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In quantum materials, quantum mechanical effects survive over a wide range of temper-

atures and length scales, which leads to fascinating phenomena, such as charge density

waves, spin liquids, and magnetism. These remarkable properties originate from a del-

icate balance among many interacting degrees of freedom. Even small perturbations

such as temperature and doping can induce many diverse phases and colossal changes in

the materials’ functionalities. It remains a mystery how to detect these novel phenomena

without complicated fabrication and extreme conditions.

This thesis contributed to this field by studying collective modes in quantum ma-

terials via inelastic light scattering. After fabricating the devices in a glovebox, we

directly transfer them to the measurement platform under a high vacuum. Using Raman

spectroscopy, a new quasi-particle–axial Higgs mode in charge density wave systems

was discovered and further symmetry breaking accompanied with it suggests the charge

density wave is unconventional. In addition to symmetry analysis breakthroughs, this

thesis also provided direct evidence of the fractional nature as well as the energy and tem-

perature limits of Kitaev interactions in quantum spin liquid candidate systems, which

is the building block for topological quantum computers. Not limited to 2D Kitaev

materials, the non-Fluery-Loudon single magnon scattering process was detected in a

3D Kitaev system. Other than using Raman to probe the fundamental nature, we also

employed it to reveal, for the first time, a clean way to realize modulation doping in 2D

materials, where the acceptor carrier density has reached 1014 cm−2. This method can

be applied to dope magnetic materials or twisted heterostructures to find new phases.
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CHAPTER I

Introduction

Quantum materials have an explossive progress in the past decades and play an

important role in condensed matter physics. These systems contributes to uncover many

novel phenomena, such as new phases and applications of new generation photonic and

electronic devices. However, the properties of quantum materials are extremely sensitive

to external stimuli. The interactions of spin, charge, lattices and quantum pathways can

be changed/affected during the fabrication or extreme experimental conditions, such as

high magnetic field or electric bias.

This thesis aims to contribute to the long term goal- detecting new emergent quan-

tum phases and their properties without extreme external stimuli. In spite of these, a

intriguing route is studying collective modes in quantum materials.

Without complicated fabrication and external extreme conditions, Raman scatter-

ing, since its first discovery, is an indispensable tool in condensed matter physics. In

fact, Raman scattering provides one of the most convenient way to probe elementary

excitations, such as phonons, magnons, plasmons, anynons and electronic excitations in

both bulk and Van der Waals materials.

The scattering process occurs mainly through virtual intermediate electronic transi-

tions and the scattering energy are determined by the difference of incident and scattering

light frequency. Depending on the pathways to the intermediate states and cross section,
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one can detect the symmetry/energy of phonons, magnons and electronic excitations. In

addition to that, the excited particles can form fractionalized quasi-particles in specific

frustrated magnetic states.

This thesis has been focused on using Raman to study the fundamental properties of

electronic scattering, novel magnetic phases as well as their use in potential applications.

In chapter 2, we investigate the scattering light pathway interference and for the

first time discover the axial Higgs mode in CDW system RTe3.In RTe3 (R=La,Gd), the

electronic ordering couples bands of equal or different angular momenta. As such, the

Raman scattering tensor associated to the Higgs mode contains both symmetric and

antisymmetric components that are excited via two distinct, but degenerate pathways.

This leads to constructive or destructive interference of these pathways, depending

on the choice of the incident and Raman scattered light polarization. The qualitative

behaviour of the Raman spectra is well-captured by an appropriate tight-binding model

including an axial Higgs mode. Elucidation of the antisymmetric component is direct

evidence that the Higgs mode contains an axial vector representation (i.e. a pseudo-

angular momentum) and hints the CDW in RTe3 is unconventional. Thus we provide a

means for measuring collective modes quantum properties without resorting to extreme

experimental conditions.

In chapter 3, we report the magnetic fractional excitation in spin liquid systems.

We identify the energy and temperature boundaries of non-Kitaev interactions by direct

comparison of the Raman susceptibility of α-RuCl3 with quantum Monte Carlo (QMC)

results for the Kitaev QSL. Moreover, we further confirm the fractional nature of the

magnetic excitations, which is given by creating a pair of fermionic quasiparticles.

Interestingly, this fermionic response remains valid in the non-Kitaev range. Our results

and focus on the use of the Raman susceptibility provide a stringent new test for future

theoretical and experimental studies of QSLs.

In chapter 4, measurements of the modulation doping in Van der Waals heterostruc-
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tures are discussed. Our Raman, photovoltage, and electrical conductance measurements

combined with ab initio calculations establish the large work function and narrow bands

of α-RuCl3 enable modulation doping of exfoliated single and bilayer graphene, chem-

ical vapor deposition grown graphene and WSe2, and molecular beam epitaxy grown

EuS. We further demonstrate proof of principle photovoltage devices and charge trans-

fer through hexagonal boron nitride. Short-ranged lateral doping (<65 nm) and high

homogeneity are achieved in proximate materials with a single layer of α-RuCl3. This

leads to the best-reported monolayer graphene mobilities (4900 cm2/(V s)) at these high

hole densities (3 × 1013 cm−2) and yields larger charge transfer to bilayer graphene (6

× 1013 cm−2).

In chapter 5, we focus on the Raman scattering of bulk Kiteav QSL system β-Li2IrO3.

The spectra exhibit a coexistence of a broad scattering continuum and two sharp low-

energy peaks at 2.5 meV and 3 meV, with a distinctive polarization dependence. While

the continuum is suggestive of fractional quasi-particles emerging from a proximate

quantum spin liquid phase, the sharp peaks provide the first experimental signature of

the ‘non-Loudon-Fleury’ one-magnon scattering processes proposed recently.
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CHAPTER II

Axial Higgs mode in charge density wave

2.1 Introduction

The observation of the Higgs boson solidified the standard model of particle physics.

However, explanations of anomalies (e.g. dark matter) rely on further symmetry break-

ing calling for an undiscovered axial Higgs mode[1]. In condensed matter the Higgs

was seen in magnetic, superconducting and charge density wave(CDW) systems[2,

3]. Uncovering a low energy mode’s vector properties is challenging, requiring go-

ing beyond typical spectroscopic or scattering techniques. Here, we discover an axial

Higgs mode in the CDW system RTe3 using the interference of quantum pathways. In

RTe3 (R=La,Gd), the electronic ordering couples bands of equal or different angular

momenta[4–6]. As such, the Raman scattering tensor associated to the Higgs mode

contains both symmetric and antisymmetric components, which can be excited via two

distinct, but degenerate pathways. This leads to constructive or destructive interference

of these pathways, depending on the choice of the incident and Raman scattered light

polarization. The qualitative behaviour of the Raman spectra is well-captured by an

appropriate tight-binding model including an axial Higgs mode. The elucidation of

the antisymmetric component provides direct evidence that the Higgs mode contains

an axial vector representation (i.e. a psuedo-angular momentum) and hints the CDW

in RTe3 is unconventional. Thus we provide a means for measuring collective modes
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quantum properties without resorting to extreme experimental conditions.

Emergent order states bring about new modes whose properties are directly linked

to the associated change in topology or symmetry breaking. A well studied example is

the breaking of translation symmetry in CDW systems resulting in Nambu-Goldstone

(phase) and Higgs (amplitude) modes. In a superconductor the inclusion of electro-

magnetism results in a gapping of the phason or giving mass to the W and Z bosons of

the electroweak theory. However this Anderson-Higgs mechanism leaves the amplitude

mode largely unchanged, and thus by convention it is often referred to as the Higgs

boson.[2, 3, 7] Despite its close resemblance to superconductivity and first prediction

in 1955, all CDW to date have revealed s-wave condensation with a scalar Higgs mode.

The challenge in detecting unconventional order is the requirement to probe the vector

nature of the order parameter or collective excitations. One example is the attempt to

extend the standard model by enlarging the symmetry breaking. This results in addi-

tional particles, including a spin-1 Higgs boson, and dark matter candidates.[1] Thus the

detection of a Higgs mode with finite angular momenta (i.e. an axial Higgs) heralds the

discovery of a heretofore undiscovered symmetry breaking and novel phase of matter.

Pathway interference is an elegant tool to meet this challenge by exploiting wave-

particle duality to uncover the hidden quantum properties of excitations[8]. In condensed

matter quantum pathway interference revealed the topological properties of band struc-

tures[9, 10], unconventional superconducting order[11–13], and the nontrivial statistics

of collective excitations[14–16]. Despite the elegance of such experiments, they have

not been directly applied to the Higgs mode to uncover its axial vector nature. In part,

this results from the challenge of performing quantum interference in condensed matter

settings, which typically require extreme experimental conditions: low temperatures, ul-

trafast lasers, high magnetic and/or electric fields. The need for such conditions could be

overcome by CDW systems, with well defined Higgs and phase modes readily observed

with optical techniques at large energy scales[5, 17–22]. Furthermore, the CDW can be
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Figure 2.1: (a) RTe3 crystal structure and unit cell (black line). (b) PX (orange) and
Py (blue) orbitals in the Te layer. (c) Fermi surface with orbital content
labeled by the same colors as in (b). The red arrow indicates the CDW
vector (qCDW ) with the black arrow indicating the second nesting condition
with the reciprocal lattice vector (b∗ − qCDW )
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tuned by pressure, exfoliation, or ultrafast lasers[23–26] while offering next generation

nano oscillator, logic and memory devices[27].

2.2 Methods

2.2.1 Crystal Growth

High-quality RTe3 single crystals were grown in an excess of tellurium (Te) via a self

flux technique. Te (metal basis > 99.999%, Sigma-Aldrich) was first purified to remove

oxygen contaminations and then mixed with the rare-earth (> 99.9%, Sigma-Aldrich)

in a ratio of 97:3. The mixture was sealed in an evacuated quartz ampoule and heated

to 900 C over a period of 12 hours and then slowly cooled down to 550°C at a rate of

2°C/hour. The crystals were separated from the flux via centrifugation at 550°C

2.2.2 Sample Preparation and Vacuum Transfer

GdTe3 and LaTe3 flakes were exfoliated and characterized using unpolarized Raman

in an Argon glovebox. Then they were loaded into a 10−6 mbar vacuum suitcase and

directly transferred into a low temperature cryostat[28].

2.2.3 Angle Resolved Raman Spectroscopy

The 532nm Raman experiments were performed with a custom built, low temperature

microscopy setup[29]. A 532 nm excitation laser, whose spot has a diameter of 2 µm,

was used with the power limited to 10 µW to minimize sample heating while allowing for

a strong enough signal. At both room and base temperature (10K), the reported spectra

were averaged from three spectra in the same environment to ensure reproductability.

The spectrometer had a 2400 g/mm grating, with an Andor CCD, providing a resolution

of ≈ 1 cm−1. Dark counts are removed by subtracting data collected with the same

integration time with the laser blocked. Freshly cleaved sample is transferred to a
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cryostat with optical window and pumped down to a vacuum level of 106 torr. The 488

nm (2.54 eV) emission line from an Argon laser is used as the excitation source. The

incident laser is reflected by a 90/10 nonpolarizing cube beam splitter and then focused

to a spot size of 2 µ m on the sample using a 50× objective lens (NA, 0.35). The laser

power on the sample is 700uW. The incident beam and collected optical signal are linear

polarization resolved using a combination Fresnel rhomb retarders and linear polarizers.

Raman signal is dispersed by a Horiba T64000 spectrometer equipped with 1800g/mm

gratings and and detected with a liquid-nitrogen-cooled CCD camera. We used fresnel

rhomb to measure the angular dependent Raman spectra in both setup.

