homology is an invariant of sutured manifolds defined by Juhasz [Juh06].

To each sutured manifold sutured Floer homology assigns a chain complex whose fil-

tered chain homotopy type is an invariant of the sutured manifold.

We start with the underlying vector space for the chain complex. Let F denote the

field with two elements. We note that Sutured Floer homology can be defined with

coefficients in Z though to do so requires additional technical work, and our work in

later sections will not require Z-coefficients. In passing we note that the following

question is open;
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2.2. Sutured Floer Homology

Question 2.2.8. Does there exist a sutured manifold (Y, γ) such that SFH(Y, γ;Z)

contains torsion?

Khovanov homology, a related invariant a version of which we will discuss in

Section 4.3, contains a great deal of torsion, so at a purely formal level it is odd that

the above question should be open.

Definition 2.2.9. Set SFC(Y, γ) := F⟨Tα ∩ Tβ⟩.

This is a finitely generated vector space. The differential is given by the following

equation;

∂(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

|M(ϕ)|y (2.2)

We discuss the elements of this formula.

Given z ∈ C, we let ℜ(z) denote its real part.

Definition 2.2.10. π2(x, y) is the set of homotopy classes of Whitney disks ; that is

maps f : {z ∈ C : |z| ≤ 1} → Symn(Σ) such that f(z) ∈ Tα if ℜ(z) ≤ 1, f(z) ∈ Tβ if

ℜ(z) ≥ 1,

Given ϕ ∈ π2(x, y), µ(ϕ) is the Maslov index of ϕ. We do not give the defini-

tion here, as it is rather technical, and instead refer the reader to [Alt13, Section

2.3]. We note, however, that µ(ϕ) can be thought of as the expected dimension of

a certain moduli space we will presently discuss, and that it also admits a pleasant

combinatorial formula, by work of Lipshitz [Lip06].

Definition 2.2.11. Let ϕ ∈ π2(x, y). M̃(ϕ) is the space of non-constant pseudo-

holomorphic representatives of π2(x, y).

Here we have endowed Symg(Σ) with an almost complex structure. There is an

R-action on M̃(ϕ) induced by the 1-parameter family of conformal automorphisms
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2.2. Sutured Floer Homology

of {z ∈ C : |z| ≤ 1} that fix ±i. We let M(ϕ) denote the quotient of M̃(ϕ) by this

action. Both moduli spaces are dependent on the choice of almost complex structure.

We suppress this in our notation for the sake of readability.

This completes our discussion of the formula for the differential. Of course, to

show that the filtered chain homotopy type of (SFC(Y, γ), ∂) is a link invariant there

is a great deal more work to do. Specifically we need the following results;

Theorem 2.2.12 (Juhasz). ∂2 = 0

This is proven by looking at the ends of the moduli spaceM(ϕ) where ϕ ∈ π2(x, y)

satisfies µ(ϕ) = 2.

Theorem 2.2.13 (Juhasz). The filtered chain homotopy type of (SFC(Y, γ), ∂) is

independent of the sutured Heegaard diagram used to encode (Y, γ).

This result in fact require that the Heegaard diagrams satisfy a property called

weak admissibility, which we do not discuss. This is proven using counts of objects

called “pseudo-holomorphic triangles”, which we also do not discuss.

Theorem 2.2.14 (Juhasz). The filtered chain homotopy type of (SFC(Y, γ), ∂) is

independent of the choice of almost complex structure.

This is a result one expects to hold given that it does so for other versions of

Lagrangian Floer homology.

2.2.3 Properties of Sutured Floer homology

In this subsection we discuss various formal properties of sutured Floer homology.

First we show sutured Floer homology admits a grading by “Spinc-structures”. Let

(Y, γ) be a sutured manifold endowed with a Riemannian metric. As in the previous

subsection let v0 be a non-vanishing vector field on ∂Y that points into Y on R−, out

of Y on R+ and that is the gradient of the height function γ ∼= s(γ)×[−1, 1] → [−1, 1].
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2.2. Sutured Floer Homology

Definition 2.2.15. Let v and w be two non-vanishing vector fields on Y . We say v

and w are homologous if there exists a ball B contained in the interior of Y such that

v and w are homotopic through a family of non-vanishing vector fields that restrict

to v0 on the ∂Y .

This is an equivalence relation.

Definition 2.2.16. Spinc(Y, γ, v0) is the set of equivalence classes of vector fields

that restrict to v0 on ∂Y . We call such an equivalence class a relative Spinc-structure.

Sutured Floer homology decomposes as a direct sum along relative Spinc struc-

tures.

Proposition 2.2.17. SFC(Y, γ) splits over relative Spinc-structures, as does ∂.

Of course it follows in turn that Sutured Floer homology splits over relative Spinc-

structures. That is we can write;

SFH(Y, γ) =
⊕

s∈Spinc(Y,γ)

SFH(Y, γ, s) (2.3)

Moreover, each summand SFH(Y, γ, s) carries a “relative Maslov grading”. To

define it we require the following definitions;

Definition 2.2.18. Let s be a a relative Spinc structure on a sutured manifold (Y, γ).

The Chern class of s, denoted c1(s) ∈ H2(Y ), is defined as the first Chern class of

the two-plane field perpendicular to a vector field v with [v] = s.

Of course, one should check that this definition is independent of the choice of

representative v.

Definition 2.2.19. For s ∈ Spinc(Y, γ) the divisibility of s is given by

d(s) = gcd
S∈H2(Y ;Z)

⟨c1(s), S⟩ (2.4)
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2.2. Sutured Floer Homology

Definition 2.2.20. Let x, y be generators of SFC(Y, s) and ϕ ∈ π2(x, y). Define a

relative Maslov grading m(x, y) by;

m(x, y) = µ(ϕ) mod d(s) (2.5)

Of course, for this to be well defined we require that the above definition is in-

dependent of the choice of ϕ. We do not show this here. We note also that under

appropriate hypotheses these relative Maslov gradings can be upgraded to absolute

gradings, for example in the setting of Heegaard Floer homology as well as knot and

link Floer homology.

Remark 2.2.21. Gripp-Huang define a more general grading on SFC(Y, γ) using ho-

motopy classes of 2-plane fields, which encodes the grading by Spinc-structures and

the relative Maslov grading [HR15, HR17].

Sutured Floer homology behaves nicely under sutured manifold decompositions

along nice decomposing surfaces.

Theorem 2.2.22. [Juh08, Theorem 1.3] Let (Y, γ) be a balanced sutured manifold

and (Y, γ)
S
⇝ (Y ′, γ′) be a sutured manifold decomposition along a nice surface. Then;

SFH(Y ′, γ′) ∼=
⊕
s∈OS

SFH(Y, γ) (2.6)

In other words sutured decompositions yield specific summands at the level of

sutured Floer homology. Of course, it remains to explain what the set OS is.

Definition 2.2.23. Let (Y, γ) be a sutured manifold and (Σ, ∂Σ) ⊂ (Y, ∂Y ) be a

decomposing surface. s ∈ Spinc(Y, γ) is outer with respect to Σ if there is a non-

vanishing vector field v with [v] = s and v different from a normal vector field to

Σ.
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2.3. Heegaard Floer homology for closed 3-manifolds

There is linear functional fΣ : Spinc → R defined in terms of topological quan-

tities which determines the Spinc-structures that are outer [Juh08]. Indeed, under

appropriate hypotheses the summand SFH(Y ′, γ′) is related by an affine isomorphism

to the sutured Floer homology of (Y, γ) supported in a particular face of the convex

hull of the Spinc structures in which SFH(Y, γ) has non-trivial support [Juh10].

2.3 Heegaard Floer homology for closed 3-manifolds

Heegaard Floer homology, denoted ĤF(−), is an invariant of three manifolds due

to Ozsváth-Szabó. As in the case of sutured Floer homology it is defined using

Heegaard diagrams, symplectic topology and analysis [OS04c]. Indeed, it can be

viewed as a special case of sutured Floer homology where we define the Heegaard

Floer homology of a manifold to be the sutured Floer homology of the three manifold

with the interior of a 3-ball removed. It can be defined with integer coefficients but

we will take coefficients in Z/2 throughout this thesis. ĤF(Y ) splits as a direct sum

over Spinc-structures.

Let Y be a rational homology sphere; which is to say H∗(Y ) ∼= H∗(S
3). There is a

non-canonical bijection between the set of Spinc-structures on Y and H1(Y ). Suppose

Y is given by performing n-surgery on a knotK in S3. ThenK determines a canonical

bijection between Spinc(Y ) and Z/n ∼= H1(Y ) as follows. Observe that the trace of

n surgery, Xn(K), gives a cobordism from S3
n(K) to S3. Fix a Seifert surface Σ for

K. Consider the surface Σ̂ obtained by capping off Σ in Xn(K). Suppose s is a Spinc

structure over S3
n(K) that admits an extension t over Xn(K) with the property that

⟨c1(t), [Σ̂]⟩ − n ≡ 2i mod 2n. Then the map s 7→ i is an isomorphism by a result of

Ozsváth-Szabó [OS08b, Lemma 2.2].

The relative Maslov grading on each Spinc-structure on Heegaard Floer homology

arising from sutured Floer homology can be upgraded to an absolute Maslov grading.
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2.4. Link Floer Homology

2.4 Link Floer Homology

Link Floer homology is a link invariant originally due to Ozsváth-Szabó [OS08a].

The simplest version of link Floer homology can be thought of as the sutured Floer

homology of a link exterior with pairs of meridional sutures, as in Example 2.1.2.

We call the Spinc grading on link Floer homology the Alexander grading. If L is an

n-component link the Alexander grading can be thought of as Zn valued, or indeed as

H1(X(L)) valued. Link Floer homology detects the Thurston norm of a link exterior,

see [OS08c] for a precise statement.

The relative Maslov grading on each Spinc-structure on Link Floer homology aris-

ing from sutured Floer homology can be upgraded to an absolute Maslov grading.

We will be interested in stronger versions of link Floer homology than can be ob-

tained as a special case of sutured Floer homology, however. To define these versions,

we encode n component links with pointed Heegaard diagrams without boundary

(Σ, α, β, z,w). Here there is a single z and w baspeoint for each component Li of

L, Σ is a closed surface, and α and β are maximal collections of homologically inde-

pendent simple closed curves in Σ− (z ∪w). We will count pseudoholomorhic disks

weighted by counts of intersections with certain submanifolds of Sym(Σ), one for each

basepoint.

Some of the results referenced in this thesis are most concisely stated using

Zemke’s formalism. That it, we view Link Floer homology as a freely generated

F[U±1
1 , U±1

2 , . . . U±1
n , V ±1

1 , V ±1
2 , . . . V ±1

n ]-module with differential given by;

∂(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

|M(ϕ)|
∏

1≤i≤n

U
nzi (ϕ)

i V
nwi (ϕ)

i y (2.7)

To ensure that ∂2 = 0 we need to set UiVi = ViUi for all i.

The more traditional version of link Floer homology, CFL∞, can be viewed as an

F[U±1
1 , U±1

2 , . . . U±1
n ]-module with;
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2.5. Knot Floer homology

∂(x) =
∑

y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

|M(ϕ)|
∏

1≤i≤n

U
nzi (ϕ)

i y (2.8)

This can be recovered from Zemke’s invariant. Each U action decreases the Maslov

grading by 2. The associated graded complex for CFK∞(K) carries an Alexander

grading and a U grading for each component. The U action lowers the Alexander

grading by 1 and the U grading by 1.

From CFK∞(L) one can recover a still weaker invariant, ĈFL, by setting ULi
= 0

for all i. The associated graded carries an Alexander grading for each component Li

of L.

2.5 Knot Floer homology

Knot Floer homology can simply be though of as link Floer homology in the special

case that the link under consideration is a knot. We note that knot Floer homology,

which is due independently to Ozsváth-Szabó [OS04c] and J. Rasmussen [Ras03],

predates link Floer homology and sutured Floer homology. Different conventions for

the absolute Maslov grading on knot Floer homology exist, however. In this thesis

we use the convention that the absolute Maslov grading in knot Floer homology is

n− 1

2
larger than the absolute Maslov grading on link Floer homology, where n is

the number of components of the link under consideration.

We again call the Spinc grading on knot Floer homology the Alexander grading,

and can think of it as taking values in Z. We note that knot Floer homology can be

extended to an invariant of links in S3 by the process of knotification which assigns to

each n-component link in S3 a knot in #n−1S1×S2, see [OS04c] for details. Important

properties of knot Floer homology include that it detects the Euler characteristic of

a link [Ni06],[OS04c] and that it categorifies the Alexander polynomial [OS04b]. It

follows that link Floer homology detects the linking number of two component links
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2.5. Knot Floer homology

by a result of Hoste [Hos85a].

