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Abstract
Quantum spin liquids (QSL)’s have been one of the most hotly researched areas of
condensed matter physics for the past decade. Yet, science has yet to unconditionally
identify any one system as harboring a QSL state. This is because QSL’s are largely
defined as systems whose electronic spins do not undergo a thermodynamic transition
as T→0. Quantum spin liquids remain fully paramagnetic, including dynamical spin
fluctuations, at T=0. As a result, distinguishing a QSL system from a conventionally
disordered system remains an outstanding challenge.

If a system spin freezes or magnetically orders, it cannot be a QSL. In this thesis
I present published experiments I have performed on QSL candidate materials. By
using muon spin rotation (μSR) and AC magnetic susceptibility I have evaluated the
ground states of several candidates for the absence of long-range magnetic disorder
and low-temperature spin-fluctuations. For the systems which order or spin-freeze,
my research provided key knowledge to the field of frustrated magnetism.

The systems I studied are as follows: The geometrically frustrated systems NaYbO2
and LiYbO2; the Kitaev honeycomb systems Cu2IrO3 and Ag3LiIr2O6; and the metal-
lic kagome system KV3Sb5. Each of these systems brought new physics to the
field of frustrated magnetism. NaYbO2 is a promising QSL candidate. LiYbO2
harbors an usual form of spiral incommensurate order that has a staggered transi-
tion. Cu2IrO3 has charge state disorder that results in a magnetically inhonogenious
state. Ag3LiIr2O6 illustrates the role structural disorder plays in disguising long-range
magnetic order. And finally, KV3Sb5 isn’t conventionally magnetic at all; our mea-
surements ruled out ionic magnetism and uncovered a type-II superconductor. Our
measurements on KV3Sb5 stimulated further research into KV3Sb5 and it’s uncon-
ventional electronic states.
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Chapter 1

Introduction

1.1 Outline of Thesis

Magnetism is one of the oldest avenues of scientific inquiry. Thousands of years before

electrical resistivity, phonon modes, or topological states were known, natural philoso-

phers such as Thales of Miletus (640-546 B.C.) and Empedocles of Akragas (491-435

B.C.) were writing ‘papers’ on magnetism [1]. Some of the earliest scientific exper-

iments were magnetic experiments performed by Petrus Peregrinus of Maricourt in

the thirtheenth century [1]. Over the past several thousand years magnets have been

used for everything from navigation to medicine. One of the greatest achievements

in condensed matter physics–indeed physics in it’s entirety–has been the systematic

description and explanation of magnetism.

So perhaps it’s not surprising when I say that one of the most prolific and fertile

fields of research in modern condensed physics is frustrated magnetism. Frustration

in any system has the potential to generate a large variety of novel phases of matter.

What might be surprising though is that the most exciting magnetic phenomenon to

modern condensed matter physics is practically non-magnetic.

We define a non-magnetic system as one where the electronic contributions to the

internal field are negligible beyond generic effects such as Landau diamagnetism or

Pauli paramagnetism. A quantum spin liquid is a paramagnetic state where quantum

fluctuations drive long-range magnetic disorder and spin fluctuations down to 𝑇 = 0.
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The quantum fluctuations also drive long-range spin-entanglement, which allows for

fractional spin and charge excitations which do not obey the conventional exchange

rules identical particles. Quantum spin liquids allow for the observation of chargeless

𝑆 = 1/2 quasi-particles, known as spinons, which do not obey the fermi-exclusion

principle. Such a system is incredibly attractive for study for both theoretical reasons

and for technological applications.

In this thesis I review my experimental work on several distinct magnetically frus-

trated systems which had the potential to harbor QSL states. As an experimentalist,

I specialize in µSR (Muon Spin Rotation) and low temperature AC susceptibility

(AC𝜒) measurements, which have proven to be invaluable experimental techniques

in the hunt for QSL systems. Low-temperature magnetic susceptibility is the most

common way of observing a magnetic transition. μSR is an advanced local-probe

technique that uniquely allows one to probe the ground state for long-range magnetic

order and magnetic fluctuations on the sub-unit-cell level of a system.

This thesis is structured as follows:

Chapter 2: I give a theory based introduction to the concept of quantum spin

liquids, with an emphasis on the qualitative and experimental aspects.

Chapter 3: I describe the theory and technical aspects of µSR measurements

used in this thesis. This section is intended as an aid for readers unfamiliar with

interpreting μSR data.

Chapter 4: I discuss the AC𝜒 and µSR experiments I performed on the geomet-

rically frustrated systems, NaYbO2 and LiYbO2. In NaYbO2 my AC𝜒 measurements

uncovered an external field driven disordered phase, indicating the presence of a

potential QSL-like phase down to 300 mK. In LiYbO2, my µSR measurements, in

conjunction with our collaborator’s neutron scattering measurements, show a spiral

state that is characterized by a staggered transition of two independent long-range

order parameters and low-temperature magnetic fluctuations.

Chapter 5: I discuss the AC𝜒 and µSR measurements I performed on the Kitaev

honeycomb iridates, Cu2IrO3 and Ag3LiIr2O6. The former is displays charge state

disorder in the Ir4+ ions which results in a magnetically inhomogeneous state of static

2



and dynamic magnetism. The latter is a system with subtle lattice defects that hide

long-range magnetic order. Our µSR measurements successfully uncovered the long-

range order that disqualifies Ag3LiIr2O6 as a QSL candidate.

Chapter 6: I discuss my AC𝜒 and µSR measurements on the metallic kagome

system KV3Sb5, as well as some of the developments in the literature since. KV3Sb5

was originally synthesized to be a magnetically frustrated system, and bulk suscep-

tibility measurements seemed to confirm as much. Our µSR measurements instead

indicated a system dominated by nuclear dipole moments, where the only hint of

electronic magnetism appeared in an anomalously weak temperature dependence of

the depolarization rate. Our following AC𝜒 measurements down to 300 mK showed

that KV3Sb5 was a superconductor. Our observations of superconductivity and no

spin-dipoles eventually led to the uncovering of an unusual charge density wave state

characterized by orbital currents circulating about the kagome layers, which results

in a weak current dipoles from the kagome layers.

Chapter 7: Finally, I discuss the conclusions one can draw from the entirety of

the research presented in this thesis. My work yields substantial contributions to the

field of frustrated magnetism for a wide variety of magnetically frustrated systems.

My work also is invaluable in the search for quantum spin liquid candidates as it

illustrates the pitfalls and complexities one encounters in interpreting data.

1.2 References

[1] B. S. Baigrie and B. S. Baigrie, Electricity and Magnetism: A Historical Per-

spective, ser. Greenwood Guides to Great Ideas in Science. Westport, Conn.:

Greenwood Press, 2007, 165 pp., isbn: 978-0-313-33358-3.
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Chapter 2

Quantum Spin Liquids and

Magnetic Frustration

2.1 Introduction

In this chapter we review the basic concepts of quantum spin liquids (QSL). We

only give a brief review of the concepts as necessary for this dissertation, as a full-

length review can easily fill several review articles. The interested reader may consult

select articles given at the end of this chapter. We focus on the essential theoretical

concepts defining a QSL and their relation to experimental observations. We neglect

most of the categorizations of QSL theories and the detailed experimental differences

between models. Instead we focus on providing an intuitive understanding of the

most common features found in QSL models.

2.2 What is a Quantum Spin Liquid?

The short-answer: A quantum spin liquid is a long-ranged disordered spin system with

dynamical short-range correlations and long-ranged spin entanglement exhibiting non-

trivial topology.

This is a rather modern definition, though, and quite vague. Quantum spin liquids

have been investigated as a concept since the 1970’s, which was before the idea of
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topology became prevalent in condensed matter physics. Therefore the best way to

explain what a “quantum spin liquid” is via history and examples.

2.2.1 A Very Brief History of the Notion

The term was first used to describe a “liquid-like” ground state predicted by Philip

Anderson in 1973 when he applied Linus’s Pauling’s “resonating valence bond” (RVB)

theory of metals to the triangular spin-1/2 antiferromagnet [1]. Anderson believed

that the antiferromagnetic triangular lattice had a ground-state degeneracy that

scaled exponentially with system size, roughly as 2𝑁 . He predicted that this large-

scale degeneracy in the ground state would result in novel type of correlated insulator

where the ground state could be described as a “quantum liquid.” The idea was that

quantum fluctuations would ”melt” the ordered state, which was analogous to a solid,

into a mobile fluid of valence bonds (spin singlets) down to 𝑇 = 0. This was at a

time when the ground state of any magnet was thought to be long-ranged ordered or

spin-frozen. Anderson’s RVB model initially gained some interest as a theoretical con-

cept, but ultimately languished as a theoretical curiosity until 1987 when Anderson

published a second paper using his RVB model as a possible explanation for high-

temperature superconductivity in La2CuO4 [2]. This paper provided a more robust

theory and predicted exotic quasi-particle excitations while also drawing parallels to

the extremely important Laughlin state predicted for the fractional quantum Hall ef-

fect [3]. Subsequent analysis found that this hypothetical “quantum spin liquid” state

would host topologically non-trivial excitations with fractional spin excitations, and

that the general concept could be viewed as a spin-analogue to the Laughlin state.

Interest eventually waned though, as Anderson’s original RVB model proved to

be incorrect. The model was originally proposed as the ground state for the AFM

Heisenberg model on a triangular lattice. The exact solution at the time was an

outstanding problem in physics, and Anderson RVB model merely used heuristics and

approximations to guess at the ground state. We now know the actual ground state

of the triangular AFM Heisenberg lattice is the famous 120°-order state. Moreover,

Anderson’s RVB model failed to provide an accurate description of superconductivity
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in the cuprates, or in any other experimental system. Interest dried up by the early

2000’s.

“Quantum spin liquids” as a concept came back in force in 2006 when Alexei

Kitaev published a 110 page tour-de-force describing anyonic excitations and topo-

logical band structures—along with a host of other exotic properties that tantalized

experimentalists and theorists alike [4]. Kitaev had created his own “Kitaev honey-

comb model” that consisted of bond-frustrated 𝑆 = 1/2 spins on a 2D honeycomb

lattice. And unlike Anderson, Kitaev solved his model exactly. Kitaev‘s honeycomb

model predicted an exotic Laughlin-like spin-state with exotic anyonic spin excita-

tions, topological band structures, dynamic spin correlations at 𝑇 = 0, and quantum

spin entanglement over macroscopic length scales. He even suggested a practical ap-

plication: the spin excitations could be used to build a quantum computer. Interest

in QSL’s exploded overnight.

The search for QSL’s has been healthy ever since. The theoretical description

and definition of what a QSL is has been continuously developed by a stream of

theoretical papers on the subject. QSL states have now been identified in a large

number of numerical models, though the number of analytically solvable models like

Kitaev’s is still extremely limited. Thankfully for Anderson, many of the numerical

QSL models rely on recycled RVB concepts, so the RVB model is still relevant [5].

The result is a zoo of theoretical QSL states. The literature in the past ten years is

filled with various sorts of esoteric models each describing what may be QSL state, all

with their own properties. And experimentalists are out there, making new materials

and measuring them to see if they can spot a QSL. So, what is our goal?

Our goal is to find a quantum spin liquid in a real material: Find a QSL, prove

that it is a QSL, and study it.

2.2.2 But Really, What is a Quantum Spin Liquid?

Of course, to prove quantum spin liquids exist we need to have a more precise defini-

tion beyond the vague notion of a “quantum mechanically non-trivial disordered spin

state” given above. We need an example.
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The simplest example of a QSL system is the antiferromagnetic (AFM) 2D trian-

gular Ising net,

ℋ = 𝐽
𝑁

∑
⟨𝑖𝑗⟩

𝑆𝑧
𝑖 𝑆𝑧

𝑗 𝐽 > 0.

Each spin bond can either be parallel or antiparallel. For AFM coupling, the

energy of the system is minimized when all spins are antiparallel. But, as shown in

figure 2-1, this is geometrically impossible on the triangular lattice; some spins must

be forced parallel which maximizes their interaction energies. Moreover, the choice

of which spins to align is arbitrary. As a result the system has macroscopic entropy

at 𝑇 = 0. For 𝑁 spins the ground state entropy is [6]:

𝑆(𝑇 = 0) ≅ 0.3383𝑁𝑘𝐵

The ground state degeneracy scales roughly as 𝑒𝑁𝐾𝐵/3 with system size! Each of

these ground states are connected via series of zero-cost spin swap operations (figure 2-

2). Therefore the ground state’s entire phase space is meaningfully accessible due to

quantum spin fluctuations at 𝑇 = 0. Since all degenerate states are accessible, there

is no spontaneous symmetry breaking at 𝑇 = 0. The spins do not freeze into a

particular configuration like in a disordered spin-frozen state, because there are no

energy barriers to prevent transitions between degenerate states. Thus, the system

constantly fluctuates between superpositions of the ∼ 𝑒𝑁/3 ground states at 𝑇 = 0.

This is distinct from the usual ordered or frozen states one expects at 𝑇 = 0.

This state is a rudimentary quantum spin liquid state. Specifically, the system

is a quantum correlated paramagnet, as there are dynamical short-range correlations

between the spins. Quantum fluctuations prevent spin-freezing and instead they allow

for dynamical short-range spin correlations down to 𝑇 = 0. The presence of dynam-

ical short-range correlations, no long-range correlations, and rotational symmetry is

similar to the properties of a physical liquid. And like a physical liquid, the phase

transition is generally not a well-defined transition that can be modeled using Landau
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theory.1 Hence, it is a “quantum spin liquid.”

More generally, modern QSL models have exotic properties that can be used for

technological applications, or to advance our theoretical understanding of macroscopic

quantum phases. Most QSL’s are expected to host some form of anyon quasiparticle

excitations, some form of long-range entanglement, finite entropy and fluctuations at

𝑇 = 0, and a symmetry preserving phase transition outside the description of Landau

phase theory. The specific details, though, vary for each model.

We’ll define these ideas more fully as needed. The rest of this chapter is devoted

to describing modern QSL theories and materials. But first: I’d like to take a few

pages to analyze the 𝑁 = 3 Ising triangle.

2.3 The 𝑁 = 3 Ising Triangle

If you attend a talk on quantum spin liquids or magnetic frustration, there is a good

chance you’ll see a figure similar to figure 2-1. It is the famous three spins one-halves

arranged in a triangle with antiferromagnetic Ising interactions. This figure is usually

is meant as a simple short-hand that illustrates the spin frustration that underlies

quantum spin liquid states. Yet, despite its ubiquity in the field, it’s surprisingly

difficult to find any explicit solutions to the Ising triangle. Strictly speaking, the

Ising triangle is periodic Ising chain with 𝑁 = 3, and the periodic Ising chain has

been solved for arbitrary 𝑁 using second quantization and quasi-particle descriptions.

But the sophisticated mathematical machinery used for arbitrarily sized Ising chains

and other related models is inappropriate for a simple 𝑁 = 3 system that can be

easily solved using mundane methods and lacks the number of particles to make

quasi-particle descriptions meaningful.

It is also inappropriate for an experimental dissertation to go over in detail the

1Physical liquids do not have a conventional thermodynamic transition at temperatures and
pressures above the critical point. The phase boundary vanishes and the gas and liquid phases
become an indistinct ‘fluid’ that allows one to continuously move from a liquid to gas–and vice-
versa–without crossing a thermodynamic transition. Spin liquids are similar to physical liquids in
that the transition behavior and broken symmetries of the high-temperature paramagnetic states
and low-temperature QSL states parallel the thermodynamic behavior of a gas-to-liquid transition.

9



sophisticated theory behind most QSL theories. The Ising triangle, though, is just

right in its difficulty. Obviously, 𝑁 = 3 is too small to show the collective behavior,

such as quasi-particle excitations. That said, the Ising triangle does exhibit many

of the fundamental properties required for a QSL phase, and can be considered as a

kind of conceptual building block.

Consider a triangular lattice of 𝑁 = 3 spin-1/2’s with antiferromagnetic Ising

couplings 𝐽 . For simplicity, we ignore external fields. The Hamiltonian is given as:

ℋ = 𝐽
𝑁=3
∑
⟨𝑖𝑗⟩

𝑆𝑧
𝑖 𝑆𝑧

𝑗 𝐽 > 0, (2.3.1)

where ⟨𝑖𝑗⟩ indicates a summation over nearest neighbor spins. Since 𝐽 > 0, each spin-

pair contributes 𝐽/4 if the spins are parallel, and −𝐽/4 if the spins are antiparallel.

Normally, the minimum possible value for equation 2.3.1 is achieved when all spins

are antiparallel to their neighbors. But, because of the geometry of the problem, only

two interactions can have their energy minimized; there is always one interaction with

it’s energy maximized.

To start, we’ll attempt to write the eigenstates in terms of the direct product basis

for three spins:

|𝜓⟩ =

⎧{{{{
⎨{{{{⎩

|↑↑↑⟩ |↓↓↓⟩

|↑↓↑⟩ |↓↑↓⟩

|↑↑↓⟩ |↓↓↑⟩

|↓↑↑⟩ |↑↓↓⟩

(2.3.2)

Each state is simply the direct product of three independent spin-1/2 states. (i.e.

|↑↓↑⟩ ≡ |↑⟩1 ⊗ |↓⟩2 ⊗ |↑⟩3 with the usual matrix representation |↑⟩ = ( 1
0 ), |↓⟩ = ( 0

1 )
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We also define the usual spin operators for the three-spin states:

S = S1 + S2 + S3

𝑆𝑧 = 𝑆𝑧
1 + 𝑆𝑧

2 + 𝑆𝑧
3

𝑆2 = 𝑆2
1 + 𝑆2

2 + 𝑆2
3 + 2S1 ⋅ S2 + 2S1 ⋅ S3 + 2S2 ⋅ S3

S+ = S+
1 + S+

2 + S+
3

S− = S−
1 + S−

2 + S−
3 (2.3.3)

S+ and S− are the raising and lowering operators, and S, 𝑆𝑧, 𝑆2 are the usual spin

operators.

It is easily seen that the product basis in 2.3.2 is already an eigenbasis of ℋ with

eigenvalues of 3/4𝐽 and −𝐽/4. The 𝐸 = 3𝐽/4 is two-fold degenerate with respect

to the ferromagnetic states |↑↑↑⟩ and |↓↓↓⟩, and six-fold degenerate with respect to

frustrated states, as expected.

At this point we might be tempted to simply write down the most general ground

state |𝜓0⟩ of this system using our intuition. Since the system is symmetric with

respect to all three spins, we expect each frustrated state (for a given 𝑆𝑧) contribute

equally.

Thus,

|𝜓0⟩ = 1√
3(|↑↑↓⟩ + |↑↓↑⟩ + |↓↑↑⟩) for 𝑆𝑧 = 1/2

or,

|𝜓0⟩ = 1√
3(|↓↓↑⟩ + |↓↑↓⟩ + |↑↓↓⟩) for 𝑆𝑧 = −1/2. (2.3.4)

Our intuition isn’t wrong here; these are the proper ground states of the system.

Some care is needed though, since there’s a bit more to these states than our physical

intuition tells us. For example, the basis in 2.3.2 cannot be the proper basis for our

system because it is non-symmetric.

Since we’re dealing with half-integer spins, the wave-functions describing our

spins—including position—must be antisymmetric under particle exchange.
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Ψ(𝑆1, 𝑆2) = −Ψ(𝑆2, 𝑆1). Any states which do not satisfy this condition are physi-

cally forbidden by fermi exclusion. Therefore we need to construct the correct basis

for the problem from direct product basis.

The traditional way of constructing an antisymmetric basis for a system of spins

is to introduce the spatial wave function. In general, the wave function of a spin

system can be written as

Ψ( ⃗r1 … ⃗r𝑁 , 𝑆1 …𝑆𝑁)𝜙( ⃗r1 … ⃗r𝑁)𝜒(𝑆1 …𝑆𝑁) (2.3.5)

where 𝜙( ⃗r) is the position wave function, and 𝜒(S) is the spin-state. For example,

this is how one rescues the triplet states in the non-interacting two spin-1/2 problem.2

Notice that this form requires the spin-state to be wholly symmetric and the spatial

function to be wholly anti-symmetric, or vice-versa. Our direct product basis is

neither wholly symmetric nor anti-symmetric under exchange, therefore we need to

construct set of wholly symmetric and anti-symmetric eigenstates from our current

basis in order for our states to be physical.3

Luckily, any combination of degenerate eigenstates yields another eigenstate. The

question becomes how to construct a new basis that’s both (anti)symmetric and

orthonormal. A few approaches exist, but a bit of physical consideration let’s us

derive the correct basis without guessing. The Hamiltonian is clearly invariant under

spin swaps; exchanging one spin with another in the triangle does not affect the

energy in any of the direct product states. Therefore, the eigenstates of any spin-

swap operator should also be eigenstates of the Hamiltonian. We define a three-way

spin-swap operator as follows:

2See any elementary Quantum Mechanics textbook.
3An additional note: The physicality of a spatial wave function here is questionable for two

reasons: One: our particles are confined to discrete lattice positions. And two: The Ising model
is a simplification of the Heisenberg model, which in turn in a parameterization of the exchange
problem in the first place. The coupling constant 𝐽 is dependent on the position functions. This
places constraints on what we can ask the spatial function to do, since 𝐽 in a constant. We insist
that the real-space wave-function needs to be identical for all three spins, with only the lattice site
positions differentiating them.
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Let ̂𝑃 𝑖𝑗 be an operator that swaps the 𝑖th and 𝑗th spins on the state |𝑖𝑗𝑘⟩:

̂𝑃 𝑖𝑗 |𝑖𝑗𝑘⟩ = ± |𝑗𝑖𝑘⟩ . (2.3.6)

We construct a three way swapping operator as

̂𝑃 = 1
3( ̂𝑃 12 + ̂𝑃 23 + ̂𝑃 13). (2.3.7)

This three way operator takes any direct product state and executes the three possible

spin-swaps:
̂𝑃 |𝑖𝑗𝑘⟩⟩ = 1

3 |𝑗𝑖𝑘⟩ + 1
3 |𝑘𝑗𝑖⟩ + 1

3 |𝑖𝑘𝑗⟩ . (2.3.8)

The eigenvectors of this state are then invariant under arbitrary spin-exchange to

within a sign, and therefore either wholly symmetric or anti-symmetric.

The matrix representation of 𝑃 can be found with some tedious—but simple—

algebra:

̂𝑃 = 1
3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0
0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.3.9)

Finding the eigenvalues and eigenvectors of this matrix possesses no difficulty outside

of patience. This matrix has two unique eigenvalues, each four-fold degenerate: 𝜆 =
{1, 1, 1, 1, 0, 0, 0, 0} The orthonormal basis is as follows:
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𝜆 = 1

||↑↑↑⟩⟩ |↓↓↓⟩
1√
3(|↑↑↓⟩ + |↑↓↑⟩ + |↓↑↑⟩) 1√

3(|↓↓↑⟩⟩ + |↓↑↓⟩ + |↑↓↓⟩)

𝜆 = 0
1√
2
(|↑↓↑⟩ − |↑↑↓⟩) 1√

2
(|↓↑↓⟩ − |↑↓↓⟩)

1√
2
(|↓↑↑⟩ − |↑↑↓⟩) 1√

2
(|↓↓↑⟩ − |↑↓↓⟩) (2.3.10)

The first set of eigenvectors with 𝜆 = 1 are exactly what we wanted: They’re

a set of fully symmetric eigenstates to the Hamiltonian. On the other hand, while

the second set with eigenvalues of 𝜆 = 0 do technically satisfy the condition ̂𝑃 |𝜙⟩ ±
|𝜙⟩. While this satisfies the condition we imposed, four of the states are clearly not

symmetric.

The reason that we end up with four non-symmetric states is because there are

no other linearly independent choices for symmetric or antisymmetric states. As

a general mathematical fact, if the number of unique particle states for a single

particle is less than the total number of particles, then it is impossible to form fully

antisymmetric states due to repetition of quantum numbers [7]. For spin-1/2, this

occurs when 𝑁 ≥ 3. Therefore only four linearly independent states are possible, and

the remaining states are annihilated by ̂𝑃
Physically, this means that four of our six-fold degenerate ground states are phys-

ically forbidden by symmetry, and the overall Hilbert space is reduced from a dimen-

sion of eight to four. The remaining states are wholly symmetric and therefore can

be repaired using an antisymmetric spatial wave function. I.e.:

|Ψ⟩ = 𝜓( ⃗r1, ⃗r2, ⃗r3)𝜒(S1, S2, S3) (2.3.11)
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𝜒(𝑆1, 𝑆2, 𝑆3) is any spin state formed by our allowed basis, while the antisymmetric

position wave-function is defined as:

𝜓( ⃗r1, ⃗r2, ⃗r3) = 1√
6 ∑

𝑖,𝑗,𝑘
𝜖𝑖𝑗𝑘𝜙( ⃗r𝑖, R⃗1)𝜙( ⃗r𝑗, R⃗2)𝜙( ⃗r𝑘, R⃗3) (2.3.12)

Here 𝜖𝑖𝑗𝑘 is the chevy-levita symbol, while 𝜓( ⃗r𝑖, R⃗𝑎) is the spatial wavefunction of

spin 𝑖, with site position R⃗𝑎

The end result is that the proper basis for the Ising Triangle only has a total of

four states, with only two being physically unique due to spin-inversion-symmetry

|𝑆1𝑆2𝑆3⟩ =
⎧{
⎨{⎩

|↑↑↑⟩ |↓↓↓⟩
1√
3(|↑↑↓⟩ + |↑↓↑⟩ + |↓↑↑⟩) 1√

3(|↓↓↑⟩ + |↓↑↓⟩ + |↑↓↓⟩)
(2.3.13)

These are the ground states are the states we guessed at all the way back in

equation 2.3.4! Now we ask what happens when we apply an external field:

Let

ℋ = 𝐽
𝑁

∑
⟨𝑖𝑗⟩

𝑆𝑧
𝑖 𝑆𝑧

𝑗 − ∑
𝑖

𝜇𝑆𝑧
𝑖 𝐵 (2.3.14)

where 𝐵 is an external magnetic field along the 𝑧-axis and 𝜇 is the effective mo-

ment. The field dependent term clearly commutes with the Hamiltonian H in general.

Therefore the eigenstates in both (2.3.4) and (2.3.13) remain eigenstates and the

above derivation is largely unchanged. The only difference is that the external field

removes all the degeneracies of the states listed in (2.3.13), and that |↑↑↑⟩ will become

the ground state when 𝐵 > 𝐽
𝜇 . Thus, the zero-field solution is stable for sufficiently

small fields, and we are justified in ignoring the degeneracies in (2.3.13). Next, we

apply the spin operators on our states.

Regardless of field, acting the composite spin operators 𝑆𝑧 and S2 (eq. 2.3.4) on

these states yields 𝑆 = 3/2 for all four states. The ground states, despite their ap-

pearance, are high-spin states. The |↑↑↑⟩ and |↓↓↓⟩ states are 𝑆𝑧 = 3/2, as expected,

while two ground states are 𝑆𝑧 = 1/2, 𝑆𝑧 = −1/2 for the two-spin up and two-spin
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down states, respectively. Unsurprisingly then, the following is true:

𝑆− |↑↑↑⟩ → | ↑↑↓⟩ + | ↑↓↑⟩ + | ↓↑↑⟩

𝑆+ |↓↓↓⟩ → |↓↓↑⟩ + |↓↑↓⟩ + |↑↓↓⟩

𝑆− (|↑↑↓⟩ + |↑↓↑⟩ + |↓↑↑⟩) → |↓↓↑⟩ + |↓↑↓⟩ + |↑↓↓⟩ (2.3.15)

All the physically allowable states in the Ising-triangle belong to a single spin quartet.

The Ising triangle behaves like a spin-3/2 particle.

We now discuss the implications of our derivation so far and how they relate to

the fundamental properties of a QSL:

1: The ground-state is entangled as a result of symmetry constraints. By defini-

tion, any state that cannot be represented as a direct-product state of the individual

spins is entangled. The can be confirmed by calculating the Von Neumann entropy4

for an individual spin as

𝑆𝐴 = − Tr [𝜌𝐴 ln 𝜌𝐴] = ln [ 3
3√4

] ≅ 0.637 > 0,

where 𝜌𝐴is the reduced density matrix of |𝜓0⟩ relative to spin ‘𝐴.’

Many-particle entanglement is a fundamental requirement QSLs. Entanglement

over the bulk of a material is what allows for the exotic quasiparticle excitations

known as “anyons” to exist. Anyons are spin excitations that have fractionalized

charge or spin numbers. Consequently, they are neither fermions nor bosons, but

instead obey non-trivial mutual exchange statistics. Many-particle entanglement is

a requirement for anyons to exist, since spin excitations in a simple product state

simply result in Δ𝑆 = ±1 spin flips.

2: The ground-state is protected from local spin component measurements on

S⃗𝑖 = (𝑆𝑥
𝑖 , 𝑆𝑦

𝑖 , 𝑆𝑧
𝑖 ) by symmetry requirements. A quick application of a spin operator

shows that 𝑆𝑧
𝑖 |𝜓0⟩ ≠ |𝜓0⟩ and results in a non-symmetric wave-function, which is

4The Von Neumann entropy is a measure of entanglement. 𝑆𝐴 = 0 for non-entangled states, and
𝑆𝐴 = ln𝑁 for a maximally entangled state with Hilbert Space dimension 𝑁. Alternatively, one can
calculate that |𝜓0⟩ has a Schmidt number of 2 under Schmidt decomposition.
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forbidden by symmetry. More specifically, a measurement of 𝑆𝑧
𝑖 can only collapse

|𝜓0⟩ to either 1√
2

|↑⟩𝑖 (|↓↑⟩ + |↑↓⟩) or |↓⟩𝑖 |↑↑⟩, which are not valid states.

Protection from local spin operators is another key aspect of quantum spin-liquids.

