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Binary choice models can be easily estimated (using, e.g. maximum likelihood

estimation) when the distribution of the latent error is known, as in Logit or Probit.

In contrast, most estimators with unknown error distribution (e.g., maximum

score, maximum rank correlation, or Klein-Spady) are computationally difficult

or numerically unstable, making estimation impractical with more than a few

regressors.

The first chapter proposes an estimator that is convex at each iteration, and

so is numerically well behaved even with many regressors and large sample sizes.

The proposed estimator, which is root-n consistent and asymptotically normal,

is based on batch gradient descent, while using a sieve to estimate the unknown

error distribution function. Simulations show that the estimator has lower mean

bias and root mean squared error than Klein-Spady estimator. It also requires

less time to compute.

The second chapter discusses the same estimator in high dimensional setting.

The estimator is consistent with rate lower than root-n when the number of regres-

sors grows slower than the number of observations and asymptotic normal when

the square of the number of regressors grows slower than the number of observa-

tions. Both theory and simulation show that higher learning rate is needed with

higher number of regressors.

The third chapter provides an application of the proposed estimator to bankruptcy

prediction. With more than 20 regressors, the proposed estimator performs better



than logistic regression in terms of Area Under the Receiver Operating Character-

istics using firm data one year or two years prior to bankruptcy, but worse than

logistic regression using firm data three years prior to bankruptcy.
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Chapter 1

Estimation and Inference of

Semiparametric Binary Choice

Model

1.1 Introduction

Binary choice models are widely used in empirical economics. Examples are mod-

eling the choice of who to vote for, or whether to buy a product or not. Logit

and Probit models are commonly used in empirical applications, but they impose

strong, rarely justified functional form restrictions on the model’s error distribu-

tion.

To deal with this drawback, many methods have been developed to specify

and estimate binary choice models that do not impose these error functional form

restrictions. However, these alternative methods are not widely use in practice,

because they tend to be computationally complex and numerically poorly behaved,

or they require additional strong restrictions on the regressors. These problems

have become more acute in recent years, as data sets and models have grown

larger, with many regressors.

The goal of this paper is to provide a binary choice model estimator that doesn’t
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impose a functional form on the errors, and doesn’t require strong restrictions on

the regressors, but is still computationally easy and numerically well behaved,

even with big data.

The standard binary choice model says that yi equals one if x
T
i β

∗ > εi and zero

otherwise, where xi is a p-vector of regressors, β∗ is a p-vector of coefficients and

the random variable ε is an unobserved latent error term. Formally, this model

is yi = 1{xT
i β

∗ > εi}, where 1 is the indicator function that equals one if its

argument is true and zero otherwise. Our goal is estimation of the coefficients β∗

from a set of independent, identically distributed (i.i.d.) observations (yi, x
T
i ).

This paper proposes an iterative estimator based on the batch gradient descent

(BGD) algorithm, and its asymptotic properties, including convergence rate and

limiting distribution, are derived.

Let g denotes the unknown cumulative distribution function of each ε. The

standard BGD algorithm requires that the error distribution g be known. To

allow for an unknown distribution, we use a sieve method to approximate this

distribution. First we apply BGD algorithm to estimate β for a given choice of

g. Then, using that estimate of β, we apply a sieve estimator, the Series Logit

Estimator (SLE), to get an estimate of the function g. This procedure is then

iterated many times until the estimates of β and g converge. Each step in this

process is computationally easy and numerically very well behaved, because the

underlying objective functions at each stage are convex.

The resulting estimator is shown to be
√
n-consistent and asymptotically nor-

mal, with a limiting distribution that can be calculated, to allow for inference.

The estimator described above is for a fixed number of parameters p. We next

consider a high dimensional setting, where p goes to infinity as n goes to infinity.

The resulting estimator is shown to have
!

p/n consistency as p/n → 0, and is

asymptotically normal under the stronger condition that p2/n → 0. These results

suggest that the proposed estimator can be used in big data settings with many

covariates.
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Some Monte Carlo analyses are performed to assess the finite sample properties

of the proposed estimators, and to compare with other existing estimators in the

literature.

1.2 Literature Review

1.2.1 Literature of Semiparametric Estimators

When the distribution of error is known, maximum likelihood estimation (MLE)

is widely used, i.e, find the value of β that gives the highest value of a likelihood

function. One of the advantages of MLE is that the estimator touches CramérRao

lower bound, the lowest variance an unbiased estimator can get. When the distri-

bution of error is unknown, MLE leads to an inconsistent estimator. White (1982)

finds that MLE is consistent to a well defined limit, which may not be the true

value under misspecification.

With some specific assumptions on error distributions one can get MLE that

converges to γβ, where γ is unknown, non-zero scalar, i.e, the estimator is consis-

tent up to a scaling factor. Ruud (1983) finds that MLE is still consistent if the

expectation of each regressor conditional on xT
i β is linear in xT

i β.

Semiparametric binary choice model was first introduced by Manski (1975). He

proposes maximum score estimator, the basic assumption is median(xi|εi) = 0,

which is much weaker than the assumption of Ruud (1983). The MS estimator is

the following:

β̂MS = argmax||β||=1
1
n

n"
i

yi1[xT
i β

∗ > 0] + (1− yi)1[xT
i β

∗ < 0]

The convergent rate of MS estimator is 1
n1/3 , which is slower than 1√

n
. In addi-

tion, the limiting distribution is complex, which makes statistics inference difficult.

To address this problem, Horowitz (1992) proposes the smoothed maximum score

(SMS) estimator which has a better performance than MS estimator in terms of

convergence rate and asymptotic variance. SMS estimator is the following:

3



β̂SMS = argmax||β||=1
1
n

n"
i

(2yi − 1)K(
xT
i β∗

hn
)

where K(.) is kernel function and hn is a bandwidth parameter satisfying

hnn → ∞. SMS estimator is at least 1
n2/5 and asymptotic normal. Both MS

estimator and SMS estimator converge slower than 1√
n
.

Han (1987) proposes maximum rank correlation estimator. The basic assump-

tion is that εi is independent of xi, which means εi − εj is independent of xi and

xj. The MRC estimator is the following:

β̂MRC = argmax
"
i ∕=j

1[yi > yj]1[xT
i β

∗ > xT
j β

∗]

As proved by Sherman (1993), β̂MRC converges to β with the convergence rate

of 1√
n
.

Cosslett (1983) proposes an estimator based on MLE. Their method include

two parts, first they approximate the distribution of error using basic distribu-

tion functions. Secondly, they estimate β∗ via MLE and repeat the process until

converge. Ichimura (1987) proposes semiparametric least square (SLS) estimator

for single index model, where he uses kernel estimator to approximate the error

distribution. It also has an asymptotic normal distribution with rate 1√
n
.

However, the above estimators involve finding the maximum of a non-concave

maximum likelihood functions or other functions. This is computationally hard

when we use methods like grid search to find the maximum. With more than 4

regressors it’s almost impossible to implement those method in practice. Some

methods help relieve the problem of computation. E.g, the objective function of

MRC estimator is neither globally concave nor smooth, therefore traditional meth-

ods like NewtonRaphson algorithm and NelderMead algorithm can’t be applied to

it. Wang (2007) proposes iterative marginal optimization (IMO) to estimate MRC,

which updates covariates one by one. IMO is stable since it guarantees monotonic

increase of MRC objective function in each iteration, but it sill requires grid search

in their algorithm, with O(n2logn) operations for each grid search step. The ob-

jective function of our estimator is globally convex. As a result, our estimator is
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computationally easy compared to the above estimators.

Some estimators are computationally easy, but the first stage suffers from the

curse of dimensionality. Powell, Stock and Stoker (1989) proposes Weighted aver-

age derivative estimator for index model. However, it requires kernel estimation

of joint density function of all regressors. As a result, it suffers from curse of

dimensionality. Besides, it requires all regressors to be continuous. Ahn et al.

(2018) propose a computationally easy estimator, they match observations with

same expected value of xT
i β but different value of xi. However, the first stage is

still a kernel estimation of error distribution. In addition, the estimator is not

robust to heteroscedasticity and discrete regressors.(see Khan and Tamer (2018)).

We estimate the error distribution based on xT
i β rather than all the regressors.

This makes our estimator free from the curse of dimensionality and we can get

error distribution while estimating β∗.

Some estimators add more assumptions about error distribution to gain com-

putational efficiency. Lewbel et al. (2012) finds that the estimator calculated by

special regressors method is
√
n-consistent and asymptotically normal. However,

it requires a very thick tailed regressor or bounded error support. Dominitz and

Sherman (2005) proposes the iterative least square estimator (ILS) based on Klein

and Spady (1993):

β̂k = argmaxβ

n#

i=1

(ŷi(β̂k−1)− xT
i β)

2

= β̂k−1 − x′
kûk(β̂k−1)

ILS estimator is very easy to compute but requires error distribution to be

log-concave, which excludes some common distributions like Cauchy distribution.

Besides, one of the tuning parameters that controls the tail of error distribution

is very sensitive to estimation. Our estimator does not put any shape restrictions

on error distribution, which means that our method can be applied more widely

than special regressor method and ILS.
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In computer science literature, iterative algorithm is widely used to estimate

β. Kalai and Sastry (2009) use monotonic regression to estimate error terms and

an algorithm to update β. Their method is simple and fast in programming and

achieve linear complexity, but they focus mainly on converge of error distribution

and don’t prove the consistency of β. Agarwal et al. (2013) propose an estimator

based on Kalai and Sastry (2009). They proved consistency but the estimator

require the underlying distribution function is known. Our estimator share the

same objective function as Agarwal et al. (2013), which means that we obtain

linear complexity while updating β. What’s more, we prove our estimator is
√
n-

consistent and asymptotically normal.

1.2.2 Literature of the Technical Part of the Estimator

The estimator is related to three kind of literature. The first kind talks about

the convex objective function. Agarwal et al. (2013) propose the convex objective

function to get β∗. We use the same function as theirs. The objective function is

also implied or mentioned by Kalai and Sastry (2009) and Ravikumar, Wainwright

and Yu (2008).

Secondly, our estimator is related to gradient descend method, which is widely

used in machine learning literature (see Mustapha, Mohamed and Ali (2020),Ruder

(2016)). One variation is stochastic gradient descent (SGD) algorithm, which up-

dates β∗ use one data point in each iteration, therefore the total number of iteration

times is n. The SGD estimator is easy to compute since the algorithm of updating

β∗ is linear if the objective function is convex. It is one type of NewtonRaphson

estimator and a special case of stochastic approximation method of Robbins and

Monro (1951). SGD algorithm usually requires the learning parameter to shrink

to 0 as iterate times goes to infinity. Polyak and Juditsky (1992) proposes SGD

average algorithm which averages β∗ across each iteration and gain efficiency than

the basic SGD algorithm. See Kushner and Yin (2003) for more details about the

variations of SGD algorithm. Another variation is batch gradient descent (BGD)
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algorithm, which use all data points in each iteration until converge. See Wilson

and Martinez (2003) and Hinton, Srivastava and Swersky (2012) for more discus-

sion on the differences and combinations of the two algorithm. Our algorithm uses

BGD and then averages β∗ across each iteration.

At last, our estimator uses method of sieve to estimate the unknown distri-

bution. The method of sieve is first proposed by Grenander (1981). It uses a

sequence of finite-dimensional spaces, which is called sieve, to approximate un-

known infinite-dimensional space. The complexity of sieves should increase with

the number of observations and the sieves should be dense in the unknown space.

We use Series Logit Estimator(SLE), which is used in Hirano, Imbens and Ridder

(2003) to estimate propensity score. It is a special case of sieve MLE proposed by

Geman and Hwang (1982), they prove the consistency of sieve MLE with i.i.d data.

As for dependent and heterogeneous data, White (1991) provides a more detailed

analysis. Hirano, Imbens and Ridder (2003) use logistic model with power series

called series Logit estimator (SLE). They only require some smoothness properties

of the unknown distribution. Our estimator is similar to two-step sieve estima-

tor. Two-step sieve estimator starts with unknown function nonparametrically

and then estimates the parametric part with GMM or MLE and other methods.

Under some regularity conditions, the parametric part of two-step sieve estimator

can get
√
n−asymptotic normality, see Chen (2007), Chen, Linton and Van Keile-

gom (2003) for more discussion. As for the nonparametric part of sieve estimator,

like Chen (2007) point out, we don’t have a universal theory of a pointwise limiting

distribution.

