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1 Introduction

Let G be a reductive group over Q, and (G,X) be a Shimura datum associated to G

with reflex field E. Fix a prime p over which G is nonramified. Let K = KpKp ⊂

G(Af ) such that Kp is a hyperspecial subgroup of G(Qp) and Kp is sufficiently small.

There is a smooth complex manifold G(Q)\X ×G(Af )/K which admits a canonical

algebraic variety structure defined over E and denote it by ShK . Its base change

to the algebraic closure of E, ShK ×E E (as a scheme over E) admits a natural

Gal(E/E) action, which induces a Gal(E/E) action on the cohomology. On the other

hand, the Shimura varieties with deeper level structures at p define a family of self

correspondences of ShK ×E E, which generate a subalgebra of Corr(ShK ×E E,Ql),

via the algebra following homomorphism

H (G(Qp)//Kp,Q) −→ Corr(ShK ×E E,Ql)

in which H (G(Qp)//Kp,Q) (l is a prime different from p) is the spherical Hecke

algebra at p. One of the major question in arithmetic geometry and automorphic

forms is to understand the relation between these two actions.

In[BR94], Blasius and Rogawski constructed the Hecke polynomial H(X), which

is a polynomial with coefficients in H (G(Qp)//Kp,Q), and conjectured that

Conjecture 1.1. In the algebra EndQl(H
•(ShK,E, IC

•)), the following equation holds

H(Frp) = 0 (1.1)

in which ShK means the Baily-Borel compactification of the Shimura variety and IC•

is the intersection cohomology sheaf with middle perversity, and Frp is the conjugacy

class of the geometric Frobenius in Gal(Q/E).
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Their conjecture is a generalization of the celebrated Eichler-Shimura theorem

which plays an important role in the development of the arithmetic theory of elliptic

curves and modular forms. Also, there are several variants of the above conjecture.

In[FC90], Chai and Faltings formulated a cycle version of the congruence relation,

which will be the main concern of this paper. The precise statement of this version

of the conjecture was made by Koskivirta in[Kos14]. Let ShK be a Kottwitz PEL-

type Shimura variety attached to the Shimura datum (G,X) with level structure

K = KpK
p such that G is nonoramified at p and Kp is hyperspecial. Let E be its

reflex field as above. Let v be a prime of E over p, OE,(v) its ring of integers localized at

v and k its residue field. Let SK be its semi-global integral model over OE,(v). This

scheme is the moduli space of abelian schemes with certain additional structures.

Moonen, following Chai-Faltings, defined a stack p − Isog over OE,(v), classifying

pairs (f : A1 −→ A2) of p-isogenies between two abelian schemes respecting all the

additional structures. It has two natural projections to SK , assigning the pair its

source and target. Then Moonen defined two algebras Q[p−IsogE] and Q[p−Isogk].

These algebras can be thought as a geometric realization of the local spherical Hecke

algebra H (G(Qp)//Kp,Q). Moonen also defined p− Isogordk as the preimage of the

µ-ordinary locus of the special fiber of the Shimura variety Sk under the source

projection and an algebra Q[p − Isogordk ]. The specialization map induces a linear

map

σ : Q[p− IsogE] −→ Q[p− Isogk]

There are two maps of schemes (stacks): intersection with the ordinary locus

ord : p− Isogk −→ p− Isogordk
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closure map

cl : p− Isogordk −→ p− Isogk

These in turn induce corresponding maps on the algebra of p-isogenies.

Moonen defined a distinguished element F ∈ Q[p − Isogk], called the Frebenius

cycle, as the image of a section of the source projection s, sending an abelian scheme A

to its relative Frobenius A −→ A(p). Then the Chai-Faltings’ version of the conjecture

is the following

Conjecture 1.2. Via the map

σ ◦ h : H (G(Qp)//Kp,Q) −→ Q[p− Isogk] (1.2)

view the Hecke polynomial H(X) as a polynomial with coefficients in Q[p − Isogk].

Then the cycle F as defined above, is a root of H(X).

There is an ”ordinary version” of the above conjecture. Via intersecting with the

ordinary locus and taking the closure, one gets a map: σ ◦ ord : Q[p − Isogk] −→

Q[p − Isogk]. Composing with σ ◦ h, There is another map from the Hecke algebra

H (G(Qp)//Kp,Q). Then the ordinary congruence relation reads

Theorem 1.3. Via the map

cl ◦ ord ◦ σ ◦ h : H (G(Qp)//Kp,Q) −→ Q[p− Isogk] (1.3)

view the Hecke polynomial as a polynomial with coefficients in Q[p − Isogk]. Then

the cycle F as defined above, is a root of H(X).

For the more precise definitions of the symbols appearing in the previous para-

graph and the conjectures, see 3.1 and 3.3. This conjecture was proposed implicitly
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in the last chapter of their book[FC90]. The conjecture for the PEL-type Shimura

varieties was described by Moonen in[Moo04], 4.2 in detail and made more explicitly

by Koskivirta[Kos14].

Conjecture 1.2 was verified by Bültel, Wedhorn, Bültel-Wedhorn and Koskivirta

[Kos14] for some Shimura varieties.

Their general strategy is as follows: Starting with the ordinary congruence rela-

tion, which is already proved, try to prove that the image of H (G(Qp)//Kp,Q) under

σ ◦ h is contained in cl ◦ ord(Q[p− Isogk]), so the ordinary version of the congruence

relation implies the full version of the conjecture. However, this is not always true

in general. In the case studied by Koskivirta, there are actually supersingular cycles

in the image of H (G(Qp)//Kp,Q) under σ ◦ h. He factored the Hecke polynomial

so that a “special factor” kills these supersingular cycles, thus the full version of the

conjecture still holds.

In the more general Hodge type case, similar objects can be defined, such as

p − Isog, since Hodge type Shimura varieties can also be interepret as a “moduli

space” of abelian varieties with additional structures. My main purpose in this paper

is to confirm the conjecture for GSpin Shimura varieties, generalizing the results by

Bültel on GSpin(5, 2) to all (n, 2).

The ordinary congruence relation is proved by Moonen in the PEL type case and

generalized to Hodge type by Hong[Hon16] recently. In the cases where GSpin(n, 2)

splits over p (when n is odd this is always the case, as we assume the group is

nonramified over p), I show that the ordinary congruence relation is enough, that is,

it implies the full version of the congruence relation. In the quasi-split but non split

case, which only happens in the case where n is even, I compute the Hecke polynomial

and show that there is a factor killing the basic cycles. It is similar to the case dealt

with by Koskivirta.
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Let GSpin(V ) be the general spinor group associated with a Q-quadratic space

V . Let p be a prime number greater than 2 such that GSpin(V ) is nonramified over

p. I prove the following

Theorem 1.4. Let µ be the Hodge cocharacter of a GSpin Shimura variety. Let

H(X) be the Hecke polynomial of µ, considered as a polynomial with coefficients in

Q[p−Isogk] via σ◦h. Let F be the Frobenius cycle as defined in 3.3. Then H(X) = 0.

The structure of the paper is the following: In section2 I review the definition

of the Hecke polynomial and Bültel’s work [B0̈2] on the “group theoretic congruence

relation”. In section3 I introduce the background needed to state conjecture 1.2 pre-

cisely for Hodge type Shimura varieties. In section4 I review the ordinary congruence

relation by Hong[Hon16]. In section5 I review the definition of GSpin Shimura va-

rieties. In section6 I prove the conjecture in the split cases; Finally in section7, I

compute the Hecke polynomial, showing that one can factor it in the same way as

Koskivirta[Kos14] did so that a particular simple factor kills all possible basic cycles,

and deduce the conjecture in the quasi-split non split case.

2 Hecke polynomial and Bültel’s group theoretic

congruence relation

In this section I review the definition of the Hecke polynomial and a result proved by

Bültel in his thesis. The references are Blasius-Rogawski[BR94] and Wedhorn[Wed00].

2.1 The Hecke algebras

Fix an odd prime p. Let F be a finite extension of Qp, $ its uniformizer and OF be

its ring of integers. Fix an algebraic closure F of F and let Gal(F/F ) be its Galois
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group. Let F nr be the maximal nonramified extension of F inside F . Let σ be the

Frobenius of F as an element of Gal(F nr/F ). Also, let q be the cardinality of the

residue field of F .

Let G be a nonramified reductive group over F , i.e. quasi-split over F and splits

over a nonramified extension of F . Let K be a hyperspecial subgroup of G(F ).

According to Bruhat-Tits[BT72], take an S which is a maximal split torus of G

defined over F , then T = CG(S) is a maximal torus of G defined over F . Let B

be a Borel subgroup containing T defined over F and U its unipotent radical. Let

W = NG(T )/T be the Weyl group of (G, T ). It is an étale group scheme over F and

W (F ) is the Weyl group in the naive sense. The Borel B determines a set of positive

roots and coroots of (GF , TF ). Let ρ be the halfsum of all the positive roots. Let

KT = K ∩ T (F ).

I also need another parabolic pair (M,P ) such that P is a parabolic subgroup

defined over F containing B, M its Levi subgroup. Denote its unipotent radical by

N so that P = M n N . Let KP = K ∩ P (F ) and KN = K ∩ N(F ). Let KM be

the image of K under the projection:P →M . The group B ∩M is a Borel subgroup

of M and we use UM to denote the unipotent radical of this Borel of M . Use dg to

denote the left invariant Haar measure on G normalized so that K has volume one.

Similarly define dp, dn, dm.

Define the spherical Hecke algebra with coefficients in a ring A

H (G(F )//K,A),H (M(F )//KM , A),H (T (F )//KT , A) (2.1.1)

for G,M, T respectively. For example, H (G(F )//K,A) as a set is defined to be

all the finitely supported A-valued functions on the double cosets K\G(F )/K, the

group structure is just addition of functions and the ring structure is the convolution
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product.

2.2 The (twisted) Satake transform.

The twisted Satake transform for G is defined to be

ṠGT : H (G(F )//K,A) −→H (T (F )//KT , A) (2.2.1)

f 7−→ (t 7→
∫
U(F )

f(tu)du) (2.2.2)

Similarly one can define this map for M

ṠMT : H (M(F )//KM , A) −→H (T (F )//KT , A) (2.2.3)

f 7−→ (t 7→
∫
UM (F )

f(tu)du) (2.2.4)

and

ṠGM : H (G(F )//K,A) −→H (M(F )//KM , A) (2.2.5)

f 7−→ (m 7→
∫
N(F )

f(mn)dn) (2.2.6)

We have the relation: ṠGT = ṠMT ◦ ṠGM .

The Hecke algebra H (G(F )//K,A) is a polynomial algebra. Since G is quasi-split

over F , from Cartan decomposition, there is the following identification

X∗(S) −→ T (F )/KT (2.2.7)

h : v 7−→ 1KT v($)KT (2.2.8)

in which $ is the uniformizer of F as defined above.

Since one is using the twisted Satake transform rather than the usual Satake
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transform, Wedhorn[Wed00] defined a “dot action” of W (F ) on A[X∗(S)]

w · hv = q〈ρ,v−w(v)〉hw(v) (2.2.9)

where hv is short for h(v). Under the twisted Satake transform, the Hecke alge-

bra H (G(F )//K,A) is identified with the WM(F ) invariant subalgebra. Therefore

A[X∗(S)]WM (F ) can be viewed as a ring extension of A[X∗(S)]W (F ) inside A[X∗(S)].

