
RIBBON COBORDISMS

Marius Huber

A dissertation submitted to the Faculty of the

Department of Mathematics in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Boston College
Morrissey College of Arts and Sciences

Graduate School

August 2022



©2022 Marius Huber



Ribbon cobordisms

Marius Huber

Advisor: Joshua Evan Greene, Ph.D.

We study ribbon cobordisms between 3-manifolds, i.e. rational homology cobor-

disms that admit a handle decomposition without 3-handles. We first define and study

the more general notion of quasi-ribbon cobordisms, and analyze how lattice-theoretic

methods may be used to obstruct the existence of a quasi-ribbon cobordism between

two given 3-manifolds. Building on this and on previous work of Lisca, we then

determine when there exists such a cobordism between two connected sums of lens

spaces. In particular, we show that if an oriented rational homology sphere Y admits

a quasi-ribbon cobordism to a lens space, then Y must be homeomorphic to L(n, 1),

up to orientation-reversal. As an application, we classify ribbon χ-concordances be-

tween connected sums of 2-bridge links. Lastly, we show that the notion of ribbon

rational homology cobordisms yields a partial order on the set consisting of aspherical

3-manifolds and lens spaces, thus providing evidence towards a conjecture formulated

by Daemi, Lidman, Vela-Vick and Wong.
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Chapter 1

Introduction

1.1 Background and context

It is a common theme in low-dimensional topology to study manifolds and links inside

them by investigating which manifolds they can be realized as the boundary of. For

instance, given a knot K ⊂ S3, the smooth 4-genus g4(K) is defined as the minimal

genus among all surfaces that are smoothly and properly embedded in B4 and whose

boundary is K. This can be regarded as a measure of complexity of a knot, and

has been the subject of intense study. By definition, any slice knot K, i.e. one with

g4(K) = 0, bounds a smoothly and properly embedded disk D2 ⊂ B4, and removing

a small enough regular neighborhood (in B4) of a point p ∈ D2 yields a concordance

from the unknot U to K. That is, U and K cobound an annulus that is smoothly and

properly embedded in S3 × [0, 1]. Thus, one may regard concordance as a measure of

similarity of two knots, as measured by g4.

The study of both the smooth 4-genus and knot concordance translates into the

language of 3- and 4-manifolds as follows. Given any smoothly and properly embedded

surface S ⊂ B4, one may form the double cover of B4 branched along S to obtain a 4-

manifold W with boundary Σ2(S
3, K), the double cover of S3 branched along K. It is
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1.1. Background and context

a classical fact that, if S happens to be a disk, thenW is a rational homology 4-ball, i.e.

H∗(W ;Q) ∼= H∗(B
4;Q). Similarly, if C ⊂ S3×[0, 1] is a concordance from a knotK to

another knot K ′, then W = Σ2(S
3× [0, 1], C) – which is a cobordism from Σ2(S

3, K)

to Σ2(S
3, K ′) – has the property that inclusion of either boundary component into

W induces an isomorphism on the level of rational homology. Such cobordisms are

referred to as rational homology cobordisms. Thus, similarly to the case of knots,

whether or not a 3-manifold (resp. a pair of 3-manifolds) bounds a rational homology

4-ball (resp. cobounds a rational homology cobordism) can be regarded as a measure

of complexity (resp. similarity) of 3-manifolds. Moreover, thanks to the construction

involving branched double covers that we just described, any statement about the non-

existence of a rational homology ball (resp. rational homology cobordism) bounded

by a particular manifold (resp. pair of manifolds) translates into a statement about

the non-sliceness (resp. non-concordance) of a particular knot (resp. pair of knots).

Thus, classifying manifolds up to rational homology cobordism becomes a natural and

interesting problem to investigate. Indeed, the question of which rational homology

3-spheres bound rational homology 4-balls appears as Problem 4.5 on Kirby’s List

[Kir78], where it is attributed to Andrew Casson.

While this question seems too broad to admit a concise answer in general, there are

many rational homology 3-spheres that are known to bound or not to bound rational

homology 4-balls; see e.g. [CH81] for some of the earliest examples. Amazingly, in the

case of spherical 3-manifolds, a complete answer to the above question is known [CP21,

Theorem 1.1]. This result heavily relies on work by Paolo Lisca [Lis07a, Lis07b], who

in a series of two remarkable papers completely classified lens spaces (and connected

sums thereof) up to rational homology cobordism. The starting point of Lisca’s work

is the observation that by capping off a putative rational homology W cobordism

from Y1 to Y2 by gluing a 4-manifold to either end, one obtains an embedding of the

intersection lattices of the pieces used to cap off W into the intersection lattice of the
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1.2. Summary of results

newly formed closed 4-manifold. In the case where the latter is definite and hence, by

Donaldson’s celebrated Diagonalization Theorem, isometric to the standard Euclidean

lattice, one obtains a very concrete lattice embedding obstruction to Y1 and Y2 being

rational homology cobordant. This allowed Lisca to classify homology cobordant

lens spaces through a purely combinatorial, albeit involved, analysis of embeddings

of certain integral lattices into the standard Euclidean lattice. As an application

of that classification, Lisca furthermore completely classified 2-bridge links up to

concordance, and, in particular, determined which of them are slice.

1.2 Summary of results

A concordance C ⊂ S3 × [0, 1] from K to K ′ is said to be ribbon, if it has no local

maxima with respect to the second coordinate on S3 × [0, 1]. A ribbon knot is one

that can be obtained via a ribbon concordance starting at the unknot. Lisca not

only determined which 2-bridge links are slice, but also verified that each of those is

indeed ribbon, thus verifying the Slice-Ribbon Conjecture for 2-bridge links. It thus

remained an open problem to determine when there exists a ribbon concordance from

a 2-bridge link to another.

As explained in the previous section, the double cover of S3× [0, 1] branched along

a concordance between two links K and K ′ yields a rational homology cobordism

between Σ2(S
3, K) and Σ2(S

3, K ′). In the case where the concordance happens to

be ribbon, this rational homology cobordism enjoys the additional property that it

admits a handle decomposition relative to Σ2(S
3, K) that does not use any 3-handles.

Such cobordisms are said to be ribbon, and were defined and studied in [DLVVW20].

In the first non-introductory chapter of this dissertation we generalize the notion of

ribbon cobordisms to that of quasi-ribbon cobordisms. These are cobordisms that

look like ribbon cobordisms through the lens of integral homology. We analyze the
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1.2. Summary of results

(co-)homological properties of such cobordisms and illustrate to what extent lattice-

theoretic methods can be used to obstruct their existence.

Quasi-ribbon cobordisms between lens spaces

It turns out that the homological properties of a quasi-ribbon cobordism that reflect

the absence of 3-handles in a ribbon cobordism translate into a lattice-theoretic con-

dition that allows one to refine the embedding obstruction used by Lisca. This refined

obstruction is strong enough to completely determine when there exists a quasi-ribbon

cobordism from one lens space to another.

Theorem 1.2.1. Suppose that L(p1, q1) admits a quasi-ribbon cobordism to L(p2, q2).

Then, up to simultaneous orientation reversal of L(p1, q1) and L(p2, q2), one of the

following holds:

1. L(p1, q1) ∼= L(p2, q2);

2. L(p1, q1) ∼= L(n, 1) and p2/q2 ∈ Fn, for some n ≥ 2; or

3. L(p1, q1) ∼= S3 and p2/q2 ∈ R.

Conversely, in each of these cases L(p1, q1) admits a quasi-ribbon cobordism to L(p2, q2).

Here, R and Fn, n ≥ 2, are sets of rational numbers defined in Lisca’s work.

As a consequence of the above result, we obtain a complete classification of pairs of

2-bridge links that can be related by a ribbon χ-concordance; we refer the reader to

Section 4.2 for a precise definition of ribbon χ-concordance, but point out that this

notion coincides with the usual notion of concordance in the case of knots.

Corollary 1.2.2. Let pi, qi ∈ Z be coprime, i = 1, 2. Then, possibly after replacing

both K(p1, q1) and K(p2, q2) by their mirror images, we have that K(p1, q1) admits a

ribbon χ-concordance to K(p2, q2) if and only if one of the following holds:
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1.2. Summary of results

1. K(p1, q1) ≃ K(p2, q2);

2. K(p1, q1) ≃ K(n, 1) and p2/q2 ∈ Fn, for some n ≥ 2; or

3. K(p1, q1) ≃ U and p2/q2 ∈ R.

Similarly to Lisca’s work, the proofs of Theorem 1.2.1 and Corollary 1.2.2 can

be pushed further to determine when there exists a quasi-ribbon cobordism (resp.

ribbon χ-concordance) from a connected sum of lens spaces to another (resp. from

a connected sum of 2-bridge links to another); see Theorem 4.1.2 (resp. Corollary

4.2.3).

Ribbon cobordisms as a partial order

A key difference between the notions of ribbon concordance and general concordance

is that only the latter is an obviously symmetric notion; similarly for ribbon cobordism

and general rational homology cobordism. Indeed, Cameron Gordon conjectured that

ribbon concordance is an asymmetric notion, and hence yields a partial order on the

set of knots in S3 [Gor81, Conjecture 1.1]. This conjecture was famously resolved by

Ian Agol [Ago22], leaving open the corresponding version for 3-manifolds [DLVVW20,

Conjecture 1.1] which asserts that ribbon cobordism is a partial order on the set of

homeomorphism classes of closed, connected, oriented 3-manifolds. Building on the

argument used by Agol to prove Gordon’s conjecture, we show that the aforemen-

tioned conjecture holds true when restricted to the class of aspherical 3-manifolds.

Combined with our results pertaining to ribbon cobordisms between lens spaces, this

allows us to deduce the following. Note that we do not require the manifolds involved

to be closed.

Theorem 1.2.3. Let Y1 and Y2 be compact, oriented, 3-manifolds, possibly with

boundary, such that there exists a ribbon cobordism Wi from Yi to Yj, {i, j} = {1, 2}.

If Yi is either aspherical or a lens space, i = 1, 2, then Y1
∼= Y2.
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1.3. Organization

1.3 Organization

In Chapter 2, we generalize the notion of ribbon cobordisms to that of quasi-ribbon

cobordism and study the (co-)homological properties of such cobordisms. In Chapter

3, we proceed to analyze how lattice-theoretic methods can be used to obstruct the

existence of quasi-ribbon cobordisms. In Chapter 4, we use these methods to deter-

mine when there exists a quasi-ribbon cobordism from a lens space to another, extend

this result to the case of connected sums of lens spaces, and deduce the corresponding

corollaries about ribbon χ-concordances between 2-bridge links and connected sums

thereof. In Chapter 5, we prove our results in support of the conjectured partial order

on the set of 3-manifolds. Lastly, in Chapter 6, we close by raising some questions

and giving a conjectural answer to the question as to when there exists a quasi-ribbon

cobordism from a prism manifold to another.

Conventions and notation

Throughout this dissertation, all manifolds are assumed to be oriented, so that −Y

stands for the oriented manifold obtained from Y by reversing orientation, and we

write Y ∼= Y ′ to indicate that Y and Y ′ are related by an orientation-preserving

homeomorphism. By a handle decomposition of a 4-dimensional cobordism W from

Y to Y ′ we mean that W is built from Y × [0, 1] by attaching 1-, 2- and 3-handles,

where the attaching region of each handle is supported in int(Y ) × {1}, or in the

boundary of previously attached handles. In particular, if ∂Y is non-empty, the

attaching regions of the handles of W avoid ∂Y × {1} ⊂ Y × {1}, and ∂Y ∼= ∂Y ′.

In order to minimize the number of signs in Chapter 4, we go by the definition that

L(p, q) is the oriented 3-manifold obtained by performing p/q-framed Dehn surgery

along the unknot U ⊂ S3. Finally, the mirror image of a link K ⊂ S3 is denoted by

K, and we write K ≃ K ′ to denote that the links K and K ′ are isotopic.
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Chapter 2

Ribbon cobordisms and homology

In this chapter, we collect some basic homological facts about ribbon rational homol-

ogy cobordisms. These technical results will allow us to formulate a lattice-theoretic

obstruction to the existence of such cobordisms. Recall the following definition.

Definition 2.0.1. Let Y1 and Y2 be rational homology 3-spheres. A rational homol-

ogy cobordism W from Y1 to Y2 is said to be ribbon if W admits a handle decompo-

sition relative to Y1 × I that uses 1- and 2-handles only. If such a cobordism exists,

we write Y1 ≤ Y2.

Remark. In the remainder of this paper, we will refer to ribbon rational homology

cobordisms simply as ribbon cobordisms.

We will see in Section 2.1 that the handle structure of a ribbon cobordism is

reflected in the vanishing of certain relative integral homology groups. Indeed, since

the methods used in Chapter 4 rely solely on these homological properties of ribbon

cobordisms, we define and analyze this family of cobordisms that, through the lens

of integral homology, look like ribbon cobordisms. Moreover, with the goal of pulling

lattices into the picture, we also study the (co-)homology of the closed 4-manifolds

that are formed by capping off such a cobordism with 2-handlebodies.
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2.1. The (co-)homology of a (quasi-)ribbon cobordism

In this chapter – unless stated otherwise – all homology groups are to be un-

derstood with integral coefficients and, moreover, all maps between (co-)homology

groups are to be understood to be induced by inclusion.

