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Abstract

This thesis contributes to the construction of supercuspidal representations in small resid-

ual characteristics. Let G be a connected, quasi-split, semisimple reductive algebraic group

defined and quasi-split over a non-archimedean local field k and splitting over a tamely,

totally ramified extension of k. To each parahoric subgroup of G(k), Moy and Prasad

have attached a natural filtration by compact open subgroups, the first of which is called

the pro-unipotent radical of the parahoric subgroup. The first main result of this thesis

is to characterize shallow characters of a pro-unipotent radical, those being complex char-

acters that vanish on the smallest Moy-Prasad subgroup containing all commutators of

linearly-dependent affine k-root groups. Through low-rank examples, we illustrate how this

characterization can be used to explicitly construct all shallow characters. Next, we provide

a natural sufficient condition under which a shallow character compactly induces as a direct

sum of supercuspidal representations of G(k). Through examples, however, we show that

this sufficient condition need not be necessary, all while constructing new supercuspidal

representations of Sp4(k) when p = 2 and the split form of G2 over k when p = 3. This

work extends the construction of the simple supercuspidal representations given by Gross

and Reeder and the epipelagic supercuspidal representations given by Reeder and Yu.
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Chapter 1

Introduction

The seed of representation theory, as a discipline of mathematical research, was planted

by Gauss in the early 19th century with his study of characters of finite abelian groups.

Gauss’s seed would lay dormant through the century and eventually germinate in 1896,

when Frobenius extended the notion of a character to non-abelian finite groups. In the 126

years since taking root, representation theory has grown and branched off, becoming one of

the farthest reaching fields of active research in all of mathematics.

Broadly speaking, the goal of a representation theorist studying a general algebraic

object is to “represent” it as a well-understood prototypical example. One then hopes to gain

a better understanding of their object through investigating all the ways to “represent” it as

the simpler prototype. Once a representation theorist has precisely defined what it means

to “represent” their object, they can begin to classify all the possible representations. To

Gauss, the first representation theorist, this meant representing an arbitrary finite abelian

group A as C× via a group homomorphism χ : A → C×, called a character. This is the

first, and simplest, example of a (matrix) representation.

To a student taking a first course in representation theory, the goal is to understand

an arbitrary finite group G by relating it to the finite-dimensional complex matrix group

GLn(C), via a group homomophism

π : G → GLn(C)

1



2 CHAPTER 1. INTRODUCTION

called a n-dimensional complex representation. The simplest of these representations are

1-dimensional characters of G. The characters of a finite group are of particular note,

since they cannot be decomposed into smaller sub-representations, and thus we call them

irreducible. Any student learning about finite-dimensional complex representations of fi-

nite groups is sure to quickly discover that any arbitrary representation can always be

decomposed into irreducible sub-representations; thus, in order to understand all finite-

dimensional complex representations, one need only classify the irreducible ones.

For a representation theorist studying p-adic groups, such as myself, the goal is to

understand a p-adic group G by relating it to the linear group GL(V ) for an arbitrary

complex vector space V , via an open group homomophism

π : G → GL(V )

called a smooth representation. Specifically, there is a strong focus on constructing su-

percuspidal representations, which act as the irreducible building blocks from which more

general smooth representations can be constructed. Much progress has been made on this

goal in recent years for the case in which the residual characteristic p is large; however, the

progress has been relatively limited when p is small. In this thesis, we will use what we

call shallow characters to provide a method for explicitly constructing new supercuspidal

representations when p is small.

1.1 Constructing Supercuspidal Representations

Let G be a reductive algebraic group defined over a non-archimedean local field k. A smooth

representation of G = G(k) is a group homomorphism

π : G → GL(V )

where V is a complex vector space such that for every v ∈ V there is a compact open

subgroup H ⊆ G with π(h)v = v for every h ∈ H. A smooth irreducible representation

(π, V ) is supercuspidal if every matrix coefficient is compactly supported modulo the center
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of G.

Much of the work on constructing supercuspidal representations is highly dependant on

the residual characteristic p: The supercuspidal representations of SL2 were first classified

when p > 2 by Sally and Shalika in 1969 [28]. Similarly, a classification for PGL2 when p > 2

was given by Silberger [29]. In 1977, Howe gave a construction for the “tame” supercuspidal

representations of GLn [13], which was proven to be exhaustive when p does not divide n [23].

In 1991, Bushnell and Kutzco were able to classify the supercuspidal representations of GLn,

independent of the prime p [5]. A method for constructing supercuspidal representation for

general groups was given by Adler in 1998 [1] and generalized by Yu in 2001 [36]. Kim

proved that Yu’s method is exhaustive when p is large [18]. Finally, in 2008, Stevens gave a

construction of all supercuspidal representations for a split connected classical group when

p > 2 [33].

A common thread among many of these exhaustive methods of construction is that they

rely on compact induction: If H ⊆ G(k) is a compact open subgroup modulo the center

of G(k) and V is an irreducible smooth representation of H then the compactly-induced

representation

indNG (V ) =











f : G → V

∣

∣

∣

∣

∣

∣

∣

f(hx) = h · f(x)

f is compactly supported











.

is a supercuspidal representation of G whenever it is irreducible. In general, a compactly-

induced representation is highly reducible. Therefore, when constructing supercuspidal

representations, one must be careful in choosing a compact open subgroup and an irreducible

representation thereof, and thus in order to be exhaustive, these constructions are relatively

complicated and highly dependent on the residual characteristic.

There are very few constructions of supercuspidal representations that are independent

of residual characteristic p and they are far from exhaustive. One notable example is the

construction of the simple supercuspidal representation given by Gross and Reeder in 2010

[12]. This construction requires the input of an affine generic character of the pro-unipotent

radical of the Iwahori subgroup, and the relatively simplicity of the resulting irreducible
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compactly-induced representation of G gives it its structure. This construction was then

reformulated in terms of Geometric Invariant Theory (GIT) and generalized by Reeder and

Yu to give the epipelagic1 supercuspidal representation which has minimal non-zero depth.

The input for this construction was a stable vector (in the sense of GIT) belonging to

the finite abelian quotient of the first two piece of the Moy-Prasad filtration of a general

parahoric subgroup [27]. The existence of these stable vectors was initially only known for

large enough p and for small p only in the case of the Iwahori subgroup. The existence of

stable vectors was eventually extended to all parahoric subgroups for small p and sufficiently

large residue fields in the case that char(k) = 0 and G is split [7].

We now give a more detailed explanation of the construction of [12]: Let f denote the

residue field of k, and let I be an Iwahori subgroup of G. The natural filtration of the field

k, Moy and Prasad proved, is mirrored in I which is filtered by open compact subgroups

I ≥ I1/h ≥ I2/h ≥ · · ·

where h is the Coxeter number of G [24][25].2 The first of these Moy-Prasad subgroups,

often denoted by I+ := I1/h, is called the pro-unipotent radical of I, and the second of these

Moy-Prasad subgroups, denoted by I++ = Ir2 , is a normal subgroup of I+. The quotient

I+/I++ is an elementary abelian p-group isomorphic to f!+1. A group homomorphism

χ : I+/I++ → C×

is called an affine generic character if it is non-trivial on each factor of f. If, through abuse

of notation, we also denote by χ : Z(G)I+ → C× the lift and extension of an affine generic

character χ to Z(G)I+, Reeder and Gross proved that the compactly induced representation

π(χ) := indGZ(G)I+
(χ)

is an irreducible superecuspidal representation of G called the simple supercuspidal repre-

1The epipelagic zone is the shallowest layer of the ocean where photosynthesis can occur.
2This particular filtration of I is the one corresponding to the barycenter of the alcove attached to I.

Choosing a different point in this alcove results in a different filtration.
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sentation [12].

We now assume that G is connected, semisimple, quasi-simple, and split or quasi-split

over k, splitting over a tamely purely ramified Galois extension of k. The main results of

Chapter 3 are an attempt to generalize the work of Gross-Reeder on affine generic characters.

In §3.1, we classify characters that are non-trivial on subgroups that are deeper, but not too

deep, in the Moy-Prasad filtration. More specifically, in Theorem 3.1.4, given any point λ

in the Bruhat-Tits building, we identify the minimal Moy-Prasad subgroup of the parahoric

subgroup Gλ containing commutators of linearly dependent positive affine root groups. This

parahoric subgroup, which we denote by Gλ,s(λ), is a normal subgroup of the pro-unipotent

radical Gλ+ of Gλ, and while the quotient Gλ+/Gλ,s(λ) is not necessarily abelian, we see in

Corollary 3.1.9 that its commutator subgroup is generated by the commutators of pairwise

linearly independent positive affine root groups. These commutators have a relatively simple

form which we reference in Proposition 2.2.4 and verify in Appendix A. This simple form

of the commutator subgroup allows us to completely classify all λ-shallow characters

χ : Gλ+/Gλ,s(λ) → C×,

as we see through example in §3.1.3. With our ingredients identified, we use §3.2 to inves-

tigate which λ-shallow characters compactly induce to give supercuspidal representations

of G. We provide a naive extension of Reeder-Yu’s stability condition in Theorem 3.2.3,

which we prove is sufficient for constructing supercuspidal representations. And finally, we

show in §3.2.3 and §3.2.4, through examples, that this naive extension is not a necessary

condition while simultaneously constructing new supercuspidal representations of Sp4(k)

when p = 2 and the split form of G2 over k when p = 3.

The methods used in this thesis were first presented for split groups in a preprint on

the arXiv [8]. Here we have extended the argument to construct λ-shallow characters for

quasi-split G. I am of the belief that these arguments can be extended further to residually

non-split quasi-split groups.
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1.2 Structure of the Thesis

If our goal is to explicitly construct supercuspidal representations, we must have a complete

understanding of our group. Chapter 2 is therefore devoted to providing the necessary

background in quasi-split groups. The vast majority of this information is not new, but is

rather a collection of results from various sources for easy reference.

In §2.1.1, we lay out how to fold a simple reduced root system along a symmetry of its

Dynkin diagram. The orbits of this diagram symmetry form a root system, called a twisted

root system, which need not be reduced. Along with the twisted root system, in §2.1.2 we

define a companion affine twisted root system. which is an affine root system in the sense

of [22]. These twisted root and affine root systems will respectively become the relative

root and affine root systems of our connected, semisimple, quasi-simple algebraic group G

defined and quasi-split over a non-archimedean local field k.

In section 2.2, we present the necessary background information found in [26] on Galois

descent for a quasi-split group defined over a non-archimedean local field. As is the case

for any quasi-split group (not necessarily over a non-archimedean local field), we see in

§2.2.1 that the the Galois group acts on the absolute root system of our group via a Dynkin

diagram folding, so that the k-root system of our group can be realized as a twisted root

system. By fixing an épinglage on which the Galois group acts, we are able to give a

Chevalley-Steinberg system in §2.2.2 for our group G = G(k). This subsection closes with

a description of commutators of k-root groups, coming from [26]. Then in §2.2.3 we see that

when the natural filtration of k induces a natural filtration on the k-root groups in G, and

the resulting affine k-root system is then easily identifiable as the affine twisted root system

constructed in §2.1.2. The culmination of this chapter is the definition of the Moy-Prasad

filtration of a parahoric subgroup of G by compact open subgroups, which will be necessary

for constructing supercuspidal representations in the next chapter.

Chapter 3 is where the bulk of the results of this thesis can be found. In §3.1.2, we use the

Moy-Prasad filtration from the previous chapter to define a finite p-group, not necessarily

abelian. We call the characters of this group shallow, and using the commutator formulas

calculated previously we are able to characterize them. Finally, in §3.1.3 we explicitly
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illustrate how to classify the shallow characters for both split and non-split quasi-split

examples.

Section 3.2 is devoted to a discussion on constructing supercuspidal representations from

the shallow characters classified in the previous section. In §3.2.1, we give a brief overview

of compact induction, and in §3.2.2, §3.2.3, and §?? we show that compact induction and

shallow characters can yield supercuspidal representations under appropriate conditions.

We then close with two appendices: In Appendix A we provide computations that justify

the commutator formulas given in §2.2.2, and in Appendix B we have the various tables

that are referenced throughout the thesis.
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Chapter 2

Quasi-split Groups over Filtered

Fields

2.1 Twisted Root Systems

In this section we develop the notions of a twisted root system and an affine twisted root

system which will be vital for understanding the structure of quasi-split groups in the sequel.

We show how one can, starting with a simple reduced root system, construct a twisted root

system, not necessarily reduced, by folding its Dynkin diagram. We then construct an affine

root system by taking affine translations of the twisted roots constructed previously.

Our discussion on affine root systems will involve affine linear functionals on a real vector

space. Those more familiar with these objects may recognize that it is possible to work over

affine spaces instead of vector spaces. Once an origin is chosen in the affine space, however,

these two notions coincide. Our future discussions of quasi-split groups over a local field

will assume an origin has been chosen; thus, we find it appropriate to assume an origin has

already been chosen in what follows.

A working knowledge of root and affine root systems is assumed, more-so for the former.

For anyone unfamiliar with these topics, I strongly recommend any of the widely-available

classical texts [2][16][22].

Notation 2.1.1. Let E be a real vector space, and let R be a root system of linear

9
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functionals on E; in other words, there exists a set of coroots R∨ = {a∨ | a ∈ R} ⊆ E

and a finite group of automorphisms W0 ⊆ GL(E∗) generated by reflections such that the

following hold:

(1) R spans the dual space E∗.

(2) w(R) = R for all w ∈ W0.

(3) 〈a,b∨〉 := a(b∨) ∈ Z and 〈a,a∨〉 = 2 for all a,b ∈ R.

(4) R is finite.

Fix a subset R+ ⊆ R, called a positive system of R, satisfying

(5) For each a ∈ R, exactly one of a,−a belongs to R+.

(6) For each a,b ∈ R+, if a+ b ∈ R then a+ b ∈ R+.

The indecomposable elements in R+, denoted by D, form a base of R satisfying

(7) a ∈ D if and only if a cannot be written as the sum of roots in R+.

We assume thatR is reduced, meaning that the only scalar multiples of each a ∈ R belonging

to R are a and −a. We also assume that R is simple, meaning that it cannot be decomposed

as the direct product of two subroot systems. //

2.1.1 Twisted roots

We denote by Aut(R) the set of automorphisms in GL(E∗) which preserve R. We say that

an automorphism σ ∈ Aut(R) is based whenever σ preserves a base of R. In particular,

for our fixed base D of R, we denote by Aut(R,D) the subgroup of Aut(R) of based

automorphisms preserving D. We have the splitting

Aut(R) = W0 !Aut(R,D).

The non-trivial based automorphisms of R arise as symmetries of the Dynkin diagram of R,

and therefore must have order e ∈ {2, 3}, as seen in Table B.1 in Appendix B. In particular,
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once a base D of R has been chosen, a based automorphism of R preserving D is uniquely

determined by its order e except when R is type D4 and e = 3; in this case there are two

order 3 symmetries of the Dynkin diagram, but they are inverses of each other.

Definition 2.1.1. Let σ ∈ Aut(R,D) be an order e based automorphism of R preserving

a fixed base D. The action of σ on R ⊆ E∗ naturally induces an automorphism of E which

we also denote by σ. We denote by the unbolded E = Eσ the set of points in E which are

fixed by σ, and we denote by the unbolded R = Rσ the set of restrictions to E of roots in

R:

R = Rσ = {a = a | a ∈ R}

where a is the restriction to E of a root a ∈ R. The set R is called the twisted root

system of linear functionals on E, and the elements therein are called twisted roots.

Since σ leaves stable the base D and the positive system R+ associated to it, we say

that a twisted root is simple (resp. positive) provided that it is the restriction to E of a

simple (resp. positive) root in R. We denote by

D = Dσ = {a = a | a ∈ D}

the set of simple twisted roots and by

R+ = R+
σ = {a = a | a ∈ R+}

the set of positive twisted roots.

Given any twisted root a ∈ R, we denote by (a) the set of all roots in R whose restriction

to E is a. Two roots in R have the same restriction if and only if they belong to the same

〈σ〉-orbit in R; thus, we can write

(a) = {a,σa,σ2a, . . . }

for any a ∈ (a). If for any a ∈ R we let ea denote the cardinality of (a), then we have the

following dichotomy:
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(i) (a) generates a type (A1)ea root subsystem of R.

(ii) (a) generates a type A2 root subsystem of R.

Cycles with type (ii) imply that 2a is a twisted root in R and can only occur when σ is an

involution on a root system of type A2n.

Below we will see that R forms a root system of linear functionals over E. But first we

must construct the coroot system R∨ lying inside E and the reflection group W0 contained

in GL(E∗). For each twisted root a ∈ R, the definition of the coroot a∨ and the reflection

wa depends on the cycle type of (a) in the following way:

(i) If (a) generates a type (A1)ea root subsystem of R, then we define

a∨ =
∑

a∈(a)

a∨

and

wa =
∏

a∈(a)

wa.

Note that since all roots in (a) are pairwise orthogonal, both the sum and product

above are independent of order.

(ii) If (a) = {a,b} generates a type A2 root subsystem ofR, then we define a∨ = 2a∨+2b∨

and wa = wa+b.

In both cases, we see that both a∨ and wa are invariant under the respective actions of

σ. Therefore, we denote by R∨ ⊆ E the set of all a∨, and by W0 ⊆ GL(E∗) the subgroup

generated by all wa. The perfect pairing between R and R∨ restricts to a σ-invariant

pairing between R and R∨ so that

wa(b) = b− 〈b, a∨〉 a

for all a, b ∈ R.

If one wishes to identify the vector spaces E and E∗ by using the pairing 〈·, ·〉 between

R and R∨, then we this vector space can be equiped with a inner-product thus allowing us
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to talk about the relative length of twisted roots. However, it is also possible to define the

relative length of twisted roots without making this identification: we say that two twisted

root a, b ∈ R have distinct relative length if 〈a, b∨〉 and 〈b, a∨〉 do not equal. In this case, we

say that a is longer (resp. shorter) than b if 〈a, b∨〉 is greater (resp. less) than 〈b, a∨〉. One

can check that that the roots of R are partitioned by their relative lengths [15, Section 10.4].

There are exactly two relative lengths, except when σ is an involution of a root system of

type A2n, in which case there are three relative lengths. We say that a twisted root is short

if it has the shortest relative length and long if it has the second-to-shortest relative length.

If σ is an involution of a root system of type A2n, then the twisted roots that are of the

longest relative length are precisely the divisible roots of form 2a for a twisted root a ∈ R.

We are now ready to prove that R forms a root system, not necessarily reduced, of linear

functionals on E. The proof is straightforward and is included for the sake of completeness:

Proposition 2.1.1. Let σ,E,R,D,R+,R∨,W0 be as above. Then R = Rσ is a root

system of linear functionals on E = Eσ with coroot system R∨ = R∨
σ and reflection group

W0 = Wσ
0 in the sense that the following hold:

(1) The roots in R span E∗.

(2) wa(R) = R for all a ∈ R.

(3) 〈a, b∨〉 ∈ Z and 〈a, a∨〉 = 2 for all a, b ∈ R.

(4) R is finite.

Moreover, R+ = R+
σ forms a positive system of R in the sense that the following hold:

(5) For each a ∈ R, exactly one of a,−a belongs to R+.

(6) For each a, b ∈ R+, if a+ b ∈ R then a+ b ∈ R+.

Finally, D = Dσ forms a base of R in the following sense:

(7) a ∈ D if and only if a cannot be written as the sum of roots in R+.

Proof. This proposition vacuously holds if σ is trivial; therefore we will assume that σ has

order either 2 or 3. These results will be proven one at a time, but most follow directly

from the appropriate structures of E, R, D, R+, R∨, and W0 laid out in Notation 2.1.1.
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(1): Recall that R spans E∗. For each a ∈ R, the subspace of E∗ spanned by (a) has a

1-dimensional σ-invariant subspace spanned by a. Therefore, R must span E∗ = (E∗)σ.

(2): Fix any a ∈ R. From the definitions above, we see that wa ∈ W0 is the restriction

to E∗ of some element in W0. Since elements in W0 leave stable R, their restrictions to

E∗ leave stable R whose elements are restrictions to E of roots in R.

(3): Fix a, b ∈ R, and let a ∈ (a) and b ∈ (b) so that

〈a, b∨〉 = x ·
ea
∑

i=1

〈a, (σib)∨〉,

where x is 2 or 1 respectively depending on whether 2b is a root in R or not. In either case,

〈a, b∨〉 is an integer since each 〈a, (σib)∨〉 is one. Furthermore, we can see that 〈a, a∨〉 = 2.

Indeed, if (a) generates a type (A1)ea root subsystem of R, then

〈a, a∨〉 = 〈a,a∨〉 = 2

since a commutes with each σia, i = 1, . . . , ea−1; if (a) generates a type A2 root subsystem

of R, then

〈a, a∨〉 = 2〈a,a∨ + σa∨〉 = 2(1) = 2.

(4): R must be finite, since R is assumed to be so.

(5): Given any a ∈ R, either (a) or (−a) must intersect R+ since it forms a positive

system on R. In fact, exactly one of these intersects R+, since σ preserves R+.

(6): Given a, b ∈ R+, if a + b is a root in R then there must exist some a ∈ (a) and

b ∈ (b) such that a + b ∈ R. Since a,b ∈ R+, this means that a + b ∈ R+ so that

a+ b ∈ R+.

(7): Let a ∈ R+ and fix any a ∈ (a). If a = b+ c for b, c ∈ R+, then a = b+ c where

b ∈ (b) and c ∈ (c). On the other hand, if a is decomposable in R+ then, since D is a base

of R, a is decomposable in R+ so that a /∈ D and a /∈ D.

Remark. A reader familiar with root systems may notice the omission of the condition in

the definition of a root system that often appears in the literature; namely, here we do



2.1. TWISTED ROOT SYSTEMS 15

not require that R satisfy the condition of a reduced root system that the only scalar

multiples of a twisted root a that belong to R are a and −a. In this sense, we say that R

need not necessarily be reduced. In fact, R is non-reduced if and only if σ is an involution

of a root system of type A2n.

For any root system R, not necessarily reduced, with base D, its Dynkin diagram is

the graph with vertex set D and 〈a, b∨〉〈b, a∨〉 edges between the vertices a, b ∈ D. If there

is more than 1 edge between a, b then we label them with an arrow pointing towards the

shorter root. Since R need not be reduced, we will also shade in a vertex a ∈ D whenever

2a ∈ R.

Let R be any twisted root system constructed above. When σ is trivial, so that R = R,

then the Dynkin diagram of R is identical to that of R. When σ is non-trivial and R is

reduced, then its Dynkin diagram is one of a simple reduced root system. When σ is an

involution of a root system of type A2n, then R is non-reduced and its Dynkin diagram is

one of type BCn. This is summarized in Table B.2 of Appendix B.

2.1.2 Affine twisted roots

Given real vector spaces V, U , a function ψ : V → U is called an affine linear map if there

exists a linear map ψ̇ : V → U such that

ψ(x+ y) = ψ(x) + ψ̇(y)

for all x, y ∈ V . The linear function ψ̇ is called the linear part (or gradient) of ψ. The

constant part (or intercept) of ψ is the vector ψ(0) ∈ U . An affine linear map ψ can

then be recovered from its linear and constant parts via the formula

ψ(x) = ψ̇(x) + ψ(0).

In the specific case that the codomain equals R, we call an affine linear map an affine

linear functional, and through an abuse notation, we write a+ r : V → R to be the affine

linear functional with linear part a ∈ V ∗ and constant part r ∈ R.
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Definition 2.1.2. For each root a ∈ R we denote by Ψ(a) a set of affine linear functionals

on E whose gradients are all a. The intercepts of the affine functionals in Ψ(a) depend on

the cycle type of (a) and whether a/2 is a k-root according to the following trichotomy:

(i1) If (a) generates a type (A1)ea root subsystem in R and a/2 /∈ R, then let

Ψ(a) := {a+ n/ea | n ∈ Z}

be the set of all affine linear functionals on E with gradient a and intercept an integer

multiple of 1/ea.

(i2) If (a) generates a type A1 root subsystem of R and a/2 ∈ R, then let

Ψ(a) := {a+ (2n+ 1)/2 | n ∈ Z}

be the set of all affine linear functions on E with gradient a and intercept an odd-

integer multiple of 1/2 ( (= 1/ea).

(ii) If (a) generates a type A2 subsystem in R, then set

Ψ(a) := {a+ n/2 | n ∈ Z}

to be the set of all affine linear functionals on E with gradient a and intercept an

integer multiple of 1/2 = 1/ea.

The affine linear functionals appearing above, called affine twisted roots, form

Ψ = Ψ(R,σ) :=
⊔

a∈R

Ψ(a),

the affine twisted root system of affine linear functionals on E.

For each ai ∈ D = {a1, . . . , a!}, we denote by

αi := ai + 0
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the affine twisted root with gradient ai and intercept 0. If σ is trivial, set a0 to be the

lowest root in R = R; if σ is non-trivial, then let a0 be the lowest short twisted root in R

except when σ is an involution and of a root system of type A2n, in which case we let a0

be twice the lowest short twisted root in R. In each case, we denote by

α0 := a0 + 1/e

the affine twisted root with gradient a0 and intercept 1/e. The set

∆ = {α0,α1, . . . ,α!}

will be called the base of Ψ, with the affine twisted roots therein called simple.

