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 Microbial communities are complex networks comprised of multiple species 

that are facilitating and inhibiting one another (as well as themselves). Currently, 

we lack an understanding of what mechanisms drive coexistence within these 

communities. We aimed to remedy this by studying the dynamics of coexisting 

communities, focusing on the complexity of their interaction networks, the impact of 

spatial dynamics, and the interplay of facilitating and inhibiting interactions. These 

limitations in our understanding prevent the furtherment of designing intentional 

communities for bioremediation, maintenance of healthy microbiota, and other 

functional communities. To better understand these microbial dynamics, we chose 

to address the problem from two fronts: computational modeling and exploring 

dynamics of cocultures. Through our 1-D model, spatial structure fostering more 

coexistence – especially when facilitation is present. For the coexistence assays, we 

determined that contact-dependent growth inhibition is a density dependent 

mechanism, and the use of a Tn-Seq mutant library to predict species interactions is 

possible, but needs further optimization to reconcile density dependent effects of 

interactions.  
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Prelude 

Microbial communities affect our lives in many ways, from impacting 

human health to shaping the ecosystem around us. 

There are many underexplored facets of how interactions among 

microbial species affect community composition and assembly. This is 

important for a better understanding of how communities are formed, how 

they are maintained, and potentially how we can modify and control them. 

My work covers two particular aspects: In chapter 1 I investigate the 

impact of diffusible metabolites on community assembly and coexistence 

within a spatially structured environment. In chapter 2 I examine contact-

dependent inhibition as an example of interactions that require physical 

contact between cells to explore its spread and ecological impact. 

Since my work covers two rather distinct aspects, I have organized my 

thesis in two independent chapters, each with separate introduction, results, 

and discussions. 
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Chapter 1  

Chemical mediators’ impact on microbial community assembly and 

coexistence in well-mixed and spatial environments  

Introduction 

Microbes are ever-present from the deep ocean to the human digestive tract.  

However, it is estimated that as little as 5% of microbes have been discovered1. In 

some cases the community has been treated as a ‘black box’, focusing solely on the 

relation between an input (e.g. a carbon source) and a measurable output (e.g. a 

product or degradation of a chemical)2,3. In these instances, the microbial 

community composition is often not taken into consideration. On the other hand, 

often when microbes are more thoroughly studied, it is through in vitro experiments 

of single cultivable species or 16S ribosomal RNA gene sequencing of entire 

communities4–8. Both of these approaches help further the knowledge on microbes, 

but fail to address the interactions that microbes in a community have on one 

another. The spatial structure of the community is also lost through the process of 

collecting these samples leaving a gap in understanding of the organization of the 

microbes. Investigating the role interactions play in community dynamics and 

coexistence has become a major area of interest in microbial ecology. 

 By understanding community coexistence, in the future we can prevent or 

recover from dysfunctional microbiota compositions associated with disease 9. Our 
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current methods of controlling pathogenic bacteria rely heavily on the use of 

antibiotics, which kills pathogenic and non-pathogenic bacteria alike. The 

drawbacks of antibiotic use are well known: antibiotic resistance and imbalance of 

the bacteria flora9,10. If the gut microbiota is viewed as a delicate ecosystem, then 

the treatment for diseases such as Clostridium difficile infection, obesity, and 

necrotizing enterocolitis could be to fix the imbalance in the ecosystem9,11–13. We 

must learn how the community assembles and coexists to better combat these 

prevalent diseases without damaging the heathy community as a whole. 

Before communities can be intentionally manipulated for therapeutic means, 

we must first understand how a community achieves, maintains, and loses 

coexistence.  We define coexistence as a state in which the species within the 

community remain present above a certain threshold though each of the species 

may undergo variations in abundance. To understand coexistence, the role 

microbial interactions play in both stabilizing and destabilizing a community must 

be better understood. Without lasting coexistence, microbial therapeutics would be 

only a temporary fix to a chronic problem.    

Microbial communities are prevalent and impactful 

Microbes are not found in isolation, but instead are found in diverse 

communities and environments. Within these communities, diverse microbial 

interactions create complex networks, of facilitation and inhibition through direct 

and indirect means. In natural communities, microbes can inhibit and facilitate each 

other through many mechanisms such as amino acid exchange (facilitation)14,15  and 
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antibiotic production (inhibition)16. These interactions impact the ability of all 

species to maintain within the community by impacting growth17, survival18, and 

prevalence19. By understanding the network of microbial interactions, the 

community is broken down into the most fundamental parts that offer insight into 

the complex nature of the community’s functionality.  

Interactions can influence coexistence in microbial communities 

Looking at a few species and determining the dynamics between them is 

insightful20 , but it is unclear how this scales up to larger communities. It is also 

unclear if facilitation or competition drives diversity and stability of a community. A 

proposed reason for facilitation is the Black Queen Hypothesis 21 where some 

species lose gene diversity, forcing them to be reliant on others in the community to 

survive. The production of helpful resources can be attributed to leaky vital genes 

that allows for excess of a resource that is consumed by another member of the 

community 21.  

For competition within communities stems from the limited resources 

present that are necessary for growth. There is the principle of competitive 

exclusion which asserts that species with too much niche overlap cannot coexist and 

it is a race to outcompete each other, forcing the other to be excluded from the 

environment 22. This perspective on competition predicts that competition will 

lower species diversity.  
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There are many perspectives trying to describe how coexistence arises in 

communities such as neutral theory – positing that these species are ecologically 

equivalent and able to coexist23, a variety of relationships between microbes allows 

for diversity such as cross-feeding24, rock-paper-scissors25, and higher-order 

interactions not defined by pairwise interactions26,27.  Alternative to neutral theory, 

niche theory speculates that coexistence arises due to niche overlap and fitness 

differences28,29.  

Most likely a combination of facilitation and inhibition leads to these complex 

diverse communities in our guts30,31, soil32,33, and nearly everyone other place on the 

planet. What parameters lead to coexistence of microbial communities? How do 

these parameters interplay with one another to affect a community’s assembly and 

coexistence?  What contributes to the communities to balance the growth rates and 

allow for coexistence? 

