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ABSTRACT 
 

Global climate change is among the greatest crises facing humanity in the 21st century. 

Mitigating the impacts of climate change requires a substantial reduction in global 

greenhouse gas emissions by 2030. Despite the urgency, climate actions are lacking in 

many nations. A rich body of cross-national research on human drivers of emissions is 

devoted to identifying effective leverage points for emission abatement, which primarily 

focuses on aggregate emission measures such as production-based accounts and 

consumption-based accounts. However, a nation’s carbon-emitting activities are not 

monolithic, but can instead be classified into distinct components based on important 

characteristics such as the supply chain stage to which they belong. These emission 

components likely have heterogeneous relationships with certain anthropogenic drivers or 

mitigation measures. Yet, analyses using aggregate emission measures are unable to 

detect such heterogeneity or inform the unique strategy that might be required to 

effectively mitigate each emission component. I address this gap using the three 

empirical chapters of this dissertation. In the first empirical chapter, I propose an 

analytical framework of Multidimensional Emissions Profile (MEP), which situates 

nations’ contributions to global greenhouse gas emissions into four distinct components: 

(1) emissions generated by domestic-oriented supply chain activities; (2) emissions 
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embodied in imports; (3) emissions embodied in exports; and (4) direct emissions of end 

user activities. I then apply the MEP framework to analyze the relationships between 

national affluence and the four emission components for 34 high-income nations. I find 

that as these nations grow wealthier, affluence is increasingly decoupled from direct 

emissions of end user activities but remains positively associated with the other three 

emission components in various ways. The findings suggest that emission-suppressing 

mechanisms associated with growing affluence are effective in mitigating direct end user 

emissions—typically the smallest component—but not the other three emission 

components. Therefore, high-income nations should prioritize mitigating emissions 

generated by supply chain activities outside the end use stage. The second empirical 

chapter is an examination of how renewable energy deployment is related to these 

emission components in high-income nations. I find that renewable energy deployment 

mitigates emissions by domestic-oriented supply chain activities, and with increasing 

effectiveness over time; yet it remains ineffective in curbing the other three emission 

components, indicating the existence of structural barriers that prevent the 

decarbonization effect of renewables from spilling over to these three emission 

components. These barriers must be overcome in order to achieve the full 

decarbonization potential of renewable energy deployment. In the third empirical chapter, 

I investigate the time-varying relationships between domestic income inequality and the 

four emission components, in order to unpack the multiple pathways linking income 

inequality to emissions. The results suggest that the relationships change over time, vary 

across emission components, and differ between measures of income inequality, which 

indicate variations in the causal pathways, both over time and across emission 
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components. The findings from all three empirical chapters support the validity of the 

MEP framework. The relationships between greenhouse gas emissions and national 

affluence, renewable energy deployment, and domestic income inequality are 

multidimensional: these anthropogenic forces curb some emission components but spur 

others. Climate policies targeting these anthropogenic forces should optimize their 

decarbonization benefits while neutralizing the mechanisms through which they drive 

growth in emissions. 
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1.0  CHAPTER 1: INTRODUCTION 

Global climate change causes a multitude of disastrous impacts on societies and 

ecosystems (IPCC 2021). Mitigating these impacts requires substantial reduction in 

global greenhouse gases (GHGs) emissions by 2030 (IPCC 2018; UNFCCC 2021). 

However, by the time of the Glasgow Climate Conference (COP26) in 2021, nations’ 

contributions, pledges and commitments to reduce emissions, even if fully achieved, still 

fall short of the global target, leaving much to be desired for national actions on climate 

change mitigation (Bansard et al. 2021; UNEP 2021). 

Driven by the urgent need for climate change mitigation, a rich body of social 

science research on anthropogenic drivers of GHG emissions is devoted to identifying 

effective leverage points for emission abatement at national level (Blanco et al. 2014; 

Jorgenson et al. 2019; Rosa and Dietz 2012). This body of research is largely rooted in 

the IPAT/STIRPAT framework or the similarly specified Kaya identity, both identifying 

population (P), affluence (A), and technology (T) as three main drivers of human impacts 

on the environment (Dietz 2017; Dietz and Rosa 1994; Kaya 1990; York, Rosa, and Dietz 

2003). More specifically, the STIRPAT model is widely used by cross-national empirical 

studies to identify human drivers of emissions, estimate their effects, test hypotheses, and 

inform policy efforts. Empirically identified drivers include—but are not limited to—

affluence (Aslanidis and Iranzo 2009; Jorgenson and Clark 2012; Thombs 2018), 
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population size and structure (Dietz and Rosa 1997; Jorgenson and Clark 2010; York 

2007), urbanization (Jorgenson, Auerbach, and Clark 2014; Marcotullio et al. 2014), 

trade (Huang 2018; Jorgenson 2012; Liddle 2018; Prell and Feng 2016), and 

militarization (Jorgenson and Clark 2009; Jorgenson, Clark, and Givens 2012; Jorgenson, 

Clark, and Kentor 2010). Research also identifies renewable energy deployment as an 

instrumental measure for climate mitigation (IPCC 2011; Sovacool 2016; Sovacool and 

Geels 2016; York 2012), and finds that domestic income inequality is an important factor 

to consider at the intersection of social justice and climate mitigation (Grunewald et al. 

2017; Jorgenson et al. 2016; Jorgenson, Schor, and Huang 2017). However, for these 

human drivers and mitigation measures, there are debates on the magnitude and direction 

of their effects on emissions, and on the variations in effects over time and across 

geopolitical or macroeconomic contexts (see Dietz 2017; Jorgenson et al. 2019).  

The cross-national research on drivers and mitigation has primarily focused on 

how anthropogenic forces affect the total emissions of a nation, or related quotient 

measures that adjust for either the size of population or economy. Earlier research relies 

on production-based accounts (PBA) of emissions, also that attributes emissions to 

nations based on where they are emitted (UNFCCC 1997). Emission measures based on 

this approach do not account for the emissions embodied in a nation’s imports, which are 

generated in other nations. The omission is significant because in the past 25 years, 

around a quarter of global GHG emissions are embodied in international trade; many 

high-income nations, in particular, have been net importers of embodied emissions 

through trading with lower-income nations (Davis, Peters, and Caldeira 2011; Peters et 

al. 2011; Peters, Davis, and Andrew 2012; Wood et al. 2020). In light of the limitations 
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of PBA, consumption-based accounting (CBA) was proposed, which accounts for all 

emissions driven by a nation’s consumption demand (Davis and Caldeira 2010; Peters 

and Hertwich 2008). It is an important methodological and substantive advancement. 

Researchers argue that switching from PBA to CBA as the basis for mitigation 

policymaking can improve both the effectiveness and justice of climate mitigation 

policies (Steininger et al. 2014). An increasing number of cross-national drivers studies 

have used CBA measures either by themselves or in conjunction with PBA measures 

(Cohen et al. 2018; Huang and Jorgenson 2018; Knight and Schor 2014; Liddle 2018). 

Both PBA and CBA are instrumental to understanding how the totality of a 

nation’s GHG emissions are affected by human drivers and mitigation measures. 

However, analyses using these aggregate emission measures tend to overlook the more 

nuanced multidimensionality in a nation’s contributions to global emissions. A nation’s 

GHG-emitting activities are not monolithic, but can instead be classified into distinct 

categories based on important characteristics such as the stage of supply chain in which 

the activities occur, the type of fossil fuels consumed, or the economic sector in which 

the activities take place. Correspondingly, a nation’s GHG emissions are constituted by 

multiple structural components, each with distinct implications for emissions abatement. 

Does an anthropogenic force, either a driver or a mitigation measure, equally affect these 

emission components? Or are the effects of this force instead heterogeneously distributed 

across these components? What are the implications of the potential heterogeneity for 

climate mitigation?  

Across the three empirical chapters in this dissertation, I seek to address these 

questions and fill major gaps in the literature. I propose a new analytical framework for 
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the systematic analysis of multiple structural components of nations’ emissions. Using 

this framework, I investigate how these emission components are related to national 

affluence, renewable energy deployment, and domestic income inequality. 

In Chapter 2, I lay out the proposal for an analytical framework of 

Multidimensional Emissions Profile (MEP), which situates nations’ contributions to 

global GHG emissions into four distinct components: (1) emissions generated by 

domestic-oriented supply chain activities (DOSCA); (2) emissions embodied in imports; 

(3) emissions embodied in exports; and (4) direct emissions of end user activities. This 

chapter begins with a review of the cross-national comparative literature on human 

drivers of climate change. Then, I discuss the rationales behind conceptualizing nations’ 

contributions to global GHG emissions as multidimensional, focusing on the distinctions 

among emission components in terms of their implications for climate mitigation and 

climate justice. Next, I describe the proposal of the MEP framework, which, to the best of 

my knowledge, is the first analytical framework for a systematic analysis of these four 

emission components, with particular attention to the heterogeneity among emission 

components in their relationships with human drivers and mitigation measures. I calculate 

the data on these four emission components using the environmentally-extended multi-

regional input-output (EE-MRIO) method (Miller and Blair 2009), and the EE-MRIO 

tables from the latest version of Exiobase 3 (Stadler et al. 2018, 2021). 

In the second half of Chapter 2, I apply the MEP framework to empirically 

analyze the affluence/emissions nexus. The motivation is two-fold. First, the analyses are 

used as a proof-of-concept for the MEP framework. The heterogeneity across the four 

emission components in how they are related to affluence, if found, will support the 
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notion of multidimensionality in nations’ contributions to global GHG emissions and in 

the affluence/emissions relationship. Second, I situate the analyses within the rich body 

of prior research on the affluence/emissions relationship and seek to demonstrate how the 

MEP framework contributes to the research literature and policymaking (Burke, 

Shahiduzzaman, and Stern 2015; Jorgenson and Clark 2012; Liddle 2015; Lohwasser, 

Schaffer, and Brieden 2020; Wang, Assenova, and Hertwich 2021).  

The affluence/emissions relationship plays an important role in informing the 

broad direction of mitigation policies, and particularly whether some alternative forms of 

economic development are required to limit global warming to below 1.5°C while 

improving national affluence. Some studies argue that increases in affluence are 

associated with increasing societal scale of resource consumption, and hence inevitably 

lead to more emissions (Dietz 2017; Jorgenson et al. 2019; Rosa and Dietz 2012; 

Schnaiberg 1980). Others argue that political, technological, and cultural changes such as 

state environmental regulations, renewable energy deployment, energy efficiency 

improvement, and environmental social movements, can alter the societal composition of 

consumption enough to counteract the upward pressure on emissions induced by an 

increased scale of consumption (Grossman and Krueger 1995; Mol 2000; Mol, 

Spaargaren, and Sonnenfeld 2014; Rosa and Dietz 2012). Cross-national empirical 

studies on the affluence/emissions nexus primarily focus on aggregate emission measures 

such as PBA and CBA.  

Different from prior research, I investigate how national affluence is associated 

with multiple components of nations’ emissions in potentially heterogeneous ways, by 

using the MEP framework. I seek to identify (1) which emission components grow the 
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most along with economic growth, and hence must be prioritized in national mitigation 

plans; and (2) which emission components, if any, have been decoupled with affluence, 

and therefore should be further examined to understand whether and how the mechanisms 

behind the decoupling can be adapted for other emission components.  

I analyze a balanced panel dataset encompassing the data for 34 high-income 

nations from 1995 to 2015. The sample is selected in part based on the availability of the 

EE-MRIO data used to calculate the four emission components. Results of panel 

regression analyses with two-way fixed effects indicate that as high-income nations grow 

even wealthier, affluence is increasingly decoupled from direct emissions of end user 

activities but remains positively associated with the other three emission components in 

various ways. In addition to demonstrating the validity of the MEP framework, the results 

also suggest that after affluence reaches a threshold, emission-suppressing mechanisms 

associated with growing affluence are effective in mitigating direct end user emissions—

typically the smallest component for each nation—but not the other three emission 

components. Therefore, high-income nations should prioritize mitigating GHG emissions 

generated by supply chain activities outside the end use stage. 

While Chapter 2 addresses a major driver of emissions, in Chapter 3 I focus on an 

important measure of climate change mitigation, renewable energy deployment, and how 

it is related to nations’ multiple emission components. The urgency of climate mitigation 

underscores the importance of optimizing the decarbonization effect of renewable energy 

deployment (IPCC 2011). To this end, a large body of research has examined how 

renewable energy deployment affects nations’ CO2 emissions, yielding mixed findings. A 

number of studies find that increasing renewable energy consumption in a nation can 
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reduce its CO2 emissions (Bilgili, Koçak, and Bulut 2016; Shafiei and Salim 2014; 

Shahnazi and Dehghan Shabani 2021; Sovacool et al. 2020; Wang et al. 2021). Other 

studies question whether renewable energy, as it has been deployed, can lead to the rapid 

and substantial emission abatement that is necessary to meet the global mitigation target 

(Davidson 2019; Hill, Tajibaeva, and Polasky 2016; York 2012). These studies together 

underscore that renewable energy transition and its effectiveness as an emission 

abatement measure are shaped by various political-economic, social, and technological 

factors (Jorgenson et al. 2019; Sequeira and Santos 2018; Smil 2016; Sovacool 2016; 

Sovacool and Geels 2016). 

Most cross-national research to date on the renewable energy-carbon emissions 

nexus examines aggregate national emission outcomes and especially PBA. However, 

prior research has not systematically examined the decarbonization effect of renewable 

energy deployment on multiple components of nations’ CO2 emissions corresponding to 

different types of fossil fuel consumption activities. Renewables’ impacts on these 

emission components may differ in magnitude, in direction, and in how the impacts 

change over time. For example, if renewable energy deployment is found to suppress the 

PBA of nations’ emissions, it does not necessarily mean that the same decarbonization 

effect is achieved for all emission components. In other words, unless proven otherwise, 

the renewable energy-carbon emissions nexus is likely a multidimensional process 

consisting of distinct relationships between renewables and each of these emission 

components.  

To address the gap in the literature, I use the MEP framework to systematically 

analyze the potentially heterogeneous relationships between nations’ renewable energy 
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deployment and their multiple emission components. Compared across these emission 

components, which are more effectively mitigated by renewable energy deployment? 

Which components are less effectively mitigated? For each emission component, how has 

the decarbonization effect of renewable energy changed over time?  

I first conduct a baseline analysis of renewables’ relationship with nations’ PBA, 

and how the relationship changes over time. Then I analyze renewables’ relationships 

with the emissions by domestic-oriented supply chain activities (DOSCA), emissions 

embodied in exports, and direct end user emissions, as well as how these relationships 

change over time. These 3 emission components together constitute PBA. The focus on 

PBA and its components is consistent with the literature’s main focus. The 4th emission 

component, emissions embodied in imports, is excluded from the main analysis due to a 

lack of theoretical ground to assume that a nation’s domestic energy policies can directly 

influence the emissions embodied in imports, which are generated in foreign nations. 

Given the conceptual focus on energy, fuel, and decarbonization, I analyze CO2 

emissions rather than all types of GHG emissions.  

Using seemingly unrelated regression modeling with two-way fixed effects on a 

panel dataset of 34 high-income nations from 1995 to 2015, I find that renewable energy 

deployment only mitigates emissions by domestic-oriented supply chain activities 

(DOSCA), and with increasing effectiveness over time; yet it remains ineffective in 

curbing the other three emission components. Using DOSCA emissions as the 

benchmark, I discuss potential structural barriers that prevent the decarbonization effect 

of renewables from spilling over to the other emission components. These barriers must 
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be overcome in order to achieve the full decarbonization potential of renewable energy 

deployment. 

In Chapter 4, I turn to domestic income inequality and examine how it is related 

to nations’ four emission components that constitute the MEP. Rising income inequality 

has become a prominent issue during the COVID19 pandemic (Deaton 2021; Ferreira 

2021), while reducing global CO2 emissions remains an urgent task (UNFCCC 2021). 

Can policies seeking to address income inequality also synergistically generate the co-

benefits of CO2 emissions abatement? A growing body of research investigates the 

relationship between domestic income inequality and CO2 emissions, and identifies three 

major theoretical pathways that link domestic income inequality to CO2 emissions.  

The first pathway focuses on power and political economy. When the social 

groups that benefit from environmental degradation are more powerful than those who 

suffer, the societal level of environmental degradation tends to increase (Boyce 1994, 

2003, 2007). Higher income inequality means greater power differential between the 

wealthy and the poor, allowing the wealthy to undermine democracy and prioritize their 

economic interests in perpetuating the fossil fuel-based development over the society’s 

need for climate change mitigation (Cushing et al. 2015; Downey 2015). Therefore, the 

political economy pathway suggests that greater income inequality may increase the 

societal level of CO2 emissions. The second pathway focuses on how greater income 

inequality can induce a “Veblen effect” where middle- and lower-class groups are 

pressured by heightened status competition to spend more in order to keep up with the 

lifestyle standard set by the upper class (Schor 1998; Veblen 1934). The increased 

competitive consumption can lead to increased CO2 emissions. In general, the Veblen 
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effect pathway argues that higher income inequality is associated with increased CO2 

emissions. The third pathway focuses on the marginal propensity to emit. Ravallion, Heil, 

and Jalan (2000) find that greater domestic income inequality is associated with lower 

emissions, which they attribute to the decline in the marginal propensity to emit that 

accompanies an increase in household income, an argument supported by other studies 

(Heil and Selden 1999; Holtz-Eakin and Selden 1995; Jakob et al. 2014; Seriño and 

Klasen 2015). Following this pathway, reduction in income inequality by redistributing 

income from the wealthy to the poor is expected to increase the societal level of CO2 

emissions. 

Existing cross-national research examines the inequality-emissions nexus and the 

causal pathways mainly by analyzing how income inequality affects aggregate emission 

measures such as PBA (Grunewald et al. 2017), and CBA of CO2 emissions (Jorgenson et 

al. 2016). However, the literature has not systematically examined how income inequality 

may heterogeneously affect various structural components of nations’ CO2 emissions that 

are generated by different categories of human activities. How might the effect of income 

inequality differ in magnitude or even in direction across emission components? Are the 

pathways linking income inequality to emissions different across emission components? I 

address these questions by applying the MEP framework to investigate how nations’ four 

emission components may be heterogeneously related to domestic income inequality, and 

how the relationships change over time.  

I argue that the three aforementioned theoretical pathways concern different types 

of carbon-emitting activities, and correspondingly, different emission components in the 

MEP framework. The political economy pathway primarily focuses on the production 
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realm, while the Veblen effect pathway and the marginal propensity to emit pathway are 

more closely related to the consumption realm. From a nation’s standpoint, emissions 

embodied in its exports belong to its production realm. Conversely, emissions embodied 

in a nation’s imports belong to its consumption realm, same as direct end user emissions. 

DOSCA emissions of a nation pertain to both its production and consumption. Therefore, 

the political economy pathway may have more relevance to emissions embodied in 

exports and DOSCA emissions, while the Veblen effect pathway and the marginal 

propensity to emit pathway are more pertinent to direct end user emissions, emissions 

embodied in imports, and DOSCA emissions. 

I estimate seemingly unrelated regression models with fixed effects on a panel 

dataset of 34 high-income nations from 2004 to 2015. In the analysis, I operationalize 

income inequality in two different ways: the Gini coefficient and the income share held 

by the top 10% of population. It is possible that all three causal pathways can shape the 

two inequality measures’ relationships with emissions, albeit not in an equal manner. 

Gini’s relationships with emissions are likely more sensitive to the dynamics of the 

marginal propensity to emit, while the relationships between emissions and income share 

of the top 10% may be more sensitive to the political economy and Veblen effects 

(Jorgenson et al. 2017). 

I find that the relationships between income inequality and nations’ CO2 

emissions change over time, vary across emission components, and differ between 

measures of income inequality. Most notably, the income share of the top 10% is 

positively associated with emissions embodied in exports after 2010, and is negatively 

associated with end user emissions from 2004 to 2006, and from 2009 to 2011. The 
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results indicate variations in the causal pathways, both over time and across emission 

components. Income inequality affects emissions embodied in exports primarily via the 

political economy pathway, and especially so after the Great Recession. The marginal 

propensity to emit pathway, at times, appears to outweigh the Veblen effect pathway as 

the main mechanism through which income inequality affects direct end user emissions. 

In Chapter 5, the final chapter, I summarize the key findings from Chapters 2, 3, 

and 4, and discuss their implications for climate change mitigation, development, and 

social justice and equality. I also lay out the limitations of the analyses in these chapters. 

Taken as a whole, this dissertation underscores the multidimensionality in how nations 

contribute to global carbon emissions, and in how emissions are related to anthropogenic 

forces. The multidimensionality informs theories and policies regarding human drivers of 

emissions and mitigation measures. Additionally, the dissertation research demonstrates 

the utility of the MEP analytical framework for the research and policy considerations on 

climate change mitigation. I conclude by discussing how the MEP framework informs 

directions for future research on human dimensions of climate change.  
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2.0  CHAPTER 2: NOT ALL EMISSIONS ARE CREATED EQUAL: 

MULTIDIMENSIONALITY IN NATIONS’ GREENHOUSE GAS EMISSIONS 

AND THE AFFLUENCE/EMISSIONS NEXUS 

2.1 ABSTRACT 

 
Human drivers of greenhouse gas emissions do not homogeneously affect all structural 

components of nations’ emissions. This study proposes an analytical framework of 

Multidimensional Emissions Profile, which situates nations’ contributions to global 

greenhouse gas emissions into four distinct components: (1) emissions generated by 

domestic-oriented supply chain activities; (2) emissions embodied in imports; (3) 

emissions embodied in exports; and (4) direct emissions of end user activities. Using this 

framework, input-output data, and panel regression analysis, I analyze the heterogeneity 

in relationships between national affluence and the four emissions components for 34 

high-income nations. As these nations grow wealthier, affluence is increasingly 

decoupled from direct emissions of end user activities but remains positively associated 

with the other three emission components in various ways. The findings suggest that after 

affluence reaches a threshold, emission-suppressing mechanisms associated with growing 

affluence are efficacious in mitigating direct end user emissions—typically the smallest 

component for each nation—but not the other three emission components. Therefore, 

high-income nations should prioritize mitigating emissions generated by supply chain 

activities outside the end use stage. I conclude by suggesting directions for climate 
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change drivers and mitigation research that use the multidimensional emissions profile 

framework.  

2.2 INTRODUCTION 

Global climate change causes a multitude of disastrous impacts on ecosystems 

and human society (IPCC 2021). The Paris Agreement (UNFCCC 2015) and the 

Glasgow Climate Pact (UNFCCC 2021) recognize that these impacts can be significantly 

mitigated by limiting global warming to less than 1.5°C above pre-industrial levels, 

which in turn requires substantial reduction in global greenhouse gases (GHG) emissions 

by 2030 (IPCC 2018). However, by the time of COP-26, analysts have found that the 

nationally determined contributions (NDCs), pledges, and commitments to reduce 

emissions, even if they are fully materialized, will fall short of achieving the below 1.5°C 

target, leaving much to be desired for national actions on emissions abatement (Bansard 

et al. 2021; UNEP 2021). Driven by the urgent need for climate change mitigation, a rich 

and sophisticated body of research on anthropogenic drivers of GHG emissions is 

devoted to identifying effective leverage points for emission abatement at national level 

(Blanco et al. 2014; Jorgenson et al. 2019; Rosa and Dietz 2012). National affluence and 

the closely related economic development are identified as a major driver of emissions 

(Burke, Shahiduzzaman, and Stern 2015; Jorgenson and Clark 2012; Liddle 2015; 

Lohwasser, Schaffer, and Brieden 2020; Wang, Assenova, and Hertwich 2021), making 

the affluence/emissions nexus one of the focal points of climate mitigation research and 

policy considerations.  
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The cross-national drivers research has primarily focused on how anthropogenic 

drivers like national affluence affect the total emission accounts of a nation, or related 

quotient measures that adjust for either the size of population or economy. Two of the 

most widely used national emissions accounts are production-based (a.k.a. territorial) 

emissions account that includes all emissions generated in a nation’s territory (UNFCCC 

1997), and consumption-based emissions account that includes all emissions driven by a 

nation’s final demand regardless of where in the world the emissions are generated 

(Davis and Caldeira 2010; Peters and Hertwich 2006, 2008). Research has identified 

social forces that substantially affect nations’ emissions as captured by these aggregate 

measures, and has been instrumental in guiding national and international climate policies 

(e.g., Cohen et al. 2018; Knight and Schor 2014; Liddle 2018; Steininger et al. 2014). 

However, a nation contributes to global GHG emissions in multiple interconnected yet 

distinct ways, such as through emissions generated by domestic production activities, 

involvement in international trade, and domestic consumer activities. Does a driver like 

national affluence equally affect these emission components? Or are the effects of this 

driver instead heterogeneously distributed across these components? What are the 

implications of such potential heterogeneity for climate mitigation?  

In this study I aim to answer these questions. I first propose an analytical 

framework named multidimensional emissions profile (MEP), which situates nations’ 

contributions to global GHG emissions into 4 distinct but interconnected components: (1) 

emissions generated by domestic-oriented supply chain activities; (2) emissions 

embodied in imports; (3) emissions embodied in exports; and (4) direct emissions of end 

user activities. I then operationalize the 4 emission components using an 
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environmentally-extended multiregional input-output (EE-MRIO) approach, and apply 

the MEP framework and panel regression modeling to analyze the affluence/emissions 

nexus for a group of 34 high-income nations for the period of 1995 to 2015. I investigate 

how national affluence is associated with each of the 4 emission components in 

potentially heterogeneous ways. 

I begin with a review of the cross-national comparative literature on human drivers 

of climate change. Then, I discuss the rationales behind conceptualizing nations’ 

contributions to global GHG emissions as multidimensional, which is followed by the 

proposal of the MEP framework. Next, I apply the MEP framework to analyze the 

relationships between national affluence and each of the four emission components that 

constitute the MEP framework. I conclude by noting how the analyses advance the policy-

oriented research on the affluence/emissions nexus and how other directions of climate 

drivers and mitigation research can benefit from the MEP framework. 

2.3 HUMAN DRIVERS OF NATIONS’ GHG EMISSIONS 

The long-standing research on human drivers of environmental degradation is 

rooted in the IPAT framework or the similarly specified Kaya identity, both identifying 

population (P), affluence (A), and technology (T) as three main drivers of human impacts 

on the environment (Dietz and Rosa 1994; Kaya 1990). The STIRPAT model, or 

stochastic impacts by regression on population, affluence, and technology, was later 

developed to overcome the IPAT model’s assumption of proportionality, allowing 

differences in the three drivers’ estimated influences on the impacts (Dietz 2017; York, 
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Rosa, and Dietz 2003). The STIRPAT model also explicitly conceptualizes the 

technology factor as a combination of many factors, such as culture, that are not captured 

by population and affluence. 

A rich body of cross-national empirical literature has applied the STIRPAT 

approach to identify human drivers of emissions, estimate their elasticity, test hypotheses, 

and inform policy efforts. Empirically identified drivers include—but are not limited to—

affluence (Aslanidis and Iranzo 2009; Jorgenson and Clark 2012; Thombs 2018), 

population size and structure (Dietz and Rosa 1997; Jorgenson and Clark 2010; York 

2007), urbanization (Jorgenson, Auerbach, and Clark 2014; Marcotullio et al. 2014), and 

trade (Huang 2018; Jorgenson 2012; Liddle 2018; Prell and Feng 2016), with debates on 

the magnitude of elasticity, and on the variations in elasticity over time and across 

geopolitical or macroeconomic contexts (see Dietz 2017; Jorgenson et al. 2019).  