To see that Ψ forms an affine root system, it will be necessary that we construct a

perfect pairing. If one wishes to identify E and its dual E∗ using the perfect pairing 〈·, ·〉

between R and R∨, then it is possible to define a twisted affine coroot and thus a pairing.

However, it is also possible to define the pairing without making this identification: for

each affine twisted root α,β ∈ Ψ we abuse notation to write 〈α,β∨〉 in place of the pairing

between their gradients

〈α,β∨〉 := 〈α̇, β̇∨〉.

In a similar vein, it makes sense to talk about the relative length of an affine twisted root

without ever defining an inner-product; that is, we say that an affine twisted root is short

(resp. long) if its gradient is short (resp. long).

Definition 2.1.3. Let α be an affine twisted root in Ψ. The vanishing hyperplane

ker(α) is the affine hyperplane in E consisting of points at which α vanishes. We denote by

wα the affine linear involution of E given by reflection along ker(α) via

wα(λ) = λ− α(λ)α̇∨

for all λ ∈ E. Through the pairing defined above, wα also acts on Ψ according to the
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formula

wα(β) = β − 〈β,α∨〉α

for all β ∈ Ψ. The group W generated by each wα, α ∈ Ψ is the affine reflection group

of Ψ.

Let H denote the union of all vanishing hyperplanes of affine twisted roots in Ψ. The

open connected components of the complement E \H are called alcoves in E. One of these

alcoves, called the fundamental alcove, is bounded by the vanishing hyperplanes of the

simple affine twisted roots in ∆, and it will be denoted by C ⊆ E. (c.f., Example 4.3 in [22]

or Example 4.7 in [16])

An affine twisted root in Ψ is said to be positive if it takes positive values on C. The

set of positive affine twisted roots in Ψ will be denoted by Ψ+.

We are now ready to see that Ψ forms an affine root system in the sense of [22],

satisfying the following:

(1) Ψ spans the space of affine linear functionals on E.

(2) wα(Ψ) = Ψ for all α ∈ Ψ.

(3) 〈α,β∨〉 ∈ Z for all α,β ∈ Ψ.

(4) W (as a discrete group) acts properly on E.

The construction of these affine root systems has appeared in the literature (for example

see [26]). We will, however, include the proof for a number of them, as they are fairly

straightforward:

Proposition 2.1.2. Let E,Ψ,∆,Ψ+,W be as above. Then Ψ is a affine root system of

affine linear functionals on E with reflection group W in the sense that the following hold:

(1) Ψ spans the space of affine linear functionals on E.

(2) wα(Ψ) = Ψ for all α ∈ Ψ.

(3) 〈α,β∨〉 ∈ Z for all α,β ∈ Ψ.
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(4) W (as a discrete group) acts properly on E.

Moreover, Ψ+ forms a positive system of Ψ in the sense that the following hold:

(5) For each α ∈ Ψ, exactly one of α,−α belongs to Ψ+.

(6) For each α,β ∈ Ψ+, if α+ β ∈ Ψ then α+ β ∈ Ψ+.

Finally, ∆ forms a base of Ψ in the following sense:

(7) α ∈ ∆ if and only if α cannot be written as the sum of roots in Ψ+.

Proof. If σ is either trivial or an involution of a root system of type A2n then, up to normal-

izing the constant parts, Ψ is one of the affine root systems described [22, Proposition 2.1].

These prototypical affine root systems are well-understood. We therefore will focus on when

σ is non-trivial and R is reduced.

(1): This follows from R spanning the space of linear functionals on E.

(2): Let α = a+m/ea and β = b+ n/eb be two affine roots in Ψ. Then

wα(β) = (b+ n/eb) + 〈b, a∨〉(a+m/ea) = wa(b) + n/eb + 〈b, a∨〉m/ea.

Since W0 is length-preserving on gradients, we know that ewa(b) = eb. We also know that

〈b, a∨〉 is an integer. Thus,

n/eb + 〈b, a∨〉m/ea = k/eb (2.1.1)

for some integer k. Indeed, if ea = eb, then certainly (2.1.1) holds for k = n + 〈b, a∨〉m; if

ea = e (= 1 and eb = 1, so that a is short and b is long, then 〈b, a∨〉m/ea = ±m and (2.1.1)

holds for k = n ± m; and if ea = 1 and eb = e (= 1, so that a is long and b is short, then

〈b, a∨〉 = ±1 and (2.1.1) holds for k = n±me.

(3): This is a restatement of the fact that 〈a, b∨〉 ∈ Z for all a, b ∈ R.

(5): No affine twisted root vanishes on the fundamental alcove C, and so either α or −α

evaluates positively thereon.

(6): If α(λ),β(λ) > 0 then α(λ) + β(λ) > 0, for all λ ∈ C.

Remark. There are a couple things to note about the definition of an affine root system

appearing in MacDonald’s influential paper [22]. First is that it is not an entirely correct
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definition, as independently noted in 2011 by Mark Reeder and Jasper Stokman. Missing

from this definition is the condition that the affine root system be non-finite, meaning that

for each gradient a ∈ R, there are at least two (and thus infinitely many) affine roots whose

gradient is a. Our twisted root systems Ψ certainly satisfy this non-finiteness condition,

and therefore the condition was omitted from the above proposition.

With the addition of the non-finiteness condition to the definition of affine root systems,

Macdonald’s definition of affine root systems is equivalent to that of a echellonage appearing

in Bruhat-Tits [3].

Definition 2.1.4. The closure of the fundamental alcove is characterized as the set of

points in E on which each simple affine twisted root in ∆ takes non-negative values. A

facet of C is a equivalence class of this closure under the relation ∼, where λ ∼ µ when

α(λ) > 0 if and only if α(µ) > 0 for all α ∈ ∆. A facet of C is then uniquely determined by

the vanishing of a subset of simple affine twisted roots.

A facet corresponding to the vanishing of all but one simple affine root in ∆ contains

exactly one point, which we call a vertex of C. We say that a vertex λ of C is strongly-

special whenever there is a simple affine twisted root αi ∈ ∆ such that αi(λ) = 1/e (and

thus vanishes on all other simple affine twisted roots in ∆). Not to be confused with the

notion of a hyperspecial vertex, the relationship between strongly-special vertices and special

vertices, found elsewhere in the literature [34], is as follows: if R is reduced, then a vertex

is special if and only if it is strongly-special, but if R has type C-BC! then a vertex is

strongly-special if and only if it is the special vertex corresponding to the vanishing of α0.

Alternatively, strongly-special vertices can be understood as coming from weight-1 vertices

in the weighted Dynkin diagram of Ψ as defined below.

Recall that −a0 is a positive twisted root in R. While we have not proven it here, it is

well known that any element of R+ can be written as the the integral sum of the simple

twisted roots in D with all positive coefficients (c.f., [2, Chapter 6 Theorem 3]). We define

the minimal constant relation among the simple affine twisted roots in ∆ to be

1/e = m0α0 +m1α1 + · · ·+m!α! (2.1.2)
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where m0 = 1 and m1, . . . ,m! are all positive integers coming from the decomposition of

−a0 into simple twisted roots.

The Dynkin diagram of Ψ is the graph with vertex set ∆ and 〈αi,α∨
j 〉〈αj ,α∨

i 〉 edges

between vertices αi,αj except when the vanishing hyperplanes of αi and αj are parallel in

which case we put a single bold edge. If there are more than 1 edges between αi,αj then we

label them with an arrow pointing towards the shorter affine twisted root. To each vertex

αi ∈ ∆ in the Dynkin diagram of Ψ, we assign the positive integer mi appearing in the

minimal constant relation above. The Dynkin diagram with vertices adorned with these

weights will be called the weighted Dynkin diagram of Ψ. Table B.3 in Appendix B

shows the weighted weighted Dynkin diagrams for all affine twisted root systems.

Technical lemmas

What follows are some technical results on affine twisted root systems. They are tools that

will help us later in Chapter 3:

Lemma 2.1.3. If α is a non-long affine twisted root in Ψ, then 1/e − α and 1/e + α are

also.

Proof. Since α is non-long, it is of the form α = a+n/e. Then indeed 1/e−α = −a+(1−n)/e

and 1/e+ α = a+ (1 + n)/e are both non-long affine roots in Ψ.

Lemma 2.1.4. Suppose that R is not simply-laced, and let αi1 be any long, simple affine

root whose gradient is not twice the lowest short root when R is of type C-BC!. Then there

exists a non-repeating sequence of vertices (αi1 , . . . ,αin) in the Dynkin diagram of Ψ such

that the following hold:

(1) {αij ,αij+1
} is an edge for each j = 1, . . . , n− 1.

(2) αi1 , . . . ,αin−1
are all long affine k-roots.

(3) αin is short.

Moreover, in this situation, the affine functional α = αi1 + · · ·+αin is a short affine twisted

root in Ψ.
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Proof. This existence claim can be individually checked for each Dynkin diagram given in

Table B.3 in Appendix B. Graphically this sequence can occur as one of three classes of

sub-diagrams: First, if Ψ has either type G2 or GI
2, then our sequence can appear as the

sub-diagram

αi1 αi2 ;

next, if Ψσ has type G2, then our sequence can appear as the sub-diagram

αi1 αi2 αi3 ;

and finally, if Ψ has any type other than G2 or GI
2, then our sequence appears as a sub-

diagram of the form

αi1 αin−1 αin .

In all three cases, α = αi1 + · · ·+ αin is a short affine twisted root.

2.2 Quasi-split Groups

A reductive group is said to be quasi-split over a field k provided that it has a Borel

subgroup defined over k. We say that a quasi-split group is split provided that it has a k-

split maximal torus. In this section, we will develop the theory of quasi-split groups defined

over local fields. For a general, in-depth treatment of split reductive groups, there are many

classical sources that one can turn to, such as [9][14][32][30]. I personally recommend [6],

as it most naturally lends itself to the computations performed throughout. Literature on

the structure of non-split quasi-split groups is slightly less abundant, but I have modeled

my treatment in this section based of that of [26].

We will begin by defining relative root system of any quasi-split reductive group over any

field of definition, not necessarily local. As with the the the absolute root system of a split

group, the relative root system of a quasi-split group contains combinatoric information that

controls the structure of the group via the Chevalley-Steinberg system. Like the previous

subsection, this will merely be an overview of well-established ideas found in the above
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references.

In §2.2.3, we will focus on a structure of reductive groups over filtered fields, like the

ones considered in this thesis. Namely, we will define the notion of an affine root system

which melds the root data and the filtration of the field of definition. This structure was first

studied by Iwahori and Mastumoto [17] and then further developed by many mathematicians

in the late 20th century. Notably, the work on Bruhat and Tits [3][34] act as comprehensive

references for anyone looking to learn more.

Notation 2.2.1. Let k be a non-archimedean local field with ring of integers Ak, a local ring

with unique maximal ideal Pk. We denote by val : k× → Z a surjective integral valuation

on k, so that val(k×) = Z. The residue field of k is denoted by f = Ak/Pk. The residual

characteristic of k is the positive characteristic of its residue field, denoted by p.

Let K denote a degree e ∈ {1, 2, 3} totally ramified Galois extension of k, and assume

that e (= p so that K/k is tamely ramified. We fix an order e cyclic generator σ of the Galois

group Gal(K/k), and write σ(x) = x̄ when e = 2. We denote by AK the ring of integers

of K, a local ring with unique maximal ideal denoted PK . Through an abuse of notation,

we also denote by val : K× → Ze−1 the valuation of K extending that on k. Since K/k is

totally ramified, the residue field of K is isomorphic to that of k, and thus we also denote

it by f = AK/PK .

Let G be a connected, quasi-simple, semisimple reductive algebraic group defined over

k and splitting over K. Over k, we assume that G is either split (in the case that K = k

and e = 1) or non-split quasi-split (in the case that e ∈ {2, 3}).Let S be a maximal k-split

torus, and let Z the centralizer of S in G, a maximal torus of G defined over k. Let B be

a Borel subgroup of G defined over k and containing Z.

As a convention, we use unbolded letters G,B,Z, S to respectively denote the groups k-

rational points in G,B,Z,S. More generally, if a subgroup of G, represented with a bolded

letter, is defined over k then the group of k-rational points is denoted by the corresponding

unbolded letter. //
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2.2.1 Root systems

Let R = R(G,Z,K) denote the K-root system of G relative to the K-split maximal torus

Z consisting of all K-characters of Z appearing in the adjoint representation of Z(K) on

the Lie K-algebra Lie(G(K)). Through the natural pairing between K-characters and K-

cocharacters of Z, the K-root system forms a simple reduced system of roots acting as linear

functionals on the real vector space X∗(Z,K) ⊗Z R, where X∗(Z,K) is the K-cocharacter

lattice of Z. The set of the K-roots appearing in the adjoint representation of Z(K) on the

Borel K-subalgebra Lie(B(K)) form a positive system R+ ⊆ R, and therein lies the set of

simple K-roots of D = D(G,B,Z,K) of G relative to the pair (B,Z).

The Galois group Gal(K/k) has a right action of G(K) which we denote by g +→ gγ for

all g ∈ G(K) and γ ∈ Gal(K/k). This action preserves B(K),Z(K),S(K). The action on

Z(K) induces a natural left action of Gal(K/k) on the K-character lattice of Z defined as

follows: given any K-character χ : Z(K) → K×, the K-character σχ is defined via

[σχ](z) := σ(χ(zσ))

for all z ∈ Z(K). This action leaves stable the K-roots of G relative to Z as well as the

base therein corresponding to B. Thus, σ acts as a based automorphism in Aut(R,D).

The natural pairing between K-characters and K-cochcaracters of Z induces a Galois

group Gal(K/k) acts on the X∗(Z,K) according to

[σ−1λ](t) := λ(σ(t))σ

for all λ ∈ X∗(Z,K) and t ∈ K×. We denote by X∗(S, k) the lattice of k-cocharacters of

S consisting of the restriction to k× of σ-invariant K-cocharacters of Z. The images of the

elements in X∗(S, k) generate

S = S(k) =
〈

λ(t) | λ ∈ X∗(S, k), t ∈ k×
〉

,

the maximal split k-tori in G = G(k).
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Let R = R(G,S, k) denote the k-root system of G relative to the maximal k-split

torus S, consisting of all k-characters of S appearing in the adjoint representation of S on

the Lie k-algebra Lie(G). The set of k-roots appearing in the adjoint representation of S

on the Lie k-algebra of the Borel subgroup B = B(k) will form a positive system R+ ⊆ R,

and therein will lie the simple k-roots D = D(G,B,S, k) of G relative to (B,S).

Each k-root of G relative to S, when viewed as a linear functional on X∗(S, k) ⊗Z R,

is the restriction of a K-root in R acting as a linear functional on X∗(Z,K) ⊗Z R. Two

K-roots restrict to the same k-root if and only if they belong to the same orbit under

the Galois group Gal(K/k) acting as a based automorphisms. Thus, we have shown that

one can realize the k-root system R as one of the twisted root systems constructed in

Definition 2.1.1:

Proposition 2.2.1. Let G,Z,S,K, k be as in Notation 2.2.1. If σ is a cyclic genera-

tor of the Galois group Gal(K/k), acting as a based automorphism of the K-root system

R(G,Z,K), then the k-root system R(G,S, k) can be realized as the twisted root system

R(G,Z,K)σ of linear functionals on the real vector space X∗(S, k)⊗Z R defined in Defini-

tion 2.1.1.

2.2.2 Chevalley-Steinberg systems and root groups

For each positive K-root a ∈ R+, we denote by Ua and U−a the K-root groups respec-

tively corresponding to a and −a, uniquely characterized as being the non-trivial connected

unipotent subgroups of G, defined over K, on which Z respectively acts via a and −a. The

group Ga = 〈Ua,U−a〉 is a connected, quasi-simple, semisimple reductive algebraic group,

defined over K, with absolute-rank 1 maximal torus Ga ∩ Z; therefore, there must exist a

(non-unique) central K-isogeny

ϕa : SL2(K) → Ga(K)

characterized as isomorphically mapping the upper and lower-triangular unipotent sub-

groups onto Ua(K) and U−a(K) respectively. We then consider the (non-unique) K-root
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morphisms, which are defined to be the restriction of ϕa to these unipotent subgroups:

ua(x) := ϕa







1 x

1






and u−a(x) := ϕa







1

x 1







for all x ∈ K.

The non-uniqueness of K-root morphisms is addressed by fixing a K-pinning (or an

épinglage) of G relative to (B,Z) consisting of a choice of central K-isogenies ϕa for

the simple roots a ∈ D. Once a pinning has been chosen, the central K-isogenies for the

remaining positive k-roots a ∈ R+ are chosen so that vectors du±a(1) collectively form a

Chevalley basis of the Lie K-algebra Lie(G(K)), meaning that

[dua(1), dub(1)] =















0 if a+ b /∈ R

±(n+ 1) dua+b(1) if a+ b ∈ R,

for all a,b ∈ R, where n is the greatest positive integer for which b − na is a root in R.

For more detail on this construction, please refer to [6, Section 4.2].

Notation 2.2.2. Throughout the remainder of the thesis, we will assume that a K-pinning

of G relative to (B,Z) has been chosen so that for a ∈ R, we have

ua(x)
σ = uσa(εa σ(x)) (2.2.1)

for all x ∈ K, where εa ∈ {1,−1} such that εa = 1 whenever a ∈ D. Such an assumption

is reasonable due to the classical work of Steinberg which says that any automorphism of

a split reductive group preserving a Borel and maximal torus therein must preserve some

pinning [31, proof of Theorem 8.2]. The remaining εa are computed using the relations

[ua(x), ub(y)]
σ = [ua(x)

σ, ub(y)
σ].

for all a,b ∈ R and x, y ∈ K. In fact, without loss of generality, we can assume that the

K-root morphisms are chosen so that εa = −1 if and only if a/2 ∈ R [6, Lemma 13.6.2]. //
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Definition 2.2.1. Let a be any k-root in R. So as to align with the definition of twisted

root systems given in Definition 2.1.1, we let (a) be the Gal(K/k)-orbit of all K-roots in R

whose restriction to S is a. The order of this orbit, equal to the index of the stabilizer in

Gal(K/k) of a, is denoted by ea. We then define Ka to be the subset of K or K2 according

to the following trichotomy:

(i1) If (a) generates a type (A1)ea root subsystem of type R and a/2 /∈ R, then let Ka

denote the fixed field in K of 〈σea〉, a degree ea field extension of k with Galois group

Gal(Ka/k) = 〈σe/ea〉.

(i2) If (a) generates a type A1 root subsystem of type R and a/2 ∈ R, then let Ka denote

the set of all y ∈ K such that y + ȳ = 0.

(ii) If (a) generates a type A2 root system of type R, then let Ka denote the subset of

K2 consisting of all pairs (x, y) such that xx̄+ y + ȳ = 0.

Throughout, it will often be convenient to refer to the union of cases (i1) and (i2), which

we denote by (i) and corresponds with case (i) in Definition 2.1.1.

Corresponding to a, we define the k-root group Ua to be the subgroups of G generated

by all K-root groups Ua for a ∈ (a). The structure of Ua can be described in terms of the

cycle type of (a) as follows:

(i) If (a) generates a type (A1)ea root subsystem of R, then Ua is the internal direct

product

Ua =
∏

a∈(a)

Ua.

This product is independent of the order of a ∈ (a), since the Ua commute with one

another.

(ii) If (a) = {a,σa} generates a type A2 root subsystem of R, so that a + σa ∈ R, then

Ua is not abelian. Rather, it is the internal semidirect product

Ua = UaUσaUa+σa.

Here Ua+σa is central, and thus is normalized by both Ua and Uσa.
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Since each Ua is defined over K, the group Ua must be also. Furthermore, since (a) is a

single Galois orbit, Ua is defined over k. We denote by

Ua = Ua(k) = {u ∈ Ua(K) | uσ = u}

the group of k-rational points in Ua.

Proposition 2.2.2. Let a be any k-root in R. The σ-invariant elements of Ua(K) can be

described as follows:

(i) Suppose that (a) generates a type (A1)ea root subsystem of R. Fixing a ∈ (a), an

element in Ua(K) is σ-invariant if and only if it is of the form

ua(x) :=
ea−1
∏

i=0

ua(x)
σi

(2.2.2)

for x ∈ Ka.

(ii) Suppose that (a) generates a type A2 root subsystem of R. Fixing a ∈ (a), an element

in Ua(K) is σ-invariant if and only if it is of the form

ua(x, y) := ua(x) · uσa(x̄) · ua+σa(y) (2.2.3)

for (x, y) ∈ Ka.

Proof. (i): Suppose that (a) = {a,σa . . . ,σea−1a} generates a type (A1)ea root subsystem

of R. Fix any element u ∈ Ua(K) and write u as the unique product

u =
ea−1
∏

i=0

uσia(xσia)

for xσia ∈ K, independent of order of the product. Applying σ to this product yields

uσ =
ea−1
∏

i=0

uσia(xσia)
σ.

If u is σ-invariant then each uσia(xσia)
σ = uσi+1a(xσi+1a). Thus Ua consists precisely of all
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elements of the form

ua(x) =
ea−1
∏

i=0

ua(x)
σi

for x ∈ K such that σea(x) = εa x where

εa =
ea
∏

i=1

εσia ∈ {1,−1}.

But according to the assumptions made in Notation 2.2.2, ea = −1 if and only if a/2 ∈ R,

and so σea(x) = εa x if and only if x ∈ Ka.

(ii): Suppose that (a) = {a,σa} generates a type A2 root subsystem of R. Without

loss of generality, we can assume that ua+σa is scaled so that

[ua(x1), uσa(x2)] := ua+σa(x1x2).

Note that this assumption is consistent with every assumption made in Notation 2.2.2. Let

u be any element of Ua, and so an element of Ua(K) that is σ-invariant. We can write u

as the product

u = ua(x1) · uσa(x2) · ua+σa(y)

for x1, x2, y ∈ K. Applying σ to this product yields

uσ = uσa(x̄1) · ua(x̄2) · ua+σa(−ȳ)

= ua(x̄2) · uσa(x̄1) · [uσa(x̄1), ua(x̄2)]ua+σa(−ȳ)

= ua(x̄2) · uσa(x̄1) · ua+σa(−x̄1x̄2 − ȳ)

Since u is assumed to be fixed by σ, this means that x1 = x̄2 and y = −ȳ − x̄1x̄2. Putting

these all together, we see that Ua consists of all elements of the form

ua(x, y) = ua(x) · uσa(x̄) · ua+b(y)

for all x, y ∈ K such that xx̄+ y + ȳ = 0, or equivalently (x, y) ∈ Ka.
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Definition 2.2.2. For each k-root a ∈ R, the function ua : Ka → Ua defined by either

(2.2.2) or (2.2.3) is a group isomorphism, which we logically call a k-root morphism. The

non-uniqueness seen in K-root morphisms is inherited here, but more-so since (2.2.2) and

(2.2.3) required an additional choice of a K-root a ∈ (a). This will not be a problem for the

discussions that follow, since a different choice of K-root in (a) amounts to pre-composing

ua with an element of Gal(K/k).

Commutator formulas

Let a, b be linearly independent k-roots. For all u ∈ Ua and v ∈ Ub, we consider the

commutator

[u, v] := u−1v−1uv.

We will denote by [Ua, Ub] the subgroup of G generated by all commutators [u, v] with

u ∈ Ua and v ∈ Ub. If a+ b is not a k-root, then Ua and Ub must commute with one another

and thus [Ua, Ub] = 1. We will now investigate the structure of [Ua, Ub] in the case that Ua

and Ub do not commute.

When a + b is a k-root, let Ga,b be the group generated by k-root groups U±a and

U±b, defined over k with k-rank 2. In the case that Ga,b splits over k, the structure of the

commutators of elements in Ua and Ub is given by the following classical result:

Proposition 2.2.3 (Chevalley). Let a, b be linearly independent k-roots such that a+ b is

a k-root, and suppose that Ga,b splits over k. Then

[Ua, Ub] ⊆
∏

i,j

Uia+jb

where the product is increasing over all positive integers i, j such that ia + jb is a k-root.

In particular,

[ua(x), ub(y)] =
∏

i,j

uia+jb(±Cabij x
iyj)

where the product is over all positive integers i, j such that ia + jb is a k-root with the

constant Cabij ∈ {1, 2, 3}.
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Proof. The proof of this claim, along with a more in-depth description of the constants

Cabij can be found in [6, Theorem 5.2.2].

Now we suppose that Ga,b does not split over k. As in this split case, the commutators

of elements in Ua and Ub can be written in terms of the groups Uia+jb for positive integers

i, j > 0 such that ia + jb is a k-root. Unlike the split case, there is not a uniform way to

describe what the factor in Uia+jb is, and they must instead be studied in a case-by-case

basis.