2.3 Raman results of Axial Higgs mode

Here we study quantum pathway interference of the axial Higgs mode to reveal the

unconventional CDW phase in RTe3. This is achieved at room temperature with Raman

scattering as it can measure the energy, symmetry, and excitation pathways of funda-

mental modes[30–33]. We build upon previous inelastic light scattering experiments in

non-interacting systems revealed the chiral nature of phonons, molecular crystal field

excitations, semiconductor interband transitions, and changes in quantum pathway or

coherence upon gating[34–37]. For these previous single particle experiments, the in-

termediate states (i.e. quantum pathways) are chosen by the combination of excitation

wavelength, momentum conservation, the polarization of the incoming and outgoing

light via selection rules[38, 39].

We focused on the rare earth CDW system RTe3 (R = Gd,La) exploiting its high

transition temperatures (TGd
CDW = 380 K, TLa

CDW > 600 K), unidirectional CDW, and

multiple nesting conditions, enabling quantum pathway selection. The RTe3 crystal

structure consists of double layers of van der Waals bonded square-planar Te sheets

separated by RTe slabs (Fig. 2.1a), crystallized in an orthorhombic structure with the

space group Bmmb. RTe3 is nearly tetragonal (a − b ≈ 0.01Å)[6, 40]. The Bloch
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bands near the Fermi energy are mainly composed of the PX and PY orbitals of the

tellurium sheet (Fig. 2.1b) as the PZ orbital is much lower in energy. Since the RTe3

slab is less densely packed within the ab plane, the chosen unit cell (c.f., Fig. 2.1a)

results in the Fermi surface shown in Fig.2.1c, where hybridization between the two

orbitals happens only at isolated points due to next-nearest neighbour interaction [41].

The incommensurate qCDW determined by various techniques is (2/7)b∗, where b∗ is

the reciprocal lattice vector, consistent with nesting between the original PX derived

band of the Te sheet and the PX band folded in due to the enlarged unit cell of the 3D

structure[4, 5]. In addition, another nesting condition arises when accounting for the

reciprocal lattice vector, where b∗ − qCDW connects PX(PY ) to PY (PX) derived bands.

Due to the orthorhombicity, these nesting conditions are not satisfied along the a-axis,

resulting in a node in the CDW gap, suggesting an unconventional order. Similarly

the requirement to change angular momenta when connecting the PX to PY states with

b ∗ −qCDW suggests the Higgs mode has finite angular momenta. The interference

between the two pathways associated with this mode, the possible axial nature of the

Higgs, change in sign of the gap (i.e. p-wave order) and thus unconventional CDW order

have yet to be explored theoretically or experimentally.

2.3.1 Raman spectra at different polarization configuration

As seen in Fig. 2.3(a-b), the intermediate states have either the same or different

angular momenta and thus follow different selection rules. The selection rules depend

sensitively on polarization relative to the crystal axis, presence of single domains and

clean surfaces. We achieved this with exfoliated RTe3 flakes produced in a glovebox and

rapidly transferred via vacuum suitcase to our low T Raman system. This ensured the

sample surface is free from oxide contamination, atomically flat, contained single CDW

domains and enabled identification of the crystal axes using the sharp edges (confirmed

via TEM – see supplemental).

9



With this in mind, we turn to the polarization dependent Raman spectra of the Higgs

mode. Fig. 2.2 shows representative measurements using a 532 nm excitation of GdTe3

at 300K in both parallel and cross polarization configurations. Here ab(XY 0o) refers

to the incident (scattered) light polarized along the crystal a(b)-axis. Similarly, a’b’(XY

45o) represents the crystal rotated by 45 degrees from the ab configuration, where a’ =

a+b, b’ = a-b. The 5 meV broad peak is the CDW Higgs mode and all other sharp peaks

are the phonons.

The Higgs mode partially overlaps with the phonons in the shaded energy region. As

seen in (Fig. 2.2), both the phonons and Higgs mode are observed in parallel polarization

along aa (XX 0 deg), bb (XX 90deg) or a’a’(XX 45deg) directions. As expected and

typically observed, the phonon modes have the same intensity when the configuration

is changed from a’b’ (XY 45deg) to b’a’(XY 135deg). Indeed, the measured Raman

intensities (I) for a given excitation are proportional to the square of the product of

incident light polarization (êi), Raman tensor (R) and the scattered electric field (êf ):

I = |êi · R · êf |2. However, as seen in the shaded region of (Fig.2.2), the scattering

intensity of the CDW Higgs mode behaves quite differently, it is strong in a’b’ but

dramatically reduced in b’a’. Other than the CDW Higgs mode, phonons coupling with

CDW mode at 7.4 meV and 10.6 meV also showed the intensity difference at a’b’ and

b’a’ polarization. As previously established in X-ray measurement, the Higgs mode

is strongly mixed with these phonons[42] and they disappear above CDW transition

temperature[41].

2.3.2 Raman scattering pathway analysis

To understand the change in the Higgs mode intensity upon swapping the incident

and scattered polarization, it is useful to consider the role of the CDW in the quantum

pathways in RTe3. From symmetry, the possible inelastic, q ≈ 0 excitations must fall

in one of the irreducible representations ΓRaman = 3Ag + B1g + B2g + B3g leading
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Figure 2.2: 300K Raman spectra of GdTe3. Top plot is taken in parallel linear polar-
ization, with incident and scattered light aligned with different crystal axis.
The Higgs mode is shaded. The bottom plot is taken in cross linear polar-
ization, for incident light aligned with the a’(45 deg off a-axis) direction and
scattered light along b’(45 deg off a-axis) direction (green solid line). Upon
swapping the incident and scattered polarization (dashed line), the response
of all phonons modes is identical, while the amplitude mode is suppressed.
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Figure 2.3: (a) CDW involved symmetric Raman scattering process. (b) CDW involved
anti-symmetric Raman scattering process.

to a symmetric Raman tensor (Rij = Rji)[43]. As seen in Fig. 2.5 and2.6, this

produces a four-fold angular dependence of the phonon modes intensity. However, due

to the periodicity of the CDW, there are two quantum pathways that involve different

intermediate states separated by |qCDW | or |b∗ − qCDW | (see Fig. 2.1c, 2.3a and b). In

the first, an X(Y ) polarized incident photon excites the electron into an intermediate

state |PX⟩(|PY ⟩), which is scattered to the |PX⟩ (|PY ⟩) state by the Higgs mode with

wave vector qCDW . Subsequently, the electron recombines with a hole and emits an

X(Y ) polarized photon. Such a process results in a symmetric response as it involves

scattering between states with identical polarization. While the symmetric response

could be a Raman tensor with the form of Ag, Bg or a sum of the two, in fitting the

angular dependent Higgs mode susceptibility, we find that the off-diagonal symmetric

terms (Bg vertex) are nearly zero.

The second scattering pathway involves a Higgs mode connecting |PX⟩(|PY ⟩) to

states with different angular momenta |PY ⟩(|PX⟩) via |b ∗ −qCDW |. The change in
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Figure 2.4: (a) Scattered electric field resulting from quantum interference of a diagonal
(Rii) and antisymmetric off-diagonal (Rij = −Rji) Raman processes. (b)
Scattered electric field resulting from quantum interference of a diagonal
(Rii) and symmetric off-diagonal (Rij = Rji) Raman processes. The
presented angle is the polarization rotation angle relative to the crystal a-
axis.

angular momenta of the states associated with this nesting vector suggests that the Higgs

mode is unconventional, requiring an axial vector representation. Nonetheless, upon

recombination, a Y (X) polarized photon is produced. Noting that the excitation from

the |PZ⟩ band to |PX⟩ or |PY ⟩ bands matches the visible excitation laser energy,[5] the

Higgs mode is a resonant electronic response. This resonance combined with the angular

momentum change induces a nonzero antisymmetric (i.e. Rij = −Rji) contribution

to the Raman tensor [34], which by itself would produce a signal only in XY and not

XX configurations. Ultimately it is the interference of this antisymmetric process with

the symmetric, diagonal component that produces the two-fold response in the cross-

polarized Raman. In the supplemental material we calculate the Raman susceptibility

from resonant processes using a low energy model in the presence of a CDW gap and

amplitude mode and find an asymmetric transition, depending on the chosen pathway.

This asymmetry primarily comes from the points in the Fermi surface with nesting

vector b ∗ −qCDW and is enhanced by the orbital mixing due to next-nearest neighbour
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interaction [41]. Fitting to the experimental data we arrive at a Raman tensor for the

Higgs mode:

RCDW =


0 d 0

−d 0 0

0 0 0

+


e 0 0

0 f 0

0 0 g

 =


e d 0

−d f 0

0 0 g


, where d, e, f, g are independent coefficients. The detailed calculations of the angular

dependence of the Raman response are shown in the supplemental but we briefly describe

the key results here. The |PX⟩ → |PX⟩ pathway gives the same response for a’b’

and b’a’ configurations: I = |(e − f)|2. However, |PX⟩ → |PY ⟩ pathways give

I = |2d|2 under a’b’ polarization and I = | − 2d|2 under b’a’ polarization. As

such if the two pathways did not interfere (i.e. we add their intensities) we would

not observe any difference when swapping the incident and scattered polarization (i.e.

four-fold response of Raman vertex diagonal term and off-diagonal symmetruc term -

Fig.2.5). However the indistinguishablity and thus pathway interference leads to the

CDW intensity Ia′b′ = |(e− f) + 2d|2 producing the constructive interference term and

Ib′a′ = |(e − f) − 2d)|2 the destructive interference term, and thus a purely two fold

angular response in cross-polarized Raman (2-fold response of Raman vertex diagonal

term and off-diagonal anti-symmetric term Fig.2.4).

To reveal the suggested quantum interference of pathways, we focus on the angular

dependence of the Raman response. The colormaps in Fig.3a and b present parallel

and cross polarization data and the green lines are the selected spectra in Fig.2.2. The

shaded region indicates the response from the Higgs mode. Consistent with quantum

interference, these maps clearly show the Higgs mode has a two fold response. To

examine in detail the Higgs and phonon mode angular dependence, we plot the intensity

versus crystal angle for representative phonons of Ag and Bg symmetry alongside the

response from the Higgs mode (Fig.2.6,2.7). In the supplemental material we derive the
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Figure 2.5: Color map of angular resolved Raman at 300K in parallel (a) and cross (b)
linear polarization. The green lines indicate the angles of the representative
spectra in previous figure

Raman tensor associated to each mode using a generic representation in the orthorombic

crystal group where the parameters are optimized to best fit the experimental data. We

find that both the Ag and Bg phonons follow the expected angular dependence with four

fold modulation when the associated Raman tensor is purely symmetric, reflecting the

fact that the structure is nearly tetragonal.

On the other hand, the Higgs mode reveals clear two fold modulated intensities in

both parallel and cross polarization (Fig. 2.7) that is well-described by the Raman tensor

RCDW , where both pathways are summed. To the best of our knowledge this is the first

such observation in any Raman experiment. This result highlights the utility of the full

angular dependence of the Raman in revealing and potentially controlling the quantum
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Figure 2.6: (a.b)Angular dependence of the ampltiudes of the Raman modes extracted
from Voigt fits of the spectra in parallel (red dots) and cross (blue dots)
linear polarization. (c) Ag mode of GdTe3. (d) Bg mode of GdTe3.

pathways in a CDW system. Indeed, by simply rotating the light polarization we vary

the different pathways relative phase from 0 to π (i.e. constructive and destructive

interference).

2.3.3 Control experiment and temperature dependent data

We now discuss alternative origins of the anomalous Higgs response. One is intrinsic

angular momentum from the Gd moments. Another could be the competing phase

with a secondary CDW in GdTe3. This is seen by tuning the rare earth, where a

bidirectional CDW appears at low temperatures for rare earths smaller than Gd. The

role of fluctuations of this bidirectional CDW are unclear. In our TEM measurements

some GdTe3 flakes revealed very weak secondary CDW (see supplemental).