Earlier cross-national empirical work relies on production-based or territorial 

emission account that attributes emissions to nations based on where they are emitted 

(UNFCCC 1997). Emission measures based on this approach do not account for the 

emissions embodied in a nation’s imports, which are generated in other nations. The 

omission is significant because for the past 25 years, around a quarter of global GHG 

emissions are embodied in international trade; many high-income nations, in particular, 

have been net importers of embodied emissions through trading with lower-income 

nations (Davis, Peters, and Caldeira 2011; Peters et al. 2011; Peters, Davis, and Andrew 

2012; Wood et al. 2020). In light of the limitations of production-based accounting, 

consumption-based accounting was proposed, which accounts for all emissions driven by 

a nation’s consumption demand (Davis and Caldeira 2010; Peters and Hertwich 2008). It 
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is an important methodological advancement. Researchers argue that switching from 

production-based accounting to consumption-based accounting as the basis for mitigation 

policymaking can improve both the effectiveness and justice of climate mitigation 

policies (Steininger et al. 2014). An increasing number of cross-national drivers studies 

have used consumption-based emission measures either by themselves or in conjunction 

with production-based measures (Cohen et al. 2018; Huang and Jorgenson 2018; Knight 

and Schor 2014; Liddle 2018). 

Both production-based and consumption-based emission accounts are instrumental 

to understanding how the magnitude of a nation’s GHG emissions are affected by human 

drivers. However, drivers research using aggregate emission measures tends to overlook 

the more nuanced multidimensionality in a nation’s contributions to global emissions, and 

particularly how multiple components of a nation’s emissions, each having distinct 

implications for climate mitigation and justice, may be related to human drivers in 

differentiated ways. 

2.4 MULTIDIMENSIONALITY IN NATIONS’ CONTRIBUTIONS TO 

GLOBAL GHG EMISSIONS 

I use the term multidimensionality to refer to the characteristic of a nation’s 

contributions to global emissions as being constituted by multiple distinct but 

interconnected components. Greenhouse gases are emitted by a multitude of human 

activities, including fossil fuel combustion in various scenarios, cement production, waste 

treatment, and livestock activities. These activities can be classified according to a 



 31 

number of schemes, including based on the type of GHG emitted, the type of chemical, 

biochemical, and biological activities that generate the GHG, the economic sector where 

such activities belong to, and the geographical location where the GHG is emitted. 

Therefore, a nation’s GHG emitting activities, and by extension, its GHG emissions, are 

multidimensional. Of particular interest to this study is the classification of GHG emitting 

activities based on whether the emissions are generated directly by end user activities or 

the rest of supply chain activities (ROSCA), and whether the emissions are embodied in 

imports, exports, or in domestic supply chain activities serving domestic end users. 

2.4.1 Emissions from End User Activities and the Rest of Supply Chains 

Emissions directly generated by end user activities and by ROSCA are distinct 

points of intervention for climate mitigation. Some notable end user activities that 

directly generate GHG emissions including driving personal vehicles, and using fossil 

fuel-based household space and water heaters and power generators. In contrast, the rest 

of supply chain activities that directly emit GHG include fuel combustion that occurs 

outside the end use stage, a wide range of non-combustion industrial and agricultural 

activities, and waste treatment. 

At the household or individual level, different intervention strategies are required 

for behaviors that directly generate emissions than for behaviors that do not generate 

emissions directly but are implicated in the emissions generated elsewhere in the supply 

chains of the associated goods and services. This is in part due to consumers being 

unaware of the embodied fossil fuel consumption or emissions in goods and services, a 

barrier that needs to be overcome before consumer behaviors regarding to the embodied 
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emissions can be effectively tapped for emission abatement (Abrahamse et al. 2007; 

Cohen and Vandenbergh 2012; Stern et al. 2016). In contrast, this barrier is less relevant 

for the emissions that are directly generated by consumer behaviors such as driving. Prior 

research on household emissions at subnational level has found driving forces such as 

income have differentiated effects on direct household emissions versus ROSCA 

emissions driven by household consumption (e.g., Yuan, Rodrigues, and Behrens 2019). 

At an organizational level, mitigating direct emissions of end user activities is 

related to business organizations’ roles as providers of consumer goods and services: the 

offering of products with the technical potential to lower direct end user emissions (such 

as the offering of electric vehicles or vehicles with high fuel efficiency), and marketing 

campaigns to promote such products in order to increase behavioral plasticity of adopting 

these products and using them in ways that realize the emission abatement potential 

(Blumstein and Taylor 2013). In contrast, mitigating ROSCA emissions requires 

targeting business organizations’ role as emitters of greenhouse gases, in conjunction 

with their roles as providers of products (Stern et al. 2016). Notably, mitigating ROSCA 

emissions requires business organizations to reduce the emissions from multiple stages of 

their business operations, such as reducing energy used in workplace and production 

facilities (for example, Japan's Cool Biz campaign, see Sampei and Aoyagi-Usui 2009; 

Shinn 2011), and reducing emissions from transportation of goods and personnel, all of 

which are counted toward the ROSCA emissions of their products. Moreover, business 

organizations that are consumers and suppliers of immediate goods and services can also 

influence the emissions generated by other business at the upstream or downstream of 

supply chains, as evident in case studies on housing and construction (Biggart and 
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Lutzenhiser 2007; Janda and Parag 2013; Parag and Janda 2014). As suppliers of 

consumer goods, businesses can offer products, such as high-efficiency appliances, that 

help lower consumers’ electricity consumption and ultimately lower the emissions from 

power generation (Blumstein and Taylor 2013; Brown and Kim 2015).1 Given the 

differences between ROSCA emissions and direct end user emissions, it can be 

questionable to assume that a emission driver affects the two emission components 

equally. Analyzing them separately allows researchers to unpack how they might be 

heterogeneously affected by a certain emission driver or mitigation measure. 

2.4.2 Emissions Embodied in Imports, Exports, and Domestic-Oriented Supply 

Chain Activities 

ROSCA emissions can be further decomposed based on whether the emissions are 

embodied in imports, exports, or are generated by domestic supply chain activities 

serving domestic end users. Due to globalization and the proliferation of international 

trade, the end use stage and the rest of supply chain activities of many goods and services 

have been increasingly separated across national borders. In 2015, the GHG emissions 

embodied in all international trade amount to 11,333 megatons CO2-equivalents, which 

account for nearly a quarter of global emissions (calculated based on the data from 

Stadler et al. 2018, 2021; see also Wood et al. 2018). The emissions embodied in a 

nation’s imports are generated by supply chain activities outside of its jurisdiction. The 

                                                             
1 As a reminder, GHG emissions associated with household electricity consumption count toward ROSCA 
emissions as opposed to directly end user emissions because this part of emissions is not generated directly 
by end users but rather by power plants, with the exception of electricity from fossil fuel-based household 
power generators. 
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importing nation’s government can only exert indirect influence over these supply chain 

activities, via means such as carbon border adjustment, tariffs, and other regulations over 

imports, which differs from the more direct regulatory power it has over domestic supply 

chain activities. Conversely, domestic supply chain activities serving foreign end users, 

which generate emissions embodied in a nation’s exports, are subject to the indirect 

influence of foreign state regulations. These differences in regulatory dynamics could 

mean differentiated mitigation strategies are required for a nation to reduce the emissions 

embodied in its imports, the emissions embodied in its exports, and the emissions 

generated by its domestic-oriented supply chain activities (DOSCA). 

Furthermore, the three groups of supply chain activities have different 

implications for international climate justice. Consumption-based accounting (CBA) is 

argued to better account for international climate justice than production-based 

accounting (PBA) in that CBA accounts for the carbon leakage via trade, especially the 

leakage from wealthier consuming/importing nations to poorer producing/exporting 

nations (Peng, Zhang, and Sun 2016; Peters and Hertwich 2006; Steininger et al. 2014, 

2016). Based on CBA, the emissions embodied in imports can be viewed as a form of 

emission displacement from the end user nations that import and consume the products to 

the producer nations where the emissions are generated. On the flip side, the emissions 

embodied in exports can be viewed as undertaking the emissions displaced from other 

nations. Moreover, a growing body of literature on emission accounting and climate 

policies is devoted to quantifiably dividing the cause of emissions embodied in 

international trade and the corresponding share of mitigation responsibility among end 

user nations and producer nations (e.g., Dietzenbacher, Cazcarro, and Arto 2020; Lenzen 
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et al. 2007; Lenzen and Murray 2010; Marques et al. 2012). The majority of these 

schemes of division entail redistributing the emissions embodied in a nation’s trade to 

nations along supply chains, and the redistribution procedure is symmetrical for 

emissions embodied in imports and in exports. The redistribution is said to enhance the 

justice in allocating the mitigation responsibility among nations. Unlike emissions 

embodied in trade, emissions generated by DOSCA do not involve transnational 

displacement of emissions via trade and are generally not subject to the redistribution. In 

sum, given that emissions embodied in imports, emissions embodied in exports, and 

DOSCA emissions have distinct implications for climate mitigation and international 

climate justice, the analysis of nations’ emissions and their relationship with human 

drivers of climate change can benefit from further decomposing ROSCA emissions into 

these three emission components.  

2.5 MULTIDIMENSIONAL EMISSIONS PROFILE: AN ANALYTICAL 

FRAMEWORK 

I propose an analytical framework named multidimensional emissions profile 

(MEP), which situates nations’ contributions to global climate change into the four 

aforementioned emission components: (1) emissions generated by domestic-oriented 

supply chain activities (DOSCA); (2) emissions embodied in imports; (3) emissions 

embodied in exports; and (4) direct emissions of end user activities.2 Components (1) to 

                                                             
2 For emission components (1) to (3), I adopt the definitions based on the multi-regional input-output 
(MRIO) method as opposed to the emissions embodied in bilateral trade (EEBT) method. The two methods 
differ in the allocation of the emissions generated by the internationally-traded intermediate goods. The 
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(3) are parts of ROSCA emissions; component (4) are emissions directly generated by 

end user activities such as driving personal vehicles and household heating that burns 

fossil fuels on site. Although the MEP framework separates the 4 emission components, 

it aims to analyze them systematically in order to account for the interconnections among 

the emission components that are parts of complex feedback loops among components of 

human-environmental interaction systems (Liu et al. 2007; Ostrom 2010). For example, 

climate policies targeting DOSCA emissions in nation A may inadvertently increase the 

emissions embodied in its imports due to carbon leakage: climate policies cause certain 

carbon-intensive industries to relocate from nation A to other nations without such 

policies, and the products of these industries are shipped back to nation A for final 

consumption (King and van den Bergh 2021; Peters 2010). Figure 2.1 presents a 

conceptual diagram of the four emission components and their relationships with 

production-based emissions account and consumption-based emissions account, in a 

simplified 2-nation model that excludes re-imports and re-exports.3 

A major advantage of the MEP framework for the drivers research is that it 

enables analyses on how anthropogenic forces affect each component of emissions in 

potentially differentiated ways, creating avenues for more nuanced hypothesis testing, 

policy analysis, and theory building. By unpacking these heterogeneous relationships, the 

MEP reveals how the impacts of the driver may be unevenly distributed among GHG-

emitting activities in the end use stage as well as other stages of supply chains both 

                                                             
EEBT method allocates this part of emissions to the nations that consume the intermediate goods, 
regardless of where the final goods (produced from said intermediate goods) are consumed. The MRIO 
method allocates this part of emissions to the nation where the final goods are consumed. See Peters et al 
(2011) for a detailed description of the two methods. 
3 This figure is inspired by Fig. 1 in Steininger et al (2014) that illustrates the three-way separation of 
emissions embodied in imports, emissions embodied in exports, and the remaining domestic emissions.  
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within and beyond a nation’s territory. Doing so also helps identify effective leverage 

points for climate mitigation, which is a major objective of the drivers research.  

Another advantage is the inclusion of emissions embodied in imports and in 

exports, both of which are important ways through which a nation contributes to global 

GHG emissions. Emission accounting methods such as PBA and CBA only account for 

either emissions in imports or exports but not both, in order to avoid double counting.4 In 

contrast, the MEP is not an accounting method. It is primarily concerned with capturing 

how a nation contributes to global emissions in multiple distinct and interconnected 

ways, including both imports and exports, and how anthropogenic drivers affect each of 

these ways. As such, drivers research using the MEP can provide a more complete 

understanding how driving forces (and mitigation policies targeting these forces) affect 

nations’ contributions to global emissions. To circumvent the double-counting issue, the 

MEP does not conceptualize the sum of all 4 emission components as a nation’s total 

emissions account or as the emissions that this nation is solely responsible for. The MEP 

also differs from the literature on net emissions transfer via trade, which generally 

focuses on the degree to which nations are net importers or net exporters of carbon 

emissions—quantified based on the differential between the embodied emissions in 

nations’ imports and exports (Jakob and Marschinski 2013; Peters et al. 2011; Prell and 

Sun 2015; Wood et al. 2020). In comparison, the MEP explicitly conceptualizes imports 

                                                             
4 Kander et al (2015) list 3 desired properties for an ideal national emissions account: sensitivity, 
monotonicity, and additivity, which can be seen as a subset of the 6 properties formulated by Rodrigues et 
al (2006) that also include scale invariance, economic causality, and symmetry (see also Domingos, 
Zafrilla, and Lopez 2016). The full inclusion of emissions embodied in both imports and exports in a 
nation’s emissions account violates the criterion of additivity and potentially other criteria (Lenzen et al. 
2007). 
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and exports as two coexisting ways through which a nation contributes to global 

emissions. 

2.6 APPLY THE MEP FRAMEWORK TO THE AFFLUENCE/EMISSIONS 

NEXUS 

I apply the MEP framework to analyze how national affluence is associated with 

nations’ four emission components. The motivation is two-fold. First, the analyses are 

used as a proof-of-concept for the MEP framework. The heterogeneity across the four 

emission components in how they are related to affluence, if found, will support the 

notion of multidimensionality in nations’ contributions to global GHG emissions and in 

the affluence/emissions relationship.  

Second, I situate the analyses within the rich body of literature on the 

affluence/emissions relationship—which has been a major point of contention in the 

broader drivers literature and climate mitigation policymaking—and seek to demonstrate 

how the MEP framework contributes to the research literature and policymaking. The 

affluence/emissions relationship plays an important role in informing the broad direction 

of mitigation policies, and particularly whether some alternative forms of economic 

development are required to limit global warming to below 1.5°C while improving 

national affluence. Some studies argue that increases in affluence are associated with 

increasing societal scale of resource consumption, and hence inevitably lead to more 

emissions (Dietz 2017; Jorgenson et al. 2019; Rosa and Dietz 2012; Schnaiberg 1980). 

Others argue that political, technological, and cultural changes associated with an 
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elevated affluence level, such as state environmental regulations, renewable energy 

deployment, energy efficiency improvement, and environmental social movements, can 

alter the societal composition of consumption enough to counteract the upward pressure 

on emissions induced by an increased scale of consumption (Grossman and Krueger 

1995; Mol 2000; Mol, Spaargaren, and Sonnenfeld 2014; Rosa and Dietz 2012). 

The majority of cross-national empirical studies find positive relationships 

between affluence and total or per capita GHG emission (Dietz and Rosa 1997; Dong et 

al. 2018; Jorgenson and Clark 2012; Khan et al. 2021; Liddle 2015; Lohwasser et al. 

2020; Thombs 2018; Thombs and Huang 2019; Wang et al. 2021), while a smaller 

number of studies find the relationships to be negative for high-income nations (Dogan 

and Aslan 2017; Schmalensee, Stoker, and Judson 1998). Prior studies also investigate 

how the relationships change along with changes in national affluence by estimating the 

quadratic relationships between affluence and emissions; some find the quadratic term of 

affluence to be positively associated with emissions (Musolesi, Mazzanti, and Zoboli 

2010; Pablo-Romero and Sánchez-Braza 2017), others find negative associations 

(Franzen and Mader 2016; Jebli and Kahia 2020). Taken as a whole, the literature 

generally finds the affluence/emissions relationships vary across nations at different 

levels of affluence, but disagrees on the magnitude and the direction of the relationships.  

Among the four emission components that constitute nations’ MEP, some 

components may be positively associated with national affluence while others may 

remain stable or even decrease along with growing affluence. To the best of my 

knowledge, prior research has not systematically examined the heterogeneity in the 

affluence/emissions relationships across the four emission components, in part because 
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most prior studies rely on production-based and/or consumption-based emission 

measures. The MEP framework allows for a systematic examination of affluence’s 

associations with the four emission components, which in turn allows researchers and 

policymakers to identify (1) which emission components grow the most along with 

economic growth, and hence must be prioritized in national mitigation plans; and (2) 

which emission components, if any, have been decoupled with affluence, and therefore 

should be further examined to understand whether and how the mechanisms behind the 

decoupling can be adapted for other emission components. Therefore, the MEP 

framework helps identify leverage points for climate mitigation.  

2.7 DATA AND METHODS 

2.7.1 Dependent Variables 

I use panel regression techniques to examine the relationships between nations’ 

affluence and their four components of GHG emissions. The four dependent variables are 

(1) emissions generated by domestic-oriented supply chain activities (DOSCA); (2) 

emissions embodied in imports; (3) emissions embodied in exports; and (4) direct 

emissions of end user activities, all measured in megaton CO2 equivalents. These 

emission variables are calculated using the environmentally-extended multi-regional 

input-output (EE-MRIO) method (Miller and Blair 2009), and the EE-MRIO tables from 

the latest version of Exiobase 3 (Stadler et al. 2018, 2021). Technical details of data 

compilation and calculation are provided in the Appendix 2.13.1. 
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2.7.2 Independent Variables 

The main independent variable of interest is national affluence operationalized as 

gross domestic product (GDP) per capita measured in constant 2010 U.S. dollars. To 

examine whether the association between affluence and emissions vary across different 

levels of affluence, I include the squared term of GDP per capita after grand mean-

centering.  

Additional independent variables are total population, urban population as a 

percent of total population, manufacturing value added as a percent of GDP, services 

value added as a percent of GDP, and age dependency ratio (i.e., the population of people 

younger than 15 or older than 64 as a percent of the population of those between 15 and 

64 years old). These variables are commonly used in research on the anthropogenic 

driving forces of climate change (Jorgenson et al. 2019; Rosa and Dietz 2012). Prior 

research also includes trade openness, operationalized as the sum of imports and exports 

as a percent of GDP. Given that the dependent variables distinguish the emissions 

embodied in each nation’s imports and exports, I decide to include imports (% GDP) and 

exports (% GDP) as separate independent variables. Data on all independent variables are 

acquired from the World Bank’s (2022) World Development Indicators Database 

(https://databank.worldbank.org/source/world-development-indicators). 
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2.7.3 Sample 

The sample for the analyses is consisted of data on 34 high-income nations.5 

These nations are selected from a total of 43 nations that have data available for all 

dependent variables and the main independent variables, including 34 high-income 

nations and 9 non-high-income nations based on World Bank’s country classification.6 I 

decide to only include the high-income nations in the sample. This is because prior 

research finds that the relationships between national affluence and GHG emissions differ 

substantially across nations at different affluence levels, and that if there would be 

nations where growth in affluence is decoupled from growth in emissions, they would 

most likely be high-income nations (e.g., Jebli and Kahia 2020; Jorgenson and Clark 

2012; Schmalensee et al. 1998; Thombs 2018). Analyzing a sample of high-income 

nations brings the conceptual focus onto the potential decoupling, which is necessary if 

nations are to maintain growth in affluence while mitigating climate change. While the 

sample only contains high-income nations, the emission measures of the sampled nations 

do account for their trades with the rest of the world. For example, the United States’ 

imports from China are accounted for when calculating the emissions embodied in the 

imports of the United States, even though China as a nation is not in the sample.  

The overall sample is a balanced panel dataset consisted of 714 annual 

observations from the 34 high-income nations in the 21-year period of 1995 to 2015. The 

                                                             
5 Sampled nations include Australia, Austria, Belgium, Canada, Switzerland, Cyprus, Czech Republic, 
Germany, Denmark, Spain, Estonia, Finland, France, United Kingdom, Greece, Croatia, Hungary, Ireland, 
Italy, Japan, Lithuania, Luxembourg, South Korea, Latvia, Malta, Netherlands, Norway, Poland, Portugal, 
Romania, Slovak Republic, Slovenia, Sweden, United States. 
6 https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-
lending-groups  

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
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sample includes 9 out of 10 biggest emitters of among high-income nations in terms of 

total production-based CO2 emissions from fossil fuel combustion in 2015.7 The sample 

size is reduced to 710 observations in models that include manufacturing value added or 

services value added because the United States and Canada have missing data on these 

two variables for years 1995 and 1996. Descriptive statistics of all dependent and 

independent variables in their original metrics are reported in Appendix Table A2.1. 

2.7.4 Regression Modeling Techniques 

I estimate fixed effects regression models with both time-specific and nation-

specific intercepts using Stata 17 software. Time-specific intercepts are estimated by 

including a series of year-specific dummy variables, while nation-specific intercepts are 

estimated by the within estimator xtreg, fe in Stata. The inclusion of two-way fixed 

effects accounts for unobserved heterogeneity that is unique to each year and affects all 

nations equally, as well as the unobserved heterogeneity that is unique to each nation and 

invariant across the whole period of analysis. I estimate country-clustered robust standard 

errors in order to correct for autocorrelation and heteroskedasticity. All non-binary 

variables are transformed with natural logarithm, and hence the regression coefficients 

are elasticity coefficients that represent the percentage change in the dependent variable 

associated with a 1% increase in the independent variables, net of the effects of other 

independent variables.8 The general model is specified as follows: 

                                                             
7 Based on data by Andrew and Peters (2021). 
8 The minimal value of direct emissions of end user activities is 0.142, below 1 and relatively close to 0. 
Therefore, I add a constant of 1 to each observation of this variable before transforming it with natural 
logarithm. 
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𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖 +𝑤𝑤𝑡𝑡 + 𝑒𝑒𝑖𝑖𝑖𝑖  

where subscripts i and t represent nation and year respectively; and 𝑦𝑦𝑖𝑖𝑖𝑖  is the 

outcome variable for nation i at year t; 𝛽𝛽 is the vector of regression coefficients that 

correspond to the vector of time-varying predictor variables 𝑥𝑥𝑖𝑖𝑖𝑖; 𝑢𝑢𝑖𝑖  is the nation-specific 

intercept for nation i; 𝑤𝑤𝑡𝑡is the year-specific intercept for year t; 𝑒𝑒𝑖𝑖𝑖𝑖  is the unique residual 

for nation i at year t. 

I also estimate a set of seemingly unrelated regression (SUR) equations for the 4 

dependent variables using the sureg suite in Stata, which allows the error terms of the 4 

equations to be correlated. Nation and year fixed-effects are estimated by including 

nation and year dummy variables. Stata command suregr is used to estimate nation-

clustered robust standard errors (Kolev 2021). SUR model allows for statistical tests on 

whether the coefficients for affluence differ across the 4 emission components. 

2.8 RESULTS AND DISCUSSIONS 

2.8.1 Changes in the Four Emission Components over Time 

Figure 2.2 presents changes in the 4 emissions components from 1995 to 2015 as 

a percent of their corresponding levels in 1995, for each of the 34 sampled nations. In 

every nation, the changes vary in magnitude, direction, or in both aspects, across the 4 

emission components during this period, which may indicate that certain human drivers 

of emissions and/or policies targeting at these drivers have affected the 4 emission 

components in differentiated manners. This finding supports the notion of 
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multidimensionality in nations’ contributions to global GHG emissions. Comparing 

across nations, the emissions generated by DOSCA increase from 1995 to 2015 in 6 high-

income nations and decrease in 28 nations; the emissions embodied in imports increase in 

29 nations and decrease in 5; the emissions embodied in exports increase in all nations 

but the United Kingdom and Romania; direct emissions of end user activities increase in 

12 nations and decrease in the remaining 22 nations.  

2.8.2 Affluence and the Four Emissions Components 

The regression analyses examine the heterogeneity in relationships between 

affluence and each of the 4 emission components that constitute nations’ 

Multidimensional Emissions Profile. Table 2.1 reports the fixed-effects regression 

models of all 4 emission components. Model 1, 4, 7, and 10 are the baseline models for 

each of the emission components and only include GDP per capita and total population. 

Models 2, 5, 7, and 11 additionally include the squared term of mean-centered GDP per 

capita. Models 3, 6, 9, and 12 are the most fully saturated models for each of the emission 

components, and include all other independent variables: exports (%GDP), imports 

(%GDP), manufacturing (%GDP), service (%GDP), urban population (%population), and 

age dependency ratio. Country-clustered robust standard errors are reported in 

parentheses. Elasticity coefficients are flagged for statistical significance in the table. The 

threshold of p<.1 is not considered statistically significant in the analyses, and is only 

marked in the tables to show changes in coefficients’ level of statistical significance 

across models.  
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DOSCA emissions is the dependent variable of Models 1 to 3. The coefficient for 

the linear term of GDP per capita is positive and statistically significant in Model 1. 

When the squared term of GDP per capita is included as in Model 2 and additional model 

reported in Appendix Table A2.2, neither the squared term nor the linear term is 

statistically significant. Therefore, the squared term of GDP per capita is excluded from 

the most saturated Model 3 for the sake of parsimony. In Model 3, the coefficient for the 

linear term of GDP per capita is 0.417 (95% CI =  0.053 to 0.782) and statistically 

significant. Figure 2.3(a) illustrates that this elasticity coefficient remains stable across 9 

decile points of GDP per capita in the sample. The results indicate a positive and inelastic 

(less than proportional) relationship between high-income nations’ affluence and their 

DOSCA emissions, which remains stable as these nations become wealthier. 

Models 4 through 6 in Table 2.1 focus on GHG emissions embodied in imports. 

All 3 models consistently suggest that the coefficients for the linear term of GDP per 

capita are positive and statistically significant, ranging from 1.243 to 1.375, whereas 

Model 5 and additional model in Table A2.2 in the appendices indicate that the squared 

term of GDP per capita is not significantly associated with emissions embodied in 

imports. Figure 2.3(b) is based on Model 6 and shows that the relationship between GDP 

per capita and emissions embodied in imports is positive and remain stable at 1.375 

(95%CI = 0.859 to 1.892) across the 9 decile points of GDP per capita in the sample. The 

results indicate a positive and elastic (more than proportional) relationship between high-

income nations’ affluence and the GHG emissions embodied in their imports, which stays 

the same as these nations become wealthier. This positive relationship holds when 

imports (as % GDP) is controlled for, suggesting that the relationship is primarily 
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attributed to mechanisms other than the increased imports as a share of the economy that 

often accompanies growth in national affluence among high-income nations.  

