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Abstract

We consider the space H2
• of all complete hyperbolic surfaces without boundary with a

basepoint equipped with the pointed Gromov-Hausdorff topology. Continuous paths

within H2
• arising from certain deformations on a hyperbolic surface and concrete

geometric constructions are studied. These include changing some Fenchel-Nielsen

parameters of a subsurface, pinching a simple closed geodesic to a cusp, and inserting

an infinite strip along a proper bi-infinite geodesic. We then use these paths to show

that H2
• is path-connected and that it is locally weakly connected at points whose

underlying surfaces are either the hyperbolic plane or hyperbolic surfaces of the first

kind.
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Chapter 1

Introduction

For a fixed g ≥ 2, let Mg be the set of closed hyperbolic surfaces of genus g. Early

motivating questions in surface geometry, like Riemann’s moduli problem, concerned

its structure.1 Much is now known about this so-called moduli space Mg and its

universal cover Tg, called the Teichmüller space. Most notably, in 1960, Bers [10]

gave an analytic parametrization for Tg, showing that it is an open bounded domain

in C3g−3. As for Mg, it is also non-compact with one end [21]. A more comprehensive

list of topological properties of Mg and Tg can be found in [21, Part 2].

There are many possible ‘generalizations’ of moduli and Teichmüller spaces. Using

a decomposition of a surface by a maximal collection of disjoint simple closed curves

[4], we can endow any non-compact surface with a complete hyperbolic metric [7].

Thus, one generalization is to fix a hyperbolic surface of infinite type and study its

various Teichmüller spaces, as in [2, 7]. In this thesis, however, we will be interested

in larger generality. We ask:
1Riemann’s moduli problem asks for an analytic parametrization of Mg, viewed as the set of

biholomorphism classes of compact Riemann surfaces of fixed genus g. We have a dictionary between
Riemann surfaces and hyperbolic surfaces since the conformal class of metrics defined by the complex
structure of a Riemann surface contains a unique complete hyperbolic metric so long as g ≥ 2 by the
uniformization theorem. See [1] for historical development of moduli and Teichmüller spaces and
[19] for a quick introduction of Mg.
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what is the structure of the space of all hyperbolic surfaces of all possible

diffeomorphism types?

A connection between the geometry of a compact surface and that of a non-

compact one already becomes apparent when we compactify Mg with noded surfaces,

in which some simple closed curves on a hyperbolic surface are pinched into punctures.

Indeed, as a simple closed geodesic shrinks, the collar lemma [24] asserts that it has

an increasingly longer annular neighborhood, and a cusp is introduced in the ‘limit’

as the length goes to zero. To capture such a transition, we need a suitable framework

that allows for comparisons between surfaces of different diffeomorphism types.

Gromov introduces a metrizable topology on the space of pointed proper metric

spaces, with respect to which two such spaces are close if large closed balls around

their respective basepoints are almost isometric [23, 25]. In the setting of Rieman-

nian manifolds, it is the language used in Cheeger-Gromov compactness theorem

and Perelman’s proof of the Geometrization conjecture, see [34]. Following Canary-

Epstein-Green [16], who expand the idea of Thurston [37], we specialize this so-called

pointed Gromov-Hausdorff topology (see Definition 2.2.1) to the space of (isometry

classes of) pointed hyperbolic surfaces:

H2
• = {(X, p) : X hyperbolic surface, p ∈ X}/basepoint-preserving isometry.

All underlying surfaces in H2
• are assumed throughout to be connected, oriented, and

metrically complete without boundary.

Gromov’s turns out to be a natural and useful notion for hyperbolic geometry, too.

This H2
• and its analogues in higher dimensions are key ingredients used to determine

the volume spectrum of hyperbolic manifolds. They also have close connections to

the Chabauty topology on the space of closed subgroups of the isometry group of the

hyperbolic n-spaces, as we will explain more in details later in Section 1.2.
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1.1 Summary of results

In this thesis, I study both global and local path-connectivity of H2
•. The main results,

Theorems 4.1.2 and 4.2.2, are numbered as they appear in subsequent chapters.

Theorem 4.1.2. The space H2
• is path-connected.

It is a natural next step to ask whether this property holds locally:

Question 1. Is H2
• is locally path-connected? Equivalently, is H2

• is weakly locally

path-connected at every point?

The second main theorem will give a partial answer to this question. Finding a

complete answer will perhaps constitute a future project. Recall that a topological

space X is weakly locally path-connected at a point x ∈ X provided that if V ⊂ X is

an open set containing x there exists an open neighborhood U ⊂ V of x such that any

two points in U are on the same path component of V . Following common (albeit

nondescriptive) terminology found in literature, we say that a complete hyperbolic

surface without boundary is of the first kind if its convex core is the entire surface.

Otherwise, it is of the second kind.

Theorem 4.2.2. The space H2
• is weakly locally path-connected at

• (H2, z0) for any choice of z0 ∈ H2

• (X, p) where X is of the first kind.

Our proofs of the two main theorems make use of continuous paths arising from

certain modifications of surfaces. To first understand the geometric structure on a

hyperbolic surface, we break down its convex core into topologically simpler pieces,

appealing to the general and geometric version of a pants decomposition, as formu-

lated in [7], which we cite below. By a geodesic pair of pants, we refer to a complete
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hyperbolic surface with geodesic boundary diffeomorphic to a sphere with a combi-

nation of three disks or points removed.

Theorem 2.1.2. ([7]) For any complete hyperbolic surface X with geodesic boundary

that is not a sphere with three punctures or an infinite cylinder, there exists a collection

P of mutually disjoint, pairwise non-homotopic simple closed geodesics in the convex

core CC(X) such that each component of CC(X)−P is an open geodesic pair of pants

(possibly with cusps). Moreover, the closure of each component of X−CC(X) is either

a half-infinite cylinder bounded by a simple closed geodesic or a half-plane bounded by

an infinite simple geodesic.

As a result, the geometry of X is completely determined by its convex core. In

particular, the structure of the individual geodesic pairs of pants and how they are

glued together specify the isometry class of a surface. In Sections 3.2 and 3.3, we show

that, with respect to a fixed collection of pants curves and transverse seams, modifying

the associated Fenchel-Nielsen length and twist parameters yields a continuous path

in H2
•, all while keeping track of the basepoint. We owe much to a family of ‘canonical’

markings on a finite-type surface as defined by Buser in Chapter 6 of [14].

One other class of continuous paths comes from growing an infinite strip along a

geodesic. Let (X, p) ∈ H2
• and a proper infinite geodesic α in X with a ∈ α be given.

For any s > 0, an s-strip is a region in H2 bounded by two hyperparallel geodesics

whose common perpendicular τs has length s. We construct a new hyperbolic surface

Xs by first cutting X along α and gluing a s-strip along the boundary components of

X−α so that a is identified with the endpoints of τs and the pasting scheme respects

the unit speed parametrization of α where α(0) = a. We show that this construction

is continuous with respect to the topology of H2
•.
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Proposition 3.4.3. Given (X, p), α, and a as above, the strip insertion map

Strip : R+ → H2
•

s 7→ (Xs, p)

is continuous, where p ∈ Xs is chosen to be the image of p ∈ X under the natural

isometric embedding X − α → Xs.

Growing a strip is a crucial construction in the proofs of our main theorems, as

we apply it to create a path that increases the injectivity radius at the basepoint (in

Theorem 4.1.2) as well as to ‘blow up’ cusps (as in lemmas 3.4.4 and 3.4.5).

1.2 Related results

1.2.1 Chabauty topology

Let G be a locally compact metrizable group. The Chabauty topology on the space of

closed subgroups of G, denoted by Sub(G), has the following convergence criteria: a

sequence of subgroups {Hn} converges to H ≤ G if and only if

(a) if hn ∈ Hn is a sequence such that hn → h in G, then h ∈ H; and

(b) for each h ∈ H, there exists a sequence hn ∈ Hn such that hn → h in G.

Closely related to H2
• is the Chabauty topology on the subspace of discrete torsion-

free subgroups of PSL2(R). We fix once and for all a basepoint z0 ∈ H2 and an

orthonormal basis v0 of the tangent space Tz0(H2). One can provide additional local

data to each (X, p) ∈ H2
• by selecting an orthonormal basis v for the tangent space

Tp(X). But to the now framed hyperbolic surface (X, p,v), one can associate a unique

discrete torsion-free subgroup Γ of PSL2(R) such that H2/Γ ∼= X, π(z0) = x, and

dπ(v0) = v, where π : H2 → H2/Γ is the natural projection. It is well-known that this
5



correspondence is a homeomorphism between the space of framed hyperbolic surfaces,

endowed with the pointed Gromov-Hausdorff topology (with extra requirements for

tangent vectors, see Definition 2.2.5), and the Chabauty space of discrete torsion-free

subgroups of PSL2(R). The proof of this fact can be found in [16].

In [5], Baik and Clavier explicitly parametrize and classify the Chabauty limits

of one-generator subgroups of PSL2(R), showing that its Chabauty closure is simply

connected. For lack of a global coordinate system, it is not possible to do so for

the entire Sub(PSL2(R)), at least from the point of view of subgroups. With the

dictionary between discrete-torsion free subgroups and framed hyperbolic surfaces, we

may interpret the main theorems in this work as connectivity results for (a quotient

of) a subset of Sub(PSL2(R)).

While the Chabauty space of closed subgroups of a Lie group is an interesting

mathematical object in itself, only few other examples of Chabauty spaces have been

completely described including when G = Rn [32, 27] and when G is the Heisenberg

group [11]. The reader may consult an unpublished note by de la Harpe [18], which

summarizes these results as well as provides a list of references.

1.2.2 In higher dimensions

It is natural and possible to extend the framework of H2
• to the space of pointed n-

dimensional hyperbolic manifolds Hn
• for a higher n. Let us first contrast the topology

of Hn
• with our results. Unlike in dimension 2, when n ≥ 3, Mostow’s rigidity theorem

states that the isometry class of a finite-volume hyperbolic n-manifolds is determined

by its fundamental group. This implies that the space Hn
• is no longer connected, as

{(X, p) : p ∈ X} forms a component if X is compact.

It is in dimension 3 where the pointed Gromov-Hausdorff convergence (also called

the pointed geometric convergence in this setting) has yielded its richest applications.
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It appears in Minsky’s and Brock-Canary-Minsky’s program to build models for ends

of hyperbolic 3-manifolds, settling Thurston’s Ending Lamination Conjecture [29, 12].

By works of Thurston and Jørgensen, using continuity of the volume function on the

subspace F3
• ⊂ H3

• of pointed finite-volume hyperbolic 3-manifolds, it is shown that

the volume spectrum vol(F3
• ) ⊂ R is closed with a positive minimum and that non-

trivial limits arise only from hyperbolic Dehn surgery constructions. The interested

reader may refer to Chapter E of [9] for a detailed exposition.

1.3 Organization

The subsequent chapters of this dissertation are organized as follows. Chapter 2

covers basic backgrounds on surface topology and hyperbolic geometry. We also

formulate a precise definition of the pointed Gromov-Hausdorff topology on H2
•. In

Chapter 3, we construct continuous paths in H2
• arising from certain deformations

of surfaces. Finally, we give proofs of our main results concerning global and local

path-connectivity about H2
• in Chapter 4.

7



Chapter 2

Preliminaries

In this chapter, we lay out relevant backgrounds as well as recall well-known facts

about hyperbolic surfaces and the pointed Gromov-Hausdorff topology.

2.1 Surface topology and geometry

A topological surface, possibly with boundary, is a two-dimensional manifold with

coordinate charts mapping into R×R≥0. A surface is of finite type if its fundamen-

tal group is finitely generated. Otherwise, it is of infinite type, in which case the

fundamental group is necessarily free with countably many generators. The home-

omorphism classes of finite-type surfaces are determined by their orientation, their

genera, as well as the number of punctures and boundary components. For a complete

classification of surfaces, including those of infinite type, we refer the reader to [33].

In this work, all surfaces are assumed to be connected and oriented.

In what follows, we discuss a decomposition of a surface into simpler pieces in

both topological and geometric settings.
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2.1.1 Topological pants decomposition

A pair of pants is a surface homeomorphic to a sphere with three disjoint open disks or

points removed so that its boundary is a union of up to three circles. Here, we make

a distinction between boundary components that are circles and punctures. Pairs of

pants prove to be fundamental building blocks of surfaces, as gluing them together

along their boundary components results in a surface of higher complexity. As a

reverse of this combinatorial construction, it is well-known that a maximal collection

of pairwise disjoint, essential simple closed curves in a closed surface (except for

the sphere, and the torus) cuts the surface into a union of pairs of pants. This is

indeed true in more generality, and we record the following result, due to Álvarez and

Rodríguez, for reference.

Theorem 2.1.1 ([4]). Let S be a surface whose fundamental group is nonabelian and

whose boundary is a (possibly empty) disjoint union of simple closed curves. Then S

has a locally finite collection P = {ci}i∈I of pairwise disjoint, homotopically distinct

and nontrivial, simple closed curves such that the closure of each component of S−
⋃
ci

is either a pair of pants or a cylinder.

Here, by a cylinder, we mean a subsurface homeomorphic to S1 × [0, 1). A collec-

tion P as in Theorem 2.1.1 is called a topological pants decomposition. We note that

there can be at most countably many curves in P since the surface is second-countable.

2.1.2 Hyperbolic surfaces

To introduce a suitable metric on a surface included in Theorem 2.1.1, we will use

hyperbolic geometry, which we now give a brief review as necessary. The reader is

advised to consult [14] and [9] for a detailed exposition of hyperbolic surfaces and

hyperbolic geometry in general, respectively.