 Spatial context impacts community assembly and coexistence 

In natural communities, microbes are present not just with each other, but 

dispersed in space throughout complex environments (plant phyllo sphere, human 

nasal passage, or waterways, as a few examples)34–36. Within these communities 

microbes interact via nutrients and inhibitors37,38.  This is an important aspect to 

understanding community assembly and coexistence because diffusion of nutrients 

or inhibitors can shape interactions among members of a community.  It is not 

always clear how the spatial structure of the environment will impact a community 

– especially one with a diverse set of interactions.  
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 In lab settings, often well-mixed cocultures fail to produce coexistence, so 

exploring coexistence in a lab setting proves difficult. A spatial experiment can be 

performed, but understanding the dynamics and expanding these finding to larger 

more diverse communities is challenging. A better way to address questions about 

communities is using mathematical modeling. The introduction of a spatially 

segregated community allowed for a 3-species community to thrive together, when 

they outcompeted one another in a well-mixed environment 39. Their takeaway was 

that “fences make good neighbors” for these microbial communities. This group 

created a microfluidic device to allow chemical mediators to pass between cells, but 

not the cells themselves to better understand how by changing the distance between 

the species the coexistence changed. They found without distance between them all 

3 of their species could not survive, but by imposing spatial structure all 3 were able 

to stably coexist. In order to probe complex communities’, models that incorporate 

the spatial context can be used to ask and address outstanding questions.  

Mathematical Modeling of Microbial Communities Offers Valuable Insights 

A mathematical model will offer insight into impact of the complex 

simultaneous interaction on the stability of the community. This will lead to 

predictions on how the community as a whole reaches coexistence and impacts 

members’ growth. It offers predictive power and describes a system’s response to a 

specific input or a system’s response to a perturbation. For population models, 

within a community, each species is considered a population and described as a 

single entity. Thus, this type of model aims to evaluate community-level impacts 
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based on the overall impact experienced by each constituent population as a whole, 

not the individual members. This facilitates predictions pertaining to how 

populations will respond to changes in the environment and influence other 

populations in the community40. This model, however, does not account for 

heterogeneity within an individual populations41. Instead, it assumes a well-mixed 

environment, in which each individual is experiencing the same environmental 

factors and thus responds to changes in the environment similarly.   

The implementation of a population model relies on data from the system 

(e.g. starting cell count, growth rate, and influence of species on one another) to 

predict changes in growth rate of each population in response to environmental 

perturbation. It is easily modified to model a variety of systems such as mutualism, 

competition, and predator-prey role reversal 40,42,43. Once the parameters of the 

model are established, simulations can be performed which predict the impact of 

altering specific parameters on various factors on the overall community dynamics. 

This provides a consistent, modifiable system to study the population-level impacts 

a community experiences in response to individual, or simultaneous, environmental 

changes. In order to validate the simulations, in vitro and in vivo experiments are 

performed to compare the predicted outcome with the experimental outcome. This 

provides a metric for measuring the descriptive and predictive capacity of a 

mathematical model for the system. Mathematical models are continuously 

improved through the addition of newly obtained data pertinent to the system’s 

dynamics. Through this iterative process, mathematical models become robust tools 
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for understanding the dynamics of a system and predicting the impact stressors 

have on the system.  

Previous work on spatial modeling such as agent-based models have been 

used to model, bacterial communities experiencing different sub-environments such 

as gradients of moisture, nutrients, and temperature changes44.  A previous model 

has examined how the moisture and roughness of the soil may influence microbial 

diversity within a soil sample45.  In their model, they incorporate the parameters of 

different species interacting with their environment and the varying environments 

(soil roughness and moisture)45. By exploring abiotic impacts that affect individual 

cells within several populations, they were able to observe unique spatial patterns 

that formed for these communities.  

The one-dimensional (1-D) model is meant to model microbes in a basic 

spatial environment. Often sequencing sets46–48 from environmental and clinical 

samples find large microbial community diversity. However, lab settings are often 

limited to small, minimalistic versions of these communities.  This arises from a 

multitude of challenges, from difficult to culture microbes to dominance of one 

strain within an artificial community. What allows for such a range of community 

diversity to be maintained in natural communities? By modeling these communities, 

I hope to gain insight into what parameters (or combination thereof) leads to larger 

stable microbial communities. By taking a 1D perspective we are considering space, 

but still keeping a simplified model of it. This approach could help us identify rules 
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and trends for coexistence that allows for understanding these complex, natural 

communities seen in environmental samples.  

To understand microbial coexistence, we need to better understand two 

factors of their communities: types of interaction (facilitation and inhibition) and 

the environment (well-mixed and spatial). In the pursuit of studying these 

parameters’ impact on community coexistence, we are focusing on community 

richness, which is a measure of the number of coexisting species present in a 

community at a given time. Natural communities display a great range of richness 

across time and space that is not fully understood. By modeling microbial 

communities based on the interactions of their substituent species, we gain a better 

understanding of the types of complex dynamics that lead to increased richness and 

coexistence. Similarly, by modeling these communities in both well-mixed and 

spatial environments we can detangle the impact of spatial dynamics on community 

interactions and niche formation that may be happening within these communities.  

We use a chemical-mediator model for both the well-mixed and spatial 

condition because chemical compounds is a known interaction dynamic in microbes 

(cross-feeding49,50 and antibiotic production51), pairwise interactions models over 

simplify indirect interactions52,53, and the more recent identification and 

quantification of chemical mediators present within communities makes it more 

important than before to understand their facilitative and inhibitory impacts on 

members within those environments54. Others have explored modeling 2D 

microbial interactions with metabolic modeling of species and diffusible metabolites 
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and found that these metabolic processes are complex, but predictable55. By 

exploring how these chemical mediators’ impact to coexistence, we hope to 

understand these trends within the interactions of communities.  

In our model,56 we determine the impact of chemical mediators on the 

overall community. This is a dilution model, modelled after environments such as a 

turbidostat where the necessary nutrients are continuously supplied. The impact of 

the chemical mediators will change the growth of the species, but all of the species 

have all necessary resources (such as a carbon source) supplied for them. We are 

trying to determine the impact of the interactions, not the richness of the 

environment itself. Our model can be used to test ecological ideas of the impact of 

spatial structure and microbial coexistence.  
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Methods 

Simulation execution 

 All simulations were completed in MATLAB ® and run on the Sirius cluster at 

Boston College. Each set of parameters was simulated 500 instances, the default 

parameters can be found in Table 1. The files used are found in Table 2.  

Chemical Mediator Model 

 A chemical mediator interaction model was used as previously described56. 

