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Abstract

The Market Design approach, which involves the creation of markets with desir-

able properties, has been successfully applied to study a wide range of real-world

economic problems. The market design approach is helpful in scenarios where

money can’t be used as a medium of exchange to facilitate transactions. The alloca-

tion of school/college seats to students, assigning residency positions to physicians,

cadet-branch matching, and exchange of organs like kidneys and liver are some s

problems that have been successfully studied using the market design approach.

Typically, the market design approach concerns with the setting up of two-sided

markets with agents on each side of the market having preferences over each other

or agents on one side and objects (school seats, military branches, public health

goods like beds, ventilators, etc.) on the other side with agents having preferences

over the objects and objects having priority over the agents. Priority ranking of



agents can be considered an entitlement ranking where agents with higher priority

have the right for the object compared to the agent with lower priority. The insights

from the matching theory are then used to create a mechanism that matches agents

with agents or objects for the given set of preferences/priority ranking satisfying

desirable properties. Primary among these properties is stability, an equilibrium

concept for matching. Stable matching ensures that matched agents/objects on the

two sides of the market do not have an incentive to break up their respective match-

ing and form a better matching for themselves. In the market design problem of

matching agents to objects, stability ensures that the agent’s priority for objects is

not violated. Other properties include strategy-proofness, where agents do not have

an incentive to misreport their preferences. Strategy-proof mechanisms are simple

and ensure that high-information agents cannot game the system at the expense of

low-information agents.

The priority ranking thus used in matching agents to objects has been subject to

much criticism. The underlying process that generates the priority rankings can be

inherently discriminatory. Exam scores are used to generate the priority ranking in

allocating school seats to students. In the New York City school system, there has

been a growing call for abolishing exams since it is considered to favor students

with more resources. Similarly, the priority system used in the exchange of organs



like kidneys and liver and triage allocation of scarce resources and services like hos-

pital beds, vaccines, and ventilators has received much criticism. Triage protocols

are developed with a utilitarian notion of maximum benefit given the constraints.

This can result in people with better access to health care resources being better

positioned under a triage protocol than those with lesser access.

The dissertation comprises two essays, a joint work with Kenzo Imamura where

I study the pairwise kidney-exchange problem and a ventilator sharing problem

where I study the triage allocation of ventilator slots under sharing.

In the first essay, I consider the problem of allocating ventilator slots for sharing

under a triage protocol that generates the priority order. The triage protocol is

considered discriminatory since patients with better access to health care through

their life cycle have a better chance to be placed ahead in the order when compared

with patients with lesser access to healthcare services. I consider the allocation

of ventilator slots under a system of reserves, where slots are set-aside for types

of patients to address the shortcoming of the triage protocol. Sharing is possible

between patients who are compatible. In addition to addressing the shortcomings

of the generated priority order, I focus on the question of what does respecting the

generating priority order in a sharing environment mean.



In the second essay, we consider the pairwise-kidney exchange problem, where

incompatible patient donor pairs are matched with each other subject to patient

donor pairs being compatible with each other and acceptable to each other under

a priority order. The priority order is generated using a composite score which in-

cludes variables like the area of patient donor location, and post-transplant medical

survivability, among other factors. In response to the concerns, two mechanisms

have been developed in the literature for pairwise-kidney exchange, a mechanism

that facilitates pairwise-kidney exchange under a strict priority order and an egali-

tarian mechanism that doesn’t have a priority ordering among compatible patients.

Owing to the utilitarian nature of priority order ranking, the egalitarian mechanism

has not been considered for adoption. We develop a compromise mechanism be-

tween the egalitarian mechanism and the mechanism which respects strict priority

order. We show that the compromise mechanism carries forward nice properties

like strategy-proofness, which incentivizes each patient-donor pair to reveal their

complete set of compatible patient-donor pairs and bridges the concern of a need

for priority order with egalitarianism.

The predominant literature in Matching theory considers matching agents with

agents/objects under a priority order considering all agents to be equal and the

priority ordering to be the only difference in consideration among agents. My dis-



sertation contributes to the matching literature where different agents can vary in

ways other than the priority ordering and we try to find solutions that strives to

address the inequity . I thank my advisors for their generous advice and feedback

in shaping my dissertation.
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Chapter 1

Ventilator Sharing - Access and

Equity

1.1 Introduction

The Covid-19 pandemic has placed tremendous strain on public health infrastruc-

ture, forcing the implementation of triage protocols for resources like ventilators,

ICU beds, and vaccines. The state ofNewYorkwas hit hard during the first wave of

the covid-19 pandemic. During March-April 2020, the city of New York recorded

1



Chapter 1 Ventilator Sharing - Access and Equity

20,900 deaths(Cov) more than the expected number of deaths for the same period.

With the rise in the number of infections and fearing a surge in demand for public

health services like mechanical ventilation, the state of New York requested the Food

and Drug Administration(FDA) to allowventilator sharing. On March 25, 2020, the

Food and Drug Administration( FDA) issued an Emergency Use Authorization(EUA)

for ventilator splitters to facilitate ventilator sharing between patients. On March

26, 2020, the state of New York allowed its hospitals to treat two coronavirus pa-

tients with a single ventilator(Lorenzo et al., 2008). On the same day, the New

York-Presbyterian Hospital released protocols for ventilator sharing between two

patients. The protocol allows ventilator sharing between two eligible patients if

the differences in Driving pressure, Respiratory rate, and Positive End Expiratory

Pressure(PEEP) are within acceptable limits.

With growing global interconnection, the Covid-19 pandemic cannot be considered

a tail event, and the occurrence of future influenza pandemics at an increasing

frequency cannot be ruled out. Also, the requirements for public health services

like mechanical ventilation cannot be reduced with the increase in the production

of more ventilators.

There are approximately 62,000 full-featured ventilators(Lewis et al., 2010; Associ-

ation, 2005) available in the United States with an additional 10,000 - 20,000(An-

2
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Figure 1.1: Baitler, Kallet, Kacmarek et.al.(2020)

drew and Fink, February 29 2020) ventilators in Strategic National Stockpile. In

addition, there are 98,000 ventilators that can provide basic functions during an

emergency. During a pandemic, the limiting factor may not be the availability of

ventilators but of respiratory therapists(Emanuel Ezekiel and Wertheimer., 2006) to

operate them safely over three shifts a day. In 2018, the community hospitals em-

ployed around 76,000 full-time respiratory therapists. Regulations on patient safety

and employee management also reduce the availability of respiratory therapists.

California law requires one respiratory therapist for every four ventilated patients.

Under such law, approximately 75,000 would be required to care for 100,000 venti-

lated patients over three shifts of the day(Emanuel Ezekiel and Wertheimer., 2006).

3
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Using projections from the ”Spanish Flu” pandemic of 1918-19, a 2007 study by

(Vawter Dorothy et al., 2007) estimate that a severe influenza pandemic will result

in 10 million hospitalizations with 750,000 patients requiring mechanical ventila-

tion. Even if the production of ventilators picks up, the human capital constraints

can result in rationing of ventilators during the course of a severe pandemic.During

a disaster, Lorenzo et al. (2008) note that physical, monetary, legal, and human cap-

ital constraints exist in providing mechanical ventilation to all patients and demon-

strated ventilator sharing in four adult-human-sized sheep for 12 hours. Similarly,

a study of multiple simulated patients on a single ventilator has been carried out

by G and CB (2006). Ventilator sharing have for long been considered a viable

alternative to combat the surge in demand during the pandemic.

Any mechanism that facilitates the sharing of ventilators between two compatible

patients must consider the shortcomings of triage protocols in achieving equity and

the need to achieve competing objectives on the part of respective governments

tackling the public health crisis.

The triage allocation of mechanical ventilators were developed in response to a

request from the Department of Health and Human Services(HHS)(Pan), by the

Center for Disease Control and Prevention in 2011(CDC), providing a conceptual

framework to state public health officials. The document outlines several ethical

4
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principles to be considered for the process and implementation of triage protocols

by federal, state, local, and tribal health officials. These ethical principles include

maximizing net benefits, maximizing lives and number of life years saved; instru-

mental valuation, prioritization of people who are viewed essential to prevent social

disintegration during a pandemic; life cycle principle, prioritizing individuals based

on various life cycle stages achieved. It is also suggested that multiple ethical prin-

ciples be combined to produce a composite priority score for allocation to reflect

the diverse ethical considerations underlying triage protocols.

Based on the conceptual framework, states have developed their guidelines. The

state of New York(Howard et al., 2015) issued guidelines suggests prioritizing pa-

tients to save the maximum number of lives, while Pennsylvania(Pen) and Col-

orado(Col) guidelines prioritizes patients based on saving the maximum number

of lives and life years, incorporating multiple ethical principles. The use of sin-

gle/multiple ethical principles produces broad categories of patients. Tiebreakers

are used to resolve allocation between patients within the same category. For ex-

ample, Colorado guidelines suggest the use of a tiered approach for breaking ties.

A lower tier is used to break the tie if patients are tied in all upper tiers of con-

siderations. In Colorado guidelines, the top tier prioritizes patients based on their

short-term and long-termseverity of illness, followed by pediatric patients, health

5
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careworkers, and first responders, followed by pregnant patients, sole caregivers. If

ties between patients could not be resolved using the above criteria, the ventilators

are allocated randomly between the patients.

Bioethicists(Marylou et al.; Williams, 1997; Ramsey, 1970; Rescher, 1969) and

economists(Pathak Parag et al., 2020) have long argued about the problems of

integrating these multiple ethical principles on a single priority scale. (Piscitello

et al., 2020) note that, of the 26 states which have published their guidelines, 11

have recommended exclusion criteria for ventilator allocation. Exclusion criteria

are meant to exclude patients from consideration for ventilator allocation. Beyond

exclusion criteria, the triage protocol can fall short in two more ways. The triage

protocol might be insufficient in addressing equity, being blind to category-specific

claims of patients. (Reyes, 2020) notes that Blacks, Hispanics, Indigenous peo-

ple, and Pacific Islanders have suffered disproportionate death rates from Covid-19

compared to other ethnic groups. Using state-level estimates,(Karaca-Mandic et al.,

2021) show disproportionate hospitalization of Blacks and Hispanic people from

Covid-19, while Azar Kristen et al. (2020) find that in a large health system in

Northern California, Black people are 2.7 times more likely to be hospitalized af-

ter controlling for age, sex, comorbidities, and income compared to non-Hispanic

whites. Mahajan Uma and Larkins-Pettigrew. (2020) show the disproportional im-
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pact of Covid through a correlational analysis on racial demographics and deaths

in 2886 counties across the US. The triage protocols implemented by the states

might be insufficient in promoting instrumental value. While issuing guidelines for

triage protocols, New York did not prioritize health workers and first responders for

tiebreakers fearing the unavailability of ventilators to other people in some areas.

During the course of a pandemic, states might want to incentivize health care work-

ers, first responders, caregivers, and essential workers to help save more lives and

preserve order. The adopted guidelines can fall short in meeting this requirement.

The triage protocols implemented by the states might be insufficient in promot-

ing instrumental value. While issuing guidelines for triage protocols, New York

didn’t prioritize health workers and first responders for tie-breakers fearing the un-

availability of ventilators to other people in some areas. During the course of a

pandemic, states might want to incentivize health care workers, first responders,

caregivers, and essential workers to help save more lives and preserve order. The

adopted guidelines can fall short in meeting this requirement.

(Pathak Parag et al., 2020) highlight these shortcomings of the adopted triage pro-

tocols and propose a system of reserves as a compromise solution. A system of

reserves sets aside ventilators for each type specific claims, available only for pa-

tients belonging to those type. Reserves have been used as a solution in response

7
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to type specific claims in the allocation of scarce medical resources. For example,

Massachusetts pledged to allocate additional 20% vaccines to communities that

have experienced disproportionate COVID-19 burden and high social vulnerabil-

ity(MAp). New Hampshire allocated 10% of the state’s available vaccine supply to

geographical areas that are highly vulnerable to COVID-19(NHp). California re-

quired all vaccine providers to set aside 40% of their total appointment capacity for

statewide prioritized groups. Outside the field of medicine, reserves have been used

in the allocation of school seats and jobs. Chicago school system reserves 60% of

a school’s total seats for allocation based on the applicant’s neighborhood tier(Dur

et al., 2020). In India, horizontal reservation uses a system of reserves in providing

job opportunities under affirmative action (Sonmez and Yenmez., 2019b,a).

In section II we define the ventilator allocation and sharing problem as a Non-

Transferable Utility(NTU) problem with a system of reserves to overcome the short-

comings of triage protocol. Patients get 1 utility if they get a ventilator and 0 utility

if they don’t. While it is clear what respecting priorities should be for ventilator allo-

cation problems without sharing, compatibility requirements in sharing a ventilator

results in matching lower priority patients while keeping higher priority patients

unmatched. We introduce the definition of weakly respects priorities which spec-

ifies that a lower priority patient can be allocated a ventilator slot if an unmatched

8
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higher priority patient cannot be provided a ventilator slot in the absence of lower

priority patients. Using these definitions we then investigate sequential reserve

matching, which processes ventilators based on a sequential ordering of types. We

show that sequential reserve matching need not be maximal in allocating ventilator

slots to patients belonging to the reserved type and introduce Matching Algorithm

with Reserves. We demonstrate that the matching algorithm with reserves weakly

respects priorities and it is maximal in allocating ventilator slots to patients belong-

ing to at least one of the reserved types. In ventilator sharing problems, lower

priority patients can be matched and relatively higher priority patients can be omit-

ted due to compatibility issues. We show that the matching chosen by Matching

Algorithm with Reserves maximizes the sum of priority scores compared to other

matches which are identical with respect to patients who are allocated ventilator

machines and threshold for allocating ventilator machine/slots to patients on the

priority order.

(Beitler et al., 2020) study the safety and implementation of the New York Pres-

byterian Hospital protocols for ventilator sharing on four pairs of patients. Safe

implementation of ventilator sharing carries potential risks and they recommend

ventilator sharing to be restricted to centers with appropriate expertise. American

health care system is patient-centric and respects patients’ autonomy in decision

9
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making. Even though public health emergencies like disasters or pandemics can

call for the suspension of these rights, the risks involved in the ventilator sharing

problem can be hard to ignore. Hospital systems can ask for voluntary disclosure of

compatible patients with whom patients can share a ventilator. In this regard, we

analyze the incentives provided by the mechanism which implements the match-

ing algorithm with reserves. We show that the mechanism is dominant strategy

incentive compatible, incentivizing patients to fully disclose their list of compatible

patients.

Even though weakly respecting priorities is an intuitive notion of what respecting

priorities should be in matching problems with sharing, the matchings which sat-

isfy weakly respects priorities need not maximize the number of patients who can

be allocated a ventilator slot. In section III, we define priority compliance which is

weaker than weakly respecting priorities . We then introduce Modified Matching

Algorithm with Reserves which is priority compliant and is a compromise between

matching greedily, maximizing the number of patients who are allocated a ventila-

tor slot, and the intuitive notion of weakly respecting priorities. We discuss the

incentive properties of Modified Matching Algorithm with Reserves and show

that they provide dominant strategy incentive for patients to fully disclose the list

of compatible patients.

10
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Following Budish (2011), we define the notion of satisfying equity for the ventila-

tor sharing problem. We show that under a random priority order the Modified

Matching Algorithm with Reserves satisfies equity and allocates ventilator slots

to the maximum number of patients. Using the conclusions from random prior-

ity order mechanism implementing Modified Matching Algorithm with Reserves,

we explore an alternative way to the system of reserves for matching patients with

ventilator slots taking into account their type-specific claims. Since patients are al-

located ventilator slots dynamically, we then discuss matching in dynamic settings.

Though the focus of the paper is on ventilator sharing, the problem can be extended

to study similar problems like public housing allocation with sharing, and public

provision of shareable services like broadband connection to remote locations. In

a 2014 study, Kermit et al. (2014) find that in households aged over 50, 10.2 mil-

lion households(nearly one-sixth) were moderately cost-burdened 1, while nearly

9.6 million households were severely cost-burdened 2. In the coming years, the

demographic shift towards the older population is expected to increase homeless-

ness. According to Annual Homelessness Assessment Report(2016) presented to

Congress, there were 67,000 people aged 62 years and older who were homeless

1Moderately cost-burdened households pay more than 30 percent of income for housing, including
utilities

2Severely cost-burdened households pay more than 50 percent of income for housing, including
utilities

11
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compared to 45,451 older people in 2007 an increase of 48.2%. Senior individu-

als are often house rich and cash poor. In such a scenario counties and cities can

adopt house sharing programs, sharing a house or an apartment between two or

more unrelated people to keep the cost of fighting homelessness down and over-

come the lack of affordable housing units. The cities and counties can use a non-

discriminatory compatibility questionnaire which can be used by participants to

screen suitable partners for sharing a house or an apartment.

1.2 Model

• Let P denote the set of patients who are eligible for a ventilator.

• Let T denote the set of types under which patients are eligible to get priority

access for a ventilator.

• Patients can belong to one or more of the types t, t ∈ T. Let r t be the set of

slots reserved for type t.

• Let u ∈T represent the type under which all patients are eligible.

• Let τ : P→ 2T be the function which assigns each patient to an element of 2T,

12
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the power set of types.

• Let q be the total number of ventilators. There are up to 2q possible slots

which are to be allocated among patients of different types.

• Let r ≡ {r t1 , r t2 , ...., r tn} be the reserve system. Each r ti is the set of slots re-

served for type ti. For any type ti,
∑i=n

i=1 r ti ≤ q.

• A patient is eligible for ventilator sharing if their respiratory statistics are ac-

ceptable.

• Two patients can share ventilators among themselves only if they are eligible

and difference between key respiratory statistics is within acceptable limit.

• Let G = {(pi, p j) | pi, p j ∈P∪ {;}, pi compatible with p j}.

• A type assignment function µ : P→T∪ {;} that assigns every patient to a type

or ; such that for all types t, t ∈T, |µ−1(t) |≤ 2q.

• If a patient p ∈P doesn’t have access to a ventilator slot, then µ(p)=;.

• A sharing function φ : P→P which assigns for every patient the patient whom

they are sharing ventilator with. If φ(pi)= p j, then φ(p j)= pi.

13
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• A matching is a (µ,φ) pair.

• A matching (µ,φ) is feasible if,

(i) For every t ∈T\{u}, |µ−1(t)| ≤ r t.

(ii) If µ(p) ̸= ;, then (p,φ(p)) ∈ G .

(iii) If µ(p)=;, then φ(p)=;

• Let M be the set of feasible matchings.

• A ventilator sharing problem is a list (P,G ,T, r,τ)

1.3 Allocation of Ventilators

A general theory of reserves comprises of a set of types, a quota for each of the

types and priority ordering for each of the type which can rank patients differently

across different types. To analyze the allocation of ventilators and shared slots we

will concern ourselves with a baseline priority order since, in most triage problems

and in most practical applications patients are ranked based on a baseline priority

order. For example, 19 states use baseline priority ranking based on Sequential

14
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Organ Failure Assessment(SOFA) scores (Piscitello et al., 2020) for allocation of

ICU beds and ventilators.

Let π be the baseline priority order over patients. p1 π p2, implies that patient p1

is strictly preferred to patient p2. Suppose patient p1 and p2 belong to type t (i.e.)

t ∈ τ(p1) and t ∈ τ(p2) then,

p1π p2 ⇐⇒ p1πt p2

where πt is the induced priority ordering over patients for type t.

Baseline priority order is developed with consideration for SOFA score, comorbidi-

ties and life cycle experiences. Prioritisation based on SOFA score is done to save

the most number of lives since SOFA scores are considered to be indicator of each

patients health. The triage problem in its current form does not include consid-

erations for compatible patients who are willing to share ventilators with other

patients. Thus, the triage problem can involve a trade-off between saving healthy

patients and saving the most number of patients.

Example 1. There are three patients P = {p1, p2, p3} ,a single type T = {u} and a

single ventilator to be allocated under the unreserved type . The baseline priority order

15



Chapter 1 Ventilator Sharing - Access and Equity

patients is given by

p1π p2π p3

The compatible patients who can share ventilator is G = {(p2, p3}.

There are two possible matches with,

µ−1 = {p1}andµ
′−1 = {p2, p3}

Matching µ respects the baseline priority order π while matching µ
′
matches the most

number of patients.

1.4 Matching with Reserves:

We will now consider the problem of matching patients with reserves under a sys-

tem of reserves r ≡ {r t1 , r t2 , ...., r tn}. The reserves on the set of machines can be

considered as a set aside, guaranteeing patients from the reserved categories a min-

imum of compatible machines. In this regard, the following definition will be help-

ful.

16
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Let δµ refers to the set of patients who are matched to a ventilator slot under the

matching µ to a type other than u and who belong to that type.

δµ = {p |µ(p)= t, t ∈ τ(p)and t ∈T\{u}}

While applying a system of reserves, we can encounter a situation where all the

patients belonging to a particular type have been considered for matching and there

exists unused reserves of slots. In those scenarios we can follow either a Hard

Reserve implementation or a Soft Reserve implementation.

Hard Reserve: A baseline priority order (π) follows a hard reserve system, if for

any type t ∈T\{u}, and for any patient p with t ∉ τ(p),

;πt p

In a hard reserve system of reserve implementation, if reserve slots of a particular

type are under utilized, then they are not made available for other patients.

Soft Reserve: A baseline priority order (π) follows a soft reserve system, if for any

type t ∈T\{u}, and for any patients p, q, r with t ∈ τ(p), t ∉ τ(q) and t ∉ τ(r)

17
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pπt qπt ;

pπt rπt ;

qπt r ⇐⇒ qπ r

In a soft reserve system of reserve implementation, if reserve slots of a particular

type are under utilized, then they are made available for other patients following

the baseline priority order.

Definition 1. A matching (µ,φ) ∈M , complies with eligibility requirements if for

any patient p ∈P and for any type t ∈T,

µ(p)= t ⇒ p πt ;

A patient is allocated a ventilator slot under a type t, only if the patient is eligible

to receive a ventilator under category t.

18
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Definition 2. A matching (µ,φ) ∈M is non-wasteful if for any patient p ∈P and for

any type t ∈T if,

µ(p)=;, and p πt ;

then there exists no matching (µ
′
,φ

′
) ∈M such that for q ∈P\{p}

µ′(q)=µ(q) andµ′(p)= t

A matching in M is non-wasteful if a patient can be allocated a ventilator slot

under reserve constraints without unmatching already matched patients.

For any patient p and a matching µ let, U δ
p(t) represent the set of patients who are

more preferred to patient p with respect to type t under π and who are matched to

a ventilator slot under the type t to which patient p belongs. Mathematically,

U
µ
p (t)= {q ∈P | qπt p &µ(q)= t}

Definition 3. A matching (µ,φ) ∈ M , respects type priorities for slots if for any

patient p ∈P and t ∈ τ(p) ,t ∈T\{u}, if

19



Chapter 1 Ventilator Sharing - Access and Equity

µ(p)=; ⇒ |U µ
p (t)| = r t

For type t = u,

µ(p)=; ⇒ |U µ
p (u)| ≥ q − ∑

t∈T\{u}
r t

In a ventilator sharing problem there are q guaranteed slots. If an eligible patient

isn’t matched to a ventilator slot then it should be the case that, the guaranteed

slots for the types for which the patients is eligible have been assigned to higher

priority patients in the same type. Note that, the definition mentions respecting

type priorities over q slots and not 2q possible slots

Having reserves over 2q slots can lead to undesirable allocations in terms of bene-

ficiary assignment. Consider the following example. There are 9 patients, 3 venti-

lators and two types T = {t1,u}. Let r t1 = 3. Consider a ventilator sharing problem

with a soft reserve system of reserve implementation.
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From the above example the number of beneficiaries of type t1 who were able to

access ventilator slot is 0 even though there are 3 slots reserved for the type. Having

reserves over 2q slots can lead to undesirable allocations from a policy point of view.