Therefore to eliminate the complexities from Gd (magnetism and multidomains),

we tested the response of LaTe3, which possesses TCDW >600 K and contains no

magnetic moments. Nonetheless, since all the RTe3 have a similar electronic structure[5],
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Figure 2.7: Angular dependence of the ampltiudes of the CDW mode of GdTe3 extracted
from Voigt fits of the spectra in parallel (red dots) and cross (blue dots) linear
polarization. This reveals the constructive (green a’b’) versus destructive
(dashed green b’a’) interference.

the quantum pathway interference should remain. As shown in Fig.2.8a, the angular

dependence of the Higgs mode in LaTe3 also reveals a two fold symmetry in both parallel

and cross polarization, while the Bg phonon shows the expected four fold response (Fig.

2.8b). The LaTe3 result thus confirms the interference is not due to intrinsic moments

or competing phases, but from the band structure and quantum pathway selection. To

ensure the reproducibility and intrinsic nature of our results, we also tested another flake,

exfoliated from a different GdTe3 crystal from another growth using a separate Raman

setup with shorter wavelength excitation laser (488 nm). Since the 488 nm is still in

resonance, it reveals the same angular dependence of the modulation of the intensity

(Fig. 2.8c).

As a final check of the robustness of the quantum interference, we turned to the

temperature dependence. Due to a large change in the Higgs mode energy, its interaction

with a nearby phonon varies with temperature[19]. As shown in Fig. 2.9a and consistent

with previous measurements, the Higgs mode softens from 10 meV to 3 meV when

increasing temperature from 8 K to 300 K, along with a decrease in intensity. This is a
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Figure 2.8: (a) Angular dependence of the Higgs mode in LaTe3 measured with a 532
nm excitation laser. (b) Bg mode of LaTe3 with 532 nm laser following the
expected angular dependence. (c) GdTe3 Higgs mode measured with a 488
nm excitation laser on a different system.

typical temperature dependence for a Higgs mode, resulting from the potential landscape

of the free energy being reduced as the CDW transition temperature is approached.

In addition, the Higgs mode displays an avoided crossing with the 7.4 meV phonon

consistent with it revealing the the same symmetry as the Higgs. This is due to the fact

that this mode is folded to q = 0 by the CDW and thus can undergo the same quantum

pathway interference[19, 42, 44]. Therefore, we choose three temperatures to test the

quantum interference via the cross polarization modulated intensities: 8K, slightly below

(140K) and well above the avoided crossing (300K). As seen in the polar plot in Fig.

2.9b, the Higgs mode has the exact same angular dependence at all temperatures. This

demonstrates that the quantum interference is robust to the mixing of the Higgs mode

with nearby phonons.
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Figure 2.9: (a) The angular dependence of the Higgs intensity (dots) and fitting from
Raman tensors(lines) at different temperatures, demonstrating the effect is
insensitive to mixing with the neighboring phonon mode. (b) Temperature
dependent Raman color map of GdTe3.

2.4 Summary and outlook

Our study provides the first detection of an axial Higgs mode, exploiting the quantum

pathway interference in Raman scattering. The finite angular momentum of the Higgs

provides compelling evidence that the charge density wave order in RTe3 is unconven-

tional. Using a phenomenological description of the Fermi surface we elucidate the role

of next-nearest neighbour interaction in the observed asymmetry of Raman transitions

involving a change of angular momentum. The methodology employed, can be applied

to search for new symmetry broken and topologically ordered states via their novel col-

lective modes. Furthermore the straightforward application of tuning the interference
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with light polarization could enable manipulating the quantum properties of collective

excitations towards new non-equilibrium states.
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CHAPTER III

Magnetic fractional excitation in spin liquid systems

3.1 Introduction

Exotic excitations with fractional quantum numbers are a key characteristic of quan-

tum spin liquid systems(QSLs)[45–48]. It results from the long range entanglement

of these non-trivial topological phases[49–51]. Originating from frustrated magnetic

interactions, the fractional nature inspires an overarching goal of studying QSLs. Great

process has been made in the last decade towards identifying the fractional excitations

of QSLs[52–60].

Kitaev spin liquid was proposed by Kitaev[56] in 2006, which provides the exactly

solvable ground states. Fig. 3.1 shows the cartoon of frustrated spins on kitaev honey-

comb lattice. This makes the realizing of topological quantum computing immune to

decoherence via high operating temperatures from large exchange interactions with in

reach[61, 62]. Attention has focused on relativistic Mott insulators that are close to the

exactly solvable Kitaev model with a QSL ground state. In materials such as A2IrO3

(A = Cu, Li or Na)[48, 61, 63–67] and α-RuCl3[68–71], the large spin-orbit coupling

and Coulomb repulsion result in jeff = 1/2 moments on a honeycomb lattice[46, 62,

72–79]. According to the pure Kiteav model, in these materials spin flips could produce

Z2 gauge fluxes and dispersive Majorana fermions.[56, 80]. A scrach of the top view of

RuCl3 is provided in Fig. 3.2.
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Figure 3.1: Cartoon of frustrated spins on honeycomb lattice

Figure 3.2: Lattice structure of RuCl3
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In these materials, as with other QSL candidates, the presence of additional symmetry

allowed terms (Heisenberg and bond-dependent off-diagonal interactions in this case),

produces long range magnetic order.[52, 73, 81] Despite extensive studies and evidence

for fractional particles,[53, 78, 82, 83] the relative size of the non-Kitaev terms and the

range over which they are relevant remains controversial[81, 84]. In α-RuCl3, these

non-Kitaev terms lead to a magnetically ordered phase below 7 K, which could be

destroyed by an in-plane magnetic field[85–89]. The exact nature of the field induced

QSL state remains unclear[71, 82, 86] as the zero field Hamiltonian is still unresolved.

In particular, non-Kitaev interactions dominant energy and temperature ranges have

not yet been experimentally established. Additionally, there is a need to determine if

excitations in these ranges maintain their fractional nature.

Raman scattering is a powerful probe detecting magnetic materials, which can

reveal the presence of long range order, symmetry and statistics of the excitations, as

well as the strength and nature of the exchange, even in single 2D atomic layers[47,

90–97]. Indeed, Raman scattering was the first to reveal the continuum from magnetic

excitations in α-RuCl3[53]. The Raman scattering process of fractional particles are

presented in Fig. 3.3. However, a careful study of the Kitaev term’s temperature and

energy dependence is still a challenge, as one requires a very high temperature and energy

resolution to show the spectral change and directly compare the spectra with theoretical

calculations[98]. Previously, Raman efforts relied on spectral integration over a certain

energy range which averaged out the energy dependence of the excitations, and the low

scattering intensity made it difficult to directly compare the spectra with theoretical

calculations from the exact Kitaev model. As such the role of the non-Kitaev terms, and

their size, could not be identified in previous efforts. Furthermore, demonstration of the

fractional nature relied on the integrated Raman intensity and thus required subtraction

of a bosonic background, without justification. This approach also meant fitting the data

with an average energy in the fermi function, further limiting the ability to uncover if
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Figure 3.3: Stokes and anti-Stokes Raman scattering process of QSLs at T = 0K and
T > 0K

the non-Kitaev terms affected the statistical response of the excitations.[70, 78].

Here, we overcome all these previous limitations with new Raman spectra with dra-

matically improved signal levels, high temperature and energy resolution. Firstly, having

improved the optics, our Raman measurements now obtain a signal level 18 times larger

than before[53]. This high signal level provides enough anti-Stokes response to ensure

the temperature is correct and allows us to directly extract the Raman susceptibility by

taking the difference between Stokes and anti-Stokes intensities, after the dark counts

have already been removed. In this way, the role of the non-Kitaev terms is revealed

via a direct comparison of the full temperature and energy dependence of the α-RuCl3

Raman susceptibility with a QMC calculation for the pure Kitaev model. Furthermore,

we provide compelling evidence for the fermionic nature of the excitations without the

need to subtract a bosonic background. Our results show that the Raman susceptibility

of α-RuCl3 is consistent with QMC calculations at higher temperatures and energies

(>40K &>6meV). The deviation between them in the low temperature and energy range

(<40K & <6meV) results from the non-Kitaev terms. Via these temperature and energy

boundaries, we directly measure the ratio of JK and Γ interactions in the Hamiltonian.
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Moreover, the high temperature(> 150K) difference between the Raman susceptibility

and the QMC indicates the presence of quasi-elastic scattering (QES) induced by ther-

mal fluctuations in the system, commonly observed in frustrated systems[51, 53, 70].

With our enhanced signal the anti-Stokes spectra for all temperatures can be compared

with the Stokes response to prove the sample is in detailed balance without laser heating

(see Fig. 3.8). To further explore the effect of non-Kitaev interactions, we fit the Raman

susceptibility with a Fermi function containing half the measured energy. The very good

overlap shows the excitations are governed by Fermi statistics even beyond the Kitaev

dominant range.[99] We also checked that the susceptibility integration is governed by

a Fermi function with half energy, which further confirms each fractional particle holds

one half of the scattering energy in both Kitaev and non-Kitaev dominant regimes.

Interestingly this is revealed without the need to subtract the bosonic background.

3.2 Experiment methods

3.2.1 crystal growth and characterization.

Single crystals of α-RuCl3 were prepared using high-temperature vapor-transport

techniques from pure α-RuCl3 powder with no additional transport agent. Crystals

grown by an identical method have been extensively characterized via neutron scatter-

ing techniques[83, 86, 100] revealing behavior consistent with what is expected for a

relativistic Mott insulator with a large Kitaev interaction[58, 68, 69, 73, 74, 76, 77, 85,

87, 89, 101–103]. The crystals have been shown to consistently exhibit a single dominant

magnetic phase at low temperature with a transition temperature TN ≈ 7 K, indicating

high crystal quality with minimal stacking faults[100]. Care was taken in mounting

the crystals to minimize the introduction of additional stacking faults, as evidenced by

the high reproducibility of the spectra across different crystals and experimental setups.

Characterization was consistent with previous studies[68, 71, 88, 104–106].
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3.2.2 Raman spectroscopy experiments.

Since Raman scattering involves a photon in and photon out, it allows one to measure

both the symmetry and energy change of an excitation. Furthermore, one can choose

an energy and/or symmetry channel to separate the magnetic, electronic and lattice

responses[53, 55, 70, 78, 96, 107, 108]. The majority of the Raman experiments were

performed with a custom built, low temperature microscopy setup[29]. A 532 nm

excitation laser, whose spot has a diameter of 2 µm, was used with the power limited

to 30 µW to minimize sample heating while allowing for a strong enough signal. The

sample was mounted by thermal epoxy onto a copper xyz stage. At both room and

base temperature the reported spectra were averaged from three spectra in the same

environment to ensure reproducibility. The spectrometer had a 2400 g/mm grating,

with an Andor CCD, providing a resolution of ≈ 1 cm−1. Dark counts are removed

by subtracting data collected with the same integration time, but with the laser off. To

minimize the effects of hysteresis from the crystal structural transition, data was taken

by first cooling the crystal to base temperature, and once cooled to base temperature,

spectra were acquired either every 5 or 10 K by directly heating to that temperature.

The absence of hysteresis effects was confirmed by taking numerous spectra at the same

temperature after different thermal cycles (100 K in the middle of the hysteresis region).

In addition, recent studies of the Raman spectra of RuCl3 suggest an effect of the surface

structure upon exposure to air[93, 104]. To minimize this, crystals were freshly cleaved

and immediately placed in vacuum within three minutes. Lastly, a recently developed

wavelet based approach was employed to remove cosmic rays[29, 109].