9



For z ∈ C, denote its real part by Re(z), its imaginary part by Im(z), and its

modulus by |z|. We consider two models of the 2-dimensional hyperbolic space:

1. the upper-half plane model H2 = {z ∈ C : Im(z) > 0}, equipped with the

metric dsH = |dz|
Im(z)

, and

2. the Poincaré disk model D = {z ∈ C : |z| < 1} with the metric dsD = 2 |dz|
1−|z|2 .

The two models are indeed isometric via the map H2 → D given by z 7→ z−i
z+i

. By the

uniformization theorem, H2 (or D) is the unique simply connected Riemann surface

with constant curvature −1, up to isometry. We use “the hyperbolic plane” as a

blanket term to refer to either model, though we will mainly use H2 for computations

and D for illustrations. The ideal boundary of the hyperbolic plane is identified as

∂∞H2 = R∪{∞} for H2 and as ∂∞ D = {z ∈ C : |z| = 1} for D.

In H2, the geodesics are vertical straight lines and semicircles with centers on

R, while the geodesics in D are diameters and circular arcs perpendicular to ∂D.

It follows that the hyperbolic plane is uniquely geodesic—that is, any two points

can be joined via a unique geodesic path. The orientation-preserving isometries of

H2 are identified as the elements of PSL2(R) = SL2(R)/{±I} by fractional linear

transformations, and they take geodesics to geodesics.

By a hyperbolic metric, we mean a Riemannian metric of constant negative curva-

ture −1. A surface equipped with a hyperbolic metric is called a hyperbolic surface,

and it is complete if it is complete as a metric space. We say that a topological

surface is hyperbolizable if it can be equipped with a complete hyperbolic metric, pos-

sibly with geodesic boundary. It is well-known that any topological surface S of finite

type with χ(S) < 0 is hyperbolizable. That any topological non-compact surface is

hyperbolizable follows from Theorem 2.1.1 above and [7, Theorem 1].

A complete hyperbolic surface X can be obtained as the quotient of a convex

subset C(X) ⊂ H2 by the action of the orientation-preserving isometries in some
10



discrete (Fuchsian) torsion-free subgroup Γ of PSL(2,R), where Γ ∼= π1(X). This

gives rise to a Γ-equivariant universal covering map π : C(X) → X, and X is locally

modeled by H2. Since Γ acts by isometry, geodesics in X are precisely the images

under π of geodesics in C(X).

The action of Γ extends to ∂∞C(X) and defines the limit set Λ(Γ) ⊂ ∂∞C(X). Let

CH(Λ(Γ)) be the convex hull of Λ(Γ) in H2. The convex core of X, denoted by CC(X),

is the quotient of CH(Λ(Γ)) by Γ. It is the smallest closed convex geodesic subsurface

of X that is homotopy equivalent to X. By [7, Proposition 3.1], the boundary of the

closure of CC(X) is a countable union of disjoint simple closed geodesics and simple

infinite geodesics.

There is also another important notion of completeness. A hyperbolic surface is

said to be geodesically complete if all geodesic rays, starting at any point and going

off in any direction, extend indefinitely far. For hyperbolic surfaces, the property is

equivalent to the induced metric being complete and the surface having no boundary.

These are the hyperbolic surfaces that we will study in this thesis.

Theorem 3.4 of [7] shows that any (not necessarily complete) hyperbolic surface

has a canonical geodesically complete extension obtained by attaching appropriate hy-

perbolic cylinders and half-planes to the simple closed geodesics and infinite geodesic

components of ∂CC(X), respectively. The latter case can occur only as limits of

simple closed geodesics. (Here, we say that a sequence of geodesics {βn}∞n=1 in X

converges to β if their lifts in H2 converge with respect to the Hausdorff distance, see

the definition in section 2.2.)

2.1.3 Geodesic pants decomposition

Before we discuss the hyperbolic geometry analogue of Theorem 2.1.1, we need to

define three types of geometric building blocks for a hyperbolic surface:
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(1) A (generalized) geodesic pair of pants is a hyperbolic surface with boundary

diffeomorphic to a sphere with three disks or points removed such that each of

its boundary components is a simple closed geodesic. The hyperbolic structure

of a pair of pants is completely determined by the lengths of its boundary

geodesics (called cuffs). A boundary curve of zero length is understood to be a

puncture, and each of which has a corresponding cusp neighborhood. A cusp is

a non-compact cylinder with one boundary component, and it is isometric to

{z ∈ H2 : 0 ≤ Re(z) ≤ 1, Im(z) > h}
/
〈z 7→ z + 1〉

for some h > 0. In this case, the boundary is a horocycle with length 1/h.

(2) A funnel is a half-infinite hyperbolic cylinder with one simple closed geodesic

boundary component. It is isometric to

{z ∈ H2 : Re(z) ≥ 0}
/
〈z 7→ elz〉

for some l > 0. In this case, the boundary has length l.

(3) A half-plane is a region of H2 bounded by a simple infinite geodesic; it is iso-

metric to

{z ∈ H2 : Re(z) ≥ 0}.

We are now ready to state the geometric counter part of the topological pants de-

composition in Theorem 2.1.1, originally due to Álvarez and Rodríguez [4]. Following

Basmajian and Sǎríc’s formulation in [7], we have:

Theorem 2.1.2 ([4, 7]). Let X be a complete hyperbolic surface whose boundary

is a (possibly empty) union of disjoint simple closed geodesics. Assume that X is

not a sphere with three punctures or an infinite cylinder. Let {αj}j∈J be the set of

boundary components of CC(X) which are open infinite geodesics (if there are any).

12



Then, CC(X) −
⋃
αj admits a topological pants decomposition P = {ci}i∈I and any

such collection P satisfies the following properties:

(1) every curve ci ∈ P is freely homotopic in X to a unique simple closed geodesic

γi so that each component of CC(X) −
⋃
γi is a generalized geodesic pair of

pants, and

(2) the components of X − CC(X) (if there are any) are funnels and half-planes.

A collection of simple closed geodesics {γi} as in Theorem 2.1.2 is called a geodesic

pants decomposition of the surface X. Sometimes, we simply call it a pants decompo-

sition, as the context should make it clear. With Theorem 2.1.2 in mind, we introduce

the following terminology, which will be used later.

Definition 2.1.3. A geodesically complete hyperbolic surface X = H2/Γ is said to

be of the first kind if X = CC(X) (or equivalently Λ(Γ) = ∂∞H2). It is of the second

kind otherwise.

On one hand, Theorem 2.1.2 implies that a complete hyperbolic surface of the first

kind contains no funnels or half-planes, and it is obtained by gluing together gener-

alized geodesic pair of pants along their boundary components in some way. This is

Theorem 4.5 of [3], where the authors use the term Nielsen-convex to mean “complete

with no funnels and half-planes”. On the other hand, simply gluing together geodesic

pairs of pants does not always yield a complete hyperbolic surface, see Example 2.1.6

below.

2.1.4 Fenchel-Nielsen coordinates

A hyperbolizable surface can admit many different hyperbolic metrics. To understand

the underlying hyperbolic structure of a given surface, we describe the geometry of

the pairs of pants comprising a fixed pants decomposition, along with their gluing
13



patterns, in terms of the lengths and the so-called twists of the pants curves. These

are the Fenchel-Nielsen coordinates, which we will now briefly recall.

Start with a hyperbolizable topological surface S that is not a pair of pants with

three cusps. A hyperbolic structure on S is a diffeomorphism f : S → X, where X is

a complete hyperbolic surface with geodesic boundary (if it is non-empty). The pair

(X, f), or simply X if the marking is unimportant for the context, is called a marked

hyperbolic surface with the marking f .

By Theorem 2.1.1, there is a collection of simple closed curves, which we call pants

curves, P = {ci}i∈I in S such that the closure of each component of S−
⋃
ci is a pair

of pants or a cylinder. (The index set I is finite if S is of finite type and is countably

infinite otherwise.) We assume that P includes all the boundary curves. We also

fix a set of disjoint simple closed curves {bj}j∈J called seams so that the intersection

of any pair of pants in the decomposition determined by P with ∪bj is a union of

disjoint arcs connecting each pair of its boundary components.

Let (X, f) be a marked hyperbolic surface. The X-length parameter of a curve

c ∈ P , denoted by `X(c), is the length of the unique geodesic representative of the

homotopy class of f(c) in X. Furthermore, if c ∈ P does not bound a cylinder in S,

or if c is not homotopic to a component of ∂S, then we also associate to c the X-

twist parameter, denoted by θc(X), which is defined as follows. First, after isotoping,

we may assume that f(c) is a geodesic. Orient it so that it is a common boundary

component of two (not necessarily distinct) geodesic pairs of pants, say, YL to its left

and YR to its right. For i ∈ {L,R}, choose a seam f(bi) that intersects f(c) in Yi.

The geodesic arc f(bi) ∩ Yi joins two boundary components of Yi: f(c) and, say, γi.

We let δi be the common perpendicular geodesic between these two components. If

Ni and Mi are regular metric neighborhoods of f(c) and γi in Yi, respectively, we can

isotope f(bi) to agree with δi outside of Ni ∪Mi, leaving the endpoints fixed. Set ti

14



to be the signed displacement of the endpoints f(bi) ∩ ∂Ni. Finally, we define

θX(c) = 2π
tL − tR
`X(c)

.

This is well-defined regardless of the choice of seams we chose in Yi, see [21, section

10.6.1]. We remark that the twist parameter is omitted for a closed geodesic bounding

a funnel because a funnel is rotationally symmetric.

Definition 2.1.4. Fix a pair of pants decomposition P = {ci}i∈I and seams on a

hyperbolizable surface S. The Fenchel-Nielsen coordinates (with respect to P) of a

complete hyperbolic surface X diffeomorphic to S is the collection

FN(X) = ((`X(ci), θX(ci)))i∈I

where `X(ci) ∈ (0,∞), θX(ci) ∈ (−∞,∞), and θX(ci) is omitted if ci is homotopic to

∂S or if ci bounds a cylinder in S.

Fenchel-Nielsen coordinates enable us to understand the hyperbolic structure of

a given surface, since they specify the geometry of each of the building blocks as well

as how they are glued together.

Definition 2.1.5. Let S is a hyperbolizable surface of finite-type possibly with

boundary. The Teichmüller space of S is the set of complete hyperbolic structures on

S considered up to homotopy (or marking equivalence):

T (S) = {(X, f) : f a hyperbolic structure on S}/ ∼

where (X1, f1) ∼ (X2, f2) if there is an isometry I : X1 → X2 such that f2 ◦ f−1
1 are

homotopic to I.

If S is of finite-type, it is well-known that Fenchel-Nielsen coordinates parametrize
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and topologize T (S). That is,

FN : T (S) → (R+ ×R)P

(X, f) → FN(X)

is a homeomorphism, with the convention that boundary curves are not assigned a

twist parameter, see [21, Chapter 10]. We contrast this fact with the infinite-type case

in which some Fenchel-Nielsen parameters may correspond to an incomplete surface,

as the example below shows.

Example 2.1.6. Consider a hyperbolic surface X obtained by gluing geodesic pairs

of pants {Yn}∞n=1 along a pair of boundaries of common length in a sequence, where

unglued components are punctures. This is an example of a tight flute surface; see

Figure 2.1 below. Let γn be the geodesic boundary component of Yn incident to Yn+1.

The collection P = {γn}∞n=1 gives a pants decomposition of X. Let θn be the twist

parameter of γn and let dn = dX(γn, γn+1).

Basmajian shows in [6, Theorem 4] that X is complete if
∑
dn diverges (regardless

of the twists). On the other hand, if both
∑
dn and

∑
|θn| converge, then γn limits

to an open geodesic, and the geodesic completion of X contains a half-plane.

X =
γ1

γ2 γ3

dn = dX(γn, γn+1)

Figure 2.1: X is a tight flute surface with no twists in the gluing.

Detailed studies of various types of the Teichmüller space for a surface of infinite

type include [3], [2], and [7], for example.
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2.2 Spaces of hyperbolic surfaces

The main goal of this section is to define various spaces of hyperbolic surfaces and

introduce appropriate topologies on them. Intuitively, a surface can be approximated

by a sequence of larger and larger compact subsurfaces. We would also like to con-

sider two hyperbolic surfaces near in these spaces if they appear “similar" on large

neighborhoods of their respective basepoints.

2.2.1 The pointed Gromov-Hausdorff topology

We begin with a general theory on the space of metric spaces first developed by

Edwards in [20] and later widely popularized by Gromov in [22]. First, we recall that

the Hausdorff distance between two subsets A and B of a metric space X is

dH(A,B) = inf{ε > 0 : A ⊂ Nϵ(B) and B ⊂ Nϵ(A)}, (2.1)

where Nϵ(A) = {x : d(x,A) < ε} denotes the ε-neighborhood of A. The Hausdorff

distance measures “metric similarity” between two subsets, and actually defines a

metric on the space of closed subsets of X.

Next, instead of working with subsets of one fixed metric space, we would like to

compare two different metric spaces in a meaningful way that generalizes the Haus-

dorff distance. One method is to construct another metric space in which both spaces

can be isometrically embedded, and then calculate the Hausdorff distance in the new

space. This is a cumbersome and somewhat unnatural task, as it involves passing

through a new metric. We will take an equivalent approach that directly relates the

two metrics by finding points in one metric space that “correspond metrically" to

points in the other and then measuring a distortion of distances. A precise formula-

tion is Definition 2.2.1 below.

