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In 1999, Khovanov constructed a combinatorial categorification of the Jones poly-

nomial. Since then there has been a question of to what extent the topology of a

link is reflected in his homology theory and how Khovanov homology can be used for

topological applications. This dissertation compiles some of the authors contributions

to these avenues of mathematical inquiry.

In the first chapter, we prove that for a fixed braid index there are only finitely

many possible shapes of the annular Rasmussen dt invariant of braid closures. Focus-

ing on the case of 3-braids, we compute the Rasmussen s-invariant and the annular

Rasmussen dt invariant of all 3-braid closures. As a corollary, we show that the

vanishing/non-vanishing of the  invariant is entirely determined by the s-invariant

and the self-linking number for 3-braid closures.

In the second chapter, we show if L is any link in S3 whose Khovanov homology

is isomorphic to the Khovanov homology of T (2, 6) then L is isotopic to T (2, 6). We

show this for unreduced Khovanov homology with Z coe�cients.

Finally in the third chapter, we exhibit infinite families of annular links for which

the maximum non-zero annular Khovanov grading grows infinitely large but the max-

imum non-zero annular Floer-theoretic gradings are bounded. We also show this

phenomenon exists at the decategorified level for some of the infinite families. Our

computations provide further evidence for the wrapping conjecture of Hoste-Przytycki

and its categorified analogue. Additionally, we show that certain satellite operations

cannot be used to construct counterexamples to the categorified wrapping conjecture.
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Chapter 1

Introduction

Low-dimensional topology is the study of manifolds in dimensions of 4 and lower. One

of the ways to study manifolds is by studying the knotting of embedded submanifolds,

this perspective on manifolds, often referred to as knot theory, has a long history

especially in 3-dimensions.

While the field of knot theory has existed for over a century there have been shifts

in perspective as the field has development. A recent perspective has been to take a

knot or link and associate graded vector spaces, coming from the homology of a chain

complex. Often these algebraic invariants are drawing from either gauge theory or

representation theory.

Khovanov homology is a specific knot homology theory coming from ideas in higher

representation theory and also has a straightforward combinatorial definition. The

combinatorial definition of Khovanov homology makes it relatively easy to compute

but it is often unclear how much topological information is contained within Khovanov

homology. Trying to determine the extent to which topological properties of a link

are reflected in Khovanov homology has been an ongoing theme in recent research.

In spite of the di�culties, there have been applications of Khovanov homology to

questions about knots and other objects in low-dimensional topology. Sometimes the
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applications of Khovanov homology have used analogies or specific algebraic relation-

ships to Floer homology theories. The some of the first topological applications of

Khovanov homology were when J. Rasmussen’s gauge theory free proof of the Milnor

conjecture [52] and Kronheimer-Mrowka’s proof using a spectral sequence to a gauge

theoretic invariant that Khovanov homology detects the unknot [36]. More recently,

Khovanov homology was used by Piccirillo in her celebrated proof that the Conway

knot does not bound a smooth disk in the 4-ball [49].

This dissertation is a compilation of some of the author’s work on applying tools

from Khovanov homology to study low-dimensional topology. Chapter 2 contains

work understanding and computing invariants of braid closures defined with Kho-

vanov homology as well as relating these invariants to dynamical properties of the

braids and comparing them with invariants defined with Floer homology. In Chap-

ter 3 gives an application of Khovanov homology to the question of link detection.

Finally, Chapter 4 investigates a long standing conjecture on the relationship be-

tween Khovanov homology and the annular wrapping number and highlights a stark

contrast between Khovanov homology and Floer theories.

In addition to the research presented in the following chapters, the author has

also collaborated on other applications of Khovanov homology and knot Floer homol-

ogy. Questions about link detection and knot Floer homology was explored in joint

work with Binns and applications of Khovanov homology to detecting braid conju-

gacy classes were also given [13]. Work with Chernov and Petkova illuminated some

applications of knot homology theories to mathematical physics and causality [18].
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Chapter 2

Annular Rasmussen invariants:

Properties and 3-braid

classification

2.1 Introduction

In [35], Khovanov defined a bigraded homology theory Khi,j(L) associated to an

oriented link L ✓ S3 1. Later in [37], Lee defined a homology theory Lee(L) by

adding additional di↵erentials to the Khovanov chain complex. Lee also showed that

the total rank of Lee(L) is 2|L| where |L| is the number of components of L.

For a knot K, J. Rasmussen used a Z filtration on Lee homology to define an

invariant s(K) [52]. His invariant gives a lower bound on the smooth 4-ball genus of

a knot K and is strong enough to give a combinatorial proof of the Milnor conjecture

about the smooth 4-ball genus of torus knots [43]. The definition of the s-invariant

was later extended to oriented links by Beliakova and Wehrli [12]. Pardon gives a

slightly di↵erent extension of the Rasmussen invariant to oriented links in [48] but in

1This article will appear in a forthcoming issue of Michigan Mathematical Journal.

3



the present paper we use the extension by Beliakova and Wehrli.

In a slightly di↵erent direction, Asaeda, Przytycki, and Sikora [1] and L. Roberts [53]

define a triply-graded version of Khovanov homology called annular Khovanov homol-

ogy for oriented links L embedded in a thickened annulus A⇥ I. Additionally if the

thickened annulus is embedded in S3 so that is it unknotted, then the additional

grading on annular Khovanov homology of L induces a Z filtration on the standard

Khovanov homology of L. Annular Khovanov homology detects the trivial braid

closure [5] and detects some non-conjugate braids related by exchange moves [28].

Combining these two directions, Grigsby, A. Licata, and Wehrli [21] show that

the Lee complex of an oriented annular link L ⇢ A ⇥ I ⇢ S3 is Z � Z filtered.

From this data, using ideas of Ozsváth, Stipsicz, and Szabó [47], as reinterpreted by

Livingston [40], they construct a piecewise linear function dt(L) called the annular

Rasmussen invariant. Grigsby, A. Licata, and Wehrli show that for braid closures

dt(b�) can be used to show that b� is right-veering and also to show that b� is not

quasipositive. At t = 0, the dt invariant recovers the s-invariant of L by s(L) � 1 =

d0(L).

In the present paper we investigate the Z � Z filtered Khovanov-Lee complex

of braid closures and use its algebraic structure to obtain strong restrictions on the

annular Rasmussen invariant.

Theorem 2.3.4. For a fixed n, there is a finite set of piecewise linear functions

fi : [0, 1] ! R so that for any n-braid � there is some j so that dt(b�) = fj + w(b�).

Furthermore there is an explicit method for enumerating all the functions fi.

Remark 2.1.1. For 3-braids, the number of possible shapes of dt(b�) is three. For

4-braids, the number is seven and for 5-braids there are 18 possible shapes.

Because the value of dt(b�) at t = 0 is s(b�)� 1, one may hope that Theorem 2.3.4

provides a new upper bound on the s-invariant of braid closures. Unfortunately, the
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upper bound provided by Theorem 2.3.4 for a braid � with braid index n, i.e. an

n-braid, is s(b�)  w(b�)+n�2 which is never better than the bounds coming from [42]

when Lobb’s upper bound U(D) is computed for the diagram D = b�.

Applying this perspective on dt(b�) to 3-braids we get that the dt invariant of

any 3-braid closure b� depends only on the writhe w(b�) of the braid closure and the

Rasmussen invariant s(b�) of the closure.

Theorem 2.3.7. When � is a 3-braid, then for t between 0 and 1 one of the following

holds: dt(b�) = w(�)� 3 + 3t, dt(b�) = w(b�)� 1 + t or dt(b�) = w(b�) + 1� t.

In other words, if � is a 3-braid then dt(b�) is entirely determined by the s-invariant

and the writhe.

With Theorem 2.3.7 in mind, all that is needed to compute the dt invariants of

3-braid closures is to compute the s-invariant of all 3-braid closures. Focusing on

3-braid closures allows us to use Murasugi’s classification of 3-braids up to conjugacy.

A discussion of why Murasugi’s classification is used here instead of a more recent

approach to the conjugacy problem for 3-braids can be found in Remark 2.2.2. By

understanding how the s-invariant changes under adding crossings we are able to

compute the s-invariant of all 3-braid closures.

Theorem 2.4.1. A 3-braid � has s(b�) = w(b�)� 2 if and only if � is conjugate to a

braid of the form:

1. hd�1�
�a1
2 · · · �1��an

2 with ai � 0 and some ai > 0 and d > 0.

2. hd�m
2 with m 2 Z and either d = 0 m � 0, d = 1 m � �4, or d > 1.

3. hd�m
1 �

�1
2 with m 2 {�1,�2,�3} and d > 0.

Theorem 2.4.2. A 3-braid � has s(b�) = w(b�) + 2 if and only if the mirror of � is

conjugate to a braid of the form:

1. hd�1�
�a1
2 · · · �1��an

2 with ai � 0 and some ai > 0 and d > 0.
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2. hd�m
2 with m 2 Z and either d = 1 m � �3, or d > 1.

3. hd�m
1 �

�1
2 with m 2 {�1,�2,�3} and d > 0.

Theorem 2.4.3. All other 3-braids have s(b�) = w(b�).

It is a natural question to ask if this computation gives new obstructions to the

sliceness of 3-braid closures. However the only 3-braids where it is not know if they

are slice are known to have finite concordance order and so their s-invariants are

necessarily zero [39].

Using braid foliations, Birman and Menasco completely classify which links are

closures of 3-braids and in particular they find two infinite families of non-conjugate

3-braids whose closures are isotopic as links [15]. Knowing that the dt invariants of a

braid closure are invariants of the conjugacy class of of the braid, one may ask if the

dt invariants of 3-braid closures can detect these families of non-conjugate 3-braids.

However, the dt invariants of 3-braid closures only detect the writhe of the braid

closure and an invariant of the isotopy class of the braid closure, the s-invariant, so

they can not distinguish the non-conjugate 3-braids.

In [50], Plamenevskaya introduced an invariant of transverse isotopy  using Kho-

vanov homology. This invariant can be thought of as an invariant of braid closures

b� up to positive stabilization. An open question is if this invariant contains more

information than the self-linking number of b� and the s-invariant.

By comparing the value of the s-invariant of 3-braid closures with the vanishing/non-

vanishing of  we obtain the following corollary of Theorem 2.4.1.

Corollary 2.5.3. The invariant  is not e↵ective for 3-braid closures. In particular,

the vanishing/non-vanishing of  for 3-braids is determined by the s-invariant and

the self-linking number.

It is currently an open question if  is an e↵ective transverse invariant and relat-

edly it is also unknown if the vanishing/non-vanishing of  is always determined only
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i i+ 1
Figure 2.1: A local diagram for the generator �i

Figure 2.2: A braid and the annular closure of the braid equipped with the braid
orientation

by the s-invariant and the self-linking number.

The organization of the paper is as follows. In Section 2.2, we review some ba-

sic facts about 3-braids and braid closure invariants from Khovanov homology. In

Section 2.3, we investigate new properties of the annular Rasmussen dt invariants

and prove Theorem 2.3.4. In Section 2.4, we compute the Rasmussen s-invariant

for 3-braid closures and prove Theorems 2.4.1, 2.4.2, and 2.4.3. In Section 2.5, we

compare our computations of the s-invariant of 3-braid closures to the computations

of other categorified invariants of 3-braid closures. Section 2.6 contains an explicit

computation of the s-invariant of a single 3-braid closure that was not computable

via the methods used in Section 2.4.

2.2 Background

2.2.1 3-braids

A braid on n strands is a proper embedding of n disjoint copies of the interval I = [0, 1]

into D2 ⇥ [0, 1] where each interval intersects every slice D2 ⇥ t, t 2 [0, 1] in exactly

one point up to isotopy through such embeddings. The collection of all braids on n
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strands form a group Bn with multiplication given by stacking braids. The group Bn

has the Artin presentation with generators �i for 1  i  n � 1 and the relations

�i�j = �j�i for |i�j| � 2 and �i�i+1�i = �i+1�i�i+1. Diagrammatically, the generator

�i is the crossing in Figure 2.1 between the i-th and i + 1-st strands. The group Bn

can be identified with Mod(Dn) the mapping class group of the disk with n punctures.

See [14] for more about braids.

Given a braid �, there is a link b� in the thickened annulus associated to � called

the annular closure of �. The braid closure b� has an orientation called the braid

orientation induced on it by the braid � where all the strands of � are oriented to

flow from the top of the braid to the bottom. See Figure 2.2 for a diagram of the

annular closure with the braid orientation. Two oriented annular braid closures �̂1

and �̂2 represent the same oriented annular link if and only if �1 and �2 are conjugate

braids. All braid closures are assumed to be equipped with the braid orientation.

A braid � is said to be quasipositive if it can be expressed as a product of con-

jugates of positive generators, that is if � =
Q

wi�jiw
�1
i for some words wi 2 Bn.

A braid � is said to be right-veering if it sends every arc � running from @D to one

of the marked points to the right. See Section 2.2 of [51] for more details and a

precise definition. All quasipositive braids are right-veering, but right-veering braids

are often no quasipositive, see for instances examples found in [51].