1.3 Model

In this section we show the algorithm, the assumptions and the theorem.

yi = 1{xT
i β

∗ > ε} (1.1)

7



xi is a p-vector of regressors, β∗ is a p-vector of coefficients (β∗1, β∗2...β∗p), 1 is

an indicator function and ε is a random variable. We make one condition on the

distribution of error that is l-Lipschitz condition: 0 ≤ g(b)− g(a) ≤ l ∗ (b− a) for

all a ≤ b, where g : R → R is the cumulative distribution function (CDF) of ε. We

want to estimate β∗ from i.i.d. data points (yi, x
T
i ). We assume β∗1 = 1, therefore

we only update and estimate p− 1 coefficients. Here we assume all the regressors

are not a constant.

Remark 1. Here it means we don’t estimate the location of error distribution

because we want to compare estimator with known distribution and estimator with

unknown distribution. The estimator of location coefficient may have different

convergence rate with unknown distribution.

1.3.1 Estimator with Known g

First we introduce the convex objective function proposed by Agarwal et al. (2013):

ζ(β; (xi, yi)) = G(xT
i β)− yxT

i β (1.2)

There exists a convex function G such that G′ = g if g is monotone increasing

function and satisfies l-Lipschitz condition according to Lemma 1. Notice that the

loss function is convex since G is convex.

Secondly, we introduce the batch gradient descent algorithm(BGD), which uses

all the data points at each iteration. The gradient of ζ(.) is the following:

∇ζ(β; (xi, yi)) = (g(xT
i β)− yi)x

T
i (1.3)

We will use all the data points to calculate the average of gradient in each

iteration :

1

n

n#

i=1

∇ζ(β; (xi, yi)) =
1

n

n#

i=1

(g(xT
i β)− yi)x

T
i (1.4)

The following is BGD algorithm:

8



Algorithm 1 BGD algorithm: k denotes the iterate times. The total number
of iteration is K. Ck is a fixed p ∗ p positive-denite matrix. γk is learning speed
depended on k.

1: Guess β̂0.
2: Iterate β̂k = β̂k−1 − γkCk(

1
n

"n
i=1(g(x

T
i β)− yi)x

T
i ) until you get β̂K .

At last we get BGD average (BA) estimator β̂BA by averaging β̂k across dif-

ferent k and let K = n:

β̂BA =
1

n

n#

k=1

β̂k (1.5)

Remark 2. BGD estimator usually requires less iterate times than n. We follow

the requirements for SGD by letting K = n and averaging β̂k across different k

for two reasons. Firstly, it’s easy to prove under such assumptions. Secondly,

we follow the same assumptions here as the ones in next section so that we can

compare the limiting distribution of β̂BA with the limiting distribution of estimator

with unknown distribution.

We follow the assumptions by Toulis, Airoldi et al. (2017).

Assumption 1. {γk} = γ1k
−γ, where γ1 > 1 is the learning parameter, γ ∈

(0.5, 1].

Assumption 2. function g(.) satisfies l-Lipschitz conditions, i.e, 0 ≤ g(b)−g(a) ≤

l ∗ (b− a) and g(.) is non-decreasing and differentiable almost surely.

Assumption 3. The matrix Îi(β) ≡ g′(xiβ)xix
T
i has nonvanishing trace, that is

, there exists constant b > 0 such that trace(Îi(β)) ≥ b almost surely, for all β.

The matrix I(β∗) = E(Îi(β
∗)), has minimum eigenvalue λf > 0 and maximum

eigenvalue λ
f
< ∞. Typical regularity conditions holds.(Lehmann and Casella

(2006), Theorem 5.1,page 463).

Assumption 4. Ck is a fixed positive-definite matrix, such that Ck = C +O(γn),

where||C|| = 1, C ≻ 0 and symmetric, and C commutes with I(β). Every Ck has

a greatest eigenvalue λc and smallest eigenvalue λc.

Assumption 5. 1
n

n"
i

xix
T
i converges to a symmetric positive-definite matrix.
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Remark 3. Assumption 1 guarantees that
"
i

γi = ∞ and
"
i

γ2
i < ∞ as mentioned

by Robbins and Monro (1951), which is a necessary condition for the converge of

SGD estimator. Assumption 2 means that G(.) is Lipschitz-continuous following

the traditional optimization literature (see Nesterov (2003)). In assumption 3,

the matrix I(β∗) has minimum and maximum eigenvalue is equivalent to strong

convexity condition. Assumption 5 guarantees the use of central limit theorem,

which can be relaxed to allow non i.i.d. data.

Theorem 1. Under assumptions 1-5 and for k ≤ n, use BGD algorithm 1 we get

E||β̂k − β∗||2 ≤
8λ

2

cσ
2
xC1(1 + 2γ1λcλf )

2γ1λcλf

k−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n1A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C1 and n1 are some constants.

When K = n and γ = 1, β̂K is consistent to β∗ at the rate of 1√
n
.

β̂k exhibits the same convergency rate as traditional stochastic gradient descent

estimator, which uses single data point once per iteration. β̂k is robust to initial

condition since the g is bounded, see Moulines and Bach (2011) for bounded

gradient discussion. For unbounded g function, there will be extra term that

grows exponentially with the value of initial point.

Theorem 2. Under assumptions 1-5 and for γ ∈ (0.5, 1), we get

(i)
√
n(β̂BA − β∗) → N(0,Σ−1

2 Σ1Σ
−1
2 )

where Σ1 = Eg(xT
i β

∗)(1− g(xT
i β

∗))xix
T
i and Σ2 = Eg′(xT

i β
∗)xix

T
i .

(ii) Σ̂−1
2 Σ̂1Σ̂

−1
2 → Σ−1

2 Σ1Σ
−1
2

where Σ̂1 =
1
n

n"
i

g(xT
i β̂BA)(1− g(xT

i β̂BA))xix
T
i and Σ̂2 =

1
n

n"
i

g′(xT
i β̂BA)xix

T
i .

10



With the assumption of the model that g is bounded, we can get the similar

result in Toulis, Airoldi et al. (2017) that β̂BA is asymptotically normal distributed.

Like Logit and Probit and any other generalized linear model, the sample

partial effect and average partial effect of regressors converge to the partial effect

and average partial effect respectively with the rate of
√
n . This rate of partial

effect will be different for estimator with unknown g in the next section.

1.3.2 Estimator with Unknown g

When g is unknown, we use sieve method to get the feasible estimator. Kalai and

Sastry (2009) use isotonic regression rather than sieve methods to approximate the

error function. They don’t provide asymptotic properties for their estimator. In

addition, sieve methods exhibit better performance than simple isotonic regression.

The following is the kth updating for β

β̃k = β̃k−1 − γkCk
1

n

n#

i=1

∇ζ̃k−1(β̃k−1; (xi, yi)) (1.6)

where ζ̃k−1(β̃k−1; (xi, yi)) is the estimation for ζ(β̃k−1; (xi, yi)) using series logis-

tic estimator(SLE) by Hirano, Imbens and Ridder (2003). Denote Rq(xT
i β) as

a q-vector of orthogonal basic functions for xT
i β with ERq(xT

i β)R
q(xT

i β)
T = Iq

conditional on β, where Iq is a q ∗ q identity matrix. One easy way to build

Rq(xT
i β) is by power series. Denote rq(xT

i β) = (1, (xT
i β), (x

T
i β)

2...(xT
i β)

p−1)T ,

then Rq(xT
i β) = (ERq(xT

i β)R
q(xT

i β)
T )−

1
2 rq(xT

i β). Newey (1994, 1997) proves that

sup||Rq(xT
i β)|| ≤ Cq for some constant C for orthonormal polynomials. We use

Rq(xT
i β) to approximate g(xT

i β). Denote L(.) as
exp(.)

(1+exp(.))
. Then SLE for Rq(xT

i β)

is L(Rq(xT
i β)

T π̂k
q ) with

π̂k
q = argmax

π

n#

i

(yilogL(R
q(xT

i β)
Tπ) + (1− yi)log(1− L(Rq(xT

i β)
Tπ))) (1.7)

The advantage of SLE is that the objective function above is globally concave

11



so that we can use optimization algorithm like SGD, BGD or the simplex search

method of Lagarias et al. (1998) to get π̂k
q . Then we get approximation for gradient:

∇ζ̃k−1(β̃k−1; (xi, yi)) = (L(Rq(xT
i β̃k−1)

T π̂k−1
q )− yi)xi (1.8)

Algorithm 2 Sieve BGD algorithm

1: Guess β∗ and g(.) as β̃0 and g0(.).
2: Update β̃1 using equation β̃1 = β̃0 − γ1C1

1
n

"n
i=1(g0(x

T
i β̃0)− yi)xi.

3: Calculate Rq(xT
i β̃1) and update g1(.) = L(Rq(xT

i β1)
T π̂1

q ) using equation 1.7.

4: For k ≥ 2, update β̃k using equation 1.6 and 1.8.
5: For k ≥ 2, Calculate Rq(xT

i β̃k) and update gk(.) = L(Rq(xT
i βk)

T π̂k
q ) using

equation 1.7.
6: Repeat step 4 and 5 until β̃K .

Remark 4. We update all β in equation 1.8, which means we update p coefficients.

We will standardize it in the last step. In the end, we will estimate p−1 coefficient.

At last we get sieve BGD average (SBA) estimator β̃SBA by averaging β̃k across

different k and let K = n:

β̃SBA =
1

n

n#

k=1

β̃k

β̃1
k

(1.9)

Where β̃1
k is the first component of β̃k.

The assumptions below are following Hirano, Imbens and Ridder (2003)

Assumption 6. the support X of X is a compact subset of Rr.

Assumption 7. g is s times continuously differentiable, with s ≥ 5.

Assumption 8. g is bounded away from zero and one on X.

Assumption 9. the density of X is bounded away from zero on X.

Assumption 10. q → ∞ as n → ∞ and q5/n → 0.

Remark 5. Assumption 6 can be relaxed to allow X to be Rr with some tail re-

striction on the density of X. X with normal distribution works well in simulation.

12



Theorem 3. Under assumptions 1-10 and using sieve BGD algorithm 2 we get

E|| β̃k

β̃1
k

− β∗||2 ≤
8λ

2

cσ
2
xC2(1 + 2γ1λcλf1)

2γ1λcλf

k−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n2A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C2 and n2 are some constants.

The result is similar to theorem 1. β̃K

β̃1
K

is consistent to β∗ with rate 1√
n
if K = n

and γ = 1.

Not surprisingly we get the similar convergence rate as the β̂BA in the previous

section since the data is averaging and the final estimator is averaging across

different iterations. Polyak and Juditsky (1992) suggested that averaging SGD

estimator is
√
n consistent.

Theorem 4. Under assumptions 1-10, assume and γ ∈ (0.5, 1), we get

(i)
√
n(β̃SBA − β∗) → N(0,Σ−1

22 Σ1Σ
−1
22 )

where Σ1 = Eg(xT
i β

∗)(1 − g(xT
i β

∗))xix
T
i and Σ22 = E(g′(xT

i β
∗)xix

T
i − f(xT

i β
∗)),

where f(xT
i β

∗)) = lim
q→∞

xiR
q(xT

i β
∗)TERq(xT

j β
∗)g′(xT

j β
∗)xT

j and Rq(xT
i β

∗) is or-

thogonal polynomial function of xT
i β

∗.

(ii) Σ̃−1
22 Σ̃1Σ̃

−1
22 → Σ−1

22 Σ1Σ
−1
22

where Σ̃1 =
1
n

n"
i

gn(x
T
i β̃SBA)(1−gn(x

T
i β̃SBA))xix

T
i , Σ̃22 =

1
n

n"
i

(g′n(x
T
i β̃SBA)xix

T
i −

f̃(xT
i β̃SBA)) and f̃(xT

i β̃SBA)) = xiR
q(xT

i β̃SBA)
T ( 1

n

n"
j

Rq(xT
j β̃SBA)g

′(xT
j β̃SBA)x

T
j ).

Variance of β̃SBA differs from variance of β̂BA in that it has an extra term

f(xT
k β

∗) in Σ22 compared with Σ2. This extra term stands for the variance of

estimated error function.

13



Sample partial effect of regressors converges to the expectation of partial effect

with known g and slower rate that
√
n since the lower convergence rate of the

approximated error function to true error function. However, Sample average

partial effect of regressors converges to the expectation of average partial effect

with known g and the rate that
√
n. The difference between sample average partial

effect and the expectation of average partial effect with known g is consist two

parts. The first part is the difference between sample average partial effect and the

expectation of sample average partial effect with unknown g, which equals O( 1√
n
).

The second part is the difference between the expectation of sample average partial

effect with unknown g and the expectation of sample average partial effect with

known g, which also equals O( 1√
n
) with details in the above theorem.