2.1 The (co-)homology of a (quasi-)ribbon cobor-

dism

To motivate the following proposition, we recall that, if W is a ribbon cobordism

from Y1 to Y2, then the inclusions of Y1 and Y2 into W induce injective and surjective

maps, respectively, on first integral homology [DLVVW20, Lemma 3.1].

Proposition 2.1.1. Let W : Y1 → Y2 be a rational homology cobordism. Then the

following are equivalent.

1. ι1 : H1(Y1) → H1(W ) is injective and ι2 : H1(Y2) → H1(W ) is surjective.

2. H1(W,Y2) = 0.

3. H2(W,Y1) = 0.

Proof. First, observe that, by Lefschetz duality for triples [Hat02, Theorem 3.43] and

universal coefficients, we have that

H2(W,Y1) ∼= H2(W,Y2)

∼= Hom(H2(W,Y2),Z)⊕ Ext(H1(W,Y2),Z)

∼= H1(W,Y2).

The last equality follows from the fact that, because W is a rational homology cobor-

dism, |Hi(W,Yk)| < ∞ for all i ∈ Z and k ∈ {1, 2}. Hence, (2) and (3) are equivalent.
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2.1. The (co-)homology of a (quasi-)ribbon cobordism

Consider now the following portion of the long exact sequence in homology of the

pair (W,Yk), where k ∈ {1, 2}:

H2(W,Yk) H1(Yk) H1(W ) H1(W,Yk)
ιk

If H1(W,Y2) = 0, then, by what we have shown so far, we also have H2(W,Y1) =

0. Thus exactness of the sequence implies injectivity and surjectivity of ι1 and ι2,

respectively.

Conversely, if (1) holds, so that ι2 is surjective, the above exact sequence above

with k = 2 implies that H1(W,Y2) = 0.

In light of the above, we make the following definition.

Definition 2.1.2. A rational homology cobordism W : Y1 → Y2 is quasi-ribbon if any

of the conditions from Proposition 2.1.1 holds.

The nomenclature is justified by the following.

Proposition 2.1.3. Any ribbon rational homology cobordism is quasi-ribbon.

Proof. If W : Y1 ≤ Y2, then H1(W,Y2) = 0, since −W is a rational homology cobor-

dism from Y2 to Y1 which admits a handle decomposition that does not use any

1-handles.

Before moving on to the cohomological side of things, we formulate a simple

criterion for a cobordism to be quasi-ribbon that relies just on the orders of the

cohomology groups involved. We include the following lemma for completeness and

for future reference, and omit its proof. Both statements are an easy consequence of

the long exact sequence in homology of the pair (W,∂W ); see [CG86, Lemma 3].

Lemma 2.1.4. Suppose that Y is a rational homology 3-sphere and W is a rational

homology 4-ball such that ∂W = Y . Then |H1(Y )| = m2, for some m ≥ 1, and the

image of H1(Y ) → H1(W ) has order m.

9



2.1. The (co-)homology of a (quasi-)ribbon cobordism

More generally, if W : Y1 → Y2 is a rational homology cobordism from a rational

homology 3-sphere to another, then |H1(∂W )| = m2, for some m ≥ 1, and the image

of H1(∂W ) → H1(W ) has order m.

Remark 2.1.5. It is not hard to see that the above lemma remains true if one reverses

the direction of all maps and replaces all first homology groups with the corresponding

second cohomology groups.

Proposition 2.1.6. Let Y1 and Y2 be rational homology spheres, and suppose that

W : Y1 → Y2 is a quasi-ribbon cobordism. Then

|H1(Y2)| = u · |H1(W )| = u2 · |H1(Y1)|,

for some u ≥ 1.

Proof. Set pi = |H1(Yi)| and w = |H1(W )|. By definition of a quasi-ribbon cobordism,

we have that

H1(Y1) H1(W ) H1(Y2).

It follows that p1|w and w|p2, i.e. p2 = uw = uvp1 for some u, v ≥ 1. By Lemma

2.1.4, we must have that p1p2 = m2, for some m ≥ 1. Thus, p1p2 = uvp21 = m2, so

uv must be a perfect square. Moreover, by Lemma 2.1.4 again, and by surjectivity of

H1(Y2) → H1(W ), we have that w =
√
p1p2 = p1

√
uv, and hence that v = w

p1
=

√
uv.

It follows that u = v, which finishes the proof.

We conclude this section by inspecting the maps on cohomology that are induced

by inclusion of the boundary components into a quasi-ribbon cobordism. It turns out

that one must require Y1 and Y2 to be rational homology spheres in order to have a

precise characterization of a cobordism being quasi-ribbon in cohomological terms.

Proposition 2.1.7. If W : Y1 → Y2 is quasi-ribbon, then ρ1 : H
2(W ) → H2(Y1) is

10



2.2. The cohomology of a capped off quasi-ribbon cobordism

surjective and ρ2 : H
2(W ) → H2(Y2) is injective. If Y1 and Y2 are rational homology

spheres, then the converse holds.

Proof. Suppose that W is quasi-ribbon, and consider the following portion of the long

exact sequence in cohomology of the pair (W,Yk), where k ∈ {1, 2}:

H1(Yk) H2(W,Yk) H2(W ) H2(Yk) H3(W,Yk)
ρk (2.1)

By Lefschetz duality for triples and the fact that W is quasi-ribbon, we have that

H3(W,Y1) ∼= H1(W,Y2) = 0,

and

H2(W,Y2) ∼= H2(W,Y1) = 0.

Hence exactness of (2.1) implies that ρ1 and ρ2 are surjective and injective, respec-

tively.

Assume now that Yk is a rational homology sphere, k ∈ {1, 2} and that ρ1 and ρ2

are surjective and injective, respectively. Then H1(Y2) = 0, and thus, by exactness

of (2.1) with k = 2 and injectivity of ρ2, it follows that H
2(W,Y2) = 0. By Lefschetz

duality for triples, H2(W,Y1) ∼= H2(W,Y2) = 0, which implies that W is quasi-

ribbon.

2.2 The cohomology of a capped off quasi-ribbon

cobordism

In the following, given compact, closed, oriented 3-manifolds Y1 and Y2, let X1 and

X2 be 2-handlebodies1 such that ∂X1 = −Y1 and ∂X2 = Y2. Moreover, given any

1A 2-handlebody is defined to be a 4-manifold that is obtained by attaching finitely many 2-
handles to B4 along some link in S3 = ∂B4.

11



2.2. The cohomology of a capped off quasi-ribbon cobordism

cobordism W : Y1 → Y2, let Z = X1 ∪Y1 W ∪Y2 X2 denote the closed 4-manifold

obtained by capping off W with X1 and X2. We now analyze how surjectivity and

injectivity of ρ1 and ρ2, respectively, translate into this setting. Let us first address

surjectivity of ρ1 : H
2(W ) → H2(Y1).

Proposition 2.2.1. Let W : Y1 → Y2 be a rational homology cobordism. Then

ρ1 : H
2(W ) → H2(Y1) is surjective iff r1 : H

2(Z) → H2(X1) is surjective.

Proof. Suppose first that r1 : H
2(Z) → H2(X1) is surjective, and consider the follow-

ing commutative diagram:

H2(Z) H2(W )

H2(X1) H2(Y1) H3(X1, Y1)

r1 ρ1

δ

Here, the horizontal maps stem from the long exact sequences in cohomology of the

respective pairs. By Poincaré duality and the fact that X1 is a 2-handlebody, we have

that

H3(X1, Y1) ∼= H1(X1) = 0,

which implies that δ is surjective. It follows that δ ◦ r1 is surjective, and hence, by

commutativity of the diagram, that ρ1 is surjective.

Conversely, suppose that ρ1 : H
2(W ) → H2(Y1) is surjective. Define W1 = X1 ∪Y1

W , and observe that r1 : H
2(Z) → H2(X1) factors as

H2(Z) H2(W1) H2(X1). (2.2)

Moreover, by excision and Poincaré duality,

H3(Z,W1) ∼= H3(X2, Y2) ∼= H1(X2) = 0.
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2.2. The cohomology of a capped off quasi-ribbon cobordism

Hence, by the long exact sequence in cohomology of the pair (Z,W1), the first map in

(2.2) is surjective, and it thus suffices to show that H2(W1) → H2(X1) is surjective

as well. To that end, consider the following commutative diagram, where the rows

stem from the long exact sequences in cohomology of the respective pairs, and the

vertical maps are the natural restriction maps.

H2(W1) H2(X1) H3(W1, X1) H3(W1) H3(X1)

H2(W ) H2(Y1) H3(W,Y1) H3(W ) H3(Y1)

α

∼=

ε

ρ1 β

Note that ε is an isomorphism by excision. Now, by exactness of the bottom row,

surjectivity of ρ1 implies that β is injective, and hence that β◦ε is injective. It follows

from commutativity of the diagram that α is injective, and hence, by exactness of the

top row, that H2(W1) → H2(X1) is surjective, as desired.

Before analyzing injectivity of ρ1 : H
2(W ) → H2(Y1), we need the following

lemma. Recall that, by Remark 2.1.5, |H2(Y1 ⨿ Y2)| is a perfect square.

Lemma 2.2.2. If Y1 and Y2 are rational homology spheres, then H2(X1 ⨿X2) maps

injectively into H2(Z), and, moreover, we have that

[H2(Z)/Tors : H2(X1 ⨿X2)] = m,

where m is such that |H2(Y1 ⨿ Y2)| = m2.

Proof. Set Y = Y1 ⨿ Y2 and X = X1 ⨿ X2. Because Y is the disjoint union of two

rational homology spheres, and because X is the disjoint union of two 2-handlebodies,

the Mayer-Vietoris sequence associated to the decomposition Z = X ∪Y W takes the

form

0 H2(X)⊕H2(W ) H2(Z) H1(Y ) H1(W ),

13



2.2. The cohomology of a capped off quasi-ribbon cobordism

which shows that the map H2(X) → H2(Z) is injective. Moreover, it follows from

inspecting the long exact sequence in homology of the pair (Z,W ), together with

the fact that H2(Z,W ) ∼= H2(X, ∂X) (by excision) is torsion-free, that H2(W ) maps

isomorphically onto the torsion subgroup of H2(Z). By [CG86, Lemma 3], the image

of the rightmost map in the exact sequence above has order m, and the claim follows.

Proposition 2.2.3. Let Y1 and Y2 be rational homology spheres, and suppose that

W : Y1 → Y2 is a rational homology cobordism. Suppose further that |H2(Y2)| =

u2 · |H2(Y1)|, for some u ≥ 1. If ρ2 : H
2(W ) → H2(Y2) is injective, then H2(Z) is

torsion-free. If u > 1, the converse holds.

Proof. In the following, given a map f , we let R(f) = |Im(f)| denote the order of the

image of f . Let us assume for the moment that we have established that H2(Z) being

torsion-free is equivalent to |H2(W )| = pu. Set p = |H2(Y1)| and consider the natural

restriction map ρ : H2(W ) → H2(∂W ). We have that H2(∂W ) ∼= H2(Y1)⊕H2(Y2), so

that we can write ρ = ρ1⊕ρ2, and, moreover, we have R(ρ) = max{R(ρ1), R(ρ2)}. On

the other hand, since Y1 and Y2 are rational homology spheres, R(ρ) =
√

p · pu2 =

pu, by Remark 2.1.5. This implies that |H2(W )| ≥ pu and, moreover, that pu =

max{R(ρ1), R(ρ2)}. Now, if ρ2 is injective, we must have that |H2(W )| = pu, since

otherwise max{R(ρ1), R(ρ2)} ≥ R(ρ2) > pu. By the equivalence that we assumed,

this implies that H2(Z) is torsion-free.

Conversely, if u > 1 and |H2(W )| = pu, then pu = max{R(ρ1), R(ρ2)} implies

that R(ρ2) = pu, which, in turn, means that ρ2 is injective.

It remains to show that H2(Z) being torsion-free is equivalent to |H2(W )| = pu.

Define X = X1 ⨿X2, and consider the following portion of the long exact sequence

in homology of the pair (Z,X):

H3(Z,X) H2(X) H2(Z) H2(Z,X) H1(X) (2.3)

14



2.2. The cohomology of a capped off quasi-ribbon cobordism

By excision, Poincaré duality, universal coefficients and the fact that W is a rational

homology cobordism from a rational homology sphere to another, we have that

H3(Z,X) ∼= H3(W,∂W )

∼= H1(W )

∼= Hom(H1(W ),Z)⊕ Ext(H0(W ),Z) = 0.

Moreover, since X is the disjoint union of two 2-handlebodies, we have that H1(X) =

0. Hence exactness of (2.3) implies that

H2(Z,X) ∼= H2(Z)/H2(X). (2.4)

Observe now that, by excision and Poincaré duality,

H2(Z,X) ∼= H2(W,∂W ) ∼= H2(W ),

so that, by (2.4),

H2(W ) ∼= H2(Z)/H2(X).

Note now that, because X is the disjoint union of two 2-handlebodies, H2(X) is

torsion-free, and hence, by (2.3), must map into the torsion-free partHF
2 (Z) ofH2(Z).