For each braid group Bn there is a group homomorphism w : Bn ! Z given by

�i ! 1 for every i. The image w(�) is an invariant of the annular closure b� called

the writhe w(b�). The mirror of a braid � is the image of � under the homomorphism

m : Bn ! Bn given by �i ! ��1
i for every i. The annular closure [m(�) is the

topological mirror of the annular closure b�. Note that w([m(�)) = �w(b�).

Murasugi classified all 3-braids up to conjugation as having exactly one of the

following three forms.

Lemma 2.2.1 (Murasugi’s classification of 3-braids [44]). Every 3-braid is conjugate
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to one of the following braids:

1. hd�1�
�a1
2 · · · �1��an

2 with d 2 Z, ai � 0 and some ai > 0.

2. hd�m
2 with d 2 Z and m 2 Z.

3. hd�m
1 �

�1
2 with d 2 Z and m 2 {�1,�2,�3}.

where h = (�1�2)3.

In what follows, we will refer to the three di↵erent forms for a 3-braid listed above

as families 1, 2, and 3 respectively.

Remark 2.2.2. Since the time since Murasugi published his classification of 3-braids,

much more has been written about the structure of 3-braids. Specifically, work of Xu

provided a new solution to the conjugacy problem for 3-braids and a solution to the

shortest word problem for 3-braids [60]. Xu’s approach also generalizes to solving

the conjugacy problem for n-braids. The reason why we use Murasugi’s approach

in what follows is because Murasugi’s classification is connected to properties of the

braid � in the mapping class group of the disk with 3 punctures. It was previously

known that the dt invariants of braid closures are connected to certain properties of

the conjugacy class of � viewed as a mapping class, for example if the conjugacy class

is right-veering. A summary of Xu’s solution to the conjugacy problem for 3-braids

along with a survey of recent work on 3-braids can be found in [17].

2.2.2 Braid closure invariants from Khovanov homology

Given a diagram of an annular braid closure b�, we will build two Z�Z filtered chain

complexes using constructions of Khovanov [35] and Lee [37] along with ideas from

J. Rasmussen [52], Asaeda-Przytycki-Sikora [1], and L. Roberts [53]. Given a braid

closure b�, we can form the cube of resolutions of b� as in Section 4.2 of [35]. This cube

of resolutions is then assigned a triply graded vector space C i,j,k(b�). The i, j, and
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k gradings are the homological, quantum, and annular gradings respectively. This

triply graded vector space can be equipped with di↵erentials @ and � so that the

homologies with respect to @ and with respect to @ + � are called the Khovanov

homology Khi,j(b�) and the Lee homology Leei(b�) respectively. Both homologies are

invariants of the oriented link L ✓ S3 represented by b�. Because @ preserves the j

grading, Khovanov homology is bi-graded with i and j gradings and filtered by j�2k.

Lee homology is i graded and Z � Z filtered by j and j � 2k. The Z � Z filtered

chain homotopy type of Lee homology is an invariant of the annular closure of b�. The

chain complex for Lee homology decomposes into two subcomplexes L1 and L2 which

represent the two non-zero quantum gradings of vectors mod 4 because @ preserves

the j grading and � increases it by 4.

The vector space C i,j,k(b�) has a basis of distinguished generators that are all

homogeneous with respect to each grading. A complete resolution of b� is a choice

of smoothing for each crossing of b�. A complete resolution consists of a collection of

circles in the annulus. Some of the cirlces wrap around the puncture of the annulus

while others will not. Associated to each vertex of the cube of resolutions of b�

is a complete resolution. Generators of C i,j,k(b�) are labellings of each circle of this

complete resolution with either a + sign or a� sign. Each circle with a + increases the

quantum grading by one and each circle with a � decreases the quantum grading by

one. The quantum grading also increases by one for each 1 resolution used in making

the complete resolution. Only the labels of circles that wrap around the annulus are

counted for the annular grading. Those that are labeled with a + increase the annular

grading by one and the ones labeled with a � decrease the annular grading by one. For

an n braid, the annular grading of any generator is in the set {�n,�n+2, . . . , n�2, n}.

The homological grading tracks the number of 1 resolutions used and is shifted so

that the oriented resolution coming from the braid orientation o then is in homological

grading 0. The quantum grading is given an overall shift so that the generator in the
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oriented resolution with all the circles labelled with � sits in quantum grading sl(b�).

Lee showed that if b� is a link with m components then Lee(b�) has dimension 2m

and for each possible orientation o of b� constructed an explicit cycle so so that the

homology classes of these cycles generate Lee(b�) [37]. The class s0 is a linear com-

bination of distinguished generators in the oriented resolution coming from o. Each

possible labelling of the resolution appears in the linear combination with coe�cient

±1 depending on the orientation and which circles are labeled with a + and which

are labeled with �. The reader can refer to [52] for a detailed description of how to

construct the cycle so.

Using Lee homology, J. Rasmussen defined the s-invariant for knots in S3 and

his definition was extended to oriented links in S3 by Beliakova and Wehrli [52] [12].

We recall some basic properties of this invariant. For a braid closure b� with its braid

orientation o there is a non-zero homology class [so] in Lee0(b�). It follows immediately

from Definition 3.4 of [52] that s(b�) = max{grj(x) | [x] = [so]} + 1 where grj is the

filtered j degree. The s-invariant gives bounds on the four ball genus of knots and

links and is a group homomorphism from the smooth knot concordance group to

Z [52] [12].

Proposition 2.2.3 (Proposition 3.9 of [52]). If K is a knot then s(m(K)) = �s(K).

The following proposition follows directly from Lemma 3.5 of [52].

Proposition 2.2.4. For an oriented link L, the homology class [so] is non-zero in

both subcomplexes of Lee(L).

Proof from Lemma 3.5 of [52]. Lemma 3.5 of [52] gives that [so]+[sō] and [so]�[sō] are

contained in separate subcomplexes of Lee(L). The proof of the Lemma shows that

±[sō] is the image of [so] under some automorphism of Lee(L) that preserves the two

subcomplexes. Therefore both [so] and [sō] must be non-zero in each subcomplex.
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By considering the additional j�2k filtration on Lee homology, Grigsby, A. Licata,

and Wehrli extended the s-invariant to a family of annular braid closure invariants

dt one for each t in the interval [0, 2] [21]. This family of invariants is also called the

annular Rasmussen invariants. For each t 2 [0, 2] the Lee homology has a filtration

jt = j � tk so for each t it is possible to define dt(b�) = max{jt(x) | [x] = [so]}. If a

generator x with [x] = [so] satisfies jt0(x) = dt0(b�) then x is said to determine dt(b�)

at t0. From the definition it is immediate that d0(b�) = s(b�) � 1. After defining the

invariant, they show that it has a symmetry d1�t(b�) = d1+t(b�) for t 2 [0, 1] [21].

Because of the symmetry, in the rest of this paper we restrict to the interval [0, 1]

without losing information about the invariant dt. We recall key properties of the dt

invariant needed for the present work.

Proposition 2.2.5 (Theorem 1 of [21] and its proof). The dt invariant is a piecewise

linear function on [0, 1] and the right-hand slope of dt(b�), called mt(b�), at any t 2 [0, 1]

is the negative k grading of the cycle x with [x] = [so] and jt(x) = dt(b�).

Proposition 2.2.6 (Theorem 3 of [21]). Let b� be a braid closure with writhe w(b�),

then d1(b�) = w(b�).

Proposition 2.2.7 (Theorem 1 of [21]). Let S be an oriented cobordism with n odd

index critical points and no even index critical points between two braid closures b� and

b�0 so that every component of S has boundary components in both b� and b�0. Then the

cobordism S gives a bound on the di↵erence of their dt invariants |dt(b�)�dt(b�0)|  n.

Proposition 2.2.8 (Proposition 4 of [21]). If �0 and �1 are braids and �2 is the braid

that is the disjoint union of �0 and �1 then dt( b�2) = dt( b�1) + dt( b�2).

Given a braid closure b�, Plamenevskaya showed how to associate to b� a homology

class  (b�) in Khovanov homology which is well-defined up to sign [50]. The homology

class  (b�) is invariant not only under braid conjugation but also under positive sta-

bilization and destabilization and so it is an invariant of the transverse isotopy class
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of b�. We recall the definition and a few properties of this invariant. The invariant

is defined to be the homology class of the distinguished generator v� where all the

circles of the oriented resolution are labeled with a � sign in the Khovanov homology

of b�.

Proposition 2.2.9 (Proposition 3.1 of [5]). If  (b�) 6= 0 then � is right-veering.

Note that there are examples of right-veering braids whose transverse invariants

 vanish [51].

Proposition 2.2.10 ([50]). For any n-braid, if s(b�)� 1 = w(b�)� n then  (b�) 6= 0.

This proposition includes all quasipositive braids as examples. More generally for

any n-braid, if dt(b�) has slope n at any point in the interval [0, 1) then  (b�) 6= 0 [21].

The transverse invariant  is also functorial in the the following sense.

Proposition 2.2.11 (Theorem 4 of [50]). If �0 is a braid obtained from � by adding

a positive crossing then the crossing change induces a map f : Kh(b�0) ! Kh(b�) and

f( (b�0)) = ± (b�)

In particular if  (b�) 6= 0 then  (b�0) 6= 0; equivalently if  (b�0) = 0 then  (b�) = 0.

For 3-braids, it is known exactly when the invariant  is non-zero. This result

was well known to experts but the author is not aware of a complete proof in the

literature. The case when d > 1 is also treated in [29]. The strategy of proof in [29]

is essentially the same as in the proof produced here.

Lemma 2.2.12. A 3-braid � has  (b�) 6= 0 if and only if � is conjugate to one of the

following braids.

1. hd�1�
�a1
2 · · · �1��an

2 with all ai � 0 and some ai > 0 and d > 0.

2. hd�m
2 with m 2 Z and either d = 0 and m � 0, d = 1 and m � �4, or d > 1.

3. hd�m
1 �

�1
2 with m 2 {�1,�2,�3} and d > 0.
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Proof. The Murasugi form of � is in one of the three families. For the first family,

when d < 1 the braids are not right-veering and so their  invariants vanish by

Proposition 2.2.9. When d = 1 the argument that these braids are quasi-alternating

gives you that the  invariants are non-vanishing (see Remark 7.6 of [7]). For d > 1

these braids can be obtained from braids in this family with d = 1 by adding positive

crossings and so their  invariants are also non-vanishing by Proposition 2.2.11.

For the second family, when d < 0 or d = 0 and m < 0 the braids are all not

right-veering so their  invariants vanish by Proposition 2.2.9 [51]. When d = 1 and

m = �5 a calculation shows that the  invariant vanishes and so it also vanishes

when m < �5 by Proposition 2.2.11 [7]. When d = 1 and m = �4, this braid is

quasipositive so the  invariant is non-zero by Proposition 2.2.10 and then so are the

 invariants of all braids with d = 1 and m > �4 by Proposition 2.2.11. Finally, if

d > 1 then the braids can be obtained by adding positive crossings to braids in the

first family with non-vanishing  invariants and so the  invariant is non-zero for

these braids as well by Proposition 2.2.11.

For the third family, note that when d  0 the braids are not right-veering and

so their  invariants vanish by Proposition 2.2.9 and when d > 0 the braids are

quasipositive so their  invariants are all non-zero by Proposition 2.2.10 [51].

2.3 Additional properties of the annular Rasmussen

invariant

In this section we aim to place constraints on the dt invariant of a braid. These

constraints will limit the possible shapes of dt. For a 3-braid, these constraints will

imply that dt is determined entirely by the s-invariant and the writhe of the braid.

Throughout the remaining sections of the paper, at times we use a graphical
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perspective to describe dt(b�) and the jt gradings of generators. If a generator x has

grading (j, k) then the jt gradings of the generator x can be plotted as the line from

t = 0 to t = 2 starting at (0, j) of slope �k. Then the graph for dt(b�) can be drawn

by following the plots for the generators determining dt(b�) for di↵erent values of t.

Proposition 2.3.1. If � is a negative n braid, then the slope mt(b�) is in the set

{n, n� 2, . . . ,�n+ 2} for t 2 (0, 1).

In [21] it was proved that mt(b�) is in the set {n, n � 2, . . . ,�n + 2,�n} so it

remains to rule out the possibility of mt(b�) = �n for t 2 (0, 1).

Proof. For a negative braid closure b�, the oriented resolution is at the far right of

the cube of resolutions, so the distinguished generators from the oriented resolution

can only be homologous to linear combinations of other generators from the oriented

resolution. The only generator x with k-grading n is the labelling of every circle with

a +. The generator x is contained in exactly one of the subcomplexes L1, L2 of the

Lee chain complex, assume that it is in L1. The homology class [s0] is non-zero in

both L1 and L2 by Proposition 2.2.4, and so any representative of the homology class

[s0] has elements in both L1 and L2. Every distinguished generator y in L2 living in

homological grading 0 has jt = j � tk grading less than x for any t 2 [0, 1) which

means that x is never the generator that determines dt(b�) for t 2 [0, 1). The slope at

t is the negative k grading of the generator determining dt(b�) so the slope mt(b�) is

never �n for t 2 [0, 1).

The condition that the dt invariant of negative n-braids doesn’t have slope �n is

enough to show that the dt invariant of all n-braids can’t have slope �n.