Models 7 through 9 are for GHG emissions embodied in exports. The coefficient 

for the linear term of GDP per capita is positive and statistically nonsignificant in Models 

7 and 8, but becomes significant in Model 9 with all other independent variables 

included, where it takes the value of 0.728 (95CI= 0.161 to 1.295). The coefficient for the 

squared term of GDP per capita is positive and significant in Models 8 and 9, ranging 

from 0.257 to 0.260. Figure 2.3(c) is based on Model 9 and shows that when GDP per 

capita is $10,148, which is the 1st decile in the sample, its elasticity coefficient is 0.196 

(95%CI is -0.263 to 0.656, overlapped with 0). As GDP per capita increases, the 

association becomes positive and increases in magnitude. When GDP per capita is 

$19,591, the 3rd decile in the sample, its elasticity coefficient increases to 0.539 (95%CI = 

0.054 to 1.025). When GDP per capita reaches $58,682, the 9th decile, its elasticity 

coefficient further increases to 1.111 (95%CI = 0.382 to 1.840). The results indicate that 

high-income nations’ affluence is not associated with emissions embodied in exports 

when affluence level is at the lower end of the spectrum for high-income nations. 

However, as these nations grow wealthier, the association between affluence and 

emissions embodied in exports become positive and increasingly intensified. The 

intensifying relationship remains even when exports (% GDP) is controlled for as in 

Model 9, suggesting that the intensification between affluence and emissions embodied in 

exports is at least partly due to mechanisms other than the impacts of increased affluence 

on the relative size of export sectors. 
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Lastly, direct GHG emissions of end user activities are the dependent variable of 

Models 10 to 12. Across all 3 models, the coefficient for the linear term of GDP per 

capita is nonsignificant. The coefficient for the squared term of GDP per capita is 

negative and borderline nonsignificant in Model 11 (p=0.060) but becomes statistically 

significant in Model 12, with a value of -0.265 (95%CI= -0.502 to -0.027). Figure 2.3(d) 

is based on Model 12 and illustrates that as GDP per capita increases, the point estimates 

of the association between GDP per capita and direct end user emissions trend downward 

from positive to negative. When GDP per capita is $10,148, its elasticity coefficient is 

0.603 (95%CI = 0.136 to 1.070); when GDP per capita is $19,591, its elasticity 

coefficient decreases to 0.255 (95%CI = -0.144 to 0.653); when GDP per capita reaches 

$58,682, its elasticity coefficient becomes -0.326 (95%CI = -1.006 to 0.354). The 95% 

confidence intervals overlap with zero across the 3rd through the 9th decile points of GDP 

per capita, meaning that the elasticity coefficient of GDP per capita could effectively be 

zero within this distribution of GDP per capita but might become negative and 

significantly different from zero as GDP per capita grows beyond $58,682. The results 

suggest that increases in affluence in high-income nations are positively and inelastically 

associated with their direct end user emissions when the affluence level is relatively low 

in high-income nations’ standard. The magnitude of the positive association becomes 

smaller as nations become more affluent. When the affluence level reaches a threshold at 

around $19,000 per capita, further growth in affluence is no longer associated with 

increases in direct end user emissions, which indicates an absolute decoupling. 

I re-estimate models 3, 6, 9, and 12 using seemingly unrelated regression (SUR) 

with two-way fixed effects and country-clustered robust standard errors, which are 
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reported in Table 2.2. The results of SUR models are consistent with the results of fixed 

effects models in Table 2.1. A chi-squared test suggests that the coefficients of affluence 

are different for DOSCA emissions and for emission embodied in imports (χ2= 7.64, p-

value = 0.0057).  

Next, I juxtapose the observed relationships between national affluence and the 4 

emission components, in order to explicitly examine their heterogeneity. Figure 2.3 as a 

whole shows that when GDP per capita is at $10,148, a 1% increase in GDP per capita is 

associated with 0.332% increase in DOSCA emissions, 1.375% increase in emissions 

embodied in imports, and 0.603% increase in direct end user emissions, but is not 

significantly associated with changes in emission embodied in exports. When GDP per 

capita reaches $58,682, a 1% increase in GDP per capita is associated with an increase in 

DOSCA emissions, emissions embodied in imports, and emissions embodied in exports 

by 0.332%, 1.375%, and 1.111%, respectively, but is not significantly associated with 

changes in direct end user emissions. 

Figure 2.4 presents the average predicted values and 95% confidence intervals of 

the 4 emission components across 9 decile points of GDP per capita in the sample, and 

are based on Models 3, 6, 9, and 12 in Table 2.1. The 4 subplots together portray the 

average predicted changes in the multidimensional emissions profile for the 34 sampled 

high-income nations as their GDP per capita grows from $10,148 to $58,682: DOSCA 

emissions grows at a steady pace along with GDP per capita, resulting in an increase by 

44 Mt across this range of GDP per capita; emissions embodied in imports also grows 

steadily but at a faster pace, and sees an overall growth by 145 Mt—by far the greatest 

among of the 4 emission components; emissions embodied in exports grows by 38 Mt 
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overall and picks up its growth rate as GDP per capita increases; the point estimates of 

direct end user emissions loosely resemble an inverse-U shape, which amounts to a slight 

overall increase by 4 Mt across this range of GDP per capita. Taken as a whole, the 

results suggest that the relationships between each of the 4 GHG emission components 

and affluence of high-income nations are different in magnitude, direction, and in how 

the relationships vary at different levels of affluence.  

The observed heterogeneity supports the notion of multidimensionality in nations’ 

contributions to global GHG emissions, and hence highlights the validity and utility of 

the MEP framework. Specific to the affluence/emissions nexus, the heterogeneity 

suggests that the mechanisms of how affluence impacts GHG emissions may be different 

across the 4 emission components. Prior research has identified both emission-boosting 

mechanisms and emission-suppressive mechanisms through which growth in national 

affluence affects GHG emissions (e.g., Jorgenson et al. 2019; Rosa and Dietz 2012): 

growing affluence can elevate the scale of consumption that in turn increases emissions; 

growing affluence may also induce changes that facilitate emission abatement such as 

state environmental regulation, environmental social movement, and the development of 

renewable energy and efficiency-improving technology. For direct end user emissions, it 

appears that the impacts of emission-suppressing mechanisms outweigh the impacts of 

emission-boosting mechanisms after affluence reaches a threshold, leading to the 

observed decoupling. For DOSCA emissions, its inelastic positive relationship with 

affluence shows the effects of emission-suppressing mechanisms, in that a percent 

increase in affluence only brings an increase in DOSCA emissions by less than half a 

percent. Despite that, the positive relationship remains stable as affluence grows, 
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indicating that emission-boosting mechanisms of growing affluence outweigh emission-

suppressing mechanisms by a consistent degree as high-income nations become 

wealthier, and that the increased affluence does not further strengthen emission-

suppressing mechanisms relative to emission-boosting mechanisms for DOSCA 

emissions.  

For emissions embodied in imports, the positive and elastic relationship 

underscores the sheer magnitude of emission-boosting mechanisms. In comparison, the 

emission-suppressing mechanisms of growing affluence appear to have little impact on 

emissions embodied in imports, which may be because environmental regulations, social 

movements, and other emission-suppressing mechanisms within importing nations have, 

at best, indirect influence over this emission component that occur overseas. For 

emissions embodied in exports, the findings show evidence for strong and intensifying 

emission-boosting mechanisms of growing affluence, while emission-suppressing 

mechanisms are weak and attenuating as nations become wealthier. Overall, the findings 

indicate that the emission-suppressing mechanisms of growing affluence have been more 

successful in curbing direct end user emissions but largely remain inadequate in 

mitigating the other three emission components, all three of which are generated by 

supply chain activities other than end use. 

Increases in national affluence are associated with changes in not only the 

magnitude of nations’ emissions but also in the composition of a nation’s 

multidimensional contributions to global GHG emissions. Figure 2.5 presents the 

predicted emission outcomes at 3 affluence levels in a stacked bar chart, based on Models 

3, 6, 9, and 12 in Table 2.1. These predicted values can be interpreted as the 
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Multidimensional Emissions Profile of a hypothetical average high-income nation, and 

the predicted changes in the MEP as this nation becomes increasingly more affluent. As 

the GDP per capita of this nation increases from $10,148 to $58,682, the share of its 

DOSCA emissions relative to the sum of all 4 components decreases from 46% to 26%, 

while the share of emissions embodied in imports is more than tripled, increasing from 

16% to 50%.9 The share of emissions embodied in exports stays relatively stable, ranging 

from 16% to 20%. The share of direct end user emissions decreases from 18% to only 

6%.  

The findings indicate that high-income nations’ affluence level shapes how GHG 

emissions are distributed across end use stage and other supply chain stages, and between 

supply chain activities within and beyond national borders. As high-income nations 

become even wealthier, and net of the effects of covariates, direct end user emissions 

become by far the smallest component out of the four in both magnitude and relative 

share, while the sum of the other three emission components—all generated by supply 

chain activities other than end use—rises steeply in magnitude and share. This is partly 

due to the aforementioned finding that direct end user emissions are the only component 

decoupled from growth in national affluence, and that the emission-suppressing 

mechanisms of growing affluence have been inefficacious in curbing the other three 

emission components. Among these components, emissions embodied in imports grow 

substantially both in magnitude and as a share of their contributions to global GHG 

emissions, while DOSCA emissions grow modestly in magnitude and decrease in share. 

                                                             
9 As a reminder, the MEP does not conceptualize the sum of the 4 emission components as a nation’s total 
emissions account or as the emissions that this nation is solely responsible for. Here, the sum is used to 
calculate the relative share of each emission component and to quantify the composition of a nation’s 
multidimensional contributions to global emissions. 
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This may suggest that growth in affluence intensifies the environmental load 

displacement of GHG emissions via the global production and trade networks, through 

which the high-income nations increasingly take advantage of the polluting productions 

outsourced to other nations to fulfill their domestic final demand (Huang 2018; Jorgenson 

2012; Kanemoto et al. 2014). This is a form of transnational NIMBYism (not-in-my-

back-yard), and is tied to the structural inequality of the global economy in which high-

income nations occupy the advantageous position that grants them disproportionate 

access to the natural resources and sink capacity for waste in other nations, and especially 

in poorer nations in the Global South (Givens, Huang, and Jorgenson 2019; Jorgenson 

2016). 

2.9 CONCLUSION AND OUTLOOK 

This study proposes an analytical framework of Multidimensional Emissions 

Profile (MEP) that situates national contributions to global GHG emissions into four 

components with distinct implications for climate mitigation and climate justice: (1) 

emissions generated by domestic-oriented supply chain activities (DOSCA); (2) 

emissions embodied in imports; (3) emissions embodied in exports; and (4) direct 

emissions of end user activities. To the best of my knowledge, the MEP is the first 

analytical framework for systematic analysis of these 4 emission components, focusing 

particularly on the heterogeneity among the multiple emission components in their 

relationships with human drivers of emissions. I apply the MEP framework to empirically 

analyze the affluence/emissions nexus for high-income nations. The results support the 
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validity of the MEP framework and demonstrate its contributions to the policy-oriented 

research on human drivers of emissions. 

The results suggest that the emission-suppressing mechanisms that are theorized 

to accompany growing affluence appear to have been more effective in curbing direct end 

user emissions but largely remain inadequate in mitigating the other three emission 

components: DOSCA emissions, emissions embodied in imports, and emissions 

embodied in exports—all three of which are generated by supply chain activities outside 

the end use stage. This is problematic because these three emission components together 

account for the absolute majority of high-income nations’ contributions to global 

emissions. Emissions embodied in imports, in particular, increasingly become the largest 

emission component as high-income nations grow wealthier. If high-income nations aim 

to reduce GHG emissions while maintaining growth in affluence, it is necessary for them 

to achieve absolute decoupling between affluence and these three emission components, 

especially emissions embodied in imports. However, absolute decoupling is only 

observed for direct end user emissions, the fourth and the smallest emission component.  

This study highlights an important and promising direction for climate mitigation 

research and policy considerations: how can the absolute decoupling between direct end 

user emissions and national affluence be replicated for the three emission components 

generated by supply chain activities outside the end use stage? What are the specific 

emission-suppressing mechanisms accompanying growing affluence that contribute to the 

absolute decoupling between affluence and direct end user emissions? Whether and how 

can these mechanisms be adapted to mitigate the other three emission components? 

Meanwhile, this study underscores the importance for high-income nations to shift their 
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climate mitigation policy agenda from focusing on direct end user emissions to emissions 

generated by both domestic and foreign supply chain activities outside the end use stage. 

This shift would require targeting not only consumers but also multiple entities along 

supply chains such as producers, distributors, and wholesalers (World Economic Forum 

2021). This shift can be facilitated by existent and emerging policy instruments such as 

product carbon footprint labelling (Taufique et al. 2022), supply chain contracting carbon 

requirements (Peterson and Whitaker 2022; Zu, Chen, and Fan 2018), and border carbon 

adjustment (Marcu, Mehling, and Cosbey 2020; Steininger et al. 2014). 

This study also finds that the structural composition of a nation’s contributions to 

global GHG emissions can potentially shape the relationships between national affluence 

and total emissions (measured either in production-based or consumption-based 

accounts). For example, the affluence/emissions relationships differ across DOSCA 

emissions, emissions embodied in exports, and direct end user emissions. The sum of 

these three components are nations’ production-based emissions. Therefore, the estimated 

relationship between national affluence and production-based emissions can differ across 

nations whose production-based emissions have different structural compositions in 

terms of the relative size of DOSCA emissions, emissions embodied in exports, and 

direct end user emissions. Prior research identifies a number of human drivers, including 

affluence itself, that affect the relationship between national affluence and total emission 

measures (Jorgenson et al. 2019; Rosa and Dietz 2012). To what extents do these forces 

shape the affluence/emissions relationships by changing the structural composition of 

nations’ emissions? What are the implications for climate mitigation and climate justice? 

The MEP framework can contribute to this line of future research. 
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While this study uses the MEP framework to analyze the affluence/emissions 

nexus for high-income nations, the MEP can also be applied to examine other drivers 

than affluence, and for middle- and low-income nations. Moreover, the MEP framework 

can be used to assess how a certain mitigation measure affects the 4 emission components 

in potentially heterogeneous ways. Doing so reveals how the impacts of the mitigation 

measure may be unevenly distributed among GHG-emitting activities in the end use stage 

as well as other stages of supply chains both within and beyond a nation’s territory. 

Which emission components can be most efficaciously curbed by said mitigation 

measure? Whether the mitigation measure inadvertently causes some emission 

components to increase, as in the case of carbon leakage? How does the mitigation 

measure shift the distribution of a nation’s emissions among the 4 components? The MEP 

framework can help answer these questions, and contribute to policy-oriented research on 

climate change mitigation.  
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2.11 TABLES 

Table 2.1 Unstandardized coefficients for the regression of nations’ 4 emission 
components, 1995–2015 on GDP per capita and selected covariates: two-way fixed 
effects regression model estimates with country-clustered robust standard errors for 34 
high-income countries. 

 
 
  

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12
GDP Per Capita 0.332* 0.278 0.417* 1.266*** 1.243** 1.375*** 0.139 0.565# 0.728* 0.284# -0.0718 0.0625

(0.160) (0.187) (0.186) (0.180) (0.362) (0.263) (0.220) (0.315) (0.279) (0.165) (0.212) (0.230)
GDP Per Capita Squared -0.0327 -0.0139 0.257* 0.260** -0.215# -0.265*

(0.107) (0.191) (0.120) (0.0928) (0.110) (0.117)
Total Population 1.659** 1.759* 1.361** 1.473# 1.516 1.435* -0.106 -0.893 -0.311 0.122 0.780# 1.285*

(0.510) (0.734) (0.397) (0.820) (1.026) (0.622) (0.582) (0.528) (0.575) (0.416) (0.390) (0.560)
Imports as % GDP 0.0690 0.615** -0.282 -0.160

(0.158) (0.204) (0.176) (0.139)
Exports as % GDP -0.360* -0.181 0.871*** -0.0577

(0.149) (0.283) (0.152) (0.133)
Manufacturing as % GDP -0.0729 -0.305 -0.386# 0.178

(0.145) (0.287) (0.193) (0.136)
Service as % GDP -0.681* 0.319 0.428 0.0535

(0.327) (0.479) (0.393) (0.395)
Urban Pop. as % Pop. -0.265 0.116 0.0136 0.393

(0.658) (0.708) (1.155) (0.666)
Age Dependency Ratio 0.402 0.333 0.373 0.514

(0.477) (0.596) (0.404) (0.462)
Constant -25.84** -24.05* -18.32# -32.85* -20.56 -37.08* 3.463 17.51* 3.928 -1.797 -9.442 -21.14*

(9.344) (11.80) (9.579) (14.62) (16.52) (13.67) (10.45) (8.496) (10.81) (6.957) (6.261) (9.662)
N 714 714 710 714 714 710 714 714 710 714 714 710
# of nation 34 34 34 34 34 34 34 34 34 34 34 34
N per nations, min. 21 21 19 21 21 19 21 21 19 21 21 19
N per nation, avg. 21 21 20.88 21 21 20.88 21 21 20.88 21 21 20.88
N per nation, max. 21 21 21 21 21 21 21 21 21 21 21 21
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
# p<0.1 * p<.05  ** p<.01  *** p<.001 (two tailed).

DOSCA Emissions Emissions in Imports Emissions in Exports Direct End User Emissions
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Table 2.2 Unstandardized coefficients for the seemingly unrelated regression of nations’ 
4 emission components, 1995–2015 on GDP per capita and all covariates: two-way fixed 
effects regression model estimates with country-clustered robust standard errors for 34 
high-income countries. 

   

DOSCA 
Emissions

Emissions in 
Imports

Emissions in 
Exports

Direct End User 
Emissions

Model 13 Model 14 Model 15 Model 16
GDP Per Capita 0.417* 1.375*** 0.756** 0.0683

(0.180) (0.254) (0.258) (0.219)
GDP Per Capita Squared 0.283*** -0.260*

(0.0800) (0.109)
Total Population 1.361*** 1.435* -0.397 1.267*

(0.383) (0.601) (0.543) (0.531)
Imports as % GDP 0.0690 0.615** -0.283# -0.160

(0.153) (0.197) (0.170) (0.134)
Exports as % GDP -0.360* -0.181 0.869*** -0.0580

(0.144) (0.274) (0.147) (0.128)
Manufacturing as % GDP -0.0729 -0.305 -0.386* 0.178

(0.140) (0.277) (0.186) (0.131)
Service as % GDP -0.681* 0.319 0.471 0.0626

(0.316) (0.462) (0.376) (0.378)
Urban Pop. as % Pop. -0.265 0.116 0.00694 0.392

(0.636) (0.683) (1.116) (0.642)
Age Dependency Ratio 0.402 0.333 0.343 0.508

(0.461) (0.576) (0.397) (0.445)
Constant -13.55# -23.67* 7.316 -21.02*

(7.971) (11.37) (10.72) (9.493)
N 710 710 710 710
# of nation 34 34 34 34
N per nations, min. 19 19 19 19
N per nation, avg. 20.88 20.88 20.88 20.88
N per nation, max. 21 21 21 21
R-squared 0.996 0.986 0.991 0.995
RMSE 0.108 0.172 0.134 0.113
chi2 178799.1 48752.3 81914.4 130538.1
P-value 0.000 0.000 0.000 0.000
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
# p<0.1 * p<.05  ** p<.01  *** p<.001 (two tailed).

Seemingly Unrelated Regression
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2.12 FIGURES 

 
Figure 2.1 Conceptual Diagram of the 4 Emissions Components and Their Relationships 
with Production-Based Emissions Account and Consumption-Based Emissions Account, 
in A Simplified 2-Nation Model that Excludes Re-imports and Re-exports. 
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Figure 2.2 Change in GHG Emissions from 1995 to 2015 as a Percent of the 1995 
Levels, for 4 Emissions Components of 34 High-Income Nations. Each Bar Chart 
Includes (a) a Black Bar Representing Emissions Generated by Domestic-Oriented 
Supply Chain Activities (DOSCA) ; (b) a Dark Grey Bar Representing Emissions 
Embodied in Imports; (c) a Light Grey Bar Representing Emissions Embodied in 
Exports; and (d) a White Bar Representing Direct End User Emissions. 
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Figure 2.3 Average Marginal Effects of GDP Per Capita on (a) Emissions Generated by 
Domestic-Oriented Supply Chain Activities (DOSCA); (b) Emissions Embodied in 
Imports; (c) Emissions Embodied in Exports; and (d) Direct End User Emissions, based 
on Models 3, 6, 9, 12, Respectively, and Across 9 Decile Points of GDP Per Capita in the 
Sample. Shaded Areas are 95% Confidence Intervals. 
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Figure 2.4 Average Predicted Values and 95% Confidence Intervals of (a) Emissions 
Generated by Domestic-Oriented Supply Chain Activities (DOSCA); (b) Emissions 
Embodied in Imports; (c) Emissions Embodied in Exports; and (d) Direct End User 
Emissions, Across the 9 Decile Points of GDP Per Capita in the Sample, based on 
Models 3, 6, 9, 12, Respectively. 
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Figure 2.5 Average Predicted Values of (a) Emissions Generated by Domestic-Oriented 
Supply Chain Activities (DOSCA); (b) Emissions Embodied in Imports; (c) Emissions 
Embodied in Exports; and (d) Direct End User Emissions, at the 1st , 5th (median), and 9th 
Deciles of GDP Per Capita in the Sample, based on Models 3, 6, 9, and 12. Percentages 
in the Parentheses Indicate the Shares of Each Component Relative to the Sum of All 4 
Components at Each GDP Per Capita Level. 
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2.13 APPENDICES 

2.13.1 Operationalizing the Four Emission Components of the MEP 

I used the environmentally-extended multi-regional input-output (EE-MRIO) 

method (Miller and Blair 2009), and the EE-MRIO tables from the latest version of 

Exiobase 3 to calculate nations’ four emission components (Stadler et al. 2018, 2021). 

Prior research has demonstrated that the EE-MRIO method and Exiobase 3 are well 

suited for analyzing GHG emissions and other environmental impacts of global supply 

chain activities (Bjelle et al. 2021; Bjørn et al. 2018; Dorninger et al. 2021; Hertwich 

2021; Tukker et al. 2016). Emissions data calculated using the EE-MRIO method can be 

sensitive to the choice of EE-MRIO databases (Lenzen, Wood, and Wiedmann 2010; 

Owen et al. 2016; Rodrigues et al. 2018). Harmonizing environmental satellite accounts 

across EE-MRIO databases, which has been applied to Exiobase 3, can alleviate the data 

sensitivity (Moran and Wood 2014; Tukker, de Koning, et al. 2018). The high level of 

sectoral resolution of Exiobase also mitigates data uncertainties introduced by sectoral 

aggregation (Lenzen 2011; Stadler et al. 2018). For a full description of the build process 

of Exiobase 3 and its use in research, see Stadler et al (2018) and a special issue of 

Journal of Industrial Ecology edited by Tukker et al (2018).  

I acquired industry by industry (ixi) EE-MRIO tables from Exiobase 3 for the 

period of 1995 to 2015, which covers 163 harmonized industrial sectors and 49 regions. 

Together these areas account for over 99% of global population in 2015. 1995 is the first 

year with data available, while 2015 is the latest year with industry-level energy-related 

emissions calculated based on real energy balances data as opposed to nowcasts. For each 
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year, I utilized the technical coefficient matrix A provided by Exiobase. A is a 7987 by 

7987 matrix (7987= 163 * 49, and is the number of industry-region pairs); its elements 

𝑎𝑎𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅 (row indices Ri: R=1,…,49; i=1,…,163; column indices Sj: S=1,…,49; j=1,…,163) 

denote the output from industry i in Region R that is required as direct intermediate input 

for industry j in region S to produce one unit of output. Based on A, I calculated a 7987 

by 7987 multi-regional Leontief inverse matrix L following the Leontief IO model 

(Leontief 1970; Miller and Blair 2009). 

𝑳𝑳 = (𝑰𝑰 − 𝑨𝑨)−1 

where I is a 7987 by 7987 identity matrix. In the matrix L, an element 𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅 

represents the total output of industry i in region R that is required to satisfy, both directly 

and indirectly, a one-unit increase in the final demand for the output of industry j in 

region S. 

Next, I constructed a 7987 by 49 final demand matrix Y based on the final 

demand data from Exiobase 3; its element 𝑦𝑦𝑗𝑗𝑆𝑆𝑆𝑆(row indices Sj: S=1,…,49; j=1,…,163; 

column index T=1,…,49) denotes the final demand in region T for product j imported 

from region S. The T-th column of Y, denoted by vector 𝒚𝒚𝑇𝑇, represents the final demand 

in region T for each of the 163 products imported from each of the 49 regions including 

region T itself.  

Then, for each region of final demand T, I calculated a partial output matrix 𝑿𝑿𝑇𝑇as: 

𝑿𝑿𝑇𝑇 = 𝑳𝑳𝒚𝒚𝑇𝑇�𝑬𝑬 

where 𝒚𝒚𝑇𝑇� is a 7987 by 7987 matrix resulting from the diagonalization of 𝒚𝒚𝑇𝑇;  E is 

a 7987 by 163 summation matrix created by stacking 49 identity matrices, each sized at 

163 by 163, on top of one another. The resulted 𝑿𝑿𝑇𝑇 is a 7987 by 163 matrix.  
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I then assemble all 𝑿𝑿𝑇𝑇side by side in the order of T=1,…,49 to create a 7987 by 

7987 full output matrix 𝑿𝑿 with elements denoted by 𝑥𝑥𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅(row indices Ri: R=1,…,49; 

i=1,…,163; column indices Tj: T=1,…,49; j=1,…,163). 𝑥𝑥𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅represents the total output of 

industry i located in region R that is required to satisfy, both directly and indirectly, the 

final demand in region T for product j produced anywhere in the world.  

Next, I obtained a 1 by 7987 of emission intensity coefficient vector s for GHG 

emissions from the impacts extension of Exiobase 3; each element 𝑠𝑠𝑖𝑖𝑅𝑅  represents the 

GHG emissions per monetary unit of output of industry i located in region R in a 

particular year. GHG emissions are operationalized as CO2-equivalents using the Global 

Warming Potential 100 years approach (IPCC 2013) that accounts for six major 

greenhouse gases (CO2, CH4, N2O, SF6, HFCs and PFCs) and weights each based on its 

relative contributions to global warming over a 100-year period using CO2 as the 

benchmark. As such, 𝑠𝑠𝑖𝑖𝑅𝑅  can be viewed as a composite measure that captures the emission 

intensity of multiple types of GHG by each region-industry pair Ri. 𝑠𝑠𝑖𝑖𝑅𝑅  does not account 

for GHG emissions related to land use, land-use change and forestry (LULUCF).  

A GHG footprint matrix F is calculated as:  

𝑭𝑭 = 𝒔𝒔⊗𝑿𝑿 

where ⊗ refers to the multiplication of s and X without summation along the 

columns of X. In other words, each element in the n-th row of X is multiplied with the n-

th element of s. The resulted F is a 7987 by 7987 matrix, the elements of which are 𝑓𝑓𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅= 

𝑠𝑠𝑖𝑖𝑅𝑅𝑥𝑥𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅(row indices Ri: R=1,…,49; i=1,…,163; column indices Tj: T=1,…,49; 
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j=1,…,163).10 𝑓𝑓𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅represents the total GHG emissions (megaton CO2-equivalents) 

generated by industry i in region R that is driven, both directly and indirectly, by the final 

demand in region T for product j produced anywhere in the world.  