The following results can be found in [26, Section 1] without accompanying computa-

tions. In its statement, we will be continuing the notation established in (2.2.2) and (2.2.3)

for the Galois-invariant elements in the k-root groups:

Proposition 2.2.4 (Prasad-Raghunathan). Let a, b be linearly independent k-roots such

that a+ b is also a k-root, and suppose that Ga,b does not split over k. Then

[Ua, Ub] ⊆
∏

i,j

Uia+jb

where the product is increasing over all positive integers i, j such that ia + jb is a k-root.

In particular, we have the following:

(1) If the k-root system of Ga,b has type A2 then there exists ρ, τ ∈ Gal(K/k) such that

[ua(x), ub(y)] = ua+b(±ρ(x)τ(y))

for all x, y ∈ K.

(2) If the k-root system of Ga,b has type B2, then

a. If a, b are short roots and a + b is long, then there exists a ρ ∈ Gal(K/k) such

that

[ua(x), ub(y)] = ua+b(±TraceK/k(xρ(y))

for all x, y ∈ K.
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b. If a is short and b is long, there there exists a ρ ∈ Gal(K/k) such that

[ua(x), ub(y)] = ua+b(±ρ(x)y) · u2a+b(±xx̄y),

for all x ∈ K and y ∈ k.

(3) If the k-root system of Ga,b has type G2, then the following hold:

a. If a, b, and a + b are all short roots, then there are k-embeddings ρ, τ of K into

K different than the natural one such that

[ua(x), ub(y)] = ua+b(±(ρ(x)τ(y) + τ(x)ρ(y))

· u2a+b(±(ρ(x)τ(x)y + τ(x)xρ(y) + xρ(x)τ(y))

· ua+2b(±(xρ(y)τ(y) + ρ(x)τ(y)y + τ(x)yρ(y)))

for all x, y ∈ K.

b. If a, b are short roots and a+ b is long, then there exists ρ ∈ Gal(K/k) such that

[ua(x), ub(y)] = ua+b(±TraceK/k(xρ(y)))

for all x, y ∈ K.

c. If a is short and b is long, then there exists γ, ρ, τ ∈ Gal(K/k) such that

[ua(x), ub(y)] = ub+c(±γ(x)y) · u2a+b(±ρ(x)τ(x)y)

· u3a+b(±yNormK/k(x)) · u3a+2b(±2y2NormK/k(x))

for all x ∈ K and y ∈ k.

(4) If the k-root system of Ga,b has type BC2, then

a. If a, b are short roots and a + b is long, then there exists a ρ ∈ Gal(K/k) such

that

[ua(x), ub(y)] = ua+b(±(xρ(y)− x̄ρ(ȳ))
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for all x, y ∈ K.

b. If a is short and b is long, then there there exists a ρ ∈ Gal(K/k) such that

[ua(x), ub(y)] = ua+b(±ρ(x)y) · u2a+b(±xx̄y),

for all x, y ∈ K with y + ȳ = 0.

c. If 2a, 2b are k-roots, then there there exist ρ, τ ∈ Gal(K/k) such that

[ua(x, y), ub(z, w)] = ua+b(±ρ(x)τ(z))

for all x, y, z, w ∈ K with xx̄+ y + ȳ = 0 and zz̄ + w + w̄ = 0.

d. If 2a is a k-root but 2b is not, then there exist γ, δ, ρ, τ ∈ Gal(K/k) such that

[ua(x, y), ub(z)] = ub+c(±ρ(x)τ(z),±γ(y)zz̄) · u2a+b(±δ(y)τ(z))

for all x, y, z ∈ K with xx̄+ y + ȳ = 0.

Proof. The proof of this proposition can be found in Appendix A, where we fix a group

with the indicated k-root data and perform the commutator computation for arbitrary

Galois-invariant elements for each pair of k-root groups.

Remark. The commutator formulas in both Proposition 2.2.3 and Proposition 2.2.4 have a

layer of ambiguity coming from the ± signs, another consequence of the persistent fact that

K-root morphisms are not unique. Moreover, the choice of a K-pinning is not enough to

determine these signs. Rather, these signs follow from a choice of structure constants when

fixing a Chevalley basis of Lie(G(K)) as in Notation 2.2.2. A detailed discussion of how to

choose these constants can be found in [6][10][11]

Apart from the non-uniqueness of signs appearing above, Proposition 2.2.4 has an ad-

ditional layer of ambiguity coming from the elements γ, δ, ρ, τ ∈ Gal(K/k). This is a conse-

quence of the choice of a ∈ (a) when defining the k-root morphism ua in Proposition 2.2.2.

Indeed, a different choice of a ∈ (a) amounts to a pre-composition of ua by an element in

Gal(K/k) and this is being reflected above.
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2.2.3 Affine k-roots and parahoric subgroups

Definition 2.2.3. Let a be any k-root in R. Proposition 2.2.2 establishes a natural iso-

morphism between a set Ka and the group Ua via the k-root morphism. If (a) generates

a type (A1)ea root subsystem of R, then Ka is a subset of K and thus there is a natural

valuation on Uα derived from that on Ka given by setting

vala(ua(x)) := val(x)

for all x ∈ Ka. On the other hand, when (a) generates a type A2 root subsystem of R, we

set

vala(ua(x, y)) :=
1
2 val(y) ≤ val(x)

for all (x, y) ∈ Ka. In both cases, the valuation is well-defined and independent of the choice

of K-root a ∈ (a) used to define the k-root morphism, since a different choice amounts to

pre-composing ua in Proposition 2.2.2 with an element of Gal(K/k).

For each real number r ∈ R, we consider the following subgroups:

Ua,r := {u ∈ Ua | vala(u) ≥ r} (2.2.4)

Ua,r+ := {u ∈ Ua | vala(u) > r} ≤ Ua,r.

For each r, the quotient group Ua,r := Ua,r/Ua,r+ is a finite-dimensional f-vector space.

Furthermore, if 2a is a k-root, then U2a,2r := U2a,2r/U2a,2r+ is naturally a f-vector subspace.

We will denote by da(r) the following f-dimensions:

da(r) :=















dimf Ua,r if 2a is not a k-root,

dimf Ua,r/U2a,2r if 2a is a k-root.

If da(r) is non-zero then we say that Ua,r is an affine k-root group.

Denote by Ψ(a) the set of all pairs (a, r) for which da(r) is non-zero. The union

Ψ = Ψ(G,S, k) :=
⊔

a∈R

Ψ(a)
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of all sets Ψ(a) as a ranges over all k-roots in R forms the affine k-root system of G

relative to S. An affine k-root is an element (a, r) ∈ Ψ, consisting of its gradient (or

vector part) a ∈ R and its intercept (or constant part) r ∈ R.

We will now show that the affine k-root system Ψ can be identified with a affine twisted

root system of linear functions on the real vector spaceX∗(S, k)⊗ZR. Therefore, throughout

the remainder of the thesis, we will adopt the definitions laid out in Definition 2.1.2. For

example, we will write a + r to be the affine k-root (a, r) and treat it as a affine linear

functional given by

[a+ r](λ) := 〈a,λ〉+ r

for all λ ∈ X∗(S, k)⊗Z R.

Proposition 2.2.5. Let G,Z,S be as in Notation 2.2.1. If σ is a cyclic generator of the

Galois group Gal(K/k) acting as a based automorphism of the K-root system R(G,Z,K),

then the affine k-root system Ψ(G,S, k) can be realized as the affine twisted root system

Ψ(R(G,Z, k),σ) of affine linear functions on the real vector space X∗(S, k)⊗Z R defined in

Definition 2.1.2.

Proof. Let a be any k-root. We will show that the set of real numbers r such that da(r) (= 0

is precisely equal to the constant parts of the affine roots in Ψ(a) defined in Definition 2.1.2.

This will be split into cases according to the trichotomy given in Definition 2.2.1. In the

first two cases, (i1) and (i2), 2a is not a k-root and so da(r) is non-zero if and only if r is

the valuation of an element in Ka. In the final two cases, (i2) and (ii), K must be a totally,

tamely ramified quadratic Galois extension of k, and so we can write K = k(
√
u) for some

unit u ∈ k with val(u) = 1.

(i1): Suppose that (a) generates a type (A1)ea root subsystem of R and a/2 /∈ R. Here

Ka is a totally ramified degree ea extension of k with value group

val(K×
a ) = {n/ea | n ∈ Z}.

Thus, da(r) is non-zero and (a, r) is an affine k-root if and only if r = n/ea for some integer

n.
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(i2): Suppose that (a) generates a type A1 root subsystem of R and a/2 ∈ R. An

element x ∈ K satisfies x = −x̄ if and only if x = y
√
u for some y ∈ k. The valuation of

such an element x = y
√
u is

val(x
√
u) = val(y) + val(

√
u) = val(y) + 1

2 ∈ Z+ 1
2 .

for y ∈ k. Thus, da(r) is non-zero and (a, r) is a affine k-root if and only if r = (2n+ 1)/2

for some n ∈ Z.

(ii): For this case, we rely on an argument similar to the one found in [26]. First consider

the value

ν = max{val(w) ∈ Z | 1 + w + w̄ = 0 for w ∈ K} ≤ 0.

Let w ∈ K such that 1 + w + w̄ and val(w) = ν. We now show that ν ∈ Z: By way of

contradiction, suppose that ν belongs to

Z+ 1
2 = {val(z) | z + z̄ = 0 for z ∈ K},

where the equality follows from the computations done in case (i2) above. Let z ∈ K be any

element such that val(z) = ν ≤ 0 and such that 1+w+w̄ = 0 = z+z̄. Since K/k is ramified,

there exists a unit v ∈ k× such that z/w ∈ v+PK . By replacing w by −vw if necessary, we

may assume that z/w ∈ −1+PK so that w+ z ∈ wPK . But then 1+ (w+ z)+ (w̄+ z̄) = 0

with val(w + z) > val(w) = ν, contradicting the maximality of ν.

Suppose that (a) generates a type A2 root subsystem of R. If da(r) is non-zero for a

real number r, then there must exist an element ua(x, y) with r = val(y)/2 belonging to

Ua,r − Ua,r+U2a,2r, so that y is “maximal” in the sense that

val(y) = max{val(w) = ν + 2val(z) | zz̄ + w + w̄ = 0 for z, w ∈ K}.

For each x ∈ K, such a maximal y exists. Thus, da(r) is non-zero and (a, r) is an affine

k-root if and only if r = n/2 for some integer n.

Definition 2.2.4. Given a point λ ∈ X∗(S, k)⊗ZR, we define the parahoric subgroup of
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G attached to λ, denoted by Gλ, to be the subgroup of G generated by the compact torus

Z0 := {z ∈ Z | val(χ(z)) ≥ 0 for all χ ∈ X∗(Z, k)}

and the affine k-root groups Uα for affine k-roots α that evaluate non-negatively at λ:

Gλ = 〈Z0, Uα | α(λ) ≥ 0 for affine k-root α ∈ Ψ〉.

This group has a natural filtration by open compact subgroups, called the Moy-Prasad

filtration, induced from the natural filtration of k which we now describe.

For each positive real number r > 0, we define the Moy-Prasad subgroup of Gλ,

denoted by Gλ,r, generated by the compact subgroup

Zr := {z ∈ Z | val(1− χ(z)) ≥ r for all χ ∈ X∗(Z, k)} ≤ Z0

and the affine k-root groups Uα for affine k-roots α such that α(λ) ≥ r:

Gλ,r := 〈Zr, Uα | α is an affine k-root with α(λ) ≥ r〉 ≤ Gλ.

If s > r are positive real numbers, then Gλ,s is a normal subgroup of Gλ,r. The positive

real numbers for which there is a non-trivial quotient

Gλ,r := Gλ,r/Gλ,r+, where Gλ,r+ :=
⋃

s>r

Gλ,s

forms a discrete, well-ordered set.

The first Moy-Prasad subgroup, denoted by Gλ+ := Gλ,r1(λ) where r1(λ) is the smallest

positive real number r such that Gλ,r is non-trivial, is called the pro-unipotent radical of

Gλ. Alternatively, the pro-unipotent radical of Gλ is characterized as being the subgroup

thereof generated by the compact torus

Z+ := {z ∈ Z | val(1− χ(z)) > 0 for all χ ∈ X∗(Z, k)}
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and the affine k-root groups Uα for affine k-root groups α that evaluate positively at λ:

Gλ+ := 〈Z+, Uα | α is an affine k-root with α(λ) > 0〉 ≤ Gλ.

The pro-unipotent radical and its complex representations will be the main object of study

throughout the remainder of this thesis.

We denote the second Moy-Prasad subgroup by Gλ++ := Gλ,r2(λ) where r2(λ) is the

second-to-smallest positive real number r such that Gλ,r is non-trivial. Although Gλ++

does not have a distinguished name, the quotient

Gλ+ = Gλ+/Gλ++

has been thoroughly studied in [12] and [27] and will serve as a useful point of reference for

what follows.



Chapter 3

Supercuspidal Representations

3.1 Shallow Characters

In 2010, Gross and Reeder studied characters

χ : Gλ+ → C×

that vanish on Gλ++ in the case that λ was the barycenter of the fundemental alcove

[12, Section 9.2]. A few years later, in 2014, Reeder and Yu extended their methods to

study these characters for more general λ [27]. In this section we will dive slightly deeper

down the Moy-Prasad filtration and consider λ-shallow characters of Gλ+ which vanish on

the Moy-Prasad subgroup Gλ,s(λ) ⊆ Gλ++, defined below. Unlike Gλ+ = Gλ+/Gλ++, the

quotient

Hλ := Gλ+/Gλ,s(λ)

is not necessarily abelian, and therefore its commutator subgroup need not be trivial. We

show in Theorem 3.1.4, however, that Gλ,s(λ) is precisely defined so it is the minimal Moy-

Prasad subgroup of Gλ containing commutators of linearly dependent positive affine k-root

groups belonging to Gλ+. Thus, we see in Corollary 3.1.9 that the commutator subgroup

of Hλ is generated by the commutators of the linearly independent λ-shallow affine k-root

groups. In §3.1.3 we then show how to use these commutators to explicitly classify λ-shallow

characters, with some low-rank examples.

39
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Notation 3.1.1. We assume the notation set out in Notation 2.2.1. Additionally, we fix

a prime element / of Ak ⊆ k, called a uniformizer, generating the unique prime ideal

Pk = Ak/. The extension K/k is purely ramified, and therefore we can fix a uniformizer of

AK ⊆ K whose e-th power is /. For convenience of notation, this element will be denoted

/1/e.

As before, we will let σ denote a fixed order e cyclic generator of Gal(K/k), and if e = 2,

we will write σ(x) = x̄ for all x ∈ K. Additionally, if e = 3, we may also write σ(x) = x′

and σ2(x) = x′′ for all x ∈ K.

Let R denote the K root system of G relative to Z, acting as a set of linear functionals

on the real vector space X∗(Z,K) ⊗Z R. A K-pinning of G relative to the pair (B,Z) is

chosen so that it satisfies the assumptions made in Notation 2.2.2.

Let R denote the k-root system of G relative to S, acting as a set of linear functionals

on the real vector space X∗(S, k)⊗Z R. From the K-pinning of G chosen above, we will fix

a set of k-root morphisms as defined in (2.2.2) and (2.2.3).

Let Ψ denote the affine k-root system of G relative to S, acting as a set of affine linear

functionals on the real vector space X∗(S, k)⊗Z R. The valuation on the k-root groups and

the corresponding affine k-root groups are as defined in Definition 2.2.3.

We denote by 0 the rank of the k-cocharacter lattice X∗(S, k). The k-roots in the base

D of R corresponding to the Borel subgroup B will be enumerated a1, . . . , a!. The simple

affine k-roots α0,α1, . . . ,α!, defined according to Definition 2.1.2, then form a base of Ψ

denoted by ∆. We will let C denote the fundamental alcove of X∗(S, k) ⊗Z R bounded by

the vanishing hyperplanes of the simple affine k-roots in ∆.

Throughout this section, we fix a point λ belonging to the closure of the the fundamental

alcove C. //

3.1.1 Shallow affine k-roots

Definition 3.1.1. We denote by s(λ) the largest positive real number such that α(λ) +

β(λ) ≥ s(λ) whenever α,β satisfy the following:

(s1) α(λ) > 0 and β(λ) > 0, and
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(s2) their gradients a, b are linearly dependent and either a+ b = 0 or a+ b is a k-root.

A maximal value s(λ) exists and is equal to the minimal value of α(λ) + β(λ) for α,β

satisfying (s1) and (s2). An affine k-root α is called λ-shallow provided that 0 < α(λ) <

s(λ).

Lemma 3.1.1. The following hold:

a. If λ is not a strongly-special vertex, then there exists a non-long affine k-root α such

that 0 < α(λ) < 1/e.

b. If λ is a strongly-special vertex, then there exists a non-long affine k-root α such that

α(λ) = 0.

Proof. For this proof, recall the minimal constant relationship (2.1.2) which says that

1/e = m0α0 +m1α1 + · · ·+m!α!,

where m0,m1, . . . ,m! are the weights of the weighted Dynkin diagram of Ψ. Then λ is a

strongly-special vertex if and only if there exists a simple affine k-root αi ∈ ∆ such that

mi = 1 and αj(λ) (= 0 if and only if j = i.

(a): Suppose that λ is not a strongly-special vertex. When R is simply-laced and all

roots are non-long, α can be chosen to be any simple affine k-root not vanishing at λ. When

R is not simply-laced, α can be chosen to be any short, simple affine k-root not vanishing

at λ if one exists. Therefore, it will be assume that R is not simply-laced and that all short,

simple affine k-roots vanish at λ.

Let αi1 be any long, simple affine k-root which does not vanish at λ. Since λ is not

strongly-special, we can assume without loss of generality that the gradient of αi1 is not twice

the lowest short k-root if Ψ is C-BC!. Lemma 2.1.4 says that there exists a non-repeating

sequence of vertices (i1, . . . , in) in the Dynkin diagram of Ψ such that the following hold:

(1) {αij ,αij+1
} is an edge for each j = 1, . . . , n− 1.

(2) αi1 , . . . ,αin−1
are all long affine k-roots.
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(3) αin is short.

I claim that we can assume, without loss of generality, that (i1, . . . , in) also satisfies the

following:

(4) αij (λ) (= 0 if and only if j = 1.

Indeed, if (i1, . . . , in) does not satisfy condition (4) then it can be replaced with the sub-

sequence (ij , . . . , in) where 1 ≤ j < n is maximal such that αij is non-vanishing at λ.

Lemma 2.1.4 also says that

α = αi1 + · · ·+ αin

is a short affine k-root, and condition (4) implies that α(λ) = αi1(λ) > 0. But since λ is

not a strongly-special vertex, α(λ) = αi1(λ) < 1/e.

(b): The following fact can be checked individually for each affine root system with

weighted Dynkin diagram given in Table B.3 in Appendix B: there either exists a non-long

vertex with weight greater than 1 or at least two non-long vertices with weight equal to

1. Thus, one can always choose α to be a non-long, simple affine k-root that vanishes at a

given strongly-special vertex.

Proposition 3.1.2. The following hold:

a. If λ is not a strongly-special vertex, then s(λ) ≤ 1/e, with equality when R is reduced.

b. If λ is a strongly-special vertex, then s(λ) = r2(λ) = 2/e, where r2(λ) is defined as in

Definition 2.2.4.

Proof. (a): Suppose that λ is not a strongly-special vertex. Let α be as in Lemma 3.1.1(a),

and let β = 1/e−α, which Lemma 2.1.3 says is an affine k-root since α is non-long; therefore,

α,β satisfy (s1) and (s2) while

α(λ) + β(λ) = α(λ) + [1/e− β(λ)] = 1/e,

proving that s(λ) ≤ 1/e.

Now assume that R is reduced, and let α,β be any affine k-roots satisfying (s1) and

(s2). This can only be true if their gradients sum to 0. In this case, α(λ) + β(λ) must be a
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positive scalar multiple of the minimal constant 1/e and so at least 1/e. Since we already

showed that s(λ) ≤ 1/e, this yields equality.

(b): Let λ be a strongly-special vertex so that all simple affine k-roots vanish at λ

except one. Let αi ∈ ∆ be this simple affine k-root, with αi(λ) = 1/e. Every positive

affine k-root is an integral combination of simple affine k-roots with positive coefficients

[22, Proposition 4.6]. Therefore, if α(λ) > 0 for a positive affine k-root α, then the minimal

possible value α(λ) can take is 1/e, and thus, if α,β are any affine k-roots satisfying (s1)

and (s2), then the minimal possible value that α(λ) + β(λ) can take is 2/e. We now see

that this minimum can be achieved: if γ is any non-long affine k-root as in Lemma 3.1.1(b),

then consider the affine k-roots α = 1/e − γ and β = 1/e + γ as in Lemma 2.1.3. These

α,β satisfy (s1) and (s2) and α(λ) + β(λ) = 2/e.

Remark. When G splits over k and λ is a strongly-special vertex, Proposition 3.1.2 and

Definition 3.1.1 say that an affine root α ∈ Ψ is λ-shallow provided that 0 < α(λ) < s(λ) = 2.

An observant reader may note that this is different than the definition of a shallow affine

root given in [8], where I universally defined a shallow affine root to be α ∈ Ψ such that

0 < α(λ) < 1. This slight change in definition strengthens the results of the next section

since, as we see in Corollary 3.1.3 below, the set of affine k-roots that are shallow under the

old definition would be empty in this case.

Corollary 3.1.3. If α,β are distinct λ-shallow affine k-roots, then their gradients a, b are

distinct. Moreover, the following hold:

a. If λ is not a strongly-special vertex, then every λ-shallow affine k-root has minimal

positive height among all affine k-roots with the same gradient.

b. If λ is a strongly-special vertex, then every λ-shallow affine k-root takes value 1/e

at λ and has either minimal positive or second-to-minimal positive height among all

affine k-roots with the same gradient, with the second-to-minimal positive height affine

k-root being λ-shallow only if the minimal positive height affine k-root with the same

gradient vanishes at λ.
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Proof. This follows immediately from Proposition 3.1.2 since |α − β| ≥ 1/e for all distinct

affine k-roots α,β with equal gradients.

Remark. When the k-root system is reduced, the value of s(λ) and consequently the set of

λ-shallow affine k-roots depends only on the facet containing λ and not precisely on λ itself.

When the k-root system is non-reduced, both are dependent on the precise choice of λ. For

example, consider the affine k-root system of type C-BC2 with base {α,β, γ} satisfying

1/2 = 2α+ 2β + γ.

If λ is the barycenter of the alcove corresponding to this base, then s(λ) = 1/10 and {α,β, γ}

forms the set of λ-shallow affine k-roots. If λ is not the barycenter, with α(λ) = 3/20 and

β(λ) = 1/20, then s(λ) = 3/10 and {α,β, γ,α + β,β + γ, 2β + γ} is the set of λ-shallow

affine k-roots.

3.1.2 Shallow characters

Notation 3.1.2. Throughout this subsection, we let λ denote a fixed point in the closure

of C, the fundamental alcove in X∗(S, k) ⊗Z R. We also fix an enumeration on λ-shallow

affine k-roots

ψ1,ψ2, . . . ,ψn

so that if i < j then ψi(λ) < ψj(λ). //

Recall from Definition 2.2.4 that Gλ+ is the pro-unipotent radical of the parahoric

subgroup Gλ, generated by the compact torus Z+ and the affine k-root groups Uα for all

affine k-roots α whose value at λ is positive:

Gλ+ :=
〈

Z+, Uα | α is an affine k-root with α(λ) > 0
〉

.

Contained within Gλ+ is Gλ,s(λ), the normal Moy-Prasad subgroup of Gλ generated by the

compact torus Zs(λ) and the affine k-root groups Uα for all affine k-roots α whose value at
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λ is at least s(λ):

Gλ,s(λ) :=
〈

Zs(λ), Uα | α is an affine k-root with α(λ) ≥ s(λ)
〉

.

The definition of s(λ) allows us to characterize the group Gλ,s(λ) as follows:

Theorem 3.1.4. Gλ,s(λ) is the smallest Moy-Prasad subgroup of Gλ containing subgroups

[Uα, Uβ] whenever α,β are affine k-roots satisfying the following:

(1) Uα, Uβ ⊆ Gλ+, and

(2) the respective gradients a, b are linearly dependent.

Proof. Suppose that α,β are affine k-roots satisfying conditions (1) and (2) of the theorem.

Exactly one of the following must hold:

• a+ b = 0,

• a+ b is a k-root, or

• a+ b is non-zero and not a k-root.

If a + b is non-zero and not a k-root, then Uα and Uβ commute so that [Uα, Uβ] = {1} ⊆

Gλ,s(λ). If either a + b = 0 or a + b is a k-root, then α,β satisfy (s1) and (s2) so that

α(λ) + β(λ) ≥ s(λ) and [Uα, Uβ] ⊆ Gλ,s(λ). The minimality of Gλ,s(λ) is equivalent to the

maximality of s(λ).