17



Given a metric space X and p ∈ X, a pointed metric space is the pair (X, p).

Definition 2.2.1. Two pointed metric spaces (X, x0) and (Y, y0) are said to be (ε, R)-

related if there are compact subsets X1 ⊂ X and Y1 ⊂ Y , where BX(x0, R) ⊂ X1

and BY (y0, R) ⊂ Y1, together with a relation R ⊂ X1 × Y1 satisfying the following

conditions

1) (x0, y0) ∈ R;

2) for every x ∈ X1, there is a point y ∈ Y1 such that (x, y) ∈ R;

3) for every y ∈ Y1, there is a point x ∈ X1 such that (x, y) ∈ R;

4) the distortion of R

disR := sup {|dY (y1, y2)− dX(x1, x2)| : (x1, y1), (x2, y2) ∈ R}

is less than ε.

Such a relation R is called an (ε, R)-relation. We also write xy for (x, y) ∈ R.

We will use (ε, R)-relations to define a topology on the space of pointed proper

metric spaces. A metric space is proper if all closed balls of finite radius are compact.

Definition 2.2.2. Let M• be the set of all (isometry classes of) pointed proper metric

spaces. The pointed Gromov-Hausdorff topology on M• is generated by neighborhoods

of the form

N (X, p, ε, R) = {(Y, q) ∈ M• : (X, p) and (Y, q) are (ε, R)-related}

for every (X, p) ∈ M•, ε > 0, and R > 0.

The space M• is a complete metric space, see [25] in which an explicit metric

is given and the details for many more results about M• are worked out. For a

discussion of the space of metric spaces, we recommend [13, Chapters 7 and 8].
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2.2.2 (ε, R)-relations

While the definitions below generalize verbatim to higher dimensions, we shall restrict

our attention to spaces of hyperbolic surfaces. The interested reader may refer to [16,

Chapter I.3] for the definitions of spaces of n-dimensional hyperbolic manifolds and

for proofs of any results recorded here.

In this section, all hyperbolic surfaces are oriented, connected, complete, and have

empty boundary, unless otherwise specified.

We begin by attaching additional information to each surface. Let X an oriented

hyperbolic surface. If p ∈ X is a basepoint and e is a positively oriented orthonormal

basis of the tangent space Tp(X), then the pair (X, p) is called a pointed hyperbolic

surface, and the triple (X, p, e) is called a framed hyperbolic surface. We call the

choice e a baseframe for (X, p).

Definition 2.2.3. The space of (isometry classes of) pointed hyperbolic surfaces is

H2
• = {(X, p) : (X, p) is a pointed hyperbolic surface}/ ∼p,

where (X, p) ∼p (Y, q) if there is an isometry f : X → Y such that f(p) = q, endowed

with the pointed Gromov-Hausdorff topology.

Since H2
• is a subspace of M•, the space of pointed proper metric spaces, it is

Hausdorff. We can then consider limits of sequences of pointed surfaces. In fact, it

will often be more convenient to understand the topology of H2
• in terms of Gromov-

Hausdorff convergence, which formalizes the notion of surface approximation by large

compact subsurfaces that we mentioned in the introduction. The following proposi-

tion is immediate from the definition. By abuse of language, we will not distinguish

a pointed surface from its pointed-isometry class.
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Proposition 2.2.4. A sequence of pointed hyperbolic surfaces {(Xn, pn)}∞n=1 con-

verges to (X, p) ∈ H2
• if there exist sequences εn → 0 and Rn → ∞ such that (Xn, pn)

and (X, p) are (εn, Rn)-related.

Similarly, we let H2
f be the set of framed hyperbolic surfaces up to baseframe-

preserving isometry:

H2
f = {(X, p,v) : (X, p,v) is a framed hyperbolic surface}/ ∼f,

where (X, p,v) ∼f (Y, q,w) if there is an isometry f : X → Y such that f(p) = q and

df(v) = w. Here, df denotes the differential of f . Note that an isometry between

Riemannian manifolds is guaranteed to be smooth by a theorem of Myers-Steenrod,

see [31, Chapter 5, Theorem 18].

To topologize H2
f , we introduce a framed version of (ε, R)-relations that also con-

trols the behavior of baseframes.

Definition 2.2.5. For ε > 0 and R > 0, two framed surfaces (X, p, e) and (X ′, p′, e′)

in H2
f are framed (ε, R)-related if there is an (ε, R)-relation R between (X, p) and

(X ′, p′) which satisfies the additional requirement:

5) if v =
∑
riei and v′ =

∑
rie

′
i are tangent vectors at p and at p′ written

as a combinations of vectors in e and e′, respectively, and ‖v‖ < R, then

(expv)R(expv′).

Definition 2.2.6. The pointed Gromov-Hausdorff topology on H2
f is generated by

neighborhoods of the form

N(X, p,v, ε, R) =

(Y, q,w) ∈ H2
f :

(X, p,v) and (Y, q,w)

are framed (ε, R)-related

 (2.2)

where we vary ε, R > 0 and (X, p,v) ∈ H2
f .
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Similarly, H2
f is Hausdorff. Moreover, the natural projection H2

f → H2
• obtained

from forgetting the baseframe is open and continuous, and is thus a quotient map.

2.2.3 Quasi-isometries

Taking advantage of the fact that hyperbolic surfaces have more structure than general

metric spaces, we can require more regularity when defining the topologies of H2
• and

H2
f . What we present below, while seemingly much stronger, will turn out to be

equivalent to the (ε, R)-relation definitions above in our settings. We follow [16] in

conventions.

Definition 2.2.7. Let (X, p,v) and (Y, q,w) be framed hyperbolic surfaces. For

any K > 0, a framed (K, r)-quasi-isometry (or a framed (K, r)-approximate isome-

try) between (X, p,v) and (Y, q,w) is a diffeomorphism between framed subsurfaces

(X1, p,v) ⊂ (X, p,v) and (Y1, q,w) ⊂ (Y, q,w)

f : (X1, p) → (Y1, q)

such that

(1) BX(p, r) ⊂ (X1, p) and BY (q, r) ⊂ (Y1, q);

(2) f(p) = q and df(v) = w;

(3) f distorts the distance by less than a factor of K, i.e.,

1

K
d(x1, x2) ≤ d(f(x1), f(x2)) ≤ Kd(x1, x2) for all x1, x2 ∈ X1.

Analogously, we can define a (K, r)-quasi-isometry between two pointed hyper-

bolic surfaces in H2
•, and a K-quasi-isometry between two hyperbolic surfaces. The

last case coincides with the notion of a K-bilipschitz map.
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As in Definition 2.2.1, we use quasi-isometries to topologize H2
• and H2

f via the

open sets of the form

Nq.i.(X, p,v, K, r) =

(Y, q,w) ∈ H2
f :

there is a framed (K, r)-quasi-isometry

betweeen (X, p,v) and (Y, q,w)


(2.3)

as we vary K > 1 and r > 0 and (X, p,v) ∈ H2
f . (Baseframes are simply ignored for

H2
•.) We record the following fact for reference. It is Corollary I.3.2.11 in [16].

Proposition 2.2.8. The pointed Gromov-Hausdorff topology on H2
f defined using

(ε, r)-relations is equivalent to the topology on H2
f induced by framed (K, r)-approximate

isometries. The same holds for the pointed version in H2
•.

The equivalence of the pointed (or framed) Gromov-Hausdorff topology defined by

the rather ‘weak’ (ε, R)-relation to a strong version given by approximate isometries

affords us flexibility in choosing any notion of convergence ‘in between’.
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Chapter 3

Tools: Continuous Paths

Unless specified otherwise, a hyperbolic surface is always assumed to be connected,

oriented, and complete without boundary—that is, it is the underlying surface of an

element in H2
•. By abuse of language, we will not distinguish a pointed surface from

its pointed isometry class.

To examine global and local path-connectivity of H2
•, we construct continuous

paths from the following deformations of a pointed hyperbolic surface:

1) moving a basepoint on a fixed hyperbolic surface;

2) changing the Fenchel-Nielsen length and twist parameters of a subsurface;

3) pinching a simple closed geodesic to a cusp; and

4) inserting a strip along an infinite geodesic.

We remark that while 1) and 2) preserve the topology of a base surface, 3) and 4) deal

with deformations that alter the topology. In this chapter, we give precise definitions

and prove continuity of the above procedures.
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3.1 Moving a basepoint

The first lemma allows us to move a basepoint continuously on a fixed surface in H2
•.

Lemma 3.1.1. For any hyperbolic surface X, the basepoint map X → H2
• defined by

p 7→ (X, p) is continuous.

Proof. Let {pn}∞n=1 be a sequence of points in X converging to p ∈ X. For each

n ∈ N, define a bijection fn : X → X by swapping the points p and pn and fixing all

the other points. Then, the relation Rn = {(x, fn(x)) : x ∈ X} is a (εn,∞)-relation

between (X, pn) and (X, p), where εn = d(x, xn). Then, εn → 0 as n → ∞. This

proves that (X, pn) → (X, p). ■

3.2 Modifying lengths and twists

In this section, we claim that we can create a continuous deformation of a pointed

hyperbolic surface by changing a finite number of length and twist parameters in

the Fenchel-Nielsen coordinates and moving the basepoint accordingly. This will be

stated more precisely as Proposition 3.2.6.

Below, S denotes an orientable hyperbolizable topological surface. Fix a pants

decomposition P of S as in Theorem 2.1.1, and let Pb ⊂ P be the subset of boundary

curves and curves bounding cylinders. Also fix a collection S of seams with respect

to P as defined in Section 2.1.4.

3.2.1 Good markings

To adjust Fenchel-Nielsen parameters consistently with the pointed Gromov-Hausdorff

topology, we need some ‘canonical’ identifications of hyperbolic structures. We will

use Buser’s explicit markings of hyperbolic surfaces. What we now outline follows his
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treatment of the Teichmüller space in Chapter 6 of [14]. The interested reader can

find more details there.

Any triple (`1, `2, `3) ∈ (R≥0)
3 specifies up to isometry a unique geodesic pair

of pants Y with cuffs γ1, γ2, and γ3 such that `Y (γi) = `i. The length of zero is

understood to be that of a puncture. The common perpendiculars between pairs of

boundary components decompose Y into two isometric hyperbolic polygons (or two

right-angled hexagons in a case with no cusps). We say that Y is in standard form

if each γi is parametrized on S1 = R /〈t 7→ t + 1〉 with constant speed so that it

starts and ends at a point where a common perpendicular meets γi (which we call

a standard parametrization of γi). By a model pair of pants, we mean a generalized

geodesic pair of pants, possibly with cusps, given in standard form such that all cuffs

have length 1.

Assume for now that S contains all of its boundary components that are circles.

First, we consider a special hyperbolic surface J obtained by replacing the pairs of

pants in S \P with model pairs of pants and gluing them back with no twists so that

the seam arcs match up. We call J the model surface for S, and we will consider P

to be a geodesic pants decomposition of J . For our purpose, we will use J as a base

for a marking of any marked hyperbolic surface in T (S).

Let RP = (R+ ×R)P−Pb × RPb
+ . For a = (`a(γ), θa(γ))γ∈P−Pb

, (`a(β))β∈Pb
∈ RP ,

we construct a hyperbolic surface Xa as follows. For any pants component Y of J−P

with cuffs γ1, γ2, γ3, let Y a be a geodesic pair of pants with cuffs γa1 , γa2 , γa3 in standard

form in which `(γai ) = `a(γi). Let Xa be the quotient

Xa =
(⋃

Y a
)
/pasting scheme,

where the pasting scheme is such that if two pants Y a
1 and Y a

2 are glued along simple

closed geodesics γ1 ⊂ ∂Y a
1 and γ2 ⊂ ∂Y a

2 of the same length so that both project to
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γ in Xa, then the identification is

γ1(t) = γ2(θa(γ)− t) =: γ(t) for all t ∈ S1. (3.1)

In his model of the Teichmüller space, Buser describes how to construct a marking

ϕa : J → Xa for each a ∈ RP as the composition of two maps: the first stretches

each model pair of pants in J , and the second twists a collar neighborhood of each

pants curve to attain the desired values for the twist parameters.1 Furthermore, if γ

is as in (3.1), then ϕa reparametrizes γ as γa with

xsϕa ◦ γ(t) = γa(t+
1

2
θa(γ)) for all t ∈ S1. (3.2)

In particular, the construction of ϕa also ensures that the standard parametrization

of the boundary geodesics of J are preserved. The details of these constructions can

be found in Section 6.2 in [14].

Definition 3.2.1. Let J be a model surface for S, and let X be a hyperbolic surface

such that CC(X) is diffeomorphic to J . Then, a diffeomorphism f : J → CC(X) is

called a good marking if there exist a marking ϕa : J → Xa as defined by Buser for

some a ∈ RP and an isometry I : CC(X) → Xa such that I ◦ f and ϕa are isotopic.

We record the main consequences of Buser’s markings, applied to our setting.

Proposition 3.2.2 (Theorem 6.2.7 in [14]). Fix a model hyperbolic surface J with

finite area. Let (X, g) be a marked hyperbolic surface with g : J → X as a marking

with its Fenchel-Nielsen parameters FN(X) = a ∈ RP . Then, (X, g) and (Xa, ϕa)

are marking equivalent. In other words, there is a choice of good marking for every

marked surface.
1Although Buser only defines these markings for compact hyperbolic surfaces, the construction

readily generalizes to our current setting.
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Theorem 6.4.2 in [14] asserts that, for a closed surface S, the Fenchel-Nielsen

coordinates of T (S) form a real-analytic global atlas compatible with the topology

defined by the quasi-isometry distance between two marked surfaces (assumed with

good markings)

dq.i.((X1, f1), (X2, f2)) = inf logK (3.3)

where the infimum is taken over all K > 1 such that there is a K-quasi-isometry

X1 → X2 in the isotopy class of f2 ◦ f−1
1 .