1.4 Simulation

This section presents the result of Monte Carlo experiments. In the following

simulation, we use the binary choice model:

yi = 1{xT
i β > ε}

In this subsection we present simulation results when p is small. First for

different initial points, β̃SBA always converges to the neighborhood of the same

point. Secondly, we present that ur estimator always converges to the neighbor-

hood of the same point with different γ. At last we compare computation time,

mean bias and root mean squared error of our estimator with the estimator (ILS)

proposed by Dominitz and Sherman (2005). Through out this subsection, xi and

β is a vector of length 9, the true value of β is {1, 1, 2, 4, 5,−1,−2,−4,−5}. The

regressors are independent of each other. The first regressor equals 1 across i and

we do not estimate β1. We standardized β̂ by dividing β by β̂2. q = 3, which

means we use 1, z, z2 and z3 to estimate the underlying distribution.

We use different initial points, see table 1.1. γ = 0.6 and ε follows standard

normal distribution. The number of observation is 5000. Table 1.2 shows that our

14



Table 1.1: Initial point
β∗ initial 1 initial 2 initial 3 initial 4 initial 5
1 1 1 100 1 100
1 0 1 0 1 100
2 0 2 0 -100 -100
4 0 4 0 100 100
5 0 5 0 100 100
-1 0 -1 0 1 100
-2 0 -2 0 1 100
-4 0 -4 0 -100 -100
-5 0 -5 0 1 -100

estimator converges to the neibourhood of the true point even if the initial point

is far away like initial point 5.

Table 1.2: Result for different initial points
β∗ initial 1 initial 2 initial 3 initial 4 initial 5
2 2.06613 2.06621 2.06613 2.06532 2.06038
4 4.37991 4.37958 4.3991 4.38118 4.37315
5 5.35199 5.35179 5.35199 5.35326 5.34327
-1 -1.14102 -1.1408 -1.14102 -1.14101 -1.13701
-2 -2.12314 -2.21338 -2.12314 -2.12282 -2.11651
-4 -4.32496 -4.3246 -4.32496 -4.32598 -4.31775
-5 -5.37754 -5.37742 -5.37754 -5.37807 -5.36886

Then we test the sensitivity of different value of γ on the convergence of our

estimator. we use the initial point 1 and 5. Table 1.3 and table 1.4 show that if

the initial point is close to true value, our estimator is not sensitive to γ. However,

if the initial point is far away like initial point 5, we should choose γ ≤ 0.9. In

theorem 4 , γ ∈ (0.5, 1). So if we choose γ close to 1, the estimator is not performed

well. The estimator still works well if we choose γ close to 0.5.

Table 1.3: Result for different γ with initial point 1
beta 0.55 0.6 0.7 0.8 0.9 0.99

2 2.06613 2.06613 2.06611 2.06609 2.06603 2.06583
4 4.37992 4.37991 4.37987 4.3798 4.37962 4.37898
5 5.35201 5.35199 5.35195 5.35186 5.35166 5.35092
-1 -1.14102 -1.14102 -1.14101 -1.14098 -1.14091 -1.14066
-2 -2.12315 -2.12314 -2.12311 -2.12306 -2.12294 -2.12248
-4 -4.32498 -4.32496 -4.32492 -4.32484 -4.32467 -4.324
-5 -5.37757 -5.37754 -5.37749 -5.3774 -5.37716 -5.37631
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Table 1.4: Result for different γ with initial point 5
β∗ 0.55 0.6 0.7 0.8 0.9 0.99
2 2.06117 2.06038 2.05776 2.0512 2.02429 1.93057
4 4.37413 4.37315 4.36991 4.36173 4.32815 4.21098
5 5.3445 5.34327 5.33918 5.32901 5.28767 5.14088
-1 -1.13752 -1.13701 -1.13536 -1.13137 -1.11561 -1.05874
-2 -2.11731 -2.11651 -2.11389 -2.1075 -2.0819 -1.98916
-4 -4.31877 -4.31775 -4.31433 -4.30555 -4.26894 -4.14277
-5 -5.37016 -5.36886 -5.3646 -5.35372 -5.30896 -5.15212

At last, we calculate the computation time, mean bias and root mean squared

error. ε follows either standard normal distribution or Cauchy distribution with

location equivalent to 0 and scale equivalent to 1. The number of observation is

5000 or 10000. We calculate the average time of each experiment, mean bias and

root mean square error with 500 experiments.

MRC estimator and MS estimator are not feasible in the binary choice model

with more than 4 estimators. We compare our estimator with Dominitz and Sher-

man (2005), they use iterative least square estimator(ILS) with kernel estimation

of the distribution of error, which is similar to our estimator. One major problem

is that there are 3 tuning parameters in the process. It’s hard to adjust the tuning

parameters to calculate the estimator.

Table 1.5: Computation time(second)
Our estimator ILS

Sample size Normal error Cauchy error Normal error Cauchy error
5000 349.896 201.324 758.784 746.196

We can see from Table 1.5 that our estimator spends much less time than ILS.

For the sample size of 5000 and normal distribution, the time spent by our esti-

mator is around 6 minutes, which is reasonable and feasible for empirical studies.

For Cauchy distribution, our estimator spend less than 4 minutes.

Table 1.6 shows mean bias and rmse of β̃SBA with error being normal distribu-

tion and Cauchy distribution. The mean bias is very small. Both mean bias and

root mean squared error (rmse) decrease with size. The bias and rmse are larger

under Cauchy distribution.
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Table 1.6: Mean bias and rmse
Normal distribution Cauchy distribution

5000 10000 5000 10000

β̃SBA bias rmse bias rmse bias rmse bias rmse
2 -0.00098 0.12496 0.00038 0.08679 0.03378 0.2381 0.00958 0.17107
4 0.00868 0.22910 -0.00002 0.15255 0.07183 0.44649 0.02003 0.31867
5 0.01452 0.28469 0.00013 0.18786 0.08584 0.54389 0.02014 0.38005
-1 -0.00238 0.07796 0.00056 0.05196 -0.01910 0.15741 -0.00075 0.098
-2 -0.00463 0.12256 0.00066 0.08249 -0.03391 0.25052 -0.00667 0.16069
-4 -0.01337 0.22625 -0.00515 0.15335 -0.07077 0.44018 -0.01366 0.29937
-5 -0.01290 0.28205 -0.00420 0.19361 -0.07397 0.53917 -0.02374 0.36411

Table 1.7: Discrete regressors
5000 10000

β̃SBA bias rmse bias rmse
2 0.05802055 0.32051897 0.04287214 0.23202075
4 0.0191393 0.57339057 -0.0191574 0.40693718
5 0.05646336 0.70977338 -0.0083537 0.50601113
-1 -0.0325505 0.20010574 -0.0151618 0.13791517
-2 -0.0573911 0.32089004 -0.0378252 0.22680123
-4 -0.0181102 0.5577853 0.02030826 0.41024683
-5 -0.0532119 0.69020763 0.00231334 0.51130765

Table 1.7 show the mean bias and rmse of β̃SBA when all regressors are discrete

with value 0 and 1. The error term is normal Cauchy distributed. The mean bias

is small. However, rmse is relatively large compare the result with the result with

the continuous regressors.

Table 1.8: Normal distribution comparison
β̃SBA ILS
5000 5000

β∗ bias rmse bias rmse
2 -0.00098 0.12496 -0.11740 0.18355
4 0.00868 0.22910 -0.23175 0.34909
5 0.01452 0.28469 -0.29818 0.43953
-1 -0.00238 0.07796 0.05668 0.11038
-2 -0.00463 0.12256 0.11885 0.18408
-4 -0.01337 0.22625 0.23428 0.35091
-5 -0.01290 0.28205 0.29641 0.43390

Table 1.8 and Table 1.9 are the mean bias and Root mean square error of

our estimator and ILS estimator. The bias and rmse of ILS estimator is high

because it’s hard to adjust the tuning parameters. We can see from table 1.9
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Table 1.9: Cauchy distribution comparison
β̃SBA ILS
5000 5000

β∗ bias rmse bias rmse
2 0.03378 0.23810 -0.34290 0.37925
4 0.07183 0.44649 -0.68575 0.74352
5 0.08585 0.54390 -0.84691 0.91930
-1 -0.01910 0.15741 0.16329 0.19464
-2 -0.03392 0.25052 0.34542 0.37953
-4 -0.07078 0.44019 0.68166 0.73546
-5 -0.07397 0.53917 0.85384 0.92192

that our estimator has less bias than ILS estimator. The bias is even larger if we

use Cauchy distribution in table 3 because cauchy distribution is not log-concave

which violates the assumption of Dominitz and Sherman (2005).

We don’t compare our estimator with other estimators mentioned in the liter-

ature review section because most of them suffer from the curse of dimensionality

which requires more data or from the optimization problem with non global convex

objective functions.

1.5 Conclusion

In this chapter a new estimator is proposed in binary choice model with a semi-

parametric setting. If the distribution of error term is unknown, many estimators

suffer from curse of dimensionality or optimization problem of non-globally convex

objective function.

Our estimator overcome those problems by minimizing a globally convex objec-

tive function using single index and approximating the distribution of error term

by sieve estimation.

The estimator is calculated through iterations. Firstly, guess β and g as initial

value. Secondly, update β according to g from last step by Batch Gradient De-

scent estimation. Thirdly, update g according to β from last step by Series Logit

Estimation.

The estimator is
√
n consistent and asymptotic normal. With Batch Gradient
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Descent estimation, it’s easy to compute the estimator and also the variance. We

can do inference with the calculated variance. At last, continue previous two steps

until satisfaction.

Simulations show that the estimator is computationally easy and performs

better than the estimator proposed by Dominitz and Sherman (2005). Other

estimators are computationally hard or need more observations.

In the next two chapter, we will develop our estimator into high dimension and

apply it to bankruptcy prediction.
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1.6 Appendix

Lemma 1. Suppose g : R → R is a non-decreasing function, then there exists a

convex function G : R → R such that G′ = g.

Proof. Define G(x) =
$ x

d
g(t)dt, where d is a constant. Then G(x) is convex since

G′(x) = g(x) ≥ 0.

Lemma 2. Suppose X is a v∗1 vector of random variables X1, X2...Xv on product

probability space (Ω,F , P ). P is the product of measures P1, P2...Pv. The domain

of at least one of random variables is R and the measure of it is continuous.

E(XTX) is positive definite matrix. g(.) is a non-negative continuous function on

R. Eg(XTβ) > 0 for constant vector β with length v. Then Eg(XTβ)(XTX) is

positive definite matrix.

Proof. . We know E(XTX) and Eg(XTβ)(XTX) are semi-positive definite matrix.

If detE(XTX) = 0 if and only if there is linear relation between X1, X2...Xv,

then there is no linear relation between g(XTβ)X1, g(X
Tβ)X2...g(X

Tβ)Xv and

we finish the proof.The sufficiency is obvious and we only prove the necessity.

There exists a linear relation among columns of E(XTX) since detE(XTX) = 0.

Denote E(XTX) as [A1, A2...Av]. Suppose A1 = a2 ∗ A2 + a3 ∗ A3 + ... + av ∗ Av,

where a1, a2...av are constant, and at least one of them is not zero.By changing the

second column into a2 ∗A2 + a3 ∗A3 + ...+ av ∗Av, we get a new matrix denoted

as [B1, B2...Bv]
2, By changing the second rows into a2 ∗B2 + a3 ∗B3 + ...+ av ∗Bv

we get the new matrix, and the first 2 ∗ 2 elements are the following:
%

&'
E(X2

1 ) E(X1(a2X2 + a3X3 + ...+ avXv))

E(X1(a2X2 + a3X3 + ...+ avXv)) E(a2X2 + a3X3 + ...+ avXv)
2

(

)*

Then the determinant of the above matrix is 0, then by Hölder’s inequality,

X1 = a2 ∗X2 + a3 ∗X3 + ...+ av ∗Xv.
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Theorem 1. Under assumptions 1-5 and for k ≤ n, use BGD algorithm 1 we get

E||β̂k − β∗||2 ≤
8λ

2

cσ
2
xC1(1 + 2γ1λcλf )

2γ1λcλf

k−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n1A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C1 and n1 are some constants.

