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Three self-contained essays explore government regulation in the airline industry, 

and how such policies affect competition. 

 

The first essay explores the proposed merger between US Airways and American 

Airlines in 2013, approved by the US Department of Justice (DOJ) under the 

condition that 104 airport slots (“landing rights”) at Ronald Reagan Washington 

National Airport, DC, be divested to low cost carriers. To investigate the efficacy 

of the slot divestment, I estimate demand and cost parameters along with bounds 

on the shadow price of an airline slot, and simulate counterfactual post-merger 

prices and quantities with and without the regulatory divestment. I find that the 

merger and associated divestment together increased consumer surplus for 

markets involving Reagan Airport by roughly 25%. This increase in consumer 

welfare happened because the median price fell and the quantity of passengers 

increased. I show that the marginal value of a slot to an airline is decreasing in 

total slots, validating the DOJ’s decision to divest slots from the largest 

incumbent (US Airways, whose marginal value was $153 per flight) to new 



 

entrants with high valuation (like Southwest, $852). Beyond providing a key 

input to merger analyses, my approach can also aid in analyzing voluntary 

exchanges of airline slots, which are subject to DOJ approval due to their 

perceived anti-competitive effects.  

 

The second essay investigates the impact of airport slots on competition in 

general. Congestion is managed in high-density airports by capping the number of 

flights permitted in any given hour and allocating the rights (or slots) to a 

takeoff or landing among airlines. Airlines must use their slots at least 80% of the 

time to keep them for the next season. This rule creates a perverse incentive for 

airlines to hold on to underutilized slots by operating unprofitable flights instead 

of forfeiting these slots to a rival. Using exogenous removal of slot control at the 

Newark Airport in 2016, we investigate the lengths at which airlines go to meet 

the minimum requirements that let them keep the slots while violating what a 

neutral observer might call the “spirit” of the regulation. 

 

In my third essay, I assess the effectiveness of the gross upward pricing pressure 

index (GUPPI) in predicting price changes of the 2013 merger between US 

Airways and American Airlines. I compute GUPPI using only publicly available 

data, and find that it is close to the observed average increase in price. However, 

unlike most markets, flights to/from Reagan Airport experience a price drop, 



 

likely due to mandated structural remedies; the GUPPI predicts a price increase 

at Reagan Airport, whereas a full merger simulation correctly predicts a price 

reduction. I argue that the divergence between GUPPI and, if appropriate, the 

more accurate predictions of the merger simulation is due to the weaker 

assumptions made under the simulation. This underscores the fact that while 

GUPPI, with its restrictive assumptions and low computational burden, can be a 

good primary screening tool, it does not negate the necessity of employing a more 

rigorous secondary tool (such as a merger simulation) when assessing mergers. 
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Effect of Airport Slots in Competition and

Antitrust Policy: Evidence from a Recent Merger

Ratib M Ali

April 12, 2022

Abstract

The Department of Justice (DOJ) approved a proposed merger between US

Airways and American Airlines in 2013 under the condition that 104 airport

slots (“landing rights”) at Ronald ReaganWashington National Airport, DC, be

divested to low cost carriers. To investigate the efficacy of the slot divestment,

I estimate demand and cost parameters along with bounds on the shadow price

of an airline slot, and simulate counterfactual post-merger prices and quantities

with and without the regulatory divestment. My estimation assumes that

firms maximize profits subject to both flight frequency and price, and that

their optimization problem for slot-controlled airports is constrained by their

slot endowment. I find that the merger and associated divestment together

increased consumer surplus for markets involving Reagan Airport by roughly

25%. This increase in consumer welfare happened because the median price

fell and the quantity of passengers increased. I show that the marginal value

of a slot to an airline is decreasing in total slots, validating the DOJ’s decision

to divest slots from the largest incumbent (US Airways, whose marginal value

was $153 per flight) to new entrants with high valuation (like Southwest, $852).

Beyond providing a key input to merger analyses, my approach can also aid
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in analyzing voluntary exchanges of airline slots, which are subject to DOJ

approval due to their perceived anti-competitive effects.

Keywords: merger, structural remedy, competition, antitrust policy, airlines, airport

slots.

JEL Classification: D2, D4, K2, L2, L4, L9, R4.

I Introduction

I investigate the competitive effects of the merger between US Airways and American

Airlines in 2013, and ask whether (or to what extent) remedies by the Department of

Justice (DOJ) mitigated the expected loss in consumer welfare. The DOJ approved

a proposed merger between US Airways and American Airlines in 2013 under the

condition that 104 airport slots at Ronald Reagan Washington National Airport

near Washington, DC, be divested to low-cost carriers (LCCs). Absent this remedy,

the newly merged entity would have controlled 591 out of a total of 881 daily slots

at Reagan Airport. I evaluate the role of this remedy by calculating the marginal

value of an airport slot and comparing the observed divestment to different simulated

counterfactual divestment regimes.

Mergers involving major US airlines need prior approval of the DOJ, which can

unconditionally approve a proposed merger, categorically deny it, or approve a proposed

merger subject to some pre-conditions. Pre-conditions are designed to remedy the

negative impacts of the merger on consumers. An important component in any such

analysis involving airlines is the allocation to individual airlines of the limited number

of gates and slots (“landing rights”) at airports. Since 2010, settlements and court

orders regarding most proposed mergers involved reallocation or restrictions on gates
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and slots from one airline to another (this being an example of a structural remedy),

but there is little empirical evidence to determine the optimal number of gates/slots

to be swapped, or the effects of such divestment on consumer welfare and market

structure.1 My retroactive analysis builds on past work (Kim and Singal, 1993; Peters,

2006; Berry and Jia, 2010; Dobson and Piga, 2013) by incorporating the effects of

the structural remedy when evaluating consumer welfare, and varying the structural

remedy to investigate alternate outcomes.

I estimate a random utility discrete choice model that flexibly incorporates preferences

for characteristics of a flight (following Berry et al. (1995) and Nevo (2001)), including

the number of flights on a given route. I assume there are two distinct types of

consumers – business and leisure travelers – as opposed to a continuous distribution

of heterogeneous consumers (see Kalouptsidi (2012) for how the two approaches are

theoretically analogous, and Berry and Jia (2010) for an application of the method).

Identification comes from the variation in exogenous variables and instruments used

for endogenous variables, choices of which are heavily discussed in related literature

(Borenstein, 1989; Berry, 1992; Ciliberto and Tamer, 2009; Berry and Jia, 2010;

Ciliberto et al., 2016). This variation allows me to estimate unique coefficients on

the product characteristics for a representative business-traveler and leisure-traveler,

as well as the proportion of business and leisure travelers in the economy.

I use the demand estimates to compute consumer surplus for consumers flying

through Reagan Airport before and after the merger. I find that the merger and

the associated divestment together increased consumer surplus by 25.5%, or $7.12

per passenger per one-way flight for travelers in the Reagan market. The merger

1Mergers that involve restrictions or reallocation of gates and slots include those between: Virgin
America and Alaska Airlines (2016); US Airways and American Airlines (2013); United Airlines and
Continental Airlines (2010).
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and divestment increased the share of LCCs flying to and from Reagan Airport,2 the

share of direct flights to and from Reagan Airport,3 and the overall number of flights.

Both consumer types prefer LCCs over legacy carriers, direct flights over connecting

flights, and more flights to their destination rather than fewer flights, resulting in this

increase in consumer welfare. This gain in consumer surplus occurs as median prices

fall, number of passengers increase, and the frequency of flights increase. I show that

this increase in consumer welfare is due to the divestment.

In order to simulate alternative outcomes, I model the supply side of the operations.

One challenge with the model is to treat flight frequency as endogenous; it is common

to treat frequency as an exogenous product characteristic (a priori, consumers prefer

flights with high frequency since they can find flights closer to their optimal departure/

arrival time). Since the divestiture was a reallocation of slots, it requires firms to

adjust frequency, which makes frequency an endogenous variable. Therefore, I assume

firms choose both frequency and price to maximize profits.

On the supply side, I estimate cost parameters by assuming firms maximize profits

subject to flight frequency and price, allowing me to equate marginal revenue to

marginal cost. Ideally, I would assume firms play a three-stage game, choosing

network, then frequency (given network choice), and then price (given network and

frequency choice). However, while some papers do endogenize airline network choice

(Borenstein, 1989; Aguirregabiria and Ho, 2012), to do so and allow firms to choose

price for each market is computationally infeasible. Moreover, a separate DOJ settlement

(United States v. US Airways Group, 2014) barred the newly merged entity from

dropping any routes to small towns, in order to preserve the positive externalities

2The divestment only allowed LCCs to apply for the slots.
3LCCs operate more direct flights than legacy carriers, owing to their point-to-point business

strategy.
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that arise from flights to these communities. As a result, I assume the airline network

is exogenous, and that firms simultaneously choose price and frequency. Frequency

can be thought of as a component of product quality, whose improvement incurs a

cost to the firm (Berry and Waldfogel, 2010).

I compute marginal revenue from the estimated demand parameters. Using the

firm’s first-order condition with respect to frequency, I use variation in the marginal

revenue as slot endowments differ across airlines and year to identify bounds on the

shadow value of the marginal airport slot, or in other words, the opportunity cost

of the marginal flight to an airline. This value is estimated from the supply side,

unique for every airline-year pair, ranging between $150 and $550 per flight for legacy

carriers, and over $800 for LCCs. The shadow values of the slots confirm that the

DOJ decision to restrict the divested slots to LCCs increased market efficiency by

allocating the slots to airlines with the highest slot valuations.

To separate the effects of the merger from the divestment, I use the post-merger

flight schedule, but pass the ownership of slots from US Airways and American

Airlines through to the newly merged entity. My model allows firms to choose the

profit-maximizing vector of prices, which then allows me to calculate and compare

consumer welfare of the observed merger-with-divestment outcome to a counterfactual

merger-without-divestment outcome. A more flexible counterfactual that allows airlines

to re-optimize their flight schedule in addition to prices would be more realistic.

However, re-optimizing firms’ flight schedules involves modeling the entire network of

flights for each airline, which is computationally burdensome, and left for future work.

I contribute to the merger literature that investigates the efficacy of structural
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remedies.4 Structural remedies are generally thought to be better equipped than

conduct remedies5 at combatting the anticompetitive effects of mergers (Kwoka,

2013), and successful implementation is often possible, as found in the brand divestiture

following Johnson & Johnson’s acquisition of Pfizer’s consumer health division (Tenn

and Yun, 2011). However, other works show that such remedies may be futile

in shoring up competition (Cabral, 2003), especially if the divestitures are being

proposed by the merging entities themselves (Vasconcelos, 2010) to appease DOJ

concerns. My unique contribution to this literature is to suggest a framework to

evaluate the welfare implications of this and similar mergers, which is possible because

slots are relatively identical to one another (unlike brands). In addition, I also

compute the marginal value of an airport slot, which informs us of an airline’s value

of an additional airport slot.

Even though the existing literature is rich in entry and merger analysis, it is

nascent when it comes to airport slots. Exceptions include theoretical work on

voluntary exchange of slots (Reitzes et al., 2015), which corroborates my findings that

reallocating slots from large holders to small ones enhances consumer welfare, and

slot allocation as a mechanism design problem (Schummer and Vohra, 2013; Polsby,

2001). My research shows how to incorporate airport slots to the standard demand

estimation framework, and how to empirically model firm decisions to reallocate flight

frequency in the face of regulatory changes.

My work complements literature on entry in the airline industry (Ciliberto and

Tamer, 2009; Ciliberto et al., 2016). Entry decisions can be made along the extensive

4Structural remedies alter a firm’s structural composition by forcing them to divest assets or
brands, and is common for horizontal mergers.

5Conduct remedies regulate the conduct of the firm with its competitors, such as an information
firewall between brands, or in the case of vertical mergers, forced non-discrimination policies between
competing clients of a firm, when one of the clients merges with the firm in question.
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margin (airline entering a new route) or the intensive margin (increasing the number

of flights on a route). Following the US Airways-American Airlines merger, slots were

divested away from the merged entity. However, a separate settlement with the DOJ

prevented the merged entity from closing low-density routes to small communities;

the data corroborates that no routes were completely shut down by the merged entity.

Therefore, route reoptimization by the merged entity comes from decreasing frequency

on routes without shutting them down. While existing literature on dynamic entry

focuses on analyzing the extensive margin (Ciliberto and Tamer (2009) does so in the

context of the repeal of competition restriction for Dallas Love Airport, and Ciliberto

et al. (2016) for the same US/American merger), I model airline decisions along the

intensive margin to reallocate flights from one pre-existing route to another following

an exogenous shock in the number of slots owned by an airline.

The rest of the paper is organized as follows. Section II explains the market

structure and the divestment regime in detail. Section III explains the data, and

highlights how the data structure informed the modeling choices. Section IV describes

the theoretical model, and discusses the choice of instruments and approach to estimation.

Section V discusses my findings, and Section VI concludes.

II Background

The merger between US Airways Group and AMRCorporation – the parent companies

of US Airways and American Airlines – was announced in February 2013, following

the bankruptcy of American Airlines in 2011. Under Chapter 11 protection, American

Airlines was seeking a potential merger partner from among its creditors (including

US Airways). The merger was approved shortly after the proposal, in March 2013,
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in the US Bankruptcy Court. The US DOJ, along with six states (Arizona, Florida,

Pennsylvania, Tennessee, Texas6, and Virginia) and the District of Columbia filed

a petition in the US District Court in August 2013 seeking to block the merger.

Plaintiffs reached a settlement in November 2013, with the merger being approved,

subject to some structural remedies – specifically, the divestment of 104 airport slots

from the merged entity (who would control 591 of the 881 total daily slots at Reagan

Airport absent this remedy) to LCCs.

The new corporation formed in December 2013, and the airline was required

to complete the divestment within 180 days. The two brands were given a single

operating license in April 2015, and industry insiders noted that the two brands kept

their crew and resources separate until the last US Airways flight flew in October 2015.

II.1 Slots

A slot is a permission to perform one departure or one arrival from an airport within

a one-hour window on a given day. Slots can be considered as a more granular version

of a gate – an airline can use a gate to schedule multiple departures and arrivals on a

given day, but only one departure or arrival is allowed per slot. One can loosely say

that one gate has many slots associated with it (this is technically incorrect, since a

slot is not tied to a specific gate).

Only three airports in the United States currently have slot restrictions – John

F Kennedy Airport and LaGuardia Airport in New York City, and Ronald Reagan

Washington National Airport (DCA). The existence of slots is an indication that these

6Texas dropped out of the petition in September when the merging firms promised to maintain
the headquarters of the newly merged entity in Dallas, Texas, and to continue their flights to the
smaller towns in Texas.
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airports are congested; the slots are allocated by the Federal Aviation Administration

(FAA), as opposed to the individual airport authorities, who allocate airport gates.

No other US airports have such restrictions on use of airport gates, but they are

common at congested international airports (including Toronto Pearson, London

Heathrow, Paris Charles de Gaulle, Frankfurt, Beijing Capital, Shanghai Pudong,

and Sydney).

The settlement required the following structural remedies from the merged firm

(United States v. US Airways Group & AMR Corporation, 2013)7:

Table 1: Structural Remedies Required
Airport Name Type Slot remedy Gate remedy
Reagan, DC Gates & slots 104 slots Up to 5
LaGuardia, NYC Gates & slots 34 slots 2
O’Hare, Chicago Gates — 2
Los Angeles Gates — 2
Love Field, Dallas Gates — 2
Logan, Boston Gates — 2
Miami Gates — 2

The divested slots from the two slot-controlled airports were allocated to JetBlue,

Southwest, and Virgin America (see Table 2 for details). American Airlines earned

$425 million from the mandatory sale of slots (Maxon, 2014), or about $3 million per

slot, which is between the upper bound of the shadow value for the newly merged

entity (the seller of the slots) and below the lower bound of the shadow value for the

low-cost entrants (the buyers of the slots).

7In addition, although not formally part of the DOJ remedy, the US Department of
Transportation reached a separate agreement with American Airlines that they will use all of their
commuter slots at DCA to serve small, medium, and non-hub airports (i.e. airports that enplane
less than 1% of annual domestic passenger enplanement) for at least five years (United States v. US
Airways Group, 2014).
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Table 2: Allocation of divested slots
Reagan Airport: 104 slots divested

Southwest 56
JetBlue 40
Virgin America 8

LaGuardia Airport: 34 slots divested
Southwest 22
Virgin America 12

Note: 881 slots at Reagan Airport per day, or (up to) 60 slots per hour; 71 slots per
hour at LaGuardia Airport.

Table 3: Total Slots Allocation at Reagan Airport

Airline
Slots before

merger
Change in

data
Change by
judgment

Slots after
merger

American 118 -100 -104 18
Delta 104 — — 104
JetBlue 20 +40 +40 60
Southwest∗ 6 +76 +56 82
United 82 — — 82
US Airways 473 — — 473
Virgin America 2 +8 +8 10
Others 71 -19 — 52
Total8 876 +5 — 881

*Southwest also acquired AirTran during this period, gaining 20 additional slots at
DCA

III Data

I obtained data on operational ownership of each slot through requests under the

Freedom of Information Act (FOIA) from the Federal Aviation Administration (FAA).

The information is at an hourly level, aggregated to a quarterly level because of the

restrictions placed by the quarterly structure of the DB1B database. Information

on required divestment of slots is taken from the summary judgment for the merger

(United States v. US Airways Group & AMR Corporation, 2013). Table 3 provides

a breakdown of the slot allocation at Reagan Airport before and after the divestment.

8Discrepancies between the data and judgment arise from the difficulty in ascribing regional
airlines to a ticketing carrier. For instance, whether an “Air Wisconsin” flight is operated for
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The slots data are supplemented by the publicly available DB1B database, which

contains a 10% sample of all tickets issued for travel originating and ending in the

United States. Each record contains the fare paid, origin, destination, all connections,

miles flown, number of passengers ticketed together, and the ticketing carrier, at a

quarterly level. I drop all observations where the market fare is less than $50,9 and

those with more than two segments per journey.

Since the focus of my study is on the effects of the merger at Reagan Airport,

I consider all itineraries in the contiguous United States originating or terminating

at Reagan Airport, keeping one-way tickets and splitting roundtrips as two one-way

journeys. While most research on airlines focus on medium-to-large airports only,

my work involving slot allocation requires me to consider all routes from Reagan

Airport. I exclude routes that use Reagan Airport only as a connection (for example,

Boston-Washington-Austin), since a vast majority of passengers traveling through

Reagan Airport originate or terminate their journey at Reagan Airport.10 My sample

contains 571,202 passengers across four years. A summary of my observations are

listed in Table 4.