Dehn-surgery is a well studied operation on 3-manifolds. Let q ∈ Q and K be a

knot in a S3. q-surgery on K, denoted S3
q (K) is the manifold obtained by removing

a tubular neighborhood of K from S3, then regluing it with framing determined by

q. An important result, that we shall use extensively in Chapter 5, is that CFK∞(K)

determines ĤF(S3
q (K)) for all q ∈ Q. This is due to Ozsváth-Szabó [OS10].
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Chapter 3

(2, 2n)-cables of L-space knots

Let Y be a 3-manifold. Heegaard Floer homology satisfies the following rank inequal-

ity;

rank(ĤF(Y )) ≥ |H1(Y )| (3.1)

Here |H1(Y )| is the number of elements in H1(Y ). This equation results from

the fact that an appropriate decatigorification of ĤF(Y ) yields |H1(Y )|. An L-space

is a rational homology sphere for which Inequality 3.1 is tight. Understanding the

geometric and algebraic properties of L-spaces is of central interest in low dimensional

topology and the subject of Boyer-Gordon-Watson’s “L-space conjecture” [BGW13].

An L-space knot is a knot K for which S3
n(K) is an L-space for for some n ∈ Z≥0.

The knot Floer homology of L-space knots is well understood, by work of Ozsváth-

Szabó [OS05a].

Alternatively, if we let Kn denote the core of n-surgery on a knot K, L-space

knots can be defined as knots K for which rank(ĤFK(Kn)) = n for some n ≥ 0.

Note that this is a non-standard definition of an L-space knot, but it follows quickly

from the immersed curve interpretation for the surgery formula in Heegaard Floer

homology that it is equivalent to the traditional definition, see [HRW18] for details.
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Alternatively this follows from work of Hedden [Hed07], [Hed11, Theorem 1.4], or

Eftekary [Eft11]. Positive torus knots are examples of L-space knots. In particular

the unknot U is an L-space knot. Note that rank(ĤFK(Un)) = |n| for all n. If K is a

non-trivial L-space knot then rank(ĤFK(Kn)) = n if and only if n > 2g(k)−1, again

see [HRW18] for details. L-space knots have many strong properties, including that

their knot Floer homologies are determined by their Alexander polynomials.

Let K be a knot. Recall that the (p, q)-cable of K, which we denote K2,2n, is the

link obtained by taking the knot T (p, q) and tying it into K.

The goal of this section is to prove the following theorem;

Theorem 3.0.1. LetK be an L-space knot. Suppose L is a link such that ĤFK(L) ∼=

ĤFK(K2,2n). Then L is the (2, 2n)-cable of an L-space knot K ′ such that ĤFK(K ′) ∼=

ĤFK(K).

Note here that the conclusion that K ′ is an L-space knot is redundant, since it

follows from the fact that ĤFK(K ′) ∼= ĤFK(K). This is readily seen via Hanselman-

Rasmussen-Watson’s interpretation of Heegaard Floer homology via immersed curves [HRW16,

HRW18].

We begin by proving the knot Floer homology of (2, 2n)-cables of L-space knots

satisfy various properties;

Proposition 3.0.2. Let K be a non-trivial L-space knot, n > 2g(K) − 1. Then

ĤFK(K2,2n) satisfies the following;

1. max{A : ĤFK(K2,2n, A) ̸= 0} = 1

2. rank(ĤFK(K2,2n, 1)) = n

3. The maximum Maslov grading of ĤFK(K2,2n) is
1

2
.

Here we orient (2, 2n) cables as the boundary of annuli, as we do throughout

this chapter. These conditions can be deduced from more general work of Gorsky-
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Hom [GH17], but we provide a proof using Juhasz’s surface decomposition theo-

rem [Juh08] and the skein exact triangle for knot Floer homology.

For this proof – and indeed for the rest of this thesis – we let Kn denote the core

of n-surgery on K.

Proof. The maximal Euler characteristic surface bounding a (2, 2n)-cable knot is an

annulus if K is non-trivial, whence condition 1 follows. Decomposing along that

annulus gives the exterior of Kn, which has sutured Floer homology of rank n since

K is an L-space knot and n > 2g(K)− 1, proving condition two holds.

To see condition three holds true, note that ĤFK(K2,2n+1) and ĤFK(K2,2n−1) can

be computed readily via immersed curves [HW19]. ĤFK(K2,2n) can then be computed

via the skein exact triangle [OS04b], where here K2,2n is not oriented as the boundary

of an annulus. From here, using link Floer homology and the fact that the linking

number is n, one determines that the maximum Maslov grading is
1

2
.

With the properties of (2, 2n)-cables of L-space knots given in Proposition 3.0.2

we can now prove the following characterization of (2, 2n)-cables of L-space knots;

Lemma 3.0.3. Suppose K is a non-trivial L-space knot and ĤFK(L) ∼= ĤFK(K2,2n)

with n > 2g(K)− 1. Then L is isotopic to K ′
2,2n where K ′ is an L-space knot.

Proof. Note that L has at most two components since the maximal Maslov grading of

a generator is
1

2
and ĤFK(L) must admit a spectral sequence to ĤF(#(n−1)S1 × S2),

which has maximal Maslov grading
n− 1

2
. Since ĤFK(L) is of even rank, L must

have two components.

Since the maximal Alexander grading is 1 and L has non-zero linking number

L bounds an annulus. Decomposing along this annulus yields a sutured manifold

with sutured Floer homology given by ĤFK(K ′
n) for some knot K ′. Note that

rank(ĤFK(K ′
n)) = n so that K ′ is an L-space knot.
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Proof of Theorem 3.0.1. SupposeK, L are as in the statement of the theorem. Lemma 3.0.3

implies that L is given by K ′
2,2n for some L-space knot K ′. Noting that the Alexander

polynomial of a knot is determined by the Alexander polynomial of a (2, 2n)-cable im-

plies that ∆K(t) = ∆K′(t). This in turn implies that ĤFK(K) ∼= ĤFK(K ′), since for

L-space knots the knot Floer homology is determined by the Alexander polynomial,

as desired.

Corollary 3.0.4. Knot Floer homology detects:

1. T (2, 2n) for all n ̸= 0

2. T (2, 3)2,2n for all n > 1

3. T (2, 5)2,2n for all n > 3

Proof. Suppose L is a link with knot Floer homology of one of the three given types.

Note that the unknot, T (2, 3) and T (2, 5) are L-space knots. Thus Theorem 3.0.1

implies that L the (2, 2n)-cable of a knot with the same knot Floer homology as the

unknot, T (2, 3) or T (2, 5) respectively. The result then follows from the fact that

knot Floer homology detects each of these three knots [OS04a],[Ghi08], [FRW22].

We conclude with a corollary we will use in the next chapter;

Corollary 3.0.5. Link Floer homology detects T (2, 2n) with the orientation induced

by viewing T (2, 2n) as the (2, 2n)-cable of an unknot.

Proof. Suppose L is a link with ĤFL(L). L is a two component link and a result

of Hoste [Hos85b] implies that the linking number of L is n. It follows that after

revering the orientation of a component of L, the link Floer homology of L agrees

with that of T (2, 2n) oriented as the boundary of an annulus, whence in turn after

revering the orientation of a component of L the knot Floer homology of L agrees

with that of T (2, 2n) oriented as the boundary of an annulus. The result then follows

from Corollary 3.0.4.
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Chapter 4

Involutions and Detection Results

In the previous chapter we showed – amongst other things – that knot Floer homology

detects T (2, 2n) oriented as the boundary of an annulus. In this chapter one of our

main goals is to prove that knot Floer homology detects T (2, 2n) with the other

orientation;

Theorem 4.0.1. Knot Floer homology detects T (2, 2n) for all n.

The n = 0 case of this result follows readily from a result of Ni [Ni06]. We take

n ̸= 0 for the remainder of this chapter. This result was previously known for small

n ∈ {±1,±2,±3,±4,±5} due to work of the author and Martin [BM20] and the

author and Dey [BD22b].

The proof of this result uses a symmetry of knot Floer homology that arises

via a natural symmetry of knots. This extra symmetry allows us to prove a useful

geography result.

This chapter is organised as follows; in Section 4.1 we discuss Sarkar’s basepoint

pushing map, in Section 4.2 we prove Theorem 4.0.1, and in Section 4.3 we prove an

infinite family of detection results for an invariant called Annular Khovanov homology.
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4.1. Sarkar’s Basepoint pushing map

4.1 Sarkar’s Basepoint pushing map

Given a doubly pointed knot there is a natural diffeomorphism corresponding to

pushing each basepoint to the other along the orientation of the knot. This operation

was studied by Sarkar [Sar15] and Zemke [Zem17].

The following is a consequence of a theorem of Zemke [Zem17, Theorem B];

Theorem 4.1.1. Suppose L is a link in S3 andK is a component of L, with basepoints

zk and wk. Let ζ denote the diffeomorphism resulting from a finger move around K,

in the direction dictated by the orientation induced by K. The induced map ζ∗ on

CFL∞(L) has the filtered equivariant chain homotopy type ζ∗ ∼ 1 + ΦKΨK

To make sense of the statement of this theorem we need to define ΦLi
,ΨLi

. This

is done as follows ΦLi
: CFL∞(L) → CFL∞(L) can be defined up to filtered chain

homotopy;

ΦLi
∼ U−1

i

∑
y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

nwi
(ϕ)|M(ϕ)|

∏
U

nwi (ϕ)

i V
nzi (ϕ)

i y (4.1)

We can think of this as the derivative of ∂ with respect to ULi

Similarly ΨK : CFL∞(L) → CFL∞(L) is given by;

ΨLi
∼ V −1

i

∑
y∈Tα∩Tβ

∑
ϕ∈π2(x,y),µ(ϕ)=1

nwi
(ϕ)|M(ϕ)|

∏
U

nwi (ϕ)

i V
nzi (ϕ)

i y (4.2)

Of course, we are taking coefficients in Z/2 so only the parity of nwi
(ϕ) and nzi(ϕ)

are important. We will need the following Lemma;

Proposition 4.1.2. [Sar15, Lemma 4.4] ΦKΨk + ΨKΦk, Φ
2
K and Ψ2

K are chain ho-

motopic to 0.

In the following section we will be interested in applying the above proposition

to chain complexes satisfying certain algebraic restrictions, namely complexes which
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4.1. Sarkar’s Basepoint pushing map

are “thin”. We will need the following proposition;

Proposition 4.1.3. Suppose C is a finitely generated Z ⊕ Z graded vector space

over Z/2. Suppose C is supported in a single δ-grading, where here the δ-grading

is given by δ(x, y) = x − y. Suppose ∂1 and ∂2 are commuting differentials such

that ∂1 : C(c, y) 7→ C(x − 1, y − 1), ∂2 : C(x, y) : C(x + 1, y + 1) and (∂1∂2)
2 = 0.

Suppose moreover that H∗(C, ∂1) ∼= 0 and H∗(C, ∂2) ∼= 0. Then there is a change

of basis such that C splits as summands of the form F⟨x, y, z, w⟩ such that x is of

bigrading (a, b) for some a, b ∈ Z while y, z are of bigrading (a+ 1, b+ 1) and w is of

bigrading (a + 2, b + 2) and the non-trivial components of the differential are given

by ∂1y = x, ∂1w = z, ∂2x = z, ∂2y = w.

Sarkar [Sar15, Theorem 6.1] notes that this result is essentially proven by Petkova [Pet13],

though in a slightly different context. We give the proof here for completeness. We

note in passing that we will be interested in applying this result in the setting in

which ∂1 and ∂2 are ΨK and ΦK respectively.

Proof. We construct a basis of the desired form. Consider an element x of minimal

i grading. Let it be a generator. Observe that ∂2x ̸= 0 and that there exists an

element y with ∂1y = x By adding y to any other element y′ with this property, we

may assume y is the unique such element. Let y be a generator. Suppose ∂2x = z.

Let z be a generator. Then since ∂1 and ∂2 commute ∂1(∂2y) = z. Let w = ∂2(y) be

a generator. By adding y to any other generator y′ with w a component of ∂2(y
′),

we may assume that y is the unique generator with this property. We thus have a

subcomplex B of C of the desired form. We need to show that B is a summand, i.e.

that there are no components of the differential from C −B to B.

By construction there is no other component of the differential ∂1 or ∂2 to or

from x. Likewise there is no other component of ∂1 or ∂2 from y. There can be no

component of ∂1 or ∂2 to y as this would violate the condition that ∂2
1 = 0 or ∂2

2 = 0
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4.2. Knot Floer homology detects T (2, 2n)

respectively.

It remains to show that there is no component of ∂1 to w or z. Suppose a generator

w′ had a component of ∂2 to z. Then we could add w to w′ to remove the unwanted

component. Any component of ∂1 to w would then violate the condition that ∂2
1 = 0,

a contradiction.

4.2 Knot Floer homology detects T (2, 2n)

Our goal in this section is to prove Theorem 4.0.1. This result had been proven for

certain small values of n by the author and Martin [BM20] as well as the author and

Dey [BD22b]. The knot Floer homology of T (2, 2n) with the orientation induced by

viewing T (2, 2n) as the (2, 2n)-cable of the unknot is given by;

ĤFK(T (2, 2n); i) =


F1/2 if i = n

F2
i−n+1/2 for |i| < n

F1/2−2n if i = −n

(4.3)

We start by showing that in general if ĤFK(L) ∼= ĤFK(T (2, 2n)) then L consists

of two unknotted components.