Proof. We start from Eq. (3) and k is the iterative times,

β̂k − β∗ = β̂k−1 − β∗ − γkCk
1

n

n#

i

∇ζ(β̂k−1; (xi, yi))

then,

||β̂k − β∗||2 =||β̂k−1 − β∗||2

− 2γk(β̂k−1 − β∗)TCk
1

n

n#

i

∇ζ(β̂k−1; (xi, yi))

+ γ2
k||Ck

1

n

n#

i

∇ζ(β̂k−1; (xi, yi))||2 (1.10)

for the third term,

γ2
k||Ck

1

n

n#

i

∇ζ(β̂k−1; (xi, yi))||2

≤ 4γ2
kλ

2

cσ
2
x

its expectation is bounded as

E(γ2
k||Ck∇

1

n

n#

i

∇ζ(β̂k−1; (xi, yi))||2)

≤ 4γ2
kλ

2

cσ
2
x
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for the second term,

E(−2γk(β̂k−1 − β∗)TCk
1

n

n#

i

∇ζ(β̂k−1; (xi, yi)))

= −2γkE((β̂k−1 − β∗)TCk
1

n

n#

i

∇ζ(β̂k−1; (xi, yi)))

= −2γkE((β̂k−1 − β∗)TCkE(∇ζ(β̂k−1; (xi, yi))|β̂k−1)) + γk(E||β̂k−1 − β∗||2) 1
2O(

1√
n
)

= −2γkE((β̂k−1 − β∗)TCkE(∇ζ(β̂k−1; (xi, yi))−∇ζ(β∗; (xi, yi))|β̂k−1))

+ γk(E||β̂k−1 − β∗||2) 1
2O(

1√
n
)

≤ −2γkλcλfE||β̂k−1 − β∗||2 + γk(E||β̂k−1 − β∗||2) 1
2O(

1√
n
)

The last inequality comes from strong convexity by Assumption 3 and 2. E∇ζ(β∗; (xi, yi)) =

0 is implied by Eq.1.1

g(xT
i β

∗)− E(yi|xi) = 0

=⇒ g(xT
i β

∗)xi − E(yi|xi)xi = 0

=⇒ E(∇ζ(β∗; (xi, yi)) = 0

Then we can rewrite Eq. 1.10 as

E||β̂k − β∗||2 ≤(1− 2γkλcλf )E||β̂k−1 − β∗||2 + γk(E||β̂k−1 − β∗||2) 1
2O(

1√
n
) + 4γ2

kλ
2

cσ
2
x

1

(1 + 2γkλcλf )
E||β̂k−1 − β∗||2 + γk(E||β̂k−1 − β∗||2) 1

2O(
1√
n
) + 4γ2

kλ
2

cσ
2
x

We know E||β̂k − β∗||2 converges to 0 with rate of at least 1

n
1
4
when γ = 1 by

calculating the upper bound of (E||β̂k−1−β∗||2) 1
2 as E||β̂k−1−β∗||2+1 and corollary

2.1 in Toulis, Airoldi et al. (2017) with ak = 4γ2
kλ

2

cσ
2
x and bk = 2γkλcλf . However,

with rate of less or equal to 1√
n
, we can rewrite the bound for E||β̂k − β∗||2 as

1

(1 + 2γkλcλf )
E||β̂k−1 − β∗||2 + 4γ2

k(λ
2

cσ
2
x + C1)
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for some constant C1. Then by corollary 2.1 in Toulis, Airoldi et al. (2017)

with ak = 4γ2
k(λ

2

cσ
2
x + C1) and bk = 2γkλcλf we get

E||β̂k − β∗||2 ≤
8λ

2

cσ
2
xC1(1 + 2γ1λcλf )

2γ1λcλf

k−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n1A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C1 and n1 is some constant.

Theorem 2. Under assumptions 1-5 and for γ ∈ (0.5, 1), we get

(i)
√
n(β̂BA − β∗) → N(0,Σ−1

2 Σ1Σ
−1
2 )

where Σ1 = Eg(xT
i β

∗)(1− g(xT
i β

∗))xix
T
i and Σ2 = Eg′(xT

i β
∗)xix

T
i .

(ii) Σ̂−1
2 Σ̂1Σ̂

−1
2 → Σ−1

2 Σ1Σ
−1
2

where Σ̂1 =
1
n

n"
i

g(xT
i β̂BA)(1− g(xT

i β̂BA))xix
T
i and Σ̂2 =

1
n

n"
i

g′(xT
i β̂BA)xix

T
i .

Proof. First, we write updating function in algorithm 1 as

1

n

n#

i=1

∇ζk−1(β̂k−1; (xi, yi)) =
1

γk
(β̂k−1 − β̂k)

By calculating taylor expansion on 1
n

"n
i=1 ∇ζk−1(β̂k−1; (xi, yi)) we get

1

n

n#

i=1

∇ζk−1(β̂k−1; (xi, yi)) =
1

n

n#

i=1

∇ζk−1(β
∗; (xi, yi)) +

1

n

n#

i=1

∂∇ζk−1(β
∗; (xi, yi))

∂β
(β̂k−1 − β∗)

If we proove 1
n

"n
k=1

1
γk
(β̃k−1− β̃k) = o(1/

√
n), then

√
n(β̂BA−β∗) behaves like

(
1

n

n#

i=1

∂∇ζk−1(β
∗; (xi, yi))

∂β
)−1 1√

n
(

n#

i=1

∇ζk−1(β
∗; (xi, yi))− β∗)

23



then,

1

n

n#

k=1

1

γk
(β̂k−1 − β̂k) ≤

1

n
(− 1

γn
(β̂n − β∗) +

n−1#

k=1

|( 1
γk

− 1

γk−1

)(β̂k − β∗)|+ 1

γ1
(β̂0 − β∗))

≤ 1

n
(− 1

γn
(β̂n − β∗) +O(1)

n−1#

k=1

1√
k
+

1

γ1
(β̂0 − β∗))

= o(1/
√
n)

This means 1
n

"n
k=1

1
γk
(β̂k−1 − β̂k) is negligible. Then we get

1√
n
(

n#

i=1

∇ζk−1(β
∗; (xi, yi))− β∗) → N(0,Σ1)

and

1

n

n#

i=1

∂∇ζk−1(β
∗; (xi, yi))

∂β

p−→ Σ2

where Σ1 = Eg(xT
i β

∗)(1− g(xT
i β

∗))xix
T
i and Σ2 = Eg′(xT

i β
∗)xix

T
i .

Theorem 3. Under assumptions 1-10 and using sieve BGD algorithm 2 we get

E|| β̃k

β̃1
k

− β∗||2 ≤
8λ

2

cσ
2
xC2(1 + 2γ1λcλf1)

2γ1λcλf

k−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n2A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C2 and n2 is some constants.

Proof. the following are notations and definitions from Hirano, Imbens and Ridder

(2003) with some changes. we use matrix norm ||A|| =
!

tr(A′A). Define

Ln(π) =
1

n

n#

i=1

(yilnL(R
β̃
q (xi)

′π) + (1− yi)lnL(1−Rβ̃
q (xi)

′π))

Rβ̃
q (xi) ≡ Rq(xT

i β̃), R
β∗
q (x) ≡ Rq(xTβ∗), Rq(.) is the basis functions in Hi-

rano, Imbens and Ridder (2003) with order q. ERβ̃
q (xi)

′Rβ̃
q (xi) = 1. Denote
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ι(q) = supx∈X ||Rβ̃
q (xi)||, where ι(q) ≤ Cq for some constant C. L(.) is logistic

distribution. Define

π̂q = argm
π
axLn(π)

then, we have

||β̃k − β∗||2 =||β̃k−1 − β∗||2 − 2γk
1

n

n#

i=1

(β̃k−1 − β∗)TCk∇ζ̃(β̃k−1; (xi, yi))

+ γ2
k||

1

n

n#

i=1

Ck∇ζ̃(β̃k−1; (xi, yi))||2

where ∇ζ̃(βk−1; (xi, yi) = (L(R
β̃k−1
q (xi)

′π̂q)− yi)xi.

for the second term, by maximize Ln(π), we get

1

n

n#

i=1

(L(Rβ̃k−1
q (xi)

′π̂q)− yi)R
β̃k−1
q (xi) = 0. (1.11)

We can approximate L(R
β̃k−1
q (xk)

′π̂q) and g(xT
k β

∗) withR
β̃k−1
q (xk)

′π̃q andRβ∗
q (xk)

′π̃∗
q ,

according to Lorentz (1986). Then equation becomes

1

n

n#

i=1

(Rβ̃k−1
q (xi)

′π̃q − yi)R
β̃k−1
q (xi) = O(q−s). (1.12)

then we can get π̃q

π̃q =

1
n

n"
i=n

R
β̃k−1
q (xi)yi

1
n

n"
i=n

R
β̃k−1
q (xi)′R

β̃k−1
q (xi)

+ (
1

n

n#

i=n

Rβ̃k−1
q (xi)

′Rβ̃k−1
q (xi))

−1O(q−s). (1.13)

Denote πq = E(Rβ̃k−1
q (xi)g(x

T
i β

∗)|β̃k−1), then π̃q − πq = O( 1√
n
) + O( q

3/2−s
√
n

) and
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||π̃q − πq|| = O( q√
n
) +O( q

5/2−s
√
n

) then,

E(2γk
1

n

n#

i=1

(β̃k−1 − β∗)TCk∇ζ̂(β̃k−1; (xi, yi)))

≥2γkλcE
1

n

n#

i=1

(L(Rβ̃k−1
q (xi)

′π̂q)− yi)(x
T
i β̃k−1 − xT

i β
∗)

=2γkλcE
1

n

n#

i=1

(Rβ̃k−1
q (xi)

′π̃q − yi)(x
T
i β̃k−1 − xT

i β
∗) + γkO(q−s)(Eβk−1

||β̃k−1 − β∗||2) 1
2

≥2γkλcEE((Rβ̃k−1
q (xi)

′π̃q − yi)(x
T
i β̃k−1 − xT

i β
∗)|β̃k−1)

+ γk(O(
q2√
n
) +O(

q7/2−s

√
n

))(E||βk−1 − β∗||2) 1
2 +O(

q2√
n
)E||β̃k−1 − β∗||2

≥2γkλcEE((Rβ̃k−1
q (xi)

′(

1
n

n"
i=n

R
β̃k−1
q (xi)yi

1
n

n"
i=n

R
β̃k−1
q (xi)′R

β̃k−1
q (xi)

−

1
n

n"
i=n

Rβ∗
q (xi)yi

1
n

n"
i=n

Rβ∗
q (xi)′R

β∗
q (xi)

))(xT
i β̃k−1 − xT

i β
∗)|β̃k−1)

+ 2γkλcEE(Rβ̃k−1
q (xi)

′

1
n

n"
i=n

Rβ∗
q (xi)yi

1
n

n"
i=n

Rβ∗
q (xi)′R

β∗
q (xi)

− yi)(x
T
i β̃k−1 − xT

i β
∗)|β̃k−1)

+ γk(O(
q5/2

n
) +O(

q4−s

n
))(E||β̃k−1 − β∗||2) 1

2 +O(
q2√
n
)E||β̃k−1 − β∗||2

The second inequality is coming from

1

n

n#

i=1

(Rβ̃k−1
q (xi)

′π̃q − yi)(x
T
i β̃k−1 − xT

i β
∗)− E((Rβ̃k−1

q (xi)
′π̃q − yi)(x

T
i β̃k−1 − xT

i β
∗)|β̃k−1)

=
1

n

n#

i=1

(Rβ̃k−1
q (xi)

′(π̃q − πq))(x
T
i β̃k−1 − xT

i β
∗) +

1

n

n#

i=1

(Rβ̃k−1
q (xi)

′πq − yi)(x
T
i β̃k−1 − xT

i β
∗)

+ E((Rβ̃k−1
q (xi)

′(π̃q − πq))(x
T
i β̃k−1 − xT

i β
∗)|β̃k−1) + E((Rβ̃k−1

q (xi)
′πq − yi)(x

T
i β̃k−1 − xT

i β
∗)|β̃k−1)

=
1

n

n#

i=1

(Rβ̃k−1
q (xi)

′(π̃q − πq))(x
T
i β̃k−1 − xT

i β
∗) + E((Rβ̃k−1

q (xi)
′(π̃q − πq))(x

T
i β̃k−1 − xT

i β
∗)|β̃k−1)

+
1

n

n#

i=1

(Rβ̃k−1
q (xi)

′πq − yi)(x
T
i β̃k−1 − xT

i β
∗) + E((Rβ̃k−1

q (xi)
′πq − yi)(x

T
i β̃k−1 − xT

i β
∗)|β̃k−1)

=(O(
q5/2

n
) +O(

q4−s

n
))||β̃k−1 − β∗||+O(

q2√
n
)||β̃k−1 − β∗||2

The proof is similar to the bound on (5) in the addendum of Hirano, Imbens and

Ridder (2003).
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We rewrite the last inequality as:

2γkλcEE((Rβ̃k−1
q (xi)

′(

1
n

n"
i=n

R
β̃k−1
q (xi)yi

1
n

n"
i=n

R
β̃k−1
q (xi)′R

β̃k−1
q (xi)

−

1
n

n"
i=n

Rβ∗
q (xi)yi

1
n

n"
i=n

Rβ∗
q (xi)′R

β∗
q (xi)

))(xT
i β̃k−1 − xT

i β
∗)|β̃k−1)

+ 2γkλcEE(Rβ̃k−1
q (xi)