Definition 3.1.2. Denote by

Hλ := Gλ+/Gλ,s(λ),

a finite group generated by abelian subgroups of the form

U0 := Z+Gλ,s(λ)/Gλ,s(λ)
∼= Z+/Zs(λ),

and

Ui := Uψi
Gλ,s(λ)/Gλ,s(λ)

∼= Uψi
/Uψi

∩Gλ,s(λ)

for λ-shallow affine k-roots ψ1, . . . ,ψn.
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Proposition 3.1.5. The following hold:

a. If λ is not a strongly-special vertex, then U0 is trivial and each U1, . . . ,Un is isomorphic

to the additive group f.

b. If λ is a strongly-special vertex, then Hλ is the abelian group Gλ+ = Gλ+/Gλ++ defined

in Definition 2.2.4.

Proof. (a): When λ is not a strongly-special vertex, Proposition 3.1.2(a) tells us that s(λ) ≤

1/e. But the minimal positive real value taken by the valuation on K is 1/e; thus, by

Definition 2.2.4, Z+ = Z1/e ⊆ Gr,s(λ). Hence, we have our claim that U0 = Z+/Zs(λ) is

trivial.

Let ψi = (a, r) be a λ-shallow affine k-root. Corollary 3.1.3 says that gradients are

unique among λ-shallow affine k-roots. Therefore,

Uψi
∩Gλ,s(λ) = Uψ+

so that Ui is equal to the Uψi
found in Definition 2.2.3. There it was noted that Ui is an

f-vector space whose dimension is equal to da(r), except when 2a ∈ R where its dimension is

equal to da(r)+d2a(2r). But 2ψi /∈ Ψ, and so d2a(2r) = 0 whenever 2a ∈ R. It can be found

in the literature (for example in [34, §1.8.1]) that da(r) = 1 since G is residually split over

k, but this terminology is outside the scope of this thesis. Therefore, we will briefly discuss

the proofs in a case-by-case manner according to the trichotomy given in Definition 2.2.1.

In cases (i2) and (ii), K is a tamely, totally ramified quadratic Galois extension of k, and

so we can write K = k(
√
u) for some unit u ∈ k with val(u) = 1.

(i1): Suppose that (a) generates a type (A1)ea root subsystem of R and a/2 /∈ R. For

each affine k-root (a, n/ea) ∈ Ψ(a), n ∈ Z, the group Ua,n/ea contains all elements of the

form ua(x/n/ea) for x ∈ Ka with val(x) ≥ 0. Therefore

Ui = Uψi
/Uψi+1/ea

∼= {x mod /1/ea | x ∈ Ka and val(x) ≥ 0} ∼= f,

where the second isomorphism follows from Ka/k being purely ramified.
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(i2): Suppose that (a) generates a type A1 root subsystem of R and a/2 ∈ R. For each

affine k-root (a, n + 1/2) ∈ Ψ(a), n ∈ Z, the group Ua,n+1/2 contains all elements of the

form ua(x/n√u) for x ∈ k with val(x) ≥ 0. Therefore

Ui = Uψi
/Uψi+1

∼= {x mod / | x ∈ k and val(x) ≥ 0} ∼= f.

(ii): Suppose that (a) generates a type A2 root subsystem of R. Consider the homo-

morphism π : Ui → f given by

π(ua(x, y)Uψi+) = x mod PK

for all (x, y) ∈ Ka. As we saw in the proof of Proposition 2.2.5, the elements in Uψi
with

non-trivial projections into Ui are precisely ua(x, y) with r = val(y)/2 and “maximal” y in

the sense that

val(y) = max{val(w) ∈ Z | xx̄+ w + w̄ = 0 for w ∈ K}.

For each x ∈ K, a “maximal” y uniquely exists, and so π is an isomorphism.

(b): Recall Proposition 3.1.2(b) where we showed that s(λ) = r2(λ) whenever λ is a

strongly-special vertex. But Gλ++ := Gλ,r2(λ) in Definition 2.2.4, and thus Hλ is precisely

the quotient Gλ+ = Gλ+/Gλ++.

The group Hλ is a finite p-group, not necessarily abelian. Its commutator subgroup

[Hλ,Hλ] is the normal subgroup generated by all commutators

[h, g] := h−1g−1hg

for h, g ∈ Hλ. The quotient Hλ/[Hλ,Hλ] is called the abelianization of Hλ, and it has

the universal property that any group homomorphism from Hλ into an abelian group must

factor through it.

Lemma 3.1.6. Suppose that ψi = a + r and ψj = b + s are λ-shallow affine k-roots with

linearly independent gradients. If x, y are positive integers such that xa+ yb is a k-root but
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xψi + yψj is not a λ-shallow affine k-root, then Uxa+yb,yr+xs ⊆ Gλ,s(λ).

Proof. Certainly, if xψi + yψj is not λ-shallow, then either (1) it is an affine k-root but

not λ-shallow or (2) it is not an affine k-root. We will now show that in both cases,

Uxa+yb,yr+xs ⊆ Gλ,s(λ).

(1): Suppose that α := xψi+yψj is an affine k-root so that Uxa+yb,yr+xs = Uα. Suppose

further that α is not λ-shallow. Since ψi is λ-shallow and x, y are positive,

α(λ) = xψi(λ) + yψj(λ) > ψi(λ) > 0.

Since α is not λ-shallow, α(λ) must be greater than s(λ), and thus Uα ⊆ Gλ,s(λ).

(2): Suppose that xψi + yψj is not an affine k-root. If λ is a strongly-special vertex,

then both ψi(λ) = 1/e and ψj(λ) = 1/e, and thus xψi(λ) + yψj(λ) ≥ 2/e = s(λ). Suppose

instead that λ is not a strongly-special vertex. If xψi + yψj is not an affine root, then let t

be the minimal positive real number such that

α := xψi + yψj + t = (xa+ yb) + (xr + ys+ t)

is an affine k-root, so that Uxa+yb,xr+ys = Uα. Since ψi,ψj and α are all affine k-roots,

we know that their intercepts r, s, and xr + ys+ t are all integer multiples of the minimal

constant 1/e, and thus so is t. Since t is positive, it must be at least 1/e. Thus,

α(λ) = xψi(λ) + yψj(λ) + t ≥ 0 + 1/e ≥ s(λ)

and so Uxa+yb,xr+ys = Uα ⊆ Gλ,s(λ)

Theorem 3.1.7. Let Hλ,U0,U1, . . . ,Un be as above. The natural map U0×U1× · · ·×Un →

Hλ given by (u0, u1, . . . , un) +→ u0u1 · · · un is a bijection, meaning that for all h ∈ Hλ there

exists a unique decomposition

h = u0(h)u1(h) · · · un(h) (3.1.1)

with ui(h) ∈ Ui. Moreover, ul([u, v]) = 1 for all u ∈ Ui and v ∈ Uj with 0 ≤ l ≤ max(i, j).
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Proof. Since the Ui, i = 0, . . . , n generate Hλ, each element h ∈ Hλ has a decomposition

as in (3.1.1); the uniqueness of this decomposition is a consequence of [34, §3.1.1], which

says that once an order on k-roots has been chosen, each element in Gλ+ has a unique

decomposition in Z
∏

a∈R Ua. Since there are no repeated gradients among λ-shallow affine

k-roots (as shown in Corollary 3.1.3), each Ua contains at most one Uψi
, and thus the

decomposition of h in (3.1.1) must be the unique decomposition coming from [34].

We now turn to proving that ul([u, v]) = 1 for all u ∈ Ui and v ∈ Uj with 0 ≤ l ≤

max(i, j) ≤ n. If ψi,ψj are λ-shallow affine k-roots with linearly dependent gradients, then

Theorem 3.1.4 says that

[Uψi
, Uψj

] ⊆ Gλ,s(λ);

thus, in Hλ, the commutator subgroup [Ui,Uj ] is trivial. Therefore, let ψi = a + r and

ψj = b+ s with a, b linearly independent k-roots. In this case, the commutator formulas in

Propositions 2.2.3 and 2.2.4 say that

[Uψi
, Uψj

] = [Ua,r, Ub,s] =⊆
∏

x,y

Uxa+yb,yr+xs

where the product is in increasing order over all positive integers x, y such that xa+ yb is a

k-root. Lemma 3.1.6 says that if x, y are positive integers such that xa+ yb is a k-root but

xψi + yψj is not a λ-shallow affine k-root, then Uxa+yb,yr+xs ⊆ Gλ,s(λ). On the other hand,

since

xψi(λ) + yψj(λ) > ψi(λ),ψj(λ),

the enumeration fixed in Notation 3.1.2 says that if xψi + yψj is a λ-shallow affine k-root

ψl, then max(i, j) < l ≤ n. Hence in Hλ, the commutator subgroup [Ui,Uj ] is contained in

the subgroup generated by Ul with max(i, j) < l ≤ n.

Definition 3.1.3. We define a λ-shallow character to be any group homomorphism

χ : Hλ → C×.

For each λ-shallow affine k-root ψi, the restriction to Ui of a λ-shallow character will be
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denoted by χi. Using the unique decomposition given in (3.1.1), a shallow character χ can

be recovered from the restrictions χi via the formula

χ(h) =
n
∏

i=1

χi(ui(h))

for all h ∈ Hλ.

Theorem 3.1.8. Let Hλ,U0,U1, . . . ,Un be as above. Suppose we are given group homo-

morphisms

χi : Ui → C×

for i = 0, 1, . . . , n. The function χ : Hλ → C× given by

χ(h) :=
n
∏

i=0

χi(ui(h)) (3.1.2)

is a group homomorphism, and thus a λ-shallow character, if and only if χ([u, v]) = 1 for

all u ∈ Ui and v ∈ Uj with 1 ≤ i, j ≤ n.

Proof. First note that χ given in (3.1.2) is well-defined, since the decomposition given in

(3.1.1) is unique. If χ were a group homomorphism, then it would evaluate trivially on all

commutators, since the codomain C× is abelian. Therefore, for the remainder of the proof,

we will conversely assume that

1 = χ([u, v]) (3.1.3)

for all u ∈ Ui and v ∈ Uj with 1 ≤ i, j ≤ n, and we will show that χ defines a group

homomorphism.

In order to show that the well-defined χ defines a group homomorphism, it will be

sufficient to show that

χ(hv) = χ(h) · χj(v) (3.1.4)

for all h ∈ Hλ and v ∈ Uj for j = 0, 1, . . . , n. In the case, j = 0 we see that Proposition 3.1.5
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implies that U0 is central, and so (3.1.2) yields

χ(hv) = χ

([

n
∏

i=0

ui(h)

]

v

)

= χ

(

v

[

n
∏

i=0

ui(h)

])

= χ

(

vu0(h)

[

n
∏

i=1

ui(h)

])

= χ0(vu0(h))

[

n
∏

i=1

χi(ui(h))

]

= χ0(v)

[

n
∏

i=0

χi(ui(h))

]

= χ(h) · χ0(v)

for all h ∈ Hλ and v ∈ U0.

We will now proceed to use reverse strong induction on j to show that (3.1.4) holds for

j = 1, . . . , n. For the base case, we let j = n so that (3.1.2) directly yields

χ(hv) = χ

([

n
∏

i=0

ui(h)

]

v

)

= χ

([

n−1
∏

i=0

ui(h)

]

un(h)v

)

=

[

n−1
∏

i=0

χi(ui(h))

]

χn(un(h)v)

=

[

n−1
∏

i=0

χi(ui(h))

]

χn(un(h)) · χn(v)

=

[

n
∏

i=0

χi(ui(h))

]

χn(v)

= χ(h) · χn(v)

for all h ∈ Hλ and v ∈ Un.

Next, for the induction step, we assume that

χ(hu) = χ(h) · χl(u) (3.1.5)
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for all h ∈ Hλ and u ∈ Ul with j < l ≤ n. In this case, we look at products of the form

hv =

[

n
∏

i=0

ui(h)

]

v

=

[

j−1
∏

i=0

ui(h)

]

uj(h)v





n
∏

i=j+1

ui(h)[ui(h), v]





=

[

j−1
∏

i=0

ui(h)

]

uj(h)v





n
∏

i=j+1

ui(h)

(

n
∏

l=0

ul([ui(h), v])

)





for h ∈ Hλ and v ∈ Uj . Theorem 3.1.7 tells us that ul([ui(h), v]) = 1 whenever 0 ≤ l ≤ j, so

that

hv =

[

j−1
∏

i=0

ui(h)

]

uj(h)v





n
∏

i=j+1

ui(h)





n
∏

l=j+1

ul([ui(h), v])







 (3.1.6)

for all h ∈ Hλ and v ∈ Uj . Since every factor to the right of uj(h)v in (3.1.6) is contained in

some Ul with j < l ≤ n, repeated use of induction hypothesis (3.1.5) gives us

χ(hv) = χ





[

j−1
∏

i=0

ui(h)

]

uj(h)v





n
∏

i=j+1

ui(h)





n
∏

l=j+1

ul([ui(h), v])













= χ

([

j−1
∏

i=0

ui(h)

]

uj(h)v

)





n
∏

i=j+1

χi(ui(h))





n
∏

l=j+1

χl

(

ul([ui(h), v])
)







 (3.1.7)

for every h ∈ Hλ and v ∈ Uj . Next, use (3.1.2) to rewrite

χ

([

j−1
∏

i=0

ui(h)

]

uj(h)v

)

=

[

j−1
∏

i=0

χ(ui(h))

]

χj(uj(h)v)

=

[

j
∏

i=0

χ(ui(h))

]

χj(v)

for all h ∈ Hλ and v ∈ Uj . Similarly, use (3.1.2) and assumption (3.1.3) to rewrite

n
∏

i=j+1

χi(ui(h))





n
∏

l=j+1

χl

(

ul([ui(h), v])
)



 =
n
∏

i=j+1

χi(ui(h))χ([ui, v])

=
n
∏

i=j+1

χi(ui(h))
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for all h ∈ Hλ and v ∈ Uj . Thus, (3.1.7) can be reduced to

χ(hv) =

[

j
∏

i=0

χ(ui(h))

]

χj(v)





n
∏

i=j+1

χi(ui(h))





=

[

n
∏

i=0

χ(ui(h))

]

χj(v)

= χ(h) · χj(v)

for all h ∈ Hλ and v ∈ Uj , completing the induction step. Hence, we have shown that χ is

indeed a group homomorphism.

Corollary 3.1.9. The commutator subgroup of Hλ is generated by commutators of the form

[u, v] for u ∈ Ui and v ∈ Uj with 1 ≤ i, j ≤ n.

Proof. This is an immediate consequence of Theorem 3.1.8 since the abelianization of Hλ,

a finite group, is isomorphic to the dual group Ȟλ consisting of all group homomorphisms

Hλ → C× (i.e., λ-shallow characters).

3.1.3 Rank-2 examples

For the rank-2 affine root system of type C2, G2, and GI
2, we will now give a connected,

quasi-simple, semisimple reductive algebraic group G defined and quasi-split over k having

affine k-root system Ψ of the given types. For thisG, an explicit Chevalley-Steinberg system

will be provided; if G is non-split quasi-split over k, this will require that we first describe

the K-structure of G, a K-pinning, and a Gal(K/k)-action preserving this pinning.

Next, we will describe the affine k-root system Ψ in more detail, giving a base and

the minimal-height positive affine k-roots, one for each gradient. The commutators of the

affine k-root groups for these minimal-height positive affine k-roots are then computed using

either Appendix A or Propositions 2.2.3 and 2.2.4.

Finally, we will describe the abelianization of Hλ whenever λ is the barycenter of our

fundamental alcove. The method provided can be easily generalized to compute the abelian-

ization of Hλ when λ is the barycenter of any facet of our fundamental alcove and not equal
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to a strongly-special vertex. These results are summarized in Tables B.4 and B.6 in Ap-

pendix B.

For this final step, we will need the following three technical lemmas. The first appears

in [26], where it is used to compute the commutator subgroups for Iwahori subgroups.

The second and third are natural generalizations that will be necessary for computing

commutators in more general groups.

Lemma 3.1.10 (Prasad-Raghunathan).

〈(xy, x2y) ∈ f2 | x, y ∈ f〉 ∼=















{(x, y) ∈ f2 | x, y ∈ f such that x = y} if #f = 2,

{(x, y) ∈ f2 | x, y ∈ f} = f2 if else.

Proof. Denote by N the subgroup of f2 generated by all pairs (xy, x2y) for x, y ∈ f. Note

that when #f = 2, we can individually check the 4 combinations of x, y ∈ f and see that

N is the subgroup {(0, 0), (1, 1)}. For the remainder of the proof we will therefore assume

that #f (= 2.

Let z ∈ f× and note that

(0, [1− z]y) = (y, y)− (z[y/z], z2[y/z])

belongs to N for all y ∈ f. Since #f (= 2, we can choose z so that 1 − z is invertible in

f, and therefore the group N contains every element of the form (0, y) for y ∈ f. For any

x ∈ f, we also have that (x, 0) = (x, x2)− (0, x2) belongs to N . Hence, we have shown that

N contains any element of the form (x, y) for x, y ∈ f.

Lemma 3.1.11.

〈(xy,−x3y) ∈ f2 | x, y ∈ f〉 ∼=















{(x, y) | x, y ∈ f such that x = −y} if #f ∈ {2, 3}

{(x, y) | x, y ∈ f} = f2 if else

Proof. The proof given below is essentially identical to that given for Lemma 3.1.10: Denote

by N the subgroup of f2 generated by all pairs (xy,−x3y) for x, y ∈ f. Note that when

#f ∈ {2, 3}, we can individually check the small number of combinations of x, y ∈ f and see
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that N equals the subgroup {(0, 0), (1,−1), (−1, 1)}, with 1 = −1 when #f = 2. For the

remainder of the proof we will therefore assume that #f /∈ {2, 3}.

Let z ∈ f× and note that

(0, [1− z2]y) = (z[y/z],−z3[y/z])− (y,−y)

belongs to N for all y ∈ f. Since #f /∈ {2, 3}, we can choose z so that 1− z2 is invertible in

f, and therefore the group N contains every element of the form (0, y) for y ∈ f. For any

x ∈ f, we also have that (x, 0) = (x,−x3) − (0,−x3) belongs to N . Hence, we have shown

that N contains any element of the form (x, y) for x, y ∈ f.

Lemma 3.1.12.

〈(0, 0, 0, xy), (0, 2xy, 3x2y, 3y2x), (xy, x2y,−x3y, 2x3y2) ∈ f4 | x, y ∈ f〉

∼=































{(x, y, z, w) ∈ f4 | x, y, z, w ∈ f such that x = y} if #f = 2,

{(x, y, z, w) ∈ f4 | x, y, z, w ∈ f such that x = −z} if #f = 3,

{(x, y, z, w) ∈ f4 | x, y, z, w ∈ f} = f4 if else.

Proof. Denote by N the subgroup of f4 generated by all quadruples of the form (0, 0, 0, xy),

(0, 2xy, 3x2y, 3xy2), and (xy, x2y,−x3y, 2x3y2) for any x, y ∈ f. First note that for all

possible f, N contains any element of the form (0, 0, 0, w) for w ∈ f. To understand the

remaining elements of N , we will need to consider the various primes p = char f.

(p = 2): In the case that 3 is invertible and 2 = 0 in f, the generators of N are

(0, 0, 0, xy), (0, 0, 3x2y, 3xy2), and (xy, x2y, x3y, 0) for x ∈ f. Note that when #f = 2, it can

be individually checked that

N = {(x, y, z, w) ∈ f4 | x, y, z, w ∈ f such that x = y}.

Assuming that #f (= 2, N contains all elements of the form

(xy, x2y, 0, 0) = (xy, x2y, x3y, 0)− (0, 0, 3x2[xy/3], 3x[xy/3]2) + (0, 0, 0, x3y2/3)
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with x, y ∈ f. Lemma 3.1.10 therefore implies that N contains every element of the form

(x, y, 0, 0) for x, y ∈ f with x = y when #f = 2. We also see that N contains every element

of the form

(0, 0, z, 0) = (z, z, z, 0)− (z, z, 0, 0)

with z ∈ f. Hence, we have shown that if char f = 2 then N contains all quadruples

(x, y, z, w) for x, y, z, w ∈ f.

(p = 3): In the case that 2 is invertible and 3 = 0 in f, the generators of N are

(0, 0, 0, xy), (0, 2xy, 0, 0), and (xy, x2y,−x3y, 2x3y2) for x ∈ f. Note that when #f = 3, it

can be individually checked that

N = {(x, y, z, w) ∈ f4 | x, y, z, w ∈ f such that x = −y}.

Assuming that f (= 3, N contains all elements of the form

(xz, 0,−x2z, 0) = (xz, x2z,−x3z, 2x3z2)− (0, 2x[xz/2], 0, 0)− (0, 0, 0, 2x3z2)

with x, z ∈ f. Lemma 3.1.11 therefore implies that N contains every element of the form

(x, 0, z, 0) for x, z ∈ f with x = −z when #f = 3. We also see that N contains every element

of the form

(0, y, 0, 0) = (y, y,−y, 2y2)− (y, 0,−y, 0)− (0, 0, 0, 2y2)

for y ∈ f. Hence, we have shown that if char f = 3 then N contains all quadruples (x, y, z, w)

for x, y, z, w ∈ f with x = z when #f = 3.

(p > 3): In the case that both 3 and 2 are invertible in f, we see that N contains all

elements of the form

(0, yz, y2z, 0) =
(

0, 2[2y/3][3z/4], 3[2y/3]2[3z/4], 3[2y/3][3z/4]2
)

−
(

0, 0, 0, 9yz2/8
)

with y, z ∈ f. Lemma 3.1.10 therefore implies that N contains every element of the form
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(0, y, z, 0). Finally, we conclude that N contains every element of the form

(x, 0, 0, 0) = (x, x,−x, 2x2)− (0, x,−x, 0)− (0, 0, 0, 2x2)

with x ∈ f. Hence, we have shown that N = {(x, y, z, w) ∈ f4 | x, y, z, w ∈ f} = f4.

Type C2

Let G = Sp4(k) be the split group of 4× 4 k-matrices g fixed under the endomorphism

g +→ Q−1(gtr)−1Q with Q =

















1

1

−1

−1

















,

where gtr is the transpose of g ∈ Sp4(k). Therein lies the diagonal, maximal k-torus

S =































s =

















s1

s2

s3

s4

















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s1, s2, s3, s4 ∈ k× with

s1s4 = 1 and s2s3 = 1































A base D of the k-root system R = R(G,S) consists of a short root a(s) = s1/s2 and a

long root b(s) = s2/s3. The Borel subgroup corresponding to this simple system consists of

all upper-triangular matrices in G. We give the standard pinning of G with respect to the

diagonal torus and upper-triangular Borel:

ua(x) =

















1 x

1

1 −x

1

















and ub(x) =

















1

1 x

1

1

















,
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for x ∈ k. The remaining positive k-root morphisms are

ua+b(x) =

















1 0 x

1 0 x

1 0

1

















and u2a+b(x) =

















1 0 0 x

1 0 0

1 0

1

















,

for x ∈ k.

The affine k-root system Ψ has type C2, with weighted Dynkin diagram

1 2 1

and a base ∆ of Ψ consists of simple affine k-roots

α = a+ 0,

β = b+ 0,

γ = c+ 1,

(3.1.8)

where c = −2a − b is the lowest long k-root in R. An enumeration of the minimal-height

positive affine k-roots ψ1, . . . ,ψ8 for each gradient in R is given below:

i gradient ψ̇i intercept ψi(0) simple affine k-root decomposition ψi

1 c 1 γ

2 a 0 α

3 b 0 β

4 a+ c 1 α+ γ

5 a+ b 0 α+ β

6 2a+ c 1 2α+ γ

7 2a+ b 0 2α+ β

8 a+ b+ c 1 α+ β + γ

(3.1.9)

Through direct computation, one can produce the commutators of affine k-root groups

for all pairs ψi,ψj of minimal-height positive affine k-roots with non-linearly dependent
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gradients ψ̇i, ψ̇j such that ψ̇i + ψ̇j is a k-root which we now give:

[ua(x/
0), ua+c(y/

1)] = u2a+c(−2xy/1)

[ua(x/
0), ua+b(y/

0)] = u2a+b(+2xy/0)

[ua+c(x/
1), ua+b+c(y/

1)] = uc(+2xy/2)

[ua+b(x/
0), ua+b+c(y/

1)] = ub(−2xy/1)

for x, y ∈ Ak and

[ua(x/
0), uc(y/

1)] = ua+c(−xy/1)u2a+c(−x2y/1)

[ua(x/
0), ub(y/

0)] = ua+b(+xy/0)u2a+b(−x2y/0)

[ua+c(x/
1), ub(y/

0)] = ua+b+c(−xy/1)uc(+x2y/2)

[ua+b(x/
0), uc(y/

1)] = ua+b+c(+xy/1)ub(+x2y/1)

[ua+c(x/
1), u2a+b(y/

0)] = ua(−xy/1)u2a+c(+x2y/2)

[ua+b(x/
0), u2a+c(y/

1)] = ua(+xy/1)u2a+b(+x2y/1)

[ua+b+c(x/
1), u2a+c(y/

1)] = ua+c(−xy/2)uc(−x2y/3)

[ua+b+c(x/
1), u2a+b(y/

0)] = ua+b(−xy/1)ub(+x2y/2)

for x, y ∈ Ak.