The anyonic excitations described above cannot be created by local spin operators.

Instead, they are created as infinite product of local operators (in the 𝑁 → ∞ limit)

acting on the system as a whole. Correspondingly, anyons are non-local excitations.

Note that anyons are created in pairs which themselves are long-ranged entangled over

the bulk of the material. This is one of the key properties of QSL’s for technological

applications (i.e. quantum computers), and requires long-range spin-entanglement

that’s protected from local spin excitations, just as we see in the spin-triangle.

3: The entangled state is topological. Obviously, we don’t mean topological

in the sense of band-structure or Chern numbers. Instead, we mean topological in

the original sense that the physicist Michael Berry introduced used when he first

introduced topology as a way to think about physical systems [8]. A topological

system is any system which there exists a quantity that is non-trivially invariant under

adiabatic manipulation of ℋ [8]. For example, the phases of spins moving under a

magnetic field (Berry Curvature) and the Aharonov-Bohm effect were examples Berry

gave.

The 𝑁 = 3 triangle can be thought of as topological in two different ways. The

first is the inversion of spin under periodic exchange of electrons. Figure 2-3 shows

what happens when one moves an electron in a closed loop along a conventional 𝑁 = 4
square and the 𝑁 = 3 triangle. The end-state is identical to the initial state in the

frustrated square, as expected. In the 𝑁 = 3 triangle, the spin flips and the end state

is different from the initial state. Therefore there is a finite Berry curvature and the

system is topological.

Alternatively, one can take the entanglement entropy of the observable states to

be the invariant. The entanglement entropy (Von Neumann entropy) is invariant

under adiabatic changes to 𝐵, 𝐽 , and 𝜇⃗, for 𝜇𝐵 < 𝐽 . Above this, the ground state

transitions to the ferromagnetic state |↑↑↑⟩ with Von Neumann entropy 𝑆 = 0.

In the 𝑁 → ∞ limit, the limited concept of topology used here gives rise to the
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more conventional definitions of topology, where the long-range entanglement of the

triangular net is protected by topological invariants. The problems of topology and

entanglement in QSL’s are, in many respects, one and the same, so much of the theory

on QSL’s can be recast into the language of topology.

What is missing from our example is the emergence of collective phenomena that

can only be seen in the many-body problem when 𝑁 ≫ 3. In that sense, we’ve sepa-

rated out the fundamental properties of the ground state due to magnetic frustration

from the emergent properties due to statistical mechanics. QSL states are built on

these building blocks, and thanks to these building blocks we expect to see exotic

collective phenomena such as fractional spin-excitations, spin-charge separation, flux

vortices of the underlying topology, and so on. The exact details, though, depend on

the underlying models themselves.

A quantum spin liquid isn’t a unique phase of spins, like a simple ferromagnet

or paramagnet is. Rather, it is an entire classification of spin ground states that are

characterized by macroscopic spin entanglement resulting from the microscopic spin

frustration we see here.

2.4 Elementary Theories of Quantum Spin Liquids

A quantum spin liquid (QSL) is any magnetic phase of matter where the spins are

dynamically short-range correlated and do not undergo a conventional thermody-

namic transition to a lower-symmetry state as 𝑇 → 0. Instead, quantum fluctuations

‘melt’ the thermodynamic spin-lattice and allow the spins to remain in a ‘liquid-like’

quantum-paramagnet state. The dynamic spin correlations are short-ranged, and

there exist fractionalized spin-1/2 excitations known as spinons due to ground-state

entanglement. The exact properties of a QSL depend on several factors, including

the dimensionality of the spin lattice, and the exact mechanism of spin frustration.

Most QSL’s are grouped into one of three families, depending on either the model or

the mathematical symmetries obeyed by the quasi-particles.

The three primary types of quantum spin liquids one encounters in the literature
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are:

• Kitaev Spin Liquids

• 𝑈(1) (RVB) Spin Liquids

• Z2 (RVB) Spin Liquids

In the following sections we’ll discuss the models underlying these classifications

and some of their properties.

2.4.1 Kitaev honeycomb Model

The Kitaev honeycomb model is an exactly solvable model proposed by Kitaev in

2005 [4]. The Kitaev model consists of the following spin-1/2 Hamiltonian on a 2D

honeycomb lattice:

ℋ = −𝐽𝑥 ∑
𝑥 bond

𝜎𝑥
𝑖 𝜎𝑥

𝑗 − 𝐽𝑦 ∑
𝑦 bond

𝜎𝑦
𝑖 𝜎𝑦

𝑗 − 𝐽𝑧 ∑
𝑧 bond

𝜎𝑧
𝑖 𝜎𝑧

𝑗 (2.4.1)

0 ≤ |𝐽𝑥|, |𝐽𝑦|, |𝐽𝑧| ≤ 1

where each ‘bond’ is a nearest-neighbor spin interaction defined by its orientation.

See figure 2-4. At first glance, the Kitaev model looks like an anisotropic Heisen-

berg model. Except, the Kitaev model is neither antiferromagnetic nor geometrically

frustrated. It is a bond-frustrated model. The spin interactions 𝐽𝛼 can all be ferro-

magnetic (𝐽𝛼 ≥ 0) if desired, and the honeycomb lattice can easily be populated with

AFM spins without frustration. A closer inspection reveals that the Kitaev model is

actually somewhere in-between the Heisenberg and Ising models.

Each individual spin sees an overall three-dimensional ‘Heisenberg-like’ interaction

with its environment. At the same time, each term is an Ising-like interaction with

one of three neighboring spins. The magnetic frustration is a result of each spin being

‘pulled’ in three orthogonal directions–despite being a 2D lattice. In particular, the

fact that 𝜎𝑥, 𝜎𝑦 and 𝜎𝑧 are all incompatible observables forces an individual spin to

take on a mixed state to minimize its energy in eq. 2.4.1. In turn every spin is forced
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to take on a mixed state to minimize the Hamiltonian, and the result is a highly

entangled ground state with no long-range disorder. I.e. a QSL.

This assumes that such a Hamiltonian is physically possible, which seems implau-

sible at first glance, given the symmetry of the honeycomb lattice. In fact, the Kitaev

model is formally a compass model which for years lacked a physical realization for

quantum spins [9], [10]. The Kitaev model is realizable in certain iridium and ruthe-

nium compounds, particularly the oxides, thanks to spin-orbit coupling (SOC) [11],

[12]. The conditions are rather specific: One requires a magnetic ion with a d5 spin

configuration, an effective angular momentum of 𝑙 = 1 and an octahedral coordina-

tion that yields a low-spin t2g ground state with a Kramer’s degeneracy [10]. This

results in an effective spin-1/2 ion. Strong SOC mixes the 𝐽 = 𝐿𝑧 = 0 and 𝐿𝑧 = 1 or-

bital states with the effective spin-1/2 states, resulting in so-called ”isospin” states.5

The effective exchange Hamiltonian for nearest neighbors (NN) becomes:

𝐻𝑖𝑗 ∼ 𝐽1(S⃗𝑖 ⋅ S⃗𝑗) + 𝐽2(S⃗𝑖 ⋅ ⃗r𝑖𝑗)( ⃗r𝑖𝑗 ⋅ S⃗𝑗) (2.4.2)

where ⃗r𝑖𝑗 is the unit vector along a given bond-𝑖𝑗. For edge-sharing octahedra with

a 90° bond angle, the A-C-A (A=Anion, C=Cation) superexchange paths along the

top and bottom routes destructively interfere and cancel out the isotropic portions of

the exchange Hamiltonian, and instead result in––with some simplification––a purely

anisotropic exchange interaction that depends on the real-space bond directions:

𝐻(𝛾)
𝑖𝑗 = −𝐽𝑆𝛾

𝑖 𝑆𝛾
𝑗 (2.4.3)

where 𝛾 = (𝑥, 𝑦, 𝑧) labels the bonds by its real-space direction. The simplest example

of this arrangement is that of edge-sharing octahedra where the anions form a square

lattice (figure 2-5). For other geometries, such as the IrO6 octahedra which form

the Ir4+ Honeycombs in A2IrO3, the overall result still holds if the lattice can be

broken down into 90° oriented superexchange pathways along oxygen cations. In

5”Isospin” is a reference to the spin-like mechanics of meson formation. Structurally, the states
are the same.
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these cases the exchange interaction over each bond remains writeable in cartesian

form 𝐻(𝛾)
𝑖𝑗 = −𝐽𝑆𝛾

𝑖 𝑆𝛾
𝑗 while the orbitals themselves may point along non-orthogonal

directions, as seen in figure 2-6. In other words: the neighboring spin-interactions are

orthogonal even if the bond directions are not.

The number of ions which can satisfy these conditions in realizable materials are

limited. Currently research has focused on magnetic iridium (Ir4+) and Ruthenium

(Ru3+/Ru4+) ions. Prominent examples are LiYbO2, NaYbO2, Cu2IrO3, H3LiIr2O6,

and 𝛼-RuCl3 [13], [14]. Notice the emphasis on iridium oxides; iridium naturally has

much stronger SOC than ruthenium. Progress on alternative Kitaev compounds has

been slow, though they do exist. Cobalt-oxides are currently one avenue that is being

explored [15].

Now that we know that the Kitaev honeycomb model is plausible in real systems,

what does its solution look like? The method Kitaev published is mathematically

sophisticated and highly non-trivial. But we can outline some key details and results.

The Kitaev Hamiltonian in eq. (2.3.13) can be rewritten in terms of Majorana

fermion operators using the language of second quantization. Specifically, if the stan-

dard annihilation and creation operators for a fermion in state 𝑘 are defined as 𝑎𝑘

and 𝑎†
𝑘, then one can construction Majorana operators as

𝑏2𝑘−1 = 𝑎𝑘 + 𝑎†
𝑘, 𝑏2𝑘 = 𝑎𝑘 − 𝑎†

𝑘
𝑖 . (2.4.4)

These Majorana operators satisfy the following relations:

𝑏𝑗 = 𝑏†
𝑗

{𝑏𝑗𝑏𝑙} = 0 if 𝑙 ≠ 𝑗. (2.4.5)

The first relation confirms that the Majorana operator is Hermitian (i.e. observ-

able6) while the third is the anti-commutator relation defining fermions in second-

quantization. The Majorana operators can be interpreted as the creation and annihi-

lation operators for a set of quasi-particles analogous to Majorana fermions; fermions
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who are their own antiparticles (i.e. 𝑏𝑗 = 𝑏†
𝑗). More accurately, these operators repre-

sent Majorana zero modes (MZM), which are zero-energy excitations of the ground-

state wave-function that do not necessarily obey Boson-Fermi statistics despite the

quasi-particle description [16].

Using a set of four Majorana operators, plus a fair bit of technical detail, one

can simplify the original Hamiltonian into a single NN sum over ”Majorana spin”

interactions [10]:

𝐻(𝐴) = 𝑖
4 ∑

⟨𝑗,𝑘⟩
̂𝐴𝑗𝑘𝑐𝑗𝑐𝑘 (2.4.6)

The term 𝑐𝑗𝑐𝑘 is the spin-spin operator corresponding to a set of NN Majorana

fermions, analogous to the 𝜎(𝛾)
𝑖 𝜎(𝛾)

𝑗 terms in the original Hamiltonian. The factor
̂𝐴𝑗𝑘 is a matrix which happens to commute with the original Hamiltonian.

This simplified Hamiltonian allows one to solve for the eigenstates of the Kitaev

model in terms of Majorana fermion states. Each individual spin in the electron

picture is broken up into four Majorana quasiparticles, 𝑏𝑥, 𝑏𝑦, 𝑏𝑧, 𝑐, relative to the

bond directions (figure 2-7). This can be further simplified into two quasiparticle

excitations; spinons and vortex excitations.

The spin excitations are ‘spinons’, which are non-interacting 𝑆 = 1/2 Majorana

quasiparticles with have zero electric charge. This is as opposed to magnons which are

𝑆 = 1 bosonic excitations. The vortex excitations, sometimes called ‘flux-excitations’

or ”visions,” are quasi-particle analogues to magnetic flux excitations in supercon-

ductors. They affect the phase of the spinon wave-functions over closed loops. Both

excitations are considered anyons, whose wave functions are not limited to being

symmetric or anti-symmetric under particle exchange.

The exact nature of the excitations depends on the ratios of 𝐽𝑥, 𝐽𝑦, and 𝐽𝑧. Amaz-

ingly, the ground-state energy is independent of the signs of the spin-interactions,

so model works for both ferro and anti-ferromagnetic systems. Note though, the

6The standard creation and annihilation operators are not Hermitian, and therefore not observ-
able. The observable for 𝑎𝑘 and 𝑎†

𝑘 is the occupation number operator, 𝑛𝑘 = 𝑎𝑘𝑎†
𝑘. The identity

𝑏𝑗 = 𝑏†
𝑗 implies that the quasi-particles excitations are individually observable, which ties into their

potential usage to hold qubits in quantum computers [17].
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AFM kitaev model is considered to be more stable at finite temperatures [12]. For

𝐽𝑥 ≅ 𝐽𝑦 ≅ 𝐽𝑧, the spinon excitations of the system are gapless. For |𝐽𝑖| ≤ |𝐽𝑗| + |𝐽𝑘|,
𝑖 = (𝑥, 𝑦, 𝑧) the excitations are gapped. The vortex excitations are gapped in both

regions. In the gapless region, the spinons acquire an energy gap given sufficient

magnetic fields. Once gapped, these spinons obey non-Abelian statistics, which is

potentially useful for designing quantum computers.

But is it a quantum spin liquid? Yes. Shortly after Kitaev’s original paper,

Baskaran, Mandal, and Shankar [18] showed that the dynamical spin-correlations

in the ground state are identically zero beyond NN seperation. In other words, at

𝑇 = 0 are dynamically short-ranged correlated, which defines a quantum spin liquid.

Furthermore, the mere presence of spinon excitations confirms that the system is

long-range spin entangled. This is because an elementary spin excitation, such as a

magnon, must have integer spin due to angular momentum selection rules (Δ𝑆 = 1).

Spinons are created by splitting–fractionalizing–an S=1 magnon into two deconfined

𝑆 = 1/2 spinons. Spinons can only exist as well-defined quasi-particles in the presence

of long-range spin-entanglement, which preserves the Δ𝑆 = 1 condition while also

allowing the excitation to be observed as two spatially independent 𝑆 = 1/2 particles

[5], [11].

2.4.2 Observables and Predictions of the Kitaev QSL

Next, we seek to understand the observable properties of the Kitaev QSL. For such

a physically exotic phase of matter, it is surprisingly difficult to observe the unique

properties of a QSL. A true QSL phase is not described by Landau 2nd order transition

theory, and therefore does not have a well-defined thermodynamic transition or latent

heat [13]. The spinon excitations have zero electric charge, and therefore cannot be

directly detected by conventional electronic measurements. Magnetically, the spinons

are similar to dilute, non-interacting, magnetic impurities, and are primarily coupled

to the vortex excitations. Thus, despite being an exotic magnetic phase of matter,

the bulk magnetism of a QSL is nearly impossible to distinguish from a quantum

paramagnet using traditional techniques.
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Predictions do exist. The simplest consequence of the QSL state is a possible

quantization of thermal transport due to chiral edge-states. The spinons, by virtue

of being well-defined topological quasi-particles, can form a ‘fermi-like’ surface with

a Chern number of ±1 [11]. This guarantees chiral edge states–spinon currents–exist

along the surface of the material. This causes a quantized contribution to the thermal

transport similar the quantized resistance in the integer quantum Hall effect [4].

At finite temperatures, the spinon and vortex excitations are expected to appear

at different temperature scales, 𝑇H and 𝑇L [11]. This is referred to as thermal fraction-

alization. At 𝑇 ≳ 𝑇H , the system behaves as a conventional, frustrated, paramagnet.

Between 𝑇L ≲ 𝑇 ≲ 𝑇H, the system enters an intermediate ‘unconventional paramag-

net’ state as spinons begin forming. Finally, below 𝑇 ≲ 𝑇L , the system crosses over

to a QSL state as vortex excitations begin to localize. Physically, these temperatures

are set from the density of states of the spinons, and the energy gap of the vortex ex-

citations. Experimentally, this results in a broad ‘two-peak’ structure in the specific

heat (figure 2-8). Such structures frequently appear as a result of magnetic impurities

or other phase transitions which occur frequently in frustrated materials. Thus, this

structure is usually treated as an encouraging sign, rather than a definitive signature

of a QSL.

The presence of exotic spin excitations can also, in theory, be probed by scattering

techniques, such as neutron or Raman scattering. Neutron Scattering in particular

has been widely employed due to its ability to detect long-range magnetic order and

spin-excitations. The inelastic neutron scattering (INS) spectra of a QSL is thought

to be a broad featureless spectra. The intensity of the spectra, and fine details, change

as the temperature is lowered through the 𝑇L and 𝑇H energy scales. Of course, there

are many reasons why a material may have a bland excitation spectra [14] hence INS

or similar scattering data normally cannot prove that a QSL state exists.

Magnetically, a Kitaev system acts as like quantum (correlated) paramagnet [12].

For simplicity, take 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧 = 𝐽 . At high temperatures the system is paramag-

netic, with a bulk susceptibility of 𝜒𝐷𝐶 ∼ 1
𝑇 . For 𝑇 ∼ 𝐽 , 𝜒DC ∼ 1

4𝑇 ∓ 𝐽 . Between

𝑇L and 𝑇H a peak appears: for 𝐽 > 0 (FM), 𝑇p ≃ 0.02𝐽 , and for 𝐽 < 0 (AFM),
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𝑇 ≃ 0.1𝐽 . Finally, as 𝑇 → 0, the susceptibility continues to decrease and approaches

a non-zero value. The paramagnetic behavior is similar to what is seen in spin glasses,

spin-freezing, and magnetic impurities.

2.4.3 Anderson RVB—𝑈(1) and Z2 Spin Liquids

Next, we briefly review the properties of RVB-based models. These are variational

models used for numerical computations of geometrically frustrated systems. Ander-

son’s original RVB models for triangular lattices and unconventional superconduc-

tivity turned out to be incorrect. The triangular Heisenberg AFM has a 120°-order

ground state, while superconductivity in the cuprates is still not fully understood.

That said, the basic premise of RVB states is physically plausible and the large body

of theory behind them is valid; one just needs a system that actually has an RVB

ground-state. As a result, Anderson’s RVB theory has a third life as the basis for

variational techniques on geometrically frustrated QSL systems. These are numer-

ical theories which use the superconducting RVB states from Anderson’s theory of

RVB superconductivity to construct wave-functions for modern variational theory

calculations. We now outline the basic idea based on the review article by Zhou [5].

We consider the ground state of a geometrically frustrated magnet. Similar to the

original RVB model we assume that the ground state is highly degenerate and that

each degenerate state can be described as a set of coupled spin dimers (figure 2-10).

As a further ansatz, we assume that the ground state to be a sum over all possible

dimer configurations:

|ΨRVB⟩ = ∑
{(𝑖𝑗)1⋯(𝑖𝑗)𝑛}

𝑎1
𝑖𝑗 ∣𝜓𝑖𝑗⟩1 ⊗ 𝑎2

𝑖𝑗 ∣𝜓𝑖𝑗⟩2 ⊗ ⋯ ⊗ 𝑎𝑛
𝑖𝑗 ∣𝜓𝑖𝑗⟩𝑛

= ∑
(𝑖1𝑗1⋯𝑖𝑛𝑗𝑛)

𝑎(𝑖1𝑗1⋯𝑖𝑛𝑗𝑛) |(𝑖1𝑗1)⋯ (𝑛𝑗𝑛)⟩ , (2.4.7)

with ∣𝜓𝑖𝑗⟩𝑘 being the 𝑘th labeled dimer state between spins 𝑖 and 𝑗. Explicitly,

∣𝜓𝑖𝑗⟩ = 1√
2
(∣↑𝑖↓𝑗⟩ − ∣↓𝑖↑𝑗⟩) (2.4.8)
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Each term in equation 2.4.7 is a tensor product of all dimers states in a given micro-

state, each with a weight 𝑎((𝑖1𝑗1⋯𝑖𝑛𝑗𝑛)) that acts as our variational parameter.

For an infinitely large system the number of possible configurations extends to

infinity, making the equation intractable. But, based on Anderson’s prior attempts

to apply RVB theory to the cuprates, the BCS wave-functions are natural candidates

for a variational theory of frustrated magnetism. We construct the variational RVB

states using Gutzwiller projected (𝑃𝐺)7 BCS states as our basis:

|ΨRVB⟩ = 𝑃𝐺 |ΨBCS⟩

|ΨBCS⟩ = ∏
𝑘

(𝑢k + 𝑣k𝑐†
k↑𝑐†

−k↓) |0⟩ (2.4.9)

𝑐†
k↑ and 𝑐†

−k↓ are the electron creation operators, while 𝑢k and 𝑣k are numerical co-

efficients to be determined. Note: The Gutzwiller projected BCS states are not

equivalent to standard BCS states. Conventional superconducting BCS theory al-

lows for each lattice site to host 0, 1, or 2, electrons while RVB theory only allows

lattices sites to host 0 or 1 electrons. The Gutzwiller projection eliminates the double

occupation states and allows us to express the problem in terms of 𝑢k and 𝑣k.

The process of determining 𝑢k and 𝑣k is rather complicated and, surprisingly,

introduces much of the physics that differentiates different QSL states by their sym-

metries. We give only the briefest of outlines for the ensuing steps.

The coefficients 𝑢k and 𝑣k for a superconductor are determined through a set

of equations known as the Bogoliubov-de-Gennes equations, which are a set of self-

consistent equations obtained through a mean-field approximation of the BCS Hamil-

tonian, followed by a Bogoliubov transformation8. If we were analyzing BCS theory,

we would take the BSC Hamiltonian, 𝐻BCS , and perform a standard mean-field ap-

proximation written out in second-quantization notation. We then would perform a

Bogoliubov transformation on the Hamiltonian, yielding our final MF BCS Hamilto-

nian, 𝐻MF
BCS. We then diagonalize 𝐻MF

BCS, which due to the specific of the Bogoliubov
7The Gutzwiller projection is a technique frequently used to construct wave-functions for varia-

tional theories. The theoretical details fall outside the scope of this work.
8Again, the details of this transformation fall out of the scope of this work.
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transformation, implicitly solves for 𝑢k and 𝑣k in the form of self-consistent equations

known as the Bogoliubov-de-Gennes (BdG) equations.

Determining 𝑢k and 𝑣k for an RVB theory follows more or less the same procedure,

but with additional complications. The first complication is that we are not working

with native BCS states, but a Gutzwiller projection of BCS states. The second

complication is that RVB theory assumes localized spins on lattice sites which allows

for only single- or zero-occupancy on a given site, while BCS theory allows for 0, 1,

or 2 occupancy on a site. Therefore we have the condition of

∑
𝑎

𝑓†
𝑖𝑎𝑓𝑖𝑎 = 1, (2.4.10)

where 𝑓†
𝑖𝑎 and 𝑓𝑖𝑎 are the second-quantization fermion creation and annihilation op-

erators, respectively. Here 𝑎 = {↑, ↓} is the spin index, and 𝑖 is the site index.

The third complication is that we do not necessarily start with the standard BCS

Hamiltonian. Instead we start with a spin Hamiltonian. For example, the nearest

neighbor Heisenberg Hamiltonian:

𝐻 = 𝐽 ∑
⟨𝑖,𝑗⟩

S⃗𝑖 ⋅ S⃗𝑗. (2.4.11)

These differences from the standard BCS theory of superconductors have impor-

tant ramifications—and complicate the algebra involved substantially. It is well be-

yond the scope of this experimental dissertation to delve any further into the technical

aspects of RVB models. Rather, we refer the interested reader to the excellent review

article by Zhou, Kanoda, and Ig [5]. For our purposes, we are interested in the gauge

redundancy from the above process.

The above process of determining 𝑢k and 𝑣k contains a mean-field approximation,

which makes the final BCS states implicitly mean-field states. Equation 2.4.9 can be

written equivalently as |ΨRVB⟩ = 𝑃𝐺 |ΨMF⟩. The usage of a mean-field wave-function

results in a redundancy in our representation of |ΨRVB⟩ where multiple mean-field

states correspond to the same RVB state after Gutzwiller projection. This results in
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a gauge invariance in our representation of the individual spin-states forming the RVB

states, and this gauge invariance plays a key-role in describing low-energy excitations.

For example, lets say we wanted to represent the spin operators in terms of second-

quantization fermion operators {𝑓𝑖𝑎}, where 𝑖 is the site index and a is the spin index

(𝑎 = {↑, ↓}). Because we solved for the RVB states by a MF approximation to the

BCS states and then followed up with a Gutzwiller projection, the following gauge

transformation is valid:

𝑓𝑖𝑎 → 𝑓 ′
𝑖𝑎 = 𝑒𝑖𝜃(𝑖)𝑓𝑖𝑎 (2.4.12)

Formally, this is the definition of a 𝑈(1) gauge symmetry. Note that traditional

BCS theory breaks 𝑈(1) symmetry due to being particle-nonconserving. Here, the

‘symmetry’ is a byproduct of our approximate representation of our variational states.

This symmetry can be expanded upon further by considering particle-hole symmetries

which allows one to write the spin-operator in such a way that it is invariant under

𝑆𝑈(2) gauge transformations.

Note though, that the MF Hamiltonian obtained in constructing the RVB states

has a local 𝑆𝑈(2) gauge structure inherited from the 𝑆𝑈(2) symmetry of the spins.

Additionally, the usage of a mean-field Hamiltonian 𝐻MF
BCS introduces several mean-

field parameters for each possible QSL state. The exact MF parameters, and the exact

MF Hamiltonian depend on your chosen representation–so for brevity we omit the

equations–but the combination of the global 𝑈(1), local 𝑆𝑈(2), and the freedom in

choosing MF parameters places limits on the possible irreducible symmetry groups the

system satisfies. It can be shown that there are only three plausible gauge symmetries,

dependent on the MF parameters, that a RVB QSL may satisfy: 𝑈(1), 𝑆𝑈(2), and

Z2.

Physically, low-energy spin-fluctuations will naturally inherit the gauge symme-

tries of the system via the spin-operators. The existence of gauge symmetry is due

to mathematical redundancies in how we represent our RVB states, but they gain

physicality due to the constraints imposed by the MF-parameters and the general

𝑆𝑈(2) symmetry of spins. Low-energy fluctuations in the ground state correspond to
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the exotic quasi-particle excitations that we’re interested in. Thus, RVB QSL’s–and

similar– can be categorized by the ‘gauge symmetries’ of their low-energy excitations

near 𝑇 = 0.

Each type of QSL is physically distinct. 𝑆𝑈(2) systems are considered physically

unstable due to permitting a large number of gapless fluctuations. They’re usually

ignored as a possibility. 𝑈(1) systems features gapless excitations with a quasi-particle

fermi-surface. Theoretically, these surfaces frequently feature Dirac cones. Z2 systems

inherently have non-trivial topology and feature spinon quasi-particles along with

vortex excitations––known as ”visions”––that impart Berry curvature onto spinons

for anyonic statistics. These are very similar to Kitaev systems, so-much-so that the

Kitaev QSL is often referred to as a Z2 QSL. In general, the classification scheme of

𝑈(1) and Z2 is likely valid for a large variety of potential QLS systems, regardless of

derivation.
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2.4.4 Observables and Predictions of the RVB Model

Obtaining firm theoretical predictions for a numerical theory can be quite challenging

due to the non-analytic nature of the problem. Nonetheless, there exist several basic

predictions and observables for most QSL states. Both the 𝑈(1) and Z2 QSL states

host spinons as their low-energy quasiparticle excitations.

𝑈(1) QSL’s feature gapless spinon excitations, similar to a metal. These spinons

are not anyons; they are fermions [5]. Correspondingly, 𝑈(1) QSL’s are not necessar-

ily topological. Here, the topology is defined by a chern-number in the spinon band

structure. Just as with electrons, dirac cones can appear in spinon band-structures

resulting in chargeless dirac fermions. More generally, 𝑈(1) spin liquids can be mod-

eled as fermi spin-liquids [5]. In particular, there are two simple experimental signa-

tures researchers are looking for: 𝑈(1) QSL’s have been predicted to host gapped,

fractionalized charge excitations in addition to spinons. These charge excitations

give rise to signature low temperature AC conductivities of the form 𝜎AC(𝜔) ∼ 𝜔𝛼,

(𝛼 = 2, ∼ 3.33, for 𝑈(1) and Dirac 𝑈(1), respectively). Similarly, specific heat at

low temperatures is expected have a 𝐶 ∼ 𝑇 2/3 contribution to specific heat due to

quasi-particle motion. That said: These signatures are relatively weak relative to

phonon contributions and only occur at extremely low temperatures. Experimental

observation has proven difficult as a result.

Z2 states are considered to be more stable than 𝑈(1), and are expected to be

easier to observe in nature [5]. In Z2 models, the electron-spin correlations decay

exponentially, while in 𝑈(1) the correlations decay as a power-law. Z2 QSL’s have

gapped spinon excitations, which opens them up significantly to scattering techniques.

The spinon excitations in Z2 models are generically anyonic, and correspondingly Z2

states are inherently topological. This is because the Z2 states generically host ‘gauge

flux-vortex-excitations,’ which are usually referred to as visions. Visions are a QSL

Z2 ‘gauge’ analogue of the vortices in type-II superconductors. Unlike magnetic

vortices though, the visions are vortices which flip the signs of interaction bonds. If

that sounds similar to the Kitaev vortex excitations, that’s because it is! Many of
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the basic results from the Kitaev model translate to Z2 RVB liquids, including the

”double-peak” structures in the specific heat due to fractionalization. Note though,

they’re not identical. For example, the Kitaev model has a gapless region in its phase

diagram, and that’s the region of interest in the Kitaev model.