Proposition 2.3.2. If � is an n-braid, then the slope mt(b�) is in the set {n, n �

2, . . . ,�n+ 2} for t 2 (0, 1).
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In [21] it was proved that mt(b�) is in the set {n, n� 2, . . . ,�n+2,�n} so we rule

out the possibility of mt(b�) = �n for t 2 (0, 1).

Proof. The only generator with k grading n is the labelling of all circles in the oriented

resolution with a + and this generator lies on the line w(b�)� n(t� 1) so it is enough

to show that dt(b�) does not lie on this line for t 2 [0, 1) because that place where it

is possible to have slope �n.

Let � have n+ positive crossings and n� negative crossings and �0 be the negative n

braid that is the result of removing all positive crossings from �. There is a cobordism

from � to �0 with n+ odd-index annular critical points, one for each positive crossing

removed from �. By Proposition 2.2.7, the cobordism gives the bound |dt(b�) �

dt(b�0)|  n+. For any t 2 [0, 1) the previous proposition implies that dt(b�0) <

�n� � n(t� 1) so then dt(b�) < n+ � n� � n(t� 1) = w� n(t� 1) and dt(b�) doesn’t

lie on this line for t 2 [0, 1).

The following technical proposition will be used to provide strong restrictions on

the shape of the dt invariant.

Proposition 2.3.3. Suppose x, y are homogenous elements in the two di↵erent sub-

complexes L1 and L2 of the Lee complex and there are numbers t0, t1, and t2 so

the following holds. In some neighborhood (t0, t2) that jt(y) < jt(x) on (t0, t1) and

jt(x) < jt(y) on (t1, t2). Additionally if a 2 L1 with x and jt(a) > jt(x) on (t1, t2)

then jt(a) > jt(x) on (t0, t2) and similarly if b 2 L2 with y and jt(b) > jt(y) on (t0, t1)

then jt(b) > jt(y) on (t1, t2). Then it is not possible to have x determine dt on (t0, t1)

and y determine dt on (t1, t2).

Note that a su�cient condition on when it is possible to find numbers t0, t1, and

t2 so the assumptions of the theorem are met is when no other generator’s line passes

through the point of intersection of the lines of x and y.
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Proof. Suppose that x determines dt on (t0, t1) and y determines dt on (t1, t2). Then

there is a cycle c1 representing [s0] with c1 = x+
P

ai+
P

bj with ai 2 L1 and bj 2 L2

and jt(x) < jt(bj) for t 2 (t0, t1). It is not possible to have jt(x) equal to jt(bj) for

t 2 (t0, t1) because if generators agree at more than one point then they agree for all

values of t and so must lie in the same subcomplex because they have the same j0

grading and if they agree for only a single value of t then bj would have a smaller

jt value than x for some values of (t1, t2) which contradicts the assumption that x

determines dt on this interval.

Similarly there is a cycle c2 representing [s0] with c2 = y+
P

a0i+
P

b0j with a0i 2 L1

and b0j 2 L2 and jt(y) < jt(a0i) for t 2 (t1, t2). Then jt(x) < jt(a0i) for t 2 (t0, t2) and

jt(y) < jt(bj) for t 2 (t0, t2).

Notice that c3 =
P

a0i +
P

bj also represents [s0] because [s0] = [A] + [B] where

[A] is supported only in L1 and [B] is supported only in L2 so [
P

a0i] = [A] because

[y +
P

a0i +
P

b0j] = [A] + [B] and a similar argument shows [
P

bj] = [B]. Then c3

is a representative of [s0] with jt(x) < jt(c3) for t 2 (t0, t1) and jt(y) < jt(c3) for

t 2 (t1, t2). Constructing this representative of [s0] with higher jt grading contradicts

that x and y determined dt on these intervals.

Informally, Proposition 2.3.3 means that you can’t see a change from being de-

termined by an element in one subcomplex to being determined by an element in

the other subcomplex with lower k grading/higher jt slope under certain additional

assumptions.

The dt invariant of a braid is determined by the jt grading of some generator of

the braid’s Lee chain complex. Noticing this and a few properties of the dt invariant,

it is possible to restrict the shape of the dt invariant of a braid.

Theorem 2.3.4. For a fixed n, there is a finite set of piecewise linear functions

fi : [0, 1] ! R so that for any n-braid � there is some j so that dt(b�) = fj + w(b�).

Furthermore there is an explicit method for enumerating all the functions fi.
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Figure 2.3: Possible generators for a 4-braid

Proof. At t = 1 the value of dt(b�) is known, d1(b�) = w(b�) and in the interval [0, 1)

the slope mt(b�) is bounded between n and �n + 2. So in this interval, dt(b�) lies in

the triangular region bounded by the lines passing through (1, w(b�)) with slopes n

and �n+ 2. A start to understanding the possible shapes of dt is listing all possible

jt gradings of generators in this region for some t 2 (0, 1).

There are generators with jt gradings on the line of slope �n+2 from (0, w(b�)+n�

2) to (1, w(b�)) and a single generator with jt grading on the line from (0, w(b�) � n)

to (1, w(�)). Additionally there could be generators with j0 grading from the set

{w(�)�n+2, w(�)�n+4, . . . , w(b�)+n�4} with any slope from the set {n�2, n�

4, . . . ,�n+ 2}. This is an exhaustive list of generators which can determine dt(b�) in

[0, 1) because of restrictions on the parity of the j0 grading in the Lee complex and

restrictions on the annular gradings of generators in the complex. Now every possible

shape of dt(�) must be some path along the lines coming from these generators which

stays in the triangular region, never has t decrease, and ends at the point (1, w(b�)).

Using the restriction from Proposition 2.3.3, some of these paths can be ruled out

as possibilities for the shape of dt(b�).

Example 2.3.5. As an example of Theorem 2.3.4, we can enumerate all possible

shapes of dt(b�) when � is a 4-braid. For a 4-braid, the shape of dt is restricted to

paths to (1, w(b�)) in Figure 2.3. Examining the figure, there are ten possible paths;
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Table 2.1: The six possible shapes of dt of a 4-braid with non-constant slope

the six with non-constant slope are shown in Table 2.1. Some of these paths can not

be the shape of dt however because of the restrictions on dt from Proposition 2.3.3.

Specifically the first and second paths in the top row and the second path in the

bottom row can not be the shape of dt because of Proposition 2.3.3.

Remark 2.3.6. The application of Theorem 2.3.4 in the case of 4-braids verifies that

the example of a dt invariant given in Section 7.4 of [21] does not contain more points

of non-di↵erentiability than those shown. The authors of [21] stated that they did

not expect more discontinuities but were unable to rule out their existence. More

generally, Theorem 2.3.4 provides an approach to answering the question raised in

Section 7.4 of [21] on the values of t where it is possible that dt(b�) is not di↵erentiable.

Replicating the same process for 3-braids provides even stronger restrictions on

the shape of the dt invariant.

Theorem 2.3.7. When � is a 3-braid, then for t between 0 and 1 one of the following

holds: dt(b�) = w(�)� 3 + 3t, dt(b�) = w(b�)� 1 + t or dt(b�) = w(b�) + 1� t.

Proof. Following the process described in Theorem 2.3.4 for a 3-braid shows that the

shape dt is restricted by the paths to (1, w(b�)) in Figure 2.4. Examining the figure,

19



Figure 2.4: Possible generators for a 3-braid

there are exactly four paths, three with constant slope and a single path that starts

at w � 1 with slope �1 until it intersects the line with slope 3 and then follows the

line with slope 3 to the endpoint (1, w(b�)). Note that the generators on these two

lines are in di↵erent subcomplexes. So then this single path with non-constant slope

can not be the shape of dt because it is ruled out by Proposition 2.3.3.

For the dt invariant of 3-braids, these three possibilities can be enumerated by

comparing the s-invariant and the writhe. The possibilities are s(b�) = w(b�) � 2,

s(b�) = w(b�), or s(b�) = w(b�) + 2.

Remark 2.3.8. A similar perspective can be applied to study the possible forms of

other algebraically analogous invariants. For example, in the case of the concordance

invariant ⌥K(t) an application can show that there are 13 possibilities for ⌥K(t) if

K is concordant to a genus 2 knot and gives an explicit enumeration of these possi-

bilities. This could previously be obtained through an application of Corollary 7.2,

Theorems 7.1, 8.1, and 8.2 of [40].

2.4 The annular Rasmussen invariants of 3-braids

For a 3-braid �, the s-invariant of b� is either w(b�)� 2, w(b�), or w(b�) + 2 depending

on if the slope of dt in (0, 1) is 3, 1, or �1. The following theorems completely classify
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when each of these possibilities occur.

Theorem 2.4.1. A 3-braid � has s(b�) = w(b�)� 2 if and only if � is conjugate to a

braid of the form:

1. hd�1�
�a1
2 · · · �1��an

2 with ai � 0 and some ai > 0 and d > 0.

2. hd�m
2 with m 2 Z and either d = 0 m � 0, d = 1 m � �4, or d > 1.

3. hd�m
1 �

�1
2 with m 2 {�1,�2,�3} and d > 0.

Theorem 2.4.2. A 3-braid � has s(b�) = w(b�) + 2 if and only if the mirror of � is

conjugate to a braid of the form:

1. hd�1�
�a1
2 · · · �1��an

2 with ai � 0 and some ai > 0 and d > 0.

2. hd�m
2 with m 2 Z and either d = 1 m � �3, or d > 1.

3. hd�m
1 �

�1
2 with m 2 {�1,�2,�3} and d > 0.

Theorem 2.4.3. All other 3-braids have s(b�) = w(b�).

Remark 2.4.4. Almost all non-split 3 braids satisfy the equation dt([m(�)) = �dt(�)�

2 + 2t. However, the example of the braids h1��4
2 and h�1�4

2 does not satisfy this

formula and shows that there is no simple formula for the behavior of dt under mir-

roring for links. It is not known if there is a simple formula for the behavior of dt

under mirroring for knots.

The following property of the dt invariant of 3-braids is useful for the computation

of the s-invariant of 3-braid closures.

Lemma 2.4.5. Adding positive crossings to a 3-braid can only preserve or increase

the slope of dt(b�) in the interval (0, 1). Similarly adding negative crossings to a 3-braid

can only preserve or decrease the slope of dt(b�) in the interval (0, 1).
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Remark 2.4.6. This fact about adding crossings and how that changes the slope of

the dt invariant is a specific property of 3-braids and not true in general. For example,

for 4-braids it should be possible to begin with a braid whose shape is shown in the

top right of Table 2.1 add a positive crossing and get a braid whose shape has constant

slope of 2. This would decrease the slope for some values of t.

Proof. Let � be a 3-braid and consider ��i the result of adding a positive crossing.

Notice that there is a cobordism from � to ��i with a single index one critical point.

Now by Proposition 2.2.6, d1(b�) + 1 = w(b�) + 1 = d1(d��i) which means that if

d0(d��i) = d0(b�) + 1 then the two braids have the same dt slope. The bounds on dt

from cobordisms in Proposition 2.2.7 give that d0(d��i)  d0(b�) + 1. If equality holds

then dt of d��i has the same slope as that of b� and if equality does not hold then dt

of d��i has a more positive slope than that of b�. The same argument proves the case

of adding a negative crossing.

With this lemma, we are now ready to prove Theorems 2.4.1, 2.4.2, and 2.4.3.

Throughout the proof of Theorems 2.4.1, 2.4.2, and 2.4.3 braids are considered up to

conjugacy.

Proof of Theorem 2.4.1. If a 3-braid � has s(b�) = w(b�)� 2 then  (b�) 6= 0 by Propo-

sition 2.2.10 so the braids listed are the only possible 3-braids with s(b�) = w(b�)� 2

by Lemma 2.2.12.

The braids in the family 1 with d = 1 are all quasi-alternating and have  (b�) 6= 0

so they have s(b�) = w(b�) � 2. For d > 1 then the braids can be obtained from a

braid with d = 1 by adding positive crossings and so they also have s(b�) = w(b�)� 2.

In family 2, when d > 1 then the braids can be obtained from the braids in the

first family by adding positive crossings and so these braids have maximal dt slope on

(0,1) and s(b�) = w(b�) � 2 by Lemma 2.4.5. If d = 1 and m = �4 then the braid is

quasipositive and so s(b�) = w(b�)�2 by Proposition 2.2.10. Adding positive crossings
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shows that the s(b�) = w(b�)� 2 also holds when m > �4 by Lemma 2.4.5. Finally if

d = 0 and m � 0 then the braids are quasipositive and so have s(b�) = w(b�)� 2.

The braids in family 3 are all quasipositive and so they have s(b�) = w(b�)� 2 by

Proposition 2.2.10.

Proof of Theorem 2.4.2. First, notice that if � is a 3-braid whose closure is a knot

and m(�) has  (m(b�)) 6= 0 then s(b�) = �s(m(b�)) = �(w(m(b�))� 2) = w(b�) + 2 by

Proposition 2.2.3. More generally if �0 is any 3-braid where it is possible to obtain � as

above by adding positive generators to �0 then d0(b�0) = w+1 because of Lemma 2.4.5.

Also, adding positive generators to �0 is equivalent to adding negative generators to

m(�0) and arriving at m(�).