It follows that

H2(Z)/H2(X) = (HF
2 (Z)⊕HT

2 (Z))/H2(X) = (HF
2 (Z)/H2(X))⊕HT

2 (Z),

where HT
2 (Z) denotes the torsion part of H2(Z). The first direct summand has

cardinality pu by Lemma 2.2.2, and it follows that

|H2(W )| = [H2(Z) : H2(X)] = pu · |HT
2 (Z)|.
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2.2. The cohomology of a capped off quasi-ribbon cobordism

Hence H2(Z) is torsion-free iff |H2(W )| = pu, as claimed.

To summarize, we obtain the following (co-)homological characterization of quasi-

ribbon cobordisms between rational homology spheres. This result will be the key

ingredient in the next chapter, where we will translate the (co-)homological properties

of a quasi-ribbon cobordism into lattice-theoretic terms.

Theorem 2.2.4. Let Y1 and Y2 be rational homology 3-spheres, and suppose that

W : Y1 → Y2 is a rational homology cobordism. Moreover, let Z = X1 ∪Y1 W ∪Y2 X2

denote the closed 4-manifold obtained by capping off W with 2-handlebodies X1 and

X2. If W is quasi-ribbon, then

1. |H1(Y2)| = u2 · |H1(Y1)|, for some u ≥ 1;

2. r1 : H
2(Z) → H2(X1) is surjective; and

3. H2(Z) is torsion-free.

If u > 1, the converse holds.

Proof. Suppose first that W is quasi-ribbon. By Proposition 2.1.6, it follows that (1)

holds. Moreover, ρ1 : H
2(W ) → H2(Y1) and ρ2 : H

2(W ) → H2(Y2) are surjective and

injective, respectively, by Proposition 2.1.7, so (2) and (3) follow from Propositions

2.2.1 and 2.2.3, respectively.

Conversely, suppose u > 1 and that (1)–(3) hold. Then, combining Propositions

2.2.1 and 2.2.3, it follows that ρ1 : H
2(W ) → H2(Y1) and ρ2 : H

2(W ) → H2(Y2) are

surjective and injective, respectively, which, by Proposition 2.1.7, implies that W is

quasi-ribbon.
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Chapter 3

Quasi-ribbon cobordisms and

lattices

3.1 Preliminaries on lattices

An integral lattice is a free Abelian group Λ endowed with a symmetric, bilinear

pairing ⟨·, ·⟩ : Λ × Λ → Z. We usually write x · y to mean ⟨x, y⟩, x, y ∈ Λ. The

rank of a lattice is defined as the rank of its underlying Abelian group. A matrix

Γ = {γij}ni,j=1 is called a Gram matrix for an integral lattice Λ if γij = xi · xj,

for some basis {x1, . . . , xn} of Λ. We say that an integral lattice is positive definite

(resp. negative definite) if any (and therefore all) of its Gram matrices is. Lastly, the

discriminant disc(Λ) of an integral lattice Λ is defined to be | det(Γ)|, where Γ is any

Gram matrix for Λ.

Two lattices Λ1,Λ2 are isometric if there exists an isomorphism φ : Λ1 → Λ2 that

preserves the bilinear pairings, and we write Λ1
∼= Λ2. Moreover, we say that Λ1 and

Λ2 are stably isometric (denoted by Λ1 ≃ Λ2) if Λ1
∼= Λ2 ⊕ Zk or Λ1 ⊕ Zk ∼= Λ2 for

some k ≥ 0, where Zn denotes the standard Euclidean lattice with basis {e1, . . . , en}

and pairing given by ei · ej = δij. To any integral lattice Λ one can associate its dual

17



3.1. Preliminaries on lattices

lattice Λ∗ := {ξ ∈ Λ ⊗ Q | ⟨ξ, x⟩ ∈ Z for all x ∈ Λ}, where ⟨·, ·⟩ is extended to a

Q-valued pairing on Λ⊗Q by Q-bilinearity.

Given a sublattice Λ of M, we define the orthogonal complement of Λ in M as

Λ⊥ = {x ∈ M | x · y = 0 for all y ∈ Λ}.1 Finally, we say that a sublattice Λ ⊂ M is

primitive if the quotient M/Λ is a free Abelian group. We establish two equivalent

characterizations of primitivity that will be used later.

Lemma 3.1.1. Let M be an integral lattice and Λ ⊂ M a sublattice. Then the

following are equivalent.

1. M/Λ is torsion-free.

2. The natural restriction map r : M∗ → Λ∗ is surjective.

3. (Λ⊗Q) ∩M = Λ.

Proof. (1)⇔(2): Set n = rkM, m = rkΛ, and represent the embedding Λ ⊂ M by a

matrix A ∈ Zn×m with respect to some bases of M and Λ. Then, after endowing M∗

and Λ∗ with their respective dual bases, the restriction r : M∗ → Λ∗ is represented

by the matrix A⊤ ∈ Zm×n. Now, by Smith normal form, A⊤ is surjective iff A⊤ =

P [Em|0]Q for some invertible P ∈ Zm×m, Q ∈ Zn×n, where Em denotes the identity

matrix of size m ×m. Thus, A⊤ is surjective iff A = Q⊤ [
Em

0

]
P⊤, which, by Smith

normal form again, is in turn equivalent to M/Λ being torsion-free.

(1)⇔(3): Suppose (Λ ⊗ Q) ∩M = Λ, and assume for the sake of a contradiction

that M/Λ contains torsion. Then there exists some x ∈ M \Λ with the property that

kx ∈ Λ for some k ≥ 2, which implies that x ∈ (Λ⊗Q) ∩M ⊂ Λ, a contradiction.

Conversely, suppose that M/Λ is torsion-free. Because Λ ⊂ (Λ⊗Q)∩M, it suffices

to show that (Λ⊗Q) ∩M ⊂ Λ. Pick x ∈ (Λ⊗Q) ∩M. Then there exists k ≥ 2 such

that kx ∈ Λ ∩M = Λ. Since M/Λ is free, we must therefore have x ∈ Λ, too.

1Throughout this Chapter, M denotes a capitalized µ, whereas M stands for a capitalized m, as
usual.
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Remark 3.1.2. For later reference, we point out that, using characterization (3) from

Lemma 3.1.1, it is easily verified that the orthogonal complement Λ⊥ to any sublattice

Λ ⊂ M is a primitive sublattice, and, moreover, that the only full-rank primitive

sublattice of a lattice M is, in fact, M itself.

3.2 Lattices and 4-manifolds

In this subsection, we briefly recall how integral lattices relate to 4-manifolds and

3-manifolds bounding them (for details, see e.g. [Sav12, Sections 5.1 and 6.1] and

[GS99, Section 1.2]). Given any compact, oriented 4-manifold X, the intersection

form defines a symmetric bilinear pairing

QX : (H2(X;Z)/Tors)⊗ (H2(X;Z)/Tors) → Z,

and thus endows the torsion-free part of H2(X;Z) with the structure of an integral

lattice

ΛX = (H2(X;Z)/Tors, QX).

Moreover, if we abusively let QX denote a Gram matrix for ΛX , the dual lattice is

given by

Λ∗
X = (H2(X;Z)/Tors, Q−1

X ).

Note that the pairing on Λ∗
X is, in general, a Q-valued pairing. It is a Z-valued

pairing if disc(ΛX) = | det(QX)| = 1 (which is equivalent to ∂X being a possibly

empty disjoint union of integer homology spheres). For a given compact, closed,

oriented 3-manifold Y , let X be a 2-handlebody such that ∂X = Y . Note that, given

a description of Y as integer surgery along some n-component link in L ⊂ S3, such an

X can be obtained by attaching 4-dimensional 2-handles to S3 = ∂B4 along the link

L, with framing given by the surgery coefficients. Endowing the intersection lattice
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3.3. Obstructing quasi-ribbon cobordisms using integral lattices

Λ = (H2(X;Z), QX) with the basis consisting of the surfaces obtained by capping

off each of the cores of the 2-handles of X with a Seifert surface for its attaching

curve, the Gram matrix of Λ in this basis coincides with the linking matrix L of L.

If, in addition, ∂X = Y is a rational homology sphere, the long exact sequence in

cohomology of the pair (X, Y ) takes the form

0 H2(X;Z) H2(X;Z) H2(Y ;Z) 0,L

where we have replaced the first cohomology group with its Poincaré dual. Indeed,

one can check that, endowing H2(X;Z) and H2(X;Z) with the basis described above

and its Hom-dual basis, respectively, the first map in the exact sequence above is

represented by L. It follows that the isomorphism type of H2(Y ;Z) ∼= H1(Y ;Z) can

be recovered as the quotient ofH2(X;Z) byH2(X;Z) under the map L. In particular,

the order of H2(Y ;Z) ∼= H1(Y ;Z) is given by | det(L)| = disc(Λ).

3.3 Obstructing quasi-ribbon cobordisms using in-

tegral lattices

In this subsection, we investigate how the homological properties of a quasi-ribbon

cobordism that we found in Chapter 2 translate into lattice-theoretic terms.

More precisely, let Y1 and Y2 be rational homology 3-spheres, and suppose that

W : Y1 → Y2 is any rational homology cobordism. There is an associated closed,

oriented 4-manifold

Z = X1 ∪Y1 W ∪Y2 X2,

which is obtained by capping off the cobordism W with 2-handlebodies X1 and X2

that can be obtained as described in Subsection 3.2. More precisely, we require ∂X1 =

−Y1 and ∂X2 = Y2, so that we can glue X1 and X2 to the boundary components of
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3.3. Obstructing quasi-ribbon cobordisms using integral lattices

W via orientation-preserving homeomorphisms. Inspecting the long exact sequence

in homology of the pair (Z,X1 ⨿X2) shows that the map induced by inclusion

φ : H2(X1 ⨿X2;Z) → H2(Z;Z)

is injective. Letting Λk and ΛZ denote the intersection lattices (H2(Xk;Z), QXk
), and

(H2(Z;Z)/Tors, QZ), respectively, k = 1, 2, it follows that we obtain an embedding

of integral lattices

φ : Λ1 ⊕ Λ2 ↪→ ΛZ .

We are now in a position to state the lattice-theoretic reformulation of Theorem

2.2.4.

Theorem 3.3.1. Let Y1 and Y2 be rational homology 3-spheres, and suppose that

W : Y1 → Y2 is a rational homology cobordism. Moreover, let φ : Λ1 ⊕ Λ2 ↪→ ΛZ

denote the lattice embedding from above. If W is quasi-ribbon, then H2(Z;Z) is

torsion-free, and

1. disc(Λ2) = u2 · disc(Λ1), for some u ≥ 1; and

2. φ(Λ1) = φ(Λ2)
⊥.

If u > 1, the converse holds.

Proof. It suffices to show that conditions (1) and (2) are equivalent to the conditions

(1) and (2) from Theorem 2.2.4. As explained in Subsection 3.2, we have that

disc(Λk) = |H1(Yk;Z)|,

for k = 1, 2, which implies that condition (1) from above is equivalent to condition

(1) from Theorem 2.2.4. Furthermore, as noted in Subsection 3.2, Λ∗
Z = H2(Z;Z),

and hence Lemma 3.1.1 implies that condition (2) from Theorem 2.2.4 is equivalent
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3.3. Obstructing quasi-ribbon cobordisms using integral lattices

to Λ1 ⊂ ΛZ being a primitive sublattice. Observe that φ(Λ1) ⊂ φ(Λ2)
⊥ is a full-rank

sublattice. Thus, by Remark 3.1.2, Λ1 ⊂ ΛZ being a primitive sublattice is, in turn,

equivalent to condition (2) from above.

Remark 3.3.2. If both Λ1 and Λ2 are positive definite, then Z is a closed, orientable,

smooth 4-manifold, and hence, by [Don87, Theorem 1], ΛZ
∼= Zn, as integral lattices.

Note that in Theorem 3.3.1, we left condition (3) from Theorem 2.2.4 unchanged;

we argue that this property cannot, in fact, be translated into a precise lattice-

theoretic counterpart. More precisely, if one wishes to obstruct a given rational

homology cobordism W : Y1 → Y2 from being quasi-ribbon, we may as well assume

that

|H1(Y2;Z)| = u2 · |H1(Y1;Z)|,

for some u ≥ 1, since otherwise Theorem 3.3.1 already excludes the possibility of

W being quasi-ribbon (and because it is typically easy to check whether or not this

condition holds). Let us further assume that, in fact, W satisfies conditions (1)

and (3) from Theorem 3.3.1. It follows that W being quasi-ribbon is equivalent to

H2(Z;Z) being torsion-free. But, since the intersection lattice ΛZ is insensitive to

the torsion part of H2(Z;Z), it seems unlikely that one can translate injectivity of ρ2

(which condition (3) from Theorem 2.2.4 stems from) into a property of the lattice

embedding φ : Λ1 ⊕ Λ2 ↪→ ΛZ .

Nevertheless, as we will see in the following chapter, Theorem 3.3.1 (combined

with the machinery set up in [Lis07a, Lis07b]) is enough to completely determine

when there exists a quasi-ribbon cobordism from a connected sum of lens spaces to

another.