In[B0̈2], Bültel defined a distinguished element of A[X∗(S)]WM (F )

g[µ] = 1KMµ($)KM (2.2.10)

which will play the role of the Frobenius in the ordinary congruence relation. In

this work, I will only consider the Q-coefficients spherical Hecke algebra, and will use

H (G(F )//K) for H (G(F )//K,Q).

2.3 The Hecke polynomials and the group theoretic congru-

ence relation.

Let Ĝ be the dual group of GF . Fix a pinning of the root datum of (G,B, T ) in which

(G,B, T ) are those defined in the previous section. When G is quasi-split, define LG

to be Gal(F nr/F ) n Ĝ since this paper only cares about the nonramified Langlands

parameters.

Let l be a prime number different from p, the residue characteristic of F . Let

Ql be the algebraic closure of the field Ql. Define the set of nonramified Langlands

parameters Φnr(G) to be the set of Ĝ(Ql) conjugacy classes of the homomorphisms

ΓF = Gal(F nr/F ) −→ LG(Ql) such that φ(σ) = (σ, gφ) in which gφ is a semisimple

element of Ĝ(Ql). The set Φnr(G) can be indentified with the σ-conjugacy classes of
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semisimple elements of Ĝ(Ql).

Hecke polynomial is defined for any cocharacter of GF , not only for miniscule

ones. Consider a tower of field extension F ⊂ E ⊂ F nr and let n = [E : F ]. Also let

ΓE = Gal(F nr/E). Let µE be an E-rational cocharacter of GE, this in turn gives a

highest weight module of Ĝ, denote it by V µE . Similarly to above, define LGE to be

ΓE n Ĝ where the action of ΓE on Ĝ is the restriction of ΓF . Then

Proposition 2.3.1. rµE can be extended to a representation of LGE. In other words,

there is a representation

rµE : LGE −→ GL(V µE) (2.3.1)

such that it gets back the highest weight module of Ĝ with highest weight µE when

restricted rµE to 1 n Ĝ.

This is stated by Wedhorn[Wed00], 2.5. Actually this is the corollary of the

following well-known proposition

Proposition 2.3.2. Let G be a reductive group over an algebraically closed field K

and r : G −→ GL(V ) be an irreducible algebraic representation. Let Λ be a finite

cyclic group of order n. Suppose we have a semidirect product Γ n G such that for

any γ ∈ Γ, we have r ◦ γ ' r as a representation of G. Then we can extend the

representation r to Γ nG

Proof. First, for any γ ∈ Γ, from r ◦ γ ' r, we know that there exists an endomor-

phism of V, fγ : V −→ V such that fγ ◦ r(g) = r(g) for any g ∈ G. However, for

any two elements γ1, γ2 of Γ, fγ1◦γ2 is different from fγ1 ◦ fγ2 by a non zero constant

cγ1,γ2 ,since irreducible representations over an algebraically closed field has automor-

phisms defined by scalars. Consider three elements of Γ, γi in which i = 1, 2, 3. Then

there is a relation of the constants: cγ1◦γ2,γ3 · cγ1◦γ3 = cγ1,γ2◦γ3 · cγ2◦γ3 . This is just a
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cocycle in the cohomology group H2(Γ, K∗), in which we view K∗ as a trivial Γ mod-

ule. but from basic knowledge of group cohomology for finite cyclic groups, we know

that this cohomology is nothing but K∗/(K∗)n, which is 1 since K is algebraically

closed. The vanishing of this cohomology groups implies that we rescale fγs so that

fγ1◦γ2 = fγ1 ◦ fγ2 holds, therefore extending the representation to all of Γ nG.

Now for any Ql-algebra R, and g ∈ Ĝ(R), consider the Hecke polynomial

HG,µE(X) = det(X · Id− qndrµE((σ n g)n)) (2.3.2)

in which d = 〈µE, ρ〉. One can view this polynomial as a polynomial with coefficients

in O(Ĝ). By this definition, O(Ĝ) is an algebra over Ql. By Wedhorn[Wed00] propo-

sition (2.7), it is actually a ploynomial with coefficients in O(Ĝ) where Ĝ is defined

over Q.

Let O(Ĝ)σ be the elements of O(Ĝ) which are invariant under the σ-twisted

conjugation. More precisely, the twisted conjugation

Ĝ× Ĝ Adσ−−→ Ĝ

(g, x) 7−→ gx

induces a map on the rings

O(Ĝ)
Adσ∨−−−→ O(Ĝ)⊗O(Ĝ)

The invariant elements are those f ∈ O(Ĝ) such that Adσ∨(f) = 1 ⊗ f . Similar let

O(T̂ )σ be the T counterpart. Then

Proposition 2.3.3. HG,µE(X) has coefficients in O(Ĝ)σ, and there are isomor-
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phisms: O(Ĝ)σ ' O(T̂ )σ ' O(Ŝ)W (F ) in which the isomorphisms are given by restric-

tions. Therefore, we can view the Hecke polynomial as a polynomial with coefficients

in O(Ŝ)W (F ).

Now it is the time to state the “group theoretic congruence relation” proved by

Bültel (see Bültel[B0̈2], proposition (3.4), or Wedhorn[Wed00] (2.9))

Proposition 2.3.4. As an element of Q[X∗(S)] = O(Ŝ), the g[µ] defined in 2.2.10,

is a root of the Hecke polynomial, viewed as an element of O(Ŝ)W (F )[X].

3 Statement of the congruence relation conjecture

In this section I state the Chai-Faltings’ version of the congruence relation 1.2 precisely

for Hodge type Shimura varieties.

3.1 Moduli space of p-isogenies

In his paper[Kis10], Kisin proved the extension property and the smoothness of the

semi-global integral model of Shimura varieties with the hyperspecial level structure.

He also showed that it carries a “universal family” of abelian varieties with the Hodge

tensors determined by a Hodge embedding of its Shimura data.

Let (G, h) be a Hodge type Shimura datum, in which G is a reductive group over

Q and h : S −→ GR a G-Hodge structure. Let µ be the Hodge cocharacter associated

with h. Fix a prime p over which G is nonramified, i.e., GQp is quasi-split and splits

over Qnr
p . In this case there exists a reductive integral model of G over Z(p), so it is

possible to define Kp = G(Zp). Also choose a compact open subgroup Kp ⊂ G(Ap
f )

which is small enough so that ShG,KpKp is a variety over the reflex field of (G, µ),

say E. Now let (GSp2g, h2g) be a Siegel Shimura datum associated to a symplectic
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space over Q which admits a self-dual lattice Λp in VQp . Let r : G −→ GSp2g be a

symplectic faithful representation such that r ◦ h = h2g. Kisin showed that G can be

identified with the pointwise fixer of a set of tensors (s0) ⊂ V ⊗ inside of GSp2g. By

Zahrin’s trick, one can assume that r is defined over Z(p). Let K ′p = GSp2g(Zp) and

K ′p small enough but still containing r(Kp), one obtains the following morphism of

varieties

ShG,KpKp −→ ShGSp2g ,K′pK′p,E (3.1.1)

The Siegel modular variety has a smooth semi-global integral model over the ring Z(p)

by the construction of Mumford, let’s call it S . Let v be a prime of E over p, and

let OE,(v) be the localization of OE at v, and k be the residue field OE,(v)/(v). Let

S2g,K′pK
′p,OE,(v) = S2g,K′pK

′p ×Z(p)
OE,(v). Then following Milne, the integral model for

ShG,KpKp is defined as the normalization of the closure of the image of the following

morphism

ShG,KpKp −→ ShGSp2g ,K′pK′p,E −→ S2g,K′pK
′p,OE,(v) (3.1.2)

Denote ShG,KpKp by Sh and S for short since I will always fix a small enough

Kp. Also, let Sk be special fiber for S . Kisin proved that S is a smooth scheme

over OE,(v) and it acquires a family of abelian schemes A with a family of Hodge

tensors (set,α, sdR,α, scris,α) by pulling back the universal family over S2g,K′pK
′p,OE,(v) .

More precisely, there is a universal abelian scheme A0, together with a prime to p

polarization λ and a level structure

η0 ∈ H0(S2g,K′pK
′p,OE,(v)

, IsomGSp(VApf , (R
1f∗Ap

f )
∨)/K ′

p
)

where the subscript GSp means carrying the symplectic form on V to the Weil form

on A0 for all prime to p Tate modules. Then (A, λ) is the pull back of (A0, λ0). It
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also has a universal Kp-level structure derived from η0, but I need to know the precise

meaning of the tensors first

• the l-adic étale tensor: Let S be a scheme over E. For any S point, S −→

ShG,KpKp , pulling back the “universal family” one gets an abelian scheme up to

prime to p quasi-isogeny:A −→ S. There is a local system of rank 2g : R1f∗Ql.

A tensor is a morphism of local systems:Ql −→ (R1f∗Ql)
⊗.

• the crystalline tensor: Let S be a scheme over k. For any S point:S −→ Sk,

there is an associated abelian variety A −→ S. It has a crystal: D(A) over the

crystalline site (S/W (k)). A tensor is a morphism of crystals: D(Qp/Zp) −→

D(A)⊗.

• the de Rham tensor: Let S be a scheme over E. For any S point: S −→

ShG,KpKp , the associated abelian variety A −→ S. A tensor is a morphism

OS[1/p] −→ R1f∗OA[1/p].

Then the tensors (s0) determine tensors for each type, which are denoted by (set,α)

for étale tensors collectively for all primes and scris,α for the crystalline tensors. The

pull back of η0 to S actually reduces to a section of IsomG(VApf , (R
1f∗Ap

f )
∨)/Kp, in

which the subscript G means η should carry the standard tensors (s0) to the tensors

(set,α) of A over S . Therefore one obtains a “universal family” over S , namely

(A, λ, (set,α, sdR,α, scris,α), η).

Now define the moduli space of p-isogenies (or rather p-quasi-isogenies). Let

p−Isog be a functor from OE,(v)-schemes to groupoids, such that for a scheme S over

OE,(v), p− Isog(S) consists of the following data

• Two S-points of S : xi : S −→ S , for i = 1, 2. It corresponds two abelian

varieties over S with additional structures: (Ai, λi, (set,α,i, sdR,α,i, scris,α,i), ηi);
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• A p-quasi-isogeny f up to prime to p quasi-isogeny

(Ai, λ1, (set,α,1, sdR,α,1, scris,α,1), η1) −→ (A2, λ2, (set,α,2, sdR,α,2, scris,α,2), η2)

(3.1.3)

such that f preserves the tensors, more precisely this means: For any geometric

point x : SpecK −→ S and

1. If K is of characteristic 0, f carries the étale tensors (set,α,1) to (set,α,2) on

the induced maps on the rational étale homologies of Ai|x for all primes

(or cohomologies, where the map is the other way around);

2. If K is of characteristic p, then f carries scris,α,2 to scris,α,1 on the rational

crystalline cohomology of the abelian varieties, D(Ai|x)(W (K))[1
p
].

• f preserves the level structure, i.e. f ◦ η1 = η2 for the f induced map on the

prime to p étale homologies (Tate modules).