Regions’ four emission components are calculated by aggregating selective 

elements of the footprint matrix F. Emissions generated by DOSCA for region T are 

calculated by aggregating the GHG emissions generated by all industries i in region T in 

order to satisfy, both directly and indirectly, its domestic final demand for all products j, 

as in: 

𝐶𝐶𝐶𝐶2𝑒𝑒-𝐷𝐷𝐷𝐷𝑇𝑇 = � 𝑓𝑓𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇
163,163

𝑖𝑖 ,𝑗𝑗=1,1

 

Emissions embodied in imports of region T are calculated by first aggregating the 

emissions generated by all industries i in all regions R in order to satisfy region T’s final 

demand for all products j, and then deducting the part of emissions generated by all 

industries i in region T in order to satisfy its domestic final demand for all products j, as 

in 

𝐶𝐶𝐶𝐶2𝑒𝑒-𝐼𝐼𝐼𝐼𝑇𝑇 = � 𝑓𝑓𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅 −
49,163 ,163

𝑅𝑅,𝑖𝑖,𝑗𝑗=1,1,1

� 𝑓𝑓𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇
163,163

𝑖𝑖 ,𝑗𝑗=1,1

 

Emissions embodied in exports of region T are calculated by first aggregating the 

emissions generated by all industries i in region T in order to satisfy all regions R’s final 

demand for all products j, and then deducting the emissions generated by all industries i 

in region T i=n order to satisfy its domestic final demand for all products j, as in 

                                                             
10 This differs from a conventional matrix multiplication such as  𝒎𝒎 = 𝒔𝒔𝒔𝒔, where the product m is a 1 
by 7987 vector with its element 𝑚𝑚𝑗𝑗

𝑇𝑇= ∑ (𝑠𝑠𝑖𝑖𝑅𝑅𝑥𝑥𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅)49,163
𝑅𝑅,𝑖𝑖=1,1 . 
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𝐶𝐶𝐶𝐶2𝑒𝑒-𝐸𝐸𝐸𝐸𝑇𝑇 = � 𝑓𝑓𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇 −
49,163,163

𝑅𝑅,𝑖𝑖,𝑗𝑗=1 ,1,1

� 𝑓𝑓𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇
163 ,163

𝑖𝑖 ,𝑗𝑗=1,1

 

For direct end user emissions, Exiobase 3 provides data on the magnitude of GHG 

emissions directly generated by 3 categories of final demand activities for each of the 49 

regions, in the form of a 1 by 147 vector fY; its elements 𝑓𝑓𝑌𝑌𝑌𝑌  𝑇𝑇 (column indices Tc: 

T=1,…,49; c=1,…,3) denote the direct GHG emissions of final demand category c in 

region T. The 3 final demand categories are: final consumption expenditure of 

households, final consumption expenditure of non-profit organizations serving 

households (NPISH), final consumption expenditure of general government. The total 

direct emissions of end user activities of region T were calculated by aggregating the 

direct GHG emissions generated by 3 final demand categories of region T, as in: 

𝐶𝐶𝐶𝐶2𝑒𝑒-𝑌𝑌𝑇𝑇 = �𝑓𝑓𝑌𝑌𝑌𝑌  𝑇𝑇
3

𝑐𝑐=1

 

The calculation of the four emission components was repeated for each of the 

sampled regions, and for each year from 1995 to 2015. 
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2.13.2 Appendix Tables 

Table A2.1 Descriptive Statistics  
 N Mean S.D. Min. Max. 
DOSCA Emissions 714 276.178 752.617 0.959 4759.021 
Emissions Embodied in Imports 714 157.238 287.703 0.828 2013.607 
Emissions Embodied in Exports 714 79.159 113.493 0.389 724.795 
Direct Emissions of End User Activities 714 86.921 257.329 0.142 1596.208 
GDP per capita  714 34834.015 21537.649 4775.307 111968.352 
Imports of goods and services (% GDP) 714 48.356 28.043 7.708 187.165 
Exports  of goods and services (% GDP) 714 49.576 31.812 8.972 221.197 
Manufacturing, value added (% GDP) 710 15.585 4.984 3.887 34.566 
Services, value added (% GDP) 710 61.791 6.875 39.84 79.116 
Total population 714 30123532.3 54075199.6 377419 320600000 
Urban population (% Pop.) 714 73.316 11.813 50.622 97.876 
Age dependency ratio 714 48.459 4.227 36.214 63.958 
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Table A2.2 Unstandardized coefficients for the regression of nations’ 4 emission 
components, 1995–2015 on GDP per capita and all covariates: two-way fixed effects 
regression model estimates with country-clustered robust standard errors for 34 high-
income countries. 

 
 
  

DOSCA 
Emissions

Emissions in 
Imports

DOSCA 
Emissions

Emissions in 
Imports

Emissions in 
Exports

Direct End User 
Emissions

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
GDP Per Capita 0.277 1.335** 0.277 1.335*** 0.728** 0.0625

(0.249) (0.419) (0.240) (0.404) (0.269) (0.222)
GDP Per Capita Squared -0.114 -0.0323 -0.114 -0.0323 0.260** -0.265*

(0.121) (0.161) (0.117) (0.155) (0.0895) (0.113)
Total Population 1.796** 1.558* 1.796** 1.558** -0.311 1.285*

(0.619) (0.574) (0.598) (0.554) (0.555) (0.541)
Imports as % GDP 0.0759 0.617** 0.0759 0.617** -0.282# -0.160

(0.155) (0.205) (0.149) (0.198) (0.170) (0.134)
Exports as % GDP -0.352* -0.179 -0.352* -0.179 0.871*** -0.0577

(0.144) (0.275) (0.139) (0.266) (0.146) (0.128)
Manufacturing as % GDP -0.0746 -0.306 -0.0746 -0.306 -0.386* 0.178

(0.143) (0.288) (0.138) (0.278) (0.186) (0.131)
Service as % GDP -0.903* 0.256 -0.903* 0.256 0.428 0.0535

(0.436) (0.444) (0.421) (0.428) (0.379) (0.381)
Urban Pop. as % Pop. -0.231 0.125 -0.231 0.125 0.0136 0.393

(0.680) (0.691) (0.656) (0.667) (1.115) (0.643)
Age Dependency Ratio 0.554 0.376 0.554 0.376 0.373 0.514

(0.442) (0.495) (0.427) (0.478) (0.390) (0.446)
Constant -20.91# -24.93** -20.65* -25.67** 5.914 -21.31*

(10.44) (8.562) (10.48) (8.593) (10.79) (9.645)
N 710 710 710 710 710 710
# of nation 34 34 34 34 34 34
N per nations, min. 19 19 19 19 19 19
N per nation, avg. 20.88 20.88 20.88 20.88 20.88 20.88
N per nation, max. 21 21 21 21 21 21
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
# p<0.1 * p<.05  ** p<.01  *** p<.001 (two tailed).

Fixed-Effects Model Seemingly Unrelated Regression Models
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3.0  CHAPTER 3: UNEVEN DECARBONIZATION: THE 

MULTIDIMENSIONAL RELATIONSHIP BETWEEN HIGH-INCOME 

NATIONS’ RENEWABLE ENERGY DEPLOYMENT AND CARBON DIOXIDE 

EMISSIONS, 1995-2015 

3.1 ABSTRACT 

Renewable energy transition is crucial to reducing global CO2 emissions. Using a 

multidimensional analytical framework, I systematically analyze the relationships 

between nations’ renewable energy deployment and four components of CO2 emissions 

with distinct implications for climate change mitigation: (1) emissions generated by 

domestic-oriented supply chain activities; (2) emissions embodied in exports; (3) direct 

emissions of end user activities, and (4) emissions embodied in imports. Primary 

attention is given to the first three components, which together constitute nations’ 

production-based emission account. I analyze a panel dataset consisted of 34 high-income 

nations from 1995 to 2015. Results of seemingly unrelated regression models suggest that 

renewable energy deployment only mitigates emissions by domestic-oriented supply 

chain activities, and with increasing effectiveness over time; yet it remains ineffective in 

curbing the other three emission components. I discuss potential structural barriers that 

prevent the decarbonization effect of renewables from spilling over to the other emission 

components. These barriers must be overcome in order to achieve the full 

decarbonization potential of renewable energy deployment. 
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3.2 INTRODUCTION 

In order to limit global warming to 1.5 °C, it requires a 45% reduction in global 

CO2 emissions by 2030 relative to the 2010 level (UNFCCC 2021). This urgency 

underscores the importance of optimizing the decarbonization effect of renewable energy 

deployment, a major climate mitigation strategy (IPCC 2011). To this end, a large body 

of research has examined how renewable energy deployment affects nations’ CO2 

emissions, yielding mixed findings on its decarbonization effect (e.g., Sovacool et al. 

2020; Thombs 2017; Wang, Assenova, and Hertwich 2021; York 2012; York and McGee 

2017). At the national level, a myriad of human activities leads to fossil fuel consumption 

and CO2 emissions, including domestic consumer activities such as driving, as well as 

industrial production that serves both domestic and foreign consumers. Prior cross-

national research has not systematically examined the decarbonization effect of 

renewable energy deployment on multiple components of nations’ CO2 emissions 

corresponding to different types of fossil fuel consumption activities. Such a systematic 

analysis can identify the types of activities that renewable energy deployment can most 

effectively decarbonize, and the types that are most resistant to its decarbonization 

effects, thereby informing the strategies for deploying renewables to optimize the effect 

for climate change mitigation. 

This study seeks to address this gap by adopting the Multidimensional Emissions 

Profile (MEP) framework to the study of renewable energy-carbon emissions nexus. This 

framework situates a nation’s contributions to global carbon emissions into 4 distinct 

components: (1) emissions generated by domestic-oriented supply chain activities, such 

as domestic industrial activities that serve domestic consumers; (2) emissions embodied 
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in exports; (3) direct emissions of end user activities; and (4) emissions embodied in 

imports (see Chapter 2). Using seemingly unrelated regression modeling with fixed 

effects on a panel dataset of 34 high-income nations from 1995 to 2015, I analyze how 

nations’ renewable energy consumption is associated with each of these emission 

components. The analyses address two sets of questions. First, compared across these 

emission components, which are more effectively mitigated by renewable energy 

deployment? Which components are less effectively mitigated? Second, for each 

emission component, how has the decarbonization effect of renewable energy 

deployment changed over time? The findings indicate that renewable energy deployment 

only mitigates the emissions generated by domestic-oriented supply chain activities, and 

with increasing effectiveness over time. Using this emission component as the 

benchmark, I discuss potential structural barriers to the mitigation of other emission 

components by renewables.  

3.3 RENEWABLE ENERGY AND CO2 EMISSIONS 

The relationship between renewable energy deployment and CO2 emissions is the 

focus of a large and growing body of research at both national and subnational levels 

(e.g., Adua, Zhang, and Clark 2021; Jebli and Kahia 2020; Thombs and Jorgenson 2020). 

A number of studies find that increasing renewable energy consumption in a nation can 

reduce its CO2 emissions (Bilgili, Koçak, and Bulut 2016; Shafiei and Salim 2014; 

Shahnazi and Dehghan Shabani 2021; Sovacool et al. 2020; Wang et al. 2021). Dong et al 

(2018) focus on renewable energy consumption per unit of GDP, which is found to be 
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negatively associated with CO2 emissions across major geographic regions of the world, 

and the effect is greater in regions where renewable energy constitutes a larger share of 

total energy consumption.  

However, much complexity exists in the relationships among renewable energy 

consumption, CO2 emissions, and fossil fuel consumption. Some studies question 

whether renewable energy, as it has been deployed, can lead to the rapid and substantial 

emission abatement that is necessary to meet the global mitigation target. York (2012) 

finds that an one-unit increase in nations’ renewable energy usage is associated with a 

reduction in fossil fuel usage by less than a quarter of a unit. This may be in part due to 

the fuel market rebound effect: renewable energy production increases overall energy 

supply, lowers energy price, which stimulates total energy consumption, including the 

consumption of fossil fuels (Hill, Tajibaeva, and Polasky 2016). Other studies find that 

the downward effect of renewable energy consumption (% total energy consumption) on 

CO2 emissions is smaller in wealthier nations than in poorer nations (Thombs 2017; York 

and McGee 2017), which may be partly because in wealthier nations renewable energy 

consumption could displace nuclear energy as opposed to fossil fuel consumption 

(Greiner, York, and McGee 2022; Sovacool et al. 2020).  

Whether and by how much renewable energy deployment reduces CO2 emissions 

may depend on the extent to which increases in renewable energy consumption displace 

fossil fuel consumption. The aforementioned research challenges the assumption that 

innovation in renewable energy technologies can lead to a “creative destruction” in which 

renewable energies quickly displace fossil fuels through market competition (Schumpeter 

1942). Davidson (2019:254) argues that “if left to the vagaries of creative destruction, 
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renewables will not replace fossil fuels until those renewable energy technologies not 

only achieve price parity with fossil fuels, but also become so cheap that they justify the 

abandonment of the extraordinary levels of sunk costs that continue to be invested in the 

fossil fuel regime”. Therefore, Davidson argues that in order to achieve the full potential 

of renewable energy for climate change mitigation, it requires a concurrent “exnovation” 

of the fossil fuel regime, namely the deliberate and concerted effort to phase out 

institutions, infrastructure, products, practices, and beliefs that sustain and legitimize the 

fossil-fuel based energy system. 

The type of renewable energy and other socioeconomic factors also influence the 

impacts of renewables on nations’ CO2 emissions. Thombs (2018) finds substantial 

variation in the effects of multiple types of non-fossil-fuel energy on emissions, and that 

the effects of some renewables change over time. Hill et al (2016) note that investment in 

biofuel, a major component of the U.S. renewable fuel standard, may lead to increases in 

CO2 emissions when accounting for the fuel market rebound effect. Additionally, McGee 

and Greiner (2019) find that the emission-reducing effects of renewable energy 

consumption is moderated by domestic income inequality. These studies together 

underscore that renewable energy transition and its effectiveness as an emission 

abatement measure are shaped by various political-economic, social, and technological 

factors (Jorgenson et al. 2019; Sequeira and Santos 2018; Smil 2016; Sovacool 2016; 

Sovacool and Geels 2016). 
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3.4 NATIONS’ MULTIDIMENSIONAL EMISSIONS PROFILE 

Most cross-national research to date on the renewable energy-carbon emissions 

nexus examines aggregate national emission outcomes and especially production-based 

account (PBA) that captures all emissions generated within a nation’s territory. However, 

a nation’s fossil fuel-burning and CO2-emitting activities are not monolithic, but can 

instead be classified into distinct categories based on characteristics such as the stage of 

supply chain in which the activities occur, the type of fossil fuels consumed, or the 

economic sector in which the activities take place. Correspondingly, a nation’s CO2 

emissions are constituted by multiple structural components, each with distinct 

implications for emissions abatement. To this end, Huang (see Chapter 2) proposes a 

Multidimensional Emissions Profile (MEP) framework for the systematic analysis of 

nations’ multiple emission components, focusing on how these components are 

heterogeneously related to certain human drivers of emissions.  

The MEP framework situates each nation’s contributions to global carbon 

emissions into 4 distinct components: (1) emissions generated by domestic-oriented 

supply chain activities (DOSCA), such as domestic industrial activities that serve 

domestic consumers; (2) emissions embodied in exports; (3) direct emissions of end user 

activities; and (4) emissions embodied in imports. DOSCA emissions, emissions 

embodied in exports, and emissions embodied in imports are generated by supply chain 

activities outside the end use phase (see Chapter 2). Direct emissions of end user 

activities are generated by activities such as driving personal vehicles and household 

heating that burns fossil fuels on-site. This emission component excludes the emissions 

that are induced by end user activities but generated upstream in supply chains, such as 
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the emissions generated by domestic power plants serving domestic households (which 

are a part of DOSCA emissions). Figure 3.1 illustrate the 4 components and their 

relationships with production-based account (PBA) and consumption-based emission 

account (CBA) (see also Steininger et al. 2014). 

While these 4 emission components are connected through global supply chains, 

each of them can be viewed as a distinct point of decarbonization. At the national level, 

generally speaking, emissions embodied in imports are generated by foreign supply chain 

activities to fulfill a nation’s final demand. These foreign supply chain activities are, at 

best, indirectly influenced by the nation’s climate mitigation measures. Emissions 

embodied in exports are generated by domestic supply chain activities serving foreign 

final demand, which are more directly affected by domestic climate and energy policies, 

and might be subject to the indirect influence of foreign policies. Among the 4 

components, DOSCA emissions and direct end user emissions are arguably under the 

most direct influence of domestic policies and are least affected by foreign policies.  

At the organizational level, mitigating the three emission components generated 

outside the end use phase requires business organizations to reduce the emissions 

generated by their own operations. In contrast, mitigating direct end user emissions 

requires firms that produce consumer goods and services to offer products that facilitate 

the reduction of direct end user emissions (e.g., electric vehicles and solar-powered EV 

chargers) (Stern et al. 2016). At the household and individual levels, reducing emission 

components generated outside the end use phase requires changing consumer behaviors 

that do not generate emissions directly but are instead implicated in the emissions 

generated by upstream production processes (e.g., purchasing products that require fossil 
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fuels to produce and deliver). Among the many challenges to fostering behavioral 

changes, mitigation strategies targeting these behaviors need to overcome the cognitive 

barrier that most consumers are unaware of the embodied emissions of consumer 

products, and the institutional and technical barriers of compiling and publicizing 

credible information on embodied emissions for a wide range of consumer products 

(Abrahamse et al. 2007; Taufique et al. 2022). In comparison, these barriers are present 

but relatively less inhibiting for changing consumer behaviors that contribute to direct 

end user emissions, such as driving personal vehicles, where consumer behaviors are 

more immediately linked to their emission outcomes (Stern et al. 2016).  

3.5 MULTIDIMENSIONALITY IN THE RENEWABLE ENERGY-CARBON 

EMISSIONS NEXUS 

The above account of the distinctions among the 4 emission components alludes 

to the potential heterogeneity in how these emission components respond to 

decarbonization measures such as renewable energy deployment. Renewables’ impacts 

on these emission components may differ in magnitude, in direction, and in how the 

impacts change over time. In other words, unless proven otherwise, the renewable 

energy-carbon emissions nexus is likely a multidimensional process consisting of distinct 

relationships between renewables and each of these emission components. If renewable 

energy deployment is found to suppress the production-based account (PBA) of nations’ 

emissions, it does not necessarily mean that the same decarbonization effect is achieved 

for all emission components. Similarly, if a null effect is observed between renewables 
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and PBA, it does not necessarily suggest that renewables are unable to curb any emission 

components that constitute PBA; instead, it could mean renewables’ decarbonization 

effect on some emission components are offset by renewables inadvertently boosting 

other components.  

The research literature on the renewables-emissions nexus has not systematically 

examined how renewable energy deployment is heterogeneously associated with multiple 

structural components of a nation’s contributions to global CO2 emissions. Therefore, in 

this study I apply the MEP framework to conduct such an analysis. Compared across 

these emission components, which are more effectively mitigated by renewable energy 

deployment? Which components are less effectively mitigated? For each emission 

component, how has the decarbonization effect of renewable energy deployment changed 

over time? To answer these questions, I first conduct a baseline analysis of renewables’ 

relationship with nations’ PBA, and how the relationship changes over time. Then I 

analyze renewables’ relationships with DOSCA emissions, emissions embodied in 

exports, and direct end user emissions, as well as how these relationships change over 

time. As noted in Figure 3.1, these 3 emission components together constitute PBA. The 

4th emission component, emissions embodied in imports, is excluded from the main 

analysis because a lack of theoretical ground to assume that a nation’s domestic energy 

policies can directly influence the emissions embodied in imports, which are generated in 

foreign nations.11 Nonetheless, I include this emission component in additional sensitivity 

analysis because it is an integral part of how nations contribute to global emissions 

                                                             
11 This study’s focus on PBA and its components is also consistent with the research literature’s main 
focus. With few exceptions (e.g., Zhong, Jiang, and Zhou 2018) that examine indirect effects, the literature 
has not focused on the relationship between renewables and emissions embodied in imports. 
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(Davis and Caldeira 2010; Davis, Peters, and Caldeira 2011; Peters and Hertwich 2006; 

see also Chapter 2), and that many nations have seen substantial increase in emissions 

embodied in their imports during the past two decades (Peters et al. 2011; Wood et al. 

2020; see also Figure 3.1 below). I analyze a sample of high-income nations, partly due 

to data availability constraints discussed in next section. The focus on high-income 

nations is also motivated by the facts that many high-income nations are major 

contributors to global carbon emissions (Andrew and Peters 2021), and they generally 

have greater financial and technological capability for renewable energy transition than 

lower-income nations (IPCC 2011).  

3.6 DATA AND METHODS 

3.6.1 Dependent Variables 

The dependent variable for the baseline analysis is nations’ production-based 

account (PBA) of CO2 emissions. The main analysis focuses on 3 separate dependent 

variables (1) CO2 emissions generated by domestic-oriented supply chain activities 

(DOSCA); (2) CO2 emissions embodied in exports; and (3) direct CO2 emissions of end 

user activities. Additional sensitivity analysis includes CO2 emissions embodied in 

imports. These emission variables are calculated using the environmentally-extended 

multi-regional input-output (EE-MRIO) method and the EE-MRIO tables from the latest 
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version of Exiobase 3 (Stadler et al. 2018, 2021).12 All dependent variables capture CO2 

emissions generated from fossil fuel combustion and are measured in megatons. 

Technical details of data compilation and calculation are provided in the Appendix 

3.12.1. 

3.6.2 Independent Variables 

The main independent variable of interest is renewable energy consumption as a 

percent of total final energy consumption. This measure accounts for multiple types of 

renewable energy, including hydroelectric, solar, wind, and biofuel. I use this relative 

measure of renewable energy consumption because it is more aligned with the conceptual 

focus on renewable energy transition, which more closely concerns the share of societal 

energy usage from renewable sources rather than the total amount of renewable energy 

consumed. This operationalization is also consistent with prior studies on the renewables-

emissions nexus (e.g., Thombs 2017; York and McGee 2017). 

I also include both the linear term and the square term of gross domestic product 

(GDP) per capita measured in constant 2010 U.S. dollars. Additional independent 

variables are total population, imports as a percent of GDP, exports as a percent of GDP, 

manufacturing value added as a percent of GDP, services value added as a percent of 

GDP, urban population as a percent of total population, and age dependency ratio (i.e., 

                                                             
12 DOSCA emissions and emissions embodied in exports and in imports are conceptualized and 
operationalized based on the multi-regional input-output (MRIO) method as opposed to the emissions 
embodied in bilateral trade (EEBT) method (see Chapter 2). The two methods differ in the allocation of the 
emissions generated by the internationally-traded intermediate goods. The EEBT method allocates this part 
of emissions to the nations that consume the intermediate goods, regardless of where the final goods 
(produced from said intermediate goods) are consumed. The MRIO method allocates this part of emissions 
to the nation where the final goods are consumed. See Peters et al (2011) for more information. 
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the population of people younger than 15 or older than 64 as a percent of the population 

of those between 15 and 64 years old). Trade openness (i.e., the sum of imports and 

exports as a percent of GDP) is also an important covariate (Jorgenson and Clark 2012; 

Thombs and Huang 2019). However, given that I use separate dependent variables for the 

emissions embodied in exports and imports, I elect to include imports (% GDP) and 

exports (% GDP) as separate independent variables (see also Chapter 2). Energy 

consumption per capita is not included because it is very highly correlated with GDP per 

capita. Data on all independent variables is acquired from the World Bank’s World 

Development Indicators Database (https://databank.worldbank.org/source/world-

development-indicators). 

3.6.3 Sample 

The overall sample is a balanced panel dataset consisted of 714 annual 

observations from the 34 high-income nations in the 21-year period of 1995 to 2015.13 

The sample includes 9 out of 10 biggest emitters among high-income nations in terms of 

total production-based CO2 emissions from fossil fuel combustion in 2015.14 The sample 

size is reduced to 710 observations in models that include manufacturing value added or 

services value added because the United States and Canada have missing data on these 

two variables for years 1995 and 1996.  

                                                             
13 Sampled nations are Australia, Austria, Belgium, Canada, Switzerland, Cyprus, Czech Republic, 
Germany, Denmark, Spain, Estonia, Finland, France, United Kingdom, Greece, Croatia, Hungary, Ireland, 
Italy, Japan, Latvia, Lithuania, Luxembourg, South Korea, Malta, Netherlands, Norway, Poland, Portugal, 
Romania, Slovak Republic, Slovenia, Sweden, United States. 
14 Based on data by Andrew and Peters (2021) 

https://databank.worldbank.org/source/world-development-indicators
https://databank.worldbank.org/source/world-development-indicators
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The sample includes all high-income nations, as per World Bank’s country 

classification, that have data available for all variables.15 A total of 43 nations also have 

data available on all dependent and independent variables. Among these 43 nations, 34 

are high-income nations and 9 are non-high-income nations. The analysis excludes the 9 

non-high-income nations, in order to avoid potential misleading results from a mixed 

sample, given that national income level significantly moderates the relationship between 

renewable energy consumption and CO2 emissions (Thombs 2017; York and McGee 

2017). Nonetheless, the emission measures of the sampled high-income nations do 

account for their trade with these non-high-income nations as well as the rest of the 

world. For example, although India is not a sampled nation, the exports from the United 

States to India are accounted for when calculating the total emissions embodied in the 

exports of the United States. Appendix Tables A3.1 and A3.2 report the descriptive 

statistics and correlation matrix of all dependent and independent variables in their 

original metrics for the sample. 

3.6.4 Regression Modeling Techniques 

For the baseline analysis, I estimate a set of fixed effects regression models for 

PBA that include both time-specific and nation-specific intercepts, in order to account for 

unobserved heterogeneity that is unique to each year and affects all nations equally, as 

well as the unobserved heterogeneity that is unique to each nation and invariant across 

the whole period of analysis. I estimate country-clustered robust standard errors in order 

                                                             
15 World Bank country classification. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-
world-bank-country-and-lending-groups  

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
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to correct for autocorrelation and heteroskedasticity. All non-binary variables are 

transformed with natural logarithm, and hence the regression coefficients are elasticity 

coefficients that represent the percentage change in the dependent variable associated 

with a 1% increase in the independent variables, net of the effects of other independent 

variables.16 The general model is specified as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖 +𝑤𝑤𝑡𝑡 + 𝑒𝑒𝑖𝑖𝑖𝑖  

where subscripts i and t represent nation and year respectively; and 𝑦𝑦𝑖𝑖𝑖𝑖  is the 

outcome variable for nation i at year t; 𝛽𝛽 is the vector of regression coefficients that 

correspond to the vector of time-varying predictor variables 𝑥𝑥𝑖𝑖𝑖𝑖; 𝑢𝑢𝑖𝑖  is the nation-specific 

intercept for nation i; 𝑤𝑤𝑡𝑡is the year-specific intercept for year t; 𝑒𝑒𝑖𝑖𝑖𝑖  is the unique residual 

for nation i at year t.  

