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Abstract

The dissertation studies the property of transitivity in the social choice

theory. I explain why we should care about transitivity in decision theory. I

propose two social decision theories: redistribution regret and ranking regret,

study their properties of transitivity, and discuss the possibility to find a best

choice for the social planner. Additionally, in the joint work, we propose a gen-

eral method to construct a consistent estimator given two parametric models,

one of which could be incorrectly specified.

In “Why Transitivity”, to explain behaviors violating transitivity, e.g., pref-

erence reversals, some models, like regret theory, salience theory were devel-

oped. However, these models naturally violate transitivity, which may not lead

to a best choice for the decision maker. This paper discusses the consequences

and the possible extensions to deal with it.

In “Redistribution Regret and Transitivity”, a social planner wants to allo-

cate resources, e.g., the government allocates fiscal revenue or parents distribute

toys to children. The social planner cares about individuals’ feelings, which de-

pend both on their assigned resources, and on the alternatives they might have

been assigned. As a result, there could be intransitive cycles. This paper shows

that the preference orders are generally non-transitive but there are two excep-

tions: fixed total resource and one extremely sensitive individual, or only two

individuals with the same non-linear individual regret function.

In “Ranking Regret”, a social planner wants to rank people, e.g., assign

airline passengers a boarding order. A natural ranking is to order people from

most to least sensitive to their rank. But people’s feelings can depend both

on their assigned rank, and on the alternatives they might have been assigned.

As a result, there may be no best ranking, due to intransitive cycles. This

paper shows how to tell when a best ranking exists, and that when it exists,

it is indeed the natural ranking. When this best does not exist, an alternative



second-best group ranking strategy is proposed, which resembles actual airline

boarding policies.

In “Over-Identified Doubly Robust Identification and Estimation”, joint

with Arthur Lewbel and Jinyoung Choi, we consider two parametric models. At

least one is correctly specified, but we don’t know which. Both models include

a common vector of parameters. An estimator for this common parameter

vector is called Doubly Robust (DR) if it’s consistent no matter which model

is correct. We provide a general technique for constructing DR estimators

(assuming the models are over identified). Our Over-identified Doubly Robust

(ODR) technique is a simple extension of the Generalized Method of Moments.

We illustrate our ODR with a variety of models. Our empirical application is

instrumental variables estimation, where either one of two instrument vectors

might be invalid.
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1 Chapter 1: Why Transitivity?

1.1 Introduction

The widely accepted model about people’s decision making under uncertainty is

the expected utility model, proposed by von Neumann and Morgenstern [42]. The

basic assumptions for the preferences in this model include completeness, transitivity,

independence, and continuity.

However, we can observe some behaviors violating transitivity, for example, pref-

erence reversals, die examples. These phenomenons cannot be explained by the

expected utility model. Some alternative models were developed to explain these

behaviors, e.g., regret theory, salience theory.

As a result, these models naturally predict violations of transitivity, which also

cause problems. One of the problems is there may not exist a best choice on the

basis of binary preferences (see Fishburn and Lavalle [13]). This paper reviews the

drawbacks of each model, and discusses some possible changes to deal with the con-

sequences.

The next section describes some behaviors violate transitivity. Section 3 reviews

some models explaining behaviors violating transitivity, and discusses the conse-

quences and possible extensions. The last section concludes.

1.2 Behaviors Violate Transitivity

Fishburn and Lavalle [13] summarized that the violations of transitivity are often

related to preference comparisons based on multi-dimensional features of the alterna-

tives under consideration. This section reviews several examples which violate tran-

sitivity, including preference reversals, die example, marriage partners, social choice,

and coffee and sugar.

For decision under risk, preference reversals involve two features: monetary out-

comes and probabilities; die example involves monetary outcomes and states. For

decision under certainty, marriage partner example considers three attributes, and

social choice example considers n individuals. I will focus on the four kinds of be-

haviors. But here I still introduce the last example, coffee and sugar, which violates

the transitivity of indifference. It is different from the previous four examples and is

caused by unnoticeable difference (see Gilboa and Lapson [14]).

1



1.2.1 Preference Reversals

Preference reversal is a special case of the violations of transitivity (see Tversky

[40], Lichtenstein and Slovic [21], Grether and Plott [15], Bell [2], etc.).

Consider two lotteries L1 and L2. L1 has a higher payoff but lower probability

to win while L2 has a higher probability of winning but lower payoff. Preference

reversal phenomenon normally describes that the certainty equivalent of L1 is higher

than the certainty equivalent of lottery L2, however, in a direct comparison of the

lotteries, L2 is preferred. In other words, one individual prefers a lottery L2 to L1,

but the individual, in possession of one or the other, would sell L2 for less. When

this happens, let CE(L1) and CE(L2) be the certainty equivalent of L1 and L2, we

can get a preference cycle

L2 � L1 ∼ (CE(L1), 1) � (CE(L2), 1) ∼ L2

Therefore, it shows a violation of transitivity. Here is a specific example provided

by Fishburn and Lavalle [13]. L1 = (10, 000, 0.3; 0, 0.7), L2 = (3, 000, 0.9; 0, 0.1). An

individual may prefer L2 to L1 because L2 has a good chance for a nice outcome.

However, this individual may not be willing to sell L1 for less than say $2800 because

of the potential to get a high outcome while at the same time being willing to sell L2

for $2600.

Experimental results of preference reversal phenomenon was reported by Licht-

enstein and Slovic [21] and further studied by Grether and Plott [15]. According to

Grether and Plott [15], after controlling all the economic-theoretic explanations of

the phenomenon which they could find, the preference reversal phenomenon which is

inconsistent with the traditional statement of preference theory remains.

1.2.2 Die Example

Consider two lotteries L1 and L2. Assume that the states are determined by a fair

die. The number of the die and the payoffs are shown in Table 1.1. As the probability

for each state is 1/6, the two lotteries should be indifferent by expected utility theory.

However, people may prefer L1 to L2 as L1 pays $100 more than L2 for five of the six

states.

Some papers, e.g., Tversky [41], Loomes and Sugden [24], Bell [2] discussed such

preferences by considering regret or elation. They argue that it is reasonable for

people to think L1 and L2 are not indifferent, e.g., L1 � L2. For the same reason,

they will think L1 � L2 � L3 � L4 � L5 � L6 � L1, which violates transitivity.

2



Table 1.1: Lotteries

1 2 3 4 5 6
L1 $100 $200 $300 $400 $500 $600
L2 $600 $100 $200 $300 $400 $500
L3 $500 $600 $100 $200 $300 $400
L4 $400 $500 $600 $100 $200 $300
L5 $300 $400 $500 $600 $100 $200
L6 $200 $300 $400 $500 $600 $100

1.2.3 Marriage Partners

When people evaluate their choices by pairwise comparing more than two at-

tributes, preference cycles are easily observed. I replicated the experiment mentioned

in May [28] and included five questions:

1. You are making comparisons among hypothetical marriage partners charac-

terized by three attributes. Please select all the attributes you care about:

intelligence, looks, and wealth.

2. x is very intelligent, plain-looking, and well off; y is intelligent, very good look-

ing, and poor. Which one do you prefer?

3. x is intelligent, very good looking, and poor; y is fairly intelligent, good looking,

and rich. Which one do you prefer?

4. x is very intelligent, plain-looking, and well off; y is fairly intelligent, good

looking, and rich. Which one do you prefer?

5. x is very intelligent, plain-looking, and well off; y is intelligent, very good look-

ing, and poor; z is fairly intelligent, good looking, and rich. Which one do you

prefer?

6 out of 40 participants show intransitive cycles. Only 3 of them claim that they

care about all the three attributes. The interesting thing is that all of the six students

can make decisions for question 5. Meanwhile, 4 out of 40 students do not have an

answer for question 5 although they did not show intransitive cycles. Additionally,

when we compare the best choice implied by questions 2, 3, and 4 to the choice in

question 5, 16 out of 40 students show contradictions.

This replicated experiment shows that people occasionally violate transitivity

when they evaluate their outcomes in multiple dimensions.

3



1.2.4 Social Choice

Consider a social planner does pairwise comparisons among three social policies:

A, B, and C. The social planner collects people’s opinions about each pair and follows

majority rule. Suppose there are three individuals {1, 2, 3} in the society, they have

the following preferences:

A �1 B �1 C

B �2 C �2 A

C �3 A �3 B

When the social planner compares policies A to B, individuals 1 and 3 thinks

A � B, by majority rule, the social planner also thinks A � B. Similarly, by majority

rule, the social planner gets B � C and C � A. Therefore, the social preference with

pairwise comparisons and majority rule violates transitivity.

Consider a more specific example. Here is a current income distribution X, and

two public policies A and B. If policy A is implemented, the new income distribution

will be Y . If policy B, the income distribution will be Z. The social planner needs to

decide whether to launch policy A or B or do nothing, which is essentially comparing

income distributions X, Y , and Z.

Suppose that there are 3 individuals {I1, I2, I3} in the society. Traditionally, we

evaluate a policy independently by its outcome. People’s identities or feelings are

often ignored. For example, we may consider the following three income distributions

as the same.

Table 1.2: Income Distributions

I1 I2 I3

X 1 2 3
Y 2 3 1
Z 3 1 2

However, this is not intuitive. As distribution Y improves two persons’ allocations

relative to X, Y could be preferred to X. Similarly, a social planner may think X is

preferred to Z and Z is preferred to Y , which forms a preference cycle.

1.2.5 Coffee and Sugar

Suppose a person prefers more sugar in his coffee, but cannot taste the difference

of less than 2 tablespoons sugar. That says, this person thinks a cup of coffee with

4



1 tablespoon sugar and a cup of coffee with 2 tablespoons sugar are indifferent.

Similarly, a cup of coffee with 2 tablespoons sugar and with 3 tablespoons sugar are

also indifferent. However, a cup of coffee with 3 tablespoons sugar is preferred to the

coffee with 1 tablespoon sugar. This example is a violation of indifference preference

relations. The reason is that people sometimes cannot notice small differences but

can identify accumulated small differences.

To explain this kind of behaviors, we can use semi-order (see Gilboa and Lapson

[14], a binary relation P for which there is a utility U representing it in the sense that

xPy iff U(x)−U(y) > 1. I will focus on the previous four kinds of behaviors and not

discuss this category of behaviors in the following sections.

1.3 Models

To explain the behaviors violating transitivity, we need to use reference-dependent

models. For example, prospect theory and regret theory can be used to explain pref-

erence reversals. For the die example and marriage partners, regret theory provides

explanations. Redistribution regret was proposed to explain the violations of transi-

tivity regarding social choice.

1.3.1 Prospect Theory

Prospect theory proposed by Kahneman and Tversky [18] is a decision theory

under risk. It says that people have two phases in the choice process: editing and

evaluation. Editing mainly includes coding, which locates the reference point and

codes the outcome as gains or losses. Evaluation computes a value and chooses a

higher value.

The overall value of an edited prospect, denoted V , is expressed in terms of two

scales, weight function π and value function v. π is an increasing function of p, with

π(0) = 0, π(1) = 1, and π(p) + π(1 − p) is typically less than unity. v measures

the value of deviations from the reference point, i.e., gains and losses. It is normally

concave above the reference point and often convex below it. Additionally, the value

function for losses is steeper than the value function for gains.

The formula that Kahneman and Tversky assume for the evaluation phase is

V =
n∑
i=1

π(pi)v(xi)

This model can explain preference reversals. Take lotteries L1 = (10, 000, 0.3; 0, 0.7)

5



and L2 = (3, 000, 0.9; 0, 0.1) for example. Suppose people’s initial endowment is 0. If

the individual buys L1 and L2, the prices are pb1 and pb2. If the individual sells L1 and

L2, the prices are ps1 and ps2. We have

v(10, 000− pb1)π(0.3) + v(−pb1)π(0.7) = 0 (1.1)

v(3, 000− pb2)π(0.9) + v(−pb2)π(0.1) = 0 (1.2)

v(ps1 − 10, 000)π(0.3) + v(ps1)π(0.7) = 0 (1.3)

v(ps2 − 3, 000)π(0.9) + v(ps2)π(0.1) = 0 (1.4)

As v(·) is asymmetric, by equations (1.1) and (1.3), pb1 6= ps1. Similarly, by equa-

tions (1.2) and (1.4), pb2 6= ps2. It is possible to have pb1 < pb2 and ps1 > ps2 according to

the assumptions.

However, prospect theory has some problems. First, its discussion relies on a

reference point, but this model did not specify what the reference point is. Second,

there are too many assumptions about the weight function and value function, which

arises problems. For example, if the weight function is continuous, it implies a linear

weight function (see Fishburn [12]).

1.3.2 Regret Theory

Regret theory was independently proposed by Bell [2] and by Loomes and Sugden

[24]. It suggests that the utility from an outcome of a random variable depends not

only on the outcome itself but also on the outcome that could have been obtained

had the decision-maker chosen another random variable.

Let ψ(x, y) measure the regret or elation a person feels when observing that he

received x while the alternative choice would have yielded him y. This function

satisfies skew symmetric ψ(x, y) = −ψ(y, x), monotonocity ∂ψ(x,y)
∂x

> 0 and ∂ψ(x,y)
∂y

< 0,

and regret aversion ψ(x, z) > ψ(x, y) + ψ(y, z) for x > y > z. For two lotteries

X = (x1, s1; ...;xn, sn) and Y = (y1, s1; ...; yn, sn), regret theory suggests that

X % Y ⇐⇒
∑

Pr(si)ψ(xi, yi) > 0

Regret theory was initially developed to explain preference reversals (see Licht-

enstein and Slovic [21], Lindman [22], Grether and Plott [15]). The idea can also be

used to explain die example, marriage partners, and social choice. I will discuss social

choice further in the next section.
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Recently, regret theory has been modified for use in other situations1 or revised to

a new model. For example, Bikhchandani and Segal [4] introduce distribution regret,

where each outcome is compared to the entire alternative distribution instead of a

single outcome under the same state.

As regret theory naturally predicts violations of transitivity (see Bikhchandani

and Segal [3]), it generally cannot provide a best choice when there are more than

two choices. But some extensions of standard regret theory can.

For example, Bell [2] mentioned that given an original status quo, for each alter-

native, we can get a level of regret and make decisions by comparing these levels. This

modification leads to transitivity. Later Buturak and Evren [9] focus on a situation

with more options than can be considered and proposes asymmetric regret, which

assumes that decision-makers do not consider the possible regret for choosing the

default option but consider the regret for choosing some other options. The default

option can be treated as a fixed reference point, therefore, asymmetric regret satisfies

transitivity by implementing the idea.

Alternatively, some other papers (see Luce and Raiffa [26]) suggest to compare one

outcome to the best of the others and use minimax regret to make decisions among

multiple choices. For instance, Sarver [34] proposes anticipating regret, which studies

preferences over menus. This model assumes that a decision-maker feels regret as the

realized outcome is compared to the best alternative outcome in a given menu. The

best outcome is defined as a fixed reference point, therefore, anticipating regret also

satisfies transitivity.

Additionally, Loomes and Sudgen [24] assigns action weights to each action in the

choice set S. For each action i, define the aggregate modefied utility as

ES
i =

∑
k∈S

aSk
1− aSi

Ek
i (k 6= i)

where Ek
i represents the expected modified utility of choosing action Ai in a situation

where the only alternative is action Ak. The individual’s decision rule, as in the case

of pairwise choice, would be to maximize expected modified utility. Hence, this model

admits transitive preference orders.

1Further studies can be found in Loomes and Sugden [25], Sugden [39], Quiggin [33], Starmer and
Sugden [35], Hayashi [16], Bleichrod, Cillo and Diecidue [5], Stoye [38], Diecidue and Somasundaram
[10], Levy [20]. And other extensions can be found in Braun and Munermann [8], Muermann,
Mitchell and Volkman [32], Filiz-Ozba and Ozbay [11], Michenaud and Solnik [29], Maccheron,
Marinacci and Rustichini [27], Bleichrodt and Wakker [6].
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1.3.3 Redistribution Regret and Ranking Regret

Redistribution regret is designed to compare resource allocations, which involve

individuals and one social planner. Although redistribution regret and regret theory

are similar in the key assumption, they have significant differences. First, “regret”

in redistribution regret is produced by individuals and aggregated by a social plan-

ner, who is the decision maker. Second, redistribution regret assumes that different

individuals can have different regret functions, which is the case that the agent has

different regret functions under different states in regret theory.

Suppose there are n ≥ 2 individuals in the society, and two allocations x =

(x1, ..., xn), y = (y1, ..., yn). Each individual uses his individual regret function

ψi(xi, yi) to measure regret (or elation) if she gets xi instead of yi. This non-

linear individual regret function satisfies skew symmetric, which says that ψi(xi, yi) =

−ψi(yi, xi) and ψi(xi, xi) = 0; monotonicity, ∂ψi(xi,yi)
∂xi

> 0 and ∂ψi(xi,yi)
∂yi

< 0; normaliza-

tion, ψi(m, 0) = 1 for any i, where m > 0 is a fixed number of resource; non-linearity,

for some xi > yi > zi ≥ 0, ψi(xi, yi) + ψi(yi, zi) 6= ψi(xi, zi).

The social planner uses a social regret function

W (x, y) = V (ψ1(x1, y1), ..., ψn(xn, yn))

to aggregate individual regrets, and decide which allocation is better.

Redistribution regret is saying that

x % y ⇔ W (x, y) = V (ψ1(x1, y1), ..., ψn(xn, yn)) ≥ 0

Zhou [43] shows that the preference orders are almost never transitive except

one case where the resources are fixed and one individual out of three is extremely

sensitive.

When we only consider people’s rank in the framework of redistribution regret —

ranking regret (see Zhou [44]), the property of transitivity changes. Like redistribution

regret, ranking regret too can lead to preference cycles, where the social planner may

find out that there is a positive aggregate satisfaction when ranking X is replaced

with Y , positive aggregate satisfaction when Y is replaced by Z, and again a positive

aggregation of satisfaction when Z is replaced with X. However, since different

individuals have different sensitivity functions, the social planner may find a socially

optimal ranking. Although the social preference order may not be transitive, this

ranking may nonetheless be optimal, if it is not involved in any preference cycle. For
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example, preferences over {X, Y, Z} may form a non-transitive cycle, yet X∗, which

orders individuals by their sensitivities, may be better than all of them.

Zhou [44] outlines conditions under which X∗ is best, even if these conditions do

not eliminate violations of transitivity. Once the best ranking is chosen, the social

planner will not have any incentive to switch to another ranking. Regarding the

case where X∗ is not best, Zhou [44] proposes group ranking to find a second-best

choice where the social planner can always achieve his goal by constructing groups

appropriately and applying the natural ordering at the group level.

To sum up, when we apply the idea of regret theory to social choice, the violations

of transitivity is essentially the same, but slightly mitigated because different indi-

viduals can have different regret functions. The real difference is that best choice and

non-transitivity can exist at the same time, which makes transitivity less necessary

to guarantee a best choice.

1.3.4 Salience Theory

Salience theory is proposed by Bordalo, Gennaioli, and Shleifer [7]. It shares the

same assumption of pairwise comparisons with regret theory. But salience theory has

different psychological motivations. It assumes that the decision maker’s attention is

drawn to salient payoffs, and the true probabilities are replaced by decision weights

distorted in favor of salient payoffs. In other words, the decision maker overweights

the salient attribute, which is the dimension in which the option is most different

relative to alternatives of choice or expectations.

Consider two lotteries, L1 and L2. For each state s ∈ S, the probability πs is

known and satisfies
∑

s∈S πs = 1. The monetary payoffs in each state s is xis, where

i = 1, 2. Let x−is be the payoff in s of lottery Lj where j 6= i.

Based on the payoffs, salience theory defines a salience function σ(xis, x
−i
s ) to

transform the object probability when they evaluate the lotteries. This function

satisfies ordering σ(xis, x
−i
s ) > σ(xis

′, x−is
′) if [min(xis

′, x−is
′),max(xis

′, x−is
′)] is a subset

of [min(xis, x
−i
s ),max(xis, x

−i
s )], diminishing sensitivity σ(xis + ε, x−is + ε) < σ(xis, x

−i
s )

if xis, x
−i
s , ε > 0.

According to Herweg and Muller [17], we can write salience theory as the following:

L1 � L2 ⇐⇒
∑
s∈S

f(σ(x1
s, x

2
s))[v(x1

s)− v(x2
s)] ≥ 0

Mathematically, this function form is less general than the standard regret theory

as we can consider ψ(x, y) = f(σ(x, y))[v(x)−v(y)] as a special case of regret function.
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Salience theory can be used to explain preference reversals. It also violates tran-

sitivity if we directly apply the pairwise comparisons to many lotteries. To fix this

problem, in the online appendix of Bordalo, Gennaioli, and Shleifer [7], they define

a new salience function σ(xis, f(x−is )), where f(x−is ) is an average of the payoffs of all

the other lotteries under s state.

1.4 Conclusions

People violate transitivity occasionally, especially when they evaluate their out-

comes in multiple dimensions. So it is necessary to consider models implementing

these intuitions. Most of the models are based on reference dependent preferences.

As these models may violate transitivity, the decision maker may not be able to find

a best choice. Some papers solve this problem by fixing the reference point or con-

sidering all possible alternatives, and some papers find a way to accommodate both

non-transitivity and best choice.

10



2 Chapter 2: Redistribution Regret and Transi-

tivity

2.1 Introduction

Consider a current income distribution X, and two public policies A and B. If

policy A is implemented, the new income distribution will be Y . If policy B, the

income distribution will be Z. The social planner needs to decide whether to launch

policy A or B or do nothing, which is essentially comparing income distributions X,

Y , and Z.

Suppose that there are three individuals {I1, I2, I3} in the society. Traditionally,

we evaluate a policy independently by its outcome. People’s identities or feelings are

often ignored. For example, we may consider the following three income distributions

as the same.

Table 2.1: Income Distributions

I1 I2 I3

X 1 2 3
Y 2 3 1
Z 3 1 2

However, this is not intuitive. As distribution Y improves two persons’ allocations

relative to X, Y could be preferred to X. Similarly, a social planner may think X is

preferred to Z and Z is preferred to Y , which forms a preference cycle.

If the social planner maximizes a social welfare function which assumes hetero-

geneous individuals, then it can explain why the three distributions are different.

However, it cannot explain why there exists a preference cycle.

To accommodate the two intuitions, this paper proposes redistribution regret to

model the social planner’s preferences over distributions of resources. It assumes that

the social planner cares about people’s feelings which depend both on the current

allocation and on the alternative allocation they might have got had the social planner

chosen differently. Additionally, the social planner admits that people are different.

Redistribution regret is an extension and application of regret theory, indepen-

dently proposed by Bell [2] and by Loomes and Sugden[24]. It suggests that the utility

from an outcome depends not only on the outcome itself but also on the outcome

that could have been obtained had the decision maker chosen differently. Let ψ(x, y)

measure the regret or elation a person feels when observing that he won x while the
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alternative choice would give him y. It satisfies skew symmetric in the sense that

ψ(x, y) = −ψ(y, x) and monotonicity in the sense that ∂ψ(x,y)
∂x

> 0 and ∂ψ(x,y)
∂y

< 0.

It may also satisfy regret aversion: ψ(x, y) + ψ(y, z) < ψ(x, z) for every x > y > z.

For X = (x1, s1; ...;xn, sn) and Y = (y1, s1; ...; yn, sn) with the same set of states

(s1, ..., sn), regret theory suggests that

X % Y ⇐⇒
∑

piψ(xi, yi) ≥ 0

As regret theory was developed to explain preference reversals, naturally, it pre-

dicts violations of transitivity, see Bikhchandani and Segal [3]. Formally, if the order

x % y ⇔
∑

piψ(xi, yi) ≥ 0

is transitive, then

ψ(x, y) = u(x)− u(y)

which is just expected utility.

Although redistribution regret and regret theory are similar in the key assumption,

they have significant differences. First, “regret” in redistribution regret is produced

by individuals and aggregated by a social planner, who is the decision maker. Second,

redistribution regret assumes that different individuals can have different regret func-

tions, which is the case that the agent has different regret functions under different

states in regret theory.