I use data from two quarters – the third quarters of 2012 and 2015. Since the

merger was proposed in February 2013, I consider the third quarter of 2012 as my

pre-merger period. The post-merger period was chosen to be the third quarter of

2015, which captures the period when the slot divestment was fully consummated

(by 2014). The third quarter is chosen to control for seasonality in demand for air

American Airlines or United Airlines is manually determined.
9This removes award tickets from my sample.

1084.01% of all passengers at Reagan Airport either originate or terminate their journeys at Reagan
Airport, which is large compared to the same statistic for established hubs: Dallas-Forth Worth
(48.12%), Atlanta (35.61%), or Charlotte (32.28%). Incorporating itineraries connecting through
Reagan Airport will only add computational burden and consideration for substitution patterns
between other connection points, but will not enrich the results in any meaningful way.
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Table 4: Summary Statistics
Year 2012, Q3 Year 2015, Q3
(Before merger) (After merger)

Variables Mean Std. Dev. Mean Std. Dev.
Fare 243.80 127.66 238.33 121.05
Distance (miles) 1,061.26 674.12 1,043.12 677.95
Population (millions) 4.61 2.02 4.82 2.16
Layover 0.48 0.50 0.40 0.49
Legacy 0.85 0.35 0.79 0.41
Tourist 0.20 0.40 0.18 0.38
Carriers in the Market 4.65 1.33 5.07 1.34
Observation 124,522 155,691
Markets 293 291

All means are significantly different between 2012 and 2015 at a 99%
confidence level.

Population is the geometric mean of the populations of the two end-
cities, measured in millions.
Layover is an indicator for whether a passenger has layovers (layover
= 1) or flies direct.
Legacy is an indicator for whether a passengers uses a legacy carrier
(legacy = 1) or low-cost carrier.
Carriers in the Mkt is the number of carriers that serve a given market.
Markets is the number of unique markets being served.

travel.

I define a market as an unordered city-pair in a year (for example, Washington-

Boston-2012), leaving me with 1,288 markets. In line with literature (Berry et al.,

2006), the market size is the geometric mean of the MSA population of the end-point

cities.

I distinguish products on the basis of the carrier and whether the journey is

nonstop or connects through another airport (I make no distinction between the

identities of anyn connecting airports). Even at that level of definition, a Boston-
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Washington-JetBlue-nonstop product that costs $120 might be vastly different from

the same product costing $400. The lower-priced ticket might be purchased six

months in advance, and taking place on a Tuesday afternoon, as opposed to the

higher-priced ticket purchased a week in advance for a Friday evening departure.

Since I don’t observe features such as day/time of purchase, departure, or arrival,

I separate my products into progressive fare bins (following Berry and Jia (2010))

of $200 to capture the differences in these two products. Therefore, a product in a

market is an unordered airport-pair-carrier-layover indicator-fare bin pentuple.

I generate the number of flights on a given route at the market-carrier level

using the T100 database, which contains the population of all airplanes flown at

a monthly level. I aggregate all the direct flights in the market offered by the carrier.

To incorporate the number of connecting flights, I compile all possible connecting

itineraries along the route offered by the carrier, and include the minimum of the

flight frequencies from the two legs as the number of flights along the route. I add

the minimum flight frequencies from all possible connecting routes to the number of

direct flights to calculate the total number of flights offered by a carrier in a market.11

IV Model

I assume firms simultaneously choose both prices and flight frequencies, and then

demand is realized. The firm choice can be thought of as a simplification of a three-

step decision process for firms, where firms choose network, frequencies, and prices in

11For instance, for Boston-Washington-2012-American quadruple, I consider all possible
connecting itineraries. For an itinerary Boston-Charlotte-Washington, I take the minimum of the
direct flights on Boston-Charlotte and Charlotte-Washington as the number of possible flights on
the Boston-Charlotte-Washington itinerary. I add the minimum frequencies for all possible Boston-
x-Washington connections to the number of direct flights between Boston-Washington, to obtain the
total number of possible flights offered by the Boston-Washington-2012-American quadruple.
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three distinct steps. As discussed earlier, the response to the merger by the merged

entity was reducing frequencies along routes, as opposed to shutting down routes

entirely. Table 5 shows that the total number of markets or the number of markets

served by US Airways or American Airlines did not change meaningfully following

the merger.12 The reason for this is mostly legal – in a separate settlement with the

DOJ, the newly merged entity promised not to terminate any routes serving small

communities (United States v. US Airways Group, 2014). The relevant focus of my

study to investigate the efficacy of slot divestment, therefore, is along the intensive

margin, and I assume the network as given. Therefore, I assume firms choose price

and flight frequency simultaneously.

Table 5: Number of markets served
Before merger After merger

Total Markets 293 291
Markets served by US Airways 156
Markets served by American Airlines 139
Markets served by US or AA 210 212

In the second stage, consumers buy tickets and demand is realized. Given my

focus on the use of slots and its effects on demand, I focus my analysis on journeys

originating or terminating in Reagan Airport (DCA).

IV.1 Demand

Each consumer, i, traveling in market t, either chooses to consume one product

j, or not. A market t is a nondirectional-city-pair–year triple; a product j is a

nondirectional journey between the pair of cities served by a given airline, and

differentiated by whether a journey is direct or connecting. A market contains all

12Moreover, the entry by low-cost carriers did not result in service to a new market – entry by
LCCs were exclusively in markets already served by incumbents.
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the products in the consumer’s choice set. For example, in the Boston-Washington-

2012 market: Boston-to-Washington and Washington-to-Boston are both the same

product; Boston–JFK–Washington and Boston–Washington are different products;

Boston–JFK–Washington and Boston–Charlotte–Washington are the same product;

Boston–Washington by American and by JetBlue are two different products; and

Boston–Washington–Boston roundtrip with the same carrier is considered as one

product with two observations. Lastly, passengers pay different prices for the same

flight; I capture this variation by assuming that passengers who purchase from different

price bins on the same flight consume different products from one another.13 To

achieve this, I separate each product into progressive bins (Berry and Jia, 2010), with

an increment of $200. Therefore, an examplar product in the Boston-Washington-

2012 market will be: “JetBlue-direct-priced between $50 and $250,” while another

product might be “American-connecting-priced between $450 and $650.”

I use a discrete-choice demand model (Berry & Jia, 2010), where each consumer

choooses product j in market t to maximize their utility, uijt, given by:

uijt = xjtβr − αrpjt + βf
r fjt + ξjt + ϵijt (1)

where,

• r ∈ {l, b} is consumer i’s type (leisure or business traveler)

• xjt is a vector of product characteristics;

• βr is a vector of “tastes for characteristics” for consumers of type r;

• αr is the marginal disutility of a price rise for consumers of type r;

• pjt is the product fare;

13Consumers may pay different prices based on the day/date/time of the flight, date/time of
purchase, or for premium services like priority boarding or extra legroom. I don’t observe any of
this variation, and therefore take into account this variation by splitting passengers into progressive
fare bins.
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• βf
r is the utility from an additional flight available on a route;

• fjt is the number of flights available on the route by a specific carrier, differentiated

by direct or connecting;

• ξjt is the unobserved (to the econometrician) product characteristic; and

• ϵijt is the iid logit error.

In this model, instead of each consumer having a unique taste parameter, I

bin consumers into r = 2 types. Given the stylized fact that consumer tastes for

connections, scheduling, and prices are correlated (some consumers are more sensitive

to price and less sensitive to the duration/timing of journey and the number of

connections, while other consumers exhibit the opposite tastes), a discrete consumer-

type model captures these correlations neatly without estimating the full variance-

covariance matrix for the continuous random coefficients model.14 In line with our

understanding of consumer heterogeneity in air travel, these consumers can be categorized

as leisure or business travelers.

The vector of product characteristics, xjt, include the logarithm of distance between

the two airports, a dummy for whether the carrier is legacy or low-cost, distance

to the closest alternate airport,15 a layover indicator, whether the destination is a

predominantly tourist destination (measured by a indicator for flights to and from

Las Vegas or Florida), and the carrier-level standard deviation of price on a route.

14The type-specific parameters and the proportion of business-type passengers are identified by
rationalizing the substitution patterns among similar products when the menu of products differs
across markets. A continuous random-coefficient logit model estimates k means and k(k + 1)/2
elements on the variance-covariance matrix (although the full covariance matrix is rarely estimated
in reality); a type-specific logit model, à la Berry and Jia (2010), estimates r × k consumer taste
parameters and the r − 1 parameters for proportions of each type, which is less than the number
of elements measured for the random-coefficient model when r = 2, while capturing the consumer
correlation in taste.

15For the market Raleigh-Washington, each endpoint has an alternate airport closest to it. Since
my sample is limited to all markets involving Reagan Airport, I take the distance from the non-
Reagan airport (in this example, Raleigh Airport) to its closest airport (Greensboro Airport) as the
distance to the closest alternate airport (71 miles).
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Price and flight frequency are written out separately to highlight that they are

endogenous and need to be instrumented. Flight frequency is a stand-in for the quality

of match between a consumer’s desired departure/arrival time and the departure/arrival

time offered by the product (as in Hotelling (1929)). Frequency can be thought of

as a measure of product quality, whose improvement benefits consumers, but also

incurs a cost to the firm (Berry and Waldfogel, 2010), calling for it to be treated as

an endogenous variable.

A consumer i chooses product j in market t if their utility from j exceeds the

utility from any other product j′,

uijt > uij′t, ∀j, j′ ∈ J

where j = 0 denotes the outside good, and utility from the outside good is

normalized to zero (ui0t = 0).

This results in the standard logit share equation:

sjt(xt, pt, ft, ξt, θd) =
∑

r

γr
exp (xjtβr − αrpjt + βf

r fjt + ξjt)∑J
j=0 exp (xjtβr − αrpjt + βf

r fjt + ξjt)
(2)

where γr is the proportion of type-r consumers, and δrjt = exp (xjtβr − αrpjt + βf
r fjt + ξjt)

is the mean utility of a product enjoyed by a representative type-r consumer.

I run a modified version of the standard BLP logit demand estimation model;

the modification (Kalouptsidi, 2012) allows me to leverage the fact that I have

(two) distinct consumer types, and allows me to recover γr, the proportion of type-r

consumers.

17



IV.2 Supply

While estimating demand, I bin each route by a progressive-price bin to capture the

heterogeneous nature of the product by price. This distinction is moot for the supply

side, since my object of interest is the marginal decision to operate a flight, and I

have no way of separately identifying the number of seats on a flight being sold to

a specific progressive-price bin. Therefore, the supply side product is a route-year-

carrier-connecting status quadruple, subscripted by the letter k.

Profits for the multiproduct carrier c are:

Πc

(
p, f
)
=
∑

∀k∈Kc

Πk

(
p, f ,MCk

)
=
∑

∀k∈Kc

(
Msk

(
p, f
)
· pk − fk ·MCk

)
(3)

where, M is the market size, MCk is the marginal cost of a single flight, and Kc

is the set of products sold by carrier c, and fk is the frequency offered by a carrier-

connecting status on a route, which includes both direct flights, dk, on the route as

well as connecting flights, connk. and fk = dk + connk. Boldface indicates the vector

of the frequencies and prices of all the products in the market.

Firm c maximizes profits with respect to price and frequency, subject to the slot

constraint:

max
{pk,fk}∀k∈Kc

∑

∀k∈Kc

Πk

(
p, f ,MCk

)
s.t.
∑

k

dk ≤ Sc (4)

where Sc is the total number of slots available to firm c. The slot constraint

is defined for direct flights, dk, because the universe of direct flights encompass all

the physical flights departing from/arriving to Reagan Airport (DCA), including all

connecting flights from it. I set up the Lagrange function for firm c as follows:
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Lc =
∑

∀k∈Jc
Πk

(
p, f ,MCk

)
+ λc(Sc −

∑

k

dk) (5)

where λc is the shadow value of a slot operated by airline c. The firm has two sets

of first-order conditions (FOCs), with respect to price and frequency. I only need to

consider the FOC with respect to frequency to estimate the shadow value of a slot.

IV.2.1 FOC with respect to frequency, and the Lagrange multiplier

The FOC with respect to frequency is:

∂Lc

∂fk
= M

∑

∀i∈Jc

∂si
∂fk

pi

︸ ︷︷ ︸
MRk

−MCk −
∂dk
∂fk︸︷︷︸
=1

λc = 0 (6)

where Jc defines hte set of carrier c’s products (specific to price bins), denoted by

subscript i. Since dk = fk − connk,
∂dk
∂fk

= 1.

An interesting result of this paper is my ability to identify the shadow value of

the marginal slot to an airline, λc. I can recover a different λk for each flight, and

in theory, all λk’s will be equal for a given carrier. Therefore, it is appropriate that

I instead estimate a single λc for a given carrier, because the slot endowment is

determined and binds at the carrier level.16 In other words, the multiplier is specific

to a carrier because the marginal decision to allocate a slot to a route is determined

at the carrier level. For example, American’s marginal slot will be allocated to the

route with the highest marginal profit, which may (not) be the same route or the

same marginal profit if the marginal slot was being allocated by JetBlue. Therefore,

16This also has the added advantage of smoothing out noise in the data, and logistical and
operational barriers that may cause the shadow values to not be equal across all products for a
given carrier.
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the shadow cost of the marginal slot is meaningful at the carrier level.

The shadow value of a slot informs us of how an airline considers tradeoffs between

competing routes within their choice set. This shadow value also captures the capacity

of an airport to support more flights; since λc captures an airline’s value of the

marginal slot, an airport authority can estimate this shadow value to determine

whether airport expansion will cause profit-maximizing firms to increase frequency.

Essentially, this shadow value is of interest in itself because it captures a firm’s

incentives to deviate from the observed equilibrium menu of route frequencies.

In the existing literature, this shadow cost of the flight would be implicitly present

in the marginal cost of all flights originating from or terminating at a slot-controlled

airport (through the constant term). I capture the shadow value of the marginal slot

to an airline through fixed effects, separately from the variable cost that is correlated

with distance, which is important in modeling the firm’s decision and subsequent

welfare effects.

The FOC with respect to frequency captures the optimization decision surrounding

an additional flight; the marginal revenue recovered here, and the marginal cost, is of

an additional flight. This second system of FOCs will be solved simultaneously with

the slot constraint:

∂Lc

∂λc

= Sc −
∑

k

fk (7)

I will separately estimate the MCk of a flight (discussed below), and use it

together with the demand-side parameters and data, to recover the shadow cost of

an additional slot to a carrier, λc.
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IV.2.2 Costs

In line with the transportation literature (McCarthy, 2001), transportation cost is

increasing in distance flown, at a decreasing rate. A quadratic function, therefore,

sufficiently captures the cost of fuel and flight crew that increases with distance, as

well as the distance-invariant expenses of a flight. I use a simple function:

MCk ≡ κ0 + κ1distk + κ2dist
2
k + ωk (8)

where distk is the actual distance flown by a flight and ωk is a mean-zero error

term. From the firm’s FOC with respect to frequency in Equation 6, we have:

M̂Rk −MCk − λc = 0

I substitute the functional form of the marginal cost to estimate the cost parameters:

M̂Rk = κ0 + κ1distk + κ2dist
2
k + λc + ωk (9)

λc is identified using fixed effects for the carrier interacted with year.

IV.2.3 FOC with respect to price

I estimate the counterfactual vector of prices using the following FOC for pricing

product i with respect to price:

∂Lc

∂pi
= M

(
∂si
∂pi

pi + si +
∑

∀j ̸=i,j∈Jc

∂sj
∂pi

pj

)
= 0

⇒ si +
∑

∀j∈Jc

∂sj
∂pi

pj = 0

⇒ ŝi(xi, p̂i, fi) +
∑

∀j∈Jc

∂ŝj(xj, p̂j, fj)

∂p̂i
p̂j = 0

(10)
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where ŝi is the share of the i-th product (which is a function of the estimated price)

calculated using Equation 2. This system of FOCs are solved for the price, pi, under

various counterfactual scenarios represented by different product characteristics, xi’s,

and frequencies, fi’s. The system can be separated by market, since the optimal price

only depends on within-market observables.

IV.3 Instruments

Table 6: First stage regression for instruments

Price Frequency
Number of rival passengers in direct legacy flights 0.0325∗∗∗

(11.96)
Number of rival passengers in direct low-cost flights 0.0214∗∗∗

(3.97)
Destination is hub -10.72∗∗∗

(-12.75)
Total flights by the carrier from origin 169.1∗∗∗

(14.02)
Total nonstop flights by the carrier from origin -0.831

(-0.50)
Predicted total flights -1.302∗

(-2.10)
Predicted total direct flights 7.307∗∗∗

(10.83)
Constant 281.8∗∗∗ -6.964∗∗∗

(130.17) (-13.44)
Observations 10,456 10,456
R-squared 0.0188 0.3916
F-value 66.91∗∗∗ 1682.05∗∗∗

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

I assume that, in the short run, the existence of airlines, their hubs, networks,

and routes are exogenous, but airlines can control the intensive margin – they choose

how many flights to fly along a route, and the price of each seat. To that end, both
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market fare and flight frequency are endogenous, and need to be instrumented for.

Since I assume networks are exogenous, network features can instrument for flight

frequency. Specifically, this includes instruments such as the total number of flights

operated by the carrier out of the origin airport and the total number of nonstop flights

from the origin airport operated by the carrier. Following Berry and Jia (2010), I also

construct instruments for flight frequencies by first regressing segment departures on

characteristics of the end cities, and then including the predicted segment departures

as instruments.

To instrument for price using cost shifters that do not directly affect demand, I

again exploit the assumption that network features (for example, other airport hubs)

are exogenous to the Reagan market (Borenstein, 1989). For example, airlines have a

larger pool of airplanes and flight crew available at hubs, and can thus better minimize

non-weather delays for flights that use a hub as an endpoint.

I use as instruments for price: an indicator for whether the destination airport

is a designated hub for the carrier, and the number of rival passengers traveling on

direct flights to their destination (split by whether the carrier is legacy or low-cost).

IV.4 Identification

The type-specific logit model assumes that consumer tastes are drawn from a discrete

distribution.17 As such, I estimate 2k + 1 parameters: a coefficient for each of the k

product characteristics for leisure and for business travelers, and a parameter for the

17I assume two consumer types, so I have a bimodal discrete distribution to draw from. Assuming
an underlying discrete distribution for consumer tastes also allow for analytic solutions for the
inversion of share equations.
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proportion of business travelers.