3.3 Fractional excitation and analysis

In inelastic light scattering, the measured intensity is determined by symmetry,

Fermi’s golden rule, and from the fluctuation-dissipation theorem, is proportional to
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the Raman susceptibility (Im(χ[ω, T ])) times a Bose function[107, 110]. In magnets

this can produce peaks from single magnons, broad features reflecting the two-magnon

joint density of states (JDos), or QES from thermal fluctuations[53, 55]. For the Kitaev

QSL, Raman predominantly excites pairs of fractional particles in the energy range

considered here (≈ 0.5JK < ℏω <≈ 2JK), leading to the energy loss (IS[ω, T ]) and

gain (IaS[ω, T ]) intensities[78, 111]:

IS[ω, T ] = Im(χ[ω, T ])(nB[ω, T ] + 1) = JDos[ω, T ](1− nF [ω/2, T ])
2 (3.1)

IaS[ω, T ] = Im(χ[ω, T ])(nB[ω, T ]) = JDos[ω, T ](nF [ω/2, T ])
2 (3.2)

where nB/F [ω, T ] are the Bose/Fermi distributions and JDos[ω, T ] is approximately

given by the JDos from the fractional particles. For responses from non-fractional

excitations, for example phonons, we expect an additional term to be added to the

susceptibility, without contributions from the Fermi function.

As shown in Fig. 3.4, we collected both the Stokes and anti-Stokes spectra of bulk

α-RuCl3 from 10 K to 300 K. Our Rayleigh scattering half width is 2.3 meV, enabling

measurement down into the low energy regime. The temperature dependent spectra show

a clear magnetic excitation continuum (2.3meV∼ 10 meV) below the first phonon, which

mostly results from the Kitaev interaction and is consistent with previous predictions

and measurements[53, 70, 78, 83]. Since the measured Raman intensity contains a

Bose factor, it is best to investigate the Raman susceptibility Im[χ[ω, T ]][55, 94, 96,

107]. Using our new anti-Stokes spectra, we directly determine the susceptibility from

the difference between the Stokes and anti-Stokes intensities (IS[ω, T ] − IaS[ω, T ] =

Im[χ[ω, T ]]). This new data set, combined with minimizing the rise in temperature due

to the laser, reveals the regimes in which non-Kitaev terms are relevant. Specifically,

Fig. 3.5 shows the comparison of the QMC results for the pure Kitaev limit and the
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Figure 3.4: Temperature dependent Raman intensity of α-RuCl3 in XY polarization.
Both Stokes and anti-Stokes data are collected from 10 K to 300 K with 5
K steps below 120 K and 10 K steps above. the gray shade is indicates the
magnetic continuum excitation
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Figure 3.5: The measuredRaman susceptibility in XY polarization of α-RuCl3 at 10
K (blue line) compared with the calculated result of the pure Kitaev limit
(purple line) at the same temperature. The enhanced signal at low energies
results from the non-Kitaev interactions in the system. By 40 K there is
nearly perfect agreement between the Raman data (yellow line) and the
QMC calculation (red line), indicating the non-Kitaev terms are not relevant
in this energy and temperature range.

Raman susceptibility at 10 and 40 K. While excellent agreement is seen at 40 K, the

data at 10 K only matches the model between 6 to 10 meV. Noting that this temperature

is still above the magnetic ordering temperature of 7 K, this additional susceptibility

results from non-Kitaev terms, as recently suggested by exact diagonalization (ED)

calculations[84].

To further investigate the temperature and energy dependence of the non-Kitaev

interactions, we consider the energy and temperature dependent colormap in Fig. 3.6.

Here χδ = χmeasured − χQMC is the difference between the measured Raman suscep-

tibility and that of the pure Kitaev model (determined by the QMC calculation). The

green color indicates the measured susceptibility is higher than the QMC results and
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the blue color indicates regions of very good overlap between the measurement and the

calculation. The black dots suggest the temperature and energy boundaries where the

system perfectly resembles the pure Kitaev QSL. Specifically, there is a large χδ in the

quarter circle area below 6 meV and 40 K, which can be explained as the region where

non-Kitaev interactions become dominant in the response. The deviation above 150 K

and below 8 meV results from the QES induced by thermal fluctuations in the system,

which is well known in frustrated magnets[51, 53, 70, 92, 108]. The high energy devia-

tion (>12meV) is from the low energy tail of the phonon. Nonetheless, the low energy

and temperature deviation from the pure Kitaev model is consistent with the calculated

intensities of recent ED results for a model with only Γ and Kitaev terms in the system

(K-Γ model)[84] with −JK/Γ = 5. Furthermore, the ED results suggest enhanced

response over that expected for the pure Kitaev limit for ωΓ ∼ 2.5Γ . As shown in our

colormap, when the temperature is low, the disagreement occurs for ωΓ < 6 meV. based

on the K-Γ model, this suggests Γ ≈ 2.4 meV, where the Heisenberg interaction and

terms beyond nearest neighbors are neglected. We note that regardless of the specific

non-Kitaev terms, this can be interpreted as an upper bound on the ratio of Kitaev

to non-Kitaev terms in this system. Furthermore, we find the best agreement for the

pure Kitaev limit with JK = 10 meV , consistent with our observed bandwidth of the

continuum (Fig. 3.4) of 30 meV.[53, 111] The Γ ≈ 2.4 meV we obtained here is also

consistent with the results obtained from neutron scattering (2.5 meV)[73], from thermal

Hall measurements (2.5 meV)[112], and from THz measurements (2.4 meV)[113].

Having established the size and extent of the non-Kitaev terms, we examine the

statistics of the excitations in α-RuCl3 to see if they are truly fractional. As the statistics

depends on both temperature and energy, one should make sure the system is in detailed

balance[107] and that laser heating is negligible, which was not quantitatively shown

before. As discussed in the supplemental, the fermionic response written above is

consistent with the fluctuation-dissipation theorem with the presence of time-reversal
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Figure 3.6: The temperature and energy dependent map of χδ(χδ = χmeasured−χQMC).
χδ at low temperature and low energy range shows the temperature and
energy boundary of non-Kitaev (NK) interactions in the system. χδ at the
high temperature and low energy range indicates the quasi-elastic scattering
(QES) in the system.

symmetry, requiring IS[ω, T ]/IaS[ω, T ] = e
ℏω

kBT [94, 107]. Previously, the discrepancy

between the prediction of the Bose factor and the measured intensity at low temperatures

was attributed to fractional statistics[70, 78]. However, these works did not exclude the

possibility that laser induced heating kept the measured area at a fixed temperature,

while the bulk was cooled. This is not unlikely, given the small specific heat and

thermal conductivity of RuCl3 at low temperatures[99–101, 114, 115]. Furthermore, as

described in the supplemental, previous uses of the anti-Stokes responses were unreliable

due to the low signal levels[53]. Most importantly, unless the temperature is well known,

it is difficult to directly compare with the theoretical prediction for fractional statistics. In

our current work we have made substantial improvements to the thermal anchoring and

collection efficiency to allow for much higher temperature resolution and lower Raman

frequency. In this way, we can observe the spectra change between different temperatures

and directly compare it with the QMC results. Most importantly, due to enhanced

signals and lower probing frequencies, we have been able to collect anti-Stokes response

at lower temperatures to ensure that laser induced heating is not an issue. Returning
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to the actual sample temperature, in Fig. 3.9, we compare the anti-Stokes intensity and

Stokes intensity times a Boltzmann factor with the measured temperature. The excellent

agreement between them reveals that there is nearly no heating in the laser spot and thus

we can use the measured crystal temperature. Unlike previous studies[53, 70], our new

quantitative comparison between Stokes and anti-Stokes limits the possibility of laser

heating to explain the low temperature upturn and confirms the sample is in detailed

balance.

We explore the possibility that the Raman susceptibility results from purely fermionic

excitions in Fig. 3.7a. If the excitation is fractional, one expects Im[χ(ω, T )] ∝

JDos(ω, T ) ∗ (1 − 2nF (ω/2, T )). This results from the particle-hole symmetry of

these excitations, and that we are probing creation/annihilation processes. To cancel

the constant term and focus only on the fermionic part, we show the difference of sus-

ceptibility: ∆Im(χ[ω, T ≤ 150 K]) = Im(χ[ω, T ]) − Im(χ[ω, 150 K]). The utility of

such an analysis is quite clear: the energy and temperature extent of the continuum can

be directly observed - without contributions from high temperature QES fluctuations

or phonons. To test the predicted fermionic response from fractional particles, we plot

∆nF [ω/2, T ] = nF [ω/2, T ]− nF [ω/2, 150 K], as contour lines on top of the data. The

agreement is quite good and is further confirmed via constant temperature cuts of the

data shown in Fig. 3.9, along with the calculated ∆nF [ω/2, T ]. The good agreement

between the data and Fermi functions with half of the scattering energy provides strong

evidence for the presence of pairs of fractional particles. We note this is done without

any artificial subtraction of a bosonic background.

The approach described above, relies on a nearly temperature and energy independent

JDos[ω, T ], which is expected from the numerical calculations for the Kitaev system

at temperatures above the flux gap[99]. This assumption appears to generally hold in

our data, whose temperature and energy evolution are generally described by a Fermi

function. Nonetheless, at the lowest temperatures, there is some deviation of the data for
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Figure 3.7: (a)Raman susceptibility of RuCl3, ∆Im[χ(ω, T )] = Im[χ(ω, T )] −
Im[χ(ω, 150 K)]). The curves with black outlines are the contour plots
of the Fermi function (∆nF (ω/2, T ) = nF (ω/2, 150)−nF (ω/2, T )). Both
data and the prediction are normalized to their maximum values. The agree-
ment between the two confirms that Raman creates magnetic excitations that
are made of pairs of fermions. The upturn of the Raman intensity in the high
temperature and low energy range results from thermal fluctuations of the
magnetism (quasi-elastic scattering). (b) Raman susceptibility of a similar
magnet, Cr2Ge2Te6, where, opposite to α-RuCl3, ∆Im[χ(ω, T )] is negative
and does not match nF (ω/2, T ).
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Figure 3.8: The excellent agreement between Stokes and anti-Stokes spectra of α-RuCl3
when normalized by the Boltzmann factor demonstrates the absence of laser
heating.

energies above 6 meV. The origin of this discrepancy is not clear, but likely results from

the temperature and energy dependence of the JDos[ω, T ]. Additionally, we find poor

agreement if the full scattering energy (nF [ω, T ]) is used (not shown). We additionally

performed the same analysis on another honeycomb system Cr2Ge2Te6 (Fig. 3.7), which

was grown by established methods and which is ferromagnetic below 60 K with a similar

Curie-Weiss temperature as α-RuCl3[108, 116]. The behavior of Cr2Ge2Te6 is the exact

opposite of α-RuCl3, namely, ∆Im(χ[ω, T ]) is negative throughout the whole measured

range and decreases upon cooling.

Returning to Fig. 3.7a, we have also drawn the boundary of the non-Kitaev contri-

butions determined from the analysis in Fig. 3.6. We find the Fermi function matches

the susceptibility very well, suggesting the Fermi statistics hold even when the agree-

ment with the pure Kitaev model (see Fig. 3.7) does not. However, given the rela-

tively large size of the Kitaev term relative to the non-Kitaev contributions, this may

not be surprising and suggests the excitations in α-RuCl3 are primarily fractionalized.