Most decision theories assume transitivity to guarantee an optimized decision.

Due to pairwise comparisons, redistribution regret may predict a violation of tran-

sitivity as regret theory. However, as different individuals can have different regret

functions, redistribution regret may also be different. This paper studies the property

of transitivity of redistribution regret.

The results show that redistribution regret is generally non-transitive. However,

there are some exceptions. First, when the total resource is fixed, if there is one

very sensitive or insensitive person with the others following expected utility, then

the social planner’s preference order is transitive. Second, when there are only two

persons in the society, and they have the same special individual regret function, then

no matter whether the total resource is fixed or not, the preference order could be

transitive.

The next section offers preliminary definitions. Section 3 and 4 propose theorems.

And the last section concludes.
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2.2 Preliminaries

Suppose there are n ≥ 2 individuals in the society. Each individual uses his individual

regret function ψ(x, y) to measure regret (or elation) if he gets x instead of y. Here

I define non-linear individual regret function.

Definition 2.1 The non-linear individual regret function ψ(x, y) satisfies:

1. Skew symmetric: ψ(x, y) = −ψ(y, x); it also implies that ψ(x, x) = 0.

2. Monotonicity: ∂ψ(x,y)
∂x

> 0 and ∂ψ(x,y)
∂y

< 0.

3. Normalization: ψ(m, 0) = 1 , where m > 0 is a fixed number of resource.

4. Non-linearity: for some x > y > z ≥ 0, ψ(x, y) + ψ(y, z) 6= ψ(x, z).

Skew symmetry says that for x > y, the elation one feels from getting x instead

of y is quantitatively the same as the regret one feels from getting y instead of x.

Monotonicity suggests that elation increases as one’s outcome improves, and regret

increases with an improvement in the alternative option that was not received. Nor-

malization allows interpersonal comparisons of people’s regret or elation. Generally,

when we talk about redistribution regret, it refers to non-linear individual regret func-

tions. This condition is more general than “regret aversion”. If an individual regret

function ψ(x, y) does not satisfy non-linearity, then it is called linear individual regret

function, which is basically expected utility theory.

Consider two distributions of resources X = (x1, ..., xn) and Y = (y1, ..., yn). The

social planner decides which distribution is preferred by using a social regret function

W (X, Y ) = V (ψ1(x1, y1), ..., ψn(xn, yn))

to aggregate individual regrets. This paper assumes that the social regret function is

additive, where

V (ψ1(x1, y1), ..., ψn(xn, yn)) =
n∑
i=1

ψi(xi, yi)

Redistribution regret is saying that

X % Y ⇔ W (X, Y ) = V (ψ1(x1, y1), ..., ψn(xn, yn)) ≥ 0

Definition 2.2 Preferences over distributions of resources are transitive if whenever

X % Y and Y % Z, then X % Z.
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To discuss the transitivity of redistribution regret, I consider two factors. First,

whether the total resource is fixed or not. Second, how many persons in the society.

On the basis of the first factor, the next section considers a fixed budget, and section 4

considers a variable budget. In each section, I discuss different numbers of individuals.

2.3 Fixed Budget

This section assumes that the total resource is fixed as m = 1, and individuals’

regret functions are normalized by assuming ψi(1, 0) = 1 for each person i.

When the budget is fixed, it is possible to find transitive preference orders. Propo-

sition 2.1 and Proposition 2.2 provide two particular cases.

Proposition 2.1 Suppose m = 1 and ψi(x, y) = x − y for i > 1. If the non-linear

regret function ψ1(x, y) satisfies

∂

(
ψ1(x, y)

x− y

)
/∂x > 0 & ∂

(
ψ1(x, y)

x− y

)
/∂y > 0

or

∂

(
ψ1(x, y)

x− y

)
/∂x < 0 & ∂

(
ψ1(x, y)

x− y

)
/∂y < 0

for x 6= y. Then the preference order

(x1, ..., xn) % (y1, ..., yn)⇐⇒
∑

ψi(xi, yi) ≥ 0

is transitive.

Proposition 2.1 says that if the resource is limited and there is only one person who

is very sensitive or insensitive to the differences between his outcomes, then the social

planner’s preference order is the same or opposite to this person’s preference order,

therefore, it is transitive. The proposition provides a special case where the social

planner only needs to consider a special person’s preference. This person has to be

very sensitive or insensitive, while the others have to follow expected utility theory,

which is an extreme case. However, if the social planner does not have complete

information and there is such a person or group, then it could be simple and reasonable

for the social planner to follow this strategy to make decisions.

Here is an example satisfying the condition mentioned in Proposition 2.1. This

function form implies that there is a very insensitive person in the society, so the

social preference order is opposite to this insensitive person’s preference order.

14



Example 2.1 Let total resource m = 1, ψ1(x, y) = (x + y − αxy)(x − y), where

0 < α < 1, and ψi(x, y) = x− y for i > 1, then the order

(x1, ..., xn) % (y1, ..., yn)⇐⇒
∑

ψi(xi, yi) ≥ 0

is transitive. �

On the basis of Proposition 2.1, Proposition 2.2 provides another transitive case,

where there are only two persons in the society, and they have the same non-linear

individual regret function as in Proposition 2.1.

Proposition 2.2 Suppose the total resource m = 1 and the population n = 2. If

the two individuals have the same non-linear individual regret function ψ1(x, y) =

ψ2(x, y) = ψ(x, y), which satisfies the same condition in Proposition 2.1, then the

order

(x1, x2) % (y1, y2)⇐⇒
2∑
i=1

ψi(xi, yi) ≥ 0

is transitive.

Proposition 2.1 and Proposition 2.2 provide two transitive cases but with strict

conditions. We can expect that these conditions are very delicate as they require strict

form of each person’s individual regret function, and also the number of persons who

have non-linear regret functions. Proposition 2.3 show that if there are more than

three persons in the society, and more than two persons have non-linear individual

regret functions, the preference order is not transitive.

Proposition 2.3 Given n ≥ 3, if at least three persons have the same non-linear

regret function, then the order

(x1, ..., xn) % (y1, ..., yn)⇐⇒
∑

ψi(xi, yi) ≥ 0

is NOT transitive.

The intuition is that if we shuffle the three persons’ outcomes as (x1, x2, x3),

(x2, x3, x1), and (x3, x1, x2), while keeping the other persons’ outcomes the same,

then the three distributions form a non-transitive preference cycle.

Recall that regret theory naturally predicts violations of transitivity even when

the expected values of all lotteries are the same. But Proposition 2.1 and Proposition

2.2 show that redistribution regret can be transitive when the total resources of all the
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distributions are the same. Therefore, redistribution regret shows different property

of transitivity. Meanwhile, the proof in the appendixes imply that the differences are

caused by allowing different people have different individual regret functions.

2.4 Variable Budget

Instead of fixed budget, when the total resource is variable, redistribution regret

has different properties of transitivity. This section assumes that the total resource

m is variable. And normalizes individual regret functions by ψi(1, 0) = 1 for each

person i. Additionally, let limxi→∞ψi(xi, yi) =∞ and limyi→∞ψi(xi, yi) = −∞.

Under these settings, redistribution regret is generally not transitive. Formally,

we have Theorem 2.1.

Theorem 2.1 Suppose the total resource is variable and the population n ≥ 3. Each

person has a general regret function ψi(x, y) where i = 1, ..., n. If the order

(x1, ..., xn) � (y1, ..., yn)⇐⇒
n∑
i=1

ψi(xi, yi) ≥ 0

is transitive, then for all i = 1, ..., n,

ψi(x, y) = ui(x)− ui(y)

which is expected utility.

The proof includes two parts. First, I show that to guarantee transitivity, either

everyone follows expected utility theory, or everyone has a non-linear individual regret

function. Because if at least one person follows expected utility theory, and the others

have non-linear individual regret functions, then it has to violate transitivity. Second,

if everyone has a non-linear individual regret function, then I show that we can always

find three persons or two persons to form a non-transitive cycle.

Theorem 2.1 says that redistribution regret is generally not transitive when the

budget is variable. Example 2.2 shows that whether the budget is fixed or not matters

for transitivity. When mx = my = mz = 1, this example is transitive, while it is non-

transitive when mx 6= my 6= mz.

Example 2.2 Let ψ1(x, y) = (x + y − 0.5xy)(x − y), ψ2(x, y) = ψ3(x, y) = x − y.

Consider the two different situations.
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First, when the budget is fixed, by Proposition 2.1, the social planner’s preference

order is transitive when mx = my = mz = 1.

Second, when the budget is variable, let (mx,my,mz) = (0.876, 0.947, 1). Consider

(x1, y1, z1) = (0.1, 0.2, 0.3), then we have

W (Y,X) = (0.947− 0.876) + (0.3− 0.01− 1)× 0.1 = 0

W (Z, Y ) = (1− 0.947) + (0.5− 0.03− 1)× 0.1 = 0

W (X,Z) = (0.876− 1) + (0.4− 0.015− 1)× (−0.2) = −0.001

Therefore, X ∼ Y , Y ∼ Z but Z � X, which is not transitive. �

Although variable budget generally predicts non-transitivity, when there are only

two persons in the society, the results could change, as is shown in Example 2.3.

Example 2.3 Suppose the total resource is variable and the population n = 2. If

ψ1(x, y) = ψ2(x, y) = (x− y)3, then the order

(x1, x2) % (y1, y2)⇐⇒
∑

ψi(xi, yi) ≥ 0

is transitive. �

2.5 Conclusions

Redistribution regret compares distributions of resources by applying the idea of

regret theory, which assumes that people feel regret or elation when they get one

outcome instead of an alternative outcome they might have got had the social plan-

ner chosen differently. Additionally, redistribution regret assumes that people have

different regret functions, which is different from the homogeneous regret function

assumption in regret theory. Due to the different assumptions, regret theory predicts

a violation of transitivity in general while redistribution regret tells a different story.

It shows that if the budget is variable and there are more than three persons, then

despite the extra flexibility derived from the fact that different people have different

regret functions, redistribution regret is still impossible to be transitive. However,

If the budget is fixed, and there exists only one very sensitive or insensitive person,

then the social planner could follow this person’s preference order and redistribution

regret is transitive. Additionally, if there are only two homogenous persons in the

society, it could also be transitive.
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To sum up, redistribution regret provides a modified regret theory which could

be transitive, to study a social choice problem. Therefore, it is possible for the social

planner to find a best choice and make decisions under those circumstances.
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3 Chapter 3: Ranking Regret

3.1 Introduction

A social planner wants to rank individuals. Examples are assigning seats to fans

at sporting events, where the rank is seat quality, or assigning a boarding order to

airplane passengers. In order to improve passengers’ experience, some airlines in

the U.S. switched in recent years from boarding according to passenger’s assigned

seats to group boarding. For example, handicapped passengers, families with infants,

etc., may be granted the option to preboard. Suppose an agency knows subjects’

preferences over their rank and is trying to generate a queuing process. Moreover,

the agency only cares about subjects’ feelings, which depend on both their current

positions in the queue and the positions they would have been given under an alter-

native procedure. This paper investigates conditions under which giving priority to

individuals according to their sensitivity to the changes in their positions is optimal.

If the agency maximizes a social welfare function based on direct utilities indi-

viduals receive from their rank, for example, a weighted sum of such utilities, then a

best ranking always exists. However, individuals do not consider only their current

positions. They may feel satisfaction or dissatisfaction by comparing their present

rank to the alternative rank they might have got had the agency used a different

procedure. For example, consider an airline’s choice of whether to allow passengers

with infants the option of preboarding. While these passengers will appreciate the op-

tion, they may feel acute dissatisfaction if they are not offered preboarding precisely

because it is an accommodation offered by other airlines. Meanwhile, some other

passengers may feel moderate dissatisfaction if their positions become worse due to

this preboarding policy. Note that the levels of dissatisfaction of different passengers

may be different. In such a case, airlines need to do pairwise comparisons of waiting

lines. But there is a serious problem here. Such a process could lead to preference

cycles. Therefore, the mentioned boarding procedure may not be the best and there

may not necessarily exist a best design for a queue to eliminate aggregate feelings of

dissatisfaction.

Consider a social planner who needs to rank individuals. This planner cares about

people’s feelings and has complete information about them. Assume that individuals

know the social planner’s choice set and that they are either satisfied or dissatisfied

with his choice, where their feelings depend not only on the rank they get but also on

the rank they might have got had the social planner used a different queue-generating

process. People’s feelings are subjective and as in the above example, may vary from
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one person to another. The social planner has preferences over rankings based on

an aggregation of people’s feelings of satisfaction and dissatisfaction. Formally, given

two rankings X and Y , we say that Y is socially preferred to X if the aggregation

of people’s feelings of satisfaction is positive when we switch from X to Y . For

simplicity, assume that individuals care only about their rank and differ only in their

degree of sensitivity. Given a sequence of sensitivities, a natural ranking would be to

have the most sensitive person first, proceeding along with the sensitivity levels to

the least sensitive one. Denote this ranking X∗. This paper investigates conditions

under which X∗ is a best way to rank individuals.

The proposed “ranking regret” of this paper is an extension and application of

regret theory, independently proposed by Bell [2] and by Loomes and Sugden [24]. It

suggests that the utility from an outcome of a random variable depends not only on

the outcome itself but also on the outcome that could have been obtained had the

decision-maker chosen another random variable. Let ψ(x, y) measure the regret or

elation a person feels when observing that he received x while the alternative choice

would have yielded him y. For two random variables X = (x1, s1; ...;xn, sn) and

Y = (y1, s1; ...; yn, sn), regret theory suggests that

X % Y ⇐⇒
∑

Pr(si)ψ(xi, yi) > 0

Regret theory was initially developed to explain preference reversals (see Licht-

enstein and Slovic [21], Lindman [22], Grether and Plott [15]). Recently, it has been

modified for use in other situations.2

There are several differences between ranking regret and traditional regret theory.

Ranking regret replaces “states of nature” with “individuals.” In ranking regret,

“regret” is felt by individuals but is aggregated by a social planner, who is the decision-

maker, while in standard regret theory, regret is felt and aggregated by the same

agent. Ranking regret assumes that different individuals can have different regret

functions ψi(xi, yi), while in standard regret theory the same regret function is used

for all states. Another technical difference is that the domain of ranking regret is

over a finite number of individuals, while the domain in regret theory is a non-finite

σ-algebra of events.

2Further studies can be found in Loomes and Sugden [25], Sugden [39], Quiggin [33], Starmer and
Sugden [35], Hayashi [16], Bleichrod, Cillo and Diecidue [5], Stoye [38], Diecidue and Somasundaram
[10], Levy [20]. Other extensions can be found in Braun and Munermann [8], Muermann, Mitchell
and Volkman [32], Filiz-Ozba and Ozbay [11], Michenaud and Solnik [29], Maccheron, Marinacci
and Rustichini [27], Sarver [34], Bikhchandani and Segal [4], Buturak and Evren [9], and Bleichrodt
and Wakker [6].
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Most decision theories assume transitivity, as it guarantees a best choice in com-

pact sets. But regret theory predicts violations of transitivity (see Bell [2], Loomes

and Sugden [24], see also Bikhchandani and Segal [3]). To find a best choice in a

general choice set, Loomes and Sugden [25], Sugden [39], and Quiggin [33] suggest

assuming transitivity in each feasible set, which changes the basic assumption of

pairwise comparisons. This may be necessary for regret theory, but as I show in this

paper, ranking regret may accommodate a best choice without such an assumption.

Like standard regret theory, ranking regret too can lead to preference cycles, where

the social planner may find out that there is a positive aggregate satisfaction when

ranking X is replaced with Y , positive aggregate satisfaction when Y is replaced

by Z, and again a positive aggregation of satisfaction when Z is replaced with X.

However, since different individuals have different sensitivity functions, the social

planner may find a socially optimal ranking. Although the social preference order

may not be transitive, this ranking may nonetheless be optimal, if it is not involved

in any preference cycle. For example, preferences over {X, Y, Z} may form a non-

transitive cycle, yet X∗, which orders individuals by their sensitivities, may be better

than all of them. This paper outlines conditions under which X∗ is best, even if these

conditions do not eliminate violations of transitivity. Once the best ranking is chosen,

the social planner will not have any incentive to switch to another ranking.

This paper provides an algorithm for telling whether X∗ is the best ranking or not.

If people have sufficiently different levels of sensitivities to changes in their positions

from one possible ranking to another, then X∗ is best; otherwise, it is not. The paper

analyzes the optimality of X∗ when the number of people in the relevant group grows.

The larger the number, the lower are the levels of critical values of sensitivities are

needed for X∗ to be optimal. Moreover, as the number of individuals grows, the

critical values of all individuals converge to the same limit.

Regarding the case where X∗ is not best, this paper proposes group ranking to

find a second-best choice. In this part, I relax the goal of eliminating aggregate

dissatisfaction and let the social planner ignore “small dissatisfaction” people feel

relative to others within a group of similarly sensitive individuals. Then the social

planner can always achieve his goal by constructing groups appropriately and applying

the natural ordering at the group level. Given a sequence of sensitivities and a

structure that tells the number of individuals in each group, I provide an algorithm

for telling whether the natural ordering under the structure is a best group-ranking.

If so, when people are more homogeneous, the intuition is that the maximum number

of groups among such structures is smaller. This paper takes airlines boarding queue
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as an example and shows that the intuition agrees with the empirical evidence.

The next section offers preliminary definitions. Section 3 proposes theorems about

the best ranking. Section 4 discusses the second-best choice — group ranking. Section

5 takes boarding queue as an example to illustrate the intuition behind group ranking.

Section 6 discusses several further topics. And the last section concludes.

3.2 Preliminaries

Let N = {1, . . . , n} be a group of n individuals who need to be ranked. Each of these

individuals has preferences for a higher rank, but the intensities of these preferences

may differ both among individuals and over specific rank.

An individual’s absolute rank is an integer number Ai between 1 and n, where a

smaller number indicates a higher (hence better) rank. The absolute ranking is a list

A = (A1, . . . , An), which is a permutation of (1, . . . , n). This setup corresponds to

cases where individuals care only about the number of people in front of them, but

not about the number of people behind them. Examples that are likely to fit this

setup include boarding queues, waiting lines for cashiers or tickets, etc.

Let Ri = Ai/n be the relative rank of person i. The relative rank of the top-ranked

individual is 1
n
, while that of the bottom-ranked person is 1. The relative ranking is

a list R = (R1, . . . , Rn), which is a permutation of ( 1
n
, . . . , 1). This ranking fits cases

when people care about their relative positions in the line, such as where a larger

number of individuals behind them makes people feel better. For example, when it

comes to income distributions, people care about their income, but also about their

relative positions in society. In this paper, I discuss only the ranking but not the

actual income.

Given two rankings X = (x1, . . . , xn) and Y = (y1, . . . , yn), individual i evaluates

his feelings by comparing his current rank xi to the alternative rank yi, using an in-

dividual function ψi(xi, yi). This function measures the satisfaction or dissatisfaction

felt by individual i from receiving xi, knowing that the alternative is yi.

Definition 3.1 The individual functions ψ(x, y) satisfy the following properties.

1. Skew symmetry: ψ(x, y) = −ψ(y, x).

2. Monotonicity: ∂ψ(x,y)
∂x

< 0 and ∂ψ(x,y)
∂y

> 0.

3. Regret aversion: for all 0 < x < y < z, ψ(x, y) + ψ(y, z) 6 ψ(x, z), and for

some 0 < x < y < z, ψ(x, y) + ψ(y, z) < ψ(x, z).
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4. Normalization: ψ(1, n) = 1 for absolute ranks or ψ( 1
n
, 1) = 1 for relative ranks.

Skew symmetry says that for x < y, the satisfaction one feels from getting x in-

stead of y is quantitatively the same as the dissatisfaction one feels from getting y

instead of x. (Recall that a lower value of x indicates a higher ranking). Monotonic-

ity suggests that satisfaction increases as one’s outcome improves, and dissatisfaction

increases with an improvement in the alternative option that was not received. Ac-

cording to regret aversion, individuals do not pay much attention to a small difference

between x and y, while they pay much more attention to a large difference. Normal-

ization allows interpersonal comparisons of people’s regret or elation.

A social planner wants to compare two rankings X and Y . Assume a social

aggregation function of the form

W (X, Y ) = V (ψ1(x1, y1), . . . , ψn(xn, yn))

The social planner prefers X to Y , denoted X % Y , iff:

W (X, Y ) > 0

If the individual regret functions are ψi(xi, yi) = ui(xi)− ui(yi), then W (X, Y ) =∑n
i=1[ui(xi) − ui(yi)] and X % Y iff

∑n
i=1 ui(xi) >

∑n
i=1 ui(yi). In other words, the

utilitarian social welfare function is a special case of our model, where the function

ui is interpreted as the utility person i obtains from the received rank. This utility

does not depend on the alternative rank this person might have reached.

Definition 3.2 Preferences over rankings are transitive if whenever X % Y and

Y % Z, then X % Z.

Definition 3.3 Ranking X∗ is defined as a best choice in the preference relation if

X∗ % Y for all Y 6= X∗.

Kreps [19] shows that transitivity and best choice are two different concepts.

Transitivity implies the existence of a best choice on a finite domain. However, a

best choice may still exist even if there are preference cycles as long as the preference

cycles do not involve the best choice. This paper shows that aggregations of ranking

regret are rarely transitive, but under some conditions, they still admit a best choice.
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3.3 Best Choice

To simplify people’s characteristics and further guarantee the validity of interpersonal

comparisons, consider a set Ψ of non-linear continuous functions of the form ψ =

ψ(x, y, α), uniquely defined by one parameter α, where a smaller value of α indicates

a higher degree of sensitivity: if αi < αj, then for all x < y, ψ(x, y, αi) > ψ(x, y, αj).

In other words, ∂ψ(x, y, αi)/∂αi < 0 for all x < y. The parameter α can be thought

of as a measure of sensitivity, and can be interpreted in two ways.

First, individuals have the same preferences regarding rank, while the social plan-

ner assigns them different “sensitivity levels,” which may depend on some objective,

observable criteria. For example, airlines can observe whether passengers are dis-

abled, traveling with children, or are pregnant. The US government may recognize

that some asylum seekers are in greater danger than others (and should therefore

prioritize their cases). Under this interpretation, the parameter α captures the social

planner’s view of the world.

Alternatively, individuals have different (observable) degrees of sensitivity due to

some explicit and implicit reasons, such as personality, health condition, education,

income, etc. In this case, the source of the social planner’s differential treatment is

the heterogeneity of the relevant population and not his views regarding the different

types.

Regardless of the interpretation, whether α is assigned by the social planner or is

part of the individuals’ characteristics, this paper regards these parameters as given.

Given n > 3 individuals with a sequence of sensitivities 0 < α1 < α2 < . . . < αn,

consider the absolute ranking XA = (1, 2, . . . , n) and the relative ranking XR =

( 1
n
, 2
n
, . . . , 1), giving a smaller number, which is a higher rank, to a more sensitive

individual. I will use X∗ for both XA and XR hereafter, and the related context

applies to both the absolute and the relative definitions.

If the social planner maximizes an aggregation of individuals’ utilities from their

rank, X∗ would intuitively be the best way to rank individuals. However, the social

planner of this paper evaluates the aggregation of people’s feelings from pairwise

comparisons, which depend not only on the rank they get but also on the alternative

rank they might have got had the social planner chosen differently. The social planer

may find out that there is a positive aggregate satisfaction when ranking X is replaced

with Y , positive aggregate satisfaction when Y is replaced by Z, and again a positive

aggregation of satisfaction when Z is replaced with X. Therefore, there may exist

preference cycles. Example 3.1 shows that ranking regret could be transitive in some

cases, while it could also have preference cycles.
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Example 3.1 Let ψi(x, y) = sgn(y − x) |y − x|αi and W (X, Y ) = V (ψ1(x1, y1),

. . . , ψn(xn, yn)) =
∑

i ψi(xi, yi). Consider n = 3 and relative ranking. If the sequence

of sensitivities is (α1, α2, α3) = (2, 3, 5), then the preference order over rankings is

transitive, and XR =
(

1
3
, 2

3
, 1
)

is the best way to rank individuals. If (α1, α2, α3) =

(2, 3, 4), then it is not transitive, and XR is not the best way as
(
1, 1

3
, 2

3

)
� XR �(

2
3
, 1

3
, 1
)
�
(
1, 1

3
, 2

3

)
. �

The following claim shows that for n = 3 and either relative or absolute ranking,

if the least sensitive individual is sufficiently non-sensitive, then the preference order

over the six possible rankings is transitive.