′

1
n

n"
i=n

Rβ∗
q (xi)yi

1
n

n"
i=n

Rβ∗
q (xi)′R

β∗
q (xi)

− yi)(x
T
i β̃k−1 − xT

i β
∗)|β̃k−1)

+ γk(O(
q5/2

n
) +O(

q4−s

n
))(E||β̃k−1 − β∗||2) 1

2 +O(
q2√
n
)E||β̃k−1 − β∗||2

≥2γkλcEE((Rβ̃k−1
q (xi)

′

1
n

n"
i=n

R
β̃k−1
q (xi)(g(x

T
i β

∗)− g(xT
i β̃k−1))

1
n

n"
i=n

R
β̃k−1
q (xi)′R

β̃k−1
q (xi)

(xT
i β̃k−1 − xT

i β
∗)|β̃k−1)

+ 2γkλcEE(g(xT
i β̃k−1)− g(xT

i β
∗)(xT

i β̃k−1 − xT
i β

∗)|β̃k−1)

+ γk(O(
q5/2

n
) +O(

q4−s

n
) +O(q2−s))(E||β̃k−1 − β∗||2) 1

2 +O(
q2√
n
)E||β̃k−1 − β∗||2

≥2γkλcEE((Rβ̃k−1
q (xi)

′ERβ̃k−1
q (g(xT

i β
∗)− g(xT

i β̃k−1))(x
T
i β̃k−1 − xT

i β
∗)|β̃k−1)

+ 2γkλcEE(g(xT
i β̃k−1)− g(xT

i β
∗)(xT

i β̃k−1 − xT
i β

∗)|β̃k−1)

+ γk(O(
q5/2

n
) +O(

q4−s

n
) +O(q2−s))(E||β̃k−1 − β∗||2) 1

2

+O(
q5/2√
n
)E||β̃k−1 − β∗||2

≥2γkλcEE((Rβ̃k−1
q (xi)

′ERβ̃k−1
q g(xT

i β
∗)− g(xT

i β
∗))(xT

i β̃k−1 − xT
i β

∗)|β̃k−1)

+ γk(O(
q5/2

n
) +O(

q4−s

n
) +O(q2−s))(E||β̃k−1 − β∗||2) 1

2

+O(
q5/2√
n
)E||β̃k−1 − β∗||2

If we take the derivative of EE((Rβ̃k−1
q (xi)

′ERβ̃k−1
q g(xT

i β
∗)− g(xT

i β
∗))(xT

i β̃k−1−

xT
i β

∗) w.r.t. β̃k−1 and take value at β∗, we get

E(g′(xT
i β

∗)xix
T
i − xiR

q(xT
i β

∗)TERq(xT
j β

∗)g′(xT
j β

∗)xT
j )

The matrix becomes singular when n goes to infinity. So we must normalized one

of β∗ in the beginning or at the end of updating process. Denote the minimum
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eigenvalue of the matrix as λf1.

By requiring s ≥ 5 and we consider q = nd, d < 1/5. the bound become

O(
1√
n
)(E||β̃k−1 − β∗||2) 1

2 + o(1)E||β̃k−1 − β∗||2

for the third term,

γ2
kE||

1

n

n#

i=1

Ck∇ζ̃(β̃k−1; (xi, yi))||2

≤4γ2
kλ

2

cσ
2
x

Then,

E||β̃k − β∗||2 ≤ (1− 2γkλcλf1 + γko(1))E||β̃k−1 − β∗||2

+γk(O(
!

1/n))(E||β̃k−1 − β∗||2) 1
2 + 4γ2

kλ
2

cσ
2
x

then, if n is sufficiently large,

E||β̃k − β∗||2 ≤(1− 2γkλcλf1)E||β̃k−1 − β∗||2

+ γk(O(
!

1/n))(E||β̃k−1 − β∗||2) 1
2 + 4γ2

kλ
2

cσ
2
x

≤ 1

1 + 2γkλcλf1

E||β̃k−1 − β∗||2

+ γk(O(
!

1/n))(E||β̃k−1 − β∗||2) 1
2 + 4γ2

kλ
2

cσ
2
x

By the same argument as the proof of theorem 1, we get

E||β̃k − β∗||2 ≤
8λ

2

cσ
2
xC2(1 + 2γ1λcλf1)

2γ1λcλf

k−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β̃0 − β∗||+ (1 + 2γ1λcλf )
n2A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C2 and n2 is some constants.
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Theorem 4. Under assumptions 1-10, assume and γ ∈ (0.5, 1), we get

(i)
√
n(β̃SBA − β∗) → N(0,Σ−1

22 Σ1Σ
−1
22 )

where Σ1 = Eg(xT
i β

∗)(1 − g(xT
i β

∗))xix
T
i and Σ22 = E(g′(xT

i β
∗)xix

T
i − f(xT

i β
∗)),

where f(xT
i β

∗)) = lim
q→∞

xiR
q(xT

i β
∗)TERq(xT

j β
∗)g′(xT

j β
∗)xT

j and Rq(xT
i β

∗) is or-

thogonal polynomial function of xT
i β

∗.

(ii) Σ̃−1
22 Σ̃1Σ̃

−1
22 → Σ−1

22 Σ1Σ
−1
22

where Σ̃1 =
1
n

n"
i

gn(x
T
i β̃SBA)(1−gn(x

T
i β̃SBA))xix

T
i , Σ̃22 =

1
n

n"
i

(g′n(x
T
i β̃SBA)xix

T
i −

f̃(xT
i β̃SBA)) and f̃(xT

i β̃SBA)) = xiR
q(xT

i β̃SBA)
T ( 1

n

n"
j

Rq(xT
j β̃SBA)g

′(xT
j β̃SBA)x

T
j )

and gn(.), g
′
n(.) are approximated functions for g(.), g′(.), respectively.

Proof. First, we write equation updating function as

1

n

n#

i=1

∇ζ̃k−1(β̃k−1; (xi, yi)) =
1

γk
(β̃k−1 − β̃k).

By taylor expansion on 1
n

"n
i=1 ∇ζ̃k−1(β̃k−1; (xi, yi)) we get

1

n

n#

i=1

∇ζ̃k−1(β̃k−1; (xi, yi)) =
1

n

n#

i=1

∇ζ̃k−1(β
∗; (xi, yi)) +

1

n

n#

i=1

∂∇ζ̃k−1(β
∗; (xi, yi))

∂β
(β̃k−1 − β∗)

We know that 1
n

"n
i=1 ∇ζ̃k−1(β

∗; (xi, yi)) − 1
n

"n
i=1 ∇ζ(β∗; (xi, yi)) is negeligible

from the similar argument in theorem 3, then if we prove 1
n

"n
k=1

1
γk
(β̃k−1 − β̃k) is

negligible o(1/
√
n) and

1

n

n#

i=1

∂∇ζ̃k−1(β
∗; (xi, yi))

∂β

p−→ (
1

n

n#

i=1

∂∇ζ(β∗; (xi, yi))

∂β
+ lim

q→∞
xiR

q(xT
i β

∗)TERq(xT
j β

∗)g′(xT
j β

∗)xT
j )
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is negligible o(1/
√
n) then 1

n

"n
k=1(β̃k − β∗) behaves like

(
1

n

n#

i=1

∂∇ζ(β∗; (xi, yi))

∂β
+ lim

q→∞
xiR

q(xT
i β

∗)TERq(xT
j β

∗)g′(xT
j β

∗)xT
j )

−1 ∗ ( 1
n

n#

i=1

∇ζ(β∗; (xi, yi)))

→ N(0,Σ−1
22 Σ1(Σ

−1
22 )

T )

where Σ22 = E(g′(xT
i β

∗)xix
T
i −f(xT

i β
∗)) and f(xT

i β
∗)) = lim

q→∞
xiR

q(xT
i β

∗)TERq(xT
j β

∗)g′(xT
j β

∗)xT
j .

At last, 1
n

"n
k=1

1
γk
(β̃k−1 − β̃k) should be o(1/

√
n) , which means negligible.

1

n

n#

k=1

1

γk
(β̃k−1 − β̃k) ≤

1

n
(− 1

γn
(β̃n − β∗) +

n−1#

k=1

|( 1
γk

− 1

γk−1

)(β̃k − β∗)|+ 1

γ1
(β̃0 − β∗))

≤ 1

n
(− 1

γn
(β̃n − β∗) + C

n−1#

k=1

1√
k
+

1

γ1
(β̃0 − β∗))

= o(1/
√
n)
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Chapter 2

Estimation and Inference of High

Dimensional Semiparametric

Binary Choice Model

2.1 Introduction

In the previous chapter we propose a novel estimator for binary choice model in

semiparametric setting which exhibits root-n consistency and asymptotic normal-

ity. In this new chapter, the same estimator is discussed under the high dimen-

sional assumption of regressors. High dimension means the number of regressors

goes to infinity as the number of observations goes to infinity, i.e., p goes to infinity

as n goes to infinity. The following are three types of high dimensional cases:

• p/n → 0 or more restrictive condition p2/n → 0 and p3/n → 0.

• p grows as fast as or faster than n.

• Lasso or ridge restriction.

The first case requires the magnitude of p should be less than the one of n.

For linear regression, the requirements are mainly discussed in Portnoy (1984)

and Portnoy (1985). For maximum likelihood estimation, see Sur and Candès
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(2019) for more information. More detailed discussions of the assumptions and

requirements are in literature subsection.

The second case needs central limit theorem in high dimensions, which is

mainly discussed in Chernozhukov, Chetverikov and Kato (2017). They showed

that the approximation error of the probability that 1√
n

"
i ei belongs to a hyper-

rectangle is close to 0 even if p is much greater that n, where ei is independent

vectors.

The third case is widely discussed after lasso regression proposed by Tibshirani

(1996) and ridge regression by Hoerl and Kennard (1970). There are two types

of lasso regressions: lasso estimator which runs regression plus ℓ1 restriction and

post lasso regressor which apply original regression to the model selected by first

step lass regression. Zhao and Yu (2006) argue the lasso estimator select consistent

true model under the irrepresentable condition even if p grows much faster than n.

Zhang and Huang (2008) stated under a sparse Riesz condition the lasso estimator

is also consistent and select a right dimensional model. For post lasso estimator

in linear regression, Belloni and Chernozhukov (2011) showed it converges at least

as fast as lass estimator with less convergence.

The new chapter provides asymptotic properties for the same estimators β̂BA

and β̃SBA with known g and unknown g respectively. Both β̂BA and β̃SBA are
!

p
n

consistent. Asymptotic normality of linear combination of β̂BA and β̃SBA are also

provided. Simulation shows that we need comparatively larger γ to make sure the

estimator satisfies the condition p2

n2γ−1 → 0 in theorem 8.

2.2 Literature Review

Our estimator can be extended to high dimensional case. High dimension means

the number of regressors goes to infinity as the number of observations goes to

infinity. The following are three examples mentioned by Fan, Lv and Qi (2011) :

• Augment standard Vector autoregression (VAR) models by Bernanke, Boivin
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and Eliasz (2005).

• Spatial regression using home-price data (Fan and Lv (2010)).

• Volatility matrix estimation in finance.

The theorem under high dimensional setting is different from traditional the-

orem under fixed number of regressors (see Portnoy (1984, 1985, 1988); Fan,

Liao and Yao (2015); Chernozhukov, Hansen and Spindler (2015); Chernozhukov,

Chetverikov and Kato (2017); Belloni et al. (2017)). Huber studied asymptotic

properties of M-estimator in his influential paper Huber (1973). Yohai and Maronna

(1979) obtain similar result as Huber (1973). Portnoy (1984) finds the smooth M-

estimator for linear regression model is consistent under the assumption plog(p)
n

→

0. Fan et al. (2020) get consistency under the ”exponential moment condition”

by Spokoiny (2012, 2013). We get the same consistent rate
!

p
n
as Yohai and

Maronna (1979), Portnoy (1984) and Fan et al. (2020) by adding assumption that

var(xT
i β

∗) is bounded (see assumption 11).

For asymptotic normality, we need stronger condition p2

n
→ 0 (see assumption

12). Portnoy (1985) and Mammen (1989, 1993) obtain normality even if p2

n
is

large in linear regression model. As for MLE of generalized linear model, Portnoy

(1988) shows the assumption p2

n
→ 0 is the minimum requirement for the validity of

asymptotic normality, which echoes our assumption needed for normality since we

use MLE when apply SLE to update error distribution. Sur and Candès (2019)

consider logistic regression in high dimension. They find an area where MLE

exists below a nonlinear line of γ − κ map where κ is dimensionality and γ is

signal strength. They also provide ’average’ behavior of the MLE, i.e, the true

parameters are centered around a multiple of true parameter and the asymptotic

variance of the MLE are also centered. They provide the limiting distribution of

the MLE when the true parameters are 0. We follow the same assumption that

var(xT
i β

∗) is bounded by Sur and Candès (2019).