Lemma 4.2.1. Suppose ĤFK(L) ∼= ĤFK(T (2, 2n)). Then L has two components.

Proof. Suppose L is as in the statement of the theorem. Since rank(ĤFK(L)) is even,

L has at least two components. To see that L has at most two components note that

the maximum Maslov grading of a generator is 1/2, and if L has n-components then

it needs to admit a spectral sequence to V n – where V ∼= F1/2 ⊕ F−1/2 – which has

maximum Maslov grading n−1
2
.

We now show that if ĤFK(L) ∼= ĤFK(T (2, 2n)) then ĈFL(L) is of an especially

simple form. Let L be a two component link. Observe that ĤFL(L) can be viewed
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4.2. Knot Floer homology detects T (2, 2n)

as the E1 page of a spectral sequence from ĈFL(L) to ∼= F0 ⊕ F−1. Ozsváth-Szabó

observe that if ĤFL(L) is thin in the sense that there is a constant δ such that for

every generator of grading (A1, A2,m), A1 + A2 − m = δ then the differential on

ĤFL(L) decomposes into a direct summand of particularly simple pieces. We define

them here;

(Bd)i,j =


Fd if (i, j) = (0, 0)

Fd+1 if (i, j) ∈ {(0, 1), (1, 0)}

Fd+2 if (1, 1)

(4.4)

(V l
d)i,j =


Fd if (i, j) = (−j, j) with j = 0, . . . , l − 1

Fd−1 if (i, j) = (−j − 1, j) with j = 0, . . . , l − 1

(4.5)

(H l
d)i,j =


Fd if (i, j) = (i,−i) with i = 0, . . . , l − 1

Fd−1 if (i, j) = (i,−i− 1) with i = 0, . . . , l − 1

(4.6)

(X l
d)i,j =


Fd if i+ j = l and i, j ≥ 0

Fd+1 if i+ j = l + 1 and i, j > 0

(4.7)

(Y l
d)i,j =


Fd if i+ j = l and i, j ≥ 0

Fd−1 if i+ j = l − 1 and i, j > 0

(4.8)
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4.2. Knot Floer homology detects T (2, 2n)

Each of these complexes are trivial aside from in the specified gradings. Moreover,

the horizontal and vertical components of the differential are non-trivial. This is result

is analogous to Proposition 4.1.3. We are now in a position to prove the following;

Lemma 4.2.2. Suppose ĤFK(L) ∼= ĤFK(T (2, 2n)). Then (ĈFL(L), ∂) consists of

Bd summands and a single Y 0
0 [

n
2
, n
2
] ⊕ Y 1

−1[
n−1
2
, n−1

2
] summand. In particular L has

unknotted components.

Here [x, y] indicates a shift in the bi-Alexander grading.

Proof of Lemma 4.2.2. Let L be as in the statement of the Lemma and m be the

number of components of L. Then L has two components by 4.2.1. Let L1 and L2 be

the two components of L. It follows that there is a unique Maslov grading 0 generator.

Consider ĤFL(L). Since the linking number is n and the Alexander grading of the

Maslov index 0 generator is n, it follows that there is a summand Y 0
0 [

n
2
, n
2
] and since

there are two Maslov index −1 generators there is a summand Y 1
−1[

n−1
2
, n−1

2
]. As

observed in the proof of [OS08a, Theorem 12.1], ĤFL(L) consists of pairs of summands

V l
d(x, y) ⊕ V l

d−1(x, y − 1), H l
d(x, y) ⊕ H l

d−1(x, y − 1), Y l
0 (x, y) ⊕ Y l−1

−1 (x + 1, y + 1),

X l
0(x, y) ⊕ X l−1

−1 (x, y), as well as a collection of copies of Bd. Note that for the case

at hand the rank in each Alexander grading is at most two, so we have that the rest

of the complex is given by summands of the form Bd or V 1
d [x, y] ⊕ V 1

d−1[x, y − 1] or

H1
d [x, y]⊕H1

d−1[x− 1, y]. Indeed we readily see that d is even.

Suppose L1 is not unknotted. Consider the V 1
d [x, y] ⊕ V 1

d−1[x, y − 1] summands

with maximal x. Note that x > n
2
. Amongst these consider the summands with

minimal d. It follows that there is a generator in ĤFK(L1) of minimal Alexander

grading with Maslov grading d − 2(x − n
2
). Note that this is an even number. But

this is a contradiction, since if there is a generator of even Maslov index in A1 grading

n
2
− x which persists under the spectral sequence to ĤFK(L1) ⊗ V then there must

be a generator of odd Maslov index in A1 grading n
2
− x − 1, since the summands
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4.2. Knot Floer homology detects T (2, 2n)

of ĤFL(L) that persist under the spectral sequence to ĤFK(L1)⊗ V are of the form

V 1
d [x, y]⊕ V 1

d−1[x, y − 1] with d even.

Thus there are no V 1
d [x, y]⊕ V 1

d−1[x, y− 1] summands. A similar proof shows that

there are no H1
d [x, y]⊕H1

d−1[x− 1, y] summands. Thus the remaining summands are

all of the form Bd and each component of L is unknotted, as desired.

It remains to determine the bigradings of all the Bd summands. This can be

deduced from the following Lemma.

Lemma 4.2.3. Suppose L is a δ-thin two component link with unknotted com-

ponents. Then ĤFL(L;Ai = C) can be decomposed into summands of the form

Fd+1[δ + d+ 1− C]⊕ F2
d[δ + d− C]⊕ Fd−1[δ + d− 1− C] for all C ̸= ± ℓk(L)

2
.

Here by ĤFL(L;Ai = C) we mean the summand of ĤFL(L) with Ai grading equal

to C. Fd[C
′] indicates a summand of ĤFL(L;Ai = C) with Maslov grading d and the

remaining Alexander grading equal to C ′.

We proceed by an argument used by Sarkar in the proof of Theorem 6.1 in [Sar15]

Proof. This follows from Lemma 4.1.3. Specifically, suppose L is as in the statement

of the Lemma. Observe that since C ̸= ± ℓk(L)
2

there exists a spectral sequence which

starts at (ĤFL(L;Ai = C),ΦLi
) and converges to 0 where the differential on the ith

page shift the (Aj,m) grading by (−i,−1). Likewise there exists a spectral sequence

which starts at (ĤFL(L;Ai = C),ΨLi
) and converges to 0 where the differential on the

ith page shift the (Aj,m) grading by (2i− 1, i). However, given that ĤFL(L) is thin

these spectral sequences must collapse immediately. Whatsmore, the differentials

ΦLi
and ΨLi

commute, so Proposition 4.1.3 implies that ĤFL(L) decomposes into

components of the desired form.

We can now prove Theorem 4.0.1.
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Proof of Theorem 4.0.1. Suppose L is as in the statement of the theorem. Lemma 4.2.1

implies that L has two components. Lemma 4.2.2 implies that these two components

are unknotted and indeed determines ĤFL(L) up to the location of Bd summands.

In the case of T (2,±2) there are no Bd summands and the result follows directly

from Corollary 3.0.5. Thus we take |n| > 1. The locations of these Bd summands

are determined by applying Lemma 4.2.3 to Alexander gradings Ai ̸= ±n

2
. It follows

that ĤFL(L) ∼= ĤFL(T (2, 2n)), whence the result follows from Corollary 3.0.5.

4.3 Annular Khovanov Homology Detects β̂2n

Khovanov homology is a bigraded vector space valued invariant due to Khovanov [K+00]

which shares many formal properties with Knot Floer homology. It has the advan-

tage over knot Floer homology that its definition is manifestly combinatorial. The

topological content of Khovanov homology is not well understood.

Annular Khovanov homology was defined by Asaeda-Przytycki-Sikora [APS04] as

a categorification of the Kauffman bracket skein module of the thickened annulus. The

resulting theory is an invariant of links in the thickened annulus A×I or alternatively

the complement of an unknot in the 3-sphere S3 \ U .

In this section we apply some earlier knot Floer detection results to show that

annular Khovanov homology detects certain braid closures. The proofs will rely on

the spectral sequence from annular Khovanov homology of a link L to the knot Floer

homology of the lift of the annular axis in Σ(L) [GN14, Rob13].

Let βn denote the braid σ1σ2 · · ·σn−1. We use knot Floer detection results for

T (2, 2n) to show that annular Khovanov homology detects the closure of βn for all

even n.

Theorem 4.3.1. Annular Khovanov homology detects β̂2n for all n.

Here α̂ indicates the braid closure of the braid α. We note that versions of this
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4.3. Annular Khovanov Homology Detects β̂2n

result appeared in work of the author and Martin [BM20], as well as the author and

Dey [BD22b]. Annular Khovanov homology is also known to detect the closures of

the trivial braids [BG15] as well as all two braids [GLW18].

Our approach is as follows; first we use properties of annular Khovanov homology

to deduce necessary topological properties of the annular knot like braidedness or

unknottedness. Then we use a knot Floer detection result to show that the lift of the

annular axis is T (2, 2n). Finally we translate this into information about the annular

link.

The spectral sequence from the annular Khovanov homology of an annular link

L to the knot Floer homology of the lift of the annular axis in Σ(L) is defined with

Z/2Z coefficients. At times, however, we will work with annular Khovanov homology

over C because with these coefficients annular Khovanov homology has the structure

of an sl2(C) representation [GLW18, Proposition 3].

Proposition 4.3.2 ([LM]). Suppose γ is an n-braid and β is a periodic n-braid. If

BH(γ) and BH(β) are conjugate then so too are γ and β.

Remark 4.3.3. An alternative proof of this Proposition was originally communicated

to the author and Gage Martin by Marissa Loving and Dan Margalit [LM].

Proof. Let β and γ be as in the statement of the proposition. Note that both conju-

gation and the Birman-Hilden correspondence preserve the Nielsen-Thurston classi-

fication so we know that γ is periodic as well. That is a power of γ is some power of

the full twist ∆2. Thus there are numbers N and M so that βN = γM .

Now we consider the fractional Dehn twist coefficient of β and γ. We know that

FDTC(β) = k/m for some fixed k, m. The Birman-Hilden correspondence either

preserves the fractional Dehn twist coefficient of n-braids or halves it depending on

the parity of n. The fractional Dehn twist coefficient is preserved under conjugation

by a combination of [IK17, Corollary 4.17] and [Ghy01, Proposition 5.3] so we know
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FDTC(BH(β)) = FDTC(BH(γ)) so then we also know FDTC(β) = FDTC(γ) =

k/m. The fractional Dehn twist coefficient is multiplicative under exponentiation so

we know FDTC(βN) = kN
m

and FDTC(γM) = kM
m

but βN = γM so we must have

that M = N . Finally we know that Nth roots are unique up to conjugation in the

braid group [GM03] so that β and γ are conjugate.

The spectral sequence from the annular Khovanov homology of an annular link

L to the knot Floer homology of the lift of the annular axis in Σ(L) is defined with

Z/2Z coefficients. At times, however, we will work with annular Khovanov homology

over C because with these coefficients annular Khovanov homology has the structure

of an sl2(C) representation [GLW18, Proposition 3].

For the readers convenience we recall, from [GLW18, Proposition 14], that;

AKhi(β̂n,C) =


V(n){n− 1} for i = 0

V(n−2){n+ 1} for i = 1

0 otherwise

(4.9)

Here V(m) is the (m+1)-dimensional irreducible representation of sl2(C). Now, we

will need to study annular Khovanov homology with coefficients with Z/2. Note that

rank(AKh(βn;Z/2)) ≥ rank(AKh(βn;C)) = 2n. Now, T (2, n) can be thought of as a

2-periodic knot with quotient βn. It follows from [SZ18] that rank(Kh(T (2, n);Z/2)) ≥

rank(AKh(βn;Z/2)). Indeed, rank(Kh(T (2, n);Z/2)) = 2n by the universal coeffi-

cient theorem and [K+00, Proposition 26] so in fact rank(AKh(βn;Z/2)) = 2n and

the above description of Annular Khovanov homology is equally valid for Z/2 coeffi-

cients.

We require the following Lemma;
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Lemma 4.3.4. Let L ⊆ A × I ⊆ S3 be an annular link. If AKh(L,Z/2Z) ∼=

AKh(β̂n,Z/2Z) then L is an unknot in S3.

Proof. We first compute AKh(L,C) from AKh(L,Z/2Z). Throughout, we will use

that the dimension of annular Khovanov homology over C can be no larger than

that over Z/2Z. Because L is a n-braid closure, AKh(L,C) must contain a weight n

irreducible sl2(C) representation in grading i = 0, of dimension n. Thus AKh(L,C)

must consist only of this representation in grading i = 0 because AKh(L,Z/2Z) has

dimension n in homological grading 0. We therefore have that all of the generators

in grading i = 1 for AKh(L,Z/2Z) must correspond to generators of AKh(L,C), for

it not, they would correspond to 2-torsion in AKh(L,Z), but the torsion contributes

dimension in two different homological gradings by the universal coefficient theorem.