If m(�0) is conjugate to a braid in family 1 and has d > 0 for m(�0) then you can

add negative crossings to m(�0) to get to the braid m(�) = hd�1�
�n
2 with d > 0 and

then after maybe adding an additional negative crossing m(�) closes up to a knot

and m(b�) also has  non-vanishing. Then � has s(b�) = w(b�) + 2 and so then the

same holds for b�0.

If m(�0) is conjugate to a braid in family 2 with  (m(b�0)) 6= 0 and d > 1 then you

can add negative crossings to the mirror to get to a braid m(�) in family 1 with d � 1

by canceling out all of a full twist except a single �1. Then � has s(b�) = w(b�) + 2

and so then the same holds for b�0.

For � with d = 1 and m = �3 then the Khovanov homology of b� in homological

grading 0 has dimension 2 and is supported in quantum gradings -2 and 0. This

implies that s(b�) = �1 = w(b�) + 2. For �0 with d = 1 and m > �3, it is possible to

add negative crossings to m(�0) to arrive at m(�) and so s(b�0) = w(b�0) + 2 as well.

If m(�0) is conjugate to a braid in family 3 and has  (m(b�0)) 6= 0 then you can

add negative crossings to m(�0) to get to m(�) = hd��3
1 ��1

2 which is a knot with

 (m(b�)) 6= 0. So then � has s(b�) = w(b�) + 2 and so then the same holds for b�0.

To complete the proof that these are the only 3-braids with s(b�) = w(b�) + 2 we
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will show that all other 3 braids have s(b�) = w(b�).

Proof of Theorem 2.4.3. If � is conjugate to a braid in family 2 with d = 0 and m < 0

then � is conjugate to a split braid. Specifically it is the union of a trivial braid on a

single strand 1 and a braid ↵ with |m| half-twists on two strands. Proposition 2.2.8

implies that d0(b�) = d0( b1) + d0(b↵) = �1 + (w(c↵)) = w(b�) � 1 and so then s(b�) =

w(b�).

If � is conjugate to the braid h�1�4
2 in family 2 then an explicit computation shows

that s(b�) = �2 = w(b�). This computation is included in Section 2.6.

It remains to compute dt(b�) for braids � where  (b�) = 0 =  (m(b�)).

First notice that if � is a 3-braid whose closure is a knot and  (b�) = 0 =  (m(b�))

then s(b�) = w(b�) by Proposition 2.2.3. More generally if �0 is a 3-braid with  (b�0) = 0

and it is possible to add negative crossings to �0 to arrive at � with s(b�) = w(b�)

then s(b�0) = w(b�0) as well. This is because by Lemma 2.4.5 we know that s(b�0) =

w(b�0) or w(b�0) � 2 but the fact that  (b�0) = 0 rules out the second possibility by

Proposition 2.2.10. Finally, adding negative crossings to �0 is the same as adding

positive crossings to m(�0).

Notice that if we add negative crossings to b�0 to arrive at b� and  (b�0) = 0 =

 (m(b�0)) then the functoriality of  implies that  (b�) = ±f( (b�0)) = 0 so we only

need to check that  (m(b�)) = 0 as well if � closes up to a knot.

For m(�0) conjugate to a braid in family 1 with  (b�0) = 0 =  (m(b�0)), you can

add positive crossings tFor m(�0) conjugateo m(�0) to get to hd�k
1�

�1
2 �j

1 with d  0

and after possibly adding another positive crossing this is a braid m(�) in family 1

whose closure is a knot and has  (b�) = 0 =  (m(b�)). So then s(b�0) = w(b�0). Note

that we only require that d  0 and don’t identify specific values of k, j, and d which

satisfy  (b�) = 0 =  (m(b�)) but as long as the braid b�0 we started with satisfies

 (b�0) = 0 =  (m(b�0)) then we know that the braid b� that we obtain will as well.

For m(�0) conjugate to a braid in family 2 with  (b�0) = 0 =  (m(b�0)), we have
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that either �0 = h�k
2 for k  �5 or �0 = h�1�k

2 for k � 5. If �0 is of the form

�0 = h�1�k
2 for k � 5 then it is possible to add negative crossings to �0 and arrive at

� = h�1�5
2. Examining the Khovanov homology of b� in homological grading 0, it has

dimension 1 in quantum grading �2 and dimension 2 in quantum grading 0 and is

zero in all other quantum gradings. This means that s(b�) = �1 = w(b�) and so then

s(b�0) = w(b�0) as well for all �0 = h�1�k
2 with k � 5.

If �0 = h�k
2 for k  �5 then you can rewrite �0 as the word �1�2

2�1�
k+2
2 and

then you can add negative crossings to �0 to arrive at the braid � = �k+2
2 which has

s(b�) = w(b�) and so then s(b�0) = w(b�0).

For m(�0) conjugate to a braid in family 3 with  (b�0) =  (m(b�0)) = 0, you can

add positive crossings to m(�0) and get to the braid m(�) = hd��1
1 ��1

2 with d  0

which is a knot with  (m(b�)) = 0 =  (b�), so then s(b�0) = w(b�0).

2.5 Comparisons with other invariants of 3-braids

The results of Theorems 2.2.12, 2.4.1 and 2.4.2 show a close connection between dt

and  for 3-braids.

Corollary 2.5.1. A 3-braid � has  (b�) 6= 0 if and only if dt(b�) has constant maximal

slope, i.e. s(b�) = w(b�)� 2.

Corollary 2.5.2. If � is a non-split 3-braid with  (m(b�)) 6= 0 then � is conjugate

to h�1�4
2 or dt(b�) has constant minimal slope, i.e. s(b�) = w + 2.

An open problem is if  is an “e↵ective” transverse invariant, that is if it contains

more information about transverse links than the self-linking number and the smooth

link type. A weaker question which is also unknown is if vanishing/non-vanishing of  

contains more information than the s-invariant and the self-linking number. Birman

and Menasco showed that there are transversaly non-isotopic 3-braid closures with
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the same underlying smooth link type and the same self linking number [16] so it is

meaningful to ask if a transverse invariant is e↵ective for 3-braid closures.

Corollary 2.5.3. The invariant  is not e↵ective for 3-braid closures. In particular,

the vanishing/non-vanishing of  for 3-braids is determined by the s-invariant and

the self-linking number.

Along with the dt invariant and  invariant, there are other invariants that have

been previously computed for 3-braids. Two examples are the transverse invariant

from knot Floer homology b⇥ and the contact invariant of double branched covers of

3-braids c(T,�).

Theorem 2.5.4 (Theorem 4.1 of [51] ). For a 3-braid �, the invariant b⇥(b�) is non-

zero if and only if � is conjugate to a braid of the following form:

1. hd�1�
�a1
2 · · · �1��an

2 with ai � 0 and some ai > 0 and d > 0.

2. hd�m
2 with m 2 Z and either d = 0 m � 0 or d � 1.

3. hd�m
1 �

�1
2 with m 2 {�1,�2,�3} and d > 0.

Theorem 2.5.5 (Theorem 4.2 of [4]). For a 3-braid �, the contact invariant c(T,�)

of ⌃(b�) is non-vanishing if and only if b⇥(b�) is non-vanishing.

The following statements summarize how the four invariants, dt,  , b⇥, and c(T,�),

compare for 3-braids.

Corollary 2.5.6. The following 3-braids have s(b�) = w(b�)� 2,  (b�) 6= 0, b⇥(b�) 6= 0

and c(T,�) 6= 0:

1. hd�1�
�a1
2 · · · �1��an

2 with ai � 0 and some ai > 0 and d > 0.

2. hd�m
2 with m 2 Z and either d = 0 m � 0, d = 1 m � �4, or d > 1.

3. hd�m
1 �

�1
2 with m 2 {�1,�2,�3} and d > 0.
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Corollary 2.5.7. The 3-braids h�m
2 with m  �5 have b⇥(b�) 6= 0 and c(T,�) 6= 0

but  (b�) = 0 and s(b�) = w(b�).

For the case of 3-braids the Heegaard Floer invariants completely classify the

braids as right-veering and non right-veering depending on if the invariants vanish

or not. However the comparison shows that the invariants defined from Khovanov

homology may detect slightly more subtle information about the conjugacy class of

� as an element of Mod(D3) because the invariants vanish/have non-maximal slope

on the closures of h�m
2 with m  �5 and these braids are right-veering but contain

large amounts of negative twisting inside a fixed circle in D3 fixed by �.

2.6 Computation of s(\h�1�42)

The computation of the s-invariant of the braid closure of h�1�4
2 makes use of Bar-

Natan’s cobordism category, which allows for a “divide and conquer” approach to

calculations. Recently Schuetz wrote a paper [54] where he described using a “divide

and conquer” approach to compute the s-invariant of knots. While the specific ideas

in his paper are not used in our calculation, his paper did prompt the author to

consider using a “divide and conquer” approach to compute s(\h�1�4
2).

The computation makes repeated use of the ideas in [10], which allow us to build

up the formal Bar-Natan complex crossing by crossing. We use Bar-Natan’s delooping

and cancellation lemmas (Lemmas 4.1 and 4.2 of [10]) to simplify the complex as much

as possible.

For this braid s(\h�1�4
2), computing the s-invariant is equivalent to determining

if a specific cycle is non-zero in the Khovanov homology of the braid. The following

two paragraphs justify this assertion.

A computer computation shows that the Khovanov homology of \h�1�4
2 with coef-

ficients in Q in homological grading zero has dimension 6. This is exactly the same as
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the dimension of the Lee homology of \h�1�4
2 in homological grading zero. So starting

with the original Lee complex and using filtered chain homotopies to simplify it to a

complex whose underlying generators are the generators of Khovanov homology, we

find that there are no induced di↵erentials entering or leaving homological grading 0.

So in homological grading 0, the filtration on Lee homology is determined entirely by

the quantum grading on Khovanov homology.

The Khovanov homology of \h�1�4
2 in homological grading zero has dimension one

in quantum grading �3, dimension three in quantum grading �1, and dimension two

in quantum grading 1. When we say “the part of the distinguished generator so in

quantum grading �3” what we mean is if so is written as a linear combination of

distinguished generators restricting to just the linear combination of those generators

in quantum grading �3. The part of the distinguished generator so in quantum

grading �3 is a cycle in the Khovanov homology of \h�1�4
2. It is a cycle in Khovanov

homology because so is a cycle in Lee homology and the additional di↵erentials in

the Lee complex raise the quantum grading by 4. There is no part of so in quantum

grading �7 to cancel the Khovanov di↵erential of the part of so in quantum grading

�3 so it must be that it is a cycle in Khovanov homology. So if it is non-zero in

Khovanov homology then s(\h�1�4
2) = �2.

To compute that the part of the distinguished generator so in quantum grading �3

is non-zero in the Khovanov homology of the closure of h�1�4
2 = ��1

1 ��2
2 ��1

1 �2
2, first

we split the braid into the words ��1
1 ��2

2 ��1
1 and �2

2 and compute a tangle complex

for each. While computing and simplifying each tangle complex, one can keep track

of which are in the image of the oriented resolution under chain homotopy. In this

example, from the choice of where to cut the braid, the image is only the oriented

resolution. In all of the tangle complexes, the homological and quantum grading of

the objects are shown below the object as a pair (i, j). Throughout the computation,

dots on arrows represent dotted cobordisms.
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Lemma 2.6.1. The tangle complex associated to �2
2 with the global grading shifts

needed for the braid ��1
1 ��2

2 ��1
1 �2

2 is chain homotopy equivalent to the complex B in

Figure 2.5.

Proof. A straightforward computation using the delooping and cancelation lemmas

shows that the tangle complex for �2
2 with the appropriate grading shifts is equivalent

to the complex B in Figure 2.5.

Lemma 2.6.2. The tangle complex associated to ��1
1 ��2

2 ��1
1 is chain homotopy equiv-

alent to the complex E 0 whose objects are {E1, E2, E3, E5, E6, E7, E9, E10, E12} in Fig-

ure 2.6 and whose di↵erentials are shown in Figure 2.8.

Proof. A straightforward computation using the delooping and cancelation lemmas

shows that the tangle complex for ��1
1 ��2

2 ��1
1 is equivalent to the complex E in Fig-

ures 2.6 and 2.7. Two more applications of the cancelation lemma gives the complex

E 0 whose objects are {E1, E2, E3, E5, E6, E7, E9, E10, E12} in Figure 2.6 and whose

di↵erentials are shown in Figure 2.8.

We are now ready to show the part of the distinguished generator so in quantum

grading �3 is non-zero in the Khovanov homology of \h�1�4
2.

The tensor complex E 0⌦B is a tangle complex for the braid ��1
1 ��2

2 ��1
1 �2

2. Closing

the tangles o↵ gives a complex for the braid closure \��1
1 ��2

2 ��1
1 �2

2. A straightforward

computation with the closed o↵ complex verifies that the part of the distinguished

generator so in quantum grading �3 is non-zero in the Khovanov homology of \h�1�4
2.
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Figure 2.5: The complex B

Figure 2.6: The generators of the complex E
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Figure 2.7: The di↵erentials of the complex E

Figure 2.8: The di↵erentials of the complex E 0 obtained by eliminations of E
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Chapter 3

Khovanov homology detects T(2,6)

3.1 Introduction

Khovanov homology is a combinatorially defined, bi-graded R module Khi,j(L,R)

which is associated to an oriented link L ✓ S3 [35] 1. The graded Euler characteristic

of Khovanov homology is the Jones polynomial. Many of the topological applications

of Khovanov homology come from algebraic relationships to Floer homologies either

implicitly through an analogy (e.g. the definition of the s-invariant) or explicitly

through a spectral sequence.