In fact, this compatibility holds so long as S is of finite type—regardless of whether

S has cusps or includes boundary circles, see Proposition 3.2.4 below—using the

existence of a quasi-isometry between two hyperbolic funnels, which we now show.

This is Exercise 4.6.15 in [35].

Lemma 3.2.3. For each ` > 0, let Fℓ = {z ∈ H2 : Re(z) ≥ 0}/
〈
z 7→ eℓz

〉
be a

hyperbolic funnel with a simple closed geodesic boundary of length `. If 0 < `1 < `2,

then there exists a K-quasi-isometry fℓ1,ℓ2 : Fℓ1 → Fℓ2 where K = `2/`1.

Proof. For i = 1, 2, let γi be the boundary curve of Fℓi and `i = `(γi). We will work

with Fermi coordinates with respect to the γi. Fixing a point xi ∈ γi, we parametrize

γi by unit speed so that γi(0) = xi. Then, the Fermi coordinate (t, ρ) ∈ [0, `i)× [0,∞)

on Fi represents the unique point p ∈ Fi whose perpendicular from p to γi has length

ρ and meets γi at γi(t).

γi(t)
p = (t, ρ)

Fℓi

length = ρ

Figure 3.1: A point on a funnel Fℓi shown with a Fermi coordinate.

Consider the map fℓ1,ℓ2 : Fℓ1 → Fℓ2 given by f(t, ρ) = (Kt, ρ). That is, fℓ1,ℓ2 sends
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the γ1-equidistant curve of height ρ to the γ2-equidistant curve of height ρ. We claim

that this fℓ1,ℓ2 is a K-quasi-isometry. The calculations are straightforward, but we

include them here for completeness.

The hyperbolic metric with respect to the Fermi coordinate (t, ρ) can be expressed

as ds2 = cosh2 ρ dt2+ dρ2. Let γ : [0, 1] → Fℓ1 be a differentiable path in Fℓ1 given by

γ(u) = (t(u), ρ(u)). Then,

d

du
fℓ1,ℓ2(γ(u)) =

d

du
(Kt(u), ρ(u)) = (Kt′(u), ρ′(u)).

Thus,

`F2(fℓ1,ℓ2(γ)) =

∫ 1

0

√
cosh2 ρ(u) (Kt′(u))2 + ρ′(u)2du

≤ K

∫ 1

0

√
cosh2 ρ(u) t′(u)2 + ρ′(u)2du

= K · `Fℓ1
(γ).

It is clear that fℓ1,ℓ2 is distance non-decreasing. So, the map fℓ1,ℓ2 is indeed a K-

quasi-isometry between Fℓ1 and Fℓ2 ■

Let J be a model surface for a finite-type surface S with geodesic boundary.

By a model funnel, we refer to the hyperbolic funnel F1 with its boundary geodesic

parametrized with constant speed on S1. If we glue model funnels to the boundary

components of J so that the boundary parametrizations line up, we can also con-

sider the Teichmüller space of a geodesically complete hyperbolic surface. We extend

good markings in an obvious way by pasting together ϕa on the convex core with

appropriate f1,ℓ (as defined in lemma 3.2.3 above) along the boundary.

The proposition below is a generalized, paraphrased version of Theorem 6.4.2 in

[14]. We modify Buser’s proof slightly.
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Proposition 3.2.4. If S is of finite type that is not a sphere with three points removed,

then the Fenchel-Nielsen coordinate map

FN : T (S) → RP

(X, f) 7→ FN(CC(X))

is a diffeomorphism, where CC(X) is the convex core of X. Here, the Teichmüller

space is considered equipped with the quasi-isometry distance.

Proof. We view S = J as a model surface. That is, S is equipped with a hyperbolic

structure in which all pairs of pants and funnels in the decomposition determined by P

are in model form and each gluing has no twist. Suppose that the funnel components

of S − P are bounded by c1, . . . , ck ∈ Pb. Any marked hyperbolic structure (X, f) is

realized by gluing hyperbolic funnels along the geodesic boundary components of its

convex core. The isometry classes of these funnels are uniquely determined by `X(ci).

Since funnels are rotationally symmetric, the geometry of X is completely specified

by CC(X). Thus, the natural inclusion T (CC(S)) → T (S) is in fact a bijection, and

we may regard T (S) as the set

T (S) = {(Xa, ϕa) : a ∈ RP},

where ϕa is a good marking.

We will now prove that both FN and FN−1 are continuous. Assume an → a in

RP . First, notice that, since all funnels are quasi-isometric and there are only finitely

many funnels in S, the notion of the q.i.-distance (3.3) still holds in T (S). Indeed,

for (Xan , ϕan) and (Xa, ϕa), the map ϕan |CC(S) ◦ ϕa|−1
CC(S) between the convex cores is

a Kn-quasi-isometry by construction, where Kn → 1. Together with lemma 3.2.3, the
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quasi-isometry constant of ϕan ◦ ϕ−1
a is

max{Kn,
`an(γ)

`a(γ)
,
`a(γ)

`an(γ)
: γ ∈ Pb} <∞

which goes to 1 as n→ ∞. This shows that dq.i.((Xan , ϕan), (Xa, ϕa)) → 0.

Now, suppose that dq.i.(Xn, X) → 0. We may assume that all of Xn and X come

equipped with good markings ϕn and ϕ, respectively. Let γ be an essential simple

closed geodesic in S. If f : Xn → X is a K-quasi-isometry in the homotopy class of

ϕ ◦ ϕ−1
n , then the simple closed curve f ◦ ϕn(γ) is in the same homotopy class as the

simple closed geodesic ϕ(γ). This implies that

1

K
`X(ϕ(γ)) ≤

1

K
`X(f ◦ ϕn(γ)) ≤ `Xn(ϕn(γ)),

so `X(ϕ(γ)) ≤ K`(ϕn(γ)). Similarly, `Xn(ϕn(γ)) ≤ K`X(ϕ(γ)). Thus, setting

dn = dq.i.(Xn, X),

we have

exp(−dn) ≤
`Xn(ϕn(γ))

`X(ϕ(γ))
≤ exp(dn).

In particular, `Xn(ϕn(γ)) → `X(ϕ(γ)). Moreover, all essential simple closed geodesics

in S, X, and Xn are contained in their convex cores. By equipping T (CC(S)) with

the length spectrum metric (see Proposition 3.3 in [28]), it follows that FN(CC(Xn))

converges to FN(CC(X)). This concludes the proof. ■

3.2.2 Adjusting parameters

In this subsection, a topological hyperbolizable S need not be of finite type.

Definition 3.2.5. We call R ⊂ S a P-subsurface if R is a connected subsurface and

all boundary components of R (if they exist in S) belong to P . Similarly, if X is a

hyperbolic surface diffeomorphic to S with a marking f : S → X, we say Z ⊂ X is
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a P-(geodesic) subsurface if it is connected and all boundary components are simple

closed geodesics belonging to the homotopy classes of f(P). The context should

clearly indicate whether it is topological or geometric.

Notation. With the same setup as in Definition 3.2.5 above, we write FN |R(X)

for the restriction of the Fenchel-Nielsen parameters of X to those belonging to the

geodesics in the homotopy classes of f(P ∩ R). Set

FN (R) := {FN |R(X) : (X, f) is a marked hyperbolic surface diffeomorphic to S}.

We are ready to state the main proposition of this section: varying finitely many

Fenchel-Nielsen parameters is continuous in H2
•. Let R ⊂ S be a finite-type P-

subsurface. Fix a0 ∈ FN (R). Suppose that (X0, f0) is a marked hyperbolic surface

diffeomorphic to S with Fenchel-Nielsen coordinates FN(X0) where FN |R(X0) = a0.

Proposition 3.2.6. Fix a basepoint p0 ∈ X0. If t 7→ at is a continuous path in

FN (R) for t ∈ [0, 1], then there is a continuous path t 7→ (Xt, pt) in H2
•, where

pt ∈ Xt and ψt : S → Xt is a marking for which FN |R(Xt) = at at all time 0 ≤ t ≤ 1.

Proof. First, enlarge R to the finite-type P-subsurface R′ ⊃ R so that no boundary

component of R is still a boundary component of R′. Viewing R′ as a model hyperbolic

surface, let b1, . . . , bn be the boundary geodesics of R′. We also record the twist

parameter θX0(bj) for all j = 1, . . . , n.

Set a′
0 = FN |R′(X0). For t ∈ [0, 1], create a continuous path t 7→ a′

t in FN (R′),

where the coordinates that do not come from R are all held constant, and those from

R take corresponding values from at.

For all t ≥ 0, consider (Zt, ϕt) ∈ T (R′) such that ϕt : R
′ → Zt is a good marking

and FN(Zt) = a′
t. Temporarily parametrize each boundary component of X0−f0(R′)
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by constant speed on S1. Since `(ϕt(bj)) = `(f0(bj) for all j = 1, . . . , n, we can set

Xt = Zt ∪∂ (X0 − f0(R
′))/pasting scheme

where the pasting scheme follows (3.1):

ϕt ◦ bj(s) = f0 ◦ bj(θX0(bj)− s) =: βj(s) for all s ∈ S1

and βj is the projection of ϕt(bj) in Xt. We now introduce a family of markings

ψt : S → Xt by setting ψt to be a good marking that extends ϕt on a regular

neighborhood of R′ and smoothing it to f0 on the complement. With respect to ψt,

FN(Xt) = at for all t. We remark that the original marked surface (X0, f0) and the

new (X0, ψ0) are marking equivalent.

Since we only alter the Fenchel-Nielsen coordinates corresponding to R ⊂ R′,

we may assume that ψt|Xt−Zt ◦ ψ−1
s |Xs−Zs is an isometry for all s, t ∈ [0, 1]. As in

the proof of Proposition 3.2.6, our choice of good markings shows that ψt ◦ ψ−1
s is a

K = K(s, t)-quasi-isometry Xs → Xt where K → 1 as |s− t| → 0. Thus, the family

Xt is a continuous path in the quasi-isometry distance. Finally, choose the basepoint

pt = (ψt ◦ ψ−1
0 )(p0) ∈ Xt. It follows that the (Xt, pt) vary continuously in H2

•. ■

Repeatedly applying proposition 3.2.6 to modify finite-type subsurfaces, we can

construct a continuous path from a given pointed hyperbolic surface to any other with

the same diffeomorphism type, where the basepoints are suitably chosen. However,

changing some collection of infinitely many Fenchel-Nielsen parameters at once may

end up producing a surface with an incomplete hyperbolic metric as in Example 2.1.6.
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3.3 Pinching a simple closed curve to a cusp

We now record a continuous deformation in which a simple closed curve is shrunk to

have length 0, so its neighborhood becomes a cusp. We note that this is not a subcase

of the previous section, as we did not allow a geodesic pants curve to degenerate into

a puncture. First, we need a generalized (and pointed) version of lemma 3.2.6 in [14].

Lemma 3.3.1. Let {Yn}∞n=1 be a sequence of generalized pairs of pants with boundary

geodesics (or punctures) γn1 , γn2 , and γn3 . Let Y be another generalized pair of pants

with boundary geodesics (or punctures) γ1, γ2, and γ3. Suppose that `(γnk ) → `(γk) as

n→ ∞ for every k = 1, 2, 3.

Then, for any sequence of points pn ∈ Yn whose injectivity radii are uniformly

bounded away from zero, there is a point p ∈ Y such that, by possibly passing to a

subsequence, (Yn, pn) → (Y, p) in the pointed Gromov-Hausdorff topology.

Proof. If all geodesic boundaries of Y have positive lengths, the result follows im-

mediately from lemma 3.2.6 in [14]. In this case, Buser’s stretch homeomorphisms

σn : Y → Yn are desired quasi-isometries (illustrated below in Figure 3.2) and we

take p ∈ Y to be an accumulation point of {σ−1
n (pn)}.

It remains to prove the statement when at least one boundary component of Y

is a puncture. We show this when Y has three punctures—i.e. `(γk) = 0 for all

k = 1, 2, 3. We shall assume that `(γnk ) > 0 for a sufficiently large n. The proof can

be easily modified for the other cases.

Let α1, α2, and α3 be the disjoint infinite geodesics joining the punctures of Y . Let

∆ ⊂ Y be the closure of a component of Y \{α1, α2, α3}. Then, ∆ is an ideal triangle.

In Yn, let βn
k be the common perpendicular of γnk and γnk+1, where the subscripts are

read modulo 3. Let Hn ⊂ Yn be the closure of a component of Yn \ {βn
1 , β

n
2 , β

n
3 }

containing pn. So Hn is a right-angled geodesic hexagon, with alternating sides of
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x∗ = α2(t)

σ(x) = x
′

x′

∗
= α′

2
(t)

d(v,x)
d(v,x∗)

= d(v′,x′)
d(v′,x′

∗
)

Figure 3.2: A stretch homeomorphism between two right-angled
geodesic hexagons H and H ′ (with distinguished vertices v and v′,
respectively), which is affine on each boundary geodesic segment. A
concatenation of two identical σ defines a stretch map between two
geodesic pairs of pants. See Definition 3.2.4 in [14].

lengths `(γnk )/2.