The pullback of the polarization λ2 to A1 equals γ · λ1 for some γ well defined up

to p-units (i.e. elements of Z∗(p)). Let γ = γ′ · pc for γ′ ∈ Z∗(p) and a unique c ∈ Z.

Let’s call pc the multiplicator of f and define p − Isog(c) to be the subfunctor of

p − Isog classifying quasi-isogenies with multiplicator pc. Since the multiplicator is

locally constant on S for any point in p− Isog(S), p− Isog(c) is an open and closed

subfunctor of p− Isog. In other words, it consists of some connected components of

p− Isog.

By sending a p-isogeny tuple to A1 and A2, one gets the source projection s and

the target projection t

p− Isog
s

zz

t

$$
S S

(3.1.4)
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As seen later, the elements of the Hecke algebra can define quasi-isogenies between

abelian varieties. Since the coefficients of the Hecke polynomial all define genuine

isogenies, from now on I only consider the components of p−Isog for genuine isogenies,

and will still use p − Isog to mean the union of all these components. In this case

c ≥ 0.

The p− Isog has the following property

Proposition 3.1.1. The functor p − Isog is representable by a scheme whose con-

nected components are quasi-projective. Also the two projections s and t, when re-

stricted to each p− Isog(c), are proper over S .

Proof. The proof follows from Hida[Hid04] and Chai-Faltings[FC90]. First consider

the following diagram

S ×OE,(v) S
s

xx

t

&&
S S

Pullback the universal abelian scheme A over S along s and t, one gets: s∗A and t∗A,

together with additional structures. Consider the following functor over S ×OE,(v) S

HomS×OE,(v)S
(s∗A, t∗A)

The Hom means the morphism as abelian schemes (up to prime to p quasi-isogeny),

it doesn’t have to be an isogeny, nor have to preserve other additional structures.

By Hida[Hid04] Theorem 6.6, this functor is a scheme over S ×OE,(v) S whose

connected components are all quasi-projective. Then from the fact that being an

isogeny and preserving level structures are locally constant, these two conditions cut

out certain connected components of this Hom scheme. For simplicity, I still use

HomS×OE,(v)S
(s∗A, t∗A) to mean the union of these components.
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One also has to take care of the issue of preserving the tensors. First there is a

diagram

p− Isog //

(s,t) ))

HomS×OE,(v)S
(s∗A, t∗A)

(s,t)

��
S ×OE,(v) S

The horizontal arrow is an embedding. I show that this is an open and closed em-

bedding. This fact makes p − Isog a union of connected components of the scheme

HomS×OE,(v)S
(s∗A, t∗A). To this purpose, I need to show the condition of preserving

the tensors is locally constant.

Let f : A1 −→ A2 be a point of S, for S a connected component of p − Isog

not concentrated in characteristic p. Suppose f |x : A1|x −→ A2|x preserves the étale

tensors at a geometric point SpecK −→ S of characteristic 0. This means the section

f(set,α,1)−set,α,2 of the étale local system H1(S,Ap
f ) is 0 at this geometric point. Since

a section of a local system vanishes on an entire connected component as long as it

vanishes at one of its point. For a geometric point y of characteristic p, preserving

crystalline tensors means that f |∗yscris,α,2− scris,α,1 = 0. One can apply the crystalline

p-adic cohomology comparison theorem to show that f preserves the crystalline tensor

at this point, since fy is liftable to characteristic 0.

If there is a component concentrated in characteristic p, one has to show that if

f preserves the crystalline tensors at one geometric point x, then it also preserves

the crystalline tensors at any other geometric point. At x, say f |∗xscris,α,2 = scris,α,1.

Applying Lemma 5.10 in [MP16] to D(A)⊗ and the sections f ∗scris,α,2 − scris,α,1 = 0,

concluding that it also vanishes at any other geometric point y.

For the properness of s (or t): p − Isog(c) −→ S . One can apply the valuative

criterion of properness used by Chai-Faltings[FC90].

Remark 3.1.2. The components concentrated in characteristic p parametrize the iso-
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genies that are not liftable to characteristic 0.

From now on, use S ord
k for the µ-ordinary locus of S and Sk,b for its Newton

stratum of Newton type [b]. Also let Sk,S
ord
k

and Sk,b be the base change to the

algebraic closure of k. For each irreducible component of p− Isogk define its Newton

type

Definition 3.1.3. Let Z be an irreducible component of p − Isogk. Z has Newton

type b if there is an open subset U ⊂ Z such that s(U) ⊂ Sk,b.

Proposition 3.1.4. Let Z be an irreducible component of p− Isogk of Newton type

b. Then s(U) ⊂ ∪b′≤bSk,b′.

Now following Moonen[Moo04], let’s define Q[p− IsogE],Q[p− Isogk] and Q[p−

Isogordk ]. Let OE,(v) −→ L be a homomorphism of rings, in which L is a field. Let

ZQ(p−IsogL) be the vector space of algebraic cycles on p−IsogL with Q coefficients.

Using the following homomorphism, this vector space is made into an algebra

p− IsogL ×t,SL,s p− IsogL −→ p− IsogL (3.1.5)

On S-points, it is given by the composition

(A1
f1−→ A2), (A2

f2−→ A3) 7−→ (A1
f2◦f1−−−→ A3)

In particular there are algebras ZQ(p− IsogQ) and ZQ(p− Isogk). Let Q[p− IsogE]

and Q[p − Isogk] be the subalgebra of ZQ(p − IsogE) and ZQ(p − Isogk) generated

by the irreducible components. Moonen proved

Lemma 3.1.5. The underlying vector space of Q[p−IsogE] is the subspace of ZQ(p−

IsogE) spanned by the irreducible components of p− IsogE.
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Over the special fiber Sk, it is more complicated since neither the source nor the

target is finite. But over the µ-ordinary locus the story is simpler. Define p− Isogordk

to be the inverse image of S ord
k under the source of the the target map. Following the

same recipe above, there is the algebra Q[p−Isogordk ]. Moonen proved that the above

lemma is still true for Q[p − Isogordk ], i.e. the underlying subspace of this algebra is

the same as the space spanned by the irreducible components of p − Isogordk . There

is a map

ord : p− Isogk −→ p− Isogordk

defined by intersecting the ordinary locus. Another map

cl : p− Isogordk −→ p− Isogk

defined by taking the closure of the ordinary locus. Extending by Q-linearity, there

are algebra homomorphisms

ord : Q[p− Isogk] −→ Q[p− Isogordk ] (3.1.6)

cl : Q[p− Isogordk ] −→ Q[p− Isogk] (3.1.7)

Then cl ◦ ord just means “dropping the irreducible components which are not µ-

ordinary”. More precisely, there is an element in Q[p− Isogk], say, Σci[Zi] + Σc′j[Zj]

in which Zis are µ-ordinary but Zjs are not. Then the effect of cl ◦ ord just makes it

Σci[Zi].

There is a specialization map from the generic fiber to the special fiber

p− IsogE −→ Z[p− Isogk]
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defined by taking the closure of p− IsogE in p− Isog then taking the reduction mod

p. This in turn induces a homomorphism of vector spaces

σ : Q[p− IsogE] −→ Q[p− Isogk]

Since the specialization preserves the dimension, the image of σ is actually contained

in the vector space spanned by the dimension d = dimShKpKp cycles of p− Isogk.

3.2 Hecke algebra as algebra of p-isogenies

There is a homomorphism of algebras from the Hecke algebra H (G(Qp)//Kp) to

the algebra Q[p − IsogE]. This is defined via the Zp-valued étale homology. Let Z

be an irreducible component of p − IsogE, taking a geometric point SpecK −→ Z.

Then one gets a pair of abelian varieties over K and a p-isogeny f between them.

Taking their p− adic Tate module, from the definition of p− Isog, one gets a linear

map preserving Hodge tensors: H1,et(A1,Zp) −→ H1,et(A2,Zp). Recall that there

is a self-dual symplectic lattice Λp defined in (3.1). There are isomorphisms γi :

H1,et(Ai,Zp) −→ Λp carrying tensors (sp,α,i) to the standard tensors (s0). Therefore

γ2 ◦ f ◦ γ−1
1 induces an automorphism of Λp ⊗ Q fixing the standard tensors. Hence

it is an element of G(Qp). Changing γi amounts to changing g to h1gh2 in which

h1, h2 ∈ Kp = G(Zp). Therefore the coset KpgKp is well defined. This coset is called

the relative position of the p-isogeny. By locally constancy of relative positions, all

the geometric points of Z have the same relative position, so it is an invariant of

irreducible components. Define the map

Kp\G(Qp)/Kp −→ Q[p− IsogE] (3.2.1)

KpgKp 7−→ Σ1 · [Z] (3.2.2)
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Where Z runs through all the irreducible components of relative position KpgKp.

Then the algebra homomorphism

h : H (G(Qp//Kp) −→ Q[p− IsogE] (3.2.3)

is just the Q-linear span of the above map.

Remark 3.2.1. For the above map to make sense, σZ needs to be a finite sum. This

is indeed the case. To see this, on the generic fiber, the source map s is quasi-finite

when restricted to the components of p− IsogE with a fixed relative position. Since s

is proper, s is indeed finite. Therefore there are only finitely many such components.

Composing this homomorphism with the specialization map, there is a linear map

σ ◦ h : H (G(Qp)//Kp) −→ Q[p− Isogk] (3.2.4)

Extending this map to polynomial rings with coefficients in each one of the algebras

H (G(Qp//Kp)[X] −→ Q[p− Isogk][X] (3.2.5)

Therefore the Hecke polynomial in the previous section can be viewed as a polynomial

with coefficients in the latter algebra, hence it is meaningful to talk about its roots

in the latter algebra.

3.3 Two sections of the source map: F and 〈p〉

Next I define a section of the source map, i.e., a morphism of schemes[Moo04]:φ :

Sk −→ p− Isogk such that s ◦ φ = id. Given an S point x on Sk, it corresponds to
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an abelian variety over S with additional structures: (A, (scris,α), λ, η). Then define

φ : (A, (scris,α), λ, η) 7−→ (Fr : (A, (scris,α), λ, η), λ, η) 7−→ (A(p), (s
(p)
cris,α), λ(p), ηp))

(3.3.1)

in which Fr is the relative Frobenius. To be a section of the source projection, F

must preserve the crystalline Hodge tensor and the level structure. This is indeed the

case

Proposition 3.3.1. Fr preserves the crystalline Hodge tensors, and η(p) satisfies the

following: Let

V ⊗ Ap
f

f−→ H1(A,Ap
f )

Fr−→ H1(A(p),Ap
f ) (3.3.2)

be the level structure of A and the induced map of Fr on the prime to p Tate module.

Then η(p) = Fr ◦ η mod Kp. Therefore

(F : (A, (scris,α), λ, η) 7−→ (A(p), (s
(p)
cris,α), λ(p), η(p))) (3.3.3)

is indeed a point of p− Isog(1)
k .

Proof. First let’s review the definition of the crystalline tensors (s
(p)
cris,α). Given a

geometric point SpecK −→ Sk, there is the following Frobenius diagram

A

A(p) A

K K

AbF

Fr

σ

σ

(3.3.4)

in which AbF is the absolute Frobenius and σ the arithmetic Frobenius. The tensors

(s
(p)
cris,α) is defined to be the pull back of (scris,α) along the arithmetic Frobenius. Since
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the absolute Frobenius induces identity on the cohomology, the pull back of (s
(p)
cris,α)

along Fr must coincide with (scris,α). The same argument can prove the compatibility

of the level structures.