For each λ that is the barycenter of a facet of the fundamental alcove and not a strongly-

special vertex, the group

Hλ := Gλ+/Gλ,1

is generated by subgroups

Ui := Uψi
Gλ,1/Gλ,1

∼= f

for i = 1, . . . , 8 such that ψi is λ-shallow. Corollary 3.1.9 says that the commutator subgroup

of Hλ is generated by the commutators [u, v] with u ∈ Ui and v ∈ Uj for λ-shallow ψi,ψj ;

these commutators are computed from the commutators above. For example, when λ is the

barycenter of the fundamental alcove, each ψi, i = 1, . . . , 8 is a λ-shallow affine k-root. The
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commutator subgroup of Hλ is then generated by commutators of the form

[ua(x/
0), ua+c(y/

1)]Gλ,1 = u2a+c(−2xy/1)Gλ,1

[ua(x/
0), ua+b(y/

0)]Gλ,1 = u2a+b(+2xy/0)Gλ,1

[ua+c(x/
1), ua+b+c(y/

1)]Gλ,1 = Gλ,1

[ua+b(x/
0), ua+b+c(y/

1)]Gλ,1 = Gλ,1

for x, y ∈ Ak and

[ua(x/
0), uc(y/

1)]Gλ,1 = ua+c(−xy/1)u2a+c(−x2y/1)Gλ,1

[ua(x/
0), ub(y/

0)]Gλ,1 = ua+b(+xy/0)u2a+b(−x2y/0)Gλ,1

[ua+c(x/
1), ub(y/

0)]Gλ,1 = ua+b+c(−xy/1)Gλ,1

[ua+b(x/
0), uc(y/

1)]Gλ,1 = ua+b+c(+xy/1)Gλ,1

[ua+c(x/
1), u2a+b(y/

0)]Gλ,1 = Gλ,1

[ua+b(x/
0), u2a+c(y/

1)]Gλ,1 = Gλ,1

[ua+b+c(x/
1), u2a+c(y/

1)]Gλ,1 = Gλ,1

[ua+b+c(x/
1), u2a+b(y/

0)]Gλ,1 = Gλ,1

for x, y ∈ Ak, and the abelianization of Hλ is isomorphic to

Hλ/[Hλ,Hλ] = f1 ⊕ f2 ⊕ f3 ⊕
f4 ⊕ f6

〈(0,−2xy), (−xy,−x2y) | x, y ∈ f〉

⊕
f5 ⊕ f7

〈(0, 2xy), (xy,−x2y) | x, y ∈ f〉
⊕

f8
〈±xy | x, y ∈ f〉

where fi = f is the abelian group isomorphic to Uψi
/Uψi

∩Gλ,1 for i = 1, . . . , 8. Lemma 3.1.10

allows us to simply this expression, so that

Hλ/[Hλ,Hλ] ∼=















f5 if #f = 2,

f3 if else.

(3.1.10)
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Similar computations can be done for each barycenter not equal to a strongly-special vertex,

only using the commutators [Ui,Uj ] for affine k-roots ψ1, . . . ,ψ8 that do not vanish at λ.

The results of these computations are summarized in Table B.4 in Appendix B.

Remark. In the case that λ is the barycenter of the fundamental alcove, the abelianization

of Hλ computed above is isomorphic to the abelianization of the pro-unipotent radical

Gλ+ of the Iwahori subgroup Gλ whose commutator subgroup is computed by Prasad and

Raghunathan in [26, Theorem 6.6]. But it should be noted that the above computation is

considerably simpler than the one in [26].

Type G2

Let G be a connected, quasi-simple, semisimple reductive group defined and split over k

with a type G2 k-root system. Then G = G(k) is the split Chevalley group of type G2 over

k, the description of which can be found in [6]. The affine k-root system Ψ has type G2,

with weighted Dynkin diagram
1 2 3

and a base ∆ consisting of simple affine k-roots

α = a+ 0,

β = b+ 0,

γ = c+ 1,

(3.1.11)
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where c = −3a− 2b is the lowest long k-root in R. An enumeration of the minimal-height

positive affine k-roots ψ1, . . . ,ψ12 for each gradient in R is given below:

index i gradient ψ̇i intercept ψi(0) simple affine k-root decomposition ψi

1 c 1 γ

2 b 0 α

3 a 0 β

4 b+ c 1 β + γ

5 a+ b 0 α+ β

6 a+ b+ c 1 α+ β + γ

7 2a+ b 0 2α+ β

8 2a+ b+ c 1 2α+ β + γ

9 3a+ b 0 3α+ β

10 3a+ b+ c 1 3α+ β + γ

11 3a+ 2b 0 3α+ 2β

12 2a+ 2b+ c 1 2α+ 2β + γ

(3.1.12)

From Proposition 2.2.3 and the methods of [6, Section 5.2], one can recover the commutators

of affine k-root groups for all pairs ψi,ψj of minimal-height positive affine k-roots with non-

linearly dependent gradients ψ̇i, ψ̇j such that ψ̇i+ψ̇j is a k-root. We give these commutators

below:

[uc(x/
1), ub(y/

0)] = ub+c(+xy/1)

[uc(x/
1), u3a+b(y/

0)] = u3a+b+c(−xy/1)

[ub(x/
0), u3a+b(y/

0)] = u3a+2b(+xy/0)

[ub+c(x/
1), u3a+2b(y/

0)] = ub(−xy/1)

[ub+c(x/
1), u3a+b+c(y/

1)] = uc(+xy/2)

[u3a+2b(x/
0), u3a+b+c(y/

1)] = u3a+b(−xy/1)

for all x, y ∈ Ak;



3.1. SHALLOW CHARACTERS 63

[ua(x/
0), ua+b(y/

0)] = u2a+b(−2xy/0)u3a+b(+3x2y/0)u3a+2b(−3xy2/0)

[ua(x/
0), ua+b+c(y/

1)] = u2a+b+c(+2xy/1)u3a+b+c(+3x2y/1)uc(+3xy2/2)

[ua+b(x/
0), ua+b+c(y/

1)] = u2a+2b+c(−2xy/1)ub(−3x2y/1)ub+c(+3xy2/2)

[u2a+b(x/
0), u2a+b+c(y/

1)] = ua(−2xy/1)u3a+b(−3x2y/1)u3a+b+c(+3xy2/2)

[u2a+b(x/
0), u2a+2b+c(y/

1)] = ua+b(+2xy/1)u3a+2b(−3x2y/1)ub(−3xy2/2)

[u2a+b+c(x/
1), u2a+2b+c(y/

1)] = ua+b+c(−2xy/2)uc(+3x2y/3)ub+c(−3xy2/3)

for all x, y ∈ Ak;

[ua(x/
0), u2a+b(y/

0)] = u3a+b(+3xy/0)

[ua(x/
0), u2a+b+c(y/

1)] = u3a+b+c(−3xy/1)

[ua+b(x/
0), u2a+b(y/

0)] = u3a+2b(−3xy/0)

[ua+b(x/
0), u2a+b+c(y/

1)] = ub(−3xy/1)

[ua+b+c(x/
1), u2a+b+c(y/

1)] = uc(−3xy/2)

[ua+b+c(x/
1), u2a+2b+c(y/

1)] = ub+c(+3xy/2)

for all x, y ∈ Ak;

[ua+b(x/
0), uc(y/

1)] = ua+b+c(+xy/1)u2a+2b+c(+x2y/1)

· ub(+x3y/1)ub+c(−2x3y2/2)

[u2a+b(x/
0), uc(y/

1)] = u2a+b+c(−xy/1)ua(−x2y/1)

· u3a+b(−x3y/1)u3a+b+c(−2x3y2/2)

[ua(x/
0), ub(y/

0)] = ua+b(+xy/0)u2a+b(+x2y/0)

· u3a+b(−x3y/0)u3a+2b(+2x3y2/0)

[ua(x/
0), ub+c(y/

1)] = ua+b+c(−xy/1)u2a+b+c(+x2y/1)

· u3a+b+c(+x3y/1)uc(−2x3y2/2)
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[u2a+b+c(x/
1), ub(y/

0)] = u2a+2b+c(−xy/1)ua+b+c(−x2y/2)

· uc(+x3y/3)ub+c(+2x3y2/3)

[u2a+b(x/
0), ub+c(y/

1)] = u2a+2b+c(+xy/1)ua+b(−x2y/1)

· u3a+2b(+x3y/1)ub(+2x3y2/2)

[ua+b(x/
0), u3a+b+c(y/

1)] = ua(+xy/1)u2a+b(−x2y/1)

· u3a+2b(−x3y/1)u3a+b(+2x3y2/2)

[ua+b+c(x/
1), u3a+b(y/

0)] = ua(−xy/1)u2a+b+c(−x2y/2)

· uc(−x3y/3)u3a+b+c(+2x3y2/3)

[ua+b+c(x/
1), u3a+2b(y/

0)] = ua+b(+xy/1)u2a+2b+c(−x2y/2)

· ub+c(+x3y/3)ub(−2x3y2/3)

[u2a+b+c(x/
1), u3a+2b(y/

0)] = u2a+b(−xy/1)ua(+x2y/2)

· u3a+b+c(−x3y/3)u3a+b(−2x3y2/3)

[u2a+2b+c(x/
1), u3a+b(y/

0)] = u2a+b(+xy/1)ua+b(+x2y/2)

· ub(−x3y/3)u3a+2b(−2x3y2/3)

[u2a+2b+c(x/
1), u3a+b+c(y/

1)] = u2a+b+c(−xy/2)ua+b+c(+x2y/3)

· ub+c(+x3y/4)uc(+2x3y2/5)

for all x, y ∈ Ak.

For each λ that is the barycenter of a facet of the fundamental alcove and not a strongly-

special vertex, the group

Hλ := Gλ+/Gλ,1

is generated by subgroups

Ui := Uψi
Gλ,1/Gλ,1

∼= f

for i = 1, . . . , 12 such that ψi is λ-shallow. Corollary 3.1.9 says that the commutator

subgroup of Hλ is generated by the the commutators [u, v] with u ∈ Ui and v ∈ Uj for
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λ-shallow ψi,ψj , which can be found among the following:

[uc(x/
1), ub(y/

0)]Gλ,1 = ub+c(+xy/1)Gλ,1

[uc(x/
1), u3a+b(y/

0)]Gλ,1 = u3a+b+c(−xy/1)Gλ,1

[ub(x/
0), u3a+b(y/

0)]Gλ,1 = u3a+2b(+xy/0)Gλ,1

[ub+c(x/
1), u3a+2b(y/

0)]Gλ,1 = Gλ,1

[ub+c(x/
1), u3a+b+c(y/

1)]Gλ,1 = Gλ,1

[u3a+2b(x/
0), u3a+b+c(y/

1)]Gλ,1 = Gλ,1

for all x, y ∈ Ak;

[ua(x/
0), ua+b(y/

0)]Gλ,1 = u2a+b(−2xy/0)u3a+b(+3x2y/0)u3a+2b(−3xy2/0)Gλ,1

[ua(x/
0), ua+b+c(y/

1)]Gλ,1 = u2a+b+c(+2xy/1)u3a+b+c(+3x2y/1)Gλ,1

[ua+b(x/
0), ua+b+c(y/

1)]Gλ,1 = u2a+2b+c(−2xy/1)Gλ,1

[u2a+b(x/
0), u2a+b+c(y/

1)]Gλ,1 = Gλ,1

[u2a+b(x/
0), u2a+2b+c(y/

1)]Gλ,1 = Gλ,1

[u2a+b+c(x/
1), u2a+2b+c(y/

1)]Gλ,1 = Gλ,1

for all x, y ∈ Ak;

[ua(x/
0), u2a+b(y/

0)]Gλ,1 = u3a+b(+3xy/0)Gλ,1

[ua(x/
0), u2a+b+c(y/

1)]Gλ,1 = u3a+b+c(−3xy/1)Gλ,1

[ua+b(x/
0), u2a+b(y/

0)]Gλ,1 = u3a+2b(−3xy/0)Gλ,1

[ua+b(x/
0), u2a+b+c(y/

1)]Gλ,1 = Gλ,1

[ua+b+c(x/
1), u2a+b+c(y/

1)]Gλ,1 = Gλ,1

[ua+b+c(x/
1), u2a+2b+c(y/

1)]Gλ,1 = Gλ,1
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for all x, y ∈ Ak;

[ua+b(x/
0), uc(y/

1)]Gλ,1 = ua+b+c(+xy/1)u2a+2b+c(+x2y/1)Gλ,1

[u2a+b(x/
0), uc(y/

1)]Gλ,1 = u2a+b+c(−xy/1)Gλ,1

[ua(x/
0), ub(y/

0)]Gλ,1 = ua+b(+xy/0)u2a+b(+x2y/0)

· u3a+b(−x3y/0)u3a+2b(+2x3y2/0)Gλ,1

[ua(x/
0), ub+c(y/

1)]Gλ,1 = ua+b+c(−xy/1)u2a+b+c(+x2y/1)

· u3a+b+c(+x3y/1)Gλ,1

[u2a+b+c(x/
1), ub(y/

0)]Gλ,1 = u2a+2b+c(−xy/1)Gλ,1

[u2a+b(x/
0), ub+c(y/

1)]Gλ,1 = u2a+2b+c(+xy/1)Gλ,1

[ua+b(x/
0), u3a+b+c(y/

1)]Gλ,1 = Gλ,1

[ua+b+c(x/
1), u3a+b(y/

0)]Gλ,1 = Gλ,1

[ua+b+c(x/
1), u3a+2b(y/

0)]Gλ,1 = Gλ,1

[u2a+b+c(x/
1), u3a+2b(y/

0)]Gλ,1 = Gλ,1

[u2a+2b+c(x/
1), u3a+b(y/

0)]Gλ,1 = Gλ,1

[u2a+2b+c(x/
1), u3a+b+c(y/

1)]Gλ,1 = Gλ,1

for all x, y ∈ Ak. For example, when λ is the barycenter of the facet of C corresponding to

the vanishing of β and the non-vanishing of α and γ, the commutator subgroup of Hλ is

generated by all the commutators [Uψi
,Uψj

] appearing above with λ-shallow affine k-roots

ψi,ψj /∈ {β}. In particular, the abelianization of Hλ is isomorphic to

f1 ⊕ f3 ⊕ f4 ⊕ f5 ⊕
f7 ⊕ f9 ⊕ f11

〈(−2xy, 3x2y,−3xy), (0, 3xy, 0), (0, 0,−3xy) | x, y ∈ f〉

⊕
f6 ⊕ f8 ⊕ f10 ⊕ f12

〈

(0, 0,−xy, 0), (0, 2xy, 3x2y, 0), (0, 0, 0,−2xy), (0, 0,−3xy, 0),

(xy, 0, 0, x2y), (0,−xy, 0, 0), (−xy, x2y, x3y, 0), (0, 0, 0,±xy)

∣

∣

∣

∣

∣

∣

∣

x, y ∈ f

〉

(3.1.13)

where fi = f is the abelian group isomorphic to Uψi
/Uψi

∩Gλ,1 for i = 1, . . . , 12. Lemma 3.1.12
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and some simple reductions allow us to simplify this expression, so that

Hλ/[Hλ,Hλ] ∼=































f6 if char(f) = 3,

f5 if char(f) = 2,

f4 if else.

Similar computations can be done for each barycenter not equal to a strongly-special vertex,

and the results are summarized in Table B.5 in Appendix B.

Type GI
2

Let K be a tamely, totally ramified Galois extension of k of degree 3 with ring of integers

AK having maximal ideal PK generated by a uniformizer which we denote by /1/3. Fix a

cyclic generator σ of Gal(K/k) and denote by x′ = σ(x) and x′′ = σ2(x) for all x ∈ K. It

will also be convenient to denote by ζ1 = σ(/1/3)//1/3 and ζ2 = σ2(/1/3)//1/3 = ζ1ζ ′1,

both of which are units in AK . We will let ζ denote the image of ζ1 under the natural

projection into f = AK/PK . Since σ acts trivially on f, the natural projection of ζ2 = ζ1ζ ′1

into f = AK/PK is equal to ζ2.

Let G be the connected, quasi-simple, semisimple, adjoint-type reductive group defined

and non-split quasi-split over k with type G2 k-root system, and let SO8(K) be the split

group of 8× 8 K-matrices g fixed under the endomorphism

g +→ Q−1(gtr)−1Q with Q =





















1

1

1

1

1

1

1

1





















where gtr denotes the transpose of g ∈ SO8(K). The adjoint isogeny SO8 → SO8 /{±1}

is not surjective on K-rational points, but the K-roots of G lift to the diagonal maximal
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torus of SO8(K):











































































z =







































z1

z2

z3

z4

z5

z6

z7

z8







































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z1, z2, z3, z4, z5, z6, z7, z8 ∈ K×,

z1z8 = 1, z2z7 = 1,

z3z6 = 1, z4z5 = 1











































































⊆ SO8(K).

A base D of the root system R = R(G,Z,K) consists of simple K-roots a1(z) = z1/z2,

b(z) = z2/z3, a2(z) = z3/z4, and a3(z) = z4/z5. The Borel K-subgroup corresponding to

this simple system lifts to the upper-triangular subgroup of SO8(K). Through an abuse

of notation, the K-pinning of G(K) will be identified with its lifts in SO8(K); namely, we

denote by

ua1
(x) =







































1 x

1

1

1

1

1

1 −x

1







































, ub(x) =







































1

1 x

1

1

1

1 −x

1

1







































,

ua2
(x) =







































1

1

1 x

1

1 −x

1

1

1







































, ua3
(x) =







































1

1

1 0 x

1 0 −x

1 0

1

1

1






































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for x ∈ K. The remaining positive K-root morphisms are then denoted by

ua1+b(x) =







































1 0 x

1 0

1

1

1

1 0 −x

1 0

1







































,

ua2+b(x) =







































1

1 0 x

1 0

1

1 0 −x

1 0

1

1







































,

ua3+b(x) =







































1

1 0 0 x

1 0 0

1 0 0 −x

1 0 0

1 0

1

1







































,
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ua1+a2+b(x) =







































1 0 0 x

1 0 0

1 0

1

1 0 0 −x

1 0 0

1 0

1







































,

ua1+a3+b(x) =







































1 0 0 0 x

1 0 0 0

1 0 0

1 0 0 0 −x

1 0 0 0

1 0 0

1 0

1







































,

ua2+a3+b(x) =







































1

1 0 0 0 x

1 0 0 0 −x

1 0 0 0

1 0 0

1 0

1

1







































,

ua1+a2+a3+b(x) =







































1 0 0 0 0 x

1 0 0 0 0

1 0 0 0 0 −x

1 0 0 0 0

1 0 0 0

1 0 0

1 0

1







































,
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ua1+a2+a3+2b(x) =







































1 0 0 0 0 0 x

1 0 0 0 0 0 −x

1 0 0 0 0 0

1 0 0 0 0

1 0 0 0

1 0 0

1 0

1







































for x ∈ K.

We define a left action of the Galois group Gal(K/k) on R via based automorphisms so

that σ acts according to the following triality of the Dynkin diagram

a1 b

a2

a3

The right Galois action on G(K) is then given so that uc(x)σ = uσc(εc x′) for all c ∈ R and

x ∈ K, with εc ∈ {1,−1}. Keeping with the convention set out in Notation 2.2.2, we will

be assuming that εc = 1 for all simple roots c ∈ D. The remaining signs εc are recovered

from the commutators [uc(x), ud(y)]σ = [uc(x)σ, ud(y)σ] for all c,d ∈ R and x, y ∈ K; in

particular, for positive roots we have

εa1+b = −1, εa2+b = +1, εa3+b = −1,

εa1+a2+b = +1, εa1+a3+b = +1, εa2+a3+b = +1,

εa1+a2+a3+b = +1,

εa1+a2+a3+2b = +1.

For negative roots c ∈ R−, the signs are determined by εc = ε−c.

We now consider the k-group G = G(k) consisting of all σ-fixed matrices in PSO8(K).

The Galois action preserves the diagonal torus Z(K), permuting the fundamental coweights
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dual to the base D. The k-root system R = R(G,S, k) is identified with the twisted root

system R = Rσ. A base D of R consists of a short k-root a ∈ R, the restriction to S of

ai ∈ D, and b ∈ R, the restriction to S of b ∈ D. The simple k-root morphisms are defined

as in Proposition 2.2.2:

ua(x) =







































1 x

1

1 x′ x′′ −x′x′′

1 0 −x′′

1 −x′

1

1 −x

1







































, ub(y) =







































1

1 y

1

1

1

1 −y

1

1







































for x ∈ k and y ∈ K. The remaining positive k-root morphisms are defined similarly:

ua+b(x) =







































1 0 x

1 0 −x′ −x′′ 0 −x′x′′

1 0 0 0 0

1 0 0 x′′

1 0 x′

1 0 −x

1 0

1







































u2a+b(x) =







































1 0 0 x x′′ 0 0 −xx′′

1 0 0 0 x′ 0 0

1 0 0 0 −x′ 0

1 0 0 0 −x′′

1 0 0 −x

1 0 0

1 0

1






































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u3a+b(y) =







































1 0 0 0 0 y

1 0 0 0 0

1 0 0 0 0 −y

1 0 0 0 0

1 0 0 0

1 0 0

1 0

1







































u3a+2b(y) =







































1 0 0 0 0 0 y

1 0 0 0 0 0 −y

1 0 0 0 0 0

1 0 0 0 0

1 0 0 0

1 0 0

1 0

1







































for x ∈ k and y ∈ K.

The affine k-root system Ψ has type GI
2, with a base ∆ consisting of simple affine k-roots

α = a+ 0

β = b+ 0

γ = c+ 1/3,

(3.1.14)

where c = −2a − b is the lowest short root in R. We now give an enumeration of the

minimal-height positive affine k-roots ψ1, . . . ,ψ12 for each gradient in R. The enumeration

given to these affine k-roots will be height preserving so that i > j whenever ψi has a greater
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height than ψj :

index i gradient ψ̇i intercept ψi(0) simple affine k-root decomposition ψi

1 c 1/3 γ

2 a 0 α

3 b 0 β

4 a+ c 1/3 α+ γ

5 a+ b 0 α+ β

6 a+ b+ c 1/3 α+ β + γ

7 2a+ b 0 2α+ β

8 3a+ b 0 3α+ β

9 3a+ 2b 0 3α+ 2β

10 a+ 2c 1 3α+ 1β + 3γ

11 a+ b+ 2c 1 3α+ 2β + 3γ

12 2a+ c 1 6α+ 2β + 3γ

(3.1.15)

Since 1/3 = 2α+β+γ, we note that ψ10,ψ11,ψ12 are never λ-shallow for λ belonging to the

closure of the fundamental alcove, and therefore in what follows we will only consider ψi for

i = 1, . . . , 9: from Appendix A, we recover the commutators of affine k-root groups for all

pairs ψi,ψj of minimal-height positive affine k-roots with non-linearly dependent gradients

ψ̇i, ψ̇j such that ψ̇i + ψ̇j is a k-root, but we reproduce them here for convenience:

[ub(x/
0), u3a+b(y/

0)] = u3a+2b(xy/
0)

for all x, y ∈ Ak;

[ua(x/
0), ua+b(y/

0)] = u2a+b((−xy′ − x′y)/0)

· u3a+b((x
′x′′y + xx′′y′ + xx′y′′)/0)

· u3a+2b((−xy′y′′ − x′yy′′ − x′′yy′)/0)
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[ua(x/
0), uc(y/

1/3)] = ua+c((x
′y + ζ2x

′′y′′)/1/3)

· u2a+c((xx
′y + ζ1x

′x′′y′ + ζ2xx
′′y′′)/1/3)

· ua+2c((ζ2xyy
′′ + ζ1x

′yy′ + ζ1ζ2x
′′y′y′′)/2/3)

[ua+b(x/
0), uc(y/

1/3)] = ua+b+c((−x′y − ζ2x
′′y′′)/1/3)

· ua+b+2c((ζ2xyy
′′ + ζ1x

′yy′ + ζ1ζ2x
′′y′y′′)/2/3)

· ub((−xx′y − ζ1x
′x′′y′ − ζ2xx

′′y′′)/1/3)

[u2a+b(x/
0), ua+b+c(y/

1/3)] = ua+b((ζ1xy
′ + ζ2x

′′y′′)/1/3)

· u3a+2b((−xx′′y − ζ1xx
′y′ − ζ2x

′x′′y′′)/1/3)

· ub((−ζ1xyy′ − ζ1ζ2x
′y′y′′ − ζ2x

′′yy′′)/2/3)

[u2a+b(x/
0), ua+c(y/

1/3)] = ua((−ζ1xy′ − ζ2x
′′y′′)/1/3)

· u3a+b((−xx′′y − ζ1xx
′y′ − ζ2x

′x′′y′′)/1/3)

· u2a+c((ζ1xyy
′ + ζ1ζ2x

′y′y′′ + ζ2x
′′yy′′)/2/3)

[ua+b+c(x/
1/3), ua+c(y/

1/3)] = uc((ζ1xy
′ + ζ1x

′y)/2/3)

· ua+b+2c((ζ1ζ2x
′x′′y + ζ1ζ2xx

′′y′ + ζ1ζ2xx
′y′′)/1)

· ua+2c((−ζ1ζ2xy′y′′ − ζ1ζ2x
′yy′′ − ζ1ζ2x

′′yy′)/1)

for all x, y ∈ AK , where ζ1 = σ(/1/3)//1/3 and ζ2 = σ2(/1/3)//1/3, as defined above;

[ua(x/
0), u2a+b(y/

0)] = u3a+b((xy
′ + x′y′′ + x′′y)/0)

[ua(x/
0), ua+c(y/

1/3)] = u2a+c((−xy − ζ1x
′y′ − ζ2x

′′y′′)/1/3)

[ua+b(x/
0), u2a+b(y/

0)] = u3a+2b((−xy′ − x′y′′ − x′′y)/0)

[ua+b(x/
0), ua+b+c(y/

1/3)] = ub((−xy − ζ1x
′y′ − ζ2x

′′y′′)/1/3)

[ua+b+c(x/
1/3), uc(y/

1/3)] = ua+b+2c((−ζ1xy′ − ζ1ζ2x
′y′′ − ζ2x

′′y)/2/3)

[ua+c(x/
1/3), uc(y/

1/3)] = ua+2c((ζ1xy
′ + ζ1ζ2x

′y′′ + ζ2x
′′y)/2/3)

for all x, y ∈ AK ; and
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[ua(x/
0), ub(y/

0)] = ua+b(xy/
0)u2a+b(xx

′y/0)

· u3a+b(−xx′x′′y/0)u3a+2b(2xx
′x′′y2/0)

[ua+b+c(x/
1/3), u3a+b(y/

0)] = u2a+b(ζ2x
′′y/1/3)ua+b(ζ1ζ2x

′x′′y/2/3)

· ub(−ζ1ζ2xx′x′′y/1)u3a+2b(−2ζ1ζ2xx
′x′′y2/1)

[ua+c(x/
1/3), ub(y/

0)] = ua+b+c(−xy/1/3)uc(−ζ1xx′y/2/3)

· ua+2c(ζ1ζ2xx
′x′′y/1)ua+b+2c(2ζ1ζ2xx

′x′′y2/1)

[ua+c(x/
1/3), u3a+2b(y/

0)] = u2a+b(−ζ2x′′y/1/3)ua(ζ1ζ2x
′x′′y/2/3)

· u2a+c(−ζ1ζ2xx′x′′y/1)u3a+2b(−2ζ1ζ2xx
′x′′y2/1)

[uc(x/
1/3), u3a+b(y/

0)] = ua(−ζ1x′y/1/3)ua+c(−ζ2xx′′y/2/3)

· ua+2c(−ζ1ζ2xx′x′′y/1)u2a+c(2ζ1ζ2xx
′x′′y2/1)

[uc(x/
1/3), u3a+2b(y/

0)] = ua+b(ζ1x
′y/1/3)ua+b+c(−ζ2xx′′y/2/3)

· ua+b+2c(ζ1ζ2xx
′x′′y/1)ub(−2ζ1ζ2xx

′x′′y2/1)

for all x ∈ AK and y ∈ Ak.