Finally, let us sketch how one can derive further lattice-theoretic obstructions

in the case where |H1(Y1;Z)| = |H1(Y2;Z)| (and Yi is a rational homology sphere,

i = 1, 2, as before). Suppose that W : Y1 → Y2 is a quasi-ribbon cobordism. It follows
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3.3. Obstructing quasi-ribbon cobordisms using integral lattices

from Proposition 2.1.7 that both ρ1 and ρ2 are isomorphism, and, by [DLVVW20,

Lemma 3.2], W is, in fact, an integral homology cobordism (indeed, [DLVVW20,

Lemma 3.2] is proved in the case where W is a ribbon cobordism, but the exact

same proof goes through in the case of a quasi-ribbon cobordism). This implies

that there exists a bijection between Spinc(Y1) and Spinc(Y2) which preserves the

d-invariants. In fact, since Spinc(Yk) forms a torsor over H1(Yk;Z), k = 1, 2, there

exists an isomorphism of torsors φ : Spinc(Y1) → Spinc(Y2) such that

d(Y1, s) = d(Y2, φ(s)),

for all s ∈ Spinc(Y1). If Xk happens to be sharp2, the d-invariants of Yk can be

computed combinatorially from Λk, k = 1, 2. This yields a lattice-theoretic obstruc-

tion to there existing a quasi-ribbon cobordism from a rational homology sphere to

another one with the same order of first homology. Moreover, if Yk is a Heegaard

Floer L-space, then (up to a multiplicative constant) the Casson-Walker invariant

λCW(Yk) can be computed as the arithmetic mean of the d-invariants of Yk, k = 1, 2;

see [Rus05, Theorem 5.3.3.]. In this case, by the preceding discussion, it follows that

if W : Y1 → Y2 is quasi-ribbon, then the Casson-Walker invariants of Y1 and Y2 must

coincide. We summarize this discussion in the following.

Proposition 3.3.3. Let W : Y1 → Y2 be a quasi-ribbon cobordism, where Y1 and Y2

are rational homology 3-spheres such that |H1(Y1;Z)| = |H1(Y2;Z)|. Then the set of

d-invariants of Y1 coincides with that of Y2 (counted with multiplicity). Moreover, if

Y1 and Y2 are L-spaces, we have that

λCW(Y1) = λCW(Y2).

Remarks 3.3.4.

2See e.g. [Gre15, Definition 2.1] for a precise definition.
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3.3. Obstructing quasi-ribbon cobordisms using integral lattices

1. It is clear that the obstruction involving λCW is a priori less general and weaker

than the one involving d-invariants. Nevertheless, the former might be easier

to apply in practice because there exist closed formulae for the Casson-Walker

invariant for many families of 3-manifolds (see e.g. [Ném05, Section 2.4.2],

[BNOV18, Section 2.1] and [Ras04, Section 2.3]), and, moreover, it does not

rely on the existence of sharp 4-manifolds bounded by Y1 and Y2.

2. The obstruction coming from d-invariants can be extended to one that applies

in the case where |H1(Y1;Z)| < |H1(Y2;Z)|; see Section 6.2.
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Chapter 4

Quasi-ribbon cobordisms between

lens spaces

4.1 Introduction

In this chapter, we use Theorem 3.3.1 from the previous chapter to determine when

there exists a ribbon cobordism from a connected sum of lens spaces to another. As

an application, we furthermore determine when there exists a χ-concordance from a

connected sum of 2-bridge links to another.1

Before stating our results, we recall that the question of when two connected sums

of lens spaces cobound a rational homology cobordism that is not necessarily ribbon

has been completely answered by Lisca in a series of two papers [Lis07a, Lis07b].

More precisely, Lisca defines a set of rational numbers R with the property that the

lens space L(p, q), p > q > 0, bounds a rational homology ball (or, equivalently,

is rational homology cobordant to S3) if and only if p/q ∈ R.2 In [Lis07b], Lisca

1The content of this chapter is that of [Hub21].
2Although we will not use the precise form of R, we remark that its original definition [Lis07a,

Definition 1.1] is incomplete; see e.g. the footnote in [Lec12, p. 247]
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moreover defines the sets

Fn =

{
nm2

nmk + 1

∣∣∣∣ m > k > 0, gcd(m, k) = 1

}
⊂ Q, n ≥ 2,

which are in turn characterized by the fact that any lens space L(p, q), p > q > 0,

with p/q ∈ Fn is rational homology cobordant to L(n, 1), n ≥ 2. The sets R and Fn,

n ≥ 2, are the building blocks of Lisca’s classification of connected sums of lens spaces

up to rational homology cobordism; we refer the reader to [Lis07b, Theorem 1.1] for a

precise statement. In order to demonstrate the aforementioned properties of the sets

R and Fn, n ≥ 2, Lisca exhibits explicit ribbon rational homology cobordisms from

S3 (resp. L(n, 1)) to any lens space L(p, q) with p/q ∈ R (resp. p/q ∈ Fn). Building

on the machinery that Lisca sets up to prove his classification, we prove that any

ribbon rational homology cobordism from one lens space to another must, in fact,

emanate from either S3, or from a lens space of the form L(n, 1), for some n ≥ 2.

Indeed, we completely determine when there exists a ribbon cobordism between two

lens spaces.

Theorem 4.1.1. Suppose that L(p1, q1) ≤ L(p2, q2). Then, up to simultaneous ori-

entation reversal of L(p1, q1) and L(p2, q2), one of the following holds:

1. L(p1, q1) ∼= L(p2, q2);

2. L(p1, q1) ∼= L(n, 1) and p2/q2 ∈ Fn, for some n ≥ 2; or

3. L(p1, q1) ∼= S3 and p2/q2 ∈ R.

Conversely, in each of these cases L(p1, q1) ≤ L(p2, q2) holds.

Remarks.

1. Because the proof of Theorem 4.1.1 uses Theorem 3.3.1 as the obstruction to

L(p1, q1) ≤ L(p2, q2), the above result remains true when the hypothesis is
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weakened to there existing a quasi-ribbon cobordism from L(p1, q1) to L(p2, q2).

In other words, it follows that if there exists a quasi-ribbon cobordism from a

lens space L1 to another lens space L2, then, in fact, L1 ≤ L2. The same is true

for Theorem 4.1.2 below.

2. Theorem 4.1.1 remains true when L(p1, q1) is replaced by any oriented rational

homology sphere Y . Indeed, if Y admits a ribbon cobordism to a lens space,

then π1(Y ) is finite cyclic by [DLVVW20, Proposition 1.14], and hence, by

Geometrization, Y is a lens space, too.

3. Theorem 4.1.1 can thus be interpreted as saying that the only rational homology

spheres that admit a ribbon cobordism to a lens space are the lens spaces of the

form L(n, 1), for some n ≥ 1.

4. While Theorem 4.1.1 makes no statement about the uniqueness of ribbon cobor-

disms between lens spaces, it follows from combining [Lis07b, Lemma 3.5] with

[BBL16, Corollary 1.3] that cases (2) and (3) above can be realized by a ribbon

cobordism which uses just one 1-handle, and which is thus of minimal complex-

ity, in the terminology of [AGL18].

Based on Theorem 4.1.1, we determine which pairs of connected sums of lens

spaces cobound a ribbon cobordism. Before stating the result, we make the following

observation. Suppose that W and W ′ are ribbon cobordisms from Y1 to Y2 and

from Y ′
1 to Y ′

2 , respectively, so that W can be built by attaching 1- and 2-handles

to Y1 × I, and similarly for W ′. By attaching corresponding 1- and 2-handles to

(Y1 × I)♮(Y ′
1 × I) outside of the region where the boundary connected sum takes

place, we obtain a ribbon cobordism W ′′ from Y1#Y ′
1 to Y2#Y ′

2 .

Theorem 4.1.2. Suppose that Y1 ≤ Y2, where Yi is a finite connected sum of lens

spaces, i = 1, 2. Then there exists a ribbon cobordism W from Y1 to Y2 that can be
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decomposed as a boundary connected sum of ribbon cobordisms in such a way that

each summand is homeomorphic to one between the following ordered pairs (up to

simultaneous orientation reversal of the pair):

1. (L(p, q), L(p, q)), p/q > 1;

2. (L(n, 1), L(p, q)), p/q ∈ Fn, for some n ≥ 2;

3. (S3, L(p, q)), p/q ∈ R;

4. (S3, L(p, p− q)#L(p, q));

5. (S3, L(n, n− 1)#L(p, q)), p/q ∈ Fn, for some n ≥ 2;

6. (S3, L(p1, p1 − q1)#L(p2, q2)), pi/qi ∈ Fn, i = 1, 2, for some n ≥ 2; or

7. (S3, L(p1, q1)#L(p2, q2)), pi/qi ∈ F2, i = 1, 2.

Conversely, if (Y1, Y2) is any of the pairs from (1)–(7), then Y1 ≤ Y2 holds.

From Theorems 4.1.1 and 4.1.2 we derive two corollaries concerning the concor-

dance of 2-bridge links. The proofs of those corollaries rely on the fact that any lens

space L(p, q) arises as the double cover of S3 branched along the 2-bridge link K(p, q)

(see Subsection 4.2).

Outline of the proof

We give an overview of the argument we use to prove Theorems 4.1.1 and 4.1.2. Sup-

pose that W is a ribbon cobordism from L(p, q) to L(r, s), so that ∂W = −L(p, q)⨿

L(r, s). Both −L(p, q) ∼= L(p, p − q) and L(r, s) bound positive definite plumbings

X(p, p − q) and X(r, s), respectively (see the paragraph preceding Definition 4.3.1),

with intersection lattices given by the linear lattices Λ(p/(p − q)) and Λ(r/s), re-

spectively (see Definition 4.3.1). We thus obtain a full-rank isometric embedding of
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4.2. Applications to the χ-concordance of 2-bridge links

lattices φ : Λ(p/(p− q))⊕Λ(r/s) ↪→ ZN , where ZN denotes the standard positive def-

inite Euclidean lattice. As we have already seen in Subsection 3.3, the fact that W is

a ribbon cobordism translates into the condition φ(Λ(p/(p− q))) = φ(Λ(r/s))⊥. Fur-

thermore, it follows from Lisca’s combinatorial machinery set up in [Lis07a, Lis07b],

that the subset S ⊂ ZN consisting of the images of the standard basis elements

of Λ(p/(p − q)) ⊕ Λ(r/s) can be obtained from a certain ‘minimal’ such subset by

repeatedly applying an operation called 2-final expansion (see Subsection 4.4). In

Lemma 4.4.2, we show that the stable isometry type of φ(Λ(r/s))⊥, in fact, remains

unchanged under 2-final expansions, i.e. φ(Λ(r/s))⊥ only changes by adding orthog-

onal direct summands isometric to ZN . Combined with Lisca’s classification of lens

spaces bounding rational balls, and standard facts about linear lattices, this allows

us to deduce Theorem 4.1.1.

The proof of Theorem 4.1.2 relies on Theorem 4.1.1, combined with the fact

that if a connected sum of lens spaces bounds a rational homology ball, then the

corresponding embedding of the orthogonal direct sum of the intersection lattices of

the connected summands into ZN can be decomposed into smaller embeddings which

involve at most two of the direct summands (Lemma 4.4.3).

4.2 Applications to the χ-concordance of 2-bridge

links

Recall that the family of 2-bridge links can be parametrized by pairs of coprime

integers p, q ∈ Z in such a way that K(p, p− q) ≃ K(p, q), Σ2(S
3, K(p, q)) ∼= L(p, q),

and, moreover, that K(p, q) is a knot precisely when p is odd (see e.g. [BZ85, Chapter

12]). Inspired by [DO12, Definition 2], we make the following definition.

Definition 4.2.1. Let L0, L1 ⊂ S3 be links, and let C ⊂ S3 × I be a properly

embedded surface satisfying Li = C ∩ S3 × {i}, i = 0, 1. We say that C is a ribbon
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4.2. Applications to the χ-concordance of 2-bridge links

χ-concordance from L0 to L1 if χ(C) = 0 and C has no local maxima with respect to

the second coordinate of S3 × I. If such a concordance exists, we write L0 ≤χ L1.

Note that in the case where both L0 and L1 are knots, this notion coincides with

the usual notion of ribbon concordance. Furthermore, we remark that our definition

is more general than [DO12, Definition 2]. Indeed, that definition requires some

decorations on the components of the links involved, which are necessary because

connected sum is not well-defined for links, and, eventually, to endow the set of

χ-concordance classes with a group structure. The statement of Corollary 4.2.3,

however, holds true regardless of how one chooses to form the connected sum of the

links involved. Furthermore, [DO12, Definition 2] requires a χ-concordance to have

no closed components, which becomes redundant as soon as we demand that C be

ribbon. Finally, we point out that we do not require C to be orientable. In fact, as

will become apparent in the proof of Corollary 4.2.2, this flexibility is the reason why

we choose to go by this definition of concordance, as opposed to one that requires a

concordance between links to be a disjoint union of annuli. Nevertheless, it is easily

verified that the double cover of S3 × I branched along a ribbon χ-concordance from

L0 to L1 is a ribbon cobordism from Σ2(S
3, L0) to Σ2(S

3, L1).

Corollary 4.2.2. Let pi, qi ∈ Z be coprime, i = 1, 2. Then, possibly after replacing

both K(p1, q1) and K(p2, q2) by their mirror images, we have K(p1, q1) ≤χ K(p2, q2)

if and only if one of the following holds:

1. K(p1, q1) ≃ K(p2, q2);

2. K(p1, q1) ≃ K(n, 1) and p2/q2 ∈ Fn, for some n ≥ 2; or

3. K(p1, q1) ≃ U and p2/q2 ∈ R.

Proof. If K(p1, q1) ≤χ K(p2, q2), then we have L(p1, q1) ≤ L(p2, q2). Therefore, one

of (1)–(3) from Theorem 4.1.1 holds, and the claim follows.
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Conversely, it is clear that K(p1, q1) ≤χ K(p2, q2) holds if K(p1, q1) ≃ K(p2, q2).