I begin with a stylized example, assuming that consumer tastes follow a simple

logit model. In a market, there are two products identical in every aspect, except

that one product is priced $100 and the other $500. If the market share is one-half

for both the products, the introduction of a third product (identical to the first two)

priced at $100 will change the market share to one-third for each of the three products

(readers might know this as the “Red-Bus Blue-Bus” problem (McFadden, 1974)).

Our intuition, however, is that substitution is more likely to occur between the two

$100-products than between the products priced differently. If the observed market

shares deviate from the results implied by the simple logit model, I can rationalize

the observed market shares by assuming two coefficients on price. When comparing

identical markets with different product assortments, the implied substitution patterns

from observed market shares allow me to identify two distinct coefficients for each of

the product characteristics.

The assumption that each of the coefficients and the proportion of business-

travelers are the same across all markets allows me to uniquely identify each of the

2k + 1 parameters. Allowing any of the parameters to vary across markets would

deprive me of the across-market variation required to identify any of the parameters.

IV.5 Estimation

I recover the demand parameters θd = {αr, βr, ξjt, γ} and supply parameters θs =

{κ, λc} separately.

I begin with the demand estimation. In order to form the demand moment
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conditions, I first invert the share equation to solve for the unobservable characteristics,

ξjt:

ξjt = s−1(xjt, pjt, sjt, θd) (11)

I find the vector of unobservables, ξjt, using the following contraction mapping:

ξH+1
jt = ξHjt +

(
ln sobsjt − ln sjt(xjt, pjt, ξjt, θd)

)
(12)

where, sobsjt is the observed share, sjt is the market share estimated using Equation

2, and H is the H-th iteration.

My choice of using contraction mapping on the product unobservables, ξjt, follows

Kalouptsidi (2012), and deviates from literature (Berry et al., 1995; Nevo, 2001) that

solves for the mean utility, δjt, instead. Since a type-specific-coefficient logit model

has multiple mean utilities, each corresponding to a consumer-type, I cannot invert

the share equation to solve for a unique mean utility for a product. Kalouptsidi (2012)

shows that theoretically, the two methods are equivalent.

The moment condition used in the estimation:

E
(
h(zt) · ξ(xt, pt, st, ϕ, θd)

)
= 0 (13)

is formed by interacting my demand-side unobservables with a vector of demand-side

instruments, zt, the details of which are discussed in subsection IV.3.

I use the θd recovered here as inputs to obtain a better estimate of share, and

iterate between the contraction mapping and moment condition to obtain a better

estimation for θd. This process continues until the moment condition is minimized by
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a θd that returns a stable ξjt.

To estimate supply-side parameters, I use θd to compute the marginal revenue of

a flight, M̂Rk, and back out the κ̂’s and the average shadow cost of a slot at Reagan

Airport to an airline, λ̂c.

To simulate a counterfactual world in which the merger is consummated without

the divestment, I change the ownership of all slots belonging to American Airlines

and US Airways to a new entity. In markets where both US Airways and American

Airlines exist, I simulate a best-case scenario for the merged entity: where the best

product unobservables between the two airlines (the highest ξjt) are assigned as the

product unobservable of the new product, and a worst-case scenario: where the worst

product unobservables between the two airlines (the lowest ξjt) are assigned as the

product unobservable of the new product.

In order to compare the realized scenario with the best-case and worst-case scenario,

I compute the expected consumer welfare (de Jong et al., 2005) in each scenario using

the following equation:

Expected Consumer Surplus =
∑

r

γr
1

αr

ln
J∑

j=1

exp δrjt (14)

Since I normalize the mean utility of the outside good to zero for all consumers, this

expected consumer surplus is the average consumer surplus earned by a representative

consumer in excess of the consumer surplus from the outside good.
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V Results

V.1 Demand and Cost Coefficients

The demand coefficients in Table 7 are consistent with the two types in the model

capturing leisure-traveler and business-traveler preferences. With this labeling, business-

type travelers (price-elasticity of demand, εD = −2.42) are less price sensitive than

leisure-type consumers (εD = −4.56), and dislike layovers more than leisure-type

consumers do. Leisure travelers prefer going to tourist destinations more than business

travelers, and prefer routes with higher price deviation (giving them the opportunity

to purchase tickets from the cheaper end of the spectrum). I find the proportion of

leisure travelers for routes involving Reagan Airport to be 53.42%, lower than the

national average of 63% in 2006 estimated by Berry and Jia (2010).

Cost coefficients are estimated using Equation 9. The coefficients indicate that

marginal cost is increasing at a decreasing rate for all relevant values of distance.18

V.2 Shadow value of slots

The estimated fixed effects for shadow values listed in Table 9 are from the third

quarter of each year. The merger takes place between February 2013 – when the

merger was announced, and April 2015 – when a single operating license was granted

to the newly merged carrier. As such, we can think of 2012 prices to be pre-merger,

and the 2015 prices to be post-merger-and-divestment.

Since I calculate the shadow value of the marginal slot using fixed effects, I capture

the sum of the true shadow cost and any fixed costs not associated with distance (see

18Because Equation 9 is quadratic, the marginal cost is increasing in distance until distance equals
2,912 miles. However, this is already greater than the distance between Reagan Airport and Los
Angeles, the airport farthest away from Reagan Airport in the contiguous United States.
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Table 7: Demand Coefficients
Covariate Type-Business Type-Leisure
Constant -0.5772 4.1593

(1.2694) (0.1076)
Layover -5.3488 -4.9447

(0.0911) (0.0391)
Tourist -0.1612 0.2332

(0.0335) (0.6695)
Logdist -0.8545 0.5996

(0.1274) (0.0202)
Closest 0.0005 0.0010

(0.00001) (0.0021)
Legacy -1.9311 -2.8259

(0.2132) (0.0507)
SD price -0.0093 0.0634

(0.0098) (0.0507)
Price -0.0104 -0.0195

(0.00032) (0.00056)
Frequency 0.0179 0.0072

(0.00093) (0.00030)
Proportion∗ 46.58% 53.42%

(0.00000)
Parentheses contain standard errors.

* The proportion of leisure-type travelers is the complement of proportion of business-type

travelers, and thus do not have standard errors of its own.

Equation 9). Mathematically,

F̂Ec = λc + κ0 (15)

where F̂Ec is the estimate using fixed effects, λc is the true shadow value for

airline c, and κ0 is the fixed cost of operating a flight. We can estimate bounds on

the true shadow value by making extreme assumptions about the fixed cost κ0 and

the true shadow value.

Assumption 1 : The shadow value of the dominant incumbent (US Airways/American

Airlines) is zero.
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Table 8: Cost Coefficients
Covariate Coefficient
Miles flown (squared) -0.0013

(0.0001)
Miles flown 7.6165

(0.4205)
Parentheses contain standard errors.

This assumption can be justified by noting that US Airways’ slot utilization

(calculated by the number of flights scheduled as a percentage of total slots) is the

lowest among all carriers, hovering around the minimum required 80% mark.

A corollary of this assumption is that the estimated fixed effect for US Airways,

F̂EcUS from Equation 15 is equal to κ0. Deducting this estimated κ0 from all

estimated fixed effects gives us the lower bound on true marginal shadow value of

slots for all airlines.

Assumption 2 : The fixed cost of operating the marginal flight is zero.

This assumption can be justified by arguing that all fixed costs associated with

operating the marginal flight are captured by a quadratic function of distance. Since

doubling the distance will cause the cost of operating the marginal flight to less than

double, this can capture the distance-invariant costs like gate agents’ wages and jet

bridge rentals when distance is zero.

We can explain the low slot utilization with the inefficiencies of a hub-and-spoke

network when capacity is constrained; slot utilization is lower for all legacy carriers,

lending credence to this explanation.
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A corollary of this assumption is that F̂Ec = λc for all airlines, since κ0 = 0,

which establishes an upper bound on the true marginal shadow value of slots for all

airlines.

The two extreme assumptions, combined, give us bounds on the true shadow value

of the marginal slot to an airline. The true shadow values implied by Assumptions 1

and 2 are outlined in Table 9:

Table 9: (Bounds on) shadow values implied by estimated fixed effects, in dollars
2012 (Before merger) 2015 (After merger)

Slots Lower bound Upper bound Slots Lower bound Upper bound
US Airways 473 0.00 152.62

491 0.00 233.79
American 118 272.46 425.08
Delta 104 353.03 505.65 104 311.76 545.55
United 82 207.81 360.43 82 240.87 474.65
Southwest — — — 82 617.93 851.72
JetBlue 20 862.92 1015.54 60 685.51 919.30

The shadow value of slots reflects the worth, in dollars, of the last slot controlled

by an airline. We observe two patterns. Firstly, the value of slots increases for

most airlines (except the merged entity), even those not directly involved with the

divestment (United and Delta, although the lower bound estimate for Delta falls post-

merger). This perhaps reflects a general upward trend in the economy, making each

flight more valuable than in the past, or a collective increase in the shadow value of

each slot due to a possible reduction in competition on legacy routes.

Second, the shadow value of a slot is decreasing in total slot allocation. This is

best observed in Figure 1, with the slope of a fitted line through the points being

-1.24 (p=0.017 ). A corollary of this is that the divested slots were allocated to firms

who valued the slots the most (JetBlue and Southwest). If a regulator offered an

30



US ’12

AA ’12

DL ’12

UA ’12

JB ’12

US/AA ’15

DL ’15

UA ’15

SW ’15

JB ’15

2
0

0
4

0
0

6
0

0
8

0
0

1
,0

0
0

S
h

a
d

o
w

 v
a

lu
e

 (
$

)

0 100 200 300 400 500
Number of slots

Shadow value of marginal slot

Figure 1: Shadow value of the marginal slot against total slot allocation (upper
bound)

additional slot to a carrier, with the alternate being that the slot is never created, the

shadow value represents the amount of money an airline is willing to spend to buy this

additional slot from the regulator. This is not the willingness-to-pay for an additional

slot if the alternate is another airline buying the slot. Airlines might be incentivized

to foreclose their competitor from obtaining the slot,19 which is not reflected in the

values in Table 9. Since airline products are substitutes, the shadow values in Table

9 reflect the minimum price an airline is willing to pay for an additional slot at a

competitive auction (where the alternate is a rival carrier buying the slot).

Lastly, we can engage in some back-of-the-envelope calculation to externally verify

the shadow values of the slots. We know that American Airlines received $425
19The foreclosing incentive is as follows: Delta Airlines values an additional slot at $546, but if

Delta doesn’t buy a slot for sale and it is bought by United Airlines, this additional slot could be
used by United to directly compete with Delta on a specific route, reducing Delta’s profits by, say,
$200. This means that when the alternate to buying a slot is a rival carrier obtaining it, Delta is
willing to pay up to $746, more than the shadow values in Table 9, in order to foreclose their rival.
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million for the mandatory sale of 138 slots (Maxon, 2014), or $3.08 million per slot.

Using US/American’s post-merger upper bound, the transaction price implies that

the merged entity expected to recoup the value of the slot in 36 years ($3.08 million

÷ 365 days per year ÷ $234 per day). Using JetBlue’s post-merger lower bound,

the transaction price implies that JetBlue expects to recoup the value of the slot in

12 years ($3.08 million ÷ 365 days per year ÷ $686 per day). Put differently, the

seller’s upper bound is less than the buyer’s lower bound on the shadow value, which

is reasonable.

V.3 Counterfactual Simulations

I consider two counterfactual studies. In both studies, I investigate the effects of the

merger without any accompanying divestment by assigning all slots owned by US

Airways and American Airlines to a newly merged entity, and simulating prices for

all the products at the pre-merger level of frequency using Equation 10. Since the

suite of products available following this counterfactual merger does not exist, I need

to make assumptions about the unobservable product characteristics of the merged

entity, ξjt. The choice of these assumptions distinguishes the two counterfactuals.

For the first counterfactual, I consider the best-case scenario for the merged entity.

For markets involving a US Airways or American Airlines product, I take the best

product unobservables (the highest ξjt) among all products offered by this newly

merged entity, and ascribe that to all products being offered by this merged firm

in this market. This simulates positive synergy following the merger. A second

counterfactual ascribes the worst product unobservables (the lowest ξjt) to all the

products offered by the merged firm in the market, simulating a worst-case scenario

where the merger causes a fall in unobserved product quality.
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Table 10: Consumer Surplus under Counterfactual Scenarios
(1) (2) (3) (4)

Before
merger

Observed
Merger w/
Divestment

Best-case
for US/AA

Worst-case
for US/AA

Median price ($) 290.95 267.65
(-8.01%)

280.70
(-3.52%)

312.90
(7.54%)

Total passengers (millions) 122.168 132.474
(8.44%)

124.014
(1.51%)

125.526
(1.93%)

Average Expected Consumer Surplus
per Passenger ($) 27.93 35.05

(25.49%)
28.44

(1.81%)
27.69

(-0.86%)

Total Consumer Surplus ($ millions) 3.574 4.485
(25.49%)

3.630
(1.56%)

3.562
(-0.32%)

Parentheses contain percentage change from pre-merger levels

For each of the counterfactual studies, I compute the expected consumer surplus

of a representative consumer, as well as the total consumer surplus. Table 10 shows

that the divestment brought gains in both the average consumer surplus per passenger

as well as the overall consumer surplus. A merger without divestment engenders

negligible change in consumer surplus; since US Airways and American Airlines had

no duopoly routes before the merger, the upward pricing pressure following the merger

is mitigated by competition from other firms.

To understand the increase in average consumer surplus, I look at the distribution

of gain in consumer surplus (difference between Table 10, Columns 2 and 1) across

each market, weighted by the number of passengers in the market. Figure 2 shows

that most consumers make modest gains in consumer surplus; the right tail of the

distribution is dominated by routes that experience entry by low-cost carriers, which

depresses price and increases quantity of travelers. The distribution of consumer

surplus gains for business travelers is visually similar.
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Figure 2: Distribution of change in consumer surplus by market

I decompose this increase in consumer surplus by unpacking the components of the

utility function. The divestment mechanically increases the proportion of flights being

operated by low-cost carriers; there is a 7.6% drop in the amount of legacy carrier

products. Low-cost carriers like Southwest and JetBlue mostly offer point-to-point

service, which increases the number of products that are direct flights; the proportion

of flights with connections dropped by 17% following the divestment. Lastly, legacy

carriers have a lower slot utilization than low-cost carriers – this may be due to

scheduling considerations due to their hub-and-spoke network. As a result, divesting

the slots to low-cost carriers increases slot utilization, and as a result, number of

flights on a route. Passengers dislike layovers, dislike legacy carriers, and prefer

higher frequency (Table 7). This results in a higher mean utility of a product, and

therefore, higher expected consumer surplus for an individual consumer. This effect

can be offset by the increase in price following the merger; in the scenario involving

divestment (Table 10, Column 2), the price in fact drops due to increased competition
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by low-cost carriers, causing an increase in expected consumer surplus per person.

Since the channel for increase in consumer welfare stems from the divestment, the

counterfactual simulations (Table 10, Columns 3 and 4) show much smaller change

for both the expected consumer surplus per person and the total consumer surplus.

The increase in mean utility due to the divestment causes more passengers to fly

than before (Table 10, Column 2). The gain in number of passengers, coupled with

an increase in the expected consumer surplus for the representative consumer, causes

an increase in total consumer surplus of about $911,000 (25.49%) as a result of the

divestment.

Lastly, I find a weak but positive correlation between market size and marginal

revenue (a 10,000-person increase in market size increases marginal revenue by $7,

significant at a 99% level). This indicates that smaller markets are less profitable,

at least at the margin. If the newly merged entity were to drop flights without any

restrictions, this implies that they are likelier to drop flights to a smaller market than

to a larger one. Assuming that service to small markets have positive externalities, I

find that the separate settlement (United States v. US Airways Group, 2014) between

the DOJ and the newly merged entity (where the latter promised not to terminate

any routes serving small communities) mitigated this effect.

VI Conclusion

In this paper, I suggest a method to incorporate structural remedies into the standard

demand and supply model. While the shadow value of a slot is implicit in all airline

literature, I show how to separately identify and put bounds on the marginal value of
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a slot for an airline. I find that the marginal value is decreasing in slot endowment,

and is higher for low-cost carriers than for legacy carriers. Airlines with high slot

endowment must balance gains from higher frequency with loss of inframarginal

revenue from increase in quantity, resulting in high-endowment airlines putting a

lower valuation on their marginal slot compared to a low-endowment airline.

This validates the DOJ decision to redistribute the divested slots to new low-cost

entrants (like Southwest and JetBlue) as opposed to rival legacy incumbents. My

retroactive analysis of the US Airways-American Airlines merger and the structural

remedies imposed by the DOJ confirms that the divestment increased the average

consumer surplus of a passenger traveling in the Reagan market by 25.49%, or an

increase of $7.12 per passenger per one-way flight. There are three main reasons

for this gain in consumer surplus: (a) the divestment allocated slots to low-cost

carriers, (b) LCCs have more point-to-point direct service, and (c) LCCs have higher

slot utilization. A counterfactual simulation (holding frequency constant) where the

merger is consummated without divestment shows that gains in consumer surplus are

negligible, and depend on assumptions about product unobservables; this shows that

the divestment was the main driver for gains in consumer welfare. However, Figure

2 shows that while the average consumer surplus did increase, this gain is unevenly

distributed across markets. In future work, I intend to investigate the correlation

between market characteristics and gain (or loss) in consumer surplus.

My approach can be generalized to predict the impact of any future proposal that

involves a reallocation of slots, whether voluntary or mandated by a regulator. My

empirical approach can be extended to estimate a willingness-to-pay for a slot, which

will include the shadow value to the carrier plus the gains from foreclosing a rival

carrier. In this paper, I show the importance and efficacy of using airport slots (and
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gates in general) in crafting antitrust policy for airlines, and suggest an empirical

approach to evaluate the impact of such antitrust policies.
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“Use It or Lose It”, or “Cheat and Keep”?

Effects of Slot Restrictions on Airline Incentives
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Abstract

The Federal Aviation Administration manages congestion in high-density

airports by capping the number of flights permitted in any given hour and

allocating the rights (or slots) to a takeoff or landing among airlines. Airlines

must use their slots at least 80% of the time to keep them for the next season.