For each λ that is the barycenter of a facet of the fundamental alcove and not a strongly-

special vertex, the group

Hλ := Gλ+/Gλ,1/3

is generated by subgroups

Ui := Uψi
Gλ,1/3/Gλ,1/3

∼= f

for i = 1, . . . , 9 such that ψi is λ-shallow. Corollary 3.1.9 says that the commutator subgroup

of Hλ is generated by the commutators [u, v] with u ∈ Ui and v ∈ Uj for λ-shallow ψi,ψj ;

these commutators are computed from the above commutators. For example, when λ is the

barycenter of the fundamental alcove, each ψi, i = 1, . . . , 9 is a λ-shallow affine k-root and

the commutator subgroup of Hλ is generated by commutators of the following forms:

[ub(x/
0), u3a+b(y/

0)]Gλ,1/3 = u3a+2b(xy/
0)Gλ,1/3
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for all x, y ∈ Ak;

[ua(x/
0), ua+b(y/

0)]Gλ,1/3 = u2a+b((−xy′ − x′y)/0)

· u3a+b((x
′x′′y + xx′′y′ + xx′y′′)/0)

· u3a+2b((−xy′y′′ − x′yy′′ − x′′yy′)/0)Gλ,1/3

[ua(x/
0), uc(y/

1/3)]Gλ,1/3 = ua+c((x
′y + ζ2x

′′y′′)/1/3)Gλ,1/3

[ua+b(x/
0), uc(y/

1/3)]Gλ,1/3 = ua+b+c((−x′y − ζ2x
′′y′′)/1/3)Gλ,1/3

[u2a+b(x/
0), ua+b+c(y/

1/3)]Gλ,1/3 = Gλ,1/3

[u2a+b(x/
0), ua+c(y/

1/3)]Gλ,1/3 = Gλ,1/3

[ua+b+c(x/
1/3), ua+c(y/

1/3)]Gλ,1/3 = Gλ,1/3

for all x, y ∈ AK where ζ is the natural projection of ζ1 ∈ A×
K into f, as defined above;

[ua(x/
0), u2a+b(y/

0)]Gλ,1/3 = u3a+b((xy
′ + x′y′′ + x′′y)/0)Gλ,1/3

[ua(x/
0), ua+c(y/

1/3)]Gλ,1/3 = Gλ,1/3

[ua+b(x/
0), u2a+b(y/

0)]Gλ,1/3 = u3a+2b((−xy′ − x′y′′ − x′′y)/0)Gλ,1/3

[ua+b(x/
0), ua+b+c(y/

1/3)]Gλ,1/3 = Gλ,1/3

[ua+b+c(x/
1/3), uc(y/

1/3)]Gλ,1/3 = Gλ,1/3

[ua+c(x/
1/3), uc(y/

1/3)]Gλ,1/3 = Gλ,1/3

for all x, y ∈ AK ; and for all x ∈ AK and y ∈ Ak we have

[ua(x/
0), ub(y/

0)]Gλ,1/3 = ua+b(xy/
0)u2a+b(xx

′y/0)

· u3a+b(−xx′x′′y/0)u3a+2b(2xx
′x′′y2/0)Gλ,1/3
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[ua+b+c(x/
1/3), u3a+b(y/

0)]Gλ,1/3 = Gλ,1/3

[ua+c(x/
1/3), ub(y/

0)]Gλ,1/3 = ua+b+c(−xy/1/3)Gλ,1/3

[ua+c(x/
1/3), u3a+2b(y/

0)]Gλ,1/3 = Gλ,1/3

[uc(x/
1/3), u3a+b(y/

0)]Gλ,1/3 = Gλ,1/3

[uc(x/
1/3), u3a+2b(y/

0)]Gλ,1/3 = Gλ,1/3.

The abelianization of Hλ is isomorphic to

Hλ/[Hλ,Hλ] ∼= f1 ⊕ f2 ⊕ f3 ⊕
f4

〈(1 + ζ2)xy | x, y ∈ f〉
⊕

f6
〈−(1 + ζ2)xy,−xy | x, y ∈ f〉

⊕
f5 ⊕ f7 ⊕ f8 ⊕ f9

〈

(0, 0, 0, xy), (0,−2xy, 3x2y,−3xy2), (0, 0, 3xy, 0),

(0, 0, 0,−3xy), (xy, x2y,−x3y, 2x3y2)

∣

∣

∣

∣

∣

∣

∣

x, y ∈ f

〉

where fi = f is the abelian group isomorphic to Uψi
/Uψi

∩Gλ,1/3 for i = 1, . . . , 9. Lemma 3.1.12

allows us to simplify the above expression so that

Hλ/[Hλ,Hλ] ∼=















































f5 if #f ∈ {2, 3} and 1 + ζ2 = 0,

f4 if #f ∈ {2, 3} and 1 + ζ2 (= 0,

f4 if #f /∈ {2, 3} and 1 + ζ2 = 0,

f3 if else.

(3.1.16)

Similar computations can be done for each barycenter which is not strongly-special, and

the results are summarized in Table B.6 in Appendix B.

Remark. There do not exist any tamely, totally ramified Galois extensions of degree 3 of a

non-archimedean local field whose residue field has order 2 or 3, and so not all of the cases

in (3.1.16) can occur.
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3.2 Supercuspidal Representations

Recall that a smooth representation of G is a group homomorphism π : G → GL(V )

where V is a complex vector space, such that for every v ∈ V there is a compact open

subgroup H ⊆ G with π(h)v = v for every h ∈ H. A smooth irreducible representation π

is supercuspidal if every matrix coefficient of G is compactly supported. This section is

devoted to the construction of supercuspidal representations of G through the method of

compact induction, which we now briefly review.

From here we turn to using the shallow characters constructed in the previous section to

give one-dimensional smooth representations of the compact open pro-unipotent radical of

the parahoric subgroup. In Proposition 3.2.2 we provide a blueprint for constructing super-

cuspidal representations of G from shallow characters and a sequence of compact inductions.

This method was first used by Gross and Reeder to construct the simple supercuspidal rep-

resentation from affine generic characters [12], and again by Reeder and Yu to construct

epipelagic supercuspidal representations from stable λ-shallow characters of Gλ+ vanishing

at the Moy-Prasad subgroup Gλ++ [27]. Here we are using stable in the sense of geometric

invariant theory, as these shallow characters belong to a graded Lie algebra where one can

apply the methods of Vinberg [35] and Levy [19][20][21].

The λ-shallow characters not vanishing on Gλ++ do not have a natural identification

with elements of a single piece of a graded Lie algebra, and therefore the arguments of [27]

do not immediately extend to our situation. Instead, in Theorem 3.2.3 we provide a naive

extension of [27, Lemma 2.3 and Proposition 2.4] sufficient for constructing supercuspidal

representations. We then show in §3.2.3 and §3.2.4, by way of example, that this naive

condition is not necessary. Indeed, when #f = 2, we give four λ-shallow characters that

yield new supercuspidal representations of G = Sp4(k); and when char(f) = 3, we give a

class of (#f)4 λ-shallow characters that yield new supercuspidal representations of the split

form of G2 over k.

Notation 3.2.1. In this section, we will be continuing the notation set out in Notation 2.2.1

and Notation 3.1.1. In addition, we will let N denote the normalizer in G of the maximal

k-split torus S. This algebraic group is defined over k, and thus we denote by the unbolded
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N its group of k-rational points. //

3.2.1 Compact induction

Let H ⊆ M be subgroups of G and suppose that H is compact open containing the center

of G. Let (φ, V ) be an irreducible smooth representation of H. Denote by indMH (φ) the

compactly induced representation ofM consisting of all compactly supported functions

f : M → V that commute with H:

indMH (φ) =











f : M → V

∣

∣

∣

∣

∣

∣

∣

f(hx) = φ(h) · f(x)

f is compactly supported











.

The left M -action on indMH (φ) is given by right translation so that [m · f ](x) = f(xm) for

all m,x ∈ M .

For each m ∈ M , we denote by (mφ, V ) the conjugate representation of mH :=

mHm−1 given by

mφ(mhm−1) = φ(h)

for all h ∈ H. The intertwining set I(M,H,φ) is then the set of all elements m ∈ M

such that mφ and φ are isomorphic on the intersection mH ∩H:

I(M,H,φ) = {m ∈ M | mφ ∼= φ on mH ∩H}.

Lemma 3.2.1. Let M,H,φ be as above. Then the following are equivalent:

(1) I(M,H,φ) = H.

(2) indMH (φ) is irreducible.

If M = G and the above conditions hold, then indGH(φ) is supercuspidal.

Proof. A proof of this basic result can be found in [4, 3.11.4].
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3.2.2 Supercuspidal representations and shallow characters

Let χ : Gλ+ → C× be any group homomorphism, and thus a one-dimensional smooth

representation of Gλ+. The parahoric subgroup Gλ normalizes its pro-unipotent radical,

and so we consider the stabilizer in Gλ of χ denoted by

Gλ(χ) = {n ∈ Gλ | χ(nhn−1) = χ(h) for all h ∈ Gλ+} ⊆ I(G,Gλ+,χ)

The quotient Gλ(χ)/Gλ+ is a finite group whose order is equal to the dimension of the

semisimple intertwining algebra

Aχ = EndGλ(χ)

(

indGλ(χ)
Gλ+

(χ)
)

There is a bijection ρ +→ χρ between equivalence classes of irreducible Aχ-modules and the

irreducible Gλ(χ)-representations appearing in the isotypic decomposition

indGλ(χ)
Gλ+

(χ) =
⊕

ρ

dim(ρ) · χρ.

Then we have the following result from §2.1 of [27]:

Proposition 3.2.2 (Reeder-Yu). Let χ : Gλ+ → C× be any group homomorphism. If

I(G,Gλ+,χ) = Gλ(χ), then we have the following isotypic decomposition:

indGGλ+
(χ) =

⊕

ρ

dim(ρ) · indGGλ(χ)
(χρ),

where the direct sum is over all simple Aχ-modules ρ. Moreover, all compactly induced

representations

π(χ; ρ) := indGGλ(χ)
(χρ) (3.2.1)

are inequivalent irreducible supercuspidal representations of G.
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Proof. The direct sum decomposition follows from the transitivity of compact induction:

indGGλ+
(χ) = indGGλ(χ)

(indGλ(χ)
Gλ+

(χ))

= indGGλ(χ)

(

⊕

ρ

dim(ρ) · χρ

)

=
⊕

ρ

dim(ρ) · indGGλ(χ)
(χρ).

For proofs of the remaining claims, please refer to [27, Lemma 2.2].

The group N = N(k) acts on the k-root system via the finite reflection group W0 of R

so that given an element n ∈ N we have that

nUan
−1 = Una

for all k-roots a ∈ R. This action does not leave invariant the valuation on k-root groups

given in Definition 2.2.3. For example, given an element n = wλ(t) ∈ N for w ∈ W0,

λ ∈ X∗(Z,K), and t ∈ K×, we have

valwa(nun
−1) = 〈a,λ〉 val(t) + vala(u).

for all a ∈ R and u ∈ Ua so that

nUa,rn
−1 = Uwa,r+〈a,λ〉 val(t).

In this case, we write n(a, r) = (wa, r+〈a,λ〉 val(t)) ∈ Ψ and see thatN acts onX∗(S, k)⊗ZR

via affine linear transformations and the induced action on affine functions preserves Ψ. [17].

The group of affine linear transformations generated by the action of N on Ψ is a finite

extension of the affine reflection group W of Ψ defined in Definition 2.1.3, dependent on the

isogeny type of G [17]. Here we will call this group the affine Weyl group (in the literature

it is sometimes called the extended affine Weyl group while the affine reflection group

W is called the affine Weyl group). The general theory of the affine Weyl group is beyond

the scope of this thesis, and so we will simply refer to N and its action on Ψ.
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Theorem 3.2.3. Let χ : Gλ → C× be any group homomorphism that is trivial on Gλ,s(λ),

and let r be the minimal real number such that χ is trivial on Uα whenever α(λ) > r.

Suppose that the following holds:

(∗) If n ∈ N and χ is trivial on Uα whenever α is a shallow affine k-root such that

[n−1α](λ) > r, then n ∈ Gλ.

Then I(G,Gλ+,χ) = Gλ(χ).

Proof. Recall the affine Bruhat decomposition [17][34, §3.3.1] for the group G, which

says that

G = GCNGC ,

where GC is the parahoric subgroup attached to any point in the fundamental alcove C. The

parahoric subgroup Gλ contains GC . Therefore, in order to show that I(G,Gλ+,χ) = Gλ(χ)

it is only necessary to consider n ∈ N and show that

nχ = χ on nGλ+ ∩Gλ+ (3.2.2)

implies that n ∈ Gλ.

Let n ∈ N be such that (3.2.2) holds. Then it is certainly true that

nχ = χ on nGλ,r+ ∩Gλ+ (3.2.3)

for the Moy-Prasad subgroup Gλ,r ⊆ Gλ. Let α ∈ Ψ be any shallow affine k-root such that

[n−1α](λ) > r. The affine k-root group Un−1α then belongs to Gλ,r+ and thus

nUn−1αn
−1 = Uα ⊆ nGλ,r+ ∩Gλ+.

Then (3.2.3) says that

χ(u) = nχ(u) = χ(n−1un)

for all u ∈ Uα. But the definition of r implies that χ(n−1un) = 1 for all u ∈ Uα, since

[n−1α](λ) > r. This must hold for every λ-shallow affine k-root α such that [n−1α](λ) > r,



84 CHAPTER 3. SUPERCUSPIDAL REPRESENTATIONS

and thus condition (∗) of the theorem says that n ∈ Gλ, as desired.

Remark. Reeder and Yu show that a λ-shallow character vanishing on any λ-shallow affine

k-root group Uα such that α(λ) > r1(λ), as defined in Definition 2.2.4, satisfies condition (∗)

of Theorem 3.2.3 whenever it is stable in the sense that its Gλ-orbit is closed with a finite

stabilizer (as an algebraic group) [27, Proposition 2.4].

3.2.3 New supercuspidal representations of Sp4(k) when #f = 2

In this subsection, we will continue the notation laid out in §3.1.3 for the group split group

Sp4(k) with type C2 k-root system, including the enumeration ψ1, . . . ,ψ8 of positive affine

k-roots having minimal height given in (3.1.9). Since G = Sp4(k) is simply connected, its

affine Weyl group, by which N acts on Ψ, is isomorphic to the affine reflection group W .

Here, any element of W acts as an affine linear transformation on E with gradient w in the

finite reflection group

W0 = 〈wa, wb | w2
a = w2

b = (wawb)
4 = 1〉

and intercept µ in the coroot lattice ZR∨ = Za∨ ⊕ Zb∨ [17]. In particular, given w ∈ W0

and µ ∈ ZR∨, the element µw ∈ W acts on any affine k-root via

[µw]ψ = wψ̇ + 〈wψ̇, µ〉+ ψ(0) ∈ Ψ

for all ψ ∈ Ψ.

We now make the additional assumption that #f = 2, and let λ be the barycenter of

the fundamental alcove C. In (3.1.10) we saw that the abelianization of Hλ = Gλ+/Gλ,1 is

isomorphic to

f5 ∼= f1 ⊕ f2 ⊕ f3 ⊕
f4 ⊕ f6

〈(xy, x2y) | x, y ∈ f〉
⊕

f5 ⊕ f7
〈(xy, x2y) | x, y ∈ f〉

⊕
f8

〈xy | x, y ∈ f〉

(3.2.4)

where fi = f is the additive group isomorphic to Ui = Uψi
/Uψi

∩Gλ,1. Let χi : fi → C× be
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the restriction to fi of χ for each i = 1, . . . , 8. From (3.2.4), we can conclude the following

relations between the χi:






























1 = χ4(xy) · χ6(xy2)

1 = χ5(xy) · χ7(xy2)

1 = χ8(xy)

(3.2.5)

for all x, y ∈ f. Applying Lemma 3.1.10 to the first two of these relations implies that

χ6(1) = χ4(1) and χ7(1) = χ5(1). The third relation of (3.2.5) implies that χ8(1) = 1.

Thus, each of the 32 λ-shallow characters of Hλ is uniquely determined by a 5-tuple

(χ1(1),χ2(1),χ3(1),χ4(1),χ5(1)) ∈ {±1}5

In what follows, we will say that χ is given by its corresponding 5-tuple.

Each λ-shallow character χ : Hλ → C× lifts to a group homomorphismGλ+ → C×, which

through an abuse of notation we will also denote by χ. Of these 32 λ-shallow characters,

exactly 5 satisfy

I(G,Gλ+,χ) = Gλ(χ). (3.2.6)

For the 27 λ-shallow characters for which (3.2.6) does not hold, there exists at least one

n ∈ N not in Gλ such that nχ = χ on nGλ ∩ Gλ; this is summarized in Table B.7 in

Appendix B.

There is exactly one λ-shallow character of Hλ that satisfies condition (∗) in Theo-

rem 3.2.3, and it is given by the 5-tuple

(χ1(1),χ2(1),χ3(1),χ4(1),χ5(1)) = (−1,−1,−1,+1,+1).

The corresponding one-dimensional representation of Gλ+ is an affine generic charac-

ter discussed first by Gross and Reeder in [12] and again by Reeder and Yu in [27]. The

irreducible supercuspidal representations π(χ; ρ) in (3.2.1) are called the simple super-

cuspidal representations of G.

The remaining four λ-shallow characters for which (3.2.6) holds but not condition (∗)
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of Theorem 3.2.3 are given by 5-tuples

(χ1(1),χ2(1),χ3(1),χ4(1),χ5(1)) ∈











































(−1,+1,+1,−1,−1),

(+1,+1,−1,−1,−1),

(−1,−1,+1,−1,−1),

(+1,−1,−1,−1,−1)











































. (3.2.7)

The justification that each of these λ-shallow characters satisfies (3.2.6) is essentially the

same, and thus we illustrate it for only a single example:

Example 3.2.1. Let χ be the λ-shallow character of Hλ given by the 5-tuple

(χ1(1),χ2(1),χ3(1),χ4(1),χ5(1)) = (−1,−1,+1,−1,−1),

and note that the following facts hold:

• If α is a short affine k-root then nα is also short for all n ∈ N .

• The only short affine k-roots ψ for which the restriction to Uψ of χ is non-trivial are

ψ2, ψ4, and ψ5. The only other λ-shallow affine k-roots for which the restriction to

Uψ of χ is non-trivial are the long ψ1, ψ6, and ψ7, and the restriction to Uψ of χ is

trivial for all affine k-roots ψ that are not λ-shallow.

• For any n ∈ N , either nψ4 or nψ5 is a positive affine k-root. Indeed, ψ4 = −(a+b)+1

and ψ5 = a+ b+ 0, and so one of











[µw]ψ4 = −w(a+ b)− 〈w(a+ b), µ〉+ 1

[µw]ψ5 = +w(a+ b) + 〈w(a+ b), µ〉

must be positive for any µw ∈ W . Alternatively, one can note that the vanishing

hyperplanes of ψ4 and ψ5 are parallel with the fundamental alcove C between them;

therefore, there does not exist an alcove in X∗(S, k)⊗Z R that is separated from C by

both hyperplanes.
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Consequently, for any n ∈ N , nχ and χ can only agree on nGλ+∩Gλ+ if either n fixes both

ψ4 and ψ5, n permutes ψ4 and ψ5, or either nψ4 = ψ2 or nψ5 = ψ2. If n ∈ N fixes both ψ4

and ψ5 then either











nψ1 = ψ1 − 2m

nψ7 = ψ7 + 2m
or











nψ1 = ψ6 − 2m

nψ7 = ψ3 + 2m

holds for some m ∈ Z. If n ∈ N permutes ψ4 and ψ5 then either











nψ1 = ψ7 − 2m+ 1

nψ6 = ψ3 + 2m+ 1
or











nψ1 = ψ3 − 2m+ 1

nψ6 = ψ7 + 2m+ 1

holds for some m ∈ Z. If nψ4 = ψ2 then nψ6 = ψ8, and if nψ5 = ψ2 then nψ4 = ψ8. For all

n acting non-trivially on Ψ, we have given a λ-shallow affine root ψi such that ψi(1) = −1

while χ is trivial on Unψi
⊆ Gλ+. Thus,

nχ (= χ on Unψi
⊆ nGλ+ ∩Gλ+

for some λ-shallow ψi whenever n /∈ Gλ. Hence I(G,Gλ+,χ) = Gλ(χ).

Remark. The supercuspidal representations π(χ; ρ) for λ-shallow characters given by 5-

tuples in (3.2.7) are new in the sense that they cannot be constructed from the methods of

Reeder and Yu [27] because the minimal Moy-Prasad subgroup of Gλ on which χ is non-

vanishing is Gλ,3/4 " Gλ++. Nor can they be constructed using the exhaustive methods of

Stevens [33] or Yu [36], as the residual characteristic is 2.

3.2.4 New supercuspidal representations of G2 when char(f) = 3

In this subsection, we will continue the notation laid out in §3.1.3 for G the split Chevalley

group of typeG2 over k, including simple affine k-roots given in (3.1.11) and the enumeration

ψ1, . . . ,ψ12 of positive affine k-roots given in (3.1.12). Since G is simply connected, its affine

Weyl group by which N acts on Ψ is isomorphic to the affine reflection group W . Here,

any element of W acts as an affine linear transformation on E with gradient w in the finite
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reflection group

W0 = 〈wa, wb | w2
a = w2

b = (wawb)
6 = 1〉

and intercept µ in the coroot lattice ZR∨ = Za∨ ⊕ Zb∨ [17]. In particular, given w ∈ W0

and µ ∈ ZR∨, the element µw ∈ W acts on any affine k-root via

[µw]ψ = wψ̇ + 〈wψ̇, µ〉+ ψ(0) ∈ Ψ

for all ψ ∈ Ψ.