The mediators are produced and consumed by species within the well-mixed 

environment (Fig. 1). All functions and .m files can be found in Table 3. Table 2 

indicates the default parameters for the variables in the simulation.  

1D spatial model 

 Initially all species are in separate starting locations (species 1 next to 

species 2 and so on) (Fig. 4) with the same population size. The space does have 

edges (it is not a loop where species 10 is next to species 1). Similarly, to the well-

mixed model, there is a range of assigned population reproduction rates (0.1 - 

0.2/hr) that are randomly assigned to each population as well as the connectivity of 

the population – meaning which species are producing and consuming which 

mediators. This connection between each member of the community has a chance of 

being inhibitory or facilitative. This is controlled by the percent of initial 

interactions that will be inhibitory or facilitative. There is also a range for the rates 

of production and consumption of the mediators. Reflected in the well-mixed model 



  

11 

and the spatial model, after many rounds of dilution (approximately 100 

generations), a subset of species coexist in the community and these species stably 

remain if the dilution scheme continued for 200 generations 56. Each simulation was 

performed 500 instances and significance was determined via 95% BCa bootstrap 

confidence interval.   
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Results and Discussion 

Comparison of Well-mixed and Spatial Environments 

In natural communities, microbes are not present in a homogeneous 

environment, but dispersed in space which impacts the communities assembly and 

coexistence39,57,58. This structure is an important aspect to understanding 

community assembly and coexistence because diffusion of nutrients or inhibitors 

can shape interactions among members of a community. We know that space 

contributes to the structure of the interacting members of a community, often 

resulting in niches that limit contact between all members.  Comparing a well-mixed 

model to a 1D spatial model will let us determine how much and what kind of an 

impact spatial structure has on community assembly and coexistence.  

Our hypothesis for the introduction of space into a microbial community is 

that it will increase richness of coexisting communities because the interactions are 

weaker in a spatially structured environment.  There is previous work that supports 

that space allows for neighbors to have both competition and coexistence compared 

to a homogenous environment59,60. By the species being able to disperse in space 

they can survive together because the movement into a new niche may not contain a 

superior competitor59. For our model we theorize that the weaker competition 

under certain condition would be due to gradients of chemical mediators which 

would be creating niches. These weaker interactions allow for increased species 

richness because the overall negative impact of inhibitory interactions is reduced 

while still allowing for moderate beneficial effects from facilitative interactions.  In 
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this way, the presence of a single, strongly inhibitory chemical mediator will not 

impact the population of the consumer as significantly. I hypothesize that spatial 

distribution of interactions impacts the community assembly and encourages higher 

coexistence through the creation of niches compared to a well-mixed environment. I 

also predict inhibitory interactions will have less coexistence compared to 

facilitatory interaction networks, but the negative impact of inhibitory interactions 

on coexistence will be mitigated in spatial environments. I anticipate increasing 

both production and consumption rates to mimic the well-mixed conditions since 

this will be comparable to the homogeneous well-mixed environment. The goal is 

not to simulate a natural community, but to discover the patterns and trends that 

allow for coexistence within a 1D space. 

1D microbial community model 

The 1D spatial model works similarly way to the well-mixed model56; 

however instead of all of the chemical mediators being present for all microbes 

there is a 1D space (Fig.  1) across which the cells and mediators can diffuse. There 

is no competition for the space itself (more than one species can occupy the same 

location), but there is a difference in the populations and mediator present from 

location to location.   

The 1D spatial model simulates mediator interactions between populations. 

One important parameter is the size of the space being simulated as well as the 

resolution of the data collected. For the simulations performed the size of the space 

simulated is 0.5 cm.  With the size of the space the resolution of said space is 
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essential as well. To determine the necessary resolution, the absolute difference 

between the size of resolution (cm) and the highest resolution tested (0.002 cm). 

There is little difference in the values (Fig. 2). The chosen resolution is 0.005 cm in a 

5cm space.   

 

  

Figure 1 | Simulating a community of microbes engaged in chemical-mediated interactions 

in well-mixed and spatial environments. A) Species remove or produce chemical mediators, 

which stimulate or inhibit species. B) These communities can have complex interactions 

with one another. C) To simulate experimental set-up, the initial pool of 10 species goes 

through a series of growth and dilution steps. D) This is simulated in 1D space and a WM 

environment. Each experiment is simulated 500 times.  

 

A 

B 

C D 
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Figure 2 | Determining necessary resolution of 1D space. Comparison of changing the 

resolution of the 1D space to determine the impact on community composition. To 

determine the difference in composition, the average richness of all the final communities 

was compared to the average for a given resolution.  

Similar to the well-mixed model, for each simulation we simulate three 

different initial interaction networks. For the work done in this study, “Positive” 

indicates an initial interaction network that is 90% facilitative interactions, “Even” 

indicates 50% facilitative, and “Negative” indicates 10% facilitative. We hypothesize 

that facilitative interactions will increase mean richness because facilitation has 

been shown to drive biodiversity in natural communities in a multitude of ways 

such as stress amelioration, increasing access to resources, and increasing habitat 

complexity61. We intend to continue to explore inhibitory interaction (rather than 

simulating completely facilitative communities) since there is evidence of a 

prevalence interactions between microbes being inhibitory though this may be a 

bias of the analysis done to understand these communities 62.  



  

16 

  

Figure 3 | Mean richness is defined as the median number of coexisting species (samples = 

500). We chose the initial number of species types Nc = 10 and the number of mediators 

Nm = 5. The same initial community networks were compared with differing ratio of 

positive interactions. Error bars show bootstrap estimates of 95% confidence intervals for 

the mean values.  

By looking at a range of initial interaction networks (Fig. 3), we find that 

facilitation in a spatial environment leads to more coexistence. Especially within a 

spatial environment. This is due to the weakened impact of interactions in a spatial 

environment. By introducing a gradient of chemical mediators, the species being 

inhibited are no longer as strongly impacted. This also remains true for the 

facilitative interactions, but facilitation maintains larger communities by facilitation 

between species maintains balance of a community. We find that self-facilitation is 

self-serving reducing coexistence (Fig. 8). As the ratio of positive interactions 

increases, there is a higher mean richness observed in both spatial and well-mixed 

communities. Spatial has higher mean richness compared to well-mixed, increasing 

as positive interactions increase (Fig. 3).  Spatial environments allow for niches 

where slower growers can use chemical mediators to remain in the community 
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without competing with fast growers, leading to this increased richness. Conversely 

previous modeling work has demonstrated how competition can lead to higher 

coexistence in a well-mixed environment63. This difference in outcome stems from 

their model having primary metabolites being model so a well-mixed model favors 

necessary resources being present.  