Outside of these differences, the bulk properties of RVB and Kitaev systems are

similar. They all are correlated paramagnets with fractionalized spin excitations, and

they all lack traditional signatures of a thermodynamic transitions.

2.5 Example Materials

Next, we discuss seminal materials in the field of quantum spin liquids. This section is

meant to give the reader a flavor of what QSL candidate materials look like in experi-

ments. First, we give a brief review of the most famous QSL system, Herbertsmithite

ZnCu3(OH)6Cl2. Then, we discuss the Kitaev material 𝛼-RuCl3.

Herbertsmithite

The 2D kagome system Herbertsmithite ZnCu3(OH)6Cl2 and its extended family

ZnxCu4–x(OH)6Cl2, has been studied extensively since as a QSL candidate since

2005 [19], [20]. It is considered a paradigm for candidate materials, and it rarely goes

without mention in review articles. Entire review articles have been dedicated to it.

For now, we simply list several notable attributes and results.

High-temperature magnetic susceptibility gives an antiferromagnetic Curie-Wiess

temperature of 300 K . Low-temperature magnetic susceptibility measurements show

no indication of ordering or freezing down to 50 mK, giving Herbertsmithite a frus-

tration factor of 𝑓 > 6000. Of course, Herbertsmithite was eventually found to suffer

from lattice defects in the form of Cu/Zn sites mixing outside of the kagome plan,

and these defects could easily replicate the low-temperature susceptibility. Such is-

sues are common in QSL materials due to the complications of a real system, and the

relatively featureless behavior. Muon Spin Rotation (µSR) experiments confirm that

there is no magnetic order down to 20 mK, but strangely show a lack of an internal
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field at all.9

Low temperature specific heat measurements yield a 𝐶𝑉 ∼ 𝑇 1.3 contribution to

the specific heat from the kagome lattice, though the kagome lattices includes Cu2+

site defects which contribute to the specific heat [21]. Prior measurements yielded

values as low as 𝐶 ∼ 𝑇 2/3 [22]. Herbertsmithite has been predicted to have a power-

law dependence of 𝐶 ∼ 𝑇 𝛼 where, depending on the paper and applied magnetic field:

𝛼 = 2 or 𝛼(𝑘𝐵𝑇 ≪ 𝜇0𝐵) = 1 [22], or in other models,10𝛼 = 2/3 [23].

Optical conductivity shows a power law of 𝜎(𝜔) ∼ 𝜔2 [24], which has been pre-

dicted for a 𝑈(1) Dirac Spin liquids [25] due to virtual charge excitations. Neutron

scattering experiments intending to probe the quasi-particle excitation spectrum find

a broad-continuum and rules out an excitation gap above to 0.1 meV. Neutron scat-

tering also shows the presence of short-range correlations. All of these properties are

consistent with QSL theory, but are also consistent with simpler explanations. A

broad excitation spectrum in neutron scattering can easily be due to structural or

magnetic impurities, and short-range correlations are found in spin-glassy systems.

𝛼-RuCl3

𝛼-RuCl3 is one of the examples of a Kitaev system that doesn’t rely on Ir4+ to achieve

frustrated 𝑆eff = 1/2. Ruthenium is shifted one row left and one period up from from

Ir; Ruthenium’s 4𝑑 orbitals are significantly less affected by SOC than the 5𝑑 orbitals

of Ir4+. Moreover, 𝛼-RuCl3 forms Ru3+ which has its own ion physics under crystal

electric fields (CEF) different from Ir4+. Yet, the Ru3+ ions in 𝛼-RuCl3 form a two-

dimensional honeycomb planes that are octahedrally coordinated to Cl with nearly

90° bond angles. The nearly ideal cubic geometry of the CEF allows the SOC effect

to win out and create a Kitaev system, similar to the iridates. The result is that

𝛼-RuCl3 is one of the more chemically unique QSL systems. It is also one of the

earliest systems that have been heavily studied.

Pure 𝛼-RuCl3 is proximate to a QSL phase under ”ambient” conditions. With
9Nuclear dipole fields and the like excluded.

10Clearly, specific heat is not a reliable measure of a QSL.
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zero-field, zero-pressure, no doping, or other parameter tuning, 𝛼-RuCl3 zig-zag orders

at 8 K with an effective moment of approximately 0.4𝜇𝐵. The long-range magnetic

order can be suppressed by magnetic fields. Magnetization and specific heat show a

field-induced transition at 7.5 T, implying a nearby quantum critical point. Neutron

diffraction confirm that the transition is to a magnetically disordered states. NMR

measurements, which probe spin-excitations through the spin relaxation rate, show

1/𝑇1 ∼ 𝑇 3, which suggests a gapless, Dirac-like, QSL. Thermal conductivity mea-

surements have also been performed and consistent with the presence of Majorana

edge modes, though not definitive.

Optical conductivity under applied fields shows a conductivity peak in the region

near where one would expect crossover behavior due to quasi-particle fractionalization.

That is, 𝑇L. Raman spectra of the scattering intensity shows a peak as a function

of 𝜔 that qualitatively agrees with Quantum Monte Carlo (QMC) calculations, while

failing to fit to spectra calculated using the Bose-Einstein distribution, which usually

works well for conventional magnets. Other techniques, such as magnetic torque and

ESR have been performed as well. 𝛼-RuCl3 is well studied and listing the results of

all experiments lies outside the scope of this paper.

2.6 Conclusions

Quantum spin liquids (QSL)’s are highly non-trivial disordered magnetic phases.

QSL’s are not conventional thermodynamic phases, and are not described by Lan-

dau second order phase transition theory. Classically, one expects a spin frozen state,

such as a spin-ice or long-range order at 𝑇 = 0. In a QSL, quantum fluctuations

”melt” such a frozen state into a ‘liquid’ like state at 𝑇 = 0 that has non-vanishing

short-range dynamical correlations at 𝑇 = 0.

These states arise from macroscopically sized ground-state degeneracies that result

in a non-zero classical entropy at 𝑇 = 0, seemingly in violation of the second law of

thermodynamics. This macroscopic entropy results in a phase which features long-

range spin entanglement over macroscopic distances, similar to the cooper-pairs of a

33



superconductor. Correspondingly, we expect exotic spin excitations and physics from

a QSL.

QSL’s are expected to host, at a minimum, fraction spin and flux excitations that

exhibit unconventional anyon statistics under exchange. Other exotic excitations,

such as charge fractionalization, are also possible. These exotic states are expected

to host anyonic spin excitations which may have technological applications, such as

in quantum computers. Understanding QSL states will also advance our knowledge

of quantum mechanics and magnetic frustration.

There are many models predicting QSL’s, and many systems that may potentially

harbor QSLs, but detection is difficult. From the perspective of bulk probes, a QSL

appears to be a correlated or quantum paramagnet. In a sense, that is not incorrect.

A true test of a QSL would be the long-range entanglement of spins, except there

are currently no experimental techniques which can detect long-range entanglement

directly. Instead we must rely on a collection of techniques which indirectly probe

the QSL phase and form a mosaic of properties consistent with QSL phases.

2.7 Recommended Reading

The interested reader my find the following resources useful:

For a general review of quantum spin liquids:

J. Knolle and R. Moessner, “A Field Guide to Spin Liquids,” Annual
Review of Condensed Matter Physics, vol. 10, no. 1, pp. 451–472, Mar. 10,
2019. doi: 10.1146/annurev-conmatphys-031218-013401

Y. Zhou, K. Kanoda, and T.-K. Ng, “Quantum spin liquid states,” Reviews
of Modern Physics, vol. 89, no. 2, p. 025 003, Apr. 18, 2017. doi: 10.1103/
RevModPhys.89.025003

For reviews of the Kitaev model:

A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals of
Physics, vol. 321, no. 1, pp. 2–111, 2006. doi: 10.1016/j.aop.2005.10.
005
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Y. Motome and J. Nasu, “Hunting Majorana Fermions in Kitaev Magnets,”
Journal of the Physical Society of Japan, vol. 89, no. 1, p. 012 002, Jan. 15,
2020. doi: 10.7566/JPSJ.89.012002

For fractionalization and quasiparticles:

M. Hermanns, I. Kimchi, and J. Knolle, “Physics of the Kitaev Model:
Fractionalization, Dynamic Correlations, and Material Connections,” An-
nual Review of Condensed Matter Physics, vol. 9, no. 1, pp. 17–33, Mar. 10,
2018. doi: 10.1146/annurev-conmatphys-033117-053934
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2.9 Figures

Figure 2-1: Illustration of a geometric frustration for the triangular lattice. (a) A
square lattice where all antiferromagnetic interactions can be minimized simultane-
ously. (b) A triangular lattice where the spin-interactions cannot all be simultane-
ously minimized. Given a set of three neighboring spins, only two sets of interactions
can be anti-aligned. Figure is adapted from “Geometrical Frustration,” by R. Moess-
ner and A. Ramirez, 2006, Physics Today, 59(2), 24–29.

Figure 2-2: Example of degenerate ground-states in a triangular system. In this
figure the ground state is, equivalently, represented in terms of anti-aligned spin
pairs (blue-ovals) individual unpaired spins (red arrows). In this representation the
unpaired spins are spin excitations. This figure is reproduced from “Quantum Spin
Liquid States,” by Z. Yi, K. Kanoda, and T. Ng, “ 2017, Reviews of Modern Physics,
89(2):025003.
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Figure 2-3: A diagrammatic illustration of the topology inherent to the spin triangle
due to frustration. Moving an electron around the sites of an AFM square results
in a final-state identical to the initial state-as expected. Moving an electron around
the sites of a frustrated triangle results in spin-flip. This is a basic example of non-
trivial topology. For the 𝑁 = 3 triangle, this can be understood as a variation of the
Aharonov-Bohm effect. Figure is reproduced from “Geometrical Frustration,” by R.
Moessner and A. Ramirez, 2006, Physics Today, 59(2), 24–29.

Figure 2-4: Visual representation of the Kitaev honeycomb model. 𝑥, 𝑦, and 𝑧 repre-
sent each of the three spin interactions, 𝐽𝑥, 𝐽𝑦, and 𝐽𝑧. Reproduced from “Quantum
Spin Liquid States,” by Z. Yi, K. Kanoda, and T. Ng, “ 2017, Reviews of Modern
Physics, 89(2):025003.
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Figure 2-5: Figure and caption reproduced from “Mott Insulators in the Strong
Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev
Models” by G. Jackeli and G. Khaliullin, 2009. Phys. Rev. Lett. 102:017205.

Two possible geometries of a TM-O-TM bond with corresponding orbitals ac-
tive along these bonds. The large (small) dots stand for the transition metal (oxygen)
ions. (a) A 180°-bond formed by corner-shared octahedra, and (b) a 90°-bond formed
by edge-sharing octahedra.

Figure 2-6: Figure and caption reproduced from “Mott Insulators in the Strong
Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev
Models” by G. Jackeli and G. Khaliullin, 2009. Phys. Rev. Lett. 102:017205.

Examples of the structural units formed by 90° TM-O-TM bonds and corre-
sponding spin-coupling patterns. Gray circles stand for magnetic ions, and small
open circles denote oxygen sites. (a) Triangular unit cell of ABO2-type layered
compounds, periodic sequence of this unit forms a triangular lattice of magnetic ions.
The model (see original text) on this structure is a realization of a quantum compass
model on a triangular lattice: e.g., on a bond 1-2, laying perpendicular to x-axis, the
interaction is 𝑆𝑥

1 𝑆𝑥
2 . (b) Hexagonal unit cell of A2BO3-type layered compound, in

which magnetic ions (B-sites) form a honeycomb lattice. (Black dot: nonmagnetic
A-site). On an xx-bond, the interaction is 𝑆𝑥

𝑖 𝑆𝑥
𝑗 , etc. For this structure, the model

is identical to the Kitaev model.”
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Figure 2-7: Graphical representation of the Kitaev Model Hamiltonian using the
Majorana representation. Each spin operator S⃗𝑖 is decomposed into four Majoran op-
erators 𝑏𝑥

𝑗 , 𝑏𝑦
𝑗 , 𝑏𝑧

𝑗 , and 𝑐𝑗, with neighboring spins 𝑖, 𝑘 interacting an effective coupling
𝑢𝑗𝑘 (see text). Reproduced from “Anyons in an Exactly Solved Model and Beyond,”
by A. Kitaev, 2006. Annals of Physics 321(1): 2–111.
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Figure 2-8: Theoretical temperature dependence of the internal energy, specific heat,
and entropy, for the Kitaev model with isotropic coupling 𝐽𝑥 = 𝐽𝑦 = 𝐽𝑧. The spe-
cific heat shows, on a horizontal log scale, two peaks at characteristic temperatures
𝑇H and 𝑇L. These broad peaks are due to the formation of spinon and flux excita-
tions appearing over two different temperature regimes. Figures are calculated using
Quantum Monte Carlo. Further details can be found in the original publicatiton.
Reproduced from “Hunting Majorana Fermions in Kitaev Magnets,” by M. Yukitoshi,
and J. Nasu, 2020. Journal of the Physical Society of Japan 89(1): 012002.
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Figure 2-9: A graphical representation of the RVB dimer state. Each blue oval
represents a pair of lattices spins coupled together in a spin-1/2 singlet state. Spin
pairs do not need to be nearest-neighbors, as shown in the figure. This figure is
reproduced from “Quantum Spin Liquid States,” by Z. Yi, K. Kanoda, and T. Ng, “
2017. Reviews of Modern Physics, 89(2):025003.

Figure 2-10: Graphical illustration of the Kitaev ground state in (a) the spin represen-
tation and (b) the Majorana representation. Red spheres represent spinon excitations.
The white and blue spheres represent vortex excitations with quantum numbers ±1,
respectively. The spinons do not interact directly, but rather interact via non-trivial
exchange statistics as the travel around vortex excitations, similar to how an electron
gains a phase as it travels around a magnetic field in the Aharonov-Bohm effect. The
quantum number of the vortex excitation dictates how the phase of the spinon exci-
tation changes. Reproduced from “Hunting Majorana Fermions in Kitaev Magnets,”
by M. Yukitoshi, and J. Nasu, 2020. Journal of the Physical Society of Japan 89(1):
012002.
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Chapter 3

μSR Technique

3.1 Introduction

Muon Spin Rotation, Relaxation, and Resonance (μSR) is the set of experimental

techniques core to this thesis. It is a local-probe probe technique that allows one to

characterize the internal field of just about any condensed matter system. μSR is

used extensively in this thesis and in this section I cover the basic theory.

The muon is an unstable sub-atomic particle belonging to the lepton family. The

lepton family consists of the electron, muon, and tau particles, along with their cor-

responding neutrinos. The muon is about 207 times heavier than the electron and

has a lifetime of 2.2 µs. It is nearly identical to the electron otherwise. The muon is

a fundamental point-particle with identical spin and electric charge to the electron.

The muon comes with a positively charged antiparticle (𝜇+). Correspondingly, most

of the physics of electrons (and positrons) translates to the muon by simply swapping

the muon’s mass for that of the electron’s.

Most beamlines produce muons via pion (𝜋) decays:

𝜋+ → 𝜇+ + 𝜈𝜇 (3.1.1a)

𝜋− → 𝜇− + ̄𝜈𝜇 (3.1.1b)

This decay is special because neutrino parity violation ensures that the resulting
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muon beam is spin polarized. Neutrinos (𝜈) and anti-neutrinos ( ̄𝜈) all have either

right-handed or left-handed helicity, respectively, meaning that their spin is always

observed parallel or anti-parallel to their linear momenta.1 Momentum conservation

in the 𝜋 rest-frame dictates that the muon spin must also be parallel or anti-parallel

to the muon’s momentum. Therefore the resulting beam of muons is virtually 100%
spin-polarized.

.

The spin polarization of a muon ensemble can be measured through the weak

decay process:

𝜇+ → 𝑒+ + 𝜈𝑒 + ̄𝜈𝜇 (3.1.2a)

𝜇− → 𝑒− + ̄𝜈𝑒 + 𝜈𝜇 (3.1.2b)

This decay process famously breaks parity conservation due to the helicity of the

neutrinos. The spin of the emitted positron (or electron) is preferentially emitted

towards (away) the direction of the muon spin, as shown in figure 3-1. The po-

larization of the muon ensemble can be deduced by projecting the decay direction

along the forward/back directions. Integrating over the distribution reveals that the

positron/electron has a 2/3rd probability of decaying at a forward angle, and 1/3rd

probability of decaying backwards. Therefore the muon polarization can be deduced

by recording the direction of emitted electrons or positrons, which can easily be done

using scintillators.

Negative muons act like heavy electrons; this is useful for elemental analysis but

is not normally used in conventional μSR. Instead, most experiments use the positive

muon, 𝜇+, which behaves like an idealized, light-weight, proton. When implanted into

a solid material, the positive muon undergoes a rapid stopping process that preserves

the initial muon polarization. Depending on the band-structure of the system, the
1This is a relativistic effect due to the extremely small mass of the neutrino and the fact they’re al-

ways observed at ultra-relativistic velocities. Therefore neutrino helicity is functionally independent
of reference frame.
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muon will usually stop at an interstitial site in the unit cell or form a hydrogen bond.

The process is shown in figure 3-2. The bulk of the implantation process happens

on the order of nano-seconds, which negligible compared to the 2.2 µs lifetime of the

muon. The muon first sheds kinetic energy via particle collisions. Then, the 𝜇+

may capture electrons, forming “muonium,” as it continues to slow. The muon will

rapidly capture and discard electrons until it nears its minimum energy and stops.

From here, what happens depends on the band-structure and elemental composition

of the material.

In insulators, the muon may capture an electron and form a hydrogen like quasi-

atom known as “muonium”. Muonium behaves like a hydrogen impurity, so the

details reflect the physics of hydrogen impurities. This is often employed to study

semiconductors. Not all muons may form muonium in an insulator; muons can also

fail to capture electrons and instead stop at an interstitial site as described below.

In metals, the muon is unable to form muonium due to the Korringa effect, where

conduction electrons screen the muon. The muon, being a point charge, will instead

find an electrostatic minimum to stop at. This is usually an interstitial site near an

anion in the unit cell, and it is usually a point of high symmetry. A notable exception

to this is the oxides, where the muon usually stops approximately 1 Å away from an

oxygen anion in both metal and insulating oxides. In some materials there may be

multiple stopping sites, or even muonium formation in the case of a bad metal or

poor insulator. In these cases, the total signal is the sum of the individual signals

from each stopping site. This makes μSR a volumetric probe. The volumetric aspect

makes μSR useful for studying inhomogenious systems, as the signal is not a weighted

average over the bulk.

The simplest use of the muon spin is to measure magnetic field distributions

using Larmor precession. Like the electron, the muon undergoes rotation at a fixed

angle 𝜃 about a magnetic field vector with frequency 𝑓 = 𝛾𝜇
2𝜋 |𝐵|, where 𝛾𝜇 is the

muon gyromagnetic ratio. 𝛾𝜇/2𝜋 = 13.55 kHz Oe−1. This is an easily detectable

frequency range that turns the muon into an exquisitely sensitive magnetometer. The

orientation and strength of a single-valued magnetic field can easily be measured from
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the amplitude of spin precession and the frequency rotational frequency.

This is the same exact principle as NMR (Nuclear Magnetic Resonance). In NMR

one uses RF-field pulses to spin-polarize a small fraction of atomic nuclei whose

spins then depolarize according to the internal distribution of magnetic fields and

other spin-relaxation processes. In μSR we instead implant our spins—in the form of

muons—directly into the system, and then measure the polarization as a function of

time.

μSR complements other probes quite well due to its unique properties. It is

a local probe of the magnetic field that achieves nearly perfect spin polarization

without applied magnetic fields. It is sensitive to internal fields as small as 0.1 Oe,

and is sensitive to magnetic fluctuations in the range of 10 × 10−10 s to 10 × 10−3 s,

depending on the size of the internal fields. Additionally, it is uniquely sensitive to

long-range magnetic order.

μSR experiments are performed at dedicated facilities located around the globe.

At the time of writing, there are four facilities capable of performing μSR:

• Paul Scherrer Institute (PSI) (Villigen, Switzerland)

• The ISIS facility at the Appleton Rutherford Lab (Oxfordshire, England)

• TRIUMF (Vancouver, Canada)

• J-PARC (Tokai, Japan)

The μSR work in this thesis was performed at PSI and ISIS.

The basic setup for a μSR experiment is shown in figure 3-3. The sample to

be probed is placed between a pair of positron detectors (scintillators). Muons are

directed into the sample by the beamline. As muons enter the sample, a timer starts.

The muon precesses about the local field in the sample for some time 𝑡 and then

decays into a positron and neutrino pair. The emitted positrons are then detected

by the forward and back detectors, and the number of counts on each scintillator is

binned relative to the elapsed time 𝑡. The result is a pair of histograms, shown in
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figure 3-4. The histograms are related to the projected polarization 𝑃𝑧(𝑡) of the muon

ensemble as follows:

𝑁𝐹 (𝑡) = 𝑁0 exp  (−𝑡/𝜏𝜇) ⋆ [1 + 𝑎0𝑃𝑧(𝑡)] (3.1.3a)

𝑁𝐵(𝑡) = 𝑁0 exp  (−𝑡/𝜏𝜇) ⋆ [1 − 𝑎0𝑃𝑧(𝑡)] (3.1.3b)

𝑁0 is the number of detected positrons (i.e. muons), 𝜏𝜇 = 2.2 µs is the muon time

constant, 𝑃𝑧(𝑡) is the polarization of the muon ensemble projected onto the forward-

back detector axis, which we take as the 𝑧-axis, and 𝑎0 is an experimental parameter

known as the “initial asymmetry.”

The normalization constant 𝑁0 and the exponential decay can be removed by

taking the normalized difference between the two:

𝐴(𝑡) = 𝑁𝐹 (𝑡) − 𝑁𝐵(𝑡)
𝑁𝐹 (𝑡) + 𝑁𝐵(𝑡) = 𝑎0𝑃𝑧(𝑡) (3.1.4)

𝐴(𝑡) is known as the asymmetry. It is directly proportional to the polarization of

the muon ensemble though the initial asymmetry 𝑎0, which we see now is simply a

normalization constant. The value of 𝑎0 is determined by the probability of a positron

decaying towards or away from its spin; as previously discussed, this is a 2 ∶ 1 ratio,

so the initial asymmetry’s theoretically maximum value is 1/3. Additionally, it is also

an experimental parameter that is a function of the detector efficiency and alignment.

In practice, the maximum possible value of 𝑎0 is roughly 24% to 27 %.

The asymmetry of a signal is additive. If muons hit both the sample and the

sample holder, one sees a signal with a background contribution:

𝐴(𝑡) = 𝐴𝑧(𝑡) + 𝐴BK(𝑡) = 𝑎0(1 − 𝑓BK)𝑃𝑧(𝑡) + 𝑎0𝑓BK𝑃BK(𝑡) (3.1.5)

where 𝑓BK is the number of detected muons arising from the background (in this case

the sample holder), and 𝑃BK(𝑡) is the background polarization. Alternatively, it is

possible that some fraction of the muons depolarize faster than the experimental time
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resolution and give a zero-signal. In this case, the observed asymmetry is:

𝐴(𝑡) = 𝐴𝑧(𝑡) + 𝐴fast(𝑡) = 𝑎0(1 − 𝑓fast)𝑃𝑧(𝑡) (3.1.6)

Therefore the observed initial asymmetry may be less than ∼25%. If 𝑎0 is sig-

nificantly smaller than 25%, it is known as missing asymmetry and it is treated as

an indication that some fraction of the muons are rapidly depolarizing–usually either

due to muonium in insulators, or strong magnetism in metals.

3.2 Polarization Functions

μSR measurements yield the polarization 𝑃(𝑡). The polarization can be found by

using first principle quantum theory, or by working with semi-classical field distri-

butions. The quantum approach is necessary in systems for which the muon forms

muonium by capturing an electron or bonding to the lattice. Since muonium is not

relevant for the research presented in this thesis, the quantum theory will not be

discussed. Instead, we describe the semi-classical theory of μSR, which is used for

modelling most magnetic systems.

The magnetic spins S⃗𝑖 in a system gives rise to an internal field Bloc( ⃗r). For

simplicity, we consider the static case where Bloc has no time dependence. When a 𝜇+

comes to rest in a sample, it will come to rest at one (or more) energetically favorable

stopping sites within the unit cell. An individual muon senses its local field, Bloc

through Larmor precession (figure 3-5) with angular frequency 𝜔𝜇. In an ideal lattice

with perfect long-range magnetic order, all muons at a given stopping site will see the

same local field and rotate at the same frequency resulting in a sinusoidal polarization

𝑃(𝑡) ∼ cos ( 𝛾𝜇𝐵loc𝑡). In a real system each muon senses a slightly different local

field, which results in spin precession at a different frequency and angle, resulting in a

gradual depolarization similar to 𝑇2 relaxation in NMR. Therefore, we can describe

the depolarization of a μSR signal using a field-distribution method.

Let the muon be initially polarized along the 𝑧-axis, and let a given stopping site

have a local field distribution 𝐷(Bloc). The polarization along the z-axis, in both
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cartesian and spherical coordinates, is:

𝑃𝑧(𝑡) = ∫ {(𝐵𝑍
loc

𝐵loc
)

2
+ [1 − (𝐵𝑍

loc
𝐵loc

)
2
]}𝐷(Bloc) d𝐵𝑋

loc d𝐵𝑌
loc d𝐵𝑍

loc (3.2.1a)

𝑃𝑧(𝑡) = ∫ {cos2(𝜃) + sin2(𝜃)}𝐷(Bloc) ⋆ 𝐵2
loc sin(𝜃) d𝐵loc d𝜃 d𝜙 (3.2.1b)

where 𝜃 is the polar angle of the local field Bloc and 𝐷(Bloc) is the time-independent

field distribution seen by the muon ensemble. The polarization function for most

elementary magnets can be derived from equations 3.2.1. We will now discuss the

fundamental field distributions used in μSR.

Single Field Distribution (Dirac Delta)

Let the muon probe a single field 𝐵0. The distribution is a Dirac delta distribution:

𝐷(Bloc; 𝐵0) = 𝛿3(Bloc − 𝐵0). The polarization function can easily be read off:

𝑃𝑧(𝑡) = cos2  (𝜃) + sin2  (𝜃) cos  (𝛾𝜇𝐵0𝑡) (3.2.2)

where 𝜃 is the angle the internal field 𝐵0 makes with the 𝑧-axis (i.e. the initial

muon polarization). This is nothing more than simple Larmor precession.

For a polycrystalline system, we need to average over the field for all possible

grain orientations (𝜃, 𝜙), which yields:

𝑃𝑧(𝑡) = 1
3 + 2

3 cos  (𝛾𝜇𝐵0𝑡) (3.2.3)

Oscillations are seen in simple LRO ordered magnets. If the magnetic unit cell of a

LRO system is identical to the crystallographic unit cell, then each stopping site in the

unit cell has a well-defined magnetic field for the muons to process about. Therefore

oscillations are a tell-tale sign of long-range magnetic order in μSR. Depolarization

of the signal occurs due to magnetic disorder, as will be described next.
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Isotropic Gaussian Distribution

Let the components of Bloc be isotropically distributed using a Gaussian distribution

with variance Δ𝐺:

𝐷(Bloc) = 𝐷𝑋(Bloc
𝑋)𝐷𝑌 (Bloc

𝑌 )𝐷𝑍(Bloc
𝑍)

= ( 1
√2𝜋Δ𝐺

)
3

𝑒
−
1
2

⎛⎜⎜
⎝

𝐵𝑋
loc

Δ𝐺
⎞⎟⎟
⎠

2

+ 𝑒
−
1
2

⎛⎜⎜
⎝

𝐵𝑌
loc

Δ𝐺
⎞⎟⎟
⎠

2

+ 𝑒
−
1
2

⎛⎜⎜
⎝

𝐵𝑍
loc

Δ𝐺
⎞⎟⎟
⎠

2

(3.2.4)

The resulting polarization function is the famous “Kubo-Toyabe Function”:

𝑃𝑧(2) = 1
3 + 2

3(1 − 𝛾2
𝜇Δ2

𝐺𝑡2)𝑒−
𝛾2

𝜇Δ2
𝐺𝑡2

2 (3.2.5)

Note that this function is valid for both single-crystals and polycrystals.

The Kubo-Toyabe function, to good approximation, represents the depolarization

arising from densely packed, randomly oriented spins, such as from a frozen paramag-

net. The Kubo-Toyabe function is ubiquitous in μSR due to the presence of nuclear

dipole moments. Most atomic nuclei have a small magnetic dipole moment that gives

rise to a weak background depolarization. For elements with large moments, such

as lithium or vanadium, the internal field variances Δ𝐺 can reach up to several Oe,

which is easily detectable by μSR. In particular, we often talk about the depolar-

ization rate 𝜎 = 𝛾𝜇Δ𝐺 which can reach upwards of 1.5 MHz in some cases. More

frequently though, nuclear depolarization is closer to 0.1 MHz∼0.2 MHz.

Isotropic Lorentzian Distribution

Next, we consider an isotropic Lorentzian distribution with characteristic width Δ𝐿 :

𝐷(Bloc) = 1
𝜋2

Δ𝐿
(Δ2

𝐿 + 𝐵2
loc)

(3.2.6)
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The resulting depolarization is an exponential Kubo-Toyabe function:

𝑃𝑧(𝑡) = 1
3 + 2

3(1 − 𝛾𝜇Δ𝐿𝑡)𝑒−𝛾𝜇Δ𝐿𝑡 (3.2.7)

This field distribution corresponds to the dilute limit of randomly oriented, static,

spins. For example, dilute magnetic impurities at low temperature, which freeze into

a random, uncorrelated, configuration. Again, we see the famous: “One-third” tail of

a static isotropic field distribution. The form here is almost identical to the Gaussian

case, except for the power of the terms 𝛾𝜇Δ𝐿𝑡. The general result then, for isotropic,

randomly oriented, frozen, spins in a lattice is then as follows:

𝑃𝑧(𝑡) = 1
3 + 2

3(1 − (𝜎𝑡)𝛽)𝑒−(𝜎𝑡)𝛽 (3.2.8)

where 𝛽 is a mathematical parameter that depends on the density of the spins, and

𝜎 is a characteristic depolarization rate that is proportional to the internal field

distribution width. In practice, the exponential can be taken as 2 or 1 unless one is

purposefully performing an experiment with large concentrations of impurity spins.