In one of the models for PBA, I examine changes over time in the relationship 

between renewables and PBA by including interaction terms between renewables and 

yearly dummy variables for 1996 to 2015, a modeling technique used in prior research 

(Huang 2018; Jorgenson 2012, 2014; Jorgenson and Clark 2012; Thombs and Huang 

2019). The coefficient for the main effect of renewables is the slope for year 1995, the 

reference category. The coefficients for the interaction terms indicate if the association 

between renewables and emissions for each subsequent year differs from that of 1995 

(Allison 2009). 

For the main analysis, I estimate a seemingly unrelated regression (SUR) model 

that consists of 3 equations, one for each of the 3 main dependent variables: DOSCA 

emissions, emissions embodied in exports, and direct end user emissions. The model also 

                                                             
16 The minimal value of renewable energy development is 0. Therefore, I add a constant of 1 to each 
observation of this variable before transforming it with natural logarithm. 
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includes nation and year fixed-effects, and nation-clustered robust standard errors. SUR 

model allows the error terms of the 3 equations to be correlated, and hence has greater 

efficiency in estimating parameters in each equation by using the information from all 3 

equations (Srivastava and Giles 1987). The 3 emission components are generally 

interconnected by complex feedback loops including different types of supply chain 

processes and carbon leakage (Davis et al. 2011; Dietz 2017; Hu et al. 2019; Jarke and 

Perino 2017; Liu et al. 2007; Peters 2010), which are not explicitly accounted for in the 

model. Compared to estimating separate models for each emission component, SUR 

model better accounts for these potential underlying relationships among the 3 emission 

components (Srivastava and Giles 1987). 

Then, I estimate another SUR model to examine how the associations between 

renewables and nations’ 3 emission components have changed over time. The 3 equations 

of this model additionally include interactions between renewables and yearly dummy 

variables (the reference category is 1995), similar to the aforementioned model for PBA. 

In additional sensitivity analysis, I estimate 4-equation SUR models that include 

emissions embodied in imports as the dependent variable of the 4th equation.  

3.7 RESULTS 

Turning first to descriptive statistics, I find that all but one nation in the sample 

increased the share of renewable energy in total final energy consumption from 1995 to 

2015 (see Figure 3.2). The only exception is Norway, which, despite a slight decrease 

during this period, has the highest level of renewable energy consumption in the sample. 
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Meanwhile, out of the 34 sampled nations, 29 reduced their DOSCA emissions and 22 

reduced direct emissions from end user activities during this period (see Figure 3.3). The 

reduction in the other 2 emission components are far less prevalent: 6 nations saw a 

reduction in emissions embodied in exports from 1995 to 2015, and only 3 nations 

experienced a reduction in emissions in imports. It appears that in most sampled nations 

the increase in renewable energy consumption occurred concurrently with a decrease in 

DOSCA emissions and in direct end user emissions, while emissions embodied in their 

exports and imports grew substantially at the same time. 

The baseline regression analysis of PBA is reported in Table 3.1. Nation clustered 

robust standard errors are reported in parentheses. Elasticity coefficients are flagged for 

statistical significance in the table. Model 1 includes only renewable energy, GDP per 

capita, and total population. Model 2 includes other covariates. Model 3 includes the 

squared term of GDP per capita. Model 4 additionally includes the interactions between 

renewables and yearly binary variables, which are separately reported in the left-hand 

side of Figure 3.4. The right-hand side of Figure 3.4 plots the slope of renewables from 

1995 to 2015, with shaded areas representing the 95% confidence intervals. The slope for 

year 1995 is the main effect of renewables, while the slope for each subsequent year is 

the sum of the main effect and the interaction term for that year. Models 1 through 3 

suggest that, on average from 1995 to 2015, renewable energy consumption is negatively 

associated with PBA. Model 4 and Figure 3.4 show the slope remains negative 

throughout this period. The magnitude of the slope is largely stable before 2005 and then 

gradually increases especially after 2010.  
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The baseline analysis indicates an overall decarbonization effect of renewable 

energy deployment on PBA, and that the effect has become stronger since the late 2000s. 

Is the observed effect, and its enhancement over time, evenly distributed among the 3 

components that constitute PBA? Are certain components more effectively mitigated than 

others by renewables? To answer these questions, I estimate 3-equation SUR models for 

DOSCA emissions, emissions embodied in exports, and direct end user emissions. The 

Breusch-Pagan test indicates that the residuals of the 3 equations are significantly 

correlated. Table 3.2 reports the first SUR model, which examines the average 

associations for the 1995 to 2015 period between renewables and each emission 

component. The results indicate that renewable energy consumption is negatively 

associated with DOSCA emissions; yet, it is not associated with the emissions embodied 

in exports or direct end user emissions.  

Next, I estimate another 3-equation SUR model, which includes the interactions 

between renewables and year-specific dummy variables. Model estimates are reported in 

Table 3.3. Figure 3.5 presents renewable energy’ slopes for the 3 emission components 

for each year from 1995 to 2015, with shaded areas representing the 95% confidence 

intervals. 

Figure 3.5(a) suggests that the association between renewables and DOSCA 

emissions remains negative and significant throughout this period. Despite some 

fluctuations, the association generally increases in magnitude over time and especially 

since 2010. In 1995, a 1% increase in renewables is associated with a reduction in 

DOSCA emissions by 0.295%. In 2014, when the magnitude of the association is at its 

peak, a 1% increase in renewables is associated with a reduction in DOSCA emissions by 
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0.513%. Figure 3.5(b) shows that, for emissions embodied in exports, the point estimates 

of renewable energy’s slope are negative during this period and remain relatively stable 

except for an initial dip. However, the slope is either statistically nonsignificant or 

borderline significant.17 Figure 3.5(c) illustrates the changes in renewable energy’s slope 

for direct end user emissions, which remains nonsignificant and relatively stable in 

magnitude from 1995 to 2015 (alpha=0.05). 

Among covariates reported above in Table 3.2, the linear term of GDP per capita 

is positively associated with emissions in exports, but is not associated with DOSCA 

emissions or direct end user emissions (alpha=0.05). The squared term of GDP per capita 

is negatively associated with direct end user emissions, which indicates that the 

association between GDP per capita and direct end user emissions becomes negative and 

increasingly larger in magnitude as nations become wealthier. Additional unreported 

SUR models suggest that the squared term of GDP per capita is not associated with 

DOSCA emissions or emissions in exports. These findings indicate that economic growth 

has decoupled from DOSCA emissions and direct end user emissions but remain coupled 

with increases in emissions embodied in exports. Total population is positively and 

elastically associated with all 3 emission components. Exports (% GDP) is positively 

associated with emissions embodied in exports, and is negatively associated with 

DOSCA emissions. Manufacturing (% GDP) is positively associated with direct end user 

emissions, while service (% GDP) is negatively associated with DOSCA emissions. The 

                                                             
17 Wald tests suggest that, for 10 years out of the 21 year-period, namely, 1996, 1998, 2002, 2005-2007, 
2009, 2010, 2012, and 2013, the slopes of renewables are borderline significantly different than 0 
(0.03≤p<0.05 for 9 out of these 10 years; for 2009, p=0.019). For the other 11 years, the coefficients are 
nonsignificant at 0.05 alpha level. 
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coefficients for imports, urban population, and age dependency ratio are nonsignificant 

across all three emission components (alpha=0.05). 

Appendix Tables A3.3 and A3.4 report 4-equation SUR models that include 

emissions embodied in imports as the 4th dependent variable, as part of the additional 

sensitivity analysis. The findings for DOSCA emissions, emissions embodied in exports, 

and direct end user emissions remain substantively similar to the reported 3-equation 

models. For emissions embodied in imports, the slope of renewable energy consumption 

is nonsignificant during the whole 1995 to 2015 period. GDP per capita is positively and 

elastically associated with emissions embodied in imports. 

3.8 DISCUSSION AND CONCLUSION 

This study examines the multidimensionality in the renewable energy-carbon 

emissions nexus for a sample of 34 high-income nations from 1995 to 2015. Drawing 

from the Multidimensional Emissions Profile (MEP) framework, I systematically analyze 

the relationships between nations’ renewable energy consumption and 4 emission 

components with distinct implications for climate change mitigation. Consistent with the 

literature’s focus on production-based account (PBA) of nations’ CO2 emissions, I 

primarily focus on the 3 emission components that constitute PBA: (1) emissions 

generated by domestic-oriented supply chain activities (DOSCA); (2) emissions 

embodied in exports; and (3) direct emissions of end user activities. The 4th component, 

emissions embodied in imports, is also considered in sensitivity analyses. The study seeks 

to identify emission components that are more effectively mitigated by renewable energy 
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deployment, as well as components that are less effectively mitigated. Furthermore, the 

study investigates if the decarbonization effect of renewable energy deployment has 

changed over time for each emission components. 

When the entire 1995 to 2015 period is considered, I find an overall 

decarbonization effect of renewable energy deployment on nations’ PBA. However, this 

effect is not evenly distributed among the 3 components that constitute PBA. Renewable 

energy deployment is only effective in mitigating DOSCA emissions, which are 

emissions by domestic industrial and other supply chain activities that serve domestic 

final consumption. Renewable energy remains ineffective in curbing emissions embodied 

in exports and direct end user emissions. This suggests that the observed overall 

decarbonization effect of renewables is primarily attributed to the effect on DOSCA 

emissions. While renewables’ overall decarbonization effect on PBA has improved over 

time from 1995 to 2015 and especially since the late 2000s, this improvement is once 

again primarily attributed to the improvement in renewables’ effectiveness in mitigating 

DOSCA emissions. Despite such an improvement, renewables’ inability to mitigate 

emissions embodied in exports and direct end user emissions has persisted throughout 

this period. 

It is promising to observe an increasingly stronger decarbonization effect of 

renewables on PBA and more specifically on DOSCA emissions, which may be credited 

to the strengthening of policy and private sector support for renewable energy transition. 

The lack of similar suppressive effects on emissions embodied in exports and direct end 

user emissions, however, indicates the existence of structural barriers that prevent 

decarbonization from spilling over to these two emission components. These structural 
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barriers prevent the fossil fuel consumption of export-oriented industries and domestic 

end users from being displaced by nations’ increased renewable energy consumption. 

Moreover, it appears that the barriers cannot be overcome by simply strengthening the 

existent strategies of renewable energy deployment. It is crucial to identify and overcome 

these structural barriers in order to achieve the full decarbonization potential of 

renewable energy deployment. Below I explore what these barriers may be. 

For emissions embodied in exports, one likely barrier is the preferential treatment 

of energy-intensive export-oriented industries in environmental policies. In order to 

maintain competitiveness in international trade, many nations either exempt energy-

intensive export industries from carbon taxes, or provide them with tax rebates or reduced 

tax rates (Babiker et al. 2003; Böhringer and Rutherford 1997; OECD 2001). These 

preferential treatments reduce the incentives for energy-intensive export industries to 

reduce fossil fuel consumption and CO2 emissions (Barker, Baylis, and Madsen 1993; 

Lin and Li 2011; OECD n.d.; Zhang and Baranzini 2004). Investment in renewable 

energy without proportional exnovation of the fossil fuel regime does little to curb fossil 

fuel consumption (Davidson 2019), in part because of the fuel market rebound effect: 

investment in renewables increase total energy supply, which can lower energy price—

including the price of fossil fuel, thereby spurring fossil fuel use  (Hill et al. 2016). 

Additionally, if not accompanied by adequate effort to suppress fossil fuel consumption, 

renewable energy deployment in nuclear-capable nations tends to crowd out nuclear 

power rather than fossil fuels (Greiner et al. 2022; Sovacool et al. 2020). This also 

sidesteps the decarbonization effect of renewable energy and is particularly relevant to 
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high-income nations because they are more likely to be nuclear-capable than lower-

income nations.18 

Underlying these processes is that many practices that are normalized at a societal 

level, such as personal vehicle-based transportation and the ubiquity of plastics, together 

with the vast economic and political power of the fossil fuel industry, continue to 

legitimize the fossil fuel regime despite the growth in alternative energy deployment 

(Davidson 2019; Sicotte 2020; Sicotte and Seamon 2021; Smil 2016). Due to their 

preferential treatment in climate policies, export industries may be more likely than 

domestic-oriented industries to succumb to the fuel market rebound effect, the mutual 

displacement between renewable and nuclear energies, and the underlying inertia of the 

fossil fuel regime. It might also be the case that granting climate policy preference to 

export industries induces a form of carbon leakage from domestic-oriented industries to 

export industries. In order to recoup the sunk cost of the fossil fuel-based equipment and 

facilities made obsolete due to a transition to renewable energy in domestic-oriented 

industries, businesses may choose not to scrap these equipment and facilities but instead 

repurpose them for export-oriented production. These dynamics create an upward 

pressure on fossil fuel consumption that is disproportionally felt by export industries, 

which offsets the potential suppressive effect of renewable energy on emissions 

embodied in exports. 

For direct end user emissions, the null effect of renewables may be due to a lack 

of effective mechanisms to translate increased renewable energy consumption into a 

reduction in direct fossil fuel consumption by end users. The main focus on renewable 

                                                             
18 19 out of the 34 sampled nations produced electricity from nuclear power at some point during the 1995 
to 2015 period. 
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energy deployment so far has been electricity generation (Smil 2016), which may not 

have direct impacts on the direct fossil fuel consumption by end users such as 

households. As a reminder, direct end user emissions do not include emissions generated 

at powerplants providing electricity for household use, but only account for emission 

directly generated by end users, primarily including driving personal vehicles. The major 

types of renewables deployed in road transportation are biofuels like bioethanol and 

biodiesel, which are more carbon intensive relative to other renewables and hence have 

limited decarbonization potential (Hill et al. 2016). Biofuels are commonly deployed as 

blended fuels that contain a large share of fossil fuel (e.g., E10, the most common ethanol 

blend in the United States, contains 10% ethanol and 90% gasoline). Therefore, the 

deployment of biofuel in automobile-based transportation sustains fossil fuel 

consumption. When combined with the aforementioned fuel market rebound effect, the 

current ways of biofuel deployment may even increase carbon emissions by road 

transportation (Hill et al. 2016). 

The observed suppressive effect of renewables on DOSCA emissions is used as a 

benchmark against which the other emissions components are discussed. However, 

renewable energy transition has by no means achieved the optimal effectiveness in 

mitigating DOSCA emissions. Although the observed suppressive effect became greater 

from 1995 to 2015, it remained inelastic. Each 1% increase in renewable energy 

consumption is associated with a reduction in DOSCA emissions by slightly over 0.5% at 

best. The magnitude of the effect found in this study is consistent with York’s (2012) 

observation that each unit increase in renewable energy consumption only displaces fossil 

fuel consumption by a fraction of a unit. This finding also supports Davidson’s (2019) 
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argument that renewable energy deployment to date has not been matched with 

proportional efforts to exnovate the fossil fuel regime. It appears that the decarbonization 

effectiveness of renewables on domestic-oriented industries are also impeded by the 

inertia of the fossil fuel regime, the fuel market rebound effect, and the mutual 

displacement between renewables and nuclear energy, albeit to a lesser extent than export 

industries. 

Turning briefly to emissions embodied in imports, I find that renewable energy 

consumption does not directly mitigate this emission component. This is to be expected 

because this emission component is generated outside of importing nations’ territory, so 

that the importing nations’ domestic renewable energy deployment may not have direct 

bearing on this component. I also find that emissions in imports is positively associated 

with economic growth, and more strongly so than the other 3 emission components. This 

means that as high-income nations become even wealthier, the emissions embodied in 

their imports become an increasingly major way in which they contribute to global CO2 

emissions. In 2015, emissions embodied in imports was the largest of the 4 emission 

components in half (17) of the sampled nations. This, combined with the null effect of 

renewables, highlights that it is imperative to mitigate the emissions embodied in imports 

for high-income nations through means other than renewable energy deployment.  

The above discussion explores potential barriers to renewables’ decarbonization 

effectiveness, in order to understand the observed heterogeneous relationships between 

renewables and multiple emission components. These barriers, as well as others not 

explicitly discussed here, warrant thorough investigations beyond the scope of this study. 

To this end, the present study highlights several avenues for future research: What social, 
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economic, political, and technological barriers impede renewables’ mitigation effect on 

emissions embodied in exports and direct emissions by end users? How do the barriers 

differ across nations and change over time? How can these barriers be overcome? How 

can renewables’ mitigation effect on DOSCA emissions be further strengthened? 

Furthermore, this study focuses on high-income nations, in part due to the limited 

availability of data on nations’ 4 emission components. As data availability improves, 

future researchers should also examine middle- and low-income nations, some of which 

have become major CO2 emitters and energy consumers. Additionally, this study 

demonstrates how future research on the effectiveness of climate mitigation measures can 

benefit from using the Multidimensional Emissions Profile (MEP) framework. 

In conclusion, this study finds that renewable energy consumption in high-income 

nations can mitigate CO2 emissions generated by their domestic-oriented supply chain 

activities, and with increasing effectiveness over time. However, the decarbonization 

effect of renewables has not spilled over to emissions embodied in exports, emissions 

generated directly by end user activities, or emissions embodied in imports. The results 

underscore the existence of structural barriers that disproportionally hinder the 

displacement of fossil fuel consumption in the export sector as well as end user activities. 

These barriers must be overcome in order to achieve the full decarbonization potential of 

renewable energy deployment. 
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3.10 TABLES 

Table 3.1 Unstandardized coefficients for the regression of nations’ PBA, 1995–2015, on 
renewable energy and selected independent variables: two-way fixed effects regression 
model estimates with country-clustered robust standard errors for 34 high-income 
countries. 

  
 
  

Model 1 Model 2 Model 3 Model 4
Renewable Energy (as % Total Energy) -0.109** -0.0981* -0.0993* -0.165***

(0.0397) (0.0397) (0.0385) (0.0435)
GDP Per Capita 0.379** 0.499** 0.448* 0.355*

(0.119) (0.142) (0.216) (0.140)
GDP Per Capita Squared -0.0406

(0.104)
Total Population 1.500*** 1.653*** 1.808*** 1.125***

(0.329) (0.253) (0.471) (0.293)
Imports as % GDP 0.0642 0.0667 -0.0368

(0.109) (0.108) (0.0932)
Exports as % GDP -0.0535 -0.0538 -0.0355

(0.114) (0.114) (0.107)
Manufacturing as % GDP -0.303 -0.381 -0.384

(0.270) (0.353) (0.268)
Service as % GDP 0.0872 0.0979 -0.361

(0.386) (0.391) (0.423)
Urban Pop. as % Pop. 0.350 0.403 0.356

(0.351) (0.315) (0.323)
Age Dependency Ratio 0.389

(0.493)
Constant -23.28*** -27.54*** -24.87** -14.8

(6.152) (6.766) (7.706) (7.787)
N 714 710 710 710
# of nation 34 34 34 34
N per nations, min. 21 19 19 19
N per nation, avg. 21 20.88 20.88 20.88
N per nation, max. 21 21 21 21
Notes: Model 4 includes interactions between renewables and yearly dummy variables,
which are separately reported in Figure 4; robust standard errors clustered by nation
are reported in parentheses; all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
* p<.05  ** p<.01  *** p<.001 (two tailed).
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Table 3.2 Unstandardized coefficients for the regression of nations’ 3 emission 
components, 1995–2015, on renewable energy and selected independent variables: 
seemingly unrelated regression model estimates with two-way fixed effects and country-
clustered robust standard errors for 34 high-income countries.   

  

DOSCA 
Emissions

Emissions in 
Exports

Direct End 
User Emissions

Renewable Energy (as % Total Energy) -0.132* -0.108 -0.0587
(0.0531) (0.0728) (0.0564)

GDP Per Capita 0.354 0.478* -0.0851
(0.205) (0.226) (0.274)

GDP Per Capita Squared -0.350**
(0.132)

Total Population 1.723*** 1.719** 1.715**
(0.375) (0.528) (0.651)

Imports as % GDP 0.176 -0.124 -0.160
(0.154) (0.185) (0.184)

Exports as % GDP -0.361* 0.841*** -0.143
(0.151) (0.181) (0.170)

Manufacturing as % GDP -0.158 -0.129 0.406*
(0.167) (0.192) (0.162)

Service as % GDP -0.925* 0.258 -0.110
(0.403) (0.466) (0.513)

Urban Pop. as % Pop. -0.242 0.107 0.526
(0.615) (0.651) (0.744)

Age Dependency Ratio 0.389 0.844 0.512
(0.475) (0.442) (0.556)

Constant -22.69* -36.25** -28.61**
(9.752) (12.16) (10.92)

N 710 710 710
# of nation 34 34 34
N per nations, min. 19 19 19
N per nation, avg. 20.88 20.88 20.88
N per nation, max. 21 21 21
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
* p<.05  ** p<.01  *** p<.001 (two tailed).

Seemingly Unrelated Regression Model
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Table 3.3 Unstandardized coefficients for the regression of nations’ 3 emission 
components, 1995–2015, on renewable energy, renewable energy’s interaction with 
yearly dummy variables, and selected independent variables: seemingly unrelated 
regression model estimates with two-way fixed effects and country-clustered robust 
standard errors for 34 high-income countries. 

  

β S.E. β S.E. β S.E.
Renewable Energy (as % Total Energy) -0.295*** (0.0525) -0.0442 (0.0891) -0.0979 (0.0700)
Renewable × 1996 0.0864** (0.0302) -0.124* (0.0570) 0.0196 (0.0275)
Renewable × 1997 0.0827* (0.0374) -0.113 (0.0650) 0.0108 (0.0214)
Renewable × 1998 0.0947* (0.0409) -0.123 (0.0668) 0.0377 (0.0297)
Renewable × 1999 0.0588 (0.0324) -0.0969 (0.0580) 0.0333 (0.0494)
Renewable × 2000 0.0371 (0.0351) -0.105* (0.0457) 0.00958 (0.0817)
Renewable × 2001 0.0329 (0.0310) -0.121* (0.0558) 0.0397 (0.0792)
Renewable × 2002 0.0334 (0.0326) -0.123* (0.0544) 0.0600 (0.0789)
Renewable × 2003 0.0315 (0.0362) -0.127* (0.0648) 0.0794 (0.0785)
Renewable × 2004 -0.00491 (0.0319) -0.0965* (0.0483) 0.0527 (0.0624)
Renewable × 2005 -0.0219 (0.0345) -0.140* (0.0571) 0.0599 (0.0887)
Renewable × 2006 -0.00737 (0.0440) -0.136* (0.0649) 0.0424 (0.0883)
Renewable × 2007 -0.0394 (0.0459) -0.144* (0.0621) 0.0773 (0.0996)
Renewable × 2008 -0.0859 (0.0600) -0.126* (0.0619) 0.0472 (0.107)
Renewable × 2009 -0.0794 (0.0687) -0.170** (0.0604) 0.0669 (0.110)
Renewable × 2010 -0.120* (0.0549) -0.151* (0.0653) 0.0743 (0.117)
Renewable × 2011 -0.153** (0.0570) -0.164* (0.0745) 0.0487 (0.112)
Renewable × 2012 -0.171** (0.0650) -0.183* (0.0894) 0.0255 (0.118)
Renewable × 2013 -0.134 (0.0870) -0.202* (0.0884) 0.00882 (0.124)
Renewable × 2014 -0.218** (0.0731) -0.179* (0.0741) 0.0363 (0.126)
Renewable × 2015 -0.166 (0.0913) -0.169* (0.0761) 0.00893 (0.128)

GDP Per Capita 0.115 (0.168) 0.387 (0.229) -0.0928 (0.299)
GDP Per Capita Squared -0.350** (0.135)
Total Population 0.822** (0.292) 1.368* (0.547) 1.757** (0.651)
Imports as % GDP -0.0145 (0.116) -0.177 (0.178) -0.154 (0.223)
Exports as % GDP -0.429** (0.137) 0.822*** (0.177) -0.140 (0.165)
Manufacturing as % GDP -0.121 (0.125) -0.133 (0.190) 0.414* (0.162)
Service as % GDP -1.055** (0.389) 0.190 (0.460) -0.103 (0.537)
Urban Pop. as % Pop. -1.034 (0.529) -0.205 (0.660) 0.616 (0.759)
Age Dependency Ratio 0.412 (0.433) 0.859* (0.431) 0.483 (0.559)
Constant -0.163 (8.082) -27.72* (12.59) -29.59* (11.58)

N 710 710 710
# of nation 34 34 34
N per nations, min. 19 19 19
N per nation, avg. 20.88 20.88 20.88
N per nation, max. 21 21 21
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
* p<.05  ** p<.01  *** p<.001 (two tailed).

Seemingly Unrelated Regression Model
DOSCA Emissions Emissions in Exports Direct End User Emissions
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3.11 FIGURES 

 
Figure 3.1 Conceptual Diagram of the 4 Emissions Components that Constitute the 
Multidimensional Emissions Profile (MEP) framework, in A Simplified 2-Nation Model 
that Excludes Re-imports and Re-exports. 
 
 
 
 
 
 

 
Figure 3.2 Changes in Renewable Energy Consumption as A Percent of Total Final 
Energy Consumption for 34 Sampled Nations, 1995-2015.  
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Figure 3.3 Percentage Change from 1995 to 2015 for 4 Components of CO2 Emission: 
Emissions by Domestic-Oriented Supply Chain Activities (DOSCA), Emissions 
Embodied in Exports, Direct End User Emissions, and Emissions Embodied in Imports, 
for 34 Sampled Nations. Notes: axis scale varies across subplots; the emissions embodied 
in imports for Luxemburg and Malta are truncated due to extreme values.  
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Figure 3.4 Average marginal effects of renewable energy consumption on PBA, based on 
the Model 4 reported in Table 3.1. Coefficients for the main effect of renewables and the 
interactions with yearly dummy variables are reported on the left-hand side. Shaded areas 
are 95% confidence intervals. 
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Figure 3.5 Average marginal effects of renewable energy consumption on (a) emissions 
generated by domestic-oriented supply chain activities (DOSCA); (b) emissions 
embodied in exports; and (c) direct end user emissions, for each year from 1995 to 2015, 
based on the SUR model reported in Table 3.3. Shaded areas are 95% confidence 
intervals. 
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3.12 APPENDICES 

3.12.1 Calculating the 4 Components of CO2 Emissions Using the EE-MRIO 

Approach 

The calculation of the four components of CO2 emissions follows procedures similar to 

those described in Chapter 2 Appendix 2.13.1 for the calculation of GHG emission 

measures. I used the environmentally-extended multi-regional input-output (EE-MRIO) 

method (Miller and Blair 2009), and the EE-MRIO tables from the latest version of 

EXIOBASE 3 to calculate nations’ four emission components (Stadler et al. 2018, 2021). 

Prior research has demonstrated that the EE-MRIO method and EXIOBASE 3 are well 

suited for analyzing environmental impacts, including CO2 and other GHG emissions, of 

global supply chain activities (Bjelle et al. 2021; Bjørn et al. 2018; Dorninger et al. 2021; 

Hertwich 2021; Tukker et al. 2016). Emissions data calculated using EE-MRIO method 

can be sensitive to the choice of EE-MRIO databases (Lenzen, Wood, and Wiedmann 

2010; Owen et al. 2016; Rodrigues et al. 2018). Harmonizing environmental satellite 

accounts across EE-MRIO databases, which has been applied to EXIOBASE 3, can 

alleviate the data sensitivity (Moran and Wood 2014; Tukker, de Koning, et al. 2018). 