The problem can be resolved if there exists a priorities over type space and slots are

allocated based on the priority ordering of types. The techniques developed in this

paper can be used to choose desirable allocations for the reserves over 2q slots

problem. In the paper I try to implement reserves over q slots.

Definition 4. A matching (µ,φ) ∈M respects priorities if for patients p, q ∈ P and

for any type t ∈T

µ(p)= t andµ(q)=; ⇒ pπt q

Let M rp be the set of feasible matchings which respects priorities.
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In the problem of sharing ventilators, the ability to match a lower priority patient to

a ventilator slot is contingent on finding a suitable patient with whom a ventilator

can be shared. On the basis of compatibility, a lower priority patient can be matched

to a ventilator slot compared to a relatively higher priority patient. This motivates

a more permissive definition of a matching respecting priorities.

For any patient p and a matching µ let, L
µ−1(t)
p represent the set of patients who are

not preferred to patient p with respect to type t under π and who are matched to a

ventilator slot under the type t to which patient p belongs. Mathematically,

L
µ−1(t)
p = {q | pπt q &µ(q)= t}

L
µ−1

p = ⋃
t∈τ(p)

L
µ−1(t)
p

Definition 5. Consider a ventilator sharing problem with a system of reserves. If

a matching (µ,φ) ∈M , has µ(p) =; and L
µ−1

p ̸= ;, then the matching (µ,φ) weakly

respects priorities if there exists no matching (µ
′
,φ

′
) ∈ M such that, for all q ∈

P\L
µ−1

p
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µ
′
(q)=µ(q)

and µ
′
(p) ̸= ;.

In a matching problem with sharing, a matching respects priorities if freeing the

slots to which a patient is eligible by means of priority ordering doesn’t help the

patient to get matched. Let M wrp be the set of feasible matchings which weakly

respects priorities.

Proposition 1. For any ventilator sharing problem (P,G ,T, r,τ),

M rp ⊆M wrp

If G =; then,

M rp =M wrp

Proof. Take any matching (µ,φ) ∈ M rp. If (µ,φ) ∈ M rp then for any patient p ,

L
µ−1

p =;. (⇒) (µ,φ) ∈M wrp.

If G = ; then, take any matching (µ,φ) ∈ M wrp. Suppose there exists a patient p

with µ(p) = ; with L
µ−1

p ̸= ;. Since G = ; , all patients are allocated ventilators

23



Chapter 1 Ventilator Sharing - Access and Equity

which aren’t shared with other patients.

Let µ(q)= t. Since q ∈L
µ−1

p , pπt q. Construct a matching µ′ as follows.

µ′(q)=;, µ′(p)= t

For all patients r ∈P\{p, q}

µ′(r)=µ(r)

Matching µ′ allocates a ventilator to patient p which was allocated to patient q

while matching patient p to type t to which patient q was matched.

(⇒) Matching (µ,φ) ∉M wrp. Contradiction.

■

The following algorithm can be used to choose a Pareto efficient matching which

respects priorities. I will build the algorithm considering the case of a single type u

and all the patients belonging to that type.

For the algorithm, at every step we will consider the induced graph (E,V ) where

V is the set of patients who have been matched to the algorithm up to that step.
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There exists an edge e ∈ E between two vertices p1 and p2, if there exists patients

p1 and p2 who are compatible with each other.

Matching Algorithm:

Step 0: Let φ0(p)=; for p ∈P. Since no patient is matched with any ventilator, no

patient is sharing their ventilator with any other patient. µ0(p)=; for p ∈P.

Step 1: Set φ1(p) =φ0(p) Let q be the number of available ventilators which are to

be allocated. Choose the patient p1 who is the most preferred patient remaining

according to baseline priority order. Match the patient to an empty ventilator and

reduce the count of available ventilators by 1 to q−1. φ1(p)=φ0(p) for all p ∈P.

µ1(p)=µ0(p) for all p ∈P\{p1}

µ1(p1)= u

...

All the available ventilators have been allocated by the end of step q.

Step q+1: Set φq+1(p) = φq(p). There are no available ventilators, yet to be allo-

cated. Choose the patient pq+1 who is the (q+1)th most preferred patient in the

baseline priority order. Check if an already matched patient pi can be made to

share a ventilator with another already matched patient p j. If so, make patients pi
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and p j share a ventilator and allocate the empty ventilator to patient pq+1.

Update φq+1(pi)= p j and φq+1(p j)= pi.

For patients p ∈P\{pi, p j}, φq+1(p)=;

µq+1(p)=µq(p) for all p ∈P\{pq+1}

µq+1(pq+1)= u

Suppose there exists no already matched patient pi who can be made to share with

another already matched patient p j . Check if patient pq+1 can be made to share

a ventilator with another already matched patient pi. Make an already matched

patient pi share a ventilator with patient pq+1 , if they are compatible.

φq+1(pi)= pq+1

φq+1(pq+1)= pi.

For all other patients p ∈P\{pi, pq+1}, φq+1(p)=;.

If patient pq+1 is not compatible with any of the patients then patient pq+1 is un-

matched and µq+1 =µq.

φq+1(p)=φq(p)

...
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Step q+k: There are no available ventilators, yet to be allocated. Choose the

patient pq+k who is the (q+k)th preferred patient from baseline priority order. Check

if there exists a chain of patients [;−pm
1 ]−[pm

2 −φq+k(pm
2 )]−[pm

3 −φq+k(pm
3 )]....−[pm

k −

;] with the following properties.

µk−1(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 can share a ventilator with pm

2 and φq+k(pm
i ) is compatible with pm

i+1 for i > 1

and φq+k is updated along the chain by turning edges in the chain belonging to

matching to not belonging to the matching and vice versa. If such a chain exists,

then it is an augmenting path. Allocate the ventilator of patient pm
1 to patient pm

q+k

and make patient pm
i share ventilator with φq+k(pm

i−1). We will call such a chain a

Ventilator Freeing Chain(VFC).

µq+k(p)=µq+k−1(p) for all p ∈P\{pq+k}

µq+k(pq+k)= u

Suppose there exists no such chain. Check if there exists a chain of patients [;−

pm
1 ]− [pm

2 −φ(q+k(pm
2 )]− [pm

3 −φq+k(pm
3 )]....− [pm

k −φq+k(pm
k )] such that
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µk−1(pm
i ) ̸= ; i ∈ {1,2,3...,n}

Patient pm
1 is compatible with patient pm

2 and for all i > 1 patient φq+k(pm
i ) is com-

patible with patient pm
i+1. φq+k is updated along the chain by turning edges in the

chain belonging to matching to not belonging to the matching and vice versa. We

will call such a chain a Ventilator Slot Freeing Chain(VSFC). Check if there exists

a VSFC exists such that patient pq+k can be matched, (i.e)φq+k(pm
k ) is compatible

with pq+k. If such a chain exists, then it is an augmenting path.

If such a chain exists patient pm
1 is made to share ventilator with patient pm

2 and for

all i > 1 patient φq+k(pm
i ) are made to share ventilator with patient pm

i+1 and φq+k

is updated along the chain. φq+k(pm
k ) is allocated the ventilator of patient pm

1 and

patient pq+k shares ventilator with patient φq+k(pm
k ).

Suppose there exists no such chain, then patient pq+k is unmatched.

φq+k(p)=φq+k−1(p) .

µq+k =µq+k−1

Proceed with the next patient in baseline priority order.

...
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The algorithm terminates in |P | steps.

(µ,φ) where µ=µ|P|,φ=φ|P| is the matching chosen by the algorithm.

Theorem 1. The matching algorithm chooses a Pareto efficient matching that weakly

respects priorities.

Proof. Claim: Let Pk−1 be the set of patients matched by step k−1. Let pk be the

patient chosen by step k of the algorithm. Suppose pk is not matched by step k.

Then there exists no matching where for any patient p ∈Pk−1 ∪ {pk}, µ(p) ̸= ;.

Consider any step l, l > k. Let pl be the patient chosen by step l of the algorithm.

There are no available ventilators, yet to be allocated. If there are available ventila-

tors which can be allocated, then patient pk is allocated a ventilator and is matched

by step k of the algorithm. Contradiction.

Lemma 1. For steps l > k, there exists no chain of patients [;− pm
1 ]− [pm

2 −φl(pm
2 )]−

[pm
3 −φl(pm

3 )]....− [pm
n −;] with the following properties
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pm
1 is compatible with pm

2 and φl(pm
i ) is compatible with pm

i+1 for i > 1 and φl is

updated along the chain by turning edges in the chain belonging to matching to not

belonging to the matching and vice versa.

Proof. We will establish the lemma using induction.

Since patient pk is not matched to a ventilator slot by the end of step k, there exists

no chain of patients [;− pm
1 ]− [pm

2 −φk(pm
2 )]− [pm

3 −φk(pm
3 )]....− [pm

n −;] with the

following properties

µk(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φk(pm
i ) is compatible with pm

i+1 for i > 1 in step k+1.

Suppose patient pk+1 is matched by the end of step k+1. Then there doesn’t exist a

chain [;− pm
1 ]− [pm

2 −φk+1(pm
2 )]− [pm

3 −φk+1(pm
3 )....− [pm

n −;] with

µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φk+1(pm
i ) is compatible with pm

i+1 for i > 1 by the

end of step k+1 and φk+1 is updated along the chain by turning edges in the chain
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belonging to matching to not belonging to the matching and vice versa.

Suppose not. Suppose there exists such a chain by the end of step k + 1. Then

construct a chain as follows. For any i, if [pm
i −φk+1(pm

i )] = [pm
i −φk(pm

i )] then

retain the vertex as part of the chain.

If [pm
i −φk+1(pm

i )] ̸= [pm
i −φk(pm

i )] then replace [pm
i −φk+1(pm

i )] with [pm
i −φk(pm

i )]−

[φk+1(φk(pm
i ))−φk(φk+1(φk(pm

i )))]− ...[φk+1(...(φk(pm
i )))−φk(...φk+1(φk(pm

i )))] where

φk(...φk+1(φk(pm
i )))=φk+1(pm

i ).

If φk+1(pm
i )= pk+1 then stop when φk(...φk+1(φk(pm

i )))=;.

(⇒) There exists a chain of patients, [;−pm
1 ]−[pm

2 −φk(pm
2 )]−[pm

3 −φk(pm
3 )]....−[pm

n −

;] by the end of step k with

µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φk(pm
i ) is compatible with pm

i+1 for i > 1 and φk is

updated along the chain by the end of step k by turning edges in the chain belonging

to matching to not belonging to the matching and vice versa. If such a chain exists,

then it is an augmenting path. Contradiction.
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By inductive argument, there exists no chain of patients [;− pm
1 ]− [pm

2 −φl−1(pm
2 )]−

[pm
3 −φl−1(pm

3 )....− [pm
n −;] with

µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φl−1(pm
i ) is compatible with pm

i+1 for i > 1 and φl−1

is updated along the chain by the end of step l −1 by turning edges in the chain

belonging to matching to not belonging to the matching and vice versa.

Suppose patient pl is matched by the end of step l. Then there doesn’t exist a chain

[;− pm
1 ]− [pm

2 −φl(pm
2 )]− [pm

3 −φl(pm
3 )....− [pm

n −;] with

µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φl(pm
i ) is compatible with pm

i+1 for i > 1 and φl is

updated along the chain by the end of step l by turning edges in the chain belonging

to matching to not belonging to the matching and vice versa.

Suppose not. Suppose there exists such a chain. Then construct a chain as follows.

For any i, if [pm
i −φl(pm

i )] = [pm
i −φl−1(pm

i )] then retain the vertex as part of the
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chain.

If [pm
i −φl(pm

i )] ̸= [pm
i −φl−1(pm

i )] then replace [pm
i −φl(pm

i )] with [pm
i −φl−1(pm

i )]−

[φl(φl−1(pm
i ))−φl−1(φl(φl−1(pm

i )))]− ...[φl(...(φl−1(pm
i )))−

φl−1(...φl(φl−1(pm
i )))] where φl−1(...φl(φl−1(pm

i )))=φl(pm
i ).

If φl(pm
i )= pl then stop when φl−1(...φl(φl−1(pm

i )))=;.

(⇒) There exists a chain of patients, [;− pm
1 ]− [pm

2 −φl−1(pm
2 )]− [pm

3 −φl−1(pm
3 )]....−

[pm
n −;] by the end of step l−1 with

µ(pm
i ) ̸= ;, i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φl−1(pm
i ) is compatible with pm

i+1 for i > 1 in step

l and φl−1 is updated along the chain by turning edges in the chain belonging to

matching to not belonging to the matching and vice versa. Contradiction.

■

Lemma 2. For steps l > k, there exists no chain of patients [;− pm
1 ]− [pm

2 −φl(pm
2 )]−

[pm
3 −φl(pm

3 )]....− [pm
k −φl(pm

k )] with the following properties.
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µl−1(pm
i ) ̸= ; i ∈ {1,2,3...,n}

φl(pm
k ) is compatible with pk. Patient pm

1 is compatible with patient pm
2 and for all

i > 1 patient φl(pm
i ) is compatible with patient pm

i+1 and φl is updated along the chain

by turning edges in the chain belonging to matching to not belonging to the matching

and vice versa.

Proof. Patient pk was not matched to a ventilator slot by the end of step k. There

exists no chain of patients [;− pm
1 ]− [pm

2 −φk(pm
2 )]− [pm

3 −φk(pm
3 )]....− [pm

n −φk(pm
n )]

with the following properties

µk(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φk(pm
i ) is compatible with pm

i+1 for 1 < i < n and

φk(pm
n ) is compatible with patient pk in step k+1.

Suppose patient pk+1 is matched by the end of step of k+1. Then there doesn’t exist

a chain [;− pm
1 ]− [pm

2 −φk+1(pm
2 )]− [pm

3 −φk+1(pm
3 )....− [pm

n −φk+1(pm
n ] with
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µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φk+1(pm
i ) is compatible with pm

i+1 for 1 < i < n and

φk+1(pm
n ) is compatible with patient pk by the end of step k+1.

Suppose not. Suppose there exists such a chain. Then construct a chain as follows.

For any i, if [pm
i −φk+1(pm

i )] = [pm
i −φk(pm

i )] then retain the vertex as part of the

chain.

Case i: φk+1(pm
i ) ̸= pk+1. If [pm

i −φk+1(pm
i )] ̸= [pm

i −φk(pm
i )] then replace [pm

i −

φk+1(pm
i )] with [pm

i −φk(pm
i )]−[φk+1(φk(pm

i ))−φk(φk+1(φk(pm
i )))]−...[φk+1(...(φk(pm

i )))−

φk(...φk+1(φk(pm
i )))] where φk(...φk+1(φk(pm

i )))=φk+1(pm
i ).

Case ii: φk+1(pm
i )= pk+1. Stop when φk(...φk+1(φk(pm

i )))=;.

(⇒)There exists a chain of patients, [;−pm
1 ]−[pm

2 −φk(pm
2 )]−[pm

3 −φk(pm
3 )]....−[pm

n −

φk(pm
n )] by the end of step k with

µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}
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pm
1 is compatible with pm

2 and φk(pm
i ) is compatible with pm

i+1 for 1 < i < n and

φk(pm
n ) is compatible with pk in step k+1. Contradiction.

(or)There exists a chain of patients, [;−pm
1 ]−[pm

2 −φk(pm
2 )]−[pm

3 −φk(pm
3 )]....−[pm

n −

;] by the end of step k with

µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φk(pm
i ) is compatible with pm

i+1 for i > 1 in step k+1.

Contradiction.

By inductive argument, there exists no chain of patients [;− pm
1 ]− [pm

2 −φl−1(pm
2 )]−

[pm
3 −φl−1(pm

3 )....− [pm
n −φl−1(pm

n )] with

µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φl−1(pm
i ) is compatible with pm

i+1 for 1 < i < n and

φl−1(pm
n ) is compatible with patient pk by the end of step l−1.

Suppose patient pl is matched by the end of step l.Then there doesn’t exist a chain

[;− pm
1 ]− [pm

2 −φl(pm
2 )]− [pm

3 −φl(pm
3 )....− [pm

n −φl(pm
n )] with
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µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φl(pm
i ) is compatible with pm

i+1 for 1 < i < n and

φl(pm
n ) is compatible with patient pk by the end of step l.

Suppose not. Suppose there exists such a chain. Then construct a chain as follows.

For any i, if [pm
i −φl(pm

i )] = [pm
i −φl−1(pm

i )] then retain the vertex as part of the

chain.

Case i: φk+1(pm
i ) ̸= pk+1 If [pm

i −φl(pm
i )] ̸= [pm

i −φl−1(pm
i )] then replace [pm

i −φl(pm
i )]

with [pm
i −φl−1(pm

i )]−[φl(φl−1(pm
i ))−φl−1(φl(φl−1(pm

i )))]−...[φl(...(φl−1(pm
i )))−φl−1(...φl(φl−1(pm

i )))]

where φl−1(...φl(φl−1(pm
i )))=φl(pm

i ).

Case ii: φk+1(pm
i )= pk+1 Stop when φl−1(...φl(φl−1(pm

i )))=;.

(−)There exists a chain of patients, [;− pm
1 ]− [pm

2 −φl−1(pm
2 )]− [pl−1

3 −φl−1(pm
3 )]....−

[pl−1
n −φl−1(pm

n )] by the end of step l−1 with

µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}
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pm
1 is compatible with pm

2 and φl−1(pm
i ) is compatible with pm

i+1 for 1 < i < n and

φl−1(pm
n ) is compatible with pk in step k+1. Contradiction.

(or)There exists a chain of patients, [;− pm
1 ]− [pm

2 −φl−1(pm
2 )]− [pm

3 −φl−1(pm
3 )]....−

[pm
n −;] by the end of step k with

µ(pm
i ) ̸= ; i ∈ {1,2,3...,n}

pm
1 is compatible with pm

2 and φl−1(pm
i ) is compatible with pm

i+1 for i > 1 in step

k+1. Contradiction. ■

From the Lemmas (1) & (2) , it can be concluded that if pk is not matched by step k,

then there exists no matching where for any patient p ∈Pk−1 ∪ {pk}, µ(p) ̸= ;. ■

Once empty ventilators are exhausted by matching with patients, the ability to

match a patient to an empty ventilator slot depends on the existence of chains.

Each patient is a vertex in the algorithm. Since a chain can include a vertex more

than once, the number of chains that needs to be checked for the existence of a

matching with the chosen patient, grows exponentially as more and more patients

are considered for a ventilator slot. Thus, the complexity of finding a Pareto efficient

match by the above procedure increases with the increase in number of patients.
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Simple Chains: A chain is simple if all its vertices are distinct.

A chain in the above algorithm is simple, if a patient is included at most once as

part of the chain.

Proposition 2. There exists a chain such that patient pq+k is matched by step q+k of

the algorithm. Then there exists a simple chain such that patient pq+k is matched by

step q+k.

Proof. There exists a chain of patients [;−pm
1 ]−[pm

2 −φq+k−1(pm
2 )]−[pm

3 −φq+k−1(pm
3 )]....−

[pm
k −φq+k−1(pm

k )] with the following properties.

µk−1(pm
i ) ̸= ;, i ∈ {1,2,3...,n}

φq+k−1(pm
k ) is compatible with pq+k. Patient pm

1 is compatible with patient pm
2 and

for all i > 1 patient φq+k−1(pm
i ) is compatible with patient pm

i+1.

By the algorithm, patient pm
1 shares a ventilator with pm

2 and for all i > 1 patient

φq+k−1(pm
i ) shares ventilator with patient pm

i+1 by end of step k. Patient φq+k−1(pm
k )

shares the ventilator vacated by patient pm
1 with patient pq+k and φq+k is updated

along the chain.
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Let Pq+k−1 be the set of patients matched by step q+ k−1. Since no patient who

is matched by end of step q+ k−1 is waitlisted by end of step q+ k, construct the

simple chain as follows.

[;− pm
1 ]− [φq+k(pm

1 )−φq+k−1(φq+k(pm
1 ))]− [φq+k(φq+k−1(φq+k(pm

1 )))−

φq+k−1(φq+k(φq+k−1(φq+k(pm
1 )))]....− [φq+k(......(pm

1 ))−φq+k−1(......(pm
1 ))]. ■

We now consider the allocation of ventilator slots under multiple types and a sys-

tem of reserves. A common way of allocating objects under a system of reserves is

by using sequential reserve matchings. In sequential reserve matchings ventilator

slots are allocated to types based on the sequential order over the types. Sequen-

tial reserve matchings have been employed in allocation of school seats and in the

allocation of jobs under affirmative action(Sonmez and Yenmez., 2019b,a). Even

though sequential reserve matchings are intuitive and easy to apply, they can pro-

duce undesirable matchings when patients can fall under more than one category.

Consider the following example

Example 2. There are 3 patients P= {p1, p2, p3}. There are three types, T= {t1, t2,u}.

τ(p1) = {t1, t2,u}, τ(p2) = {u}, τ(p3) = {t1,u}. The patients aren’t compatible with each

other, G = ;. There are 4 ventilator slots to be allocated and one ventilator slot is

reserved for t1 and t2. The reserves are to be processed between types t1 and t2 based
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on the order of precedence ▷, t1 ▷ t2 with a soft reserve system of implementation. The

baseline order of priority π over patients is given by

p1 π p2 π p3

It can be seen that under the sequential order of processing reserves t1 ▷ t2, µ(p1) =

t1,µ(p2) = u, which allocates the ventilator slot reserved under type t2 to patient p2

even though p2 does not belong to type t2. The matching allocates one slot to a ben-

eficiary belonging to a type . But there exists a matching µ∗, with µ∗(p1) = t2 and

µ∗(p3) = t1 which maximizes the allocation of ventilator slots to beneficiaries belong-

ing to types.

The above example suggests that applying a sequential reserve matching need not

maximize the allocation of ventilator slots to patients belonging to different types.

To overcomes this, we will adopt the Matching Algorithm With Reserves.

For the Matching Algorithm with Reserves we will consider two graphs. Graph

(E,V ), where vertices V is the set of patients. There exists an edge e ∈ E between

two vertices vi and v j, if there exists patients pi and p j who are compatible with

each other.
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Directed Graph (E k,V ) induced by step k, where vertices V is the set of types. There

exists a directed edge e ∈ E k from vertex vi to v j, if there exists patients pi who is

matched under type ti by step k and t j ∈ τ(pi). In words, there exists a directed

edge from type ti to t j if there exists a patient who is matched under ti by step k

and who is eligible to be matched under type t j.

A simple directed chain t1 → t2 → ...ti → ... → tn for a patient p is called a Type Slot

Freeing Chain (TSFC) if u ∉ {t1, t2, ...tn}, t1 ∈ τ(p) and r tn > 0.

Matching Algorithm with Reserves:

Let µ0(p)=; for all patients p ∈P.

A patient is eligible for ventilator machine under a type t if t ∈ τ(p).

Step 1: Choose the most prioritized patient p1 according to baseline priority order.

Check if there exists a TSFC for patient p1 in the directed graph (E 0,V ), with t1 ∈

τ(p1). If such a type exists match p1 to an empty ventilator under type t1. µ1(p1)= t1

µ1(p)=µ0(p),∀p ∈P\{p1}. Reduce r t1 by 1.

Step 2: Choose the second most prioritized patient p2 from baseline priority order.