Note that the 1/3 tail appears again. We can show that this is a generic feature of

isotropic systems. Let the field distribution 𝐷(𝐵loc) be an isotropic field distribution.

By definition, and isotropic distribution has no (𝜃, 𝜙) dependence. Therefore equation

3.2.1b simplifies to

𝑃𝑧(𝑡) = 1
3 + 2

3 ∫
∞

0
4𝜋𝐷(𝐵loc)𝐵2

loc cos  (𝛾𝜇𝐵loc𝑡) d𝐵loc (3.2.9a)

𝑃𝑧(𝑡) = 1
3 + 2

3 ∫
∞

0
𝐷𝑚(𝐵loc) cos  (𝛾𝜇𝐵loc𝑡) d𝐵loc (3.2.9b)

4𝜋𝐷(Bloc)𝐵2
loc = 𝐷𝑚(Bloc) is the distribution of the magnitude of the local field.

It is sometimes referred to as the distribution of the modulus of Bloc. Isotropic field

distributions always contain a 1/3 tail—unless the local field distribution is time-

dependent, which will be discussed shortly.
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So far we have not explicitly included the effect of external fields in our polarization

functions. In particular, most of the above distributions yield an average field of zero.

We can explicitly include the applied field in the local field distribution 𝐷(Bloc). This

can be useful for numerical calculations. Or, we can solve for applied field polarization

functions separately.

Transverse Fields

Let us apply a magnetic field, Bext normal to the initial polarization vector and

detector axis. For definiteness, let Bext be along the 𝑥-axis. This is known as a

“transverse field measurement.” The local field seen by the muon is then the sum of

the external field we’ve applied and the internal field inherent to the sample:

Bloc = Bext + Bint (3.2.10)

For simplicity, we assume that the internal field distribution is independent of the

external field. In this case, the distribution is a function of Bint , and so we can write

the local field distribution as 𝐷(Bloc − Bext). Equation 3.2.1 becomes

𝑃TF(𝑡) = ∫ ( 𝐵𝑍
loc

|Bloc − Bext|
)

2
+ [1 − ( 𝐵𝑍

loc
|Bloc − Bext|

)
2
] cos  (𝛾𝜇|Bloc − Bext|𝑡)

𝐷(Bloc − Bext)d𝐵𝑋
loc d𝐵𝑌

loc d𝐵𝑍
loc (3.2.11)

where |Bloc − Bext| = √(𝐵𝑋
loc − 𝐵ext)2 + (𝐵𝑌

loc)2 + (𝐵𝑍
loc)2, and we label the po-

larization function 𝑃TF for clarity.

In the high-field limit 𝐵TF ≫ Bint, the above simplifies to:

𝑃TF(𝑡) ≈ [∫
∞

−∞
𝐷𝑍(𝐵𝑍

int) cos  (𝛾𝜇𝐵𝑍
int𝑡) d𝐵𝑍

int] cos  (𝛾𝜇𝐵ext𝑡) (3.2.12)

where 𝐷𝑍 is the field-distribution for the z-component of the internal field.2 Thus,

in the high-field limit, the “transverse field polarization” function is a cosine oscillation

about zero polarization with angular frequency 𝛾𝜇𝐵ext, multiplied by a depolarizing
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envelope dependent only on the one-dimension field distribution along x̂.

.

For a Gaussian distribution, one obtains a Gaussian depolarization:

𝑃TF(𝑡) = 𝑒−
𝛾2

𝜇Δ2
𝐺𝑡2

2 cos  (𝛾𝜇𝐵ext𝑡) (3.2.13)

For the Lorentzian distribution, one obtains an exponential (or Lorentzian) decay:

𝑃TF(𝑡) = 𝑒−𝛾𝜇Δ𝐿𝑡 cos  (𝛾𝜇𝐵ext𝑡) (3.2.14)

And, for the generalized randomly oriented spin-frozen case:

𝑃TF(𝑡) = 𝑒−(𝜎𝑡)𝛽
cos  (𝛾𝜇𝐵ext𝑡) (3.2.15)

where 𝑒−(𝜎𝑡)𝛽 is often referred to as the “Stretched exponential function.”

For a single field, the approximation above isn’t necessary and one can easily write

down

𝑃TF(𝑡) = cos2  (𝜃) + sin2  (𝜃) cos  (𝛾𝜇𝐵loc𝑡) (3.2.16)

where 𝐵loc = √(𝐵𝑋 + 𝐵ext)
2 + (𝐵𝑌 )2 + (𝐵𝑍)2 and 𝜃 = cos−1(𝐵𝑍

loc/𝐵loc). The

polycrystal case is obtained by averaging (𝜃, 𝜙) over a 4𝜋 solid angle. The interested

reader may consult any dedicated textbook on the subject for more details.

We see that there are several unique advantages to the transverse field function

compared to the zero-field case. There is no “tail” in the transverse field case––

transverse field measurements are routinely used for data calibration for this reason.

The depolarization is also simplified, yielding simple decay envelopes. Additionally,

only magnetic disorder along the external field axis contributes to the depolarization.

This makes the TF configuration ideal for anisotropic systems and orientation depen-
2𝐷(Bloc) is a vector distribution, while 𝐷𝑍(Bloc

𝑍) is a component distribution. In simple cases,
𝐷(Bloc) = 𝐷𝑋(Bloc

𝑋)𝐷𝑌 (Bloc
𝑌 )𝐷𝑍(Bloc

𝑍). Therefore we use 𝐷𝛼 for clarity.
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dent measurements. The trade-off is, off course, is that one needs to either know the

sample’s field response, or assume that the local susceptibility of the system is linear.

Longitudinal Fields

Applying the field parallel to the initial spin-polarization and measurement axis is

known as a “longitudinal field” (LF) measurement. Unlike the transverse case, the

longitudinal case has little in the way of simplifications like equation 3.2.12. Instead,

LF polarization functions tend to be non-analytic. That said, LF have some pre-

dictable properties that can be extremely useful.

Referring back to equation 3.2.3, the amplitude of the oscillations for a single field

depend on the angle the local field makes with the muon spin. If the field is parallel

to the muon spin, then no precession occurs. Therefore if the longitudinal field is

much greater than the internal fields, 𝐵LF ≫ Bint, the longitudinal field depolariza-

tion function asymptotically approaches 𝑃LF(𝑡) ≈ 1, and the muon’s polarization is

decoupled from the internal magnetic disorder.

As an example, for a single field magnet with an internal field with magnitude 𝐵0

and angle 𝜃0. The polarization function is identical to function 3.2.16, except now

Bloc = √(𝐵𝑋)2 + (𝐵𝑌 )2 + (𝐵𝑍 + 𝐵ext)
2. The non-oscillating tail can be solved for

terms of 𝐵0 and 𝜃0. Letting Bext ≡ Bext/𝐵0

𝑓tail = (𝑐𝑜𝑠 𝜃0 + 𝐵ext)
2

sin2  𝜃0 + (cos  𝜃0 + 𝑏ext)2 (3.2.17)

Surprisingly, an analytical formula exists for the polycrystal case:

𝑓tail, powder = 3
4 − 1

4𝑏2
ext

+ (𝑏2
ext − 1)2

16𝑏3
ext

ln [(𝑏ext + 1)2

(𝑏ext − 1)2 ] (3.2.18)

In both equations, one sees that oscillation amplitude is suppressed by longitudinal

fields.

In practice, most internal field distributions have field dependencies similar to

figure 3-6. Thus, longitudinal fields allow one to estimate the magnitude of the
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internal fields in a sample, even when no oscillations are present and or the analytical

form of the depolarization is unknown.

This assumes that the local fields are static. So far we’ve ignored the possibility of

spin-fluctuations, muon site-hoping, or other dynamical processes that may depolarize

the muon besides a static field distribution. While dynamics will be discussed in

more detail later, it is worth noting here that the longitudinal field function is highly

sensitive to dynamical processes. In most cases, the presence of dynamical processes

will severely reduce the efficacy of longitudinal fields for lifting the tail. Moreover,

dynamical processes will introduce an exponential decay into the LF tail that cannot

be fully suppressed by longitudinal fields.

Thus, longitudinal fields truly excel at estimating and measuring dynamical pro-

cesses, such as spin-lattice relaxation rates. As a rule of thumb, a static depolarization

should be near-fully suppressed when 𝐵LF ≳ 10 𝜎/𝛾𝜇, where 𝜎 is the characteristic

depolarization rate associated with a given polarization function. The energy scales

associated with most dynamical processes are much higher than the Zeeman energy

associated with an LF field, so for most dynamical systems one will require fields of

10x to 100x, higher, or more, to suppress the depolarization. Therefore in a typical

μSR experiment, one will usually take at least a few LF spectra in order to test for

appreciable dynamics, and to estimate the internal field strength if the system is

static.

Combination of Fields

Usually the local field distribution is best described as multiple independent field

distributions. For example, a realistic ordered magnet can often be modeled as a

single field distribution (Dirac delta) due to the long-range order, superimposed onto

a Gaussian distribution due to random imperfections in LRO spin orientation. Or,

sometimes you might have two species of spins, such as lattice spins and impurity

spins. Either way, if the two field distributions are statistically independent, the net
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field distribution is the convolution of the two:

𝐷(Bloc) = 𝐷1 ∗ 𝐷2(Bloc) ≡ ∫ 𝐷1(B′
loc)𝐷2(Bloc − B′

loc) d3B′
loc (3.2.19)

In general, convolutions tend to be tricky to perform–especially for vector distribu-

tions. In special cases we can avoid calculating the convolution altogether. For

high-transverse field measurements, equation 3.2.12 has the form of a Fourier Cosine

transform.

𝐹c[𝑓] (𝛼) ≡ 1
𝜋 ∫

∞

−∞
𝑓(𝑥) cos  (𝛼𝑥) (3.2.20)

By identifying equation 3.2.12 as a convolution, we can use the convolution theorem:

𝐹c[𝑓 ∗ 𝑔] = 𝐹c[𝑓] ⋅ 𝐹c[𝑔] (3.2.21)

The Fourier transform of the convolution product is simply the product of the two

individual Fourier transforms. Therefore for high-transverse fields, the polarization

function of two statistically independent field sources:

𝑃TF(𝑡) = 𝑃TF,1(𝑡)𝑃TF,2(𝑡) cos  (𝛾𝜇𝐵ext𝑡) (3.2.22)

where 𝑃TF, 1/2(𝑡) are the transverse field depolarization functions. For example,

let us have a magnetically disordered lattice with nuclear dipole moments. The TF

polarization function is:

𝑃TF(𝑡) = 𝑒−
𝛾2

𝜇Δ2
𝑒𝑡2

2 𝑒−
𝛾2

𝜇Δ2
𝑁𝑡2

2 cos  (𝛾𝜇𝐵ext𝑡) = 𝑒−
(Δ2

𝑒 + Δ2
𝑁)𝛾2

𝜇𝑡2
2 cos  (𝛾𝜇𝐵ext𝑡)

(3.2.23)

Two Gaussian depolarizations combine into a single Gaussian depolarization with

depolarization rate 𝛾𝜇(Δ2
𝑒 +Δ2

𝑁) = 𝛾𝜇Δ2, where Δ𝑁 is the nuclear contribution, and

Δ𝑒 is the electronic contribution.

Another example: For the case of a static disordered lattice with dilute static
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impurities, one obtains

𝑃TF(𝑡) = 𝑒−
𝛾2

𝜇Δ2𝑡2
2 +𝛾𝜇𝜆𝑡

cos  (𝛾𝜇𝐵ext𝑡) (3.2.24)

Similarly, the isotropic zero-field equation in equation 3.2.9b also is a Fourier Cosine

transform, except distribution is of the magnitude of Bloc instead of 𝐷𝑍(𝐵𝑍
int). For

the Gaussian and Gaussian + Lorentzian cases, the results can be easily written down

by the reader.

3.3 Dynamics

As the final topic, we discuss dynamical processes. So far we’ve assumed that the

local field distribution 𝐷(Bloc) is independent of 𝑡. This is never truly the case in a

real system though. Spin fluctuations, site hoping, spin-lattice relaxation, and other

more exotic processes can cause the local field to fluctuate over the muon-lifetime.

Such processes are collectively referred to ‘dynamics’ in μSR.

Strictly speaking, how one deals with dynamics mathematically depends on the

details of the process. Thankfully, most dynamical processes in μSR are well-described

by the ‘strong-collision’ model of μSR. In this model, each muon in the ensemble may

randomly resample the static internal field distribution 𝐷(Bloc) with an ensemble

average rate 𝜈. The polarization function can be derived as:

𝑃(𝑡) = 𝑃 stat(𝑡)𝑒−𝜈𝑡 + 𝜈 ∫
𝑡

0
𝑃(𝑡 − 𝑡′)𝑃 stat(𝑡′)𝑒−𝜈𝑡′ d𝑡′ (3.3.1)

where 𝑃 stat(𝑡) is the static depolarization function when 𝜈 = 0. Notice that 𝑃(𝑡)
appears on both sides of this equation. This is an implicit equation, which is generally

not tractable by itself. It can be simplified though by using a Laplace transform:

𝑃(𝑠) = 𝑃 stat(𝑠 + 𝜈)
1 − 𝜈𝑃 stat(𝑠 + 𝜈) (3.3.2)

The equation is no longer implicit, but now we have to deal with multiple Laplace
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transforms. It only explicitly depends on 𝜈, which is a characteristic fluctuation rate

from the assumption of a hard-collision model, and 𝑃 stat. Since 𝑃 stat is a physical

observable, this means that most dynamical processes have generic effects on the

polarization spectra of a system, regardless of the underlying microscopic details.

The only conditions are that the resampling process has to be sufficiently faster than

the resampling rate 𝜈, and that the resampling of 𝐷 must be sufficiently uniform.

We now provide some basic results for different regimes of 𝜈. For definiteness, we

consider the isotropic Gaussian distribution in equation 3.2.4, which gives asymptotic

solutions.

In the ”fast-fluctuation limit” 𝜈 ≫ 𝛾𝜇Δ𝐺:

𝑃𝑍(𝑡) ≈ exp  (−2𝛾2
𝜇Δ2

𝐺
𝑡
𝜈 ) (3.3.3)

If the dynamics are sufficiently fast, the polarization function changes from the

Gaussian Kubo toyabe function in equation 3.3.7 to an exponential function, with a

depolarization rate proportional to Δ2
𝐺/𝑡. Thus, rapid fluctuations suppress depolar-

ization by a temporal averaging of the internal field distribution seen by the muon

ensemble. Interestingly, an exponential decay is also what’s seen for dilute magnetic

impurities

For dilute magnetic impurities, the field distribution is Lorentzian and the polar-

ization function becomes

𝑃𝑍(𝑡) ≈ exp(−2√𝛾2𝜇Δ2
𝐺

𝑡
𝜈) (3.3.4)

which is known as the root-exponential function. Thus, for rapid fluctuations one

sees the elimination of the ‘static 1/3 tail,’ and a reduction to 𝑃𝑍(𝑡) ≈ exp  (−(𝜎𝑡)𝛽)
where 𝛽 ∼ 1/2 to 1. To distinguish between a dynamical Gaussian and a static

Lorentzian in the slow depolarization limit, (where 𝑃(𝑡 → ∞) is not captured by the

spectra) one can apply an LF field. For 𝜈 ≫ 𝛾𝜇Δ𝐺 the Gaussian distribution yields:
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𝑃LF(𝑡) ≈ exp  (−2𝛾2
𝜇Δ2

𝐺
𝜈

𝛾2𝜇𝐵2
ext + 𝜈2 𝑡) (3.3.5)

The depolarization remains exponential with no tail if the fluctuations are suffi-

ciently fast. Also, the depolarization rate scales as ∼ 1/𝐵2
ext in the extreme dynamical

case, when the depolarization rate is independent of 𝐵ext in the static case.3

.

In the Quasi-static limit (𝜈 → 0), the Gaussian distribution yields a modified

Kubo-Toyabe function:

1
3𝑒

−
2
3𝜈𝑡

+ 2
3(1 − 𝛾2

𝜇Δ2
𝐺𝑡2)𝑒−

𝛾2
𝜇Δ2

𝐺𝑡2
2 (3.3.6)

Interestingly, the in the slow fluctuation limit the static depolarization function is

unaffected by the fluctuations. Rather, slow dynamics results in a slow exponential

decay of the 1/3 tail that only depends on 𝜈. In practice, the rate is rate usually

around ∼0.1 µs−1 to 0.01 µs−1 in experiments. This is actually a generic feature of

dynamics. For any polarization function in the quasi-static limit,

𝑃(𝑡) = (1 − 𝑓tail)𝐺osc.(𝑡) + 𝑓tail𝑒−𝛼𝜈𝑡 (3.3.7)

where 𝐺osc.(𝑡) is the oscillation or decay of the function in the static case, and 𝑓tail is

the tail fraction which equals 1/3 for the isotropic case, and 𝛼 is a numerical constant

that equals 2/3 for the isotropic case.

Notice that the slow depolarizations of the tail towards zero does not depend on

field. Since a longitudinal field measurement is a form of a static field distribution in

of itself, and the above does not rely on the distribution being isotropic. Equation

3.2.1 applies just as well in the LF case. So, in the quasi-static limit, one observes a

static depolarization function with a slowly decaying tail. Under LF fields, the decay

is approximately field independent.

Thus, we see that μSR is highly sensitive to any dynamical process that affects
3In the static case only the amplitude of the decay changes while the rate remains the same.
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the local field of the muon site, and that the effect is highly generic. Moreover,

the LF technique can distinguish between static and dynamic systems, and measure

characteristic dynamical rates. This ability is one of the reasons why μSR is prized

in the field of frustrated magnetism, as it is a highly sensitive probe of local magnetic

fluctuations, and can discriminate between spin-frozen and dynamical ground states.

3.4 Usage of μSR in Quantum Spin Liquid research

μSR’s sensitivity to magnetic disorder and dynamics on the unit-cell level makes it

an excellent probe to search for QSL’s. Long-range magnetic order and spin-freezing

are both easily discernable through routine μSR measurements, which can reveal

critical information that can be missed by other probes such as neutron scattering or

magnetic susceptibility. It is standard practice to measure any promising QSL system

with muons to confirm that the ground state is a potential QSL state.

The caveat is that μSR cannot prove that a system is a QSL; μSR can only prove if

a system isn’t a QSL. This is because the muon cannot probe long-range entanglement

directly, and that entanglement is the defining feature that distinguishes a QSL from

a correlated paramagnet.

That said: To my knowledge, there has never been a detailed theory of μSR

in QSL systems despite its widespread use. My understanding is that evaluating

the polarization function of the muon in the QSL state is a highly non-trivial task.

Obviously, the semi-classic field distribution method would be insufficient, and one

would need to use fully quantum methods to evaluate the polarization function. Given

that most QSL theories are numerical, with the few analytical theories having highly

non-trivial solutions, finding 𝑃(𝑡) would be quite difficult.

Yet, μSR is widely employed anyways because there are still generic observations

one expects given the broad details. At heart, QSL’s are paramagnets with a para-

magnetic magnetic susceptibility. Paramagnets, correlated or otherwise, have simple

spectra. One expects an exponential depolarization in the fast-fluctuation limit. If

the quantum fluctuations are too slow for this, there are analytic approximations
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for both the intermediate and slow fluctuation limits. Moreover, the characteristic

fluctuation rate can be measured directly in multiple ways using both longitudinal

and zero-field measurements. Note that Inelastic neutron scattering measurements

and similar scattering techniques measure excitations; they do not measure not fluc-

tuations directly. Additionally, the curvature and shape of the polarization function

also gives information about the source of the depolarization; densely packed spins

yield different shapes than dilute impurity spins.

Thus, μSR can easily rule out systems that appear to be QSL’s by other probes.

If a spectra shows any form of oscillation, it is not a QSL. If it has a root-square

depolarization or a Gaussian depolarization, it is not a QSL. If LF measurements

show a lack of appreciable dynamics, it is not a QSL. For a system to be a QSL, the

spectra needs to correspond to densely packed magnetic moments with some level of

dynamics, and short-range correlations at most. And if a system is not a QSL, then

μSR will yield useful information about what the ground state is and its transition.

Incommensurate long-range order yields spectra distinct from commensurate order.

Spin glasses, spin-ice, and spin-frozen systems have differing spectra. Meanwhile,

μSR is sensitive enough to observe critical slowing, which can assist in diagnosing a

thermodynamic transition if necessary. Thus, μSR not only can rule out or elevate a

QSL candidate, but it can also play a crucial role in explaining why a system fails to

be a QSL.
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3.6 Figures

Figure 3-1: The emission angle of the positron in the muon’s weak-decay reaction
𝜇+ → 𝑒+ + 𝜈𝑒 + ̄𝜈𝜇 follows a cosine function: 𝑃(𝜃) d𝜃 ∼ 1 + 1/3 cos  𝜃 d𝜃. This
equation assumes that the muon is at rest before decay, and it is averaged over the
positron emission’s energy spectra. Integrating over the distribution reveals that the
positron’s final velocity v⃗𝑒+ has a 2/3 probability of emitting towards the muon spin
S⃗ direction points, and a 1/3 probability of emitting away from the spin direction.
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Figure 3-2: Diagram of the muon stopping process. When the muon first enters a
sample, it rapidly slows down due to ionizing collisions with atoms, a process which
occurs on the order of 1 × 10−9 s. Once the muon is moving too slowly to ionize
atoms, it sheds further energy by rapidly capturing and releasing electrons. This is
a fast process on the order of 1 × 10−13 s. Once the charge cycle ends, the muon
rapidly comes to rest in one of several configurations. In metals, the muon is unable
to capture an electron permanently due to shielding from the conduction electrons,
and instead behaves as a bare muon which settles into an interstitial lattice site. In
insulators, the muon instead tends to capture an electron and form the quasi-element
”muonium” (Mu0). In molecular systems, the muon acts as a hydrogen radical and
forms H-bonds with the molecule. In some systems, a combination of final states
may occur where some fraction of the muons stop at an interstitial site while another
fraction may form muonium or bond with the lattice.
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Figure 3-3: Diagram illustrating a basic μSR setup. A beam of spin-polarized muons
enters the system–often through a hole in the backwards detector. The muons implant
into the sample, where their spins either undergo Larmor precession or depolarize. Af-
ter some time passes, individual muons decay into positrons, which preferentially emit
along the spin-direction. The positron is detected by pairs of scintillators surrounding
the sample. A time gate records when the muon (or muons) enter the sample, and the
scintillator records when the positron is detected. The detection events are recorded
and binned according to the elapsed time between entry and exit.
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Figure 3-4: Example μSR spectra. (Top) Histrograms of a Forward-Back pair showing
positron counts as a function of time for a paramagnetic system with 0 Oe transverse
field (TF) applied. Bin width is 1 ps. The exponential decay is a result of the 2.2 µs
muon lifetime (Bottom) The two histograms above combined into a single asymmetry
spectra. The asymmetry is proportional to the polarization of the muon assemble.
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Figure 3-5: The muon precesses about the local field with angular frequency 𝜔 =
𝛾𝜇Bloc.

Figure 3-6: Field dependence of the static tail under longitudinal fields. The black
line shows the dependence of a long-range ordered polycrystal with a single field. The
red line shows the field dependence of an isotropic Gaussian distribution.
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Chapter 4

Frustrated Magnetism in NaYbO2

and LiYbO2

Key Publications

Field-Tunable Quantum Disordered Ground State in the
triangular-lattice antiferromagnet NaYbO2

Nature Physics, Oct. 2019.

Frustrated Heisenberg 𝐽1 − 𝐽2 Model within the stretched diamond Lattice of LiYbO
Physical Review B, Jan. 2021.

Novel magnetic ordering in LiYbO2 probed by muon spin relaxation
Manuscript under review (Physical Review B)

69



4.1 Introduction

Finding geometrically frustrated 𝑆 = 1/2 systems is one of the largest hurdles in

studying quantum spin liquids (QSL). Spin-1/2 naturally maximizes the effects of

the quantum fluctuations which disrupt traditional long-ranged ordered states into

disordered QSL states [1], [2]. As the spin approaches the classical 𝑆 → ∞ limit [3],

the system either magnetically orders [2] or becomes a classical spin liquid [4]. For

certain geometries, such as the triangular lattice, it may not be possible to realize a

QSL state for 𝑆 > 1/2 [1].

The first generation of QSL candidates were typically complicated systems

with many atoms per unit cell and complex electron interactions. For example,

the first highly promising QSL candidate was the kagome system Herbertsmithite,

ZnCu3(OH)6Cl2 [5]. For triangular lattices, researchers relied on organic molecular

magnets [3] such as 𝜅-(BEDT–TTF)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2 both of

which have dozens of atoms per unit cell, and effective spins spread over molecular

structures. The materials used in the first generation of QSL research frequently suf-

fered from higher-order interaction effects, structural distortions, and in some cases,

ambiguous data [3], [6]–[8]. The need for simple inorganic spin-1/2 structures was

clear. And so our collaborators, the Wilson Group in Santa Barbara, synthesized

NaYbO2 and LiYbO2 as potential QSL systems.

The AYbO2 (A = Alkali) family forms a variety of magnetically frustrated struc-

tures, such as the layered triangular lattice in NaYbO2 (figure 4-1) or the three-

dimensional diamond structure of LiYbO2 (figure 4-7). In these systems Yb is octa-

hedrally coordinated with Oxygen, forming Yb3+ valence states with 𝐽eff = 1/2 due

to a combination of spin-orbit coupling and crystal field splitting [9]–[11]. Therefore

the AYbO2 allows a systematic study of several frustrated geometries with effective

spin-1/2 by changing the Alkaline atom used.

In this chapter we describe our measurements on NaYbO2 and LiYbO2 which

were performed in collaboration with the Wilson Group [9], [11]. In NaYbO2 we

use AC magnetic susceptibility to uncover a magnetic field induced quantum critical
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point in a system that does not order or freeze down to 50 mK. For LiYbO2, we used

AC susceptibility [11] and μSR to characterize the local internal field of an unusual

“phase-disordered” bipartite helical system. For both systems we present a simplified

version of the models used to analyze these systems. For their models, we compare

our results with theoretical expectations. Additionally, I propose a toy model for

interpreting LiYbO2’s μSR data between 450 mK and 1.1 K.

The effects of our research in this chapter are clear. Within two years we have

received over 100 citations of our work on NaYbO2. For LiYbO2, one manuscript

has been published while another is still under review. To my knowledge our theory

of μSR in LiYbO2 is original and represents a new contribution to the field of μSR

analysis.

4.2 NaYbO2

4.2.1 Characterization NaYbO2

Our AC magnetic susceptibility measurements were complimented by several measure-

ments performed by our collaborators, including specific heat and neutron diffraction.

We briefly discuss these results which can be found in more detail in our original

publication [9].

Powder neutron diffraction was used to refine both the magnetic and crystalline

structures of NaYbO2 and to check Na ion stoichiometry. NaYbO2 forms a layered

system as shown in figure 4-1. The Na sites in NaYbO2 are fully occupied and are

stochiometric to within 1% resolution. No super-lattice reflections are observed in

zero-field at 330 mK (figure 4-2a). Superlattice reflections appear at 5 T corresponding

to an ordering wave vector of 𝑞 = (1/3, 1/3, 0) (figure 4-2b). Fits to this data yields

a spin-canted “up-up-down” structure, to be discussed below, with moment 𝜇eff =
1.36(10)μB (figure 4-2c).

Inelastic Neutron Scattering (INS) was also performed to characterize low-level

magnetic excitations. Figure 4-2d shows diffuse INS spectra in zero-field (67 mK )
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and 5 T (74 mK). In zero-field excitations are centered about 𝑞 = (1/3, 1/3, 0), while

in the 5 T ordered state we see the spectra weight shifted into a flat band at 1 meV.

This flat band of spin excitations is confirmed by the linear spin-wave calculations

performed by our collaborators, shown in figure 4-2f.

Our collaborators took specific heat measurements from 40 K to 80 mK (figure 4-

4,c-d). The high-temperature data shows broad features consistent with the para-

magnetic signal from our magnetic susceptibly measurements. The zero-field low-

temperature data shows a broad ‘two-peak’ structure that’s associated with QSL

candidates due to charge or quasi-particle fractionalization [12]. In applied field, the

specific heat develops a sharp peak at 1 K and 5 T, which is consistent with the mag-

netic transition observed by neutron scattering. Interestingly, this peak vanishes at

9 T, and the broad double-structure returns, which suggests re-entrant disorder. A

re-entrant disordered state implies competing mechanisms of magnetic frustration.

4.2.2 Experimental NaYbO2

Samples of NaYbO2 consisted of pressed powder prepared by the Wilson Group of

UC Santa Barbara. The sample was roughly rectangular and measured approximately

5.6 mm × 2.4 mm × 1.6 mm, and weighed 98.0 mg. We performed AC susceptibility

measurements using a hand-wound AC susceptometer placed inside a Janis Cryogenics

3 He system. Measurements were primarily performed with an excitation frequency of

711.4 Hz and a drive field of roughly 0.1 Oe. The susceptometer was calibrated against

data taken in our Quantum Design MPMS3 system, which also provided magnetic

susceptibility data in the 2 K to 300 K range. Frequency dependent zero-field AC

magnetic susceptibility (𝜒AC ) measurements were performed by collaborators in a

PPMS dilution fridge insert between the range 4 K and 50 mK. They measured 𝜒AC

at an excitation of 1 Oe and a frequency range between 1 kHz and 10 kHz. Figure 4-3b

Inset shows virtually no frequency dependence in 𝜒AC, which confirms that NaYbO2

is not a spin-glassy system.