In high dimensional setting, our major competitor is the rank estimator pro-
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posed by Fan et al. (2020). They generalize Han’s MRC estimator and obtaid

consistency if the condition p/n → 0 is satisfied. Under a stronger condition that

p2/n → 0 and the condition log(n/p2)p3/2/n1/4 → 0, they find asymptotic normal-

ity of the estimator. However, they use the algorithm by Wang (2007), which still

suffers from the computational problem. Our estimator has the same convergence

rate and also gains asymptotic normality. The biggest advantage of the estimator

compared with ranked estimator is that it is computationally easier because of the

globally convexity and smoothness of objective function.

2.3 Model

In this section, we provides addition assumptions and theorem in high dimensional

settings. The same estimators are used in this chapter and the following theorem

show asymptotic properties under known g and unknown g. β̂BA is used with

known g and β̃SBA is used with unknown g. Below is the additional assumptions:

Assumption 11. var(xT
i β

∗) is bounded.

Assumption 12. p → ∞ as n → ∞ and p/n → 0.

Assumption 13. p → ∞ as n → ∞ and p2/n → 0.

Assumption 11 and 12 are necessary conditions for consistency and Assumption

12 is a necessary condition to normality. Although assumption 11 is not important

for consistency of linear regression (see Portnoy (1984)), it is important to get

consistency for MLE since the estimator needs existence of MLE (Sur and Candès

(2019)). It is also important to sieve estimation since the approximation requires

compact domain.
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2.3.1 Estimator with Known g

Theorem 5. Under assumption 1-5 and 11-12 and for k ≤ n, use BGD algorithm

1 ,we get

E||β̂k − β∗||2 ≤
8λ

2

cσ
2
xC3(1 + 2γ1λcλf )

2γ1λcλf

pk−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n3A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C3 and n3 are some constants.

β̂k is consistent to β∗ with rate
!

p
n
if K = n and γ = 1.

Not surprisingly, the result is similar to the one with p fixed. The only differ-

ence is that the expectation of the norm of β̂k − β∗ is increasing with p.

Theorem 6. Under assumption 1-5 and 11-13 and for any ς ∈ Rp with ||ς|| = 1,

choose γ ∈ (0.5, 1) so that p2

n2γ−1 → 0 and we get

(i)
√
n

ς ′(β̂BA − β∗)

(ς ′Σ−1
2 Σ1Σ

−1
2 ς)

1
2

→ N(0, 1)

where Σ1 = Eg(xT
i β

∗)(1− g(xT
i β

∗))xix
T
i and Σ2 = Eg′(xT

i β
∗)xix

T
i .

(ii) ς ′Σ̂−1
2 Σ̂1Σ̂

−1
2 ς → ς ′Σ−1

2 Σ1Σ
−1
2 ς

where Σ̂1 =
1
n

n"
i

g(xT
i β̂BA)(1− g(xT

i β̂BA))xix
T
i and Σ̂2 =

1
n

n"
i

g′(xT
i β̂BA)xix

T
i .

This result is similar to Portnoy (1985).
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2.3.2 Estimator with Unknown g

Theorem 7. Under assumption 1-12 and for k ≤ n, use sieve BGD algorithm 2

,we get

E|| β̃k

β̃1
k

− β∗||2 ≤
8λ

2

cσ
2
xC4(1 + 2γ1λcλf1)

2γ1λcλf

pk−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n4A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C4 and n4 are some constants.

β̃K

β̃1
K

is consistent to β∗ with rate
!

p
n
if K = n and γ = 1.

Theorem 8. Under assumption 1-13 and for any ς ∈ Rp with ||ς|| = 1, choose

γ ∈ (0.5, 1) so that p2

n2γ−1 → 0 and we get

(i)
√
n

ς ′(β̃SBA − β∗)

(ς ′Σ−1
22 Σ1Σ

−1
22 ς)

1
2

→ N(0, 1)

where Σ1 = Eg(xT
i β

∗)(1 − g(xT
i β

∗))xix
T
i and Σ22 = E(g′(xT

i β
∗)xix

T
i − f(xT

i β
∗)),

where f(xT
i β

∗)) = lim
q→∞

xiR
q(xT

i β
∗)TERq(xT

j β
∗)g′(xT

j β
∗)xT

j and Rq(xT
i β

∗) is or-

thogonal polynomial function of xT
i β

∗.

(ii) ς ′Σ̃−1
22 Σ̃1Σ̃

−1
22 ς → ς ′Σ−1

22 Σ1Σ
−1
22 ς

where Σ̃1 =
1
n

n"
i

gn(x
T
i β̃SBA)(1−gn(x

T
i β̃SBA))xix

T
i , Σ̃22 =

1
n

n"
i

(g′n(x
T
i β̃SBA)xix

T
i −

f̃(xT
i β̃SBA)) and f̃(xT

i β̃SBA)) = xiR
q(xT

i β̃SBA)
T ( 1

n

n"
j

Rq(xT
j β̃SBA)g

′(xT
j β̃SBA)x

T
j ).

Remark 6. For large p, we need relative large γ so that condition p2

n2γ−1 → 0 is

satisfied.
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Figure 2.1: High dimension (a)

2.4 Simulation

We set p = 41 and run our model at γ = 0.7 and γ = 0.9. We set ς =

(1, 1, 1, 1, 1...)T , then calculate
√
n ς′(β̄K−β∗)

(ς′Σ−1
2 Σ1Σ

−1
2 ς)

1
2
. We compare our result to stan-

dard normal distribution for different γ.

Figure 2.4 to Figure 2.4 show that as p is large, we need comparatively larger γ

to make sure the estimator satisfies the condition p2

n2γ−1 → 0 in theorem 8 . when

γ equals 0.75 or less, we need p4

n
→ 0, which is not possible when p = 41 and

n = 5000. In Figure 2.4, the simulation is far from normal distribution. From

Figure 2.4 to Figure 2.4, the simulation are closer to standard normal distribution

as γ close to 1. In Figure 2.4, the histogram of our estimator is close to standard

normal when γ is close to 1.
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Figure 2.2: High dimension (b)

Figure 2.3: High dimension (c)
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Figure 2.4: High dimension (d)

2.5 Conclusion

Our model is extended to high dimension in this chapter. Firstly, we restrict the

high dimension to the case that p
n
→ 0. Secondly, we calculate the asymptotic

normality of linear combination of β̂BA and β̃SBA as Portnoy (1984) and Portnoy

(1985). Our assumptions are similar to Sur and Candès (2019), i.e., var(xT
i β

∗) is

bounded.

β̂BA and β̃SBA are
!

p
n
consistent with p

n
→ 0. β̂BA and β̃SBA are also asymp-

totic normal with linear combination and p2

n
→ 0. Simulation shows that higher

γ is needed with higher p.

This paper can be improved in three ways. Firstly, we will develop the model

to allow the number of regressors exceed the number of observations. Recent

papers are considering ultra-high dimensional data, see Belloni and Chernozhukov

(2011), Chernozhukov, Hansen and Spindler (2015).

Secondly, we will introduce data selection methods like lasso to solve ultra

dimensional problem and overcome overfitting. By introducing some bias, methods
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like lasso will select the accurate variables, see Zhao and Yu (2006) and Zhang

and Huang (2008) for more discussion.

At last, panel data will be considered with dynamic version of our model in

the future.
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2.6 Appendix

Theorem 5. Under assumption 1-5 and 11-12 and for k ≤ n, use BGD algorithm

1 ,we get

E||β̂k − β∗||2 ≤
8λ

2

cσ
2
xC3(1 + 2γ1λcλf )

2γ1λcλf

pk−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n3A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C3 and n3 are some constants.

β̂k is consistent to β∗ with rate
!

p
n
if K = n and γ = 1.

Proof. With assumption 12, we only have two changes here. The first one is

E(−2γk(β̂k−1 − β∗)TCk
1

n

n#

i

∇ζ(β̂k−1; (xi, yi)))

= −2γkE((β̂k−1 − β∗)TCk
1

n

n#

i

∇ζ(β̂k−1; (xi, yi)))

= −2γkE((β̂k−1 − β∗)TCkE(∇ζ(β̂k−1; (xi, yi))|β̂k−1)) + γk(E||β̂k−1 − β∗||2) 1
2O(

+
p

n
)

= −2γkE((β̂k−1 − β∗)TCkE(∇ζ(β̂k−1; (xi, yi))−∇ζ(β∗; (xi, yi))|β̂k−1))

+ γk(E||β̂k−1 − β∗||2) 1
2O(

+
p

n
)

≤ −2γkλcλfE||β̂k−1 − β∗||2 + γk(E||β̂k−1 − β∗||2) 1
2O(

+
p

n
)

The second one is

γ2
kE||

1

n

n#

i=1

Ck∇ζ(β̂k−1; (xi, yi))||2

≤4pγ2
kλ

2

cσ
2
x
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Then,

E||β̂k − β∗||2 ≤ (1− 2γkλcλf1 + γko(1))E||β̂k−1 − β∗||2

+γk(O(
!

p/n))(E||β̂k−1 − β∗||2) 1
2 + 4pγ2

kλ
2

cσ
2
x

then, if n is sufficiently large,

E||β̂k − β∗||2 ≤(1− 2γkλcλf1)E||β̂k−1 − β∗||2

+ γk(O(
!

p/n))(E||β̂k−1 − β∗||2) 1
2 + 4pγ2

kλ
2

cσ
2
x

≤ 1

1 + 2γkλcλf1

E||β̂k−1 − β∗||2

+ γk(O(
!

p/n))(E||β̂k−1 − β∗||2) 1
2 + 4pγ2

kλ
2

cσ
2
x

By corollary 2.1 in Toulis, Airoldi et al. (2017) and for k ≤ n, use BGD

algorithm 1 ,we get

E||β̂k − β∗||2 ≤
8λ

2

cσ
2
xC3(1 + 2γ1λcλf )

2γ1λcλf

pk−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n3A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C3 and n3 are some constants.

Theorem 6. Under assumption 1-5 and 11-13 and for any ς ∈ Rp with ||ς|| = 1,

choose γ ∈ (0.5, 1) so that p2

n2γ−1 → 0 and we get

(i)
√
n

ς ′(β̂BA − β∗)

(ς ′Σ−1
2 Σ1Σ

−1
2 ς)

1
2

→ N(0, 1)

where Σ1 = Eg(xT
i β

∗)(1− g(xT
i β

∗))xix
T
i and Σ2 = Eg′(xT

i β
∗)xix

T
i .

(ii) ς ′Σ̂−1
2 Σ̂1Σ̂

−1
2 ς → ς ′Σ−1

2 Σ1Σ
−1
2 ς
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where Σ̂1 =
1
n

n"
i

g(xT
i β̂BA)(1− g(xT

i β̂BA))xix
T
i and Σ̂2 =

1
n

n"
i

g′(xT
i β̂BA)xix

T
i .

Proof. There are two differences compare to the proof when p is fixed. The first

it the following:

1

n

n#

k=1

1

γk
ς ′(β̂k−1 − β̂k) ≤

1

n
(− 1

γn
ς ′(β̂n − β∗) +

n−1#

k=1

|( 1
γk

− 1

γk−1

)ς ′(β̂k − β∗)|+ 1

γ1
ς ′(β̂0 − β∗))

<
1

n
(− 1

γn
(β̂n − β∗) +

n−1#

k=1

|( 1
γk

− 1

γk−1

||ς ′||||β̂k − β∗||+ 1

γ1
ς ′(β̂0 − β∗))

<
1

n
(− 1

γn
(β̂n − β∗) +

n−1#

k=1

|(k − (k − 1))|C
+

p

k
+

1

γ1
ς ′(β̂0 − β∗))

= o(

+
p

n
)

this means 1
n

"n
k=1

1
γk
(β̂k−1 − β̂k) is negligible.

The second difference is the following:

The second-order term of Taylor expansion of ∇ζk−1(β
∗; (xi, yi)) is

∂2∇ζk−1(β̂
∗
k; (xi, yi))

∂β2

where β̂
∗
k = ψβ̂k+(1−ψ)β∗ and ψ ∈ [0, 1]. ∂2∇ζk−1(β̂

∗
k;(xi,yi))

∂β2 is bounded since β̂K =

β∗+o(1) and Σ2 has bounded derivatives. Then the second-order term of Taylor ex-

pansion of 1
n2

"n
k=1

"n
i=1 ς

′∇ζk−1(β
∗; (xi, yi)) is bounded by C 1

n

"n
k=1 ||Eς ′xk|| p

kγ
≤

C 1
n

"n
k=1

p
3
2

kγ
, which is o(

!
p
n
) if p2

n2γ−1 → 0.

then 1
n

"n
k=1(β̂k − β∗) behaves like

(
1

n

n#

i=1

∂∇ζ(β∗; (xi, yi))

∂β
)−1(

1

n

n#

i=1

∇ζ(β∗; (xi, yi)))

then for any ς ∈ Rp we get
√
n ς′(β̂BA−β∗)

(ς′Σ−1
2 Σ1Σ

−1
2 ς)

1
2
→ N(0, 1).