Check if there exists a TSFC for patient p2 in the directed graph (E 2,V ), with t1 ∈

τ(p2). If such a type exists match p2 to the slot of an empty ventilator machine under
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the type t1 and update matching µ2 along TSFC by matching a patient matched to

t1 under µ1 to t2. Reduce r t2 by 1.Update µ2 accordingly.

...

...

Step k: Choose the kth most prioritized patient pk from baseline priority order.

Check if there exists a TSFC in the directed graph (E k−1,V ), with t1 ∈ τ(pk). If such

a type exists match pk to the slot of an empty ventilator machine under the type t1

and update match µk along TSFC by matching a patient matched to ti under µk−1

to ti under µk such that the patient is eligible to be matched under ti . Reduce r tn

by 1. Update µk accordingly.

Repeat the steps until r ti is reduced to 0 for every ti ∈ T or all the patients are

checked to be matched under one of the types. If there are ventilator slots under

types which are yet to be allocated after exhausting the entire set of patients, then

there exists types with more ventilator slots than patients. The ventilator slots will

remain unallocated if hard reserve system of reserve implementation is followed.

In case of soft reserve system of reserve implementation, allocate the ventilators to

unmatched patients under respective types based on baseline priority order. Repeat

the steps with unmatched patients, starting with the most preferred unmatched
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patient.

...

...

Step l+1: Choose the most prioritized patient pl+1 according to the baseline prior-

ity order who is unmatched. If there exists no such patient matching µl = µ is the

matching chosen by the algorithm.

Check if there exist a VFC in the graph (El ,V l) , where V l is the set of patients

matched up to step l. There exists an edge between matched patients if two patients

are compatible. If there exists a VFC, use the VFC and allocate an empty ventilator

to patient pl+1. Match pl+1 to unreserved category u.

If there doesn’t exist a VFC, check if there exists a VSFC with respect to the graph

(El ,V l) such that patient pl+1 can be matched , where V l is the set of patients

matched up to step l. There exists an edge between matched patients if two patients

are compatible. If there exists a VSFC such that pl+1 can be matched, use the VSFC

and allocate an empty ventilator slot to patient pl +1.Match pl+1 with unreserved

category u. Update µl+1 accordingly.

If there doesn’t exist a VFC and VSFC such that patient pl+1 can be matched, then

patient pl+1 is unmatched by the end of step l+1.
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...

...

Step n: Choose patient pn who is next in baseline priority order to patient pn−1 and

who is unmatched.

If there exists no slots to match patient pn then matching µn−1 = µ is the matching

chosen by the algorithm.

Check if there exist a VFC in the graph (En−1,V n−1) , where V l is the set of patients

matched up to step l −1. There exists an edge between matched patients if two

patients are compatible. If there exists a VFC, use the VFC and allocate an empty

ventilator to patient pn. Match patient pn under the unreserved category u. Update

µn.

If there doesn’t exist a VFC, check if there exists a VSFC such that patient pn−1

can be matched with respect to the graph (En−1,V n−1) . If there exists a VSFC

with respect to patient pn−1, use the VSFC and allocate an empty ventilator slot to

patient pn. Match patient pn under unreserved category u. Update µn accordingly.

If there doesn’t exist a VFC and VSFC with respect to patient pn−1, then patient pn

is unmatched by the end of step n.
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...

...

The algorithm ends when all the slots are matched or all the unmatched students

are processed for matching with empty slots.Let (µmar,φmar) be the matching chosen

by the matching algorithm with reserves.

Let,

δµ
mar = {p |µmar(p)= t, t ∈ τ(p)and t ∈T\{u}}

δµ
mar

contains the set of patients matched to slots reserved under types.

For any matching (µmar,φmar) , let µp be,

• the lowest π-priority patient with the property that every weakly higher π

patient has been matched under µ, if some patient is unmatched under µ

• ; if all patients are matched under µ

For any matching (µmar,φmar) and associated δµ, let δµpt be,

• the lowest π-priority patient which is matched to a slot under some type t ∈

T\{u}

• ; if all patients are matched under µ
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Theorem 2. For any ventilator sharing problem (P,G ,T, r,τ) with a hard reserve or

a soft reserve system of reserve implementation,

(i) The matching (µmar,φmar) complies with eligibility requirements, is non-wasteful

and weakly respects priorities.

(ii) (µmar,φmar) respects type priorities for slots.

(iii) For any feasible matching (µ,φ) which respects type priorities for slots,

|δµmar | ≥ |δµ|

The number of patients beneficiaries belonging to the types and who are pro-

vided a slot is weakly greater under the matching chosen by the algorithm than

the number of beneficiaries who are provided a slot under their types for any

matching which respects type priorities for slots.

(iv) For any feasible matching (µ,φ) with,

|δµmar | = |δµ|

δ
µmar

p πδ
µ
p
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Proof. (i)At each step of the algorithm patients are matched to type for which they

are eligible. Hence the matching chosen by the matching algorithm with reserves

complies with eligibility requirements.

Suppose (µmar,φmar) is not non-wasteful. Then there exists a patient p with

µmar(p)=;, and p πt ;

and a matching µ′

µ′(p′)=µ(p) andµ′(p′)= t

Let k be the last step in which patient p was considered for matching. The above

condition implies that there exists a VSFC with respect to patient p and a ventilator

slot which patient p can be matched. Contradiction.

Suppose the matching (µmar,φmar) does not weakly respects priorities. There exists

a matching (µ
′
,φ

′
) ∈M and patient p such that, for all q ∈P\L

µmar

p

µ
′
(q)=µmar(q)
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and µ
′
(p) ̸= ;.

Let k be the step at which patient p was considered for matching under matching

algorithm with reserves. Then patient p is eligible to be matched since there exists

a feasible matching (µ
′
,φ

′
) with µ

′
(p) ̸= ;.

The patient p isn’t matched by the end of step k by the algorithm. By theorem 1,

there doesn’t exists any feasible matching such that patients in P\ (L µmar

p ∪ {p}) are

all matched. Contradiction

(ii)Suppose the matching (µmar,φmar) does not respect type priorities for slots. Then

there exists a patient p and a type t, t ∈ τ(p)

µmar(p)=; and |U µmar

p (t)| < r t

If a patient is matched by end of a step then the patient is matched by the end of

algorithm.

Let k be the step at which patient p was considered for matching. Then there exists

a TSFC such that patient p can be matched to type t. This implies that, patient

p is matched by end of step k. Patient p is matched by the end of algorithm.

Contradiction.
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(iii) Consider any matching (µ,φ). Then δµ be the set of students matched to types

other than unreserved type and who belong to the type they are matched to.

Suppose,

|δµmar | < |δµ|

Let δdi f f ≡ (δµ\δµ
mar

be the set of patients matched under δ and not under δmar.

Then there exists a type t ∈ {T}\ {u} such that, there exists no patient p ∈ δdi f f who

can be matched under type t and,

|δµmar

t | < |δµt |

Let Tud represent the set of such underdemanded types.

Starting with such a type t ∈ Tud, we can construct directed chain t → t1 such that

there exists a patient p with µmar(p)= t1, µ(p)= t and

|δµmar

{t,t1}| < |δµ{t,t1}|

Let T1 represent the set of such types such that for every patient p, µmar(p) = t1,

µ(p)= t, t1 ∈T1 and t ∈Tud
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Suppose there doesn’t exist such a type t1 ∈ T1. Then,

|δµmar | < |δµ|

which is a contradiction.

Similarly there exists a type t2 ̸= {t, t1} and a directed chain t → t1 → t2 such that

there exists a patient p with µmar(p)= t2, µ(p)= t1 and

|δmar
{t,t1,t2}| < |δ{t,t1,t2}|

But T\{u} is finite. This implies that, there exists a patient p ∈ δdi f f and a step k in

the matching algorithm with reserves such that, there exists a TSFC and patient p

is matched under δmar by the end of step k. Contradiction. ■

After the initial allocation of ventilators to patients based on a system of reserves,

successive patients are provided access to ventilators depending on the ability of

already matched patients to share ventilator amongst them and with unmatched

patients.

For any matching µ, let µp be,
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• the lowest π-priority patient with the property that every weakly higher π

patient has been matched under µ, if some patient is unmatched under µ

• ; if all patients are matched under µ

For any matching µ, let µo = (p1, p2, ..., p|µ−1(T)|) be an ordered sequence of matched

patients such that pi π p j iff i < j.

For any pair of matching µ,ν ∈M , let µo = (p1, p2, ..., p|µ−1(T)|) and νo = (q1, q2, ..., q|ν−1(T)|)

. Matching µ order dominates matching ν, µ ⪰ ν, if |µ−1| ≥ |ν−1| and for all i, piπqi.

Note that, order dominates(⪰) is a partial order on the set of matchings M .

Theorem 3. Consider matchings (µmar,φmar) and (µ,φ), µmar ̸= µ with their corre-

sponding δµ
mar

and δµ. Suppose µmar
p =µp and δµ

mar = δµ. Then µmar ≻ µ.

Proof. Let L µmar
p contain the set of patients who are less preferred to µmar

p and who

aren’t allocated a ventilator slot.

L µmar
p = {p |µmar

p π p &µmar(p)=;}

Note that for any matching µ ∈M with µp =µmar
p and δµ

mar = δµ,
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µmar|
P\L

µmar
p ⪰µ|

P\L
µmar

p

We will prove the claim via induction.

Let p∗ ∈L µmar
p be the most prioritized patient such that µmar(p∗) =;. By Theorem

1, for all matching µ ∈M with µp =µmar
p and δµ = δµmar, µ(p∗)=φ. This implies,

µmar|P\L p∗ ⪰µ|P\L p∗

Let p̂ ∈L µmar
p . For all patients p, with p π p̂

µmar|P\L p ⪰µ|P\L p

Let p̂m be the most prioritized patient in L p̂. It suffices to show that,

µmar|P\L p̂m ⪰µ|P\L p̂m

If |µmar|P\L p̂ | > |µ|P\L p̂ | , it immediately implies that
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µmar|P\L p̂m ⪰µ|P\L p̂m

Suppose |µmar|P\L p̂ | = |µ|P\L p̂ |. It is then enough to show that,

µ(p̂m) ̸= ; ⇒ µmar(p̂m) ̸= ;

Let,

β= {p ∈L µp \L p̂|p ∈µ−1 & p ∉ (µmar)−1}

β contains the set of patients who are less preferred to µmar
p who are matched in µ

and not in µmar.

µ(p̂m) ̸= ;. Then there exists a chain of patients matched in µ|P\L p̂ , [pm
1 −φ(pm

1 )]−

...− [pm
i −φ(pm

i )]− ....[pm
n −;] such that p̂m is compatible with pm

1 , φ(pm
i−1) is com-

patible with pm
i for i > 1 and for any j, pm

j ∈β =⇒ φ(pm
j ) ∉β and vice versa.

Suppose not. Suppose both pm
j ,φ(pm

j ) ∈ β. Then consider the restriction of µ,

µ|P\L µp .Let µ̂p be the most prioritized patient in L µp . There exists a VFC or VSFC

such that µ̂p can be provided a ventilator slot and µ̂p can be matched in µ|P\L µ̂p .
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Since µmar|
P\L

µmar
p = µ|P\L µp , there exists a VFC or VSFC such that ˆµmar

p = µ̂p can

be matched to a restriction of µmar, µmar|
P\L

µmar
p . But ˆµmar

p ∉µmar and µmar weakly

respects priorities. Contradiction.

Let φµ be the function which keeps track of patients who are sharing ventilator in

the matching µ|P\L p̂m

Suppose µmar(p̂m)=;. Then |µmar|P\L p̂m | < |µ|P\L p̂m |.

Let φµ
mar

be the function which keeps track of patients who are sharing ventilator

in the matching µmar|P\L p̂m .

Since |µmar|P\L p̂m | < |µ|P\L p̂m |, there exists a patient p1 ∈ P \ L
µmar

p1 such that

φµ(p1) ̸= ; and φµ
mar

(p1)=;.

We can construct a chain as follows. Let [; - pn] - [φµ
mar

(pn−1) - pn−1]-...-[φµ
mar

(pi−1)

- pi−1]....-[φµ
mar

(p2) - p2]-[p1 - ;] where φµ(pn) = p̃, p̃ ∈ β∪ {p̂m}, and φµ(pi) =

φµ
mar

(pi−1).

If p̃ ∈ β then there exists a patient who could have been matched by the step of

the algorithm at which the patient is chosen and isn’t matched by the end of step.

Contradiction.

If p̃ = p̂m then patient p̂m is matched under µmar . Contradiction. ■
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Ventilator sharing discussed so far can carry significant risks to patients sharing ven-

tilators. On February 9, 2021 the FDA on its letter to Health Care providers(FDA)

noted the challenges in ventilator sharing. Ventilator sharing requires continual

balancing of respiratory mechanics between co-vented patients; requires paralysis

and deep sedation to prevent asynchrony; can cause pendelluft 3, resulting in lung

injury; increased complexity in decision making; and logistical problems with lack

of ventilator alarms to alert individual ventilation problems. Even though we want

to maximize the number of lives saved by providing ventilator access during a pub-

lic health emergency, due to increased risks hospital systems might want to take

consent for ventilator sharing from their patients. To encourage patients to share

ventilator, hospitals can provide sufficient leeway in letting patients choose set of

compatible patients for ventilator sharing. Thus any algorithm for ventilator sharing

must provide incentives for patients to reveal their full set of compatible patients

to maximize the number of patients matched. The following proposition shows

that any mechanism using Matching Algorithm with Reserves provides dominant

strategy incentives to reveal their full set of compatible patients

Proposition 3. Consider the mechanism which implements Matching Algorithm with

Reserves for any given ventilator sharing problem (P,G ,T, r,τ). The mechanism is

3Swinging air from one co-vented patient to another
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strategyproof.

Proof. For any patient pi ∈P and G , let Gpi be the set of patients who are compatible

with patient pi. Note that, for any pair of patients pi, p j ∈P, (pi, p j) ∈G iff p j ∈Gpi

and pi ∈Gp j .

For any patient pi ∈ P and a G , let G−pi = (Gp1 ,Gp2 , .....Gpi−1 ,Gpi+1 , ...Gpn) be the list

of compatible patients chosen by patients other than pi.

Let Ĝpi be the actual set of patients who are compatible for patient pi. Let k be the

step at which patient pi is chosen to be matched in the algorithm. Take any G ′−pi
.

We will consider three cases.

Case i: k < q or patient pi is allocated a ventilator slot under soft reserves system of

reserve implementation. Then irrespective of the set of compatible patients chosen

by patient pi, patient pi is matched to a ventilator slot. Hence patient pi is matched

to a ventilator slot if patient pi reveals Ĝpi as the set of compatible patients.

Case ii: There exists a VFC such that patient pi is matched by end of step k in

the algorithm. Then irrespective of the set of compatible patients chosen by patient

pi, patient pi is matched to a ventilator slot. Hence patient pi is matched to a

ventilator slot if patient pi reveals Ĝpi as the set of compatible patients.
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Case iii:There exists no ventilator to be allocated and there exists no VFC. Then for

any G ′
pi
⊆ Ĝpi , if there exists VSFC such that patient pi is matched by end of step k,

then there exists a VSFC under Ĝpi such that patient pi is matched by end of step

k. ■

1.5 Priorities and Maximal matching

For a ventilator sharing problem (P,G ,T, r,τ), let M c ⊆ M be the set of matches

which complies with eligibility requirements and respects type priorities for slots.

The matching chosen by the matching algorithm with reserves (µmar,φmar) ∈ M c,

need not be the maximal matching in M c. Consider the following example.

Example 3. There are 5 patients, P = {p1, p2, p3, p4, p5}. There are 2 ventilators, a

single type u, and G = {(p1, p2), (p1, p4), (p4, p5)}. The priority order π over the set of

patients G is given by,

p1π p2π p3π p4π p5

There are two matches which complies with eligibility requirements and respects type
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priorities for ventilator slots.

µ−1 = {p1, p2, p3}andµ′−1 = {p1, p2, p4, p5}

µ is chosen by the matching algorithm with reserves while µ′ assigns most ventilator

slots to most patients .

The result can be extended to matchings which weakly respects priorities. In a

matching which weakly respects priorities, a ventilator made available by letting

an already matched compatible patient share ventilator with another patient, be

provided to a high priority patient irrespective of the patient’s ability to share the

ventilator.

Definition 6. A matching (µ,φ) ∈M is priority compliant, if for any pair of patients

p, q and any type t with pπt q,

µ(q)= t &µ(t)=;

then there doesn’t exist a matching (µ′,φ′) ∈ M such that µ′(r) = µ(r) for all r ∈

P\{p, q} and
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µ′(p)= t &µ′(q)=;

A matching is priority compliant if unmatching a lower priority patient, doesn’t

make it possible for a higher priority patient to be assigned a ventilator slot under

the same type.

Let M pc be the set of matchings which are priority compliant.

Proposition 4. For any ventilator sharing problem (P,G ,T, r,τ),

M rp ⊆M wrp ⊆M pc

If G =; then,

M rp =M wrp =M pc

Proof. Let (µ,φ) ∈ M pc. If G = ;, then there doesn’t exists patients p, q ∈ P and a

type t with pπt q and

µ(q)= t andµ(p)=;
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(⇒) Matching (µ,φ) respects priorities. (µ,φ) ∈M rp.

Let (µ,φ) ∈ M wrp. Then, there exists no matching (µ′,φ′) ∈ M such that, for all

r ∈P\L
µ
p

µ′(r)=µ(r) andµ′(p) ̸= ;

(⇒) There exists no patient q, type t with pπt q, and a matching (µ′,φ′) ∈ M such

that for r ∈P\{p, q}

µ′(r)=µ(r)

µ(p′)= t ,µ(p)=; andµ′(p)= t,µ′(q)=;

(⇒) Matching (µ,φ) is priority complinat. (µ,φ) ∈M pc.

■

Definition 7. A matching (µ,φ) ∈M is maximal, if |µ−1| ≥ |µ′−1|, for all (µ′,φ′) ∈M .

Proposition 5. There exists a maximal matching which is priority compliant.
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Proof. Let (µ,φ) ∈M be a maximal matching. Suppose (µ,φ) is not priority compli-

ant. Then we can find a priority compliant maximal matching as follows.

1. Step 1: Choose the unmatched patient with highest priority p1. Check if

there exists a chain such that [pm
1 −φ(pm

1 )]− [pm
2 −φ(pm

2 ]− ...− [pm
i −φ(pm

i )]−

....[pm
n −φ(pm

n )], where for all j ∈ {1,2,3, ...n}, pm
j and φ(pm

j ) are patients who

are sharing a ventilator with respect to matching µ, p1 can share ventilator

with patient pm
1 , for all j ∈ {1,2,3, ...n} φ(pm

j−1) can share a ventilator with pm
j

and p1πtφ(pm
n ), µ(φ(pm

n ))= t.

If there exists such a chain then there exists a matching µ1 such that µ1(p) =

µ(p) for all p ∈P\{p1,φ(pm
n )} and

µ1(p1)= t &µ1(φ(pm
n ))=;

If there exists such a chain, choose matching µ1 and repeat the step. If there

exists no such chain, then retain matching µ and repeat the step with un-

matched patient p2 who is proritized more than the other unmatched patients

excluding p1.

...
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The process ends in a finite number of steps, since there are a finite number of

patients. ■

Modified Matching Algorithm with Reserves

Step 0: Allocate the q ventilators as in matching algorithm with reserves. Let µ0

and be the matching obtained by allocating empty ventilators to patients.

Let α= {p |µ0(p) ̸= ;} be the set of patients chosen to fill the q guaranteed slots.

Step 1: All the empty/available ventilators are allocated. Check if there exists a

Ventilator Freeing Chain(VFC). If there exists a VFC, make patients share ventilator

according to VFC, making the ventilator available for future patients. Exhaust VFCs

so that, there exists no more ventilators which can be made available for patients

who are yet to be matched. Let q f be the count of ventilators freed by making

patients share ventilator with each other and exhausting VFCs. µ1 =µ0

Step 2: There exists a patient in (µ1)−1 who isn’t sharing a ventilator with another

patient. If there doesn’t exist such a patient proceed to step k Choose the most

prioritized unmatched patient p2, p2 ∈P\ ((µ1)−1). Check if there exists a Ventilator

Slot Freeing Chain(VSFC) such that patient p2 can be matched. If there exists a
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VSFC such that p2 can be matched, make patients share ventilator according to

VSFC allocating ventilator slot to patient p2. Update µ2. If no such VSFC with

respect to patient p2 exists, then patient p2 is unmatched.µ2 =µ1.

Step 3: There exists a patient in (µ2)−1 who isn’t sharing a ventilator with another

patient. If there doesn’t exist such a patient proceed to step k. Choose the most

prioritized unmatched patient p3 ∈P\ ((µ2)−1∪ {p2}). Check if there exists a Ventila-

tor Slot Freeing Chain(VSFC) such that patient p3 can be matched. If there exists a

VSFC such that patient p3 can be matched, make patients share ventilator accord-

ing to VSFC allocating ventilator slot to patient p3. Update µ3. If no such VSFC

exists such that patient p3 can be matched then patient p3 is unmatched.µ3 =µ2.

...

Step k: All the patients in (µk−1)−1 are sharing a ventilator with another patient or

P \ ((µk−1)−1 ∪ {p2, p3, ...., pk−1}) =;. Choose the most preferred unmatched patient

pk, pk ∈ P \ ((µk−1)−1). Match patient pk, temporarily to one of the q f available

ventilators.

µk
te(p)=µk−1(p), p ∈P\{pk}
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µk
te(pk)= u

where µkt is the temporary matching at step k. Let

Lpk = {p′| pk π p′ &µk
te(p′)=;}

Choose the most preferred patient pl
1 ∈ Lpk . Check if there exists a Ventilator Slot

Freeing Chain(VSFC) in the matching µkte such that patient pl
1 can be matched. If

there exists such a chain then

µk(p)=µk
te(p), p ∈P\{pl

1}

µk(pl
1)= u

.

Proceed with step k + 1 if there exists an available ventilator. If there exists no
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available ventilator then,

µ=µk,φ=φk

is the matching chosen by the algorithm.

If there doesn’t exist a VSFC such that pl
1 can be matched, choose pl

2, the most

preferred patient in Lpk excluding pl
1, pl

2 ∈Lpk \{pl
1}. Repeat the above steps with

the temporary matching µkt(p).

If there exists no patient pl
j ∈ Lpk such that there exists a VSFC matching pl

j then

patient pk is unmatched.

Step k+1: Choose the most preferred unmatched patient pk+1, pk+1 ∈P\ ((µk)−1 ∪

{pk}). Match patient pk+1, temporarily to one of the available ventilators.

µk+1
te (p)=µk(p), p ∈P\{pk+1}

µk+1
te (pk+1)= u

where µk+1t is the temporary matching at step k. Let
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Lpk+1 = {p′| pk+1π p′ &µk
te(p′)=;}

Choose the most preferred patient pl
1 ∈Lpk+1. Check if there exists a Ventilator Slot

Freeing Chain(VSFC) in the matching µk+1t such that patient pl
1 can be matched. If

there exists such a chain then

µk+1(p)=µk+1
te (p), p ∈P\{pl

1}

µk+1(pl
1)= u

.

Proceed with step k + 2 if there exists an available ventilator. If there exists no

available ventilator then,

µ=µk+1,φ=φk+1

is the matching chosen by the algorithm.

If there doesn’t exist a VSFC, choose pl
2, the most preferred patient in Lpk+1 ex-

cluding pl
1, pl

2 ∈ Lpk+1 \ {pl
1}. Repeat the above steps with the temporary matching
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µk+1t(p).