In the spirit of finding connections between topological information and Khi,j(L,R)

is the question of detection. Specifically, Khovanov homology is said to detect a link

L0 if given any link L then L is isotopic to L0 if and only if Khi,j(L,R) ⇠= Khi,j(L0, R).

Kronheimer and Mrowka showed that Khovanov homology detects the unknot [36].

Khovanov homology is also known to detect the unlink [25] [11], the Hopf link [9],

the trefoil [8], the connected sum of two Hopf links [58], the torus link T (2, 4) [58],

and split links [38].

In this paper we prove an additional detection result for Khovanov homology

1This article will appear in a forthcoming issue of Mathematical Research Letters published by
International Press.
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Theorem 3.3.1. Let L be a link with Kh(L,Z) ⇠= Kh(T (2, 6),Z). Then L is isotopic

to T (2, 6).

The proof of Theorem 3.3.1 is similar in spirt to the proof in [58] that Khovanov

homology detects T (2, 4) but uses Dowlin’s spectral sequence to knot Floer homology,

rather than the Kronheimer-Mrowka spectral sequence to singular instanton Floer

homology.

3.2 Background

3.2.1 Khovanov homology

Khovanov homology is a combinatorially defined invariant that assigns to an oriented

link L ✓ S3 a bi-graded R-module Khi,j(L,R) which is the homology of a chain com-

plex CKh(D) associated to a diagram D for L [35]. The i grading is the homological

grading and the j grading is the quantum grading.

A choice of a basepoint p 2 L defines an action of R[X]/X2 = 0 on CKh(D).

Quotienting by the image of this action and then taking homology gives rise to reduced

Khovanov homology fKh
i,j
(L,R). The rank of fKh

i,j
(L,F2) is exactly half the rank of

Khi,j(L,F2) [55, Corollaries 3.2.B-C].

Multiple spectral sequences starting at Khovanov homology and converging to

other homology theories have been constructed. We briefly recall the spectral se-

quences that will be needed in the proof of Theorem 3.3.1.

Using a similar construction to Khovanov homology, Lee defined an invariant of an

oriented link L ✓ S3 called Lee homology Leei(L,Q), and from the construction there

is a spectral sequence from Khi,j(L,Q) to Leei(L,Q). Lee showed that the total rank

of Leei(L,Q) for an n-component link L is 2n and showed an explicit bijection between

generators of Leei(L,Q) and choices of orientations of L. The homological gradings
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in which Leei(L,Q) is non-zero are determined by the pairwise linking numbers of

the di↵erent components of L [37].

Batson-Seed constructed a link splitting spectral sequence from Khovanov homol-

ogy. To simplify the exposition, we will restrict to the case that L = K1 [ K2 is a

2-component link which is what is relevant to the proof of Theorem 3.3.1. We also

define an additional grading ` on Khovanov homology given by ` = i � j. If L has

two components, then the Batson-Seed construction gives a spectral sequence from

Khi,j(L,F2) to a homology theory BS`(L,F2) where BS
`+A(L,F2) ⇠= Kh`(K1 tK2) ⇠=

�`1+`2=` Kh`1(K1)⌦Kh`2(K2) where A is some overall shift determined by L [11].

Pointed Khovanov homology is a generalization of reduced Khovanov homology

to a link L with a set of base points p1, . . . , pm 2 L and a corresponding action of

R[X1, . . . , Xm]/X2
1 = · · · = X2

m = 0 on CKh(L) for each base point [19]. Dowlin

constructed a spectral sequence from relatively �0 = j � 2i graded pointed Khovanov

homology to relatively �0 = 2M�2A graded knot Floer homology [19]. The version of

pointed Khovanov homology Dowlin constructs is similar but slightly di↵erent than

the earlier version defined by Baldwin-Levine-Sarkar [6]. As an example, when applied

to a link with a single basepoint, the Dowlin construction gives the reduced Khovanov

homology reduced at that point while the Baldwin-Levine-Sarkar construction does

not. However, many formal properties of the theories are analogous, compare the

following lemma with Lemma 2.11 of [6].

Lemma 3.2.1. Let (L,p) be a pointed link diagram, and suppose that p contains

some point p0, and p0 = p \ p0. Then there is a short exact sequence

0 ! ⌃0,1 CKh(L,p0) ! CKh(L,p) ! ⌃�1,�1 CKh(L,p0) ! 0
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where ⌃i,j denotes shifts in the homological and quantum gradings. In particular

rankKh�0(L,p)  2 rank�
0+1 Kh(L,p0)

where �0 is a single Z grading given by j � 2i.

Proof. The chain level exact sequence follows immediately from the construction of

CKh(L,p) using an iterated tensor product of basepoint maps and keeping track of

the bi-gradings.

3.2.2 Knot Floer homology, link Floer homology, and su-

tured Floer homology

Knot Floer homology is an invariant that assigns to an oriented link L ✓ S3 a bi-

graded R-module [HFK(L). The two gradings are the Maslov grading M and the

Alexander grading A [45].

Link Floer homology [HFL(L) is a generalization of knot Floer homology which is

graded by an Alexander grading ai for each component of L in addition to the Maslov

grading M [46].

To recover knot Floer homology from link Floer homology for an n-component

link L, start with [HFL(L) and define a single Alexander grading as the sum over the

Alexander gradings of all components, A =
P

ai. Then [HFL(L) graded by A and

M + n�1
2 is isomorphic to [HFK(L) [46].

Sutured Floer homology SFH(M) is a version of Heegaard Floer homology defined

for a balanced sutured manifold M . The homology SFH(M) splits over relative SpinC

structures on M [32].

The complement of a link S3 \ L is naturally a balanced sutured manifold. The

sutures are pairs of two oppositely oriented meridional sutures on each component of

the boundary. The sutured Floer homology SFH(S3 \ L) is isomorphic to [HFL(L)
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with the relative SpinC structures corresponding to the multi-Alexander gradings.

Given a properly embedded oriented surface with boundary S in a sutured man-

ifold M , which satisfies some technical conditions about how @S intersects the the

sutures of M , S defines a sutured manifold decomposition from M to M 0 = M \

Int(N(S)). Juhász showed that SFH(M 0) is isomorphic to the direct summands of

SFH(M) corresponding to “outer” SpinC structures [33].

3.2.3 Link Floer homology detects braids

An argument similar in spirit to arguments in [33, Theorem 1.5] and [22] shows that

link Floer homology detects braids in the complement of a fibered component. This

braid detection result is known to some experts but the author is unaware of a proof

in the literature so one is produced here. We provide a proof a more general statement

is needed in the proof of Theorem 3.3.1. A version of the following argument was

communicated to the author by John Baldwin [3]. For a definition of a braid in the

complement of a fibered knot refer to [34, Definition 1.2].

Proposition 3.2.2. Suppose L ✓ M is a link with l components with a fibered com-

ponent K and M \ L is irreducible. Then L \K is a braid in the complement of K

if and only if dHFL(L) has rank 2l�1 in the highest (and lowest) non-zero Alexander

grading associated to K.

Proof. Consider a fiber surface S bounded by K which intersects L \ K minimally.

Cutting open the sutured manifold M \ L along S \ L gives a new sutured manifold

N . The sutured Floer homology of N is isomorphic to the link Floer homology of L

supported in a constant aK grading of 1
2c(S, t) = �(S)+I(S)�r(S, t), where aK is the

Alexander grading associated to K [33, Theorem 3.11]. For a definition of 1
2c(S, t),

see [33, Definition 3.8].

The sutured manifold N contains l � 1 pairs of parallel sutures corresponding to
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the base points on the components of L \K. Removing these superfluous pairs of su-

tures gives a new sutured manifold N 0 and rk(SFH(N)) = 2l�1 rk(SFH(N 0)). Finally,

rk(SFH(N 0)) = 1 if and only if N 0 is a product sutured manifold [32, Prop 9.4] [33,

Theorem 1.4]. The manifold N 0 is a product sutured manifold exactly when L \K is

a braid in the complement of K.

To see that c(S, t) is the lowest non-zero aK grading, consider increasing the

genus of the Seifert surface for K by adding h handles to the genus g surface S in

the complement of L to obtain a new surface S 0 of genus g + h. Then the sutured

manifold obtained by cutting open along S 0 is not taut if h � 1 so the link Floer

homology in aU grading 1
2c(S

0, t) is zero [32, Prop 9.8] and one can compute that

c(S 0, t) = c(S, t)� 2h.

The rank in the lowest non-zero Alexander grading associated to K is the same

as the rank in the highest non-zero Alexander grading associated to K because of the

symmetry of Link Floer homology.

Taking L ✓ S3 and the fibered knot to be the unknot gives the following corollary.

Corollary 3.2.3. Suppose L ✓ S3 is a link with l components with an unknotted

component U and each component of L \ U has non-zero geometric linking with U .

Then L \U is a braid in the complement of U if and only if dHFL(L) has rank 2l�1 in

the highest (and lowest) non-zero Alexander grading associated to U .

Proof. The condition that each component of L \ U has non-zero geometric linking

with U ensures that S3 \ L is irreducible and so the result follows from Proposi-

tion 3.2.2.

Remark 3.2.4. For the case with the unknot, if D intersects L in n points then a

simple computation of c(D, t) shows that the highest non-zero Alexander grading will

be n/2.
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i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
j = 18 Z
j = 16 Z Z
j = 14 Z/2Z
j = 12 Z Z
j = 10 Z/2Z
j = 8 Z
j = 6 Z
j = 4 Z

Table 3.1: The Khovanov homology of the torus link T(2,6) computed using Sage-
Math [56]

3.3 Khovanov Homology detects T(2,6)

In this section, we show that Khovanov homology detects the torus link T(2,6). For

reference, the Khovanov homology is shown in Table 3.1.

Theorem 3.3.1. Let L be a link with Kh(L,Z) ⇠= Kh(T (2, 6),Z), then L is isotopic

to T (2, 6).

Theorem 3.3.1 follows from the two propositions below.

Proposition 3.3.2. If Kh(L,Z) ⇠= Kh(T (2, 6),Z), then L is a 2-component link with

linking number 3 and each of the components is an unknot.

Proposition 3.3.3. If Kh(L,Z) ⇠= Kh(T (2, 6),Z), then one component of L is a

braid in the complement of the other component.

Proof of Theorem 3.3.1 from Propositions 3.3.2 and 3.3.3. From Propositions 3.3.2 and 3.3.3,

L must be b� [ U where � is a 3-braid whose closure is an unknot and U is the braid

axis.

Up to isotopy in the complement of the braid axis, there are only three possible

3-braids whose closures are the unknot, �1�2, �
�1
1 ��1

2 and �1�
�1
2 so L must be one of

these braids together with its braid axis [44, Theorem 12.1]. The first two possibilities

both represent T (2, 6). The final possibility using the braid �1�
�1
2 gives the link L6a2

and Kh(L6a2,Z) 6⇠= Kh(T (2, 6),Z) because they have di↵erent ranks [41].
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Proof of Proposition 3.3.2. The fact that Kh(L,Z) ⇠= Kh(T (2, 6),Z) means that Kh(L,Z)

is supported in even quantum gradings and so L has an even number of components

because the non-zero quantum gradings of Kh(L,R) agrees mod 2 with the number

of components of L.

The Lee homology of L has even rank in each homological grading and has total

rank 2n where n is the number of components of L. So then rank inequalities from

the spectral sequence between Khovanov homology and Lee homology show that L

has exactly two components because there are only two homological gradings where

the rank of Khovanov homology is more than 1 and in each of these gradings the

rank is exactly 2. Furthermore, these homological gradings are i = 0 and i = 6 so the

linking number of the two components is 6/2 = 3 [37, Proposition 4.3].

Considering the Batson-Seed spectral sequence over F2 from Kh(L) to Kh(L0)

where L0 is the split link comprised of the two components of L [11, Theorem 1.1].

The total rank of Kh(L,F2) is 12 and the total rank of Kh(L0) is the product of the

ranks of the Khovanov homology of the two components. Additionally, over F2, the

rank of Khovanov homology of a knot over F2 must be twice an odd number because

it is twice the rank of reduced Khovanov homology over F2 which always has odd

rank for a knot.

Then the only possible ranks for the Khovanov homologies of the components

of L are 2 and 6. Then the only possibilities for the components of L are either

two unknots or an unknot and a trefoil because the unknot is the only knot whose

Khovanov homology has rank two over F2 [36, Theorem 1.1] and the trefoil is the only

knot whose Khovanov homology has rank 6 over F2 [8, Theorem 1.4]. Examining the

rank of Khovanov homology of L over Q in each i� j grading, which is preserved by

the Batson-Seed spectral sequence up to an overall shift, rules out the possibility that

one of the components of L is a trefoil because there is no overall shift possible to make

the ranks agree with the ranks in i� j gradings of the tensor product Kh(U)⌦Kh(T )
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where U and T are the unknot and trefoil respectively.

Proof of Proposition 3.3.3. To show that one component of L is braided with respect

to the other, we will use the spectral sequence from the pointed Khovanov homology

of L to a singly graded version of knot Floer homology constructed by Dowlin [19].