Fix ∆ as an ideal triangle in D. Consider Hn as a subset of D as follows. Extend

each βn
k to an infinite geodesic β̃n

k . Together, β̃n
1 , β̃

n
2 , and β̃n

3 bound a convex region Fn

containing Hn. After rotating Fn and possibly relabeling the sides, we may assume

that ∆ ⊂ Fn and that αk and αk+1 intersect γk. Choose p to be an accumulation

point of {pn} ⊂ D, possibly after passing to a subsequence. Since `(γnk ) → 0, it must

be that p ∈ Y .

Parametrize the geodesic segments βn
k and αn

k = αk ∩Hn with unit speed so that

both start on the side γnk and end on the side γnk+1, where k ∈ {1, 2, 3} and the

subscript is read cyclically. See Figure 3.3 below.

Let εn := max{`(γnk )/2 : k = 1, 2, 3}. Then, the endpoints of βn
k and αn

k , being

on γnk , are at a distance less than εn apart. It is a hyperbolic geometry fact that the

function (s, t) 7→ d(βk(s), α
n
k(t)) is strictly convex (see Proposition II.2.2 in [16] ). This

shows that βn
k ⊂ Nϵn(α

n
k) for all k = 1, 2, 3, and hence Hn is in the εn-neighborhood

of ∆ ∩Hn.
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1
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3
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length = ℓ(γn
2
)/2 < ǫn

Hn

∆

Figure 3.3: A right-angled geodesic hexagon Hn (bold) with its
extension Fn (dashed) and an ideal triangle ∆ (in magenta).

Let rn : Hn → ∆ be the nearest point retraction. Since ∆ is convex, the map rn

is well-defined [16, Lemma I.2.3.1]. The retraction map rn gives a (εn, Rn)-relation

between (Hn, pn) and (∆, p), where Rn = min{d(pn, γnk ) : k = 1, 2, 3}. We then use

it to define a (εn, Rn)-relation between (Yn, pn) and (Y, p), individually between the

right-angle hexagon components of Yn\{βn
1 , β

n
2 , β

n
3 } and the ideal triangle components

of Y \ {α1, α2, α3}.

As n → ∞, we have that εn → 0 and also Rn → ∞, since `(γnk ) → 0 while

the injectivity radii of pn are uniformly bounded away from zero. Certainly, these

relations give the desired convergence (Yn, pn) → (Y, p). ■

Using the same argument as above, we obtain a similar result for funnels, whose

proof is straightforward and we now omit. Let F0 be the infinite cylinder which is the

quotient of H2 by a parabolic isometry. (Since all parabolic isometries are conjugate,

we may take F0 = H2/〈z 7→ z+1〉 for concreteness.) For ` > 0, Fℓ is the funnel whose

boundary geodesic has length `.
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Corollary 3.3.2. Let {(Fℓn , pn)}∞n=1 be a sequence of funnels with a basepoint with

`n → 0. Suppose that the injectivity radii of pn in Fℓn are uniformly bounded both

below and above. Then, (Fℓn , pn) → (F0, p) in the pointed Gromov-Hausdorff topology,

for some suitably chosen p ∈ F0.

Remark 1. Let us contrast Corollary 3.3.2 with the fact that there is no global

quasi-isometry between Fℓ and F0 for any ` > 0, for they are not diffeomorphic.

So, dq.i.(F0, Fℓ) = ∞. Unlike a quasi-isometry which captures the distortion of the

corresponding metrics globally, the pointed Gromov-Hausdorff topology only detects

such change on large compact subsets.

We are now positioned to state that shrinking a collection of simple closed geodesics

to punctures is continuous in the pointed Gromov-Hausdorff topology of H2
•.

For a hyperbolic surface X, if H1, H2, . . . are the half-plane components of X −

CC(X), we let CCF (X) = X −
⋃
Hn.

Proposition 3.3.3. Let S be a model hyperbolic surface that admits a geodesic pants

decomposition P, possibly with model funnels. Fix a subset Q ⊂ P. If (X, p) is a

pointed hyperbolic surface with a good marking ϕ : S → CCF (X), then there is a

finite-time continuous path from (X, p) to a pointed hyperbolic surface (XQ, q), where

XQ is obtained by pinching all boundary geodesics of X − ϕ(Q) to punctures and

q ∈ XQ.

Proof. Denote by S̄ the component of S−Q that contains ϕ−1(p). For time t ∈ [0, 1),

construct a surface Xt by modifying S as in the previous section (and completing the

metric by adding half-planes if necessary) so that `Xt(γ) = (1 − t)`X(γ) in FN(Xt)

for all boundary curves γ of S̄, while all other Fenchel-Nielsen parameters are kept

constant. We obtain a family of good markings ϕt : S → CCF (Xt) accordingly.

Choose a basepoint pt = ϕt ◦ ϕ−1
0 (p) in Xt.
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Consider a surfaceXQ obtained as follows. Let S ′ be a new model surface obtained

by changing the boundary curves of S̄ into punctures. We keep the same pants

decomposition P so that the P-pants in S with boundary in ∂S̄ are replaced with

pants with cusps in S̄. By pasting together the relations as in lemma 3.3.1 (or

corollary 3.3.2), we conclude that (ϕt(S̄), pt) → (XQ, p
′) for some choice of p′ ∈ SQ

in the pointed Gromov-Hausdorff topology. Finally, by the collar lemma, the radius

Rt for which BXt(pt, Rt) ⊂ ϕt(S̄) approaches infinity as t → 1, we deduce that

(Xt, pt) → (XQ, p
′) in H2

•. We can apply lemma 3.1.1 to move from (XQ, p
′) to the

desired (XQ, q). ■

Remark 2. With Proposition 3.3.3, we have that shrinking a simple closed curve

introduces a new cusp to a base surface in the topology of H2
•. By allowing the

length of these degenerate curves as zero, we can now strengthen Proposition 3.2.6

by allowing length parameters to take values from R≥0 rather than just R+.

3.4 Inserting an infinite strip

Our last class of continuous paths in H2
• comes from strip deformations. This is a

geometric construction in which an infinite strip is inserted along a properly embedded

infinite geodesic in a hyperbolic surface. Thurston first observed in [36] that removing

an infinite strip from the geodesic completion of a finite-type bordered hyperbolic

surface shortens all closed geodesics in the convex core. Papadopoulos and Théret

[30] later give a proof and show that the lengths decrease by at least a positive

constant depending on the width of the strip. In [17], Danciger-Guéritaud-Kassel

characterize all proper deformations of a convex co-compact hyperbolic surface that

lengthens all simple closed geodesics as arising in some unique way from so-called

infinitesimal strip deformations along a collection of finitely many geodesic arcs.
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The main tools in this section are two specific strip deformations of a cusped pair

of pants that turn the cusps into funnels in a way that is continuous in H2
•. We begin

by formulating a strip deformation in a concrete way and show that it is compatible

with the pointed Gromov-Hausdorff topology.

Definition 3.4.1. For any s > 0, an (infinite) s-strip is the region in H2 bounded by

two hyperparallel infinite geodesics, whose unique common perpendicular τ between

them has length s. The geodesic arc τ is called the waist of As. The core of the s

strip is the infinite perpendicular bisector of τ . The center of the s-strip is the point

of intersection between τ and the core.

Each s-strip As comes foliated with equidistant arcs of the waist τ as leaves. These

arcs are {y ∈ As : d(τ, y) = h} indexed by h > 0. This foliation induces an isometry

between the boundary geodesics of As by identifying the two endpoints of each leaf.

This is referred to as the canonical isometry between the two geodesics.

waist τ

core

D

τ -equidistant arcs

ℓ(τ) = s

Figure 3.4: An infinite s-strip (shaded) with its waist τ , its core
(dotted). Some τ -equidistant arcs are also shown.

Definition 3.4.2 (Inserting a strip to a surface). Given a complete hyperbolic surface

X with a properly embedded simple bi-infinite geodesic α and a ∈ α, we can cut open

X along α and then glue an s-strip along the boundary of the closure of X \ α via

the isometry which respects the parametrization with unit speed of α in such a way
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that both endpoints of τ are identified with a. The resulting surface depends on the

choices of X,α, a, and s, and we denote it by Strip(X,α, a, s).

α

X

a

Cut X along α Glue a strip in

Xs = Strip (X,α, a, s)

Figure 3.5: Inserting a strip (green) along α (purple) in X.

By construction, the resulting surface Strip(X,α, a, s) has a complete hyperbolic

structure. We will now see that inserting a strip and varying its width are continuous

deformations of a pointed surface in H2
•.

Let X, α, and a be given as in Definition 3.4.2. Choose a basepoint p ∈ X − α.

Let Xs = Strip(X,α, a, s). For any s ≥ 0, denote the inserted s-strip in Xs by As

and its waist by τs. Orient and parametrize α by unit speed so that α(0) = a.

This also determines the orientation of the left and the right boundary components

of As, which we call αs,L and αs,R, respectively. There is an isometric embedding

Xs − As ↪→ Xt − At ⊂ Xt that extends the canonical isometry between αs,L and

αt,L and also between αs,R and αt,R, which we refer to as the canonical isometric

embedding.

Theorem 3.4.3. The strip insertion map

Strip : R+ → H2
•

s 7→ (Xs, p)

is continuous, where p ∈ Xs is the image of p under the canonical isometric embedding

X − α → Xs.
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Proof. First, if s > t > 0, we define a map fs,t : (Xs, p) → (Xt, p) by mapping Xs−As

to Xt −At via the canonical isometric embedding and proportionally shrinking As to

At along the foliated leaves (we can work with Fermi coordinates to give an explicit

formula). The same calculations as in lemma 3.2.3 can be used to show that fs,t is a

(s/t)-quasi-isometry. This proves that Strip is continuous away from 0.

Now, define gs : X → Xs by sending X − α to Xs − As and α to αs,L via the

canonical isometric embedding. Fixing R > 0, we claim that gs distorts the distance

in BX(p,R) by no more than some MR(s) > 0 and that MR(s) → 0 as s → 0. It

is clear that gs does not change the distance between two points of X if they lie on

the same side of X − α. So, we consider two points x, y ∈ BX(p,R) such that the

shortest geodesic segment joining them [x, y] intersects α, say at α(t). Without loss

of generality, assume that x is on the left of α. Refer to Figure 3.6 below. For each

h ∈ R, let ηs,h denote the τ -equidistant arc in As that joins αs,L(h) and αs,R(h).

Observe that there is a maximal value |T | > 0 such that α(T ) ∩ BX(p,R) 6= ∅, and

set MR(s) to be the length of ηs,T .

αs,L αs,R

gs(x)

gs(y)

Xs

αs,L(t) αs,R(t)

As

ηs,t

Figure 3.6: The images under x and y under gs in Xs.
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Concatenating together [gs(x), αL(t)] ∪ ηs,t ∪ [αR(t), gs(y)], we have that

dXs(gs(x), gs(y))− dX(x, y) ≤ dXs(gs(x), αL(t)) + `(ηs,t)

+ dXs(αR(t), gs(y))− dX(x, y)

= `(ηs,t) ≤MR(s).

Moreover, Lemma 2.1 in [30] shows that gs is distance non-decreasing. Together,

we have

0 ≤ dXs(gs(x), gs(y))− dX(x, y) ≤MR(s)

for x, y ∈ BX(p,R). Clearly, MR(s) → 0 as s→ 0, so we have our claim.

To prove continuity of Strip at 0, we note that for any ε, R > 0, we can choose

the width s > 0 sufficiently small so that MR(s) < ε. This gives an (ε, R)-relation

between (X, p) and (Xs, ps), and we are done. ■

Remark 3. If {α1, . . . , αn} is a finite collection of disjoint proper bi-infinite geodesics

in a hyperbolic surface X with ai ∈ αi, then we can simultaneously insert strips of

width ti along αi at ai, which we denote the resulting hyperbolic surface by

Strip(X, (α1, · · · , αn), (a1, . . . , an), (t1, . . . , tn)).

The same proof applies to show that growing a finite number of strips simultaneously

is a continuous deformation in H2
•; that is,

Strip : (R+)
n → H2

•

(t1, . . . , tn) 7→ (Strip(X, (α1, · · · , αn), (a1, . . . , an), (t1, . . . , tn)), p)

where p is chosen to be the image of the basepoint p ∈ X under the canonical isometric

embedding of X −
⋃
αi into the new surface.
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By a hyperbolic cylinder of length h bounded by a simple closed geodesic γ, we

mean a cylinder isometric to a one-sided metric neighborhood of γ of width h in the

funnel H2/〈z 7→ eℓ(γ)z〉. We will analyze cylinders in the following specific construc-

tions involving strip insertion in a single pair of pants with cusps.

Scenario 1: Both ends of the infinite geodesic exit a single cusp.

Let Y 1 be a pair of pants with two closed geodesic boundary components γ1 and γ2

and one cusp. Denote by σ the common perpendicular of γ1 and γ2. In this case,

we take α to be the unique simple bi-infinite geodesic that exits the cusp in both

ends and intersects σ once, say at a ∈ α. For each s > 0, let Y 1
s := Strip(Y 1, α, a, s).

Geometrically, the cusp of Y 1 is replaced with a funnel in Y 1
s , see Figure 3.7 below.

We consider what happens to Y 1
s as we increase the width s.

Y 1 Y 1

s

γ1 γ2

σ

α

γ1 γ2

a

As

Figure 3.7: A pair of pants with one cusp Y 1 (left) and the surface
Y 1
s (right) with the inserted strip As shaded.

Lemma 3.4.4. The lengths of embedded hyperbolic cylinders bounded by γ1 and γ2

in Y 1
s both approach infinity as s→ ∞.