This rule creates a perverse incentive for airlines to hold on to underutilized

slots by operating unprofitable flights instead of forfeiting these slots to a rival.

Using exogenous removal of slot control at the Newark Airport in 2016, we

investigate the lengths at which airlines go to meet the minimum requirements

that let them keep the slots while violating what a neutral observer might call

the “spirit” of the regulation.

41



I Introduction

Air traffic congestion has been responsible for a significant welfare loss in the US

economy. Peterson et al. (2013) estimate that a 10% reduction in flight delays1

would increase net total welfare by $17.6 billion. The congestion problem has been

a major concern for all stakeholders since the 1960s and is exacerbated by limited

airport capacities.

Regulators all over the world, including the Federal Aviation Administration

(FAA) in the US, manage congestion by capping the number of hourly flights and

rationing the rights to perform a take-off or a landing within a given timeframe (also

known as “slots”) among airlines. Slot controls are currently in place in most major

airports worldwide and in three US airports – JFK and LaGuardia Airports in New

York City, and Reagan National Airport near Washington, DC.

Following the International Air Transport Association (IATA) procedures, the

FAA revisits slot allocations each year at the start of the winter and summer seasons.

Airlines are allowed to keep their slot holdings for the next season provided that they

comply with the use-it-or-lose-it rule by using their slots at least 80% of the time

during the current season. This approach biases the allocation process in favor of

legacy carriers, who were incumbents when slot control was first introduced in 1969

and still hold the majority of slots in slot-controlled airports.2

While this regulation has been successful in managing congestion and delays, it

may also create an incentive for airlines to hold onto unprofitable slots in order to

1Flight delays are measured as a fraction flights that are delayed by 15 minutes or more.
2Calculated from the slot holder reports for the winter season of 2018 published by the FAA.

42



keep their competitors out of highly-demanded airports (GAO, 2012).3 Specifically,

when slots at an airport are limited, airlines not only want a slot to operate a

flight on a given route, but also to prevent a rival from controlling said slot and

competing directly against the incumbent, possibly on other, more profitable, routes.

The incentive to foreclose manifests in slot burning – using slots at a loss instead of

forfeiting them to a rival and incurring a greater loss in profits.

Given the prevalence of slot control, it is important to study its effects on consumers

and investigate the alleged anticompetitive incentives it creates for airlines. This

paper uses reduced-form analyses to assess evidence of slot burning, relying on a

natural experiment created by the removal of slot control at Newark Airport in

November of 2016. Removal of slot control eliminates historical precedence created

by the use-it-or-lose-it rule and allows entry of new airlines who did not previously

hold slots at the airport, thereby eliminating slot-burning incentives.

We measure the extent of slot burning by using the empirical probability of

observing a small flight on a given route as a proxy variable. Anecdotally, we have

heard of airlines operating frequent flights using smaller aircraft to use up multiple

slots as opposed to carrying the same number of passengers in fewer flights using larger

aircraft (GAO, 2012). Slot incumbents, owing to their large slot endowments, may

be more prone to slot burning. In line with the anecdotes, we find circumstantial

evidence for airlines burning slots: frequency of small flights between Newark and

Philadelphia Airports, only 80 miles apart, decreases by nearly 77% following removal

of Newark’s slot control in 2016, with slot incumbents accounting for 35% of the drop.

3Due to the disruptive effects of the COVID-19 pandemic, the FAA suspended the use-it-or-lose-
it rule on March 11, 2020 in order to relieve airlines from the need of flying ‘ghost planes’, in other
words, slot burning (Pallini, 2020).
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Indeed, we find that slot incumbents are twice as likely to operate smaller aircraft

if slot restrictions are in place. We note that slot burning occurs most often during

relatively offpeak hours of 10am to 1pm – a timeframe where there is enough demand

to support some flights, but not enough demand to warrant usage of larger aircraft.

Airlines, however, contend that using multiple smaller flights is needed to meet

demand for schedule-sensitive passengers. We address this argument by looking at

the probability of flying small aircraft to the same destination within a 30-minute

timeframe. We find that slot incumbents are 75% more likely to fly consecutive small

flights when Newark Airport is slot-controlled.

We also find that slot restrictions are associated with increased airfares and

decreased delays, suggesting that, while slot controls are effective in decreasing congestion,

they do so at the expense of higher airfares due to restricted entry. In addition,

we analyze changes in several quantity metrics, namely, the number of seats(-miles)

offered on a route (as a proxy for quantity supplied) and the number of passengers(-

miles) transported (as a proxy for quantity demanded). We find that slot incumbents

offer more seats and transport more passengers under slot restrictions. Together with

the increase in airfares, this observation suggests that both demand and supply shift

under slot control. We discuss a potential rationale for these shifts and their effects

on consumer surplus in Section V.

Lastly, we investigate the patterns of entry to and exit from markets, finding

that slot liberalization resulted in entry by low-cost carriers to certain routes. We

highlight the competing interests that must be met when aviation authorities consider

mitigating congestion through slot restrictions; namely, effects on price, delays, entry,

and the incentives of slot incumbents to burn slots. An evaluation of consumer welfare,
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as a function of frequency, prices, and delays, is left for future work.

The rest of the paper is organized as follows: Section II surveys the relevant

literature. Section III reviews the industry background and introduces the data.

Section IV develops a theoretical model that informs our reduced-form analyses.

Section V presents our hypotheses and discusses the results. Section VI provides an

overview of the entry and exit decisions following Newark’s reclassification. Section

VII concludes.

II Related Literature

Our research contributes to the literature on airlines’ access to airport facilities and its

effect on downstream market outcomes, specifically airfares and congestion. Ciliberto

and Williams (2010) investigate whether access to airport gates, which is usually

determined by long-term exclusive contracts between airlines and airports, allows

airlines to charge higher prices on flights in and out of their hubs. In the first

stage, Ciliberto and Williams (2010) recover carrier-route fixed effects from a reduced-

form pricing equation as a measure of the hub premium, which they later regress on

measures of access to airport gates. They find that an increase in the percentage of

gates controlled by an airline is associated with an increase in its airfares, especially

in more congested airports as defined by the number of departures per gate.

Snider and Williams (2015) study the changes in airfares following the change

in access to airport facilities mandated by the AIR-21 Act. They use a regression

discontinuity approach to identify changes in airfares at airports that were required

to improve access to their facilities, relative to airports that were exempt from this
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requirement based on two threshold rules. They find that airfares decrease by 13.4%

on routes where one airport is covered by the legislation and by 20.2% on routes

where both end points are covered.

In a recent paper, Fukui (2019), similarly to us, uses the exogenous change in slot

restrictions at Newark Airport in 2016 to study the impact of slot control on average

airfares. They use a difference-in-differences approach, where the treatment group

consists of routes to or from Newark and the control group consists of routes to or

from the two other NYC airports – the JFK and LaGuardia Airports. They find

that the average fare on Newark routes decreases by about 2.5% relative to the JFK

and LGA routes, with the majority of the effect coming from non-dominant Newark

airlines. Our study documents the effect on airfares by using all major airports as

the control group, as opposed to just JFK and LGA, although our primary focus is

on slot burning.

In another study from Newark Airport, Luttmann (2019) exploits reinstitution of

slot control at the JFK and Newark Airports in 2008 to evaluate the effectiveness

of slot control in managing delays. Using the 2007-2008 data, Luttman (2019)

finds no evidence of a reduction in delays at both airports. They suggest that

these findings are consistent with the internalization hypothesis claiming that delays

at an airport decrease with an emergence of a dominant airline. In contrast to

Luttman’s results, we find that delays at Newark Airport increase following the

removal of slot restrictions in 2016. Figure 1 shows that the average length of delays at

Newark Airport diverges away from other NYC Airports following the abolition of slot

restrictions. Additionally, we find a decrease in delays following the 2008 classification

as well (unlike Luttman, 2019), but we focus on the 2016 (as opposed to the 2008)
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reclassification to abstract away from the confounding effects of the Great Recession.4

A 2012 report on slot-control rules published by the Government Accountability

Office is the closest to our paper and has inspired our proxy variable for slot burning.

In particular, GAO proposed three indicators of airline slot burning: (i) using smaller

aircraft; (ii) flying to the same destination at higher daily frequencies; and/or (iii)

operating flights with lower average load factors (passenger-to-capacity ratio). In

particular, GAO compares the number and proportion of small aircraft flights (under

100 passengers) to and from slot-controlled airports to those from other large domestic

hubs, controlling for flight distance and other relevant characteristics. They find that

the odds that a flight to and from a slot-controlled airport uses a small aircraft are

75% higher than the odds for a flight to and from other large hub airports that are

not slot-controlled (GAO, 2012). The evidence that GAO finds is only suggestive

since the estimates are not causal and rely on how well other large domestic airports

act as a control group for the slot-controlled airports. We improve upon the GAO’s

methodology by considering a natural experiment created by exogenous removal of

slot restrictions at Newark Airport in 2016.

A related paper looks at the divestment of slots as a structural remedy to the 2013

US Airways-American Airlines merger to back out airline response to the reallocation

of slots designed to promote competition and the associated effects on consumers (Ali,

2020). This paper, instead, summarizes airline behavior and its effects on consumers

following a wholesale abolition of slot controls.

Lastly, Swaroop et al. (2011) investigate whether more US airports need slot

4We submitted FOIA requests to PANYNJ asking for Newark’s time-stamped departure and
arrival data from 2007-2009, but, after a diligent search, the agency could not locate any responsive
records.
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control and if the existing slot levels are optimal. In particular, they use an econometric

model to quantify the costs of schedule delay, i.e. costs that a passenger suffers from

having to choose the departure time from the set airline schedule as opposed to flying

at her preferred time, and the costs of queuing delay, resulting from congestion. They

later simulate optimal slot control policies at major US airports that minimize the

sum of schedule and queuing delay costs and conclude that slot control should be

implemented at 12 additional airports and slot caps decreased at the already slot-

controlled airports. However, they do not take into account the impact of likely

airfare increases as a result of constrained capacity and do not take into account

anti-competitive effects generated by slot burning.

III Industry Background and Data

III.1 Slot Control at Newark Airport

The history of slot control in the United States goes back to the introduction of the

High Density Rule (HDR) in 1969. The HDR capped the number of hourly arrivals

and departures at five major airports – JFK, LaGuardia, Newark, O’Hare, and the

Reagan Airport – and was seen at the time as a temporary measure to curb growing

delays. The rule was suspended in Newark a year later since the number of flights was

well under the cap, even at peak times. However, the HDR proved to be successful in

managing congestion in the rest of the airports, so the FAA extended it indefinitely

in 1973.

Initially, the slots were allocated by a group of airline representatives, the so-

called scheduling committees, on a voluntary concession basis. However, after the

deregulation of the airline industry in 1978, scheduling committees had been having
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difficulties agreeing on slot allocations, and the antitrust immunity which made

their existence possible invited scrutiny from the FTC. By 1986, the FAA replaced

scheduling committees with the slot-allocation procedures as they are currently known.

In particular, the FAA instituted the use-it-ot-lose-it rule that stipulated withdrawal

of slots that did not clear the 65% usage threshold. The minimum utilization threshold

was increased to its current level of 80% in 1992.5

Since then, several government agencies6 studied the effects of the High Density

Rule on the quality of air service and concluded that the HDR was limiting competition

and preventing improvements in the quality of service, partly because new entrants

could not enter the slot-controlled airports. Eventually, the AIR-21 Act (2000)7 called

for a phase-out of the HDR at Chicago O’Hare Airport by July 2002 and at JFK and

LaGuardia Airports by January 2007. After the expiration of slot control rules, air

carriers have promptly increased their operations in JFK, making 2007 one of the

worst years in terms of delays. All three of the New York City metropolitan area

airports were affected by congestion at JFK (see Figure 1), so the FAA temporarily

reinstated slot control soon after. Even though Newark remained slot-free from 1970

to 2008, the FAA decided to preemptively institute slot control rules at Newark as

well, fearing that air carriers would shift their operations from JFK and LaGuardia

and create additional congestion at Newark.8

Generally, existence of slot control at an airport entails: (i) caps on the number

5Amdt. 93-65, 57 FR 37315, Aug. 18, 1992.
6GAO, Airline Competition: Industry Operating and Marketing Practices Limit Market Entry,

GAO/RCED-90-147 (Washington, D.C.: Aug. 29, 1990); National Research Council Transportation
Research Board, Entry and Competition in the U.S. Airline Industry: Issues and Opportunities,
Special Report 255 (Washington, D.C.: 1999); Department of Transportation, Study of the High
Density Rule: Report to Congress (Washington, D.C.: May 1995).

7The Wendell H.Ford Aviation Investment and Reform Act for the 21st Century. Public Law
106-181.

873 FR 60543.
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Figure 1: Average departure delays at NYC airports, in minutes.

of arrivals and departures performed within a 30-minute and one-hour timeframe; (ii)

minimum usage requirement applied over a pool of slots within a given timeframe

over a predefined period (henceforth, referred to as a slot period; differs across slot-

controlled airports). For Newark Airport, the limit on the number of operations was

set at 44 within each 30-minute window and 81 within each one-hour window from

6am to 10:59pm every day of the week.9 The compliance with the minimum usage

requirement was thus determined for each day of the week within a 30-minute and

one-hour time periods, for example, Mondays from 6:00 to 6:30am during the winter

season of 2015.

Newark’s slot control rules were in place until the winter season of 2016. According

to the FAA, the reasons for removal of slot restrictions in 2016 at Newark were three-

fold: (i) improved capacity at JFK, following the runway reconstruction scheduled to

begin in 2017, was expected to decrease the spillover effect that prompted slot control

914 CFR 93.163(b) of January 1, 2009.
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back in 2008; (ii) improvement in on-time performance and duration of delays from

2007 to 2015, and (iii) the FAA’s prediction of future demand and capacity at Newark

Airport suggested that the slot restrictions were no longer necessary.

As for the first reason, both JFK and LaGuardia underwent runway reconstructions

that temporarily reduced the airports’ capacities in 2017. The total number of

scheduled flights at JFK and LGA decreased by about 3,000 and 1,200 respectively,

relative to the 2016 levels, reversing the historical trends. The number of scheduled

flights promptly returned to and exceeded the 2016 levels in 2018, after the construction

projects were completed. In light of these events, we investigate if the FAA removed

slot control at Newark to allow air carriers to reschedule their operations from JFK

and LGA to Newark in anticipation of restricted capacity. We find no evidence of

shifts in JFK’s operations. However, we do find that the LGA routes that experienced

a decrease in the number of scheduled flights in 2017 or 2018 (relative to 2016) tend

to experience an increase in scheduled frequency at Newark. Routes that potentially

shifted from LGA to Newark are not a part of the sample of airports we use to test

for slot burning, therefore we believe that possible shifts in operations did not affect

patterns of aircraft usage at Newark in any spurious manner.10

The second and third reasons cited by the FAA are both predicated on current

improvements in on-time performance, as well as a belief held by the FAA (based off

their future demand prediction at Newark Airport) that relaxing slot restrictions will

not result in congestion due to entry. However, government and industry reports, as

well as this study, show an increase in flight delays following the 2016 reclassification.

This implies that any gains in on-time performance between 2009 and 2015 were likely

due to effectiveness of slot-control restrictions. Figure 1 above shows that the average

10See Appendix B for more details.
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delay for flights departing from Newark Airport fell in 2008 when the airport was

escalated to a slot-restricted airport, but the average delays went back up to its pre-

2008 levels following a de-escalation to a slot-facilitated airport. No such reversions

occurred for other NYC airports in 2016 that kept slot controls and completed runway

reconstructions by 2018. As a result, we believe that the reclassification was not

endogenous to any sustained or systemic changes in schedule management at Newark

Airport, and therefore, can exploit the reclassification as an exogenous change.

III.2 Suggestive Evidence of Slot Burning at Newark Airport

Interestingly, the FAA’s review of Newark’s operational performance concluded that

scheduled demand was consistently below the 81 hourly flight cap, yet the FAA could

not accommodate requests for new flights in summer of 2016 as the allocated slots

reached the limit.11 This conclusion suggests that the incumbent carriers might have

relied on slot burning to meet the use-it-or-lose-it requirements and keep new entrants

out of the airport.

As mentioned previously, our proxy variable for slot burning is usage of small

aircraft. If an airline is burning a slot in order to prevent a competitor from acquiring

it, the airline would minimize losses associated with operating an unprofitable flight

by flying a smaller aircraft. To this end, Figure 2 highlights three stylized facts. First,

slot-controlled airports use more small aircraft than non-slot-controlled airports. Second,

in line with the FAA’s evaluation of capacity usage at Newark prior to 2016, the share

of small flights in Newark is around three times higher than in the other slot-controlled

airports. Third, there is a meaningful change in the usage of small aircraft in Newark

11From 81 FR 19861: “For example, in the 3 p.m. through 8:59 p.m. local hours, weekday
scheduled demand in the May-August period averaged 71 flights per hour in 2011, 74 flights per
hour in 2013, and 72 flights per hour in 2015. [...] At the same time, the FAA denied requests for
new flights as slots are allocated up to the scheduling limits.”
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Airport around 2016 that cannot be explained by a general time trend.
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Figure 2: Percentage of small flights at Newark and other top-28 airports. We use data
from the first quarter of 2015 (pre-reclassification) and 2017 (post-reclassification) in
our analyses.

Moreover, airlines with relatively large pools of slots under their control may burn

slots more often relative to airlines with smaller slot endowments. We refer to such

airlines as slot incumbents, and we split our analysis by whether an airline is a slot

incumbent or not. Table 1 below summarizes the total number of daily slots held by

each airline at Newark in 2015. United, together with its regional partners, like Air

Wisconsin and Republic Airways, held 869 daily slots, nearly 80% of all slots available

at Newark.

In addition to varying daily slot endowments across airlines, the same airline

generally holds a different number of slots in each slot period. This is due to

the fact that slots granted to airlines are tied to a particular one-hour slot period.
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Airline Daily slots Percentage
American 64 5.87
Alaska 4 0.37
Delta 65 5.96
JetBlue 40 3.67
Southwest 35 3.21
United 869 79.72
Virgin 13 1.19

Table 1: Daily slot holders, 2015.