In this proof, we will use �0 to refer to both grading Khovanov homology by j � 2i

and grading knot Floer homology by 2M �2A. We will use � to refer to grading knot

Floer homology by A�M .

From knowing Kh(L,Z) we can see that the reduced Khovanov homology of L

over F2 is rank 6. So then the reduced Khovanov homology of L over Q has rank

no greater than 6 for any choice of basepoint. Let (L,p) be the pointed link L with

a single basepoint on each component of L. Because L is a 2 component link, the

pointed Khovanov homology Kh(L,p) over Q has rank no greater than 12. The fact

that L is Khovanov thin means that the reduced Khovanov homology of L over F2 is

supported in a single �0 = j � 2i grading and then this is also true over Q for either

choice of basepoint. This implies that Kh(L,p) is supported in a single �0 = j � 2i

grading by Lemma 3.2.1.

The Dowlin spectral sequence preserves the relative �0 grading so [HFK(L) is sup-

ported in a single � = �1/2�0 grading.

Now we consider [HFL(L) in order to show that one component is a braid in the

complement of the other component. By Corollary 3.2.3, we want to show that in the

top non-zero grading of either a1 or a2 the rank of [HFL(L) is exactly two.

Link Floer homology of a 2-component link L = K1[K2 admits a spectral sequence

from [HFL(L = K1 [ K2) to [HFL(K1) ⌦ V . The grading a1 is corresponds to the

Alexander grading on [HFL(K1)⌦V up to an overall shift by half the linking number

of L [5, Lemma 2.4]. The di↵erentials of the spectral sequence lower the a2 grading.

There is a similar spectral sequence from [HFL(L = K1 [K2) to [HFL(K2)⌦ V .

The fact that each of the two components of L is an unknot and the existence of
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the spectral sequence from [HFL(L = K1[K2) to [HFL(K1)⌦V implies that [HFL(L)

has rank at least 1 in the gradings M = 0, a1 = 3/2 and M = �1, a1 = 3/2 where

each generator sits in some unknown a2 grading [5, Lemma 2.4]. Similarly [HFL(L)

has rank at least 1 in the gradings M = 0, a2 = 3/2 and M = �1, a2 = 3/2 where

each generator sits in some unknown a1 grading. The fact that [HFL(L) is supported

in a single � = a1+ a2�M � 1/2 grading allows us to write the unknown gradings in

terms of a variable x. There is at least one generator in (M,a1, a2) gradings (0, 3/2, x)

and (�1, 3/2, x� 1), where these generators survive in the spectral sequence induced

by a2. Also there is at least one generator in (0, x, 3/2) and (�1, x � 1, 3/2), where

these generators survive in the spectral sequence induced by a1.

The symmetry of [HFL(L) [46, Proposition 8.2] then tells us that [HFL(L) also

has rank at least 1 in the following four gradings (�3 � 2x,�3/2,�x), (�3 � 2x +

1,�3/2,�x+ 1), (�3� 2x,�x,�3/2), (�3� 2x+ 1,�x+ 1,�3/2).

From here the proof breaks into seven cases depending on the value of x. There

is a case where x > 5/2, a case where x < �3/2 and a case for each of the following

values 5/2, 3/2, 1/2,�1/2,�3/2. For each case we deduce that one component of L

is a braid in the complement of the other component.

We first address the case x = 3/2 which is the case that occurs if L = T (2, 6). If

the Dowlin spectral sequence was known to preserve the absolute �0 grading then this

would be the only case that needed to be considered.

The case x = 3/2

Setting x = 3/2 we have that [HFL(L) has rank at least 1 in the tri-gradings

(0, 3/2, 3/2), (�1, 1/2, 3/2) and (�1, 3/2, 1/2) and these generators survive in one or

both of the spectral sequences induced by ai. Additionally, [HFL(L) also has rank at

least 1 in gradings (�6,�3/2,�3/2), (�5,�3/2,�1/2), and (�5,�1/2,�3/2) and

these generators do not survive in either spectral sequence. The partial complex with

these six generators is shown in Figure 3.1.
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-3/2

-1/2

1/2

3/2

-3/2 -1/2 1/2 3/2

Figure 3.1: A partial [HFL(L) complex when x = 3/2 with 6 generators. The dots
represent bi-degrees where the partial complex has rank one.

At this point, there are at most 6 more generators we can add to construct a possi-

ble [HFL(L). When we have finished adding generators to a possible [HFL(L), the end

result must have even rank in every a1 grading and every a2 grading, otherwise it is im-

possible to have spectral sequences to [HFL(K1)⌦V and [HFL(K2)⌦V . Additionally,

it must have the symmetry that [HFLM(L, a1, a2) ⇠= [HFLM�a1�a2(L,�a1,�a2) [46,

Proposition 8.2], and it must be possible to add di↵erentials changing the Maslov

index by 1 so that there are spectral sequences induced by each ai grading with the

E1 pages mentioned in the previous paragraph.

If we add generators with ai grading larger than 3/2 then the above requirements

about even parity in every grading and symmetry mean that we must add exactly

two generators in that grading (which is now the top grading) and so one of the

components is a braid in the complement of the other. So now we can assume that

we only add generators whose ai gradings are less than or equal to 3/2 in absolute

value.

Having the appropriate E1 pages of the two spectral sequences now means that

there must be a generator in grading M = �4, a1 = �1/2, a2 = �1/2 and one in

grading M = �2, a1 = 1/2, a2 = 1/2. The partial complex with these generators is

shown in Figure 3.2.

Now there are at most 4 more generators to add. If the end result will have
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-3/2

-1/2

1/2

3/2

-3/2 -1/2 1/2 3/2

Figure 3.2: A partial [HFL(L) complex when x = 3/2 with 8 generators if every
generator has ai grading no greater than 3/2 in absolute value. The dots represent
bi-degrees where the partial complex has rank one.

that neither component is a braid in the complement of the other then two those

generators must be added at either a1 = 3/2, a2 = �3/2 or a1 = 3/2, a2 = 3/2 and

the other two are then added in the appropriate place for symmetry. There are three

possible ways to add the two generators, either both in a1 = 3/2, a2 = �3/2, both in

a1 = 3/2, a2 = 3/2, or one in a1 = 3/2, a2 = �3/2 and the other in a1 = 3/2, a2 = 3/2.

For each of these ways of adding generators, it is impossible to add di↵erentials that

give the desired E1 pages of both spectral sequences. So then the link L must have

that one of its components is a braid in the complement of the other.

The case x = 5/2

Setting x = 5/2 we have that [HFL(L) has rank at least 1 in the tri-gradings

(0, 5/2, 3/2), (0, 3/2, 5/2) and (�1, 3/2, 3/2) and these generators survive in one or

both of the spectral sequences induced by ai. Additionally, [HFL(L) also has rank at

least 1 in gradings (�6,�5/2,�3/2), (�6,�3/2,�5/2), and (�5,�3/2,�3/2) and

these generators do not survive in either spectral sequence. The partial complex with

these six generators is shown in Figure 3.3.

Generators must be added to the gradings ai = ±5/2 to allow for the desired

spectral sequences to exist. There are two possible ways to do this while preserving

the symmetry, the first is adding generators at the (a1, a2) gradings (5/2, 1/2) and
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-5/2

-3/2

-1/2

1/2

3/2

5/2

-5/2 -3/2 -1/2 1/2 3/2 5/2

Figure 3.3: A partial [HFL(L) complex when x = 5/2 with 6 generators. The dots
represent bi-degrees where the partial complex has rank one. The vertical columns
represent a1 gradings with grading increasing by 1 from �5/2 to 5/2.

(1/2, 5/2). Then two more generators must be added to preserve symmetry leaving

a complex with 10 generators and only being able to add up to two additional gener-

ators. The partial complex has exactly two generators in the maximal ai grading for

i = 1, 2. There is no way to add the two additional generators in a way that increases

the rank in these maximal gradings while maintaining the needed spectral sequences

and symmetry.

The second possibility is adding a generator in the (a1, a2) grading (5/2, 5/2) and

adding on in the grading (�5/2,�5/2) to preserve the symmetry. The partial complex

with these generators is shown in Figure 3.4. At this point there are eight generators

in the complex and up to four more that can be placed.

If we add generators with ai grading larger than 5/2 then the requirements about

even parity in every grading and symmetry mean that we must add exactly two gen-

erators in that grading (which is now the top grading) and so one of the components

is a braid in the complement of the other. So now we can assume that we only add

generators whose ai gradings are less than or equal to 5/2 in absolute value.

Now there are at most 4 more generators to add. If the end result will have
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that neither component is a braid in the complement of the other then two those

generators must be added at either a1 = 5/2, a2 = �5/2 or a1 = 5/2, a2 = 5/2 and

the other two are then added in the appropriate place for symmetry. There are three

possible ways to add the two generators, either both in a1 = 5/2, a2 = �5/2, both in

a1 = 5/2, a2 = 5/2, or one in a1 = 5/2, a2 = �5/2 and the other in a1 = 5/2, a2 = 5/2.

For each of these ways of adding generators, it is impossible to add di↵erentials that

give the desired E1 pages of both spectral sequences. So then the link L must have

that one of its components is a braid in the complement of the other.

-5/2

-3/2

-1/2

1/2

3/2

5/2

-5/2 -3/2 -1/2 1/2 3/2 5/2

Figure 3.4: A partial [HFL(L) complex when x = 5/2 with 8 generators. The dots
represent bi-degrees where the partial complex has rank one. The vertical columns
represent a1 gradings with grading increasing by 1 from �5/2 to 5/2.
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-3/2

-1/2

1/2

3/2

-3/2 -1/2 1/2 3/2

Figure 3.5: A partial [HFL(L) complex when x = 1/2 with 8 generators. The dots
represent bi-degrees where the partial complex has rank one.

The case x = 1/2

Setting x = 1/2 we have that [HFL(L) has rank at least 1 in the tri-gradings

(0, 3/2, 1/2), (0, 1/2, 3/2), (�1,�1/2, 3/2) and (�1, 3/2,�1/2) and these generators

survive in one of the spectral sequences induced by ai. Additionally, [HFL(L) also has

rank at least 1 in gradings (�4,�3/2,�1/2), (�4,�1/2,�3/2), (�3, 1/2,�3/2) and

(�3,�3/2, 1/2) and these generators do not survive in either spectral sequence. The

partial complex with these six generators is shown in Figure 3.5.

If we add generators with ai grading larger than 3/2 then the requirements about

even parity in every grading and symmetry mean that we must add exactly two gen-

erators in that grading (which is now the top grading) and so one of the components

is a braid in the complement of the other. So now we can assume that we only add

generators whose ai gradings are less than or equal to 3/2 in absolute value.

Having the appropriate E1 pages of the two spectral sequences now means that

there must be a generator in each of the following four gradings (�3,�1/2,�1/2),

(�1, 1/2, 1/2), (�2, 1/2,�1/2), and (�2,�1/2, 1/2). After adding these four gener-

ators the rank of the complex is 12 and there are no more generators to add. There

are exactly two generators in the top a1 grading and so one of the components is a

braid in the complement of the other.

The case x > 5/2
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When x > 5/2 the tri-gradings (0, 3/2, x), (�1, 3/2, x � 1), (0, x, 3/2), (�1, x �

1, 3/2), (�3� 2x,�3/2,�x), (�3� 2x+ 1,�3/2,�x+ 1), (�3� 2x,�x,�3/2), and

(�3�2x+1,�x+1,�3/2) are all distinct and so represent eight di↵erent generators

of [HFL(L). The only way to add four generators so that all the ai gradings have even

rank are by adding two at (a1, a2) gradings (x, x) and (x � 1, x � 1) or at (x, x � 1)

(x�1, x). The Maslov gradings are determined by [HFL(L) being supported in a single

� grading. The other two generators are then added to the appropriate gradings to

maintain symmetry. After adding these four generators the rank of the complex is 12

and there are no more generators to add. There are exactly two generators in the top

a1 grading and so one of the components is a braid in the complement of the other.

All other cases

The arguments to show braidedness in the remaining cases are almost identical

to the cases shown and are not repeated. The argument for the case x < �3/2 is

similar to the case x > 5/2. The argument for the case x = �3/2 is similar to the

case x = 5/2. Finally the argument for the case x = �1/2 is similar to the case

x = 3/2.
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Chapter 4

Annular Khovanov homology and

meridional disks

4.1 Introduction

Jones brought new ideas to the field of low-dimensional topology with his construction

of the Jones polynomial for links in S3 [31]. A decade and a half later, Khovanov

categorified the Jones polynomial with Khovanov homology, a bi-graded abelian group

whose graded Euler characteristic recovers the Jones polynomial [35].

Annular Khovanov homology was defined by Asaeda-Przytycki-Sikora [1], who

introduced a version of Khovanov homology for links in thickened surfaces. They also

showed that the graded Euler characteristic of annular Khovanov homology is the

Kau↵man skein bracket of annular links defined by Hoste-Przytycki [26].

Since the introduction of these invariants, some natural questions have arisen

about what, if any, relationship exists between topological properties of links and

their Jones polynomial or Khovanov homology. Conjecturally there is a relationship

between the Kau↵man skein bracket of annular links and certain embedded disks in

the annular complement of the link.
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Conjecture 4.1.1 (The wrapping conjecture [27]). Let L be an annular link in A⇥I

and let n be the minimal intersection of L with a meridional disk. Then the maximal

non-zero annular degree of the Kau↵man skein bracket of L is n.