Our analysis presented in Fig. 3.6 and Fig. 3.7 also reveals the crossover from spin
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Figure 3.9: Comparison of nF (ω/2, T ) and ∆Im[χ(ω, T )] of RuCl3 at fixed tempera-
tures. The agreement further confirms the excitations are fermionic.

liquid-like behavior (i.e. fractional continuum) to a standard paramagnet. Indeed,

∆Im(χ[ω, 150 K ≤ T ≤ 200 K]) is nearly constant, as expected for a paramagnet in

this range. As discussed later, the response at higher temperatures is consistent with

quasi-elastic scattering. We note that the exact temperature at which the response will set

in, depends on the energy scale at which it is measured. As such the integrated response

investigated in Fig. 3.10,3.11 appears to have a higher onset temperature for the QES

due to the inclusion of higher energy scales. Specifically, a Lorentzian at zero energy

results from thermal fluctuations of the magnetism that confirm the magnetic specific

heat is consistent with a standard paramagnet at high temperatures. Lastly, this analysis

also provides new insights into the phonons overlapping the continuum. Specifically,

consistent with previous works we also find the phonons have a low energy tail due to

their coupling with the continuum (see Fig. 3.4 ). However, via our new comparison

with the pure Kitaev limit, it is clear the influence of the two lowest energy phonons

on the continuum is limited to ≈ 12 → 14meV , and ≈ 15 → 19meV , respectively.
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Figure 3.10: The continuum in α-RuCl3 due to fractional particles is removed by tak-
ing the difference between XY and XX intensities. This confirms the
continuum is consistent with predictions of the Kitaev model, and the high
temperature response is from quasi-elastic scattering (i.e. Lorentzian times
a Bose factor). (b) The integration of the Raman susceptibility(3meV -
8meV) with only the quasi-elastic scattering response, reveals a linear T
behavior above 150 K and temperature independent behavior below.

Interestingly, the response in these regions still follows the prediction of the Fermi func-

tion ( 3.7), showing the mixing of the phonons with the fractional excitations does not

significantly influence them.

To ensure our approach is self-consistent it is worthwhile to also analyze the in-

tegrated Raman response, as done previously in α-RuCl3 and Li2IrO3.[53, 70, 78]

Likewise, it is also crucial to find a reliable method to separate the QES response

from the continuum such that it can be independently studied for further confirmation

of the presence of Fermi statistics. This is now possible using both the polariza-

tion and Stokes minus anti-Stokes spectra (Im[χ[ω, T ]]). Since the continuum has

equal weight in both polarizations[53, 111] it can be removed via their difference:

∆IS/aS[ω, T ] = IXX
S/aS[ω, T ] − IXY

S/aS[ω, T ]. We also note the isotropic response of

the continuum implies an isotropic Kitaev interaction.[78, 111] As seen in Fig. 3.10a,

∆IS/aS[ω, T ] is consistent with thermal fluctuations (i.e. QES)[55, 92, 96], namely a

Lorentzian whose amplitude is given by the magnetic specific heat (Cm[T ]) times the
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temperature and appropriately weighted Bose factors (i.e. greater Stokes than anti-Stokes

intensity). We now calculate the QES amplitude via the spectral weight (SW) of the

Raman susceptibility: SWQES[T ] =
∫
χQES
XX [ω, T ]− χQES

XY [ω, T ]dω =
∫
dE∆χ. Here,

the integration energy range is 3 to 8 meV. Consistent with direct fits of the ∆IS/aS[ω, T ]

(see supplemental) and robust to the limits of integration (as long as phonons are not

included), we find SWQES[T ] ∝ T (see Fig. 3.10). This suggests the magnetic specific

heat is nearly temperature independent, as expected for a classical paramagnet at high

temperatures. Since the QES signal is nearly zero in χ[ω, T < 150 K], this confirms

the Raman susceptibility (and not the intensity) naturally separates the QES from the

continuum. Thus our new measurements reveal the energy and temperature range over

which the excitations are fractional without contamination from other contributions.

Having isolated the QES and identified its temperature dependence, we can in-

dependently check the temperature bounds of the Fermi statistics. Specifically, we

investigate the difference between the Stokes and anti-Stokes SW in a given polarization

(∆SW [T ] =
∫
(IS[ω, T ] − IaS[ω, T ])dω), which includes the integrated Fermi func-

tion from the fractional excitations and the QES contribution (see supplemental). As

shown in Fig. 3.11a & b for two different polarizations, the integrated weight follows

the expected response for pairs of fermionic excitations (
∫
(1 − 2nf (ω/2, T ))dω) until

T ≈ 150 K where it crosses over to a linear temperature dependence from the QES. The

fermionic response is equal in both polarization configurations and covers the Kitaev

ranges. Thus with just three parameters, one fixed by the lowest temperature, we fully

explain the SW for all energy ranges, temperatures, and polarizations. To further confirm

this, we tried the same analysis on our new Cr2Ge2Te6 data. As shown in Fig. 3.11c&

d, the difference between the Stokes and anti-Stokes of Cr2Ge2Te6 cannot be fit with a

Fermi function at all. Thus the results presented in Fig. 3.11a,b provide a quantitative

confirmation of the presence of fractional excitations up to high temperatures.
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Figure 3.11: Limit of Fermi statistics (a & b) Integrated spectral weight(3meV - 8meV)
of Im[χ(ω, T )], reveals Fermi statistics in α-RuCl3 below ≈100 K (solid
red line) in XX and XY polarizations. Above 150 K the response is linear in
temperature due to the quasi-elastic scattering (yellow lines). The spectral
weight(3meV - 8meV) from Cr2Ge2Te6 (c & d) is enhanced up to TC

(blue dashed line) but the temperature dependence above does not fit that
expected for fermions (solid red line).

38



3.4 Summary and outlook

To conclude, our higher quality data and anti-Stokes spectra provide direct compar-

ison of the Raman susceptibility energy and temperature dependence with QMC cal-

culations. At higher temperatures and energies, these results are consistent with QMC

calculations for the pure Kitaev limit. Consistent with ED calculations, the Raman

susceptibility is enhanced over the Kitaev QSL only at low energies and temperatures

due to additional non-Kitaev terms. Thus our results reveal the temperature and energy

boundary of non-Kitaev interactions becoming dominant. Furthermore, via comparison

of the measured Raman susceptibility and the Fermi function, the data provide concrete

evidence that the magnetic excitations in α-RuCl3 are fractional and follow Fermi statis-

tics. Interestingly, these fractional excitations follow Fermi statistics even in the ranges

where non-Kitaev terms become dominant. It remains to be answered whether, and

how, different non-Kitaev terms compete with each other in the low temperature and

energy range. Nonetheless, our approach enables a new means to extract the size and

influence of non-frustrating terms in QSLs, and could be applied at finite magnetic field

to confirm the fractional nature of excitations in the field induced QSL state of α-RuCl3.

3.5 Appendix A: Quantum Monte Carlo Calculations.

The Hamiltonian of the Kitaev model on the honeycomb lattice is given by

H = −Jx
∑
⟨jk⟩x

Sx
j S

x
k − Jy

∑
⟨jk⟩y

Sy
j S

y
k − Jz

∑
⟨jk⟩z

Sz
jS

z
k

where Sj represents an S = 1/2 spin on site j, and ⟨JK⟩γ stands for a nearest-neighbor

(NN) γ(= x, y, z) bond shown in Fig. 1a. In the calculation for the spectrum of the

Raman scattering we adopt the Loudon-Fleury (LF) approach. The LF operator for the
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Kitaev model is given by

R =
∑
⟨ij⟩α

(ϵin · dα)(ϵout · dα)JαS
α
i S

α
j ,

where ϵin and ϵout are the polarization vectors of the incoming and outgoing photons and

dα is the vector connecting a NN α bond[91, 111]. Using this LF operator, the Raman

spectrum is calculated as

I(ω) =
1

N

∞∫
−∞

dteiωt⟨R(t)R⟩, (3.3)

where R(t) = eiHtRe−iHt is the Heisenberg representation. The temperature depen-

dence of I(ω) is numerically evaluated using the Monte Carlo simulation in the Majorana

fermion representation without any approximation[58]. In the following we show the

details of the calculation procedure[78].

Using the Jordan-Wigner transformation, the Hamiltonian is mapped onto the Ma-

jorana fermion model as

H =
iJx
4

∑
(jj′)x

cjck −
iJy
4

∑
(jj′)y

cjck −
iJz
4

∑
(jj′)z

ηrcjck, (3.4)

where (jj′)γ is the NN pair satisfying j < j′ on the γ bond, and ηr is a Z2 conserved

quantity defined on the z bond (r is the label for the bond), which takes ±1. This

Hamiltonian is simply written as

H =
1

2

∑
jk

Ajk({ηr})cjck, (3.5)

using the Hermitian matrix Ajk({ηr}) depending on the configuration of {ηr}. The LF
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operator shown in Eq. (3.5) is also given by the bilinear form of the Majorana fermion:

R({ηr}) =
1

2

∑
jk

Bjk({ηr})cjck, (3.6)

where B({ηr}) is a Hermitian matrix. To evaluate Eq. (3.3), we separate the sum over

the states into {cj} and {ηr} parts:

I(ω) =
1

Z

∑
{ηr=±1}

Ī(ω; {ηr})e−βFf ({ηr}), (3.7)

with

Ī(ω; {ηr}) =
1

Zf ({ηr})
Tr{cj}

 1

N

∞∫
−∞

dteiωtR(t; {ηr})R({ηr})e−βH({ηr})

 , (3.8)

where Z =
∑

{ηr=±1} e
−βFf ({ηr}) and Zf ({ηr}) = e−βFf ({ηr}) = Tr{cj}e

−βH({ηr}). By

applying Wick’s theorem to Eq. (3.8), we calculate the Raman spectrum at ω(̸= 0) for

a given configuration {ηr} as

Ī(ω; {ηr}) =
1

N

∑
λλ′

[
2π|Cλλ′ |2f(ελ)[1− f(ελ′)]δ(ω + ελ − ελ′)

+ π|Dλλ′ |2[1− f(ελ)][1− f(ελ′)]δ(ω − ελ − ελ′)

+ π|Dλλ′ |2f(ελ)f(ελ′)δ(ω + ελ + ελ′)
]
, (3.9)

where f(ε) = 1/(1+eβε) is the Fermi distribution function with zero chemical potential,

{ελ} is the set of the positive eigenvalues of A with the eigenvectors {uλ}, and the

matrices C and D are given by Cλλ′ = 2u†
λBuλ′ and Dλλ′ = 2u†

λBu∗
λ′ . In the Monte

Carlo simulations, we generate a sequence of configurations of {ηr} to reproduce the

distribution of e−βFf ({ηr}), and hence the finite-temperature spectrum is simply computed
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as

I(ω) = Ī(ω; {ηr})MC

being the Monte Carlo average.

3.6 Appendix B: Correction for optical constants.

According to the Beer-Lambert Law, the intensity of the laser decreases exponen-

tially with the depth: I[z] = I0e
−αz, where d is the depth and α is the attenuation

constant, which is a function of laser frequency and dielectric constant of the material

(α = ω
c
Im[ñ(ω)] = −4πE[ω0]

hc
k[ω0]). Alternatively one can express this in terms of a

penetration depth indicating the length scale relevant to absorption: δ = 1
α
. Applying

this to our experiment, for a certain depth d, we find the incident laser intensity as a

function of distance from the surface, Iin[ω0, z] = I0e
− 4πE[ω0]

hc
k[ω0]z. Here, ω0 is the

frequency of the excitation laser, I0 is the initial incoming laser power in front of the

sample,and δ(≈140 nm) is much shorter than the thickness of α-RuCl3 bulk crystal. To

properly account for the temperature dependence of the optical constants on the mea-

sured Raman signal, it is crucial to account for these absorption losses. Specifically, the

measured intensity is reduced by the absorption of the outgoing Raman photons, (i.e.

Iout[ω, ω0, z] = Iin[ω0, z]e
− 4πE[ω]

hc
k[ω]z) where ω is the frequency of the scattered light.