If there exists no patient pl
j ∈Lpk+1 such that there exists a VSFC matching pl

j then

patient pk+1 is unmatched.

...

Step m: If P\((µm−1)−1∪{pk, pk+1, ....pm−1})=;, then choose pm the most preferred

unmatched patient, and allocate an available ventilator to pm.

µm(p)=µm−1(p), p ∈P\{pm}

µm(pm)= u

If there exists an available ventilator, proceed to step m+1 and repeat step m. If

there doesn’t exist any available ventilator then,

µ=µm,φ=φm

is the matching chosen by the algorithm

...
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Let (µ∗ = µ, φ∗ = φ) be the matching chosen by the modified matching algorithm

with reserves and δµ
∗ = {p |µ∗(p)= t, t ∈ τ(p)and t ∈T\{u}}.

Let Mα be the set of matchings such that, for any matching (µ,φ) ∈ Mα, the set of

patients chosen to fill the q guaranteed slots is α

Theorem 4. For any ventilator sharing problem (P,G ,T, r,τ) with a hard reserve or

a soft reserve system of reserve implementation,

(i) The matching (µ∗,φ∗) chosen by MMAR complies with eligibility requirements,

is non-wasteful and priority compliant.

(ii) (µ∗,φ∗) respects type priorities for slots.

(iii) For any matching (µ,φ) which respects type priorities for slots,

|δµ∗ | ≥ |δµ|

The number of patients beneficiaries belonging to the types and who are pro-

vided a slot is weakly greater under the matching chosen by the algorithm than

the number of beneficiaries who are provided a slot under their types for any

matching which respects type priorities for slots.
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(iv) (µ∗,φ∗) is Mα maximal. For any matching (µ,φ) ∈Mα, |µ∗| ≥ |µ|.

(v) For any Mα maximal matching (µ,φ), µp πµ
∗
p

Proof. (i)Following the steps of MMAR, it can be seen that (µ∗,φ∗) complies with

eligibility requirements and is non-wasteful.

Suppose (µ∗,φ∗) is not priority compliant. Then there exists patients p, q and a type

t with pπt q with,

µ∗(q)= t &µ∗(p)=;

and a matching (µ,φ) ∈M such that µ(r)=µ∗(r), for all r ∈P\{p, q} and

µ(p)= t &µ(q)=;

Note that |µ| = |µ∗|.

Let φµ be the function which maps every patient to the patient with whom they

share their ventilator with under matching (µ,φ).

Since (µ∗,φ∗) respects type priorities of slots, there doesn’t exist a patient q who is
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allocated a slot under type t, and has lower priority than an unmatched patient p

under type t. Similarly under MMAR algorithm, no free ventilator is allocated to

patient under type u and has lower priority to an unmatched patient under type u.

Suppose patient p was chosen to be matched by step k of MMAR algorithm. Let φk

be the function which maps every patient to the patient with whom they share their

ventilator by step k of MMAR algorithm .

Patient p is matched temporarily to one of the q f available ventilators. There

exists a patient pl
i ∈ Lp, such that there exists a VSFC, [pl

i −φ(pl
i)]− [φk(φ(pl

i))−

φ(φk(φ(pl
i)))]− ......[φk(....φ(pl

i))− p] and patient p is matched by the end of step k.

Contradiction.

Suppose patient p wasn’t chosen to be matched to one of available ventilators under

MMAR. Then patient p′ also wasn’t chosen to be matched under MMAR algorithm.

Let m be the step at which patient p′ was matched under MMAR algorithm. There

exists a VSFC, [p−φ(p)]− [φk(φ(p))−φ(φk(φ(p)))]− ......[φk(....φ(p))−φ(φk(....φ(p)))]

such that patient p can be matched over patient p′ by step m of MMAR algorithm.

Contradiction.

(⇒) (µ∗,φ∗) is priority compliant.

Conclusions (ii) and (iii) follow from theorem 2.
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(iv) For any matching (µ,φ) ∈Mα, let qµs represent the number of patients who are

guaranteed a slot under α and who do not share the ventilator machine with any

other patient under matching (µ,φ). Then for any matching (µ,φ) ∈Mα, qµ
∗

s ≥ qµs .

Suppose not. Suppose qµ
∗

s < qµs . Then there exists a patient p and a VSFC reducing

qµ
∗

s , which is a contradiction considering the steps of MMAR algorithm.

Suppose matching (µ∗,φ∗) isn’t maximal in Mα. Then there exists a matching µ ∈

Mα such that |µ−1| > |µ∗−1 | . Then there exists patients p, q ∈ µ−1 and p, q ∉ µ∗−1

such that patients p, q share ventilator with each other.

Let φ be the function which maps every patient to the patient with whom they share

their ventilator with under matching µ.

Let φ∗ be the function which maps every patient to the patient with whom they

share their ventilator with under matching µ∗

Suppose not.Then there are two possible cases.

(a)Suppose there exists only patient p such that, p ∈µ−1 and p ∉µ∗−1.

Then there exists a patient p′ ∈ µ∗−1 with φ∗(p′) = ; and a VSFC, [p −φ(p)] −

[φ∗(φ(p))−φµ(φ∗(φ(p)))]− ...− [φ∗(...(φ∗(φ(p))− p′] such that patient p was matched

under MMAR algorithm. Contradiction.
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(b)Suppose there exists no patients p, q ∈ µ−1 and p, q ∉ µ∗−1 such that patients

p, q do not share ventilator with one another. φ∗(p) ̸= q. Then there exists a pa-

tient r ∈ µ∗−1 with φ∗(r) = ; and a VSFC, [p−φ(p)]− [φ∗(φ(p))−φ(φ∗(φ(p)))]− ...−

[φ∗(...(φ∗(φ(p))−p′] such that patient p was matched under MMAR algorithm. Con-

tradiction.

Since qµ
∗

s ≥ qµs , the existence of patients p, q ∈µ−1 and p, q ∉µ∗−1 such that patients

p, q share ventilator with each other implies that there exists a ventilator among the

q f free ventilators under MMAR algorithm, which was allocated to a single patient

p′ instead of patients p, q. Contradiction.

(v) Let (φ−1)∗|α(;) capture the set of patients who are allocated a ventilator slot

respecting type priorities (α ̸= ;) and who do not share ventilator with any other

patient under (µ∗,φ∗). Then for any maximal matching (µ,φ) ∈Mα,

|(φ−1)∗|α(;)| ≤ |(φ−1)|α(;)|

Suppose not. Then there exists a patient p such that δ∗(p) ̸= ; and p ∈ (φ−1)∗|
δ∗−1 (T)(;)

and p ∉ (φ−1)|
δ∗−1 (T)(;). Let φµ(p) = p̃. Then by MMAR, it cannot be that µ∗(p̃) =;.

If µ∗(p̃) = ;, then p̃ could have been matched with patient p under the steps of

MMAR algorithm. Contradiction.
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If p̃ ∈ (φ−1)∗|
δ∗−1 (T)(P), then we can construct a chain backwards as follows. [p− p̃]−

[φµ
∗
(p̃)−φµ(φµ

∗
(p̃))]−[φµ

∗
(φµ(φµ

∗
(p̃)))−φµ(φµ

∗
(φµ(φµ

∗
(p̃))))]−.... till φµ(...φµ

∗
(φµ(φµ

∗
(p̃)))) ∉

(φ−1)∗|α(P) . Such a chain exists, since the number of patients are finite. (⇒) Patient

p shares a ventilator under MMAR. Contradiction.

Let k be the first step in which a most preferred patient pk is chosen to be matched

temporarily to a freed ventilator. Following the previous result, at the beginning of

step k for any maximal matching (µ,φ) ∈Mα we have

|(φ−1)∗|α(;)| ≤ |(φ−1)|α(;)|

If |(φ−1)∗|al pha(;)| < |(φ−1)|α(;)|, then patient pk is matched by the end of algorithm

since (µ,φ) and (µ∗,φ∗) are maximal matching in Mα.

Suppose |(φ−1)∗|α(;)| = |(φ−1)|α(;)|. If µ(pk) ̸= ; and φµ(pk) = ; then patient pk

can be matched to a freed ventilator under µ∗, since (µ,φ) and (µ∗,φ∗) are maximal

matches in Mα. If µ(pk) ̸= ; and φµ(pk) ̸= ;, then given the steps of MMAR algo-

rithm we can construct a chain backwards as follows, [pk −φµ(pk)]− [φµ
∗
(φµ(pk))−

φµ(φµ
∗
(φµ(pk)))]−[φµ

∗
(φµ(φµ

∗
(φµ(pk))))−φµ(φµ

∗
(φµ(φµ

∗
(φµ(pk)))))]−.... till µ∗k

φµ(...φµ
∗
(φµ(φµ

∗
(φµ(pk)))))=

; where µ∗k
is the matching chosen by step k of MMAR algorithm. This implies,
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|(φ−1)∗|α(;)| ≤ |(φ−1)|α}(;)|

Suppose the conclusion holds up to step k+ t−1 of MMAR algorithm. By the begin-

ning of step k+ t of MMAR algorithm we have,

|(φ−1)∗|α∪{pk,pk+1,...,pk+t−1}(;)| ≤ |(φ−1)|α∪{pk,pk+1,...,pk+t−1}(;)|

If |(φ−1)∗|α∪{pk,pk+1,...,pk+t−1}(;)| ≤ |(φ−1)|α∪{pk,pk+1,...,pk+t−1}(;)|, then patient pk+t is matched

by the end of algorithm since (µ,φ) and (µ∗,φ∗) are maximal matching in Mα.

Suppose |(φ−1)∗|α∪{pk,pk+1,...,pk+t−1}(;)| ≤ |(φ−1)|α∪{pk,pk+1,...,pk+t−1}(;)|. If µ(pk+t) ̸= ;

and φµ(pk+t) = ; then patient pk+t can be matched to a freed ventilator under

(µ∗,φ∗), since (µ,φ) and (µ∗,φ∗) are maximal matches in M δ∗. If µ(pk+t) ̸= ; and

φµ(pk+t) ̸= ;, then given the steps of MMAR algorithm we can construct a chain

backwards as follows, [pk+t−φµ(pk+t)]−[φµ
∗
(φµ(pk+t))−φµ(φµ

∗
(φµ(pk+t)))]−[φµ

∗
(φµ(φµ

∗
(φµ(pk+t))))−

φµ(φµ
∗
(φµ(φµ

∗
(φµ(pk+t)))))]− .... till µ∗k+t

φµ(...φµ
∗
(φµ(φµ

∗
(φµ(pk+t)))))=; where µ∗k+t

is the matching chosen by step k+ t of MMAR algorithm.

(⇒) For any maximal matching (µ,φ) ∈Mα, µp πµ
∗
p. ■
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The algorithm allocates ventilator based on priority order and categorical claims.

Once allocated, ventilators are freed by making already matched patients share ven-

tilator with each other. Patients who cannot share ventilator with already matched

patients, are then checked with other unmatched patients to see if they can share

their ventilator with them, or if the unmatched patients can initiate a chain freeing

already matched patients to share with them. Patients who aren’t allocated a ven-

tilator slot after these initial steps, are allocated one of the freed ventilators if they

are able to share the ventilator with another unmatched patient or if there exists

another unmatched patient who can initiate a chain, freeing a matched patient to

be share a ventilator with the patient who is chosen to be matched albeit temporar-

ily based on the priority order. In this algorithm, there is a bargaining problem

between patients for other patients with whom they can share a ventilator with. Pa-

tients who are allocated ventilators based on their priority orders have first access

to other patients who are allocated a ventilator and patients who are allocated a

ventilator and don’t share ventilator with other already matched patients are pro-

vided first access to unmatched patients for sharing ventilator with them. Similarly,

among unmatched patients access to other unmatched patients are provided based

on their priority order.

Proposition 6. Consider the mechanism which implements Modified Matching Algo-
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rithm with Reserves for any given ventilator sharing problem (P,G ,T, r,τ). The mech-

anism is strategyproof.

Proof. For any patient pi ∈P and G , let Gpi be the set of patients who are compatible

with patient pi. Note that, for any pair of patients pi, p j ∈P, (pi, p j) ∈G iff p j ∈Gpi

and pi ∈Gp j .

Let Ĝpi be the actual set of patients who are compatible for patient pi. Let k be the

step at which patient pi is chosen to be matched in the algorithm. Take any G ′−pi
.

We will consider three cases.

Case i: k < q or patient pi is allocated a ventilator under soft reserves system of

reserve implementation. Then irrespective of the set of compatible patients chosen

by patient pi, patient pi is matched to a ventilator slot. Hence patient pi is matched

to a ventilator slot if patient pi reveals Ĝpi as the set of compatible patients.

Case ii: Step t, t > q and patient pi is chosen for the second time by step t for

allocating the freed ventilator. Then irrespective of the set of compatible patients

chosen by patient pi, patient pi is matched to a ventilator slot. Hence patient pi

is matched to a ventilator slot if patient pi reveals Ĝpi as the set of compatible

patients.
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Case iii Patient pi is chosen to be matched temporarily by some step l. Then for any

G ′
pi

⊆ Ĝpi , if patient pi is allocated a ventilator slot by end of step l, then patient

pi is allocated a ventilator slot if patient pi reveal Ĝpi as the set of compatible

patients. ■

MMAR is incentive compatible, incentivizing people to reveal their true set of com-

patible patients. Unlike MAR, MMAR maximizes the number of patients who are

matched to ventilator slots conditional on the initial distribution.

1.6 Equity and Maximal Matching

Definition 8. For the problem of allocating q ventilators over n patients, the ran-

dom mechanism allocating ventilators to patients satisfies equity if for any patient

p, up ≥min{
q
n

,1}

Theorem 5. Consider the ventilator sharing problem (P,G ,T = {u}). For every ven-

tilator sharing problem with a single type, a random mechanism satisfies equity and

maximizes the expected number of patients matched iff it is a random priority mecha-

nism implementing MMAR.
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Proof. (⇒)Let U = (up1 ,up2 ,up3 , ...,upn) be the vector of utilities of patients ob-

tained under any random mechanism which satisfies equity and maximizes the

number of patients matched for every ventilator sharing problem (P,G ,T= {u}). For

any deterministic mechanism in the support of the random mechanism, let λ repre-

sent the probability with which the mechanism is chosen by the random mechanism

and ρ represent the utility vector chosen by the mechanism. There are finite deter-

ministic mechanisms in the support of random mechanism and any utility vector

chosen by the random mechanism can be broken down as,

(up1 ,up2 , ...,upi , ...,upn)=λ1ρ1 +λ2ρ2 + ...+λiρ i + ...+λtρt

∑
i
λi = 1 and ρ i j ∈ {0,1}

For each ρ there exists at least one priority order such that the outcome vector can

be obtained. For example for each ρ, patients who are allocated a ventilator slot

can be placed in priority above patients who didn’t obtain ventilator slots. Since

the random mechanism satisfies equity for every problem, the random mechanism

should have uniform support and the probability of selecting a mechanism where a
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patient p is one of the top q prioritised patients is,
q
|P| .

From theorem 4, for any given α, algorithm MMAR is Mα maximal. Therefore for

any random priority mechanism implementing MMAR

∑
pi

upi =
∑
pi

uMMAR
pi

where U MMAR = (uMMAR
p1

,uMMAR
p2

,uMMAR
p3

, ...,uMMAR
pn

) is the utility vector chosen by

random priority mechanism implementing MMAR.

(⇐) Random priority mechanism implementing MMAR satisfies equity and max-

imizes the expected number of patients matched. The conclusion follows from

MMAR algortihm and Theorem 4. ■

Theorem 5 shows that ventilator sharing problem with single category instead of

multiple categories and allocating ventilator machines/slots using a random pri-

ority mechanism implementing MMAR algorithm produces an equitable allocation

maximizing the expected number of patients matched. The triage protocols for al-

location of ventilators use a priority ranking based on a single dimensional score

and reserves are used as a compromise in response to categorical claims. Consider

the scoring system, the variants of which are used in a multi-principle priority point
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system.

Figure 1.2: (White Douglas and Lo., 2020)

The multi-principle triage protocol prioritises patients based on a single score which

is a combination of patient’s short term and long term prognosis. Often, categor-

ical claims for ventilators can arise due to discrimination in access to ventilators.

Patients belonging to categories with claims can be disproportionately under rep-

resented in such a scoring system if there is lack of early access to health care

and health services which can improve short term prognosis, and lack of access to

health care and health services in general which can affect their long term prog-

nosis. While reserves can provide a compromise in providing access to categories,

we can also find correlations of categories with priority scores while controlling for

other factors and add it to their priority scores to include the categorical claims

and use a single category to allocate ventilator machines/slots. This can reduce the

categories and from the above theorem it can make the allocation more egalitarian,
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maximizing the expected number of patients matched.

1.7 Dynamics of Ventilator Allocation

Ventilator allocation and sharing have been discussed as a static problem even

though the problem is actually dynamic. Patients arrive and leave over time and

the needs of patients changes over time. (Piscitello et al., 2020) notes that out of

26 states which have published guidelines for triage, 22 of them discuss ventilator

reallocation. All 22 guidelines are in support of withdrawal of mechanical ventila-

tion, if demanded by triage protocol. Most of the guidelines mention setting up of

triage committees which will determine eligibility of patients for ventilator alloca-

tion. In such a scenario, dynamic ventilator allocation problem can be considered

as static problem at every time period when the triage committee makes a deci-

sion. One inconvenience of this process is that patients might have to be moved

around whenever the triage committee reevaluates patients eligibility and priority.

(R. et al.) suggests maintaining of reserve ventilators which can be used to prepare

patients for ventilator sharing and for weaning off patients of ventilators. Mainte-

nance of these reserve stock of ventilators can be helpful in moving patients around,

though this can be cumbersome.
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1.8 Conclusion

This paper is an attempt at studying sharing economy, where object can be shared

by two persons and the allocation of object to a person depends on their priority

ranking. The model studied assumes homogeneity of objects wherein participants

are indifferent between the objects which are being provided. Under homogeneity,

it is shown that pareto-efficient matching respecting different notions of priority ex-

ists. One immediate extension of the problem is to analyze the same problem with

heterogeneous objects. Heterogeneous objects are more relevant in public hous-

ing allocation with sharing since people can have varied preferences over different

housing units. We hope that the methods discussed and definitions proposed would

serve as a good definition in taking the discussion forward.
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Chapter 2

Pairwise Kidney Exchange - Critique

and Extension

2.1 Introduction

As of May 2018, there are 95,139 candidates in waiting list for a compatible kidney.

From 2006-2017, on average 12.6 candidates are removed daily from the waiting

list due to death while 7.6 candidates are removed daily from the list for being
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too sick to transplant 1. In 1984, the National Organ Transplant Act was passed,

which outlawed the sale of human organs and also established the formation of

Organ Procurement and Transplantation Network(OPTN). OPTN maintains candi-

dates waiting list and matches cadaver, live donor kidneys to candidates based on a

Kidney Allocation System(KAS)2 based on various criteria.

Alongside the establishment of OPTN, there were proposals to setup a national

databse for incompatible donor recipient pairs (Rapaport Felix, 1986; Ross et al.,

1997). In 2000, the transplantation community issued a consensus statement in-

dicating that exchange between incompatible donor recipient pairs is "ethically ac-

ceptable". (Abecassis et al., 2000). Since then economists have designed theoreti-

cal exchange markets satisfying various desirable normative properties. Roth Alvin

et al. (2004) show how to organize multiple-pair exchanges efficiently, while pro-

viding agents with the right incentives.Using tissue type statistics of Caucasian pop-

ulation, they illustrate how live organ donations can be increased from 54% up to

91% if multiple-pair exchanges are feasible and up to 75% if only paired-exchanges

are feasible.

1https://optn.transplant.hrsa.gov/data
2https://optn.transplant.hrsa.gov/media/1235/kas_faqs.pdf
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Taking into account logistics and incentive constraints (exchanges have to be carried

out simultaneously since a donor can withdraw consent after her intended recipi-

ent has received a kidney), Roth Alvin et al. (2005) proposed a pairwise kidney

exchange market. They constrcuted two mechanisms for allocation of kidneys, pri-

ority mechanism - a deterministic mechanism when there is a well defined ordinal

priority ranking over agents and an egalitarian mechanism - a stochastic mecha-

nism when all the participating agents have an equal claim for available compatible

kidney. They show how the above mentioned mechanisms can be used to organize

efficient exchanges while providing strategy-proof incentives to agents.

Since participants can have different waiting times ,variable access to compatible

kidneys due to biological reasons and other disparities, to construct a true egali-

tarian mechanism it makes sense to offer weights to participating agents. Weights

added as an parameter to the participating agents in our paper will have the fol-

lowing Aristotelian interpretation(Row, 2002). Under Pareto efficiency, agents will

have claim for a compatible kidney, where agent’s strength of claim is proportional

to the weight awarded.

The aim of this paper is threefold. First, we will introduce weights as an additional
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parameter to the participating agents in a pairwise kidney matching problem and

using above interpretation of weights we will generalize the egalitarian mechanism

of Roth Alvin et al. (2005) to a weighted egalitarian mechanism. Second, we will

construct the dual of the mechanism design problem which is the constrained allo-

cation problem and using theories of distributive justice will show how it is equiva-

lent to very well known solution concepts. The reason for constructing the dual of

the problem is that if agents have dominant strategy incentives, then it is easier to

study fairness of the allocation mechanism through the normative characterization

of the dual of the problem. Finally, we will place the egalitarian , weighted egali-

tarian and priority mechanism in a continuum which will help us better understand

the changing incentives for agents.

The paper will be organized as follows. Section[2] will contain Literature review

followed by generalization of egalitarian mechanism to weighted egalitarian mech-

anism in Section[3]. In Section[4], we will construct the dual of the mechanism

discussing various normative properties of the equivalent allocation mechanisms.

In Section[5] we will place the egalitarian, weighted egalitarian and priority mech-

anism in a continuum and discuss the changing incentives to agents.This we believe,

will provide us with a deeper perspective for policy analysis.
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2.2 Literature Review

This paper intersects with the literature on transplantation,graph theory, mecha-

nism design and distributive justice. This paper borrows the basic problem struc-

ture from Roth Alvin et al. (2005). To be precise, like the original paper

1. Only pairwise exchange between incompatible donor recipient pairs is feasible

2. Each patient is indifferent between compatible kidneys (Gjertson David and

Cecka., 2000; Delmonico Francis, 2004). Technically, each agent has 0-1 car-

dinal preferences between compatible and incompatible kidneys.

In addition to the above mentioned constraints, the problem includes an additional

constraint.

1. Each patient donor pair includes weight as an additional parameter. Here

weight captures the strength of claim of patient donor pair.
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Incentive compatibility is restricted to possible Pareto efficient matches which is

later shown to be equivalent to matches of maximum cardinality. Under such cir-

cumstances, the first part of the problem reduces to cardinality matching prob-

lem(see for example, Korte Bernhard et al. (2011)). Each donor patient pair can

be considered as a vertex of an undirected graph and each edge represents a fea-

sible match between donor recipient pairs.Finding a maximum cardinality match

between incompatible donor recipient pair, reduces to finding a maximum cardi-

nality match in the undirected graph, which is well analyzed in literature. We

will use the results of (Tibor, 1963, 1964; Edmonds, 1965) Decomposition Lemma

(GED) in finding maximum cardinality matches. Our analysis will rely heavily on

the results offered by the GED lemma.