When the conjecture was stated, Hoste-Przytycki give an argument that the wrap-

ping conjecture holds for any annular link with a ±-adequately wrapped diagram [27].

Since the graded Euler characteristic of annular Khovanov homology is the Kau↵-

man skein bracket, an immediate consequence of Conjecture 4.1.1 would be:

Conjecture 4.1.2 (The categorified wrapping conjecture). Let L be an annular link

in A⇥ I and let n be the minimal intersection of L with a meridional disk. Then the

maximal non-zero annular grading of the annular Khovanov homology of L is n.

The statement of the categorified wrapping conjecture first appeared in a talk

by Eli Grigsby at the MSRI semester-long program Homology theories of knots and

links in spring 2010, where she claimed a proof of the conjecture relying on the

spectral sequence to the Floer homology of the double-branched cover [53] [23] and

Juhasz’s Thurston norm detection results [33]. In the week after the talk, Matt

Hedden and Stephan Wehrli independently found examples that are a subset of the

family that appears here in Theorems 4.4.2 and 4.5.1, which proved that the argument

she suggested did not work. These examples were not pursued further until recent

work of Xie [57] relating annular Khovanov homology to instanton Floer homology

sparked new interest in the topic.

Some results about annular gradings where AKh(L) is non-zero were already

known. Grigsby-Ni showed that the categorified wrapping conjecture holds for string

links [22]. If we allow surfaces of higher genus, work of Xie [57] and Xie-Zhang [59]

shows that AKh(L) is non-zero in the annular grading of the generalized Thurston

norm for all meridional surfaces. However, we will see examples of annular links where

the generalized Thurston norm is much smaller than the minimal intersection number

with a meridional disk.
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In this paper we verify that categorified wrapping conjecture holds for some new

families of annular links. For a subset of these links we also show that the wrapping

conjecture holds on the decategorified level.

Theorem 4.4.1. Let L be an n-component annular link for which the categorified

wrapping conjecture holds and let Lm,s be the link where the i-th component of L

is replaced with a link si obtained as the closure of a tangle Ti consisting of an m-

string link and possibly additional closed components. Then the categorified wrapping

conjecture also holds for the cable Lm,s.

Theorem 4.4.2. Let Ln be the annular link built by vertically stacking n copies

of tangle J from Figure 4.1 and then taking the annular closure. Also, let Ln
m,s be

the link built by replacing the i-th component of Ln with a link si obtained as the

closure of a tangle Ti consisting of an mi-string link and possibly additional closed

components. Then the categorified wrapping conjecture holds for the cable Ln
m,s.

Theorem 4.4.4. Let Ln be the annular link built by vertically stacking n copies of

tangle J from Figure 4.1 and then taking the annular closure. Also, let Ln
m,�1,...,�n

be

the link built by replacing the i-th component of Ln with the closure of the m-braid

�i. Then the categorified wrapping conjecture holds for the cable Ln
m,�1,...,�n

.

Theorem 4.4.5. Let Kn be the iterated Whitehead double of the annular link L1

obtained as the annular closure of the tangle J from Figure 4.1 and let Kn
m,� be the

annular knot obtained by replacing Kn with the closure of the m-braid �. Then the

categorified wrapping conjecture holds for Kn
m,�.

Theorem 4.5.1. Let Ln be the annular link built by vertically stacking n copies of

tangle J from Figure 4.1 and then taking the annular closure. Also, let Ln
m,�1,...,�n

be

the link built by replacing the i-th component of Ln with the closure of the m-braid

�i. Then the wrapping conjecture holds for the cable Ln
m,�1,...,�n

.
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Figure 4.1: The tangle J we use to construct some annular links.

Theorem 4.5.2. Let Kn be the iterated Whitehead double of the annular link L1

obtained as the annular closure of the tangle J from Figure 4.1 and let Kn
m,� be the

annular knot obtained by replacing Kn with the closure of the m-braid �. Then the

wrapping conjecture holds for Kn
m,�.

The links considered in Theorems 4.4.2, 4.4.4, 4.4.5, 4.5.1, and 4.5.2 are examples

of links where the generalized Thurston norm is much smaller than the minimal

intersection of L with a meridional disk. The generalized Thurston norm is no larger

than two for any of these links because there is an embedded meridional torus which

does not intersect the link. However, for these examples, the minimal intersection

with a meridional disk can be made arbitrarily large. This gives rise to a di↵erence

between the Kau↵man bracket and annular Khovanov homology on the one hand and

the multi-variable Alexander polynomial and various annular Floer theories on the

other hand.

Corollary 4.1.3. There is an infinite family of links Li such that the maximal non-

zero annular grading for the annular Khovanov homology of the links Li grows in-

finitely large but the maximal non-zero annular grading for annular instanton homol-

ogy and annular link Floer homology of the links Li is bounded.

Corollary 4.1.4. There is an infinite family of links Li such that the maximal non-

zero annular grading for the Kau↵man bracket of the links Li grows infinitely large but
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the maximal non-zero annular grading for the multi-variable Alexander polynomial of

the links Li is bounded.

Recalling the relationship between annular Khovanov homology and knot Floer

homology using double branched covers [53, 23], we also have the following di↵erences.

Corollary 4.1.5. There is an infinite family of links Li such that the maximal non-

zero annular grading for the annular Khovanov homology of the links Li grows in-

finitely large but the maximal non-zero Alexander grading for an associated link in

⌃(Li) is bounded.

Corollary 4.1.6. There is an infinite family of links Li such that the maximal non-

zero annular grading for the Kau↵man bracket of the links Li grows infinitely large

but the maximal non-zero degree of the Alexander polynomial for an associated link

in ⌃(Li) is bounded.

The proofs of Theorems 4.5.1 and 4.5.2 are entirely diagrammatic and involve un-

derstanding a specific resolution of the links in question. To prove Theorems 4.4.1, 4.4.2, 4.4.4,

and 4.4.5 we extend the Batson-Seed link splitting spectral sequence [11] to the an-

nular setting.

Theorem 4.3.1. Let L be an annular link and R a ring. Choose weights wc 2 R for

each component c of L. Then there is a spectral sequence with pages Ek(L,w), and

E1(L,w) ⇠= AKh(L;R)

If the di↵erence wc � wd is invertible in R for each pair of components c and d with

distinct weight, then the spectral sequence converges to

AKh

 
a

r2R

L(r);R

!

where L(r) denotes the sub-link of L consisting of those components with weight r.

53



Figure 4.2: The 0-resolution and 1-resolutions of a crossing. The dotted lines indicate
where to attach bands to change between the 0-resolution and the 1-resolution.

The organization of the paper is as follows. In Section 4.2 we give relevant back-

ground on annular links, the Kau↵man bracket, annular Khovanov homology, and

the Batson-Seed link splitting spectral sequence in S3. In Section 4.3 we extend

the Batson-Seed construction to the annular setting and prove Theorem 4.3.1. In

Section 4.4 we apply the annular link splitting spectral sequence to prove Theo-

rems 4.4.1, 4.4.2, 4.4.4, and 4.4.5. Finally in Section 4.5 we turn our attention to the

Kau↵man bracket and prove Theorems 4.5.1 and 4.5.2.

4.2 Background

An n-component annular link L is an embedding of n circles into the thickened annulus

A⇥I considered up to ambient isotopy. Alternatively, an n-component annular link is

an n+1-component link in S3 with a distinguished unknotted component. A diagram

of an annular link L is a choice of a generic projection of L onto A⇥{0} which records

crossing information.

Given a crossing of an annular link, there are two possible resolutions of the

crossing. These are referred to as the 0-resolution and the 1-resolution and are shown

in Figure 4.2. Notice that it is possible to add a band to transform the 0-resolution

into the 1-resolution or to transform the 1-resolution back into the 0-resolution. The

locations for attaching the bands is indicated by dashed lines in Figure 4.2.

Asaeda-Przytycki-Sikora constructed a version of Khovanov homology for annular
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links which is now referred to as annular Khovanov homology. Annular Khovanov ho-

mology categorifies the Kau↵man bracket of annular links [1]. Since the introduction

of the theory, the main application of annular Khovanov homology to low-dimensional

topology is the study of braid closures [2, 13, 22, 28, 30]. Additionally there have

been spectral sequences constructed relating annular Khovanov homology to various

Floer theories [53, 23, 57].

The annular Khovanov homology of an annular link L is constructed by taking a

diagram for L in the annulus and constructing a cube of resolutions from the diagram,

assigning a triply graded vector space to each complete resolution, and assigning linear

maps to the edges of the cube. For our applications, the details of the vectors spaces

and maps are not needed but a full definition of this invariant appears in [1] where it

was introduced.

4.2.1 Batson-Seed link splitting spectral sequence

In [11], Batson-Seed constructed a link-splitting spectral sequence for Khovanov ho-

mology of links in S3. In Section 4.3 we will verify that their arguments also work

for constructing a similar spectral sequence for annular Khovanov homology. Here we

will briefly recall some details of their construction relevant to Section 4.3.

Batson-Seed construct their spectral sequence by taking the Khovanov chain com-

plex and perturbing it by adding an additional di↵erential @BS. This di↵erential does

not respect the i or j-gradings on the chain complex but does respect an `-grading

defined as the di↵erence i�j. Additionally, the entire chain complex with the pertur-

bation is g-filtered where for an n-component link, the g-filtration is defined as j�n
2 .

This filtration is what induces the spectral sequence from the Khovanov homology of

a link to the Khovanov homology of a splitting of the link.

The construction of the perturbed di↵erential requires a choice of sign assignment

s on a diagram of the link but Batson-Seed show that the filtered chain homotopy type
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of the construction does not depend on these choices. Additionally the construction

requires that every component of L be given a weight wi, when the di↵erence wi�wj

between any two non-equal weights is a multiplicative unit then the spectral sequence

converges to the Khovanov homology of a link built by taking disjoint union of the

sublinks Li consisting of all the components weighted by wi. For the applications in

this paper we will be working over the field C so the unit condition is always satisfied.

4.2.2 Sutured Khovanov homology of balanced tangles in D⇥

I

The computations in Section 4.5 require working with Khovanov-type invariants of

balanced tangles. We briefly recall some information about these invariants and their

relationship with annular Khovanov homology here.

A tangle T is an embedding of some number of circles and intervals into D2 ⇥ I

so that the boundary of T is a subset of D2 ⇥ {0} [D2 ⇥ {1}. A tangle is balanced

if the intersection number of T with D2 ⇥ {0} is the same as the intersection number

of T with D2 ⇥ {1}. We can assume that the intersections of T with the two disks

happen in the same points.

As with the other Khovanov-type invariants, the sutured Khovanov homology of

a balanced tangle T is constructed by taking a diagram for T and constructing a

cube of resolution made up of flat tangles, tangle diagrams with no crossings. Each

balanced tangle is then replaced with a graded vector space and the edges of the cube

are replaced with linear maps. For our applications, the details of the vectors spaces

and maps are not needed but a full definition of this invariant appears in [24] where

it was introduced.

Given a balanced tangle T , we can construct an annular link by identifying D2 ⇥

{0} with D2 ⇥ {1} via the identity map which we will call the annular closure of the

tangle. Reversing this process, it is possible to construct a balanced tangle from an
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annular link L by decomposing or “cutting open” A⇥ I along a meridional disk that

L intersects transversely.

There is a relationship between the annular Khovanov homology of L and the

sutured Khovanov homology of a tangle T obtained by decomposing A ⇥ I along a

meridional disk D.

Theorem 4.2.1 ([23]). Let L be an annular link and let T be the tangle obtained from

L by decomposing along a meridional disk D. Then the annular Khovanov homology

of L in k-grading w is isomorphic to the sutured Khovanov homology of T where w

is the number of intersection points of L with D.

Because the wrapping conjecture relates to a specific annular grading, we will use

ideas from the sutured Khovanov homology of balanced tangles in parts of Section 4.5

to assist with computations.

4.3 Annular link splitting spectral sequence

In this section we replicate many of the arguments from [11] to verify the existence

of an annular link splitting spectral sequence and show that it has similar properties

to the non-annular version.

Theorem 4.3.1. Let L be an annular link and R a ring. Choose weights wc 2 R for

each component c of L. Then there is a spectral sequence with pages Ek(L,w), and

E1(L,w) ⇠= AKh(L;R)

If the di↵erence wc � wd is invertible in R for each pair of components c and d with

distinct weight, then the spectral sequence converges to

AKh

 
a

r2R

L(r);R

!
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where L(r) denotes the sub-link of L consisting of those components with weight r.

Proof. Considering the annular link L as a link in S3 and choosing a diagram D we

can associate to it an `-graded, g-filtered, and k-filtered chain complex CKh(D;R)

with the Khovanov di↵erential @ and the Batson-Seed perturbation @BS. Both of

these di↵erentials decompose into a portion that preserves the k-filtration, which we

call @0 and @BS
0 , and a portion that lowers the k-filtration by 2, which we call @�

and @BS
� . Decomposing the relations @2 = 0, (@BS)2 = 0, and @@BS + @BS@ = 0

into their k-homogeneous components immediately gives that @20 = 0, @BS
0 = 0 and

@0@BS
0 + @BS

0 @0 = 0. This shows that equipping the chain complex for L only with

these di↵erentials would give a bi-graded chain complex by gradings ` and k which

is also filtered by the g-filtration. Following the notation from [11], we refer to this

chain complex as AC(D,w, s) where w represents the weighting of the components

and s represents a choice of sign assignment.