Claim 3.1 Let n = 3. For any α2 > α1 > 0 there is α∗3 > α2 such that for all

α3 > α∗3, the preference order X % Y iff W (X, Y ) > 0 is transitive.

As noted above, transitive orders over a finite set admit a best element, but the

existence of a best element does not imply transitivity. The rest of this section

discusses the more general conditions for the existence of a best choice.

Suppose that the individual levels of sensitivities are α1 < . . . < αn. If each person

is significantly less sensitive than the person before him, that is, if for all i, αi+1 is

significantly larger than αi, then it is reasonable to expect that the ranking X∗ is a

best choice for the social planner. Theorem 3.1 below formalizes these intuitive claims,

and moreover, offers an exact algorithm to tell whether X∗ is a best choice given the

sequence {α1, . . . , αn}. Formally, it shows how to create a sequence {α∗1, . . . , α∗n} such

that if for all i, αi > α∗i , then X∗ is a best choice, but if for even one person i, αi < α∗i ,

then X∗ is not best choice.

Theorem 3.1 Given individual functions ψ ∈ Ψ and a sequence of sensitivities

{α1, . . . , αn}, where α1 < . . . < αn, there are critical value functions

α∗i = fi(α1, . . . , αi−1)

such that X∗ is a best ranking if and only if αi > α∗i for i = {3, . . . , n}. Moreover,

the functions f3, . . . , fn can be explicitly constructed given the profile of individual

functions ψ1, . . . , ψn and the profile of sensitivities α1, . . . , αn.

Individual i’s critical value function fi(α1, . . . , αi−1) is implied by the form of

individual functions and the values of actual sensitivities. A specific description

of the function form is provided in the Appendix. Note that the critical value of
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sensitivity of person i depends only on the actual sensitivities of persons {1, . . . , i−1}.
Its calculation needs neither the critical sensitivities of persons {1, . . . , i − 1}, nor

any information about the actual sensitivities of persons {i, . . . , n}. If the actual

sensitivity of person i is smaller than the critical value, then it is not necessary to

evaluate the sensitivities of the persons behind person i.

Theorem 1 is proved in the Appendix, but I provide here an intuitive explanation

of it. For simplicity, the explanation assumes the relative definition, but the same

intuition applies to the absolute definition as well. Let Ω be the set of all possible

rankings, and Y be the set Ω \X∗. There are n! − 1 elements in Y . Let Yk = {X :

xk 6= x∗k and ∀i > k, xi = x∗i }, k = 2, . . . , n. There are k! − (k − 1)! elements in Yk.
Then {Y2, . . . ,Yn} are disjoint sets and Y = Y2 ∪Y3 ∪ . . .∪Yn. We need to compare

X∗ to some critical rankings3 in each set by the method of induction. If k = 2, there

is one element, Y 1
2 = ( 2

n
, 1
n
, 3
n
, . . . , 1), in Y2. The social planner prefers X∗ to Y 1

2 as

person 1 is more sensitive than person 2. If k = 3, there are 3! − 2! = 4 alternative

rankings in Y3. I show that one can find α∗3 such that X � Y i
3 for any Y i

3 ∈ Y3 if

α3 > α∗3. I then show, by induction, that one can find α∗i such that X∗ is preferred

to any ranking in Yi provided αi > α∗i . Therefore, ranking X∗ is a best choice if we

can create a sequence {α∗3, . . . , α∗n} and αi > α∗i for i ∈ {3, . . . , n}.
Theorem 3.1 implies that X∗ may not be best when people are too similar. Con-

sider a case in which a social planner needs to decide whether or not to allow some

individuals to cut in line. Sometimes, a social planner may permit an individual, who

is not the most sensitive person, to cut in line and take the top position, because

the social planner believes that the more sensitive individuals only get a little worse

due to a small negative change in their positions while the less sensitive individual

improves a lot owing to a large positive change. As a result, the ranking after cutting

in line is preferred to the natural ranking X∗.

Theorem 3.1 offers an algorithm for identifying whether X∗ is the best choice

given the above sequence of sensitivities.

Step 1 : set α∗1 = α1.

Step 2 : set α∗2 = α2.

Step 3 : calculate α∗3 = f3(α1, α2) and compare α3 to α∗3. If α3 < α∗3, then there is

no best choice. If α3 > α∗3, continue to the next step.

3The way to find the critical rankings is shown in the proof together with the way to find the
critical value functions.

26



Step k = 3, . . . , n : By now, αi > α∗i for i ∈ {3, . . . , k − 1}. Calculate α∗k =

fk(α1, . . . , αk−1) and compare αk to α∗k. If αk < α∗k, there is no best choice. If

αk > α∗k, continue to the next step, or terminate if k = n, and X∗ is a best

choice. �

To illustrate the above theorem and algorithm, consider the individual functions

ψi(x, y) = sgn(y − x) |y − x|αi and use the relative definitions.

Example 3.2 Given six individuals, define X∗ =
(

1
6
, 2

6
, 3

6
, 4

6
, 5

6
, 6

6

)
. The sequence of

sensitivities is given by the top part of Table 3.1.

To calculate α∗3, consider the ranking set Y3 = {Y 1
3 , Y

2
3 , Y

3
3 , Y

4
3 }, where

Y 1
3 =

(
1

6
,
3

6
,
2

6
,
4

6
,
5

6
,
6

6

)

Y 2
3 =

(
3

6
,
2

6
,
1

6
,
4

6
,
5

6
,
6

6

)
Y 3

3 =

(
2

6
,
3

6
,
1

6
,
4

6
,
5

6
,
6

6

)
Y 4

3 =

(
3

6
,
1

6
,
2

6
,
4

6
,
5

6
,
6

6

)
Note that

(
2
6
, 1

6
, 3

6
, 4

6
, 5

6
, 6

6

)
is not included in Y3 as it belongs to Y2. Recall that

X∗ % Y 1
3 if W (X∗, Y 1

3 ) > 0; and Y 1
3 � X∗ if W (X∗, Y 1

3 ) < 0. Let W (X∗, Y 1
3 ) = 0,

solve α3, and define it as α1
3. Observe that W (X∗, Y 1

3 ) could always be positive given

α3 > α2. If so, let α1
3 = α2. Similarly, compute α2

3, α3
3 and α4

3. As the value of

W (X∗, Y 1
3 ) increases in α3, we have α∗3 = max{α1

3, α
2
3, α

3
3, α

4
3, α2}.

Following the rest of the steps of the algorithm, we can get α∗4, α∗5 and α∗6, which

are shown in Table 3.1. Observe that X∗ is a best choice as αk > α∗k for k ∈ {3, 4, 5, 6}.
Note that we can still find preference cycles which do not include X∗, e.g., Y1 � Y2 �
Y3 � Y1, where Y1 =

(
6
6
, 5

6
, 3

6
, 4

6
, 2

6
, 1

6

)
, Y2 =

(
6
6
, 5

6
, 4

6
, 3

6
, 1

6
, 2

6

)
, and Y3 =

(
6
6
, 5

6
, 4

6
, 2

6
, 3

6
, 1

6

)
.

Because W (Y1, Y2) = 0.0185, W (Y2, Y3) = 0.0219, and W (Y3, Y1) = 0.0616.

Table 3.1: X∗ is A Best Choice

α1 α2 α3 α4 α5 α6

1.1 1.2 1.4410 1.7300 2.4588 5
α∗1 α∗2 α∗3 α∗4 α∗5 α∗6
1.1 1.2 1.3410 1.6300 2.3588 4.9268
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However, if the sequence of actual sensitivities is given in Table 3.2, following the

steps in the algorithm shows there is no best choice, since α5 < α∗5, and therefore, the

value of α∗6 does not exist. Specifically, we can find preference cycles which include

X∗, e.g., X∗ � Y4 � Y5 � X∗, where Y4 =
(

2
6
, 3

6
, 4

6
, 1

6
, 5

6
, 6

6

)
and Y5 =

(
2
6
, 3

6
, 4

6
, 5

6
, 1

6
, 6

6

)
.

Because W (X∗, Y4) = 0.0300, W (Y4, Y5) = 0.0860, and W (X∗, Y5) = −0.0333.

Table 3.2: No Best Choice

α1 α2 α3 α4 α5 α6

1.1 1.2 1.4410 1.7300 2.2 6 �

If the social planner cares about people’s feelings, which depend both on their

current rank and their alternative rank, then X∗ may not be the best choice as the

preference order could be non-transitive. Despite the existence of preference cycles,

Theorem 3.1 shows that under some conditions, X∗ could still be a best choice when

X∗ is not part of the non-transitive cycle.

Absolute definitions and relative definitions have different implications on the

relationship between rank and population, therefore, the relationship between critical

values and population. Regarding absolute definitions, rank is not correlated with

population. For example, the individual, who takes the ith position, always has a rank

equals to i regardless of the change of population. Then the critical value functions

of absolute ranking do not depend on population. However, if we assume relative

definitions, rank change with population. For example, if there are n persons, the

ith individual has a rank i
n
, which decreases with population. Then the critical value

functions could depend on the size of population.

In the case of relative definitions, Theorem 3.2 studies how the critical value

α∗ changes with the size of the population n. The theorem assumes an additive

social aggregation function and some less general individual functions, ψ(y − x, α)

instead of the functions, ψ(x, y, αi) used in Theorem 3.1. Functions like ψ(x, y, α) =

(y − x)(x+ y − αxy) where α ∈ (0, 1) are thus excluded.

Consider an alternative ranking Y j
k , where only the individuals from k − j to

k have different rank from X. Specifically, individual k moves upward j steps and

individuals from k − j to k − 1 move downward one step. Given the individual

functions ψ(y − x, α), define αjk by letting W (X, Y j
k ) = 0. We have

ψ(
j

n
, αjk) =

k−1∑
i=k−j

ψ(
1

n
, αi)
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Denote ψ1(y − x, α) = ∂ψ(y−x,α)
∂(y−x)

. Define ᾱk,j by

ψ1(
1

n
, ᾱk,j) =

1

j

k−1∑
i=k−j

ψ1(
1

n
, αi)

Theorem 3.2 Given social aggregate function W(X,Y)=
∑

i ψ(xi, yi) and individual

functions ψ(y − x, αi), consider an infinite sequence of individuals with descending

sensitivities. For each sequence of the first n individuals, calculate (α∗n,3, . . . , α
∗
n,n) as

if there are only n individuals in society. For any x < y, let the individual functions

ψ(y − x, αi) satisfy

ψ1(
j

n
, αjk) > ψ1(

1

n
, ᾱk,j)

for each j ∈ {1, . . . , k−1}. Then α∗n,k is weakly decreasing in n for any k ∈ {3, . . . , n}.
Moreover, there exists k for which α∗n,k is not constant in n.

Let α∗n,i = fi(α1, α2, α
∗
n,3, . . . , α

∗
n,i−1, n). Then for k = 3, . . . , n, lim

n→∞
α∗n,i = α2.

y − x

ψ(y − x, α) ψ(y − x, ᾱk,j)

ψ(y − x, αjk)

B

A

1
n

j
n

Figure 3.1: Theorem 3.2

The graphs of the functions ψ(y− x, αjk) and ψ(y− x, ᾱk,j) are depicted in Figure

3.1. The assumption says that the slope of ψ(y − x, αjk) when y − x = j
n

(point A) is
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greater than the slope of ψ(y − x, ᾱk,j) when y − x = 1
n

(point B).4

Theorem 3.2 implies that if there are many people, the conditions required to

guarantee a best choice are weaker than those we obtained in Theorem 3.1. Although

it applies to a smaller domain than Theorem 3.1, the set of individual functions sat-

isfying the assumption is not empty. For example, ψ(y−x, α) = sgn(y−x) |y − x|α.5

3.4 Second-Best Choice: Group Ranking

Theorem 3.1 implies that if people are too similar, there does not exist a best

choice. That is, for any ranking X there is an alternative ranking Y such that

W (X, Y ) > 0. This is not an ideal outcome, as the social planner cannot optimize.

Consider ten individuals. The first five have similar degrees of sensitivity while

the latter five have another similar level of sensitivity. By Theorem 3.1, there does

not exist a best choice. However, the social planner may still prefer to put the five

sensitive individuals before the other five less sensitive individuals, although it may

not be clear how to rank individuals within each of these groups.

To accommodate this intuition, this section discusses how to find the second-best

choice where the social planner can divide people into ranked groups. Specifically,

the social planner needs to make two decisions: to choose the best ranking given a

structure of groups and to choose the optimal structure of groups.

3.4.1 Choice of Ranking

Definition 3.4 Consider a set of n individuals. A structure of their partition into

groups is a vector ν = [n1, . . . , nI ] such that
∑I

i=1 ni = n. In this partition, n1 of the

individuals are in the first group and have the top n1 positions, and for i = 2, . . . , I, ni

of the individuals are in group i and take the positions from
∑i−1

j=1 nj+1 to
∑i−1

j=1 nj+ni.

All individuals in group i consider their rank to be the average rank of their

group. For example, for the case of absolute ranking, the rank of each person in

group i is the average rank of the “first” and “last” person in this group, that is,
1
2
[(
∑i−1

j=1 nj +1)+
∑i

j=1 nj] . Based on ν, define N = [N1, N2, . . . , NI ], where Nj is the

total number of people in the first j groups. That is, Nj =
∑j

i=1 ni for j = 1, . . . , I.

4Given ψ( jn , α
j
k) =

∑k−1
i=k−j ψ( 1

n , αi), we have ψ( 1
n , α

1
k) = ψ( 1

n , αk−1) when j = 1. By monotonic-

ity, α1
k = αk−1. In that case, the two curves for ψ(y − x, αk−1) and ψ(y − x, α1

k) in Figure 3.1 are
the same, and j

n = 1
n , therefore, the two slopes of A and B are equal. The assumption is satisfied.

Note that point A does not have to be above point B.
5That the assumption is satisfied, is proved in the Appendix.
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Rank the n individuals {1, . . . , n} in a descending order of sensitivity, assume absolute

ranking, and define

XA
G = (0.5(n1 + 1), . . .︸ ︷︷ ︸

Individuals 1 to N1

, N1 + 0.5(n2 + 1), . . .︸ ︷︷ ︸
N1+1 to N2

, . . . , NI−1 + 0.5(nI + 1), . . .︸ ︷︷ ︸
NI−1+1 to NI

)

It specifies a rank for each group and gives a higher rank to groups with more sensitive

people. Similarly, in the case of relative ranking, we have XR
G = 1

n
XA
G .

Consider the case where ν is given, thus, the alternative rankings only re-order

individuals without changing the structure of the groups. Based on this assumption, I

define a ranking to be best if it is preferred to any alternative rankings which re-order

individuals into the same structure of groups. Similarly to Theorem 3.1, Theorem 3.1∗

describes an algorithm that can be used to determine whether given ν, the ranking

XA
G or XR

G (hereafter X∗G) is a best way to rank people and allocate them into the

given group structure.

Theorem 3.1∗ Consider individual functions ψ(x, y, α) and n individuals with a

sequence of sensitivities {α1, . . . , αn} where 0 < α1 < α2 < . . . < αn. Given the

structure of groups ν = [n1, . . . , nI ], there are I − 1 functions fk, k = 2, . . . , I, where

αk∗ = fk(αN1 , . . . , αNk−1
, n1, . . . , nk)

such that X∗G is the best ranking iff αNk−1+1 > αk∗ for k = {2, . . . , I}.

Theorem 3.1∗ is similar to Theorem 3.1. It also leads to a similar algorithm,

but the critical value functions are different. First, we only need to consider the

critical value of the most sensitive individual in group k. If this individual has a

degree of sensitivity αNk−1+1 smaller than the critical value αk∗, then X∗G is not best.

If it is greater, then by the order of individuals, the entire group must satisfy the

critical condition. Second, when we calculate the critical value for group k, instead

of considering all individuals in earlier groups, we only need to consider the least

sensitive person in each of the first k − 1 groups. The specific functional form is

provided in the appendix.

By Theorem 3.1∗, given a structure of groups, we can tell whether there exists a

best ranking or not, and if a best ranking exists, we can also tell what it is. Here I

describe the choice of ranking given a structure.

Definition 3.5 A structure ν is stable if it leads to a best choice which is preferred

to any other rankings with the same structure.
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Note that stability is with respect to a given structure, which means that all rank-

ings in the choice set have the same structure. Given a ranking XG, the alternative

rankings can have a different order of individuals but not a different order of groups.

Claim 3.2 If structure ν = [n1, . . . , nI ] is stable, then the best choice is X∗G which is

XA
G = (0.5(n1 + 1), . . .︸ ︷︷ ︸

Individuals 1 to N1

, N1 + 0.5(n2 + 1), . . .︸ ︷︷ ︸
N1+1 to N2

, . . . , NI−1 + 0.5(nI + 1), . . .︸ ︷︷ ︸
NI−1+1 to NI

)

or XR
G = 1

n
XA
G .

Claim 3.2 says that given a stable structure, the ranking X∗G which puts more

sensitive individuals into a group with a higher rank is the best choice. That is, for

any stable structure, the social planner knows the corresponding best choice. Thus,

we can define a stable structure as its best ranking.

3.4.2 Choice of Structure

The last section discusses the best choice of ranking given a structure. But sometimes

the structure is not given, instead, the social planner needs to design one. This section

studies how to find the choice of structure.

Claim 3.3 For any sequence of n > 3 individuals, there are at least n stable struc-

tures. One of them includes one group and the other n − 1 stable structures include

two groups.

The social planner would not like to have an unstable structure since in such a

case he will not be able to optimize. By Claim 3.3, there are more than one stable

structures, and the social planner needs to choose from the stable structures. The

criteria depend on the social planner. It can be the stable structure with the largest

number of groups, or evenly distributed groups, or the one which implies a best group

ranking among all stable structures. Here I discuss only the last criterion.

Consider n individuals with their sensitivities. Find all stable structures νS =

{ν1, . . . , νm} and their corresponding best rankings XS = {Xν1 , . . . , Xνm}.

Definition 3.6 Let ν ∈ νS be a stable structure. It is an optimal stable structure if

there is no structure ν ′ ∈ νS such that Xν′ � Xν.

Definition 3.7 Let ν ∈ νS be a non-optimal stable structure. It is an inferior stable

structure if for every structure ν ′ ∈ νS such that Xν′ � Xν, there are no structures

(ν1, . . . , ν`) ∈ νS such that Xν � Xν1 � . . . � Xν` � Xν′.
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Note that the social planner uses pairwise comparisons to evaluate stable struc-

tures, which are represented by their corresponding best rankings. As a result, there

may not exist an optimal stable structure. In this case, the second-best choice is a

set of stable but non-inferior structures, and the social planner can choose any one

of them. Example 3.3 explains the second-best choice and shows that it can include

more than one structure.

Example 3.3 Assume that the individual functions are ψi(x, y) = sgn(y−x) |y − x|αi

and the social aggregation function is additive. Suppose five individuals with a se-

quence of sensitivities

α = (1.01, 1.02, 1.03, 1.031, 2)

By Theorem 1∗, there are seven stable structures of groups:

ν1 = [3, 1, 1]; ν2 = [1, 3, 1]; ν3 = [4, 1]; ν4 = [1, 4]

ν5 = [2, 2, 1]; ν6 = [2, 3]; ν7 = [3, 2]

Comparing the best rankings of all stable structures, we have the following rela-

tionship:

(Xν1 , Xν2 , Xν3 , Xν5) � Xν7 � Xν6 � Xν4

Xν1 � Xν5 � Xν2 � Xν3 � Xν1

Therefore, {ν4, ν6, ν7} are inferior structures, and the social planner’s second-best

choice is the set {ν1, ν2, ν3, ν5}, which is not a unique structure. �

Suppose the social planner always puts the most sensitive individual into the first

group (or if there are several identical such individuals, he puts all of them into

the first group), and the second most sensitive individual(s) into the second group.

Given a sequence of sensitivities, the numbers of individuals in the first two groups

are thus fixed. In this case, if there are at least three different individuals, we cannot

use any of the stable structures mentioned in Claim 3.3. For any other structure,

given some sequences of sensitivities, Claim 3.4 shows that it could be the optimal

stable structure. It implies that no structures should be excluded before analyzing

the sequence of sensitivities.

Claim 3.4 Consider a structure ν = [n1, . . . , nI ] and suppose that the social aggre-

gation function is additive. Suppose further that the individual functions ψ(y − x, α)

are strictly convex in y− x and satisfy ψ1(y− x, α) < ψ1(z− x, α′), where α′ is given
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by ψ(y − x, α) + ψ(z − y, α) = ψ(z − x, α′) for 0 < x < y < z. T hen there is a

sequence of sensitivities α∗ such that ν is the optimal stable structure.6

3.5 Application: Boarding Queues

Section 3.4 tells how to verify whether a structure is stable or not and specifies the

best choice given a stable structure. Although the results there do not mention a

particular way to find an optimal stable structure, they imply that an optimal stable

structure should have fewer groups when people are more homogeneous. This section

considers airline boarding queues as an empirical example.

Profit maximization for airlines includes both minimizing costs and improving

passengers’ experience. Efficiency during boarding reduces airlines’ costs. Some pa-

pers study theoretically optimal boarding orders for minimizing boarding times (See

Steffen [36] , Milne and Kelly [30], Milne and Salari [31]). However, in practice, most

airlines do not adopt these optimal boarding strategies. One reason may be that

airlines consider their passengers’ feelings about the boarding experience to be more

important than efficiency.

To provide passengers a good boarding experience, airlines must consider passen-

gers’ sensitivities about boarding orders. This paper’s results suggest that airlines,

in the role of social planners, will divide people into groups that are likely to have

similar sensitivities, and give boarding priority to the more sensitive groups. A fur-

ther prediction of the theory is that the more similar the passengers on a flight are

to each other (in terms of sensitivity), the fewer boarding groups we should expect.

Is this what airlines do in practice?

In the US, most airlines give boarding priority to frequent flyers, first-class pas-

sengers, passengers who pay extra for early boarding, passengers with disabilities,

families with children, and military personnel. Some of these passenger types are ex-

plicitly revealing greater sensitivity (e.g., those who pay for priority boarding), while

other early groups seem likely to be sensitive (e.g., those buying first-class tickets and

passengers with disabilities). It seems reasonable to conclude that airlines do consider

sensitivity to boarding order in their allocation of passengers into boarding groups.

Now consider the number of boarding groups. There is considerable variation

across airlines in the number of groups, even for planes of similar sizes. For example,

Frontier Airlines has just one main boarding group, American Airlines uses as many

as ten.

6In the proof, I find α∗ such that there is no other stable structure [n1, n2, n
′
3, . . . , n

′
J ] given α∗.

So ν is the only stable structure, therefore, the optimal stable structure.
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Is the number of groups related to heterogeneity in sensitivity? It is reasonable to

assume that, ceteris paribus, sensitivity positively correlates with the fare one pays.

If so, then the previously derived theory suggests that, after controlling for factors

like route and number of seats on the plane, flights with a wider range of fares charged

to passengers should have more boarding groups than flights with more homogeneous

fares. This implies that the coefficient α in the following regression should be positive.

group = α · range+ β · capacity + γ ·X

Data were collected from eight US airlines (Alaska, American, Delta, Frontier,

JetBlue, Southwest, Spirit, and United) on the 43 most popular routes in the United

States. The raw data includes round-trip ticket prices and airplane capacity for

each flight.7 Constructing averages for each airline on each route, there were 194

airline/route combinations when only non-stop flights are considered, and 275 obser-

vations when both non-stop and one-stop routes are included.