Suppose that K(p1, q1) ≃ K(n, 1) and p2/q2 ∈ Fn, for some n ≥ 2. By [Lis07b,

Lemma 3.5], there exists a ribbon move turning K(p2, q2) into a split link consisting of

K(n, 1) and an unknot. Capping off the unknot with a disk yields the desired ribbon

χ-concordance. If p2/q2 ∈ R, then, by [Lis07a, Theorem 1.2], K(p2, q2) bounds a

properly embedded ribbon surface C ⊂ B4 that is homeomorphic either to a disk or

to the disjoint union of a disk with a Möbius band, depending on whether K(p2, q2)

is a knot or a link, respectively. In either case, χ(C) = 1, so by removing a small disk

from C we obtain a ribbon χ-concordance from U to K(p2, q2).

Before stating the analogous corollary to Theorem 4.1.2, we observe that if C

and C ′ are ribbon χ-concordances from K1 to K2 and from K ′
1 to K ′

2, respectively,

where Ki, K
′
i ⊂ S3 are links, i = 1, 2, we can sum C and C ′ together along properly

embedded intervals J ⊂ C, J ′ ⊂ C ′ that are transverse to S3 × {t} ⊂ S3 × I for all

t ∈ I. This yields a ribbon χ-concordance C ′′ from K1#K ′
1 to K2#K ′

2.

Corollary 4.2.3. Suppose that K1 ≤χ K2, where Ki is a finite connected sum of

2-bridge links, i = 1, 2. Then there exists a ribbon χ-concordance C from K1 to K2

that can be decomposed as a sum of ribbon χ-concordances in such a way that each

summand is (possibly after mirroring) a ribbon χ-concordance between one of the

following ordered pairs:

1. (K(p, q), K(p, q)), p/q > 1;

2. (K(n, 1), K(p, q)), p/q ∈ Fn, for some n ≥ 2;

3. (U,K(p, q)), p/q ∈ R;

4. (U,K(p, p− q)#K(p, q));

5. (U,K(n, n− 1)#K(p, q)), p/q ∈ Fn, for some n ≥ 2;
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6. (U,K(p1, p1 − q1)#K(p2, q2)), pi/qi ∈ Fn, i = 1, 2, for some n ≥ 2; or

7. (U,K(p1, q1)#K(p2, q2)), pi/qi ∈ F2, i = 1, 2.

Conversely, if (K1, K2) is any of the pairs from (1)–(7), then K1 ≤ K2 holds.

Proof. Let C ⊂ S3×I be a ribbon χ-concordance as in the statement of the theorem,

so thatW = Σ2(S
3×I, C) is a ribbon cobordism from Y1 to Y2, where Yi = Σ2(S

3, Ki)

is a connected sum of lens spaces of corresponding parameters, i = 1, 2. By Theorem

4.1.2, we may assume that W is a boundary connected sum of the ribbon cobordisms

listed there. Together with the fact that Σ2(S
3, K#K ′) ∼= Σ2(S

3, K)#Σ2(S
3, K ′),

this implies that C must be of the desired form.

Conversely, it suffices to show that each of the cases (1)–(7) can be realized by a

ribbon χ-concordance. Cases (1)–(3) follow from Corollary 4.2.2. For case (4), note

thatK(p, p−q)⨿K(p, q) ≃ K(p, q)⨿K(p, q) ⊂ S3 bounds a disjoint union ofm annuli,

properly embedded in B4, wherem equals either 1 or 2, depending on whetherK(p, q)

is a knot or a link, respectively. Moreover, this disjoint union of annuli can be chosen

not to have any local maxima with respect to the radial distance function on B4. It

follows that K(p, p − q)#K(p, q) bounds a disjoint union of a disk and, possibly, an

annulus with the same property. Puncturing the disk yields a ribbon χ-concordance

from U to K(p, p−q)#K(p, q). For case (5), note that, by [Lis07b, Lemma 3.5] again,

K(p, q) can be turned into K(n, 1) by the reverse of a ribbon χ-concordance, which,

using case (4), shows that U ≤χ K(n, n− 1)#K(n, 1) ≤χ K(n, n− 1)#K(p, q). The

remaining cases are handled similarly.

4.3 Linear lattices

In Subsection 3.2, we reviewed how the intersection of a 2-handlebody X relates to

the 3-manifold Y = ∂X. In the case where Y = L(p, q), p > q > 0, one can choose
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X to be the plumbing along a linear graph with weights a1, . . . , an, where the ai ≥ 2

are such that

[a1, . . . , an]
− := a1 −

1

a2 −
1

· · · − 1

an

=
p

q
.

We denote this plumbing by X(p, q).

Definition 4.3.1. A lattice Λ is a linear lattice if it admits a basis {v1, . . . , vn} such

that

vi · vj =


ai, if i = j,

0 or 1, if |i− j| = 1,

0, if |i− j| > 1,

(4.1)

for some a1, . . . , an ≥ 2. In the case where vi · vj = 1 whenever |i− j| = 1, we write

Λ = Λ(a1, . . . , an) or Λ = Λ(p/q), where p/q = [a1, . . . , an]
−. Moreover, we will write

Λ(. . . , 2[k], . . . ) = Λ(. . . , 2, . . . , 2︸ ︷︷ ︸
k

, . . . ).

Remark 4.3.2. We state without proof two facts about linear lattices that we implicitly

use throughout this chapter.

1. Given a linear lattice Λ(p/q), p/q > 1, the integers a1, . . . , an are uniquely

determined by the conditions ai ≥ 2, i = 1, . . . , n, and [a1, . . . , an]
− = p/q (see

e.g. [GS99, Section 5.2]). Moreover, it is easily verified that Λ(p/q), p/q > 1, is

a positive definite lattice.

2. For p/q > 1, the intersection lattice of X(p, q) is isometric to Λ(p/q). In fact,

∂X(p, q) ∼= ∂X(r, s) if and only if Λ(p/q) ∼= Λ(r/s) (see e.g. [Sav12, Section

1.5], and [Ger95, Theorem 3] and [Gre13, Proposition 3.6]).

In what follows, we will always endow a linear lattice Λ with the standard basis

{v1, . . . , vn} satisfying (4.1).
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4.4. Embeddings of linear lattices

4.4 Embeddings of linear lattices

We now briefly recall a few definitions from [Lis07a] and [Lis07b] that will play a role

later in this chapter.

Definition 4.4.1. Let S = {v1, . . . , vN} ⊂ ZN .

1. S is called a linear subset if its elements satisfy

vi · vj =


ai, if i = j,

0 or 1, if |i− j| = 1,

0, if |i− j| > 1,

for some ai ≥ 2.

2. If S is a linear subset, its intersection graph is defined as the graph with one

vertex for each element vi ∈ S and an edge (vi, vj) precisely if vi · vj = 1. The

number of connected components of the intersection graph is denoted by c(S).

3. Two elements v, w ∈ ZN are said to be linked if there exists an index k ∈

{1, . . . , N} such that ek · v ̸= 0 and ek · w ̸= 0. Moreover, a linear subset S is

called irreducible if for any v, w ∈ S there exist v1, . . . , vm ∈ S such that v1 = v,

vm = w, and vi and vi+1 are linked, i = 1, . . . ,m− 1. If S is not irreducible, it

is called reducible.

4. Let S = {v1, . . . , vN} be a linear subset such that |vi · ej| ≤ 1 for all i, j ∈

{1, . . . , N}, and suppose that there exist h, s, t ∈ {1, . . . , N} such that vt ·vt > 2

and eh · vj ̸= 0 if and only if j ∈ {s, t}. Define S ′ ⊂ ⟨e1, . . . , eh−1, eh+1, . . . , eN⟩

by S ′ := S \{vs, vt}∪{vt− (eh ·vt)eh}. Then S ′ is said to be obtained from S by

a contraction, and, conversely, S is said to be obtained from S ′ by an expansion.
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4.4. Embeddings of linear lattices

5. If, in addition to the hypotheses of (4), both the vertices of the intersection

graph of S corresponding to vs and vt have degree 1, and, moreover, vs · vs = 2,

we say that S ′ is obtained from S by a 2-final contraction, and that S is obtained

from S ′ by a 2-final expansion.

6. Let S ′ = {v1, . . . , vN} ⊂ ZN be a linear subset and suppose that there exists

1 < t < N such that C ′ = {vt−1, vt, vt+1} is a connected component of the

intersection graph of S ′ satisfying vt−1 · vt−1 = vt+1 · vt+1 = 2, vt · vt > 2 and

{i | vi · ej ̸= 0} = {t − 1, t, t + 1}, for some 1 ≤ j ≤ N . Let S ⊂ ZM be

a subset of cardinality M ≥ N obtained from S ′ by applying a sequence of

2-final expansions to the connected component C ′ of S ′. Then the connected

component C of of the intersection graph of S that naturally corresponds to

C ′ is said to be a bad component of S. The number of bad components of S is

denoted by b(S).

As an example illustrating the above definition, consider S = {v1, v2, v3, v4, v5} ⊂

Z5 where v1 = e1−e2, v2 = e3−e4+e5, v3 = e1+e2+e3, v4 = e3+e4 and v5 = e4+e5.

It is easily checked that S is an irreducible linear subset of Z5, and, moreover, that its

intersection graph is the disjoint union of a single isolated vertex and the linear graph

on four vertices. Indeed, ⟨S⟩ ∼= Λ(2) ⊕ Λ(3, 3, 2, 2) ⊂ Z5 as an integral lattice with

pairing induced by that of Z5. Observe that v2 · v2 = 3 > 2 and that e5 · vj ̸= 0 if and

only if j ∈ {2, 5}. Hence, in the notation of part (4) of Definition 4.4.1, we can choose

h = 5, s = 5 and t = 2, and we see that S admits a contraction to the linear subset

S ′ = {v1, v2− (e5 · v2)e5, v3, v4} = {e1− e2, e3− e4, e1+ e2+ e3, e3+ e4} ⊂ Z4 (it is not

hard to see that it is generally true that if S ′ is obtained from a linear subset S by a

contraction or an expansion, then S ′ is a linear subset as well). Note that the vertices

of the intersection graph of S corresponding to v2 and v5 are the two vertices of degree

one. Moreover, we have v5 · v5 = 2, so that the contraction S ↘ S ′ we just exhibited

is, in fact, a 2-final contraction. Finally, observe that {e3−e4, e1+e2+e3, e3+e4} ⊂ S ′
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forms a bad component of S ′ (here, j = 3 in the notation of part (6) of Definition

4.4.1). Hence, {v2, v3, v4, v5} ⊂ S is a bad component of S, by definition. The notion

of a bad component will be crucial in the proof of Theorem 4.1.1. Loosely speaking, if

S ⊂ ZN is a linear subset corresponding to an isometric embedding Λ ↪→ ZN , then a

bad component C of S corresponds to a direct summand of Λ of the form Λ(p/q) with

p/q ∈ Fn, for some n ≥ 2. In the above example, the bad component {v2, v3, v4, v5}

of S corresponds to the direct summand Λ(3, 3, 2, 2) = Λ(18/7), and 18/7 ∈ F2.

We conclude this subsection by proving two lemmas that will be used in the proofs

of the main theorems, the first of which deals with the orthogonal complement to a

bad component of a linear subset.

Lemma 4.4.2. Let S = {v1, . . . , vN} ⊂ ZN be a linear subset and suppose that the

intersection graph of S has a bad component C = {vt−1, vt, vt+1}, so that vt·vt = m+1,

for some m ≥ 2. Then, with respect to some orthonormal basis of Zn, we have that

C = ⟨em+1 + em+2, e1 + · · ·+ em+1, em+1 − em+2⟩ ⊂ ZN .

Moreover, if C ′ ⊂ ZN+K is a linear subset that is obtained from C by a sequence of

K 2-final expansions, K ≥ 0, then ⟨C ′⟩⊥ ≃ Λ(m/(m− 1)).

Proof. For the first part, note that, by definition of a bad component, the coefficients

of vi are at most 1 in absolute value, i ∈ {t− 1, t, t + 1}. We may thus assume that

vt = e1+· · ·+em+1. Using the facts {i | vi·ej ̸= 0} = {t−1, t, t+1} for some 1 ≤ j ≤ N

and vt−1 · vt+1 = 0, it is then readily checked that, up to change of orthonormal basis

of ZN , it must be the case that vt−1 = em+1 + em+2 and vt+1 = em+1 − em+2 (where

we assumed, without loss of generality, that j = m+ 1).