A simple computation of annular Khovanov homology verifies that L is not the

trivial braid. Thus by [BG15, Theorem 3.1], we know that the differential ∂− on

AKh(L,C) inducing the spectral sequence to Kh(L) must send the highest weight

generator in the grading i = 0 to something non-zero. The only generator in the

correct quantum grading is the highest weight generator in the grading i = 1 so that

must be the image of the highest weight generator in the grading i = 0 under ∂−.

The action ∂− is part of the action of sl2(∧) on AKh(L,C) and commutes up to sign

with the lowering operator f [GLW18, Theorem 1]. This means that the image of ∂−

is spanned by all generators in grading i = 1. Thus Kh(L) is dimension 2, and L is

the unknot.

Notice that the proof of the above Lemma indeed determines the differential ∂−

inducing the spectral sequence from AKh(L) to the Khovanov homology of the un-

knot.

Lemma 4.3.5. Let L ⊆ A × I ⊆ S3 be an annular link. If AKh(L,Z/2Z) ∼=

AKh(β̂2n,Z/2Z) then ĤFK(Ũ ,Σ(L)) ∼= ĤFK(T (2, 2n)).
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As with everything else in this section, the proof of this Lemma appears in [BM20].

We have expanded the argument slightly here, though it is the same in essence.

Proof. For the proof of this lemma we identify AKh(L,Z/2Z) with the E2 page of

a link surgery spectral sequence – an object in Floer homology discussed in [OS05b]

– and use the Maslov gradings on the Floer theory side to deduce that the spectral

sequence to ĤFK(−Ũ), collapses on the E2-page.

LetD be a diagram for the annular link L. SupposeD has n crossings. AKh(L,Z/2Z)

can be identified as the E2 page of a spectral sequence from a complex graded over a

cube I ∈ {0, 1}n, with, vertices given by ĤFK(B̃I) ∼= W l⊗V m, where B̃I is the lift of

the braid axis B in the double branched cover of the link given by resolving L by I,

and l is the number of components of DI that link non-trivially with B and m is the

number of components of DI which do not. Here W ∼= F1/2[1/2]⊕F−1/2[−1/2], while

V ∼= F1/2[0] ⊕ F−1/2[0], where the subscript denotes the Maslov grading of the gen-

erator while, [x] denotes the Alexander grading. The Alexander grading is identified

with half of the Annular grading on Annular Khovanov homology, while for each I

the relative Maslov grading of any two generators agrees with half relative quantum

grading of the generators.

The differential on this complex which induces the spectral sequence to the knot

Floer homology of the double branched cover of the braid axis is given by the maps

induced by the cobordism maps taking ĤFK(B̃I) to ĤFK(B̃I′) of I < I ′ in the

lexicographic ordering. Annular Khovanov homology is then identified with the E2

page of this spectral sequence. Note that we can recover the relative Maslov grading

on the Floer homology side in each individual homological grading. Our goal is to

recover the absolute Maslov grading on the Floer homology side.

On the Floer homology side the differential ∂− giving the spectral sequence from

AKh(L,Z/2Z) to Kh(L,Z/2Z) – where we view Kh(L,Z/2Z) as the E2 page of the

spectral sequence to the double branched cover of L as in [OS05b] – is the sum of
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components which lower the Maslov index by 1. Thus ∂− lowers the Maslov grading by

one. Using the remark following Lemma 4.3.4, this implies that for AKh(L,Z/2Z),

generators in the same annular grading correspond on the Floer theoretic side to

elements of the same relative Maslov grading. Since elements in the same Alexander

grading have the same Maslov grading, the spectral sequence to ĤFK(−Ũ) collapses

as all differentials preserve the Alexander grading and decrease the Maslov grading.

It follows that ĤFK(−Ũ) ∼= ĤFK(T (2, 2n)) up to a shift in the Maslov grading.

To upgrade this the relative Maslov grading statement to an absolute Maslov grading

statement, notice that there are only two generators which survive in the spectral

sequence from AKh(L,Z/2) to Kh(L,Z/2Z), namely the generators that sit in the k

gradings−2n and 2−2n. These generators must correspond under the Floer homology

interpretation to generators in Maslov gradings 0 and 1 respectively. This determines

the Maslov gradings of the generators under the Floer theoretic interpretation of

AKh(L,Z/2Z).

The claim ĤFK(Ũ) ∼= ĤFK(T (2, 2n)) then follows from the fact that ĤFK(−Ũ) ∼=

(ĤFK(Ũ))∗ with the appropriate change in gradings.

We can now prove Theorem 4.3.1;

Proof of Theorem 4.3.1. Suppose L is an annular link such that AKh(L) ∼= AKh(β̂2n).

Lemma 4.3.5 implies that ĤFK(Ũ ,Σ(L)) ∼= ĤFK(T (2, 2n)), whence Ũ is T (2, 2n) by

Theorem 4.0.1, which is fibered of genus n. Up to isotopy fibered link exteriors have

unique fibrations by Seifert surfaces – for instance see [EN85, Chapter 1.4]. Note that

the exterior of a link may fiber in different ways if one does not require the fibers to

be Seifert surfaces. The monodromies of fibered links are unique up to conjugation.

The monodromy of a fibered link in Σ(L) is the image of a braid representing L in

Mod(S2
2n) under the Birman-Hilden correspondence. Finally, by Proposition 4.3.2
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conjugate monodromies must come from conjugate braids so L must be isotopic to

β2n.
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Chapter 5

Almost L-space knots

As we saw in Chapter 3, L-space knots are knots which admit Dehn surgeries to 3-

manifolds with Heegaard Floer homology of minimal rank. In this chapter we study

“almost L-space knots”, which are knots which admit large Dehn surgeries to 3-

manifolds with Heegaard Floer homology of next-to-minimal rank. Our main result

in this chapter is a classification of the CFK∞(−) type of almost L-space knots.

As corollaries we show that almost L-space knots satisfy various strong topological

properties, including some recently given by Baldwin-Sivek [BS22]. We also give some

new cable link detection results.

The following terminology was introduced by Baldwin-Sivek [BS22].

Definition 5.0.1. Let Y be a rational homology sphere. We call Y an almost L-space

if rank(ĤF(Y )) = |H1(Y ;Z)|+ 2.

We note that there is no rational homology sphere with rank(ĤF(Y )) = |H1(Y ;Z)|+

1, as the decatigorification from ĤF(Y ) to |H1(Y )| respects parity. Almost L-spaces

are thus the rational homology spheres for which Inequality 3.1 is “almost tight”.

There is a question of whether or not this is quite the “correct” definition for almost

L-spaces. See Section 5.4 for some discussion.

Definition 5.0.2. [BS22] A knot K in S3 is called an almost L-space knot if there
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exists an n ≥ 2g(K)− 1 such that rank(ĤF(S3
n(K))) = n+ 2.

As we will seem there are a number of equivalent definitions of almost L-space

knots. The reason to include the condition n ≥ 2g(K)− 1 is that if K is an L-space

knot then rank(ĤF(S3
2g(K)−2(K))) = 2g(K).

This chapter is organised as follows; in Section 5.1 we survey our results, in Sec-

tion 5.2 we discuss the chain complexes which arise as the CFK∞-type of almost

L-space knots, in Section 5.4 we give some alternate characterizations of almost L-

spaces and prove Proposition 5.4.4 and Proposition 5.4.6. In Sections 5.5, 5.6, and 5.7

we prove Theorem 5.1.1. In Section 5.8 we give the applications.

5.1 Summary of Results

We turn our attention now to knot Floer homology. Our main result is a classification

of CFK∞(−) for almost L-space knots;

Theorem 5.1.1. Let K be an almost L-space knot. Then CFK∞(K) has the filtered

chain homotopy type of one of the following complexes;

1. A staircase complex direct sum a box complex.

2. An almost staircase complex.

The definitions of the complexes referred to in this theorem are deferred to Sec-

tion 5.2. They are illustrated, however, in Figures 5.1, 5.2, 5.3 and 5.4.

We note in contrast that an L-space knot has CFK∞ given by a staircase complex,

as proven by Ozsváth-Szabó [OS05a].

It is straightforward to construct examples of almost L-space knots with CFK∞(−)

of type 2 by taking (2, 2g(K) − 3)-cables of L-space knots. Examples of knots with

CFK∞ of type 1 – and indeed type 2 after a change of basis – include the figure eight,

the mirror of 52, T (2, 3)#T (2, 3), 10139, and 12n725. There are many almost staircase
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• •

• •

•

Figure 5.1: A staircase complex. The horizontal direction indicates the U grading
and the vertical direction indicates the A grading.

x1 x2

x3 x4

Figure 5.2: A box complex. The horizontal direction indicates the U grading and the
vertical direction indicates the A grading. Note the arrows are of length one.

complexes which do not arise as the complexes of (2, 2g(K) − 3)-cables of L-space

knots or as box plus staircase complexes. The author is unaware if any such complex

arises as CFK∞(K) for some K. Indeed, the author is likewise unaware of an answer

to the following question;

Question 5.1.2. Which staircase complexes arise as CFK∞(K) for some K?

We prove Theorem 5.1.1 by adapting the techniques in homological algebra Ozsváth-

Szabó used to classify the CFK∞ type of L-space knots. With Theorem 5.1.1 at hand

we can obtain the following result;

Proposition 5.4.4. Let K be a knot of genus g. K is an almost L-space knot if and

only if rank(ĤF(S3
p/q(K))) = p+ 2q for all p/q ≥ 2g − 1.

This is an analogue of the result that if K a knot of genus g then K is an L-space

knot if and only if rank(ĤF(S3
p/q(K))) = p for all p/q ≥ 2g − 1. We prove this result

with the aid of Hansleman-Rasmussen-Watson’s immersed curve interpretation of the

surgery formula in bordered Floer homology [HRW16].
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• •

• •

• •

• •

•

Figure 5.3: An almost staircase complex of type 2. The horizontal direction indicates
the U grading and the vertical direction indicates the A grading.

• •

• •

• • •

Figure 5.4: An almost staircase complex of type 1. The horizontal direction indicates
the U grading and the vertical direction indicates the A grading.

We can also give a sharpen Theorem 5.1.1 somewhat by the following proposition;

Proposition 5.4.6. Suppose K is an almost L-space knot with the CFK∞ type of a

box plus staircase complex. Then ĤFK(K, 0) is supported in a single Maslov grading.

Here ĤFK(K) is a weaker version of knot Floer homology that can be recov-

ered from CFK∞(K). This proposition is proven using involutive knot Floer homol-

ogy [HM17] and Sarkar’s basepoint moving map [Sar15]. This result can perhaps be

though of as a relative version of a result of Hanselman-Kutluhan-Lidman concerning

the geography problem for HF+(Y, s) – another version of Heegaard Floer homology –

for s a self conjugate spinc structure, with ĤF (Y, s) of next to minimal rank [HKL19].

A number of topological properties of L-space knots can be deduced from the

classification of their CFK∞-type – for example that they are strongly-quasi-positive
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and fibered. Likewise Theorem 5.1.1 allows us to show that almost L-space knots

satisfy or almost satisfy various strong topological properties.

Corollary 5.8.1 ([BS22]). Suppose K is a genus one almost L-space knot. Then K

is T (2,−3), the figure eight knot or the mirror of the knot 52.

This result is the analogue of the fact that the only genus one L-space knot is

T (2, 3).

Corollary 5.8.2. The only composite almost L-space knot is T (2, 3)#T (2, 3).

This is the analogue of Baldwin-Vela-Vick’s result that L-space knots are prime [BVV18,

Corollary 1.4]

Corollary 5.8.3 ([BS22]). The mirror of 52 is the only almost L-space knot which is

not fibered.

This is the analogue of the fact that L-space knots are fibered.

Corollary 5.8.4. Suppose K is an almost L-space knot for which |τ(K)| < g3(K).

Then K is the figure eight knot.

Here τ(−) is a knot invariant due to Ozsváth-Szabó [OS04c]. Note that |τ(K)| ≤

g3(K) for all K. This result is the analogue of the fact that for L-space knots K,

τ(K) = g(K).

Corollary 5.1.3 ([BS22]). The only almost L-space knot that is not strongly quasi-

positive is the figure eight knot.

This is the analogue of the fact that L-space knots are strongly quasi-positive.

In a different direction, Theorem 5.1.1 allows us to recover a result of Hedden;

Corollary 5.8.6 ([Hed07, Hed11]). SupposeK is a knot and rank(ĤFK(Kn)) = n+2.

Then K is an L-space knot and n = 2g(K)− 1.

Here Kn indicates the core of n-surgery on K. We again prove this with the aid of

Hanselman-Rasmussen-Watson’s immersed curve invariant. From here we can obtain
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some link detection results for cables of L-space knots using the same arguments as

were used by the author and Dey for similar purposes in [BD22a]. Let Kp,q denote

the (p, q)-cable of K. Here p indicates the longitudinal wrapping number while q

indicates the meridional wrapping number. We have the following;

Proposition 5.8.7. Suppose K is an L-space knot. If a 2-component link L satisfies

ĤFK(L) ∼= ĤFK(K2,4g(K)−2). Then L is a (2, 4g(K)− 2)-cable of an L-space knot K ′

such that ĤFK(K ′) ∼= ĤFK(K).