Averages are constructed for each airline on each route. The dependent variable

group is the number of boarding groups as reported on the airlines’ official websites.

This number is a low integer, so the model is estimated using Poisson regression. The

variable range is a measure of the range of fares charged by the airline on that route,

capacity is the average number of seats per airplane flown by the airline on that route,

and, depending on the specification, X is either just a constant or a constant plus a

set of dummy variables for each route.

Four different measures of the variable range are considered: range1 is the differ-

ence between the maximum and minimum ticket prices divided by the mean; range2

is the difference between maximum and minimum divided by the median; range3 is

the standard deviation of ticket prices divided by the mean; range4 is the interquartile

range of ticket prices divided by the median.

In addition to the above model, estimates are also provided for the alternative

specification:

group/cap = α · range+ β ·X

where group/cap is group divided by capacity. This regression is estimated by

Ordinary Least Squares. Summary statistics of all the data are provided in Table 3.3.

For each of the two model specifications above, a total of 16 different estimates

7The data were collected during June 6 – June 8, 2020, for flights scheduled from August 3 to
August 7, 2020.
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Table 3.3: Statistics

Variables Obs Mean Max Min Std
Non-stop & One-stop

group 275 7.1345 10 4 2.2065
range1 275 0.9891 2.1308 0 0.5678
range2 275 1.1741 3.6692 0 0.8279
range3 275 0.4200 0.8480 0 0.2348
range4 275 0.5896 1.8346 0 0.4218
capacity 275 155.3382 230 72.5 31.5967
group/cap 275 0.0490 0.1379 0.0174 0.0217

Non-stop
group 194 7.1546 10 4 2.1967
range1 194 1.0063 1.9093 0 0.5823
range2 194 1.1811 3.6692 0 0.8279
range3 194 0.4247 0.8101 0 0.2416
range4 194 0.5959 1.8346 0 0.4332
capacity 194 157.1262 230 0.0174 33.9506
group/cap 194 0.0492 0.1379 72.5 0.0230

of α are reported. Using each of the four different measures of range, regression R1

includes route dummies and uses both non-stop and one-stop flights; R2 omits route

dummies and uses both non-stop and one-stop flights; R3 includes route dummies and

only uses non-stop flights; and R4 omits the route dummies and only uses non-stop

flights. All 16 estimates for the Poisson regression model of group are shown in Table

3.4, while those for the OLS model of group/cap are shown in Table 3.5. Standard

errors are in parentheses.

Table 3.4: Poisson Regressions

R1 R2 R3 R4

range1 0.2482∗∗∗ 0.2229∗∗∗ 0.2514∗∗∗ 0.2245∗∗∗

(0.0310) (0.0284) (0.0348) (0.0313)
range2 0.2201∗∗∗ 0.1835∗∗∗ 0.2332∗∗∗ 0.2020∗∗∗

(0.0195) (0.0168) (0.0216) (0.0176)
range3 0.5107∗∗∗ 0.4546∗∗∗ 0.5355∗∗∗ 0.4690∗∗∗

(0.0762) (0.0675) (0.0859) (0.0746)
range4 0.3079∗∗∗ 0.2619∗∗∗ 0.3480∗∗∗ 0.2966∗∗∗

(0.0396) (0.0337) (0.0451) (0.0372)

To interpret the range of the magnitudes of these α estimates, in Table 3.4, at the

mean of the data the number of groups is around 7, and the estimated coefficients

imply that it would take roughly 20% to 25% increase in range to increase the number
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of groups to 8. A comparable but larger range of responses is implied by the estimates

in Table 3.5,

All the estimates of α in all the specifications are positive and statistically signifi-

cant, implying that airlines do employ more groups on flights where the range of fares

is larger, consistent with the theory that the planner should divide passengers into a

greater number of groups when there is greater variation in sensitivity to boarding

order.

Table 3.5: OLS Regressions

R1 R2 R3 R4

range1 0.0171∗∗∗ 0.0156∗∗∗ 0.0176∗∗∗ 0.0161∗∗∗

(0.0022) (0.0021) (0.0027) (0.0026)
range2 0.0139∗∗∗ 0.0116∗∗∗ 0.0149∗∗∗ 0.0130∗∗∗

(0.0014) (0.0014) (0.0018) (0.0017)
range3 0.0379∗∗∗ 0.0332∗∗∗ 0.0395∗∗∗ 0.0349∗∗∗

(0.0054) (0.0052) (0.0067) (0.0064)
range4 0.0233∗∗∗ 0.0190∗∗∗ 0.0253∗∗∗ 0.0210∗∗∗

(0.0030) (0.0029) (0.0037) (0.0035)

3.6 Discussions

3.6.1 Best Choice and Transitivity

As mentioned above, transitivity implies the existence of best choice, but best choice

may exist even if transitivity is not satisfied. That is, preference cycles and best

choice can exist at the same time, as long as the best choice is not involved in any

preference cycle. The following example illustrates a situation where there exists a

best choice and at least one preference cycle.

Example 3.4 Suppose n = 4, (α1, α2, α3, α4) = (1.5, 2, 2.5150, 5.3933), and individ-

ual functions are ψ(x, y, αi) = sgn(y − x)|y − x|αi . There are 24 relative rankings

in total {X∗, Y1, . . . , Y23}. Here we only consider four of them X∗ = (1
4
, 2

4
, 3

4
, 1),

Y1 = (1
4
, 3

4
, 2

4
, 1), Y2 = (1

4
, 2

4
, 1, 3

4
), Y3 = (2

4
, 1

4
, 3

4
, 1).

Comparing X∗ to Yi, where i ∈ {1, . . . , 23}, we have W (X∗, Yi) > 0. Therefore,

X∗ is a best choice. Meanwhile, we have W (Y1, Y2) = 0.1119, W (Y2, Y3) = 0.0325 and

W (Y3, Y1) = 0.0944. Hence, we have at least one preference cycle Y1 � Y2 � Y3 � Y1

while X∗ is a best choice. �

37



3.6.2 Regret Theory and Ranking Regret

The violation of transitivity is an issue both in regret theory and in ranking regret as

both preferences are based on pairwise comparisons. However, there is an important

difference between the two, which is shown in Example 3.1. Ranking regret is com-

patible with transitive orders, while in regret theory there are always non-transitive

cycles. The reason for this difference is that ranking regret aggregates different in-

dividual functions while in regret theory there is only one regret function, which is

used across all states.

Note that the domain in regret theory is a non-finite σ-algebra of events, and

the domain of ranking regret is a finite set of individual preferences. To prove some

theorems related to regret theory it is common to randomly rewrite the outcomes of

events in a convenient way. However, to prove the theorems in this paper, I cannot

rewrite the weight of individuals; therefore, the current paper could not rely on formal

results from regret theory.

3.6.3 Ranking Regret and Income Inequality

Ranking regret studies situations where the social planner wants to rank individuals.

To a certain extent, this resembles the analysis of income inequality. However, the

income inequality problem considers both rank and income level. Different sequences

of income can generate the same ranking but individuals may not be indifferent

between them as one sequence yields different income levels. Therefore, ranking

regret that only considers rankings cannot fully describe income inequality. For this,

we should evaluate individuals’ feelings in two dimensions: rank and income.

3.7 Conclusions

This paper proposes ranking regret. It studies the best way for a social planner to

rank individuals under the assumption that individuals’ feelings depend not only on

their current rank but also on the alternative rank, which they might have got had

the social planner chosen differently. Naturally, giving higher rank to more sensitive

individuals, denoted by X∗, seems to be the best choice for the social planner. For

example, our usual notions of a planner maximizing some social welfare function,

i.e., some function of individual utilities, gives full preference orderings and shows

that X∗ is best. However, under ranking regret, we have binary preferences but not

necessarily a full ordering. As a result, intransitivity and hence cycles can arise,
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and when they do, the planner may not be able to achieve an optimizing goal like

eliminating aggregate dissatisfaction, and therefore, X∗ may not be best.

This paper provides an algorithm to tell whether X∗ is a best choice or not, and

if so, what conditions guarantee it. It shows that if individuals are very different,

then X∗ is a best choice; if people are too similar, a best choice may not exist.

Regarding the latter case, this paper discusses group ranking to find a second-best

choice, which is a set of non-inferior stable structures. The structures specify the

number of individuals in each group, and the second-best ranking gives a higher rank

to a more sensitive group. Intuitively and empirically, the second-best choice has

fewer groups if people are more homogeneous.

Ranking regret provides a possibility of the co-existence of best choice and non-

transitivity. It indicates that the social planner can still make decisions in a general

choice set even though pairwise comparisons are assumed and the preference orders

are not transitive. Additionally, even if there does not exist a best choice, group

ranking still provides a way to rebuild the choice set and yield a second-best choice.
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4 Chapter 4: Over-Identified Doubly Robust Iden-

tification and Estimation

4.1 Introduction

Consider two different parametric models, which we will call G and H. One of

these models is correctly specified, but we don’t know which one (or both could be

right). Both models include the same parameter vector α. An estimator α̂ is called

Doubly Robust (DR) if α̂ is consistent no matter which model is correct. The term

double robustness was coined by Robins, Rotnitzky, and van der Laan (2000), but is

based on Scharfstein, Rotnitzky, and Robins (1999) and the augmented inverse prob-

ability weighting average treatment effect estimator introduced by Robins, Rotnitzky,

and Zhao (1994). In their application α is a population Average Treatment Effect

(ATE).

We provide a general technique for constructing doubly robust (DR) estimators.

The main requirements for applying our method is that models G and H each be

characterized by a set of moment conditions, and each is over identified. We therefore

call our method Over-identified Doubly Robust (ODR) estimation. Our ODR takes

the form of a weighted average of Hansen’s (1982) Generalized Method of Moments

(GMM) based estimates of α, and has similar root-n asymptotics to GMM.

The main drawback of existing DR estimators is that they are not generic, meaning

that for each problem, one needs to find a DR estimator, which can then be used only

for that one specific application. No general method exists for finding or constructing

DR estimators, and only a few examples of such models are known in the literature.

Perhaps the closest thing to a general method is Chernozhukov, Escanciano, Ichimura,

Newey, and Robins (2018). These authors derive a set of locally robust estimators,

provide a characterization result showing when these estimators will also be DR and

thereby provide some new examples of constructing DR estimators.8 In contrast, our

ODR provides a simple general method of constructing DR estimators for a very wide

class of models.

Most existing applications of DR methods, like ATE estimation, have models

G and H that are exactly identified rather than overidentified. In such cases, it

8Chernozhukov, Escanciano, Ichimura, Newey, and Robins (2018) also show that their DR esti-
mators possess some additional useful asymptotic properties that the ODR estimators we construct
may not possess. Ideally, some different terminology would distinguish between estimators that just
have the DR property (including ours and theirs) vs. estimators that have the additional properties,
including local robustness, that they document.
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may be possible to add additional overidentifying moments, and thereby apply our

ODR (e.g., in a online supplemental appendix, we provide details for doing so in the

ATE application). However, we do not advise using our ODR for applications where

DR methods already exist, particularly when existing DR methods do not require

overidentification. Instead, the main virtue of our ODR is its widespread potential

application to situations where there are not already existing DR estimators. We

provide some examples in section 4.3 below.

Suppose we have data consisting of n observations of a random vector Z. Assume

that the true value of α satisfies either E [G (Z, α, β)] = 0 or E [H (Z, α, γ)] = 0 (or

both) for some known vector valued functions G and H, and some unknown additional

parameter vectors β and γ. Our ODR estimator then consistently estimates α, despite

not knowing which of these two sets of equalities actually holds, for any G and H

that satisfy some regularity and identification conditions.

Consider three different possible estimators for the vector α, called α̂g, α̂h, and

α̂f . The estimator α̂g is a GMM estimator of α that is asymptotically efficient if just

the model G is correctly specified, i.e., if E [G (Z, α0, β0)] = 0 at the true α0 and β0.

Similarly, let α̂h be an asymptotically efficient GMM estimator if E [H (Z, α0, γ0)] = 0,

and let α̂f be a GMM estimator based on both sets of moments, which would be

asymptotically efficient if both sets of moments hold at α0, β0, and γ0.

One possible approach to estimation of α would be to engage in some form of

model selection. Under our assumptions, model selection would be relatively straight-

forward. However, model selection has some disadvantages relative to DR methods,

e.g., one needs to correct limiting distributions for pretest bias, and tests for which

model is superior can be inconclusive. In the context of GMM based models, selection

methods like Andrews and Lu (2001), Caner (2009), and Liao (2013) use test-based

methods or shrinkage penalties to select moments that are most likely to be valid.

Another alternative would be model averaging, which is generally not consistent

unless both G and H happen to be correctly specified. Like DR, our ODR avoids

these issues. However, our ODR estimator does take the form of a weighted average of

α̂g, α̂h, and α̂f , and so closely resembles GMM model averaging. A number of model

averaging estimators exist for GMM and related models. Kuersteiner and Okui (2010)

apply Hansen’s (2007) model averaging criterion for instruments in linear instrumental

variables models. Averaging across instruments or moments in GMM models is also

considered by Martins and Gabriel (2014), Sueishi (2013), and DiTraglia (2016).

Unlike these papers, we do not use typical model averaging criteria like mean squared

error, Bayes weights, or information criteria to choose weights. Instead, we construct
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weights to yield the DR consistency property and for relative efficiency.

In the next section, we describe our ODR estimator. Section 3 then gives exam-

ples of potential applications of our ODR estimator (additional examples, including

showing how existing DR applications could have alternatively been estimated using

our ODR, are provided in an online supplemental appendix). In section 4 we show

consistency and provide limiting distribution theory for our ODR. Section 5 provides

Monte Carlo simulations and Section 6 gives an empirical application. In Section 7

we analyze properties of our estimator when the models G and H may be locally

misspecified, i.e., where the parameter α0 in the data generating process is replaced

with α0 + δn−s for a constant δ and some s > 0. Section 8 considers extensions to

more than two competing models, and Section 9 concludes. Proofs and additional

results are provided in the Appendices.

4.2 The ODR Estimator

Let Z be a vector of observed random variables, let α, β and γ be vectors of

parameters, and assume G and H are known functions. Assume a sample consisting

of n independent, identically distributed (iid) observations zi of the vector Z.9 The

goal is root-n consistent, asymptotically normal estimation of α. Let α0 denote the

true value of α. Define model G to be ‘correct,’or ‘true,’ if E [G (Z, α0, β0)] = 0 for

some unique β0. Similarly, define model H to be true if E [H (Z, α0, γ0)] = 0 for some

unique γ0. Define model F to consist of both sets of moments, and model F is true

if both models G and H are true.

As discussed in the introduction, we begin with three different possible estimators

for the vector α, called α̂g, α̂h, and α̂f . The estimator α̂g is a GMM estimator of α

that would be asymptotically efficient if model G is true and model H is not true.

Specifically, α̂g (along with β̂g) minimizes the Hansen (1982) two-step quadratic GMM

objective function, which we will call Q̃g(α, β). This α̂g will generally be inconsistent

if G is not true. If model G is true, then nQ̃g(α̂g, β̂g) is asymptotically chi-squared.

But more importantly for us, if model G is true then Q̃g(α̂g, β̂g) itself will converge

to zero in probability, and (under our assumptions) not converge to zero otherwise.

We use this property to construct our ODR estimator.

Analogous to α̂g, let α̂h denote the estimator of α based on the moments E [H (Z, α0, γ0)] =

0, so α̂h and γ̂h minimize a quadratic GMM objective function Q̃h(α, γ), and are

9We assue iid data mainly for convenience. Our ODR is a straightforward generalization of
GMM, so it should be applicable under more general conditions. We mainly require that the GMM
estimators and associated objective functions satisfy some standard properties.
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asymptotically efficient if model H is true and model G is not true. Finally, let α̂f be

the GMM estimator of α based on assuming both sets of moments E [G (Z, α0, β0)] = 0

and E [H (Z, α0, γ0)] = 0 hold. This α̂f along with β̂f and γ̂f minimizes a GMM ob-

jective function Q̃f (α, β, γ), and is asymptotically efficient (generally more efficient

than either Q̃g or Q̃h) if both models G and H are true, but will otherwise generally

be inconsistent.

Our proposed ODR estimator is a weighted average of α̂g, α̂h, and α̂f , taking the

form

α̂ = ŴfŴgα̂h + Ŵf

(
1− Ŵg

)
α̂g + (1− Ŵf )α̂f (4.1)

The novelty in our estimator relative to existing model averaging estimators is in the

construction of the weights Ŵg and Ŵf , given below in equations (4.3) and (4.5). In

particular, we construct these weights so that, asymptotically, α̂ becomes arbitrarily

close to α̂f if both models G and H are true, and otherwise becomes arbitrarily close

to either α̂g or α̂h, depending on which model is true. So, instead of the typical model

averaging criteria such as minimizing mean squared error, we assume at least one of

the models is correctly specified, and choose weights for efficiency, while satisfying

the DR criterion.

4.2.1 Starting Assumptions

Let g0(α, β) ≡ E{G(Z, α, β)}, h0(α, γ) ≡ E{H(Z, α, γ)}, θ0 ≡ {α0, β0, γ0}, and

θ ≡ {α, β, γ}.

Assumption A1: For compact sets Θα, Θβ, and Θγ, α0 ∈ Θα, β0 ∈ Θβ, and

γ0 ∈ Θγ. Let Θ = Θα ×Θβ× Θγ.

Assumption A2: Either 1) g0(α0, β0) = 0, or 2) h0(α0, γ0) = 0, or both hold.

Assumption A2 says that, for some unknown true coefficient values α0, β0, and

γ0, either model G is true, or model H is true, or both are true. This is a defining

feature of DR estimators, and hence of our ODR estimator.

Assumption A3: The vector G(Z, α, β) has more elements than the set of ele-

ments in α and β. The vector H(Z, α, γ) has more elements than the set of elements

in α and γ. For any {α, β, γ} ∈ Θ, if g0(α, β) = 0 then {α, β} = {α0, β0}, and if

h0(α, γ) = 0 then {α, γ} = {α0, γ0}.

Assumptions A2 and A3 are identification assumptions. They imply that if G

is the true model, then the true values of the coefficients {α0, β0} are identified by
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g0(α0, β0) = 0, and if H is the true model, then the true values of the coefficients

{α0, γ0} are identified by h0(α0, γ0) = 0. Assumption A3 rules out the existence of

alternative pseudo-true values satisfying the ‘wrong’ moments, e.g., this assumption

rules out having both g0(α0, β0) = 0 and g0(α1, β1) = 0 for some α1 6= α0.

Note that Assumption A3 is a potentially strong restriction, and is not required

by other DR estimators. Satisfying this assumption essentially implies that models G

and H are each over identified. The first part of Assumption A3 is typically necessary

to satisfy the second part, since if G contained the same number of elements as the set

{α, β}, then the equation g0(α, β) = 0 would have as many equations as unknowns,

and so typically a pseudo-true solution α1, β1 would exist satisfying g0(α1, β1) = 0

even if G were misspecified.

Define the following functions:

ĝ(α, β) ≡ 1

n

n∑
i=1

G(Zi, α, β), ĥ(α, γ) ≡ 1

n

n∑
i=1

H(Zi, α, γ),

Q̃g(α, β) ≡ ĝ(α, β)
′
Ω̂gĝ(α, β), Q̃h(α, γ) ≡ ĥ(α, γ)′Ω̂hĥ(α, γ),

where Ω̂g and Ω̂h are estimates of the usual weighting matrices obtained in two step

GMM, which under correct specification yields asymptotic efficiency of GMM. In the

above definition, Q̃g(α, β) is the standard Hansen (1982) and Hansen and Single-

ton (1982) Generalized Method of Moments (GMM) objective function, which the

GMM estimator minimizes to estimate α and β. Similarly, minimizing Q̃h(α, γ) is

the standard GMM estimator for model H. Define α̂g, β̂g, α̂h, and γ̂h by

{α̂g, β̂g} = arg min
{α,β}∈Θα×Θβ

Q̃g(α, β) and {α̂h, γ̂h} = arg min
{α,γ}∈Θα×Θγ

Q̃h(α, γ).

(4.2)

So {α̂g, β̂g} is the standard GMM estimate of model G, and {α̂h, γ̂h} is the standard

GMM estimate of model H. In our applications, we likewise use the standard efficient

two step GMM method for estimating the matrices Ω̂g and Ω̂h.

Define Q̃g
0(α, β) and Q̃h

0(α, γ) by

Q̃g
0(α, β) ≡ g0(α, β)′Ωgg0(α, β) and Q̃h

0(α, γ) ≡ h0(α, γ)′Ωhh0(α, γ)

for positive definite matrices Ωg and Ωh, where Ω̂g →p Ωg and Ω̂h →p Ωh.

Assumption A4: Assume there exists {αg, βg} ∈ Θα×Θβ such that Q̃g
0(αg, βg) <

Q̃g
0(α, β) for all {α, β} ∈ Θα ×Θβ\{αg, βg} and there exists {αh, γh} ∈ Θα ×Θγ such
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that Q̃h
0(αh, γh) < Q̃h

0(α, γ) for all {α, γ} ∈ Θα ×Θγ\{αh, γh}.

Given Assumptions A2 and A3, Assumption A4 will automatically be satisfied

for model G when G is correctly specified, with {αg, βg} = {α0, β0}, and similarly

for {αh, γh} when H is correctly specified, by Lemma 2.3 of Newey and McFadden

(1994). Together with Assumptions A1 to A3, Assumption A4 implies that GMM

estimators of G or H will also converge to unique values (pseudo-true values) when

they are misspecified. Assumption A4 is also imposed by Hall (2000) and Hall and

Inoue (2003) for misspecified GMM models.

Our main reason for having Assumption A4 is to ensure that the weights Ŵf and

Ŵg are asymptotically well behaved, which simplifies derivation of limiting distribu-

tions (and asymptotics under local misspecification). However, some of our results

(like consistency of the SODR estimator defined below) will not require Assumption

A4.

4.2.2 The SODR and ODR estimators

Let cg ≡ g0(αg, βg). Under minimal, standard regularity conditions (see details

in the next section), we have Q̃g(α̂g, β̂g) →p c
′
gΩgcg. If G is correctly specified, then

αg = α0 and βg = β0, which makes cg = 0, so c
′
gΩgcg = 0. What is important for

our ODR estimator is that the probability limit of Q̃g(α̂g, β̂g) is zero if G is correctly

specified, and positive otherwise.

Having G correctly specified also means (again with minimal regularity), that

n1/2ĝ(α̂g, β̂g)Ω
1/2
g →d N

(
0, Ikg

)
so nQ̃g(α̂g, β̂g) →d χ

2
kg

. However, if G is incorrectly

specified, then cg 6= 0, so c
′
gΩgcg > 0 and nQ̃g(α̂g, β̂g) does not follow the chi-squared

distribution asymptotically. Analogous statements hold for model H.

Let Q̂g(α, β) ≡ Q̃g(α, β)/kg and Q̂h(α, γ) ≡ Q̃h(α, γ)/kh, where the integer kg is

the degrees of freedom of the chi-squared statistic that nQ̃g converges to if the G

model is true. This is the number of moments in G minus the number of elements in

α and β, which is positive as discussed earlier. Similarly, kh is the degrees of freedom

of the chi-squared statistic that nQ̃h equals if the H model is true. This scaling by kg

and kh is not necessary for our estimator, but improves its finite sample performance

(see below for details).

Define Ŵg by

Ŵg ≡
Q̂g(α̂g, β̂g)

Q̂g(α̂g, β̂g) + Q̂h(α̂h, γ̂h)
. (4.3)
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From the above derivations, we have that, if G is correctly specified and H is not,

Ŵg →p 0

0 + c
′
hΩhch/kh

= 0,

while if H is correctly specified and and G is not,

Ŵg →p
c
′
gΩgcg/kg

c′gΩgcg/kg + 0
= 1.