Proof. Let Cs be the core of As. Each component of Y 1
s −Cs is topologically a cylinder

and contains a hyperbolic cylinder with boundary γi of length at least dY 1(a, γi)+s/2.

The result immediately follows. ■
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Scenario 2: The two ends of the infinite geodesic exit different cusps.

Consider a pair of pants Y 2 with two cusps and one geodesic boundary component γ.

Take α to be the simple bi-infinite geodesic in Y 2 joining the two cusps as in Figure

3.8 below. Let σ be the shortest geodesic with endpoints in γ that intersects α exactly

once, say at a. For each s > 0, let Y 2
s = Strip(Y 2, α, a, s). Then, the two cusps in Y 2

is replaced by two funnels in Y 2
s . As an analog of lemma 3.4.4, we analyze Y 2

s as s

increases to infinity.

γ

a
α

γ

α

As

Y 2 Y 2

s

σ

Figure 3.8: A pair of pants with two cusp Y 2 (left) and the surface
Y 2
s (right) with the inserted strip As shaded.

Lemma 3.4.5. The length of the embedded hyperbolic cylinder bounded by γ in Y 2
s

approaches infinity as s→ ∞.

Proof. This is also immediate: if Cs is the core of As, then Y 2
s − Cs is topologically

a cylinder, and it contains a hyperbolic cylinder bounded by γ of length at least

dY 2(a, γ) + s/2. ■

We will use lemmas 3.4.4 and 3.4.5 to modify parts of a surface which are pairs of

pants into funnels, while keeping the remaining components unchanged. This surface

modification will be continuous with respect to the Gromov-Hausdorff topology.

Proposition 3.4.6 (Capping with funnels). Let X0 be a complete hyperbolic surface

without boundary, which is not diffeomorphic to a sphere with three points removed
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or a cylinder. Fix a geodesic pants decomposition P. Suppose that Z0 ⊂ X0 is a

P-subsurface such that no three components of ∂Z0 bound a common pair of pants

in X0 − Z0. Let Ẑ be the geodesic completion of Z0 obtained by gluing funnels to

each boundary component of Z0. Fix a basepoint x0 ∈ int(CC(Z0)) of X0. By viewing

Z0 ⊂ Ẑ, we take x0 ∈ Z0 as the basepoint of Ẑ.

Then, there is a continuous path t 7→ (Xt, xt) in H2
• (for t ≥ 0) from (X0, x0)

limiting to (Ẑ, x0) such that there is a pointed subsurface (Zt, xt) ⊂ (Xt, xt) isometric

to (Z0, x0) for all t ≥ 0.

Proof. We describe how to construct Xt and the desired properties will be evident.

First, let Q ⊂ P be the pants geodesics not intersecting Z0. By Proposition 3.3.3,

these simple closed geodesics in Q can be shrunk simultaneously to punctures in finite

time. We may then assume that each component C of X0 − Z0 is either a funnel or

a pair of pants necessarily with one or two cusps.

For each t ≥ 0, we define the components Ct as follows. If C is a funnel, set

Ct = C. If C is a pair of pants, let Ct = Strip(C, α, a, t), where α and a are as chosen

as in the assumption of lemma 3.4.4 or lemma 3.4.5, depending on the number of

cusps in C. Let Xt be the surface obtained by gluing the Ct to Z0, keeping the same

gluing identifications and twists. Clearly, there is an isometric copy of Z0 in Xt;

call it Zt. We may now choose the basepoint zt ∈ Zt accordingly. Each boundary

geodesic of Xt−Zt bounds a hyperbolic cylinder in the corresponding component Ct.

By lemma 3.4.4 and lemma 3.4.5, the lengths of these cylinders approach infinity as

t→ ∞. This proves that limt→∞(Xt, xt) = (Ẑ, x0) ■
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Chapter 4

Results on Global and Local Path

Connectivity of H2
•

Our main results concerning path connectivity of H2, both global and local, are

discussed in this chapter. Again, unless specified otherwise, a hyperbolic surface is

assumed to be connected, oriented, and complete without boundary.

4.1 Path-connectivity

In this section, we deduce that H2
• is path-connected using continuous paths laid out

in Chapter 3.

Recall that the injectivity radius of a point x in a hyperbolic surface X, denoted

injradX(x), is the radius of the largest isometrically embedded hyperbolic disk cen-

tered at x. We first characterize sequences of pointed surfaces converging to H2 (with

a basepoint).

Lemma 4.1.1. If {(Xn, pn)}∞n=1 is a sequence of pointed hyperbolic surfaces in H2
•

such that injradXn
(pn) → ∞ as n → ∞, then the limit of the sequence exists and it

is (H2, z0) for any (equivalent) choice of basepoint z0 ∈ H2.
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Proof. For each n ∈ N, let Rn = injradXn
(pn). Then, any choice of isometry between

BXn(pn, Rn) and BH2(z0,H2) gives a (0, Rn)-relation. Since Rn → ∞ by assumption,

the result follows. ■

Notation. For two hyperbolic surfaces X and Y , we write X ∼ Y if there exist

p ∈ X and q ∈ Y such that (X, p) and (Y, q) belong to the same path component of

H2
•. Clearly, ∼ is reflexive and symmetric.

Fact. ∼ is also transitive.

Proof. Suppose X ∼ Y and Y ∼ Z. That is, (X, x) and (Y, y) are in some path

component C1 of H2
• and (Y, y′) and (Z, z) in some path component C2 for some

choices of x ∈ X, y, y′ ∈ Y , and z ∈ Z. By lemma 3.1.1, a path joining y to y′ in Y

gives a path between (Y, y) and (Y, y′) in H2
•, so C1 = C2 and X ∼ Z. ■

Theorem 4.1.2. The space H2
• is path-connected.

Proof. Our strategy is to show that X ∼ H2 for any hyperbolic surface X. We are

done if X is simply connected, in which case X is isometric to H2. If X is topologically

a cylinder, then X is isometric to a quotient of H2 by some cyclic subgroup generated

by either a single parabolic isometry or a single hyperbolic isometry in PSL2(R). In

either case, we can move the basepoint along a path which increases the injectivity

radius without bound. Using lemma 4.1.1, we see that X ∼ H2.

Now, we can suppose that X admits a (possibly empty) geodesic pants decom-

position P as in Theorem 2.1.2 such that there is a component Y of X − P whose

closure is a generalized geodesic pair of pants. Let Y0 be the geodesic pair of pants

with three cusps. Without changing the path component of (X, p) in H2
•, we may

move the basepoint (lemma 3.1.1) and assume that p ∈ Y ⊂ X. Applying lemma

3.3.3 to shrink all boundary components of Y to punctures, we obtain an path from

(X, p) to (Y0, y) for some choice of y0 ∈ Y0. Thus, X ∼ Y0.
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α

a

Y0

Figure 4.1: The pair of pants Y0 with three cusps and our choice
of a bi-infinite geodesic.

It remains to show that Y0 ∼ H2. To do this, we choose a simple bi-infinite α

geodesic whose ends exit a single cusp of Y0 (see Figure 4.1) and a point a ∈ α.

We also fix a basepoint y0 ∈ Y0 away from α. For each t > 0, consider the surface

Yt = Strip(Y, α, a, t) with the basepoint yt chosen to be the image of y0 under the

canonical isometric embedding Y0 ↪→ Yt. By Proposition 3.4.2, t → (Yt, yt) is a

continuous path from t = 0 to t = 1, which implies that Y0 ∼ Y1. Now, since Y1 is a

hyperbolic surface that contains a funnel, there is a ray γ : R≥0 → Y1 starting y1 that

goes off the funnel such that the injradY1
(γ(t)) eventually increases without bound.

Thus, (Y1, γ(t)) → (H2, z0) by lemma 4.1.1, and so Y0 ∼ Y1 ∼ H2. This finishes the

proof. ■

4.2 Local path-connectivity

We first recall the notion of a weakly locally path-connected space from point-set

topology, see [38]. Its relevance to our purpose will be apparent in the fact that

follows. We thank Nir Lazarovich and Arielle Leitner for helpful conversations and

the idea of this approach.

Definition 4.2.1. A topological space X is weakly locally path-connected at x ∈ X

if for every open set V containing x there exists an open neighborhood U ⊂ V of x

such that any two points in U are on some path component of V .
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V

U

Figure 4.2: Two points in the smaller open set U are in a path-
component (in this case, a path) of the larger open set U .

Fact. If X is weakly locally path-connected at every point x ∈ X, then X is locally

path-connected.

Proof. Let x ∈ X. For any open set V containing x, consider a path-component CV

of V which contains x. Then, there is an open neighborhood Ux ⊂ V such that any

two points in Ux lie in some path-component of V . In particular, Ux ⊂ CV . Thus,

CV is open and we are done. ■

Towards the goal proving local path-connectivity of H2
•, we will work with this

point of view. The remainder of this chapter is devoted to the proof of the second

main theorem below:

Theorem 4.2.2. The space H2
• is weakly locally path-connected at the following

points:

1) (H2, z0) for any choice of z0

2) (X, p) where X is of the first kind (in fact, it is locally connected here).

Each case will be examined separately in subsequent subsections.

4.2.1 Weakly local path connectivity at (H2, z0)

Fix once and for all a basepoint z0 ∈ H2. Any choice of z0 is equivalent as Isom(H2)

acts transitively on H2.
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Definition 4.2.3. For each r > 0, we let U(r) = {(X, x) ∈ H2
• : injradX(x) > r}.

Fact. The collection {U(r) : r > 0} is a basis of neighborhoods of (H2, z0) in H2
•.

Proof. The fact that each U(r) is open follows from continuity of the injectivity radius

function on H2
• (lemma I.3.2.6 in [16]). It is clear that any open set containing (H2, z0)

defined using quasi-isometries (see Definition 2.2.7) contains U(r) for some r > 0. ■

The proof of weakly local connectivity below will use these basis sets U(r). It will

also rely on two key facts, which we state as lemma 4.2.4 and proposition 4.2.5 below.

By an infinite polygon, we refer to a convex region in H2 bounded by a finite or

countable family of pairwise disjoint infinite geodesics.

Lemma 4.2.4. Let X be a non-compact complete hyperbolic surface that is not topo-

logically a disk or a cylinder. Then, there exists a collection A of mutually disjoint,

pairwise non-homotopic, simple,proper infinite geodesics such that each component of

X −A is an open infinite polygon.

Proof. Let S be a topological surface homeomorphic to the convex core CC(X), say

with a marking f : S → CC(X). By an algorithm of Bavard and Walker (lemma

2.3.2 in [8]), we can produce a collection of mutually disjoint essential proper arcs

W in S that cuts S into two simply connected pieces. Consider the collection f(W)

in X and extend each arc with an endpoint on ∂CC(X) into the adjacent funnels or

half-planes in X. By the same argument as in lemma A.0.1 of the same paper, each

proper arc (after extension) in f(W) can be isotoped to a proper infinite geodesic

(this representative is not unique unless the arc joins two cusps). Set A to be the

set of geodesics representatives (one for each) of the arcs in f(W). The result follows

since X −A is a union of two infinite polygons. ■
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Proposition 4.2.5. Let X be a complete hyperbolic surface with no cusps and x ∈ X.

For each r > 0, there exist R′ > R > r such that if injradX(x) > R′, then there exists

a separating simple closed geodesic α such that d(y, α) > r for some y ∈ B(x,R) and

injradX(y) > r with BX(y, r) ⊂ BX(x,R). For practical purposes, we may choose

R = 4(r + 5) and R′ = 9R.

Proof. We postpone a proof, which is somewhat computationally involved, until after

the next proposition for readability. ■

The main result of this section is:

Proposition 4.2.6. H2
• is weakly locally connected at (H2, z0).

Proof. Our strategy will be to prove that for any r > 0, there exists R′ > r (whose

value is determined in Proposition 4.2.5) such that any pointed surface (X, p) in

U(R′) ⊂ U(r) lies in the same path component as (H2, z0) in the larger open set

U(r). In fact, we will produce a path from (X, p) to (or limiting to) (H2, z0) that is

contained entirely within U(r).

Given r > 0, assume that we have already chosen such an R′ > 0. Let (X, p) ∈

U(R′). If X is simply connected, we are done since X ∼= H2. If X is a quotient

H2/〈g〉, where g is either a parabolic or a hyperbolic isometry, then we can simply

move the basepoint along a path in X that strictly increases the injectivity radius

without bound, and lemma 4.1.1 implies that such a path limits to (H2, z0).

Now, let us suppose that X is non-compact and is none of the surfaces already

considered. We can work with the assumption that injradX(p) > r here. Choose a

finite or countable collection A = {αn}n∈N of proper infinite geodesics as in lemma

4.2.4. By moving the basepoint slightly, we can assume that p is not in
⋃
αn. For

each n ∈ N, let an be the point on αn closest to p. Define a path Ψ : R≥0 → H2
•

piecewise as follows. From time t = 0 to t = 1, let Xt = Strip(X,α1, a1, t) be obtained
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by adding the infinite strip of width t along α1, see Definition 3.4.2 for how to perform

this construction. Once Xt has already been defined for t ∈ [0, n], we set

Xt = Strip(X, (α1, . . . , αn, αn+1), (a1, . . . , an, an+1), (t, t− 1, . . . , t− n))

from time t = n to t = n + 1. In other words, we increase the width of each strip

linearly, but we only start inserting a strip along αn at time t = n−1. At all time t, we

pick the basepoint pt ∈ Xt to be the image under the canonical isometric embedding

X −
⋃
αn ↪→ Xt, and let Ψ(t) = (Xt, pt). Since we insert only finitely many strips at

any given time, the path Ψ is continuous by the remark following proposition 3.4.3.