Here we orient (2, 2n)-cables as the boundary of annuli. Moreover we have a

stronger result for link Floer homology, an invariant due to Ozsváth-Szabó [OS08a];

Proposition 5.8.8. SupposeK is a L-space knot and L satisfies ĤFL(L) ∼= ĤFL(Km,2mg(K)−m).

Then L is a (m, 2mg(K)−m)-cable of an L-space knotK ′ with ĤFK(K ′) ∼= ĤFK(K).

In fact, the conclusion that K ′ is an L-space knot in the above two Propositions

follows from the fact that ĤFK(K) ∼= ĤFK(K ′), as is also true for the corresponding

results in [BD22a]. This observation follows either from examining the immersed

curve invariant or a result of Lidman-Moore-Zibrowius [LMZ20, Lemma 2.7].

As a corollary we have the following detection results;

Corollary 5.1.4. Knot Floer homology detects T (2, 3)2,2 and T (2, 5)2,6 amongst two

component links.

Here these two links are again oriented as the boundary of annuli. The corre-

sponding result for Link Floer homology is the following;

Corollary 5.1.5. Link Floer homology detects T (2, 3)m,2m and T (2, 5)m,6m.

Note that T (2, 3) and T (2, 5) are L-space knots. The above two results thus follow

directly from Propositions 5.8.7 and 5.8.8, Ghiggini’s result that knot Floer homology

detects T (2, 3) [Ghi08], and Farber-Reinoso-Wang’s result that knot Floer homology

detects T (2, 5) [FRW22].
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We also give a characterization of links with the same link Floer homology type

of the (m,mn)-cables of almost L-space knots for large n, generalizing work of the

author and Dey [BD22a, Theorem 3.1];

We conclude this summary with some questions;

Question 5.1.6. Is there a version of the L-space conjecture for almost L-spaces?

The L-space conjecture posits an equivalent characterization of L-spaces in terms

of both an orderability condition on their fundamental groups, and whether or not

they admit taut foliations [BGW13].

Given a property that L-space knots exhibit, it is natural to ask if almost L-space

knots too exhibit that property. For example, L-space knots do not have essential

Conway spheres by a result of Lidman-Moore-Zibrowius [LMZ20], so it is natural to

ask the following;

Question 5.1.7. Do almost L-space knots have essential Conway spheres?

5.2 Chain Complexes for almost L-space knots

Theorem 5.1.1 states that the chain complexes of almost L-space knot admit partic-

ularly simple models. That is, there exist particularly simple models of their chain

homotopy type. Throughout this chapter we shall use i to indicate the U -grading

on CFK∞ and j to indicate the Alexander grading. To make the statement of Theo-

rem 5.1.1 we need the following definitions;

Definition 5.2.1. A staircase complex is a set of generators {xi}1≤i≤N ∪{yi}1≤i≤N+1

where N ∈ Z≥0 such that xi and yi only differ in i coordinate while xi and yi+1 only

differ in j coordinate, and the non-trivial differentials are given by ∂xi = yi+ yi+1 for

1 ≤ i ≤ N.

An example of such a complex is shown in Figure 5.1.
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Definition 5.2.2. Let N ∈ Z≥0. A type 1 almost staircase complex is a complex

admitting a basis {xi}0<|i|≤N+1 ∪ {yi}0<|i|≤N ∪ {z} such that;

1. xi and yi−1 only differ in i coordinate while xi and yi only differ in j coordinate.

2. Suppose x−1 is of bigrading (a, b). Then z is of bigrading (a− 1, b) and x1 is of

bigrading (a− 1, b+ 1).

3. The non-trivial components of the differential are given by;

(a) ∂yi = xi + xi+1 for i ̸= ±1,

(b) ∂y±1 = x±2 + x1 + x−1,

(c) ∂x±1 = z.

An example of such a complex is shown in Figure 5.4. The N = 0 case corresponds

to the case of the left handed trefoil.

Definition 5.2.3. Let N ∈ Z≥1. A type 2 almost staircase complex is a complex

admitting a basis {xi}0<|i|≤N ∪ {yi}0<|i|≤N ∪ {z} such that;

1. For i < 0 xi and yi only differ in i coordinate while xi−1 and yi only differ in

j coordinate. For i > 0 xi and yi only differ in j coordinate while xi and yi+1

only differ in i coordinate

2. Suppose y−1 is of bigrading (a, b). Then z is of bigrading (a, b+ 1) and y1 is of

bigrading (a− 1, b+ 1).

3. The non-trivial components of the differential are given by;

(a) ∂yi = xi + xi+1 for i < 0,

(b) ∂yi = xi + xi−1 for i > 0,

(c) ∂y±1 = x−1 + x1,
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(d) ∂z = y0 + y1.

An example of such a complex is shown in Figure 5.4. Almost staircases of type

1 arise as (2, 2g(K)− 3)-cables of L-space knots while almost staircase complexes of

type 2 do not. This can be deduced using Hanselman-Watson’s cabling formula for

knot Floer homology in terms of immersed curves [HW19]. Indeed, the author does

not know the answer to the following question;

Question 5.2.4. Do there exist knots with the CFK∞-type of almost staircase com-

plexes of type 2?

The remaining complex we have to define is the following;

Definition 5.2.5. A box complex is a complex with of generators x3, x4, x1, x2 with

coordinates (0, 0), (0, 1), (1, 0) and (1, 1) respectively, up to overall shift in bigrading,

differentials given by;

1. ∂x2 = x1 + x4

2. ∂x2 = ∂x4 = x3.

3. 0 otherwise.

An example of such a complex is shown in Figure 5.2. With these definitions

at hand, the statement of Theorem 5.1.1 is made rigorous. We note however that

there is a degree of overlap between complexes of type one and complexes of type

two in the statement of Theorem 5.1.1. Namely, in light of proposition 5.4.6, box

plus staircase complexes for knots K with rank(ĤFK(K, 1)) = 2 can arise as almost

staircase complexes. Note that the mirror of 52, T (2, 3)#T (2, 3), 10139 and 12n725 all

satisfy this property.
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5.3 The Hendricks-Manolescu Involution

Each Heegaard diagram (Σ, α, β) for S3 induces a symmetry on S3 given by exchang-

ing the α and β curves and changing the orientation of Σ. Hendricks-Manolescu built

a version of Heegaard Floer homology called “Involutive knot Floer homology” which

accounts for this symmetry [HM17]. This invariant has proven to be strictly stronger

than Heegaard Floer homology in various settings. For example, one can prove using

involutive techniques that that the figure eight knot is not slice, whereas there is no

such proof in Heegaard Floer homology.

The key ingredient in Involutive knot Floer homology is an involution ι.

Theorem 5.3.1 ([HM17]). CFK∞(K) can be endowed with a grading preserving,

skew filtered quasi-isomorphism ι : CFK∞(K) → CFK∞(K).

Of course, we need to define some of the terms occurring in the statement of this

theorem. Recall that CFK∞(K) can be viewed as a bi-filtered complex.

Definition 5.3.2. A map f on a bi-filtered chain complex F is skew-filtered if

f(Fi,j) ⊆ Fj,i.

Definition 5.3.3. Let (C,F) be a filtered chain complex. f is a quasi-isomorphism

if f induces an isomorphism on the associated graded complexes.

Theorem 5.3.4 (Proposition 6.3 [HM17]). The quasi isomorphism type of (CFK∞(K), ι)

is an invariant of K.

Theorem 5.3.5. [HM17] ι2 is filtered chain homotopy equivalent to ζ.

Here ζ is Sarkar’s basepoint pushing map, which we discussed in Section 4.1. We

will use the fact that CFK∞(K) admits maps ι and ζ to show that certain chain

complexes do not arise as the CFK∞-type of knots.
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5.4 Some Remarks on Almost L-spaces and almost

L-space knots

In this section we give some equivalent definitions of almost L-spaces and almost L

space knots. First we give a definition of almost L-spaces in terms of of HF+.

Proposition 5.4.1. Let Y be a rational homology sphere. The following conditions

are equivalent;

1. Y is an almost L-space.

2. rank(ĤF(Y, s)) = 1 aside from for a unique Spinc structure s0 for which rank(ĤF(Y, s0)) =

3.

3. HF+(Y, s) ∼= τ+ aside from in a unique Spinc structure s0 for which HF+(Y, s0) ∼=

τ+ ⊕ Z[U ]/Un for some n.

4. HF+
red(Y, s)

∼= 0 aside from in a unique Spinc structure s0 for which HF+
red(Y, s0)

∼=

Z[U ]/[Un] for some n.

Here τ+ indicates a tower F[U,U−1]/U and HF+
red(Y, s) is the submodule of HF+

red(Y, s)

generated by elements that are not in the image of Un for sufficiently large n. The

proof is routine.

Proof. 1 ⇐⇒ 2 is just our definition of L-space.

To see that 2 =⇒ 3, note that in general HF+(Y, s) = τ+ ⊕ HF+
red(Y, s). Now

considering the long exact sequence induced by the short exact sequence;

0 ĈF(Y, s) CF+(Y, s) CF+(Y, s) 0U

we see that HF+(Y, s) ∼= τ+ unless s = s0. In the latter case observe that for

each summand of HF+
red(Y, s) we find two generators of ĤF(Y, s0). It follows that
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5.4. Some Remarks on Almost L-spaces and almost L-space knots

HF+
red(Y, s)

∼= Z[U ]/Un for some n ≥ 0. 3 =⇒ 4 follows from the definition.

4 =⇒ 2 follows immediately from the long exact sequence used previously.

A similar statement can be made for HF−;

Proposition 5.4.2. Let Y be a rational homology sphere. The following conditions

are equivalent;

1. Y is an almost L-space.

2. HF−(Y, s) ∼= τ− aside from in a unique Spinc structure s0 for which HF−(Y, s0) ∼=

τ+ ⊕ Z[U ]/Un for some n.

3. HF−
red(Y, s)

∼= 0 aside from in a unique Spinc structure s0 for which HF−
red(Y, s0)

∼=

Z[U ]/[Un] for some n.

Here τ− indicates a tower F[U ] and HF−
red(Y, s) is the U torsion submodule of

HF−(Y, s). The proof is again routine.

Proof. This follows just as in the case of the previous proposition but applying the

following short exact sequence at the chain level;

0 CF−(Y, s) CF−(Y, s) ĈF (Y, s) 0U

Remark 5.4.3. Note that one might reasonably have given a stronger definition of

almost L-spaces as rational homology spheres with, say, HF+(Y ;Z) ∼= τ+ ⊕ Z. It is

not clear to the author if this would be a better definition.

We now give the following alternate characterisation of almost L-space knots;

Proposition 5.4.4. Let K be a knot of genus g. K is an almost L-space knot if and

only if rank(ĤF(S3
p/q(K))) = p+ 2q for all p/q ≥ 2g − 1.
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We find it convenient to prove this proposition by way of Hanselman-Rasmussen-

Watson’s immersed curve interpretation of bordered Floer homology [HRW16, HRW18].

This invariant can be thought of as assigning to each knot K a closed multi-curve

Γ(K) in the infinite strip [0, 1]×R, punctured at {0}×Z. Pulling γ(K) tight we ob-

tain a collection of straight line segments. This is called a singular pegboard diagram

in [HRW16]. There is a unique such segment which is not vertical. Let m denote its

slope. Let n be the number of vertical line segments, counted with multiplicity. Note

that n−m is even. We will apply the following proposition of Hanselman;

Proposition 5.4.5 (Hanselman [Han22]). Let K be a knot with m and n as above

rank(ĤF(S3
p/q(K))) = |p− qm|+ n|q|.

The proof of this result amounts to a count of intersection points. We now prove

Proposition 5.4.4.

Proof of Proposition 5.4.4. We first prove the forward direction. If K is an almost

L-space knot, Theorem 5.1.1 implies that m = 2g(K) − 1, n = 2g(K) + 1. Propo-

sition 5.4.5 immediately implies that rank(ĤF(S3
p/q(K))) = p + 2q for all p/q ≥

2g(K)− 1.

For the opposite direction suppose that there exist p, q such that p
q
≥ 2g(K) − 1

and rank(ĤF(S3
p/q(K))) = p + 2q. We first show that K is an L-space knot or an

almost L-space knot. Note that Proposition 5.4.5 implies that, with m,n as above

p+2q = n|q|+ |mq− p|. Since K cannot be the unknot U as rank(ĤF(S3
p/q(U))) = p,

we have that 2g(K)− 1 > 0 and may take p, q ≥ 0, so that p + 2q = nq + |mq − p|.

Suppose m > p
q
. Then 2

p

q
+2 = n+m, so that 2m+2 ≥ n+m and m+2 > n. But

n −m ∈ 2Z≥0, so that n = m in which case K is an L-space knot and p
q
= m − 1.

Otherwise we have that n = m+ 2. It follows in turn that rank(ĤF(S3
s (K))) = s+ 2

for any sufficiently large s so that K is an almost L-space knot.
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We conclude this section with the following proposition, taking as given Theo-

rem 5.1.1;

Proposition 5.4.6. Suppose K is an almost L-space knot with the CFK∞-type of a

box plus staircase complex. Then ĤFK(K, 0) is supported in a single Maslov grading.