Before getting to our ODR estimator given by equation (4.1), consider the simpler

estimator α̃ defined by

α̃ = Ŵgα̂h +
(

1− Ŵg

)
α̂g. (4.4)

So α̃ is simply a weighted average of the GMM estimates α̂g and α̂h, where the

weights are proportional to Q̂g and Q̂h. We will call α̃ the SODR (simpler ODR)

estimator.

The intuition behind α̃ is straightforward (the asymptotic statements in this para-

graph are proved formally in the next section). Suppose model H is wrong and model

G is right, so E [H(Z, α, γ)] 6= 0 for any α and γ, and E [G(Z, α0, β0)] = 0. Then

Q̂g(α̂g, β̂g) goes in probability to zero while the limiting value of Q̂h(α̂h, γ̂h) is nonzero,

so Ŵg, the weight on α̂h in equation (4.4) will go to zero, and
(

1− Ŵg

)
, the weight

on α̂g, will go to one. As a result, α̃ will have the same probability limit as α̂g, and

since model G is right, this probability limit will be α0. The same logic applies if

model H is right and G is wrong, switching the roles of g and h, and the roles of β and

γ. Finally, if both models are right, then α̃ is just a weighted average of consistent

estimators of α0, and so is consistent no matter what values the weights take on.

We therefore obtain the double robustness property that, whichever model is right,

α̃→p α0.10

We could have defined the weight Ŵg without scaling each GMM objective func-

tion by its degrees of freedom. Asymptotically, the estimator would still be doubly

robust. The reason we scale is because, even when a model is correctly specified, in

finite samples the greater is the degrees of freedom of a model, the larger its GMM

objective function is likely to be. Asymptotically, the mean of nQ̃g converges to kg

when g is correctly specified, and similarly for h. So, by scaling, when both models

are correctly specified, both nQ̂g and nQ̂h will asymptotically have mean one. Other-

10Notice that when both G and H are correctly specified, Ŵg converges to a ratio of correlated
chi-squared distributions, not to a constant. Nevertheless, α̃ is still consistent because α̃ = α̂g +

(α̂h − α̂g) Ŵg, and when both are correctly specified, α̂g →p α0 and α̂h − α̂g →p 0.
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wise, if we didn’t scale, whichever model has more moments will tend to have a larger

GMM objective function, which would then undesirably penalize that model in finite

samples.

Although the SODR α̃ has the desired DR property, it also has two drawbacks.

First, when G and H are both correct, the ratio Ŵg converges to a random variable

rather than a constant, which complicates the limiting distribution of α̃. Second,

when both G and H are correct, α̃ may be inefficient, relative to a GMM estimator

that efficiently combines the moments from both models.

To address both of these issues, reconsider now the third model F , defined as

the union of moments of the models G and H. Specifically, let F (Z, α, β, γ) be the

vector valued function consisting of the union of elements ofG(Z, α, β) andH(Z, α, γ).

Then, letting f̂(α, β, γ) ≡ 1
n

∑n
i=1 F (Zi, α, β, γ), we can define a third GMM estimator

{α̂f , β̂f , γ̂f} = arg min
{α,β,γ}∈Θα×Θβ×Θγ

Q̃f (α, β, γ)

where Q̃f (α, β, γ) ≡ f̂(α, β, γ)
′
Ω̂f f̂(α, β, γ). This is efficient GMM assuming both

specifications are correct, and so uses all the moments from both. If models G and

H are correctly specified, then α̂f is at least as asymptotically efficient, and generally

much more asymptotically efficient, than α̂g, α̂h, or α̃. Let cf ≡ f0(αf , βf , γf ) ≡
E{F (Z, αf , βf , γf )}. Then Q̃f (α̂f , β̂f , γ̂f )→p c

′

fΩfcf , which equals zero if both mod-

els G and H are correctly specified, and is positive otherwise.

We again scale by the degrees of freedom (number of moments in F minus number

of elements of α, β, and γ), denoted kf , defining Q̂f (α̂f , β̂f , γ̂f ) ≡ Q̃f (α̂f , β̂f , γ̂f )/kf .

We then define the weight Ŵf by

Ŵf ≡ 1− 1

nτ Q̂f (α̂f , β̂f , γ̂f ) + 1
(4.5)

for some τ having 0 < τ < 1. Later we discuss selection of the tuning parameter

τ , but for consistency we only require that τ lie between zero and one. Our ODR

estimator, given by equation (4.1), can be equivalently written as

α̂ = Ŵf α̃ +
(

1− Ŵf

)
α̂f . (4.6)

The intuition now is, if bothG andH are correctly specified, then Q̂f (α̂f , β̂f , γ̂f )→p

0 and nQ̂f (α̂f , β̂f , γ̂f ) converges in distribution to a chi-squared statistic (divided by

its degrees of freedom), which means that nτ Q̂f (α̂f , β̂f , γ̂f ) for 0 < τ < 1 converges
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in probability to zero. Alternatively, if either G or H is incorrectly specified, then

Q̂f (α̂f , β̂f , γ̂f ) converges in probability to a positive value, so nτ Q̂f (α̂f , β̂f , γ̂f ) di-

verges to infinity. Therefore, if both G and H are correctly specified then Ŵf →p 0

and so α̂ has the same limiting value as α̂f , while if either G or H is incorrectly

specified, then α̂ has the same limiting value as α̃, which as shown earlier has the

same limiting value as either α̂g or α̂h, depending on which is correctly specified.

The estimator α̂ therefore, like α̃, has the desired DR property. We show later

that α̂ avoids the asymptotic issues α̃ has when both G and H are correctly specified,

and that α̂ generally performs better than α̃ in finite samples. This is why α̂ is

our preferred ODR estimator. However α̂ has the disadvantages of being a little

more complicated to estimate (since it requires estimating the third model F ), and

it requires selection of a tuning parameter τ .

4.2.3 Tuning Parameters

One tuning parameter is τ , which for consistency can take any value between

zero and one. The larger τ is, the less weight is put on α̂f in any given sample. So

for efficiency, the more likely it is that both models G and H are correct, the smaller

one would want τ to be. Based on this observation, a choice of τ that we find works

well in Monte Carlo simulations is to let τ = 1−p, where p is the p-value of the Wald

statistic testing the null hypothesis that α̂g = α̂h.
11 12

Another potential tuning parameter is as follows. Let Λ be any strictly monoton-

ically increasing function such that Λ (0) = 0 and Λ (·) → ∞ when · → ∞. Then

nQ̂g(α̂g, β̂g), nQ̂
h(α̂h, γ̂h), and nτ Q̂f (α̂f , β̂f , γ̂f ) can be replaced with Λ

(
nQ̂g(α̂g, β̂g)

)
,

Λ
(
nQ̂h(α̂h, γ̂h)

)
, and Λ

(
nτ Q̂f (α̂f , β̂f , γ̂f )

)
in the definitions of the weights Ŵg and

Ŵf in equations (4.3) and (4.5). The main asymptotic properties of the ODR es-

timator are preserved by any such choice of Λ, but finite sample properties of the

estimator might be improved by different choices of the function Λ. For example,

Λ (z) = exp (λz) − 1 for some λ > 0 resembles exponential tilting. Equation (4.4)

already somewhat resembles Bayesian model averaging, and this choice of Λ would

make that resemblance stronger.13 See e.g., Kim (2002) and Martins and Gabriel

11Our derivation of the limiting distribution of α̂ assumes τ > 1/2, however, this restriction is
only required to handle cases where αg 6= αh, and we τ = 1− p will asymptotically increase to over
1/2 in those cases.

12Under possible local misspecification, which we consider in section 7 below, choice of τ becomes
more complicated, for two reasons. First, under local misspecification, having a random τ can affect
the limiting distribution of α̂. And second, for some range of rates of local misspecification parameter
drift, a relatively large value of τ is needed to avoid complications in limitation distributions.

13A key difference with Bayesian or information based weighting is that we weight model G based
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(2014).14 Another choice for Λ would be a simple power transform Λ (z) = zλ for

λ > 0. We consider different choices of Λ in our applications. Overall, we found

that the exponential Λ works well, though choice of Λ had only modest effects on our

monte carlo simulations, and virtually no effect on our empirical estimates.

Finally, we require estimators for the GMM weighting matrices Ω̂g, Ω̂h, and Ω̂f .

As discussed later in section 4.3, these are the standard estimated weighting matrices

used in two step GMM, but recentered. See in particular equation (4.11).

4.3 ODR Examples

Before proceeding to show consistency and deriving the limiting distribution of

the ODR estimator, we present two example applications. Both are new applications

for which no existing DR estimators are known. One concerns estimation of preference

parameters in consumption Euler equations and asset pricing kernels. The second is

alternative sets of instruments for linear model estimation.

In an Online Supplemental Appendix, we provide two additional examples, com-

paring the requirements of our ODR estimator to existing DR applications. The

first discusses average treatment effect estimation, while the second concerns additive

regression models.

4.3.1 Preference Parameter Estimates

One of the original applications of GMM estimation, Hansen and Singleton

(1982), was the estimation of marginal utility parameters and of pricing kernels.

Consider a lifetime utility function of the form

uτ = E
(∑T

t=0
btRtU (Ct, Xt, ρ) | Wτ

)
where uτ is expected discounted lifetime utility in time period τ , b is the subjective

rate of time preference, Rt is the time t gross returns from a traded asset, U is the

single period utility function, Ct is observable consumption expenditures in time t,

Xt is a vector of other observable covariates that affect utility, ρ is a vector of utility

parameters, and Wτ is a vector of variables that are observable in time period τ .

Maximization of this expected utility function under a lifetime budget constraint

on the model H objective function, and vice versa, instead of weighting each model by its own
objective function.

14We discuss comparisons of our estimator with Martins and Gabriel (2014) in more detail later,
in sections 4.4.4 and 4.5.0.
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yields Euler equations of the form

E

(
bRt+1

U ′ (Ct+1, Xt+1, ρ)

U ′ (Ct, Xt, ρ)
− 1 | Wτ

)
= 0 (4.7)

where U ′ (Ct, Xt, ρ) denotes ∂U (Ct, Xt, ρ) /∂Ct. If the functional form of U ′ is known,

then this equation provides moments that allow b and ρ to be estimated using GMM.

But suppose we have two different possible specifications of U ′, and we do not know

which specification is correct. Then our ODR estimator can be immediately applied,

replacing the expression in the inner parentheses in equation (4.7) with G(Z, α, β)

or H(Z, α, γ) to represent the two different specifications. Here α would represent

parameters that are the same in either specification, including the subjective rate of

time preference b.

To give a specific example, a standard specification of utility is constant relative

risk aversion with habit formation, where utility takes the form

U (Ct, Xt, ρ) =
[Ct −M (Xt)]

1−ρ − 1

1− ρ

where Xt is a vector of lagged values of Ct, the parameter ρ is the coefficient of relative

risk aversion, and the function M (Xt) is the habit function. See, e.g., Campbell and

Cochrane (1999) or Chen and Ludvigson (2009). While this general functional form

has widespread acceptance and use, there is considerable debate about the correct

functional form for M , including whether Xt should include the current value of Ct or

just lagged values. See, e.g., the debate about whether habits are internal or external

as discussed in the above papers. Rather than take a stand on which habit model is

correct, we could estimate the model by ODR.

To illustrate, suppose that with internal habits the function M (Xt) would be

given by G̃ (Xt, β), where G̃ is the internal habits functional form. Similarly, suppose

with external habits M (Xt) would be given by H̃ (Xt, γ) where H̃ is the external

habits specification. Then, based on equation (4.7), we could define G(Z, α, β) and

H(Z, α, γ) by

G(Z, α, β) =

bRt+1

(
Ct+1 − G̃ (Xt+1, β)

)−ρ
(
Ct − G̃ (Xt, β)

)−ρ − 1

Wτ
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and

H(Z, α, γ) =

bRt+1

(
Ct+1 − H̃ (Xt+1, γ)

)−ρ
(
Ct − H̃ (Xt, γ)

)−ρ − 1

Wτ .

In this example, we would have α = (b, ρ), and so would consistently estimate

the discount rate b and the coefficient of relative risk aversion ρ, no matter which

habit model is correct. To satisfy the required overidentification (Assumption A3),

we would want Wτ to have more elements than (α, β) and more than (α, γ). This

would generally be the case, because the potential information set of consumers at

time t is large relative the the number of parameters in the model.

4.3.2 Alternative Sets of Instruments

Consider a parametric model

Y = M(W,α) + ε

where Y is an outcome, W is a vector of observed covariates, M is a known functional

form, α is a vector of parameters to be estimated, and ε is an unobserved error term.

The errors ε may be correlated with W , so to estimate the model we wish to find

instruments that are uncorrelated with ε. Let R and Q denote two different vectors

of observed covariates that are candidate sets of instruments. One may be unsure if

either R or Q are valid instrument vectors or not, where validity is defined as being

uncorrelated with ε.

We may then define model G by E (εR) = 0, so G(Z, α) = [Y −M(W,α)]R

and define model H by E (εQ) = 0, so H(Z, α) = [Y −M(W,α)]Q. With these

definitions we can then immediately apply the ODR estimator. In this case both

β and γ are empty, but more generally, the variables R and Q could themselves be

functions of covariates and of parameters β and γ, respectively.

A simple example that we consider in our Monte Carlo analysis is whereM(W,α) =

α′W , so the G model consists of the moments E [(Y − α′W )R] = 0 and the H model

is the moments E [(Y − α′W )Q] = 0. The overidentification condition, Assumption

A3, is generally satisfied when Q and R each have more elements than W .

Next consider a richer example, which we later empirically apply, based on a model

of Lewbel (2012). Suppose Y = X
′
αx + Sαs + ε, where X is a K-vector of observed

exogenous covariates (including a constant term) satisfying E (εX) = 0, and S is an

endogenous or mismeasured scalar covariate that is correlated with ε. The goal is
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estimation of the set of coefficients α = {αx, αs}.
The standard instrumental variables based estimator for this model would consist

of finding one or more covariates L such that E (εL) = 0. Then the set of instruments

R would be defined by R = {X,L}. The resulting GMM (or linear two stage least

squares) estimator would be based on the moments E [G(Z, α)] = 0 where G(Z, α) is

given by the stacked vectors

G(Z, α) =

{
X
(
Y −X ′αx − Sαs

)
L
(
Y −X ′αx − Sαs

) } . (4.8)

The main difficulty with applying this two stage least squares or GMM estimator is

that one must find one or more covariates L to serve as instruments.

Lewbel (2012) proposes an alternative estimator that, rather than requiring that

one find instruments L, instead constructs instruments based on assumptions regard-

ing heteroscedasticity. This estimator consists of first linearly regressing S on X,

and obtaining the residuals from that regression. Then a vector of instruments P is

constructed by setting P equal to demeaned X (excluding the constant) times these

residuals. This constructed vector P is then used instead of L above as instruments.15

As shown in Lewbel (2012), one set of conditions under which the vector P can be a

valid set of instruments is when the endogeneity in S is due to classical measurement

error in S.

LetXc denote the vectorX with the constant removed. Algebraically, we can write

the instruments obtained in this way as R = {X,P} where P = (Xc − γ1) (S −X ′γ2),

and where the vectors γ1 and γ2 in turn satisfy E (Xc − γ1) = 0 and E [X (S −X ′γ2)] =

0. An efficient estimator based on this construction would be standard GMM using

the moments E [H(Z, α, γ)] = 0 where H(Z, α, γ) is a vector that consists of the

stacked vectors

H(Z, α, γ) =


Xc − γ1

X (S −X ′γ2)

X
(
Y −X ′αx − Sαs

)
(Xc − γ1) (S −X ′γ2)

(
Y −X ′αx − Sαs

)

 . (4.9)

The moments given by E [G(Z, α)] = 0 or E [H(Z, α, γ)] = 0 correspond to two

very different sets of identifying conditions. ODR estimation based on these moments

therefore allows for consistent estimation of α if either one of these sets of conditions

15This estimator is implemented in the STATA module IVREG2H by Baum and Schaffer (2012).
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hold. To satisfy the over identification Assumption A3, Xc and L must each have two

or more elements.

As a motivating example, consider the following application involving Engel curve

estimation (see Lewbel 2008 for a short survey, and references therein). Suppose Y

is a consumer’s expenditures on food, X is a vector of covariates that affect the con-

sumer’s tastes, and S is the consumer’s total consumption expenditures (i.e., their

total budget, which must be allocated between food and non-food expenditures). Sup-

pose, as is commonly the case, that S is observed with some measurement error. To

deal with this budget measurement error, a commonly employed set of instruments L

consists of functions of the consumer’s income. However, validity of functions of in-

come as instruments for total consumption in a food Engel curve assumes separability

between the consumer’s decisions on savings and their within period food expendi-

ture decision, and this behavioral assumption may or may not be valid. It is therefore

useful to consider the alternative set of potential instruments P defined above. Use

of P does not require finding covariates from outside the model, like income, to use

as instruments, but does require that certain measurement error assumptions hold.

Our later empirical application applies ODR to this application, thereby obtaining

consistent estimates of α if either L or P are valid instruments.

4.4 The ODR Estimator Asymptotics

In this section we show consistency of our ODR estimator α̂, and then derive its

limiting distribution, which is root n consistent and asymptotically normal. We make

the following additional assumptions. What these assumptions mostly do is make

GMM estimation of models G, H, and F asymptotically normal around either the

true values when correctly specified, or around pseudo-true values when misspecified,

and ensure that the models are over identified.

Assumption A5: G(Z, α, β), H(Z, α, γ) and F (Z, α, β, γ) are continuous at

{α, β} ∈ Θα × Θβ, {α, γ} ∈ Θα × Θγ, and {α, β, γ} ∈ Θα × Θβ × Θγ respectively,

with probability one.

Assumption A6: With ||A|| ≡ {trace(A′A)}1/2 for a matrixA, E[sup{α,β}∈Θα×Θβ
||G(Z, α, β)||] <

∞, E[sup{α,γ}∈Θα×Θγ ||H(Z, α, γ)||] <∞, and E[sup{α,β,γ}∈Θα×Θβ×Θγ ||F (Z, α, β, γ)||] <
∞.

Taken together Assumptions A1, A2, A3, A5, and A6, are standard conditions

that suffice for consistency of the GMM estimators of models G, H, and F when
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they are correctly specified. See, e.g., Theorem 2.1 in Newey and McFadden (1994).

Let ∇θ(·) ≡ ∂(·)/∂θ be arranged such that its row dimension is that of θ and let

∇θ′(·) ≡ {∇θ(·)}′. Define θg0 ≡ {α0, β0}, θh0 ≡ {α0, γ0}, θf0 ≡ {α0, β0, γ0}, θg ≡
{αg, βg}, θh ≡ {αh, γh}, and θf ≡ {αf , βf , γf}.

Assumption A7: With probability one, G(Z, α, β), H(Z, α, γ), and F (Z, α, β, γ)

are twice continuously differentiable in a neighborhood ℵg of θg, ℵh of θh, and ℵf of

θf , respectively.

Assumption A8: ∇θg0(θg0)Ωg∇θ′g0(θg0),∇θh0(θh0 )Ωh∇θ′h0(θh0 ), and∇θf0(θf0 )Ωf∇θ′f0(θf0 )

are non-singular.

Assumption A9: {αg, βg}, {αh, γh}, and {αf , βf , γf} lie in the interior of Θα ×
Θβ, Θα ×Θγ, and Θα ×Θf ×Θγ.

Assumption A10: E[||G(Z, α, β)||2] <∞, E[||H(Z, α, γ)||2] <∞, and E[||F (Z, α, β, γ)||2] <

∞.

Assumption A11: E[sup{α,β}∈ℵg ||∇θgG(Z, α, β)||] <∞, E[sup{α,γ}∈ℵh ||∇θhH(Z, α, γ)||] <
∞, and E[sup{α,β,γ}∈ℵf ||∇θfF (Z, α, β, γ)||] <∞.

Assumption A7, A9, A10, and A11 are regularity conditions for a uniform weak

law of large numbers and the asymptotic normality of GMM. Assumption A8 rules

out perfect collinearity in linearized moment conditions. Assumption A11 gives in-

terchangeability of ∇(·) and E(·) so that

∇θg0(θg) = E{∇θgG(Z, αg, βg)}, ∇θh0(θh) = E{∇θhH(Z, αh, γh)}, ∇θf0(θf ) = E{∇θfF (Z, αf , βf , γf )}.

Assumption A12: Ω̂g, Ω̂h, and Ω̂f are
√
n-consistent, asymptotically normal

estimators of Ωg, Ωh and Ωf , respectively, where Ω−1
g = V ar [G(Z, αg, βg)], Ω−1

h =

V ar [H(Z, αh, γh)], and Ω−1
f = V ar [F (Z, αf , βf , γf )].

Assumption A13: E[||∇θgG(Z, α, β)||2] < ∞, E[||∇θhH(Z, α, γ)||2] < ∞, and

E[||∇θfF (Z, α, β, γ)||2] <∞.

Assumption A14: Letting∇θgθg′(·) ≡ ∂(·)/∂θg∂θg′, E[sup{α,β}∈ℵg ||∇θgθg′G(Z, α, β)||] <
∞, E[sup{α,γ}∈ℵh ||∇θhθh′H(Z, α, γ)||] <∞, and E[sup{α,β,γ}∈ℵf ||∇θfθf ′F (Z, α, β, γ)||] <
∞.
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Assumption A15: plimV ar
[

1√
n

∑
iG(Zi, θ

g)
]
, plimV ar

[
1√
n

∑
iH(Zi, θ

h)
]
, and

plimV ar
[

1√
n

∑
i F (Zi, θ

F )
]

exist and are positive definite.

Assumption A12 strengthens the standard assumption for asymptotically efficient

GMM estimation in requiring that the estimated weighting matrices converge at rate
√
n. This assumption is satisfied by the standard two-step GMM estimators for Ω̂g,

Ω̂h, and Ω̂f , provided that the sample moments are demeaned, e.g., Ωg is based

on V ar [G(Z, αg, βg)] rather than E [G(Z, αg, βg)G(Z, αg, βg)
′]. The strengthening of

Assumption A12 over the standard assumptions for GMM estimation ensures that

the probability limits of Ŵg and ŴgŴf remain well behaved when either model G or

H is misspecified.

Assumptions A13, A14, and A15 are for the asymptotic normality of the normal-

ized sum of derivatives of G, H, and F . These assumptions are to ensure asymptotic

normality of the GMM estimators when model G or H is misspecified. Assumptions

A12 to A14 above are adapted from Hall and Inoue (2003), who use them to derive

asymptotics for possibly misspecified GMM estimation.

4.4.1 ODR Consistency

Lemma 4.1: Suppose Assumptions A1 to A15 hold. Then, for any τ with

0 < τ < 1, Ŵf and ŴfŴg, defined in equations (4.5) and (4.3), have finite probability

limits. Specifically,

Case 1) G and H are correctly specified =⇒ Ŵf →p 0 and ŴfŴg →p 0,

Case 2) G is correctly specified but H is not =⇒ Ŵf →p 1 and ŴfŴg →p 0,

Case 3) H is correctly specified but G is not =⇒ Ŵf →p 1 and ŴfŴg →p 1.

Lemma 4.1 is proved in Appendix I, but the intuition is as follows. When either

G or H is misspecified, we have Q̂f →p c
′

fΩfcf/kf > 0, so nτ Q̂f diverges to infinity

and Ŵf →p 1. If G is correct but H is not, then Q̂g →p 0 while the limiting value

of Q̂h is nonzero. Thus, Ŵg →p 0 and so ŴgŴf →p 0. If H is correct but G is

not, following the same logic but switching the roles of g and h, Ŵg →p 1 and so

ŴgŴf →p 1. When both G and H are correctly specified, so F is correctly specified,

we have Q̂f →p c
′

fΩfcf/kf = 0, so nτ Q̂f →p 0 and therefore Ŵf →p 0, and in this

case both nQ̂g and nQ̂h converge to chi-squared distributions so Ŵg converges to

a ratio of possibly dependent chi-squares, which is bounded in probability, making

ŴgŴf →p 0.
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The following theorem shows consistency of the ODR estimator α̂ in equation

(4.1). We will further discuss construction of Ω̂g, Ω̂h, and Ω̂f later, but note for now

that these are recentered GMM weight matrix estimates using the sample moments

in mean deviation form.