NaYbO2 is air-sensitive and our experimental methods required temporary expo-

sure to atmosphere. To ensure sample quality, magnetic susceptibility measurements
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were first performed on samples at Wilson Lab using their Quantum Devices MPMS3,

and then remeasured again at Graf Lab using our MPMS3 system. Samples were mea-

sured both before and after the experiment in order to confirm that the sample did

not degrade during the experiment. Additionally, neutron diffraction measurements

performed by Wilson Lab showed that reference samples were stochiometric within

1% of resolution.

4.2.3 Results NaYbO2

High temperature magnetic AC susceptibility (figure 4-3a) shows paramagnetic,

Curie-Wiess-like (CW) behavior from 300 K to 2 K. We fit the data between 2 K

and 100 K to

1
𝜒 − 𝜒0

= ( 𝐶
𝑇 − ΘCW

)
−1

. (4.2.1)

Note that ΘCW is, in principle, temperature dependent for highly correlated

systems such as spin-liquids and spin-ices due to extended spin-spin interactions

(such as non-local topology [13]). With that caveat, we observe Curie-Wiess like

behavior down to 330 mK, (figure 4-3b). Fits between 20 K and 100 K yields

ΘCW = −10.3(8) K, while between 1 K and 4 K yields ΘCW = −0.45(4) K. We

estimate the magnetic moment to be 𝜇eff = 2.63(8) μB. The inset shows frequency

dependent ZF data taken by our collaborators [9]. The lack of a clear frequency

dependence over three orders of magnitude confirms that the system is not a spin-

glass [14]. The lack of a glassy state or any obvious magnetic transitions, combined

with the apparent onset of long-range spin correlations seen from ΘCW(𝑇 ) imply that

NaYbO2 exists in correlated, yet disordered and non-spin frozen state at 300 mK —

such as a potential QSL state.

The application of a DC magnetic field between 0.1 T < 𝐻 < 2 T quickly sup-

presses 𝜒′ (figure 4-3b). A broad peak indicating spin-freezing appears at 0.2 T.

Notably, these peak’s curvature inflection points (as opposed to the peaks them-

selves) are roughly linear with field 𝐻 and match the expected Zeeman splitting,
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Δ𝐸 = 2𝑔ave𝐽effμB𝐻, where 𝑔ave = 3.03, 𝐽eff = 1/2, and Δ𝐸 → 𝑘𝐵𝑇 . The flattening

of 𝜒′ at 𝐻 = 2 T is due to the response of spin-frozen moments balancing out the re-

sponse of free moments—such as impurities. We can estimate the ‘free-spin’ fraction

as 7 % to 14% [9], which suggests that in zero-field a sizeable fraction of independent

‘paramagnetic’ spins coexist within the quantum-disordered state (figure 4-3b Inset).

𝜒′ in figure 4-4 shows that larger magnetic fields 3 T < 𝐻 < 7 T. 𝜒′ suddenly

increases at 3 T, before sharply decreasing again at 4 T and 5 T. This corresponds well

with the long-range order observed with neutrons. Above 5 T, 𝜒′ gradually increases

till 𝐻 ∼ 6 T, and is nearly field independent at 7 T. Field-dependent data at 330 mK

shows the trend more clearly with a peak at almost exactly 3 T, followed by a second

feature near 6 T or 7 T.

The enhancement of 𝜒′ at 3 T is due to the system crossing the phase boundary

of a quantum critical point near 3 T, uncovered thanks to these measurements. From

neutron scattering we know that the system enters a long-ranged ordered state. Our

collaborator’s neutron measurements show an “up-up-down” spin order (figure 4-2)

with propagation vector 𝑞 = (1/3, 1/3, 0), 𝑞 = (0, 0, 0). Higher-field scattering data is

unavailable, but at 6 T and 7 T we believe that the system approaches a second phase-

boundary for a quantum paramagnet phase, based on our magnetic susceptibility

measurements and our collaborator’s specific heat measurements (figure 4-4).

4.2.4 Discussion NaYbO2

Magnetic susceptibility measurements of NaYbO2 show a heavily frustrated system

(𝑓 > 200) and a lack of zero-field spin ordering or freezing down to 50 mK. We observe

a quantum critical point through field-induced long-range order. The disordered state

of NaYbO2 appears to be re-entrant with field, based on the plateau in 𝜒′(𝐻) near 6 T.

Re-entrant disorder would imply that there are two competing sources of magnetic

frustration in NaYbO2. The spins in the ordered phase are canted and the planes

appear to be ferromagnetically ordered along the c-axis. The combination of spin

canting and interplane ordering indicates that interlayer interactions between are

strong and frustrated, which reinforces the idea that spins in NaYbO2 see competing
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sources of magnetic frustration, with one of the sources being interplanar frustration.

As such, 2D models cannot fully explain the magnetism in NaYbO2 and 3D models

incorporating interplane interactions are needed.

4.2.5 Theory NaYbO2

The triangular Yb3+ systems have been well-studied theoretically. The large spin-

orbit coupling in Yb3+ (SOC) results in anisotropic, bond-dependent, exchange in-

teractions along the triangular lattice. Each bond-site follows a 𝑅3𝑚 space-group

symmetry, therefore by symmetry considerations we can write down the most generic

possible Hamiltonian [15] compatible with the lattice symmetry:

ℋ𝑋𝑋𝑍 = 𝐽 ∑
⟨𝑖𝑗⟩

(𝑆𝑥
𝑖 𝑆𝑥

𝑗 + 𝑆𝑦
𝑖 𝑆𝑦

𝑗 + Δ𝑆𝑧
𝑖 𝑆𝑧

𝑗 ) (4.2.2a)

ℋ𝑏𝑑 = ∑
⟨𝑖𝑗⟩

2𝐽±±(cos 𝜑[𝑥, 𝑦]𝑖𝑗 − sin  𝜑{𝑥, 𝑦}𝑖𝑗) + 𝐽𝑧±(cos  𝜑{𝑥, 𝑦}𝑖𝑗 − sin  𝜑{𝑥, 𝑦}𝑖𝑗)

(4.2.2b)

Eq. 4.2.2a is a straightforward Heisenberg 𝑋𝑋𝑍 model with an anisotropy pa-

rameter1 0 ≤ Δ ≤ 1, where the anisotropy results from spin-orbit coupling in Yb.

The second, more complicated term, is the “bond-dependent”2 containing more com-

plicated anisotropies arising from spin-orbit coupling (SOC). Our notation here rep-

resents the bond angles as 𝜑 = {0,−2𝜋/3, 2𝜋/3}, while [𝑥, 𝑦]𝑖𝑗 = 𝑆𝑥
𝑖 𝑆𝑥

𝑗 − 𝑆𝑦
𝑖 𝑆𝑦

𝑗 and

{𝑥, 𝑦}𝑖𝑗 = 𝑆𝑥
𝑖 𝑆𝑦

𝑗 + 𝑆𝑦
𝑖 𝑆𝑥

𝑗 . We note that ℋ𝑏𝑑 physically represents an anisotropic

compass model arising from SOC [15].

This Hamiltonian has a rich zero-field phase-diagram, as shown in figure 4-5 [15].

For various values of Δ, 𝐽𝑧±/𝐽 and 𝐽±±/𝐽 , the system hosts various types of long-

range order, including ferromagnetic order, stripe-order, 120° antiferromagnetic order,

and a potential spin-liquid phase.

The long-range magnetic order observed in 5 T fields can be explained through a
1Δ = 0 corresponds to zero anisotropy and reduces ℋ𝑋𝑋𝑍 to a Heisenberg 𝑋𝑌 model.
2The bond dependent term allows for the interactions to differ along different bond directions,

similar to the Kitaev Honeycomb model.
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simpler Heisenberg 𝑋𝑋𝑍 model, which occurs as a special case of the above model.

Specifically, taking 𝐽±±, 𝐽𝑧± = 0 is equivalent to shutting off nearest neighbor inter-

planar interactions. Following ref. [16], we take:

ℋ𝑋𝑋𝑍 = ∑
⟨𝑖𝑗⟩

𝐽(𝑆𝑥
𝑖 𝑆𝑥

𝑗 + 𝑆𝑦
𝑖 𝑆𝑦

𝑗 ) + 𝐽𝑧𝑆𝑧
𝑖 𝑆𝑧

𝑗 (4.2.3)

where 𝐽𝑧 = Δ ⋅ 𝐽 . This model has been studied on the triangular lattice for

applied fields with 𝐵 ∥ ̂𝑐, and for moderate magnetic fields displays a canted ”up-up-

down” structure, similar to what we observed in neutron scattering (figure 4-6) [16].

Notably, the triangular 𝑋𝑋𝑍 model is not frustrated in it’s ground state and is

predicted to undergo long-range magnetic order in the entirety of its phase diagram.

Correspondingly, we deduce that the interplanar interactions allowed by the 𝑅3𝑚
symmetry — the ℋ𝑏𝑑 term from equation 4.2.2b—play a key role in frustrating the

spins and preventing long-range magnetic order at low fields.

One particularly interesting aspect predicted by ref. [16]’s numerical calculations

is that the spin-liquid state evolves out of a 120° AFM ground state for large values of

Δ. This state occurs, as shown in the phase diagram, for small values of 𝐽±±/𝐽 and

moderate 𝐽𝑧±/𝐽 , which is consistent with the observation of field-induced canted up-

up-down order, as predicted by the simpler 𝑋𝑋𝑍 theory. What makes this interesting

is that the 120° state causes most of the interplanar and anisotropic terms to drop out

of the relevant energy states for the Hamiltonian, which causes the energy of the 2D

Hamiltonian to become invariant under 𝑈(1) symmetry (See Supplemental material

of ref. [9]). This results in the interplanar interactions becoming frustrated, and this

is unique to the 120° state compared to the other types of order predicted. Thus, it

appears that NaYbO2 maintains disorder through a frustration between competing

phases of in-plane long-range order and out-of-plane long range order.

4.2.6 Conclusions NaYbO2

NaYbO2 is the first inorganic 𝐽eff = 1/2 triangular systems that may reasonably host a

QSL state. Prior inorganic compounds, such as Ba3CoSb2O9 [17], [18] or NaTiO3 [19],
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[20] either magnetically order or deform at low temperatures. NaYbO2, on the other

hand, shows paramagnetic behavior down to 50 mK and has a frustration factor of

over 200. At the time of publication, the best triangular system were the organic

compounds which are complicated molecular magnets that contain dozens of atoms

per-unit cell [21], [22]. Additionally, we find that interplanar interactions play a role

in stabilizing disorder by frustrating spins in a way that competes with frustration

due to the triangular geometry. Thus NaYbO2 gives us an unusual platform to

study magnetic frustration in triangular systems through the tuning of a competing

interplanar interaction that takes the system from 2D frustration to 3D frustration.

We speculate that by tuning the strength of interplane frustration that we may be able

to study the transition from the 2D limit to the 3D limit of potential QSL candidate.

4.3 LiYbO2

4.3.1 Characterization LiYbO2

In addition to our magnetic susceptibility and μSR measurements, our collaborators

extensively characterized the chemical, electric, and magnetic structure of LiYbO2.

For brevity, we do not discuss all of these results and instead direct the interested

reader to the original paper [11]. Here we describe the characterizations that are key

to interpreting our magnetic susceptibility and μSR results.

X-ray diffraction measurements show that the Yb ions form a stretched diamond

structure, as shown in figure 4-7. The structure is bipartite, meaning that it can be

decomposed into two structurally equivalent sublattices. The exchange interactions

between nearest neighbors between sublattices and within sublattices differ, and we

label them as 𝐽1 and 𝐽2, respectively.

Heat capacity (figure 4-8) shows two sharp anomalies at 0.45 K and 1.13 K, which

are preceded by a broad peak near 2 K. The broad peak is indicative of magnetic

short-range correlations, while the two other peaks are magnetic ordering transitions

(see below). The lower transition, 𝑇1, is noticeably suppressed by 3 T fields and is
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absent at 5 T and 9 T. The upper transition 𝑇2 is enhanced by applied fields with the

entropy release increasing with field.

Neutron diffraction on polycrystals (figure 4-9) identifies the transitions observed

in heat-capacity as a bipartite incommensurate spiral order.

Below 450 mK the system orders with two degenerate ordering vectors

𝑘 = (0.384, ±0.384, 0). Fits to the spectra yield a bipartite helical structure

where the two sublattices of the diamond structure both order independently

with the above 𝑘 vector, but a 0.58𝜋 phase offset between equivalent sites.

An illustration is shown in figure 4-9. The minimum correlation length is

estimated at 364 A

Between 450 mK and 1.1 K the system enters an intermediate state charac-

terized by the same ordering vector 𝑘 = (0.384,±0.384, 0), but with reduc-

tions to the reflection peak at |𝑄| = 1.2 Å
−1

The minimum correlation length

is estimated at 364 Å. This data can be fitted by either assuming a random

phase difference between the Yb3+ sublattices. Whether this is the result of

the phase being random between individual sample grains, or random within

individual crystals due to quasi-long range order is unclear. It is possible

that other models may more accurately capture the data.

Below 450 mK with 𝐻 = 3 T, the system commensurately orders with 𝑘 =
(1/3,±1/3, 0), but with an otherwise similar helical structure. The phase

difference between sublattice is 0.42𝜋 in this phase.

Low-energy Inelastic Neutron Scattering between 36 mK and 1.1 K

shows low-energy fluctuations with a bandwidth of roughly 1 meV (figure 4-

10). The spectra changes little with applied fields, even after the ordering

transition at 3 T. At 36 mK and 10 K the system transitions into a field-

polarized state and magnetic fluctuations are suppressed.
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4.3.2 Experimental LiYbO2

Samples of LiYbO2 consisted of pressed powder prepared by the Wilson Group of

UC Santa Barbara. The sample was a non-rectangular fragment and measured ap-

proximately 3.7 mm × 4.9 mm × 1.9 mm, and weighed 50.25(5) mg. We performed

AC susceptibility measurements using a hand-wound susceptometer placed inside a

Janis Cryogenics 3He system. The experimental setup for these measurements was

the same as for NaYbO2, which is described in detail above.

Additionally, we also performed μSR measurements on LiYbO2 (paper under re-

view). For μSR, the sample consisted of a polycrystalline powder pressed into a disc

1 cm in diameter and 2 mm thick. μSR measurements were taken at the Paul Scherrer

Institute (PSI) using the Dolly and General Purpose Spectrometer (GPS) detectors.

The sample was first measured in GPS down to 1.5 K using a gas-flow cryostat; the

sample was mounted on a ‘fork’ sample-holder using Kapton tape to minimize the

background. The sample was then measured in Dolly using an Oxford Heliox 3He

Insert to measure to 280 mK. The sample in Dolly was mounted to a Silver sample

holder to maximize thermalization. In both detectors, the experiments were per-

formed in longitudinal polarization mode in order to maximize the zero-field (ZF)

and longitudinal field (LF) signals. Data was analyzed using the MuSRFit software

suite [23].

4.3.3 Results LiYbO2

Magnetic Susceptibility

Figure 4-11 shows high-temperature Curie-Wiess fits to the DC magnetic suscep-

tibility between 20 < 𝑇 < 100 K.

1
𝜒 − 𝜒0

= ( 𝐶
𝑇 − ΘCW

)
−1

. (4.3.1)

We obtain 𝐶 = 0.94 emu K mol−1, ΘCW = −3.4 K, and 𝜒0 = 0.0070 emu−1 mol−1.

From this we extract an effective moment of 𝜇eff = 2.74μB. The deviation of the
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Curie-Wiess fit near 100 K is due to Van Vleck susceptibility from the CEF splitting

the Yb = 7/2 manifold, as opposed to a temperature dependent ΘCW(𝑇 ) as in

NaYbO2. Low temperature susceptibility shows a peak near 1.3 K and what appears

to be an upturn at 0.45 K. These signatures are consistent with the heat capacity

measurements taken by our collaborators which show sharp features at 0.45 K and

1.1 K.

Muon Spin Rotation

Based on our neutron scattering results, we expect to see spontaneous muon os-

cillations in zero applied field due to the long-range magnetic order, and we expect

a dynamical response due to the persistent 1 meV spin fluctuations seen in Inelastic

Neutron scattering (INS). The low-temperature spectra (figure 4-12) show no signs of

oscillations, though weak dynamical processes are present. Both spectrometers show

a temperature independent initial asymmetry of 𝑎0 ≈ 0.21. No missing asymmetry

is observed, which rules out the possibility of fast depolarization outside PSI’s time

resolution. This is confirmed by high resolution data (figure 4-12 Inset). The weak

dynamics is confirmed by the slow decay of the 1/3 tail to zero for the spectra at all

temperatures.

We fit the spectra to the following phenomenological function:

𝐴(𝑡) = 𝑎0(1 − 𝑓𝜆)𝑒−
𝜎2𝑡2

2 + 𝑓𝜆𝑒−𝜆𝑡 (4.3.2)

The gaussian term captures the fast depolarization from frozen Yb3+ moments while

𝑒−𝜆𝑡 represents the quasi-static limit of dynamical decay due to the weak spin fluctu-

ations observed in INS.

Figure 4-13 shows the temperature dependence of the spectra below 2 K. The

gaussian rate 𝜎 shows a broad transition starting at 1.1 K , while we see a sharp

transition in 𝜆 and 𝑓𝜆 with weak temperature dependence above or below 𝑇𝑁 . The

rise in 𝜆 immediately above 𝑇𝑁 corresponds with the onset of short-range correlations

seen in neutron scattering. The observed temperature agrees well with neutron scat-

tering and our magnetic susceptibility measurements. The sharp drop of 𝑓𝜆 to 1/3
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is consistent with a thermodynamic transition from a paramagnetic state to a LRO

ordered state in a polycrystal, as opposed to a gradual spin-freezing process. The tail

decays as a weak exponential depolarization with 𝜆 ≅ 0.25 µs−1, which is suggestive of

magnetic fluctuations in the ordered state. The rate is in the quasi-static limit. The

Gaussian depolarization with rate 𝜎 ≅ 45 µs−1 indicates a highly magnetic ground

state that is characterized by frozen spins or long-range magnetic order. The lack of

spontaneous oscillations in the asymmetry spectra tells us that the system is either

long-range disordered, or that the processional frequency of the muon is too fast to

be detected.

Figure 4-13 shows the longitudinal field response in the ordered phase. We expect

the internal field to be, at minimum, on the order of 𝛾𝜇𝜎 ≈ 500 Oe for a spin frozen

system, and up to several orders of magnitude more for a LRO system. Therefore we

expect little decoupling from an applied field of 𝐵𝐿𝐹 = 50 Oe and for full decoupling

near 𝐵LF ∼ 5000 Oe if the system is not LRO. In the slow fluctuation limit we expect

the exponential depolarization rate 𝜆 to be field independent. We instead observe the

opposite, with a very large response to 50 Oe, significant decoupling through 800 Oe,

and a very strong suppression of 𝜆.

The high temperature LF spectra (figure 4-14) on the other hand agree with

conventional expectations. The high-temperature spectra are fit to

𝑃(𝑡) = GKT(𝜎N𝑡, 𝐵LF)𝑒−𝜆𝑇 (4.3.3)

where GKT(𝜎N𝑡, 𝐵LF) represents the Gaussian Kubo-Toyabe function which arises

from nuclear moments (see chapter 3); 𝜎𝑁 = 0.163(1) µs−1. We attribute the ex-

ponential factor to fluctuating electronic moments in the motional narrowing limit,

which is typical for paramagnetic moments at high temperatures. The value of 𝜆 is

roughly constant between 56 K and 10 K: On Dolly 𝜆(𝑇 = 56 K) = 0.147(7) µs−1

and 𝜆(10 K) = 0.151(3) µs−1 while for GPS 𝜆(45 K) = 0.170(5) µs−1 and 𝜆(15 K) =
0.173(5) µs−1.

The high-temperature LF spectra show that the nuclear depolarization is easily
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suppressed by 𝐵LF = 50 Oe , as expected for the weakly magnetic nuclei. The expo-

nential component is qualitatively unchanged by fields of up to 500 Oe , as expected,

which demonstrates that the exponential decay arises from dense electronic (Yb3+)

moments in the fast-fluctuation limit (see chapter 3). Additionally, the simple ZF

functional form and response to longitudinal fields implies that the system is homo-

geneous in it’s paramagnetic state. This rules out magnetic inhomogeneity due to

inclusions and similar defects.

The lack of a temperature dependence in the high-temperature ZF spectra between

10 K and 56 K is unusual, but can occur due to several reasons unrelated to magnetic

frustration. Specifically, 𝜆 is temperature independent in the 𝑇 → ∞ limit of a

Curie-Wiess magnet [24], and this is occasionally observed [25]. Alternatively, crystal

electric field splitting may sometimes create quasi-degenerate states that create a

nearly constant spin-fluctuation rate 𝜈 over a broad temperature range [26].

4.3.4 Discussion LiYbO2

The specific heat, neutron, and magnetic susceptibility data taken for LiYbO2 points

to an incommensurate long range ordered state. The phase disordered state between

450 mK and 1.1 K is an interesting consequence of magnetic frustration though, and

not fully understood. In particular LiYbO2 proximate to a QSL state, or even host a

closely related ‘quantum spiral spin liquid’ state [27]–[29].

In the original neutron paper, our collaborators performed some basic theoretical

analysis to show that most of the phase diagram of LiYbO2 can be captured by

the 𝐽1 − 𝐽2 model (Figure 4-15 [11]. With proper tuning of the parameters, the

various helical orders below 450 mK , including the phase differences between the

bipartite lattices of Yb3+. The 𝐽1−𝐽2 Heisenberg model failed to capture the presence

of a distinct magnetic phase between 450 mK and 1.1 K. It also failed to capture

the effect of interplane interactions, which cant the spins and align their the planes

ferromagnetically along the 𝑐-axis.

The random phase state between 450 mK and 1.1 K is merely an assumption; neu-

tron scattering was unable verify for certain that this is the correct state. Therefore,
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we refer to this theory as the ”random phase bipartite model” (RPBI). As a local

field probe, μSR provides additional supporting evidence that the RPBI state exists,

as well as additional evidence that the ground state is highly degenerate, or at least

proximate to a QSL-like state.

The μSR data is unusual; different spectra appear to support different conclusions

about the magnetic state of the system.. We see no spontaneous muon oscillations in

zero-field from the long-range order. The complicated magnetic structure of LiYbO2

may heavily dampen oscillations, but the short time data clearly shows a lack of

conventional oscillations. The exponential decay at long times—as opposed to a

restoration to a 1/3 tail—suggests that slow, to moderate dynamics is present in

the system. The LF spectra appear to contradict this though: the sensitivity of the

spectra to small LF fields indicates that the internal field distribution probed by the

muon is small, and that the system is static.

One possible interpretation of the LF spectra is that the system is magnetically

inhomogeneous. If the muon probes regions of extremely weak magnetism, on the

order of nuclear dipole fields, then a full decoupling would be expected by 50 Oe.

While it is plausible that the ground state of the system is inhomogeneous, such

an idea runs into conceptual difficulties when compared to the other spectra. The

zero-field spectra at low 𝑇 would be expected to follow a Kubo-Toyabe curve (see

chapter 3) with a rate of 𝜎 ∼ 0.1 µs−1 to 0.2 µs−1, which is not seen. It would also

be difficult to interpret 𝑓𝜆, whose value of 1/3 corresponds well to a quasi-static

polycrystal system. At high temperature, the ZF and LF spectra are consistent with

a homogeneous paramagnet, as one would expect.

As a last point, the shape of the depolarization envelope is unusual, resembling

that of a Bessel function of an incommensurate magnet more than the Gaussian decay

expected of a frozen spin lattice. We find that no single conventional depolarization

function fits the rapid decay over multiple spectra below the 1.1 K. Fitting the full

data range well requires a minimum of three independent terms whose parameters do

not yield a temperature dependence. Given the unusual incommensurate order seen

by neutron scattering, it is likely that one would need to derive their own polarization
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function to fit the data properly. It is for that reason I perform my own analysis of

the system and derive the following ”𝐽2
0 model” to describe system.

4.3.5 Model of μSR in LiYbO2

The approximate internal field distribution for a single stopping site in an incommen-

surate magnet is known and given as [24]:

𝐷𝑚(𝐵loc) =
⎧{{
⎨{{⎩

1
𝜋

1
√𝐵2

max − 𝐵2
loc

, −𝐵max < 𝐵loc < 𝐵max

0, Otherwise

(4.3.4)

The muon only sees internal fields |Bloc| < 𝐵max. This field distribution is fundamen-

tally different from most other distributions in μSR in that it arises due to long-range

magnetic order instead of random disorder. As a result, the internal field distribution

is bounded by ±𝐵max.

The polarization for an isotropic polycrystal is [24]

𝑃(𝑡) = 1
3 + 2

3 ∫
∞

0
cos(𝛾𝜇𝐵loc𝑡)𝐷𝑚(𝐵loc)𝑑𝐵loc. (4.3.5)

For the field distribution in equation 4.3.5, this gives 𝑃(𝑡) = 2/3 𝐽0(𝛾𝜇𝐵max𝑡) +
1/3, where 𝐽0(𝑥) is the 0th order Bessel function of the 1st kind. The oscillations in

an incommensurate magnet inherently depolarize themselves, with a rate proportion

to the oscillation frequency (See figure 4-16). Moreover, the decay envelope for times

𝑡 ≫ 𝛾𝜇𝐵max goes as 1/𝑡 which is a unique polynomial decay instead of the expo-

nential decay that is ubiquitous to nearly all other analytical polarization functions.

Additionally, incommensurate magnets are noticeably more sensitive to small longitu-

dinal fields than either commensurate magnets or conventionally disordered systems.

These unique attributes can be traced back to the fact that for an incommensurate

system, the muon stopping site samples the entire magnetic unit-cell, as opposed to

sampling random variances in the local magnetic field at the muon stopping site due

to defects or disorder.
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Our system is a bipartite system consisting of two magnetic sublattices with

identical spiral order, but a phase difference 𝜔 between the two sublattices. Neu-

tron scattering shows compelling evidence that 𝜔 is disordered and randomized

between either magnetic domains or polycrystal grains in the temperature range

450 mK < 𝑇 < 1.1 K. We propose that the internal field distribution can be modeled

as two identical, but independent, incommensurate field distributions.

The combination of two statistically independent field distribution is the convolu-

tion product of the two field distributions: 𝐷(Bloc) = (𝐷1 ∗𝐷2)(Bloc) (see chapter 3).

Equation 4.3.5 has the form of a cosine Fourier transform and the Fourier transform

of a convolution is simply the product of the individual Fourier transforms.

This immediately gives the polarization function for our “doubly-incommensurate”

model:

𝑃(𝑡) = 2
3𝐽2

0 (𝛾𝜇𝐵max𝑡) + 1
3 (4.3.6)

We can generalize equation 4.3.6 to the slow fluctuation limit by writing 𝑃(𝑡) =
2/3 𝐽2

0 (𝛾𝜇𝐵max𝑡) + 1/3𝑒−2/3𝑡. We can further generalize this to account for certain

types of magnetic anisotropies, or small inhomogeneities by writing

𝑃(𝑡) = (1 − 𝑓𝜆)𝐽2
0 (𝛾𝜇𝐵max𝑡) + 𝑓𝜆𝑒−𝜆𝑡 (4.3.7)

This now resembles our original phenomenological fit function in equation 4.3.2,

but with the gaussian term replaced by 𝐽2
0 . We can establish a firm connection

between equations 4.3.2 and 4.3.7 by noting that the gaussian term was fitted only

to the short times of the spectra, while the Lorentzian term was fitted to long time

behavior.
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To second order:

𝑒−
𝜎2𝑡2

2 ≈ 1 − 𝜎2𝑡2/2

𝐽2
0 (𝛾𝜇𝐵max𝑡) ≈ 1 − 𝛾2

𝜇𝐵2
max𝑡2
2

∴ 𝑒−
𝜎2𝑡2

2 ≈ 𝐽2
0 (𝛾𝜇𝐵max𝑡) and 𝜎 ≈ 𝛾𝜇𝐵max for sufficiently small t. (4.3.8)

Thus, we have shown that our theoretically derived result in equation 4.3.7 is

equivalent to our phenomenological fit function in 4.3.2 in the short time limit. This is

confirmed comparing our phenomenological fit to equation 4.3.7 while using the same

parameters (figure 4-17) for 𝑇 = 550 mK. Equation 4.3.7 aligns almost perfectly with

the data without any additional fitting required. More importantly, the oscillations

are highly suppressed and fit well within the noise-width of our data, which explains

the lack of clear oscillations despite the long range order.

We can also qualitatively explain the anomalous LF dependence using this model

as well. While not trivial, it can be shown that the internal field distribution resulting

from the self-convolution of eq. 4.3.4

𝐷𝑚(𝐵loc) = 4
𝜋2 𝐾[1 − ( 𝐵loc

2𝐵max
)

2
]

⎧{
⎨{⎩

For − 2𝐵max < Bloc < 2𝐵max

0 Otherwise
(4.3.9)

𝐾[𝑥] is the Complete Elliptical Integral of the First Kind, and a function that

does not normally appear in μSR theory.3 We plot the calculated field distribution

in figure 4-17 against the standard incommensurate field distribution.