Claim. For any M > 0, there exists T > 0 such that injradXt
(pt) > M for all t > T .

That is, injradXt
(pt) → ∞ as t→ ∞.

Proof of Claim. Let M > 0. Since the action of π1(X) on H2 is properly discontinu-

ous, there are only finitely many simple geodesic loops in X based at p with length

at most 2M , say b1, . . . , bK . Each of these loops must cross some geodesics in A, for

each component of X −A is simply connected. So, there is N ∈ N such that

bj ∩ (α1 ∪ . . . ∪ αN) 6= ∅

for all j = 1, . . . , K. Set T = N + 2M . If t > T , consider a shortest geodesic loop ct

in Xt based at pt so that `Xt(ct) = 2 injradXt
(pt). There are two possibilities:

Case 1. if ct crosses any of the strips added along α1, . . . , αN inXt, then `Xt(ct) > 2M

since all these strips are wider than 2M in Xt. Notice that if ct intersects the

inserted strip along αi, then it must cross both boundary components of the

strip, since there would be a geodesic bigon otherwise, which is impossible.

Case 2. ct avoids all the strips inserted along α1, . . . , αN . Consider the strip col-

lapsing map f : Xt → X defined by mapping the complement of the added
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strips isometrically onto X − A, and projecting a point on each strip onto

its core along equidistant arcs to the waist. The image f(ct) is a piecewise

geodesic loop in X based at f(pt) = p, which does not intersect any geodesics

in {α1, . . . , αN}. Let c be the geodesic representative of f(ct) relative to p.

Then, c∩ (α1 ∪ . . .∪αN) = ∅ and, in particular, c 6= bj for any j = 1, . . . , K.

Thus,

`Xt(ct) ≥ `X(f(ct)) ≥ `X(c) > 2M,

where the first inequality holds since f is length non-increasing (Proposition

2.2 in [30]).

In any possibility, it follows that injradXt
(pt) =

1
2
`Xt(ct) > M for all t > T and we

have established the claim. ■

Applying lemma 4.1.1, (Xt, pt) → (H2, z0) as t → ∞. Furthermore, Proposition

2.2 in [30] implies that inserting strips does not decrease the injectivity radius at any

given point, so injradXt
(pt) ≥ injradX(p) > r. Hence, Ψ is indeed a path in U(r)

joining (X, p) and (H2, z0) when X is non-compact.

It then remains to consider when X is compact with injradX(p) > R′. By Proposi-

tion 4.2.5, there exists a point y ∈ BR′(X) with injradX(q) > r as well as a separating

simple closed geodesic α with d(q, α) > r. Since BX(q, r) ⊂ BX(p,R
′), there is a con-

tinuous path within BX(p,R
′) from p to q passing through points whose injectivity

radii never go below r. By lemma 3.1.1, we can move from (X, p) to (X, q) while still

remaining in U(r). Choose a simple closed geodesic γ in the component of X − α

that does not contain y. By lemma 3.3.3, we have a path from (X, q) to a cusped

surface in which γ is shrunk to have length 0. Finally, BX(q, r) is contained entirely

in a different component in X−α than the shrunken curve γ, so the basepoint always

has injectivity radius at least r. This shows that there is a path from (X, p) to a a
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cusped surface within U(r). We now return to the non-compact case and proceed as

above. This finishes our proof. ■

4.2.1.1 Towards the Proof of Proposition 4.2.5

We are now left to show Proposition 4.2.5. First, we need a lemma about the width

of a collar neighborhood of a shortest simple closed geodesic on a surface.

Lemma 4.2.7. Let X be a complete hyperbolic surface with no cusp. If γ is a shortest

simple closed geodesic in X, then Nℓ(γ)/4(γ) = {x ∈ X : d(x, γ) < `(γ)/4} is an

embedded collar neighborhood of γ in X.

Proof. Let m be the maximal width for which Nm(γ) is an embedded cylinder in

X. Then, Nm(γ) intersects itself, say at a point p. There are two geodesic arcs

η1, η2 emanating from p and ending on γ which meet γ perpendicularly on different

sides. Let η be the geodesic arc homotopic to the concatenation η1 ∪ η−1
2 , relative the

endpoints. Then, η separates γ into two subarcs. Let γ′ be the shorter arc of the two.

Consider the closed curve α obtained by concatenating η and γ′. Then, α is simple

and essential (for otherwise it would bound a geodesic bigon, which is impossible).

Moreover, since X does not have any cusp, α does not bound a punctured disk. Let

α′ be the geodesic representative in the homotopy class of α. It follows that

`(α′) ≤ `(η) + `(γ′) ≤ 2m+ `(γ)/2.

But since γ is a shortest simple closed geodesic in X, `(α′) ≥ `(γ), and so it must be

the case that m ≥ `(γ)/4. ■

Remark 4. We can prove a similar statement when a surface X with no cusps has

no shortest simple closed geodesic, but has a non-zero lower bound on the lengths.
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Define

`0 := inf{`(γ) : γ is a simple closed geodesic in X}.

If `0 > 0, then the same argument in the proof of lemma 4.2.7 above can be used to

show that a simple closed geodesic of length `0 + ε admits a collar neighborhood of

width 1
4
(`0 − ε) for a sufficiently small ε > 0.

We turn our attention now to some computations involving hyperbolic trigonom-

etry. These will be used to show that the geodesic representative of a path, which

is a certain concatenation of geodesic arcs, stays within a bounded distance from

the path. To simplify notations in what follows, for any geodesic arc β, we write

β instead of `(β) as the argument for any hyperbolic trigonometric function, e.g.

sinh β := sinh(`(β)).

Lemma 4.2.8. Consider a geodesic quadrilateral with two right angles with the sides

labeled counterclockwise as α, c, β, and a such that α is adjacent to both right angles.

See Figure 4.3 below. If `(α) ≥ 1, then there exists a constant C1 ≈ 3.729 such that

α ⊂ NC1(β).

α

a

β

cb

θ

Figure 4.3

Proof. Let b be a geodesic segment joining the vertex where a meets α and the vertex

where β meets c, and let θ be the angle between α and b. It is well-known that

geodesic triangles in the hyperbolic plane are δ-thin for δ = log(1+
√
2) ≈ 0.881. So,
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we conclude that α ⊂ Nδ(b ∪ c). Since ∡(α, c) = π/2, any point x ∈ α ∩ Nδ(c) is

within distance δ of the complement (α− α ∩ (Nδ(c))) ⊂ Nδ(b). Thus, α ⊂ N2δ(b).

We again apply the δ-thin condition to obtain that b ⊂ Nδ(a∪β). By a hyperbolic

identity in a geodesic right triangle (Formula 2.2.6 (vi) in the Formula Glossary of

[14]), we have

cos θ = tanhα coth b > tanh 1,

since coth b > 1 and tanhα ≥ tanh 1. Thus, θ < θ0 := cos−1(tanh 1). We use this fact

to estimate the length of b ∩Nδ(a). Let d be a geodesic segment of length δ between

a and b and orthogonal to a. Consider the geodesic right triangle bounded by d with

its opposite angle ∠(a, b), see Figure 4.4.

b

a

b ∩Nδ(a)

π/2− θ
d

β

Figure 4.4: Since the angle ∡(a, b) ≈ π/2, the length of b ∩Nδ(a)
is bounded. By δ-thinness, it must be that most of b is covered by
Nδ(β).

Using Formula 2.2.2 (iii) (ibid.), we obtain

sinh `(b ∩Nδ(a) = sinh d csc(∠(a, b))

≤ sinh d csc(π/2− θ0).

Setting δ′ = arcsinh(sinh d csc(π/2 − θ0)) ≈ 1.086, we conclude that any point x ∈

b ∩ Nδ(a) is at most δ′ away from the complement (b − b ∩ Nδ(a)) ⊂ Nδ(β). Thus,
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b ⊂ Nδ+δ′(β). Together with the fact that α ⊂ N2δ(b) from the first paragraph, it

follows that α ⊂ N3δ+δ′(b). ■

Lemma 4.2.9. For any geodesic right-angled hyperbolic pentagon with the sides la-

beled counterclockwise as α, a, b, c, d, if `(α) ≥ 1, then there exists a constant K ≈ 4.61

such that α ⊂ NK(b ∪ c).

α

a

b

c

d
g

Figure 4.5

Proof. Let g be the geodesic segment joining the vertex where a meets b and the

vertex where c meets d. Then, since the geodesic triangle with sides b, c, and g are

δ-thin (for δ = log(1 +
√
2)), g ⊂ Nδ(b ∪ c). Combining with lemma 4.2.8, we have

that α ⊂ NC1+δ(b ∪ c). ■

Lemma 4.2.10. Let Q be a hyperbolic one-holed torus with geodesic boundary α. Let

b be a simple closed geodesic in Q and c be the common perpendicular of the boundary

components of the closure of Q \ b which are not α.

If `(α) ≥ 4, then α ⊂ NK(b ∪ c), where K ≈ 4.61 is from Lemma 4.2.9 above.

Proof. Cutting Q along b, c, and the two common perpendiculars of α and b results in

two isometric geodesic right-angled hexagons. Divide each hexagon into two isometric

right-angled pentagons by the common perpendicular of α and c, as in Figure 4.6

below.
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α

c

b
′ c

α
′

α

c

b

Figure 4.6: Decomposing a one-holed torus into four right-angled
geodesic pentagons

Here, α′, b′, and c′ denote the sides of each pentagon that are geodesic subarcs

of α, b, and c, respectively. By assumption, `(α′) ≥ 1, so lemma 4.2.9 implies that

α′ ⊂ NK(b
′ ∪ c′) in each pentagon. Putting together the four pentagons that make

up Q, we conclude that α ⊂ NK(b ∪ c). ■

We are now ready to prove Proposition 4.2.5. Since we only deal with a single

surface X, we drop the subscripts and write `(c) = `X(c) for any geodesic arc c and

B(x,R) = BX(x,R).

Proof of Proposition 4.2.5 . Before we prove the proposition, we record two easy facts

which we use repeatedly throughout the proof.

Fact 1. For any isometrically embedded disk B(x,R), if η is a geodesic segment

joining two points on ∂B(x,R), then there exists y ∈ B(x,R) such that

B(y,R/2) ⊂ B(x,R) and η∩B(y,R/2) = ∅. This is because one component

of B(x,R)− η must contain an open half disk.

Fact 2. Any simple closed geodesic crossing B(x,R), where injrad(x) > R′ > R,

must contain at least two subarcs connecting ∂B(x,R) and ∂B(x,R′), which

implies that its length must be more than 2(R′ −R).

Set R = 4(r+K) and R′ = 9R where K ≈ 4.61 is the constant from lemma 4.2.9.
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We will show that these values of R and R′ work, though they are not claimed to be

optimal. Our proof can be broken down into three main claims as follows.

Claim 1. There exists a simple closed geodesic b such that there is z ∈ B(x,R)

satisfying B(z, R/2) ⊂ B(x,R) and d(z, b) > R/2.

Proof of Claim 1. Using Fact 2, we may assume that

`0 := inf{`(γ) : γ is a simple closed geodesic in X} ≥ 2(R′ −R) = 16R

since otherwise we are done, as there is a simple closed geodesic disjoint from B(x,R).

Consider the following cases.

Case 1: `0 is realized by a simple closed geodesic b. If b is disjoint from B(x,R),

we are done. If not, b has an embedded collar neighborhood of width 4R by lemma

4.2.7. In particular, b only crosses ∩B(x,R) in one component. By Fact 1, we can

find z ∈ B(x,R) with B(z, R/2) ⊂ B(x,R) and b ∩ B(z, R/2) = ∅.

Case 2: `0 is not achieved. Let ε < max{1, `0−16R} be such that there is a simple

closed geodesic b in X with length `0 + ε. Again, we are done if b ∩B(x,R) = ∅. So,

suppose that b goes through B(x,R). By the remark following lemma 4.2.7, b has a

collar of width 1
4
(`0 − ε) ≥ 4R− 1/4 > 3R. This implies that b∩B(x,R) has exactly

one component. We can now similarly apply Fact 1 to find a point z in the claim. ■

If such a closed geodesic b in Claim 1 is separating, the lemma is proved. We

now assume that b is non-separating. Cut X along b to create a surface Y with two

geodesic boundary components. We identify the interior of Y with X−b. Let c be the

shortest simple geodesic arc joining the two boundary components of Y . Note that

c is necessarily the unique common perpendicular between the boundary components.
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x

B(x,R)

B(z,R/2)

z

y

b

c
B(y, r)

α

B(x,R′)

B(y, r +K)

Figure 4.7: A schematic for the proof of proposition 4.2.5. The goal
is to find a simple separating closed geodesic in a closed surface far
away from the basepoint. After possibly moving the basepoint to z,
we locate a simple closed geodesic b at least R/2 away from z. If b is
not separating, we again possibly move the basepoint to y and find a
geodesic arc c joining the two boundary components of X − b. The
geodesic representative of the band sum of the arc c with b stays far
from y.

Claim 2. c ∩ B(z, R/2) has at most one component.

Proof of Claim 2. Suppose not. Parametrize c by unit speed. Then, there are 0 <

t1 < t2 < t3 < t4 < `(c) such that the geodesic subarcs c|(t1,t2) and c|(t3,t4) are disjoint

components of c ∩ B(z, R/2) and that the geodesic arc η joining c(t1) and c(t4) is

disjoint from c, except at the endpoints.