Proof. Suppose K is an almost L-space knot with the CFK∞-type of a box plus

staircase complex.

We first show that ĤFK(K, 0) is supported in a single grading. Consider Hendricks-

Manolescu’s involution ι on CFK∞(K) [HM17]. Recall that ι2 yields Sarkar’s base-

point pushing map [Sar15]. Thus ι2 is determined up to filtered chain homotopy by

the CFK∞-type of K by a result of Zemke [Zem17, Corololary C]. Consider the com-

ponents of ι and Sarkar’s basepoint pushing map acting on the box complex. Endow

the box complex with the generators x1, x2, x3, x4 as in Definition 5.2.5. Let e denote

U−1x3. Sarkar’s basepoint pushing map is given by x1 7→ x1, x4 7→ x4, e 7→ e and

x2 7→ x2 + e. Suppose that z is not of the same Maslov grading as e and x2. Observe

that the component of ι(x2) in (U,A)-grading (0, 0) is given by either e + x2 or x2,

while ι(e) = e. Neither of these maps square to Sarkar’s basepoint pushing map, so

we have a contradiction and that z is of the same Maslov grading as e and x2.

5.5 CFK∞ of almost L-space knots as a bigraded

vector space without Maslov gradings

In this section we determine CFK∞ as a bigraded vector space for almost L-space

knots without Maslov grading. We apply similar techniques as used by Ozsváth-

Szabó [OS05a] in the proof of the corresponding result for L-space knots.

Recall from Section 2.3 that ĤF(S3
n(K)) admits a Z/n grading. We first determine

the grading in which rank(ĤF(S3
n(K), [i])) = 3.

52



5.5. CFK∞ of almost L-space knots as a bigraded vector space without Maslov gradings

Lemma 5.5.1. SupposeK is an almost L-space knot and n ≥ 2g(K)−1 is an integer.

Then rank(ĤF(S3
n(K)), [i]) is 1 unless [i] = 0, in which case it is 3.

Proof. The set of Spinc structures admit a conjugation action which induces an iso-

morphism on ĤF(S3
n(K)). This action sends ĤF(S3

n(K), [i]) to ĤF(S3
n(K), [−i]). Since

there is a unique Spinc structure in which ĤF(S3
n(K)) is not one, it follows that this

Spinc structure is self conjugate. There are potentially two such Spinc structures,

namely 0 and n
2
if n is even. We show that the latter case is impossible. Since

n ≥ 2g(K)−1 we have that n
2
≥ g(K). However, it follows immediately from Ozsváth-

Szabó’s surgery formula [OS08b] that ĤF(S3
n(K); [i]) is of rank 1 for i ≥ g(K), a

contradiction.

We note in passing that ifK is an L-space knot then rank(ĤF(S3
2g(K)−2(K)), [g(K)−

1]) = 3.

Before proceeding we introduce some notation. CFK∞ is a Z⊕Z graded complex,

where the grading (i, j) indicates a U -grading of j and an Alexander grading of i.

We denote by C(f(i, j) = 0) the subcomplex of the associated graded consisting of

generators of grading (i, j) satisfying f(i, j) = 0.

Set Xm = {i ≤ 0, j = m}, Ym = {i = 0, j ≤ m − 1}. Let UXm be the complex

generated over {i < 0, j = −1}.

Following, Ozsváth-Szabó’s approach in the L-space knot setting [OS05a, Section

3], observe that we have a pair of short exact sequences;
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0

0 C{UXm} C(UXm ∪ Y } C{Ym} 0

C{Xm ∪ Ym}

C{X}

0

This yields a pair of exact triangles in homology shown in Figure 5.5;

H∗(UXm) H∗(Ym) H∗(Xm)

H∗(UXm ∪ Ym) H∗(Xm ∪ Ym)

e f

c d
b a

Figure 5.5: A pair of exact triangles we will use repeatedly in this section and the
next.

As noted by Ozsváth-Szabó [OS05a, Section 3], the composition of the two hori-

zontal maps is zero.

We first extract a lemma from work of Ozsváth-Szabó [OS05a, Section 3].

Lemma 5.5.2. SupposeH∗(X∪Y ) ∼= F,H∗(UX∪Y ) ∼= F3. Then 1 ≤ rank(H∗(X)) ≤

2.

Proof. Suppose H∗(X) ∼= Fn. In this specific context the exact triangles from Fig-

ure 5.5 yield;

Fn H∗(Y ) Fn

F3 F

c d

b a

If a is injective then H∗(Y ) ∼= Fn−1, d has kernel of rank 1, b must have image of

rank 1, and c must have kernel of rank 1. Since the composition of the two horizontal

maps must be trivial it follows that 1 ≤ n ≤ 2.
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If a is trivial then d is injective and H∗(Y ) ∼= Fn+1 whence b has image of rank 2

and c has kernel of rank 2. It follows that the image of c ◦ d is of rank n− 1 or n− 2,

whence n = 1 or n = 2 since the composition of the two maps is trivial.

Lemma 5.5.3. SupposeH∗(X∪Y ) ∼= F3,H∗(UX∪Y ) ∼= F. Then 1 ≤ rank(H∗(X)) ≤

2.

Proof. This follows from the proof of the previous lemma, after dualizing, noting that

we are working over a field.

Of course we are interested in computing H∗(0,m) rather than H∗(Xm). We now

relate these quantities.

Lemma 5.5.4. We have the following;

1. Suppose rank(H∗(Xm)) = 2. Then rank(H∗(0,m)) is one of rank(H∗({i < 0, j =

m}))− 2, rank(H∗({i < 0, j = m})) or rank(H∗({i < 0, j = m})) + 2.

2. Suppose rank(H∗(X)m) = 1. Then rank(H∗(0,m)) is either rank(H∗({i < 0, j =

m}))− 1 or rank(H∗({i < 0, j = m})) + 1.

3. Suppose rank(H∗(Xm)) = 0. Then rank(H∗(0,m)) = rank(H∗({i < 0, j =

m})).

Proof. There is a short exact sequence;

0 C{i < 0, j = m} C{i ≤ 0, j = m} C(0,m) 0

giving the exact triangle on homology shown in Figure 5.6.

The result follows directly.

We proceed now to compute the rank of H∗(0, n) for each n.
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H∗{i < 0, j = m} H∗{i ≤ 0, j = m}

H∗(0,m)

a

bc

Figure 5.6: Another exact triangle we will use repeatedly in this section and the next.

Lemma 5.5.5. Suppose K is an almost L-space knot. Then rank(ĤFK(K,A)) ≤ 1

for |A| > 1.

Proof. Given Lemma 5.5.1, this follows directly from work of Ozsváth-Szabó in the

setting in which K is an L-space knot as opposed to an almost L-space knot [OS05a,

Section 3].

Lemma 5.5.6. Suppose K is an almost L-space knot. Then rank(H∗(i < 0, j =

1)) = 1 or 0

Proof. Again this follows directly from work of Ozsváth-Szabó in the setting in which

K is an L-space knot as opposed to an almost L-space knot [OS05a, Section 3] given

Lemma 5.5.1.

It thus remains to determine H∗({(0, j) : |j| ≤ 1}).

To do so we combining Lemmas 5.5.2, 5.5.4 and 5.5.5 and obtain the following;

1. Suppose rank(H∗(i < 0, j = 1)) = 0. Then rank(H∗(i ≤ 0, j = 1)) =

rank(H∗(0, 1)) is 1 or 2.

2. Suppose rank(H∗(i < 0, j = 1)) = 1. Then;

(a) If rank(H∗(i ≤ 0, j = 1)) = 2 then rank(H∗(0, 1)) is either 1 or 3.

(b) If rank(H∗(i ≤ 0, j = 1)) = 1 then rank(H∗(0, 1)) is either 0 or 2.

We seek to exclude the case that rank(H∗(0, 1)) = 3.

Lemma 5.5.7. Suppose K is an almost L-space knot. Then rank(H∗(0, 1)) ̸= 3
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Proof. If rank(H∗(0, 1)) = 3 then rank(H∗(i ≤ 0, j = 1)) = rank(H∗{i < 0, j = 0}) =

2. We have the following cases;

1. rank(H∗{i ≤ 0, j = 0}) = 1 so that rank(H∗(0, 0)) = 1 or 3 by Lemma 5.5.4.

2. rank(H∗{i ≤ 0, j = 0}) = 2 so that rank(H∗(0, 0)) = 0 2 or 4 by Lemma 5.5.4,

a contradiction since this rank should be odd.

It thus remains to exclude the case that rank(H∗(i ≤ 0, j = 1)) = 2, rank(H∗(0, 1)) =

3, rank(H∗{i ≤ 0, j = 0}) = 1. This is straightforward asH∗(i ≤ 0, j = −1) ∼= H∗(i =

−1, j ≤ 0) ∼= H∗(j = 0, i ≤ 1), which is of rank zero or 1, as can be seen by applying

the exact sequences in Figure 5.5 to determine H∗(Y2). Applying the exact triangle

in Figure 5.6 we find that that rank(H∗(0,−1)) is 0, 1 or 2, a contradiction, since it

is supposed to be 3.

We also exclude the case that H∗(0, 1) ∼= 0.

Lemma 5.5.8. Suppose K is an almost L-space knot. Then H∗(0, 1) ̸∼= 0

We note that if we counted all knots which admit a positive L-space surgery as

almost L-space knots then this Lemma would be false. In particular there there exist

L-space knots K with H∗(0, 1) ∼= 0. For any such K, rank(ĤF(S3
2g(K)−2(K))) =

2g(K).

Proof. Suppose H∗(0, 1) ∼= 0. Then we must have that H∗(i ≤ 0, j = 1) ∼= H∗(i <

0, j = 0) ∼= F. We have two cases according to Lemma 5.5.3. Applying the exact

triangle 5.6 in each instance we have that;

1. If rank(H∗(j = 0, i ≤ 0)) = 1 then rank(H∗(0, 0)) is 0 or 2, both of which are

even, a contradiction.
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2. If rank(H∗(j = 0, i ≤ 0)) = 2 then rank(H∗(j = −1, i < 0)) = 2. Since

rank(H∗(j = −1, i ≤ 0)) = rank(H∗(i = −1, j ≤ 0)) ≤ 1 as in the previous

lemma, it follows that H∗(0,−1) is either 1, 2 or 3, a contradiction.

We are thus left with the cases;

1. rank(H∗(i < 0, j = 1)) = 0 and rank(H∗(i ≤ 0, j = 1)) = rank(H∗(0, 1)) is 1 or

2

2. rank(H∗(i < 0, j = 1)) = 1 and rank(H∗(i ≤ 0, j = 1) = 2 and rank(H∗(0, 1)) is

1.

We now compute H∗(0, 0), again by cases;

1. rank(H∗(0, 1)) = 1. Then either;

(a) rank(H∗(i < 0, j = 0)) = 2 and rank(H∗(0, 1)) is 0, 1, 2 or 3. The even

cases are excluded as H∗(0, 0) must be of odd rank.

(b) If rank(H∗(i < 0, j = 0)) = 1 then rank(H∗(0, 1)) is 0, 1, 2 or 3. The even

cases are excluded as before.

2. rank(H∗(0, 1)) = 2. Then either;

(a) rank(H∗(i < 0, j = 0)) = 2 and rank(H∗(0, 1)) is 0, 1, 2 or 3. The even

cases are excluded as before.

(b) If rank(H∗(i < 0, j = 0)) = 1 then rank(H∗(0, 1)) is 0, 1, 2 or 3. The even

cases are excluded as before.

In sum we have the following possibilities; ĤFK(K, 1) ∼= F in which case ĤFK(K, 0) ∼=

F or F3; or ĤFK(K, 1) ∼= F2 in which case ĤFK(K, 0) ∼= F or F3.
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5.6 Maslov Gradings

We now proceed to compute the Maslov gradings of the bigraded vector spaces pro-

duced in the previous section. We proceed again by cases, following the argument

given by Ozsváth-Szabó for their corresponding step in the L-space knot case. Es-

sentially this amounts to keeping track of the Maslov gradings in the exact triangles

shown in Figure 5.5 and 5.6. Specifically we apply the fact that the maps f, a, e, b

in Figure 5.5 preserve the Maslov grading, while maps c and d each lower it by 1.

Likewise we use the fact that in Figure 5.6 the maps a and b preserve the Maslov

grading while map c decreases it by 1.

We assume throughout this section that the genus of the almost L-space knot in

question is at strictly greater than one. We are safe in this assumption as genus 1

almost L-space knots are rank at most two in their maximal Alexander grading and

the only such knots are T (2,−3), the mirror of 52 and the figure eight knot by results

of Ghiggini [Ghi08] and Baldwin-Sivek [BNS22].

Lemma 5.6.1. Suppose K is an almost L-space knot of genus at least two and that

Maslov grading, m of the generator x of lowest Alexander grading > 1, while the

Alexander grading is A. We have that;

1ai) ĤFK(K, 1) ∼= Fm+1 and ĤFK(K, 0) ∼= Fm.