In Section 2.3 of [11], to show that the filtered chain homotopy type of their

construction did not depend on the choice of sign assignment, Batson-Seed construct

an explicit chain map giving the equivalence. Their map preserves the k-grading so

it also shows that the filtered chain homotopy type of AC(D,w, s) does not depend

on the sign assignment. Similarly the chain maps in Proposition 2.3 of [11] used to

show that the relatively `-graded total homology is unchanged by crossing changes

also preserve the k-grading so their argument also applies in the annular setting.

The arguments to show that the filtered chain homotopy type does not depend

on the choice of diagram in Section 2.3 of [11] work in the annular setting as well.

The arguments in [11] consider local diagrams for the Reidemeister moves, resolve the

local diagrams, construct some local cancelations and then produce an isomorphism

on the level of a diagrammatic chain complex. The local nature of the arguments

ensures that they also will work in the annular setting to show invariance under the

Reidemeister moves.
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The existence of this annular link splitting spectral sequence gives the following

rank inequality as an immediate consequence. The proof follows exactly as in the

proof of Corollary 3.4 in [11].

Corollary 4.3.2. Let F be any field, and let L be an annular link with components

K1, . . . , Km. Then

rank`,k AKh⇤(L,F) � rank`+t,k ⌦m
c=1 AKh⇤(Kc,F)

where each side is bi-graded by `, k and the shift t is given by

t =
X

cd

2 · lk(Lc, Ld)

where Lc and Ld are components of the link L.

As in the non-annular version, this annular link splitting spectral sequence can

provide lower bounds on the splitting number of a link. We state the bound here but

we will not use it in the rest of this paper. The proof of the bound is the same as the

proof of Theorem 1.2 in [11].

Definition 4.3.3. We say that an n-component link L is an annular split link if after

isotopy of the link in A ⇥ I it is possible to find numbers t1, . . . , tn�1 2 I such that

the surfaces (S1 ⇥ ti)⇥ I in A⇥ I separate the components of L.

Definition 4.3.4. The annular splitting number of an annular link L is the minimum

number of times di↵erent components of the link must be passed through one another

to obtain an annular split link.

Theorem 4.3.5. Let L be an annular link and let wc 2 R be a set of component

weights such that wc � wd is invertible for each pair of components c and d. Let
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b(L,w) be the largest integer k such that Ek 6= E1(L,w). Then b(L,w) is less than

or equal to the annular splitting number of L.

4.4 Link splitting and the maximal annular grad-

ing

Now we look at some applications of the spectral sequence from Theorem 4.3.1 to

verifying the categorified wrapping conjecture for some families of examples. The

idea of the applications is to consider a specific splitting of the link so that it is easier

to show the annular Khovanov homology of the resulting splitting is non-zero in the

desired annular grading.

Theorem 4.4.1. Let L be an n-component annular link for which the categorified

wrapping conjecture holds and let Lm,s be the link where the i-th component of L

is replaced with a link si obtained as the closure of a tangle Ti consisting of an m-

string link and possibly additional closed components. Then the categorified wrapping

conjecture also holds for the cable Lm,s.

Proof. Notice that if D is a disk which intersects L in wrap(L) points, then D inter-

sects Lm,s in m ·wrap(L) points. So we know wrap(Lm,f)  m ·wrap(L). Now we will

show that AKh(Lm,f) is non-zero in k-grading m · wrap(L). Together this will show

that the categorified wrapping conjecture holds for Lm,s.

Consider the link Lm,s and choose m + 1 distinct weights w1, . . . , wm+1 2 C and

weight the link Lm,s so that for each individual satellite, the m components of the

string link closure are weighted di↵erently using weights w1, . . . , wm and then all the

other components are weighted with wm+1. Using these weights, the link splitting

spectral sequence converges to the k, ` bi-graded annular Khovanov homology of a

link built from the disjoint union of m copies of L by taking additional disjoint unions

and connected sums with links in S3.
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The annular Khovanov homology of the disjoint union of m copies of L is non-zero

in the k-grading m·wrap(L) and taking disjoint unions and connected sums with links

in S3 does not change the maximal non-zero annular grading. For disjoint unions this

is immediate from the decomposition as a tensor product and for connected sums this

is the content of [22, Lemma 3.5]. Then rank inequality from the annular link splitting

spectral sequence ensures that AKh(Lm,s) is non-zero in k-grading m · wrap(L) as

well.

Theorem 4.4.2. Let Ln be the annular link built by vertically stacking n copies of

tangle J from Figure 4.1 and then taking the annular closure. Also, let Ln
m,s be the

link built by replacing the i-th component of Ln with a link si obtained as the closure of

a tangle Ti consisting of an mi-string link and possibly additional closed components.

Then the categorified wrapping conjecture holds for the cable Ln
m,s.

Remark 4.4.3. Notice that Theorem 4.4.2 does not follow immediately from The-

orem 4.4.1 because here we are allowing the di↵erent components of the link to be

replaced by links built from string links of varying numbers of strands.

Proof. First notice the fact that the annular Khovanov homology of Ln is non-zero in

k-grading 2 follows immediately from the existence of a spectral sequence to annular

instanton Floer homology [57] and that this theory is known to detect the Thurston

norm of meridional surfaces [59].

Let p = mj be the minimum over all the mi, then there is a disk which intersects

Ln
m,f in 2p points. Now we choose weights w1, . . . , wp, wp+1 2 C and weight the

components of Ln
m,s so that the first p components of each string link are weighted

by w1, . . . , wp and all remaining components are weighted by the final weight wp+1.

Using these weights, the link splitting spectral sequence converges to the k, ` bi-

graded annular Khovanov homology of a link built from the disjoint union of p copies

of Ln by taking additional disjoint unions and connected sums with links in S3.
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Because the annular Khovanov homology of Ln is non-zero in k-grading 2, arguments

from the proof of Theorem 4.4.1 show the annular Khovanov homology of a link built

from the disjoint union of p copies of Ln by taking additional disjoint unions and

connected sums with links in S3 is non-zero in grading 2p. Then rank inequality from

the annular link splitting spectral sequence ensures that AKh(Lm,s) is non-zero in

k-grading 2p as well.

There are other families of annular links that we can also show satisfy the cate-

gorified wrapping conjecture. The arguments work on the decategorified level and so

the proofs of these theorems are delayed until Section 4.5. For completeness, we state

that the categorified wrapping conjecture holds for these families as well.

Theorem 4.4.4. Let Ln be the annular link built by vertically stacking n copies of

tangle J from Figure 4.1 and then taking the annular closure. Also, let Ln
m,�1,...,�n

be

the link built by replacing the i-th component of Ln with the closure of the m-braid

�i. Then the categorified wrapping conjecture holds for the cable Ln
m,�1,...,�n

.

Theorem 4.4.5. Let Kn be the iterated Whitehead double of the annular link L1

obtained as the annular closure of the tangle J from Figure 4.1 and let Kn
m,� be the

annular knot obtained by replacing Kn with the closure of the m-braid �. Then the

categorified wrapping conjecture holds for Kn
m,�.

4.5 The maximal annular degree of the Kau↵man

bracket

In this section we show that for a subset of the families of links we have consid-

ered previously that not only is the annular Khovanov homology non-zero in the top
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annular grading but the Kau↵man bracket is as well. The main technique we use to

show that the Kau↵man bracket is non-zero for this subset is to work diagramatically

and demonstrate that there is a quantum grading with exactly one generator in the

annular Khovanov chain complex and that this generator is in the maximal annular

grading. The generator in question will always be the generator obtained by taking

a 1-resolution at each crossing and labeling every circle with a “+”.

This generator is in the maximal quantum grading for the chain complex and it has

been observed that any other generator in the maximal quantum grading must come

from a resolution that be connected to the all 1’s resolution by a path of changes

of resolutions where any time a 0-resolution changes to a 1-resolution two distinct

circles merge together. Alternatively working backwards from the all 1’s resolution

changing a 1-resolution back to a 0-resolution must result in the splitting of a circle [20,

Proposition 1].

Theorem 4.5.1. Let Ln be the annular link built by vertically stacking n copies of

tangle J from Figure 4.1 and then taking the annular closure. Also, let Ln
m,�1,...,�n

be

the link built by replacing the i-th component of Ln with the closure of the m-braid

�i. Then the wrapping conjecture holds for the cable Ln
m,�1,...,�n

.

The proof of Theorem 4.5.1 is broken up into two parts. In the first two part of

the proof we show the wrapping conjecture holds for the blackboard framed m-cable

of Ln by identifying a specific tangle and computing its all 1’s resolution. Then to

finish the proof we apply a result of Hoste-Przytycki.

Proof. Step 1: We first compute the all 1’s resolution for the sutured Khovanov

homology of the balanced tangle whose annular closure is the annular link L1
m,1,...,1

where all the braids are the identity braid. For the 2-cable, the all 1’s resolution is

shown in Figure 4.3. The dashed lines represent the bands that would be added to

change a single 1-resolution back to a 0-resolution.
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Figure 4.3: The resolution of the balanced tangle obtained from the 2-cable L2. The
dotted lines indicate where to attach bands to change back to a 0-resolution.

We will verify that for every m, the resolution in question is a tangle with m

strands running from top to bottom on the left followed by m concentric circles

followed by m strands runnings from top to bottom on the right. We will also show

that all the bands that should be attached to change a 1-resolution back to a 0-

resolution are either between adjacent strands, between adjacent circles, or between

the outermost circle and one of the strands adjacent to it.

Notice that the diagram for the sutured Khovanov homology of the m-cable can

be viewed as a combination of the crossings involving either of the outer most strands

and then the crossings that only involve the inner m � 1 strands. The crossings

involving only the inner m� 1 cable correspond exactly to a diagram for the sutured

Khovanov homology of the m � 1-cable. We will consider resolving each of these

halves individually and then place them together.

Considering the outer half and resolving all the crossings with the 1-resolution

gives a tangle that is pictured for the m-cable in Figure 4.4. The dashed lines indicate

where to attach a band to go back to a 0-resolution and the bold square represents

where to place the inner half of the tangle. Notice that the bands all connect two

di↵erent components of the tangle.

We can obtain the resolution of the m-cable by taking the resolved tangle from

the previous paragraph and filling the middle hole with the resolution of the m� 1-

cable. Doing this gives a tangle with m strands running from top to bottom on
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Figure 4.4: The all 1’s resolution of the outer half of the tangle. The dashed lines
indicate where to attach a band to go back to a 0-resolution and the bold square
represents where to place the inner half of the tangle.

the left followed by m concentric circles followed by m strands runnings from top to

bottom on the right. Furthermore, all the bands that should be attached to change

a 1-resolution back to a 0-resolution are either between adjacent strands, between

adjacent circles, or between the outermost circle and one of the two strands adjacent

to the circle.

Now the all 1’s resolution of the link Ln
m,1,...,1 can be obtained by stacking m copies

of the resolution considered above and taking the annular closure. Doing this gives a

resolution that consists of 2m circles running around the annular axis and n groups

of m concentric homotopically trivial circles. Furthermore all of the bands we would

attach to revert a 1-resolution back to a 0-resolution run between distinct circles.

This guarantees that the generator where all of these circles are labeled with a “+”

is the only generator of the chain complex in its quantum grading. It also sits in the

maximal annular grading of 2m showing that the Kau↵man bracket is non-zero in

this annular grading and that the wrapping conjecture holds for the link Ln
m,1,...,1. In

the language of [27] we have shown that these links have minus-adequately wrapped
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diagrams.

Step 2: A diagram for the link Ln
m,�1,...,�n

can be obtained from a diagram for

the link Ln
m,1,...,1 by the addition of the braids �i in the appropriate places in the

diagram. Hoste-Przytycki give an argument showing that starting with a minus-

adequately wrapped diagram and adding in a braid � produces a new link for which

the wrapping conjecture also holds [27, Lemma 10]. Repeated applications of this

argument show that the wrapping conjecture holds for the link Ln
m,�1,...,�n

.

Theorem 4.5.2. Let Kn be the iterated Whitehead double of the annular link L1

obtained as the annular closure of the tangle J from Figure 4.1 and let Kn
m,� be the

annular knot obtained by replacing Kn with the closure of the m-braid �. Then the

wrapping conjecture holds for Kn
m,�.

Proof. Notice that a diagram for Kn
m,1 can be built by stacking blackboard framed

cables of the tangle J from Figure 4.1 along with trivial braids to the left or right of

these tangles and then taking an annular closure. This observation and the arguments

from the proof of Theorem 4.5.1 show that the generator from all 1’s resolution with

every circle marked with a + sign is the only generator in its quantum grading and it is

in the appropriate k-degree so the wrapping conjecture holds forKn
m,1. In other words,

there is a minus-adequately wrapped diagram for Kn
m,1. Applying [27, Lemma 10]

ensures that the wrapping conjecture also holds for Kn
m,�.
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