Furthermore, compliance with the use-it-or-lose-it requirements is determined based

on utilization of slots in the same 30-minute or one-hour slot period during a scheduling

season. These two facts imply that some slot periods may experience more slot

burning than others due to lack of demand or differing slot-burning incentives of

airlines. Taking this observation into account, we revisit patterns of usage of small

aircraft by time of arrival to/departure from Newark Airport. Figure 3 suggests that,

under the slot control regime, the empirical probability of observing a small flight

within the 10am-1pm timeframe is higher relative to the 4-8pm timeframe, while it

is relatively uniform after slot control rules are lifted. We employ a Kolmogorov-

Smirnov test for equality of the two distributions and reject the null hypothesis that

the two distributions are the same with a D-value of 0.0468 (p=0.000 ).

We also investigate in which slot periods United, the slot incumbent, and the

rest of Newark’s airlines may be burning slots. As discussed more rigorously in

section IV, we incorporate slot and minimum usage constraints into airlines’ profit-

maximization problems. Whenever an airline’s minimum usage constraint is binding

and the slot constraint is slack, we interpret such a phenomenon as slot burning.

Figures 4 and 5 attempt to assess if United and Newark’s low-cost carriers complied

with said constraints. The top red line represents an airline’s slot capacity – the

average number of slots available to United or the group of low cost carriers in a
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Figure 3: Distribution of small aircraft by time of flight at Newark Airport.

one-hour slot period during the first quarters of 2015 and 2017.12 The bottom red

line is 80% of the top red line and represents the level of usage required to satisfy the

use-it-or-lose-it rule.

These graphs should be interpreted cautiously, and together with other suggestive

evidence of slot burning, for two reasons. First, we do not have data on each airlines’

hourly slot holdings, which may vary significantly from one hour to another.13 Second,

we only observe actual, as opposed to scheduled, departure and arrival times. Both

departing and arriving flights experience significant delays, so mapping of a flight into

a slot period based on time of departure or arrival could be inaccurate. These factors

contribute to occasional non-compliance with the minimum usage requirements or

excess of flights over the slot capacity. However, it is clear that airlines under slot

controls do not use all their slots all the time, indicating slack; this slack is not

12For United, 869 slots · 90 days/17 hours = 4, 600 possible flights. For low-cost carriers (Alaska,
Jet Blue, Southwest, and Virgin), 92 slots · 90 days/17 hours ≈ 487 possible flights.

13We submitted a FOIA request to PANYNJ to get these data.
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Figure 4: United’s compliance with slot and minimum usage constraints.

due to lack of demand, shown by the increase in frequency following the abolition of

slot controls. We provide evidence that this trend is explained by slot burning. In

particular, we focus on usage of small aircraft during offpeak slot periods (dark blue

bars in Figures 4 and 5) that seems to decrease when slot controls are removed in

2017, contrary to the overall increase in flight frequencies.

In section V we refine our descriptive analysis of slot burning, formulate testable

hypotheses, and bring them to data. We also investigate the rationing effects of slot

control on consumers by looking at the effect of slot restrictions on the number of

seats, seat-miles, number of passengers, passenger-miles, and airfare. Since a stated

benefit of slot controls is reduced flight delays due to air traffic congestion, we also

investigate whether lifting slot restrictions at Newark Airport increases the likelihood

of flight delays.
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Figure 5: Other airlines’ compliance with slot and minimum usage constraints.

III.3 Data and Descriptive Statistics

This paper uses data from three data sources. The main dataset was obtained

from the Port Authority of New York and New Jersey (PANYNJ) using FOIA

requests and contains information on exact date and time of arrival and departure

of all flights to/from Newark Airport, as well as their operating carriers and aircraft

types for the 2015-2017 period. We supplement these data with information on the

number of passengers and seats for all domestic origin and destination airports at

the monthly level from the Air Carrier Statistics (T-100) database by the Bureau of

Transportation. Lastly, we use the Airline Origin and Destination Survey (DB1B)

from the Bureau of Transportation for the information on ticketing carriers and
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airfares for a 10% sample of all tickets issued for all domestic itineraries.

Table 2 presents summary statistics of operations at Newark Airport pre- and

post-introduction of slot control in 2008 and pre- and post-removal of slot control in

2016. In our empirical analysis, we use the first quarters of each year to control for

seasonalities in demand for air travel and scheduling of flights.

Variable
2007 2009 2015 2017

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Small 0.18 0.39 0.26 0.44 0.25 0.43 0.15 0.36

Legacy 0.95 0.21 0.94 0.24 0.81 0.39 0.81 0.39
Delay 35.73 5.16 32.89 5.51 28.19 3.67 31.37 4.54
Load factor 0.78 0.12 0.78 0.11 0.85 0.07 0.87 0.07
Tourist 0.15 0.35 0.14 0.35 0.14 0.36 0.15 0.36

Distance, mi
< 325 0.20 0.40 0.13 0.33 0.13 0.34 0.12 0.32
325 to 602 0.12 0.32 0.14 0.34 0.11 0.31 0.07 0.26
603 to 998 0.31 0.46 0.30 0.46 0.27 0.44 0.25 0.43
> 998 0.37 0.48 0.43 0.50 0.49 0.50 0.55 0.50

Frequency, daily
< 6 0.56 0.50 0.81 0.39 0.70 0.46 0.53 0.50
between 6 and 8 0.35 0.48 0.19 0.39 0.22 0.41 0.17 0.38
> 8 0.09 0.29 – – 0.08 0.28 0.30 0.46

No. routes 24 23 24 24
No. carriers 17 19 15 16
No. carrier-routes 59 61 72 75
No. passengers, mil 1,239.92 1,468.53 1,708.00 2,130.09
No. flights 17,105,706 12,621,843 12,624,550 16,901,660

Table 2: Descriptive statistics of operations at Newark Airport in 2007-2017.

As discussed above, slot burning is best evidenced by more frequent usage of small

aircraft in relatively less demanded slot periods when an airport is slot-controlled.

Unfortunately, we cannot use rigidly defined one-hour slot periods for our analysis

to see which slot periods may experience slot burning. Our data provide information

on actual arrival and departure times, as opposed to scheduled ones. Given that
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both departing and arriving flights experience significant delays, the mapping from

time of departure or arrival to a slot period is not straightforward. Therefore, in

our analysis, we aggregate slot periods into peak and offpeak categories. We define

offpeak periods to be between 10am and 1pm, where the demand is sufficiently high

to support some flights (unlike the 1am-4am timeframe), but not enough to warrant

usage of multiple larger aircraft (unlike a busy timeframe like 7pm-10pm). We refer

to any slot-controlled period that is not offpeak as peak. Our results are robust to

changing the definition of offpeak periods to 10am-2pm and 11am-2pm.

One could argue that using small aircraft is needed to meet demand for less

dense routes (like, for instance, Newark Airport to Martha’s Vineyard, MA), and

therefore, using small aircraft for these routes should not constitute slot burning.

Such justification is harder to accept for dense routes. Our analysis, therefore, is

limited to the 28 largest airports in the US by domestic passenger enplanements.14

Expanding the analysis to all airports (with a dummy variable for the 28 largest

airports, which returns a negative coefficient, corroborating the argument described

above) yields no meaningful difference in the results to the variables of interest.

We expect airlines that hold large pools of slots at an airport to be more likely

to engage in slot burning. We refer to such airlines as slot incumbents. In Newark

Airport, slot incumbents are United and regional airlines that operate flights ticketed

by United and using United’s slots (see Table 1). We incorporate the slot incumbent

dummy into our regression analysis in order to control for differential slot-burning

incentives of Newark’s airlines.

14See Appendix A for the list of the top-28 domestic airports.
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IV Theoretical Model

In this section we develop a simple theoretical model to inform our empirical analysis

and give a formal definition of slot burning.

IV.1 Consumers

For simplicity, assume that consumers purchase only direct flights operated by airline

j between a given origin o and destination d airport pair. A consumer i chooses a

flight jodtk between airports o and d during a slot period t on an aircraft of capacity

k15 in order to maximize their utility, uijodtk, given by

uijodtk = xjodtkβ − αpjodtk + β
∑

k

fjodtk + ξjodtk + ϵijodtk,

where xjodtk is a vector of product characteristics, pjodtk is the product airfare, fjodtk

is the number of flights available on the service route, ξjodtk is the unobserved product

characteristics, and ϵijodtk is the i.i.d. logit error term.

A consumer i chooses product jodtk if their utility from jodtk exceeds the utility

from any other product, including the outside good. This results in the standard logit

share equations, which we use in the airlines’ profit-maximization problems.

15We differentiate products by aircraft capacity in order to incorporate capacity choice into the
airlines’ profit-maximization problems. Consumers may not take the aircraft capacity into account
when purchasing flights, so we sum up frequencies of flights between an airport pair over all possible
capacities.
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IV.2 Airlines

We assume that airlines compete by playing a one-shot game, where they simultaneously

choose prices P and frequencies F of flights for a given aircraft size k and slot

period t16, subject to the aircraft capacity constraints and slot and use-it-or-lose-

it constraints at slot-controlled airports. For simplicity, assume that there are only

two aircraft sizes – small and large – so that k ∈ {s, ℓ} is a discrete variable that

defines capacities of small and large flights. Empirically, we observe that some airlines

operate both small and large flights on the same route, e.g. Jet Blue and United,

therefore we must allow for this in our theoretical model. To clarify, if an airline does

not operate a small flight on route od at slot period t, then fjodts = 0.

Let pj,fj define the choice variables of airline j for each service route odtk in its

set of products Ωj = Oj × Oj × T ×K, where Oj is the set of airports that airline j

operates in, T is the set of slot periods, and K is the set of aircraft capacities. Airline

j’s profit-maximization problem is thus

max
pj ,fj

πj (pj,fj,P−j,F−j) =
∑

odtk

Msjodtk (P ,F ) pjodtk − fjodtkMCjodtk − FCjodtk

subject to

kfjodtk ≥ Msjodtk (P ,F ) for all odtk ∈ Ωj (1)

∑

dk

fjodtk +
∑

dk

fjdotk ≤ Sjot for all ot ∈ O × T (2)

∑

dk

fjodtk +
∑

dk

fjdotk ≥ 0.8Sjot for all ot ∈ O × T (3)

fjodtk ≥ 0 for all odtk ∈ Ωj (4)

16As a reminder, a slot period at Newark Airport is defined to be a 30-minute window on a
particular day of week during a scheduling season, e.g. 6:00-6:30 am on Mondays during the winter
season of 2015.

61



Inequality (1) describes the aircraft capacity constraint a for each product odtk

in Ωj
17, (2) is the slot constraint with Sjot = ∞ for ot ∈ O × T if airport o is not

slot-controlled in period t, (3) is the use-it-or-lose-it (UIOLI) constraint, and (4) is

the non-negativity constraint on the frequency of flights.

The Lagrangian is then

L =
∑

odtk

Msjodtk (P ,F ) pjodtk−fjodtkMCjodtk−FCjodtk−γjodtk(Msjodtk(P ,F )−kfjodtk)+

+λs
jot

(
Sjot −

∑

dk

fjodtk +
∑

dk

fjdotk

)
− λu

jot

(
0.8Sjot −

∑

dk

fjodtk +
∑

dk

fjdotk

)

and the FOCs simplify to

sjodtk +
∑

õdtk∈Ωj

∂sjõdtk
∂pjodtk

(
pjõdtk − γjõdtk

)
= 0

M
∑

õdtk∈Ωj

∂sjõdtk
∂fjodtk

(
pjõdtk − γjõdtk

)
−MCjodtk + γjodtkk + λu

jot − λs
jot = 0

We distinguish two types of slot periods – peak and offpeak periods. Peak periods

are periods during which the slot constraint is binding, so λs
jot > 0, and the UIOLI

constraint is automatically satisfied, so λu
jot = 0. In other words, airlines do not need

to burn slots in order to satisfy the minimum usage requirements during the peak

periods. In contrast, offpeak periods are periods during which the slot constraint

is slack, so λs
jot = 0, and the UIOLI constraint is binding, so λu

jot > 0. Therefore,

in order to satisfy the minimum usage requirements during offpeak periods, airlines

17We abstract away from potential fleet constraints. It is not clear how to model them since
legacy airlines are known to hire regional airlines to operate flights ticketed through their booking
systems.
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must burn slots.

Definition 1. Airline j burns slots at airport o during a slot period t if the slot

constraint is slack and the UIOLI constraint binds, or λs
jot = 0 and λu

jot > 0.

Our theoretical model predicts different responses of flight frequencies in peak- and

offpeak slot periods after a removal of slot control. In conjunction with Figures 4 and

5, that establish airlines and slot periods with binding slot and UIOLI constraints, we

are able to draw corollaries to test for evidence of slot burning using the reduced-form

approach.18

V Empirical Analysis and Results

This section introduces testable hypotheses from the theoretical model with the

corresponding regression specifications and discusses the results.

V.1 Frequency

Consider a counterfactual where slot control is removed, i.e. λs
jot = 0 and λu

jot = 0.

We expect flight frequencies to increase during the peak slot periods and decrease

during the offpeak periods, holding all else equal.19 We also expect the effect to

be more pronounced for legacy airlines because they hold more slots than low-cost

carriers. We explore this hypothesis in regression specification (1).

Hypothesis 1. After slot control removal, the frequency of flights increases in the

peak and decreases in the offpeak slot periods, more so for slot incumbents, holding

18We do not attempt to recover the values of λs and λu. This endeavor is left for future work.
19Removal of slot control rules decreases entry costs for new airlines, in particular, low-cost

carriers. Changes in frequencies and composition of flights in response to entry post slot control are
a part of the changes due to removal of the slot and UIOLI constraints per se, since removal of slot
control eliminates the foreclosure incentive that causes slot burning in the first place.
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all else fixed.

Model 1. The model tests the change in flight frequency due to slot-restrictions,,

including any differential changes between peak and offpeak hours, by using flights

between Newark Airport and the 28 largest airports in the US for the first quarters of

2015 and 2017. The years were chosen to fall on two sides of the 2016 reclassification of

Newark Airport from a slot-controlled (Level 3) airport to a schedule-facilitated (Level

2) airport. The proprietary data comes from FOIA requests to the Port Authority of

New York and New Jersey (PANYNJ) to discern whether a flight takes place during

peak hours or offpeak hours.

freq(-miles) =β1slot+ β2incumbent+ β3slot× incumbent+ β4offpeak + β5offpeak × incumbent

+ β6offpeak × slot+ β7offpeak × incumbent× slot+ βi(controls)

We include fixed effects for distance (binned at less than 325 miles, between 325

and 602 miles, between 603 and 998 miles, and more than 998 miles), following

GAO (2012) specifications, and airport fixed-effects for the non-Newark airport in

the origin-destination pair. We use data from the first quarters of 2015 and 2017 to

control for seasonality.

Discussion, Columns 1. First, we compare the number of flights before and

after slot-controls by carrier incumbency and time of day (peak or offpeak). Following

the removal of slot-controls, the incumbent increases the number of flights during peak

hours (p=0.0000 ), but operates roughly the same number of flights during offpeak

hours (p=0.2102 ). Thus, our prediction for peak hours is validated, but cannot be

confirmed for offpeak hours. Controlling for distance and airports, non-incumbents

offer more flights during both peak and offpeak hours when Newark Airport is slot-

controlled.
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Next, we compare the number of flights during peak and offpeak periods by carrier

incumbency and slot regime. We observe that non-slot-incumbents fly more flights

during peak hours than offpeak hours when Newark Airport is not slot-controlled

(p=0.0000 ). However, they fly roughly the same number of flights (p=0.4513 )

when Newark Airport becomes slot-controlled. This conduct can be evidence of slot

burning, or explained by the fact that the slot constraint binds during the peak hours,

forcing the airlines to reallocate their flights to offpeak hours.

We also observe slot incumbents have more flights during peak hours than offpeak

hours when Newark Airport is not slot-controlled (p=0.0255 ). However, the incumbents

fly more flights during offpeak hours than during peak hours when Newark Airport

becomes slot-controlled (p=0.0030 ). A binding slot constraint during peak hours

cannot explain why they operate more flights during offpeak hours when Newark

Airport is slot-constrained. This conduct is indicative of slot burning.

While the number of flights operated by the incumbent during offpeak period

is roughly the same regardless of whether Newark Airport is slot-controlled or not

(p=0.2102 ), there is a decline in frequency-miles when Newark becomes slot-controlled

(Column 1b). This confirms our hypothesis that slot-burning happens along shorter

routes.

Lastly, we note that frequency of flights is uncorrelated with measures of quantity

(either seats or passengers), which are discussed in Subsection V.5.

65



V.2 Use of Small Flights

Slot burning implies that airlines are operating loss-making flights in the offpeak

periods. The best approach to minimizing said loss is to (i) fly a smaller aircraft,

(ii) across a shorter distance, (iii) on a route with relatively high demand. In our

regression analysis, we restrict our sample to the 28 largest airports by passenger

enplanements in the contiguous United States and control for the flight distance in

order to hold factors (ii) and (iii) fixed. Therefore, usage of small aircraft at slot- and

non-slot-controlled airports can be used as a proxy for slot burning. We explore this

hypothesis in regression specification (2). As with Hypothesis 1, we expect the effect

to be stronger for slot incumbents.

Hypothesis 2. Under slot control, usage of small aircraft is more prevalent during

the offpeak slot periods, more so for slot incumbents, holding all else fixed.

Model 2. The model tests if the probability of using small aircraft during

peak and offpeak periods for the slot incumbent and non-slot incumbents changes

when Newark’s slot control is removed. The independent variable is whether Newark

Airport is slot-controlled (2015)20 or not (2017).

Lsmall =β1slot+ β2incumbent+ β3slot× incumbent+ β4offpeak + β5offpeak × incumbent

+ β6offpeak × slot+ β7offpeak × incumbent× slot+ βi(controls)

The dependent variable is an indicator for small aircraft, defined as aircraft

carrying 100 passengers or less. This definition is to be consistent with the GAO’s

20Only flights between 6am and 10:59am are slot-controlled at Newark Airport, and are coded as
such in the data.
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(2012) model; we try different definitions of “small” (for instance, aircraft carrying

fewer than 81 passengers), to no meaningful change in the coefficients. The L denotes

log-odds.

We include the distance and airport fixed effects as before. Additionally, we use

fixed effects for daily flight frequency (binned at less than 6, between 6 and 8, and

more than 8 flights), following GAO (2012) specifications.

As a robustness check, we also add data from 2007 and 2009, to encompass before

and after Newark Airport transitioned to being a slot-controlled airport. We find

that the qualitative results remain the same – that all carriers are more likely to

use small aircraft in slot-controlled airports. However, given the severe change in air

travel demand following the financial crisis, we decided against including the years

2007-2009 into our main (or any other) specification.