1aii) ĤFK(K, 1) ∼= Fd and ĤFK(K, 0) ∼= Fm−1 ⊕ Fd−1 ⊕ Fd−1

1bi) ĤFK(K, 1) ∼= Fm−1 ⊕ Fm−2 and ĤFK(K, 0) ∼= Fm−3

1bii) ĤFK(K, 1) ∼= Fa ⊕ Fm−1 and ĤFK(K, 0) ∼= Fa−1 ⊕ Fm−2 ⊕ Fa−1

2ai) ĤFK(K, 1) ∼= Fm+1−2A and ĤFK(K, 0) ∼= Fm−2A

2aii) ĤFK(K, 1) ∼= Fb and ĤFK(K, 0) ∼= Fm−2A+1 ⊕ Fb−1 ⊕ Fb−1

2bi) ĤFK(K, 1) ∼= Fm−2A+1 ⊕ Fm−2A, ĤFK(K, 0) ∼= Fm−2A+1
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2bii) ĤFK(K, 1) ∼= Fb ⊕ Fm−2A+3, ĤFK(K, 0) ∼= Fb−1 ⊕ Fb−1 ⊕ Fm−2A+2

Proof. We proceed by cases;

1. Suppose H∗(i < 0, j = 1) ∼= 0

(a) Suppose H∗(0, 1) ∼= Fd. It follows that H∗(i ≤ 0, j = 1) ∼= Fd, whence in

turn H∗(i < 0, j = 0) ∼= Fd−2.

i. Suppose H∗(0, 0) ∼= Fa. Then H∗(i ≤ 0, j = 0) ∼= Fb ⊕ Fc. Then a = b

and d − 2 = c. It follows that H∗(i < 0, j = −1) ∼= Fa−2 ⊕ Fd−4 It

follows that d − 3 = a − 2. Indeed, H∗(i ≤ 1, j = −1) ∼= Fd−4. We

then find that d− 4− 2(A− 1) = m− 2A− 1, so that d = m+ 1.

ii. Suppose H∗(0, 0) ∼= Fa ⊕ Fb ⊕ Fc. Then without loss of generality

d − 2 = c − 1 and H∗(i ≤ 0, j = 0) ∼= Fa ⊕ Fb, so that H∗(i <

0, j = −1) ∼= Fa−2 ⊕ Fb−2. It follows without loss of generality that

d − 3 = b − 2. Indeed, H∗(i ≤ 1, j = −1) ∼= Fa−2. We then find that

a− 2− 2(A− 1) = m− 2A− 1, so that a = m− 1.

(b) Suppose H∗(0, 1) ∼= Fa ⊕ Fb. Then H∗(i ≤ 0, j = 1) ∼= Fa ⊕ Fb.

i. If H∗(0, 0) ∼= Fc then H∗(i ≤ 0, j = 0) ∼= Fb−2, c− 1 = a− 2. It follows

that H∗(i < 0, j = −1) ∼= Fb−4. Thus a− 3 = b− 4. As before we find

that a = m− 1.

ii. If H∗(0, 0) ∼= Fc ⊕ Fd ⊕ Fe then without loss of generality e − 1 =

a − 2, d − 1 = b − 2 and H∗(i ≤ 0, j = 0) ∼= Fc. It follows that

c − 2 = b − 3 or a − 3. Suppose c − 2 = b − 3. Then we find that

a−2−2(A−1) = m−2A−1 so that a = m−1. Suppose c−2 = a−3

then we find that b = m− 1.

2. Suppose H∗(i < 0, j = 1) ∼= Fa. Then a = m− 2(A− 1). Whatsmore;
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(a) Suppose H∗(0, 1) ∼= Fb. Then H∗(i ≤ 0, j = 1) ∼= Fa⊕Fb and H∗(i < 0, j =

0) ∼= Fa−2 ⊕ Fb−2

i. Suppose H∗(0, 0) ∼= Fc. Suppose a− 2 = c− 1 and H∗(i ≤ 0, j = 0) ∼=

Fb−2. It follow that H∗(i < 0, j = −1) ∼= Fb−4, a contradiction. Thus

b−2 = c−1, and H∗(i ≤ 0, j = 0) ∼= Fa−2. It follows that b−3 = a−4.

ii. Suppose H∗(0, 0) ∼= Fc ⊕ Fd ⊕ Fe. Then without loss of generality

c− 1 = a− 2, d− 1 = b− 2 and H∗(i ≤ 0, j = 0) ∼= Fe. It follows that

e− 2 is b− 3.

(b) Suppose H∗(0, 1) ∼= Fb ⊕ Fc. It follows without loss of generality that

c− 1 = a and H∗(i ≤ 0, j = 1) ∼= Fb while Fb−2
∼= H∗(i < 0, j = 0).

i. Suppose H∗(0, 0) ∼= Fd. Then H∗(i ≤ 0, j = 0) ∼= Fb−2 ⊕ Fd and

H∗(i < 0, j = 0) ∼= Fb−4 ⊕ Fd−2. It follows that b − 3 = d − 2,

a− 3 = d− 2.

ii. Suppose H∗(0, 0) ∼= Fd ⊕ Fe ⊕ Ff . It follows that f − 1 = d − 2

without loss of generality. Similarly H∗(i ≤ 0, j = 0 ∼= Fd ⊕ Fe). Thus

H∗(i < 0, j = −1) ∼= Fd−1 ⊕ Fe−1. Thus {d− 2, e− 2} = {b− 3, c− 3}

i.e. without loss of generality d = b− 1, e = c− 1

5.7 The filtrered chain homotopy type of CFK∞

In this section we seek to determine the filtered chain homotopy type of CFK∞ of

almost L-space knots. We have 8 cases to deal with according to Lemma 5.6.1,

although we will see that there is a certain amount of degeneracy amongst these

cases.

We again assume throughout this section that the genus of the almost L-space

knot in question is at strictly greater than one. We are safe in this assumption
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as genus 1 almost L-space knots are rank at most two in their maximal Alexander

grading and the only such knots are T (2,−3), the mirror of 52 and the figure eight

knot by results of Ghiggini [Ghi08] and Baldwin-Sivek [BNS22].

Lemma 5.7.1. Let K be an almost L-space knot of genus strictly greater than 1.

Then there exists an integer d such that either;

1. H∗(i = 0, j > 1) ∼= F0 and H∗(i = 0, j < −1) ∼= Fd and H∗(|i| ≤ 1) ∼= Fd+1

2. H∗(i = 0, j > 1) ∼= F0 ⊕ Fd and H∗(i = 0, j < −1) ∼= 0 and H∗(|i| ≤ 1) ∼= Fd−1

Proof. H∗(i = 0, j > 1) can be computed using the isomorphisms H∗(i = 0, j < 1) ∼=

H∗(j = 0, i < 1) ∼= H∗(j = 1, i ≤ 0), while H∗(i = 0, j < −1) can be computed using

the isomorphisms H∗(i = 0, j < −1) ∼= H∗(j = 0, i < −1) ∼= H∗(j = 1, i ≤ 0) up to

appropriate grading shifts.

To compute H∗(i = 0, |j| ≤ 1) observe that there is a short exact sequence;

0 C(i = 0, j ≤ 1) C(i = 0) C(i = 0, j > 1) 0

giving an exact triangle on homology;

H∗{i = 0, j ≤ 1} H∗(i = 0) ∼= F0

H∗(i = 0, j > 1)

and another short exact sequence;

0 C{i = 0, j < −1} C{i = 0, j ≤ 1} C({i = 0, |j| ≤ 1) 0

giving an exact triangle on homology;

H∗{i = 0, j < −1} H∗{i = 0, j ≤ 1}

H∗(i = 0, |j| ≤ 1)

For grading reasons this determines the chain complexes C(x, y : |y − x| > 1).
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We seek to determine the rest of the chain complex.

Lemma 5.7.2. Suppose K is an almost L-space knot and rank(H∗(0, 0)) = 1. Then

CFK∞(K) is an almost staircase complex.

Proof. We know that H∗(i = 0) ∼= F0 and that rank(H∗(0, i)) ≤ 1 for i ̸= ±1,

1 ≤ rank(H∗(0,±1)) ≤ 2. Whatsmore, in ĤFK(K) the (M,A)-gradings of the 5

generators of smallest A-grading are either (0, d), (1, d+1), (−1, d−1), (A, d), (−A, d−

2A) if d is odd or (0, d), (1, d + 1), (−1, d − 1), (−A, d), (A, d + 2A) if d is even. We

have a number of cases;

1. If d is even then;

(a) if A > 1 then H∗(i = 0, j ≤ 1) ∼= 0 and H∗(i = 0, j ≥ A) ∼= F0. This

forces C(i = 0) to be of the desired form, perhaps with the addition of

components of the differential from (0, 0) to (0,−A− 1) – if there exists a

generator of this grading – and from (0,−1) to (0,−A′), where A′ is the

smallest integer A′ > A+1 for which C(0,−A′) is non-trivial. C(j = 0) is

determined similarly, up to the addition of two components of the differen-

tial. In CFK∞ the resulting additional 4 components of the differential can

be removed by a filtered chain homotopy. In order that ∂2 = 0 there must

be two diagonal components to the differential on CFK∞(K), as shown in

Figure 5.3.

(b) ifA = 1 then the fact thatH∗(i = 0) ∼= F0,H∗(i = 0, j ≤ 1) ∼= Fd+2, H∗(i =

0, j ≤ −1) ∼= Fd, H∗(i = 0, j < −1) ∼= 0 determines C(i = 0), perhaps with

the addition of components of the differential from (0, 0) to (0,−2) – if

there exists a generator of this grading – and from th generator of Maslov

grading d − 1 in bigrading (0,−1) to (0,−A′), where A′ is the smallest

integer A′ > 2 for which C(0,−A) is non-trivial. C(j = 0) is determined
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similarly, up to the addition of two components of the differential. In

CFK∞ the resulting additional 4 components of the differential can be

removed by a filtered chain homotopy. In order that ∂2 = 0 there must

be two diagonal components to the differential on CFK∞(K), as shown in

Figure 5.3.

2. If d is odd then;

(a) if A > 1 then H∗(i = 0, j ≤ 1) ∼= Fd−1 and H∗(i = 0, j > 1) ∼= F0 ⊕ Fd.

This once again determines C(i = 0), perhaps up to the addition of two

components of the differential one from a generator of bigrading (0, A+1)

– if such a generator exists – to the generator of grading (0, 0) and from

(0, A′) to (0, 1) where A′ is the smallest A′ > A + 1 such that C(0, A′)

is non-trivial. C(j = 0) is determined similarly, up to the addition of

two components of the differential. In CFK∞ the resulting additional 4

components of the differential can be removed by a filtered chain homo-

topy. In order that ∂2 = 0 there must be two diagonal components to the

differential on CFK∞(K), as shown in Figure 5.4.

(b) if A = 1 then the fact that H∗(i = 0) ∼= H∗(i = 0, j > 1) ∼= F0, H∗(i =

0, j ≤ 1) ∼= 0, H∗(i = 0, j ≤ 1) ∼= 0 determines C(i = 0) as being of the

desired form perhaps with addition of two unwanted components. One of

these components is from the generator of bigrading (0, 2) – if it exists

– to the generator of grading (0, 0), the other is a component from from

(0, A′) to the generator in bigrading (0, 1) of Maslov grading d + 1 where

A′ is the smallest A′ > 2 such that C(0, A′) is non-trivial. C(j = 0) is

similarly determined. In CFK∞ the resulting additional 4 components of

the differential can be removed by a filtered chain homotopy. In order

that ∂2 = 0 there must be two diagonal components to the differential on
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CFK∞(K), as shown in Figure 5.4.

To deal with the case that rank(H∗(0, 0)) = 3 we first understand the behavior of

the complex near the diagonal;

Lemma 5.7.3. Suppose K is an almost L-space knot and rank(H∗(0, 0)) = 3. Then

up to a filtered change of basis C∗({|j − i| ≤ 1}) is the direct sum of a box complex

and a staircase complex.

Proof. We proceed by cases according to rank(H∗(0, 1)).

Suppose H∗(0, 1) ∼= Fa, H∗(0, 0) ∼= F2
a−1 ⊕ Fd, H∗(0,−1) ∼= Fa−2. Note that these

Maslov gradings are determined by Lemma 5.6.1. Let x, y1, y2, z, w be the respective

generators. Note that there is a unique from ∂ can take on C(i = 0|j| ≤ 1) such that

H∗(i = 0, |j| ≤ 1) ∼= Fd, up to a basis change in C(0, 0). It follows from here that

(C(i, j : |j − i| ≤ 1}), ∂) is determined up to the addition of diagonal components of

∂. The only way to add diagonal components is to have diagonal components from

w to Un+1x, Unw for some n or vice versa. A filtered change of basis removes these

components.