We will also use existence results on feasible efficient matches offered by Anna

and Moulin. (2004, 2002); Hervé and Moulin. (2001) to construct lotteries over

efficient matches. The solution concept offered by the egalitarian mechanism of

Roth Alvin et al. (2005) can be considered in some aspects derivative of Bhaskar

and Ray. (1989). Our weighted egalitarian solution can also be considered as a

Weighted Dutta Ray solution, and we introduce the idea of Weighted Lorenz Domi-

nance.
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In providing a normative critique of the allocation mechanism we will draw from

the extensive works on distributive justice. We will be relying on characterizations

of solutions to the bargaining problem for insights. Specifically, we will be using

the work of Border and Segal(2000) in providing a normative critique of the mech-

anisms.

2.3 Generalized Pairwise Kidney Exchange 3

Let N = {1, 2, ...,n} be the set of incompatible patient donor pairs (patient from

now). Each patient is indifferent between compatible donors and each patient

strictly prefers a compatible donor to an incompatible donor. Each patient strictly

prefers her own incompatible donor to other incompatible donors. The last condi-

tion ensures that in any prospective match satisfying individual rationality, patient

prefers to remain unmatched rather than be matched with an incompatible donor.

The above assumptions on individual preferences can be summarized as follows.

1. For any patient i, and any compatible donor j we have j ≻i i

3For continuity, We will be borrowing notations and use preliminary analysis from Roth Alvin et al.
(2005)
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2. For any patient i, and any incompatible donor j we have i ≻i j

3. For any patient i, and any compatible donors j and h we have j ∼i i

4. For any patient i, and any incompatible donors j and h we have j ∼i h

⪰i captures the preference relation of i over the set N, and ⪰ = (⪰i)i∈N is a list con-

taining the preference of all patients in set N.

A matching is a function µ: N → N such that, µ(i) = j if and only if µ(j) = i. A

matching is individually rational if µ(i) ̸= i implies µ(i) ≻i i, ∀ i. Throughout this

paper we will focus solely on matchings which are individually rational. Note that,

given our preference structure for agents restricting attention to individually ratio-

nal matchings ensures that we focus on matches where exchange occurs between

mutually compatible pairs only.

Let w′ = (w′
i)i∈N be a list containing the weights of individual agents, where w′

i

captures the weight of patient i . Since only relative weights are of significance, we

will normalize w′ so that the least weight patient has a weight 1. Let w = (wi)i∈N

be the normalized list of weights, where wi captures the normalized weight of pa-

tient i obtained by setting the weight of least weight patient to 1. The generalized
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pairwise kidney exchange problem is given by the triplet (N,⪰,w).

Since for a given (N,⪰,w) we will be focusing on matchings with exchanges between

mutually compatible pairs, it is sufficient to use a symmetric |N | by |N | mutual

compatibility matrix R defined by

[ri,j]i∈N,j∈N =
{ 1, j≻i iandi≻j j

0, otherwise
(2.1)

The generalized kidney problem can be rewritten as a triplet (N,R,w). A gener-

alized kidney problem can be considered as an undirected graph ((N,w),R) whose

vertices are the N patients and whose edges represent a connection between mutu-

ally compatible pairs (i.e) there exists an edge between patient (i,wi) and (j,wj) iff

ri,j = 1. A matching can be thought of as a subset of edges in which each patient

appears at most once. If (i,wi) and (j,wj) is an edge in the matching µ, then (i,wi)

and (j,wj) are matched in the matching µ. A mechanism is a function/procedure

which chooses a matching or a lottery over matchings for a given problem.

Let M denote the set of individually rational matchings for a given problem (N,⪰,w).
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Since patient’s preferences are formed independently of weights the set of individ-

ual matchings should be the same given, for a given set of patients and a list of

preferences. This can be summarized by the following lemma.

Lemma 3. For a given set of patients N and a list of preferences ⪰ and for any list of

weights w, w′, the set of individually rational matchings for (N,⪰,w) and (N,⪰,w′)

are equal. Equivalently, the set of individually rational matchings for (N,⪰,w) and

(N,⪰,w′) are equal, where R is the symmetric mutual compatibility matrix for a given

list of preference relation ⪰

Efficiency: A matching µ ∈ M is efficient, if there exists no matching η ∈M such

that η(i)⪰i µ(i) for all i ∈N and η(i)≻i µ(i) for some i ∈N. The following lemma will

be very helpful in the characterization of efficient matchings

Lemma 4. Roth Alvin et al. (2005):Let I be the set of simultaneously matchable

patients, i.e. I = {I ⊆ N : ∃µ ∈M such that patient in I are matched with another

patient in µ}. Then (N,I) is a matroid.

Lemma 5. (Roth Alvin et al. (2005): For any pair of Pareto efficient matchings µ,η
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,|µ | = | η |

The above lemma gives an equivalence between Pareto efficient and maximum car-

dinal matches. Since Pareto efficiency is a desirable property for the mechanism, we

will restrict our attention to matchings of maximum cardinality . Finding maximum

cardinal matchings are well analyzed in combinatorial optimization. Let E repre-

sent the set of matchings of maximum cardinality.It follows that E ⊆M. We will

use the Gallai- Edmonds Decomposition(GED) lemma in characterizing maximum

cardinal matchings.

2.3.1 Gallai-Edmonds Decomposition

Let {NU,NO,NP} be the partition of set of patients N where,

NU = {i ∈N,∃µ ∈E s.t. µ(i) = i }

NO = {i ∈N\NU,∃ j ∈NU s.t. r i, j = 1}
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NP = N\ (NU∪NO)

NU represents patients in N who are not matched with another patient in at least

one matching in E. NO represents patients who share at least one edge with a pa-

tient in NU. NP represents patients who are always matched with another patient

in every matching belonging to E and who do not share an edge with a patient in

NU.

Let I⊆N. Let RI = [r i, j]i∈I, j∈I be the reduced symmetric mutually compatible matrix

for patients in I. Let wI be the list of weights for patients in I. Then (I,RI,wI) is

the reduced sub-problem of the original problem (N,R,w) restricted to I. A reduced

sub-problem (I,RI,wI) is connected if there exist a sequence of patients i1i2i3...im,

possibly with repetition such that r ik,ik+1 = 1, for all k ∈ {1,2, ...,m−1} where I =

{i1, i2, i3, ..., im}. A connected reduced sub-problem (I,RI,wI) is a component of

(N,R,w) if r i, j = 0, for i ∈ I, j ∈ N\I. (I,RI,wI) is an odd component if | I | is odd

and an even component if | I | is even.

Lemma 6. (Tibor, 1963, 1964; Edmonds, 1965): Let (I,RI,wI) be a reduced sub-

problem with I = N\NO. Let µ be a matching of maximum caridinality for the original
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problem (N,R,w). Then

1. For any patient i ∈NO, µ(i) ∈NU

2. For any even component (J,RJ,wJ) of (I,RI,wI), J ⊆ NP and for any patient

i ∈J,µ(i) ∈J\{i}

3. For any odd component (J,RJ,wJ) of (I,RI,wI), J ⊆ NU and for any patient

i ∈J, it is possible to match all remaining patients in J with each other (so that

any patient j ∈J\{i} can be matched with another patient in J\{i, j}). Moreover

for any odd component (J,RJ,wJ), either,

a) One and only one patient i ∈ J is matched with a patient in NO and all

the remaining patients in J\{i} are matched with each other so that µ(i) ∈

J\{i, j}, or

b) One patient i ∈ J remains unmatched, while all the remaining patients in

J\{i} are matched with each other so that µ(i) ∈J\{i, j}.

Based on the GED lemma, NU can be described as the set of underdemanded pa-

tients, NO can be described as the set of overdemanded patients, NP can be described

as the set of perfectly matched patients. LetD = {D1,D2,D3, , ...,Dk, } be the partition

of set of underdemanded patients NU, such that (Dk,RDk ,wDk is an odd component
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of (N\NO,RN\NO ,wN\NO). Following (Roth, Sönmez and Ünver(2004)[5] we will

also slightly abuse the notation, and call each (Dk,RDk ,wDk as an odd component.

2.3.2 Induced two-sided matching market

Every patient in NP are matched in every matching belonging to E. Following GED

lemma, in every matching of E, patients in NO are matched to one of the odd

components in D.Hence we,we will restrict our attention to the induced two sided

matching market, comprising of the overdemanded patients on one side and odd

components of underdemanded patients on other side.

For every odd component J ∈D and for every overdemanded patient i ∈NO let

[r̃i,J]i∈NO,J∈D =
{ 1, ∃ j ∈J s.t. r i, j = 1

0, otherwise
(2.2)

and let R̃ = [r̃i,J]i∈NO,J∈D . For a given problem with its equivalent symmetric

mutual compatibility matrix (N,R,w), the induced two-sided matching market is

given by the quartet (NO,D,R̃,wN\NP). The pre-matching m̃u for the induced two-
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sided matching is a function µ̃ : NO∪D→NO∪D∪ {φ} given by,

1. µ̃(i) ∈D∪ {φ}, for all i ∈NO

2. µ̃(J) ∈NO∪ {φ}, for all J ∈D

3. µ̃(i)=J ⇔ µ̃(J)= i, for any i ∈NO and J ∈D

4. µ̃(i)=J ⇒ r̃ i,J = 1, for any i ∈NO and J ∈D

Let M̃ deno..te the set of individually rational pre-matchings in the induced two

sided matching market. Let Ẽ denote the set of pre-matchings of maximum car-

dinality. From the above lemmas the pre-matchings of maximum cardinality are

efficient. Also the set of efficient pre-matchings is non empty by the GED lemma.

2.3.3 Stochastic Exchange

Based on GED lemma, we can see that an underdemanded patient competes for

an indivisible good(kidney) with other underdemanded patients in the odd com-

ponent, and odd components of underdemanded patients compete with each other

for overdemanded patients. Since in maximum cardinal matches not all patients are

matched and kidneys are indivisible, we will use a stochastic mechanism. A stochas-

tic mechanism will choose a lottery λ= {λµ}µ∈M, a probability distribution over the
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set of matchings M . Let L be the set of lotteries associated with (N,R,w). The

definition can be extended to the induced two sided matching market. Let the set of

pre-lotteries L̃ be the set of lotteries associated with (NO,D,R̃,wN\NP). A pre-lottery

λ̃= {λ̃µ}µ∈M̃, a probability distribution over matchings in M̃.

Allocation Matrix

Given a lottery λ ∈L for a given problem (N,R,w), an allocation matrix is a sym-

metric matrix given by, A(λ) = [ai, j]i∈N, j∈N where {ai, j}i∈N, j∈N gives the probability

with which patient i is matched with patient j under the lottery λ. An allocation

matrix is feasible if,

1. For all patient i,
∑

j∈N\{i} ai, j ≤ 1 and
∑

j∈N ai, j = 1.

2. For all patient i, ai, j > 0⇒ r i, j = 1.

Let A = {A(λ)}λ∈L be the set of allocation matrices. Similarly, for an induced two-

sided matching market we can extend the definition of symmetric allocation matrix.

Given a pre-lottery λ̃ ∈ L̃ for the associated two-sided induced matching market

(NO,D,R̃,wN\NP), the pre-allocation matrix Ã(λ)= [ai, j]i∈NO, j∈D where {ai, j}i∈NO, j∈D

gives the probability with which an overdemanded patient i is matched with an odd

component J. The pre-allocation matrix is feasible if,
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1. For all overdemanded patient i,
∑

J∈D ai,J ≤ 1.

2. For all odd components J ∈D,
∑

i∈NO ai,J ≤ 1 .

3. For any overdemanded patient i and odd component J, ai,J > 0⇒ r̃ i,J = 1.

Induced utility profile

Given λ ∈ L, let A(λ) be the associated allocation matrix. Given λ the induced

utility profile is a non-negative vector u(λ) = (u(λ)i)i∈N where, u(λi) = ∑
j∈N\{i} ai, j,

ai, j ∈A(λ) Utility feasible profile U = (uλ)λ∈L is the set of all possible induced utility

profile

Ex-Ante Efficiency

An allocation matrix A ∈A is ex-ante efficient if there exists no allocation matrix

B ∈A such that
∑

j∈N bi, j ≥∑
j∈N ai, j i ∈N, and

∑
j∈N bi, j >∑

j∈N ai, j for some i ∈N.

A pre-allocation Ã ∈ Ã matrix is ex-ante efficient if there exists no pre-allocation

B̃ ∈ Ã matrix such that
∑

J∈D bi,J ≥∑
J∈D ai,J i ∈NO and

∑
i∈NO bi,J ≥∑

i∈NO ai,J J ∈D

for all i ∈NO,J ∈D, and strictly greater for some J ∈D for all i ∈NO,J ∈D
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Ex-Post Efficiency

A lottery λ over matchings M is ex-post efficient if only efficient matches are in the

support of λ. Since the set of efficient matchings is equivalent to set of maximum

cardinal matchings in our setting, λ is ex-post efficient if only matches from E are

in the support of λ.

A pre-allocation lottery λ̃ over matchings M̃ is ex-post efficient if only efficient

matches of the two-sided induced matching market are in the support of λ̃. Since

the set of efficient matchings is equivalent to set of maximum cardinal matchings

of two-sided induced matching market, λ̃ is ex-post efficient if only matches from

Ẽ are in the support of λ̃.The following lemma will be very useful in constructing

ex-post efficient lotteries.

Lemma 7. (Anna and Moulin. (2004)) An allocation matrix A ∈A is ex-ante efficient

iff there exists an ex-post efficient lottery λ ∈L such that A(λ)=A
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2.4 Weighted Egalitaraian Mechanism

2.4.1 Preliminaries

A weighted egalitarian mechanism for a given (N,R,w), is a stochastic mechanism

which chooses a probability distribution over efficient matches, satisfying incentives

with respect to weight. By GED lemma, patients in NP are matched in all efficient

matchings. Therefore we will focus on the induced two sided matching market

(NO,D,R̃,wN\NP). WLOG, we will rearrange any coalition S of patients so that,

wS
1 ≥ wS

2 ≥ wS
3 ≥ ...≥ wS

|S|

the first index is provided to the patient with maximum weight and the last index

is provided to the patient with minimum weight. Note that, wS
|S| ≥ 1

2.4.2 Allocation rule

By GED lemma, patients in NP and NO are perfectly matched in any Pareto efficient

matching. Hence we will restrict our attention to underdemanded patients. Con-
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sider any coalition J ⊆D of odd components of underdemanded patients. For some

I ⊆NO , and q = |∪J∈J J|,, the allocation rule is defined as follows.

Step 1:

f w(J , I)= |⋃J∈J J | −(|J | − | C(J , I) |)∑
i∈⋃

J∈J J
wi

If w1 f w(J , I)< 1 the procedure terminates. Otherwise, proceed to Step 2.

Step 2:

f w(J , I)= |⋃J∈J J \{1} | −(|J | − | C(J , I) |)∑
i∈⋃

J∈J J
wi −w1

ψw
i (J , I)= wi f w(J , I)

If w2 f w(J , I)< 1 the procedure terminates. Otherwise, proceed to Step 3.

In general,

Step k:

f w(J , I)= |⋃J∈J J \{1, ...,k−1} | −(|J | − | C(J , I) |)∑
i∈⋃

J∈J J
wi −

k−1∑
i=1

wi

ψw
i (J , I)= wi f w(J , I)

If wk f w(J , I)< 1 the procedure terminates. Otherwise, proceed Step k+1. If at the

Step q, wq f w(J , I)≥ 1, then we set f w(J , I)= 1.
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Let us define NJ = ⋃
J∈J J, Nm

J
= {i ∈ NJ : ψw

i (J , I) ≥ 1}, and Nu
J

= {i ∈ NJ :

ψw
i (J , I)< 1}. We rewrite f w(J , I) using these notation:

f w(J , I)=
| Nu

J
| −(|J | − | C(J , I) |)∑

i∈Nu
J

wi

The allocation chosen by the allocation rule for underdemanded patients in J ⊆D

given I ⊆NO is then,

ui =ψw
i (J , I)= wi f w(J , I), i ∈ Nu

J

ui = 1, i ∈ Nm
J

2.4.3 Mechanism

Consider the induced two sided matching market (NO,D,R̃,wN\NP), for a given

problem (N,R,w). This can be done since all patients in NP are perfectly matched

in all efficient matching. The following procedure is suggested as weighted egali-

tarian mechanism.

Step 1:
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Let D1 ⊆D be such that,

D1(D,NO)= argmin
J⊆D

f w(J ,NO)

where the associated f w value of any coalition is obtained by the allocation rule.

Here f w captures the value of per weight utility of patients in a coalition, who

are not matched in at least one Pareto efficient matching given the allocation of

overdemanded neighbors. In the first step, a coalition of odd components is selected

from D such that, using the allocation rule suggested in the previous subsection,

the attained f w value for that coalition is minimum among all possible coalition

of odd components. Intuitively, this captures a coalition where per weight allo-

cation of utility of patients who are not matched in at least one Pareto efficient

matching given the allocated overdemanded neighbors to the coalition, is minimum.

Under such a scenario, the mechanism compensates the coalition by providing

all overdemanded patients who are neighbors to odd components of the coalition.

The total number of possible matches of underdemanded patients is then allocated

among members of the coalition as probability of getting a match using the alloca-

tion rule. Let C(NO,D1)≡NO
1
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Since the patients in D1 are matched with NO
1 , Dk ∈D \D1, (Dk,RDk ) is an odd-

component for the reduced problem. The induced two-sided matching market for

the reduced problem consists of odd components which weren’t part of D1 and

overdemanded patients who weren’t part of NO
1 . Hence the induced two-sided

matching market for the reduced problem is given by (NO\NO
1 ,D\D1,R̃NO\NO

1
,wN\NP∪NO

1 ∪Di∈D1Di
).

Let D2 be such that,

D2(D\D1,N\NO
1 )= argmin

J⊆D\D1

f w(J ,N\NO
1 )

where the associated f value of the coalition is given by the allocation rule.

Here D2 is the set of odd components where per weight utility of a patient un-

matched in at least one Pareto efficient matching is minimum. Underdemanded

patients in coalition D2 of odd components along with their overdemanded neigh-

bours NO
2 ≡ C(N\NO

1 ,D2) are matched with probability provided by the allocation

rule.

This motivates the recursive construction of partition of NO of overdemanded pa-
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tients as {NO
1 ,NO

2 , ...,NO
q } and D of odd components as {D1,D2, ...,Dq}. Each set

NO
i of overdemanded patients are then matched with Di of odd components, and

the utilities of underdemanded patients in odd components are determined by the

allocation rule.The utility profile such obtained is the weighted egalitarian induced

utility profile uWE for the given problem (N,R,w).

Theorem 6. : The weighted egalitarian utility profile uWE is feasible.

For any utility profile u ∈ Rn, take a permutation σu to re-order ratios of individual

utility and weight in an increasing order: uσu(1)
wσu(1)

≤ uσu(2)
wσu(2)

≤ ...≤ uσu(n)
wσu(n)

.

Weighted Lorenz Curve: The weighted Lorenz curve for a utility profile u is a piece-

wise linear function Lw
u : [0,

∑
i∈N wi]→R defined by

Lw
u (p)=


p · uσu(1)

wσu(1)
(p ∈ [0,wσu(1)])

∑i
j=1 uσu( j) + (p−∑i

j=1 wσu( j)) · uσu(i+1)
wσu(i+1)

(p ∈ [
∑i

j=1 wσu( j),
∑i+1

j=1 wσu( j)], i ∈ {1,2, ...,n−1})
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Weighted Lorenz Dominance: Let u,v ∈ Rn. A utility profile u weighted Lorenz

dominates v if Lw
u (p) ≥ Lw

v (p) for all p ∈ [0.
∑

i∈N wi], and Lw
u (p) > Lw

v (p) for some

p ∈ [0.
∑

i∈N wi].

An utility profile u weighted Lorenz dominates another utility profile v if the Weighted

Lorenz curve of u lies above the Weighted Lorenz curve of v.

Theorem 7. The weighted egalitarian utility profile uWE weighted Lorenz dominates

all feasible utility profiles.

The above theorem suggests that, per weight allocation of the Weighted Egali-

tarian mechanism is more egalitarian than the per weight allocation of any fea-

sible utility profile. An important concern for any mechanism design problem is

implementability (i.e.) the mechanism provides right incentives for the partici-

pants. In this regard the following theorem holds.

Theorem 8. : The weighted egalitarian mechanism makes it dominant strategy for

a patient to reveal both, (a) the available set of donors, (b) her full set of acceptable

kidneys
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The above theorem states that, it is incentive compatible for a patient to reveal more

of their incompatible donors since it increases probability of match and the patient

doesn’t suffer from revealing her full set of acceptable kidneys. It is important to

note that, addition of weight as parameter doesn’t provide any incentives for agents

to reject any acceptable kidney. The following corollary is immediate.

Corollary 1. The weighted egalitarian mechanism is donor monotonic

2.5 Priority and Weighted Egalitarian mechanism

In Priority mechanism [5] patients are offered priority rankings instead of weights.

The priority mechanism chooses an allocation by matching agents based on priority

order. Priority mechanisms are widely used in practice. It is important to study the

Weighted Egalitarian mechanism in contrast with the Priority mechanism to under-

stand the changing incentives faced by the patients. The following theorem will be

helpful in this regard.

Theorem 9. Consider a sequence of pairwise kidney exchange problems (N,R,w(n))

such that for all i > j,
wn

i

wn
j
= o(1). Let φWE

n be the sequence of Weighted Egalitarian
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mechanism allocations. Let ψ be the allocation chosen by the Priority mechanism

where patient i has higher priority than patient j, if i < j. Then

lim
n→∞φWE

n =ψ

The Weighted Egalitarian mechanism chooses the allocation of Egalitarian mech-

anism when the weights of participating patients are equal. When the weights of

patients of are increasing at an exponential rate relative to each other, then the

above theorem implies that at the limit the allocation chosen by the Weighted Egal-

itarian mechanism is equivalent to the allocation chosen by the Priority mechanism.

This characterizes the continuum, where symmetric weights constitute the egalitar-

ian allocation at one end, and priority allocation at the other end where the priority

allocation signifies total asymmetry between matched and relatively unmatched pa-

tient
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2.6 Conclusion

Data available from United States suggests that, there is an ever growing demand

for kidneys. Considering logistics and other constraints, Roth, Sönmez and Ünver(2004)[5]

suggested Priority mechanism and Egalitarian mechanism for organizing the market

for pairwise kidney exchange. Since patients are asymmetric in terms of their med-

ical needs and demands, the current system provides people with priority score and

chooses a matching which maximizes the priority score. Patients with low priority

score can have relatively lower proportional needs but the mechanism which maxi-

mizes the priority score can fail to reflect the relative strength of needs in the final

allocation. Through this paper we propose the Weighted Egalitarian mechanism, a

stochastic mechanism which can address this deficit. We have provided with the

normative characterization of Weighted Egalitarian mechanism, which shows how

the mechanism better represents our intuitive notions of fairness.
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Appendix: Proofs and Results

Theorem 1: The proof of theorem 3 can be broken down into following lemmas.

Lemma 8. Fix G ⊆ D and I ⊆ NO. Suppose G1,G2 ∈ argminJ⊆G f (J , I). Then G1 ∪

G2 ∈ argminJ⊆G f (J , I) as well.

Proof. We show following facts.

1. Nm
G1

∪Nm
G2

⊆ Nm
G1∪G2

2. Nm
G1

∩Nm
G2

⊆ Nm
G1∩G2

For the first, suppose not: there exist i ∈ Nm
G1

∪Nm
G2

such that i ̸∈ Nm
G1∪G2

.