Discussion, Column 2. We find that slot incumbents, under no restrictions,

were 20% more likely to use small aircrafts during offpeak hours (than during peak

hours), a statistic that jumps to 40% under slot restrictions (p= 0.0213 ).21 That

the slot incumbent is twice as likely to use small aircrafts during offpeak hours

(than peak hours) when Newark Airport becomes slot-controlled is indicative of slot

burning. Similarly, non-incumbents exhibit an increased reliance on small aircrafts

when Newark Airport is slot-controlled (p= 0.0012 ). The difference between the two

odds ratios for all carriers shows that the increased usage of small aircraft during

offpeak hours cannot only be explained by the type of consumer demand during

21From Model 2, the likelihood of slot incumbent to use small aircraft during offpeak hours when
Newark Airport is slot-controlled = (Coefficient on slot1 × incumbent1 × offpeak1)/(Coefficient on
slot1 × incumbent1 × offpeak0) = 7.772/ 5.527 = 1.406. The same exercise for when incumbents fly
without slot restrictions yields 1.216.
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offpeak hours. Figure 3 in Section III illustrates that usage of small flights increases

during offpeak hours (for example, 10am-1pm) and decreases during peak hours (for

example, 7pm to 10pm) when Newark Airport is slot-controlled.

V.3 Consecutive Flights

A likely argument in defense of airlines’ frequent use of small aircraft is catering to

the time-sensitivity of demand. We address this concern by looking at the probability

of observing consecutive flights to the same destination within a short timeframe (30

minutes in the baseline specification).

Hypothesis 3. Under slot control, the probability of observing consecutive flights to

the same destination is greater in the offpeak slot periods, more so for slot incumbents,

holding all else fixed.

We explore this hypothesis in regression specification (3a). In regression specification

(3b), we further refine our test by examining the probability of observing consecutive

small flights to the same destination within a short timeframe.

Model 3a. The second model investigates the probability of an airline flying

multiple flights on a route within a 30-minute window. The dependent variable

indicates whether the same airline offers another flight from the same origin to the

same destination within the 30-minute window. The qualitative results are the same

if the window is changed to 45- or 60-minutes. The same set of fixed effects are used

from the previous model.
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Lconsecutive =β1slot+ β2incumbent+ β3slot× incumbent+ β4offpeak + β5offpeak × incumbent

+ β6offpeak × slot+ β7offpeak × incumbent× slot+ βi(controls)

Model 3b. This model investigates the probability of an airline flying multiple

small flights on a route within a 30-minute window. This specification helps us narrow

down the mechanism by which airlines burn slots (that is, whether airlines are indeed

flying multiple small flights during offpeak hours).

Lconsec small =β1slot+ β2legacy + β3slot× legacy + β4offpeak + β5offpeak × legacy

+ β6offpeak × slot+ β7offpeak × legacy × slot+ βi(controls)

Discussion, Columns 3. We find that while non-incumbents do not significantly

crowd their flights under slot restrictions, slot incumbents are 11% more likely to

do so when operating out of Newark Airport under slot controls than without slot

controls (p= 0.0429 ). The definition of a consecutive flight in the main specification

is another flight within a 30-minute window; the qualitative results are robust to

alternate definitions of consecutive (45- or 60-minutes).

We hypothesized that refining our test by examining if the probability of observing

consecutive small flights to the same destination will yield similar results. In fact, slot

incumbents are 75% more likely to fly consecutive small flights when Newark Airport

is slot-controlled (p=0.0000 ); non-incumbent carriers are almost twice as likely to fly

consecutive small flights when Newark Airport is slot-controlled (p=0.0110 ). These

results suggest that all carriers increase their reliance on small consecutive flights

when Newark Airport becomes slot-controlled, which is indicative of slot burning.
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V.4 Delay

Although not from the theoretical model, the rationale provided by the FAA for slot

restrictions invokes congestion, leading us to believe that slot controls may alleviate

delays.

Hypothesis 4. Slot control improves airlines’ on-time performance.

Model 4. This model investigates the probability that a flight is delayed by longer

than 30 minutes. The data comes from the T-100 database, which contains aggregate

information on flight schedules. We use airport-specific dummies to account for the

possibility that delays could be caused by congestion at the other endpoint airport.

Ldelay = β1slot+ β2incumbent+ β3slot× incumbent+ βi(controls)

Discussion, Column 4. The relegation of Newark Airport to a Level 2 airport

resulted in a worse on-time performance for Newark Airport. Column 4 shows that

while slot incumbents fare slightly worse in terms of on-time performances in 2017

(when Newark Airport was not slot-controlled), all airlines experience less delays

in 2015. The probability of a legacy carrier being delayed by 30 minutes or more

decreases by about 17%,22 while non-incumbent carriers are 68% less likely to be

delayed in 2015.

221 - 0.850/1.026 = 0.172.
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(1a) (1b) (2) (3a) (3b)
Frequency Freq-mile Small Consecutive SmallConsec

Model OLS OLS Logistic Logistic Logistic

slot0 × incumbent0 × offpeak 1 -0.828∗∗∗ -245.4∗ 0.874 0.654∗∗ 0.265
(-9.99) (-1.97) (-1.70) (-3.14) (-1.79)

slot0 × incumbent1 × offpeak 0 5.577∗∗∗ 8554.0∗∗∗ 9.979∗∗∗ 1.358∗∗∗ 3.192∗∗∗

(126.28) (128.61) (44.99) (4.57) (4.58)

slot0 × incumbent1 × offpeak 1 5.424∗∗∗ 7620.1∗∗∗ 12.14∗∗∗ 0.754∗∗ 1.166
(74.36) (69.37) (39.60) (-3.14) (0.52)

slot1 × incumbent0 × offpeak 0 1.206∗∗∗ 778.2∗∗∗ 1.392∗∗∗ 1.048 0.782
(22.71) (9.73) (5.81) (0.63) (-0.76)

slot1 × incumbent0 × offpeak 1 1.272∗∗∗ 1435.3∗∗∗ 1.804∗∗∗ 0.704∗ 1.681
(14.31) (10.72) (6.70) (-2.49) (1.48)

slot1 × incumbent1 × offpeak 0 5.114∗∗∗ 6672.3∗∗∗ 5.527∗∗∗ 1.430∗∗∗ 2.967∗∗∗

(111.81) (96.88) (34.24) (5.28) (4.27)

slot1 × incumbent1 × offpeak 1 5.310∗∗∗ 6636.2∗∗∗ 7.772∗∗∗ 0.955 3.251∗∗∗

(71.71) (59.50) (33.37) (-0.54) (4.41)

Controls:
Distance Yes Yes Yes Yes Yes
Airport Yes Yes Yes Yes Yes
Frequency Yes Yes Yes

N 77,776 77,776 77,776 77,776 21,458

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Regression coefficients
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(4) (5a) (5b) (6a) (6b) (7)
Delayed Seats Seat-mile Passengers Pax-mile Mktfare

(thousands) (millions) (thousands) (millions) ($)
Model Logistic OLS OLS OLS OLS OLS

slot0 × incumbent1 1.026 -66.42∗∗∗ -54.56∗∗∗ -52.83∗∗∗ -44.39∗∗∗ 41.00∗∗∗

(0.90) (-22.16) (-12.80) (-21.04) (-12.16) (79.87)

slot1 × incumbent0 0.321∗∗∗ -12.90 -9.028 -9.293 -8.504 13.70∗∗∗

(-32.49) (-1.73) (-0.85) (-1.48) (-0.93) (16.98)

slot1 × incumbent1 0.850∗∗∗ -50.82 ∗∗∗ -36.31∗∗∗ -39.74∗∗∗ -30.74∗∗ 46.58∗∗∗

(-6.02) (-6.60) (-3.32) (-6.16) (-3.28) (55.97)

Constant 231.0∗∗∗ 89.69∗∗∗ 194.7∗∗∗ 76.55∗∗∗ 291.4∗∗∗

(14.55) (3.97) (14.64) (3.96) (117.30)

Controls:
Distance Yes Yes Yes Yes Yes Yes
Airport Yes Yes Yes Yes Yes Yes
Frequency Yes Yes Yes Yes Yes Yes
Region Yes Yes

N 71,099 1,989 1,989 1,989 1,989 1,419,871

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Regression coefficients (cont’d)

V.5 Quantity and Price

We have no testable hypotheses for quantity or price. Changes in price, capacity,

and quantity of passengers are all ambiguous and dependent on various intertwined

factors. For illustration, assume that under no slot restrictions, an airline flies one 150-

passenger flight along a route. Following slot restrictions, the airline might choose

to fly two or three 60-passenger flights, depending on load factors and passenger

sensitivity to frequency. Without knowing the direction of the change in supply, it is

not possible to know, a priori, the direction of the change in price. Questions relating

to consumer surplus, therefore, can only be answered by the data.
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Models 5-6. The subsequent models estimate the impact of slot restrictions on

the number of seats available (Model 5) and the number of passengers transported

(6). The T-100 database is used for these estimations, since it comes with aggregate

numbers for seats and passengers. Since T-100 database does not include time of

flight, thus whether a flight is traveling during peak or offpeak hours cannot be

included in the model. Controls include fixed effects for frequency, distance, year,

region, and airport.

seat(-miles) or passenger(-miles) = β0+β1slot+β2incumbent+β3slot×incumbent+βi(controls)

Model 7. The seventh model looks at the effect on price at slot-controlled

airports. We use any routes within the top-28 airports for this analysis, with the slot

dummy indicating whether any of the airports within the route were slot-controlled

in the period the flights took place. By restricting the analysis to the first quarters of

2015 and 2017, we can exploit the reclassification of Newark Airport as an exogenous

variation of the independent variable, slot. Since we use the DB1B database for this

analysis, we do not compute any measures for frequency of flights or time of flight

within the route. Controls include fixed effects for distance, year, region, and airport.

price = β0 + β1slot+ β2incumbent+ β3slot× incumbent+ βi(controls)

Discussion, Columns 5-7. We find an increase in the total number of seats

flown by the slot incumbent (Column 5a, p= 0.0426 ) in presence of slot control, but

we cannot reject the null hypothesis that the incumbent flies different seat-miles at

the 5% level. This shows that while the incumbent is offering more seats, the seats

are on shorter routes, which alludes to slot-burning. Non-incumbents do not show
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any statistically significant change in seats or seat-miles.

Similarly, incumbents fly more passengers (Column 6a, p=0.0422 ) following slot

restrictions, but exhibit no change in passenger-miles. Non-incumbents fly the same

number of passengers and passenger-miles.

Column 7 outlines the effect of slot restrictions on price. We find that the slot

incumbent (non-incumbents) charge about $5 more ($13 more) per passenger for one-

way travel when they serve a slot-controlled airport, with the median ticket price

being around $220. These two values are statistically significant (p=0.0000 for both

incumbent and non-incumbents), and different from one another (p= 0.0000 ).

V.6 Discussion on Consumer Surplus

The effect of slot restrictions on consumer surplus is ambiguous. Holding all else

equal, more passengers fly under slot control but on average pay a higher price. Such

an effect is indicative of an outward shift in the demand curve, likely suggesting that

the product quality has increased. We also find that the total number of seats offered

under slot control increases, suggesting that there is an outward shift in the supply

curve as well. The fact that we observe an increase in the number of passengers

transported together with an increase in airfares implies that the shift in the demand

curve is larger than that in the supply curve.

We attribute the increase in product quality to the success of slot control at

curbing delays. Ceteris paribus, a flight with poor on-time performance is considered

inferior to one that reliably follows schedule. However, as we document in the next

section, removing slot control does add new direct routes for certain communities,
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decreasing layover times and acting as a counterveiling force to the increase in product

quality associated with slot control. We rationalize this by the fact that a consumer’s

disutility from delay may be different from their disutility from a long layover or

poor match between their desired and actual departure time, since the delay is an

uncertainty only realized at the point of use, not the point of purchase. Moreover,

frequency of flights on a route is another determinant of product quality. All else

constant, a route with frequent flights provides a better match between a time-

sensitive consumer’s desired departure time and the actual departure time. A structural

model is needed to quantify the relative tradeoffs and we leave this for future work.

Not only is the effect on consumer surplus ambiguous, it is also heterogeneous. Our

findings show that slot restrictions increase the number of flights along dense business-

routes in short distances (the routes that facilitate slot burning), while decreasing

the number of flights to tourist destinations. Therefore, we expect differential impact

on consumers flying different routes; consumers flying tourist routes experience a

reduction in consumer surplus (higher price, smaller number of seats available, lower

quality product), whereas the effect on business destinations are ambiguous (higher

price indicates lower surplus, but a higher product quality indicates higher surplus).

VI Entry and Exit Following Reclassification

In this section, we analyze airlines’ entry and exit decisions at the route-level following

the Newark’s removal of slot controls. We also study entry and exit in 2019 in order to

benchmark the magnitude of the industry shake-out in 2016.23 As before, we limit our

23We use the T-100 database from the Bureau of Transportation Statistics. As of now, January
2020 is the latest available data, but even once more data become available, we could not use 2020
due to the impacts of the COVID-19 pandemic on air travel.
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analysis to the first quarters of 2015 and 2017-2019 to overstep potential seasonality

issues. However, given our interest in understanding the differential impact of slot

control on communities of varying size, and especially in small and rural communities’

access to air transport, we extend our sample to all domestic airports of the contiguous

United States.

Number of routes 2017 2019
2015 2017 2018 2019 Entry Exit Entry Exit

American 5 6 5 5 1 0 0 0
Allegiant 0 4 1 3 4 0 2 0
Alaska 1 4 4 6 3 0 2 0
Delta 5 5 5 5 0 0 0 0
JetBlue 6 6 7 7 0 0 0 0
Elite 0 1 1 0 1 0 0 1
Spirit 0 3 6 8 3 0 2 0
Southwest 8 7 8 9 2 3 3 2
United 77 83 83 77 9 3 4 10
Virgin 2 2 2 0 0 0 0 2
Total 104 121 122 120 23 6 13 15

Table 5: Summary of airlines’ entry and exit decisions in 2015-2017 and 2018-2019.

Table 5 above summarizes airlines’ entry and exit decisions.Only seven airlines

were operating in Newark in 2015. The reclassification brought in three new airlines:

Allegiant Air (a low-cost carrier based in Nevada), Elite Airways (a brand new airline

operating out of Portland, ME), and Spirit. Not all airlines entered new markets;

Delta, JetBlue, and Virgin did not change their routes at all. Of the seven existing

airlines only two, Southwest and United, dropped routes. Overall, Newark Airport

saw 23 entry events on 19 routes and six exits on six routes in 2017. Between 2018

and 2019, the latest available years with no change in slot regime and unrestricted

entry, Newark experienced significantly less entry (13 entry events on 13 routes) and

more exit (15 exits on 15 routes).
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Alaska Allegiant American Elite Southwest Spirit United
No. carriers,

2017
Akron, OH – – – – – – 1 1
Alcoa, TN – 1 – – – – – 2
Asheville, NC – 1 – – – – 1 2
Binghamton, NY – – – – – – -1 0
Chattanooga, TN – – – – – – 1 1
Chicago, IL – – 1 – – – – 2
Flint, MI – – – – – – 1 1
Fort Drum, NY24 – – – – – – -1 1
Fort Lauderdale, FL – – – – 1 1 – 4
Fort Wayne, IN – – – – – – 1 1
Hebron, KY – 1 – – – – – 3
Houston, TX – – – – -1 – – 0
Kenner, LA – – – – -1 – – 1
Key West, FL – – – – – – 1 1
Lake City, FL – – – – – – -1 0
Lexington, KY – – – – – – 1 1
Myrtle Beach, SC – – – – – 1 – 2
Nashville, TN – – – – -1 – – 1
Orlando, FL – – – – 1 1 – 4
Portland, OR 1 – – – – – – 2
Salt Lake City, UT – – – – – – 1 2
San Diego, CA 1 – – – – – – 2
San Jose, CA 1 – – – – – 1 2
Savannah, GA – 1 – – – – – 2
Vero Beach, FL – – – 1 – – – 1
No.mkts, 2015 1 0 5 0 8 0 77
No.mkts entered—exited 3—0 4—0 1—0 1—0 2—3 3—0 9—3

Table 6: All entry and exit decisions by airline between 2015 and 2017.

Tables 6 and 7 below provide detailed information on routes that experienced

entry (encoded as 1) and exit (-1) following the reclassification in 2016, and in 2019.

Removal of slot control resulted in entry on 19 routes, seven of which are brand

new (highlighted in bold in Table 6), with six of them due to United. Interestingly,

low-cost carriers did not start new routes; instead, they entered mid-sized (Alcoa,

TN; Asheville, NC; Hebron, KY; Savannah, GA; Myrtle Beach, SC) and West Coast

(Portland, OR; San Diego, CA; San Jose, CA) airports, challenging United on those

routes. Another group of airports that experienced entry is tourist destinations in

Florida. In this case, an entry by a low-cost carrier was matched by another low-cost

carrier and challenged United and Jet Blue, resulting in a four-firm oligopoly (Fort

Lauderdale, FL and Orlando, FL).
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Airlines exited from six markets in 2017, stopping operations on three routes

(Binghamton, NY; Houston, TX; Lake City, FL). Out of all exits, only one occurred

on a route from the slot-burning sample – Houston, TX by Southwest. Therefore, we

can conclude that the slot incumbent did not operate entirely unprofitable routes just

for the sake of burning slots. Moreover, Table 6 is suggestive for refuting anecdotal

claims that the FAA may be tolerating slot burning if slots are burned on routes

providing access to air transport for small and rural communities. Slot controls alone

do not appear to create incentives for airlines to operate flights to small airports as

evidenced by lack of mass exit from small destinations. Generally, the fact that the

reclassification resulted in entry into a variety of destinations, and exit from a handful

of destinations, implies that a heterogeneous group of consumers have benefited from

the change in slot regime.

Figure 6: Distribution of HHI on routes from/to Newark in 2015 and 2017.

All in all, changes in frequencies of flights on the extensive and the intensive
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margin contributed to a slight leftward shift of the HHI distribution. See Figure 6.

The average HHI in 2015 is around 8,211 relative to 8,427 in 2017. However, this

seeming increase in concentration is due to United opening six new monopoly routes.

Conditional on existence of routes in 2015, the average HHI declines from 7,903 in

2015 to 5,291 in 2017.