Furthermore, one should also consider the probability of transmission at the surface

of α-RuCl3 (T [ω]), which also depends on the Raman light frequency. Applying the

transmission rate to the Raman signal, we obtain the Raman intensity coming out of the

sample at each point IRaman[ω, ω0, z] = Iout[ω, ω0, z] ∗ T [ω]. Finally, one obtains the

signal intensity by integrating the attenuated intensity of scattering point at each depth

via Icorrected[ω0, ω] =
∫ dmax

0
IRaman[ω, ω0, z]dz[29]. All presented Raman data in this

paper are corrected by this method using the previously published optical constants[69].
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CHAPTER IV

Modulation doping in Van de Waals heterostructures

4.1 Introduction

Two-dimensional (2d) nano-electronics, plasmonics, and emergent phases require

clean and local charge control, calling for layered, crystalline acceptors or donors.

Our Raman, photovoltage, and electrical conductance measurements combined with ab

initio calculations establish the large work function and narrow bands of α-RuCl3 enable

modulation doping of exfoliated single and bilayer graphene, chemical vapor deposition

(CVD) grown graphene and WSe2, and molecular beam epitaxy (MBE) grown EuS.

We further demonstrate proof of principle photovoltage devices, control via twist angle,

and charge transfer through hexagonal boron nitride (hBN). Short-ranged lateral doping

(≤65 nm) and high homogeneity are achieved in proximate materials with a single

layer of α-RuCl3. This leads to the best-reported monolayer graphene (mlg) mobilities

(4, 900 cm2/Vs) at these high hole densities (3 × 1013 cm−2); and yields larger charge

transfer to bilayer graphene (blg) (6× 1013 cm−2).
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Figure 4.1: Cartoon of modulation doping, the light bring is the current channel and the
green ball is the dopen, red arrow is the current flow.

Modulation doping in crystalline films[117] produced extreme carrier mobilities for

fast/high power electronics [118], efficient optoelectronics [119–121], qubits [122], the

fractional quantum Hall effect [123] and topological superconductivity [124]. However,

two-dimensional (2d) van der Waals materials lack crystalline dopants for permanent,

large, uniform, and local control of charge densities. Previous attempts utilized ionic

liquid and polymer electrolyte gating [125–132], atomic/molecular intercalation, func-

tionalization, and adsorption [133–137]. Densities exceeding 1014 cm−2 were achieved

in graphene[126, 129, 133, 134, 136], though at significant cost to sample quality. Fur-

thermore, these chemical approaches cannot be applied to air sensitive materials nor
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specific layers of the heterostructure. Here, we show these limitations are circumvented

with an insulating 2d material that acts as a crystalline acceptor.

Figure 4.2: Band alignment schematic, the work function difference between α-RuCl3
and other compounds yields charge transfer.

We focus on alpha-ruthenium(III) chloride (α-RuCl3), a van der Waals, narrow-band

Mott insulator with a deep work function of 6.1 eV (Fig. 4.2),[138] far greater than the

typical work functions of layered materials (≈ 4.5 eV). In α-RuCl3 the onsite Coulomb

repulsion (U) and strong spin-orbit coupling (λSOC) produce strongly narrowed valence

and conduction bands that are just 1 eV apart with the Fermi level close to the conduction

band edge [138, 139]. Taken together these properties imply α-RuCl3 will accept a large

density of electrons. This electronic structure also makes α-RuCl3 a good insulator

[140, 141], and thus is unlikely to interfere with electrical measurements. Further

isolation is possible by using an hBN spacer, through which α-RuCl3 still draws charge.

Additionally, this unique electronic structure produces complex magnetic interactions in

α-RuCl3 [142, 143], placing it close to a Kitaev spin liquid phase. Thus heterostructures

could enable novel magnetic states[144] and incorporate the topological excitations of

α-RuCl3 into devices. Lastly, for mid-IR plasmonic and optoelectronic applications,α-
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RuCl3 has minimal optical absorption[139] below the 1 eV gap.

4.2 Experiment methods

To establish α-RuCl3 as a crystalline acceptor and bring modulation doping to 2d

crystals, we employ spatially resolved Raman spectroscopy. This allows rapid probing of

the induced charge, strain, homogeneity, lateral and vertical extent of the charge transfer

in a variety of α-RuCl3 heterostructures, without fabrication. Our results provide the

first unambiguous evidence that even a single layer of α-RuCl3 is able to strongly

charge the target layer even when hBN is between them, including higher doping in

bilayer graphene. A variety of proof of principle experiments further point to its utility:

creation of a p-p′ homojunction for 2D optical sensors and electronics; charge transfer

to chemical vapor deposition-grown (CVD) graphene and WSe2, as well as molecular

beam epitaxy-grown EuS. In the latter case, the effect on EuS delivered a four-orders-of-

magnitude reduction of the measured resistance and an induced hole density of 6.5×1013

cm−2 predicted by ab initio “mismatched interface theory” (MINT)[145]. Our combined

Raman, transport and MINT results also point to the ability to tune the charge transfer via

twist angle, with minimal induced strain, crucial for achieving clean modulation doping

with short lateral extent (≤ 65 nm). This rather small length scale is consistent with

theoretical calculations for the formation of pn junctions in graphene due to mismatched

workfunctions with metal contacts as well as recent near-field IR experiments[146].

The short range also requires careful optimization to minimize inhomogeneous charge

transfer, which we find can be screened for using Raman spectroscopy, leading to

clean devices with a single, highly-doped conducting channel and the highest mobilities

(4, 900 cm2/Vs) of graphene charged to a similar level.
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Figure 4.3: (a) Representative Raman spectra for mlg (black trace), mlg/RuCl3 (yellow
trace), and mlg/CrCl3 (green trace) samples. (b) Correlation between the
graphene G and 2D Raman mode for different mlg-based heterostructures,
result of only strain or doping indicated with dashed lines.

Recently electronic transport experiments[140, 147] and first-principles calcula-

tions[145, 148] also suggested α-RuCl3 can dope mlg to hole densities of a few 1013

cm−2. However the two experiments also showed Dirac points close to zero gate voltage.

Furthermore, the Hall and quantum oscillation data imply multiple carrier densities or

a splitting of the Dirac cone. As we show through careful Raman studies, these features

resulted from regions where the two materials do not touch. Indeed, since transport

averages over the whole device it will include contributions from both the nearly charge

neutral and strongly hole doped regimes. Creating uniformly doped samples is crucial

for eventual device functionality and, according to electronic structure calculations, will

strongly effect the electronic properties of the combined system. Beyond disorder, the

lateral and vertical extent of the charge transfer, dependence on layer number and relative

rotation, ability to charge dope materials beyond mlg, and prototypical devices remain

unexplored.
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4.3 Modulation doping in 2D heterostructures

We begin with device (D1), a single monolayer graphene sheet laid across both mono-

and bilayer α-RuCl3, all supported by a SiO2/Si substrate. This and the other structures

measured in this work represent a new class of devices, incorporating α-RuCl3- or hBN-

supported graphene that either lack contacts or have etched contacts at the graphene edge

[149]. This ensures that the interface between graphene and α-RuCl3 is not affected by

the presence of metallic leads. The room-temperature Raman spectra is shown in Fig.

4.3 for D1 of the pure mlg and mlg/RuCl3 regions. In the former, we observe G and 2D

Raman peaks whose positions (ω0
G, ω

0
2D) = (1581.6±0.2 cm−1, 2676.9±0.7 cm−1) lie

within the range of accepted values for intrinsic graphene with small amounts of local

strain and doping from the SiO2 substrate [150–152]. In clear contrast, in device regions

containing graphene in contact with α-RuCl3, the G and 2D peaks are both significantly

blue shifted by 30 cm−1 and 22 cm−1, respectively, indicating sizable charge transfer.
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Figure 4.4: (a) False-color optical micrograph of D1, mlR is monolayer RuCl3, blR is
bilayer RuCl3 and R means RuCl3. Atomic force microscope of monolayer
α-RuCl3 step height (Inset). The black square marks the area scanned in
(b)Raman maps of the graphene G peak frequency for differentα-RuCl3 het-
erostructures, with schematics of each heterostructure above their respective
maps.

4.3.1 Doping level

The doping and strain corresponding to the G and 2D peak shifts are determined

following a well established procedure[151, 152]. In Fig. 4.3b, we plot the established

calibrations for pure strain and doping along with the distributions of peak shifts for the

pure mlg and mlg/RuCl3 regions in D1, taken from a spatially-resolved Raman map (Fig.

4.4b). The observed peak shifts in mlg/RuCl3 indicate an induced average carrier density

of ∼3 × 1013 cm−2, similar to previous reports [140, 147] and predictions [145, 148].

The charge density variations in each device are smaller than the differences between the

average values. As discussed below, we associate this with the (uncontrolled) relative

twist angle between the graphene and α-RuCl3. To determine the strain, we assumed it

was uniaxial since i) MINT[145] calculations indicate it is dominant, and ii) this provides
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better agreement with experiment compared to a biaxial strain model. No correlation is

found between doping and strain, with the latter being quite small (< 0.2%).

To determine whether this charge transfer capability is unique to α-RuCl3 or is

generic to all layered halides, we investigate devices incorporating CrCl3, a magnetic

semiconductor with a similar lattice structure to α-RuCl3. Our DFT calculations show

the conduction band of CrCl3 is quite close to the Dirac point of graphene (Fig. 4.3),

suggesting it cannot drive a large charge transfer. As expected, the measured Raman

spectra (Fig. 4.3a) together with a scatter plot of the peak positions (Fig. 4.3b) from a

SiO2/CrCl3/mlg/hBN stack reveal shifts of the 2D peak alone, while the G peak remains

essentially unchanged. Thus CrCl3 primarily produces a strain in the adjacent graphene

layer, confirming that charge transfer is not a generic feature of layered halides.

4.3.2 Thickness dependence

Next we turn to the thickness dependence of the charge transfer between α-RuCl3

and graphene layers. First we studied the spatially-resolved map of the Raman G peak

frequency for device D1 shown in Fig. 4.4, since this mode has the strongest dependence

on the carrier density in mlg. Surprisingly, there is no noticeable change in the G peak

frequency of graphene when the laser spot crosses from monolayer α-RuCl3 to bilayer

α-RuCl3, indicating a single monolayer is sufficient to induce the large hole density.
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Figure 4.5: Raman maps of the graphene G peak frequency for different α-RuCl3 het-
erostructures, with schematics of each heterostructure above their respective
maps.

The same is not true for graphene, where we find that bilayer is more heavily doped

than mlg. Specifically, we measured a heterostructure device (D2) having contiguous

mono- and bilayer graphene, each partially covering the same flake of α-RuCl3. We

compare the G-peak frequency of the blg/RuCl3 and mlg/RuCl3 regions in a map (Fig.

4.4b) and the G/2D distributions in (Fig. 4.10). Both show the G and 2D peak shifts are

smaller in blg/RuCl3 than in mlg/RuCl3. However, the density of states is larger in blg,

and thus the G peak shift for the same carrier density will be less as it depends on the

Fermi level. We find the resulting average carrier density in blg (6×1013 cm−2) is higher

than in mlg (3× 1013 cm−2). In tandem, we perform self-consistent density-functional

theory (DFT) calculations for blg/α-RuCl3 implemented for AA- and AB-stacked blg.

In both cases we find a larger charge transfer from α-RuCl3 into blg than mlg (Fig.

4.12e).

Inspired by traditional modulation doping that employs an intermediate insulating
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layer to separate donors/acceptors from the charged layer, we explored a third device

design. Device D3 contains three regions of bare mlg, mlg and α-RuCl3 in direct

contact, as well as mlg and RuCl3 separated by ≈3-nm-thick hBN. As the valence band

maximum of hBN is closely aligned with the work function of α-RuCl3 (Fig. 4.2), we

anticipate the insulating barrier will reduce—but not entirely eliminate—charge transfer

from the mlg. Indeed, the spatially resolved G peak map of D3 (Fig. 4.5a, along with the

distribution of 2D and G peak positions (Fig. 4.10), are consistent with the hBN spacer

lowering the induced hole density in mlg to 0.6× 1013 cm−2. Our DFT calculations of

mlg/hBN/RuCl3 heterostructures suggest this doping is tunable via an inverse relation

between the charge transfer and the intermediate hBN thickness (Fig. 4.5b).