ψw
i (G1 ∪G2, I)

wi
= f w(G1 ∪G2, I)< ψw

i (G1, I)

wi
≤ f w(G1, I) (2.3)

This violates minimality of G1. For the second, we can apply a similar argument. By
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the definition of f ,

∑
i∈Nu

G1

wi f w(G1, I)+ | Nm
G1

| =| NG1 | −(|G1 | − | C(G1, I) |)

∑
i∈Nu

G2

wi f w(G2, I)+ | Nm
G2

| =| NG2 | −(|G2 | − | C(G2, I) |)

∑
i∈Nu

G1∩G2

wi f w(G1 ∩G2, I)+ | Nm
G1∩G2

| =| NG1∩G2 | −(|G1 ∩G2 | − | C(G1 ∩G2, I) |)

Since | C(G1, I) |)+ | C(G2, I) |)≥| C(G1 ∩G2, I) | + | C(G1 ∪G2, I) |, we have

| NG1 | −(|G1 | − | C(G1, I) |)+ | NG2 | −(|G2 | − | C(G2, I) |)

−( | NG1∩G2 | −(|G1 ∩G2 | − | C(G1 ∩G2, I) |))
≥| NG1∪G2 | −(|G1 ∪G2 | − | C(G1 ∪G2, I) |)

= ∑
i∈Nu

G1∪G2

wi f w(G1 ∪G2, I)+ | Nm
G1∪G2

|

Since f w(G1, I)= f w(G2, I)≤ f w(G1 ∩G2, I), we have

∑
i∈Nu

G1

wi f w(G1, I)+ | Nm
G1

| + ∑
i∈Nu

G2

wi f w(G1, I)+ | Nm
G2

| −( ∑
i∈Nu

G1∩G2

wi f w(G1, I)+ | Nm
G1∩G2

| )
≥ ∑

i∈Nu
G1

wi f w(G1, I)+ | Nm
G1

| + ∑
i∈Nu

G2

wi f w(G2, I)+ | Nm
G2

| −( ∑
i∈Nu

G1∩G2

wi f w(G1 ∩G2, I)+ | Nm
G1∩G2

| )
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Since Nm
G1

∩Nm
G2

⊆ Nm
G1∩G2

and 1≥ wi f w(G1) for any i, we have

∑
i∈Nu

G1∩G2

wi f w(G1, I)+ | Nm
G1∩G2

|≥ ∑
i∈Nu

G1
∩Nu

G2

wi f w(G1, I)+ | Nm
G1

∩Nm
G2

|

Thus we also have,

∑
i∈Nu

G1
∪Nu

G2

wi f w(G1, I)+ | Nm
G1

∪Nm
G2

|

= ∑
i∈Nu

G1

wi f w(G1, I)+ | Nm
G1

| + ∑
i∈Nu

G2

wi f w(G1, I)+ | Nm
G2

| −( ∑
i∈Nu

G1
∩Nu

G2

wi f w(G1, I)+ | Nm
G1

∩Nm
G2

| )
≥ ∑

i∈Nu
G1

wi f w(G1, I)+ | Nm
G1

| + ∑
i∈Nu

G2

wi f w(G1, I)+ | Nm
G2

| −( ∑
i∈Nu

G1∩G2

wi f w(G1, I)+ | Nm
G1∩G2

| )

Since Nm
G1

∪Nm
G2

⊆ Nm
G1∪G2

, we have

∑
i∈Nu

G1∪G2

wi f w(G1, I)+ | Nm
G1∪G2

|≥ ∑
i∈Nu

G1
∪Nu

G2

wi f w(G1, I)+ | Nm
G1

∪Nm
G2

|

By these results, we have f w(G1, I) ≥ f w(G1 ∪G2, I). But since G1 minimize f , we

have f w(G1, I)= f w(G1 ∪G2, I) and hence G1 ∪G2 minimize f as well. ■

Lemma 9. For each k ∈ {1,2, ..., q} and i ∈ Nu
Dk

, we have

1. C(Dk, NO
K )= C(Dk, NO \

⋃k−1
l=1 NO

l ) and = f (Dk, NO \
⋃k−1

l=1 NO
l ).
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2. wi f (Dk, NO
K )< 1

Proof. ■

Let k ∈ {1,2, ..., q} and J ∈ Dk. Let us define Ju
Dk

= J ∩ Nu
Dk

and Jm
Dk

= J ∩ Nm
Dk

.∑
i∈Ju

Dk
wi f w(Dk, NO

k )+ | Jm
Dk

| is the aggregate utility in set J under uE. The set J,

by itself, generates an aggregate utility | J | −1 without any help the overdemanded

patients. Therefore, the set J need
∑

i∈Ju
Dk

wi f w(Dk, NO
k )+ | Jm

Dk
| −(| J | −1) from the

overdemanded patients. Let

αJ = ∑
i∈Ju

Dk

wi f w(Dk, NO
k )+ | Jm

Dk
| −(| J | −1)

= ∑
i∈Ju

Dk

wi f w(Dk, NO
k )− (| Ju

Dk
| −1)

=
( | Nu

Dk
| −(|Dk | − | C(Dk, NO

k ) |))∑i∈Ju
Dk

wi∑
i∈Nu

Dk

wi
− (| Ju

Dk
| −1)

=
( | Nu

Dk
| −(|Dk | − | C(Dk, NO

k ) |))∑i∈Ju
Dk

wi − (| Ju
Dk

| −1)
∑

i∈Nu
Dk

wi∑
i∈Nu

Dk

wi

Lemma 10. There exists a pre-allocation matrix Ã ∈A such that

1. For each i ∈ NO,
∑

J∈D ãi,J = 1, and
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2. For each k ∈ {1,2, ..., q} and J ∈Dk

(a) ãi,J = 0 for all i ∈ NO \ NO
k , and

(b)
∑

i∈NO
k

ãi,J =αJ

Proof. Let k ∈ {1,2, ..., q}. We will show that there exists a matrix Ãk,k = [ãi,J]i∈NO
k ,J∈Dk

such that

1.
∑

J∈Dk ãi,J = 1 for all i ∈ NO
k ,

2.
∑

J∈Dk ãi,J =αJ for all J ∈Dk, and

3. ãi,J > 0⇒ r̃ i,J = 1 for any pair i ∈ NO
k , J ∈Dk

We will show this by defining an auxiliary task assignment problem and applying

Hall’s Theorem to the auxiliary task assignment problem. Given NO
k and Dk, con-

struct the task assignment problem (X ,T ,Γ) as follows:

• For each overdemanded patient i ∈ NO
k , introduce

∑
i∈Nu

Dk
wi identical agents.

Let X i ne the set of the identical agents associated with patient i, and X =
⋃

i∈NO
k

X i.

• For each odd component J ∈ Dk, introduce
( | Nu

Dk
| −(| Dk | − | C(Dk, NO

k ) |

)
)∑

i∈Ju
Dk

wi−(| Ju
Dk

| −1)
∑

i∈Nu
Dk

wi identical tasks. Let TJ be the set of identical
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tasks associated with set J, and T =⋃
J∈Dk TJ .

• Finally, introduce a matrix Γ = (γx,T)x∈X ,T∈T such that γx,T = 1 if r̃ i,J = 1 for

x ∈ X and T ∈T , and 0 otherwise.

Note that (wi)i∈N ∈ N|N| and hence
∑

i∈Nu
Dk

wi ∈ N. Given NO
k and Dk we refer to

(X ,T ,Γ) as the auxiliary task assignment problem. Note that

|T | = ∑
J∈Dk

(( | Nu
Dk

| −(|Dk | − | C(Dk, NO
k ) |)) ∑

i∈Ju
Dk

wi − (| Ju
Dk

| −1)
∑

i∈Nu
Dk

wi
)

= ( | Nu
Dk

| −(|Dk | − | C(Dk, NO
k ) |)) ∑

i∈Nu
Dk

wi − (| Nu
Dk

| − |Dk |)
∑

i∈Nu
Dk

wi

=| C(Dk, NO
k ) | ∑

i∈Nu
Dk

wi

= ∑
j∈NO

k

∑
i∈Nu

Dk

wi =| X | .

■

An auxiliary task assignment is a bijection ν : X −→T . An auxiliary task assignment

ν is feasible if and only if ν(x) = T implies that γx,T = 1. We will show that there

exists a feasible auxiliary task assignment ν for (X ,T ,Γ) Given τ⊆T define

C(τ, X )= {x ∈ X : ∃T ∈ τwithγx,T = 1}.
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By Hall’s Theorem there exists a feasible auxiliary task assignment if and only if

|τ| ≤ |C(τ, X )| for every τ⊆T

We will prove this by contradiction. Suppose there exists a subset τ ⊆ T of tasks

such that |τ| > |C(τ, X )|. Next construct the following set of tasks τ∗ ⊇ τ. Note that

since C(τ∗, X )= C(τ, X ), we have

|τ∗| ≥ |τ| > |C(τ, X )| = |C(τ∗, X )|.

Let J ∗ be the set of odd components each of which is associated with a task in τ∗.

Note that
⋃

J∈J ∗ TJ = τ∗, and therefore

|τ∗| = ∑
J∈J ∗

(( | Nu
Dk

| −(|Dk | − | C(Dk, NO
k ) |)) ∑

i∈Ju
Dk

wi − (| Ju
Dk

| −1)
∑

i∈Nu
Dk

wi
)

= ( | Nu
Dk

| −(|Dk | − | C(Dk, NO
k ) |)) ∑

J∈J ∗

∑
i∈Ju

Dk

wi − (| ⋃
J∈J ∗

Ju
Dk

| − |J ∗ |) ∑
i∈Nu

Dk

wi

Moreover,

|C(τ∗, X )| =| C(J ∗, NO
k ) | ∑

i∈Nu
Dk

wi
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By these results,

( | Nu
Dk

| −(|Dk | − | C(Dk, NO
k ) |)) ∑

J∈J ∗

∑
i∈Ju

Dk

wi − (| ⋃
J∈J ∗

Ju
Dk

| − |J ∗ |) ∑
i∈Nu

Dk

wi

>| C(J ∗, NO
k ) | ∑

i∈Nu
Dk

wi;

rearranging the terms, we have

| Nu
Dk

| −(|Dk | − | C(Dk, NO
k ) |)∑

i∈Nu
Dk

wi
= f (Dk, NO

k )>
|⋃J∈J ∗ Ju

Dk
| −(|J ∗ | − | C(J ∗, NO

k ) |)∑
J∈J ∗

∑
i∈Ju

Dk
wi

(2.4)

We show that
⋃

J∈J ∗ Ju
Dk

= Nu
J ∗, which is equivalent to

⋃
J∈J ∗ Jm

Dk
= Nm

J ∗. Suppose

not. There are two cases to consider. Case 1: There exists an agent i such that

i ∈⋃
J∈J ∗ Jm

Dk
and i ̸∈ Nm

J ∗. This implies

wi f (Dk, NO
k )≥ 1> wi f (J ∗, NO

k )

⇔ f (Dk, NO
k )> f (J ∗, NO

k )

This violates Dk minimize f . Case 2: There exists an agent i such that i ̸∈⋃
J∈J ∗ Jm

Dk
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and i ∈ Nm
J ∗. Notice that i ∈⋃

J∈J ∗ Ju
Dk

and thus

1> wi f (Dk, NO
k )

Moreover,
⋃

J∈J ∗ Jm
Dk

⊆ Nm
J ∗ by Case 1. Let |⋃J∈J ∗ Jm

Dk
| = l. Together with these

facts, at the step l in procedure of f (J ∗, NO
k ),

f (l)(J ∗, NO
k )=

|⋃J∈J ∗ Ju
Dk

| −(|J ∗ | − | C(J ∗, NO
k ) |)∑

J∈J ∗
∑

i∈Ju
Dk

wi

Since i ∈ Nm
J ∗, we have w1 f (l)(J ∗, NO

k ) ≥ 1. Thus, we get w1 f (l)(J ∗, NO
k ) ≥ 1 >

wi f (Dk, NO
k ), or f (l)(J ∗, NO

k ) > f (Dk, NO
k ), contradicting Eq. (2.4). Now we get

⋃
J∈J ∗ Ju

Dk
= Nu

J ∗ and hence Eq. (2.4) is

f (Dk, NO
k )>

|⋃J∈J ∗ Ju
Dk

| −(|J ∗ | − | C(J ∗, NO
k ) |)∑

J∈J ∗
∑

i∈Ju
Dk

wi

=
| Nu

J ∗ | −(|J ∗ | − | C(J ∗, NO
k ) |)∑

i∈Nu
J∗ wi

= f (J ∗, NO
k )

contradicting the definition of Dk, and showing that for each τ⊆ T , |τ| ≤ |C(τ, X )|.

Therefore, there exists a feasible auxiliary assignment ν.

We next construct matrix Ãk,k = [ãi,J]i∈NO
k ,J∈Dk

using the auxiliary assignment ν.
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For each J ∈Dk and i ∈ NO
k , define

νi,J = {x ∈ X i : ν(x)= T for some T ∈TJ}

For each J ∈Dk and i ∈ NO
k , let

ãi,J = |νi,J |∑
i∈Nu

Dk
wi

and let Ãk,k = [ãi,J]i∈NO
k ,J∈Dk

. For each J ∈Dk, we have

∑
i∈NO

k

ãi,J =
∑

i∈NO
k
|νi,J |∑

i∈Nu
Dk

wi
= |TJ |∑

i∈Nu
Dk

wi

=
( | Nu

Dk
| −(|Dk | − | C(Dk, NO

k ) |))∑i∈Ju
Dk

wi − (| Ju
Dk

| −1)
∑

i∈Nu
Dk

wi∑
i∈Nu

Dk

=αJ ,

where the last inequality hods by the definition of αJ . Moreover, for each i ∈ NO
k ,

we have

∑
J∈Dk

ãi,J =
∑

J∈Dk |νi,J |∑
i∈Nu

Dk
wi

= X i∑
i∈Nu

Dk
wi

=
∑

i∈Nu
Dk

wi∑
i∈Nu

Dk
wi

= 1

We conclude the proof by constructing a pre-allocation matrix Ã ∈ ˜A using the ma-
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trices {Ãk,k}k∈{1,...,q} constructed above. For each k,k′ with k ̸= k′, for each i ∈ NO
k and

each J ∈Dk′, let ãi,J = 0. Let Ãk,k′ = [ãi,J]i∈NO
k ,J∈D′

k
. Let Ã = {Ãk,k}k∈{1,...,q},k′∈{1,...,q} =

[ãi,J]i∈NO ,J∈D . Notice that for each J ∈Dk, we have
∑

i∈NO ãi,J =∑
i∈NO

k
ãi,J =αJ and

for each i ∈ NO
k , we have

∑
J∈D ãi,J =∑

J∈Dk ãi,J = 1 concludting the proof.

Lemma 11. There exists an ex post efficient lottery λWE ∈L such that u(λWE)= uWE

Proof. By the result, there exists a pre-allocation matrix Ã ∈A such that

1. For each i ∈ NO,
∑

J∈D ãi,J = 1, and

2. For each k ∈ {1,2, ..., q} and J ∈Dk

(a) ãi,J = 0 for all i ∈ NO \ NO
k , and

(b)
∑

i∈NO
k

ãi,J =αJ

For each k ∈ {1,2, ..., q} and J ∈ Dk, we have
∑

i∈NO
k

ãi,J = αJ and ãi,J = 0 for all

i ∈ NO \ NO
k . By Lemma 2.1 in Bogomolnai and Moulin there exists an ex post

efficient pre-lottery λ̃ ∈ L̃ that implements Ã. For each pre-matching µ̃ ∈ M̃ in the

support of λ̃, partition set D as {Dm(µ̃),Du(µ̃)} where

• Dm(µ̃)= {J ∈D : µ̃ ̸= ;} and

• Du(µ̃)=D \Dm(µ̃).
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Define Ju(µ̃) = J ∩ Nu
D

for each J ∈ Du(µ̃). Pick one patient i ∈ Ju(µ̃) for each

J ∈ Du(µ̃) . Note that there are ΠJ∈Du(µ̃)|Ju(µ̃)| possible combinations. For each

combination construct a Pareto-efficient matching µ such that:

• each of the chosen patient i is matched to herself

• each remaining patient in J ∈ Du(µ̃) is matched with another patient in the

same odd component J, and

• one patient in each J ∈ Dm(µ̃) is matched with the an overdemanded patient

i ∈ NO whereas all other patients in each such odd component J is matched

with another patient in J.

By the GED Lemma, there exists at least one such matching. Pick one and only one

such matching for each of the ΠJ∈Du(µ̃)|Ju(µ̃)| possible combinations. Let M (µ̃) be

the resulting set of matchings. Clearly, |M (µ̃)| =ΠJ∈Du(µ̃)|Ju(µ̃)|

We are finally ready to construct a lottery λWE, which induces the utility profile

uWE. The lottery λWE is constructed from the pre-lottery λ̃WE by replacing each

pre-matching µ̃ in the support of λ̃WE with a lottery over M (µ̃) based on the weight
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profile w. That is:

λWE
µ =


(
ΠJ∈Du(µ̃),i∈Ju(µ̃)withµ(i)=i

1−wi f (Dk, NO
K )

1−αJ

)
λ̃µ̃ ifµ ∈M (µ̃)and λ̃µ̃ > 0

0 otherwise

Clearly, λWE is a lottery:

∑
µ∈M

λWE
µ = ∑

µ̃∈M̃

( ∑
µ∈M (µ̃)

λWE
µ

)

= ∑
µ̃∈M̃

( ∑
µ∈M (µ̃)

(
ΠJ∈Du(µ̃),i∈Ju(µ̃)withµ(i)=i

1−wi f (Dk, NO
K )

1−αJ

)
λ̃µ̃

)

= ∑
µ̃∈M̃

(
ΠJ∈Du(µ̃)

( ∑
i∈Ju(µ̃)

1−wi f (Dk, NO
K )

1−αJ

)
λ̃µ̃

)

= ∑
µ̃∈M̃

(
ΠJ∈Du(µ̃)

(
1−αJ

1−αJ

))
λ̃µ̃ = 1.

Moreover, by construction λE is an ex post efficient lottery.

We conclude the proof by showing that u(λWE) = uWE. Each patient in N \ Nu is

matched with another patient in every efficient matching by the GED Lemma. Since

λWE is an ex post efficient, for each patient i ∈ N \ Nu we have ui(λWE)= uWE
i = 1.

Consider a patient i ∈ Nu. Let i ∈ J ∈Dk for some k. Recall that J is partitioned by
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Jm
Dk

and Ju
Dk

. If i ∈ Jm
Dk

, by construction of λWE, is matched with another patient

under every matching in the support of λWE. Thus, we have ui(λWE) = uWE
i = 1.

Now, we suppose that i ∈ Ju
Dk

and show that ui(λWE)= uWE
i = wi f (Dk, NO

k ).

Let µ̃ ∈ M̃ be a pre-matching with λ̃µ̃ > 0.

1. If J ∈Dm(µ̃) then all patients in J are matched under every matching µ ∈M (µ̃).

2. If J ∈Du(µ̃), then the probability that i is unmatched conditional on J ∈Du(µ̃)

is
1−wi f (Dk, NO

K )
1−αJ

. In other words, the probability that i is matched with

another patients conditional on J ∈Du(µ̃) is
1−αJ − (1−wi f (Dk, NO

K ))
1−αJ

.

Since
∑

i∈NO
k

ãi,J = αJ is the probability that the odd component J is assigned a

patient in NO
k under the pre-lottery λ̃, we have

∑
µ̃∈M̃ s.t. J∈Dm(µ̃)

λ̃µ̃ =αJ and
∑

µ̃∈M̃ s.t. J∈Du(µ̃)
λ̃µ̃ = 1−αJ
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Therefore

ui(λWE)= ∑
µ∈M s.t.µ(i)̸=i

λWE

= ∑
µ̃∈M̃ s.t. J∈Dm(µ̃)

( ∑
µ∈M (µ̃)

λWE
µ

)
+ ∑
µ̃∈M̃ s.t. J∈Du(µ̃)

( ∑
µ∈M (µ̃) s.t.µ(i) ̸=i

λWE
µ

)

= ∑
µ̃∈M̃ s.t. J∈Dm(µ̃)

(
ΠJ′∈Du(µ̃)

(
1−αJ′

1−αJ′

))
λ̃µ̃

+ ∑
µ̃∈M̃ s.t. J∈Du(µ̃)

({
ΠJ′∈Du(µ̃) s.t. J′ ̸=J

(
1−αJ′

1−αJ′

)}{
1−αJ − (1−wi f (Dk, NO

K ))
1−αJ

})
λ̃µ̃

= ∑
µ̃∈M̃ s.t. J∈Dm(µ̃)

λ̃µ̃+
{

1−αJ − (1−wi f (Dk, NO
K ))

1−αJ

} ∑
µ̃∈M̃ s.t. J∈Du(µ̃)

λ̃µ̃

=αJ +
{

1−αJ − (1−wi f (Dk, NO
K ))

1−αJ

}
(1−αJ)

= wi f (Dk, NO
K )= uWE

i .

This completes the proof of Theorem 1. ■

Theorem 2:The weighted egalitarian utility profile uWE weighted Lorenz dominates

all feasible utility profiles.

Proof. The following lemma will be useful in proving the theorem
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Lemma 12. f w(Dk,N O
k )< f w(Dk+1,N O

k+1) for each k ∈ {1,2, ..., q}.

Proof. Suppose not. There exists k such that f w(Dk+1,N O
k+1) ≤ f w(Dk,N O

k ). Let

I = NO \∪k−1
l=1 NO

l . Consider construction of {D1,D2, ...,Dq}. Note that Dk ∪Dk+1 ⊆

D \∪k−1
l=1 Dl. Since

f w(Dk, I)= min
J⊆D\∪k−1

l=1 Dl

f w(J , I)

and Dk is the largest subset in J ⊆D \∪k−1
l=1 Dl satisfying equality, we have

f w(Dk, I)< f w(Dk ∪Dk+1, I)

Let us define Nu
Dk

= {i ∈ Jk : wi f w(Dk, I)< 1}, Nu
Dk+1

= {i ∈ Jk+1 : wi f w(Dk+1, I \N O
k )<

1}, and Nu
Dk∪Dk+1

= {i ∈ Jk ∪ Jk+1 : wi f w(Dk ∪Dk+1, I) < 1}. Let us also define Nm
Dk

=

Jk \ Nu
Dk

, Nm
Dk+1

= Jk+1 \ Nu
Dk+1

, and Nm
Dk∪Dk+1

= (Jk ∪ Jk+1)\ Nu
Dk∪Dk+1

. The first defi-

nitions means sets of unmatched agents, receiving less than one utility. The second

definitions means the sets of matched agents, receiving one utility. Based on these
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definitions, the aggregate utility of each odds components is represented by

|Nm
Dk

|+ f w(Dk, I)
∑

i∈Nu
Dk

wi = |Jk|− (|Dk|− |C(Dk, I)|)

|Nm
Dk+1

|+ f w(Dk+1, I \N O
k )

∑
i∈Nu

Dk+1

wi = |Jk+1|− (|Dk+1|− |C(Dk+1, I \N O
k )|)

|Nm
Dk∪Dk+1

|+ f w(Dk ∪Dk+1, I)
∑

i∈Nu
Dk∪Dk+1

wi = |Jk ∪ Jk+1|− (|Dk ∪Dk+1|− |C(Dk ∪Dk+1, I)|)

= |Jk|+ |Jk+1|− (|Dk|+ |Dk+1|− |C(Dk, I)|− |C(Dk+1, I \N O
k )|)

The last equality is held by C(Dk∪Dk+1, I)= C(Dk, I)∪C(Dk+1, I \N O
k ) and C(Dk, I)∩

C(Dk+1, I \ N O
k ) = ;. We get the fact that the aggregate utility of Jk and Jk+1 is

equal to the aggregate utility of Jk ∪ Jk+1:

|Nm
Dk

|+ f w(Dk, I)
∑

i∈Nu
Dk

wi +|Nm
Dk+1

|+ f w(Dk+1, I \N O
k )

∑
i∈Nu

Dk+1

wi

= |Nm
Dk∪Dk+1

|+ f w(Dk ∪Dk+1, I)
∑

i∈Nu
Dk∪Dk+1

wi

Notice that Nm
Dk

, Nm
Dk+1

⊆ Nm
Dk∪Dk+1

since the definition of f w and f w(Dk+1,N O
k+1) ≤

f w(Dk,N O
k )< f w(Dk∪Dk+1, I). Thus, we have Nm

Dk
∪Nm

Dk+1
⊆ Nm

Dk∪Dk+1
and Nu

Dk∪Dk+1
⊆

Nu
Dk

∪Nu
Dk+1

. Together these facts and wi f w(Dk, I)< 1 for each i ∈ Nu
Dk

and wi f w(Dk+1, I\
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N O
k )< 1 for each i ∈ Nu

Dk+1
, we have

|Nm
Dk

|+ f w(Dk, I)
∑

i∈Nu
Dk

wi +|Nm
Dk+1

|+ f w(Dk+1, I \N O
k )

∑
i∈Nu

Dk+1

wi

≤ |Nm
Dk∪Dk+1

|+ f w(Dk, I)
∑

i∈Nu
Dk

∩(Nu
Dk∪Dk+1

)
wi + f w(Dk+1, I \N O

k )
∑

i∈Nu
Dk+1

∩(Nu
Dk∪Dk+1

)
wi

< |Nm
Dk∪Dk+1

|+ f w(Dk ∪Dk+1, I)
∑

i∈Nu
Dk∪Dk+1

wi

which contradicts the previous equality.