Alaska Allegiant Elite Southwest Spirit United Virgin
No. carriers,

2019
Alcoa, TN – 1 – – – – – 2
Asheville, NC – 1 – – – – – 2
Atlanta, GA – – – – 1 – – 3
Avoca, PA – – – – – -1 – 0
Baltimore, MD – – – – – -1 – 0
Chattanooga, TN – – – – – -1 – 0
Des Moines, IA – – – – – -1 – 0
Fort Wayne, IN – – – – – -1 – 0
Horseheads, NY – – – – – 1 – 1
Indianapolis, IN – – – -1 – – – 1
Ithaca, NY – – – – – -1 – 0
Los Angeles, CA 1 – – – – – -1 2
Montrose, CO – – – – – 1 – 1
Myrtle Beach, SC – – – – – -1 – 1
Nashville, TN – – – 1 – – – 2
Oakland, CA – – – 1 – – – 1
Orlando, FL – – – -1 – – – 3
Palm Springs, CA – – – – – 1 – 1
Presque Isle, ME – – – – – 1 – 1
San Diego, CA – – – 1 – – – 3
San Francisco, CA 1 – – – – – -1 2
San Jose, CA – – – – – -1 – 1
South Bend, IN – – – – – -1 – 0
Tampa, FL – – – – 1 – – 3
Vero Beach, FL – – -1 – – – – 0
Windsor Locks, CT – – – – – -1 – 0
No.mkts, 2018 4 1 1 8 6 83 2
No.mkts entered—exited 2—0 2—0 0—1 3—2 2—0 4—10 0—2

Table 7: All entry and exit decisions by airline between 2018 and 2019.

Tracking entry patterns over time, we document that a recent entrant, Elite

Airways, ceased operations in Newark by 2019, so did Virgin by dropping the Los

Angeles and San Francisco routes that were entered by Alaska the same year. United’s

exit from eight markets (Baltimore, MD; Chattanooga, TN; Des Moines, IA; Fort
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Wayne, IN; Ithaca, NY; South Bend, IN; Windsor Locks, CT) completely stopped

operations on these routes; two of those routes (Chattanooga, TN and Fort Wayne,

IN) were entered in 2017, after removal of slot control. Additionally, United exited

another two routes that experienced entry in 2017 – Myrtle Beach, SC by Spirit

and San Jose, CA by Alaska. The fact that many of the routes with entry in 2017

experienced exit in 2019 implies that the industry was still underway to the long-run

equilibrium. The average HHI in 2018 and 2019 were 7,398 and 7,419, respectively.

It is possible that the exits in 2019 are delayed decisions due to the change in slot

rules in 2016. If it were the case, then the shutdown of some routes altogether is a

concerning effect of the slot liberalization. However, the number of routes shut down

is still small, and all the towns losing direct service to/from Newark Airport have (i)

connecting flights to Newark Airport, and (ii) are within 100 miles of another airport

with direct service to Newark Airport. All of this suggests that even if the 2019 exits

were due to the 2016 change in slot rules, its effects are minimal.

Comparing the 2015 and 2019 figures, we can conclude that removal of slot control

at Newark brought in a competitive low-cost carrier, Spirit, and 16 additional carrier-

routes thereby decreasing concentration by nearly 10%. Thus, we can conclude that

removal of slot control was favorable to promoting competition at the Newark Airport.

VII Conclusion

In this study, we show that firms respond to slot restrictions by using smaller flights

to use their allocated slots in order to meet the usage requirements. Eliminating

such restrictions results in entry, primarily from newly formed low-cost carriers with

no historic footprint at the airport. This entry can lower prices, but also result in
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flight delays due to congestion. However, more passengers fly when Newark Airport

is slot-controlled (along routes used to burn slots), implying an ambiguous change

in consumer surplus following slot liberalization (lower price, fewer passengers, more

delays).

However, since low-cost entrants offer a different assortment of products than the

incumbent (almost always a legacy carrier), any change in the relative balance between

the two will have differential impact on passengers flying routes dominated by legacy

or low-cost carriers. Due to this heterogenous effect on conusmers, policy decisions

on slot restrictions to manage congestion at airports must be balanced with an eye on

the foreclosure incentive by airlines, and subsequent changes in consumer welfare due

to changes in product quality (frequency on a route) and the price paid by passengers.
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Appendix A: The List of Top-28 Domestic Airports

by Passenger Enplanements

In alphabetical order of the airports’ three-letter codes: Atlanta, GA (ATL); Boston,

MA (BOS); Baltimore, MD (BWI); Charlotte, NC (CLT); Washington, DC (DCA);

Denver, CO (DEN); Dallas-Fort Worth, TX (DFW); Detroit, MI (DTW); Newark,

NJ (EWR); Fort Lauderdale, FL (FLL); Dulles, VA (IAD); Houston, TX (IAH);

Queens, NY (JFK); Las Vegas, NV (LAS); Los Angeles, CA (LAX); Queens, NY

(LGA); Orlando, FL (MCO); Chicago, IL (MDW); Miami, FL (MIA); Minneapolis-

Saint Paul, MN (MSP); Chicago, IL (ORD); Philadelphia, PA (PHL); Phoenix, AZ

(PHX); San Diego, CA (SAN); Seattle-Tacoma, WA (SEA); San Francisco, CA (SFO);

Salt Lake City, UT (SLC); Tampa, FL (TPA).

Appendix B: Shifts in Operations between NYC

Airports

In 2017, both JFK and LaGuardia underwent runway reconstructions that temporarily

reduced their air traffic capacity. If the FAA preemptively lifted slot control at Newark

in order to allow the affected carriers to shift operations from JFK and LGA, our proxy

variable for slot burning – usage of small aircraft in peak and offpeak slot periods –

could be confounded by patterns of aircraft usage spilt over from JFK and LGA.

In order to test for evidence of spillover operations, we correlate the change in the

frequency of scheduled flights by route between 2016 and 2017 and between 2016 and

2018.25 We find no evidence of shifts in JFK’s operations. The pairwise coefficients

25Figure 1 shows reduction in delays in 2018. This could be due to the fact that the reconstructed
runways returned to operating at full capacity, or because it takes more than a year to shift operations
between airports. For this reason, we study changes in scheduled flight frequencies in 2018 as well.
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of correlation between the changes in scheduled flight frequencies at JFK and Newark

are insignificant -0.0491 in 2017 and insignificant 0.0495 in 2018. However, we do find

that the LGA routes that experienced a decrease in the number of scheduled flights in

2017 or 2018 (relative to 2016) tend to experience an increase in scheduled frequency

at Newark, with the correlation coefficients of -0.2140 significant at 5% in 2017 and

-0.2754 significant at 5% in 2018.

Airport
Newark JFK LaGuardia

∆2017 ∆2018 ∆2017 ∆2018 ∆2017 ∆2018
Québec City, QC 216 472 -582 -1,156 – –
Sarasota, FL 122 705 372 344 -685 -643
Jacksonville, FL -84 220 6 70 -1,090 -1,316
Fort Myers, FL 593 556 -252 -531 -823 -1,093
Nantucket, MA -34 156 -117 59 -20 262
Indianapolis, IN 395 889 559 1,029 -1,307 -1,054
Grand Rapids, MI 99 202 – – -169 348

Table 8: Change in the number of scheduled flights on routes that experienced a
significant decrease at JFK and LGA and an increase at Newark.

We further investigate what routes experienced sizeable decrease in scheduled

frequency (more than 15%) at JFK and LaGuardia and an increase in scheduled

frequency at Newark. We identify seven such routes and document them in Table 8

above. None of these routes are a part of the sample of airports we use to test for slot

burning, therefore we believe that possible shifts in operations did not affect patterns

of aircraft usage at Newark in any spurious manner.
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Effectiveness of Measures of Upward Pricing

Pressure in Predicting Price Changes

Ratib M Ali

April 12, 2022

Abstract

I assess the effectiveness of the gross upward pricing pressure index

(GUPPI) in predicting price changes of the 2013 merger between US Airways

and American Airlines. I compute GUPPI using only publicly available data,

and find that it is close to the observed average increase in price. However,

unlike most markets, flights to/from Reagan Airport experience a price drop,

likely due to mandated structural remedies; the GUPPI predicts a price

increase at Reagan Airport, whereas a full merger simulation correctly predicts

a price reduction.1 I argue that the divergence between GUPPI and, if

appropriate, the more accurate predictions of the merger simulation is due to

the weaker assumptions made under the simulation. This underscores the fact

that while GUPPI, with its restrictive assumptions and low computational

burden, can be a good primary screening tool, it does not negate the necessity

of employing a more rigorous secondary tool (such as a merger simulation)

when assessing mergers.

I Introduction

Antitrust economists rely on measures of upward pricing pressure (UPP) to

adjudicate whether a proposed merger will adversely affect consumers. Faster to

1The Ronald Reagan Washington National Airport (DCA) is located in Arlington, Virginia, near
Washington, DC.
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compute and with lower informational requirements than a merger simulation,

UPP indices have gained traction in the antitrust community. However, the low

informational and computational burden may result in reduced accuracy. This study

uses retroactive merger analysis to investigate the ability of a measure of UPP to

accurately predict post-merger prices in the 2013 US Airways-American Airlines

merger.

Upward pricing pressure (UPP) “evaluat[es] potential unilateral effects in merger

cases involving differentiated products” (Moresi, 2010). To illustrate, consider Firm

A that wants to raise its prices. It fears that it will lose some of its consumers

to Firm B. If, however, Firm A merges with Firm B, Firm A will be able to

recapture the consumers who defect from Firm A to Firm B, because they are under

joint ownership. Thus, the merger neutralizes the competitive threat from Firm

B, increasing the payoff from raising Firm A’s own price. This incentive results

in an upward pricing pressure in the market. Measures of UPP are considered

an improvement over concentration-based methods (such as using HHIs), and are

thus frequently used as a screening tool for potential unilateral effects (Farrell and

Shapiro, 2010). A popular measure of upward pricing pressure is the gross upward

pricing pressure index (GUPPI), which measures the unilateral price effect due to

the acquiring firm’s ability to recapture sales diverted to the newly acquired firm.

This paper tests the reliability of the predictions made by the GUPPI in the

context of the 2013 merger between US Airways (US) and American Airlines (AA).

In this paper, I compute the predicted price changes implied by (i) the GUPPI and

(ii) a merger simulation. I demonstrate circumstances under which the predictions

differ, and explore the assumptions that lead to this difference. I find that the

GUPPI sensibly identifies mergers that should be subject to further scrutiny, but
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fails to capture the reality of complex mergers in markets that include structural

remedies. Specifically, the GUPPI reasonably approximates the observed average

price change due to the 2013 merger between US Airways and American Airlines

(7% vs. 8%). In contrast, a merger simulation better predicts outcomes in markets

that involve structural remedies. Specifically, for routes involving Reagan Airport

(the only airport to experience significant structural remedies), the GUPPI fails to

predict the observed decrease in price (6% vs. −4%), whereas merger simulations

provide results closer to reality (−0.3%). The structural remedies to the US

Airways-American Airlines merger were divestiture of slots to low-cost carriers at

Reagan National Airport, where a slot is a permission to perform one departure or

one arrival by the airline at Reagan Airport. The merger simulation fares better than

GUPPI because it makes weaker assumptions about rival responses. A summary of

the results from each model with their underlying assumptions are provided in Table 1.

Table 1: Comparison of Models Applied to Reagan National Airport

Model Change in price
Rivals
respond
to price

Divestment
Rivals choose
network

Observed price
change

−4.36% Yes Yes Yes

GUPPI 5.66% No No No

Merger simulation
without divestment

3.06% Yes No No

Merger simulation
with divestment

−0.26% Yes Yes No

There are several well-known limitations to the use of UPP indices. Calculations

of GUPPI (or most other measures of upward pricing pressure) rely on pre-merger

estimates of elasticities for post-merger price predictions. Mergers between two large
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firms, however, may violate this assumption due to improvements in product quality,

or market segmentation by the merging firms. Furthermore, some measures of UPP

assume a 10% efficiency gain, even though cost efficiencies may not materialize.2

Thus, assuming a positive efficiency gain (or even assuming that the merger is

efficiency-neutral) may err in favor of the merging firms.

UPP indices rely on diversion ratios, which measure the proportion of sales

captured by a substitute product when the price of a focal product is increased.

When diversion ratios are computed as aggregate measures, they may fail to capture

the potential distributional impacts of a merger by missing the possibility of a

region or submarket being underserved (e.g. due to a decrease in product choice,

or a regional increase in price). To avoid missing these regional effects, diversion

ratios and UPP indices may be calculated separately for geographically isolated

markets. For example, this might comprise of a few square blocks for a grocery

store (consisting of residents who mostly shop from one of a few grocery stores in

the area), or half a state in the case of specialized hospital services. However, using

geographically isolated markets undercuts the appeal of UPP indices, which were

designed in part to avoid the messy affair of defining markets. Lastly, most UPP

indices are meant to capture only unilateral effects between the merging parties. A

merger between firms A and B may incentivize firm C to change its price if prices are

strategic complements or substitutes, which can be captured by a correctly-specified

structural model.

There are two main reasons to believe, a priori, that a full merger simulation

2Some reasons cost efficiencies may not arise include organizational chaos and loss of employee
morale. The MIT Sloan Executive Education Blog notes that the success of airline mergers in general,
and the US Airways-American Airlines merger in particular, depends on employee satisfaction (MIT,
2013).
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from a structural model will better predict post-merger price effects than GUPPI.

The first reason is its incorporation of rival responses. A merger simulation can,

for example, predict Delta Airlines’ price response due to the merger. GUPPI

calculations assume no price response from Delta – a strong assumption, especially

considering the entry of low-cost rivals due to the divestiture. The second reason is

that the use of a full merger simulation permits one to model the impact of structural

remedies on demand and prices.3

Modifying the GUPPI to account for the complexities of structural remedies all

but eliminates the computational advantage it has over a full merger simulation. By

highlighting the limitations of using GUPPI, I emphasize its strength – as a quick

screening tool, and not a rigorous prediction of expected post-merger effects.

I.1 Literature Review

The limitations of UPP indices are well-documented in the literature. In this section,

I highlight some of these limitations and discuss how a full merger simulation using

a structural model might overcome them.

An important component in estimating measures of UPP is the diversion ratio.

There are multiple methods to recover a diversion ratio. While Hausman (2010)

argues that using a full structural demand system should be the only method of

recovering diversion ratios, Farrell and Shapiro (2010) argue that firms’ internal

estimates of diversion ratios (tracked during their “normal course of business”) can

also be useful. The UK Competition & Markets Authority (2017) often relies on

3A third possible benefit of a structural model is its ability to endogenize medium-run investment
decisions (for example, route choice in an airline merger); however, this is beyond the scope of the
present paper because this calculation requires knowledge of fleet composition, which is proprietary.
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consumer surveys soliciting second-choice data.

Conlon and Mortimer (2021) show that the diversion ratio is a structural

parameter of each individual consumer, and that diversion measured after an

increase in the price of a product recovers a local weighted average of the individual

diversion ratios among all individuals who bought the product at the lower price but

no longer buy the product at the higher price (an average treatment on the treated,

ATT).

In contrast, a diversion ratio recovered using consumer surveys about second-

choice data (à la CMA) is an average treatment on the untreated (ATUT), because

all individuals who previously purchased the product (untreated) can no longer do so

(treatment). Conlon and Mortimer (2021) show that different methods of estimating

diversion ratios recover different treatment effects; this understanding is useful in

interpreting diversion ratios estimated from different data sources.

Using the diversion ratio to approximate the proportion of consumers recaptured

by a newly acquired merger partner is a simplification of many real-world complexities;

for instance, it ignores the increased likelihood that remaining post-merger firms

may change their own prices. A full merger simulation allows for the possibility that

non-merging rivals may change their prices after the merger.4

UPP indices cannot predict a post-merger price without calibrating the merger

pass-through rate, which may temper the merged firm’s ability to increase prices

following a merger. The merger pass-through rate is a measure comprised of local

4In the case of the US Airways-American Airlines merger, a full merger simulation also allows
firms operating out of Reagan Airport to maximize profits subject to the slot constraint, accounting
for slot allocation and divestiture.
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second-order conditions on the demand function. While there are disagreements on

whether the appropriate merger pass-through rate is estimated at a pre-merger or

post-merger level, Jaffe and Weyl (2013) show that for a small GUPPI, pre- and

post-merger pass-through rates are similar and can be approximated by first-order

conditions. This allows antitrust economists to use pre-merger pass-through rates

approximated using first-order conditions as the merger pass-through rate. A

profit-maximizing price estimated from a utility model in which consumers respond

to changes in product characteristics accounts for this pass-through effect without

need for calibration.

UPP indices are used to screen for potentially anticompetitive mergers that

warrant structural remedies. For instance, the UK competition authorities, as an

operational rule, typically prescribe structural remedies for mergers crossing a UPP

threshold (UK Competition & Markets Authority, 2017). However, a UPP index

cannot measure the potential effects of proposed remedies. In order to measure the

impact of the structural remedy on consumers, we need to employ a structural model

where firms maximize profits subject to the prescribed remedies.

The rest of this paper is as follows: Section II explains the merger, along with

the data available for the study; Section III outlines the most popular methods of

computing upward pricing pressure, and explains the GUPPI in detail; Section IV

compares and discusses the difference in predicted prices from a quick measure like

upward pricing index with a merger simulation; Section V concludes.
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II Background

Airline mergers have been common since deregulation in the 1970s. The use of slots

as a structural remedy to mergers and airline partnerships has become commonplace

in the last 15 years. Notable instances include the mergers between Delta Airlines

and Northwest Airlines (2008), United Airlines and Continental Airlines (2010), US

Airways and American Airlines (2013), Alaska Airlines and Virgin America (2016),

as well as voluntary slot swaps between United Airlines and Delta Airlines (2015)

and a joint venture between American Airlines and JetBlue Airways (2020).

Prior to the 2013 US Airways-American Airlines merger, the US airline industry

was fairly concentrated, with five firms controlling about 80% of the market share.

As is customary in airline mergers, antitrust authorities considered airport-pairs as

relevant antitrust markets. The Antitrust Division at the United States Department

of Justice (DOJ) along with some states successfully pursued divestment of airport

slots and gates at Reagan Airport near Washington, DC, and LaGuardia Airport in

New York City, NY, as pre-conditions for the merger in order to mitigate the negative

effects of concentration at these airports.56 The merger and the slot divestments

were consummated in 2014.