We find in both well-mixed and spatial environments we often have few 

species in the final enriched community (Fig. 3). This is partially due to the number 

of starting species (10) because there will also be a reduction in surviving species 

through the growth and dilution steps (Fig. 1). This is also due to the competition of 

growth rates within the community. None of the species are competing for 

necessary resources, such as a carbon source, so it is often a competition of 

randomized growth rates. The species with the highest growth rates will remain and 

those with slower will be outcompeted. The goal is not necessarily to create the 

largest community, but rather find trends of coexistence with the manipulation of 

parameters. If the goal were to be having higher coexistence within this simulation 

then reducing the range of randomized growth rates would allow for more 

coexistence since otherwise it is a growth rate race.  

Since this is a spatial model, the dispersal rate of the species was also 

important to determine. A faster dispersal rate mimics a faster cell motility, and 

conversely the opposite is true for the slower dispersal rates indicating slower or 

even no motility. By changing the dispersal constants of cells, we can determine the 

impact of motility on mean richness in a community. For our parameters we 
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compared species in a well-mixed environment (infinity), intermediate speeds, as 

well as non-motile (0) (Fig. 4). We predicted that a reduction of dispersal would 

increase mean richness through the creation of niches, which are not found in the 

well-mixed condition. We find that coexistence increases with reduced cellular 

migration with less coexistence present in the well-mixed condition compared to 

the non-motile species (Fig. 4). In addition to the difference in outcome based on 

motility, we also find a difference with the type of initial interaction network. For 

the Positive initial interaction network, the mean richness was the highest, while the 

Negative condition remained largely unchanged throughout each dispersal constant 

(Fig. 4). For the remainder of the study we used the dispersal rate 5e-8cm2/hr, since 

this dispersal rate led to a notable difference between initial interaction networks, 

but it still allowed for some movement of the species within the 1D space (Fig. 4). 

 

Figure 4 | Impact of the reduction of motility and ratios of interactions on community mean 

richness. Mean richness is defined as the median number of coexisting species (samples = 

500). We chose the initial number of species types Nc = 10 and the number of mediators 

Nm = 5.  The mean richness was compared for fast motility (homogenous) ranging to no 

motility. The interaction ratio was also changed from mostly stimulating (yellow), even 
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(blue), and mostly inhibitory (red). Error bars show bootstrap estimates of 95% confidence 

intervals for the mean values. 

 An example of a community is visualized in Fig. 5. The initial interaction 

network is an even network. The thickness of the arrows indicates the strength of 

the interaction. The top half of the arrow is for production and the bottom half is for 

consumption. In this example community, species 3, 7, and 10 survive and coexist in 

the final community, and there are both facilitative and inhibitory interaction in the 

final community. There is also a non-interacting species present, species 10. There is 

also a self-facilitating and self-inhibiting species (#7). This representative 

community demonstrates how complex even a 3 species coexisting community can 

become.  
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Figure 5 | Example community network. An example of an even interaction network with 

default parameters. The initial (A) and final (B) community are shown with arrows indicate 

facilitation/production and blunt ends indicate inhibition. This same community is show at 

early (C), mid (D), and final (E) community location(top) and chemical mediator 

location(bottom).  

In our model, we find that a species’ low dispersal rate limits movement, but 

chemical mediators readily diffuse through space (Fig. 5). We also find there is still a 

chemical mediator gradient even with the cellular dispersal being limited. The 

populations are also varied between each species with 3 and 7 being the largest 

(and the interacting species) and 10 maintaining low population levels within the 

community.  
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Spatial structure supports more coexistence, especially when facilitation is 

prevalent 

 Another important consideration is the impact of the prevalence of 

facilitation versus inhibition. Similar to Niehaus, 2019, we find that there is a steady 

increase in coexistence when facilitation becomes more prevalent56.  Notably, the 

spatial environment supports coexistence even more when facilitation is prevalent.  

 For example, a 2-species community with density-dependent interactions 

will have differing outcomes depending on if the interaction is inhibitory or 

facilitative64. If species A is inhibiting species B, then it will lead to the exclusion of 

species B from the community. If species A is able to inhibit species B enough that 

the growth rate of species B cannot overcome the inhibition (especially with the 

growing population of species A), then species B will no longer exist in the 

community. Conversely, if species C is facilitating species D this will increase the 

growth rate of species D. If the population rapidly increases, then species C will 

decrease, reducing the population of species D because facilitation is limited. If 

species C goes extinct then the size of species’ D population will also be reduced 

because the facilitation link is also removed. The way that interactions can lead to 

coexistence is by facilitating the growth of slower growers and inhibiting the growth 

rate of faster growing populations.  

The well-mixed and spatial environment follow the same trends as the 

average mediator production/consumption rates vary 



  

22 

We find that in addition to spatial structure fostering coexistence of 

chemically interacting microbes, the communities exhibiting more facilitation also 

support more coexistence. I predict that increasing both production and 

consumption rates to mimic the well-mixed conditions since this will be comparable 

to the homogeneous well-mixed environment. The spatial environment thus far as 

increased mean richness, so we anticipate the same for the production and 

consumption rates because of the space allowing for niches and gradients of 

chemical mediators (Fig. 5). We find the same trend (similar results in each 

parameter as well as initial interaction network) for production and consumption 

rate, but the impact mean richness more strongly in the spatial environments (Fig. 

6). We posit this is because space allows for a reduction of the inhibitory affect by 

creating the chemical mediator gradient. The microbes that are in closer proximity 

to the inhibitor are more strongly receiving the inhibition while the space allows 

other species which are further away to be less drastically impacted.  
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Figure 6 | Optimal production and consumption rates in spatial and well-mixed 

environments. We ran simulations in communities starting with 90% inhibitory 

interactions (left), 50% inhibitory interactions (middle), and 90% facilitative interactions 

(right). Each simulation was performed in well-mixed (top) and spatial(bottom) 

environments. Darker colors indicate lower mean richness and lighter colors indicate 

higher mean richness. 