Define the image of this section again as F , the Frobenius cycle. For later use, I

define another section of s, even though it is not used in the statement of 1.2. Using

Koskivirta’s notation[Kos14], this cycle is called 〈p〉. It is defined as the image of the

section

Sk −→ p− Isog : (A, (scris,α), λ, η), λ, η)
×p−→ (A, (scris,α), λ, p · η)) (3.3.5)

Koskivirta calls this section “multiplication by p”. Its image 〈p〉 is also the special-

ization of the cycles indexed by KppKp in the generic fiber.

Proposition 3.3.2. When Kp is small enough, the image of this 〈p〉 is indeed the

specialization image of the components of p− IsogE indexed by the coset pKp.

Proof. To see this, first recall what are those cycles indexed by pKp: It is formed by

the cycles with (étale) relative position p · Id. Suppose there is a geometric point

on this cycle, it corresponds to a pair (A1, (set,α,1), λ, η) 7−→ (A2, (set,α,2), λ, η) such

that f induce relative position KppKp on Λp ⊗ Q. Then consider p−1 · f , it induces

an isomorphism from H1,et(A1,Zp) to H1,et(A2,Zp), so it must be a prime to p quasi-

isogeny. So f is equivalent to multiplication by p. The multiplication by p cycle

specializes to multiplication by p.

Now the conjecture is the following

Conjecture 3.3.3. Let F be the Frobenius cycle defined as above, then H(F ) = 0 in

Q[p− Isogk].
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4 The ordinary congruence relation

In section3.2 I also introduced a ring Q[p− Isogordk ] and maps ord and cl. Composing

H (G(Qp)//Kp) −→ Q[p− Isogk] with cl ◦ ord, there is a map

H (G(Qp//Kp) −→ Q[p− Isogk]
cl◦ord−−−→ Q[p− Isogk]

Then the ordinary congruence relation reads

Theorem 4.0.1. View H(X) as a polynomial with coefficients in Q[p− Isogk] by the

map above. Then cl ◦ ord(F ) is a root of this polynomial.

Note that this theorem is weaker than the conjecture in the last section, because

to prove that conjecture one also has to check the polynomial formed by the terms

with non generically ordinary coefficients vanishes on F .

This theorem is known for all Hodge type Shimura varieties, since Q[p− Isogordk ]

can be “parametrized” by the spherical Hecke algebra H (M(Qp)//KM,p), in which

M is the centrailizer of the Hodge cocharacter of the Shimura variety. More precisely,

there is a map:H (M(Qp)//KM,p) −→ Q[p−Isogordk ] where KM,p. There is a diagram

H (G(Qp)//Kp,Q)
h

//

SGM
��

Q[p− IsogE]

ord◦σ
��

H (M(Qp)//KM,p),Q)
h

// Q[p− Isogordk ]

The element g[µ] defined by Bültel goes to F in Q[p − Isogordk ]. Therefore by this

diagram the group theoretic congruence by Bültel to the ordinary congruence relation.

Moonen[Moo04] used Serre-Tate theory to prove the existence of the above dia-

gram in the PEL case, and Hong[Hon16] generalized Moonen’s proof to the Hodge

type case recently.
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5 GSpin Shimura varieties and its isocrystals

In this section I review the GSpin Shimura varieties, the main objects of interests

in this paper. A thorough theory of these is developed by Madapusi-Pera[MP16].

Zhang’s thesis[Zhu17] also has a good introduction to it. I also review the classification

of its isocrystals of its good reduction.

5.1 GSpin Shimura datum

Since I need to use the integral model of the Shimura varieties later, let’s start the

definition over Z. Let (V, q) be a quadratic free module over Z of rank N such

that V ⊗ R has signature (N − 2, 2); Let p be a prime number such that V ⊗ Zp

is self dual. Let SO(V ) be the special orthogonal group over Z defined by V . Let

C(V ) = C+(V ) ⊕ C−(V ) be the Clifford algebra attached to V . V is naturally

sitting inside C−(V ) via left multiplication. Define the group scheme GSpin(V ) whose

functor of points on an algebra R is given by g ∈ C+(VR)× : gVRg
−1 ⊂ VR. Take

an element δ ∈ C(V )× such that δ∗ = −δ, then one can define a symplectic form

ψ(c1, c2) = Trd(c1δc2) on C(V ). Since q is perfect on VZp , this symplectic form is

perfect on C(VZp). The left multiplication of GSpin(V ) on C(V ) defines an embedding

GSpin(V ) −→ GSp(C(V ), ψ) (5.1.1)

As Kisin proved, GSpin is the pointwise fixer of a set of tensors (s0) ∈ C(V )⊗.

Madapusi-Pera gave a complete list of these tensors in[MP16], 1.3. For later use, let

D be the linear dual of C(V )Zp . Then D⊗ = C(V )⊗Zp .

In this paper it is more convenient to work with the Shimura datum group theo-

retically. Choose a basis of VR such that the quadratic form under this basis is given
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by 

−1

−1

1

. . .

1


Define h : S −→ SO(VR) to be



a2−b2
a2+b2

2ab
a2+b2

−2ab
a2+b2

a2−b2
a2+b2

1

. . .

1


This cocharacter defines a Hodge structure on V , which is of weight 0. Then by the

Kuga-Satake construction there is a lifting of h to GSpin(VR), giving rise to a Hodge

structure of weight 1 on the Clifford algebra

GSpin(VR)

��
S

::

// SO(VR)

(5.1.2)

Let µ be the C-cocharacter defined by µ(z) = h(z, 1). Denote the lifting of µ cor-

responding to the Kuga-Satake lifting of µ by µKS. The conjugacy class of this

cocharacter actually descents to Q, so the field of definition of the Shimura varieties

is just Q. For details of these facts, see Madapusi-Pera[MP16] section 3.
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5.2 Isocrystals, Rapoport-Zink spaces

At p, since q is self-dual on VZp , it is possible choose a basis e1, ..., en of the quadratic

free module so that the quadratic form is given by



0 1

1 0

∗
. . .

∗


Then µ is conjugate to the following Zp-cocharacter, which is still denoted by µ :

GZp −→ SO(VZp) 

t

t−1

1

. . .

1


Its corresponding Kuga-Satake lift is

µKS : Gm −→ GSpin(V ), t 7−→ t−1e1e2 + e2e1 (5.2.1)

Now let k = Fp and k = Fp. Let W = W (k), the ring of Witt vectors of k and K =

W (k)[1/p]. Let B(GSpin, µKS) be the µKS admissible Kottwitz set for GSpin(VK)

classifying σ-conjugacy classes [b] of GSpin(V )(K) whose Newton cocharacter νb is

less than or equal to µKS. The embedding of the group schemes

GSpin(VQp) −→ GL(C(VQp)) (5.2.2)

26



induced from 5.1.1 together with µKS and an element of [b] ∈ B(GSpin(VQp), µ
KS)

define a local nonramified Shimura-Hodge datum in the sense of [HP17], definition

2.2.4. One can define the associated Rapoport-Zink space for the local nonramified

Shimura-Hodge datum (GSpin, b, µ, C).

First, there exists a p-divisible group attached to (GSpin, b, µ, C)[HP17], 2.2.6,

denoted by X0 = X0(GSpin, b, µ, C) with a set of Frobenius invariant tensors (sα,0).

Following their notations, let ANilpW be the category of W -algebras on which p is

nilpotent. Then the Rapoport-Zink space is defined as follows[HP17], definition 2.3.3

Definition 5.2.1. Consider the set valued functor

RZ = RZ(GSpin,b,µ,C) : ANilpW −→ (Ens)

whose functor of points on an R ∈ ANilpW is given by isomorphism classes of the

following data: A triple (X, (sα), ρ) consists of a p-divisible group over R and a quasi-

isogeny

ρ : X0 ⊗k R −→ X ⊗R R

where R = R/pR. And (sα) is a set of crystalline tensor, i.e. morphisms of crystals

sα : D(Qp/Zp) −→ D(X)⊗

over R such that

sα : D(Qp/Zp)[1/p] −→ D(X)⊗[1/p]

are Frobenius equivariant, satisfying the following properties

• For some nilpotent ideal J ⊂ R containing p, the restriction of sα to R/J is
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identified with sα,0 under the isomorphism of the isocrystals induced by ρ

D(ρ) : D(XR/J)⊗[1/p]
∼−→ D(X0 ×k R/J)⊗[1/p]

• The sheaf of GW -sets over CRIS(Spec(R)/W ) given by the isomorphisms

Isomsα,s0⊗1(D(X), D ⊗Zp R)

is a crystal of GW -torsors.

• There exists an étale cover Ui of Sprc(R), such on each Ui a tensor preserving

isomorphism of vector bundles

D(XUi)Ui
∼−→ D ⊗Zp OUi

such that the Hodge filtration

Fil1(XUi) ⊂ D(XUi)Ui
∼−→ D ⊗Zp OUi

is induced by the cocharacter that is G(Ui) conjugate to µKS.

Two such triples are equivalent if there exists a tensor preserving isomorphism be-

tween them commuting with the two quasi-isogenies.

I refer to [HP17] for the definition of the big crystalline site CRIS(Spec(R)/W ).

The above definition obviously works for any Hodge type Shimura varieties. One of

their main results in [HP17] is that RZ is representable by a locally formally finite

type formal scheme.

LetKp = GSpin(V )(Zp) andK ′p = GSp(C(V ), ψ)(Zp). Also letKp ⊂ GSpin(V )(Ap
f )
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and K ′p = GSp(C(V ), ψ)(Ap
f ) containing Kp. Then 5.1.1 induces an embedding of

integral models

SKpKp −→ SK′pK
′p (5.2.3)

This embedding of semi-global integral models determines a closed embedding[HP17],

proposition 3.2.11

RZ −→ RZGSpC(V )
(5.2.4)

This embedding provide the objects over RZ one more structure, the polarization.

Let λ0 be the polarization defined by ψ on the object (X0, (sα,0)). Then the objects

over in RZ(R) for R ∈ ANilpW are

ρ : (X0 ⊗k R, (sα), λ) −→ (X ⊗R R, (sα,0), λ0)

Then ρ∨ ◦ λ ◦ ρ = c−1(ρ) · λ0 for some c(ρ) ∈ Q×p . Based on ordp(c(ρ)), RZ is

decomposed into open and closed sub formal schemes. Fix an integer l, let RZ(l) be

the open and closed sub formal schemes on which c(ρ) = pl. Call RZ(l) the component

with multiplicator pl.

In this paper, I only consider the reduced locus of the Rapoport-Zink formal

scheme, which are just schemes over k, denoted by RZred and RZred,(l). For later

use, I need the dimension of RZred
b for all [b] ∈ B(GSpin(VQp), µ

KS). The Newton

cocharacter νbs for all [b] are needed.

Since GSpin(V ) is the central extension of SO(V ), the following map

B(GSpin(VQp), µ
KS) −→ B(SO(VQp), µ)

b′ 7−→ b

induced by the surjection of GSpin onto SO is a bijection.
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Let’s consider the [b]s for SO. Over K, using the anti-diagonal matrix as the

metric matrix of the quadratic form. It is possible since SO splits over a nonramified

extension of Qp 
1

. . .