For the second part, if K = 0, so that C ′ = C, it is easily verified that

⟨C⟩⊥ = ⟨e1 − e2, . . . , em−1 − em, em+3, . . . , eN⟩ ≃ Λ(2[m−1]) ∼= Λ(m/(m− 1)).
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Consider the case where K > 0, and suppose that C is given as above. It is easy to

see that there are only two ways of applying a 2-final expansion to C, which (up to

change of orthonormal basis of ZN) are given by replacing

⟨em+1 + em+2, e1 + · · ·+ em+1, em+1 − em+2⟩ ⊂ ZN

by either

⟨em+2 + em+3, em+1 + em+2, e1 + · · ·+ em+1, em+1 − em+2 + em+3⟩ ⊂ ZN+1

or

⟨em+1 + em+2 + em+3, e1 + · · ·+ em+1, em+1 − em+2,−em+2 + em+3⟩ ⊂ ZN+1,

and similarly for potential subsequent 2-final expansions. Hence

⟨C ′⟩⊥ = ⟨e1 − e2, . . . , em−1 − em, em+K+3, . . . , eN+K⟩ ≃ Λ(2[m−1]) ∼= Λ(m/(m− 1)),

and the claim follows.

The following lemma pertaining to reducible linear subsets will be used in the

proof of Theorem 4.1.2, where it will allow us to reduce a full-rank embedding of

a linear lattice into smaller embeddings. We point out that this is essentially a

reformulation of [Lis07b, Lemma 5.5]. To clarify the hypotheses of the lemma, note

that if a connected sum of lens spaces L(p1, q1)# · · ·#L(pn, qn) bounds a rational ball

W , we not only obtain a full-rank isometric embedding

Λ(p1/q1)⊕ · · · ⊕ Λ(pn/qn) ↪→ ZN
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, but, by considering −W , we additionally obtain a full-rank isometric embedding

Λ(p1/(p1 − q1))⊕ · · · ⊕ Λ(pn/(pn − qn)) ↪→ ZN ′
.

We remark that the existence of both embeddings is necessary for the conclusion of

the lemma to hold.

Lemma 4.4.3. Let Λ = Λ(p1/q1) ⊕ · · · ⊕ Λ(pn/qn) be a linear lattice, set Λ′ =

Λ(p1/(p1−q1))⊕· · ·⊕Λ(pn/(pn−qn)), and suppose that there exist full-rank isometric

embeddings φ : Λ ↪→ ZN and φ′ : Λ′ ↪→ ZN ′
.

Then, after possibly permuting p1/q1, . . . , pn/qn and switching the roles of Λ and

Λ′, φ can be decomposed as φ = φ1⊕ φ̃ in such a way that the linear subset S1 ⊂ ZN

corresponding to φ1 is irreducible, and φ1 and φ̃ are full-rank isometric embeddings

of one of the following forms:

1. φ1 : Λ(p1/q1) ↪→ ZN1 and φ̃ : Λ(p2/q2)⊕ · · · ⊕ Λ(pn/qn) ↪→ ZN2 , N1 +N2 = N ;

2. φ1 : Λ(p1/q1) ⊕ Λ(p2/q2) ↪→ ZN1 and φ̃ : Λ(p3/q3) ⊕ · · · ⊕ Λ(pn/qn) ↪→ ZN2 ,

N1 +N2 = N .

Proof. Let S ⊂ ZN be the linear subset corresponding to φ and write S = S1∪· · ·∪Sm,

where the Si are the maximal irreducible subsets of S, so that each Si corresponds

to the orthogonal direct sum of some of the Λ(p1/q1), . . . ,Λ(pn/qn), i ∈ {1, . . . ,m}.

Since no v ∈ Si is linked to any w ∈ Sj, i ̸= j, φ can be decomposed as an orthogonal

direct sum of isometric embeddings φ = φ1 ⊕ · · · ⊕ φm such that the linear subset

corresponding to φi is Si ⊂ ZN , i ∈ {1, . . . ,m}. Moreover, we can view each φi as a

full-rank isometric embedding into ZNi ⊂ ZN , where ZNi = ⟨ei | v·ei ̸= 0 for some v ∈

Si⟩. Indeed, we have Ni = |Si|, i ∈ {1, . . . ,m}, by linear independence of the elements

of S (cf. [Lis07a, Remark 2.1]). By [Lis07b, Lemma 5.3], we may assume that, after

possibly reordering the S1, . . . , Sm and the p1/q1, . . . , pn/qn and switching the roles
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of Λ and Λ′, the quantity I(S1) + b(S1) is negative (we refer the reader to [Lis07a,

Definition 2.3] for the definition of I(S)). Thus, [Lis07b, Proposition 4.10] implies

that c(S1) ≤ 2, that is, the domain of φ1 consists of at most two orthogonal direct

summands of Λ. It follows that φ1 may be assumed to be of the form φ1 : Λ(p1/q1) ↪→

ZN1 , or φ1 : Λ(p1/q1) ⊕ Λ(p2/q2) ↪→ ZN1 . Setting φ̃ = φ2 ⊕ · · · ⊕ φm, we have that

φ = φ1 ⊕ φ̃ is of the desired form.

4.5 The proof of Theorem 4.1.1

The main ingredient to the proof of Theorem 4.1.1 is the following proposition, which

essentially deals with the case where the linear subset S ⊂ ZN coming from a ribbon

cobordism contains bad components.

Proposition 4.5.1. Let W be a ribbon cobordism from L(p, q) to L(r, s), where

r/s ∈ Fn, for some n ≥ 2, and p ̸= r. Suppose further that the linear subset

S ⊂ ZN associated to the corresponding embedding φ : Λ(p/(p− q))⊕ Λ(r/s) ↪→ ZN

is irreducible. Then we must have that L(p, q) ∼= L(n, 1).

Proof. Set L1 = L(p, q), L2 = L(r, s) and Λ1 = Λ(p/(p − q)), Λ2 = Λ(r/s). Write

S = S1 ∪ S2, where Si ⊂ ZN is the linear subset corresponding to φ(Λi), so that

φ(Λi) = ⟨Si⟩, i = 1, 2.

Since r/s ∈ Fn, for some n ≥ 2, [Lis07b, Theorem 1.1] implies that we must

have that either p/q = n/1, or that either p/q or p/(p − q) belongs to Fn (where

p/(p − q) ∈ Fn can only happen if n = 2). If p/q = n/1 we are done, so we assume

that L1 is not homeomorphic to a lens space of the form L(n, 1). In what follows,

we determine the stable isometry type of φ(Λ1) = φ(Λ2)
⊥, which, by Remark 4.3.2,

determines the oriented homeomorphism type of L1.

Since c(S) = 2, it follows from [Lis07b, Lemma 5.2] that b(S) ∈ {0, 1, 2}. If

b(S) = 0, then by the first subcase of the proof in [Lis07b, p. 2160], we have that
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L1
∼= L2, which contradicts our assumption on p and r. Therefore, we must have

that b(S) ∈ {1, 2}. Suppose first that b(S) = 1, so that either S1 or S2 is a bad

component. Using the facts L1 ≇ L(n, 1) and p ̸= r, it follows from the second

subcase of the proof in [Lis07b, p. 2160], that, after possibly replacing W by −W ,

the bad component of S is, in fact, S2 and, moreover, that S2 admits a sequence of

2-final contractions S2 ↘ · · · ↘ C, where C = {vt−1, vt, vt+1} with vt · vt = n + 1.

Thus, by Lemma 4.4.2, we have that φ(Λ2)
⊥ = ⟨S2⟩⊥ ≃ Λ(n/(n− 1)). It follows that

φ(Λ1) = φ(Λ2)
⊥ ≃ Λ(n/(n− 1)), which implies that L1

∼= L(n, 1).

It remains to address the case where b(S) = 2, so that both S1 and S2 are bad

components. Then, by the third subcase of the proof in [Lis07b, p. 2162], we must

have that r/s ∈ F2, and S2 admits a sequence of 2-final contractions S2 ↘ · · · ↘ C,

where C = {vt−1, vt, vt+1} with vt ·vt = 3. By the argument used in the previous case,

it follows that L1
∼= L(2, 1).

Proof of Theorem 4.1.1. We first show that the conditions (1)–(3) are necessary. Set

L1 = L(p, q), L2 = L(r, s) and Λ1 = Λ(p/(p − q)), Λ2 = Λ(r/s), and let W be a

ribbon cobordism from L1 to L2. By Theorem 3.3.1 and the remark following it, we

obtain a full-rank isometric embedding φ : Λ1⊕Λ2 ↪→ ZN such that φ(Λ1) = φ(Λ2)
⊥.

Let S denote the corresponding linear subset, so that ⟨S⟩ = φ(Λ1 ⊕ Λ2).

Suppose first that S ⊂ Zn is irreducible. It follows from first case of the proof in

[Lis07b, p. 2160] that in this case, either L1
∼= L2, or that (after possibly switching

to −W instead of W ) at least one of p/q and r/s belongs to Fn, for some n ≥ 2.

If L1
∼= L2, case (1) of Theorem 4.1.1 holds, whereas if r/s ∈ Fn, then Proposition

4.5.1 implies that L1
∼= L(n, 1), and case (2) of Theorem 4.1.1 holds. If p/q ∈ Fn,

then, by the main theorem of [Lis07b], either L2
∼= L(n, 1) or r/s ∈ Fn. In the

former case, however, by definition of Fn, we have that |H1(L1;Z)| > |H1(L2;Z)|,

which contradicts Proposition 2.1.6, and we must thus have r/s ∈ Fn. But then,

using Proposition 4.5.1 again, it follows that L1
∼= L(p, q) ∼= L(n, 1), which is a
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contradiction, since n/1 /∈ Fn for any n ≥ 2.

It remains to deal with the case where S ⊂ Zn is reducible. In this case we can

write S = S1 ∪ S2, where S1 and S2 are the maximal irreducible linear subsets that

correspond to φ(Λ1) and φ(Λ2), respectively. Indeed, by Lemma 4.4.3, S cannot

decompose into three or more maximal irreducible subsets. Using the irreducibility

of S1 and the fact that φ(Λ1) = φ(Λ2)
⊥, it follows that φ(Λ1) ⊂ ZN1 is a primitive

full-rank sublattice, where ZN1 = ⟨ei | v · ei ̸= 0 for some v ∈ S1⟩ ⊂ ZN . By Remark

3.1.2, we thus have that φ(Λ1) ∼= ZN1 , which implies that L1
∼= S3 and, consequently,

L2
∼= L(r, s) with r/s ∈ R. Thus, case (3) of Theorem 4.1.1 holds.

Conversely, suppose that L1, L2 are lens spaces such that case (1), (2) or (3) holds.

In case (1), we can choose the product cobordism L1 × [0, 1] to verify that L1 ≤ L2.

In cases (2) and (3), L1 ≤ L2 follows from [Lis07b, Lemma 3.5] and [Lis07a, Theorem

1.2], respectively.

4.6 The proof of Theorem 4.1.2

In this subsection, we prove Theorem 4.1.2. While to a large extent it is a consequence

of Theorem 4.1.1, we will need the following additional result.

Proposition 4.6.1. Let Y = L1#L2, where Li is a lens space that does not bound a

rational homology ball, i = 1, 2. If Y bounds a rational homology ball, then Y must

be (possibly orientation-reversingly) homeomorphic to one of the following:

1. L(p, p− q)#L(p, q), p/q > 1;

2. L(n, n− 1)#L(p, q), p/q ∈ Fn for some n ≥ 2;

3. L(p1, p1 − q1)#L(p2, q2), pi/qi ∈ Fn, i = 1, 2, for some n ≥ 2; or

4. L(p1, q1)#L(p2, q2), pi/qi ∈ F2, i = 1, 2.
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Conversely, if Y is homeomorphic to one of the manifolds in (1)–(4), then Y bounds

a ribbon rational homology ball.

Proof. The first half of the statement is an immediate consequence of the main the-

orem of [Lis07b].

Conversely, suppose that Y ∼= L(p, p − q)#L(p, q), p/q > 1, and note that in

this case Y is the double cover of S3 branched along the link K(p, p− q)#K(p, q) =

K(p, q)#K(p, q). As in the proof of Corollary 4.2.3, we have that K(p, q)#K(p, q)

bounds a (possibly disconnected) properly embedded surface C ⊂ B4 with χ(C) = 1,

and such that C has no local maxima with respect to the radial distance function on

B4. It follows that Y bounds a ribbon rational homology ball. The remaining cases

are handled similarly (cf. also the proof of Corollary 4.2.3).

Proof of Theorem 4.1.2. Let W be a ribbon cobordism from Y1 = L1# · · ·#LI to

Y2 = M1# · · ·#MJ , where the L1, . . . , LI and M1, . . . ,MJ are lens spaces. By Theo-

rem 3.3.1 and the remark following it, we obtain a full-rank isometric embedding of

linear lattices

φ : Λ1 ⊕ · · · ⊕ ΛI ⊕M1 ⊕ · · · ⊕MJ ↪→ ZN ,

such that

φ(M1 ⊕ · · · ⊕MJ)
⊥ = φ(M1)

⊥ ⊕ · · · ⊕ φ(MJ)
⊥ = φ(Λ1)⊕ · · · ⊕ φ(ΛI). (4.2)

Here, Λi and Mj correspond to Li and Mj, respectively, i = 1, . . . , I, j = 1, . . . , J . As

in the proof of Proposition 4.6.1, it suffices to determine the stable isometry types of

the lattices Λ1, . . . ,ΛI ,M1, . . . ,MJ . After possibly replacingW by −W , we may apply

Lemma 4.4.3, so that φ decomposes as φ = φ1⊕φ̃, where φ1 : Λ → ZN1 ⊂ ZN is a full-

rank isometric embedding into a direct summand of ZN , such that the corresponding

linear subset S1 ⊂ ZN1 is irreducible, and Λ is one of the following:
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1. Λi for some i ∈ {1, . . . , I};

2. Λi ⊕ Λi′ , for some i, i′ ∈ {1, . . . , I}, i ̸= i′;

3. Mj for some j ∈ {1, . . . , J};

4. Mj ⊕Mj′ , for some j, j′ ∈ {1, . . . , J}, j ̸= j′; or

5. Λi ⊕Mj, for some i ∈ {1, . . . , I}, j ∈ {1, . . . , J}.