The high level of sectoral resolution of EXIOBASE also mitigates data uncertainties 

introduced by sectoral aggregation (Lenzen 2011; Stadler et al. 2018). For a full 

description of the build process of EXIOBASE 3 and its use in research, see Stadler et al 

(2018) and a special issue of Journal of Industrial Ecology edited by Tukker et al (2018).  

I acquired industry by industry (ixi) EE-MRIO tables from EXIOBASE 3 for the period 

of 1995 to 2015, which covers 163 harmonized industrial sectors and 49 regions. 
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Together these areas account for over 99% of global population in 2015. 1995 is the first 

year with data available, while 2015 is the latest year with industry-level energy-related 

emissions calculated based on real energy balances data from the IEA as opposed to 

nowcasts. For each year, I utilized the technical coefficient matrix A provided by 

EXIOBASE. A is a 7987 by 7987 matrix (7987= 163 * 49, and is the number of industry-

region pairs); its elements 𝑎𝑎𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅 (row indices Ri: R=1,…,49; i=1,…,163; column indices Sj: 

S=1,…,49; j=1,…,163) denote the output from industry i in Region R that is required as 

direct intermediate input for industry j in region S to produce one unit of output. Based on 

A, I calculated a 7987 by 7987 multi-regional Leontief inverse matrix L following the 

Leontief IO model (Leontief 1970; Miller and Blair 2009). 

𝑳𝑳 = (𝑰𝑰 − 𝑨𝑨)−1 

where I is a 7987 by 7987 identity matrix. In the matrix L, an element 𝑙𝑙𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅 represents the 

total output of industry i in region R that is required to satisfy, both directly and 

indirectly, a one-unit increase in the final demand for the output of industry j in region S. 

Next, I constructed a 7987 by 49 final demand matrix Y based on the final demand data 

from EXIOBASE 3; its element 𝑦𝑦𝑗𝑗𝑆𝑆𝑆𝑆(row indices Sj: S=1,…,49; j=1,…,163; column 

index T=1,…,49) denotes the final demand in region T for product j imported from region 

S. The T-th column of Y, denoted by vector 𝒚𝒚𝑇𝑇, represents the final demand in region T 

for each of the 163 products imported from each of the 49 regions including region T 

itself.  

Then, for each region of final demand T, I calculated a partial output matrix 𝑿𝑿𝑇𝑇as: 

𝑿𝑿𝑇𝑇 = 𝑳𝑳𝒚𝒚𝑇𝑇�𝑬𝑬 
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where 𝒚𝒚𝑇𝑇� is a 7987 by 7987 matrix resulting from the diagonalization of 𝒚𝒚𝑇𝑇;  E is a 7987 

by 163 summation matrix created by stacking 49 identity matrices, each sized at 163 by 

163, on top of one another. The resulted 𝑿𝑿𝑇𝑇 is a 7987 by 163 matrix.  

I then assemble all 𝑿𝑿𝑇𝑇side by side in the order of T=1,…,49 to create a 7987 by 7987 full 

output matrix 𝑿𝑿 with elements denoted by 𝑥𝑥𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅(row indices Ri: R=1,…,49; i=1,…,163; 

column indices Tj: T=1,…,49; j=1,…,163). 𝑥𝑥𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅represents the total output of industry i 

located in region R that is required to satisfy, both directly and indirectly, the final 

demand in region T for product j produced anywhere in the world.  

Next, I obtained a 1 by 7987 of emission intensity coefficient vector s for airborne CO2 

emissions from fossil fuel combustion from the impacts extension of EXIOBASE 3; each 

element 𝑠𝑠𝑖𝑖𝑅𝑅  represents the CO2 emissions per monetary unit of output of industry i located 

in region R in a particular year.  

A CO2 footprint matrix F is calculated as:  

𝑭𝑭 = 𝒔𝒔⊗𝑿𝑿 

where ⊗ refers to the multiplication of s and X without summation along the columns 

of X. In other words, each element in the n-th row of X is multiplied with the n-th 

element of s. The resulted F is a 7987 by 7987 matrix, the elements of which are 𝑓𝑓𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅= 

𝑠𝑠𝑖𝑖𝑅𝑅𝑥𝑥𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅(row indices Ri: R=1,…,49; i=1,…,163; column indices Tj: T=1,…,49; 

j=1,…,163).19 𝑓𝑓𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅represents the total CO2 emissions (megatons) generated by industry i 

                                                             
19 This differs from a conventional matrix multiplication such as  𝒎𝒎 = 𝒔𝒔𝒔𝒔, where the product m is a 1 by 
7987 vector with its element 𝑚𝑚𝑗𝑗

𝑇𝑇= ∑ (𝑠𝑠𝑖𝑖𝑅𝑅𝑥𝑥𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅)49,163
𝑅𝑅,𝑖𝑖=1,1 . 
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in region R that is driven, both directly and indirectly, by the final demand in region T for 

product j produced anywhere in the world.  

Regions’ four emission components are calculated by aggregating selective elements of 

the footprint matrix F. Emissions generated by DOSCA for region T are calculated by 

aggregating the CO2 emissions generated by all industries i in region T in order to satisfy, 

both directly and indirectly, its domestic final demand for all products j, as in: 

𝐶𝐶𝐶𝐶2-𝐷𝐷𝐷𝐷𝑇𝑇 = � 𝑓𝑓𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇
163 ,163

𝑖𝑖 ,𝑗𝑗=1,1

 

Emissions embodied in imports of region T are calculated by first aggregating the 

emissions generated by all industries i in all regions R in order to satisfy region T’s final 

demand for all products j, and then deducting the part of emissions generated by all 

industries i in region T in order to satisfy its domestic final demand for all products j, as 

in 

𝐶𝐶𝐶𝐶2-𝐼𝐼𝐼𝐼𝑇𝑇 = � 𝑓𝑓𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅 −
49,163 ,163

𝑅𝑅,𝑖𝑖,𝑗𝑗=1,1,1

� 𝑓𝑓𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇
163,163

𝑖𝑖 ,𝑗𝑗=1,1

 

Emissions embodied in exports of region T are calculated by first aggregating the 

emissions generated by all industries i in region T in order to satisfy all regions R’s final 

demand for all products j, and then deducting the emissions generated by all industries i 

in region T i=n order to satisfy its domestic final demand for all products j, as in 

𝐶𝐶𝐶𝐶2-𝐸𝐸𝐸𝐸𝑇𝑇 = � 𝑓𝑓𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇 −
49,163,163

𝑅𝑅,𝑖𝑖,𝑗𝑗=1 ,1,1

� 𝑓𝑓𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇
163 ,163

𝑖𝑖 ,𝑗𝑗=1,1

 

For direct end user emissions, EXIOBASE 3 provides data on the magnitude of CO2 

emissions directly generated by 3 categories of final demand activities for each of the 49 
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regions, in the form of a 1 by 147 vector fY; its elements 𝑓𝑓𝑌𝑌𝑌𝑌  𝑇𝑇 (column indices Tc: 

T=1,…,49; c=1,…,3) denote the direct CO2 emissions of final demand category c in 

region T. The 3 final demand categories are: final consumption expenditure of 

households, final consumption expenditure of non-profit organizations serving 

households (NPISH), final consumption expenditure of general government. The total 

direct emissions of end user activities of region T were calculated by aggregating the 

direct CO2 emissions generated by 3 final demand categories of region T, as in: 

𝐶𝐶𝐶𝐶2-𝑌𝑌𝑇𝑇 = �𝑓𝑓𝑌𝑌𝑌𝑌  𝑇𝑇
3

𝑐𝑐=1

 

The calculation of the four emission components was repeated for each of the sampled 

regions, and for each year from 1995 to 2015. 
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3.12.2 Appendix Tables 

Table A3.1 Descriptive Statistics  
 N Mean S.D. Min. Max. 
Production-Based Account (PBA) 714 355.757 924.823 1.994 5747.415 
DOSCA Emissions 714 212.237 596.493 0.658 3825.635 
Emissions Embodied in Exports 714 58.946 89.808 0.377 544.112 
Direct Emissions of End User 
Activities 

714 84.574 249.991 0.141 1549.552 

Emissions Embodied in Imports 714 101.487 187.631 0.551 1341.968 
Renewable Energy (% Energy 
Consumption) 

714 14.774 13.236 0 60.188 

GDP per capita  714 34834.015 21537.649 4775.307 111968.352 
Imports of goods and services (% 
GDP) 

714 48.356 28.043 7.708 187.165 

Exports  of goods and services (% 
GDP) 

714 49.576 31.812 8.972 221.197 

Manufacturing, value added (% GDP) 710 15.585 4.984 3.887 34.566 
Services, value added (% GDP) 710 61.791 6.875 39.84 79.116 
Total population 714 30123532.32 54075199.57 377419 320600000 
Urban population (% Pop.) 714 73.316 11.813 50.622 97.876 
Age dependency ratio 714 48.459 4.227 36.214 63.958 

 
 
 
Table A3.2 Bivariate Correlation Matrix 

 
      

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
(1) Production-Based Account (PBA) 1
(2) DOSCA Emissions 0.9984 1
(3) Emissions Embodied in Exports 0.9022 0.8845 1
(4) Direct Emissions of End User Activities 0.993 0.9898 0.8678 1
(5) Emissions Embodied in Imports 0.9581 0.9486 0.9326 0.9458 1
(6) Renewable Energy (% Energy Consumption) -0.2012 -0.1955 -0.2671 -0.1818 -0.2335 1
(7) GDP per capita 0.1134 0.1055 0.1506 0.1139 0.1625 0.1803 1
(8) Imports of goods and services (% GDP) -0.3399 -0.3313 -0.4374 -0.3096 -0.3988 -0.1861 0.0796 1
(9) Exports  of goods and services (% GDP) -0.3263 -0.3205 -0.4 -0.2986 -0.3743 -0.1591 0.2518 0.9744 1

(10) Manufacturing, value added (% GDP) -0.0162 -0.0163 0.0654 -0.045 -0.0192 -0.1495 -0.3625 -0.1163 -0.1132 1
(11) Services, value added (% GDP) 0.3502 0.3421 0.3452 0.3548 0.403 -0.2721 0.4761 0.1351 0.1733 -0.5893 1
(12) Total population 0.9587 0.951 0.9418 0.9393 0.973 -0.2612 0.0951 -0.4375 -0.4156 0.0437 0.36 1
(13) Urban population (% Pop.) 0.1727 0.1616 0.2935 0.1477 0.2273 -0.1581 0.5036 0.096 0.1627 -0.272 0.5112 0.1895 1
(14) Age dependency ratio 0.1155 0.107 0.1061 0.1338 0.1746 0.3177 0.3228 -0.2312 -0.1883 -0.3192 0.3149 0.1534 0.3342
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Table A3.3 Unstandardized coefficients for the regression of nations’ 4 emission 
components, 1995–2015, on renewable energy and selected independent variables: 
seemingly unrelated regression model estimates with two-way fixed effects and country-
clustered robust standard errors for 34 high-income countries.   

 
  

DOSCA 
Emissions

Emissions in 
Exports

Direct End 
User Emissions

Emissions in 
Imports

Renewable Energy (as % Total Energy) -0.132* -0.108 -0.0588 -0.0474
(0.0531) (0.0728) (0.0563) (0.0646)

GDP Per Capita 0.354 0.478* -0.0899 1.347***
(0.205) (0.226) (0.275) (0.223)

GDP Per Capita Squared -0.354**
(0.133)

Total Population 1.723*** 1.719** 1.730** 1.613**
(0.375) (0.528) (0.652) (0.581)

Imports as % GDP 0.176 -0.124 -0.160 0.628**
(0.154) (0.185) (0.184) (0.210)

Exports as % GDP -0.361* 0.841*** -0.143 -0.146
(0.151) (0.181) (0.170) (0.293)

Manufacturing as % GDP -0.158 -0.129 0.406* -0.295
(0.167) (0.192) (0.162) (0.251)

Service as % GDP -0.925* 0.258 -0.117 0.453
(0.403) (0.466) (0.511) (0.441)

Urban Pop. as % Pop. -0.242 0.107 0.527 0.110
(0.615) (0.651) (0.744) (0.758)

Age Dependency Ratio 0.389 0.844 0.517 0.440
(0.475) (0.442) (0.557) (0.558)

Constant -22.69* -36.25** -28.85** -41.94***
(9.752) (12.16) (10.97) (12.55)

N 710 710 710 710
# of nation 34 34 34 34
N per nations, min. 19 19 19 19
N per nation, avg. 20.88 20.88 20.88 20.88
N per nation, max. 21 21 21 21
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
* p<.05  ** p<.01  *** p<.001 (two tailed).

Seemingly Unrelated Regression Model
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Table A3.4 Unstandardized coefficients for the regression of nations’ 4 emission 
components, 1995–2015, on renewable energy, renewable energy’s interaction with 
yearly dummy variables, and selected independent variables: seemingly unrelated 
regression model estimates with two-way fixed effects and country-clustered robust 
standard errors for 34 high-income countries. 

 

 

 

 

 

 

 

 

β S.E. β S.E. β S.E. β S.E.
Renewable Energy (as % Total Energy) -0.295*** (0.0525) -0.0442 (0.0891) -0.0979 (0.0700) 0.0226 (0.0805)
Renewable × 1996 0.0864** (0.0302) -0.124* (0.0570) 0.0196 (0.0275) -0.166** (0.0637)
Renewable × 1997 0.0827* (0.0374) -0.113 (0.0650) 0.0108 (0.0214) -0.0870 (0.0798)
Renewable × 1998 0.0947* (0.0409) -0.123 (0.0668) 0.0377 (0.0297) -0.0686 (0.0800)
Renewable × 1999 0.0588 (0.0324) -0.0969 (0.0580) 0.0333 (0.0494) -0.0713 (0.0812)
Renewable × 2000 0.0371 (0.0351) -0.105* (0.0457) 0.00961 (0.0817) -0.0884 (0.0765)
Renewable × 2001 0.0329 (0.0310) -0.121* (0.0558) 0.0397 (0.0792) -0.0912 (0.0692)
Renewable × 2002 0.0334 (0.0326) -0.123* (0.0544) 0.0600 (0.0789) -0.12 (0.0674)
Renewable × 2003 0.0315 (0.0362) -0.127* (0.0648) 0.0795 (0.0785) -0.128 (0.0671)
Renewable × 2004 -0.00491 (0.0319) -0.0965* (0.0483) 0.0527 (0.0624) -0.110* (0.0526)
Renewable × 2005 -0.0219 (0.0345) -0.140* (0.0571) 0.0600 (0.0887) -0.107 (0.0573)
Renewable × 2006 -0.00737 (0.0440) -0.136* (0.0649) 0.0424 (0.0883) -0.104 (0.0610)
Renewable × 2007 -0.0394 (0.0459) -0.144* (0.0621) 0.0774 (0.0996) -0.0975 (0.0590)
Renewable × 2008 -0.0859 (0.0600) -0.126* (0.0619) 0.0473 (0.107) -0.0704 (0.0655)
Renewable × 2009 -0.0794 (0.0687) -0.170** (0.0604) 0.0671 (0.110) -0.120 (0.0859)
Renewable × 2010 -0.120* (0.0549) -0.151* (0.0653) 0.0744 (0.117) -0.110 (0.0824)
Renewable × 2011 -0.153** (0.0570) -0.164* (0.0745) 0.0488 (0.112) -0.0831 (0.0752)
Renewable × 2012 -0.171** (0.0650) -0.183* (0.0894) 0.0257 (0.118) -0.0953 (0.0777)
Renewable × 2013 -0.134 (0.0870) -0.202* (0.0884) 0.00898 (0.124) -0.0995 (0.0759)
Renewable × 2014 -0.218** (0.0731) -0.179* (0.0741) 0.0365 (0.126) -0.131 (0.0725)
Renewable × 2015 -0.166 (0.0913) -0.169* (0.0761) 0.00914 (0.128) -0.195* (0.0906)

GDP Per Capita 0.115 (0.168) 0.387 (0.229) -0.0955 (0.299) 1.285*** (0.251)
GDP Per Capita Squared -0.353** (0.136)
Total Population 0.822** (0.292) 1.368* (0.547) 1.767** (0.651) 1.452* (0.653)
Imports as % GDP -0.0145 (0.116) -0.177 (0.178) -0.154 (0.223) 0.614* (0.241)
Exports as % GDP -0.429** (0.137) 0.822*** (0.177) -0.140 (0.165) -0.144 (0.297)
Manufacturing as % GDP -0.121 (0.125) -0.133 (0.190) 0.414* (0.162) -0.295 (0.259)
Service as % GDP -1.055** (0.389) 0.190 (0.460) -0.107 (0.535) 0.500 (0.456)
Urban Pop. as % Pop. -1.034 (0.529) -0.205 (0.660) 0.617 (0.759) -0.0211 (0.855)
Age Dependency Ratio 0.412 (0.433) 0.859* (0.431) 0.486 (0.559) 0.407 (0.564)
Constant -0.163 (8.082) -27.72* (12.59) -29.75* (11.59) -38.20* (15.39)

N 710 710 710 710
# of nation 34 34 34 34
N per nations, min. 19 19 19 19
N per nation, avg. 20.88 20.88 20.88 20.88
N per nation, max. 21 21 21 21
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
* p<.05  ** p<.01  *** p<.001 (two tailed).

Seemingly Unrelated Regression Model
DOSCA Emissions Emissions in Exports Direct End User Emissions Emissions in Imports
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4.0  CHAPTER 4: HARNESS THE CO-BENEFITS AND AVOID THE TRADE-

OFF: THE MULTIDIMENSIONAL TIME-VARYING RELATIONSHIP 

BETWEEN DOMESTIC INCOME INEQUALITY AND CARBON DIOXIDE 

EMISSIONS 

4.1 ABSTRACT 

Multiple causal pathways link nations’ domestic income inequality to their CO2 

emissions. Using a multidimensional analytical framework, I systematically analyze the 

relationships between nations’ domestic income inequality and four components of CO2 

emissions with distinct implications for climate change mitigation: (1) emissions 

generated by domestic-oriented supply chain activities; (2) emissions embodied in 

exports; (3) direct emissions of end user activities, and (4) emissions embodied in 

imports. I analyze a panel dataset consisted of 34 high-income nations from 2004 to 

2015, and use two measures of income inequality: the Gini coefficient and the income 

share of the top 10%. Results of seemingly unrelated regression models suggest that the 

relationships between income inequality and CO2 emissions change over time, vary 

across emission components, and differ between measures of income inequality. The 

results are indicative of variations in the causal pathways, both over time and across 

emission components.  
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4.2 INTRODUCTION 

Growing income inequality has become a prominent issue during the COVID19 

pandemic (Deaton 2021; Ferreira 2021). Meanwhile, reducing global CO2 emissions 

remains an urgent task (UNFCCC 2021). Can policies seeking to address income 

inequality also synergistically generate the co-benefits of CO2 emissions abatement? Is 

there instead a trade-off between these two objectives? A growing body of literature 

investigates the relationship between domestic income inequality and CO2 emissions, 

highlighting a multitude of causal pathways. However, the literature has not 

systematically examined how income inequality may heterogeneously affect various 

structural components of nations’ CO2 emissions that are generated by different 

categories of human activities. How might the effect of income inequality differ in 

magnitude or even in direction across emission components? Are the pathways linking 

income inequality to emissions different across emission components? Is equality 

enhancement associated with a reduction in certain emission components but an increase 

in other components? This study seeks to address these questions. 

Drawing from the Multidimensional Emissions Profile (MEP) analytical 

framework (Chapter 2), I decompose a nation’s contributions to global CO2 emissions 

into four distinct components: (1) emissions generated by domestic-oriented supply chain 

activities (DOSCA), such as domestic industrial activities that serve domestic consumers; 

(2) emissions embodied in exports; (3) direct emissions of end user activities; and (4) 

emissions embodied in imports. I use seemingly unrelated regression with two-way fixed 

effects to analyze the time-varying relationships between domestic income inequality and 

these four emission components for a sample of 34 high-income nations from 2004 to 



 142 

2015. Income inequality is operationalized in two different ways:  the Gini coefficient 

and the income share held by the top 10% of population. I find that the relationships 

between income inequality and nations’ CO2 emissions change over time, vary across 

emission components, and differ between measures of income inequality. The results are 

indicative of variations in the causal pathways, both over time and across emission 

components. 

4.3 THEORETICAL PATHWAYS OF THE INCOME INEQUALITY-

CARBON EMISSIONS RELATIONSHIP 

Multiple pathways link domestic income inequality to carbon dioxide emissions 

(Cushing et al. 2015; Jorgenson, Schor, and Huang 2017; Ravallion, Heil, and Jalan 

2000), which can be broadly divided into three groups. The first group focuses on power 

and political economy. Boyce (1994, 2003, 2007) proposes a “power-weighted social 

decision rule,” which contends that social decisions affecting environmental outcomes, 

such as environmental regulations, are shaped by the relative power of those who benefit 

from environmental degradation and those who suffer from the degradation. When the 

group that benefits from environmental degradation is more powerful than those who 

suffer, the societal level of environmental degradation tends to increase. Studies have 

found that the wealthier segment of a society tends to be more shielded than the poorer 

population from various forms of environmental degradation (Brulle and Pellow 2006; 

Mohai, Pellow, and Roberts 2009), including carbon-intensive industrial facilities 

(Pattison, Habans, and Clement 2014). Through controlling and profiting from 
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production facilities and organizations that generate environmental harms, the wealthy 

also benefit more from environmental degradation (Downey 2015), and are less 

supportive of environmental protection (Page, Bartels, and Seawright 2013; Page and 

Hennessy 2011). In the case of CO2 emissions and climate change, the wealthy reap more 

benefits from the fossil fuel-based economic regime and are better protected from the 

impacts of climate change than the poor (Harlan et al. 2015; Malm 2016).  

Higher income inequality means greater differential in economic and political 

power between the wealthy and the poor. The power differential translates into more 

disproportionate influence by the wealthy over social policies and organizational 

decisions, allowing the wealthy to undermine democracy and prioritize their economic 

interests in perpetuating the polluting production apparatus over the needs of the rest of 

the society for public goods such as environmental protection and climate change 

mitigation (Cushing et al. 2015; Downey 2015). Furthermore, greater income inequality 

erodes social trust and impedes collective actions such as environmental movements 

(Boyce 2003; Brechin 2016; Cushing et al. 2015; Ostrom 2008; Wilkinson and Pickett 

2010). Overall, the political economy pathway suggests that greater income inequality 

may increase the societal level of environmental degradation including CO2 emissions. 

The second pathway focuses on how income inequality shapes consumption 

patterns. Greater income inequality can induce a “Veblen effect” where middle- and 

lower-class groups are pressured by heightened status competition to spend more in order 

to keep up with the lifestyle standard set by the upper class (Schor 1998; Veblen 1934). 

The increased competitive consumption can lead to increased CO2 emissions. Moreover, 

Higher income inequality means a greater gap in disposable income between the wealthy 
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early adopters of expensive innovative consumer products and the rest of the population. 

This gap slows down the diffusion of eco-friendly innovation in consumer products from 

a niche market for the wealthy to the mass market (Vona and Patriarca 2011). A related 

argument concerns how greater income inequality is associated with rising average 

working time (Bowles and Park 2005), which leads to growth in economic output, 

consumption, and the adoption of more ecologically intensive lifestyles (Fitzgerald 2022; 

Fitzgerald, Jorgenson, and Clark 2015; Fitzgerald, Schor, and Jorgenson 2018; Jalas and 

Juntunen 2015; Knight, Rosa, and Schor 2013; Schor 2008). In general, this pathway, 

hereafter referred to as the Veblen effect pathway, argues that higher income inequality is 

associated with increased CO2 emissions.  

The third pathway focuses on the marginal propensity to emit. When examining 

the role of income inequality in the income-emissions relationship, Ravallion, Heil, and 

Jalan (2000) find that greater domestic income inequality is associated with lower 

emissions, which they attribute to the decline in the marginal propensity to emit that 

accompanies an increase in household income. This argument is supported by a number 

of prior studies (Heil and Selden 1999; Holtz-Eakin and Selden 1995; Jakob et al. 2014; 

Seriño and Klasen 2015) and is viewed as a “stylized fact”. Another dynamic that is 

consistent with Ravallion and colleagues’ argument is a Keynesian model suggesting that 

the marginal propensity to consume also declines with income (Jorgenson et al. 2017). 

For each additional dollar of income, wealthier households generate less consumption 

and CO2 emissions than poorer households. Following this pathway, reduction in income 

inequality by redistributing income from the wealthy to the poor is expected to increase 

the societal level of consumption and overall CO2 emissions. Despite a focus on the 
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marginal propensity to emit, Ravallion et al (2000) also acknowledge that the domestic 

income inequality-carbon emissions relationship is theoretically ambiguous and that 

multiple potential mechanisms (such as the political economy pathway theorized by 

Boyce and colleagues) pulling the relationship in different directions.  

4.4 EMPIRICAL LITERATURE ON THE INCOME INEQUALITY-CARBON 

EMISSIONS RELATIONSHIP 

A growing body of empirical research has examined the relationship between 

income inequality and carbon emissions, both at the subnational level (Fitzgerald 2022; 

Jorgenson et al. 2015, 2017), and cross-nationally (Grunewald et al. 2017; Jorgenson et 

al. 2016). Cross-national studies find that among high- and upper-middle-income nations, 

income inequality is positively associated with production-based emissions (Grunewald 

et al. 2017) and consumption-based emissions (Jorgenson et al. 2016). In lower-middle- 

and low-income nations, the association is negative or nonsignificant (Grunewald et al. 

2017; Jorgenson et al. 2016). These studies indicate that macroeconomic context may 

shape which pathways take effect more prominently. In higher-income nations, greater 

income inequality may affect emission primarily via shaping the power distribution and 

through the Veblen effect dynamics, resulting in increasing emissions (Jorgenson et al. 

2017). Conversely, in lower-income nations, income inequality affects emissions mainly 

following the marginal propensity to emit pathway. Grunewald et al (2017:254) argue 

that “in highly unequal poor societies a large share of the population lives essentially 

outside of the [fossil fuel-based] carbon economy and produces few emissions while the 
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very rich already have lower marginal propensities to emit than middle income groups.” 

Therefore, reducing income inequality in lower-income nations can bring more people 

into the fossil fuel-based economy and hence increase societal CO2 emissions. Like the 

relationships between other anthropogenic drivers and CO2 emissions (e.g., Dietz, 

Shwom, and Whitley 2020; Jorgenson and Clark 2012), the income inequality-emissions 

relationship also varies over time (Jorgenson et al. 2016), which may be indicative of 

temporal shifts in the causal pathways. 

Prior research has also examined the broader relationships between social 

inequality and environmental outcomes for other aspects of inequality (Knight, Schor, 

and Jorgenson 2017; Thombs 2021), as well as other socioecological and public health 

outcomes (Jorgenson 2015; Jorgenson et al. 2020, 2021; Jorgenson, Dietz, and Kelly 

2018; Kelly, Thombs, and Jorgenson 2021; McGee and Greiner 2019; Vogel et al. 2021; 

Wilkinson, Pickett, and Vogli 2010). Together, the literature highlights the multitude of 

pathways linking social inequality to socioecological well-being, and more specifically, 

linking nations’ domestic income inequality to CO2 emissions.  