From the field distribution we expect the Elliptical distribution to be highly sen-

sitive to small longitudinal fields, and less sensitive to larger fields, due to the large

spectral weight near Bloc = 0 Oe. This is as opposed to the standard incommensu-
3Note that the domain of 𝐾 (𝑋) here is ±2𝐵max, not ±1𝐵max. This is because 𝐵loc is a physical

variable, therefore the domains of equation 4.3.4 and 4.3.5 are formally (−∞, ∞). Physically, this
represents the fact that the local field the muon sees is the sum of the fields from the two sublattices.
Therefore if the max field seen by the muon from one sublattice is ±𝐵max, then the maximum field
seen by the muon is ±2𝐵max.
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rate field distribution which features most of it’s spectral weight near Bloc = 𝐵max.

We numerically calculate the LF dependence of the static tail in figure 4-17 for our

proposed distribution, as well as several other common field distributions [25], [30],

[31].

Figure 4-17a shows that both the conventional models and the 𝐽2
0 model grossly

overestimate the static tail at high-fields. Only the 𝐽2
0 model has, qualitatively, the

correct field-dependence. Given that magnetic inhomogeneity has been ruled out,

this suggests that there is some subtle physics at work. The culprit is likely ”sporadic

dynamics,” which has been observed in several other frustrated systems, including

ones similar to LiYbO2 over the years [25], [30], [31].

4.3.6 Persistent and Sporadic Dynamics in μSR and LiYbO2

Highly frustrated spin systems frequently exhibit anomalous ”persistent dynamics”

well into their ordered phase, even down to 50 mK [32]–[34]. In these systems dy-

namics appears with an unusually slow rate ranging between 0.1 − 10MHz, which

normally would qualify as ”quasi-static.” Less frequently, some of these systems show

a perplexingly weak longitudinal field responses that suggest that the internal fluctu-

ation rate is dozens of times larger than measured via ZF measurements [35]. In these

cases, the applied LF field itself appears to be linearly screened by a constant factor

𝑓 [25], [30], [31]. The current theory is that these anomalous systems experience ”in-

termittent” fields where the internal field depolarizes the muon only for some fraction

of the time f. It can be shown that longitudinal μSR functions obey (in simple cases)

the scaling law 𝑃(𝑓𝑡,Δ, 𝜔, 𝐵LF, 𝜈) = 𝑃(𝑡, 𝑓Δ, 𝑓𝜔, 𝑓𝐵LF, 𝑓𝜈) where Δ, 𝐵LF, 𝜔 and

𝜈 are the characteristic internal field strengths, the applied LF field, the oscillation

frequency, and the fluctuation rates, respectively [25]. As a result, the LF response

of the system is reduced, as well as the apparent dynamical rates in zero-field.

Figure 4-17b shows the results of the RPBI model for a screening factor of 𝛼 = 1/3.

We obtain numerical agreement with the data. Conversely, the other conventional

models are unable to obtain even qualitative agreement with the data due to the

differences in curvature at low field values. At first glance, this is surprising: systems
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characterized by sporadic dynamics are less sensitive to applied fields––not more.

And indeed that is true in this case. But remember, the RPBI model is inherently

sensitive to small longitudinal fields due to the peak near 𝐵loc = 0 (4-16a), which is

extremely unusual for a long-range ordered state. For a given initial depolarization

rate at 𝑡 = 0, the 𝐽2
0 is naturally far more sensitive to small longitudinal fields than

other conventional systems.

The deficiency of this model is that we cannot provide a concrete explanation

as to why sporadic dynamics occur. Sporadic dyanmics have only been reported

for a small number of systems, and there is currently no proper microscopic theory,

beyond the qualitative explanation given above. That said, we do note that the

double-degenerate wave-vector (0.384,±0.384, 0) allows the spiral structures to have

an arbitrary direction of propagation in the 𝑎𝑏-plane. The ground state of LiYbO2

may be highly degenerate with collective spin fluctuations between different propaga-

tion directions. Such fluctuations may be the source of low-energy spin excitations

seen in INS and provide a potential mechanism for sporadic dynamics. Moreover, such

fluctuations would be suggestive of a “spiral quantum spin liquid.” Loosely speaking,

a spiral QSL is a QSL-like state consisting of fluctuating, degenerate, spin spirals, as

opposed to degenerate individual spins. Such as state has been recently proposed for

NiRh2O4 [29].

With this, our model is complete and successfully describes the μSR spectra, in-

cluding the anomalous LF dependences. The bipartite, phase-disordered, incommen-

surate order creates a highly unusual field distribution that is abnormally sensitive

to small applied fields. Furthermore, the anomalous exponential decay in zero-field

is indeed a result of the weak dynamics observed by INS. More over, LiYbO2 is a

rare system that—in additional to conventional dynamics—also exhibits sporadic dy-

namics. The mechanism of sporadic dynamics is not well understood, and may be

evidence of a highly degenerate, QSL-like, ground state in the system.
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4.4 Conclusions

The AYbO2 (A=Akali) family is a diverse group of frustrated 𝐽eff = 1/2 magnets.

In particular, NaYbO2 is an excellent example of a viable QSL candidate. It is one

of the first simple, inorganic, compound to host a frustrated 𝐽eff = 1/2 triangular

lattice. NaYbO2 shows no conventional signs of spin-freezing or magnetic order down

to 50 mK. Our magnetic susceptibility measurements show that NaYbO2 is quantum

critical—we see magnetic field induced long-range order. At 3 T the system long-

range orders with an unusual AFM up-up-down down order. Magnetic susceptibility

and specific heat measurements suggest that at 6 T and 7 T the long-range order

melts into a reentrant disordered state. Correspondingly, our discovery of extreme

frustration and a quantum critical point in NaYbO2 has kicked off a large flurry of

research.

LiYbO2 is a more complicated case. The system undergoes long range order at

1.1 K , so it’s not QSL system—though it may be proximate to a QSL state. Below

450 mK LiYbO2 forms a bipartite incommensurate spiral structure, where the two

sublattices are phase offset by 0.58𝜋. The magnetic order can be mostly understood

through the 𝐽1−𝐽2 Heisenberg model, though spin canting and a ferromagnetic align-

ment of the planes show that interplane correlations are important to the spin physics

and that the system is not 2D. The 𝐽1 − 𝐽2 Heisenberg model fails to describe the

intermediate temperature range 1.1 K > 𝑇 > 0.45 K where the sublattices appear to

have randomized phases. Additionally, inelastic neutron scattering shows the pres-

ence of low energy persistent dynamics down to 50 mK , even the in the presence of

high fields 𝐵 < 10 K.

Our μSR measurements are seemingly difficult to understand. μSR spectra show

no spontaneous oscillations or missing asymmetry which would indicate long-range

magnetic order. The spectra give uneven evidence for the presence of weak dynamics.

The μSR data can be understood by a combination of ‘persistent’ dynamics which

have been seen in other frustrated systems similar to LiYbO2, and by introducing a

novel ‘doubly-incommensurate’ local field distribution based on the unique magnetic
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structure we previously proposed for LiYbO2. This gives rise to a 𝐽2
0 depolarizations

that almost completely suppresses spontaneous oscillations and depolarizes the muon

at a rapid rate relative to the size of the internal magnetic field distribution. This

internal field distribution is highly sensitive to longitudinal field measurements.

We have characterized two important compounds in the first of frustrated mag-

netism, NaYbO2 and LiYbO2. The former has proved to be an ideal system to access

the QSL physics of a triangular lattice. The former is a long-range ordered magnet

that allows a test of the 𝐽1 − 𝐽2 Heisenberg model. Additionally, our μSR measure-

ments on LiYbO2 illustrates the limits of μSR on ordered magnets, allows us to extend

the theory of μSR in incommensurate magnets, and suggests that LiYbO2 may be a

spiral quantum spin liquid material.
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4.6 Figures

Figure 4-1: (a) Layered structure of NaYbO2. Purple spheres = Ytterbium, black
= Sodium, red = Oxygen. (b) Side view of NaYbO2 structure with Yb octahedra
emphasized. (c) top view (𝑎𝑏-plane) of Yb-layers. Yb spacing is 2.346 Å. Full details
of the crystallographic structure can be found in [9].
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Figure 4-2: Neutron diffraction and inelastic scattering data, presented as originally
published, for NaYbO2. (a) Zero-field temperature-subtracted neutron powder diffrac-
tion spectra (0.330 K to 1.5 K). No magnetic reflection peaks are observed. (b) Mag-
netic field-subtracted neutron spectra (450 mK and 5 T – 330 mK and 0 T). Peaks
appear at (1/3, 1/3, 𝑧) positions (𝑧 = 0, 1, 3), with a corresponding wave vector of
𝑞 = (1/3, 1/3, 0). (c) Magnetic structure of best fit to 5 T data. Moments align
approximately along ⟨1,−1, −1⟩ in an ’up-up-down’ order, with a Yb moment of
1.36(10) μB. (d, e) Inelastic neutron-scattering spectra in zero-field (67 mK) and 5 T
(74 mK). (f) Linear spin wave calculations showing powder averaged S(Q,E) for a two-
dimensional triangular lattice of anisotropic Yb3+ moments of NaYbO2 in a 5 T field,
with the proposed ‘up-up-down’ order. Error bars indicate one standard deviation of
the data.
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Figure 4-3: Bulk magnetic susceptibility and specific heat data for NaYbO2. (a)
DC magnetic susceptibility from 2 K to 300 K with Curie-Wiess fit between 20 K and
100 K. 𝜃CW = −10.3(8) K and 𝜇eff = 2.63(8) μB. (b) Real AC susceptibility as
a function of temperature between 330 mK and 4 K. Stars represent the expected
Zeeman splitting energy using 𝑇 = Δ𝐸/𝑘𝐵 = 2𝑔ave𝐽effμB𝐻/𝑘𝐵. (Inset) Real AC
susceptibility as a function of temperature and excitation frequency. The lack of
appreciable shifts over three orders of magnitude indicates that the system is not a
spin-glass.
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Figure 4-4: Bulk magnetic susceptibility and specific heat data from ref. [9] for
NaYbO2. (a) Real AC magnetic susceptibility as a function of field at 330 mK. At 3 T
the system orders with propagation vector 𝑞 = (1/3, 1/3, 0). (b) Real AC magnetic
susceptibility between 1 T and 7 T. We observe a transition temperature at 1 K for
all fields, which is consistent with specific heat measurements. (c) Zero-field Heat-
capacity 𝐶𝑝 from 40 K to 80 mK m showing crossover behavior. (d) Low-temperature
Heat-capacity 𝐶𝑝 on a log scale.

98



Figure 4-5: Theoretical phase diagram of the generalized nearest-neighbor spin-1/2
triangular lattice, for selected anisotropies Δ = 0.5 and Δ = 1.0. definitions of 𝐽𝑧±/𝐽
and 𝐽±±/𝐽 are given in the text. Full details of figures and models can be found in
the original source, ref. [15]. Phase diagram predicts 120° order and a potential spin
liquid state for small values of 𝐽±±/𝐽 , and high anisotropy parameters Δ. This state
evolves continuously out of the 120° order state, and therefore is expected to exhibit
spin-fluctuations with 120° correlations.
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Figure 4-6: Theoretical phase diagram of the anisotropic 𝑋𝑋𝑍 model on the trian-
gular lattice, with magnetic field 𝐻 applied along the c ̂-axis (out-of-plane [16]. The
top diagram (a) shows the classical phase diagram, while the bottom diagram (b) ac-
counts for quantum mechanical effects on the diagram. Arrows illustrate the relative
ordering of spin-1/2 moments in a triangular cell. Here the quantity 𝐽/𝐽𝑧 corresponds
to 1/Δ in the general model. Both phase diagrams are fully ordered in their ground
state, indicating that this model is not sufficient to describe the disordered behavior
of NaYbO2. Both diagrams do predict, though, a field-induced ‘up-up-down’ order
for small to moderate anisotropies including spin-canted ‘up-up-down’. This diagram
agrees well with the coupling constant of 𝐽𝑧 ∼ 0.45 estimated from neutron diffrac-
tion, which places |𝐽/𝐽𝑧| ∼ 0.5
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Figure 4-7: Structure of LiYbO2, as presented in our paper ref. [11]. (a) Crystal-
structure with Black=Li, Orange=O, and green=Yb octahedra. (b) Diagram il-
lustrating an idealized diamond structure and the stretched diamond structure of
LiYbO2. (c) Diagram showing a simplified unit cell of the Yblattice, with emphasis
on the bipartite sublattice structure. Black lines 𝐽1 represent nearest-neighbor spin-
couplings within a sublattice, while orange lines 𝐽2 represent nearest-neighbor spin
couplings between the two sublattices.

Figure 4-8: Specific Heat 𝐶(𝑇 ) of LiYbO2 as a function of temperature for 𝐵 = 0, 3, 4,
and 9 T. Original figure can be found in ref. [11].
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Figure 4-9: Neutron powder diffraction data for LiYbO2 as originally published, in-
cluding caption text [11]. Data was collected at HB-2A at the High Flux Isotope
Reactor. (a) Fits to the elastic scattering data at 1.5 K reveal only one structural
phase. (b) Temperature-subtracted diffraction data (𝑇 − 1.5 K) revealing a series
of new magnetic peaks on cooling. Additionally, at 270 mK and 3 T, another set of
magnetic peaks arise. Intensity near 1.5 Å results from slight under/over subtraction
of the structural peak at that position in (a) and is not a magnetic Bragg reflection.
(c) helical magnetic structure fit below the ordering transition 𝑇𝑁2. (d) The 270 mK
data collected under zero field with the 1.5 K structural data subtracted. Green line
shows the resulting fit using the magnetic structure described in the text. (e) The
830 mK data collected under zero field with the 1.5 K structural data subtracted. The
orange line shows the partially disordered, intermediate helical state described in the
text and the green line shows a fit using the fully ordered helical structure for com-
parison. (f) The 270 mK data collected under 𝜇𝐵𝐻 = 3 T with the 1.5 K structural
data subtracted. The red line shows the fit to the commensurate magnetic structure
describe in the text.
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Figure 4-10: Low energy inelastic neutron scattering spectra 𝑆(|𝑄|, ℏ𝜔) for
LiYbO2 [11]. (a) B=0 T and 𝑇 = 36 mK. (b) 𝐵 = 0 T and 𝑇 = 800 mK. (c) B=3 T
and 𝑇 = 36 mK. All spectra have data at 𝐵 = 10 K and 𝑇 = 36 mK subtracted off.
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Figure 4-11: Bulk magnetic susceptibility and magnetization for LiYbO2 [11]. (a) Fits
to high temperature DC susceptibility between 20 K and 100 K. (b) Isothermal DC
magnetization. (c) Van Vleck fit to DC magnetization at 2 K. (d) Real AC magnetic
susceptibility in zero field at lower temperatures. Transition temperatures at 1.13 K
and 450 mK are highlighted.
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Figure 4-12: μSR data for LiYbO2. (a) Selected zero-field (ZF) asymmetry spectra
from 0.28 K to 1.15 K measured on the Dolly spectrometer. Curves are offset by 1/3
for clarity. We observe a sharp transition between 1.05 K and 1.15 K. (b,c) Temper-
ature dependence of the fit parameters described in the main text. The exponential
rate 𝜆 and its fraction 𝑓𝜆 describes the long time decay of the asymmetry„ which
is indicative of slow spin fluctuations, while the Gaussian rate 𝜎 describes the short-
time behavior due to static order. The sharp drop of 𝑓𝜆 to 1/3 is consistent with a
thermodynamic transition to a spin-ordered state in a polycrystalline sample.
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Figure 4-13: μSR data for LiYbO2. Longitudinal Field μSR Spectra at 0.28 K. The
initial lifting of the asymmetry spectra corresponds to the suppression of suppression
of static disorder or quasi-static fluctuations.

106



Figure 4-14: Zero field depolarization spectra of LiYbO2 measured on the Dolly (solid
circles) and GPS (empty circles) spectrometers with fits as described in text (solid
lines). Curves are offset by 1/3 for clarity.

107



Figure 4-15: Proposed phase diagram of LiYbO2, from our original paper [11]. Red
dots correspond to transitions in the specific heat 𝐶𝑝. “IC helic disordered” refers to
the intermediate state where both sublattices incommensurately order with (𝑞, ±𝑞, 0),
but a disordered phase difference between sublattices. This phase difference remains
disordered in the field-induced commensurate state.
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Figure 4-16: (Left) Field distributions 𝐷(𝐵loc) for a simple incommensurate magnet
(Bessel) and the RPBI distribution, as described in the text. (Right) Asymmetry
plots at 𝑇 = 550 mK plotted against the Bessel and Bessel squared polarization
functions described in the text. The parameters used are obtained from the shown
Gaussian fit. For the Bessel polarization, we take 𝛾𝜇𝐵max =

√
2𝜎 in accordance with

the short-time expansions of 𝐽0 and 𝑒−
𝜎2𝑡2

2 .
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Figure 4-17: (Left) Longitudinal field dependence of the static tails for LiYbO2. The
grey points correspond to the experimental data. Overlaid is the calculated LF de-
pendence for the field distributions in the text, given the fit parameters extracted
from the fit at 0.28 K. The internal field values are derived from the fitted depolar-
ization rate. The lack of high-field agreement in any model indicates the presence
of dynamics, despite the gaussian-like line-shape in zero-field. (Right) The LF tail
recalculated using a linearly screened field with 𝑓 = 1/3.
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Chapter 5

Frustrated Magnetism in Cu2IrO3

and Ag3LiIr2O6

Key Publications

Coexistence of Static and Dynamic Magnetism in the Kitaev
Spin Liquid Material Cu2IrO3

Phys. Rev. B, Sept. 2019.

Effect of Structural Disorder on the Kitaev Magnet Ag3LiIr2O6
Phys. Rev. B, March 2021.
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5.1 Introduction

Honeycomb lattices occupy a place of special importance in the field of frustrated

magnetism. It was the publication of the exactly solvable Kitaev 𝑆 = 1/2 honey-

comb model that started the intense search for QSL candidates satisfying the Kitaev

model [1]. Some of the most promising and well-studied systems are Kitaev honey-

combs, such as 𝛼-RuCl3, Li2IrO3, and Na2IrO3. Most of these systems have been

eliminated as true QSL candidates because they magnetically order. In 2018 our own

Prof. Tafti successfully synthesized a new member of the Kitaev honeycomb family,

Cu2IrO3 [2]. This material formed the basis of a new chemical family for explor-

ing magnetic frustration on 𝐽eff = 1/2 honeycomb lattices, including the material

Ag3LiIr2O6 (ALIO).

Initial bulk characterization of Cu2IrO3 was promising, with good lattice quality

and no obvious signs of long-range order. X-ray diffraction showed that the kagome

lattices of Cu2IrO3 were significantly closer to their ideal geometry with 120° bond

angles (figure 5-1). Prior Iridates, Li2IrO3 and Na2IrO3, had distorted honeycombs

which created anisotropies that were likely responsible for their long-range ordering.

Specific heat showed no peaks down to 2.7 K—as opposed to its parent compound

Na2IrO3 which has a clear AFM peak at 15 K. A weak inflection at 2.7 K in Zero-field

magnetic susceptibility 𝜒 suggested a possible ordering transition, though this feature

was easily suppressed by weak fields and was only a tiny fraction of large signal that

increased strongly with decreasing temperature. Naturally, this material warranted

more investigation.

Ag3LiIr2O6 (ALIO) is a sibling of Cu2IrO3.1 ALIO is structurally similar to

Cu2IrO3, where the Ir4+ ions form a honeycomb lattice intercalated by non-magnetic

ions (Li/Cu, respectively). Unlike Cu2IrO3, we find that synthesis conditions can be

adjusted in order to induce extended row-defects of Ag ions within the honeycomb

planes. The effects of extended defects on Kitaev systems and their bulk properties are

not well understood, and in some cases may give misleading results. A comparative
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study of extended defects in high-quality samples is called for.

The local probe technique of Muon Spin Rotation/Relaxation/Resonance (μSR)

is well known for its ability to eliminate QSL candidates and characterize disor-

dered magnetism. In this section we discuss the μSR measurements we performed on

Cu2IrO3 and Ag3LiIr2O6. Our measurements showed that Cu2IrO3 is magnetically

inhomogeneous with a near 50/50 split between spin frozen and a highly dynamic do-

mains at 50 mK. Supplemental measurements performed by our collaborators showed

that Cu2IrO3 suffers from charge-state disorder, which results in a sizable fraction of

the honeycomb spins transferring to copper sites. Our μSR measurements on ALIO,

on the other hand, revealed an incommensurately ordered phase whose experimental

signatures are heavily suppressed by structural defects.

We conclude that Cu2IrO3 is proximate to a QSL state, and theorize that the

ground state of Cu2IrO3 may form an inhomogeneous QSL state. We conclude that

Ag3LiIr2O6 is long-ranged ordered in its ground state. We also conclude, from our

measurements on ALIO, that extended lattice defects, such as rows of Ag inclusions,

that the standard thermodynamic signatures of a magnetic transition in Kitaev sys-

tems can be heavily suppressed despite long range order.

5.2 Cu2IrO3

5.2.1 Characterization Cu2IrO3

Tafti Lab and our collaborators thoroughly characterized Cu2IrO3 using several tech-

niques in order to verify the crystallographic and electronic structure of the samples [3].

Upon initial synthesis powdered X-ray diffraction was used to verify the overall struc-

ture and stoichiometry of the samples. Scanning Electron Transmission Microscopy

was used to characterize the detailed structure and characterize lattice defects. X-ray

absorption near-edge spectroscopy (XANES) was used to probe the charge states of
1Both are members of the Delafossite-Iridate family with chemical formula A3BIr2O6, which

reduces to A2IrO3 when A=B. The relationship between Ag3LiIr2O6 and Cu2IrO3 can be clarified
by rewriting their chemical formulas as Ag3(LiIr2)O6 and Cu3(CuIr2)O6, which emphasizes the
chemical composition of the iridium-honeycomb planes.
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Cu and Ir ion in order to directly confirm the presence of Ir4+ with 𝐽eff = 1/2. Density

Functional Theory (DFT) was used to confirm the results of XANES.

Electron transmission microscopy (STEM) shows perfect honeycomb lattices with

no site-mixing or distortions (figure 5-2). STEM shows the presence of numerous

stacking faults along the 𝑐-axis which form a ”zig-zag” pattern. The stacking faults

are a form of crystal twinning where adjacent layers may rotate and orient themselves

along either [1 0 0], [1 1 0], or [ ̄1 1 0]. The ideal Kitaev system is 2D and should not

be affected by rotational stacking faults. While we did not pursue this idea further

in our measurements, control of stacking faults would provide a way to test the two-

dimensionality of the spin-physics in Cu2IrO3, as was done in Ag3LiIr2O6 [4].

X-ray absorption near-edge spectroscopy was performed in order to confirm that

honeycomb layers are comprised of magnetic Ir4+, 𝐽eff = 1/2, ions. We expected that

the Ir ions in the honeycomb planes would exist in the Ir4+ oxidation state due to the

requirement of charge neutrality in the unit cell.2 The Ir4+ should be magnetic with

𝐽eff = 1/2 due to a combination of crystal electric field splitting and the spin-orbit

interaction resulting in a single unfilled 𝑡2𝑔 level [5]. But, charge and coordination

arguments also allow the possibility of Cu2+ and Ir3+ ions in the unit cell. In this

case Ir3+ would be non-magnetic. At the same time, Cu2+ is trivially magnetic

with 𝑆 = 1/2 ([ Cu2+ ]=[3d9]) while Cu+ is trivially non-magnetic ([Cu+]=[3d10]).

Our μSR results, as discussed later, indicated magnetic inhomogeneity which can be

explained by charge-state inhomogeneity.

To clarify the charge-structure of Cu2IrO3, XANES K-edge and L-edge was per-

formed. Cu K-edge showed roughly 8.5% Cu2+ content while L-edge showed approx-

imately 13% Cu2+ content. This gives an estimation of a roughly 20% non-magnetic

impurity fraction of Ir3+ and a 10% 𝑆 = 1/2 impurity of Cu2+. Ir L-edge was then

2Oxygen is almost always O2– as a general principle. (O2– )3 gives a total charge of -6 which
must be balanced by Cu2Ir. The preferred oxidation states of iridium are Ir4+ and Ir3+, while
for copper the preferred states are Cu+ and 3. Charge conservation then requires that a unit cell
either contains two Cu and one Ir4+, or one Cu+, one Cu2+, and one Ir3+. Cu ions normally are
linearly coordinated as ”dumbbells,” which is observed in Cu2IrO3, while Cu2+ tends to coordinate
in square-planar structures. The former is compatible with both the A and B sites in the A3(BX2)O6
structure, while the latter is compatible with only the Cu2+ sites.
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performed, which confirmed that roughly 20% of iridium was in the Ir3+ state.

Density functional theory (DFT) calculations were also performed using the VASP

code to confirm the crystallographic structures, which were observed directly using

STEM and X-ray diffraction, as well as to confirm the oxidation states measured

by XANES. DFT calculations yielded a Cu2+ content of 12%, which agreed well

with the Cu L-edge spectroscopy. These results were combined with electron energy

loss spectroscopy (EELS) to show that the Cu2+ spin-impurities exist purely in the

honeycomb layers. This was done by comparing Cu2IrO3 spectra to spectra from

Cu1.5Na0.5SnO3 and Cu1.5Li0.5SnO3. These are non-magnetic structural analogues to

Cu2IrO3, including the presence of stacking faults. In these materials Cu is restricted

to interplanar sites and the Cu+ state; spectra comparisons allows us to deduce that

Cu2+ exists in the honeycomb planes.

In summary, Cu2IrO3 has crystallographically nearly ideal iridium honeycomb

structures that are marred by oxidation-state disorder. Roughly 20% of the iridium

ions are non-magnetic, with the missing spin being transferred to a neighboring Cu

site. Additionally, Cu2IrO3 hosts a large number of stacking faults along the c-axis.

Ideally, the presence of stacking faults should not affect the 2D Kitaev physics we

are searching for, but no real system is ideal. The former point, the mixing of oxida-

tion states creating magnetic disorder has a significant effect on the ground state of

Cu2IrO3, as we will see in our μSR results.

5.2.2 Experimental Cu2IrO3

μSR measurements were performed at the ISIS Pulsed Muon Source at the Rutherford

Appleton Laboratory using the EMU and MuSR spectrometers. The Cu2IrO3 sample

consisted of a packed-powder disc 8 mm in diameter and 1.9 mm in thickness, and then

wrapped in 12.5 µm thick silver foil and mounted onto a silver plate. The same sample

was measured in both EMU and MuSR. In EMU, the sample was placed into a dilution

refrigerator for low-temperature measurements 50 mK < 𝑇 < 4.5 K (and calibration

data at 𝑇 = 16.4 K). In MuSR, the sample was placed into a helium exchange

cryostat for wide temperature range measurements between 1.7 K < 𝑇 < 20 K (with
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calibration data taken at 50 K).

Signal backgrounds for the data was measured to be approximately 40% in EMU

and 76 % in MuSR. The large background in the EMU data set is a result of the

spectrometer’s ”flypast” mode, while in MuSR the large background is a result of

using a large beam-spot size. In our data the non-relaxing backgrounds are subtracted

off and renormalized using the initial asymmetry at high temperatures. Data was fit

using the WIMDA software package.

5.2.3 Results Cu2IrO3

Zero-field polarization as a function of temperature is plotted in figure 5-3. Strong

magnetism sets in near 10 K, with the spectra exhibiting a strong depolarization at

early times, followed by a slow relaxation at longer times. Between 10 K and 50 mK

we fit the polarization as the sum of a fast component and a slow component:

𝑃 (𝑡) = 𝐺𝐾𝑇 (𝑡) (𝑓 exp (−𝜆𝑓𝑎𝑠𝑡𝑡) + (1 − 𝑓) exp (−𝜆slow𝑡)) (5.2.1)

The rapid depolarization is too fast to be fully captured by the detectors at ISIS,

but a small tail can be seen at early times. To capture the fast component, we fit the

data of several low-temperature spectra at short times using an exponential function

over several spectra as 𝜆fast = 9(3) µs−1 and leave this as a fixed constant for the

rest of the spectra. The slow component is well captured by pulsed source detectors

at ISIS, which excel at measuring slow depolarizations, and is fitted as a function of

temperature as shown in figure 5-1. By plotting the rapidly depolarizing fraction 𝑓
and the slow depolarization rate 𝜆slow, we observe a clear magnetic crossover at 10 K.

Both parameters grow monotonically with decreasing temperature before saturating

near 2 K, with at 𝜆slow ≈ 0.5 µs−1 and 𝑓 ≈ 0.55 at 50 mK.

The muon is a volumetric probe, therefore equation 5.2.1 implies that either the

sample is either magnetically inhomogeneous, or that the muon probes multiple mag-

netically inequivalent stopping sites in the crystallographic unit cell. It is unlikely

that the muon can such radically different magnetic environments within a single unit
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cell, therefore we interpret equation 5.2.1 as representing an inhomogeneous magnet.

Therefore 𝑓 represents the volume fraction of a distinct magnetic domain. The in-

crease in 𝑓 implies that the strongly magnetic phase expands at low temperatures

relative to the weakly magnetic phase.

In figure 5-3e we show longitudinal field measurements at 500 Oe and 1000 Oe.

Strong longitudinal field measurements can be used to discriminate between static

and dynamic internal field distributions (see chapter 3). For a frozen spin distribution

with relaxation rate 𝜆, we expect the depolarization to be heavily suppressed by

longitudinal fields of 𝐵𝐿𝐹 ≈ 5𝜆/𝛾𝜇, [6]. Figure 5-3e shows that the fast component

is indeed heavily suppressed; the missing asymmetry at short-times is recovered as a

non-depolarizing background.