■

Lemma 13. Let U denote the set of feasible utility profiles. Let u,v ∈ U such that

u ̸= v. If Lw
u (p) = Lw

v (p),∀p ∈ [0,
∑

i∈N wi] then αu+ (1−α)v,α ∈ (0,1) Weighted Lorenz

dominates u and v

Proof. Let Σ be the permutation of patients such that for any σ ∈Σ, uσu(1)
wσu(1)

≤ uσu(2)
wσu(2)

≤

... ≤ uσu(n)
wσu(n)

and vσv(1)
wσv(1)

≤ vσv(2)
wσv(2)

≤ ... ≤ vσv(n)
wσv(n)

. Note that, the Weighted Lorenz curve is

independent of such permutations. Also

Lw
u (p)= Lw

v (p)
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i∑
j=1

uσu( j) + (p−
i∑

j=1
wσu( j)) ·

uσu(i+1)

wσu(i+1)
=

k∑
j=1

vσv( j) + (p−
k∑

j=1
wσv( j)) ·

vσv(k+1)

wσv(k+1)

where p ∈ [
∑i

j=1 wσu( j),
∑i+1

j=1 wσu( j)] and p ∈ [
∑k

j=1 wσv( j),
∑k+1

j=1 wσv( j)]. For any subset

of patients {1,2,3, ..,m+1} such that p ∈ [
∑m

j=1 w j,
∑m+1

j=1 w j] we have

m∑
j=1

u j + (p−
m∑

j=1
w j) · um+1

wm+1
≥

i∑
j=1

uσu( j) + (p−
i∑

j=1
wσu( j)) ·

uσu(i+1)

wσu(i+1)

m∑
j=1

v j + (p−
m∑

j=1
w j) · vm+1

wm+1
≥

i∑
j=1

vσv( j) + (p−
i∑

j=1
wσv( j)) ·

vσv(i+1)

wσv(i+1)

Consider any set of patients {1,2,3, .., r+1} such that p ∈ [
∑r

j=1 w j,
∑r+1

j=1 w j], where

(αu+ (1−α)v)1

w1
≤ (αu+ (1−α)v)2

w2
≤ ...≤ (αu+ (1−α)v)r+1

wr+1

Applying the previous results for the set {1,2,3, .., r+1} we have

r∑
j=1

u j + (p−
r∑

j=1
w j) · ur+1

wr+1
≥

i∑
j=1

uσu( j) + (p−
i∑

j=1
wσu( j)) ·

uσu(i+1)

wσu(i+1)

r∑
j=1

v j + (p−
r∑

j=1
w j) · vr+1

wr+1
≥

i∑
j=1

vσv( j) + (p−
i∑

j=1
wσv( j)) ·

vσv(i+1)

wσv(i+1)
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Pre-multiplying the equations by α and (1−α) implies that,

r∑
j=1

(αu+ (1−α)v) j + (p−
r∑

j=1
w j) · (αu+ (1−α)v)r+1

wr+1
≥

i∑
j=1

vσv( j)+ (p−
i∑

j=1
wσv( j)) ·

vσv(i+1)

wσv(i+1)

⇒ Lw
αu+(1−α)v(p)≥ Lw

v (p)

Let σ
′ ∈Σ such that, there exists i ∈ {1,2, ...,n}, ∀ j < i,σ

′
u( j) =σ

′
v( j) and σ

′
u(i) ̸=σ

′
v(i),

u
σ
′
u(i) ̸= v

σ
′
u(i),uσ

′
v(i) ̸= v

σ
′
v(i) and there exists no j > i such that, u

σ
′
u( j) = v

σ
′
u( j) and

u
σ
′
u( j)

w
σ
′
u( j)

=
u
σ
′
u(i)

w
σ
′
u(i)

. The i’th patient under permutation σ
′

in utility profiles u and v

are different and their utility levels in the two profiles are different and no patient

higher than them who have similar utility to weight in both the profiles and utility

to weight is equal to that of i’th patient in either of the profile. Such an i and σ
′

exists since u ̸= v and Lw
u (p)= Lw

v (p).

Let α ∈ (0,1). Observe that, for j < i, and any permutation σ ∈Σ

u
σ
′
u( j)

w
σ
′
u( j)

=
v
σ
′
v( j)

w
σ
′
v( j)

= αu+ (1−α)vσαu+(1−α)v( j)

wσαu+(1−α)v( j)
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Since for j > i−1,
u
σ
′
u( j)

w
σ
′
u( j)

≥
u
σ
′
u(i−1)

w
σ
′
u(i−1)

,
v
σ
′
v( j)

w
σ
′
v( j)

≥
v
σ
′
v(i−1)

w
σ
′
v(i−1)

Given i, σ
′
u(i) ̸=σ

′
v(i), u

σ
′
u(i) ̸= v

σ
′
u(i),uσ

′
v(i) ̸= v

σ
′
v(i) and there exists no j > i such that,

u
σ
′
u( j) = v

σ
′
u( j) and

u
σ
′
u( j)

w
σ
′
u( j)

=
u
σ
′
u(i)

w
σ
′
u(i)

.

⇒ j = i,αu
σ
′
u( j) + (1−α)v

σ
′
u( j) > u

σ
′
u(i)

αu
σ
′
v( j) + (1−α)v

σ
′
v( j) > v

σ
′
v(i)

and

∀ j > i,
u
σ
′
u( j)

w
σ
′
u( j)

>
u
σ
′
u(i)

w
σ
′
u(i)

v
σ
′
v( j)

w
σ
′
v( j)

>
v
σ
′
v(i)

w
σ
′
v(i)

⇒ αu+ (1−α)vσαu+(1−α)v(i)

wσαu+(1−α)v(i)
>

u
σ
′
u(i)

w
σ
′
u(i)

=
v
σ
′
v(i)

w
σ
′
v(i)

Let wi = min{w
σ
′
u(i),wσ

′
v(i)}.Let p =∑

j≤i−1 w
σ
′
u( j) +wi, then
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Lw
u (p)= Lw

v (p)< Lw
αu+(1−α)v(p)

⇒ αu+ (1−α)v Lorenz dominates utility profiles u,v

■

We will show by construction, the profile of utilities obtained by Weighted Egali-

tarian mechanism, weighted Lorenz dominates all feasible utility profiles. For any

given (N,R,w), let f w
1 , f w

2 , f w
3 , ..., f w

n be the induced sequence of f values produced

by the Weighted Egalitarian mechanism. Consider the set of patients w1 such that

w1 =
{

i : wi. f w
1 > 1

}

Let w2 be the set of patients in step 1 of Weighted Egalitarian mechanism that

doesn’t belong to w1.For any patient i in w2,

ui

wi
= f w

1 < f w
2 < ...< f w

n

The patients in w1 and w2 include all the patients in Step 1 of Weighted Egalitarian
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mechanism. Therefore patients in w1 and w2 can be broken down into two sets,

w1 ∪w2 = wStep1
WE ∪wStep1

WE
′

patient who belong to Step 1 of Weighted Egalitarian mechanism and patients who

don’t. Note that, patient i who belong to wStep1
WE

′
and not to step 1 of Weighted Egal-

itarian mechanism has an utility of 1 in Weighted Egalitarian mechanism. By pre-

vious lemma f ’s of a Weighted Egalitarian mechanism are an increasing sequence.

Therefore patients in wStep1
WE

′
are assigned an utility of 1 by Weighted Egalitarian

mechanism. Also

i ∈ wStep1
WE

′ ⇒ f w
1 > 1

wi
= ui

wi

Therefore, the total utility of patients in w1 ∪w2 is

∑
i∈w1∪w2

ui =
∑

j∈wStep1
WE

u j +
∑

k∈wStep1
WE

′
uk

maximum in Weighted Egalitarian mechanism since all feasible neighbors are allo-

cated to patients in Step 1 of Weighted Egalitarian mechanism. This implies that for

any utility profile the total sum of utilities in weighted Lorenz curve, from 0 upto

weight w1
s +w2

s is always lesser than or equal to
∑

i∈w1∪w2 ui.
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WLOG, let w1
1 ≥ w1

2 ≥ w1
3 ≥ ...≥ w1

n be the set of patients in w1. Observe that,

u1
1

w1
1
≤ u1

2

w1
2
≤ u1

3

w1
3
≤ ...≤ u1

n

w1
n

Let,

w1
s =

∑
w1

i ∈w1

w1
i ,w2

s =
∑

w2
i ∈w2

w2
i

Observe that

(u1
i )WE

wi
< (u j)

w j
, j ∈ w2

Let u′ be any other feasible utility profile. Note that, for any patient i in w1,

(u1
i )WE

wi
≥ u′

i

wi

since patient i in w1 is allocated an utility 1 by the Weighted Egalitarian mechanism.

This implies that, the weighted Lorenz curve of Weighted Egalitarian mechanism

dominates the weighted Lorenz curve of all feasible utility profiles in the domain

[0,w1
s ].
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Since for any utility profile, the weighted Lorenz curve at w1
s +w2

s is always lesser

than or equal to
∑

i∈w1∪w2 ui. This implies the allocation Weighted Egalitarian mech-

anism, Weighted Lorenz dominates all feasible utility profiles in the domain of

[0,w1
s +w2

s ]. (No profile can undominate, since such a profile won’t be feasible).

Extending this argument inductively, it can be established that the allocation of

Weighted Egalitarian mechanism, Weighted Lorenz dominates all feasible utility

profiles.

■

Theorem 3: The weighted egalitarian mechanism makes it dominant strategy for a

patient to reveal both, (a) the available set of donors, (b) her full set of acceptable

kidneys

Proof. Let U denote the set of feasible utility profiles. The following lemmas will be

helpful.

Lemma 14. Let u,v ∈U be such that u Weighted Lorenz dominates v. Then for any
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α ∈(0,1), the utility profile αu+ (1−α)v Weighted Lorenz dominates v.

Proof. Let z =α.u+ (1−α).v. Since u,v ∈U there exist lotteries λ,γ ∈L that induce

u,v. Let φ=αλ+ (1−α)γ. For any patient i,

ui(φ)=α.ui(λ)+ (1−α)ui(γ)=α.ui + (1−α).vi = zi

This implies that, there exists a probability distribution over Pareto efficient match-

ings which will give the utility profile generated by αu+ (1−α)v.

Consider any arbitrary weight p ∈ [0,
∑

i∈N wi]. Let σv,σu be the permutation of

agents such that, uσu(1)
wσu(1)

≤ uσu(2)
wσu(2)

≤ ...≤ uσu(n)
wσu(n)

. and vσv(1)
wσv(1)

≤ vσv(2)
wσv(2)

≤ ...≤ vσv(n)
wσv(n)

.

Since u Weighted-Lorenz dominates v, we know that

Lw
u (p)≥ Lw

v (p)

i∑
j=1

uσu( j) + (p−
i∑

j=1
wσu( j)) ·

uσu(i+1)

wσu(i+1)
≥

k∑
j=1

vσv( j) + (p−
k∑

j=1
wσv( j)) ·

vσv(k+1)

wσv(k+1)

where p ∈ [
∑i

j=1 wσu( j),
∑i+1

j=1 wσu( j)] and p ∈ [
∑k

j=1 wσv( j),
∑k+1

j=1 wσv( j)]. For any subset
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of patients {1,2,3, ..,m+1} such that p ∈ [
∑m

j=1 w j,
∑m+1

j=1 w j] we have

m∑
j=1

u j + (p−
m∑

j=1
w j) · um+1

wm+1
≥

i∑
j=1

uσu( j) + (p−
i∑

j=1
wσu( j)) ·

uσu(i+1)

wσu(i+1)

m∑
j=1

v j + (p−
m∑

j=1
w j) · vm+1

wm+1
≥

i∑
j=1

vσv( j) + (p−
i∑

j=1
wσv( j)) ·

vσv(i+1)

wσv(i+1)

Consider any set of patients {1,2,3, .., r+1} such that p ∈ [
∑r

j=1 w j,
∑r+1

j=1 w j], where

(αu+ (1−α)v)1

w1
≤ (αu+ (1−α)v)2

w2
≤ ...≤ (αu+ (1−α)v)r+1

wr+1

Applying the previous results for the set {1,2,3, .., r+1} we have

r∑
j=1

u j + (p−
r∑

j=1
w j) · ur+1

wr+1
≥

i∑
j=1

uσu( j) + (p−
i∑

j=1
wσu( j)) ·

uσu(i+1)

wσu(i+1)

r∑
j=1

v j + (p−
r∑

j=1
w j) · vr+1

wr+1
≥

i∑
j=1

vσv( j) + (p−
i∑

j=1
wσv( j)) ·

vσv(i+1)

wσv(i+1)
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Pre-multiplying the equations by α and (1−α) implies that,

r∑
j=1

(αu+ (1−α)v) j + (p−
r∑

j=1
w j) · (αu+ (1−α)v)r+1

wr+1
≥

i∑
j=1

vσv( j)+ (p−
i∑

j=1
wσv( j)) ·

vσv(i+1)

wσv(i+1)

⇒ Lw
αu+(1−α)v(p)≥ Lw

v (p)

Similarly it can be shown that there exists p such that, Lw
αu+(1−α)v(p)> Lw

v (p)

■

We will introduce additional notations which will help in completing the proof. For

any problem (N,R,w) given a set of patients N,w, let

Jk(R)= ⋃
J∈Dk

J and e(R)= max
µ∈M(R)

|µ |

From lemma 3, if µ ∈M(R) , then µ ∈E(R) ⇐⇒|µ |= e(R). For a given compatibility

matrix R, and any two subsets of patients I, J ∈N define, the neighbors of J among

I as
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C(J, I,R)= {i ∈ I \ J : r i, j = 1 for some j ∈ J}

When J = { j}, for notational convenience we use C( j, I,R) instead of C({ j}, I,R).

For a Weighted Egalitarian mechanism φWE construct the Gallai-Edmonds decom-

position {NU(R),NO(R),NP(R)} for a given set of patients N and weights w. Let

D(R) represent the associated partition {D1(R),D2(R), ...,Dq(R)} of NU(R) in the

Weighted Egalitarian mechanism. Similarly, {NO
1 (R),NO

2 (R), ...,NO
q (R)} is the associ-

ated partition of NO(R). Let uWE(R) be the associated utility profile of Weighted

Egalitarian mechanism.

Since any patient in NO(R)∪NP(R) are always matched with probability 1, the don’t

have any incentive to deviate. Let j ∈NU(R) be such that uWE
j (R)< 1. We will show

that patient j cannot increase her utility by declaring a mutually compatible patient

to be incompatible. Then we can inductively extend the argument to show that

patient j cannot increase her utility by declaring a subset of patients incompatible.

Let J be the associated odd component of j.
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Let j
′ ∈ C( j, I,R). Either j

′ ∈ J or j
′ ∈ NO(R). Let Q be the reduced problem ob-

tained by patient j declaring patient j
′

incompatible. Then C( j,N,Q) = C( j,N,R) \

{ j
′
},C( j

′
,N,Q)=C( j

′
,N,R)\{ j},C(i,N,Q)=C(i,N,R) for all i ∈N\{ j, j

′
} and M(Q)=

{µ ∈M(R) :µ( j) ̸= j
′
}. Construct the Gallai-Edmonds decomposition {NU(Q),NO(Q),NP(Q)},

for the modified problem where D(Q) ≡ {D1(Q),D2(Q), ...,Dr(Q)} is the Weighted

Egalitarian partition of NU(Q) and {NO
1 (Q),

NO
2 (Q), ...,NO

r (Q)} is the associated partition of NO(Q). The following Lemmas will

be helpful in the proof.

Lemma 15. (Roth, Sönmez and Ünver(2004)[5]): (i)e(Q)= e(R)

(ii)E(Q)⊆E(R) and µ ∈E(R)
⋂M(Q)⇒µ ∈E(Q)

Lemma 16. (Roth, Sönmez and Ünver(2004)[5]): NO(R)⊆NO(Q)
⋃

NP(Q) and NU(R)⊆

NU(Q)

Lemma 17. If uWE
j′

(Q)< 1, then
uWE

j′
(Q)

w j′
≥

uWE
j (Q)

w j

Proof. The lemma states that per weight allocation of utility for patient j
′
is at least

as high as the per weight allocation of utility for patient j, when patient j
′
’s utility

is less than 1.
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If j
′ ∈ NO(R), then by previous lemma j

′ ∈ NO(Q)
⋃

NP(Q). Thus utility of patient j
′

is constant in both the cases being equal to 1.

Suppose
uWE

j′
(Q)

w j′
<

uWE
j (Q)

w j
. Let j

′ ∈NU(Q). Since uWE
j′

(Q)< 1, there exists a Pareto

efficient matching µ ∈ E(Q) in the support of lottery chosen by Weighted Egalitar-

ian mechanism, such that µ ∈ φWE(Q),µ( j
′
) = j

′
. By previous lemma, µ ∈ E(R). Let

j
′ ∈ J ∈D(Q). Since uWE

j′
(Q) < 1, and by GED lemma at most one patient in J re-

mains unmatched,µ( j)=J\{ j}. Again by GED lemma, there exists a Pareto efficient

matching ν ∈ E(R), that matches the same patients and j
′
instead of j. ν( j) = j and

hence ν ∈M(Q). Let 0< ϵ≤min
{
φWE
µ (Q),

uWE
j (Q)

w j
−

uWE
j′

(Q)

w j′

2

}
. Construct a lottery λ

from φWE(Q) by subtracting ϵ from µ and adding ϵ to ν

uWE
h (λ)=



uWE
h (Q)−ϵ,h = j

uWE
h (Q)+ϵ,h = j

′

uWE
h (Q), otherwise
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Note that, uWE(λ) Weighted Lorenz dominates uWE contradicting Theorem 2. There-

fore if uWE
j′

(Q)< 1, then
uWE

j′
(Q)

w j′
≥

uWE
j (Q)

w j
■

Suppose uWE
j (Q) > uWE

j (R). Let J ∈ Dk(R). Since φWE(Q) is an ex post efficient

lottery under Q, φWE(R) is an ex post efficient lottery under R, and e(Q) = e(R) we

have,

∑
i∈N

uWE
i (Q)= e(Q)= e(R)= ∑

i∈N
uWE

i (R)

Since uWE
j (Q)> uWE

j (R), there exists an h ∈NU(Q) such that uWE
h (Q)< uWE

h (R). This

implies, uWE
h (Q) < 1. Let

{⋃k
i=1Di(R),

⋃r
i=k+1Di(R)

}
be a partition of the underde-

manded patients NU(R).

Consider the underdemanded patients in
⋃r

i=k+1Dk(R). For any Pareto efficient

matching in the support of Weighted Egalitarian mechanism, underdemanded pa-

tients in
⋃r

i=k+1Di(R) are matched with overdemanded patients
⋃r

i=k+1 NO
i(R). Un-

derdemanded patients in
⋃k

i=1Di(R) are matched first in Weighted Egalitarian mech-

anism, they are incompatible with overdemanded patients
⋃r

i=k+1 NO
i(R) and they

don’t lie in the odd components belonging to
⋃r

i=k+1Di(R). Therefore for any
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i ∈⋃k
j=1D j(R),

C(i,N,R)
⋂ r⋃

j=k+1
(D j(R)

⋃
NO

j (R))=∅

Therefore, underdemanded patients in
⋃r

i=k+1Di(R) cannot have an utility reduction

under modified preferences Q. This implies that, there exists an underdemanded pa-

tient h ∈⋃k
j=1D j(R) such that, uWE

h (Q)< uWE
h (R).

Since j ∈ J ∈ Dk(R), by the construction of utility profile in Weighted Egalitarian

mechanism it should be that,
uWE

h (R)

wh
≤

uWE
j (R)

w j
. By assumption uWE

j (Q) > uWE
j (R)

and uWE
h (Q) < 1. Also, lets assume uWE

j′
< 1. By previous lemma, and from above

conclusions we have,

uWE
h (Q)

wh
< uWE

h (R)

wh
≤

uWE
j (R)

w j
<

uWE
j (Q)

w j
≤

uWE
j′

(Q)

w j′
(2.5)

Let φ=φWE(R) and ψ=φWE(Q). Let’s construct the lottery over matchings λ given

φ as follows. For any matching µ in the support of φ,

1. If µ( j) ̸= j
′
, then the matching µ has the same probability of being selected in
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λ

2. If µ( j)= j
′
, then

a) Construct the matching µ− j, j′ by breaking the match between j and j
′

and retaining all the other matches in µ.

b) For each such matching µ ∈φ, replace with µ− j, j′ in the lottery λ.