For cases (1) and (2), note that, by (4.2), φ(Λ) is a direct summand of the primitive

sublattice φ(M1 ⊕ · · · ⊕ MJ)
⊥ ⊂ ZN . Thus, φ(Λ) ⊂ ZN1 is a full-rank primitive

sublattice, which, by Remark 3.1.2, implies that Λ ∼= ZN1 ≃ 0. It follows that

Li
∼= S3 in case (1), and Li#Li′

∼= S3 in case (2), so we may discard these connected

summands from Y1.

In case (3), we have a full-rank isometric embedding φ1 : Mj → ZN1 , which by the

main theorem of [Lis07a] implies that Mj
∼= L(p, q) with p/q ∈ R, and case (3) of

Theorem 4.1.2 holds.

Similarly, in case (4) it follows that Mj#Mj′
∼= L(p1, q1)#L(p2, q2), such that

L(p1, q1)#L(p2, q2) bounds a rational homology ball, but, since S1 is irreducible,

L(pk, qk) does not, k = 1, 2. By Proposition 4.6.1, Mj#Mj′ bounds a ribbon rational

homology ball, and must be homeomorphic to one of the manifolds listed there, so

one of the cases (4)–(7) from Theorem 4.1.2 holds.

Finally, in case (5), we have that φ1 : Λi ⊕ Mj ↪→ ZN1 is a full-rank isometric

embedding which, by (4.2) again, has the property that φ1(Λi) = φ1(Mj)
⊥. Since

S1 is irreducible, we can apply the first half of the proof of Theorem 4.1.1 to φ1 to

conclude that case (1) or case (2) of Theorem 4.1.2 must hold.

We can now apply the above procedure to φ̃ and then iterate it, where at each

step we may have to replace e.g. φ̃ by φ̃′, where φ̃′ is obtained from φ̃ as in the

statement of Lemma 4.4.3. Since at each step we discard a non-zero number of direct

summands of Λ1 ⊕ · · · ⊕ ΛI ⊕M1 ⊕ · · · ⊕MJ , this process terminates.
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Chapter 5

Ribbon cobordisms as a partial

order

5.1 Introduction

In the this chapter, we partially prove the following conjecture that asserts that the

notion of ribbon cobordisms gives rise to a partial order among 3-manifolds.1

Conjecture 5.1.1 (Daemi-Lidman-Vela-Vick-Wong [DLVVW20, Conjecture 1.1]). The

preorder on the set of homeomorphism classes of closed, connected, oriented 3-

manifolds given by ribbon cobordisms is a partial order.

This conjecture can be seen as a 3-manifold version of Gordon’s conjecture that

ribbon concordance gives a partial order on the set of knots in S3 [Gor81, Conjecture

1.1], which was famously proved by Agol [Ago22]. As speculated by Agol, it is natural

to wonder whether the techniques used to prove Gordon’s Conjecture could be used

to make progress towards proving Conjecture 5.1.1. In this chapter, we do exactly

that, and show that Conjecture 5.1.1 holds for the class of aspherical 3-manifolds

(recall that a 3-manifold Y is aspherical if πk(Y ) = 0 for all k ≥ 2, or, equivalently, if

1The content of this chapter is that of [Hub22].
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Y is irreducible and has infinite fundamental group). Combining this with previous

work of the author [Hub21] on ribbon cobordisms between lens spaces, we obtain the

following. Note that we do not require the manifolds involved to be closed.

Theorem 5.1.2. Let Y1 and Y2 be compact, oriented, 3-manifolds, possibly with

boundary, such that there exists a ribbon cobordism Wi from Yi to Yj, {i, j} = {1, 2}.

If Yi is either aspherical or a lens space, i = 1, 2, then Y1
∼= Y2.

The above result is a rather direct consequence of the following two more technical

results. To put these into context, recall that if Y1 and Y2 are compact 3-manifolds

and if W is a ribbon cobordism from Y1 to Y2, one has the following diagram of maps

induced by inclusion ([DLVVW20, Theorem 1.14] and [Gor81, Lemma 3.1]):

π1(Y1) π1(W ) π1(Y2)

Hence, if Y is a 3-manifold with finite fundamental group, and if W is a ribbon

cobordism from Y to itself, then the inclusion of either boundary component into W

induces an isomorphism of fundamental groups. Our main technical result states that

this remains true if Y has infinite fundamental group, provided that Y is aspherical.

Theorem 5.1.3. Let Y be a compact, oriented, aspherical 3-manifold, possibly with

boundary, and suppose that W is a ribbon cobordism from Y1 to Y2, where Yi
∼= Y ,

i = 1, 2. Then the inclusion of Yi into W induces an isomorphism π1(Yi) ∼= π1(W ),

i = 1, 2.

As a consequence, we obtain the following result concerning pairs of 3-manifolds

with the property that there exists a ribbon cobordism in either direction.

Theorem 5.1.4. Let Y1, Y2 be compact, oriented, aspherical 3-manifolds, i = 1, 2,

possibly with boundary, and suppose that there exists a ribbon cobordism Wi from

Yi to Yj, {i, j} = {1, 2}. Then the inclusion of Yi into Wj induces an isomorphism

45



5.2. Proofs of results

π1(Yi) ∼= π1(Wj), i, j = 1, 2. In particular, there exists an orientation-preserving

homotopy equivalence f : (Yi, ∂Yi) → (Yj, ∂Yj), {i, j} = {1, 2}.

We conclude by pointing out that essentially the same results were independently

found by Friedl, Misev and Zentner [FMZ22].

5.2 Proofs of results

The following lemma is used in the algebro-geometric portion of the proof of Theorem

5.1.3, which, in turn, is virtually the same as the proof of [Ago22, Theorem 1.2]. We

provide a proof of the lemma for completeness, but also to highlight the use of residual

finiteness of fundamental groups of 3-manifolds.

Lemma 5.2.1. Suppose Γ is a residually finite group, and let γ ∈ Γ \ {1}. Then

there exists n > 0 and a homomorphism ρ : Γ → SO(n) such that ρ(γ) ̸= 1.

Proof. We first show that any finite group embeds into SO(n) for some n > 0. For

this, recall that the symmetric group on n elements Sn is generated by the n − 1

transpositions τi,i+1 = (i, i + 1), i = 1, . . . , n − 1. For i = 1, . . . , n − 1, define

φ(i,i+1) : Rn → Rn by

φ(i,i+1)(x0, . . . , xi, xi+1, . . . , xn) = (−x0, . . . , xi+1, xi, . . . , xn).

One can check that φ(i,i+1) ∈ SO(n+ 1) for all i = 1, . . . , n− 1, and hence the above

assignment defines an embedding of Sn into SO(n+1). Since any finite group embeds

into Sn for some n > 0, it follows that the same holds with Sn replaced by SO(n).

Now, let Γ be residually finite and γ ∈ Γ non-trivial. By definition of residual

finiteness, there exists a finite group G and a surjection qγ : Γ → G such that qγ(γ) ̸=

1. Postcomposing qγ with an embedding of G into SO(n), for some n > 0, yields the

claim.
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Proof of Theorem 5.1.3. Suppose that W is a ribbon cobordism as in the statement

of Theorem 5.1.3. By [DLVVW20, Theorem 1.14], we have that

π1(Y1) π1(W ) π1(Y2),
i1 i2 (5.1)

where ik is the map induced by inclusion ιk : Yk → W , k = 1, 2, and π1(Y1) ∼= π1(Y2).

As in [Ago22], for n > 0 and a manifold X, let Rn(X) = Rn(π1(X)) denote the

representation variety of π1(X) to SO(n). By [DLVVW20, Proposition 1.15], we then

have that

Rn(Y1) Rn(W ) Rn(Y2),
r1 r2 (5.2)

where rk is the restriction map, k = 1, 2. As shown in [Ago22], r1 is obtained by

projection of Rn(W ) onto the subspace spanned by the coordinates corresponding to

π1(Y1) (regarded as a subgroup of π1(W )) and hence is a polynomial map, and, more-

over, Rn(Y1) and Rn(Y2) are related by a polynomial isomorphism. Precomposing this

isomorphism with r1, one obtains a surjective polynomial map φ : Rn(W ) → Rn(Y2).

By the argument given in [Ago22], r2, in fact, embeds Rn(W ) into Rn(Y2) as a real

algebraic subset. This allows one to show that i2 : π1(Y2) → π1(W ) is injective as fol-

lows. Given γ ∈ π1(Y2) \ {1}, one can, using residual finiteness of 3-manifold groups

(which follows from [Thu82, Theorem 3.3] and Geometrization) and Lemma 5.2.1, find

n > 0 and a representation ρ ∈ Rn(Y2) with the property that ρ(γ) ̸= 1. By the above,

Rn(W ) ⊂ Rn(Y2) is an algebraic subset that admits a surjective polynomial map to

Rn(Y2) (namely, φ). Thus, [Ago22, Lemma A.2] implies that Rn(W ) = Rn(Y2), and it

follows that the representation ρ is the restriction of some representation ρ′ ∈ Rn(W ).

Hence, ρ′(i2(γ)) = (r2(ρ
′))(γ) = ρ(γ) ̸= 1, which implies that i2(γ) is non-trivial. It

follows that i2 is injective and hence an isomorphism.

It remains to show that i1 is an isomorphism. To show this, we adapt an argument

used in the proof of [DLVVW20, Proposition 9.2]. Set W = −W , so that W is a
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rational homology cobordism from Y2 to Y1 which is built from Y2 × I by attaching

2- and 3-handles. By what we have shown so far, the map π1(Y2) → π1(W ) induced

by inclusion is an isomorphism, which implies that each of the 2-handles of W is

attached to Y2×I along a null-homotopic curve in Y2×{1}, and hence each attaching

curve bounds an immersed disk in Y2 × {1}. Let W 2 denote the space obtained

by attaching just the 2-handles of W to Y2 × I. Define a map ρ2 : W 2 → Y2 as

follows. First, shrink each of the 2-handles to its core, then map each core to the

disk in Y2 ×{1} bounded by its attaching curve via a map that is the identity on the

attaching curve itself, and, finally, apply the obvious deformation retraction of Y2× I

onto Y2 = Y2 × {0}. The obstruction to extending ρ2 over the 3-handles of W lies in

H3(W,W 2; π2(Y2)) (see e.g. [Hat02, Proposition 4.72]). Since we assumed Y2 to be

aspherical, this group vanishes, and ρ2 extends to a retraction ρ : W → Y2. Indeed,

by definition of a ribbon cobordism between manifolds with boundary, we have that

∂Y1 = ∂Y2 × {1} ⊂ W , and it follows that ρ is the identity in a neighborhood of

∂Y2 × {1} ⊂ W . Letting ρ∗ : π1(W ) → π1(Y2) denote the map induced by ρ, it

follows that ρ∗ ◦ i2 = (ρ ◦ ι2)∗ = (idY2)∗ = idπ1(Y2), which implies that ρ∗ is an

isomorphism, because i2 is. Consider now the map f = ρ ◦ ι1 : Y1 → Y2. Since

H3(W ;Z) ∼= H3(Y2;Z) ∼= Z, and because ρ is a retraction, ρ induces an isomorphism

on the level of third integral homology. Similarly, the inclusion ι1 : Y1 → W induces

an isomorphism of third integral homology groups. It follows that the map induced

by f sends the relative fundamental class [Y1, ∂Y1] ∈ H3(Y1, ∂Y1;Z) to [Y2, ∂Y2] ∈

H3(Y2, ∂Y2;Z). That is, f is an orientation-preserving degree one map. Now, by

(5.1), i1 is injective, and it follows that f∗ : π1(Y1) → π1(Y2) is injective, because

ρ∗ is an isomorphism. By [Ron92, Lemma 1.2], f∗ is also surjective, and hence an

isomorphism. It follows that i1 : π1(Y1) → π1(W ) is an isomorphism, as desired.

Proof of Theorem 5.1.4. Let W be the composition of the cobordisms W1 and W2,

i.e. W = W1 ∪Y2 W2, so that W is a ribbon cobordism from Y1 to itself. Letting
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hi : π1(Wi) → π1(W ) denote the map induced by inclusion of Wi into W , i = 1, 2, and

using [DLVVW20, Theorem 1.14], we obtain the following diagram of maps induced

by inclusion on the level of fundamental groups.

π1(Y1) π1(W1) π1(Y2) π1(W2) π1(Y1)

π1(W )

i11

∼=
h1

i12 i21

h2

i22

∼=
(5.3)

The fact that the maps h1 ◦ i11 and h2 ◦ i22 are isomorphisms follows from Theo-

rem 5.1.3. This immediately implies that i22 is injective, and hence an isomorphism.