Long-range magnetic ordering (LRO) can be almost ruled out via a simple esti-

mate of the internal field distribution combined with the lack of a sharp magnetic

transition. From the LF response of the tail at 500 Oe and 1000 Oe, we can esti-

mate an internal field strength of roughly 500 Oe. For a LRO magnet, this would

correspond to the average local field probed seen by the muon and would result in co-

sine oscillation with frequency 𝐵𝑙𝑜𝑐/2𝜋 ≈ 6.5 MHz. This is easily within the 10 MHz

limit of the ISIS beamlines [7]. For a spin-frozen system, the estimated internal field

strength would correspond roughly to the variance (or second-moment) of the inter-

nal field-distribution, which would be centered about 𝐵loc = 0 Oe. It is possible that

the signal is a heavily damped oscillation, which would be a combination of LRO

and disordered magnetism. But considering that we observe a logarithmic crossover

with no indication of a thermodynamic transition, the static phase is most likely a

disordered spin-frozen state.

The slow fraction shows virtually no decoupling at all between 500 Oe and 1000 Oe,

though the depolarization rate is slightly reduced. Similar to the fast component, we

would expect the slow component to be decoupled by fields of 𝜆slow/𝛾𝜇 ≈ 25 Oe if no

dynamical process are at play. If dynamical process are present though, the strong

collision theory for muon depolarization states that longitudinal field dependence of
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𝜆slow should vary as [6]

𝜆slow ≈ 2𝛾𝜇
2Δ2𝜈

𝛾𝜇𝐵2
LF + 𝜈2 (5.2.2)

where 𝜈 is the collision rate of the hard-collision model, and 𝜈 ≫ 𝛾𝜇Δ where Δ is

the characteristic internal field distribution for 𝜈 = 0. Fitting the LF1000 spectra

(figure 5-3e) shows that 𝜆slow is reduced by 10% at most from ZF. This puts a min-

imum bound of approximately 260 MHz on 𝜈, which in turn gives a lower bound of

Δ ≈ 100 Oe for the internal field strength. The internal field parameter Δ, while

smaller than what is observed for the fast component, is still clearly corresponds to

a magnetic spin system. We interpret the dynamical signal as spin-fluctuations.

For perspective on the value of 𝜈: 𝜈 is smaller compared to most conventional

dynamical systems, which operate in GHz-THz range [8]. Low-frequency ”persistent

dynamics” in the mK range are frequently seen in QSL candidates—the pyrochlores

and spinels being good examples [9]–[11]. The rates though, are roughly between

0.1 MHz ≈ 10 MHz. Similarly, new μSR measurements have very recently been pub-

lished for Ag3LiIr2O6—a closely related Iridate that we’ll be discussing shortly—and

these measurements found a persistent fluctuation rate of 2 MHz at 50 mK.3 The dy-

namical rate of ≥ 260 MHz is about 100× larger than the rates observed for similar

systems.

Finally, we note that the transition temperature 𝑇𝑐 ≅ 10 K and the plateau at 𝑇 ≅
2 K matches with observations in magnetic susceptibility. DC Magnetic susceptibility

measurements show an onset of hysteresis at 10 K and a small peak at 2 K (figure 5-3d).

Hysteresis is a signature—but not proof—of various types of spin-freezing processes,

including long-range order, spin-glass transitions, and frozen uncorrelated spins.

5.2.4 Discussion Cu2IrO3

The μSR results show that the sample is magnetically inhomogeneous at 50 mK, with

a near 50/50 split between domains of frozen spins and domains of rapidly fluctuating

3Although Ag3LiIr2O6 is incommensurately long-ranged ordered, and not spin-frozen or inhomo-
geneous. So the comparison isn’t exactly 1:1.
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spins. This split can be understood in part by the detailed characterization performed

on the oxidation states of iridium and copper in the honeycomb planes.4 While

structurally perfect, the honeycomb planes suffer from severe charge defects, causing

20% of the iridium spins to transfer to the in-plane copper ions. It is easy to imagine

that these defects break the spin-frustration of the remaining Ir4+ ions, resulting in

a disordered frozen-spin ground state.

A closer inspection shows that this explanation is incomplete. A two component

polarization is easily be explained by Cu2+ inducing magnetic inhomogeneity within

Cu2IrO3, and it explains why one of the magnetic phases is disordered. It does

not explain why the other phase is so intensely dynamic at 50 mK. The estimated

fluctuation rate of 𝜈 ≥ 260 MHz is abnormally high for a spin system at 50 mK, let

alone one that is partially frozen by frequent defects. It is known that frustrated spin

systems frequently retain some level of persistent dynamics at ultra-low temperatures

(𝑇 ≈ 50 mK), even after magnetically ordering. But the persistent dynamics seen in

such systems are closer to the quasi-static limit with rates ranging between roughly

1 MHz to 10 Mhz.

As a final point, we mention the work of Choi et al on Cu2IrO3 whose preprint

was published to arXiv at about the same time out preprint was. Choi et al also

show similar measurements to our own [12] and observed a purely dynamical signal.

We note that they synthesized their samples according to the method previous pub-

lished by Prof. Tafti [2] The discrepancy is still unresolved. That said, very recently

a third group (Pal et al) confirmed our observations as part of a Raman study on

polycrystalline samples they synthesized themselves [13]. Additionally, Pal et al ob-

served anomalies in their Raman spectra that are consistent with the fractionalization

of Majorana fermions predicted for the Kitaev model, and theorize that Cu2IrO3 is

an inhomogeneous QSL. It is possible that small defects in the lattice may suppress

the formation of Cu2+ and Ir3+, leading to a phase-homogeneous system, instead of

the magnetically inhomogenious state we observed [2]. More research is needed to

4These characterizations were performed after the μSR experiments in order to explain the μSR
data.
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understand the ground state of Cu2IrO3, which still remains a promising new system

despite the presence of phase inhomogeneity.

5.3 Ag3LiIr2O6

5.3.1 Characterization Ag3LiIr2O6

The synthesis of Ag3LiIr2O6 (ALIO) is sensitive to the quality of the precursor mate-

rial, 𝛼-Li2IrO3, as well as the duration of the topotactic reaction used to synthesize

ALIO. The structure is similar to Cu2IrO3, with Ag taking the place of Cu in forming

the dumbbell structures that connect together the Ir planes. Consequently, ALIO

lacks the “buckling” structure seen in Cu2IrO3 (figure 5-1). Instead, the Ag dumbells

are straight, forming a more regular crystallographic structure. This, presumably,

should reduce the effects of the Dzyaloshinskii-Moriya interaction. Additionally, Ag

only has a single main oxidation state (+1) as opposed to the two main oxidation

states of Cu (+1, +2). As such, the charge-state disorder seen in Cu2IrO3 is not

expected to occur in ALIO.

Ag3LiIr2O6 shows two types of defects: stacking defects and extended row defects.

Stacking defects occur as rotations along the ̂𝑐 axis, similar to Cu2IrO3. Row defects

occur where the iridium honeycomb lattice is replaced by rows of Ag ions. Silver

row defects occur as a function of detailed synthesis conditions. While difficult, our

collaborators at Tafti lab managed to refine the synthesis process and produce pristine

samples of ALIO [2], [4]. We leveraged this in order to report on the effects of extended

structural defects on the Iridate kitaev lattice.

Tafti lab synthesized two different batches of ALIO: S1, which was a ”clean” sys-

tem with no Ag inclusions and pristine Ir honeycombs, and a ”dirty” system with

many Ag inclusions. Both samples suffered from stacking faults, similar to Cu2IrO3,

though we ultimately concluded that the presence of stacking faults does not appre-

ciably affect the magnetism in the Ir4+ layers. Characterization was performed using

a combination of x-ray diffraction and high-angle annular dark field scanning TEM
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(HAADF-STEM).

X-ray spectra was performed in-house using a Bruker D8 ECO instrument in order

to characterize the presence of structural disorder. Figure 5-4a shows a comparison of

the spectra for S1 and S2. We see a broadening of peak, which is indicative of strong

structural disorder. STEM measurements of the lattice (figure 5-4b) directly reveal

the nature of the disorder. We see that in S2 the Ir ions (bright pairs of points) are

occasionally replaced by rows of Ag ions (dense small rows of points.) Additionally,

we see the presence of stacking faults similar to Cu2IrO3. We note that the parent

compound, 𝛼-Li2IrO3 also shows these defects, though they are much more frequent in

ALIO. The stacking faults are present in both S1 and S2, but the measured magnetic

order in S1 is similar to that of 𝛼-Li2IrO3 [14], therefore we conclude that the magnetic

ground state is not strongly affected by the presence of stacking faults. The presence

of Ag inclusions, as we will show, does strongly affect the observed bulk magnetic

properties of ALIO.

5.3.2 Experimental Ag3LiIr2O6

μSR measurements were performed at the Paul Scherrer Institute (PSI) continuous

muon source. Measurements of sample S1 were performed in a 3He refrigerator using

the Dolly spectrometer General Purpose Spectrometer (GPS) using a gas-flow cryo-

stat. Sample S2 was measured similarly in GPS. The S1 sample consisted of a packed

pellet measuring 13 mm in diameter and 1 mm thick. Sample S2 was 13 mm in diam-

eter and 1.2 mm thick. Both were wrapped in 25 µm thick silver foil and attached

onto copper sample holders using GE Varnish. Finally, we note that sample S2 was

initially measured several months earlier in both a dilution refrigerator and a gas-flow

cryostat at the Appleton Rutherford Lab ISIS Pulsed Muon source, using the EMU

and MuSR spectrometers. The sample background in MuSR was estimated using an

identically sized Cu plate mounted on an aluminum sample holder. The background

in MuSR was estimated as ≈ 40 % while in EMU it is estimated at 76 %.
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5.3.3 Results Ag3LiIr2O6

Both samples S1 and S2 show signatures of strong magnetism at temperatures below

roughly 10 K. Figure 5-5 plots the short-time asymmetry spectra of sample S1 at

several representative temperatures. We see that the depolarization is essentially

flat at 20 K, indicating rapidly fluctuating Ir4+ moments in the paramagnetic regime.

As temperature is reduced, a rapid depolarization sets in, becoming prominent at

10 K. Near 7 K, spontaneous oscillations begin to appear, and by 300 mK, oscillations

indicating long-range order are clearly resolved. We fit these oscillations to a Bessel

function, which indicates incommensurate long-range magnetic order [6].

We fit the S1 spectra to

𝐴𝐿𝑅𝑂 (𝑡) = 𝐴0 (𝑓𝛼𝐹
𝑒−𝜆1𝑡 ∗ 𝐽0 (𝛾𝜇𝐵max𝑡) + (1 − 𝑓𝛼𝐹

) 𝑒−𝜆2𝑡) , (5.3.1)

where 𝐽0 is the 0th order Bessel of the first kind. Physically, 𝐵max represents the

maximum internal field observable by the muon in an incommensurate field distribu-

tion. The parameter 𝐵max is, to approximation, dependent only on the dipole moment

size for a given LRO and spin-density.5 Therefore 𝐵max is approximately constant

with temperature, as shown in figure 5-6a. Above 8 K the oscillations are no long

visible due to the to the high damping rate and small fraction volume fraction, 𝛼𝐹 .

Therefore we keep 𝐵max fixed as a function of temperature above 8 K. Figure 5-6a

plots the two parameters together.

Overlaying spectra for S1 and S2 in figure 5-6 shows qualitatively different spectra

at 𝑇 = 10 K, but surprisingly similar spectra at 𝑇 = 1.6 K. At 1.6 K, the oscillations

in the S2 spectra are heavily damped barely resolvable, but roughly line up with

spectra S1. The depolarization envelope of S2 roughly lines up with S1 at 1.6 K.

This implies that sample S2 hosts the same low-temperature incommensurate order

5This is because the muon stops at a fixed site within the crystallographic unit cell, while the
magnetic order is incommensurate with the unit cell. Therefore the muon samples the entire inter-
nal field distribution of the incommensurate order, provided that the internal field distribution is
isotropic and that the muon is far enough away from the moments to ignore 1

𝑟3 divergences.

122



as sample S1 (with the same 𝐵max parameter), but that there is additional magnetic

disorder at the local level which heavily dampens the oscillations, and alters the

polarization function above 10 K.

Longitudinal Field (LF) measurements (figure 5-7) show that the depolarization

is decoupled by LF fields comparable to 𝐵max, which confirms the internal field dis-

tribution is static [6], [8]. By fitting the LF dependence of the long-time (𝑡 → ∞)

tail asymmetry, we can estimate the approximate internal field strengths [6], [15]. In

particular, for a commensurate polycrystalline magnet, the mid-point of asymmetry

restoration occurs at 𝐵LF/𝐵int = 4/3 [15]. We use this to estimate the local field at

the muon site as 𝐵loc ≈ 263 Oe for S1 and 𝐵loc ≈ 111 Oe for S2 For an incommensu-

rate magnet, this is proportional to 𝐵max. This would imply that sample S2 should

depolarize slower and oscillate slower than sample S1 because they’re both incommen-

surate magnets. This is not observed, with sample S2 having a similar depolarization

envelope, and apparent oscillation rate, to sample S1 (figure 5-6b) at 𝑇 = 1.6 K.

5.3.4 Discussion Ag3LiIr2O6

Pristine samples of ALIO clearly undergo long-range magnetic order, albeit rather

slowly over a 4 K to 5 K range. At first glance the dirty samples do not appear to

host LRO, as there are no obvious spontaneous oscillations in ZF. The peaks in the

spectra can be interpreted as Kubo-Toyabe repolarization to a 1/3rd tail (see chapter

3). But a quick comparison with the spectra of S1 quickly shows that is not the case;

the previously inscrutable features of S2 are overdamped oscillations.

HAADF-STEM images show that the dirty samples have extended Ag impurities

replacing portions of the honeycomb lattice. While the Kitaev honeycomb model

is stable with respect to point defects, it is not stable with respect to extended de-

fects [16]. The parent compound of ALIO, 𝛼-Li2IrO3, is now known to host incommen-

surate spiral order. It is highly likely that Ag3LiIr2O6 forms the same incommensurate

spiral order as it’s parent compound [14].

One oddity of the depolarization is how well the overall depolarization envelopes

match-up between samples in the ordered state. From LF measurements we expect
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two different 𝐵max parameters for each sample. For incommensurate magnets, the

oscillation rate and depolarization rate are intrinsically tied together, because Bessel

functions naturally decay as 𝐽0(𝑥) ≈ 1/𝑥 for 𝑥 ≫ 0. This is an unusual decay

envelope in μSR, where most decays follow an exponential-like decay. Despite this,

the spectra at 1.6 K appear to have similar oscillation rates and similar depolarization

envelopes. The match-up is exceptional considering that the samples were measured

months apart at different facilities. It becomes even more striking when one compares

the data at 10 K which show two clearly different systems.

The simplest explanation for this is that the rows of Ag inclusions cause a non-

trivial modification to the local field sensed by the muon. Muon which stop near

Ag impurities do not observe a simple disordered phase, nor a non-magnetic region.

Rather than seeing regions of pure disorder or non-magnetism, the muons in the

dirty sample likely see a distorted LRO that is beyond the scope of this text to

describe. The difference, then, between samples S1 and S2 at 10 K would be the

correlation length and field strengths of short-range correlations leading up to the

ordering transition. At 1.6 K, both systems are LRO, but the muon senses a distorted

internal field distribution that yields highly damped oscillations, but a similar decay

rate.

Bulk probes did not show long-range order in sample S2. Magnetic susceptibility

and magnetic heat-capacity showed a distinct lack of a magnetic transition in the

dirty samples S2, while a two step entropy release (figure 5-8) was originally observed

in the heat capacity of S1. The two-step entropy release was taken as a sign of

a Kitaev honeycomb spin liquid.6 [17] The clean S1 samples showed signs of LRO,

with anomalies in 𝜒 at 𝑇𝑁 = 14 K and 𝑇LRO = 8 K. Our μSR studies have showed

that these anomalies correspond to the onset of strong magnetism (likely short-range

correlations) at 14 K, and LRO at 8 K in both samples. By comparing the bulk

data of S1 to the μSR data of S1 and S2, we can confirm that both samples enter a

long-range ordered, spin-frozen, phase, despite the original interpretation of S2 as a

spin-frustrated system [17].

6It is believed that the Kitaev QSL model may show a signature “two-step” entropy release due
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We note that this is not the first time that bulk-measurements on kitave systems

have given misleading results. 𝛼-Li2IrO3, Na2IrO3, and 𝛼-RuCl3 all show similar

𝐶𝑚 figures, which have in the past been interpreted as signs of quasi-particle frac-

tionalization into Majorana fermions [18], [19]. Similarly, another promising QSL

candidate, H3LiIr2O6, has been reported to have a similar low temperature 𝜒(𝑇 ) to

ALIO [20], and a similar structural disorder to ALIO [21]. In fact, this was the case

for Cu2IrO3, which was first reported as completely lacking static magnetism due to

smooth, Curie-Wiess, like 𝜒 and deceptive 𝐶𝑚 figures [12]. Our study on higher qual-

ity samples proved that ALIO undergoes a conventional thermodynamic transition

to a LRO state [3].

5.4 Conclusions

We used μSR to study two new members of the Kitaev honeycomb family. Cu2IrO3

was a newly synthesized material that showed a promising lack of LRO in bulk-

measurements to 1.8 K. μSR measurements revealed that Cu2IrO3 is magnetically

inhomogeneous, with the ground state being near evenly divided into frozen spin and

fluctuating spin volumes down to 50 mK. Further analysis revealed that the charge

states of Cu and Ir are disordered which results in spin-defects at roughly 20% of the

honeycomb sites. That said, the highly dynamic phase at 50 mK is highly unusual

and Cu2IrO3 may still be proximate to a possible QSL phase.

Ag3LiIr2O6 (ALIO) was another promising system that appeared to be highly

frustrated when first synthesized [17]. As sample quality improved, μSR revealed

strong, static, magnetism in both high-quality and low-quality samples, along with

clear long-range magnetic order. The extended rows of Ag defects in low-quality ALIO

samples does not prevent long range order, but it does obscure the thermodynamic

signatures of magnetic ordering and spin-freezing. Care must be taken in interpreting

bulk-data for QSL candidates containing significant structural defects.

to the formation of Majorana fermion quasi-particles at 𝑇H, followed by the long-range entanglement
of the quasi-particles at 𝑇L.
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Together these measurements show the strength of μSR in evaluating QSL can-

didates. As a volumetric local magnetic probe μSR is sensitive to subtle forms of

magnetic disorder that are not readily apparent in bulk probe measurements, such

as magnetic susceptibility or specific heat. μSR can reliably discriminate between

magnetically inhomogeneous systems when the ground state is highly sensitive to de-

fects and impurities, such as in a QSL system. This can be used to detect long-range

magnetic order or spin freezing in disordered systems where bulk probes can’t. In

Ag3LiIr2O6 we can see long-range order in samples were extended rows of Ag impuri-

ties disrupt the magnetic order and obscure the usual transitions in bulk probes. In

Cu2IrO3, we see a magnetically inhomogeneous system with domains of spin-frozen

states coexisting with what appears to be spin-frustrated state down to 50 mK. For

systems such as these, μSR excels while bulk probes often given incomplete, or incor-

rect, pictures.
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5.6 Figures

Figure 5-1: Structure of Cu2IrO3. White = Iridium, Green = Copper, Red = Oxy-
gen. (a) Layered structure of Cu2IrO3 illustrating iridium octahedra. Each layer
is connected together via Cu dumbbells, which show a buckled structure. (b) Hon-
eycomb lattice of iridium. The hexagon angles are close to the ideal vaule of 120°,
with Rietveld refined angles of 118.74(7)°/118.74(7)°/122.5(1)°. Detailed structure
parameters, including space group and lattice spacing, can be found in ref [2].
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Figure 5-2: STEM images of Cu2IrO3 layers taken from ref [3]. Cu2IrO3 are shown;
Yellow = Iridium, Blue = Copper, Red = Oxygen. The left-hand image is an illustra-
tion of the stacking faults along the 𝑐-axis. The middle panel shows a HAADF-STEM
image along the 𝑐-axis, showing the zig-zag pattern formed by the stacking faults. The
right-top and right-bottom are magnified HAADF-STEM and ABF-STEM images,
respectively. Unitcells of Cu2IrO3 are overlaid for clarity. While we observe clear
stacking faults along the 𝑐-axis, we do not observe disorder within the iridium planes
themselves, indicating that the individual kitaev lattices are unaffected by stacking
faults.
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Figure 5-3: μSR fit results of Cu2IrO3, as originally published in ref [3]. (a): Zero-field
polarization spectra of Cu2IrO3 between room temperature (300 K) and base temper-
ature (50 mK). A strongly magnetic depolarization appears. (b) The depolarization
rate 𝜆slow as a function of temperature. Measurements were taken in two spectrome-
ters, EMU and MuSR. 𝜆slow plateaus near 1 K∼2 K at roughly 𝜆slow ≅ 0.5 µs−1 𝜆slow
is weakly affected by applied LF fields. (c) Fast depolarization fraction 𝑓 as a func-
tion of temperature. The fast fraction temperature dependence mirrors that of 𝜆slow.
(d) Magnetic susceptibility measurements in 50 Oe showing hysteresis starting at 5 K
and a peak near 2 K. (e) Longitudinal field (LF) polarization spectra at 0 Oe, 500 Oe,
and 1000 Oe. The fast depolarization is quickly decoupled, but the slow depolariza-
tion rate remains nearly the same, illustrating that the rapid depolarization is due to
static magnetism (frozen spins) while the slow depolarization is due to dynamic spins
(rapidly fluctuating spins).
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Figure 5-4: Electron diffraction and HAADF-STEM images of dirty ALIO, as origi-
nally published in ref [4]. The crystallographic structure is overlaid for clarity. Yellow
= Iridium, Blue = Silver, Red = Oxygen. (a) images of sample S2, which contains
rows of Ag defects. Defects are rows of bright spots and are highlighted with arrows.
Ag defects exist solely in the kitaev planes. (b) Images of sample S1, which does
not contain Ag defects. Additionally, both samples contain ”zig-zag” stacking faults,
similar to Cu2IrO3. These faults are highlighted in the smaller right-hand corner
STEM images.
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Figure 5-5: Asymmetry plotted as a function of time for short time-scales, as originally
presented in Ref. [4] for ALIO sample S1. Curves are vertically offset by a 0.05 for
clarity; the initial asymmetry remains constant for all curves. Fits for 0.28 K, 11 K,
and 20 K, are shown in yellow, cyan, and purple, respectively.

134



Figure 5-6: μSR fit parameters and data as originally published in ref [4]. (a) 𝐵max
and 𝛼𝑓 plotted as a function of temperature. 𝐵max is, as expected for an incommen-
surate magnet, nearly temperature independent until near the transition. Near the
transition, the asymmetry fraction becomes too small to fit and we instead plot 𝛼𝑓 .
(b) Zero-field polarization spectra of S1 and S2 at 10 K. Sample S1 has a noticeably
stronger depolarization than S2 at 10 K. (c) Zero-field polarization spectra of S1 and
S2 at 1.6 K. Sample S1 has clear Bessel oscillations indicating incommensurate mag-
netic order. The anomalous peaks in the spectra of S2 line up well with the peaks of
S1, suggesting that S2 also undergoes the same incommensurate LRO transition, but
with additional magnetic disorder that suppresses the oscillations.
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Figure 5-7: ALIO Longitudinal Field (LF) μSR data as originally published in ref [4].
(a) LF polarization spectra of the ”clean” sample S1 measured at 208 mK. The 𝑥-axis
is expanded below 1 µs to reveal oscillations. The oscillations are decoupled from the
polarization by 1000 Oe, a weak exponential depolarization is seen at long times for
all applied fields. (b) LF polarization spectra of the ”dirty” sample S2 measured
at 50 mK. The LF spectra for S2 are qualitatively similar to S1, though a weak
exponential decay is not observed. The data in (a) and (b) were collected at PSI and
ISIS, respectively. (c) The field dependence of the long-time tail, plotted as a fraction
of the total polarization against applied fields. The lines are guides to the eye. From
this figure we estimate 𝐵int = 263 G in S1 and 𝐵int = 113 G in S2.
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Figure 5-8: (a) Specific heat 𝐶/𝑇 of Ag3LiIr2O6 between 2 K and 300 K. The non-
magnetic analogue, Ag3LiSn2O6 is plotted for comparison. (b) Magnetic specific heat
𝐶𝑚 of ALIO plotted 0 K to 120 K. We see two peaks, a broad peak at 𝑇H followed by
a narrow peak at 𝑇L. This can be interpreted as the double entropy release expected
for Kitaev Magnets. (c) A comparison of the 𝑇L peaks in 𝐶/𝑇 between samples S1
and S2. Full details can be found in our original publication in ref [4].
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Chapter 6

The Kagome Metal KV3Sb5: Novel

Electronic States Disguised as

Frustrated Magnetism

Key Publications

Absence of local moments in the kagome metal KV3Sb5 as determined by
muon spin spectroscopy

J. Condens. Matter Phys., May 2021.

Superconductivity in the Z2 kagome metal KV3Sb5
Phys. Rev. Mat., March 2021.

6.1 Introduction

In this chapter we review our experiments on the metallic kagome lattice, KV3Sb5.

The kagome lattice is one of the two common 2D-geometries for purely geometric

spin-frustration [1]–[3], the other being the triangular lattice. The kagome lattice

consists of corner-sharing triangles with a coordination number of four, while the

triangular lattice has a coordination number of six. This reduction in coordination

number enhances the effects of quantum fluctuations and increases the ground-state
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degeneracy of the lattice, which in turn makes the kagome lattice inherently more

frustrated than the triangular lattice [4]–[7].

The importance of the coordination number is seen in the isotropic Heisenberg

AFM model. Theoretical calculations show that the Heisenberg AFM model magnet-

ically orders on the triangular lattice [8] but not the kagome lattice [9]. In the litera-

ture, the most promising and important 2D QSL candidates tend to be kagome sys-

tems. For example, one of the most important frustrated materials is Herbertsmite [4],

[10] which is a kagome system.

One the other hand, most frustrated kagome systems have been insulators. This

is natural, as insulating phases, conventional or otherwise, are more amenable than

metals to supporting localized moments due to the requisite localization of valence

electrons. But the crystallographic structure of the kagome net gives rise to uncon-

ventional band structures which, in the metallic phase, allow for unusual electronic

correlations [11]. For example, density functional theory, density matrix normaliza-

tion group, Monte Carlo, and other numerical theories have predicted superconduc-

tivity, topological states with 2D Chern Gaps, Weyl Semimetals, and, of course, QSL

phases [12].

Our collaborators at the Wilson lab synthesized the family of metallic kagome lat-

tices (AV3Sb5, A=K, Rb, Cs) which they predicted to host antiferromagnetic spin-1/2
moments [13]. These lattices consist of perfect kagome nets of vanadium intercalated

by layers of akali atoms (A=K, Rb, Cs) and studded with antimony (see figure 6-1).

Simple electron counting arguments suggest that the vanadium ions are V4+, which

is 𝑆 = 1/2 (4s1 orbital). Initial bulk characterization measurements of the suscepti-

bility 𝜒 and the specific heat 𝐶𝑝/𝑇 yielded a small effective moment 𝜇eff ∼ 0.22 μB

and a Curie-Wiess temperature of 𝜃CW = −47 K and failed to pick out any obvious

magnetic transitions1 down to dilution fridge temperatures (𝑇 ∼ 0.25 K) [13].

Density functional theory calculations presented in the same paper suggest that

the Fermi-energy, 𝜖𝑓 , was near several Dirac cones, with a large number of Dirac points

1In all three systems, a field-independent anomaly is observed in both 𝜒 and 𝐶𝑃/𝑇 . It has since
been shown to be to be a charge density wave.
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overall. Subsequent investigations by other groups discovered the presence of a so-

called ”Gigantic Anomalous Hall Effect,” (GAHE) [14]–[16] which generally relies on

the time-reversal symmetry breaking properties of localized magnetic moments [12].

In the following sections we describe μSR [17] and AC Magnetic susceptibility

measurements on KV3Sb5 [18] which show that KV3Sb5 lacks localized electronic

moments at all temperatures and instead undergoes a superconducting transition

(𝑇𝑆𝐶 = 1.1 K) with near 100% volume fraction in higher quality single-crystal sam-

ples. This is despite the simple structure and initial DFT calculations which suggested

spin one-half V4+ ions, and the occurrence of the GAHE. Instead, in AV3Sb5 family a

charge density wave (CDW) onsets between 80 K to 110 K, and this CDW competes

with a low-temperature superconducting state in all three systems [19]–[21]. A recent

study has proposed that the magnetic properties arise from orbital charge currents

which circulate about the kagome net [22]. μSR measurements are uniquely sensitive

to this phase and are consistent with this interpretation.

6.2 Characterization

KV3Sb5 was first synthesized and characterized by Wilson group of Santa Barbara

and collaborators for crystallographic structure and bulk magnetism [13]. X-ray re-

finement yielded a hexagonal 𝑃6/𝑚𝑚𝑚 structure consisting of V-Sb slabs separated

by K cations, as shown in figure 5-1. The kagome lattice of V is structurally perfect

with no distortions and full site occupancy, within experimental error. Transmission

electron microscopy (TEM) similarly showed high quality kagome structures with no

obvious disorder or imperfections.

Density functional theory was performed to determine the electronic structure of

KV3Sb5. DFT calculations show that KV3Sb5 is metallic and that the fermi energy

lies close to several Dirac points. Further DFT calculations showed that there is little

to no charge sharing between the K and V-Sb layers, suggesting that the 2D layers

are electrostatically bonded (i.e. Van der waals bonding).

DC Magnetic susceptibility measurements showed two regions of paramagnetic
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behavior separated by a peak at 80 K. Curie-Wiess fits above 80 K yield a Curie-

Wiess temperature of �CW = −47.2 K and an oddly small effective moment of 0.22 μB.

Below 80 K 𝜒 increases dramatically in a paramagnet-like fashion down to ∼ 1.8 K.

Neutron diffraction measurements showed a lack of magnetic ordering peaks at

110 K and 1.8 K to within the experimental resolution of 0.5 μB/atom. Diffuse scat-

tering observed, which would indicate short-range correlations, was also not observed.