Observe that, λ is feasible under the modified preference Q, and ui(λ) = ui(φ) =

uWE
i (R) for all i ∈N\{ j, j

′
}.Given ϵ ∈ (0,1), let

γϵ = ϵφ+ (1−ϵ)ψ and λϵ = ϵλ+ (1−ϵ)ψ

By construction of λ from φ,ui(λϵ) = ui(γϵ) for all i ∈ N \ { j, j
′
}. The utility profile

generated by ψ is feasible under original preference R. By Theorem 2, the utility

profile generated by φ Weighted Lorenz dominates the utility profile generated by

lottery ψ and by Lemma 13, the utility profile generated by γϵ Weighted Lorenz

dominates ψ. Pick ϵ ∈ (0,1) small enough such that,
u j(λϵ)

w j
> uh(λϵ)

wh
≡ uh(γϵ)

wh
and

u j′ (λ
ϵ)

w j′
> uh(λϵ)

wh
≡ uh(γϵ)

wh
. This is possible, given Equation(5).
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Consider permutation of patients σγϵσλϵ ∈ Σ the set of possible of permutations of

patients, such that
uσγϵ (1)

wσγϵ (1)
≤ uσγϵ (2)

wσγϵ (2)
≤ ... ≤ uσγϵ (n)

wσγϵ (n)
. and

uσλϵ (1)

wσλϵ (1)
≤ uσλϵ (2)

wσλϵ (2)
≤ ... ≤ uσλϵ (n)

wσλϵ (n)
. The

Weighted Lorenz Curve is impervious to such permutations. Let m,n be such that

the patient h is the m’th and n’th person under the permutation, (i.e.)

h =σγϵ(m) and h =σλϵ(n)

Since γϵ Weighted Lorenz dominates ψ we have

Lw
u(γϵ)(p)≥ Lw

u(ψ)(p), for all p ∈ [0,
∑
i∈N

wi]

Since only patients j, j
′

are affected between lotteries γϵ,λϵ. Also by Equation (5),

the definition of permutations σγϵ ,σλϵ and the choice of ϵ implies,

j =σγϵ(k)⇒ k > m and j
′ =σγϵ(k

′
)⇒ k

′ > m and

j =σλϵ(l)⇒ l > m and j
′ =σλϵ(l

′
)⇒ l

′ > m
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Let, W = {
i ∈N | uλϵ(i)

wi
≤ uλϵ(h)

wh

}

w∗ =
∑
i∈W

wi

Hence in the interval [0, w∗],

Lw
u(γϵ)(p)= Lw

u(λϵ)(p)≥ Lw
u(ψ)(p)

Since λϵ is feasible under modified preference Q and by Theorem 2, ψ Weighted

Lorenz dominates all feasible utility profiles under modified preferences, it should

be that

Lw
u(λϵ)(p)= Lw

u(ψ)(p), p ∈ [0,w∗]

Note that there exists at least one patient with different utilities in u(λϵ) and u(ψ)

since patient h has different utilities in both the profiles, lying in [0,w∗] of the

Weighted Lorenz curve. Consider a convex combination such that αλϵ+ (1−α)ψ.

There exists patients i, i
′
such that

uψ

i

wi
=

uλϵ

i′

wi′
and their utilities under αλϵ+ (1−α)ψ

and ψ are different . This along with above equation implies that there exist a

weight p ∈ [0,w∗] such that Lw
αλϵ+(1−α)ψ(p) > Lw

ψ(p). This is a contradiction since ψ
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Weighted Lorenz dominates αλϵ+ (1−α)ψ.

The same argument holds with slight modification when utility of patient j
′
, uWE

j′
(Q)=

1

■

Theorem 5: Consider a sequence of pairwise kidney exchange problems (N,R,w(n))

such that for all i > j,
wn

i

wn
j
= o(1). Let φWE

n be the sequence of Weighted Egalitarian

mechanism allocations. Let ψ be the allocation chosen by the Priority mechanism

where patient i has higher priority than patient j, if i < j. Then

lim
n→∞φWE

n =ψ

Proof. Consider the induced two sided matching problem (NO,D,R̃,wn
N\NP) for a

given (N,R,w(n)). Let NU be the set of underdemanded patients. For any coalition

J ⊆ D of odd components of underdemanded patients and a subset I ⊆ NO, if

C(J , I)≥|J |, then f wn
(J , I)= 1. Suppose C(J , I)<|J | . Let patient i be such that

i ∈ ⋃
J∈J

J and wn
i < wn

j , j ∈ ⋃
J∈J

J
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For large n ,
uwn

i

uwn

j
= wn

i

wn
j

for u j ̸= 1

As n →∞,
wn

i

wn
j
→ 0 if i > j

Let Vni
J = {

j ∈ ⋃
J∈J J | wn

j > wn
i

}
. Vni

J captures the set of underdemanded patients

in with weights greater than weight of patient i in coalition J . Let Wn
J = {

i ∈
⋃

J∈J J | Vni
J ≥| j ∈ ⋃

J∈J J | −(|J | − | C(J , I) |)}. Let Qn
J = {

j | j ∈ ⋃
J∈J J \Wn

J
}
.

Wn
J captures the set of underdemanded patients excess to the possible number

of matches with least weights, belonging to the coalition J of odd components.

WLOG, we will refer Wn
J as the set of excess underdemanded patients for coalition

J .

i ∈Wn
J ⇒ uwn

i

uwn

j
→ 0, j ∈Qn

J

Claim 1: There exists a large n such that for all l ≥ n , i ∈Qn
Dk

, j ∈Wn
Dm

, k,m, be

the arbitrary steps of Weighted Egalitarian allocation such that

uWE(l)
i > uWE(l)

j
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Proof. WLOG, take any arbitrary step k and m. WLOG, let w(Qn
Dk

(1))≥ w(Qn
Dk

(2))≥

..≥ w(Qn
Dk

(r)). Similarly, let w(Wn
Dm

(1))≥ w(Wn
Dm

(2))≥ ..≥ w(Qn
Dm

(s)).

Note that,

uWE(n)
Qn
Dk

(1) =
wQn

Dk
(1)

w(Qn
Dk

(1))+ ..+w(Qn
Dk

(r))+ ...+w(Wn
Dk

(t))
.(| ⋃

J∈Dk

J | −(|Dk | −C(Dk,NO\
l⋃

j=1
NO

j ))

Fix any epsilon ϵ> 0 such that 1+ |N | ϵ< 2. Let n1 be such that,

wQn1
Dk

(1)

w(Qn1
Dk

(1))+ ..+w(Qn1
Dk

(r))+ ...+w(Wn1
Dk

(t))
≥ 1

1+ |N | ϵ

⇒ uWE(n1)
Qn1
Dk

(1)
= 1

Proceeding inductively with the argument we have

⇒ uWE(n1)
Qn1Dk

(r−1) = 1
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Then by the allocation rule,

uWE(n1)
Qn1
Dk

(r)
=

wQn1
Dk

(r)

w(Qn1
Dk

(r))+w(Wn1
Dk

(1))...+w(Wn1
Dk

(t))
≥ 1

1+ |N | ϵ

Similarly, For n ≥ n1, for any excess overdemanded patient j ∈Wn
Dm

in step m

uWE(n)
Wn2

Dm
( j)

=
wWn

Dm
( j)

w(Qn
Dk

(u))+w(Wn
Dk

(1))...+w(Wn
Dk

(s))

There exists an n2 ≥ n1 such that,

uWE(n2)
Wn2

Dm
( j)

< ϵ

1+ |N | ϵ

Let nk,l = max{n1,n2}. The mechanism consists finite number of steps ,hence finite

number of pairs. Let s be the total number of steps taken by the mechanism to arrive

at the allocation. Then the maximum of all n = max{ni, j} where i, j ∈ {1,2,3..., s}

provides us with the required n. ■

Claim 2: There exists a large n such that, if patient i belongs to Wn
Dk

, then for

all l ≥ n patient i belongs to W l
Dr

. This establishes the continuity of the Weighted

Egalitarian mechanism allocations for (N,R,w(n))
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Proof. By previous claim, let n be such that j ∈Qn
Dg

, i ∈Wn
Dk

such that k, g be the

arbitrary steps of Weighted Egalitarian mechanism, such that

uWEn
j > uWEn

i

Suppose, i ∈ Qm
Dh

for some m > n. Consider (N,R,wn). Note that, patient i is

not compatible with overdemanded neighbors of any step p, p > k. Since the total

number of matches is a constant and given claim 1, it should be the case that there

exists a patient i
′

belonging to a step r, r ≤ k such that i
′ ∈Qn

Dr
and i

′ ∈Wm
Dt

. Let

i be the first patient so that there exists no patient j ∈ Wn
Dq

, q < k and j ∈ Wm
Dt

.

Patient i is chosen such that, there is no other patient in earlier steps of Weighted

Egalitarian mechanism on (N,R,wn) that is similar to i between the two problems.

If patient i switches from being an excess underdemanded patient for (N,R,wn) to

not being one in (N,R,wm) then it should be the case that there exists a patient i
′

who is matched at an earlier or same step as patient i under Weighted Egalitarian

mechanism in (N,R,wn) who is an excess underdemanded patient in (N,R,wm).

uWEn
i < uWEn

i′
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Suppose wi′ < wi

⇒ f wn

k < f wn

r

which would be a contradiction to theorem 3. Hence it should be the case that

wi′ > wi. Since i
′ ∈Wm

Dt
and i ∈Qm

Dh
, then by theorem 3 it should be the case that

t < h. Patient i
′
should be matched at a step earlier than patient i in (N,R,wm).

Consider patient i
′
. Since i

′ ∈Wm
Dt

, there exists an i
′′ ∈Qm

D
t′

, t
′ < t such that i

′′ ∈

Wn
D

r′
. Drawing similarities from the analysis between patient i, i

′
we have that

wi′′ > wi′

If not,

⇒ f wm

t < f wm

t′

which is a contradiction. But i
′′ ∈Wn

D
r′

implies that, r
′ < r, since if r

′ > r we have

that

f wn

r′
< f wn

r

153



Chapter 2 Pairwise Kidney Exchange - Critique and Extension

But this implies that there exists a patient i
′′

such that i
′′ ∈Wn

D
r′

, r
′ < k and i

′′ ∈Qm
Dt

.

This is a contradiction to the selection of patient i.

■

We claim that the allocation chosen by the Weighted-Egalitarian mechanism is the

allocation chosen by the priority mechanism. Suppose not, suppose there exists a

patient i who is matched in Priority mechanism who isn’t matched with probabil-

ity 1 by the Weighted Egalitarian mechanism at the limit. This implies that, at the

limit the Weighted Egalitarian mechanism matches with probability 1, a patient j

with lower priority than patient i, who is matched instead of patient i. For large n,

patient i is not compatible with the underdemanded and overdemanded patients of

later steps.

This implies that, for large n patient j is matched at an earlier step than patient i in

the Weighted Egalitarian mechanism. Let f wn

i , f wn

j be the f values associated with

the step at which patients i, j are matched in the Weighted Egalitarian mechanism.

The above assertion implies that,
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f wn

i > f wn

j and

wn
j

wn
i
→ 0 also

uwn

i → 0 and uwn

j → 1

Since patient j is matched with probability 1 and patient i is matched with proba-

bility 0 at the limit.

⇒ f wn

i = uwn

i

wn
i

<
uwn

j

wn
j
= f wn

j

which is a contradiction. Hence we have that, limn→∞φWE
n =ψ

■

155



Bibliography

Center for Disease Control and Prevention. Ethical Considerations for Decision Mak-

ing Regarding Allocation of Mechanical Ventilators during a Severe Influenza Pan-

demic or Other Public Health Emergency. URL https://www.cdc.gov/about/

advisory/pdf/VentDocument_Release.pdf.

State officials update crisis standards of care in response to

COVID-19. URL https://covid19.colorado.gov/press-release/

state-officials-update-crisis-standards-of-care-in-response-to-covid-19.

New York Covid update, May 7 2020. URL https://www.

democratandchronicle.com/story/news/politics/albany/2020/05/

07/new-york-exceeds-20-000-deaths-due-covid-19-here-is-where/

3087137001/.

156

https://www.cdc.gov/about/advisory/pdf/VentDocument_Release.pdf
https://www.cdc.gov/about/advisory/pdf/VentDocument_Release.pdf
https://covid19.colorado.gov/ press-release/state-officials-update-crisis-standards-of-care-in-response-to-covid-19
https://covid19.colorado.gov/ press-release/state-officials-update-crisis-standards-of-care-in-response-to-covid-19
https://www.democratandchronicle.com/story/news/politics/albany/2020/05/07/new-york-exceeds-20-000-deaths-due-covid-19-here-is-where/3087137001/
https://www.democratandchronicle.com/story/news/politics/albany/2020/05/07/new-york-exceeds-20-000-deaths-due-covid-19-here-is-where/3087137001/
https://www.democratandchronicle.com/story/news/politics/albany/2020/05/07/new-york-exceeds-20-000-deaths-due-covid-19-here-is-where/3087137001/
https://www.democratandchronicle.com/story/news/politics/albany/2020/05/07/new-york-exceeds-20-000-deaths-due-covid-19-here-is-where/3087137001/


Bibliography

Letter to Health Care Provides. Food and Drug Administration(fda). URL

https://www.fda.gov/medical-devices/letters-health-care-providers/

using-ventilator-splitters-during-covid-19-pandemic-letter-health-care-providers.

Covid-19 Vaccine Presentation. URL https://www.mass.gov/doc/

ma-covid-19-vaccine-presentation-1292020/download.

New Hampshire Coronavirus Disease 2019 Vaccination Plan. URL https://www.

dhhs.nh.gov/dphs/cdcs/covid19/documents/covid19-vac-plan-draft.pdf.

Department of Health and Human Services. HHS Pandemic Influenza Plan;. URL

http://www.hhs.gov/pandemicflu/plan/appendixd.html.

Pennsylvania Department of Health. Interim Pennsylvania standards of care

for pandemic guidelines: version 2. published april 2020. URL https:

//www.health.pa.gov/topics/Documents/Diseases%20and%20Conditions/

COVID-19%20Interim%20Crisis%20Standards%20of%20Care.pdf.

Nicomachean ethics. Oxford University Press, 2002.

M. Abecassis, M. Adams, P. Adams, R. M. Arnold, C. R. Atkins, M. L. Barr, and

W. M. Bennett et.al. "live organ donor consensus group."consensus statement on

the live organ donor. JAMA 284, no. 22, pages 2919–2926, 2000.

157

https://www.fda.gov/medical-devices/letters-health-care-providers/ using-ventilator-splitters-during-covid-19-pandemic-letter-health-care-providers
https://www.fda.gov/medical-devices/letters-health-care-providers/ using-ventilator-splitters-during-covid-19-pandemic-letter-health-care-providers
https://www.mass.gov/doc/ma-covid-19-vaccine-presentation-1292020/download
https://www.mass.gov/doc/ma-covid-19-vaccine-presentation-1292020/download
https://www.dhhs.nh.gov/dphs/cdcs/covid19/documents/covid19-vac-plan-draft.pdf
https://www.dhhs.nh.gov/dphs/cdcs/covid19/documents/covid19-vac-plan-draft.pdf
http://www. hhs.gov/pandemicflu/plan/appendixd.html
https://www.health.pa.gov/topics/Documents/Diseases%20and%20Conditions/COVID-19%20Interim%20Crisis%20Standards%20of%20Care.pdf
https://www.health.pa.gov/topics/Documents/Diseases%20and%20Conditions/COVID-19%20Interim%20Crisis%20Standards%20of%20Care.pdf
https://www.health.pa.gov/topics/Documents/Diseases%20and%20Conditions/COVID-19%20Interim%20Crisis%20Standards%20of%20Care.pdf


Bibliography

Jacobs Andrew and Sheri Fink. ”How prepared is the US for a coronavirus out-

break.”. New York Times, February 29 2020.

Bogomolnaia Anna and Hervé Moulin. "a simple random assignment problem with

a unique solution.". Economic Theory 19, no. 3, pages 623–636, 2002.

Bogomolnaia Anna and Hervé Moulin. "random matching under dichotomous pref-

erences.". Econometrica 72, no. 1, pages 257–279, 2004.

American Hospital Association. ”aha annual survey database.”. Technical report,

Washington, DC: American Hospital Association, 2005.

MJ Azar Kristen, Zijun Shen, Robert J. Romanelli, Stephen H. Lockhart, Kelly Smits,

Sarah Robinson, Stephanie Brown, and Alice R. Pressman. "Disparities in out-

comes among covid-19 patients in a large health care system in California: Study

estimates the COVID-19 infection fatality rate at the US county level.". Health

Affairs 39, no. 7, pages 1253–1262., 2020.

Jeremy R. Beitler, Aaron M. Mittel, Richard Kallet, Robert Kacmarek, Dean Hess,

Richard Branson, and Murray Olson et al. "Ventilator sharing during an acute

shortage caused by the covid-19 pandemic.". American journal of respiratory and

critical care medicine 202, no. 4, pages 600–604, 2020.

158



Bibliography

Dutta Bhaskar and Debraj Ray. "a concept of egalitarianism under participation

constraints.". Econometrica: Journal of the Econometric Society (1989), pages 615–

635, 1989.

Eric. Budish. Budish, eric. "the combinatorial assignment problem: Approximate

competitive equilibrium from equal incomes.". Journal of Political Economy 119,

no. 6, pages 1061–1103, 2011.

L. Delmonico Francis. "exchanging kidneys—advances in living-donor transplanta-

tion.". New England Journal of Medicine 350, no. 18, pages 1812–1814, 2004.

Umut Dur, Parag A. Pathak, and Tayfun Sonmez. ”Explicit vs. statistical targeting in

affirmative action: Theory and evidence from chicago’s exam schools.”. Journal

of Economic Theory 187, 2020.

Jack. Edmonds. "paths, trees, and flowers.". Canadian Journal of mathematics 17,

pages 449–467, 1965.

J. Emanuel Ezekiel and Alan Wertheimer. "Who should get influenza vaccine when

not all can?.". Science 312, no. 5775, pages 854–855., 2006.

Neyman G and Irvin CB. "A single ventilator for multiple simulated patients to meet

disaster surge.". Acad Emerg Med ;13(11), pages 1246–1249, 2006.

159



Bibliography

W. Gjertson David and J. Michael Cecka. "living unrelated donor kidney transplan-

tation.". Kidney international 58, no. 2, pages 491–499, 2000.

Crès Hervé and Hervé Moulin. "scheduling with opting out: Improving upon ran-

dom priority.". Operations Research 49, no. 4, pages 565–577, 2001.

Zucker Howard, Karl Adler, D. Berens, R. J. D. Bleich, R. Brynner, and K. A. Butler.

"Ventilator allocation guidelines.". Albany: New York State Department of Health

Task Force on Life and the Law, 2015.

Karaca-Mandic, Pinar, Archelle Georgiou, and Soumya Sen. "Assessment of COVID-

19 hospitalizations by race/ethnicity in 12 states.". JAMA internal medicine 181,

no. 1, pages 131–134, 2021.

Baker Kermit, Pamela Baldwin, Angela Flynn Kerry Donahue, Christopher Herbert,

and E. L. Jeunesse. "Housing America’s older adults: meeting the needs of an

aging population.". Cambridge: Joint Center for Housing Studies of Harvard Uni-

versity, 2014.

H. Korte Bernhard, Jens Vygen, B. Korte, and J. Vygen. Combinatorial optimization.

Vol. 1. Springer, 2011.

Rubinson Lewis, Frances Vaughn, Steve Nelson, Sam Giordano, Tom Kallstrom, Tim

160



Bibliography

Buckley, and Tabinda Burney et al. "Mechanical ventilators in US acute care hos-

pitals.". Disaster medicine and public health preparedness 4, no. 3, pages 199–206,

2010.

Paladino Lorenzo, Mark Silverberg, Jean G. Charchaflieh, Julie K. Eason, Brian J.

Wright, Nicholas Palamidessi, Bonnie Arquilla, Richard Sinert, and Seth Manoach.

"Increasing ventilator surge capacity in disasters: ventilation of four adult-human-

sized sheep on a single ventilator with a modified circuit.". Resuscitation 77, no.

1, pages 121–126, 2008.

V. Mahajan Uma and Margaret Larkins-Pettigrew. "Racial demographics and COVID-

19 confirmed cases and deaths: a correlational analysis of 2886 US counties.".

Journal of Public Health 42, no. 3 (, pages 445–447., 2020.

Sudders Marylou, MONICA BHAREL, CHARLES D. BAKER, and KARYN E. POLITO.

Crisis Standards of Care Planning Guidance for the COVID-19 Pandemic.

A. Pathak Parag, Sonmez Tayfun, M. Utku Unver, and M. Bumin Yenmez. ”Fair

allocation of vaccines, ventilators and antiviral treatments: leaving no ethical

value behind in health care rationing.”. arXiv preprint arXiv:2008.00374, 2020.

Gina M. Piscitello, Esha M. Kapania, William D. Miller, Juan C. Rojas, Mark Siegler,

and William F. Parker. "Variation in ventilator allocation guidelines by US state

161



Bibliography

during the coronavirus disease 2019 pandemic: a systematic review.". JAMA net-

work open 3, no. 6, pages e2012606–e2012606., 2020.

Beitler J. R., R. Kallet, R. Kacmarek, R. Branson, D. Brodie, A. M. Mittel, M. Ol-

son, L. L. Hill, D. Hess, and B. T. Thompson. "Ventilator sharing protocol: dual-

patient ventilation with a single mechanical ventilator for use during critical venti-

lator shortages.". ColumbiaUniversity College of Physicians & Surgeons,NewYork-

Presbyterian Hospital.

P. Ramsey. "The Patient as Person. New Haven and London.". Yale University Press,

1970.

T. Rapaport Felix. "the case for a living emotionally related international kidney

donor exchange registry.". Transplantation proceedings, vol. 18, no. 3) Suppl. 2,

pages 5–9, 1986.

Nicholas. Rescher. "The Allocation of Exotic Lifesaving Medical Therapy.". Ethics 79,

no. 3, pages 173–86., 1969.

Maritza Vasquez Reyes. "The disproportional impact of COVID-19 on African Amer-

icans.". Health and human rights 22, no. 2, 2020.

Lainie Friedman Ross, David T. Rubin, Mark Siegler, Michelle A. Josephson,

162



Bibliography

J. Richard Thistlethwaite Jr, and E. Steve Woodle. "ethics of a paired-kidney-

exchange program.". New England Journal of Medicine 336, no. 24, pages 1752–

1755, 1997.

E. Roth Alvin, Tayfun Sönmez, and M. Utku Ünver. "kidney exchange.". The Quar-

terly journal of economics 119, no. 2, pages The Quarterly journal of economics

119, no. 2, 2004.

E. Roth Alvin, Tayfun Sönmez, and M. Utku Ünver. "pairwise kidney exchange.".

Journal of Economic theory 125, no. 2, pages 151–188, 2005.

Tayfun Sonmez and M. Bumin Yenmez. Constitutional implementation of vertical

and horizontal reservations in India: A unified mechanism for civil service alloca-

tion and college admissions. Boston College Department of Economics„ 2019a.

Tayfun Sonmez and M. Bumin Yenmez. "Affirmative action in India via vertical and

horizontal reservations.". Boston College, 2019b.

Gallai Tibor. "kritische graphen ii.". Magyar Tud. Akad. Mat. Kutato Int. Kozl. 8,

pages 373–395, 1963.

Gallai Tibor. "maximale systeme unabhangiger kanten.". Magyar Tud. Akad. Mat.

Kutato Int. Kozl. 9, pages 401–413, 1964.

163



Bibliography

E. Vawter Dorothy, Karen G. Gervais, and J. Eline Garrett. "Allocating pandemic

influenza vaccines in Minnesota: recommendations of the Pandemic Influenza

Ethics Work Group.". Vaccine 25, no. 35, pages 6522–6536., 2007.

B. White Douglas and Bernard Lo. ”A framework for rationing ventilators and crit-

ical care beds during the COVID-19 pandemic.”. JAMA 323, no. 18, pages 1773–

1774, 2020.

Alan. Williams. "Intergenerational equity: an exploration of the ‘fair innings’ argu-

ment.". Health economics 6, no. 2, pages 117–132, 1997.

164


	Ventilator Sharing - Access and Equity
	Introduction
	Model
	Allocation of Ventilators
	Matching with Reserves:
	Priorities and Maximal matching
	Equity and Maximal Matching
	Dynamics of Ventilator Allocation
	Conclusion

	Pairwise Kidney Exchange - Critique and Extension
	Introduction
	Literature Review
	Generalized Pairwise Kidney Exchange For continuity, We will be borrowing notations and use preliminary analysis from Unver.et.al.
	Gallai-Edmonds Decomposition
	Induced two-sided matching market
	Stochastic Exchange

	Weighted Egalitaraian Mechanism
	Preliminaries
	Allocation rule
	Mechanism

	Priority and Weighted Egalitarian mechanism
	Conclusion