1


Then the Hodge cocharacter µ is



p

1

. . .

1

p−1


the basic isocrystal is define by the class of the following b



p

1

. . .

1

p−1


Since it squares to the identity matrix, its Newton cocharacter νb

(0, ......, 0)

Following the terminology of [MP16], the Newton types between the µ-ordinary
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and the basic are called finite height. The bs for the finite height isocrystal



p

1

. . .

1

1

. . .

1

1

. . .

1

p−1


where the size of the left upper and right lower matrices takes values between 2

inclusive and bdimV/2c. Let this size be m. Its Newton cocharacter is the following:

( 1
m
, . . . , 1

m
, 0, . . . , 0,− 1

m
. . . ,− 1

m
), since bm is the matrix



p

. . .

p

1

. . .

1

p−1

. . .

p−1
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With these data, the dimension of the Rapoport-Zink spaces can be computed using

Rapoport’s formula. Let G be a reductive scheme over Qp, K be the field as defined

above, Jb be the following Qp group scheme

Jb(R) = {g ∈ G(K ⊗Qp R) : gbσ(g)−1 = b} (5.2.5)

where b ∈ B(G) and R any Qp algebra.

Theorem 5.2.2. (Zhu[Zhu17]) The underlying reduced scheme of the Rapoport-Zink

space associated with (G, µ, b) has dimension 〈µ−νb, ρ〉− 1
2
defG(b) in which defG(b) =

rkQpG− rkQpJb.

Applying this formula to SO, µ and any finite height b. Divide it into two subcases

according to wheather N = dim(V ) = 2n or 2n+ 1. Using the basis of VK such that

the quadratic form is antidiagonal. Let χi be the following character of the diagonal

maximal torus

diag(t1, t2, . . . , tn, t
−1
n , . . . , t−1

2 , t−1
1 ) 7−→ ti

in the even case;

diag(t1, t2, . . . , tn, 1, t
−1
n , . . . , t−1

2 , t−1
1 ) 7−→ ti

in the odd case.

The SO(V ) has positive roots:{χi ± χj} for i < j in the even case and {χi ±

χj} for i < j ∪ {χi} for all i in the odd case. Since µ = (1, 0, . . . , 0, 1) and νb =

(1/m, 1/m, . . . ,−1/m,−1/m). Then 〈µ, ρ〉 = n−1 if N = 2n and 〈µ, ρ〉 = (2n−1)/2

if N = 2n+ 1.

Now let’s compute 〈νb, ρ〉. If N = 2n, 2〈νb, ρ〉 = (n − m) · (2/m) · m + (2/m) ·

m(m − 1)/2 = 2n −m − 1; If N = 2n + 1,2〈νb, ρ〉 = (n −m) · (2/m) ·m + (2/m) ·
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m(m− 1)/2 +m · (1/m) = 2n−m. Therefore in each case, 2〈µ− νb, ρ〉 = m− 1.

The remaining work to do is to compute the defG. Let’s define the upper left

corner matrix of the matrices for bs be bs. It is nothing but a matrix who defines the

basic GLm isocrystal, so Jbs = D∗1/m the unit group of the division algebra of Hasse

invariant 1/m. This group is known to have Qp-rank 1 (It is isotropic modulo center,

this 1 comes from the center). In all possible cases, i.e.odd split, even split and even

quasi-split but not split, one has

Jb = Jbs × SO(N − 2m)

in which SO(N − 2m) has the same splitting property as SO(N) but smaller size.

Therefore defG is always m− 1.

Plug into the Rapoport’s formula

〈µ− νb, ρ〉 −
1

2
defG =

1

2
[(m− 1)− (m− 1)] = 0

Since GSpin is the central extension of SO, i.e.

1 −→ Gm −→ GSpin −→ SO −→ 1

one can get another central extension, for b′ over b

1 −→ Gm −→ Jb′ −→ Jb −→ 1

Therefore the Rapoport’s formula for b′ and µKS would give the same number as

that for the corresponding b and µ. The reduced locus of the finite height GSpin

Rapoport-Zink spaces have dimension 0.
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5.3 Rapoport-Zink uniformization of the basic locus.

It is possible to apply the Rapoport’s formula to compute the dimension of the basic

Rapoport-Zink space. Here I directly cite the results from [HP17], which also includes

the uniformization map.

Theorem 5.3.1. (Howard-Pappas[HP17]) The dimension of the underlying reduced

scheme of the basic Rapoport-Zink space of GSpin(N − 2, 2) Shimura variety with

hyperspecial level structure is the following

1. (N − 3)/2, if N is odd (in this case GSpin(VQp) is always split at p, since I

already assume it is quasi-split and there is no Dykin diagram automorphism in

the odd case);

2. (N − 4)/2, if N is even and GSpin(VQp) is split at p;

3. (N − 2)/2, if N is even and GSpin(VQp) is quasi-split and non-split at p.

And there is the Rapoport-Zink uniformization map

Θb : I(Q)\RZb ×G(Ap
f )/K −→ (ŜW )Sk,b

(5.3.1)

in which I is an inner form of GSpin(VQ) such that IQl is isomorphic to GSpin(VQl)

and IQp is the automorphism group of the basic isocrystal Jb defined by Kottwitz, i.e.

5.2.5, which is an inner form of GSpin(VQp).

More explicitly, given a k point of the Rapoport-Zink space, (ρ : X0 −→ X),

by multiplying ρ by a large enough p-power, say pa, one obtains a genuine isogeny:

pa ·ρ : X0 −→ X. Let Ax0 be an abelian variety whose p-divisible group is isomorphic

to X0 and fix such an isomorphism, and fix a level structure of A0. Then the kernel of

this map ker(pa · ρ) is a finite subgroup scheme of Ax0 . Let A be the abelian variety
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Ax0/ker(p
a · ρ). Then one gets a genuine isogeny of abelian varieties

pa · ρ : Ax0 −→ A

Dividing this by pa, it becomes a quasi-isogeny ρ : Ax0 −→ A whose p-divisible groups

recover the quasi-isogeny of p-divisible groups:ρ : X0 −→ X. Taking various kinds of

cohomology functors of this quasi-isogeny of abelian varieties, and transfer the tensors,

polarization and the level structure to A. Let them be λ, (set,α, sdR,α, scris,α), η. Then

there is a map

RZb ×G(Ap
f ) −→ Sk,b (5.3.2)

((ρ : X0 −→ X), g) 7−→ (A, λ, (set,α, sdR,α, scris,α), η ◦ g) (5.3.3)

Then I(Q) acts on the left: for h ∈ I(Q), it moves ((ρ : X0 −→ X), g) to ((ρ ◦ h−1 :

X0 −→ X), h · g). Kp just acts on the G(Ap
f ) by the right multiplication. Taking the

quotient one gets Θb.

Remark 5.3.2. Even though here I only restate the uniformization map for the reduced

locus of the basic locus, Kim[Kim18] constructed the map for all the Newton types

and values in all k-schemes S on which p is locally nilpotent.

6 Congruence relation in case SO(V ) is split at p

In this section I extend Bültel’s results in his paper[B0̈2] to more general cases.

The ordinary congruence relation is already known. The next question to ask is

whether this is enough to deduce the conjecture1.2, i.e.whether this implies Hp(F ) = 0

in Q[p− Isogk].

As in section 3, cl ◦ σ(H(X)) deletes the terms in H(X) with non µ-ordinary
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coefficients. But if there are no such terms, H(F ) = 0 in Q[p− Isogordk ] implies it is

also 0 in Q[p− Isogk].

In [B0̈2], Bültel showed how to prove this for certain orthogonal Shimura varieties.

The idea is basically showing the projection maps s and t are finite away from the

basic locus. This excludes the possibility of the finite height coefficients; For the

basic locus, in general neither s nor t is finite. However, if the dimension of the basic

locus Sb is small enough, one can still exclude the possibility of basic coefficients in

cl ◦ σ(H(X)). So one just needs to show the finiteness of the projection away from

the basic locus and the smallness of the dimension of the basic locus.

Look at the fiber of the projection map. Since the source and the target are

symmetric, I only talk about the source projection. Let p−Isog(c)
k be the components

on which multiplicatior is pc, as defined in section 3. Consider a k point of Sk,

x0 : Speck −→ Sk. Let the Newton stratum of the image of x0 has type [b]. The

fiber over x0 is just the fiber product over Sk

Speck ×Sk
p− Isog(c)

k
//

��

p− Isog(c)
k

��
Speck //Sk

(6.0.1)

Consider the functor of point of Speck ×Sk
p − Isog

(c)
k on a k-scheme S. Denote

the abelian variety corresponding to x0 by (A0, (scris,α,0), λ0, η0). Then one sees that

(Speck ×Sk
p− Isog(c)

k )(S) is the following data

• An S-point of Sk, this defines an abelian scheme (A, (scris,α), λ, η) by pulling

back the abelian scheme over Sk.

• A p-isogeny from (A0 ×k S, (scris,α,0), λ0, η0), which is the trivial family over

S with fiber A0, to (A, (scris,α, λ, η), s.t.the multiplicator is pc. And the level
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structure is preserved, i.e.η = η0 ◦ f−1.

By taking their p-divisible groups, one gets a homomorphism from Speck ×Sk
p −

Isog
(c)
k to the reduced locus of the Rapoport-Zink space associated with b

Speck ×Sk
p− Isog(c)

k −→ RZ
red,(c)
b

((A0, (scris,α,0), λ0, η0)
f−→ (A, (scris,α), λ, η)) 7−→ (X0

f−→ X)

This is fine because changing the base point id : X0
∼−→ X0 results in an automorphism

of the Rapoport-Zink space.

Proposition 6.0.1. This map is injective

Proof. The proof actually follows from the same reason in the construction of the

uniformization map at the end of last section. Given (X0
f−→ X) ∈ RZred,(c)

b (S). Then

the kernel of this isogeny is a finite flat group scheme of p-power order. Then one can

recover its preimage to be A0 −→ A0/ker(f) and transfer all the additional structures

from A0 to A0/ker(f).

As a corollary,

Proposition 6.0.2. For any GSpin Shimura varieties with hyperspecial level structure

at p. regardless of the behavior of the orthogonal group over Qp, there is no cycle which

is generically finite height appearing in the coefficients of H(X).

Proof. As mentioned in section 3, since the coefficients of H(X) all come from the

specialization of the generic fiber, the are all of dimension d = dimSk. Take such a

component Z. Suppose Z is finite height of Newton type [b]. By proposition 3.1.4,

s(Z) is contained in ∪b′≤bSb′ , whose dimension is strictly less than d. From the

section, when b is not basic, dimRZred
b = 0. Therefore by 6.0.1, dimSpeck ×Sk

p −
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Isog
(c)
k = 0 over the non-basic locus. From the properness of the projection map s, s is

finite away from the basic locus. Therefore dimZ ≤ dim(∪b′≤bSb′) < dimSk = dimZ

a contradiction. So such Z does not exist.

Theorem 6.0.3. Let V be a quadratic space of rank N over Q such that its signature

over R is (N − 2, 2). Let p be prime where SO(V ) is nonramified. When N is odd or

when N is even and SO(V ) splits over p, the conjecture1.2 holds.