Additionally, specific heat and resistivity measurements were taken. A full de-

scription of the characterization of KV3Sb5 can be found in ref [13].

6.3 Experimental - μSR

KV3Sb5 samples for μSR were synthesized by Brenden R. Ortiz of Prof. Wilson’s

group at the University of Santa Barbara. The material was synthesized as powder

which was pressed into a large disk measuring 3 mm in thickness and 10 mm in

diameter. The sample integrity was then verified using X-ray diffraction before being

sealed in quartz tubes under Argon; sample handling was performed mostly inside

Ar/He hoods with atmospheric exposure lasting for several minutes total. The sample

was measured at the Paul Scherrer Institute (PSI) using the general purpose surface-

muon spectrometer (GPS) and a gas-flow cryostat.

The large sample was paired with a gas-flow cryostat in GPS to maximize the

signal and minimize the background. The gas-flow cryostat in GPS uses a pronged

sample holder and a continuous flow of cooled 4He gas in order to achieve excel-

lent thermalization with minimal mounting material between the range of 1.6 K and

110 K [23]. Our background was measured to be approximately 7.1 % of the total

asymmetry.

μSR measurements were performed using longitudinal spin implantation orienta-

tion in order to maximize the signal strength for individual measurements, which

further increased the quality of our measured data. The sample was first measured

in zero-field conditions (ZF) at several points between 1.6 K and 110 K in order to

check for spontaneous magnetic order. Longitudinal field measurements were then
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performed at 1.6 K in order to discriminate between dynamical depolarization and

static depolarization. Finally, we took a detailed set of measurements between 1.6 K

and 110 K under 100 Oe Transverse Field (TF100) conditions.

The zero-field spectra were fit to a static Gaussian Kubo-Toyabe (GKT) function

(see chapter 3) plus a small background term:

𝐴0𝑃𝑍𝐹 (𝑡) = 𝐴0 (1 − 𝑓𝐵𝐺) GKT (𝜎𝑍𝐹 , 𝑡) + 𝑓𝐵𝐺 (6.3.1)

Here 𝐴0 is an experimental parameter known as the initial asymmetry. 𝐴0 ≅ 0.26
which is the expected maximum asymmetry for GPS. 𝑓𝐵𝐾 = 0.071 is the aforemen-

tioned signal background of 7.1%. The longitudinal field spectra were calculated as

a field dependent GKT in 25 Oe, using the zero-field fit parameters held constant.

The transverse field measurements were fit to:

𝐴0𝑃𝑇𝐹 (𝑡) = 𝐴0 (1 − 𝑓𝐵𝐺) {cos (𝛾𝜇𝐵𝑙𝑜𝑐𝑡) exp (−1
2(𝜎𝑇𝐹 𝑡)2)} + 𝑓𝐵𝐺 cos (𝛾𝜇𝐵𝑙𝑜𝑐𝑡)

(6.3.2)

Here 𝛾𝜇𝐵loc is the Larmor precession angular frequency of the Muon due to the

application of an external transverse field. For reference, 𝐵loc ≅ 𝐵𝑇𝐹 = 100 Oe, and

𝛾𝜇𝐵loc ≅ 8.52 rad MHz.

6.4 Results - μSR Measurements

Figure 6-2 shows the zero-field spectra [17]. The zero-field spectra show a weak

depolarization that changes little between 110 K and 1.6 K and fits to a rate of roughly

𝜎 ∼ 0.2 µs−1. For a Gaussian distribution, this gives a characteristic internal field

strength of Δ ∼ 𝜎/𝛾𝜇 ∼ 2.4 Oe, which is typical of fields originating from nuclear

dipole moments, not localized spin 1/2 moments. The inset of figure 6-3 (inset)

shows that the depolarization is near-fully decoupled by a weak longitudinal field of

𝐻 = 10𝜎ZF/𝛾𝜇 ∼ 25 Oe which demonstrates that the magnetism observed by μSR is

static on the muon time scale [24], [25]. For perspective, a moderate fluctuation rate

of (10 MHz–100 MHz) would require 25 Oe–2.500 Oe to achieve the same amount of
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decoupling [24], [25].

High-spin nuclei such as vanadium or antimony can generate internal fields of

up to several Oe in size and easily yield depolarization rates near 0.2 µs−1. Nuclear

motions are virtually static on the time-scale of the muon, so nuclear depolarization

is normally temperature independent and static.

Transverse field measurements (figure 6-3 Inset) are sensitive to small changes in

the local field distribution. This, combined with the excellent data quality, allowed

us to capture a weak temperature dependence of 𝜎, accounting for a total change of

0.04 µs−1 between 110 K and 1.6 K (figure 6-3). This type of temperature dependence

is not typical of nuclear depolarization, and suggests a weak non-nuclear contribution

to the internal field distribution may exist. This will be elaborated on in the discussion

section.

6.5 Results - μSR Calculations

The lack of electronic magnetism in KV3Sb5 surprising given that the prior bulk-

characterization shows that KV3Sb5 is a weak paramagnet. In this section I perform

several estimations of the muon depolarization rate to rule out the presence of local-

ized electronic moments in KV3Sb5.

It is possible to calculate the expected depolarization rate for a given system pro-

vided one knows the stopping site of the muon. In metals, the muon will usually

stop at an electrostatic minimum in the crystallographic unit cell, which is usually

a highly symmetry interstitial site.2 Calculating the stopping accurately usually re-

quires specialized DFT methods. This is not trivial because KV3Sb5 hosts a charge

density wave [20] and the muon stopping site is dictated by electrostatics. Instead,

we provide an estimation of the depolarization rate by assuming the muon stops at

interstitial sites which minimize or maximize the depolarization rate.

I performed calculations of the depolarization rate for several basic models in order
2Strictly speaking, this often applies to insulating systems as well, but more care and nuance is

required due to the formation of Muonium or other bound states. Additionally, there are special
exceptions for metallic systems and bad metals, such as in Oxides, that we do not discuss here.
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to confirm that the depolarization is primarily due to nuclear magnetic moments. If

the stopping site of the muon is known we can calculate the depolarization rate due

to nuclear moment using the following formula from Ref. [24] [24, p. 150]:

𝜎2
𝑍𝐹, 𝑛𝑢𝑐 = 2

𝛾2𝜇

𝑁𝑛𝑠

∑
𝑖=1

(𝛾𝑖ℏ
𝑟3
𝑖

)
2 𝐼𝑖 (𝐼𝑖 + 1)

3 (6.5.1)

Here the sum is over all the nuclei 𝑖 in the lattice, starting with the nearest neigh-

bors. 𝐼𝑖 is the nuclear spin quantum number. 𝑟𝑖 is the distance between the muon

site and a given nuclear spin. The only unknown parameter in this equation 𝑟𝑖, which

depends only on the stopping site and crystal-structure. Therefore equation (6.5.1)

is temperature and field independent. I estimate the zero-field nuclear depolariza-

tion rate to be 0.13 µs−1 < 𝜎𝑍𝐹, 𝑛𝑢𝑐 < 0.56 µs−1.3 The exact details on how this

estimation was performed can be found in our original paper [17].

The transverse field depolarization rate 𝜎𝑇𝐹 can be related to the zero-field depo-

larization rate using

𝜎𝑇𝐹,𝑛𝑢𝑐 = √2/5 𝜎𝑍𝐹,𝑛𝑢𝑐 ∼ 0.63 𝜎𝑍𝐹,𝑛𝑢𝑐

for 𝐵TF ≫ 𝜎ZF/𝛾𝜇 (6.5.2)

where 𝛾𝜇 is the muon gyromagnetic ratio. Plotting 𝜎𝑇𝐹 together with 𝜎ZF (fig-

ure 6-3) shows that 𝜎TF does not satisfy equation 6.5, though 𝜎𝑇𝐹 is still somewhat

smaller than 𝜎ZF and roughly proportional to 𝜎ZF.

Now we estimate the expected depolarization assuming local electronic moments

associated with V4+ ions. In our original paper we estimated the effective magnetic

moment V4+ in KV3Sb5 to be 𝜇eff ∼ 0.22𝜇𝐵 [13]. Here we use the following equation:4

3The lower-end of the depolarization rate is calculated by placing the muon at an interstitial site
in the K planes. This minimizes 𝜎 relative to the other interstitial sites in the lattice. The maximum
bound was found by calculating 𝜎 at several interstitial near the vanadium lattices.

4Equation 6.5.3 is obtained from equation 6.5—which is applicable to both nuclear and electronic
spins—and identifying 𝜇eff ≅ 𝛾𝑖ℏ𝐽𝑖 (𝐽𝑖 + 1), where 𝐽𝑖 is the total angular quantum number of
moment 𝑖.
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𝜎2
𝑍𝐹, 𝑛𝑢𝑐 = 2

3𝛾2𝜇

𝑁𝑛𝑠

∑
𝑖=1

(𝜇eff
𝑟3
𝑖

)
2

(6.5.3)

Given the vast difference between nuclear and electronic moments, we obtain an

estimate of 2.5 µs−1 < 𝜎𝑍𝐹 < 25 µs−1 for the expected electronic depolarization. This

is, at minimum, an order of magnitude larger than what we observed.

One possibility is that the V4+ ions are non-magnetic, and instead we are observing

magnetic impurities in our system. Such dilute impurities could easily give rise to

the Curie-Wiess signal seen AC magnetic susceptibility (AC𝜒) [18]. Depolarization

due to dilute magnetic impurities does not depend on the muon stopping site. It only

depends on the size of the impurity moments, and the concentration of impurities.

The dilute impurity depolarization rate is

𝜆𝑍𝐹 = 4.54 𝛾𝜇𝜌V, imp𝑔𝜇𝐵 |𝑚| (6.5.4)

The impurity volume density is 𝜌V, imp and the effective impurity moment is

𝜇eff = 𝑔𝜇𝐵 |𝑚|. If we assume nonmagnetic V4+ and dilute 𝑆 = 1
2 impurities—as

we did in our original publication—we get an impurity density of roughly 1.5% and

a characteristic depolarization rate of 𝜆𝑍𝐹 ∼ 0.3 µs−1.

The dilute impurity model gives a reasonable depolarization rate, but still fails

because it gives the wrong functional dependence for the spectra; dilute impuri-

ties create a Lorentzian internal field distribution which depolarizes exponentially

as 𝑃 (𝑡) ∼ exp (−𝜆𝑡) [24], [25]. A highly-dilute impurity model with a smaller 𝜇eff

or volume density could possibly explain the weak temperature dependence seen in

figure 6-3, but that would then fail to be consistent with our estimations from our

magnetic susceptibility data. Such a Gaussian+Lorentzian model also does not pro-

vide an adequate fit to our data. We found that the functional model that best

described our temperature dependent data in both zero-field and transverse field was

a pure Gaussian mode.5

5By ”pure Gaussian” we mean the set of polarization functions corresponding to the muon prob-
ing a Gaussian local-field distribution, which generically corresponds to densely packed nuclear or
electronic moments. See chapter for details.
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Finally, we can consider the possibility of rapidly fluctuating V4+ moments. Since

KV3Sb5 was expected to be frustrated, we would expect spin fluctuations down to

the lowest temperatures in the ideal case. Rapid spin fluctuations reduce the de-

polarization rate through temporal averaging of the field distribution. In the rapid

fluctuation limit, the depolarization rate is expected to vary as [24], [25]:

𝜆𝜈 ∝ 𝜆0
𝜈 as 𝜈 → ∞ (6.5.5)

where 𝜈 is the characteristic fluctuation rate of the system and 𝜆0 is the static depolar-

ization rate when 𝜈 = 0. This gives a minimum required fluctuation rate of 2.5 GHz.

This is not possible; this would place the system into the motional narrowing limit of

fluctuations which would drastically weaken the field dependence of the LF spectra

(figure 6-2 inset), as well as change the depolarization to an exponential curve [24].

These calculations show that the only conventional source of depolarization in

KV3Sb5 are nuclear dipole moments. Densely packed electronic moments, on vana-

dium or otherwise, would provide too strong of depolarization to be consistent with

the weak depolarization we observe. Dilute magnetic impurities or rapid spin fluctua-

tions would yield an exponential depolarization instead of a Gaussian depolarization.

But: a simple nuclear dipole model does not satisfactorily explain the weak tem-

perature dependence of 𝜎, nor why 𝜎TF fails to follow equation 6.5.3. This will be

discussed shortly.

6.6 Experimental –AC Susceptibility

Following our μSR measurements the Wilson group synthesized high-quality single

crystal samples of KV3Sb5, which showed possible signs of superconductivity in low

temperature specific heat measurements. Therefore, we performed AC susceptibility

measurements in our 3He fridge in order to search for a superconducting transition

in KV3Sb5.

AC magnetic susceptibility measurements were performed on single-crystal sam-
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ples of KV3Sb5 synthesized using improved techniques following the μSR experi-

ment [18]. The sample was a thin, roughly ovular shape measuring 2.5 mm×2.4 mm×
0.22 mm and with mass 1.50 mg. The measurements were performed using a hand-

made coil susceptometer placed inside a Janis cryogenic He3 refrigerator and driven

using an SR830 lock-in amplifier. The excitation field was approximately 0.1 Oerms,

aligned with the crystallographic ̂𝑐-axis, and driven at a frequency of 711.4 Hz. The

temperature range was between roughly 300 mK and 3.5 K. The data was then cal-

ibrated against AC susceptibility measurements performed in a Quantum Design

MPMS3 system which measures ACX between 1.8 K to room temperature. In order

to calculate 𝜒𝑉 , which yields the superconducting volume fraction, we approximated

the samples as cylindrical volumes and corrected for the demagnetization factor.

6.7 Results – AC Susceptibility

Figure 6-4d shows the AC magnetic susceptibility (ACX) diagram as originally pub-

lished, [18] which clearly shows a superconducting transition at 𝑇𝐶 ≈ 1 K. This was

the first observation of superconductivity in KV3Sb5, and we observed a nearly text-

book transition. The superconducting volume is nearly 100%, given the nearly ideal

diamagnetic susceptibility of −1.6 The sharp transition indicates a high-quality sam-

ple with few impurities. Complementary measurements were subsequently performed

by Wilson et al using resistivity and specific heat (figures 5-4e,f), which corroborate

our data and confirm a type-II superconductor.

Figures 5-4a-c show the higher temperature DC susceptibility, resistivity, and

heat capacity measurements performed by our collaborators. Resistivity and heat

capacity show a small anomaly in ZF at 78 K. DC susceptibility at 1 T shows a larger

anomaly at 78 K below which the susceptibility increases rapidly with a Curie-Wiess

like behavior. The nature of the 78 K structure in single crystals was unclear when we
6The observant reader may notice that obtain 𝜒’

𝑉 ∼ −1.1, which would indicate beyond perfect
diamagnetism. This is a systematic error resulting from sample being a thin-cylinder placed length-
wise to the field. As the sample becomes infinitely thin along the field axis, and as 𝜒’

𝑉 → −1, the
observed susceptibility diverges due to demagnetization fields and the correction for the intrinsic
susceptibility becomes extremely sensitive to small errors.
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originally published our results, but this has since been shown to be a CDW transition

that coexists with the superconducting ground state.

6.8 Discussion

Traditional electron counting arguments tell us that that the kagome lattice in

KV3Sb5 should consist of V4+ ions with 𝑆 = 1/2. The valence shell is a single 4s1

orbital; it would be unlikely that that common crystal field splitting would render V4+

nonmagnetic. On the other hand, electron counting is merely a rough rule of thumb,

and there are many factors which could force V into a non-magnetic state. But bulk

measurements showed what appears to be a frustrated antiferromagnet, with a Curie-

Wiess Temperature of 𝜃CW = −47.2 K and an effective moment of 𝜇eff ∼ 0.22 μB.

Moreover, the giant anomalous hall effect displayed by KV3Sb5 requires time-reversal

symmetry breaking [15]. TRSB is usually provided by localized electronic moments.

Prior to our μSR measurements, all signs pointed to KV3Sb5 being a highly frustrated

magnet.

Instead, we saw a clear absence of local moments in KV3Sb5. Our μSR spectra

showed a system dominated by tiny, densely packed, magnetic moments. Under a

conventional analysis, this is only attributable to nuclear dipole moments. My calcu-

lations confirmed that conventional electronic moments would be unable to provide

the weak Gaussian depolarization observed in KV3Sb5. The later observation of

superconductivity is also at odds with conventional magnetism in KV3Sb5, since su-

perconductivity is infamously incompatible with magnetism. Magnetism can coexist

with superconductivity in only a select few systems, such as FeS or FeSe [26].

Rather than being a frustrated magnet, KV3Sb5 appears to be a topological su-

perconductor with a competing Charge Density Wave (CDW) state. Since our orig-

inal publications, superconductivity has now been observed in all three antimonides

(AV3Sb5, A=K, Cs, Rb) between roughly 1 ∼ 2 K [16], [18], [27]. A CDW phase

has also been observed in all three materials, with transitions between roughly 80 K

to 100 K [28]. This CDW competes with the superconducting state and is tunable

149



via pressure. Pressure-cell measurements show that the superconducting state is re-

entrant in all three materials, including KV3Sb5 [28]. Superconductivity and charge

order appear to be intrinsically tied to the AV3Sb5 family.

But while the electronic properties of the AV3Sb5 family are interesting, the lack

of magnetism does present a conceptual problem. The entire AV3Sb5 family exhibits

GAHE and therefore there should be a source of TRSB. The most common source of

TRSB in magnetic systems is magnetic ordering or magnetic skew-scattering due to

the dipole moment’s inherent time-reversal symmetry violation. This is why the AHE

is usually due to magnetism, and most explanations for GAHE depend on unusual

magnetic interactions [29]–[32]. Non-magnetic mechanisms for TRSB and driving the

regular AHE or GAHE states do exist. But then why is KV3Sb5 clearly a paramagnet?

And how do we explain the temperature dependence of 𝜎 the size of 𝜎TF in our μSR

data?

In our original paper we were unable to provide a satisfactory answer. We posited

several possibilities. We suggested, for example, that the V4+ orbitals might dimerize

into non-magnetic states, and that the temperature dependence would arise from

dimerized spins. But ultimately, we were forced to conclude that some details of the

KV3Sb5 spectra were difficult to explain given the information available at the time.

A recent arXiv paper by Li Yu et al. has given a convincing account of the μSR

spectra using what they call a ”hidden chiral flux phase” [22]. Motivated by our

results they performed a combination of μSR measurements and second harmonic

generation (SHG) measurements on single crystal samples of CsV3Sb5 (which has

a similar band-structure and similar transition temperatures to KV3Sb5) and have

shown that, for proper orientation, single crystal CsV3Sb5 has approximately the

same μSR temperature dependence as KV3Sb5.

The theory is that the AV3Sb5 family hosts a pair of transitions within the CDW

phase at temperatures 𝑇 ′ and 𝑇 ″ that occur below the original CDW transition

temperature 𝑇CDW. At these 𝑇 ′ = 78 K orbital currents begin cycling along the

hexagons and triangles of the kagome lattice, as shown in figure 6-5. This results in a

dense matrix of magnetic dipoles which give rise to an internal dipole field distribution
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that has been simulated by Yu et al(figure 6-5c-h). Yu et al call this a chiral flux

phase because of the chirality it imparts onto the CDW. The transition at 𝑇 ″ = 30 K

is a long-range ordering transition of these dipole currents along the 𝑐-axis.

Figure 6-6 shows the normalized gaussian depolarization rate for single crystal

samples of CsV3Sb5 [22]. Yu’s study used single crystals to measure the anisotropic

𝜎ZF as a function of the initial muon polarization parallel to the 𝑐-axis, and parallel to

the 𝑎𝑏-plane. In figure 5-7 we plot our normalized 𝜎TF for polycrystal KV3Sb5 against

the data for CsV3Sb5. We find that our polycrystal data is qualitatively similar to the

data for CsV3Sb5. Considering that electronic structure for both materials are similar,

and that both have CDW and superconducting transitions at similar temperatures,

it stands to reason that the weak temperature dependence of 𝜎 in KV3Sb5 is not a

spurious result, but rather is reflective of a subtle chiral CDW phase in both materials.

These effective dipoles are much weaker than 𝑆 = 1/2 electronic moments, but are

nonetheless densely packed. The result is a weak Gaussian depolarization with an

even weaker temperature dependence. I speculate that the lack of suppression of

𝜎TF is due to the orbital currents responding in a diamagnetic fashion similar to

conventional diamagnetism.

Since Yu et al’s original arXiv publication, several more journal-publications have

put chiral charge order theories on solid footing for all three materials [19], [20], [33],

[34] in the AV3Sb5 family. The chiral flux phase naturally breaks time-reversal sym-

metry as it results in the creation of ordered and quantized magnetic moments which

break time-reversal symmetry in the same exact fashion that traditional electronic

moments do. This gives an obvious source of TRSB for the GAHE [28]. It also gives

provides a source of dipoles for the paramagnetism seen in magnetic susceptibility.

It’s worth noting that the electron counting arguments used to predict the presence

of V4+ ions with 𝑆 = 1/2 are not valid under a CDW, so we would no longer expect

to see electronic moments at the vanadium sites.

The reason that these transitions are ”hidden” is that most probes are not sensitive

to this transition. The magnetic aspect of the transition is extremely weak. μSR was

the perfect technique for discovering these transitions which are effectively invisible
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to most other techniques.

6.9 Conclusions

We have shown that the kagome metal QSL candidate KV3Sb5 is a non-magnetic

superconductor as opposed to being magnetically frustrated system as originally

thought. In particular, our μSR measurements formed the impetus for the discovery

of a novel chiral charge state featuring topologically protected bulk currents about

the 2D kagome lattice. It was the obvious lack of electronic magnetism on the local

probe level, combined with the anomalous temperature dependence of 𝜎 and the con-

tradictory bulk magnetic susceptibility of KV3Sb5 and robust superconductivity that

spurred the discoveries of charge order and eventually the chiral charge currents.

AV3Sb5 is a topological family which features unconventional superconductivity

near 1 ∼ 2 K. Superconductivity in AV3Sb5 competes with a CDW state near 80 K ∼
90 K. The giant anomalous hall effect–which usually results from magnetic ordering—

is present in all three materials, including KV3Sb5. The GHAE does not occur due to

electronic dipole moments as one would normally expect, but occur due to a secondary

transition in the CDW where topologically protected current states form along the

kagome lattice.

These currents—–and the fields they produce—–are weak and are either invisible

to most probes, or are indistinguishable from conventional magnetism. It was our μSR

measurements that provided the key experimental results to understanding KV3Sb5

and it’s siblings. Of course, that means that the AV3Sb5 members are longer QSL

candidates due to the lack of localized V4+ moments. On the other hand, we have

systems featuring TRSB bulk topology via novel CDW and charge states, reentrant

superconductivity competing with this topology and an entire family showing the

GAHE. Our papers have received over 80 citations combined since publication. We

fully expect the AV3Sb5 systems to provide rich and interesting physics to the fields

of frustrated magnetism and highly correlated systems to come.
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6.11 figures

Figure 6-1: Crystal structure of KV3Sb5 as originally published [18]. (a) The kagome
lattice of vanadium exists in the ab-plane and is intercalated with antimony. Each
layer is separated by a van der waals layer of potassium. (b) By removing the vana-
dium we see that the in-plane antimony forms a hexagonal structure known as anti-
monene, due to it’s similarity to graphene.
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Figure 6-2: μSR polarization spectra for KV3Sb5, as published in ref [17]. (Main) Zero-
field spectra fitted to a static Gaussian Kubo-Toyabe function at three temperatures.
(Inset) Longitudinal-field spectra at 0 Oe and 25 Oe fitted to a longitudinal-field static
Gaussian Kubo-Toyabe function.

Figure 6-3: (Main) Temperature dependence of the Gaussian depolarization rate in
zero-field and transverse field, as originally presented in ref [17]. Note that it is
theoretically predicted that 𝜎TF ≈ √2/5𝜎ZF when 𝐵TF ≫ 𝜎ZF/𝛾𝜇 and the dipole
moments are static [24]. (Inset) Transverse field polarization of KV3Sb5 at 𝑇 = 1.6 K
, 𝐵 = 100 Oe. Line represents fit as described in the text.
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Figure 6-4: Bulk electronic measurements of KV3Sb5, as we originally presented in
ref [18], including the caption. (a)–(c) Susceptibility, electrical resistivity, and heat
capacity showing behavior of stoichiometric single crystals above 2 K. All measure-
ments show an anomaly at 78 K, coinciding with emergence of a charge density wave.
Magnetization results indicate that KV3Sb5 is a Pauli paramagnet at high tempera-
tures. As shown previously, the weak Curie tail at low temperature can be fit with a
small concentration of impurity spins. Resistivity is low, indicating a high mobility
metal. The 𝜆-like anomaly in the heat capacity is shown, magnified, with a spline in-
terpolation used to isolate the transition. (d)–(f) Susceptibility, electrical resistivity,
and heat capacity measurements below 2 K highlight the onset of bulk superconduc-
tivity in KV3Sb5. A well-defined Meissner state is observed in susceptibility, which
coincides with the zero-resistivity state and a sharp heat-capacity anomaly.
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Figure 6-5: Diagrammatic representation of the orbital dipoles and local magnetic
field in the kagome planes of CsV3Sb5. figure is taken from Li Yu et al’s paper,
“Evidence of a Hidden Flux Phase in the Topological Kagome Metal CsV3Sb5” [22].
(a) Schematic representation of the magnetic configuration of the vanadium kagome
lattice between 30 K and 70 K . Circular arrows represent the effective orbital cur-
rent loop, straight arrows represent the effective magnetic moment. (b) Schematic
representation of the magnetic configuration of the vanadium kagome lattice below
30 K . (c) Side-view of the lattice diagram shown in (a), with Sb shown in green and
Cs shown in blue. (d) Visualizations of the local magnetic field component parallel
to the ab-plane between 30 K and 70 K . The local field in CsV3Sb5 has uniaxial
symmetry along the c-axis. (e) Visualizations of the local magnetic field component
perpendicular to the ab-plane between 30 K and 70 K . (f-h) Same as figures (c-e),
but for the T<30 K phase.
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Figure 6-6: μSR-based phase diagram for CsV3Sb5. Figure is taken from Li Yu
et al’s paper, “Evidence of a Hidden Flux Phase in the Topological Kagome Metal
CsV3Sb5” [22]. Zero-field Gaussian relaxation rate 𝜎𝜇 as a function of temperature.
𝜎𝜇 is normalized to 150 K : 𝜎norm = (𝜎𝜇 − 𝜎𝜇(150 K))/(𝜎𝜇(150 K))). The value
of 𝜎𝜇(150 K) is not given by Yu Et al in their paper. Red points represent the
depolarization rate measured when the initial muon polarization is parallel to the
crystallographic 𝑐-axis. Blue points represent the depolarization rate measured when
the initial muon polarization is parallel to the crystallographic 𝑎𝑏-plane. The orange
triangles and the right-hand axis refer to second-harmonic generation measurements,
details of which can be found in the original publication. Color regions correspond to
the known electronic transitions of CsV3Sb5. A charge density wave (CDW) sets in
at 𝑇CDW ∼ 95 K a pair of secondary chiral transition in the CDW occur at 𝑇 ′ ∼ 70 K
and 𝑇 ″ ∼ 30 K. A superconducting transition occurs at 𝑇SC = 2.5 K. [27]
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Figure 6-7: The normalized gaussian depolarization rate of polycrystal KV3Sb5 com-
pared plotted with the single-crystal depolarization rates of CsV3Sb5 from figure 6-6.
The KV3Sb5 data is normalized to 112 K and taken in transverse-field, while the
CsV3Sb5 data is normalized to 150 K and taken in zero-field.
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Chapter 7

Conclusions

In this thesis I have reviewed my work on several magnetically frustrated systems and

contributed to the identification of their ground states.

First, I reviewed my work on NaYbO2 and LiYbO2, which are three dimensional

bond-frustrated magnets. NaYbO2 is a quantum disordered magnet with a quantum

critical point. It is the closest of the systems I’ve reviewed to being a quantum spin

liquid. LiYbO2 is a bipartite spin system undergoes incommensurate spiral order with

two independent order parameters. This results in a novel ”random phase bipartite

incommensurate” phase. I analyse this system in the context of μSR and propose an

original polarization function to describe the data.

Next, I reviewed my work on the iridates: Cu2IrO3 and Ag3LiIr2O6. My μSR

measurements showed that Cu2IrO3 has a magnetically inhomogenious ground state.

Our collaborators later found that this was due to charge state disorder in the system.

My measurements on Ag3LiIr2O6 showed that it is magnetically long-ranged ordered

despite previous measurements suggesting it to be magnetically frustrated. This

experiment highlights the role crystal quality can play in analyzing a QSL candidate,

with disorder often masking signs of spin freezing or ordering.

Finally, I reviewed my work on KV3Sb5. This was a metallic kagome system

that was expected to be spin-frustrated. My μSR data showed an absence of local

electronic magnetism in the sample, in defiance of bulk susceptibility showing a weak

paramagnet. My AC susceptibility data also showed that KV3Sb5 superconducts
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at 1 K. My results stimulated studies in the literature which found that the entire

AV3Sb5 family has unusual physics, including a potential ”chiral-flux phase.”

The works covered in my thesis are broad and show the many possibilities of

magnetism and QSL materials. Competing interactions in a system often result rich

phase diagrams and novel physical phenomena. Magnetic frustration is one of the

best examples of this, with there being multiple fields worth of different magnetic

phenomena being generated from frustration.

This makes the search for a QSL difficult, as there are many possibilities and

pitfalls one can encounter. Crystal defects can mask long-range order, charge-state

disorder can introduce spin defects, and sometimes a bulk magnet might not have

localized moments at all! None the less, each of these systems contains fascinating

physics in their own right while also providing us with vital information that helps

guide us towards synthesizing better QSL materials.
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