 

Maximum mean richness is observed at intermediate levels of prevalence of 

producers and consumers in both spatial ad well-mixed cases 

 We hypothesize that many producers and intermediate number consumers 

would increase mean richness because there will still be niches present since not 

every member of the community is consuming and producing all chemical 

mediators. If each member was producing and consuming all available resources 

this would reduce the survival of the members to a growth rate race where the 

fastest growers who are starting faster as well as receiving the most facilitation will 
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persevere.  In our model for coexistence, interaction should make a difference, 

otherwise it is a growth rate race.  

  We find that producers and consumers affect coexistence differently in 

spatial and well-mixed communities. I find that restraint of consumption favors 

higher coexistence within a community.  A community with most of the species 

consuming most of the chemical mediators (even in Positive, where nearly every 

species is facilitating) defaults to the fastest growers will prevail. This situation 

becomes solely a comparison of growth rate, whichever species are faster will 

survive, because the impact of the chemical mediators is mitigated since all the 

species consume all available mediators. There must be a balance struck for the 

production and consumption of the mediators within a community. We find that it is 

beneficial to have many producers when the interactions are facilitative (Fig. 7), and 

the modulation of the number of consumers is what changes the coexistence of the 

community. Once all the chemical mediators are available such as a saturated 

environment, then the importance comes from which species are being impacted by 

the mediators and what type of mediators they are. If the interactions are inhibitory 

then saturation is negatively impacting coexistence, but if the interactions are 

facilitative then they will benefit the richness of the community. If most of the 

microbes are producing most of the chemical mediators in the Even and Positive 

interaction networks, this could be beneficial to the community because of the 

increased chance for facilitative mediators.  
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Figure 7 | Optimal producers and consumers in spatial and well-mixed environments. We 

ran simulations in communities starting with 90% inhibitory interactions (left), 50% 

inhibitory interactions (middle), and 90% facilitative interactions (right). Each simulation 

was performed in well-mixed (top) and spatial(bottom) environments. Darker colors 

indicate lower mean richness and lighter colors indicate higher mean richness.  

 We conclude that the interplay between producers and consumers in a 

community is truly about maintaining balance. By being able to modulate 

parameters in our model, we find that less can be more. By limiting the consumption 

of a community, it allows species to be dependent on one other and linked together 

rather than individual microbes existing together until one fast growing species 

overtakes the community. This is one answer to how species with a variety of 

growth rates are able to coexist in a community.  

 One aspect of the community that would reduce coexistence is self-

facilitation because it allows for that species to dominate and outcompete other 

species (Fig. 8) Facilitation between species maintains balance of a community, but 

self-facilitation is self-serving reducing coexistence. Our data suggests that when 
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there was only one species left in the final layout the majority of the time the only 

link present was an sf link, suggesting it decreases coexistence (Fig. 8). When there 

were two or more species left in the final layout, the data suggests there were other 

links present than just sf links (Fig. 8). 

 

Figure 8 | The ratio of self-facilitating (sf) links to non-self-facilitating links present at the 
end of the simulation. A) Communities with a single species in the final community and B) 
communities with two or more species in the final community. Work performed by 
Alexander Lobanov.  
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Current Results and Future Steps 

In order to more completely understand the community dynamics that lead 

to coexistence, further examination into the location of microbes in space needs to 

be done. This can be executed by taking a known existing community and mixing the 

initial location to determine the strength of the neighbor’s impact on the other 

members. This would allow us to address more questions about the strength of 

gradients within our community and the impact of close and far neighbors. By 

comparing this to known microbial mat communities we could relate how strength 

of interactions and how neighbors change diversity of the community.  

In this study, we performed simulations with a single dispersal rate, which 

mostly kept the species in the same location they began the simulation (Fig. 5), by 

comparing these results with a faster dispersal rate we can more clearly understand 

the interface between spatial division and well-mixed. By gradually increasing the 

dispersal rate until it is essentially well-mixed we can explore patterns of 

coexistence and assembly in a more diverse range of communities. By simulating a 

diverse range of dispersal rates, we can better understand what may lead to high 

diversity within 16S sequencing of natural microbial communities and in the future 

be able to predict their community organization.  
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Chapter 2  

Exploration of bacterial contact-dependent growth inhibition 

community impact and prediction of interactions  

Introduction 

Contact-Dependent growth Inhibition 

A dichotomy of interactions often exists within a microbial community. In 

natural communities, microbes can inhibit and facilitate each other through many 

mechanisms. One such example of inhibition is contact-dependent growth inhibition 

(CDI), which is a negative cell-to-cell interaction that can strongly impact the 

dynamics of a community. The CDI mechanism is a naturally occurring inhibition 

system discovered in a strain of E. coli isolated from rat intestines.65  The 

mechanism has since been determined to be present in α-, β- and γ-

proteobacteria66. As a Type Vb secretion system, CDI is a two-partner system 

consisting of three genes, CDiB, CDiA, and CDiI67. CDiB is a transmembrane protein 

that allows for the presentation of CDiA, which is a hemagglutinin-repeat 

protein6867. CDiA carries the toxic inhibitory effect of the system and when the 

effector (CDI) cell comes into contact with a target cell, the C-terminal end of CDiA 

detaches and enters through the target’s transmembrane protein, BamA68,69.  When 

encountering an E. coli cell that does not have the CDI mechanism, there will be 

inhibition. If a CDI cell comes in contact with a related CDI cell, the CDiI immunity 

protein will neutralize the CDiA toxin. This prevents CDI cells from inhibiting their 
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kin within the community. When the C-terminal end has entered the target cell, it 

degrades DNA or RNA, which inhibits target cell growth70.  

 

Figure 9 | Mechanism of contact-dependent inhibition. A) a CDI+ effector cell comes into B) 
contact with a target cell (green) causing C) inhibition of the target cell. D) Alternatively, the 
CDI+ effector cell comes into contact with another CDI+ effector cell where the CDiI 
immunity protein neutralizes the CDiA C-terminal toxic end resulting in E) no change to the 
CDI+ target cell (red). 

 

The CDI mechanisms have an important ecological impact, and offers insight 

into how pathogenic bacteria overtake a niche and invade a community. By 

specifically inhibiting other E. coli that lack that CDI machinery, CDI positive effector 

cells have a unique effect on a community. Not only is the context specific to spatial 

communities (contact is required for inhibition), but the target is genetically very 

similar to the attacker. Even though the molecular machinery of CDI has been 

studied in detail, the impact on population dynamics has not been well-described. 