We now make the additional assumption that char(f) = 3, and let λ be the barycenter of

the facet of the fundamental alcove corresponding to the vanishing of β and non-vanishing

of α and γ. In (3.1.13) we saw that the abelianization of Hλ = Gλ+/Gλ,1 is isomorphic to

f1 ⊕ f3 ⊕ f4 ⊕ f5 ⊕
f7 ⊕ f9 ⊕ f11

〈(−2xy, 3x2y,−3xy), (0, 3xy, 0), (0, 0,−3xy) | x, y ∈ f〉

⊕
f6 ⊕ f8 ⊕ f10 ⊕ f12

〈

(0, 0,−xy, 0), (0, 2xy, 3x2y, 0), (0, 0, 0,−2xy), (0, 0,−3xy, 0),

(xy, 0, 0, x2y), (0,−xy, 0, 0), (−xy, x2y, x3y, 0), (0, 0, 0,±xy)

∣

∣

∣

∣

∣

∣

∣

x, y ∈ f

〉

where fi = f is the additive group isomorphic to Ui = Uψi
/Uψi

∩ Gλ,1. After some simple

reductions, this can be rewritten as

f6 ∼= f1 ⊕ f3 ⊕ f4 ⊕ f5 ⊕ f9 ⊕ f11 (3.2.8)

Let χi : fi → C× be the restriction to fi of χ for each i = 1, . . . , 8. From (3.2.8), we see that

there are (#f)6 λ-shallow characters of Hλ, each uniquely determined by 6 characters

χ1,χ3,χ4,χ5,χ9,χ11 : f → C×

on which there are no restrictions.

As we saw in the previous subsection, each λ-shallow character χ : Hλ → C× lifts to a

group homomorphism Gλ+ → C×, which through an abuse of notation we will also denote
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by χ. In order to completely classify which λ-shallow characters satisfy

I(G,Gλ+,χ) = Gλ(χ) (3.2.9)

a case-by-case approach may be necessary, but we now give a class of (#f)4 λ-shallow

characters satisfying (3.2.9).

Example 3.2.2. Consider any shallow character χ : Hλ → C× where the restrictions χ1,χ11

are trivial and χ3,χ4,χ5,χ9 are non-trivial, and note that the following facts hold:

• If α is a long affine k-root, then nα is also long for all n ∈ N .

• The only long affine k-roots ψ for which the restriction to Uψ of χ is non-trivial are

ψ4 and ψ9. The only other λ-shallow affine k-roots for which the restriction to Uψ of

χ is non-trivial are the short ψ3 and ψ5, and the restriction to Uψ of χ is trivial for

all affine k-roots that are not λ-shallow.

• For any n ∈ N , either nψ4 or nψ9 is positive. Indeed, ψ4 = −(3a + b) + 1 and

ψ9 = 3a+ b+ 0, and so one of











[µw]ψ4 = −w(3a+ b)− 〈w(3a+ b), µ〉+ 1

[µw]ψ9 = +w(3a+ b) + 〈w(3a+ b), µ〉

must be positive for any µw ∈ W . Alternatively, one can note that the vanishing

hyperplanes of ψ4 and ψ9 are parallel with the fundamental alcove C between them;

therefore, there does not exist an alcove in X∗(S, k)⊗Z R that is separated from C by

both hyperplanes.

Consequently, for any n ∈ N , nχ and χ can only agree on nGλ+∩Gλ+ if either n fixes both

ψ4 and ψ9 or n permutes ψ4 and ψ9. If n ∈ N fixes both ψ4 and ψ9, then either











nψ3 = ψ3 −m

nψ5 = ψ5 + 2m
or











nψ3 = ψ7 −m

nψ5 = ψ8 + 2m− 1



90 CHAPTER 3. SUPERCUSPIDAL REPRESENTATIONS

holds for some m ∈ Z. If n ∈ N permutes ψ4 and ψ9, then either











nψ3 = ψ6 −m

nψ5 = ψ5 + 2m− 1
or











nψ3 = ψ12 −m

nψ5 = ψ8 + 2m− 2

for some m ∈ Z. For all n acting non-trivially on Ψ, we have given a λ-shallow affine root

ψi such that ψi is non-trivial but χ is trivial on Unψi
⊆ Gλ+. Thus,

nχ (= χ on Unψi
⊆ nGλ+ ∩Gλ+

for some λ-shallow ψi whenever n /∈ Gλ. Hence I(G,Gλ+,χ) = Gλ(χ).

Remark. The supercuspidal representations π(χ; ρ) for λ-shallow characters given in Exam-

ple 3.2.2 are new in the sense that they cannot be constructed from the methods of Reeder

and Yu [27] because the minimal Moy-Prasad subgroup of Gλ on which χ is non-vanishing is

Gλ,3/4 " Gλ++. Nor can they be constructed using the exhaustive methods of Stevens [33]

and Yu [36], as G is not a classical group and the residual characteristic is 3.



Appendix A

Commutator Computations

In this appendix we will be adopting the notation of Section 2.2 in order to verify the

formulas given in Proposition 2.2.4. For fixed k-roots a, b we will look at the group Ga,b

generated by U±a and U±b, defined and quasi-split over k with k-rank 2. Keeping with

Proposition 2.2.4, we assume that Ga,b is non-split over k.

In each of the following subsections, we will either prove the corresponding case in

Proposition 2.2.4 directly or by fixing a group isogenous toGa,b and compute all possibilities

for commutators in [Ua, Ub].

A.1 Non-split group with k-root system of type A2

If Ga,b is non-split with a k-root system of type A2, then a + b is a k-root and both (a)

and (b) have cycle type (i) as in Definition 2.2.1 with ea = eb = e. In this case, there exist

K-roots a ∈ (a) and b ∈ (b) such that σia+ σjb is a K-root if and only if i = j, and so

[uσia(x), uσjb(y)] =















uσia+σjb(±xy) if i = j,

0 if else.

91
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for all x, y ∈ K. We now directly compute





e
∏

i=1

ua(x)
σi

,
e
∏

j=1

ub(y)
σj



 =
e
∏

i=1

[ua(x)
σi

, ub(y)
σi

]

=
e
∏

i=1

[ua(x), ub(y)]
σi

=
e
∏

i=1

ua+b(±xy)σ
i

for all x ∈ Ka and y ∈ Kb. Up to a choice of k-root morphisms, this is what Proposi-

tion 2.2.4(1) claims.

A.2 Non-split group with k-root system of type B2 = C2

Let K/k be a tamely, purely ramified quadratic Galois extension of k, and x +→ x̄ is a cyclic

generator of the Galois group Gal(K/k). Suppose that Ga,b has K-structure isogenous to

SL4(K) with Galois action given by a non-trivial involution of the Dynkin diagram of type

A3.

(a) For all x, y ∈ K we have the following commutators:





































1 x

1

1 x̄

1



















,



















1 0 y

1 0 −ȳ

1 0

1





































=



















1 0 0 −x̄y − xȳ

1 0 0

1 0

1























































1 x

1

1 x̄

1



















,



















1

0 1

y 0 1

−ȳ 0 1





































=



















1

1

−xy − x̄ȳ 1

1


















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



































1

x 1

1

x̄ 1



















,



















1 0 y

1 0 −ȳ

1 0

1





































=



















1

1 xy + x̄ȳ

1

1























































1

x 1

1

x̄ 1



















,



















1

0 1

y 0 1

−ȳ 0 1





































=



















1

0 1

0 0 1

x̄y + xȳ 0 0 1



















(b) For all x ∈ K and y ∈ k we have the following commutators:





































1 x

1

1 x̄

1



















,



















1

1 y

1

1





































=



















1 0 xy xx̄y

1 0 −x̄y

1 0

1























































1 x

1

1 x̄

1



















,



















1

0 1

0 0 1

y 0 0 1





































=



















1

0 1

x̄y xx̄y 1

−xy 0 1























































1 0 x

1 0 −x̄

1 0

1



















,



















1

0 1

0 0 1

y 0 0 1





































=



















1

−x̄y 1 −xx̄y

1

−xy 1























































1 0 x

1 0 −x̄

1 0

1



















,



















1

1

y 1

1





































=



















1 xy 0 −xx̄y

1 0 0

1 x̄y

1


















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



































1

x 1

1

x̄ 1



















,



















1 0 0 y

1 0 0

1 0

1





































=



















1 0 −x̄y

1 xx̄y xy

1 0

1























































1

x 1

1

x 1



















,



















1

1

y 1

1





































=



















1

0 1

−xy 0 1

xx̄y x̄y 0 1























































1

0 1

x 0 1

−x̄ 0 1



















,



















1 0 0 y

1 0 0

1 0

1





































=



















1 x̄y

1

−xx̄y 1 xy

1























































1

0 1

x 0 1

−x̄ 0 1



















,



















1

1 y

1

1





































=



















1

−xy 1

0 0 1

−xx̄y 0 −x̄y 1



















A.3 Non-split group with k-root system of type G2

Let K/k be a tamely, purely ramified degree-3 Galois extension of k, and x +→ x′ is a cyclic

generator of the Galois group Gal(K/k). Suppose that Ga,b has K-structure isogenous to

SO8(K) with Galois action given by a non-trivial triality of the Dynkin diagram of type D4.

Note that an in-depth discussion on this group and its structure can be found in §3.1.3.
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(a) For all x, y ∈ K we have the following commutators:





























































































1 x

1

1 x′ x′′ −x′x′′

1 0 −x′′

1 −x′

1

1 −x

1















































,















































1 0 y

1 0 −y′ −y′′ 0 −y′y′′

1 0 0 0 0

1 0 0 y′′

1 0 y′

1 0 −y

1 0

1





























































































=















































1 0 0 −xy′ − x′y −xy′′ − x′′y x′x′′y + xx′′y′ + xx′y′′ −xy′y′′ − x′yy′′ − x′′yy′ −(xy′ + x′y)(xy′′ + x′′y)

1 0 0 0 −x′y′′ − x′′y′ 0 xy′y′′ + x′yy′′ + x′′yy′

1 0 0 0 x′y′′ + x′′y′ −x′x′′y − xx′′y′ − xx′y′′

1 0 0 0 xy′′ + x′′y

1 0 0 xy′ + x′y

1 0 0

1 0

1














































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



























































































1 x

1

1 x′ x′′ −x′x′′

1 0 −x′′

1 −x′

1

1 −x

1















































,















































1

0 1

0 0 1

y 0 0 1

y′′ 0 0 0 1

0 y′ 0 0 0 1

0 0 −y′ 0 0 0 1

−yy′′ 0 0 −y′′ y 0 0 1





























































































=















































1

0 1

x′y + x′′y′′ xx′y + x′x′′y′ + xx′′y′′ 1

0 −xy − x′′y′ 0 1

0 −xy′′ − x′y′ 0 0 1

0 0 0 0 0 1

xyy′′ + x′yy′ + x′′y′y′′ −(xy + x′′y′)(xy′′ + x′y′) 0 xy′′ + x′y′ xy + x′′y′ −xx′y − x′x′′y′ − xx′′y′′ 1

0 −xyy′′ − x′yy′ − x′′y′y′′ 0 0 0 −x′y − x′′y′′ 0 1














































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



























































































1 0 x

1 0 −x′ −x′′ 0 −x′x′′

1 0 0 0 0

1 0 0 x′′

1 0 x′

1 0 x

1 0

1















































,















































1

0 1

0 0 1

y 0 0 1

y′′ 0 0 0 1

0 y′ 0 0 0 1

0 0 −y′ 0 0 0 1

−yy′′ 0 0 −y′′ y 0 0 1





























































































=















































1

−x′y − x′′y′′ 1 −xx′y − x′x′′y′ − xx′′y′′

0 0 1

0 0 −xy − y′x′′ 1

0 0 −xy′′ − x′y′ 0 1

xyy′′ + x′yy′ + x′′y′y′′ 0 −(xy + x′′y′)(xy′′ + x′y′) xy′′ + x′y′ xy + y′x′′ 1 xx′y + x′x′′y′ + xx′′y′′

0 0 0 0 0 0 1

0 0 −xyy′′ − x′yy′ − x′′y′y′′ 0 0 0 x′y + x′′y′′ 1














































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



























































































1 0 0 x x′′ 0 0 −xx′′

1 0 0 0 x′ 0 0

1 0 0 0 −x′ 0

1 0 0 0 −x′′

1 0 0 −x

1 0 0

1 0

1















































,















































1

y 1

1

y′ 1

y′′ 0 1

−y′y′′ −y′′ −y′ 1

1

−y 1





























































































=















































1 0 xy′ + x′′y′′ 0 0 0 −xx′′y − xx′y′ − x′x′′y′′ 0

1 −xyy′ − x′y′y′′ − x′′yy′′ −xy − x′y′′ −x′y′ − x′′y 0 −(x′y′ + x′′y)(xy + x′y′′) xx′′y + xx′y′ + x′x′′y′′

1 0 0 0 0 0

1 0 0 x′y′ + yx′′ 0

1 0 xy + x′y′′ 0

1 xyy′ + x′y′y′′ + x′′yy′′ −xy′ − x′′y′′

1 0

1














































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



























































































1 0 0 x x′′ 0 0 −xx′′

1 0 0 0 x′ 0 0

1 0 0 0 −x′ 0

1 0 0 0 −x′′

1 0 0 −x

1 0 0

1 0

1















































,















































1

0 1

y 0 1

−y′ 0 1

−y′′ 0 0 1

0 0 0 0 1

−y′y′′ 0 y′′ y′ 0 1

−y 0 1





























































































=















































1 −xy′ − x′′y′′ 0 0 0 −xx′′y − xx′y′ − x′x′′y′′ 0 0

1 0 0 0 0 0 0

xyy′ + x′y′y′′ + x′′yy′′ 1 −xy − x′y′′ −x′y′ − x′′y −(x′y′ + x′′y)(xy + x′y′′) 0 xx′′y + xx′y′ + x′x′′y′′

1 0 x′y′ + x′′y 0 0

1 xy + x′y′′ 0 0

1 0 0

−xyy′ − x′y′y′′ − x′′yy′′ 1 xy′ + x′′y′′

1














































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



























































































1

x 1

1

x′ 1

x′′ 0 1

−x′x′′ −x′′ −x′ 1

1

−x 1















































,















































1

0 1

y 0 1

−y′ 0 1

−y′′ 0 0 1

0 0 0 0 1

−y′y′′ 0 y′′ y′ 0 1

−y 0 1





























































































=















































1

0 1

0 0 1

xy′ + yx′ 0 0 1

xy′′ + x′′y 0 0 0 1

x′x′′y + xx′′y′ + xx′y′′ x′y′′ + x′′y′ 0 0 0 1

−xy′y′′ − x′yy′′ − x′′yy′ 0 −x′y′′ − x′′y′ 0 0 0 1

−(xy′ + x′y)(xy′′ + x′′y) xy′y′′ + x′yy′′ + x′′yy′ −x′x′′y − xx′′y′ − xx′y′′ −xy′′ − x′′y −xy′ − x′y 0 0 1














































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(b) For x, y ∈ K we have the following commutators:





























































































1 x

1

1 x′ x′′ −x′x′′

1 0 −x′′

1 −x′

1

1 −x

1















































,















































1 0 0 y y′′ 0 0 −yy′′

1 0 0 0 y′ 0 0

1 0 0 0 −y′ 0

1 0 0 0 −y′′

1 0 0 −y

1 0 0

1 0

1





























































































=















































1 0 0 0 0 xy′ + x′y′′ + x′′y

1 0 0 0 0

1 0 0 0 0 −xy′ − x′y′′ − x′′y

1 0 0 0 0

1 0 0 0

1 0 0

1 0

1














































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



























































































1 x

1

1 x′ x′′ −x′x′′

1 0 −x′′

1 −x′

1

1 −x

1















































,















































1

0 1

y 0 1

−y′ 0 1

−y′′ 0 0 1

0 0 0 0 1

−y′y′′ 0 y′′ y′ 0 1

−y 0 1





























































































=















































1

1

−xy − x′y′ − x′′y′′ 1

1

1

1

xy + x′y′ + x′′y′′ 1

1














































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



























































































1 0 x

1 0 −x′ −x′′ 0 −x′x′′

1 0 0 0 0

1 0 0 x′′

1 0 x′

1 0 x

1 0

1















































,















































1 0 0 y y′′ 0 0 −yy′′

1 0 0 0 y′ 0 0

1 0 0 0 −y′ 0

1 0 0 0 −y′′

1 0 0 −y

1 0 0

1 0

1





























































































=















































1 0 0 0 0 0 −xy′ − x′y′′ − x′′y

1 0 0 0 0 0 xy′ + x′y′′ + x′′y

1 0 0 0 0 0

1 0 0 0 0

1 0 0 0

1 0 0

1 0

1














































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



























































































1 0 x

1 0 −x′ −x′′ 0 −x′x′′

1 0 0 0 0

1 0 0 x′′

1 0 x′

1 0 x

1 0

1















































,















































1

y 1

1

y′ 1

y′′ 0 1

−y′y′′ −y′′ −y′ 1

1

−y 1





























































































=















































1

1 −xy − x′y′ − x′′y′′

1

1

1

1 xy + x′y′ + x′′y′′

1

1














































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



























































































1

x 1

1

x′ 1

x′′ 0 1

−x′x′′ −x′′ −x′ 1

1

−x 1















































,















































1

0 1

0 0 1

y 0 0 1

y′′ 0 0 0 1

0 y′ 0 0 0 1

0 0 −y′ 0 0 0 1

−yy′′ 0 0 −y′′ y 0 0 1





























































































=















































1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

−xy′ − x′y′′ − x′′y 0 0 0 0 1

0 0 0 0 1

xy′ + x′y′′ + x′′y 0 0 0 0 1














































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



























































































1

0 1

x 0 1

−x′ 0 1

−x′′ 0 0 1

0 0 0 0 1

−x′x′′ 0 x′′ x′ 0 1

−x 0 1















































,















































1

0 1

0 0 1

y 0 0 1

y′′ 0 0 0 1

0 y′ 0 0 0 1

0 0 −y′ 0 0 0 1

−yy′′ 0 0 −y′′ y 0 0 1





























































































=















































1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

xy′ + x′y′′ + x′′y 0 0 0 0 0 1

−xy′ − x′y′′ − x′′y 0 0 0 0 0 1














































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(c) For all x ∈ K and y ∈ k we have the following commutators:





























































































1 x

1

1 x′ x′′ −x′x′′

1 0 −x′′

1 −x′

1

1 x

1















































,















































1

1 y

1

1

1

1 −y

1

1





























































































=















































1 0 xy xx′y xx′′y −xx′x′′y xx′x′′y2 0

1 0 −x′y −x′′y x′x′′y −x′x′′y2 0

1 0 0 0 −x′x′′y xx′x′′y

1 0 0 x′′y −xx′′y

1 0 x′y −xx′y

1 0 −xy

1 0

1











































































































































1 x

1

1 x′ x′′ −x′x′′

1 0 −x′′

1 −x′

1

1 x

1















































,















































1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

y 0 0 0 0 1

0 0 0 0 1

−y 0 0 0 0 1





























































































=















































1

0 1

x′x′′y xx′x′′y 1

−x′′y −xx′′y 0 1

−x′y −xx′y 0 0 1

0 −xy 0 0 0 1

−xx′x′′y2 0 xy xx′y xx′′y −xx′x′′y 1

−x′x′′y2 0 0 x′y x′′y −x′x′′y 0 1














































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



























































































1 0 x

1 0 −x′ −x′′ 0 −x′x′′

1 0 0 0 0

1 0 0 x′′

1 0 x′

1 0 x

1 0

1















































,















































1

1

y 1

1

1

1

−y 1

1





























































































=















































1 xy 0 −xx′y −xx′′y xx′x′′y2 −xx′x′′y 0

1 0 0 0 −x′x′′y 0 xx′x′′y

1 x′y x′′y −x′x′′y2 x′x′′y 0

1 0 −x′′y 0 xx′′y

1 −x′y 0 xx′y

1 0 0

1 −xy

1











































































































































1 0 x

1 0 −x′ −x′′ 0 −x′x′′

1 0 0 0 0

1 0 0 x′′

1 0 x′

1 0 x

1 0

1















































,















































1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

0 0 0 0 0 1

y 0 0 0 0 0 1

−y 0 0 0 0 0 1





























































































=















































1

x′x′′y 1 xx′x′′y

0 0 1

x′′y 0 xx′′y 1

x′y 0 xx′y 0 1

−xx′x′′y2 xy 0 −xx′y −xx′′y 1 −xx′x′′y

0 0 −xy 0 0 0 1

−x′x′′y2 0 0 −x′y −x′′y 0 −x′x′′y 1














































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



























































































1 0 0 x x′′ 0 0 −xx′′

1 0 0 0 x′ 0 0

1 0 0 0 −x′ 0

1 0 0 0 −x′′

1 0 0 −x

1 0 0

1 0

1















































,















































1

0 1

0 0 1

0 0 0 1

0 0 0 0 1

y 0 0 0 0 1

0 0 0 0 1

−y 0 0 0 0 1





























































































=















































1 0 −xx′′y 0 0 0 xx′x′′y 0

x′y 1 xx′x′′y2 xx′y x′x′′y 0 0 −xx′x′′y

1 0 0 0 0 0

x′′y 1 0 0 −x′x′′y 0

xy 0 1 0 −xx′y 0

−xx′′y2 −xy −x′′y 1 0 xx′′y

1 0

−x′y 1











































































































































1 0 0 x x′′ 0 0 −xx′′

1 0 0 0 x′ 0 0

1 0 0 0 −x′ 0

1 0 0 0 −x′′

1 0 0 −x

1 0 0

1 0

1















































,















































1

0 1

0 0 1

0 0 0 1
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A.4 Non-split group with k-root system of type BC2

Let K/k be a tamely, purely ramified quadratic Galois extension of k, and x +→ x̄ is a cyclic

generator of the Galois group Gal(K/k). Suppose that Ga,b has K-structure isogenous to

SL5(K) with Galois action given by non-trivial involution of the Dynkin diagram of type

A4.