In this case, c|[t1,t4] must contain a subarc joining ∂B(x,R) and ∂B(x,R′). Thus,

`(c|[t1,t4]) > R′ − R = 8R > R > `(η). Consider the piecewise geodesic path c′ in
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Y obtained by concatenating c|[0,t1] · η · c|[t4,ℓ(c)]. Then, c′ is a simple and essential

arc joining the two boundary components of Y . The geodesic representative γ in the

homotopy class of c′ has length

`(γ) ≤ `(c′) = `(c|[0,t1]) + `(η) + (`(c|[t4,ℓ0]) < `(c),

contradicting that c is the shortest such arc. ■

Applying Fact 1 to the result of Claim 2, we have that there exists y ∈ B(z, R/2)

such that d(y, c) > R/4 = r + K and B(y, r + K) ⊂ B(z, R/2). In particular, the

latter shows that d(y, b) > r + K. Consider the piecewise geodesic loop a obtained

by concatenating together c · b · c−1 · b−1. Let α be the unique simple closed geodesic

homotopic to a in X. Then, α is a simple separating closed geodesic bounding a

subsurface Q ⊂ X diffeomorphic to a one-holed torus.

Claim 3. d(y, α) > r.

Proof of Claim 3. We only need to consider when α ∩ B(y, r) 6= ∅. So, by Fact 2,

`(α) ≥ `0 ≥ 16R > 4. By lemma 4.2.10, α ⊂ NK(b ∪ c). Since d(y, b ∪ c) > r +K, it

follows that d(y, α) > r. ■

In conclusion, we have shown that there is a point y ∈ B(z, R/2) ⊂ B(x,R) with

d(y, α) > r where α is a separating simple closed geodesic in X. This finishes the

proof of Proposition 4.2.5. ■

4.2.2 Local connectivity at (X, p) when X is of the first kind

We now turn our attention to points in H2
•, whose underlying hyperbolic surfaces are

of the first kind. That is, we will consider (X, p) ∈ H2
• when CC(X) = X.
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4.2.2.1 Open Sets

In this subsection, S = Sg,c,p is a hyperbolizable surface of finite type of genus g, with

c punctures and n boundary components (which are all included in S). Fixing a pants

decomposition P and a collection of seams, we will actually view S as a model surface

with geodesic boundary. By virtue of Proposition 3.2.2, we may assume that any

marked hyperbolic surfaceX in T (S) comes equipped with a good marking ϕ : S → X

and that the boundary components of X are given standard parametrization, see

Section 3.2.1 for details.

We rely on the material in [15] in setting up the definitions below. For each

puncture ξ of X, we fix a cusp neighborhood Cξ that is isometric to

{z ∈ H2 : Im(z) > 1/2}/〈z 7→ z + 1〉.

If Cξ is a subset of a P-pair of pants Y ⊂ X, let β be a half-infinite geodesic seam

that emanates from a boundary component of Y perpendicularly and exits Cξ. Then,

Cξ is foliated by horocycles hϵξ of length 0 < ε < 2, which we parametrize by constant

speed on S1 with positive orientation so that it begins and ends on the seam β.

For each ε > 0, define the ε-restriction of X, denoted by Xϵ, to be the subsurface

of X with the part of Cξ beyond hϵξ is deleted for every puncture (if any) ξ of X. The

components of ∂Xϵ inherit the parametrization from X, which we call the standard

parametrization.

If X is marked surfaces in T (S) and Z is a hyperbolic surface with geodesic

boundary, then a diffeomorphism between (possibly restricted) surfaces f : Xϵ → Zδ

is said to be boundary coherent if it preserves the standard parametrization of the

boundary components. That is, if f sends a boundary curve γ ⊂ ∂Xϵ to γ′ ⊂ ∂Zδ,

then f(γ)(t) = γ′(t) in standard parametrization.

Definition 4.2.11. Let X be a marked hyperbolic surface in T (S) with a good
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Figure 4.8: A finite-type surface with boundary X shown with its
ε-restriction Xϵ and its Nielsen extension X̂.

marking ϕ and p ∈ X. For ε > 0 and K > 1, let N (X, p, ε,K) be the set of all

(Z, q) ∈ H2
• such that there is a subsurface with geodesic boundary XZ ⊂ Z, where

q ∈ XZ , together with a smooth embedding f : (Xϵ, p) → (XZ , q) satisfying

1) f(Xϵ) = Xϵ′
Z for some ε′ > 0;

2) f : Xϵ → Xϵ′
Z is a boundary coherent K ′-quasi-isometry for some 1 < K ′ < K;

3) no three simple closed geodesics in ∂XZ simultaneously bound a common geodesic

pair of pants in Z −XZ .

For brevity, we will refer to the pair (XZ ; f) (or just XZ), which satisfies 1) and 2), as

anX-like subsurface in Z, assuming that ε andK have been fixed. In the notion of the

quasi-isometry distance as in (3.3), condition 2) implies that dq.i.(X
ϵ, Xϵ′

Z′) < logK.

Lemma 4.2.12. The set N = N (X, p, ε,K) as defined above is open in H2
•.

Proof. To show that N is open, we argue that requirements 1) and 2) in Definition

2.3 are open conditions and that the negation of 3) is a closed property in H2
•.

Take (Z, q) ∈ N . Let (XZ ; f) be an X-like subsurface in Z. Since f(Xϵ) = Xϵ′
Z

is compact, by virtue of the quasi-isometry definition of H2
•, any pointed surface

(Z ′, q′) in a small enough Nq = Nq(Z, q, δ, R) as in (2.3)—that is, with a sufficiently
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small δ and a large enough R—contains a geodesic subsurface XZ′ ⊂ Z ′ so that

dq.i.(X
ϵ′
Z , X

ϵ′′

Z′) < δ for some ε′, ε′′ > 0.

We then regard XZ′ as a point in T (S ′) for an appropriate model surface S ′ =

Sg′,c′,n′ such that g = g′ and c + n = c′ + n′. Notice that the model surface S ′

is obtained from S only by changing some punctures of to boundary components

(or vice versa), so the curves in the pants decomposition P of S together with its

punctures can be modified into a decomposition P ′ of S ′ in the obvious way. We can

then construct a diffeomorphism f : Xϵ → Xϵ′′

Z′ by pasting together a combination of

Buser’s stretch and twist maps that take the (possibly restricted) P-pants in Xϵ to

the (possibly restricted) P ′-pants in Xϵ′′

Z′ . By design, f is boundary coherent. (One

can find the explicit definitions of these maps in [14, Chapters 3 and 6] and [15].) By

fixing a small enough δ in our choice of Nq at the beginning, we can guarantee that

XZ′ is Xϵ-like. Hence, both 1) and 2) hold on an open subset Nq ⊂ N .

We claim now that the negation ¬3) is a closed condition. Let (Zk, qk) → (Z̄, q̄)

be a convergent sequence in N . From the preceding paragraph, we will suppose that

(Xk; fk) are X-like subsurfaces in Zk, but that 3) fails for all k.

Since there are only finitely many combinations of c+ n punctures and boundary

components, after passing to a subsequence, we may choose a suitable model surface

S ′ = S ′
g,c′,n′ with c′ + n′ = c+ n such that the Xk are marked surfaces in T (S ′) with

ϕk : S
′ → Xk as good markings. After restricting to yet another subsequence, we may

label by c1, c2, and c3 three simple closed geodesics in ∂S ′, whose corresponding curves

ϕk(c1), ϕk(c2), and ϕk(c3) bound a common geodesic pair of pants Yk ⊂ Zk −Xk. As

the sequence (Xk, ϕk) converges in the q.i.-distance, the lengths `Zk
(cj) for j = 1, 2, 3

are universally bounded. Thus, the diameters of Yk ⊂ Zk are also universally bounded,

which implies that there is R > 0 such that (X ′
k)

ϵ = fk(X
ϵ) ∪ Yk ⊂ BZk

(qk, R) for

all k. So, there exist a geodesic subsurface X containing q̄ and some ε̄ > 0 for which
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dq.i.((X
′
k)

ϵ, X̄ ϵ̄) → 0. In particular, (X ′
k)

ϵ and X̄ ϵ̄ are diffeomorphic. Therefore, for

any embedding f : (Xϵ, p) → (X̄, q̄) satisfying 1) and 2), we have that a component

of X̄ − f(Xϵ) must be a geodesic pair of pants. This concludes the proof. ■

4.2.2.2 Path-Connectivity

We let S = Sg,n be a model finite-type hyperbolic surface of genus g with n boundary

components with a geodesic decomposition P , including the boundary geodesics, and

a collection of seams S. Let Pb ⊂ P be the subset of boundary curves. Set

FN (S) = (R+ ×R)P−Pb × RPb
≥0

to be the set of possible Fenchel-Nielsen coordinates of a hyperbolic surface based on

S, whose boundary curves (those in Pb) are allowed to have length 0 (as punctures).

Such a surface has c′ cusps and n′ boundary components such that n = c′ + n′.

Recall that we can extend a finite-type hyperbolic surface X with geodesic bound-

ary uniquely to a geodesic completion by attaching a funnel of appropriate length to

each boundary component of ∂X. The resulting surface is called the Nielsen exten-

sion of X, denoted by X̂. There is an obvious isometric embedding X → X̂, and our

convention is to continue to refer to p ∈ X as a basepoint for X̂ so that (X̂, p) ∈ H2
•.

Proposition 4.2.13. Each open set N = N (X, p, ε,K) defined as in Definition

4.2.11 is path-connected for any K sufficiently close to 1.

Proof. To show that N is path-connected, we begin with any (Z, q) ∈ N and show

that it belongs to the same path component in N as (X̂, p), where X̂ is the Nielsen

extension of X, for clearly (X̂, p) ∈ N . The length and twist parameters of X are

recorded as b(ase) = FN(X) ∈ FN (S). Let (XZ ; f) be an X-like subsurface in

Z so that no three components of ∂XZ it bound a common geodesic pair of pants

in Z − Xz. Since there are pointed surfaces in H2
• arbitrarily close to (Z, q) whose
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X-like subsurfaces have no cusp and for which 3) holds, we may assume that XZ has

no cusp by Proposition 3.3.3. Note that this is equivalent to moving backwards in

time before these curves degenerate. Regarding XZ as a marked surface of S, we let

a = FN(XZ) ∈ FN (S) be its Fenchel-Nielsen parameters.

A path in N from (Z, q) limiting to (X̂, p) can be constructed in steps as follows.

Step 1. Make XZ isometric to X. By Proposition 3.2.4, the q.i. distance on T (S)

is compatible with the topology of FN (S). Consider the open subset

UK =

v ∈ FN (S) :
if X ′ ∈ T (S) with FN(X ′) = v,

then dq.i.(X
ϵ, X ′) < logK


for some K > 0. By decreasing K (hence shrinking UK) as necessary, we

may assume that U is connected. By assumption, a,b ∈ U . Let t 7→ at, for

t ∈ [0, 1], be a continuous path from a to b in U . By Proposition 3.2.6, there

is a continuous path in H2
• from (Zt, qt), whose X-like subsurface Xt ⊂ Zt

has FN(XZt) = at. Our choices of U and at also ensure that all (Zt, qt) stay

in N . After moving the basepoint slightly, we can now work with (Z1, q1),

where the X-like subsurface (XZ1 , q1) and (X, p) are isometric as pointed

surfaces.

Step 2. Pinch pants curves outside of XZ1 to cusps. Let Q be the geodesic pants

decomposition of the interior of Z1−XZ1 . Using Proposition 3.3.3, we create

a continuous path from (Z1, q1) to (ZQ, q1), which is obtained by shrinking

all simple closed geodesics in Q to cusps, while keeping the X-like subsurface

XZ1 unchanged and viewing q1 still as the basepoint. Thus, this continuous

path lies entirely in N . We let XQ ⊂ ZQ be the X-like subsurface in this

construction.
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Step 3. Cap off each boundary of XQ ⊂ ZQ with a funnel to get X̂. Note first that

X and XQ are isometric, and no component of ZQ = XQ is a geodesic pair

of pants whose all three boundary components come from ∂XQ. We are now

in the position to apply Proposition 3.4.6. This creates a path from (ZQ, q1)

to (X̂Q, q1) along which the X-like subsurfaces remain unchanged. Finally,

(X̂Q, q1) is isometric as a pointed surface to (X̂, p)

Concatenating these subpaths, we create a continuous path from (Z, q) to (X̂, p) that

lies entirely in N . This concludes the proof. ■

We illustrate the proof of Proposition 4.2.13 in Figure 4.9 below.

Z XQ X̂X

(1) (2) (3)

Figure 4.9: (1) We begin with a surface Z with an X-like subsurface XZ .
(2) After making XZ isometric to X, we pinch the pants curves outside (in
red) to obtain XQ by Proposition 3.3.3. (3) Via inserting and widening
strips along the infinite geodesics joining the new cusps of XQ (in purple),
this path limits to X̂ by Proposition 3.4.6. We keep track of all X-like
subsurfaces in blue.

Proposition 4.2.14. If X is a hyperbolic surface of the first kind, then H2
• is locally

path-connected at (X, p) for any choice of p ∈ X.

Proof. Since X is of the first kind, X admits a geodesic pants decomposition with

no funnel or half-plane components. Let X1 ⊂ X2 ⊂ · · · be an exhaustion of X by

finite-type surfaces with geodesic boundary such that p ∈ X1. Consider the bases

{N (Xn, p, ε,K)}as we range ε > 0, K > 1, and n ∈ N. Each of these sets is path-

connected by Proposition 4.2.13, and we are done. ■
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