Theorem 7. Under assumption 1-12 and for k ≤ n, use sieve BGD algorithm 2
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,we get

E|| β̃k

β̃1
k

− β∗||2 ≤
8λ

2

cσ
2
xC4(1 + 2γ1λcλf1)

2γ1λcλf

pk−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n4A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C4 and n4 are some constants.

Proof. with assumption 12, we only have two changes here. The first one is

E(2γk
1

n

n#

i=1

(β̃k−1 − β∗)TCk∇ζ̃(β̃k−1; (xi, yi)))

≥2γkλcE
1

n

n#

i=1

(L(Rβ̃k−1
q (xi)

′π̃q)− yi)(x
T
i β̃k−1 − xT

i β
∗)

≥2γkλcEE((Rβ̃k−1
q (xi)

′ERβ̃k−1
q g(xT

i β
∗)− g(xT

i β
∗))(xT

i β̃k−1 − xT
i β

∗)|β̃k−1)

+ γk(O(

√
pq5/2

n
) +O(

√
pq4−s

n
) +O(

√
pq2−s))(E||β̃k−1 − β∗||2) 1

2

+O(
q5/2√
n
)E||β̃k−1 − β∗||2

The second one is

γ2
kE||

1

n

n#

i=1

Ck∇ζ̃(β̃k−1; (xi, yi))||2

≤4pγ2
kλ

2

cσ
2
x

Then,

E||β̃k − β∗||2 ≤ (1− 2γkλcλf1 + γko(1))E||β̃k−1 − β∗||2

+γk(O(
!

p/n))(E||β̃k−1 − β∗||2) 1
2 + 4pγ2

kλ
2

cσ
2
x
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then, if n is sufficiently large,

E||β̃k − β∗||2 ≤(1− 2γkλcλf1)E||β̃k−1 − β∗||2

+ γk(O(
!

p/n))(E||β̃k−1 − β∗||2) 1
2 + 4pγ2

kλ
2

cσ
2
x

≤ 1

1 + 2γkλcλf1

E||β̃k−1 − β∗||2

+ γk(O(
!

p/n))(E||β̃k−1 − β∗||2) 1
2 + 4pγ2

kλ
2

cσ
2
x

By corollary 2.1 in Toulis, Airoldi et al. (2017) and for k ≤ n, we get

E|| β̃k

β̃1
k

− β∗||2 ≤
8λ

2

cσ
2
xC4(1 + 2γ1λcλf1)

2γ1λcλf

k−γ

+ exp(−log(1 + 2γ1λcλf )φ(k))[||β0 − β∗||+ (1 + 2γ1λcλf )
n4A]

with k sufficiently large, where A = 4λ
2

c

"
i γ

2
i < ∞ and φ(k) = k1−γ if γ ∈ (0.5, 1]

and φ(k) = logk if γ = 1. C4 and n4 are some constants.

Theorem 8. Under assumption 1-13 and for any ς ∈ Rp with ||ς|| = 1, choose

γ ∈ (0.5, 1) so that p2

n2γ−1 → 0 and we get

(i)
√
n

ς ′(β̃SBA − β∗)

(ς ′Σ−1
22 Σ1Σ

−1
22 ς)

1
2

→ N(0, 1)

where Σ1 = Eg(xT
i β

∗)(1 − g(xT
i β

∗))xix
T
i and Σ22 = E(g′(xT

i β
∗)xix

T
i − f(xT

i β
∗)),

where f(xT
i β

∗)) = lim
q→∞

xiR
q(xT

i β
∗)TERq(xT

j β
∗)g′(xT

j β
∗)xT

j and Rq(xT
i β

∗) is or-

thogonal polynomial function of xT
i β

∗.

(ii) ς ′Σ̃−1
22 Σ̃1Σ̃

−1
22 ς → ς ′Σ−1

22 Σ1Σ
−1
22 ς

where Σ̃1 =
1
n

n"
i

gn(x
T
i β̃SBA)(1−gn(x

T
i β̃SBA))xix

T
i , Σ̃22 =

1
n

n"
i

(g′n(x
T
i β̃SBA)xix

T
i −

f̃(xT
i β̃SBA)) and f̃(xT

i β̃SBA)) = xiR
q(xT

i β̃SBA)
T ( 1

n

n"
j

Rq(xT
j β̃SBA)g

′(xT
j β̃SBA)x

T
j ).

Proof. There are two differences compare to the proof when p is fixed. The first
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it the following:

1

n

n#

k=1

1

γk
ς ′(β̃k−1 − β̃k) ≤

1

n
(− 1

γn
ς ′(β̃n − β∗) +

n−1#

k=1

|( 1
γk

− 1

γk−1

)ς ′(β̃k − β∗)|+ 1

γ1
ς ′(β̃0 − β∗))

<
1

n
(− 1

γn
(β̃n − β∗) +

n−1#

k=1

|( 1
γk

− 1

γk−1

||ς ′||||β̃k − β∗||+ 1

γ1
ς ′(β̃0 − β∗))

<
1

n
(− 1

γn
(β̃n − β∗) +

n−1#

k=1

|(k − (k − 1))|C
+

p

k
+

1

γ1
ς ′(β̃0 − β∗))

= o(

+
p

n
)

this means 1
n

"n
k=1

1
γk
(β̃k−1−β̃k) is negligible.The second difference is the following:

The second-order term of Taylor expansion of ∇ζ̃k−1(β
∗; (xi, yi)) is

∂2∇ζ̃k−1(β̃
∗
k; (xi, yi))

∂β2

where β̃
∗
k = ψβ̃k + (1 − ψ)β∗ and ψ ∈ [0, 1]. ∂2∇ζ̃k−1(β̃

∗
k;(xi,yi))

∂β2 is bounded since

β̃K = β∗ + o(1) and Σ22 has bounded derivatives. Then the second-order term of

Taylor expansion

1

n2

n#

k=1

n#

i=1

ς ′∇ζ̃k−1(β
∗; (xi, yi))

is bounded by C 1
n

"n
k=1 ||Eς ′xk|| p

kγ
≤ C 1

n

"n
k=1

p
3
2

kγ
, which is o(

!
p
n
) if p2

n2γ−1 → 0.

then 1
n

"n
k=1(β̃k − β∗) behaves like

(
1

n

n#

i=1

∂∇ζ(β∗; (xi, yi))

∂β
+ lim

q→∞
xiR

q(xT
i β

∗)TERq(xT
j β

∗)g′(xT
j β

∗)xT
j )

−1 ∗ ( 1
n

n#

i=1

∇ζ(β∗; (xi, yi)))

then for any ς ∈ Rp we get

√
n

ς ′(β̃SBA − β∗)

(ς ′Σ−1
22 Σ1Σ

−1
22 ς)

1
2

→ N(0, 1)

where Σ1 = Eg(xT
i β

∗)(1 − g(xT
i β

∗))xix
T
i and Σ22 = E(g′(xT

i β
∗)xix

T
i − f(xT

i β
∗)),
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where f(xT
i β

∗)) = lim
q→∞

xiR
q(xT

i β
∗)TERq(xT

j β
∗)g′(xT

j β
∗)xT

j and Rq(xT
i β

∗) is or-

thogonal polynomial function of xT
i β

∗.
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Chapter 3

Application: Prediction of

Bankruptcy Failure

3.1 Introduction

We apply our method to the prediction of bankruptcy failure using financial data.

The issue is widely discussed in finance and accounting literature, see Belloni

et al. (2017) for detailed history from 1930s. Early research focuses on univariate

analysis. In 1968, Altman started the first multivariate study. Altman (1968)

uses multivariate discriminant analysis (MDA) to analyze bankruptcy prediction,

which is an extension of discriminant analysis. Since then, many methods have

emerged. The following are the main methods with representative articles:

• Multivariate discriminant analysis(MDA): Altman (1968) , Deakin (1972),

Grover (2003).

• Logit/Probit: Ohlson (1980), Mensah (1983), Gaeremynck and Willekens

(2003).

• Mixed Logit: Jones and Hensher (2004).

• Time-series cum sums: Kahya and Theodossiou (1999).

• Proportional hazards: Shumway (2001).
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• SVM: Barboza, Kimura and Altman (2017), Shin, Lee and Kim (2005).

• Neural network: Odom and Sharda (1990), Leshno and Spector (1996), Mai

et al. (2019) .

Each of those methods will be discussed in literature review section.

We first use 5 variables with 680 bankruptcy firms from 1969 to 2010 and

non-bankruptcy firms from 2009 to run our model, Probit and Logit model. Our

model has different interpretation of the effect of variables. The effect of current

ratio is significant in all of the models. Then 22 variables are used with data one

year, two years and three years prior to bankruptcy. Our model performs better

than Logit in terms of ROC curve with one year and two years data but worse

with three years data.

3.2 Literature Review

Altman (1968) suggests using multivariate discriminant analysis (MDA) to analyze

bankruptcy prediction. Similar to Logit and Probit analysis, MDA is a statistical

method used to classify data. It maximizes distance between bankruptcy firms

and non-bankruptcy firms and minimizes the within group variance. Like principal

component analysis, it tries to find the classification that best explains the data.

However, MDA relies on the parametric assumption that the distribution should be

normal distribution, which is not reasonable and justified. The following variables

are used in the paper:

Table 3.1: Factor name in Altman (1968)
Factor name

X1 Working Capital/Total Assets
X2 Retained Earning/Total Assets
X3 Earnings Before Interest and Taxes /Total Assets
X4 Market value Equity/Book Value of Total Debt
X5 Net Sales/Total Assets

The specific linear combination of the variables above is Altman’s famous Z-

score: 0.122X1 + 0.014X2 + 0.033X3 + 0.006X4 + 0.999X5. It is widely used in
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determining whether a firm is approaching to bankruptcy, which combines prof-

itability, liquidity, leverage and firm activity together. The higher the above vari-

ables, the higher probability that a firm will survive. Altman selected 33 man-

ufacturing firms that filed bankruptcy during 1946-1965 and 33 manufacturing

non-bankruptcy firms using stratified sampling by industry and size.

Sine then, MDA has been commonly used until recently. Deakin (1972) uses

14 independent variables to predict. He divides them into 4 groups: non-liquid

asset group, liquid asset to total asset group, liquid asset to current debt group

and liquid asset to turnover group. He also tests the data through 1 year to 5 year

before firms went bankruptcy. The result showes that debt ratio and the ratio of

current assets to total assets are negative to the survival probability, while ratios

like current ratio exhibits ambiguous effect in different year prior to bankruptcy.

Zordan (1998) uses as many as 30 variables to predict. More recently, MDA is

used with other methods like logit and neural network to compare the performance

of those methods, see Lee and Choi (2013), Chung, Tan and Holdsworth (2008),

Abdullah et al. (2008).

Logit and Probit are recently most widely used methods in classification. MDA

requires the distribution of independent variable to be normal distribution, which

are not reasonable and not even feasible for some discrete variables. Instead, Logit

and Probit only require specific distribution of error terms and put no restriction

on independent variables. The advantages of incorporating both continuous and

discrete variables and less restrictions on independent variables make those two

methods popular in bankruptcy analysis. Martin (1977) and Hanweck et al. (1977)

implement Logit and Probit analysis respectively. Ohlson (1980) uses more than

100 bankruptcy firms and more than 2000 non-bankruptcy firms, which is sub-

stantially more than previous studies. The paper finds size of the firm also plays

a significant role in determine the probability of bankruptcy. However, the effect

of the ratio linked to current liquidity still exhibits less significance than other

variables. Mensah (1983) uses more than 30 variables and compared the result of
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MDA to Logit. It showed that there is no significant advantage of one method

over another in all situations. Meyer and Pifer (1970) applies linear regression to

18 variables. The method does not impose assumption on error term. However,

it suffers from the problem that some predictive probability may be greater than

1 or less than 0, which is not interpretable.

MDA or Probit and Logit deal with cross-sectional data. There are three ways

to transform panel data into cross-sectional data. Firstly, pair each bankruptcy

firm with non-bankruptcy firm by year, industry and size. Secondly, for all non-

bankruptcy firms now, randomly pick one year data. Thirdly, use all the data from

all the year to form a repeated cross-sectional data. First two methods decrease

the number of observations while the last method ignore time varying effect.