Proof. The (generically) finite height coefficients in σ(H(X)). Take an irreducible

component Z of the coefficients of σ(H(X)), which is basic. From 3.1.4, s(Z) is

contained entirely in the basic locus. On the other hand, by 6.0.1 and 5.3.1, the

fiber of s over s(Z) is strictly less than half of the dimension of Sk. Therefore

dimZ ≤ dimSk = dimZ, a contradiction.

But there is one more case, i.e., the rank of V is even and GSpin(VQp) quasi-split

but nont split, it is still impossible to exclude the opportunity of the basic component

in the coefficients of σ(H(X)). The explicit form of the Hecke polynomial is needed.

7 Congruence relation in case SO(V ) is quasi-split

but not split at p

As seen in theorem5.3.1, when the orthogonal group SO(V ), or equivalently GSpin(V ),

does not split at p, the dimension of the basic locus is exactly half of the dimension of

the Shimura variety, so the simple dimension bounding argument in section5 cannot

exclude the possibility of the basic components in the coefficients of σ(H(X)). As a

result, the ordinary congruence relation does not immediately imply the full version

of the conjecture1.2.
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However, in[Kos14], Koskivirta factored the Hecke polynomial so that one special

factor ’kills’ the basic cycles. I will show that the same phenomenon happens to

quasi-split GSpin.

Since I will only care about the basic cycles, Sk,b means the basic locus from now

on.

7.1 Review of the root datum of GSpin

First look at the root datum of the even split GSpin. Let VQp be the quadratic space

over Qp as in section 5 and dimVQp = 2n. The root datum of GSpin can be obtained

from that of SO. A reference is Asgari’s thesis[Asg02].

SO(VQp), Spin(VQp) and GSpin(VQp) fit into the following diagram

Spin(VQp)×Gm
//

��

Spin(VQp)

��
GSpin(VQp) // SO(VQp)

Let me explain the arrows: The upper horizontal one is just the projection onto

the first factor; The right vertical one is the double cover; The left vertical one is

defined by (g, s) 7−→ g ·s, this is actually a surjection of group schemes, which defines

GSpin(VQp) as a quotient of Spin×Gm whose kernel is µ2; The lower horizontal arrow

is just the right arrow in the exact sequence

1 −→ Gm −→ GSpin(VQp) −→ SO(VQp) −→ 1 (7.1.1)

Taking the matrix of the symmetric bilinear form of the quadratic space VQp to
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be anti-diagonal, then a split torus T can be chosen

T = {diag(t1, t2, . . . , tn, t
−1
n , . . . , t−1

2 , t−1
1 }

and also a basis of the character lattice, and its dual basis of the cocharacter lattice

χi : T −→ Gm : diag(t1, t2, . . . , tn, t
−1
n , . . . , t−1

2 , t−1
1 ) 7−→ ti

χ∨i : Gm −→ T : t 7−→ diag(1, . . . , t, 1, . . . . . . , 1, t−1, . . . , 1)

In this basis and its dual basis, a set of positive simple roots and coroots of SO is

given by

R = {α1 = χ1 − χ2, . . . , αn−1 = χn−1 − χn, αn = χn−1 + χn}

R∨ = {α∨1 = χ∨1 − χ∨2 , . . . , α∨n−1 = χ∨n−1 − χ∨n , α∨n = χ∨n−1 + χ∨n}

Let Qp2 be the unique nonramified quadratic extension of Qp. To define the quasi-

split outer form of SO(VQp), just take the Gal(Qp2/Q) action on the character and

cocharacter lattice to be

σ : χn 7−→ −χn, χ∨n 7−→ −χ∨n

for σ the nontrivial element.

Take T̃ be a maximal torus of Spin surjecting to T . Then T̃ × Gm is a maximal

split torus of Spin(VQp)×Gm. Similarly take T∆ to be the image of T̃ ×Gm in GSpin
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which surjects to T

T̃ ×Gm
//

��

T̃

��
T∆

// T

It is a maximal split torus of GSpin. Now taking the character lattices of the maximal

tori corresponding to the diagram relating SO, Spin and GSpin, one gets the following

diagram of lattices

X∗(T̃ )× Z X∗(T̃ )oo

X∗(T∆)

OO

X∗(T )

OO

oo

Via the right vertical arrow, identify X∗(T̃ ) as a superlattice of X∗(T ) inside X∗(T )Q.

In terms of the chosen basis, this lattice is given by

X∗(T̃ ) = Zχ1 + · · ·+ Zχn + Z · 1

2
(χ1 + · · ·+ χn)

Then X∗ × Z can be written as

X∗(T̃ ) = Zχ1 + · · ·+ Zχn + Z · 1

2
(χ1 + · · ·+ χn) + Zχ0

Where χ0 corresponds to the projection to the Gm in the product Spin(VQp) × Gm.

This is because Spin(V ) is simply connected, so its coroot lattice coincide with its

cocharacter lattice. Therefore its character lattice can be identified with the weight

lattice of SO(VQp), which is generated by the cocharacter lattice of SO(VQp) together

with the fundamental weight defining the half spin representation.

Next let’s try to identify the character lattice of GSpin as a sublattice of X∗(T̃ )×Z.

According to Asgari[Asg02], or Milne’s book[Mil17], chapter 24, the left column of
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the first diagram fits into the following exact sequence

1 −→ µ2 −→ Spin(VQp)×Gm −→ GSpin(VQp) −→ 1

in which the second arrow is given by

µ2 −→ Gm

(α∨n−1+α∨n)×id
−−−−−−−−→ Spin(VQp)×Gm

So the character lattice of GSpin(VQp) as a sublattice of X∗(T̃ )×Z are those vectors

with integral values on (1/2)α∨n−1 + (1/2)α∨n . This lattice is given by

X∗(T∆) = Zχ1 + · · ·+ Zχn + Z · (χ0 + (1/2) · (χ1 + ·+ χn))

and its dual lattice is given by

X∗(T∆) = Zχ∨0 + Z · (χ∨0 + (1/2) · χ∨1 ) + . . . · · ·+ Z · (χ∨0 + (1/2) · χ∨n)

Like[Asg02], in general people use another basis than χs. Let e0 = χ0 + (1/2) · (χ1 +

· · ·+ χn) and ei = χi. On the dual side, let e∨0 = χ∨0 and e∨i = χ∨i + (χ∨0 )/2. Rewrite

the set of positive roots and coroots in this new basis

R = {α1 = e1 − e2, . . . , αn = en−1 − en, αn = en−1 + en}

R∨ = {α∨1 = e∨1 − e∨2 , . . . , α∨n−1 = e∨n−1 − e∨n , α∨n = e∨n−1 + e∨n − e∨0 }

Similar to SO(VQp), the quasi-split form of GSpin(VQp) is defined by the Galois

action on the root datum

σ : en 7−→ e0 − en and e∨n 7−→ e∨0 − e∨n
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in which σ is the nontrivial involution of Gal(Qp2/Q).

7.2 The Hecke polynomial of quasi-split even GSpin Shimura

varieties

In this section I compute the Hecke polynomial for µKS.

Lemma 7.2.1. In terms of the eis introduced right above, µKS = e∨1

Proof. Write µKS as a linear span of the es first. Let µKS = x0e
∨
0 +x1e

∨
1 + · · ·+xne

∨
n .

Since it is the lift of µ = χ∨1 , it must pair zeroly with χ2, . . . , χn. Therefore x2 = x3 =

· · · = xn = 0 but x1 = 1. Since η(µKS(t)) = t and η = 2χ∨0 , 2x0 + x1 = 1. Hence

x0 = 0. So µKS is nothing but e∨1 .

Lemma 7.2.2. All the weights appearing in the representation of GSO determined

by µKS are

e∨1 , e
∨
2 , . . . , e

∨
n ; e∨0 − e∨1 , e∨0 − e∨2 , . . . , e∨0 − e∨n

Proof. Since µKS is miniscule, the weights are simply the weights appearing in the

Weyl group orbit of it. It is easy to check that these weights all appear in the Weyl

group orbit of µKS. Let WM be the Weyl group of the centralizer M of µKS. The

length of the Weyl group orbit is

|W |
|WM |

=
2n · n!

2n−1 · (n− 1)!
= 2n

So these are just all the weights appearing in the representation of GSO determined

by µKS.

Since the Hecke polynomial is σ-conjugate invariant, I only need to look at the
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maximal torus

H(X) = det(X − pn−1 · rµKS(σ n t))

in which t ∈ T̂∆, the dual torus of T∆ , which is a maximal torus of GSO. The maximal

torus T∆ is a rank n+ 1 torus. I choose a splitting T∆ = Gm× . . . · · · ×Gm, in which

e∨i corresponds to t 7−→ (1, . . . , 1, t, 1, . . . , 1). One has the splitting of T̂∆ dual to the

above splitting and write it down in the matrix form

T̂∆ = {diag(s, t1, . . . . . . , tn)}

Therefore, viewing e∨i as characters of T̂∆

e∨0 (diag(s, t1, . . . . . . , tn)) = s and e∨i (diag(s, t1, . . . . . . , tn)) = ti (7.2.1)

The Kuga-Satake cocharacter defines the GSO-module with the highest weight e∨1 .

As computed above, all of the weights are known, so when restricted to this maximal

torus, rµKS(t) is just the diagonal matrix



t1

. . .

tn

st−1
n

. . .

st−1
1


But I need the matrix of rµKS(σn t). The effect of σ is changing the diagonal matrix
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a little bit, rµKS(σ n t) is the following matrix, following Wedhorn[Wed00],2.7.1



p1−n · t1

p2−n · t2
. . .

tn

st−1
n

. . .

p2−n · st−1
2

p1−n · st−1
1


Therefore the Hecke polynomial is

H(X) = (X2 − p2(n−1) · s)(X − t1)(X − st−1
1 ) . . . . . . (X − pn−2tn−1)(X − pn−2st−1

n−1)

(7.2.2)

Since both the first and the second factor are invariant under σ, they can be viewed

as polynomials with coefficients in the Hopf algebra of the maximal split torus of the

quasi-split GSO. The first factor is pretty simple. This simple factor kills the basic

cycles in the same way as in Koskivirta[Kos14]. Notice that the cocharacter of T∆

corresponding to s is just the cocharacter in the exact sequence

1 −→ Gm −→ GSpin(VQp) −→ SO(VQp) −→ 1

So viewed as an element of Kp\GSpin(VQp)(Qp)/Kp, it is KppKp.
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7.3 Ideas of the proof

Denote the product of the terms in H(X) other than (X2 − p2(n−1) · s) by R(X)

for short. Let R(X) = amX
m + am−1X

m−1 + · · · + a0. Where ais are elements in

Q[p− Isogk], which all have dimension d = dimSk. Now for each ai write it as

ai = bi + ci

where bis are supported on the cycles of p − Isogk who are generically ordinary. In

other words, bi ∈ cl(Q[p− Isogordk ]). The following lemma is needed

Lemma 7.3.1. The following equation holds

σH(X) = σ((X2 − p2(n−1)〈p〉) ·R(X))

That is, the factorization of H(X) commutes with σ.