4.5 INCOME INEQUALITY AND NATIONS’ MULTIDIMENSIONAL 

EMISSIONS PROFILE 

Existing cross-national research on the inequality-emissions nexus focuses on 

aggregate emission measures such as production-based account (PBA) (Grunewald et al. 

2017), and consumption-based account (CBA) of CO2 emissions (Jorgenson et al. 2016), 

allowing studies to capture the “net effect” of domestic income inequality on the totality 
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of emissions within a nation’s territory, as well as on the totality of global emissions 

driven by a nation’s consumption demand. However, existing literature has not 

systematically examined how the effect of income inequality may differ across 

components of a nation’s emissions. At the national level, the numerous types of CO2-

emitting activities are not homogeneous but differ in important characteristics such as the 

economic sector and supply chain stage to which the activities belong. A nation’s CO2 

emissions can be decomposed into distinct components based on some of these 

characteristics.  

Huang (see Chapter 2) proposes a Multidimensional Emissions Profile (MEP) 

framework to systematically analyze these distinct emission components, especially how 

they are differentially affected by certain anthropogenic drivers of emissions. As 

illustrated in Chapter 3 Figure 3.1, the MEP framework situates a nation’s contributions 

to global CO2 emissions into four components: (1) emissions generated by domestic-

oriented supply chain activities (DOSCA), such as domestic industrial activities that 

serve domestic consumers; (2) emissions embodied in exports, such as emissions by 

export-oriented industrial activities; (3) emissions embodied in imports, which are 

emissions generated by foreign production of goods that are imported and consumed by 

domestic consumers; and (4) direct emissions of end user activities. Direct emissions of 

end user activities are generated by activities such as driving personal vehicles and 

household heating that burns fossil fuels on-site. This emission component excludes the 

emissions that are induced by end user activities but generated upstream in supply chains, 

such as the emissions generated by domestic power plants serving domestic households 

(which are a part of DOSCA emissions). These four emission components, while 
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interconnected via domestic and global supply chains, are distinct points of intervention 

for climate change mitigation (see Chapter 2). Cross-national studies find the four 

emission components are heterogeneously related to human drivers such as economic 

development (see Chapter 2), and mitigation measures such as renewable energy 

deployment (see Chapter 3). 

The present study adopts the MEP framework to investigate how these four 

emission components may be heterogeneously related to nations’ domestic income 

inequality. Such a systematic analysis allows for a more nuanced understanding of how 

income inequality affects emissions through multiple co-existing pathways that each 

concerns different emission components. The three aforementioned theoretical pathways 

concern different types of carbon-emitting activities, and correspondingly, different 

emission components. The political economy pathway primarily focuses on the 

production realm, while the Veblen effect pathway and the marginal propensity to emit 

pathway are more closely related to the consumption realm. From a nation’s standpoint, 

emissions embodied in its exports belong to its production realm, as this component is 

generated by domestic production activities serving foreign final demand. Conversely, 

emissions embodied in a nation’s imports belong to its consumption realm, same as direct 

end user emissions. DOSCA emissions of a nation pertain to both its production and 

consumption because its domestic producers and consumers both contribute to this 

emission component. Therefore, the political economy pathway may have more 

theoretical relevance to emissions embodied in exports and DOSCA emissions, while the 

Veblen effect pathway and the marginal propensity to emit pathway are more pertinent to 
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direct end user emissions, emissions embodied in imports, and DOSCA emissions. Figure 

4.1 illustrates this pattern in a conceptual diagram. 

4.6 METHODS AND DATA 

4.6.1 Dependent Variables 

The analysis includes four dependent variables (1) CO2 emissions generated by 

domestic-oriented supply chain activities (DOSCA); (2) CO2 emissions embodied in 

exports; (3) direct CO2 emissions of end user activities; and (4) CO2 emissions embodied 

in imports. These emission variables are calculated using the environmentally-extended 

multi-regional input-output (EE-MRIO) method and the EE-MRIO tables from the latest 

version of Exiobase 3 (Stadler et al. 2018, 2021).20 All dependent variables capture CO2 

emissions generated from fossil fuel combustion and are measured in megatons. 

Technical details of data compilation and calculation are provided in Chapter 3 Appendix 

3.21.1. 

                                                             
20 DOSCA emissions and emissions embodied in exports and in imports are conceptualized and 
operationalized based on the multi-regional input-output (MRIO) method as opposed to the emissions 
embodied in bilateral trade (EEBT) method (see Chapter 2). The two methods differ in the allocation of the 
emissions generated by the internationally-traded intermediate goods. The EEBT method allocates this part 
of emissions to the nations that consume the intermediate goods, regardless of where the final goods 
(produced from said intermediate goods) are consumed. The MRIO method allocates this part of emissions 
to the nation where the final goods are consumed. See Peters et al (2011) for more information. 
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4.6.2 Independent Variables 

The main independent variables of interest are 2 measures of domestic income 

inequality. First, I use national-level Gini coefficient of household disposable income 

(post-tax, post-transfer), which measures overall income distribution in a nation. Data on 

the Gini indices are acquired from the Standardized World Income Inequality Database 

(SWIID) version 9.2 (Solt 2020). SWIID employs multiple imputation techniques on 

income inequality data from multiple international and national data sources in order to 

maximize the cross-national and -temporal comparability of existing inequality data (for 

more, see Solt 2020). As a result, SWIID is well-suited for cross-national analysis 

(Grunewald et al. 2017; Jorgenson et al. 2016). I multiply SWIID’s Gini indices by 100 

to acquire Gini coefficients, ranging from 0 (perfect equality) to 100 (perfect inequality). 

The second measure of domestic income inequality is the income share held by the top 

10% of population, which is ranged from 0 to 100 (top 10% income earners capture all 

incomes) and is acquired from World Bank’s World Development Indicators Database 

(https://databank.worldbank.org/source/world-development-indicators). 

Given that the three aforementioned pathways can co-exist, it is possible that all 

of them can shape the two inequality measures’ relationships with emissions, albeit not in 

an equal manner. According to Jorgenson and colleagues (2017), the relationship 

between emissions and income share of the top 10% may be more sensitive to the 

political economy and Veblen effects because this measure primarily captures the power 

of economic elites, as well as their emulative influence over the consumption practices of 

the rest of the population. On the other hand, the Gini coefficient measures the overall 

inequality in societal income distribution regardless in which income strata does the 

https://databank.worldbank.org/source/world-development-indicators
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inequality occur. Therefore, Gini’s relationship with emissions is likely less sensitive to 

the political economy and Veblen effects but more sensitive to the dynamics of the 

marginal propensity to emit (Jorgenson et al. 2017). 

Additional independent variables include gross domestic product (GDP) per 

capita measured in constant 2010 U.S. dollars, total population, and urban population as a 

percent of total population, which are consistent with much prior cross-national research 

on carbon emissions. Data on these variables are also acquired from World Bank’s World 

Development Indicators Database. 

4.6.3 Sample 

The overall sample is a balanced panel dataset consisting of annual observations 

for 34 high-income nations in the 12-year period of 2004 to 2015, yielding 408 

observations in total.21 In models for the income share held by the top 10%, the sample is 

reduced to an unbalanced panel dataset of 368 observations for the same 34 nations. The 

sample includes all high-income nations, as per World Bank’s country classification, that 

have data available during this period,22 including 9 out of 10 biggest emitters among 

high-income nations in 2015.23 2004 is selected as the starting point because the limited 

availability of income share data prior to this year.24 2015 is the latest year with available 

                                                             
21 Sampled nations are Australia, Austria, Belgium, Canada, Switzerland, Cyprus, Czech Republic, 
Germany, Denmark, Spain, Estonia, Finland, France, United Kingdom, Greece, Croatia, Hungary, Ireland, 
Italy, Japan, Latvia, Lithuania, Luxembourg, South Korea, Malta, Netherlands, Norway, Poland, Portugal, 
Romania, Slovak Republic, Slovenia, Sweden, United States. 
22 World Bank country classification. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-
world-bank-country-and-lending-groups  
23 Based on total production-based CO2 emissions calculated by Andrew and Peters (2021) 
24 Out of the 34 sampled nations, fewer than 19 of them have data available on income share before 2004. 
For each year since 2004, more than 26 nations have available data on income share.  

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
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EE-MRIO data from Exiobase 3 that is used to calculate the four decomposed emission 

variables.  

I only focus on high-income nations because while there are 34 of them with data 

available for all variables, only 9 non-high-income nations meet the same criterion. This 

is mainly due to EE-MRIO data being only available for 9 non-high-income nations from 

Exiobase 3, which as a standalone sample is smaller than ideal for the regression 

modeling techniques used in this study. Given that the income inequality-CO2 emissions 

relationship differs across nations at different income levels (Grunewald et al. 2017; 

Jorgenson et al. 2016), I choose not to combine both high-income nations and non-high-

income nations in one sample in order to avoid spurious results. It is worth noting that the 

emission measures of the sampled nations do account for their trade with nations that are 

not in the sample. For instance, Australia’s imports from Indonesia are included when 

calculating the total emissions embodied in the imports of Australia, even though 

Indonesia is not a sampled nation. Appendix Table A4.1 reports the descriptive statistics 

of all variables in their original metrics for the sample. 

4.6.4 Regression Modeling Techniques 

I estimate seemingly unrelated regression (SUR) models in Stata 17 that consist of 

4 equations, one for each of the four main dependent variables: DOSCA emissions, 

emissions embodied in exports, direct end user emissions, and emissions embodied in 

imports. By allowing the error terms to be correlated among the four equations, SUR 

model uses information from all equations to improve the efficiency in estimating 

parameters in each equation (Srivastava and Giles 1987). It is appropriate for this study 
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because the four emission components—the dependent variables—are interrelated with 

one another through various supply chain processes, carbon leakage, and other complex 

feedback loops (Davis, Peters, and Caldeira 2011; Dietz 2017; Hu et al. 2019; Jarke and 

Perino 2017; Liu et al. 2007; Peters 2010). These potential underlying relationships are 

better accounted for in a SUR model than in models separately estimated for each 

emission component (Srivastava and Giles 1987).  These two inequality measures, the 

Gini coefficient and the income share of the top 10%, are analyzed in separate SUR 

models because they are highly correlated (correlation = 0.86).  

I include both time-specific and nation-specific intercepts in each equation of the 

SUR models, in order to account for unobserved heterogeneity that is unique to each year 

and affects all nations evenly, as well as the unobserved heterogeneity that is unique to 

each nation and consistent across the whole period of analysis. I estimate country-

clustered robust standard errors in order to correct for autocorrelation and 

heteroskedasticity.25 I also include interactions between inequality and a series of yearly 

binary variables for 2005 to 2015. This modeling technique is used by prior research to 

examine changes over time in the relationship between a predictor and the outcome 

(Huang 2018; Jorgenson 2012, 2014; Jorgenson et al. 2016; Jorgenson and Clark 2012; 

Thombs and Huang 2019). The coefficient for the main effect of income inequality is the 

slope for year 2004, the reference category. The coefficients for the interaction terms 

indicate if and to what extent the slope for each subsequent year differs from that of 2004 

(Allison 2009).  

                                                             
25 Stata module suregr is used (Kolev 2021). 
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All non-binary variables are transformed with natural logarithm, and hence the 

regression coefficients are elasticity coefficients that represent the percentage change in 

the dependent variable associated with a 1% increase in the independent variables, net of 

the effects of other independent variables. The general model is specified as follows: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌2005𝑡𝑡 +⋯+ 𝛽𝛽12𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌2015𝑡𝑡 + 

𝛽𝛽13𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 ∗ 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌2005𝑡𝑡 +⋯+ 𝛽𝛽23𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 ∗ 𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌2015𝑡𝑡

+ 𝛽𝛽24𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖 + 𝛽𝛽25𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛽𝛽26𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 

where subscripts i and t represent nation and year respectively; and 𝑦𝑦𝑖𝑖𝑖𝑖  is the 

outcome variable (CO2 emissions) for nation i at year t; 𝛽𝛽1is the main effect of income 

inequality  measure for the reference category year 2004; 𝛽𝛽2to 𝛽𝛽12are time-specific 

intercept for year 2005 through 2015; 𝛽𝛽13to 𝛽𝛽23are the coefficients for the interaction 

between income inequality and each year from 2005 to 2015; 𝛽𝛽24to 𝛽𝛽26are the 

coefficients for GDP per capita, population, and urban population; 𝑢𝑢𝑖𝑖  is the nation-

specific intercept for nation i; 𝑒𝑒𝑖𝑖𝑖𝑖  is the unique residual for nation i at year t.  

4.7 RESULTS 

Table 4.1 presents the 4-equation SUR model for the Gini coefficient. Elasticity 

coefficients are flagged for statistical significance, while nation clustered robust standard 

errors are reported in parentheses. The main effect of the Gini coefficient, which 

represents its slope for year 2004, is nonsignificant at the .05 alpha level for all four 

emission components. In the equations for DOSCA emissions and for emissions 

embodied in imports, the interactions between Gini and year are nonsignificant 
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throughout the 2005 to 2015 period. For emissions embodied in exports, the interaction 

terms are nonsignificant from 2005 to 2010, and become positive and significant from 

2011 to 2015. For direct end user emissions, the interaction terms are positive and 

significant for 2007, 2008, 2014, and 2015, and nonsignificant for the remaining years. 

Based on the model output in Table 4.1, Figure 4.2 plots the slope (in terms of 

average marginal effect) of Gini for each of the four emission components from 2004 to 

2015, along with the 95% confidence interval indicated by shaded areas.26 As a reminder, 

the slope for each year from 2005 to 2015 is the sum of the main effect and 

corresponding interaction term. Although the model in Table 4.1 shows that in some 

years Gini’s slopes for emissions in exports and end user emissions significantly differ 

from their respective levels in 2004, Figure 4.2 suggest that the slopes are not 

significantly different from 0 at the .05 alpha level throughout the period for all four 

emission components. 

Table 4.2 presents the 4-equation SUR model for income inequality measured as 

the income share held by the top 10% of population. The main effect of the income share 

of the top 10% is nonsignificant for DOSCA emissions, emissions in exports, and 

emissions in imports, and is negative and significant for direct end user emissions at the 

.05 alpha level. The interactions between the income share of the top 10% and year are 

nonsignificant for DOSCA emissions and emissions in imports from 2005 through 2015. 

For emissions in exports, the interaction terms are positive and significant for 2009, and 

2011 to 2015. For direct end user emissions, the interaction terms are positive and 

significant for 2007, 2014, and 2015.  

                                                             
26 Stata module mimrgns is used to calculate marginal effects for the Gini coefficient, which is a multiply 
imputed variable (Klein 2021). 
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Figure 4.3 illustrates the changes over time in the slopes of the income share of 

the top 10%, along with 95% confidence intervals showing whether the slopes are 

significantly different from 0. Most notably, subplot (b) indicates that the slope for 

emissions in exports is nonsignificant in 2004, then gradually increases in magnitude 

over time, and becomes positive and significant at the .05 level from 2011 to 2015. In 

2015, a 1% increase in the income share of the top 10% is associated with a 1.316% 

increase in emissions embodied in exports. Subplot (a) indicates that the association 

between the income share of the top 10% and DOSCA emissions is nonsignificant during 

the studied period, with the only exception being 2010 when the slope is negative. 

Subplot (c) shows that the slope for direct end user emissions is negative and significant 

from 2004 to 2006, and from 2009 to 2011, and then trends upwards and becomes 

nonsignificant. In 2014 and 2015, the point estimates of the slope are positive but remain 

nonsignificant. Subplot (d) indicates that the slope for emissions in imports remains 

nonsignificant from 2004 to 2015. 

A comparison between the results for the two income inequality measures shows 

both similarities and differences. For each emission component, its relationships with the 

two inequality measures change over time in similar ways. For instance, in the equation 

for emissions in exports, the interaction terms with years 2011 through 2015 are positive 

and significant for both inequality measures. In the equation for end user emissions, the 

interaction terms with years 2007, 2014, and 2015 are also positive and significant for 

both inequality measures. For DOSCA emissions and emission in imports, interactions 

with yearly binary variables are consistently nonsignificant. The similarities are also 
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evident in the resemblance in the shape of subplots for each emission component in 

Figures 4.2 and 4.3 (e.g., by comparing subplot 4.2(b) to subplot 4.3(b)).  

Despite these similarities, the two inequality measures differ in their relationships 

with CO2 emissions, based on tests of statistical significance. As noted before, the 

associations between the Gini coefficient and emissions do not significantly differ from 0 

(alpha=0.05) across the board, while the associations between the income share of the top 

10% and emissions are significant for some of the emission components in certain 

periods. To examine whether the difference is due to variation in sample, I estimate a 

SUR model for the Gini coefficient using the same unbalanced sample used in the model 

for the income share of the top 10%, and then plot the marginal effects (see Appendix 

Table A4.2 and Appendix Figure A4.1). The results of this model are substantively 

similar to the original model with a fully balanced sample reported in Table 4.1 and 

Figure 4.2. 

4.8 DISCUSSION AND CONCLUSION 

This study examines the multi-dimensional time-varying relationship between 

domestic income inequality and CO2 emissions, for a sample of 34 high-income nations 

from 2004 to 2015. Drawing from the Multidimensional Emissions Profile (MEP) 

framework (see Chapter 2), I situate a nation’s CO2 emissions into four components with 

distinct implications for climate change mitigation: (1) emissions generated by domestic-

oriented supply chain activities (DOSCA); (2) emissions embodied in exports; (3) direct 

emissions of end user activities; and (4) emissions embodied in imports. I analyze the 
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four emission components’ time-varying relationships with Gini coefficient and the 

income share of the top 10%, seeking to understand how the effect of income inequality 

might differ across emission components. 

The Gini coefficient is not associated with any of the four emission components 

from 2004 to 2015. The null findings for emissions embodied in exports are expected 

because this emission component concerns production, while Gini coefficient is more 

sensitive to the marginal propensity to emit pathway that is primarily about consumption. 

For the other three emission components—all of which are at least partially related to 

consumption—the null findings appear to contradict with the marginal propensity to emit 

pathway. The three theoretical pathways can co-exist. Hence it is possible that income 

inequality’s positive effect on emissions via the marginal propensity to emit pathway is 

offset by income inequality’s negative effect on emissions via the Veblen effect pathway, 

resulting in the observed null effects. 

Turning to the income share of the top 10%, it is positively associated with 

emissions embodied in exports after 2010. The finding for emissions embodied in exports 

supports the political economy pathway: as a nation’s economic elites possess more 

power relative to the non-elites, they are able to spur carbon-intensive export-oriented 

production that creates economic benefits for themselves while increasing the carbon 

emissions generated within the nation’s territory. The relationship becomes positive after 

the 2008 Great Recession, which indicates that a post-recession economic recovery may 

aggravate the political economy pathway. With governments and society at large seeking 

economic recovery, political and public support for environmental protection and climate 

change mitigation waned (Geels 2013; Obani and Gupta 2016; Schor 2014). In this 
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context, the wealthy elites can more easily translate their economic and political power 

into boosting carbon-intensive export-oriented production in the name of economic 

growth and job creation. While some sampled nations like Germany and the United 

Kingdom incorporated into their stimulus packages support for investment in energy 

efficiency and renewable energy, these efforts are ineffective in achieving and sustaining 

societal decarbonization (Jaeger, Westphal, and Park 2020; UNEP 2020). Additionally, 

Huang (see Chapter 3) finds that renewable energy deployment in high-income nations 

has largely failed to decarbonize their export sectors, likely because of the preferential 

treatment these sectors receive in environmental policies. In contrast, renewable energy 

deployment has been relatively effective in curbing DOSCA emissions (see Chapter 3), 

which might in part explain why a significant post-recession upward trend is not 

observed for the relationship between income inequality and DOSCA emissions. 

The relationship between the income share of the top 10% and DOSCA emissions 

is relevant to both the political economy and the Veblen effects because both domestic 

production and consumption activities contribute to DOSCA emissions. However, the 

relationship is nonexistent for most of the studied period and is negative in 2010, which 

appears to contradict with both pathways. Moreover, the observed relationships between 

the income share of the top 10% and both direct end user emissions and emissions 

embodied in imports are either nonsignificant or negative in certain years, also 

inconsistent with the Veblen effect pathway. Similar to the findings for Gini coefficients, 

it might the case that the upward pressure that the income inequality puts on these 

emission components via the political economy pathway (for DOSCA emissions) and via 

the Veblen effect pathway (for DOSCA emissions, direct end user emissions, and 
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emissions in imports) are offset, and at times outweighed by the downward pressure 

induced by the marginal propensity to emit pathway. Note that while relationships 

between emissions and the income share of top 10% more closely capture the political 

economy pathway and the Veblen effect pathway, they can still be influenced by the 

marginal propensity to emit pathways in that the marginal propensity to consume and 

emit is lower for the top 10% earners than for the rest of the population.  

One period during which the negative relationship between the income share of 

top 10% and direct end user emissions is observed is 2009 to 2011, during and following 

the Great Recession. The main contributor to direct end user emissions is driving 

personal vehicles. Therefore, it appears that the Veblen effect, especially regarding the 

purchasing and driving of cars, was weakened during this period and thus unable to offset 

the negative relationship caused by the marginal propensity to emit pathway. In the 

United States, the purchase of new cars fell by 40% during the recession (U.S. Bureau of 

Economic Analysis 2022). This is because of the widespread financial hardship felt by 

lower- and middle-class populations due to structural unemployment, housing-bubble 

burst, and sovereign debt crises in many of the sampled nations. Lower- and middle-class 

populations adopted more frugal and energy conscious consumption behaviors amidst the 

hardship (Petev and Pistaferri 2012; Petev, Pistaferri, and Saporta-Eksten 2011; 

Shahiduzzaman and Layton 2015). Meanwhile, consumption fell more drastically for the 

top 10% of earners than for the bottom 10% of earners during the Great Recession (i.e., a 

decrease in consumption inequality), even as income inequality continued to rise (Meyer 

and Sullivan 2013).27 Therefore, the emulative pull of top-earners is weaker during the 

                                                             
27 This is likely because the decline in asset value during the recession affected the wealth of upper-class 
households more so than lower-class households who had very little assets to begin with. 
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recession and may not spur as much competitive consumption among the rest of the 

population compared to non-recession periods, especially regarding the purchase of cars. 

Meanwhile, the tendency for the marginal propensity to consume and to emit may 

become even stronger during the recession due to the concurrent rise in income inequality 

and fall in consumption inequality. 

The negative effect of the income share of the top 10% on direct end user 

emissions peaked in 2011 and then gradually turned into a positive effect from 2012 to 

2015 (though still nonsignificant as of 2015). This might be because the Veblen effect 

pathway became increasingly stronger as the Great Recession’s impacts on consumption 

gradually subsided.  

Unlike cars, the consumption of some recreational goods such as personal 

electronics remained stable or even increased during the recession (Petev et al. 2011). 

This might explain why a similar period of negative association from 2009 to 2011 is not 

found for the relationships between the income share of the top 10% and either DOSCA 

emissions or emissions embodied in imports. As a reminder, the consumption of these 

goods does not directly generate CO2 emissions on site. Instead, the emissions are 

generated during the upstream production and power generation processes, and counted 

toward either DOSCA emissions or emissions embodied in imports depending on the 

location of production facilities and power plants.  

The Great Recession, however, cannot explain the negative relationship between 

the income share of the top 10% and end user emissions for the period of 2004 to 2006. 

Therefore, although this study advances the understanding of the three pathways linking 

domestic income inequality to multiple emission components, further investigation is 
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required to better understand what drives the changes in the income inequality-emissions 

relationships both over time and across emission components. Additionally, due to the 

limited availability of data on decomposed emission components and on income 

inequality, this analysis is limited to a sample of high-income nations for a 12-year 

period. As data will likely become increasingly more available in the future, researchers 

should also study lower- and middle-income nations, and for a longer time-period. This 

study also demonstrates the utility of the Multidimensional Emissions Profile (MEP) 

framework for research on human drivers of carbon emissions. 

In conclusion, I find that the relationships between income inequality and nations’ 

CO2 emissions change over time, vary across emission components, and differ between 

measures of income inequality. Most notably, the income share of the top 10% is positively 

associated with emissions embodied in exports after 2010, and is negatively associated 

with end user emissions from 2004 to 2006, and from 2009 to 2011. The results are 

indicative of variations in the causal pathways between income inequality and CO2 

emissions, both over time and across emission components. Can policies seeking to 

enhance income equality generate co-benefits for climate change mitigation? This study 

suggests that the answer is likely context specific. Policies seeking to curb a top-heavy 

income concentration, such as the Billionaire Minimum Income Tax (Hussein 2022), may 

facilitate the abatement of CO2 emissions embodied in a nation’s exports. Yet, such policies 

may at times inadvertently spur direct end user emissions of the nation, such as during 

economic recessions. In order to maximize income equality-enhancing policies’ co-

benefits for climate change mitigation and avoid potential trade-off, these policies must be 
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implemented along with measures that curb consumers’ direct fossil fuel consumption 

without compromising the well-being of lower-income populations. 
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4.10 TABLES 

Table 4.1 Unstandardized coefficients for the regression of nations’ 4 emission 
components, 2004–2015, on the Gini coefficient and selected independent variables: 
seemingly unrelated regression model estimates with two-way fixed effects and country-
clustered robust standard errors for 34 high-income countries.    

 

DOSCA 
Emissions

Emissions in 
Exports

Direct End 
User Emissions

Emissions in 
Imports

Gini Coefficient -0.372 -0.172 -0.634 0.0216
(0.419) (0.498) (0.416) (0.444)

Gini Coefficient × 2005 0.165 0.230 0.0650 0.0141
(0.123) (0.160) (0.135) (0.148)

Gini Coefficient × 2006 0.170 0.0122 0.150 -0.0597
(0.143) (0.208) (0.177) (0.170)

Gini Coefficient × 2007 0.233 0.115 0.470* 0.124
(0.160) (0.230) (0.183) (0.181)

Gini Coefficient × 2008 0.255 0.180 0.413* 0.0970
(0.226) (0.232) (0.200) (0.210)

Gini Coefficient × 2009 0.0195 0.263 0.185 -0.0571
(0.192) (0.268) (0.203) (0.211)

Gini Coefficient × 2010 -0.155 0.429 0.0730 0.121
(0.198) (0.300) (0.227) (0.220)

Gini Coefficient × 2011 0.0219 0.615* 0.0737 0.258
(0.202) (0.266) (0.293) (0.249)

Gini Coefficient × 2012 0.234 0.670* 0.222 0.336
(0.234) (0.293) (0.330) (0.271)

Gini Coefficient × 2013 0.145 0.681* 0.437 0.0556
(0.281) (0.302) (0.302) (0.246)

Gini Coefficient × 2014 0.185 0.786** 0.747** 0.282
(0.243) (0.287) (0.249) (0.227)

Gini Coefficient × 2015 0.281 0.745* 0.791** 0.161
(0.277) (0.349) (0.262) (0.246)

GDP Per Capita 0.200 -0.0672 0.446* 1.370***
(0.249) (0.318) (0.176) (0.202)

Total Population 0.756 -0.0869 0.603 2.674***
(0.662) (0.583) (0.783) (0.746)

Urban Pop. as % Pop. -1.015 -0.745 0.00771 0.582
(1.304) (1.454) (1.151) (1.252)

Constant -3.486 10.30 -8.805 -57.78***
(16.01) (12.69) (18.07) (16.01)

N 408 408 408 408
# of nation 34 34 34 34
N per nations, min. 12 12 12 12
N per nation, avg. 12 12 12 12
N per nation, max. 12 12 12 12
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
* p<.05  ** p<.01  *** p<.001 (two tailed).