Multiperiod Logit model or hazard model consider survival rate for each period.

Shumway (2001) proves that Multiperiod Logit model is equivalent to discrete

time hazard model. He argues that the static Logit or Probit is inconsistent

if the true model is time varying and hazard model is consistent. Finally he

presents the comparison between hazard model to MDA by Altman (1968) and

Logit by Zmijewski (1984). In comparison between MDA and hazard model,

they have different interpretations of the effect of retained earnings and sales.

Hazard model also outperforms MDA in terms of out-of-sample prediction. In

comparison between Logit and hazard, they show different significance level of

some variables. However, Logit model show better performance in terms of out-

of-sample prediction. This means changing from static model to dynamic model

not necessarily increase prediction. It only changes the significance of some effects.

He also finds that the prediction increases if one model include market variables

like volatility of stock price. Campbell, Hilscher and Szilagyi (2008) uses the same

dynamic Logit and confirmed the prediction power of market variables.

Time series CUSUM test is another version of time varying model. It cu-

mulates and detects the long term effect of firm’s bad performance. Kahya and

Theodossiou (1999) find CUSUM test outperformance LDA (Linear Discriminant
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Analysis) and logit in terms of expected loss. See Theodossiou (1993) for more

technical details.

Most recently, machine learning methods gain popularity dealing with predic-

tion problems like supportive vector machine (SVM), random forrest and neural

network. The best advantage of machine learning methods is the prediction ac-

curacy over other statistical methods. However, they lack interpretability of the

effect of independent variables, which performs like a ’black box’.

SVM creates a hyperplane, linear or nonlinear, separates each class with largest

margin between classes. The hyperplane is determined by the points that lie near-

est to it. Barboza, Kimura and Altman (2017) test the out-of-sample performances

of different machine learning methods like SVM, bagging, boosting and random

forrest compared with traditional statistical methods like Logit and MDA. On

average, those machine learning models outperform traditional methods by 10%

accuracy and bagging, boosting and random forrest showed highest prediction

power. Shin, Lee and Kim (2005) find that SVM performs even better than back-

propagation neural network (BPN) with small samples.

Neural network uses several hidden layers to increase complexity of models.

Logit model is a one layer neural network. Odom and Sharda (1990) show that

neural network outperforms MDA in terms of out-of-sample prediction. Mai et al.

(2019) applies deep learning method, which provided higher prediction power by

including textual disclosures.

In the previous two chapters a new estimator without assuming specific dis-

tribution of error term. It shows the same interpretability as traditional MDA,

Logit and Probit model and also add some complexities to allow variations of

distribution of error term. Compared with most machine learning methods, semi-

parametric model has the advantage of interpretability. We compare the new

estimator with Logit and Probit in this chapter to see whether they have different

the effects of variables and different prediction power.

Some models focus on specific industry:
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• Banks: Espahbodi (1991).

• Small & mid-size firms: Laitinen (1991)

• Manufacturing firms: Altman (1968).

• Retail firms: Sharma and Mahajan (1980)

• Internet firms: Wang (2004).

We have data for all industries except for banks because they have much dif-

ferent financial structures than other industries.

3.3 Data

MDA and Logit/Probit are used in cross-sectional data analysis. Because the num-

ber of bankruptcy firms is small in a single year, multiple years data of bankruptcy

firms is used in those models. Mixed Logit, Time-series cum sums and proportional

hazards take time into account, which may exhibit better performances. Recently

machine learning methods like neural network have been successful in the accuracy

of prediction. However, those methods are harder to interpreted than traditional

econometric methods. We compare our methods with Probit/Logit model in this

chapter.

3.3.1 Data Description for 5 Variables

The number of factors studied varies from 1 to 57. Altman (1968) uses 5 factors.

We first use 5 mostly used factors list in Belloni et al. (2017) (See table 3.2). We

get the data from Compustat. Bankruptcy firms are those who filed chapter 11

or delisted from Compustat due to bankruptcy. The total number of bankruptcy

firms is 680 from 1969 to 2010. The total number of non-bankruptcy firms is 2766

in 2009. Dependent variable equal 0 if the firm went bankruptcy. For bankruptcy

firm, we use the data one or two year prior to bankruptcy.
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Table 3.2: Factor name (5 variables)
Factor name

reat Retained earnings/Total assets
ebitat Earnings before interest and taxes /Total assets
cr Current Ratio
wcat Working capital /Total assets
niat Net income/Total assets

Table 3.3: Year 1 correlation matrix (5 variables)
Variables (1) niat (2) cr (3) wcat (4) ebitat (5) reat
(1) niat 1
(2) cr 0.006 1
(3) wcat 0.684 0.003 1
(4) ebitat 0.905 0.007 0.416 1
(5) reat 0.496 0.005 0.586 0.448 1

Table 3.4: Year 2 correlation matrix (5 variables)
Variables (1) niat (2) cr (3) wcat (4) ebitat (5) reat
(1) niat 1
(2) cr 0.006 1
(3) wcat 0.684 0.003 1
(4) ebitat 0.905 0.007 0.416 1
(5) reat 0.496 0.005 0.586 0.448 1
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We have two regressions with the same dependent variables. They differ in

independent variables:

1. Year 1: For bankruptcy firms, we use the data one year prior to bankruptcy.

For non-bankruptcy firms, we use the data in 2009.

2. Year 2: For bankruptcy firms, we use the data two year prior to bankruptcy.

For non-bankruptcy firms, we use the data in 2009.

The reason why we use bankruptcy firms across different year is the number

of bankruptcy firms in a single year is small. The correlation matrix of year 1

data and year 2 data are almost the same because they only differ in bankruptcy

firms. We compare regression result of our model with the result of Probit and

Logit. We also compare prediction accuracy for out-of-sample bankruptcy firms

from 2010 to 2019.

3.3.2 Data Description for 22 Variables

We get the data from Compustat. We exclude Banks. Bankruptcy firms are

those who filed chapter 11 or delisted from Compustat due to bankruptcy. The

total number of bankruptcy firms is 588 from 1969 to 2010. The total number

of non-bankruptcy firms is 2766 in 2009. Dependent variable equal 0 if the firm

went bankruptcy. We choose 22 variables listing in Belloni et al. (2017). For

bankruptcy firm, we use the data one, two year or three year prior to bankruptcy.

1. Year 1: For bankruptcy firm, we use the data one year prior to bankruptcy.

For non-bankruptcy firms, we use all the data from 1969 to 2009.

2. Year 2: For bankruptcy firm, we use the data 2 years prior to bankruptcy.

For non-bankruptcy firms, we use all the data from 1969 to 2009.

3. Year 3: For bankruptcy firm, we use the data 3 years prior to bankruptcy.

For non-bankruptcy firms, we use all the data from 1969 to 2009.
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Different from previous section, we use all the data from 1969 to 2009 to get

training data. We also compare prediction accuracy for out-of-sample bankruptcy

firms from 2010 to 2019.

Table 3.5: Number of firms
total firms bankrupcy firms non-bankruptcy firms

1 year ahead 51865 539 51326
2 year ahead 51849 523 51326
3 year ahead 51326 493 51326

Data description and correlation matrix for each year are presented in Ap-

pendix.

3.4 Results (5 variables)

Table 3.6: Year 1 result
Our model Probit Logit

ebitat -0.0737 -0.1061 -0.1828
(0.1049) (0.1932) (0.1284)

cr 1.7084*** 1.3397*** 2.5221***
(0.5081) (0.2472) (0.4557)

wcat -0.0633 -0.1593 0.3003
(0.3941) (0.7202) (0.2094)

niat 0.1157 0.1420 0.1989
(0.1420) (0.2639) (0.1459)

***p < 0.01, **p < 0.05, *p < 0.1

Table 3.7: Year 1 average partial effect
Our model Probit Logit

ebitat -0.04321 -0.03556 -0.10289
cr 1.09879 0.44918 1.41958
wcat -0.03704 -0.05341 0.16900
niat 0.06790 0.04760 0.11196

we can see from table 3.6 and 3.8 that the coefficient of current ratio is sig-

nificant in all three models. Zmijewski (1984) finds the coefficient of Return on

assets (niat) is positive and significant, which is not significant in three models

here. This may due to the small year range (1972-1978 in their paper). As for the
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value of maximum likelihood function, our model reaches almost the same value

as Logit in year 1 regression and has a bigger value than the value of Logit in year

2 regression. This means our model performs as good as Logit model in year 1

regression and are even better in year 2 regression. Probit model performs badly

in both regressions.

Table 3.8: Year 2 result
Our model Probit Logit

ebitat 0.0335 0.0644 0.0363
(0.0574) (0.1003) (0.0547)

cr 0.1013** 0.0670*** 0.0864***
(0.0418) (0.0224) (0.0307)

wcat 0.0361 -0.0126 0.0647
(0.3407) (0.3119) (0.1816)

niat -0.0331 -0.0766 -0.0308
(0.0827) (0.1458) (0.0784)

***p < 0.01, **p < 0.05, *p < 0.1

Table 3.9: Year 2 average partial effect
Our model Probit Logit

ebitat 0.07318 0.07062 0.07474
cr 0.18294 0.07340 0.17783
wcat -0.12196 -0.01382 0.13329
niat 0.06098 -0.08398 -0.63328

As for the prediction, We calculate predicted probability for survive for bankruptcy

firms and draw histogram. From figure 3.3 and 3.6, Logit performs better than

our model in year 1 regression. Our model performs better in year 2 regression

than Logit and porbit.
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Figure 3.1: Year 1 prediction SBA

Figure 3.2: Year 1 prediction Logit
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Figure 3.3: Year 1 prediction Probit

Figure 3.4: Year 1 prediction SBA
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Figure 3.5: Year 1 prediction Logit

Figure 3.6: Year 1 prediction Probit
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3.5 Results (22 variables)

We calculate the ROC curve and AUC for each regression with 2010-2019 data.We

set γ = 0.9 because we have higher number of observations compared with the

model in previous section. Changing value of γ has little effect on the result of

prediction.

First we look at the ROC curve. Our model performs overwhelmingly better

than Probit model since our model is above the curve of Probit almost every-

where with data 1 year prior to bankruptcy. However, with data 2 years prior to

bankruptcy, our model is above Probit when threshold is lower while our model is

lower than Probit when threshold is higher. With data 3 years prior to bankruptcy,

Probit does better than our model.

Table 3.10: AUC
Our Model Logit Model

Year 1 0.806 0.807
Year 2 0.758 0.724
Year 3 0.709 0.753

As for AUC, our model performs better than Logit for data one year and

two years prior to bankruptcy. However, the Logit is better in terms of data 3

years prior to bankruptcy. This may be the fact that the model is overfitting.

If some irrelevant variables are included, overfitting problem will be more severe

in our model than Logit because we use sieve methods to approximate the error

function, which may increase more variance. This suggests model with lasso to

select variables may exhibit better our-of-sample performance.
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Figure 3.7: Year 1 ROC

Figure 3.8: Year 2 ROC
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Figure 3.9: Year 3 ROC

3.6 Conclusion

In this chapter we apply our estimator to bankruptcy prediction and compare

to Logit and Probit model. Bankruptcy prediction is widely discussed in finance

literature. MDA, Logit/Probit, hazard model, SVM and neural network are among

those methods used to predict bankruptcy.

We first compare our model with Probit and Logit model using 5 variables

with 680 bankruptcy firms from 1969 to 2010 and non-bankruptcy firms from

2009. Data of bankruptcy firms is collected one year or two year prior to firm

filing. for bankruptcy. Our model shows different effect for current ratio, which

is significant in all the models. As for the prediction, Logit performs better than

Probit and our model with year one data. However, our model performs better

than Probit and Logit with year two data.

Then we use 22 variables with data one year, two years and three years prior

to bankruptcy. Our model has higher AUC than Logit model with data one year,

two years prior to bankruptcy. However, Logit model performs better with data
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three years prior to bankruptcy. This suggests our model is overfitting. Our model

may show better result with lasso to select relevant variables.
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3.7 Appendix

Table 3.11: Factor Name (22 variables)
Factor Name

ni ta current assets/total assets
cr net income/total assets
wc ta current ratio
re ta working capital/total assets
ebit ta retained earnings/ total assets
sale ta ebit/total assets
qr sales/total assets
ca ta quick ratio
ni nw net income/net worth
tl ta total liability/total assets
cash ta cash/total assets
qa ta quick assets/total assets
ca sale current assets/sales
invt sale inventory/sales
oi ta operating income/total assets
ni sale net income/sales
ltd ta long term debt/total assets
tl nw total liability/net worth
wc sale working capital/sales
nw tl net worth/total liability
log ta log total assets
wc nw working capital/net worth
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