Theorem 4.1: Under Assumptions A1 to A15, for α̂ given by equation (4.1),

α̂→p α0.

Proof of Theorem 4.1: By A1, A2, A3, A5, and A6, the conditions of Theorem

2.1 of in Newey and McFadden (1994) (uniqueness, compactness, continuity, and

uniform convergence) hold for GMM based on model G, model H, or both when

these moments are correctly specified. Therefore, if g0(α0, β0) = 0 then the GMM

estimator of model G is consistent, if h0(α0, γ0) = 0 holds then the GMM estimator

of model H is consistent, and if both the equalities hold parts hold then the GMM

estimator of F is consistent.

For simplicity, let Q̂g ≡ Q̂g(α̂g, β̂g), Q̂
h ≡ Q̂h(α̂h, γ̂h), Q̂

f ≡ Q̂f (α̂f , β̂f , γ̂f ), Q
g
0 ≡

c
′
gΩgcg/kg, Q

h
0 ≡ c

′

hΩhch/kh, and Qf
0 ≡ c

′

fΩfcf/kf . Assumption A2 says that either

g0(α0, β0) = 0, h0(α0, γ0) = 0, or both. Consider each of these three cases.

Case 1) Suppose both g0(α0, β0) = 0 and h0(α0, γ0) = 0. Then {α̂g, β̂g} →p

{α0, β0}, {α̂h, γ̂h} →p {α0, γ0}, and {α̂f , β̂f , γ̂f} →p {α0, β0, γ0}, so Q̂g →p 0, Q̂h →p

0, and Q̂f →p 0. By Lemma 1, Ŵf and ŴfŴg both converge to zero, and the

consistency of α̂ therefore follows from consistency of α̂f .

Case 2) Suppose that g0(α0, β0) = 0 and h0(α0, γ0) 6= 0. Then {α̂g, β̂g} →p

{α0, β0}, {α̂h, γ̂h} →p {αh, γh}, and {α̂f , β̂f , γ̂f} →p {αf , βf , γf}. By Lemma 1, Ŵg

converges to zero and Ŵf converges to one in probability. The consistency of α̂ then

follows from consistency of α̂g.

Case 3) Suppose that g0(α0, β0) 6= 0 and h0(α0, γ0) = 0. Then {α̂g, β̂g} →p

{αg, βg}, {α̂h, γ̂h} →p {α0, γ0}, and {α̂f , β̂f , γ̂f} →p {αf , βf , γf}. By Lemma 1,

Ŵg and Ŵf both converge to one in probability, so consistency of α̂ follows from

consistency of α̂h. Q.E.D.

4.4.2 Limiting Distribution

We now provide the asymptotic distribution of α̂, and a simple consistent esti-

mator of its limiting variance. Let η̂gi , η̂
h
i and η̂fi be consistent estimators of the GMM

influence functions for α̂g, α̂h and α̂f , the details of which are in Appendix III.
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Theorem 4.2: Suppose Assumptions A1 to A15 hold. Then, for 1/2 < τ < 1,

there exists a matrix Ṽ such that

√
n(α̂− α0)→d N(0, Ṽ ),

and

1

n

∑n

i=1
η̂iη̂
′
i →p Ṽ (4.10)

where η̂i ≡ ŴfŴgη̂
h
i + Ŵf (1− Ŵg)η̂

g
i + (1− Ŵf )η̂

f
i .

The first part of Theorem 4.2 states that the ODR estimator α̂ is root n consistent

and asymptotically normal, while the second part gives a consistent estimator for the

limiting variance of α̂. The proof of Theorem 4.2 is given in the Appendix I. The basic

structure of the proof follows Newey and McFadden (1994) for multistep parametric

estimators.

Note that while consistency only requires 0 < τ < 1, Theorem 4.2 assumes τ > 1/2

to ensure
√
n-consistency of α̂. This condition is only required for the case where

αg 6= αh.

The estimator of Ṽ given in equation (4.10) does not require knowing which of the

models G or H is correct. Nevertheless, as shown in Appendix I, Ṽ will either equal

a matrix Ṽ g or Ṽ h or Ṽ f , depending on whether models G, H, or both are correctly

specified.

A complication in the derivation of Theorem 4.2 is that, if model H is wrong, then

we cannot consistently estimate the influence function ηhi for model H. However, in

the limiting variance formula for α̂, the function ηhi is multiplied by ŴfŴg, so if model

H is wrong then ŴfŴg goes to zero. We therefore only need an estimate for ηhi that is

consistent when model H is right, and that estimate is the standard GMM influence

function η̂hi . A similar analysis applies to the influence function η̂gi for model G when

model G is wrong.

4.4.3 Efficiency and Numerical Issues

For asymptotic efficiency of α, we could consider estimating the weighting matri-

ces Ω̂g, Ω̂h, and Ω̂f to minimize the variance given by equation (4.10). However, the

standard two step GMM estimators of Ω̂g, Ω̂h, and Ω̂f should be at least close to effi-

cient for α̂. This is because the ODR objective function is asymptotically dominated

by the GMM objective function of the correct model when either G or H is correct,
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and dominated by the GMM objective function of model F when both models are

correct.

The scaling of moments affects the relative magnitudes of Q̂g, Q̂h, and Q̂f (and

hence the estimated weights Ŵg and Ŵf ). It is therefore numerically desirable in

finite samples to have these matrices be comparable in magnitude. The standard two

step GMM estimators of Ω̂g, Ω̂h, and Ω̂f help make Q̂g, Q̂h, and Q̂f comparable.

Specifically, standard two step GMM makes nQ̂g have a mean of one asymptotically

when model G is right, and similarly for nQ̂h and nQ̂f (this is also the role of scaling

each by the degrees of freedom kg, kh, and kf , respectively). We therefore find it

desirable to use the standard GMM estimates of Ω̂g and Ω̂h (as in Assumption A12)

even if that possibly sacrifices a small amount of efficiency. In particular, we let

Ω̂g ≡
1

n

∑n

i=1

(
G(Zi, α̂1g, β̂1g)−G(Z, α̂1g, β̂1g)

)(
G(Zi, α̂1g, β̂1g)−G(Z, α̂1g, β̂1g)

)′
(4.11)

where α̂1g and β̂1g are first step GMM estimates based on a constant weighting matrix

such as the identity matrix, and G is the sample average of G(Zi, α̂1g, β̂1g). Analogous

formulas apply for Q̂h and Q̂f .

4.4.4 Comparison to Model Averaging

The weights in our SODR and ODR estimators can be compared to more traditional

model averaging methods. An example of GMM model averaging (for instrument

selection in linear instrumental variables models) is Martins and Gabriel (2014), who

construct weights based on Andrews (1999)’s J-statistic based GMM model selection

criteria. To most readily compare their weights to ours, consider the special case of

our ODR in which the candidate models G and H are linear regressions with different

sets of instruments. This comparison is particularly apt because our simulations and

empirical application are choice of instruments in linear models.

Martins and Gabriel (2014) provide a variety of estimators, but the one that is

closest to our model is

α̃MG ≡ ŴMG
g α̂h +

(
1− ŴMG

g

)
α̂g

where ŴMG
g ≡

exp
(
−1

2
(nQ̃h − κnkh)

)
exp

(
−1

2
(nQ̃h − κnkh)

)
+ exp

(
−1

2
(nQ̃g − κnkg)

)
and κn = o(n) is a sequence depending on the selection criteria, e.g. κn = ln(n) for
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a Bayesian Information Criterion. This estimator is similar to our SODR with an

exponential tuning function Λ.

One difference between α̃MG and SODR (with exponential Λ) is in the degrees of

freedom term κn. Another important difference is that, in α̃MG, as in other model

averaging methods, the numerator of the weight on each model depends on the cri-

terion for that model, while in our estimator, the numerator of the weight on model

H depends on the criterion for model G (i.e., on Q̃g) and vice versa. This is because,

for the DR property, we asymptotically need to put all weight on model H when

model G is wrong, and vice versa. Note that Martins and Gabriel (2014) assume

both models are correctly specified, and they do not account for the weight ŴMG
g

having a possibly random probability limit.

In contrast to SODR, our preferred ODR estimator differs more substantially from

α̃MG in its construction of weights. We compare the finite sample performance of both

our SODR and ODR estimators to α̃MG in the next section.

4.5 Simulation Results

Here we do some Monte Carlo analyses to investigate small sample properties of

our estimator. Our design is two competing sets of instruments as in section 3.2. For

each simulation, we draw n = 100 or n = 500 independent, identically distributed

observations of the random vector (Y,W,R1, R2, Q1, Q2). We generate data from the

model

Y = α0 + α1W + ε.

The goal is estimation of α = (α0, α1) = (1, 1). The regressor W is endoge-

nous (correlated with ε), so estimation is by instrumental variables. Model G as-

sumes E (ε) = E (εR1) = E (εR2) = 0, meaning that R = (1, R1, R2)′ is a vec-

tor of valid instruments for instrumental variables estimation. Model H assumes

E (ε) = E (εQ1) = E (εQ2) = 0, making Q = (1, Q1, Q2)′ be a vector of valid in-

struments. Here Z = (Y,W,R,Q), G (Z, α) = (Y − α0 − α1W )R, and H (Z, α) =

(Y − α0 − α1W )Q. In this application there is no β or γ.

We let W = 1 + 4R1 + R2 + 2Q1 + Q2 + ε. Having the 4 and 2 in this equation

means that model G has stronger instruments (i.e., instruments more highly corre-

lated with the endogenous regressor W ) than model H, and that R1 and Q1 are

stronger instruments than R2 and Q2.

We letR1, R2, Q1, Q2, and ε be standard normals, with corr(Rj, ε) = ρRj, corr(Qj, ε) =

ρQj, for j = 1, 2, and all the other correlations among these normals are zero. We
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consider three different simulation designs, that vary by correlations ρRj and ρQj.

The first design takes ρRj = ρQj = 0, which makes both models right (both sets of

instruments are valid). The second takes ρR1 = ρR2 = 0, ρQ1 = 0.4, and ρQ2 = 0.6,

which makes model G right (i.e., R are valid instruments so G is correctly specified)

and model H be wrong (i.e., Q are not valid instruments, because they correlate with

the model error ε). The third takes ρR1 = 0.4, ρR2 = 0.6 and ρQ1 = ρQ2 = 0, which

makes model H right and model G wrong.

For the tuning function Λ discussed in sections 2.3 and 4.4, we consider two

different choices; Λ1

(
nQ̂
)

= exp
(
nQ̂
)
− 1 and Λ2(nQ̂) = (nQ̂)2 so the weighting

functions Ŵg and Ŵf are

Λ1 : Ŵg =
exp{nQ̂g(α̂g, β̂g)} − 1

exp{nQ̂g(α̂g, β̂g)}+ exp{nQ̂h(α̂h, γ̂h)} − 2
, Ŵf = 1− 1

exp{nτ Q̂f (α̂f , β̂f , γ̂f )}
,

(4.12)

Λ2 : Ŵg =
{nQ̂g(α̂g, β̂g)}2

{nQ̂g(α̂g, β̂g)}2 + {nQ̂h(α̂h, γ̂h)}2
, Ŵf = 1− 1

{nτ Q̂f (α̂f , β̂f , γ̂f )}2 + 1
.

(4.13)

For the tuning parameter τ , we use τ = 1 − p, where p is the p-value of the Wald

statistic as discussed in section 4.2.3.

We report eight estimates of α1 and α0 for each simulation. First is GMM based

on the model G moments, denoted by GMMg (which is only consistent if model G

is right). Second is GMM based on the H moments, denoted by GMMh (which is

only consistent if model H is right). Third is GMM based on both sets of moments,

denoted by GMMf (which is consistent, and more efficient than either the first or

second set of estimates, only if both models are right). Fourth is the model averaging

estimator provided by Martins and Gabriel (2014) and discussed in section 4.4.4,

denoted by MG. Fifth and sixth are our ODR estimators in equation (4.1) using

tuning functions Λ1 and Λ2, respectively, denoted by ODRΛ1 and ODRΛ2 (which are

consistent for all designs). Seventh and eighth are our simpler estimators in equation

(4.4), denoted by SODRΛ1 and SODRΛ2 (which are consistent for all designs, but

asymptotically less efficient than ODR when both sets of moments are valid).

For each of the eight estimators, Tables 4.1 and 4.2 present simulation results of

n = 100 observations, and Tables 4.3 and 4.4 present simulation results of n = 500

observations. All tables are based on 2000 Monte Carlo simulations. The reported

summary statistics on the estimated parameters are, respectively, the bias (Bias), me-
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Table 4.1: Simulation Results of α1 (n = 100)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct
GMMg 0.0008 0.0015 0.0006 0.0170 0.0247 0.0819 3.1153 0.9390 0.0236 0.0038
GMMh -0.0010 0.0010 0.0023 0.0302 0.0480 0.2350 2.8924 0.9520 0.0455 0.0138
GMMf 0.0012 0.0018 0.0005 0.0159 0.0222 0.0833 3.0008 0.9290 0.0202 0.0030
MG -0.0010 -0.0004 0.0008 0.0184 0.0288 0.1681 2.9945 0.9535 0.0268 0.0084

ODRΛ1 0.0004 0.0012 0.0006 0.0164 0.0255 0.0829 3.0406 0.9250 0.0214 0.0049
ODRΛ2 0.0006 0.0011 0.0005 0.0149 0.0232 0.1840 3.3537 0.9285 0.0210 0.0040
SODRΛ1 -0.0016 -0.0003 0.0012 0.0200 0.0348
SODRΛ2 -0.0011 -0.0003 0.0012 0.0201 0.0342

G correct
GMMg 0.0007 0.0022 0.0006 0.0169 0.0248 0.2852 3.2493 0.9380 0.0237 0.0046
GMMh 0.1991 0.1951 0.0413 0.1951 0.0408 0.3284 3.3054 0.0000 0.0348 0.0100
GMMf 0.0731 0.0725 0.0059 0.0725 0.0244 0.2104 3.1962 0.0540 0.0166 0.0023
MG 0.0372 0.0284 0.0038 0.0317 0.0487 0.8547 3.0249 0.5760 0.0201 0.0054

ODRΛ1 0.0229 0.0114 0.0038 0.0207 0.0570 1.4912 4.8689 0.7730 0.0230 0.0061
ODRΛ2 0.0247 0.0130 0.0038 0.0223 0.0563 1.3465 4.3800 0.7560 0.0229 0.0059
SODRΛ1 0.0229 0.0114 0.0038 0.0207 0.0570
SODRΛ2 0.0242 0.0122 0.0038 0.0223 0.0569

H correct
GMMg 0.1123 0.1121 0.0130 0.1121 0.0201 0.3521 3.4293 0.0000 0.0163 0.0025
GMMh 0.0003 0.0069 0.0025 0.0308 0.0498 0.6336 3.3317 0.9220 0.0465 0.0238
GMMf 0.0938 0.0939 0.0092 0.0939 0.0193 0.3582 3.3534 0.0015 0.0145 0.0021
MG 0.0009 0.0075 0.0025 0.0309 0.0499 0.6559 3.3722 0.9165 0.0462 0.0238

ODRΛ1 0.0025 0.0080 0.0024 0.0317 0.0494 1.2264 5.4509 0.8925 0.0449 0.0214
ODRΛ2 0.0047 0.0110 0.0024 0.0320 0.0489 1.5845 7.7317 0.8800 0.0437 0.0204
SODRΛ1 0.0003 0.0070 0.0025 0.0308 0.0499
SODRΛ2 0.0001 0.0073 0.0026 0.0311 0.0509

dian error (MdE), root mean-squared error (RMSE), median absolute error (MAE),

and the standard deviation (SD). To check the quality of our limiting distribution,

we also calculate the estimated t-statistic α̂j − 1 divided by the estimated standard

error of α̂j for j = 0, 1 in each simulation. We report skewness (Skew) and kurtosis

(Kurt) of these t-statistics across simulations, and the frequency (Freq) that these

t-statistics are less than 2 in magnitude, corresponding to the frequency with which

a ±2 estimated standard error confidence interval contains the true parameter value.

Also, to check the accuracy of the standard error estimates, we report the average

of the estimated standard errors (SE), and standard deviation of the estimated stan-

dard errors (SDSE), across the simulations. The last five summary statistics are not

reported for SODR, because we do not consider its limiting distribution due to the

random probability limit of Ŵg.

61



Table 4.2: Simulation Results of α0 (n = 100)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct
GMMg -0.0038 -0.0048 0.0112 0.0687 0.1058 0.0005 3.1738 0.9415 0.1009 0.0089
GMMh -0.0024 -0.0090 0.0134 0.0757 0.1157 -0.0131 2.9788 0.9490 0.1115 0.0182
GMMf -0.0046 -0.0073 0.0113 0.0688 0.1063 0.0212 3.1124 0.9350 0.0981 0.0085
MG -0.0022 -0.0063 0.0115 0.0697 0.1071 0.0291 3.0642 0.9440 0.1022 0.0110

ODRΛ1 -0.0039 -0.0062 0.0113 0.0686 0.1063 0.0583 3.0524 0.9370 0.0989 0.0092
ODRΛ2 0.0001 -0.0017 0.0105 0.0687 0.1025 -0.0532 3.1744 0.9525 0.0990 0.0088
SODRΛ1 -0.0016 -0.0067 0.0120 0.0703 0.1097
SODRΛ2 0.0014 0.0023 0.0108 0.0707 0.1041

G correct
GMMg -0.0038 -0.0060 0.0112 0.0683 0.1060 -0.0390 3.1287 0.9395 0.1009 0.0108
GMMh -0.2005 -0.1977 0.0554 0.1977 0.1234 0.1485 3.0509 0.5750 0.1103 0.0179
GMMf -0.0744 -0.0737 0.0219 0.0999 0.1280 -0.0354 3.1266 0.7540 0.0867 0.0074
MG -0.0401 -0.0396 0.0140 0.0774 0.1115 -0.1154 3.1855 0.8885 0.0954 0.0109

ODRΛ1 -0.0258 -0.0198 0.0147 0.0722 0.1186 -0.2332 3.2476 0.9010 0.0996 0.0120
ODRΛ2 -0.0245 -0.0198 0.0136 0.0744 0.1139 -0.2004 3.0110 0.9065 0.0995 0.0114
SODRΛ1 -0.0258 -0.0198 0.0147 0.0722 0.1186
SODRΛ2 -0.0240 -0.0194 0.0136 0.0745 0.1142

H correct
GMMg -0.1151 -0.1166 0.0230 0.1198 0.0989 0.0139 2.8983 0.6735 0.0808 0.0069
GMMh -0.0028 -0.0088 0.0133 0.0722 0.1153 -0.2405 2.9748 0.9530 0.1123 0.0344
GMMf -0.0963 -0.0966 0.0203 0.1039 0.1050 -0.0085 2.9169 0.7095 0.0791 0.0068
MG -0.0035 -0.0094 0.0133 0.0720 0.1151 -0.2389 2.9660 0.9515 0.1120 0.0343

ODRΛ1 -0.0051 -0.0105 0.0131 0.0725 0.1146 -0.2535 2.9609 0.9475 0.1109 0.0320
ODRΛ2 -0.0084 -0.0187 0.0135 0.0753 0.1159 -0.1964 3.0290 0.9380 0.1095 0.0287
SODRΛ1 -0.0029 -0.0089 0.0133 0.0722 0.1153
SODRΛ2 -0.0038 -0.0144 0.0138 0.0760 0.1176
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Table 4.3: Simulation Results of α1 (n = 500)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct
GMMg -0.0001 0.0001 0.0001 0.0074 0.0108 0.0652 2.8494 0.9565 0.0108 0.0008
GMMh -0.0005 -0.0004 0.0004 0.0131 0.0199 0.0602 2.9137 0.9565 0.0200 0.0023
GMMf 0.0000 0.0001 0.0001 0.0066 0.0096 0.0227 2.7919 0.9495 0.0094 0.0006
MG -0.0004 -0.0007 0.0001 0.0081 0.0120 0.0009 2.7642 0.9525 0.0119 0.0024

ODRΛ1 -0.0001 0.0001 0.0001 0.0069 0.0106 0.0145 2.7364 0.9390 0.0097 0.0013
ODRΛ2 -0.0004 -0.0006 0.0001 0.0067 0.0109 0.1468 3.1553 0.9415 0.0097 0.0013
SODRΛ1 -0.0005 -0.0006 0.0002 0.0091 0.0142
SODRΛ2 -0.0007 -0.0004 0.0002 0.0089 0.0149

G correct
GMMg -0.0001 0.0002 0.0001 0.0073 0.0108 0.1479 2.8751 0.9560 0.0108 0.0009
GMMh 0.1990 0.1986 0.0399 0.1986 0.0177 0.1549 3.0003 0.0000 0.0155 0.0018
GMMf 0.0729 0.0728 0.0054 0.0728 0.0109 0.1287 3.0088 0.0000 0.0077 0.0005
MG 0.0001 0.0004 0.0001 0.0073 0.0110 0.3379 4.0679 0.9535 0.0108 0.0009

ODRΛ1 -0.0001 0.0002 0.0001 0.0073 0.0108 0.1480 2.8743 0.9560 0.0108 0.0009
ODRΛ2 0.0010 0.0010 0.0001 0.0076 0.0115 1.2373 10.9036 0.9425 0.0107 0.0009
SODRΛ1 -0.0001 0.0002 0.0001 0.0073 0.0108
SODRΛ2 0.0009 0.0009 0.0001 0.0076 0.0115

H correct
GMMg 0.1124 0.1125 0.0127 0.1125 0.0091 0.1833 2.9687 0.0000 0.0074 0.0005
GMMh -0.0004 0.0006 0.0004 0.0132 0.0201 0.3063 3.0314 0.9580 0.0201 0.0034
GMMf 0.0939 0.0937 0.0089 0.0937 0.0088 0.1908 3.0597 0.0000 0.0067 0.0004
MG -0.0004 0.0006 0.0004 0.0132 0.0201 0.3063 3.0314 0.9580 0.0201 0.0034

ODRΛ1 -0.0004 0.0006 0.0004 0.0132 0.0201 0.3063 3.0314 0.9580 0.0201 0.0034
ODRΛ2 0.0002 0.0018 0.0004 0.0131 0.0203 0.3885 3.1614 0.9475 0.0201 0.0035
SODRΛ1 -0.0004 0.0006 0.0004 0.0132 0.0201
SODRΛ2 0.0001 0.0017 0.0004 0.0131 0.0203
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Table 4.4: Simulation Results of α0 (n = 500)

Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

Both correct
GMMg -0.0010 -0.0002 0.0021 0.0315 0.0458 -0.1391 2.9732 0.9565 0.0459 0.0018
GMMh -0.0008 0.0005 0.0024 0.0328 0.0492 -0.1701 3.0631 0.9500 0.0491 0.0030
GMMf -0.0011 0.0000 0.0021 0.0311 0.0458 -0.1335 2.9799 0.9550 0.0454 0.0017
MG -0.0007 0.0004 0.0021 0.0311 0.0463 -0.1527 3.0340 0.9570 0.0462 0.0021

ODRΛ1 -0.0010 0.0000 0.0021 0.0310 0.0459 -0.1327 3.0063 0.9540 0.0455 0.0018
ODRΛ2 0.0009 -0.0005 0.0022 0.0315 0.0471 0.0061 2.9664 0.9445 0.0455 0.0019
SODRΛ1 -0.0005 0.0003 0.0022 0.0321 0.0468
SODRΛ2 0.0010 0.0003 0.0023 0.0334 0.0483

G correct
GMMg -0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1566 2.9735 0.9570 0.0459 0.0021
GMMh -0.2000 -0.2000 0.0428 0.2000 0.0529 0.0663 3.1573 0.0225 0.0495 0.0033
GMMf -0.0732 -0.0731 0.0084 0.0739 0.0554 0.0501 2.9813 0.5400 0.0402 0.0014
MG -0.0012 -0.0004 0.0021 0.0314 0.0458 -0.1553 2.9705 0.9570 0.0458 0.0021

ODRΛ1 -0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1563 2.9744 0.9570 0.0459 0.0021
ODRΛ2 -0.0020 -0.0011 0.0021 0.0315 0.0459 -0.1685 2.9918 0.9550 0.0457 0.0021
SODRΛ1 -0.0010 -0.0003 0.0021 0.0314 0.0458
SODRΛ2 -0.0020 -0.0011 0.0021 0.0315 0.0459

H correct
GMMg -0.1122 -0.1121 0.0146 0.1121 0.0448 -0.0037 3.0575 0.1945 0.0367 0.0013
GMMh -0.0007 -0.0007 0.0024 0.0329 0.0494 -0.2688 3.0914 0.9480 0.0492 0.0048
GMMf -0.0938 -0.0948 0.0111 0.0948 0.0481 -0.0661 2.9792 0.3445 0.0366 0.0013
MG -0.0007 -0.0007 0.0024 0.0329 0.0494 -0.2688 3.0914 0.9480 0.0492 0.0048

ODRΛ1 -0.0007 -0.0007 0.0024 0.0329 0.0494 -0.2688 3.0914 0.9480 0.0492 0.0048
ODRΛ2 -0.0011 -0.0038 0.0025 0.0340 0.0500 -0.1804 2.9318 0.9555 0.0491 0.0049
SODRΛ1 -0.0007 -0.0007 0.0024 0.0329 0.0494
SODRΛ2 -0.0011 -0.0037 0.0025 0.0340 0.0500
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When both sets of instruments are valid, ODR estimates are almost as precise

as GMMf , and when either set of instruments is invalid, ODR estimates are more

precise than inconsistent GMM estimators. The SODR estimates are found to be

less efficient than ODR when both G and H models are valid (as expected), but

when one model is invalid, SODR is similar to ODR. In this application, the cost

in efficiency of choosing the simpler SODR seems small16. Presumably the gains to

ODR would have been larger in a simulation design where the efficiency of GMMf

more greatly exceeded that of GMMg.