Suppose now that H∗(0, 1) ∼= Fm ⊕ Fd, H∗(0, 0) ∼= F2
m−1 ⊕ Fd−1. Then we have

that H∗(0,−1) ∼= Fm−2 ⊕ Fd−2. Note that these Maslov gradings are determined

by Lemma 5.6.1. Let x1 be the generator of H∗(0, 1) of Maslov grading m, y1 be

the generator of H∗(0, 1) of Maslov grading d, x2, x3 be the generators of H∗(0, 0) of

Maslov grading m − 1, y2 be the generator of H∗(0, 0) of Maslov grading d − 1, x4

be the generator of H∗(0,−1) of Maslov grading m − 2 and y3 be the generator of

H∗(0,−1) of Maslov grading d− 2.

Suppose m − 1 ̸∈ {d, d − 1, d − 2}. Consider the restriction of the differential

to C(i = 0, |j| ≤ 1). Then after a basis change we may take ∂x1 = x2. Since

m− 1 ̸= d, d− 1, we have ∂x3 = x4. The remaining component of the differential is
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then determined. Specifically, after mirroring we may assume that y1 is the generator

that persists and the remaining component of the differential is ∂y2 = y3.

We then have that in C(|j − i| ≤ 0) the y generators form a single staircase and

the x generators form boxes. The question remains over whether or not there are

diagonal components. By inspection these come in pairs and can be removed by a

filtered change in basis.

We now deal individually with the cases m = d+ 1, m = d and m = d− 1;

1. m = d+ 1

(a) Suppose the Maslov grading d− 2 generator is not the one which persists

to H∗(i = 0, |j| ≤ 1). Then there is a component of ∂ from the Maslov

index d − 1 generator to the Maslov index d − 2 generator. We have the

following subcases;

i. Suppose the generator of H∗(0, 1) of Maslov index d generator does

not persist to H∗(i = 0, |j| ≤ 1). Then it has a component to the

generator of H∗(0,−1) of Maslov index d− 1. The Maslov index d+1

generator must have a component to one of the generators of H∗(0, 0)

of Maslov index d. Such a ∂ clearly cannot be extended to C(|j−i|leq1)

a contradiction.

ii. Suppose the generator of H∗(0, 1) of Maslov index d persists. After a

change of basis this determines the vertical components of the differ-

ential and it is readily observed that C(|j − i| ≤ 1) is the direct sum

of a staircase and a box complex.

(b) Suppose the Maslov index d−2 generator does persist toH∗(i = 0, |j| ≤ 1).

This is impossible because it is of the wrong Maslov grading.

2. m = d. In this case the chain complex is thin and so splits as a direct sum of

boxes and staircases by work of Petkova [Pet13, Lemma 7].
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3. m = d− 1

(a) Suppose the Maslov index d− 3 generator is not the one which persists to

H∗(i = 0, |j| ≤ 1). After a change of basis we may assume the differential

has a component from a single Maslov index d − 2 generator to it. We

have the following cases;

i. Suppose the other generator of H∗(0, 0) of Maslov grading d− 2 does

not persist to H∗(i = 0, |j| ≤ 1). Then there is a component of the

differential from the the generator of H∗(0, 1) of Maslov index d−1 to

it and indeed the whole vertical complex is determined. Indeed, the

whole complex is seen to be a staircase complex plus a box complex.

There can be no diagonal components to the differential for for grading

reasons.

ii. Suppose the generator of H∗(0, 0) of Maslov index d − 2 persists to

H∗(i = 0, |j| ≤ 1). Then the vertical components of ∂ are determined

by the Maslov gradings. It is readily observed that this does not extend

to a differential on C(|j − i| ≤ 1).

This determines the complex up to addition of additional arrows between C(i, j :

|j − i| ≤ 1), C(i, j : j − i > 1), C(i, j : i− j > 1). In order that H∗(i = 0) ∼= H∗(j =

0) ∼= F0 it is readily seen that the staircases from C(|j − i| > 1) and C(|j − i| < 1)

connect to form a large staircase. We now show that up to filtered chain homotopy

there are no diagonal components;

Proposition 5.7.4. Suppose K is an almost L-space knot and rank(H∗(0, 0)) = 3.

Then CFK∞(K) is the direct sum of a box complex and a staircase complex.

Before proving this result we find it convenient to broaden our definition of stair-

case complexes to include their duals. We proceed with this in mind.
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Proof. We have shown that CFK∞(K) contains a box complex and a staircase com-

plex. Call them B and C respectively. We need to show that there is no component

of ∂ from C to B after a filtered change of basis. The fact that there is no component

from C to B then follows by dualizing the complex and the fact we have broaden our

definition of staircase complexes.

Suppose towards a contradiction that there is some component of ∂ from C to

B. Consider the generators of lowest j-grading. Amongst these consider that of the

highest i grading. There is a unique such generator, call it z.

Consider the components of ∂z in C which has the lowest j grading. Amongst

these consider those with the lowest i grading.

Let x1, x2, x3, x4 be the generators of C ordered as in figure 5.2.

Suppose this generator is x4. In order that ∂2 = 0, we must have that ∂z has a

length one horizontal component to a generator z′ such that ∂z′ whose differential

has a component x3. The filtered change of basis z′ 7→ z′+x4 removes both unwanted

components of the differential.x

We proceed now to the case that the generator is x3. Performing the filtered

change of basis z 7→ z + x3 removes both unwanted components of the differential.

Suppose this generator is x2. In order that ∂2 = 0 we have that there is a generator

z′ with the same j grading such that ⟨z, z′⟩ ̸= 0 and that there is a component of

the differential from z′ to x4. In fact, again in order that ∂2 = 0, we must also have

a component of ∂ from z′ to x1. Performing a filtered change of basis z′ 7→ z′ + x2

removes the unwanted components of the differential.

Suppose this generator is x1. Again we must have a generator z′ such that there

is a component of the differential from z to z′ and there is a component of ∂ from

z′ to x3. The filtered change of basis z′ 7→ z′ + x1 then removes these unwanted

components of the differential.
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5.8 Applications

In this section we prove the applications advertised in the chapter summary.

Corollary 5.8.1. SupposeK is a genus one almost L-space knot. ThenK is T (2,−3),

the figure eight knot, or the mirror of the knot 52.

Proof. Theorem 5.1.1 implies that if K is an almost L-space knot then the rank of

ĤFK(K) in Alexander grading 1 is at most two. The result then follows immediately

from Baldwin-Sivek’s classification of nearly fibered knots [BNS22] – i.e. genus one

knots with knot Floer homology of maximal Alexander grading of rank two – and

Ghiggini’s classification of genus 1 knots with knot Floer homology of rank one in

their maximal Alexander grading [Ghi08].

Corollary 5.8.2. The only composite almost L-space knot is T (2, 3)#T (2, 3).

Proof. Let K be an almost L-space knot. Knots of genus at most 1 are prime. If

g(K) > 2 then rank(ĤFK(K, g(K)− 1)) = rank(ĤFK(K, g(K)− 1)) = 1 by a result

of Baldwin-Vela-Vick [BVV18, Theorem 1.1]. It follows that K cannot be prime just

as it does in the L-space case [BVV18, Corllary 1.4].

Suppose g(K) = 2 and K = K1#K2. Then since ĤFK(K) ∼= ĤFK(K1) ⊗

ĤFK(K2) and ĤFK(K) is trivial in Alexander gradings≥ 2 and of Maslov grading 0 in

Alexander grading 2, it follows that K1, K2 are both genus 1 [OS05a], fibered [Ghi08]

and strongly quasi-positive [Hed10]. It follows that K1 = K2 = T (2, 3). It is readily

checked that T (2, 3)#T (2, 3) is indeed an almost L-space knot.

Corollary 5.8.3 ([BS22]). The mirror of 52 is the only almost L-space knot which

is not fibered.

Proof. If K is an almost L-space knot with g(K) > 1 then the rank of the knot Floer

homology of K in the maximal Alexander grading is 1 by Theorem 5.1.1. It follows

that K is fibered by work of Ghiggini [Ghi08] and Ni [Ni07]
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Corollary 5.8.4. Suppose K is an almost L-space knot for which |τ(K)| < g3(K).

Then K is the figure eight knot.

Proof. This follows immediately from Theorem 5.1.1 and Corollary 5.8.1.

Corollary 5.8.5 ([BS22]). The only almost L-space knot that is not strongly quasi-

positive is the figure eight knot.

Proof. This again follows immediately from Theorem 5.1.1 and Corollary 5.8.1.

We now recover a result of Hedden;

Corollary 5.8.6 ([Hed07, Hed11]). Suppose K is a knot and rank(ĤFK(Kn)) =

n+ 2. Then K is an L-space knot and n = 2g(K)− 1.

Recall here that Kn denotes the core of n-surery on K. Again we find it help-

ful to think of surgery in terms of Hanselman-Rasmussen-Watson’s immersed curve

invariants.

Proof. The immersed curve invariants of almost L-space knots are determined by

5.1.1. It follows that if K is an almost L-space knot then rank(ĤFK(Kn)) > n + 2.

Indeed, we have that if K is neither an L-space knot nor an almost L-space knot then

rank(ĤFK(Kn)) ≥ rank(ĤF(S3
n(K))) > n + 2. Likewise it follows immediately from

the classification of immersed curves for L-space knots that if K is an L-space knot

then rank(ĤFK(Kn)) = n + 2 if and only if n = 2g(K) − 1. In sum we have that

rank(ĤFK(Kn)) = n+ 2 if and only if K is an L-space knot and n = 2g(K)− 1.

Proposition 5.8.7. Suppose K is an L-space knot. If a 2 component link L satisfies

ĤFK(L) ∼= ĤFK(K2,4g(K)−2). Then L is a (2, 4g(K)− 2)-cable of an L-space knot K ′

such that ĤFK(K ′) ∼= ĤFK(K).

Proof of Proposition 5.8.7. Applying 5.8.6, this result follows as in the proof of [BD22a,

Theorem 4.1].
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Proposition 5.8.8. Suppose K is an L-space knot ĤFL(L) ∼= ĤFL(Km,2mg(K)−m).

Then L is a (2, 2mg(K)−m) cable of an L-space knot K ′ with ĤFK(K ′) ∼= ĤFK(K).

Proof of Proposition 5.8.8. Applying 5.8.6, this result follows as in the proof of [BD22a,

Theorem 3.1].

We now give a characterizations of cables of (m,mn) cables of almost L-space

knots for sufficiently large m.

Proposition 5.8.9. Let K be an almost L-space knot. Suppose L is a link such that

ĤFL(L) ∼= ĤFL(Km,mn) with m > 2g(K) − 1. Then L is the (m,mn)-cable of an

almost L-space knot K ′ such that ĤFK(K ′) ∼= ĤFK(K).

Proof. Suppose K is as in the statement of the theorem. The same argument as used

by the author and Dey in [BD22a, Theorem 3.1] implies that L is the (m,mn)-cable

of some knot K ′ such that rank(ĤFK(K ′
m)) = m+ 4 and ∆K′(t) = ∆K(t).

We now show that K ′ is either an L-space knot or an almost L-space knot. Let

γ be the immersed curve invariant of K ′. Applying Proposition 5.4.5, we have that

m + 4 ≥ rank(ĤF(S3
m(K

′)) = |m − a| + b ≥ m where b is the number of vertical

components in a singular pegboard diagram for γ counted with multiplicity and a

is the slope of the unique segment which is not vertical. Suppose n < a. Then

a + b ≤ 2m + 4 < 2a + 2. b − a is an even non-negative integer. It follows that

b = a + 2 or b = a. If b = a then K ′ is an L-space knot, as shown by an application

of Proposition 5.4.5. If b = a+ 2 then K ′ is an almost L-space knot as shown by an

application of Proposition 5.4.5. If m ≥ a then we have that b − a ≤ 4. However,

this yields only one new case, namely b− a = 4. In this case it can be observed from

the immersed curve formula for ĤFK(Km) that rank(ĤFK(Km)) ≥ m+ 6.

Suppose now that K ′ is an L-space knot. Then m = 2g(K ′) − 2, as can be seen

from Proposition 5.4.5. Since ĤFL(K ′
m,mn) and ĤFL(Km,mn), Km,mn and K ′

m,mn have

the same genus. Applying work of Gabai [Gab86], Neumann-Rudolph [NR87] and
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Rudolph [Rud02], it in turn follow that K and K ′ have the same genus, contradicting

m > 2g(K)− 1.

ThusK ′ is an almost L-space knot. It remains to show that ĤFK(K ′) ∼= ĤFK(K).

Observe that since K and K ′ share the same Alexander polynomial. Theorem 5.1.1

and Proposition 5.4.6 imply that ∆K(t) determines ĤFK(K) for almost L-space knots,

completing the proof.

Corollary 5.8.10. Link Floer homology detects the (m,mn)-cables of T (2,−3), the

figure eight knot and the mirror of 52 for n > 1.

Proof. Let K be one of the knots in the statement of the proposition. Suppose L is

a link such that ĤFL(L) ∼= ĤFL(Km,mn) for some n > 1. Proposition 5.8.9 implies

that L is as (m,mn) cable of an almost L-space knot K ′ with the same ĤFK(−) type

as K. Proposition 5.8.1 shows that there are only 3 genus one almost L-space knots,

namely those listed in the statement of the proposition. They are each distinguished

by their Alexander polynomials, concluding the proof.
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