Switching the roles of W1 and W2, we see that i
1
2 is an isomorphism as well. Moreover,

using the fact that W2 is a ribbon cobordism, it follows by an argument similar to the

one used to show injectivity of i11 and i21 (see e.g. the proof of [DLVVW20, Proposition

2.1]) that h1 is injective. Note that, for that argument to apply, we need the fact

that π1(W1) is residually finite; but π1(W1) ∼= π1(Y2) via i12, and π1(Y2), being the

fundamental group of a compact 3-manifold, is residually finite. Now, since h1 ◦ i11 is

an isomorphism, h1 is also surjective and hence an isomorphism, which implies that

i11 is an isomorphism, too. Switching the roles of W1 and W2, we see that h2 and i12

are isomorphisms as well. Hence all maps in (5.3) are isomorphisms.

It remains to prove the existence of the claimed homotopy equivalences. To that

end, note that, because all horizontal maps in (5.3) are isomorphisms, we can apply

the argument from the last paragraph of the proof of Theorem 5.1.3 to W1 to obtain

an orientation-preserving degree one map f : Y1 → Y2 that induces an isomorphism of

fundamental groups. Since we assumed Y1 and Y2 to be aspherical, it follows that f

induces an isomorphism on all homotopy groups and hence is a homotopy equivalence

by Whitehead’s theorem (see e.g. [Hat02, Theorem 4.5]). Moreover, by construction

of the retraction ρ from the proof of Theorem 5.1.3, we have that f(∂Y1) ⊂ ∂Y2

and, indeed, that f fixes ∂Y1 pointwise. It follows that f : (Y1, ∂Y1) → (Y2, ∂Y2) is a
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homotopy equivalence, as desired. The above argument applied to W = W2 yields a

homotopy equivalence going in the other direction.

We are now in a position to prove the main result of this chapter.

Proof of Theorem 5.1.2. Observe that, by (5.3), Y1 is a lens space iff Y2 is. Assume

first that Y1, and hence, by definition of ribbon cobordism, also Y2, is closed. If

both Y1 and Y2 are lens spaces, the claim is a straightforward consequence of [Hub21,

Theorem 1.2], so we may assume that both Y1 and Y2 are aspherical. By Theorem

5.1.4, there exists an orientation-preserving homotopy equivalence f : Y1 → Y2. Note

that π1(Y2) is not just infinite, but torsion-free by [AFW15, (C.3)], and hence the

Borel Conjecture in dimension three [KL09, Theorem 0.7] implies that f is homotopic

to a homeomorphism. This homeomorphism must be orientation-preserving, because

this property is preserved under homotopy, and it follows that Y1
∼= Y2.

It remains to address the case where Y1, and hence also Y2, has non-empty bound-

ary. By what we assumed, it follows that both Y1 and Y2 are aspherical. By Theorem

5.1.4, there exists an orientation-preserving homotopy equivalence f : (Y1, ∂Y1) →

(Y2, ∂Y2). Since Yi has non-empty boundary, and hence is Haken, i = 1, 2, f is homo-

topic to a homeomorphism from Y1 to Y2 by [Wal68, Corollary 6.5]. As before, this

homeomorphism must be orientation-preserving, because f was, and it follows that

Y1
∼= Y2.
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Chapter 6

Outlook

We conclude this dissertation by raising and discussing some questions.

6.1 Ribbon vs. quasi-ribbon

Clearly, a rational homology cobordism can contain 3-handles, but still be quasi-

ribbon. Nevertheless, it is natural to ask the following.

Question. If W : Y1 → Y2 is quasi-ribbon, does it follow that Y1 ≤ Y2?

As noted in the remarks following 4.1.1, the results from Chapter 4 answer this

question in the affirmative if Y2 is a connected sum of lens spaces.

If Y1
∼= S3, the above question asks whether any rational homology 3-sphere Y

that bounds rational homology 4-ball W with H2(W ;Z) = 0 (one might call this a

quasi-ribbon ball) actually bounds a ribbon ball. This question, in turn, can be seen

as a “weaker” version of the (hard) question as to whether any integral homology

sphere that bounds an integral homology ball actually bounds a ribbon ball.
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6.2 Correction terms

At the end of Subsection 3.3 we sketched how d-invariants can be used to provide

potentially stronger lattice-theoretic obstructions to a pair of 3-manifolds cobounding

a quasi-ribbon cobordism, provided that the orders of the first integral homology

groups of the two manifolds agree. The same idea can be applied in the case where

the orders of first homology differ. More precisely, let Y1 and Y2 be rational homology

3-spheres, and suppose that W is a quasi-ribbon cobordism from Y1 to Y2. Setting

|H2(Y1;Z)| = p, we have that |H2(W ;Z)| = pu and |H2(Y2;Z)| = pu2, for some u > 1,

by Remark 2.1.5. Moreover, because the restriction maps ρ1 : H
2(W ;Z) → H2(Y1;Z)

and ρ2 : H
2(W ;Z) → H2(Y2;Z) are surjective and injective, respectively, it follows

that there exists a torsor homomorphism from ρ2(Spin
c(W )) ⊂ Spinc(Y2) to Spin

c(Y1)

that preserves the d-invariant. Namely, this u-to-one map is given by first extending

a given s ∈ ρ2(Spin
c(W )) across W , and then restricting that extension to Y1. On the

other hand, since Y1 and Y2 are rational homology cobordant, we have that −Y1#Y2

bounds a rational homology ball. Assuming that each of −Y1 and Y2 bounds a positive

definite sharp 4-manifoldXk, k = 1, 2, so that we can form the positive-definite, closed

4-manifold Z = X1∪Y1 W ∪Y2 X2, it follows that the corresponding lattice embedding

φ : Λ1 ⊕ Λ2 → ΛZ
∼= Zn

has the property that every element of coker(φ) = Zn/Im(φ) has a representative

in {0, 1}n; see [GJ11, Theorem 3.6] for details. Note that this obstruction does not

take into account the fact that we started out with a quasi-ribbon cobordism, and

hence does not reflect the existence of the u-to-one torsor homomorphism of Spinc-

structures described above. Surjectivity of ρ1, however, implies the existence of such

a map. Indeed, as in the proof of Proposition 2.2.3, and because we assumed u > 1,

we must have that Im(ρ2) ⊂ Spinc(Y2) has order pu. Surjectivity of ρ1 then implies
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that the extend-then-restrict map Spinc(Y2) ⊃ Im(ρ2) → Spinc(Y1) is u-to-one. In

conclusion, it appears that – at least in the case where the orders of first integral

homology of Y1 and Y2 differ – the conditions

1. φ(Λ1) = φ(Λ2)
⊥; and

2. every element of coker(φ) has a representative in {0, 1}n

is as far as one can push lattice theoretic methods to obstruct the existence of a

quasi-ribbon cobordism from Y1 to Y2. It is hence natural to ask the following.

Question. Does there exist a pair of rational homology spheres Y1 and Y2 that passes

the obstruction given by (1) and (2) above, yet there does not exist a quasi-ribbon

cobordism from Y1 to Y2?

In the same vein, one may ask the following question pertaining to quasi-ribbon

cobordisms between manifolds whose orders of first integral homology coincide (cf.

Proposition 3.3.3 and the discussion preceding it).

Question. Does there exist a pair of L-spaces Y1 and Y2 with b1(Yi) = 0, i = 1, 2,

such that Y1 and Y2 are integral homology cobordant and λCW(Y1) = λCW(Y2), yet

there does not exist a quasi-ribbon cobordism from Y1 to Y2?

6.3 Ribbon cobordisms between prism manifolds

While classifying all pairs of 3-manifolds that cobound a (quasi-)ribbon cobordism

appears to be an intractable task in general, one might hope to obtain such a classi-

fication for the case where the 3-manifolds in question happen to be spherical. This

would give a refined statement of [CP21, Theorem 1.1]. More precisely, recall that a

3-manifold Y is spherical if it is of the form Y = S3/Γ, where Γ ≤ SO(4) is a finite

subgroup acting freely on S3. The class of spherical 3-manifolds is divided into five
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subclasses, and, moreover, any spherical 3-manifold can be realized as a Seifert fibered

rational homology sphere (see e.g. [CP21, Section 2], and the references therein).

Each of the five subclasses of spherical 3-manifolds corresponds to a particular type

of integral lattice that arises as the intersection lattice of the 2-handlebodies bounded

by the spherical 3-manifolds. Hence, one obtains a lattice embedding problem for

each of the five subclasses.

From this perspective, the results from Chapter 4 can be seen as a partial answer

to the question of when there exists a ribbon cobordism between two spherical 3-

manifolds. In what follows, we give a conjectural answer to the corresponding question

for the class of spherical 3-manifolds consisting of lens spaces and prism manifolds.

Definition 6.3.1. Given a pair of coprime integers p and q, where p ≥ 1, the prism

manifold P (p, q) is defined to be the 3-manifold depicted in Figure 6.1.1

Remark 6.3.2. As one can check, P (1, q) is actually homeomorphic to the lens space

L(4q, 2q − 1). For this reason, the parameter p in the definition above is sometimes

required to be greater than 1. However, we choose to allow for the possibility p = 1

for ease of exposition of what is to follow.

1

2 2 p/q

Figure 6.1: Surgery description for P (p, q).

As with any Seifert manifold, one can expand p/q into a continued fraction as in

Subsection 4.3 in order to obtain an integer surgery description of P (p, q), which in

1This orientation convention is opposite to the one used in e.g. [BHM+20]. This is in accordance
with the fact that we used the opposite of the standard orientation for lens spaces in Chapter 4.
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turn can be succinctly described as in Figure 6.2, where [a1, . . . , an]
− = p/q, ai ≥ 2

for i = 1, . . . , n.

2

1 a1 an

2

Figure 6.2: Integer surgery description for P (p, q).

The weighted graph Γ in Figure 6.2 moreover describes a link as follows. For

each vertex v of Γ, take an (untwisted) annulus S1 × [0, 1] and introduce w(v) half-

twists, where w(v) denotes the weight of the vertex v. Then, form a connected surface

by plumbing together two of the twisted bands in the collection precisely when the

corresponding vertices are connected by an edge in Γ. The boundary of the resulting

surface forms a link L ⊂ S3, and, moreover, the double cover of S3 branched along L

is precisely the prism manifold described by that same tree. Using this perspective,

we show the following.

Proposition 6.3.3. For any prism manifold P (p, q),

−L(q, p) ≤ P (p, q).

Remarks.

1. This result immediately yields the classification of prism manifolds up to ra-

tional homology cobordism as stated in [CP21]. Moreover, it implies that all

prism manifolds of the form P (p + qk, q), k ∈ Z, can be obtained via a ribbon

cobordism emanating from the same lens space −L(q, p).

2. We point out that the above result is a special case of [Lec12, Lemma 3.1].

However, we choose to include the following proof because it additionally shows
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that the 2-bridge link corresponding to −L(q, p) admits a ribbon concordance

to the Montesinos link corresponding to P (p, q).

Proof. Consider a surgery description for P (p, q) given by a graph Γ as in Figure

6.2. The corresponding link L is shown in Figure 6.3a, where T is some tangle

representing the plumbing of the twisted bands that correspond to the vertices with

labels a1, . . . , an. Note that the bottommost half twist corresponds to the unique

trivalent vertex of Γ. This link is isotopic to the one shown in Figure 6.3b. Performing

a band move on this link as indicated transforms the link into the link depicted in

Figure 6.3c. Note that the resulting unknot can be slid off of the rest of the link, and

what remains is the link L′ corresponding to the plumbing of twisted bands along the

linear graph ∆ shown in Figure 6.3d. It follows that L′ ≤ L.

Moreover, thinking of ∆ as a surgery description for a 3-manifold, it follows that

the corresponding 3-manifold Y admits a ribbon cobordism to P (p, q). Since ∆ is a

linear graph, Y is homeomorphic to a lens space. Indeed, using [a1, . . . , an]
− = p/q,

we have that

[0, a1, . . . , an]
− = 0− 1

[a1, . . . , an]−
= −q

p
,

which implies that Y ∼= −L(q, p), as desired.2

Now, it follows e.g. from inspecting the Seifert invariants of a prism manifold that

P (p, q) is homeomorphic to a lens space if and only if p = 1, in which case

P (1, q) ∼= L(4q, 2q − 1).

Thus, Proposition 6.3.3 at once yields infinitely many pairs of prism manifolds that

cobound a ribbon cobordism. Indeed, we conjecture the following analogue to Theo-

rem 4.1.1. Its validity has been verified in a large number of cases through a computer

2Recall that, by the conventions used in this dissertation, L(p, q) is defined as p/q-surgery along
the unknot in S3.
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T

(a)

T

(b)

T

(c)

0 a1 an

(d)

Figure 6.3: Illustration of −L(q, p) ≤ P (p, q).

search using SoaPy [Hub].

Conjecture 6.3.4. Let P1 and P2 be prism manifolds, and suppose that P1 ≤ P2.

Then, up to simultaneous orientation reversal of P1 and P2, one of the following holds:

1. P1
∼= P2;

2. P1
∼= P (1, n) and P2

∼= P (2n+ 1 + 4nk, 4n), for some n ≥ 2 and k ∈ Z; or

3. P1
∼= P (1, 1) and P2

∼= P (q − p+ qk, q) for q/p ∈ F4 and k ∈ Z.

Conversely, in each of these cases P1 ≤ P2 holds.
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