Seemingly Unrelated Regression Model
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Table 4.2 Unstandardized coefficients for the regression of nations’ 4 emission 
components, 2004–2015, on the income share of the top 10% and selected independent 
variables: seemingly unrelated regression model estimates with two-way fixed effects and 
country-clustered robust standard errors for 34 high-income countries.    

 
  

DOSCA 
Emissions

Emissions in 
Exports

Direct End 
User Emissions

Emissions in 
Imports

Income Share Held by Top 10% -0.220 -0.00574 -0.635* -0.0999
(0.241) (0.251) (0.300) (0.288)

Income Share Top 10% × 2005 0.305 0.135 0.0516 0.254
(0.178) (0.196) (0.128) (0.213)

Income Share Top 10% × 2006 0.136 0.245 0.0827 0.0386
(0.195) (0.250) (0.235) (0.200)

Income Share Top 10% × 2007 0.0570 0.350 0.426* 0.0768
(0.224) (0.227) (0.200) (0.204)

Income Share Top 10% × 2008 0.168 0.301 0.383 0.0761
(0.291) (0.276) (0.261) (0.232)

Income Share Top 10% × 2009 -0.00998 0.568* 0.144 0.0275
(0.238) (0.265) (0.229) (0.204)

Income Share Top 10% × 2010 -0.430 0.663 0.0482 0.239
(0.234) (0.362) (0.313) (0.225)

Income Share Top 10% × 2011 -0.170 0.853** 0.0354 0.250
(0.242) (0.285) (0.373) (0.277)

Income Share Top 10% × 2012 0.116 0.917*** 0.371 0.354
(0.264) (0.275) (0.388) (0.322)

Income Share Top 10% × 2013 0.000457 1.016*** 0.630 0.0159
(0.281) (0.272) (0.367) (0.277)

Income Share Top 10% × 2014 0.0471 1.180*** 0.835** 0.437
(0.278) (0.338) (0.280) (0.249)

Income Share Top 10% × 2015 -0.0979 1.322** 0.933** 0.374
(0.309) (0.496) (0.314) (0.252)

GDP Per Capita 0.0540 -0.0483 0.443** 1.288***
(0.209) (0.231) (0.166) (0.192)

Total Population 0.605 -0.550 0.583 2.532**
(0.645) (0.579) (0.884) (0.833)

Urban Pop. as % Pop. -1.737 -0.765 -0.455 0.205
(1.246) (1.228) (1.150) (1.354)

Constant 3.240 17.47 -6.535 -52.44**
(15.31) (12.56) (19.70) (16.83)

N 368 368 368 368
# of nation 34 34 34 34
N per nations, min. 3 3 3 3
N per nation, avg. 10.8 10.8 10.8 10.8
N per nation, max. 12 12 12 12
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
* p<.05  ** p<.01  *** p<.001 (two tailed).

Seemingly Unrelated Regression Model
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4.11 FIGURES 

  
Figure 4.1 Conceptual Diagram of Income Inequality-CO2 Emissions Relationships. 
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Figure 4.2 Average marginal effects of the Gini coefficient on (a) emissions generated by 
domestic-oriented supply chain activities (DOSCA); (b) emissions embodied in exports; 
(c) direct end user emissions; and (d) emissions embodied in imports, for each year from 
2004 to 2015, based on the SUR model reported in Table 4.1. Shaded areas are 95% 
confidence intervals. 
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Figure 4.3 Average marginal effects of the income share of the 10% on (a) emissions 
generated by domestic-oriented supply chain activities (DOSCA); (b) emissions 
embodied in exports; (c) direct end user emissions; and (d) emissions embodied in 
imports, for each year from 2004 to 2015, based on the SUR model reported in Table 4.2. 
Shaded areas are 95% confidence intervals. 
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4.12 APPENDICES 

4.12.1 Appendix Tables and Figures 

Table A4.1 Descriptive Statistics 
 N Mean S.D. Min. Max. 
DOSCA Emissions 408 210.042 590.845 0.658 3825.635 
Emissions Embodied in Exports 408 63.321 96.671 0.808 544.112 
Direct Emissions of End User 
Activities 

408 83.189 247.063 0.141 1538.284 

Emissions Embodied in Imports 408 110.992 205.969 1.822 1341.968 
Gini coefficient 408 29.741 3.577 22.738 38.924 
Income Share of the top 10% 368 24.764 2.357 20.1 31.2 
GDP per capita  408 37500.806 22197.446 6442.414 111968.352 
Total population 408 30824661.5 55929867.51 401268 320600000 
Urban population (% Pop.) 408 74.128 12.101 51.308 97.876 

Note: the descriptive statistics for the Gini coefficient are calculated using Stata module 
misum (Klein 2011). 
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Table A4.2 Unstandardized coefficients for the regression of nations’ 4 emission 
components, 2004–2015, on the Gini coefficient and selected independent variables: 
seemingly unrelated regression model estimates with two-way fixed effects and country-
clustered robust standard errors for 34 high-income countries. The sample is restricted to 
N=368, identical to the sample used in the model for the income share of the top 10%.   

 

DOSCA 
Emissions

Emissions in 
Exports

Direct End 
User Emissions

Emissions in 
Imports

Gini Coefficient -0.318 -0.0410 -0.717 0.158
(0.379) (0.467) (0.404) (0.409)

Gini Coefficient × 2005 0.186 0.302* 0.0308 0.0565
(0.129) (0.136) (0.121) (0.150)

Gini Coefficient × 2006 0.104 0.151 0.120 -0.00525
(0.141) (0.198) (0.186) (0.169)

Gini Coefficient × 2007 0.197 0.284 0.421* 0.119
(0.169) (0.193) (0.168) (0.180)

Gini Coefficient × 2008 0.179 0.285 0.341 0.112
(0.229) (0.217) (0.198) (0.219)

Gini Coefficient × 2009 -0.0884 0.361 0.121 -0.00823
(0.176) (0.218) (0.189) (0.201)

Gini Coefficient × 2010 -0.283 0.522* -0.0106 0.123
(0.193) (0.265) (0.204) (0.205)

Gini Coefficient × 2011 -0.136 0.705** -0.0446 0.219
(0.196) (0.225) (0.297) (0.248)

Gini Coefficient × 2012 0.0627 0.793** 0.0927 0.295
(0.211) (0.249) (0.330) (0.271)

Gini Coefficient × 2013 -0.0219 0.752** 0.326 0.0571
(0.253) (0.266) (0.301) (0.247)

Gini Coefficient × 2014 0.0329 0.860** 0.647** 0.267
(0.251) (0.273) (0.236) (0.228)

Gini Coefficient × 2015 0.0341 0.831* 0.684** 0.199
(0.248) (0.360) (0.262) (0.241)

GDP Per Capita 0.0381 -0.103 0.418* 1.292***
(0.213) (0.289) (0.183) (0.208)

Total Population 0.537 -0.355 0.508 2.590**
(0.665) (0.626) (0.863) (0.841)

Urban Pop. as % Pop. -1.731 -0.829 -0.256 0.229
(1.276) (1.569) (1.193) (1.326)

Constant 4.908 15.16 -5.474 -54.44**
(15.94) (13.40) (19.47) (17.23)

N 368 368 368 368
# of nation 34 34 34 34
N per nations, min. 3 3 3 3
N per nation, avg. 10.8 10.8 10.8 10.8
N per nation, max. 12 12 12 12
Notes: robust standard errors clustered by nation are reported in parentheses;
all nonbinary variables are transformed with natural logarithm;
all models include unreported country-specific and year-specific fixed effects;
* p<.05  ** p<.01  *** p<.001 (two tailed).

Seemingly Unrelated Regression Model
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Figure A4.1 Average marginal effects of the Gini coefficient on (a) emissions generated 
by domestic-oriented supply chain activities (DOSCA); (b) emissions embodied in 
exports; (c) direct end user emissions; and (d) emissions embodied in imports, for each 
year from 2004 to 2015, based on the SUR model reported in Appendix Table A4.2 
(unbalanced sample, N=368). Shaded areas are 95% confidence intervals.  
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5.0  CONCLUSION 

5.1 MITIGATING GLOBAL CLIMATE CHANGE 

Global climate change is among the greatest crises facing humanity in the 21st 

century (IPCC 2021). In order to mitigate the worsening impacts of climate change and 

limit global warming to below 1.5 °C, global CO2 emissions must be reduced by 45% by 

2030 relative to the 2010 level, along with substantial reduction in other greenhouse 

gases (GHGs) (IPCC 2018; UNFCCC 2021). Despite the urgency, climate actions have 

been lacking at the national level in many countries. At the onset of the Glasgow Climate 

Conference in 2021, nations’ collective contributions, pledges, and commitments to 

emission abatement were still insufficient to meet the global target, underscoring the need 

for more climate actions by the world’s nations (Bansard et al. 2021; UNEP 2021).  

What are the social, economic, political, technological, and cultural forces that 

influence GHG emissions at the national level? Whether and how can changes in these 

forces lead to emission abatement? A large and sophisticated body of social science 

research on human drivers of emissions seek to answer these two questions and inform 

climate policies (Blanco et al. 2014; Jorgenson et al. 2019; Rosa and Dietz 2012). 

Foundational to this literature are the IPAT/STIRPAT framework and the similarly 

specified Kaya identity, both of which identify population (P), affluence (A), and 

technology (T) as three main drivers of human impacts on the environment (Dietz 2017; 

Dietz and Rosa 1994; Kaya 1990; York, Rosa, and Dietz 2003). In cross-national 

empirical analyses, the STIRPAT model is widely used to identify human drivers of 
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emissions, estimate their effects, test hypotheses, and inform policy efforts. A group of 

anthropogenic forces have been empirically identified as key drivers of emissions, 

including affluence, population, urbanization, trade, and militarization, while the fossil 

fuel-based energy system is the biggest direct source of GHG emissions (Dietz, Shwom, 

and Whitley 2020; Jorgenson et al. 2019; Rosa and Dietz 2012). As an alternative of 

fossil fuel, renewable energy is widely viewed as an integral part of the strategy for 

climate change mitigation (IPCC 2011). Meanwhile, climate change mitigation is 

contextualized by and interacts with existing social inequality (Harlan et al. 2015), such 

as domestic income inequality. Researchers underscore the importance of identifying 

potential double-dividend measures that enhance income equality and reduce emissions at 

the same time (Grunewald et al. 2017; Jorgenson et al. 2016; Jorgenson, Schor, and 

Huang 2017).  

Most cross-national empirical studies on relationships between anthropogenic 

forces and carbon emissions focus on aggregate emission measures such as production-

based accounts (PBA) that capture all emissions generated in a nation’s territory 

(UNFCCC 1997), and consumption-based accounts (CBA) that capture the totality of 

global emissions driven by a nation’s consumption demand (Davis and Caldeira 2010; 

Peters and Hertwich 2008). These studies advance the understanding of the “net effect” 

of a certain human force on the totality of a nation’s emissions defined based on PBA or 

CBA, and are instrumental to climate change research and policy considerations.   

However, the existing literature has not systematically examined how the effects 

of certain anthropogenic forces may differ across components of a nation’s emissions. At 

the national level, a myriad of activities contributes to GHG emissions. These activities 
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are not homogeneous but differ in important characteristics such as the economic sector 

and supply chain stage to which they belong. Accordingly, a nation’s GHG emissions can 

be divided into multiple distinct components based on some of these characteristics. 

Given the differences between emission components, it is likely that their relationships 

with a certain human force differ in magnitude or even in direction. If such heterogeneity 

is found, it can inform the unique strategy that might be required to effectively mitigate 

each emission component. Yet, analyses using PBA or CBA are unable to detect such 

heterogeneity. 

In this dissertation, I address these gaps in the literature. In Chapter 2, I propose a 

new analytical framework of Multidimensional Emissions Profile (MEP) for the 

systematic analysis of four structural components of nations’ emissions and how they are 

related to anthropogenic forces. I then apply this framework to analyze the national 

affluence-GHG emissions nexus in high-income nations over the period of 1995 to 2015. 

In Chapter 3, I draw upon the MEP framework to investigate how renewable energy 

deployment is related to nations’ multiple emissions components, and how the 

relationships change over time from 1995 to 2015 in high-income nations. In Chapter 4, I 

examine the time-varying relationships between domestic income inequality and the four 

emission components in high-income nations from 2004 to 2015. The empirical findings 

from all three chapters show heterogeneity among the four emissions components in how 

they are associated with anthropogenic forces, hence supporting the validity of the MEP 

framework. The heterogeneity bears important theoretical, substantive, and policy 

implications regarding the roles of economic development, renewable energy 

deployment, and domestic income inequality in the pursuit of climate change mitigation. 
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As a whole. this dissertation contributes to the research literature and policy 

considerations on human drivers of climate change and mitigation. Below I briefly 

summarize the MEP framework and the empirical analyses, and then discuss the 

contributions of this dissertation with more depth. 

5.2 MULTIDIMENSIONAL EMISSIONS PROFILE 

The MEP framework situates each nation’s contributions to global carbon 

emissions into 4 distinct components: (1) emissions generated by domestic-oriented 

supply chain activities (DOSCA), such as domestic industrial activities that serve 

domestic consumers; (2) emissions embodied in imports; (3) emissions embodied in 

exports; and (4) direct emissions of end user activities. DOSCA emissions, emissions 

embodied in exports, and emissions embodied in imports are generated by supply chain 

activities outside the end use stage. Direct emissions of end user activities are generated 

by activities such as driving personal vehicles, and household electricity generation and 

heating that burns fossil fuels on-site. This emission component does not account for the 

emissions that are driven by end user activities but generated outside the end use stage, 

such as the emissions generated by domestic power plants serving domestic households. 

As leverage points for climate change mitigation, these four emission components 

differ from one another at multiple levels. At the national level, emissions embodied in 

imports are generated by foreign supply chain activities to fulfill a nation’s final demand. 

These foreign supply chain activities are, at best, indirectly influenced by the nation’s 

domestic policies. In contrast, emissions embodied in exports are generated by domestic 
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supply chain activities serving foreign final demand, which are more directly affected by 

domestic policies, and might be indirectly impacted by foreign policies. In comparison, 

DOSCA emissions and direct end user emissions are most directly affected by domestic 

policies and least affected by foreign policies. At the organizational level, mitigating the 

three emission components generated outside the end use stage requires business 

organizations to reduce the emissions generated by their own operations. In contrast, 

mitigating direct end user emissions requires firms to offer consumer products and 

services that facilitate the reduction of direct end user emissions (Stern et al. 2016). At 

the household and individual levels, reducing emission components generated outside the 

end use stage requires changing consumer behaviors that are implicated in the emissions 

generated by upstream production processes. Mitigation strategies targeting these 

behaviors need to overcome the cognitive barrier that most consumers are unaware of the 

embodied emissions of consumer products, and the institutional and technical barriers of 

compiling and publicizing credible information on embodied emissions for a wide range 

of consumer products (Abrahamse et al. 2007; Taufique et al. 2022). In comparison, these 

barriers are less inhibiting for changing consumer behaviors that contribute to direct end 

user emissions (Stern et al. 2016).  

These distinctions allude to the potential heterogeneity in how the emission 

components are affected by anthropogenic forces that drive or mitigate emissions, 

including national affluence (i.e., economic development), renewable energy deployment, 

and domestic income inequality. Each of these forces is empirically examined in a 

chapter.  
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5.3 OVERVIEW OF EMPIRICAL ANALYSES 

The analyses in this dissertation focus a sample of 34 high-income nations, for 

both methodological and substantive reasons. As discussed extensively in Chapter 2, I 

calculate the values of the four emission components (i.e., the dependent variables) using 

the environmentally-extended multi-regional input-output (EE-MRIO) method (Miller 

and Blair 2009). The calculation is based on the EE-MRIO data from Exiobase 3 (Stadler 

et al. 2018, 2021), which provides data for 49 geographic regions (including nations and 

non-nation regions). Among them, 34 high-income nations and 9 non-high-income 

nations also have available data on independent variables. The 9 non-high-income nations 

as a standalone sample is too small for the regression modeling techniques used in the 

analyses. Moreover, combining high-income nations and non-high-income nations 

together as a mixed sample may generate spurious results because prior studies find 

relationships between human drivers and emission outcomes tend to differ substantially 

between high-income nations and lower-income nations (Grunewald et al. 2017; Jebli and 

Kahia 2020; Jorgenson et al. 2016; Jorgenson and Clark 2012; Thombs 2017; York and 

McGee 2017). Therefore, I elect to focus only on the 34 high-income nations. 

Despite only including high-income nations, this sample is substantively 

meaningful. Many high-income nations are major contributors to global carbon 

emissions. The sample includes 9 out of 10 biggest emitters of among high-income 

nations. Besides, prior studies find that if there would be nations where growth in 

affluence is decoupled from growth in emissions, they would more likely be high-income 

nations than in lower-income nations (Jebli and Kahia 2020; Jorgenson and Clark 2012; 

Schmalensee, Stoker, and Judson 1998; Thombs 2018). Moreover, high-income nations 
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generally have greater financial and technological capability for a renewable energy 

transition than lower-income nations (IPCC 2011). 

In Chapter 2, I apply the MEP framework to empirically analyze the 

affluence/emissions nexus, a focal point of climate mitigation research and policies. 

There is a major debate on the relationship between national affluence and carbon 

emissions. Some studies argue that national affluence is positively associated with the 

scale of resource consumption, which in turn is positively related to carbon emissions 

(Dietz 2017; Jorgenson et al. 2019; Rosa and Dietz 2012; Schnaiberg 1980). Others 

contend that social changes such as environmental regulations, renewable energy 

deployment, energy efficiency improvement, and environmental movements are capable 

of offsetting the upward pressure on emissions caused by increased affluence and 

resource consumption (Grossman and Krueger 1995; Mol 2000; Mol, Spaargaren, and 

Sonnenfeld 2014; Rosa and Dietz 2012). The majority of cross-national empirical studies 

find positive relationship between affluence and emissions (Dietz and Rosa 1997; Dong 

et al. 2018; Jorgenson and Clark 2012; Khan et al. 2021; Liddle 2015; Lohwasser, 

Schaffer, and Brieden 2020; Thombs 2018; Thombs and Huang 2019; Wang, Assenova, 

and Hertwich 2021), while a smaller number of studies find the relationship to be 

negative for high-income nations (Dogan and Aslan 2017; Schmalensee et al. 1998). 

The empirical literature primarily relies on aggregate emission measures such as 

PBA and CBA. Different from prior research, I investigate how national affluence is 

associated with multiple components of nations’ emissions in potentially heterogeneous 

ways, by using the MEP framework. Results of panel regression analyses with two-way 

fixed effects indicate that as high-income nations grow even wealthier, affluence is 
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increasingly decoupled from direct emissions of end user activities but remains positively 

associated with the other three emission components in various ways. 

In Chapter 3, I apply the MEP framework to investigate how high-income 

nations’ renewable energy deployment is related to their emission components. While 

some prior studies find that renewable energy consumption is negatively associated with 

CO2 emissions (Bilgili, Koçak, and Bulut 2016; Shafiei and Salim 2014; Shahnazi and 

Dehghan Shabani 2021; Sovacool et al. 2020; Wang et al. 2021), others studies question 

whether renewables can displace fossil fuel consumption at the scale and pace required to 

meet necessary mitigation targets (Davidson 2019; Hill, Tajibaeva, and Polasky 2016; 

York 2012). Most cross-national research to date on the renewable energy-carbon 

emissions nexus examines PBA. An understudied area is how renewables’ overall effect 

on PBA may be heterogeneously distributed among specific emission components. I 

address this gap in Chapter 3. I first conduct a baseline analysis of renewables’ time-

varying relationship with nations’ PBA. Then I analyze renewables’ time-varying 

relationships with DOSCA emissions, emissions embodied in exports, and direct end user 

emissions. These 3 emission components together constitute PBA. Results of panel 

regression models with two-way fixed effects suggest that renewable energy deployment 

is effective in mitigating DOSCA emissions, and with increasing effectiveness over time 

from 1995 to 2015; yet it remains ineffective in curbing the other emission components.  

In Chapter 4, I examine how domestic income inequality is related to nations’ 

four emission components that constitute the MEP. Prior research on this relationship 

identifies three major theoretical pathways that link domestic income inequality to CO2 

emissions: the political economy pathway (Boyce 1994, 2003, 2007), the Veblen effect 
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pathway (Schor 1998; Veblen 1934), and the marginal propensity to emit pathway 

(Ravallion, Heil, and Jalan 2000). Given that prior cross-national studies rely on 

aggregate emissions measures such as PBA (Grunewald et al. 2017), and CBA 

(Jorgenson et al. 2016), they are unable to further unpack how the effect of income 

inequality might vary across emission components, and whether the pathways linking 

income inequality to emissions are different across emission components. I argue that the 

three aforementioned theoretical pathways concern different types of carbon-emitting 

activities, and correspondingly, different emission components in the MEP framework. 

Specifically, political economy pathway mainly concerns emissions embodied in exports 

and DOSCA emissions, while the Veblen effect pathway and the marginal propensity to 

emit pathway are more relevant to direct end user emissions, emissions embodied in 

imports, and also DOSCA emissions. 

I also operationalize income inequality in two different ways: the Gini coefficient 

and the income share held by the top 10% of population. The former is more sensitive to 

the marginal propensity to emit pathway and the latter is more sensitive to the political 

economy and the Veblen effect pathways (Jorgenson et al. 2017). Results of seemingly 

unrelated regression models suggest that the relationships between income inequality and 

nations’ CO2 emissions change over time, vary across emission components, and differ 

between the two measures of income inequality. 
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5.4 IMPLICATIONS FOR CLIMATE CHANGE MITIGATION 

The findings for this dissertation bear implications for research and policy 

considerations on climate change mitigation. For the national affluence-GHG emissions 

nexus (Chapter 2), the heterogeneity across emission components suggests that the 

emission-suppressing mechanisms that are theorized to accompany growing affluence 

may be more effective in curbing direct end user emissions but remain inadequate in 

mitigating the other three emission components: DOSCA emissions, emissions embodied 

in imports, and emissions embodied in exports—all three of which are generated by 

supply chain activities outside the end use stage. This is problematic because these three 

emission components together account for the absolute majority of high-income nations’ 

contributions to global emissions. Emissions embodied in imports, in particular, 

increasingly become the largest emission component as high-income nations grow 

wealthier. If high-income nations aim to reduce GHG emissions while maintaining 

growth in affluence, it is necessary for them to achieve absolute decoupling between 

affluence and these three emission components, especially emissions embodied in 

imports. However, absolute decoupling is only observed for direct end user emissions, 

the fourth and the smallest emission component. Therefore, the findings underscore the 

importance for high-income nations to shift the focus of their climate mitigation policy 

agenda from direct end user emissions to emissions generated by both domestic and 

foreign supply chain activities outside the end use stage. This shift would require 

targeting not only consumers but also multiple entities along supply chains (World 

Economic Forum 2021).  
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For the renewable energy-CO2 emissions nexus (Chapter 3), the heterogeneity 

across emission components indicates that while renewables can more effectively curb 

DOSCA emissions and increasingly so over time, there exist structural barriers that 

prevent renewable energy deployment from mitigating emissions embodied in exports 

and direct end user emissions. For emissions embodied in exports, one likely barrier is 

the preferential treatment of energy-intensive export-oriented industries in climate and 

environmental policies such as carbon tax (Lin and Li 2011). For direct end user 

emissions, there is a lack of effective mechanisms to translate increased renewable 

energy consumption into a reduction in direct fossil fuel consumption by end users. 

Notably, the deployment of biofuels as blended fuels in road transportation perpetuates 

rather than displaces fossil fuel consumption (Hill et al. 2016). Underlying these barriers 

is the continuous legitimization of the fossil fuel regime by normalized societal practices 

such as personal vehicle-based transportation and the ubiquity of plastics (Davidson 

2019; Sicotte 2020; Sicotte and Seamon 2021; Smil 2016). It is crucial to overcome these 

structural barriers in order to achieve the full decarbonization potential of renewable 

energy deployment. 

For the income inequality-CO2 emissions nexus (Chapter 4), the observed 

heterogeneity is indicative of the variations, both across emission components and over 

time, in the causal pathways that link carbon emissions to domestic income inequality. 

Equality-enhancing policies that seek to curb the income concentration among top 

earners, such as the Billionaire Minimum Income Tax (Hussein 2022), may curb the 

disproportional power of wealthy elites who collectively control most of the production 

facilities and business organizations in a nation. As a result, the environmental impacts of 
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these facilities and organizations, including carbon-intensive export-oriented industries, 

can be more effectively regulated, which in turn could lead to a reduction in CO2 

emissions embodied in the nation’s exports. However, such policies may at times, such as 

during economic recessions, increase the fossil fuel consumption by bottom earners and 

thus increase direct end user emissions of the nation. Therefore, in order to better harness 

the climate mitigation co-benefits of equality-enhancing policies and avoid potential 

trade-offs, these policies need to be accompanied by measures that curb consumers’ 

direct fossil fuel consumption without compromising the well-being of lower-income 

populations.  

Overall, this dissertation research underscores the multidimensionality in how 

nations contribute to global carbon emissions, and in how nations’ emissions are related 

to anthropogenic forces. National affluence, renewable energy deployment, and income 

inequality do not evenly affect the emission components. Instead, they curb some 

emission components but spur others. Climate policies targeting these anthropogenic 

forces should optimize their decarbonization benefits while neutralizing the mechanisms 

through which they drive growth in emissions. 

5.5 LIMITATIONS AND FUTURE DIRECTIONS 

The findings in each of the empirical chapters inform avenues for future research. 

In Chapter 2, I raise these questions that warrant further investigation: What are the 

specific emission-suppressing mechanisms accompanying growing affluence that 

contribute to the absolute decoupling between affluence and direct end user emissions? 
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How can these mechanisms be adapted to mitigate the other three emission components? 

In Chapter 3, I explore potential barriers that cause renewable energy deployment to 

unevenly affect the emission components, and call for future research to more thoroughly 

examine these barriers: What social, economic, political, and technological barriers 

impede renewables’ mitigation effect on emissions embodied in exports and direct 

emissions by end users? How do the barriers differ across nations and change over time? 

How can these barriers be overcome? How can renewables’ mitigation effect on DOSCA 

emissions be further strengthened? In Chapter 4, I call for further investigation into the 

mechanisms that drive the changes in the income inequality-emissions relationships both 

over time and across emission components. Moreover, while Chapter 4 focuses on the 

period of 2004 to 2015 due to the limited data availability on income inequality 

measures, future research should examine the relationships over a longer time span. 

Similarly, data availability issues limit the sample to high-income nations for across all 

three empirical chapters. As data will likely become increasingly more available in the 

future, it will be imperative for researchers to study lower- and middle-income nations, 

some of which have become major emitters. 
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