Despite the fact that MG is specifically designed for instrument selection in linear

models, while our ODR is a generic estimator for arbitrary moment based models,

the finite sample performance of ODR is close to, and in some cases slightly better

than, MG, particularly when both models are correctly specified.

Our simulation results also show that the limiting distributions provide reasonably

good approximations to their finite sample counterparts, and these approximations

improve substantially when going from the sample size n = 100 to n = 500. In

particular, the quality of ODR estimated standard errors and confidence intervals

is similar to that of the corresponding correctly specified GMM standard errors and

confidence intervals. This can be seen by comparing the SE and SD columns, and

comparing how close Freq is to .95 in the ODR rows, relative to same comparisons

in the correctly specified GMM rows. Indeed, at n = 500 almost all of the summary

statistics of ODR become close to those of the most efficient correctly specified GMM

in each block. One exception is ODRΛ2 when the model H is invalid. In this case,

there were a few large outlier ODRΛ2 estimates, resulting in substantial nonnormal

skewness and kurtosis in the t-statistic distribution. But other summary statistics

are still similar to those of ODRΛ1 and correctly specified GMM . This suggests a

modest advantage of the exponential tuning function Λ1.

One should expect correctly specified GMM estimators to be more efficient than

ODR, and that is indeed the case. But in many of the simulations, the loss in

efficiency from using ODR is very low. In particular, when model G is invalid, so

only the weaker instruments are valid, the precision of ODR is almost identical to

that of the efficient GMMh. So, using our ODR, there is little loss in efficiency

from not knowing which specification is correct. In summary, we conclude that our

proposed ODR works well, even at low sample sizes.

16However, SODR incurs the additional cost of possibly not having a normal limiting distribution
when both G and H are correctly specified.
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4.6 Empirical Application: Engel Curve Estimation

Here we empirically estimate the Engel curve example discussed in section 4.3.2.

Y is the food budget share, S is log real total consumption expenditures, and X is

a vector of other covariates that serve as controls17. The goal is estimation of the

coefficient of S in a regression of Y on S and X. Total consumption S is observed

with measurement error, so instrumental variables estimation is used to correct for

the resulting endogeneity. The vector L consists of two candidate external instrument

variables, real total income and real total income squared. Model G assumes these

external instruments are valid. Model H instead assumes that constructed instru-

ments based on heteroscedasticity as described by Lewbel (2012) and summarized in

section 4.3.2 above are valid. Model F assumes boths sets of instruments are valid.

The data consist of 854 households collected from the UK Family Expenditure

Survey 1980-1982 as studied by Banks, Blundell, and Lewbel (1997), Lewbel (2012),

and Baum and Schaffer (2012). The sample means are Y = 0.285 and S = 0.599, and

the standard deviations are 0.106 for Y and 0.410 for S.

The parameter of interest is the coefficient of log real total expenditure αs. Table

5 summarizes estimates of αs and of the constant term α0. GMMg0 is the estimate

reported in Lewbel (2012) and Baum and Schaffer (2012). GMMg is the GMM

estimator using the moments in equation (4.8), which makes use of the external

instruments L.18 GMMh is the GMM estimator that uses the moments in equation

(4.9), which are heteroscedasticity based constructed instruments. GMMf is the

GMM estimator that uses both sets of instruments, and SODR and ODR are our

new estimators given in equations (4.4) and (4.1) with the tuning functions Λ1 and

Λ2..

The estimated results show that the external instruments of model G are much

stronger than the constructed instruments of model H. This is not surprising since

the constructed instruments are based on higher moments of the data. This difference

in strength can be seen in the standard errors of α̂s, which are much lower in model

G than in model H, and also in model GMMf which gives estimates much closer to

GMMg than GMMh.

The point estimates of GMMg and GMMh are substantially different, which could

17These covariates are a constant, age, spouse’s age, squared ages, seasonal dummies, and dummies
for spouse working, gas central heating, ownership of a washing machine, one car, and two cars.

18The estimates of GMMg0 and GMMg are not identical because we use the two external instru-
ments income and income squared, instead of just using income. There’s a similar small difference
between GMMf and the models based on both sets of moments reported in Lewbel (2012) and Baum
and Schaffer (2012), for the same reason.
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Table 4.5: Engel Curve Estimates

GMMg0 GMMg GMMh GMMf SODRΛ1 ODRΛ1 SODRΛ2 ODRΛ2

α̂s -0.0859
(0.0198)

-0.0840
(0.0197)

-0.0521
(0.0546)

-0.0862
(0.0177)

-0.0812 -0.0862
(0.0192)

-0.0831 -0.0862
(0.0192)

α̂0 0.336
(0.0122)

0.335
(0.0120)

0.317
(0.0328)

0.337
(0.0109)

0.333 0.337
(0.0118)

0.335 0.337
(0.0118)

χ2 0.191 12.91 15.94

d.f. 1 11 13

p-value 0.662 0.299 0.252

Q̂ 0.0002 0.0014 0.0014

Ŵg, Ŵf , p 0.09, 0.004, 0.86 0.03, 0.000, 0.86
19

be due to having one of these sets of instruments be invalid. However, this difference

could also just be due to imprecision, particularly of GMMh. This illustrates the

usefulness of our ODR, which does not require resolving which set of instruments is

valid, or if both are valid.

The estimated weight Ŵg is 0.09 with the tuning function Λ1 and 0.03 with Λ2,

so SODR puts over ten times as much weight on model G as on model H. However,

in ODR the weight on model F , 1 − Ŵf , is 0.996 with Λ1 and one to three decimal

places with Λ2. The very small difference in Ŵf between Λ1 and Λ2 is why both of

the ODR estimates appear the same in Table 4.5 (they actually differ in the fourth

significant digit: -0.08617 vs. -0.08619 for α̂s).

The very high weight on model F strongly suggests that both models are likely

to be correctly specified. This therefore implies that the difference between GMMg

and GMMh is likely due to imprecision of GMMh rather than misspecification of

the constructed instruments in model H. Further evidence that both are correctly

specified is given by the chi-squared statistics in Table 4.5, which test validity of the

moments comprising each of the GMM estimates. This situation, where both models

appear to be correctly specified, is when we would expect ODR to perform better

than SODR.

Lewbel (2012) observes that a virtue of the constructed instruments is that they

are valid under very different conditions than those required for validity of the external

instruments, and suggests that they therefore are useful for testing overidentification.

Our proposed ODR estimator makes further use of these instruments, by delivering

estimates that are consistent if either (or both) sets of instruments are valid.
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4.7 Local Misspecification

Consider the case where model G or H is locally misspecified with the parameter

in the data generating process being θg = θg0 + δgn
−s or θh = θh0 + δhn

−s for constants

δg and δh, and s > 0. Note s = 0 is equivalent to global misspecification, while s =∞
is equivalent to correct specification, which are the cases we have already considered

in our previous theorems. Pitman (1949) drift corresponds to the case of s = 1/2.

This model is used by, e.g. Newey and West (1987), Bera and Yoon (1993) and

Newey and McFadden (1994) to develop local power analyses. Here we summarize

the asymptotic properties of our ODR estimator under local misspecification, with

formal results provided in Appendix II.

The asymptotic distribution of
√
n(α̂−α0) depends on the value of s. We show in

Appendix II that the influence function of our ODR estimator consists of three terms;

the first is the weighted sum of three different well behaved influence functions, the

second converges to zero in probability for all s ≥ 0, and the third either converges

to a constant or diverges depending on s (and sometimes τ) as discussed below.20

First suppose model G is locally misspecified with s > 1/2. Then nQ̃g
(
α̂g, β̂g

)
→d

χ2
kg

(0), which is the same limit as when G is correctly specified, and similarly for H.

As a result, in this case the SODR and ODR estimators have the same
√
n consistent,

asymptotically normal limiting distribution as they have when G is correctly specified,

and similarly for H. Note this means that instead of requiring that either G or H (or

both) be correctly specified, it is sufficient to assume that either G or H (or both)

are locally misspecified with s > 1/2, noting that correct specification is the special

case of s =∞.

If model G is locally misspecified with s < 1/2, then nQ̃g
(
α̂g, β̂g

)
diverges, and

the SODR has the same
√
n consistent, asymptotically normal limiting distribution

as when G is globally misspecified. The ODR will also have the same limiting dis-

tribution as when G is globally misspecified, as long as the tuning parameter τ has

τ > s+0.5. This then guarantees that model G will asymptotically have zero weight.

Since these cases are equivalent asymptotically to G being globally misspecified, we

need to assume that H is either correctly specified, or locally misspecified with its

s > 1/2. This generalizes our original theorems that simply assumed either G or H

is correctly specified.

20In Appendix II we also explicitly derive the implications of these results for the limiting distribu-
tion of the ODR estimator when one model is correctly specified and the other is locally misspecified
for varying values of s. The results summarized in this subsection are all either directly verified in
Appendix II, or are immediate extentions.
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Finally, suppose model G is locally misspecified with s = 1/2. Then nQ̃g converges

to a noncentral chi-squared distribution. Specifically, nQ̃g
(
α̂g, β̂g

)
→d χ2

kg
(ω′gΩ

1/2
g Π∗gΩ

1/2
g ωg),

where the object in parentheses is the noncentrality parameter and the definitions of

Π∗g and ωg are given in equation (C.3) and at the beginning of Appendix II, re-

spectively. In this case the GMM estimator of model G is consistent but not
√
n

consistent, as established in, e.g., Newey and McFadden (1994). Here nQ̃g is still

bounded in probability, so ODR will asymptotically put weight on either model G

or, if H is correctly specified (or locally misspecified with its s > 1/2) on model F ,

which then is consistent but may not be
√
n consistent. As a result, in this knife edge

case, ODR will be consistent, but not
√
n consistent.

The main results here can be summarized as follows. If both G and H are lo-

cally misspecified, each with s > 1/2 (including the special case where one or both is

correctly specified, corresponding to s = ∞), then ODR will have the same limiting

distribution as efficient GMM with both G and H correctly specified. If just G is

locally misspecified with s > 1/2 (again including as a special case having G be cor-

rectly specified by s = ∞), and H is either misspecified or locally misspecified with

s < 1/2, then (assuming τ > s + 0.5) ODR will have the same limiting distribution

as efficient GMM based just on model G (and vice versa, exchanging the roles of G

and H). Equivalently we can say that our earlier Theorem 4.2 still holds, replacing

”correctly specified model” with ”locally misspecified model having any s > 1/2, in-

cluding s =∞” and replacing ”incorrectly specified model” with ”locally misspecified

model having any s < 1/2, including s = 0.”

We conclude this section with some Monte Carlo results (reported in Tables 4.6

to 4.7 below), which we find support these conclusions. We use the same simulation

designs and estimators as in section 4.5 but with a drift parameter s for the locally

misspecified cases. Since ODR performed better with the tuning function Λ1 in

section 5, to save space we only report ODRΛ1 , along with GMMg, GMMh, and

GMMf for comparison. In all these tables, model H is either globally mispecified, or

locally misspecified with s equal to 0.25, 0.50, or 0.75. In Tables 4.6-1 and 4.6-2 model

G is correctly specified, while in Tables 4.7-1 and 4.7-2, G is locally misspecified with

s = 0.75.

The finite sample results in these tables largely accord with asymptotic theory,

with one interesting difference. When model H is locally misspecified with s = 0.5

(Pitman drift) our ODR should be comparable to GMMf , but actually performs

slightly better than GMMf . This is due to our use of the Wald statistic to select τ .

With s = 0.5, the Wald statistic over-rejects the null, making τ large and therefore
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Table 4.6-1: Model G is Correctly Specified and Model H is Misspecified (n = 500)

α1 Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

s=0.25
GMMg 0.0002 0.0006 0.0001 0.0075 0.0111 0.2310 3.1966 0.9465 0.0108 0.0011
GMMh 0.2374 0.2367 0.0566 0.2367 0.0157 0.1558 3.1392 0.0000 0.0139 0.0016
GMMf 0.1094 0.1094 0.0121 0.1094 0.0112 0.0817 3.0557 0.0000 0.0068 0.0005
ODRΛ1 0.0002 0.0006 0.0001 0.0075 0.0111 0.2311 3.1963 0.9460 0.0108 0.0011

s=0.5
GMMg 0.0002 0.0006 0.0001 0.0075 0.0110 0.1255 3.0813 0.9535 0.0108 0.0008
GMMh 0.0827 0.0822 0.0071 0.0822 0.0174 -0.0439 3.1104 0.0045 0.0175 0.0019
GMMf 0.0220 0.0223 0.0006 0.0223 0.0093 0.0825 3.0819 0.3365 0.0090 0.0006
ODRΛ1 0.0128 0.0058 0.0008 0.0102 0.0259 0.9210 3.2417 0.7455 0.0109 0.0019

s=0.75
GMMg -0.0001 0.0001 0.0001 0.0074 0.0108 0.0707 2.8505 0.9570 0.0108 0.0008
GMMh 0.0181 0.0180 0.0007 0.0194 0.0192 0.0233 2.9125 0.8355 0.0193 0.0021
GMMf 0.0044 0.0045 0.0001 0.0074 0.0095 0.0275 2.7750 0.9270 0.0094 0.0006
ODRΛ1 0.0058 0.0052 0.0002 0.0081 0.0123 0.0457 2.7501 0.8905 0.0099 0.0016

Global
GMMg -0.0001 0.0002 0.0001 0.0073 0.0108 0.1479 2.8751 0.9560 0.0108 0.0009
GMMh 0.1990 0.1986 0.0399 0.1986 0.0177 0.1549 3.0003 0.0000 0.0155 0.0018
GMMf 0.0729 0.0728 0.0054 0.0728 0.0109 0.1287 3.0088 0.0000 0.0077 0.0005
ODRΛ1 -0.0001 0.0002 0.0001 0.0073 0.0108 0.1480 2.8743 0.9560 0.0108 0.0009

pulling the ODR estimator towards to GMMg, which is better behaved than GMMf

with Pitman drift.

4.8 Extension: Multiple Robustness

It is possible to construct triply and higher multiply robust estimators that are

similar to SODR. Suppose we have a third model, called model L, with GMM objec-

tive function Q̂l(α, λ). The GMM estimator of model L is {α̂l, λ̂l} = arg min{α,λ}∈Θα×Θλ Q̂
l(α, λ).

A possible formula for triply robust estimation of α would then be the weighted av-

erage

α̃ =
Q̂g(α̂g, β̂g)Q̂

h(α̂h, γ̂h)α̂l + Q̂l(α̂l, λ̂l)Q̂
h(α̂h, γ̂h)α̂g + Q̂l(α̂l, λ̂l)Q̂

g(α̂g, β̂g)α̂h

Q̂g(α̂g, β̂g)Q̂h(α̂h, γ̂h) + Q̂l(α̂l, λ̂l)Q̂h(α̂h, γ̂h) + Q̂l(α̂l, λ̂l)Q̂g(α̂g, β̂g)
.

(4.14)

In equation (4.14), the weight on α̂l is proportional to the product of objective

functions for the other models, Q̂gQ̂h, and similarly for the weights on α̂g and α̂h.

The logic of this estimator is the same as for our SODR estimator. For example,

if model G is right and models L and H are wrong, then only α̂g will get a nonzero
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Table 4.6-2: Model G is Correctly Specified and Model H is Misspecified (n = 500)

α0 Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

s=0.25
GMMg -0.0005 -0.0008 0.0022 0.0319 0.0467 0.0210 2.8965 0.9530 0.0459 0.0025
GMMh -0.2385 -0.2364 0.0598 0.2364 0.0544 -0.0138 2.8922 0.0030 0.0504 0.0033
GMMf -0.1108 -0.1099 0.0166 0.1099 0.0654 -0.0509 2.9047 0.2860 0.0369 0.0013
ODRΛ1 -0.0005 -0.0008 0.0022 0.0319 0.0467 0.0210 2.8964 0.9530 0.0459 0.0025

s=0.5
GMMg -0.0016 -0.0012 0.0022 0.0324 0.0467 -0.0374 2.9635 0.9515 0.0459 0.0019
GMMh -0.0838 -0.0827 0.0092 0.0827 0.0470 -0.0797 2.9642 0.5840 0.0465 0.0026
GMMf -0.0234 -0.0226 0.0028 0.0359 0.0473 -0.0714 2.9394 0.8995 0.0441 0.0017
ODRΛ1 -0.0141 -0.0131 0.0027 0.0346 0.0503 -0.1517 3.0821 0.9175 0.0455 0.0020

s=0.75
GMMg -0.0010 -0.0002 0.0021 0.0314 0.0458 -0.1404 2.9735 0.9565 0.0459 0.0018
GMMh -0.0193 -0.0186 0.0027 0.0350 0.0483 -0.1429 3.0438 0.9355 0.0482 0.0028
GMMf -0.0054 -0.0044 0.0021 0.0313 0.0456 -0.1263 2.9815 0.9540 0.0452 0.0017
ODRΛ1 -0.0069 -0.0055 0.0022 0.0314 0.0461 -0.1310 3.0076 0.9490 0.0453 0.0017

Global
GMMg -0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1566 2.9735 0.9570 0.0459 0.0021
GMMh -0.2000 -0.2000 0.0428 0.2000 0.0529 0.0663 3.1573 0.0225 0.0495 0.0033
GMMf -0.0732 -0.0731 0.0084 0.0739 0.0554 0.0501 2.9813 0.5400 0.0402 0.0014
ODRΛ1 -0.0010 -0.0003 0.0021 0.0314 0.0458 -0.1563 2.9744 0.9570 0.0459 0.0021

weight asymptotically. Now suppose two but not all three models are right, e.g.,

suppose models G and H are right and L is wrong. Then all the weights in both

the numerator and denominator of equation (4.14) go to zero. However, in this case

we can divide the numerator and denominator by Q̂g(α̂g, β̂g). Both Q̂g(α̂g, β̂g) and

Q̂h(α̂h, γ̂h) converge to zero, but nQ̂g(α̂g, β̂g)/nQ̂
h(α̂h, γ̂h) is finite and nonzero, so the

limiting weights on α̂g and α̂h will be nonzero while the limiting weight on α̂l will be

zero, as desired.

As with SODR, the limiting distribution of the triply robust estimator α̃ in

equation (4.14) is complicated by the potential limiting randomness of ratios like

nQ̂g(α̂g, β̂g)/nQ̂
h(α̂h, γ̂h) in the weights. In the doubly robust case, we avoided this

problem in ODR by using the additional weight Wf for when both models are cor-

rectly specified. An analogous construction for triply robust estimation would be

more complicated, since we would also need to consider the cases where any pair of

models is correct, and when all three are correct. This would require at least con-

structing an ODR for each of the three possible pairs of models, and for the model

that combines all three.
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Table 4.7-1: Model G is Misspecified with s = 0.75 and Model H is Misspecified
(n = 500)

α1 Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

s=0.25
GMMg 0.0088 0.0093 0.0002 0.0102 0.0104 0.1033 3.0590 0.8355 0.0102 0.0010
GMMh 0.2297 0.2292 0.0530 0.2292 0.0148 0.2036 2.9334 0.0000 0.0130 0.0015
GMMf 0.1112 0.1108 0.0125 0.1108 0.0108 -0.1158 3.3286 0.0000 0.0065 0.0004
ODRΛ1 0.0088 0.0093 0.0002 0.0102 0.0104 0.1064 3.0616 0.8355 0.0102 0.0010

s=0.5
GMMg 0.0086 0.0087 0.0002 0.0098 0.0109 0.1853 3.1186 0.8600 0.0105 0.0008
GMMh 0.0807 0.0805 0.0068 0.0805 0.0178 -0.0272 2.9853 0.0090 0.0171 0.0017
GMMf 0.0276 0.0277 0.0009 0.0277 0.0095 0.1450 3.2462 0.1590 0.0088 0.0006
ODRΛ1 0.0222 0.0155 0.0011 0.0161 0.0254 0.6447 2.7902 0.6020 0.0108 0.0021

s=0.75
GMMg 0.0090 0.0090 0.0002 0.0101 0.0105 0.0550 3.0231 0.8565 0.0106 0.0008
GMMh 0.0181 0.0185 0.0007 0.0198 0.0198 0.0769 2.8749 0.8185 0.0192 0.0022
GMMf 0.0113 0.0113 0.0002 0.0115 0.0092 0.0496 3.1639 0.7720 0.0092 0.0006
ODRΛ1 0.0125 0.0120 0.0003 0.0123 0.0115 0.0250 3.0848 0.7445 0.0098 0.0018

Global
GMMg 0.0089 0.0092 0.0002 0.0102 0.0106 0.1271 3.0891 0.8520 0.0103 0.0009
GMMh 0.1939 0.1926 0.0379 0.1926 0.0167 0.1383 3.1092 0.0000 0.0146 0.0017
GMMf 0.0768 0.0766 0.0060 0.0766 0.0101 0.0503 2.8409 0.0000 0.0075 0.0005
ODRΛ1 0.0089 0.0092 0.0002 0.0102 0.0106 0.1241 3.0766 0.8500 0.0103 0.0009
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Table 4.7-2: Model G is Misspecified with s = 0.75 and Model H is Misspecified
(n = 500)

α0 Bias Mde RMSE MAE SD Skew Kurt Freq SE SDSE

s=0.25
GMMg -0.0083 -0.0071 0.0022 0.0315 0.0458 -0.1606 2.8672 0.9475 0.0445 0.0023
GMMh -0.2309 -0.2292 0.0560 0.2292 0.0524 -0.0060 3.0920 0.0030 0.0485 0.0032
GMMf -0.1115 -0.1098 0.0166 0.1098 0.0647 -0.0952 2.9328 0.2735 0.0363 0.0013
ODRΛ1 -0.0083 -0.0071 0.0022 0.0315 0.0458 -0.1605 2.8666 0.9475 0.0445 0.0023

s=0.5
GMMg -0.0090 -0.0087 0.0022 0.0317 0.0455 -0.0878 2.9419 0.9485 0.0453 0.0018
GMMh -0.0811 -0.0807 0.0087 0.0807 0.0457 -0.0785 2.9850 0.5940 0.0459 0.0024
GMMf -0.0281 -0.0278 0.0029 0.0369 0.0455 -0.0613 2.9619 0.8930 0.0437 0.0016
ODRΛ1 -0.0225 -0.0204 0.0030 0.0351 0.0497 -0.2171 3.1523 0.9000 0.0449 0.0019

s=0.75
GMMg -0.0100 -0.0091 0.0021 0.0321 0.0448 -0.0071 2.9514 0.9535 0.0455 0.0018
GMMh -0.0189 -0.0199 0.0027 0.0346 0.0481 -0.0238 2.9757 0.9310 0.0481 0.0029
GMMf -0.0122 -0.0122 0.0021 0.0318 0.0446 -0.0059 2.9843 0.9450 0.0449 0.0017
ODRΛ1 -0.0133 -0.0130 0.0022 0.0330 0.0453 0.0016 2.9476 0.9410 0.0450 0.0018

Global
GMMg -0.0106 -0.0117 0.0021 0.0319 0.0450 -0.0511 2.9491 0.9475 0.0448 0.0020
GMMh -0.1952 -0.1941 0.0407 0.1941 0.0513 0.1066 3.2575 0.0200 0.0479 0.0031
GMMf -0.0785 -0.0784 0.0092 0.0785 0.0549 -0.0661 2.9737 0.5035 0.0396 0.0014
ODRΛ1 -0.0106 -0.0118 0.0021 0.0319 0.0450 -0.0508 2.9492 0.9475 0.0448 0.0020
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4.9 Conclusions

In this paper, we provide a general technique for constructing doubly robust es-

timators. Our Over-identified Doubly Robust (ODR) technique is a simple extension

of the Generalized Method of Moments. It takes the form of a weighted average of

Hansen’s (1982) Generalized Method of Moments (GMM) based estimators, and has

similar associated root-n asymptotics. The proposed estimator appears to work well

in a small Monte Carlo study and in an empirical application to instrumental variables

estimation, where either one of two sets of instrument vectors might be invalid.