Figure 4.6: Horizontal linecuts of the G peak frequency across the lines indicated in
previous devices, revealing the sharp doping change.

The G peak maps of devices D1, D2, and D3 all indicate the lateral charge transfer
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is short, changing abruptly across the α-RuCl3 boundary. This is illustrated via the

linecuts in Fig. 4.6, which reveal the doping transition is shorter than the 0.3 µm

scanning resolution.

Figure 4.7: Top, scanning photovoltage map of mlg/α-RuCl3 heterostructure acquired
at room-temperature with a 532 nm laser. Mlg is between the white dashed
lines, while right of the orange dashed line is covered by α-RuCl3. Bottom,
Gate voltage dependence of the photovoltage along the green linecut in the
scanned photovoltage map, consistent with a p-p’ lateral junction.

The potential utility of this sharp doping profile is demonstrated in room temperature

photovoltage measurements shown in Fig. 4.7 for device D4, a graphene channel

partially covered with α-RuCl3. The photovoltage map shows a clear photoresponse at

the boundary of the RuCl3 region, indicating the presence of a p-p′ junction leading to a

photovoltaic effect. The width of the response is consistent with the spot size of our laser

(≈ 1µm) suggesting a sharp doping profile. We ruled out photothermal effects[153] by

testing both the polarization dependence and the minimal effect of a displacement field

D (line scans in Fig. 4.7). The response seen in graphene not covered by α-RuCl3 is

likely due to inhomogenous local doping. Indeed, the photovoltage from the uncovered
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region is suppressed by D, whereas the α-RuCl3 covered region response is insensitive

to D. As such these results show the potential of α-RuCl3 in creating homojunctions of

different carrier densities for optoelectronic devices.

Figure 4.8: (a & c) Spatially-resolved homogeneity maps for D1 & D3, respectively, with
stacking schematics depicted above. (b & d) Histograms of the homogeneity
values for each map. B Inset, three representative Raman spectra from D1
with varying weights of shifted and unshifted peaks, showing the different
homogeneity.

Similarly crucial is the homogeneity of the induced charge. Given the short lateral
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extent, regions where the α-RuCl3 is not in good contact with graphene could have

little to no induced charge, yielding a Raman spectra with both shifted and unshifted

peaks, as shown by the spectra at three different locations of device D1 (inset of Fig.

4.8b). A combination of shifted and unshifted G peaks indicates the presence of both

fully doped and charge neutral regions, which likely occurred in previously reported

devices. We confirmed this by applying a gate voltage, which moved the center of the

unshifted peaks, but not the shifted G peaks as they come from regions with large carrier

density. The relative size of each region within the laser spot is correlated to the spectral

weight of the shifted and unshifted peaks, with some spectra (yellow shaded trace in Fig.

4.8b inset) revealing no neutral regions. Whether unshifted peaks are present or not,

the shifted peaks always appear at the same energy. This is consistent with extremely

short-ranged lateral charge transfer, leading to undoped puddles within doped regions

with nearly constant induced density. Note that if the chemical potential in α-RuCl3

were spatially inhomogeneous, we would expect a corresponding distribution of doping

in graphene that is not seen in the G peak shifts.

4.3.3 Doping homogeneity

To quantify the uniformity, we define homogeniety to be 100% when only a shifted

G peak is present, whereas 0% homogeneous regions exhibit shifted and unshifted peaks

with equal spectral weight. We then quantify the device homogeneity as (2× Inorm)− 1,

where Inorm is the intensity of the shifted G peak normalized by the sum of intensities

of both peaks. The map of sample D1’s homogeneity, shown in Fig. 4.8a, reveals a

sub-micron spatial variation. We find some regions with 95% homogeneity, indicative

of neutral regions ≤65 nm in radius, given our 300 nm resolution. The homogeneity

improves for graphene in contact with bilayer vs. monolayer α-RuCl3 due to better

mitigation of the surface roughness of the underlying SiO2 substrate. Further consistency

with our picture that the interface quality is crucial to uniform doping is provided by
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device D3 (4.8c). Here regions with atomically-flat hBN show improved homogeneity,

also revealed in histograms of the homogeneity values for D1 and D3 (see Fig. 4.8b

& d. These results imply that Raman spectroscopy can be used to pre-screen samples,

enabling the deterministic fabrication of clean and homogeneous devices.

Figure 4.9: Comparison of conductivity versus displacement field for a RuCl3/mlg/SiO2

device with surface contacts between the mlg and α-RuCl3 (dashed) and a
fully encapsulated, edge-contacted hBN/mlg/RuCl3 device (solid) device.
Inset, D-dependence of mlg/RuCl3 Raman G peak.
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Figure 4.10: Correlation between the graphene G and 2D Raman mode for all samples
discussed in the text (dots), as well as converted MINT results (diamonds)
for different twist angles.

These observations resolve outstanding issues in mlg/α-RuCl3 devices. Specifically

the appearance of a Dirac point near zero gate voltage in otherwise extremely conductive

and highly-hole-doped graphene (Fig. 4.9). The Raman maps for these devices exhibit

lesser homogeneity (Fig. 4.4a & 4.8a) due to numerous neutral regions (unshifted G

peak). In contrast, Raman maps in our new devices with smoother interfaces reveal

improved homogeneity measured by the absence of neutral regions (4.8c). Meanwhile,

the conductivity minimum is lacking in similar devices, as seen in the solid yellow

transport trace shown in Fig. 4.9. Here the Shubnikov-de Haas oscillations show a

single population of holes with no additional charge carrier populations. Transport

in device D5 in Fig. 4.9 yields the largest mobility, 4, 900 cm2/Vs, for single band

transport in graphene at correspondingly large densities (3 × 1013 cm−2). Competing
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doping methods, in particular solid electrolyte gating, produce higher densities but result

in significant disorder and lower mobilities (see Supplemental Table 1). Preliminary

measurements suggest that increasing the distance between the α-RuCl3 and graphene

yields improved sample mobility at the expense of induced charge in the graphene,

analogous to conventional modulation doping in 2d electron gases [117]. Further

studies are required and will be the subject of future work.

Figure 4.11: (a)Representative MINT supercell alignments for 0° (top) and 30° (bottom)
mlg/RuCl3 twist angles. (b) MINT-calculated mlg doping levels for six
graphene supercell positions at different relative twist angles.
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4.3.4 Angular dependence of the doping level

Lastly we explain the range of charge transfer in α-RuCl3 heterostuctures via the

relative twist angle. Our devices and previous reports indicate a large variation in hole

densities over 2–4 × 1013 cm−2 [140, 147], far greater than the spread within a single

device (δp ≈ 1–5× 1012 cm−2) (Fig. 4.10). Rotating the layers relative to one another

changes the overlap between the Ru d and p orbitals, impacting the charge transfer. To

this end, Fig. 4.11 shows MINT results for charge transfer at specific angles of the

graphene relative to α-RuCl3. The largest (smallest) charge transfer occurs at an angle

of 0° (30°). The calculated carrier densities and strains for these two angles, converted

to G and 2D peak frequencies, are plotted in Fig. 4.10a as orange and yellow diamonds,

respectively, in close correspondence to the results for devices D1 and D3. The MINT

results for a range of angles, shown in Fig. 4.11, indicate continuous tuning of the charge

transfer due to a change in orbital overlap.
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Figure 4.12: Doping levels calculated from Raman spectroscopy (filled bars), trans-
port (horizontally striped bars), DFT (diagonally striped bars), and MINT
(diamond-checkered bars).

4.4 Summary and outlook

In principle, similar effects could emerge from a low work function material act-

ing as a 2D crystalline donor. As such, modulation doping can be introduced into 2d

heterostructures with far reaching implications. For example, one can uniformly or lo-

cally charge a 2D material by controlling the regions over which it touches a crystalline

acceptor or donor. This enables a new regime of 2d plasmonics, improved electrical

transparency of contacts by locally doping the contacted layer, and the creation of lateral

pn junctions. Such devices will require expanding the doping to a wider set of 2d ma-

terials, as suggested by Fig. 4.2, our preliminary MBE EuS, CVD graphene and WSe2

results. Furthermore, the large and local electric fields in α-RuCl3 will break inversion

symmetry. As such they should enable new nonlinear responses in 2d materials and
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tune the spin-orbit coupling. Thus, when combined with magnetic 2d atomic crystals,

α-RuCl3 could provide new spintronic devices and topological phases such as skyrmion

lattices and spin liquids. Indeed an important question for future studies is the interplay

between the magnetism and charge transfer in α-RuCl3 heterostructures.
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CHAPTER V

One magnon non-Loudon-Fleury Raman scattering in

the Kitaev magnet

5.1 Introduction

We investigate the magnetic excitations of the hyperhoneycomb Kitaev magnet β-

Li2IrO3 by means of inelastic Raman scattering. The spectra exhibit a coexistence of a

broad scattering continuum and two sharp low-energy peaks at 2.5 meV and 3 meV, with

a distinctive polarization dependence. While the continuum is suggestive of fractional

quasi-particles emerging from a proximate quantum spin liquid phase, the sharp peaks

provide the first experimental signature of the ‘non-Loudon- Fleury’ one-magnon scat-

tering processes proposed recently[154]. The corresponding microscopic mechanism

is similar to the one leading to the symmetric off-diagonal exchange interaction Γ (as

it involves a combination of both direct and ligand-mediated exchange paths), but is

otherwise completely unexpected within the traditional Loudon-Fleury theory of Ra-

man scattering. Here we focus on β-Li2IrO3, which is the simplest of the 3D harmonic

honeycomb structures. As shown in Fig. 5.1, β-Li2IrO3 is in Fddd space group and

the Ir atoms are connected by zigzag bonds along c-axis orienting alternetively along

(a-b,a-b) and (a+b,a+b) directions. At zero field, the system orders magnetically below

Tc =38K. We present the temperature dependent Raman on this compound. In the
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Figure 5.1: (a) Hyperhoneycomb network of Ir4+ ions (yellow spheres) in β-Li2IrO3.
Each octahedron denotes a IrO6 cage.

Raman susceptibility, we observe two kind of magnon scattering below Tc, the spectral

weight(SW) shift from one to the other with temperature rising, which suggest the phase

transition from spiral to zigzag. The Raman susceptibility also show a broad contin-

uum at the same temperature range resulting from fractiona excitations, indicating the

co-existance of magnons and spinons scattering.

In this study, we investigate the magnetic excitation spectrum in the ordered state

of β-Li2IrO3 using Raman scattering. Our results reveal the first observation of the

magnon and fractional excitations co-exsistence in spin 1
2

frustrated 3D system and the

temperature dependent phase transition between commensurate and incommensurate

ordered states. The magnons also show the transition from spiral state to zigzag state.
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5.2 Crystal growth, handling and characterization.

High-quality single crystals of β-Li2IrO3 were grown by a vapor transport technique.

Ir (99.9% purity, BASF) and Li2CO3 (99.999% purity, Alfa-Aesar) powders were ground

and pelletized at 3,000 psi in the molar ratio of 1:1.05. The pellets were placed in an

alumina crucible, reacted for 12 h at 1,050°C, and then cooled down to room temperature

at 2 °C/h to yield single crystals which were then extracted from the reacted powder.

β-Li2IrO3 crystallizes in the orthorhombic Fddd space group.