The CDI interaction is found in uropathogenic E. coli and known to be found on a 
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pathogenicity island and presumably offers them some competitive benefit65. By 

determining how this machinery impacts invasion of pathogenic bacteria, we may 

come to better understand how to prevent invasion of pathogenic species into 

healthy communities.  

  We aim to characterize the impact of this inhibitory mechanism on 

community assembly. Doing this will allow us to evaluate if CDI’s ability to inhibit 

the target is dependent on population densities and the ratio of CDI to a target 

population. 

CDI as a Proof-of-Principle Example for Uncovering Microbial Interactions 

Microbial interactions are complex and difficult to predict. While we can 

often identify whether one species facilitates or inhibits the growth of another 

species, identifying the molecular mechanism of such interactions remains 

challenging.  Bacteria within communities each have complex systems of 

consumption and production, which can mediate interactions with other members. 

To better understand the coexistence of these communities, the interactions must 

be teased apart. Determination of microbial interaction mechanisms is an arduous 

process, making the production of a more systematic and predictive process for 

understanding the impact of different interactions on community composition 

desirable. This could be used to greatly enhance our understanding of what 

mechanisms lead to microbial community coexistence. 
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The mechanism of interactions is essential to understanding the microbial 

community itself. Currently, knowing the genetic makeup of two species it is not 

enough to know how they will interact31 38. In some cases, knowledge of the genetic 

makeup of the constituent species in a community can give insight into the potential 

for certain molecules to be consumed or produced. – such as with the production of 

an essential amino acid by members of a community that contains an 

auxotroph14,71,72. However, predicting the interplay of various community 

interactions offers a difficult challenge as a single microbe can exhibit various 

complex interactions with each member of the community6238. If we can better 

predict the composition and scope of interactions, we can start engineering 

communities for waste management73, bioremediation74, and disease management75 

as well as a host of other areas that could benefit from engineering microbial 

communities. By understanding how different types of interactions 

(facilitation/inhibition) and the type (contact dependent/independent) we are 

closer to teasing apart the dynamics of a microbial community that could lead to 

functional coexistence in engineered systems. 

A tool to predict interactions to better categorize interactions among 2-

species microbial communities is the first step in understanding the mechanisms of 

coexistence in more complex systems. Previous work as used Tn-Seq on co-infecting 

microbes to determine how the genetics requirements of E. coli changes in 

monoculture and coculture conditions76. This demonstrates how the E. coli genome 

is tractable for comparison of monoculture and coculture conditions. There has also 
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been community level work done with predicting the changing requirements of E. 

coli in an increasing complex community77. This work demonstrated how E. coli can 

be used as a readout to track changes in a community, even if the other members 

are not well characterized.  I plan to devise a method to uncover microbial 

interaction mechanisms. We aim to determine how cell-level interactions among 

bacteria lead to community-level functions. We propose to use transposon insertion 

sequencing (Tn-Seq) to identify genes that are strongly impacting coexistence and 

population fitness. Tn-Seq works by introducing a random insertion within a 

genome, that will disrupt gene function at the loci of insertion. This allows us to 

evaluate how knockouts of individual components change impact the interactions 

experienced between two partners, and thus their ability to coexist. I propose to use 

transposon insertion sequencing (Tn-Seq) to elucidate which genetic components 

are important in interaction between two species.  
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Methods 

Bacteria strains, growth, and media 

 Experiments were performed using E. coli K12, E. coli EC93, or E. coli 

BW2076715 (Table 3). The growth conditions for bacterial strains were streaked 

out on Luria Broth (LB) agar plates with the appropriate antibiotics (Table 3) and 

stored overnight at 37°C. Then a single colony was inoculated into either LB liquid 

media or M978 media and put in a shaking incubator at 37°C. M978 is a minimal, 

define media, while LB is a rich, undefined media. All fluorescence experiments 

using a microplate reader were performed in M9 media unless otherwise noted 

because it is optically clearer. For antibiotic conditions, see Table 3.  

Fluorescence labeling of E. coli strains 

 Zyppy Plasmid Miniprep kit were used as described in their protocols (Zymo 

Research D4036) to isolate plasmids pDiGc-Red and pAF1Fluorescence: YFP (Table 

4). Then electroporation was used to introduce the plasmids into the desired E. coli 

strains (EC93 and K12 respectively).  The electroporation was performed with a 

BTX ECM 399 - Harvard Apparatus with a voltage 1.25kV.  The confirmation of 

plasmid uptake was done via plating on antibiotic plates (See Table 3 for antibiotic 

resistance associated with plasmids) and fluorescence microscopy.  

Microscopy 
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 All microscopy was performed with a Leica DMi8 inverted microscope. 

Confirmation of fluorescence was performed both by examining colonies on agar 

plates as well as liquid cultures from LB & M9 being plated onto microscope slides.  

Microplate reader 

 An Mx or H4 microplate reader from BioTek with Gen5 software was used for 

all microplate reader analysis. The conditions for the microplate reader were as 

follows: outer wells were filled with diWater to limit evaporation from edge effects 

on experimental wells. Then the plate loaded with an OD600 of 0.01. The growth of 

the cells via OD600 was monitored at 5 min intervals for 24hrs as well as the 

fluorescence at a gain of 100 for each respective excitation and emission spectra 

(Table 4).  

Analysis of Communities  

For determining each well’s growth rate and carrying capacity, the data from 

the microplate reader is exported from Gen5 software and imported to MATLAB ® 

for analysis.  For each well, we used wells that are uninoculated media to estimate 

the background OD and fluorescence corresponding to that well. After subtracting 

the background, we picked data points for each growth curve that were between OD 

values of 0.002 and 0.02 to avoid noise at low ODs and saturation at high ODs. A 

linear function was then fit into the log of OD values using the ‘polyfit’ function in 

MATLAB ®. The slope of this line was reported as the growth rate for that well. 

Maximum OD in each well was reported as a proxy for carrying capacity. 
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Transposon library construction 

 Transposon libraries were constructed using plasmid protocol79. When 

colonies had grown overnight, individual colonies were isolated and placed into 

individual wells on a 384-well plate in LB without antibiotics in order to isolate 

different insertions. These plates then had 17% glycerol added to them to freeze in 

the -80°C freezer. Through this process 3.5, 384-well plates were made of individual 

isolates, with none of the outer wells being used for concerns of edge effects (such 

as an increased evaporation rate) in the microplate readers.  