I obtain data on prices and quantities from the publicly-available DB1B database

(Bureau of Transportation Statistics, 2015), which I use to calculate market

shares and diversion ratios. I use the publicly-available Schedule P.1.2 (Bureau of

Transportation Statistics, 2012) to obtain data on airline markups. The purpose

5The co-plaintiff jurisdictions were the Attorneys General of Arizona, District of Columbia,
Florida, Michigan, Pennsylvania, Tennessee, and Virginia.

6Other airports with small levels of slot divestment were Boston Logan Airport, Miami
International Airport, Chicago O’Hare Airport, and Dallas Love Airport (United States v. US
Airways Group & AMR Corporation, 2013). The State of Texas settled separately to ensure service
to small rural communities.
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of only using publicly-available data is to mimic the conditions that antitrust

regulators would face when evaluating such mergers under deadlines imposed by the

Hart-Scott-Rodino Act of 1976.

I limit my analysis to the 50 largest airports in the US by domestic passenger

enplanements. I use only the third quarter to control for seasonality, using 2012 as

the pre-merger period and 2015 as the post-merger period.7

III Theory

Of the prominent measures of upward pricing pressure, the Gross Upward Pricing

Pressure Index (GUPPI) has the least informational requirement and makes the

fewest assumptions (European Economic & Marketing Consultants, 2013). Other

measures of upward pricing pressure include the confusingly named “upward pricing

pressure” (European Economic & Marketing Consultants, 2013), which allows for

positive efficiency gains from the merger. The efficiency gain is usually calibrated

at 10% (or some other value based on industry consensus), and robustness checks

are conducted. The “illustrative price rise” test, on the other hand, makes stronger

assumptions about the demand function (van der Veer, 2012). As a result, I use

GUPPI as the measure of upward pricing pressure throughout this paper.

III.1 Deriving the GUPPI

GUPPI measures the value of sales lost to the (former) rival as a proportion of the total

revenue lost by the firm due to a price increase. The lost revenue to the former rival is

recaptured by the merged entity following the merger, which creates an upward pricing

7Although the divestments were declared in late 2013, it took a number of months to consummate
the transfers. This disqualifies 2014 as a candidate for post-merger data.
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pressure. Mathematically, it can be expressed as (for example, see US Department of

Justice and Federal Trade Commission (2010)):

GUPPIUS,AA =
Value of sales diverted to AA

Revenues lost by US
(1)

The terms in the expression can be expressed in terms of quantities, prices, and

costs, as follows:

GUPPIUS,AA =
Number of units diverted to AA× Unit margin of AA

Number of units lost by US× Unit price of US
(2)

GUPPIUS,AA =
Number of units diverted to AA

Number of units lost by US︸ ︷︷ ︸
DiversionRatio

× Unit margin of AA

Unit price of AA︸ ︷︷ ︸
Markup

× Unit price of AA

Unit price of US︸ ︷︷ ︸
PriceRatio

(3)

The first term in equation 3 is called the diversion ratio from US Airways

to American Airlines (discussed in Section III.2). The second term refers to the

percentage markup of American Airlines. Thus, GUPPI can be expressed as follows:

GUPPIUS,AA = DiversionRatioUS,AA ×MarkupAA × PriceRatioAA,US (4)

In words, the upward pricing pressure is a function of the quantity of passengers

who would divert from US Airways to American, American’s price markup, and

the relative prices of the two products. The greater the proportion of consumers

that would defect from US Airways to American Airlines, and the greater the price

markup, the greater is the upward pricing pressure.
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III.2 Diversion Ratio

A crucial component of any measure of UPP is the diversion ratio, “which measures

the fraction of consumers that switch from one product to an alternative after a price

increase” (Conlon and Mortimer, 2021). Ordinarily, diversion ratios can be inferred

from sales data or internal business records (Farrell and Shapiro, 2010), although

Hausman (2010) insists on a full structural model.

The simplest measure of diversion ratio from US Airways to American Airlines is

the number of passengers diverted from US Airways to American, as a proportion of

passengers who choose a non-US Airways flight due to a change in the price of flights

by US Airways. Mathematically, for a change in the price of US Airways,

DiversionRatioUS,AA =
∂QAA

∂PUS

/ | ∂QUS

∂PUS

| (5)

Own-price and cross-price elasticities of demand (εUS,own and εUS,AA) for a change

in the price of US Airways are defined as:

εUS,own =
∂QUS

∂PUS

× PUS

QUS

(6)

εUS,AA =
∂QAA

∂PUS

× PUS

QAA

(7)

Therefore, the diversion ratio can be expressed in terms of the elasticities. For a

change in the price of US Airways:

DiversionRatioUS,AA =
QAA

QUS

× | εUS,AA

εUS,own

| (8)

Under the assumptions of a multinomial logit discrete choice utility model

(including the IIA assumption), the elasticities can be expressed as:
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εUS,own = α× (1− shareUS)× priceUS (9)

εUS,AA = α× priceAA × shareAA (10)

where α is the price coefficient from the logit model. Thus, the diversion ratio

simplifies to the following:

DiversionRatioUS,AA =
QAA

QUS

× εUS,AA

εUS,own

(11)

DiversionRatioUS,AA =
QAA

QUS

× �α · priceAA · shareAA

�α · (1− shareUS) · priceUS

(12)

In Equation 12 above, I derive an expression for diversion ratio for the commonly

used logit discrete choice model of demand (Anderson et al., 1992). The diversion

ratio can be computed using only publicly available data of prices and quantities, and

mathematically analogous to deriving the ratio using elasticities from a structural

model (that assumes logit discrete choice demand).

IV Results

IV.1 Observed Price Increase After Merger

Table 2 outlines the price change due to the merger for markets including the 50

largest airports, and only markets involving Reagan Airport. The table shows that

while prices on average went up by 7.6% due to the merger, the price fell by 4.4%

for routes involving Reagan Airport. Special attention is given to Reagan Airport

due to the significant structural remedies imposed by the DOJ – DOJ required
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divestment of about 20% of all slots held by the newly merged entity (15% of all

slots) to low-cost carriers (Ali, 2020).

Table 2: Observed increase in price following US-American merger
Pre-merger price Post-merger price Pct increase

Year 2012 2015
Price for mkts involving:

Top 50 airports 252.58 271.77 7.60%
(59.13) (57.46)

Reagan Airport 263.86 252.36 -4.36%
(67.71) (50.96)

Parentheses contain standard deviation.

IV.2 GUPPI calculation

Equation 4 above outlines how to calculate GUPPI. Diversion ratio is computed

using Equation 12 referenced above. Price and market shares for the two airlines

are computed for each market using the publicly available DB1B database. The

quantities used in the equations above are the number of passengers flown by the

respective carriers within the market, rendering a single diversion ratio for each

market. A markup of 12.08% is imputed from the publicly available Schedule

P.1.2 database. Section IV.3 discusses the markup calibration in greater detail and

performs robustness checks. Following Berry and Jia (2010), I define a market as

a non-directional city-pair in a given quarter. Table 3 shows that for the top 50

airports in 2012, the GUPPI for the US-American merger is 6.6%.

From Table 3, I find that the GUPPI (6.6%) closely resembles the observed

increase in price (7.6%). In that, the GUPPI is adequate in predicting the general

increase in price due to the merger. Unlike GUPPI, the observed increase in price

includes secular macroeconomic trends. In Section IV.4, I compare the GUPPI
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Table 3: Calculation of GUPPI for routes involving 50 busiest airports
US American

Price 252.6908 252.1912
(55.63124) (75.13782)

Quantity 742.3446 366.3041
(635.9868) (675.46)

Market share 0.3357 0.0977
(0.2409) (0.1562)

Markup 0.1208
Diversion ratio 0.4810

(1.8133)
GUPPI 6.58%

(0.2994)
Observed price increase 7.60%
Parentheses contain standard deviation.

computed only for markets involving Reagan Airport with the simulated merger,

neither of which take the time trend into account. As such, that the observed

average increase in price includes macroeconomic trends is not of consequence, since

the comparison is between methods that both include macroeconomic trends.

IV.3 Calibration of Markup and Robustness Check

Accounting based measures of markups often differ from true economic markups

because accounting based measures of costs include sunk costs, exclude opportunity

costs, and fail to distinguish average costs from marginal costs. The standard

approach for estimating economic markups relies on first estimating a structural

demand model in order to infer marginal costs from firm first-order conditions.

To keep my calculated GUPPI computationally simple, however, I measure

markups using publicly available accounting measures available with the Bureau of

Transportation Statistics. Column [1] in Table IV.3 lists the reported revenue earned

from transporting passengers. Column [2] in Table IV.3 lists the carrier’s pre-tax
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income from all sources, which includes accounting costs. The calibrated markup

of 12.08% for American Airlines is within the same order of magnitude as other

industry documents.8 Markups for various carriers for the third quarter of 2012 are

provided below from Bureau of Transportation Statistics (2012):

Table 4: Markup for airlines, third quarter of 2012

Airline Passenger Revenue Pre-tax Income Markup
($ thousands) ($ thousands)

[1] [2] [2]÷[1]
American Airlines Inc. 1,087,686 131,414 12.08%
Delta Air Lines Inc. 430,524 85,435 19.84%
JetBlue Airways 227,137 61,860 27.23%
Southwest Airlines Co. 38,023 329 0.87%
Spirit Air Lines 31,412 7,287 23.20%
United Air Lines Inc. 627,416 46,787 7.46%
US Airways Inc. 165,014 19,650 11.91%

In Table 5, I perform robustness checks by varying the calibrated value of the

markup. I find that the results are sensitive to our calibration of the markup.

The robustness check was conducted using the industry average for markups (9%),

and an arbitrarily chosen high markup, which is still possible for some airlines

during highly profitable periods. GUPPI fluctuates between 4.9% for a low markup

(9%) and 10.9% for a high markup of 20%. This should not be taken to dismiss

our value of GUPPI, since the calibration was done using credible information,

but rather as a reminder that proper calibration is required to obtain accurate results.

Table 5: Calculation of GUPPI with varying markups
(1) (2) (3)

Markup (calibrated) 12.08% 9% 20%
GUPPI 6.58% 4.90% 10.90%
Std. Dev. 0.2994 0.2231 0.4957

8For instance, a The Wall Street Journal article puts the average 2018 airline markup at 9%.
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IV.4 GUPPI for Reagan Airport

Next, in Table 6, I run the same calculations for the diversion ratio and GUPPI, but

only for routes involving Reagan Airport. DOJ required divestment of about 20% of

all slots held by the newly merged entity (15% of all slots) to low-cost carriers, which

is significant but should not be reflected in our measure of upward pricing pressure.

Table 6: Calculation of GUPPI for routes involving Reagan Airport
US American

Price 266.4815 249.3104
(61.4244) (67.1112)

Quantity 1131.136 284.4984
(795.4998) (537.1485)

Market share 0.5091 0.0909
(0.2525) (0.1683)

Markup 0.1208
Diversion ratio 0.4123

(1.4908)
GUPPI 5.66%

(0.1986)
Observed price increase −4.36%
Parentheses contain standard deviation.

Table 6 shows a GUPPI of 5.7%, which is different from the observed price

decrease of 4.4%. Indeed, nothing in the set-up of the formula to calculate GUPPI

[equation (4)] can incorporate changes in the market structure, or even consider a

decrease in price following a merger. While the GUPPI (5.7%) does not adequately

predict the price change for routes involving Reagan Airport (−4.4%), the price

change offered by a merger simulation (−0.26%, discussed in Section IV.5) is closer

to the observed price decrease, and is negative.
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IV.5 Merger Simulation

I begin by using the structural model developed in Ali (2020) on the pre-merger

data for Reagan Airport. The restriction on Reagan Airport allows me to focus on

markets that experienced change in market structure. By restricting the dataset

to the pre-merger time period (third quarter of 2012), I am only using information

available to the econometrician at the beginning of 2014, and using the same data

that will be used to compute the GUPPI. These restrictions allow me to directly

compare the results from the merger simulation with the GUPPI.

The estimates from the structural model in Table 7 are consistent with our prior

understanding of air travel. All travelers derive disutility from price and utility

from more frequent flights. Leisure travelers are more sensitive to changes in price

(coefficient on price = -0.0262, elasticity = 6.0573) than business travelers (coef

= -0.0049, elasticity = 1.1259), whereas business travelers are more sensitive to

changes in frequency (coefficient on frequency = 0.0420) than leisure travelers (coef

= 0.0295). The model predicts that 38% of all passengers travel for business.

I then use this model to run two simulations. In both simulations, I need to

make an assumption about the endogeneity of airline networks. Airline networks are

generally assumed to be pre-determined (see, for instance, Berry and Jia (2010)) due

to long-negotiated labor, hotel, refueling, and hangar contracts. This assumption

is strong when it comes to a merger, because the time needed to consummate a

merger is long enough to renegotiate such contracts, and is a potential source of

efficiency gains. As a compromise between assuming a fixed network and a fully

re-optimized network after the merger, I assume that the newly merged entity

eliminates duplicate/rival products previously offered by the acquired airline on
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Table 7: Demand Coefficients
Covariate Type-Business Type-Leisure

Business Leisure
Constant -3.2838 0.1016

(1.4353) (0.3655)
Layover -18.5045 -1.6016

(0.1089) (0.1280)
Tourist -0.2294 -1.5230

(0.0002) (0.2195)
Logdist -0.4344 -1.3451

(0.0191) (0.0023)
Closest 0.0006 0.0002

(0.0067) (0.0584)
Legacy -3.2739 -4.7257

(0.0179) (0.0243)
SD price 0.0221 0.0187

(0.0142) (0.0000)
Price -0.0049 -0.0262

(0.0083) (0.0000)
Frequency 0.0420 0.0295

(0.0001) (0.0001)
Proportion∗ 0.3811 0.6189

(0.0002)
Parentheses contain standard errors.

* The proportion of leisure-type travelers is the complement of proportion of business-type

travelers, and thus do not have standard errors of its own.

routes previously served by both airlines.

In the first simulation, I simply merge the ownership of the slots owned by

American and US Airways to one entity, without any divestments. Each product

(flight) owned by this new entity inherits the product characteristics of the original

product, including its product unobservables, ξ, estimated using the structural

model. In order to simulate the effects of a merger, in markets where both American

and US Airways competed, I drop all products offered by American Airlines.9 As

9Although the merged entity kept the “American” brand, the merger was essentially US Airways
acquiring American Airlines. The management of the new entity came from US Airways, and US
Airways was the airline that maintained a hub (and the dominant market share) at Reagan Airport.

102



shown in Table 8, my simulation predicts a 3.06% increase in price following the

merger with no divestment for markets involving Reagan Airport.

The second simulation simulates a merger with the prescribed divestment. I

again assume that the products being offered by the new entrants retain the product

characteristics of the pre-merger product. My simulation, shown in Table 8, predicts

a 0.26% fall in prices following the merger with divestment.

Table 8: Price increase at Reagan Airport, as predicted by merger simulation

(Qty-weighted)
mean price

Difference from
actual price

Percentage difference
from actual price

Pre-merger price 263.86
Observed post-merger price 252.36 −11.51 −4.36 %
Merger without divestment 271.93 8.07 3.06 %
Merger with divestment 263.18 −0.68 −0.26 %

A caveat of this study is that the simulations assume the network as exogenous.

In other words, American is not allowed to change its network in response to

entry by JetBlue. This restrictive assumption is made to avoid the computational

burden imposed by endogenizing entry. However, this simulation allows for firms to

competitively adjust their prices, which is an improvement over the GUPPI.

I find that a merger simulation (−0.26%, shown in Table 8) performs better than

calculation for GUPPI (5.7%, shown in Table 6) in predicting the price change due

to merger (actual price change was −4.4%, shown in Table 8). There are two main

reasons for this divergence in the two methods. Firstly, GUPPI does not account for

changes in efficiency or shifts in demand after the merger. Other screening tools used

instead (or in conjunction) of GUPPI, like the UPP, assume an increase in efficiency.

Thus, GUPPI assumes mergers to be efficiency-neutral, whereas UPP assumes
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positive gains in efficiency. A merger simulation, on the other hand, allows for shifts

in demand by making weaker assumptions on product quality after the merger,

which can result in a decrease in price. In a merger simulation, the post-merger

product unobservable characteristic, ξj, can be a proxy for changes in efficiency and

product quality (manifested through a change in mean product demand). In this

paper, my choice of the post-merger product unobservable assumes the merger is

efficiency-neutral, the same assumption made by GUPPI. In Ali (2020), my choice

of the range of product unobservables from the data imply the possibility of an

efficiency gain or loss.

Secondly, the assumptions underlying GUPPI do not account for competitive

responses by rivals. Prices can be strategic complements or substitutes; a merger

simulation allows firms to optimally set price, which is not the case for measures of

upward pricing pressure like the GUPPI.

Neither the GUPPI nor the merger simulation detrends for macroeconomic trends.

While the merger simulation provides a price change that could be considered as

inaccurate, it performs better than GUPPI, and can produce negative values. This

counterexample highlights GUPPI’s inability to predict negative price changes,

which is not a limitation of the merger simulation. Therefore, the GUPPI may not

always be adequate for predicting price changes due to a merger, especially ones

with structural remedies or other changes in market structure.
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V Conclusion

This paper finds that for the simplest cases (that is, one without significant changes

in market structure), measures of upward pricing pressure may approximate the

order of magnitude of the change in price. The quality of the approximation will

largely depend on the accuracy of the input variables, which may be easier to find

in some industries than others. However, such measures should only be used as a

screening tool, and not a conclusive one.

For mergers where structural remedies are contemplated, a merger simulation is

necessary to understand the impact of the merger with remedy. A merger simulation

can incorporate changes in the market structure due to the proposed remedy and

strategic decisions made by firms not involved in the merger. I show that a merger

simulation can predict decreases in price, which GUPPI (and other indices of upward

pricing pressure), by design, cannot. This is due to the restrictive assumptions made

by GUPPI – that mergers are efficiency-neutral, that rivals do not competitively

respond to the merger, and that the market structure remains indentical after the

merger.

Without undertaking such analyses, the act of proposing structural remedies

becomes an arbitrary exercise. For instance, in the absence of merger simulation,

the question of whether 104 slots at Reagan Airport should have been divested as

opposed to any other number, and whether these slots should have exclusively gone

to low-cost carriers, would not be based on econometric estimations or quantitative

analysis informed by an underlying economic model of firm behavior.

The results underscore the need for conducting rigorous pre-merger analyses
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before approving mergers or while designing remedies.
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