Proof. Specializing (X2 − p2(n−1) · 〈p〉) ·R(X) , one gets

σ((X2 − p2(n−1)〈p〉) · (amXm + am−1X
m−1 + · · ·+ a0))

= σ(amX
m+2 + am−1X

m+1 + (am−2 + p2(n−1)〈p〉 · am) ·Xm + . . . · · · − p2(n−1)〈p〉 · a0)

So the key to prove the lemma is trying to prove σ(〈p〉 · ai) = σ(〈p〉)σ(ai). First

observe that one only needs to prove this equality holds for any irreducible component

of p− IsogQ. Take one such component, say C. By definition, 〈p〉 ·C is the image of

〈p〉 ×t,Sh,s C under the map

p− IsogQ ×t,Sh,s p− IsogQ −→ p− IsogQ
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Similarly, σ(〈p〉) · σ(C) is the image of 〈p〉 ×t,Sk,s σ(C) under the above map on

the special fiber. If one can prove σ(〈p〉 ×t,Sh,s C) = 〈p〉 ×t,Sk,s σ(C) as cycles of

p− Isogk ×t,Sk,s p− Isogk, it is done. For this purpose, one only needs to check they

have the same multiplicity on the same support. Consider the map

p− IsogQ ×t,Sh,s p− IsogQ −→ p− IsogQ

given by dropping the multiplication by p, i.e.

(A1
×p−→ A1

f−→ A2) 7−→ (A1
f−→ A2)

This map admits a section given by reversing it. Taking specialization, the multi-

plicity of σ(〈p〉 ×t,Sh,s C) on its support is the same as the multiplicity of σ(C) on

its support in p− Isogk. Using the same section on the special fiber proves that the

multiplicity of 〈p〉×σ(C) is the same as the multiplicity of σ(C) on its support. There-

fore, σ(〈p〉 ×t,Sh,s C) and 〈p〉 ×t,Sk,s σ(C) have the same multiplicity on its support

respectively. Since their supports are both the image under the section of forgetting

multiplication by p, they are the same cycle in p− Isogk ×t,Sk,s p− Isogk.

With this lemma, I can proceed. One has

cl ◦ ord(H(X)) = (X2 − p2(n−1) · 〈p〉)(bmXm + bm−1X
m−1 + · · ·+ b0)

Then H(X), viewed as a polynomial with coefficients in Q[p− Isogk], can be written

as the sum of two parts

H(X) = (X2 − p2(n−1) · 〈p〉) · (cmXm + · · ·+ c0) + cl ◦ ord(H(X)) (7.3.1)

47



According to the ordinary congruence relation, cl ◦ ord(H(X)) = 0. So I only have

to prove the vanishing of the first summand on F . For dimension reasons and the

finiteness of the source projection over the non-basic locus, all the cis are supported

on the basic cycles of p− Isogk. Therefore it only needs to prove

(F 2 − p2(n−1) · 〈p〉) · C = 0 (7.3.2)

By Koskivirta[Kos14], proposition 25, F and 〈p〉 are in the center of Q[p− Isogk]. So

to prove the lemma, one needs to show that C · F 2 and p2(n−1)C · 〈p〉 have the same

support and multiplicity in Q[p− Isogk].

To check they have the same support, first assume that

p− Isogk,b
(s,t)−−→ Sk,b ×Sk,b

is a closed immersion where I use p − Isogk,b and Sk,b for the basic locus. In this

case any C where dimC = dimSk is bijective onto its image. So for any two such

components C1 and C2, to check that they are the same, one just has to show that

s(C1) = s(C2) and t(C1) = t(C2), since (s, t)(Ci) = s(Ci) ×k t(Ci) for i = 1, 2 by

dimension considerations.

Proposition 7.3.2. The condition that (s, t) is a closed immersion can always be

achieved by taking the level structure small enough.

Look at Koskivirta[Kos14], theorem 19. He also proved that once C · F 2 =

p2(n−1)C · 〈p〉 for the case where Kp is small enough, the general cases can also be

deduced. Let K ′ = KpK
′p ⊂ K = KpK

p. Let S ′
k and Sk be the special fiber for

ShK′ and ShK . Also let p − Isog′k and p − Isogk be the p-isogeny spaces defined as
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above for K ′ and K. There is an étale cover

π : S ′
k −→ Sk

Π : p− Isog′k −→ p− Isogk

which induces algebra homomorphisms

Π : Q[p− Isog′k] −→ Q[p− Isogk]

Koskivirta[Kos14], lemma 27 proved

Proposition 7.3.3. There are quations

Π∗[〈p〉] = deg(π)[〈p〉]

Π∗[F ] = deg(π)[F ]

So H(F ) = 0 in Q[p− Isog′k] implies H(F ) = 0 in Q[p− Isogk].

It is enough to prove the conclusion 7.3.2 over k. Choose Kp small enough so

that (s, t) is a closed immersion. Let C be an irreducible component of p − Isogk.

To compare C · F 2 and C · 〈p〉, look at their images under the source and target

projections.

Lemma 7.3.4. Let C be a basic irreducible component of p − Isogk. Then support

of s(C) and t(C) are irreducible components Sk,b.

Proof. In the last section, the fiber of s and t can be embedded into the Rapoport-

Zink space, which is of dimension n− 1. Therefore the fibers s and t have dimension

less than or equal to n − 1, so s(C) and t(C) have dimension at least n − 1. Since
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they are both contained in the basic locus of Sk. They must exactly have dimension

n− 1. So they are both irreducible components of Sk,b.

Take any geometric point of C ×t,Sk,b,s
〈p〉, it corresponds to a tuple

(A1, (scris,α,1), λ1, η1)
f−→ (A2, (scris,α,2), λ2, η2)

×p−→ (A2, (scris,α,2), λ2, p · η2) (7.3.3)

such that f preserves the level structure. Its image under the source map is (A1, (scris,α,1), λ1, η1),

therefore s(C · 〈p〉) is just s(C). Similarly, s(C ·F 2) = s(C). So s(C · 〈p〉) = s(C ·F ).

Next I need to compare t(C · 〈p〉) and t(C · F 2). Take a geometric point 7.3.3 on

C ×t,Sk,b,s
〈p〉. Its image under the target projection is (A2, . . . , p · η2). Similarly, a

geometric point on (C ×t,Sk,b,s
F )×t,Sk,b,s

F corresponds to a tuple

(A1, (scris,α,1), λ1, η1)
f−→ (A2, (scris,α,2), λ2, η2)

F−→ (A
(p)
2 , (s

(p)
cris,α,2), λ

(p)
2 , η

(p)
2 )

F−→ (A
(p2)
2 , (s

(p2)
cris,α,2), λ

(p2)
2 , η

(p2)
2 )

So its image under the projection map is (A
(p2)
2 , (s

(p2)
cris,α,2), λ

(p2)
2 , η

(p2)
2 ). There is just one

question yet to be answered: Are (A2, (scris,α,2), λ2, η2) and (A
(p2)
2 , (s

(p2)
cris,α,2), λ

(p2)
2 , η

(p2)
2 )

in the same irreducible component of Sk,b? To compare them, make use of the

Rapoport-Zink uniformization map 5.3.1. The finer structure of the Rapoport-Zink

space is also needed.

7.4 More about Rapoport-Zink uniformization, d’apres Howard-

Pappas

Recall the Rapoport-Zink uniformization map

Θ : I(Q)\RZred
b ×G(Ap

f )/K
p −→ Sk,b (7.4.1)
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The strategy to prove t(C · 〈p〉) = t(C · F 2) is: Pick up a geometric point Sk,b

corresponding to (A, (scris,α), λ, η) such that it lies on a unique irreducible component

of Sk,b. Then find points on RZred
b × G(Ap

f ) sitting over (A, (scris,α), λ, p · η) and

(A(p2), s
(p2)
cris,α, λ

(p2), η(p2)) respectively, trying to prove that these two points should

map to the same irreducible components under the Rapoport-Zink uniformization

map.

Take x0 to be a k point of Sk,b. Let (A0, (scris,α,0), λ0, η0) be its corresponding

abelian variety. Recall the construction of Θ in section (5.3). Fix an isogeny ρ :

A0 −→ A. Let (X0
ρ−→ X) be the induced map on their p-divisible groups.

Lemma 7.4.1. With all these notations, we have

Θ : (X0
ρ−→ X, η−1

0 ◦ ρ−1 ◦ η) 7−→ (A, (scris,α), λ, η) (7.4.2)

Θ : (X0
p·ρ−→ X, η−1

0 ◦ ρ−1 ◦ η) 7−→ (A, (scris,α), λ, p · η) (7.4.3)

Θ : (X0
Fr2◦ρ−−−→ X(p2), η−1

0 ◦ ρ−1 ◦ η) 7−→ (A(p2), (s
(p2)
cris,α), λ(p2), η(p2)) (7.4.4)

Proof. From the equation

V ⊗ A η0−→ H1(A0,Ap
f )

ρ−→ H1(A,Ap
f ) (7.4.5)

one knows that transferring the level structure of A0 to A via ρ is ρ ◦ η0. From the

construction of Θ in 5.3.1, the level structure part on the left hand side of 7.4.2 maps

to ρ ◦ η0 ◦ η−1
0 ◦ ρ−1 ◦ η = η. So 7.4.2 is proved.

Similarly, transferring the level structure of A0 to A via p ·ρ, it is p ·ρη0. The level

structure map on the left hand side of 7.4.3 maps under Θ to p·ρ◦η0◦η−1◦ρ−1◦η = p·η.

It agrees with the right hand side.

Finally, transfer η0 to A(p) via ρ composed with the relative Frobenius Fr ◦ ρ :
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A −→ A(p), from the equation

V ⊗ Ap
f

η0−→ H1(A0,Ap
f )

ρ−→ H1(A,Ap
f )

Fr−→ H1(A(p),Ap
f ) (7.4.6)

it is Fr ◦ρ◦ η0. So under Θ, it is mapped to Fr ◦ρ◦ η0 ◦ η−1
0 ◦ρ−1 ◦ η = Fr ◦ η. Apply

Fr twice, it is Fr2 ◦ η0 on the level structure part, it agrees with the right hand side

of 7.4.4.

One just has to show that (X0
p·ρ−→ X, η0◦ρ−1◦η−1) and (X0

Fr2◦ρ−−−→ X(p2), η0◦ρ−1◦

η−1) maps to the same irreducible component of Sk,b, for this purpose it is enough to

check that (X0
p·ρ−→ X) and (X0

Fr2◦ρ−−−→ X(p2)) are in the same irreducible component

of RZred
b .