Preparation of Mutant Library Coculture  

 A liquid handling robot was used to isolated 5uL of each well of the 384 well 

microreader plates from the Tn-Seq library each containing a different insertion. 

This was then pipetted into a new 384-well plate via the liquid handling robot which 

would be run in an Mx or H4 microplate reader to monitor OD600 of the community 

and fluorescence of the individual strains with previously described protocol. Then 

the comparison of the fluorescence of the mutant library target (K12) and CDI+ 

effector strain (EC93) was compared to determine impact of the inhibition for each 

isolated from the Tn-Seq library.  
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Results and Discussion 

The molecular machinery of CDI has been previously studied in detail, 

however the impact on population dynamics has not been well-described. The 

impact of CDI is unclear in community assembly. We aim to characterize the effect of 

this inhibition on community assembly. CDI dynamics will also elucidate the role of 

negative interactions in community coexistence and stability.  

We aim to describe how the relative ratio and density of CDI cells compared 

to target cells impacts the inhibition of a target cell. For example, it is unclear if a 

high density of CDI cells will continue to inhibit the target or if they will instead self-

contact repeatedly, using energy to produce the immunity protein and replenish the 

toxin. This would offer the target some relief from the inhibition. 

For this approach, we use two-species communities comprised of an E. coli 

strain that exerts CDI and a target E. coli K12 strain. The two species are labeled 

with different fluorescent markers. This allows us to quantitatively measure how 

the community’s populations change over time. The fluorescence intensity at 

varying ratios and density of the populations are measured. Then using this data, we 

quantify the impact of the CDI+ effector cells on the target cells.  

I hypothesized that CDI+ effector cell’s ability to inhibit the target is 

dependent on population densities and the ratio of CDI to a target population. I 

anticipate that has the ratio of CDI increases that inhibition should increase, 

however, it is unclear if a high density of CDI cells will continue to inhibit the target 
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or if they will instead self-contact repeatedly, using energy to produce the immunity 

protein and replenish the toxin. This would offer the target some relief from the 

inhibition.  

Characterizing the target population and the CDI+ effector population 

To distinguish the target and CDI+ effector cell in a two-species community, 

we electroporated each strain with a different plasmid containing distinct 

fluorescence protein genes (Table 3). The target expresses YFP while the CDI+ 

expresses dsRed. This use of fluorescence monitoring will allow for the individual 

populations to be distinguished from one another in a 2-species community.  First, 

we characterized each strain’s growth rate and relative fluorescence units (RFU) in 

monoculture conditions (Fig. 10), and then compared the fluorescence overlap 

between the two fluorophores (Fig. 11) to ensure in a coculture there would not be 

overlap of the excitation and emission spectra of the YFP and dsRed fluorophores. 

We determined that these population can be distinguished from one another 

because of the negligible overlap between expression of dsRed and YFP (Fig. 11).  
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Figure 10 | Characterization of target and effector monocultures. The growth of the 

monocultures of A) target cells (black) and B) effector cells (red) was monitored until 

stationary phase was reached. The normalized relative fluorescence units (RFU) of the 

monocultures of C) YFP expressing target cells (black) and the D) dsRed expressing effector 

cells (red) was monitored until stationary phase was reached. 

 

 

Figure 11 | Comparison of fluorescence overlap of dsRed and YFP fluorophores. Level of 

emission of target YFP fluorescence in the dsRed wavelength and level of emission of 

effector dsRed fluorescence in the YFP wavelength. Normalized relative fluorescence units 

(RFU) of the monocultures of YFP (black) expressing target cells and dsRed (red) 

expressing effector cells was monitored. 

In order to determine if the fluorescence can be used to predict OD600 in a 

culture we compared the respective RFU to the OD600 in monocultures, then 
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determined the variation from linear correlation (Fig. 12). The RFU of both YFP and 

dsRed can be used to infer OD600 of their respective populations therefore the 

corresponding OD600 of each of the two populations can be determined while in 

two-species communities.  

Figure 12 | Predictive correlation of RFU and OD600. A/C) Comparison of OD600 to RFU 

for YFP and dsRed (respectively) B/D) Variation from linear correlation in A and C 

(respectively). Linear correlation of RFU to OD600 for YFP and dsRed 

 

Target cells inhibition by CDI is density dependent in two-species cocultures 

When performing two-species cocultures, we find the target proliferates 

when CDI+ effector population levels are low (Fig. 13). When the population of CDI+ 

effector cells reaches a certain threshold the target population is inhibited while the 

CDI+ effector population levels stay relatively the same as they are in monoculture. 

A 
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Figure 13 | Experimental data of monoculture (dashed lines) and two-species communities 

(solid lines). A comparison of relative fluorescence units (RFU) for both monocultures and 

two-species communities shows that CDI+ effector cells (red) inhibit the target cells 

(yellow) at a 1:1 ratio of Target to CDI+ effector cells.  

The inhibition only occurred at a high density of CDI+ effector cells. When the 

CDI+ effector cells were at lower density, there was little to no inhibition occurring 

(Fig. 14).  This indicates that the CDI strain is effective at inhibition in the two-

species communities and that the effect is density dependent.  

 

Figure 14 | Determining density dependence. A comparison of relative fluorescence units 

(RFU) for both monocultures and two-species communities shows that target cells (YFP) 

are inhibited by the CDI cells (dsRed). (A) A 1:1 ratio of Target to CDI cells. (B) 1:10 and (C) 

10:1  

 

Using Tn-Seq to understand microbial interactions 

A B 
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In Tn-Seq, random insertions are added across the genome, allowing us to 

predict how such mutations change the interactions between two partners. 

Examining the fitness of different mutants of a Tn-Seq library in cocultures with 

their partner species, these mutations will stand out by comparing Tn-Seq results of 

cocultures with those of monocultures without interactions. To evaluate this 

methodology, I construct E. coli communities that have an interaction that is 

inhibitory (through contact-dependent inhibition).  

Our approach offers several advantages: (1) the use of synthetic communities 

with known interspecies interactions in a controlled environment minimizes 

confounding factors in assessing the Tn-Seq methodology; (2) candidate genes 

identified using Tn-Seq can be readily assessed based on the known molecular 

mechanisms of contact-dependent inhibition interactions; and (3) since E. coli can 

be easily manipulated, we can directly confirm Tn-Seq findings by constructing the 

identified mutations. 