(a) For all x, y ∈ K, we have the following commutators:

















































1 x

1

1

1 x̄

1

























,

























1 0 0 y

1 0 0 ȳ

1 0 0

1 0

1

















































=

























1 0 0 0 xȳ − x̄y

1 0 0 0

1 0 0

1 0

1









































































1 x

1

1

1 x̄

1

























,

























1

0 1

0 0 1

y 0 0 1

ȳ 0 0 1

















































=

























1

1

0 1

x̄ȳ − xy 0 1

1









































































1

x 1

1

1

x̄ 1

























,

























1 0 0 y

1 0 0 ȳ

1 0 0

1 0

1

















































=

























1

1 0 xy − x̄ȳ

1 0

1

1









































































1

x 1

1

1

x̄ 1

























,

























1

0 1

0 0 1

y 0 0 1

ȳ 0 0 1

















































=

























1

0 1

0 0 1

0 0 0 1

x̄y − xȳ 0 0 0 1
























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(b) For all x, y ∈ K with y + ȳ = 0, we have the following commutators:

















































1 x

1

1

1 x̄

1

























,

























1

1 0 −y

1 0

1

1

















































=

























1 0 0 xy xx̄y

1 0 0 −x̄y

1 0 0

1 0

1









































































1 x

1

1

1 x̄

1

























,

























1

0 1

0 0 1

0 0 0 1

y 0 0 0 1

















































=

























1

0 1

0 0 1

x̄y xx̄y 0 1

−xy 0 0 1









































































1

x 1

1

1

x̄ 1

























,

























1 0 0 0 y

1 0 0 0

1 0 0

1 0

1

















































=

























1 0 0 −x̄y

1 0 xx̄y xy

1 0 0

1 0

1









































































1

x 1

1

1

x̄ 1

























,

























1

1

0 1

−y 0 1

1

















































=

























1

0 1

0 0 1

−xy 0 0 1

xx̄y x̄y 0 0 1
























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(c) For all x, y, z, w ∈ K with xx̄+ y+ ȳ = 0 and zz̄+w+ w̄ = 0, we have the following

commutators:

















































1

1 x −y

1 x̄

1

1

























,

























1 0 z 0 w

1 0 0 0

1 0 −z̄

1 0

1

















































=

























1 0 0 −x̄z

1 0 0 −xz̄

1 0 0

1 0

1









































































1

1 x −y

1 x̄

1

1

























,

























1

0 1

z 0 1

0 0 0 1

w 0 −z̄ 0 1

















































=

























1

xz 1

1

1

x̄z̄ 1









































































1

1

x 1

−y x̄ 1

1

























,

























1 0 z 0 w

1 0 0 0

1 0 −z̄

1 0

1

















































=

























1 −xz

1

1

1 −x̄z̄

1









































































1

1

x 1

−y x̄ 1

1

























,

























1

0 1

z 0 1

0 0 0 1

w 0 −z̄ 0 1

















































=

























1

0 1

0 0 1

x̄z 0 0 1

xz̄ 0 0 1
























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(d) For all x, y, z ∈ K with xx̄+ y + ȳ = 0, we have the following commutators:

















































1

1 x −y

1 x̄

1

1

























,

























1 z

1

1

1 z̄

1

















































=

























1 0 −xz yz yzz̄

1 0 0 ȳz̄

1 0 x̄z̄

1 0

1









































































1 0 x 0 y

1 0 0 0

1 0 −x̄

1 0

1

























,

























1

0 1

0 0 1

z 0 0 1

z̄ 0 0 1

















































=

























1 −ȳz̄

1

−x̄z̄ 1

−yzz̄ −xz 1 −yz

1









































































1

1

x 1

−y x̄ 1

1

























,

























1

z 1

1

1

z̄ 1

















































=

























1

0 1

xz 0 1

ȳz 0 0 1

yzz̄ yz̄ −x̄z̄ 0 1









































































1

0 1

x 0 1

0 0 0 1

y 0 −x̄ 0 1

























,

























1 0 0 z

1 0 0 z̄

1 0 0

1 0

1

















































=

























1

−yz̄ 1 x̄z̄ −yzz̄

1 xz

1

−ȳz 1



























Appendix B

Tables

Type Diagram Symmetry Order

A2n 2

A2n−1 2

Dn+1 2

D4 or 3

E6 2

Table B.1: Non-trivial based automorphisms of a simple reduced root system arising from
symmetries of its Dynkin diagram.
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R Type Diagram Symmetry σ Order R Type Twisted Diagram

A2n 2 BCn

A2n−1 2 Cn

Dn+1 2 Bn

D4 or 3 G2

E6 2 F4

Table B.2: Twisted root systems R arising from non-trivial based automorphism of a simple
reduced root system R. Note that for the non-reduced twisted root system of type BCn,
the black vertex indicates a non-reduced twisted root where twice it is also a twisted root.
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Ψ Name Weighted Dynkin Diagram of Ψ

A1
1 1

A! (0 ≥ 2)
1 1 1 1

1

B! (0 ≥ 3) 2 2 2 2 2
1

1

B-C! (0 ≥ 3)
1 2 2 2 2

1

1

C! (0 ≥ 2)
1 2 2 2 2 1

C-B! (0 ≥ 2)
1 1 1 1 1 1

C-BC1
2 1

C-BC! (0 ≥ 2)
2 2 2 2 2 1

D! (0 ≥ 4)

1

1
2 2 2 2

1

1

E6

1 2 3 2 1

2

1

E7

2 3 4 3 2

2

1 1

(continued on the next page)
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Ψ Name Weighted Dynkin Diagram of Ψ

E8

2 4 6 5 4

3

2 13

F4
2 3 4 21

F I
4

1 2 3 2 1

G2
1 2 3

GI
2

1 2 1

Table B.3: Affine twisted root systems and their weighted Dynkin diagrams.
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[γ(λ), α(λ), β(λ)] abelianization of Hλ ∼= fn

[

1
4 ,

1
4 ,

1
4

]

f1 ⊕ f2 ⊕ f3 ⊕
f4 ⊕ f6

〈(0,−2xy), (−xy,−x2y) | x, y ∈ f〉

⊕
f5 ⊕ f7

〈(0, 2xy), (xy,−x2y) | x, y ∈ f〉
⊕

f8
〈±xy | x, y ∈ f〉

∼=

{

f5 if #f = 2,

f3 if else.

[

1
3 ,

1
3 , 0

]

f1 ⊕ f2 ⊕
f4 ⊕ f6

〈(0,−2xy), (−xy,−x2y) | x, y ∈ f〉

⊕ f5 ⊕
f7

〈2xy | x, y ∈ f〉
⊕

f8
〈xy | x, y ∈ f〉

∼=











f5 if #f = 2,

f4 if char(f) = 2 and #f (= 2,

f3 if else.

[

1
2 , 0, 1

2

]

f1 ⊕ f3 ⊕ f4 ⊕ f5 ⊕ f6 ⊕ f7 ⊕
f8

〈±xy | x, y ∈ f〉
∼= f6

[

0, 1
3 ,

1
3

]

f2 ⊕ f3 ⊕ f4 ⊕
f5 ⊕ f7

〈(0, 2xy), (xy,−x2y) | x, y ∈ f〉

⊕
f6

〈−2xy | x, y ∈ f〉
⊕

f8
〈−xy | x, y ∈ f〉

∼=











f5 if #f = 2,

f4 if char(f) = 2 and #f (= 2,

f3 if else.

(continued on the next page)



122
A
P
P
E
N
D
IX

B
.
T
A
B
L
E
S

[γ(λ), α(λ), β(λ)] abelianization of Hλ ∼= fn

[

0, 1
2 , 0

]

f2 ⊕ f4 ⊕ f5 ⊕
f6

〈−2xy | x, y ∈ f〉
⊕

f7
〈2xy | x, y ∈ f〉

⊕ f8 ∼=

{

f6 if char(f) = 2,

f4 if else.

Table B.4: Here G is a connected, quasi-simple, semisimple reductive algebraic group defined and splitting over a non-archimedean
field k with residue field f with a type C2 affine k-root system. The simple affine k-roots are as in (3.1.8), and the enumeration for the
minimal-height positive affine k-roots is as in (3.1.9). The table shows the abelianization of the group Hλ for the barycenter λ of each
facet not a strongly-special vertex. We denote by fi = f the abelian group isomorphic to Ui = Uψi

/Uψi
∩Gλ,1 for i = 1, . . . , 8.



123

[γ(λ), β(λ), α(λ)] abelianization of Hλ ∼= fn

[

1
6 ,

1
6 ,

1
6

]

f1 ⊕ f2 ⊕ f3 ⊕
f4

〈xy | x, y ∈ f〉

⊕
f6 ⊕ f8 ⊕ f10 ⊕ f12

〈

(0, 0,−xy, 0), (0, 2xy, 3x2y, 0), (0, 0, 0,−2xy), (0, 0, 3xy, 0),

(xy, 0, 0, 0, x2y), (0,−xy, 0, 0), (−xy, x2y, x3y, 0), (0, 0, 0,±xy)

∣

∣

∣

∣

∣

x, y ∈ f

〉

⊕
f5 ⊕ f7 ⊕ f9 ⊕ f11

〈

(0, 0, 0, xy), (0,−2xy, 3x2y,−3xy2)

(0, 0, 0,±3xy), (xy, x2y,−x3y, 2x3y2)

∣

∣

∣

∣

∣

x, y ∈ f

〉

∼=

{

f4 if #f ∈ {2, 3},
f3 if else.

[

1
3 ,

1
3 , 0

]

f1 ⊕ f2 ⊕
f4

〈xy | x, y ∈ f〉
⊕ f5 ⊕

f6 ⊕ f12
〈(0,−2xy), (xy, x2y), (0,±xy) | x, y ∈ f〉

⊕ f7 ⊕
f8

〈−xy | x, y ∈ f〉
⊕ f9 ⊕

f10
〈−xy | x, y ∈ f〉

⊕
f11

〈xy,−3xy | x, y ∈ f〉

∼= f5

[

0, 1
2 , 0

]

f2 ⊕ f4 ⊕ f5 ⊕ f6 ⊕ f7 ⊕ f8 ⊕ f9 ⊕ f10 ⊕
f11

〈xy,−3xy | x, y ∈ f〉
⊕

f12
〈−2xy,±xy | x, y ∈ f〉

∼= f8

(continued on the next page)
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[γ(λ), α(λ), β(λ)] abelianization of Hλ ∼= fn

[

1
4 , 0, 1

4

]

f1 ⊕ f3 ⊕ f4 ⊕ f5 ⊕
f7 ⊕ f9 ⊕ f11

〈(−2xy, 3x2y,−3xy), (0, 3xy, 0), (0, 0,−3xy) | x, y ∈ f〉

⊕
f6 ⊕ f8 ⊕ f10 ⊕ f12

〈

(0, 0,−xy, 0), (0, 2xy, 3x2y, 0), (0, 0, 0,−2xy), (0, 0,−3xy, 0),

(xy, 0, 0, x2y), (0,−xy, 0, 0), (−xy, x2y, x3y, 0), (0, 0, 0,±xy)

∣

∣

∣

∣

∣

x, y ∈ f

〉

∼=











f6 if char(f) = 3,

f5 if char(f) = 2,

f4 if else.

[

0, 0, 1
3

]

f3 ⊕ f5 ⊕ f6 ⊕
f8 ⊕ f10

〈(2xy, 3x2y), (0,−3xy) | x, y ∈ f〉
⊕

f12
〈−2xy | x, y ∈ f〉

⊕
f7 ⊕ f9 ⊕ f11

〈(−2xy, 3x3y,−3xy2), (0, 3xy, 0), (0, 0,−3xy) | x, y ∈ f〉

∼=

{

f6 if char(f) ∈ {2, 3},
f3 if else.

(continued on the next page)
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[γ(λ), α(λ), β(λ)] abelianization of Hλ ∼= fn

[

0, 1
5 ,

1
5

]

f2 ⊕ f3 ⊕ f4 ⊕
f12

〈−2xy,±xy | x, y ∈ f〉

⊕
f6 ⊕ f8 ⊕ f10

〈(0, 2xy, 3x2y), (0, 0,−3xy), (−xy, x2y, x3y) | x, y ∈ f〉

⊕
f5 ⊕ f7 ⊕ f9 ⊕ f11

〈

(0, 0, 0, xy), (0,−2xy, 3x2y,−3xy2),

(0, 0, 0,±3xy), (xy, x2y,−x3y, 2x3y2)

∣

∣

∣

∣

∣

x, y ∈ f

〉

∼=











f5 if #f ∈ {2, 3},
f4 if char(f) ∈ {2, 3} and #f /∈ {2, 3},
f3 if else.

Table B.5: Here G is a connected, quasi-simple, semisimple reductive algebraic group defined and splitting over a non-archimedean field
k with residue field f and with a type G2 affine k-root system. The simple affine k-roots are as in (3.1.11), and the enumeration of the
minimal-height positive affine k-roots is as in (3.1.12). The table shows the abelianization of the group Hλ for the barycenter λ of each
facet not a strongly-special vertex. We denote by fi the abelian group isomorphic to Ui = Uψi

/Uψi
∩Gλ,1 for i = 1, . . . , 12.
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[γ(λ), α(λ), β(λ)] abelianization of Hλ ∼= fn

[

1
12 ,

1
12 ,

1
12

]

f1 ⊕ f2 ⊕ f3 ⊕
f4

〈(1 + ζ2)xy | x, y ∈ f〉
⊕

f6
〈−(1 + ζ2)xy,−xy | x, y ∈ f〉

⊕
f5 ⊕ f7 ⊕ f8 ⊕ f9

〈

(0, 0, 0, xy), (0,−2xy, 3x2y,−3xy2), (0, 0, 3xy, 0),

(0, 0, 0,−3xy), (xy, x2y,−x3y, 2x3y2)

∣

∣

∣

∣

∣

x, y ∈ f

〉

∼=























f5 if #f ∈ {2, 3} and 1 + ζ2 = 0,

f4 if #f ∈ {2, 3} and 1 + ζ2 (= 0,

f4 if #f /∈ {2, 3} and 1 + ζ2 = 0,

f3 if else.

[

1
9 ,

1
9 , 0

]

f1 ⊕ f2 ⊕
f4

〈(1 + ζ2)xy | x, y ∈ f〉
⊕ f5 ⊕

f6
〈−(1 + ζ2)xy | x, y ∈ f〉

⊕
f7 ⊕ f8 ⊕ f9

〈(−2xy, 3x2y,−3xy2), (0, 3xy, 0), (0, 0,−3xy) | x, y ∈ f〉

∼=











































f7 if char f = 3 and 1 + ζ2 = 0,

f6 if char f = 2 and 1 + ζ2 = 0,

f5 if char f > 3 and 1 + ζ2 = 0,

f5 if char f = 3 and 1 + ζ2 (= 0,

f4 if char f = 2 and 1 + ζ2 (= 0,

f3 if else.

[

1
6 , 0, 1

6

]

f1 ⊕ f3 ⊕ f4 ⊕ f5 ⊕
f6

〈−(1 + ζ2)xy,−xy | x, y ∈ f〉
⊕ f7 ⊕ f8

⊕
f9

〈xy,−3xy | x, y ∈ f〉

∼= f6

(continued on the next page)
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[γ(λ), α(λ), β(λ)] abelianization of Hλ ∼= fn

[

0, 1
9 ,

1
9

]

f2 ⊕ f3 ⊕ f4 ⊕
f6

〈−xy | x, y ∈ f〉

⊕
f5 ⊕ f7 ⊕ f8 ⊕ f9

〈

(0, 0, 0, xy), (0,−2xy, 3x2y,−3xy2), (0, 0, 3xy, 0),

(0, 0, 0,−3xy), (xy, x2y,−x3y, 2x3y2)

∣

∣

∣

∣

∣

x, y ∈ f

〉

∼=

{

f4 if #f ∈ {2, 3},
f3 if else.

[

0, 1
6 , 0

]

f2 ⊕ f4 ⊕ f5 ⊕ f6 ⊕
f7 ⊕ f8 ⊕ f9

〈(−2xy, 3x2y,−3xy2), (0, 3xy, 0), (0, 0,−3xy) | x, y ∈ f〉
∼=











f6 if char f = 2,

f5 if char f = 3,

f4 if else.

Table B.6: Here G is a connected, quasi-simple, semisimple reductive algebraic group defined and non-split quasi-split over a non-
archimedean field k with residue field f with a type GI

2 affine k-root system. We assume that G splits over K, a degree 3 tamely,
totally ramified extension of k having ring of integers AK . The simple affine k-roots are as in (3.1.14), and the enumeration for the
minimal-height positive affine k-roots is as in (3.1.15). The table shows the abelianization of the group Hλ for the barycenter λ of each
facet not a strongly-special vertex. We denote by fi = f the abelian group isomorphic to Ui = Uψi

/Uψi
∩Gλ,1/3 for i = 1, . . . , 9. We also

denote by ζ the natural projection into f of a the unit σ(/1/3)//1/3 ∈ A×
K for a fixed uniformizer /1/3 of K and a fixed cyclic generator

σ of the Galois group Gal(K/k).
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(χ1(1),χ2(1),χ3(1),χ4(1),χ5(1)) non-trivial w ∈ W such that wχ = χ on wGλ+ ∩Gλ+

(+1,+1,+1,+1,+1) wa

(−1,+1,+1,+1,+1) (a∨ + b∨)(wawb)wa

(+1,−1,+1,+1,+1) wa

(+1,+1,−1,+1,+1) (wawb)3wa

(−1,−1,+1,+1,+1) (a∨ + 2b∨)(wawb)2

(−1,+1,−1,+1,+1) (a∨ + b∨)(wawb)2

(+1,−1,−1,+1,+1) (wawb)2

(+1,+1,+1,−1,+1) (a∨ + 2b∨)(wawb)2

(−1,+1,+1,−1,+1) (a∨ + 2b∨)(wawb)2

(+1,−1,+1,−1,+1) (a∨ + 2b∨)(wawb)2

(+1,+1,−1,−1,+1) (2a∨ + 2b∨)(wawb)wa

(−1,−1,+1,−1,+1) (a∨ + 2b∨)(wawb)2

(−1,+1,−1,−1,+1) (2a∨ + 2b∨)(wawb)2wa

(+1,−1,−1,−1,+1) (a∨ + b∨)(wawb)wa

(−1,−1,−1,−1,+1) (a∨ + b∨)(wawb)wa

(+1,+1,+1,+1,−1) (wawb)2

(−1,+1,+1,+1,−1) −b∨(wawb)3wa

(+1,−1,+1,+1,−1) (wawb)2

(+1,+1,−1,+1,−1) (wawb)2

(continued on the next page)



129

(χ1(1),χ2(1),χ3(1),χ4(1),χ5(1)) non-trivial w ∈ W

(−1,−1,+1,+1,−1) (wawb)3wa

(−1,+1,−1,+1,−1) −b∨(wawb)3wa

(+1,−1,−1,+1,−1) (wawb)2

(−1,−1,−1,+1,−1) (wawb)3wa

(+1,+1,+1,−1,−1) −a∨wa

(+1,−1,+1,−1,−1) −a∨wa

(−1,+1,−1,−1,−1) wa

(−1,−1,−1,−1,−1) wa

Table B.7: Here G = Sp4(k), the residue field of k has order #f = 2, and λ is the barycenter
of the fundamental alcove. Each λ-shallow χ is determined by a 5-tuple of integers. In the
left-hand column of the above table, we have given the 27 λ-shallow characters χ such that
I(G,Gλ,χ) (= Gλ(χ). In the right-hand column, we have provided a non-trivial element
µw in the reflection group W = (ZR∨)W0 of the affine root system of type C2, chosen so
that some lift n ∈ N of w is contained in I(G,Gλ+,χ) and not Gλ(χ).
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Index

K-pinning (épinglage), 26

K-root group, 25

K-root morphism, 26

K-root system, 24

λ-shallow affine k-root, 41

λ-shallow character, 49

k-root group, 27

k-root system, 25

abelianization, 47

affine k-root group, 34

affine k-root system, 35

affine Bruhat decomposition, 83

affine generic character, 85

affine linear functional, 15

affine linear map, 15

affine reflection group, 18

affine twisted root, 16

affine twisted root system, 16

affine Weyl group, 82

alcove, 18

based automorphism, 10

Chevalley basis, 26

commutator, 30

commutator subgroup, 47

compactly induced representation, 80

conjugate representation, 80

constant part, 15

Dynkin diagram, 15

facet, 20

fundamental alcove, 18

gradient, 15

intercept, 15

intertwining algebra, 81

intertwining set, 80

linear part, 15

long affine twisted root, 17

long twisted root, 13

minimal constant relation, 20

Moy-Prasad filtration, 37

Moy-Prasad subgroup, 37
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parahoric subgroup, 36

positive affine twisted root, 18

positive twisted root, 11

pro-unipotent radical, 37

quasi-split group, 22

reduced root system, 15

short affine twisted root, 17

short twisted root, 13

simple affine twisted root, 17

simple supercuspidal representation, 85

simple twisted root, 11

smooth representation, 79

split group, 22

stabilizer of a λ-shallow character, 81

stable vector, 84

strongly-special vertex, 20

supercuspidal representation, 79

twisted root, 11

twisted root system, 11

vanishing hyperplane, 17

vertex, 20

weighted Dynkin diagram, 21



Index of Notation

§2.1. Twisted Root Systems

E a real vector space

R a simple reduced root system of linear functionals on E

R∨ the coroot system contained in E

W0 the finite reflection group of R

〈 , 〉 the perfect pairing between R and R∨

R+ a positive system in R

D the simple system in R inside of R+

σ an order e ∈ {1, 2, 3} automorphism of R preserving D

E = Eσ the vectors in E fixed by σ

R = Rσ the twisted root system of restrictions to E of roots in R

D = Dσ the simple system in R restricting from D

R+ = R+
σ the positive system in R restricting from R+

(a) the set of roots in R whose restriction to E is a ∈ R

ea the order of (a)

R∨ the coroot system of R contained in E

W0 = Wσ
0 the reflection group of R

Ψ = Ψ(R,σ) the twisted affine root system with gradients in R

Ψ(a) the set of affine twisted roots with gradient a ∈ R
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α0, . . . ,α! the simple affine twisted root corresponding to the twisted root ai ∈ R

∆ the simple system in Ψ

C the alcove in E corresponding to ∆

W the affine reflection group of Ψ with gradients in W0

§2.2. Quasi-split Groups

k a non-archimedean local field with surjective valuation val : k× → Z

Ak the ring of integers of k

Pk the unique maximal ideal in Ak

/ a prime element in Ak generating Pk

f the residue field of k

p the residual characteristic of k and the characteristic of f

K a degree e ∈ {1, 2, 3} tamely, totally ramified Galois extension of k

AK the ring of integers in K

PK the unique maximal ideal in AK

/1/e a prime element in AK generating PK whose e-th power is /

f the residue field of K, isomorphic to that of k

σ a cyclic generator of the Galois group Gal(K/k)

σ(x) = x̄ the image under σ of any x ∈ K when e = 2

G a connected, quasi-simple, semisimple reductive algebraic group defined

and quasi-split over k and splitting over K, with G = G(k)

S a maximal k-split torus in G, with S = S(k)

Z the maximal torus ofG defined over k and centralizing S, with Z = Z(k)

B a Borel subgroup of G defined over k and containing Z, with B = B(k)

R the K-root system of G relative to Z, acted on by σ

D the set of simple K-roots of G relative to (B,Z), preserved under σ

R = Rσ the k-root system of G relative to S

D = Dσ the set of simple k-roots of G relative to (B,S)
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Ua the K-root group of on which Z acts via a ∈ R

ua a K-root morphism isomorphically mapping K onto Ua(K)

(a) the set of K-roots in R whose restriction to S is a ∈ R

ea the order of (a)

Ka a subset of either K or K2 defined in Definition 2.2.1

Ua the k-root group generated by all K-root groups Ua for a ∈ (a)

Ua the group of σ-fixed elements in Ua(K)

ua a k-root morphism isomorphically mapping Ka onto Ua

vala the valuation on Ua inherited from val

Ua,r = {u ∈ Ua | vala(u) ≥ r} for r ∈ R

Ua,r+ = {u ∈ Ua | vala(u) > r} for r ∈ R

Ua,r = Ua,r/Ua,r+

da(r) the f-dimension of Ua,r/U2a,2r

Ψ = Ψ(R,σ) the affine k-root system ofG relative to S whose elements are pairs (a, r)

for which da(r) (= 0

∆ the simple affine k-roots of G corresponding to (B,S)

C the alcove of X∗(S, k)⊗Z R corresponding to ∆

Gλ a parahoric subgroup of G attached to λ ∈ X∗(S, k)⊗Z R

Z0 = Z ∩Gλ

Gλ,r the Moy-Prasad subgroup of Gλ for r ∈ R

Zr = Z ∩Gλ,r

Gλ+ the pro-unipotent radical and first Moy-Prasad subgroup of of Gλ

Gλ++ the second Moy-Prasad subgroup of Gλ

§3.1. Shallow Characters

λ a fixed point in the closure of the fundamental alcove C

s(λ) the minimal value of α(λ) + β(λ) when α,β are affine k-roots satisfying

(s1) and (s2) defined in Definition 3.1.1
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ψ1, . . . ,ψn the λ-shallow affine k-roots that take value at λ between 0 and s(λ)

Hλ = Gλ+/Gλ,s(λ)

U0 = Z+/Zs(λ)

Ui = Uψi
Gλ,s(λ)/Gλ,s(λ)

∼= Uψi
/Uψi

∩Gλ,s(λ)

χ a homomorphism Hλ → C×

χi the restriction of χ to Ui

σ(x) = x̄ the image under σ of any x ∈ K when e = 2

σ(x) = x′ the image under σ of any x ∈ K when e = 3

fi the abelian group f, isomorphic to Ui
∼= Uψi

/Uψi
∩Gλ,s(λ)

§3.2. Supercuspidal Representations

N the normalizer in G of S, defined over k, with N = N(k)

H a compact open subgroup of G containing the center of G

M a subgroup of G containing H

φ an irreducible smooth representation of H

indMH (φ) the compactly induced representation of M

mH = mHm−1 for m ∈ M

mφ the conjugate representation of mH

I(M,H,φ) the intertwining set in M of χ

χ any group homomorphism Gλ+ → C×

Gλ(χ) the stabilizer in Gλ of χ

Aχ the intertwining algebra of χ

ρ a simple Aχ-module

χρ irreducible constituent of indGλ(χ)
Gλ+

(χ) corresponding to ρ

π(χ; ρ) = indGGλ(χ)
(χρ), an irreducible supercuspidal representation of G
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[35] È. B. Vinberg. The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR Ser.

Mat., 40(3):488–526, 709, 1976.

[36] Jiu-Kang Yu. Construction of tame supercuspidal representations. J. Amer. Math.

Soc., 14(3):579–622, 2001. doi:10.1090/S0894-0347-01-00363-0.

https://doi.org/10.1090/ulect/066
https://doi.org/10.1007/s00222-007-0099-1
https://doi.org/10.1090/S0894-0347-01-00363-0

	Introduction
	Constructing Supercuspidal Representations
	Structure of the Thesis
	Acknowledgements

	Quasi-split Groups over Filtered Fields
	Twisted Root Systems
	Twisted roots
	Affine twisted roots

	Quasi-split Groups
	Root systems
	Chevalley-Steinberg systems and root groups
	Affine k-roots and parahoric subgroups


	Supercuspidal Representations
	Shallow Characters
	Shallow affine k-roots
	Shallow characters
	Rank-2 examples

	Supercuspidal Representations
	Compact induction
	Supercuspidal representations and shallow characters
	New supercuspidal representations of `39`42`"613A``45`47`"603ASp4(k) when #f=2
	New supercuspidal representations of G2 when `39`42`"613A``45`47`"603Achar(f)=3


	Commutator Computations
	Non-split group with k-root system of type A2
	Non-split group with k-root system of type B2=C2
	Non-split group with k-root system of type G2
	Non-split group with k-root system of type BC2

	Tables
	Index
	Index of Notation
	Bibliography