In[HP17], Howard and Pappas described the structure of RZred
b quite explicitly in

terms of linear algebra. Recall in section5.1, I defined V and D. There is a twisted

Frobenius endomorphism F of DK = D ⊗K defined by b ◦ σ. Since VK = V ⊗K ⊂

End(DK), define a twisted Frobenius on VK by conjugation

Φ : VK −→ VK , f 7−→ F ◦ f ◦ F−1

From this, define the inner form of VQp by

V Φ
K = {x ∈ VK : Φ(x) = x}

The automorphism group of the basic isocrystal Jb in theorem5.3.1 is simply GSpin(V Φ
K ),

and it sits inside an exact sequence

1 −→ Gm −→ GSpin(V Φ
K ) −→ SO(V Φ

K ) −→ 1
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In[HP17](5.1.1), they have

Definition 7.4.2. A Zp sublattice Λ of V Φ
K is called a vertex lattice, if

pΛ ⊂ Λ∨ ⊂ Λ

and the type of Λ is tΛ = dimk(Λ/Λ
∨). A sublattice of VK is called a special lattice if

(L+ φ(L))/L
∼−→ W/pW

Given (ρ : X0 −→ Xy, (sα)), ρ defines a map of the contravariant Dieudonné

isocrystal ρ : D(Xy)[1/p] −→ D(X0)[1/p] = DK . Let My ∈ DK to be ρ(D(Xy)) in

DK . Let M1,y be the lattice F−1(pMy) = ρ(V D(X)). They defined three W -lattices

in VK for My

Ly = {x ∈ VK : xM1,y ⊂M1,y}

L#
y = {x ∈ VK : xMy ⊂My}

L##
y = {x ∈ VK : xM1,y ⊂My}

They satisfy the relation Φ(Ly) = L#
y and Ly + L#

y = L##
y . Note that My and pMy

share all these Ls. They proved the following[HP17], 6.2.2

Proposition 7.4.3. There exists a bijection of sets

pZ\RZred
b (k) −→ {special lattices in L ⊂ VK} (7.4.7)

(Xy, ρ, (sα)) 7−→ Ly (7.4.8)

Therefore, they can describe pZ\RZred
b in terms of the special lattices in VK .
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They attached a classical Deligne-Lusztig variety SΛ to each vertex lattice Λ as

follows: Let Ω0 = Λ/Λ∨ be the tΛ dimensional vector space over k. Use Q to denote

the quadratic form on V Φ
K . Then pQ is integral valued on Λ, it makes Ω0 into a

nondegenerated quadratic space over k. Define OGr(Ω) to be the k scheme whose

functor of point on a k-ring R is

{totally isotropic local direct summands L ⊂ Ω⊗k R of dimension tΛ/2}

Since OGr(Ω) is defined over k, OGr(Ω)k has relative Frobenius endomorphism over

k

Φ : OGr(Ω)k −→ OGr(Ω)
(p)

k
= OGr(Ω)k

Let SΛ to be the subscheme of OGr(Ω)k whose functor of point on a k-algebra is

given by

SΛ(R) = {L ⊂ OGr(Ω)(R) : dim(L + Φ(L )) = tΛ/2 + 1}

It is easy to see

Proposition 7.4.4. There is a bijection of sets

{special lattices L ⊂ VK : Λ∨W ⊂ L ⊂ ΛW}
∼−→ SΛ(k) (7.4.9)

which is Φ-equivalent.

The following property of SΛ is known[HP17] 5.3.2

Proposition 7.4.5. SΛ has two connected components SΛ = S+
Λ tS

−
Λ and the Frobe-

nius Φ interchanges these two components.
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For each special lattice L, there exists a unique smallest vertex lattice Λ s.t.

Λ∨W ⊂ L ⊂ ΛW . Λ can be found in the following way. Define

L(r) = L+ Φ(L) + · · ·+ Φr(L) (7.4.10)

There exists a smallest d s.t. L(d) = L(d+1). Then L(d) descents to a vertex lattice

Λ(L) in V Φ
K .

Define RZred
Λ ⊂ RZred

b as the closed formal subscheme define by the condition

ρ ◦ Λ∨ ◦ ρ−1 ⊂ End(X0)

Then RZred
b = ∪ΛRZ

red
Λ and RZred

Λ (k) consists of the special lattices sitting between

Λ∨W and ΛW . For two lattices, Λ and Λ′, RZred
Λ intersects RZred

Λ′ if and only if Λ ∩ Λ′

is again a vertex lattice, then RZred
Λ ∩RZred

Λ′ = RZred
Λ∩Λ′ .

Howard-Pappas proved the following fact[HP17],6.3.1

Theorem 7.4.6. There is a unique isomorphism of k-schemes

pZ\RZred
Λ

∼−→ SΛ

such that on the level of k-points, it is the composition of the maps 7.4.7 and 7.4.9.

Also, fixing a Λ, there is a decomposition RZred
Λ = RZ

red,(odd)
Λ t RZred,(even)

Λ , in

which RZred,(odd) means the locus with odd multiplicator, RZred,(even) means the locus

with even multiplicator. In[HP17],6.3.2

Proposition 7.4.7. There is an isomorphism of schemes over k

pZ\RZred,(odd)
Λ t pZ\RZred,(even)

Λ

∼−→ S+
Λ t S

−
Λ (7.4.11)
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which is Frobenius equivariant.

More precisely, this means RZ
red,(odd)
Λ maps to one of S±Λ and RZ

red,(even)
Λ maps to

the other. The irreducible components of RZred are exactly all RZ
red,(l)
Λ with Λ the

largest type for all integers l.

7.5 Comparison of the support of t(C · 〈p〉) and (C · F 2)

Let’s see how multiplication by p and Fr move the irreducible components of RZred
b .

Take an irreducible component RZ
red,(l)
Λ , i.e. fix an integer l and a lattice Λ of

largest type. To see how multiplication by p moves this irreducible component, one

just has to see how it moves a general k-valued point y on RZ
red,(l)
Λ where a general

point means a point lying on only one irreducible component rather than lying on the

intersection of many components. From the above description by Howard-Pappas, this

means the only vertex lattice whose W -span contains the special lattice corresponding

to y is Λ.

Lemma 7.5.1. Let (X0
ρ−→ Xy) be the corresponding quasi-isogeny of p-divisible

groups for y. Then the point corresponding to (X0
p·ρ−→ Xy) is a general point of

RZ
red,(l+2)
Λ .

Proof. From the definition of Ly in 7.4.2, (X0
ρ−→ Xy) and (X0

p·ρ−→ Xy map to the

same special lattice. Therefore they both map into pZ\RZred
Λ for the unique Λ, by

taking their special lattice. Since multiplying p increases the multiplicator by p2,

(X0
p·ρ−→ X

(p)
y ) ∈ RZred,(l+2)

Λ .

Lemma 7.5.2. Let y be as above, then the point corresponding to (X0
Fr◦ρ−−−→ X

(p)
y ) is

a general point of RZ
red,(l+1)
Λ . Therefore, the point corresponding to (X0

Fr2◦ρ−−−→ X
(p2)
y )

is a general point of RZ
red,(l+2)
Λ .
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Proof. For (X0
Fr◦ρ−−−→ X

(p)
y ), the induced map on the Dieudonné isocrystals maps

D(X
(p)
y )[1/p] to the lattice is Φ(Ly) in VK . According to the discussion above 7.4.10,

the vertex lattice Λ is characterized by

ΛW = L(d)
y = Ly + Φ(Ly) + · · ·+ Φd(Ly) (7.5.1)

for d the maximal type. So Φ(ΛW ) = ΛW = Φ(Ly) + · · · + Φd(Φ(Ly)), i.e. Φ(Ly)

is also contained in ΛW . The lattice Λ is the unique vertex lattice whose W -span

contains Φ(Ly), because if Φ(Ly) is contained in the W -span of another vertex lattice

Λ′, then Ly is also contained in Λ′W . Therefore, (X0
Fr◦ρ−−−→ X

(p)
y ) is also contained

in RZred
Λ . More precisely, if y maps to S±Λ , then Fr(y) maps to S∓Λ under the map

7.4.11.

Since the multiplicator of the Frobenius is p, so (X0
Fr◦ρ−−−→ X(p)) ∈ RZ

red,(l+1)
Λ .

Apply the Frobenius twice, (X0
Fr2◦ρ−−−→ X

(p2)
y ) is a general point on RZ

red,(l+2)
Λ .

Proposition 7.5.3. Let (X0
ρ−→ X) be as defined at the beginning of section 7.4,

then (X0
p·ρ−→ X, η0 ◦ ρ−1 ◦ η−1) and (X0

Fr2◦ρ−−−→ X(p2), η0 ◦ ρ−1 ◦ η−1) map to the same

irreducible component of Sk,b. Therefore t(C ·〈p〉) and t(C ·F 2) have the same support

in Sk,b. So C · 〈p〉 and C · F 2 have the same support in p− Isogk.

Proof. Because they are on the same irreducible component of RZred
b × G(Ap

f )/K
p,

which is the unique irreducible component containing both of them, from the two lem-

mas just above. Therefore they map to the same irreducible component of Sk,b under

the uniformization map, and this is the unique irreducible component containing their

image. This component is just t(C · 〈p〉) = t(C · F 2).

7.6 Comparison of multiplicity: proof of the conjecture1.2

Finally it is the time to prove the conjecture1.2.
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Theorem 7.6.1. Let H(X) be the Hecke polynomial 7.2.2, considered as a polynomial

with coefficients in Q[p − Isogk] via σ ◦ h. Let F be the Frobenius cycles as defined

in section3.3. Then H(F ) = 0.

Proof. To prove this theorem, one needs to compare the multiplicity of C · F 2 and

C ·〈p〉 in Q[p−Isogk]. It is enough to compare them in Q[p−Isogk]. For this purpose,

follow the commutative diagram of Koskivirta[Kos14], lemma 28

C ×t,s F 2 c // X
(s,t) // Cs ×F 2(Ct)

C

'
OO

cF

88

(s,t) //

cp

&&

'
��

Cs × Ct

id×F2
77

id×〈p〉

''
C ×t,s 〈p〉 c // X

(s,t) // Cs ×F 2(Ct)

In the diagram, Cs is the support of the image s(C) in Sk,b. Similar for Ct. The

horizontal arrows c means the same as in 3.1.5, i.e.the morphism:p − Isogk ×t,Sk,s

p − Isogk −→ p − Isogk. In the diagram the X means the support of c∗(C ×t,s F 2)

in p − Isogk. The (s, t) is the same as in 7.3.2:p − Isogk −→ Sk,b × Sk,b. The F

is the relative Frobenius on Ct. The map 〈p〉 : Ct −→ F 2(Ct) just means Ct −→

p − Isogk
t−→ Sk,b in which the first arrow is the section defining 〈p〉. This is well

defined since F (Ct) = t(C · F 2) = t(C · 〈p〉) following 7.5.3.

Let’s compare the degrees of the two horizontal cs in the above diagram. Since the

two left vertical arrows are isomorphisms, it just needs to compare the degree of cF

and cp. From the right part of the commutative diagram, this is reduced to compare

the degrees of the map 〈p〉 : Ct −→ F 2(Ct) and the square of the relative Frobenius

F 2. The former one obviously has degree 1. The latter one has degree p2(n−1),

since the relative Frobenius F has degree pdimSk,b and in this case dimSk,b = n− 1.

Therefore C · F 2 = c∗(C ×t,s F 2) = p2(n−1)c∗(C ×t,s 〈p〉) = p2(n−1) · C · 〈p〉. In other
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words, C · (F 2 − p2(n−1)〈p〉) = 0.

Recall the factorization of the Hecke polynomial 7.2.2 and in 7.3, I wrote the

expansion of the factors except (X2 − p2(n−1) · 〈p〉) as

Σm
i=0bi ·X i + Σm

i=0ci ·X i

where cis are supported on the basic cycles of p − Isogk. From the fact just proved

in the last paragraph, (F 2 − p2(n−1) · 〈p〉) · (Σm
i=0F

i) = 0. Recall 7.3.1, combining this

fact with the ordinary congruence relation, H(F ) = 0.
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