Assessment of the Mutant library  

In the previous section, it was shown that the CDI+ effector cells inhibit the 

target cells in a density dependent manner (Fig. 14). This known simple inhibition 

mechanism will be used to assess the effectiveness of using Tn-Seq to understand 

cellular mechanisms of interaction. The predicted results for the mutant is the 

disruption of transmembrane proteins is expected to impart resistance for target 

(Fig. 9)70,80,81. 
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In order to determine if the creation of the mutant library was successful, we 

performed a comparison of the ancestor and clones from the library.  The 

constructed library shows increased phenotypic variation in growth rate and 

carrying capacity compared to the ancestral strain, indicating successful insertions 

in the mutant library (Fig. 15). When we performed coculture experiments by 

combining the target and the effector in the same well and monitoring the 

fluorescence levels, we found that the coculture indicates the target is resistant to 

the CDI+ effector (Fig. 16), which can be determined by the increase in RFU by some 

insertions – indicating that they are no longer inhibited by the CDI+ effector cells. 

These isolates would be sequenced to confirm they have insertions in the 

transmembrane proteins used by CDI+ effector cell to inhibit the target.   

Figure 15 | Comparison of ancestor and library. Monocultures of the ancestor and the 

library’s A) growth rate and B) carrying capacity were compared.  
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Figure 16 | Coculture community to explore targets resistant to CDI+ effector. A) Indicates 

the distribution of RFU strength for a 384-well plate with a coculture of mutant target 

library and CDI+ effector cells. Each well contained an individually selected colony from the 

Tn-Seq mutant library. B) The RFU of high (purple) and low (brown) fluorescence levels of 

the mutant target library while being cocultured with the CDI+ effector cells.  
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Current Results and Future Steps 

During the assessment of the mutant library there were inconsistencies 

discovered (Fig. 17). A coculture of CDI+ effector and target cells were monitored 

for the fluorescence of the target to determine mutants of interest. Mutants with an 

increased level of fluorescence at the population level are mutants of interest, since 

this indicates they are no longer inhibited by the CDI+ effector cells. These identified 

mutants would then be sequenced to determine if the insertions were in known 

areas of the genomes associated with CDI inhibition. In figure 17 the assessments 

(A/B) are both from the same Tn-Seq library, but due to differences in starting 

concentration of target cells, we are unable to determine accurate mutants of 

interest. This inconsistency is an issue that needs to be addressed before moving 

forward with using Tn-Seq to understand mechanisms of interaction between 

microbes.  In order to address the inconsistent starting OD600, the effect of density 

and how to control for it when screening for altered interactions needs to be 

considered (Fig. 18). Using GFP fluorescence to monitor the library in coculture, it 

was observed that the starting ratio of effector to target was causing an increase in 

fluorescence for some mutants, leading to their false identification as mutants of 

interest. As a result, it seemed like a high percentage of mutants were now resistant 

to CDI. One solution would be to not use 384-well plates since the cell density in 

individual wells will vary. The use of a random-barcode library would alleviate this 

issue by making trackable insertions82. Another future direction is to examine 

contact independent interactions to ensure both types can be predicted with this 



  

45 

method. Amino acid exchange is one example of such an interaction that could be 

used as an initial proof-of-concept for the prediction of these interactions37.  

 

Figure 17 | Verifying targets of interest from Tn-Seq mutant library. A/B) The RFU of high 

(purple) and low (brown) fluorescence levels of the mutant target library while being 

cocultured with the CDI+ effector cells. The same targets of interest were compared in A 

and B.  

 

 

Figure 18 | Comparing initial and final RFU for individual wells Tn-Seq mutant library. The 

GFP fluorescence was monitored for the same wells in the beginning of growth (0.5hr) and 

at the end of growth (16.6hr).  
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Tables  

 

Table 1 | Default parameters for computational model.  

Parameter 
Variable 
Name 

Default  

average consumption 
links  

Qc 0.5 

average production 
links 

Qp 0.5 

average consumption 
rate (fmole per cell) 

At 0.15 

average production 
rate (fmole per cell 
per hr) 

Bt 0.1 

Max interaction 
strength (1/hr) 

ri0 0.2 

Samples being 
screened 

Ns 500 

Mediator Diffusion 
(cm^2/hour) 

Dmed 
5e-

6*3600 

Cell 
Dispersal(cm^2/hour) 

Dcell 
5e-

8*3600 

Number of Species Nc 10 

Mediators Nm 5 

fraction of positive 
interactions 

fpi 0.1 

Community Height 
(cm) 

Z 0.5 
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Table 2 | Functions used in simulations 

 

  

Function Name Purpose 

NetworkConfig_Binomial Binomial network configuration 

DistInteractionStrengthMT_PA Interaction matrix based on strength probability distribution 

WellmixedInteraction_DpMM_ExMTC Well-mixed model for growth of interacting species 

Spatial1DInteraction_DpMM_ExMTC_SKD 1D spatial model for growth of interacting species 
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Table 3 | List of strains used in this study.  

 

 

  

Species Strain Plasmids Abx CDI? Type 

E. coli EC93 CH6449 None None Yes Effector 

E. coli 
K-12 

(MG1655) None None No Target 

E. coli EC93 CH6449 
pDiGc-Red (derived from 

pDiGc) Carbenicillin (100 ug/ml) Yes Effector 

E. coli 
K-12 

(MG1655)  pAF1Fluorescence: YFP Carbenicillin (100 ug/ml) No Target 

E. coli BW2076715 pJA1 transposon plasmid 
Ampicillin (100ug/ml) + 
Kanamycin (50 ug/ml) No N/A 

E. coli 
K-12 

(MG1655) None 
Chloramphenicol (25 

ug/ml) No Target 
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Table 4 | List of fluorescent plasmids used in this study. 

 

  

Plasmid Name Fluorophore Excitation/Emission Antibiotic Resistance 

pDiGc-Red (derived from 
pDiGc) 

dsRed 
Excitation = 560nm 
Emission = 587nm 

Carb 

 pAF1Fluorescence: YFP YFP 

(1)Excitation = 514nm; 
(1)Emission = 527nm; 
(2)Excitation = 470nm; 
(2)Emission = 515nm 

Ampicillin (100 
ug/ml) 

pJA1 transposon plasmid N/A N/A 

ampicillin resistance 
marker, kanamycin 
resistance marker is 
contained within the 
transposon 
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