5.3 Raman spectroscopy setup.

The Raman spectra presented here were obtained on a custom built, low temperature

microscopy setup [29, 143, 155]. A 532 nm excitation laser, whose spot has a diameter

of 2 µm, was used with the power limited to 10 µW to minimize sample heating

while allowing for a strong enough signal. The absence of laser induced heating was

crucial to ensure the ordered state is achieved, and is confirmed via stokes/antistokes

analysis as well as the appearance of magnons at the appropriate temperature. The

single crystal was mounted by silver paint onto a copper sample holder and vacuum

transferred onto xyz stage in in the cryostat [29]. At both room and base temperature

(10 K), the reported spectra were averaged from three spectra in the same environment

to ensure reproducibility. The spectrometer had a 2400 g/mm grating, with an Andor

CCD, providing a resolution of ≈ 1 cm−1. Dark counts are removed by subtracting data

collected with the same integration time with the laser blocked. To minimize the effects

of hysteresis from the crystal structural transition, data was taken by first cooling the

crystal to base temperature and then heating to the target temperature.
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5.4 Experiment results

Fig.5.1 shows the crystal structure of β-Li2IrO3. The Ir atoms are connected by red

and green zigzag bonds orienting alternetively along (a-b,a-b) or (a+b,a+b) directions.

We choose these crystal surface because it is a natural crystal face and we can avoid

artifacts of polishing the surface. Adjacent zigzag chains are stacked along c-axis

connected by blue bonds. Different bond color suggest different direction dependent

Kitaev interactions, which holds infinite degenerate state. A small perturbation from

Kitaev interaction may induce various ordered magnetic states, such as commensurate

zigzag order and incommensurate spiral order. The incommensurate state is unstable and

can be replaced by commensurate by applying magnetic field along b-axis[156–158].

However, it is still unclear what is the temperature dependent relationship between them

without external magnetic field.

Raman scattering is a powerful tool to study different state in β-Li2IrO3. It can pre-

form high energy resolution and low noise level, which make it possible to observe small

temperature dependent spectral change. In Fig.5.2, we show the Raman susceptibility

measured at 10K. Via Stokes and anti-Stokes susceptibility ratio, we confirm the sample

is in detailed balance without laser heating(see supplemental). The notation (a-b,a-b)

and (c,a-b) refer to the incident and scattering beam polarization in the crystal structure

frame. In both polarizations, the spectra show sharp phonons overlap on a broad con-

tinuum. The phonons follow the selection rule of Fddd space group and the continuum

was characterized as fractional paricle excitations before, resulting from spin 1
2

QSL

system[78, 142, 159, 160]. As the Kitaev interactions in β-Li2IrO3 is anisotropic, Kx ≈

Ky ̸= Kz[157, 158], the continuum show overall higher intensity when the incoming

light is a-b polarization. Besides the phonons and continuum, we note there are two

well-defined sharp peaks at very low energy in (c,a-b)polarization.

To better understand these sharp features, we focus on polarization (c,a-b) and

preform small step temperature dependent Raman. Shown in Fig.5.3b, two peaks
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Figure 5.2: (a) Raman susceptibility of β-LiIrO3 at 10 K, orange line shows (a-b, a-b)
polarization, blue line is (c, a-b) polarization.

resolve at 2.5 meV(M1) and 3 meV(M2) at 10K. From 10K to 29K, M2 intensity

decreases with temperature and merged into the high energy tail of M1, while M1

increases below 20K and start decreasing and softening when the temperature is around

25K and then disappear once the temperature reaches the TC . Similar to QSL 1-D and

2-D examples[142, 161], these two peaks can be explained as magnons. Two different

behavior magnons indicate two kinds of magnetic order and can be assigned to single-

magnon excitation process. Two-magnon process from zone boundary is excluded

because energetically the two-magnon feasure is predicted to be around 15meV and

have no polarization dependence, which is also observed(Shown in supplemental).

Furthermore, comparing the magnon peak with spinon dispersion at Γ point [158],

one can decide 0.9ω ≈15meV, which is the zone boundary two-magnon energy. Then

0.3ω ≈ 3 meV, which is the single-magnon energy and in good agreement with the

Raman susceptibility result. As for the two kinds of magnetic order, it was showed by

X-ray scattering that they can transit from one to the other with small field and their

intensities follow the sum rule[156]. The incommensurate has higher energy and not

as stable, we thereby can conclude M1 is related to commensurate state and M2 is

incommensurate state signal. Without external magnetic field, two ordered phase co-

exist below 25K, incommensurate state transit to commensurate state when temperature
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Figure 5.3: (a) Comparison of Raman susceptibility in the (c,a-b) channel at 10 K (blue)
and 40 K (red).(b) Temperature dependence of the two low-energy peaks
M1 and M2 seen in the (c, a-b) channel.

rising.

The softening of M1 above 25K suggest a large magnon decay process and breaks

down into the broad continuum at the end. Shown in Fig.5.3a, we plot both 10K and

40K of (c,a-b). At 10K, the magnon and broad continuum coexist, while at 40K only

broad continuum show up in the Raman susceptibility. The purple shade indicate the

broad continuum from fractional excitations at 40K, and it is clearly stronger than the

broad continuum at 10K.

The fact that the two low-energy peaks only exist below TI implies that they can be

assigned to magnons. To establish this we employ the recently revised theory of Raman

scattering discussed in Ref. [154], the non-Fluery Loudon terms of β-Li2IrO3 give rise

to a sharp, one-magnon peak in the (a-c) channel. Figure 5.4 shows this peak for the

present case of (c,a-b) polarization. As discussed in Yang’s paper, at the level of linear

spin-wave (LSW) theory (dashed black line), the position of the peak is centered around

ω2 ≃ 2.8 meV, close to the positions of the observed peaks M1 and M2. The same

calculation for the (a-b, a-b) channel shows no peak at this energy range, consistent with

the experimental results. This agreement on the position of the peak and its polarization
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Figure 5.4: The one-magnon Raman response computed within the non-LF theory, at
the level of linear spin wave theory (black dashed line) or with magnons
renormalized by the quartic interactionsH4 only (red solid line) [see detailed
discussion in the SM ], shows one low-energy sharp peak feature in the
(c, a − b) polarization channel. In contrast, the LSW theory with the LF
Raman operator gives no low-energy features (black dotted line, not visible
because the intensity vanishes). The inset shows the fit of the low-energy
peaks M1 and M2 to the phenomenological model discussed in the SM .

dependence gives strong support to the one-magnon origin of one of the two peaks.

As the AF order in the low-temperature phase is reduced with increasing temperture

towards TN one expects the spinon continuum to fill in at lower energies. It is therefore

useful to consider the prerequisites for magnon break- down in the presence of the

strongly anisotropic interactions.

Then we start talking about the integrations. In Fig.5.5a, we show the integration

of different energy range of (c,a-b) polarization. For 1 to 4 meV, we include two of

the magnons and 4.5 to 7.5 meV, we intensionally choose a similar integration energy
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Figure 5.5: (a) The SW in (c, a-b) polarization: The red dots show the SW from 1 to
4 meV, which includes both M1 and M2 modes; the blue dots represent the
SW from 4.5 to 7.5 meV, which incorporates a 3 meV interval of the broad
continuum with no magnon contribution. (b) The SW from 2 to 4 meV vs
T for (a-b, a-b) (black) and (c, a-b) (red) polarizations.

interval to the magnons, but in the only broad continuum energy range. We can see that

in the figure, for the magnons part, the SW decrease with temperature and there is a

turing point at 39K, which is the ordered temperature. While for the integration of only

the broad continuum, the SW is keep increasing with temperature and there is also a turn

point at Tc. For the Sw of the broad continuum , the temperature dependent behavior

is intergration range independent(see supplemental.) After the Tc, both SW of magnon

and continuum are parallel.magnon scattering at long wavelengths is strongly sensitive

to cooling through TN , in stark contrast to the continuum

In Fig.5.5b, we show the integration of different polarizations. there is no magnon

show up in the (a-b,a-b), so we can only see the continuum behavior, but for (c,a-b), it

contains both continuum and magnon behavior.

5.5 Summary

In conclusion, our Raman scattering on the 3D frustrated Kitaev QSL β-Li2IrO3

demonstrates clearly the existence of both magnons and the broad continuum from
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fractional excitations. We observed shift of intensity from M2 to M1 is consistent with

the non-Fluery Loudon theory.
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CHAPTER VI

Conclusions and outlook

6.1 Conclusions

In this dissertation, we have investigate the collective modes in charge density wave

and multiple magnetic systems. In Chapter 2, we first reported the light pathway

study of CDW Higgs mode in RTe3 using Raman spectroscopy. In cross polarization

channel, the asymmetric 2-fold intensity was observed, which was taken as the evidence

of scattering pathway interference. The high intensity polarization angle indicated

the constructive interference and the low intensity polarization angle indicated the

destructive interference. With the band mixing from the 3D rare earth structure, the

CDW vector could connects the p orbitals from the same or different bands. This resulted

in the momenta change in the excitation pathway, which interfered with non momenta

change excitation pathways. This result suggested the Higgs mode can be axial, which

was only considered as a scalar for decades.

In Chapter 3 and 5, we discussed the temperature dependent Raman scattering in

2D and 3D spin liquid candidate systems, α-RuCl3 and β-Li2IrO3 . In α-RuCl3, the

continuum from the fractional excitation was observed. The Raman susceptibility was

fitted to Fermi statistics and also the QMC calculation, the agreement and divation

suggested the Kitaev interaction range in temoerature and energy. In β-Li2IrO3 , the

one magnon scattering was demonstrated below the Neel transition. The one magnon
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can melt into the fractional excitaion transitions at higher tempertures. In addition to

that, the one magnon process is different to the traditional Fluery-Loudon theory.

In Chapter 4, the application of the phonon mode was showed. In priciple, charge

can flow from a high work function material to a low work function material. By

stacking α-RuCl3 with monolayer graphene, a large amount of electrons are transferred

to α-RuCl3, which has an extrmely deep work function. This process provides a clean

way to highly p dope the graphene and can provide the carrier density as high as 3 X

1013cm−2. As the dopens are not in the accepters, this process can be considered as

modulation doping in 2D materials and has far reaching implications. For example, one

can uniformly or locally charge a 2D material by controlling the regions over which

it touches a crystalline acceptor or donor. This enables a new field of 2D material

applications, such as generating plasmons, reducing electrode resistance and fabrication

high quality p-n junctions.

6.2 Outlook

The work presented in this thesis can be naturally extended along many different

directions. On one hand, the electronic Raman symmetry study can be applied to more

CDW materials. In the RTe3 series, there only exists one CDW when the center atom is

ligter than Gd and one more CDW order perpendicular to the original one will show up at

lower temperature when the central atom gets heavier, such as ErTe3. This second CDW

order could potentially lead to the symmetry change of the original CDW. For materials

not included in the RTe3 series, such as NbSe2, the CDW Higgs mode symmetry is still

a mystery. One can even add strain to destroy one of the CDW orders in this material

and try to observe the changes of the other two.

On the other hand, the magnetic excitation in α-RuCl3 and β-Li2IrO3 , can be

extended or applied to other QSL candidate materials. Such as external magnetic

field can tune the QSL candidate to gapless phase and Raman scattering could help to
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characterize the new phases. Further experiment of other QSLs can also be performed

in other 2D or 3D systems where the Neel transition temperature could be different.

In a more general perspective, the modulation doping in 2D heterostructures can

be widely used. This thesis stacked α-RuCl3 on one side of graphene but this can be

extended to a sandwich structure, like RuCl3/graphene/RuCl3 structure, which could

possibly double the carrier densities in graphene channel. In the area of device fabrica-

tion, the contact resistance is very important. Stacking RuCl3 could provide contact with

much lower resistance. In addition to that, patterned RuCl3 could in principle provide

periodic doping in other 2D materials.

Collective mode detection in quantum could lead to new physics insights and to the

new emergent physics as well as a wide range of applications
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