Our estimator requires that the candidate models be over-identified, having more

moments than parameters. Ideally the number of moments should not greatly exceed

the number of parameters, because GMM can suffer from well known finite sample

biases when models have many more moments than parameters, and particularly

when some moments might be weak. In such cases, it may be desirable to let models

G and H equal just a subset of the available moments for each. Existing moment

selection methods such as Andrews and Lu (2001), Caner (2009), or Liao (2013) might

be used prior to applying ODR, though this then introduces pretest bias that ODR

is intended to avoid. A potential subject for future work could be more formally

modifying ODR to deal with many moments and/or with weak moments.

Another potential extension for future work is to consider cases where β and γ are

infinite dimensional, e.g., where models G and H may contain unknown functions,

perhaps replacing unconditional expectations with conditional expectations as in Ai

and Chen (2003). One difficulty in such extensions is guaranteeing that the model is

still over-identified regarding α, or more precisely, ensuring that no solution to all the

moment conditions exists if the model is misspecified. Chen and Santos (2018) might

be helpful regarding this point. Another issue would be ensuring that the objective

functions used in constructing weights remain comparable and well behaved.
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A Proofs of Chapter 2

A.1 Lemma A.1

Lemma A.1 A linear individual regret function implies that individual i follows ex-

pected utility theory, which is saying that the following two statements are equal.

Statement 1: ψ(x, y) = u(x)− u(y) for some u(·).

Statement 2: ψ(x, y) + ψ(y, z) = ψ(x, z) for any x > y > z ≥ 0.

Proof21:

1. Statement 1 ⇒ Statement 2.

Since Statement 1 is true, then the LHS of statement 2 equals to

ψ(x, y) + ψ(y, z)

= u(x)− u(y) + u(y)− u(z)

= u(x)− u(z) = ψ(x, z)

2. Statement 2 ⇒ Statement 1.

Since ψ(x, y) + ψ(y, z) = ψ(x, z), take derivative of y on both sides, we have

∂ψ(x, y)

∂y
+
∂ψ(y, z)

∂y
= 0

⇒ ∂ψ(x, y)

∂y
= −∂ψ(y, z)

∂y

Take derivative of x on both sides, we have

⇒ ∂ψ(x, y)

∂y∂x
= 0

⇒
∫
∂ψ(x, y)

∂x∂y
dx = c(y)

⇒
∫
∂ψ(x, y)

∂y
dy =

∫
c(y)dy + d(x) = C(y) + d(x)

Therefore, ψ(x, y) = u1(x)−u2(y) for some u1(·) and u2(·). Plug this form into

21A shorter proof can be found in [1], page 223.
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2, we have

ψ(x, y) + ψ(y, z) = ψ(x, z)

u1(x)− u2(y) + u1(y)− u2(z) = u1(x)− u2(z)

⇒ u1(y)− u2(y) = 0

for any y ∈ [0, 1], which implies u1(·) = u2(·) = u(·). Therefore, ψ(x, y) =

u(x)− u(y).

�

A.2 Proof of Proposition 2.1

Proof: Let X = (x1, x2, · · · , xn), Y = (y1, y2, · · · , yn), Z = (z1, z2, · · · , zn),
∑

i xi =

1,
∑

i yi = 1 and
∑

i zi = 1. WLOG, let 0 ≤ x1 < y1 < z1 ≤ 1, and each value in x,

y, z is in [0, 1]. Then

W (Y,X) =
∑
i

ψi(yi, xi) =

[
ψ1(y1, x1)

y1 − x1

− 1

]
(y1 − x1) (A.1)

W (Z, Y ) =
∑
i

ψi(zi, yi) =

[
ψ1(z1, y1)

z1 − y1

− 1

]
(z1 − y1) (A.2)

W (X,Z) =
∑
i

ψi(xi, zi) =

[
ψ1(x1, z1)

x1 − z1

− 1

]
(x1 − z1) (A.3)

Since 0 ≤ x1 < y1 < z1 ≤ 1, the signs of equations (1), (2), (3) depend on the

signs of
ψ1(y1, x1)

y1 − x1

− 1 (A.4)

ψ1(z1, y1)

z1 − y1

− 1 (A.5)

ψ1(x1, z1)

x1 − z1

− 1 (A.6)

The condition in Proposition 2.1 implies that for x1 6= y1, there are two cases:
∂
ψ1(x1,y1)
x1−y1
∂x1

> 0 and
∂
ψ1(x1,y1)
x1−y1
∂y1

> 0; or
∂
ψ1(x1,y1)
x1−y1
∂x1

< 0 and
∂
ψ1(x1,y1)
x1−y1
∂y1

< 0.

Case 1 implies that (4) ≤ (6) since ψ1(y1,x1)
y1−x1 = ψ1(x1,y1)

x1−y1 ,
∂
ψ1(x1,y1)
x1−y1
∂y1

> 0 and y1 < z1.

Similarly, (6) ≤ (5). Therefore, (4) ≤ (6) ≤ (5).
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To test whether it is transitive under any circumstances, consider the following

situations:

1. None of (4), (5), (6) equal to 0

(a) (4) ≤ (6) ≤ (5) < 0.

The signs of equation (1), (2), (3) are − − +, which is transitive.

(b) 0 < (4) ≤ (6) ≤ (5).

The signs of equation (1), (2), (3) are + + −, which is transitive.

(c) (4) < 0 < (6) ≤ (5).

The signs of equation (1), (2), (3) are − + −, which is transitive.

(d) (4) ≤ (6) < 0 < (5).

The signs of equation (1), (2), (3) are − + +, which is transitive.

2. One of them equals to 0

(a) (4) = 0 < (6) ≤ (5).

The signs of equation (1), (2), (3) are 0 + −, which is transitive.

(b) (4) < (6) = 0 < (5).

The signs of equation (1), (2), (3) are − + 0, which is transitive.

(c) (4) ≤ (6) < (5) = 0.

The signs of equation (1), (2), (3) are − 0 +, which is transitive.

If x1 = y1, we have (1) = 0, (2) and (3) have opposite signs, which is transitive.

If y1 = z1, we have (2) = 0, (1) and (3) have opposite signs, which is transitive. If

x1 = y1 = z1, then (1) = (2) = (3) = 0, which is also transitive.

As we have exhausted all possibilities, case 1 is a sufficient condition. Similarly,

we can also show that case 2 is a sufficient condition.

�

A.3 Proof of Proposition 2.2

Proof: Suppose there are three allocations X = (x1, x2), Y = (y1, y2) and Z =

(z1, z2), where 0 ≤ x1 ≤ y1 ≤ z1 ≤ 1, then

W (Y,X) = ψ(y1, x1) + ψ(y2, x2)
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W (Z, Y ) = ψ(z1, y1) + ψ(z2, y2)

W (X,Z) = ψ(x1, z1) + ψ(x2, z2)

Since m = 1, we have

W (Y,X) = ψ(y1, x1) + ψ(1− y1, 1− x1)

W (Z, Y ) = ψ(z1, y1) + ψ(1− z1, 1− y1)

W (X,Z) = ψ(x1, z1) + ψ(1− x1, 1− z1)

1. If x1 < y1 < z1.

Consider the relationships among x1, 1−x1, y1, 1−y1, there are three situations:

(a) x1 = 1− y1 (or y1 = 1− x1);

(b) x1 > 1− y1 (or y1 > 1− x1);

(c) x1 < 1− y1 (or y1 < 1− x1).

Combining x1 < y1 < z1, we have the following conclusions:

(a) x1 = 1− y1 and y1 = 1− x1;

By skew symmetric, we have

W (Y,X) = psi(1− x1, x1) + ψ(x1, 1− x1) = 0

By x1 < z1, we have 1 − z1 < 1 − x1, combining the condition mentioned

in Proposition 2.1, we have

W (Z, Y ) = psi(z1, 1− x1) + ψ(1− z1, x1)

=

[
ψ(z1, 1− x1)

z1 − (1− x1)
− ψ(1− z1, x1)

(1− z1)− x1

]
(z1 − y1) > 0

Since y1 < z1, we have z1 > 1 − x1 and x1 > 1 − z1, by skew symmetric

and the condition in Proposition 2.1,

W (X,Z) = psi(x1, z1) + ψ(1− x1, 1− z1)

= −
[
ψ(z1, x1)

z1 − x1

− ψ(1− z1, 1− x1)

(1− z1)− (1− x1)

]
(z1 − x1) < 0

Therefore, it is transitive.
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(b) x1 > 1− y1 and y1 > 1− x1;

Similarly, we have

W (Y,X) = psi(y1, x1) + ψ(1− y1, 1− x1)

=

[
ψ(y1, x1)

y1 − x1

− ψ(1− y1, 1− x1)

(1− y1)− (1− x1)

]
(y1 − x1) > 0

By z1 > y1, we have z1 > 1− x1 and x1 > 1− z1, then

W (X,Z) = psi(x1, z1) + ψ(1− x1, 1− z1)

= −
[
ψ(z1, x1)

z1 − x1

− ψ(1− z1, 1− x1)

(1− z1)− (1− x1)

]
(z1 − x1) < 0

As x→ y and z → x have different signs, it is transitive.

(c) x1 < 1− y1 and y1 < 1− x1.

Similarly, W (Y,X) is negative. Considering the relationship between z1

and 1− x1, there are two situations:

i. 1− x1 > z1.

We have z1 < 1−x1 and x1 < 1− z1, then W (X,Z) is positive, hence,

it is transitive.

ii. z1 > 1− x1.

By x1 < y1, we have z1 > 1 − y1 and y1 > 1 − z1, then W (Z, Y ) is

positive, hence, it is transitive.

2. Suppose x1 = y1 < z1.

By skew symmetric, y → z and z → x have different signs, hence, it is transitive.

3. Suppose x1 < y1 = z1.

By skew symmetric, x→ y and z → x have different signs, hence, it is transitive.

4. Suppose x1 = y1 = z1.

We have x ∼ y ∼ z, which is also transitive.

As we have considered all situations, and all of them are transitive, proved.

�
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A.4 Proof of Proposition 2.3

Proof: Suppose the three persons have the same non-linear regret functions, ψ1(x, y) =

ψ2(x, y) = ψ3(x, y) = ψ(x, y). And there are three allocations X = (x1, x2, x3, ...),

Y = (y1, y2, y3, ...) and Z = (z1, z2, z3, ...). We have

W (Y,X) = ψ1(y1, x1) + ψ2(y2, x2) + ψ3(y3, x3) + (y4 − x4) + ...+ (yn − xn)

= ψ1(y1, x1) + ψ2(y2, x2) + ψ3(y3, x3) + (1− y1 − y2 − y3)− (1− x1 − x2 − x3)

= [ψ(y1, x1)− (y1 − x1)] + [ψ(y2, x2)− (y2 − x2)] + [ψ(y3, x3)− (y3 − x3)]

Similarly, we have

W (Z, Y ) = [ψ(z1, y1)− (z1 − y1)] + [ψ(z2, y2)− (z2 − y2)] + [ψ(z3, y3)− (z3 − y3)]

W (X,Z) = [ψ(x1, z1)− (x1 − z1)] + [ψ(x2, z2)− (x2 − z2)] + [ψ(x3, z3)− (x3 − z3)]

We can always find x1 ≤ y1 ≤ z1, x1 = z2 = y3, y1 = x2 = z3 and z1 = y2 = x3,

which leads to the same equations for W (Y,X), W (Z, Y ) and W (X,Z).

[ψ(y1, x1)− (y1 − x1)] + [ψ(z1, y1)− (z1 − y1)] + [ψ(x1, z1)− (x1 − z1)]

Hence, they have the same number which is not necessarily 0, and it means non-

transitivity.

�

A.5 Lemma A.2

Lemma A.2 The following two statements are equal.

Statement 1: For any 0 ≤ x0 < x1, if x2 is such that f(x2, x1) = f(x1, x0), then

f(x2, x0) = 2f(x1, x0). Create a sequence {xi}, where i ∈ {0, 1, 2, 3, ..., 2n}, x0 < x1 <

x2 < ... < x2n, satisfying

f(x1, x0) = f(x2, x1)... = f(x2n , x2n−1)

If for some k, 0 ≤ k ≤ 2n, such that f(xk, x0) = kf(x1, x0), then f(x2n , xk) =

(2n − k)f(x1, x0).

Statement 2: f(x, y) = u(x)− u(y).

Proof:
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1. Statement 1 ⇒ Statement 2.

First, I want to show that, for any n, we have f(xk, x0) = kf(x1, x0) for any

0 < k ≤ 2n.

We prove it by induction on n.

(a) For n = 1, then k = 0, 1, 2, it is true as f(x0, x0) = 0f(x1, x0), f(x1, x0) =

1f(x1, x0), and f(x2, x0) = 2f(x1, x0).

(b) Want to show that if the statement is true for n− 1, it is also true for n.

By induction, if n−1 is true, f(xk, x0) = kf(x1, x0) for k = 1, 2, 3, ..., 2n−1,

we want to show that f(xk, x0) = kf(x1, x0) for k = 2n−1 + 1, ..., 2n.

Consider a sequence {yk}, such that y0 = x2n , y1 = x2n−1, ..., yk = x2n−k,

..., y2n−1 = x1, y2n = x0.

Since n − 1 is true for any sequence, we have f(yk, y0) = kf(y1, y0) for

k = 1, 2, 3, ..., 2n−1.

Then for k = 1, 2, 3, ..., 2n−1,

f(y2n , yk) = (2n − k)f(y1, y0)

⇒ f(x0, x2n−k) = (2n − k)f(x2n−1, x2n)

⇒ f(x2n−k, x0) = (2n − k)f(x1, x0)

Please note that 2n − k ∈ {2n−1, ..., 2n − 1}, hence, the statement is also

true for n.

Therefore, for any n, we have f(xk, x0) = kf(x1, x0) for 0 < k ≤ 2n.

Pick any 0 ≤ x < y and fix them. For any z ∈ [x, y], create a function:

g(z) = f(z, x) + f(y, z)− f(y, x)

We can find z 1
2

such that

f(z 1
2
, x) = f(y, z 1

2
)

then

g(z 1
2
) = 0

In the meantime, we have g(x) = 0, g(y) = 0.

If I can find a dense set M , such that g(z) = 0 for any z ∈ M , then g(z) = 0

for any z ∈ [x, y]. As x and y are arbitrary, by Lemma A.1, it is proved.
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Define z k
2n

, where n is any positive integer, 0 < k ≤ 2n, such that

f(z k+1
2n
, z k

2n
) = f(z 1

2n
, x)

=
1

2n
f(y, x)

By the conclusion of Statement 1, we have

g(z k
2n

) = f(z k
2n
, x) + f(y, z k

2n
)− f(y, x)

= kf(z 1
2n
, x) + (2n − k)f(z 1

2n
, x)− 2nf(z 1

2n
, x) = 0

then it is proved, as {z k
2n
} is a dense set.

2. Statement 2 ⇒ Statement 1.

As f(x, y) = u(x)− u(y), we have

f(x2, x0) = u(x2)− u(x0)

= u(x2)− u(x1) + u(x1)− u(x0)

= f(x2, x1) + f(x1, x0)

= 2f(x1, x0)

As f(x, y) = u(x)− u(y), we have

f(x2n , xk) = u(x2n)− u(xk)

= u(x2n)− u(x2n−1) + ...+ u(xk+1)− u(xk)

= f(x2n , x2n−1) + ...+ f(xk+1, xk)

= (2n − k)f(x1, x0)

�

A.6 Proposition A.1

Proposition A.1 Suppose the budget is variable, and the population n ≥ 2. For any

1 ≤ m < n, if person i has general regret function ψi(x, y) for any i ∈ {1, ..,m} while
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ψj(x, y) = x− y for any j ∈ {m+ 1, ..., n}. If the order

(x1, ..., xn) % (y1, ..., yn)⇐⇒
∑

ψi(xi, yi) ≥ 0

is transitive, then ψi(x, y) = ui(x)− ui(y) for any i ∈ {1, ..., n}.

Proof: If the budgets for the distributions

X = (x1, ..., xi−1, xi, xi+1, ..., xm, xm+1, ...xn)

Y = (x1, ..., xi−1, yi, xi+1, ..., xm, ym+1, ...yn)

Z = (x1, ..., xi−1, zi, xi+1, ..., xm, zm+1, ...zn)

are mx, my, mz, then

W (Y,X) = ψi(yi, xi) + (my − yi)− (mx − xi)

W (Z, Y ) = ψi(zi, yi) + (mz − zi)− (my − yi)

W (X,Z) = ψi(xi, zi) + (mx − xi)− (mz − zi)

which can be written as:

W (Y,X) = (my −mx) + ψi(yi, xi)− (yi − xi) (A.7)

W (Z, Y ) = (mz −my) + ψi(zi, yi)− (zi − yi) (A.8)

W (X,Z) = (mx −mz) + ψi(xi, zi)− (xi − zi) (A.9)

For any (xi, yi, zi), we can find my−mx and mz−my such that equations (7) and

(8) equal 0. To guarantee transitivity, the third equation has to be 0, which means

(7) + (8) + (9) = 0, then we have

(mx −mz) + ψi(xi, zi)− (xi − zi)

+(my −mx) + ψi(yi, xi)− (yi − xi)

+(mz −my) + ψi(zi, yi)− (zi − yi) = 0

⇒ ψi(yi, xi) + ψi(zi, yi) = ψi(zi, xi)

for any (xi, yi, zi) and for any i ∈ {1, ...,m}. By Lemma A.1, ψi(x, y) = ui(x)− ui(y)
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for any i ∈ {1, ..., n}.
�

A.7 Proof of Theorem 2.1

Proof: Suppose not, by Proposition A.1, every person i has a non-linear regret

function. There are two cases.

Case 1: there exist some persons i, some a > 0, and some triples (x, y, z), where

z > y > x ≥ 0, such that ψi(y, x) = ψi(z, y) = a and ψi(z, x) 6= 2a.

Suppose there exist some a and some triples (x1, y1, z1), where z1 > y1 > x1 > 0

such that ψ1(y1, x1) = ψ1(z1, y1) = a and ψ1(z1, x1) > (<)2a. By continuity, we can

find two other triples (x2, y2, z2) and (x3, y3, z3) such that ψ2(y2, x2) = ψ2(z2, y2) =

ψ3(y3, x3) = ψ3(z3, y3) = a. There are two cases:

1. Three persons are the same.

WLOG, suppose ψ2(z2, x2) ≥ (≤)2a and ψ3(z3, x3) ≥ (≤)2a.

Let three allocations be X = (x1, z2, y3, x4, ..., xn), Y = (y1, x2, z3, x4, ..., xn) and

Z = (z1, y2, x3, x4, ..., xn), we have

W (Y,X) = ψ1(y1, x1) + ψ2(x2, z2) + ψ3(z3, y3)

W (Z, Y ) = ψ1(z1, y1) + ψ2(y2, x2) + ψ3(x3, z3)

W (X,Z) = ψ1(x1, z1) + ψ2(z2, y2) + ψ3(y3, x3)

Then

W (Y,X) = 2a− ψ2(z2, x2) ≤ (≥)0

W (Z, Y ) = 2a− ψ3(z3, x3) ≤ (≥)0

W (X,Z) = 2a− ψ1(z1, x1) < (>)0

Hence, the signs for W (Y,X), W (Z, Y ), and W (X,Z) indicate a violation of

transitivity.

2. Two persons are different.

WLOG, suppose ψ2(z2, x2) ≤ (≥)2a. Again, suppose there are three allocations

X = (x1, z2, x3, ..., xn), Y = (y1, y2, x3, ..., xn) and Z = (z1, x2, x3, ..., xn), we
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have

W (Y,X) = ψ1(y1, x1) + ψ2(y2, z2) = 0

W (Z, Y ) = ψ1(z1, y1) + ψ2(x2, y2) = 0

W (X,Z) = ψ1(x1, z1) + ψ2(z2, x2) < (>)− 2a+ 2a = 0

Then the signs for W (Y,X), W (Z, Y ), and W (X,Z) also indicate a violation

of transitivity.

Case 2: for each person, we cannot find any triple (x, y, z), where z > y > x ≥ 0

such that ψ(y, x) = ψ(z, y) = a and ψ(z, x) 6= 2a.

If so, their regret functions satisfy the first part of the Statement 1 in Lemma A.2.

By Lemma A.2, to guarantee non-linearity, they have to violate the second part of

the Statement 1.

Create a sequence {xi1}, where i = 1, 2, ..., such that f(x1
1, x1) = ... = f(xi+1

1 , xi1) =

a. By Lemma 2, there exist k and 0 ≤ x1 < y1 = xk1 < z1 = x2n

1 , such that

f(y1, x1) = ka, f(z1, x1) = 2na and f(z1, y1) > (<)(2n − k)a. By continuity, we can

find two other triples (x2, y2, z2) and (x3, y3, z3) such that ψ2(y2, x2) = ψ3(y3, x3) = ka,

ψ2(z2, x2) = ψ3(z3, x3) = 2na. There are two cases:

1. Three persons are the same.

WLOG, suppose ψ2(z2, y2) ≥ (≤)(2n − k)a and ψ3(z3, y3) ≥ (≤)(2n − k)a.

Let three allocations be X = (x1, z2, y3, x4, ..., xn), Y = (y1, x2, z3, x4, ..., xn) and

Z = (z1, y2, x3, x4, ..., xn), we have

W (Y,X) = ψ1(y1, x1) + ψ2(x2, z2) + ψ3(z3, y3)

W (Z, y) = ψ1(z1, y1) + ψ2(y2, x2) + ψ3(x3, z3)

W (X,Z) = ψ1(x1, z1) + ψ2(z2, y2) + ψ3(y3, x3)

Then

W (Y,X) = −(2n − k)a+ ψ3(z3, y3) ≥ (≤)0

W (Z, y) = −(2n − k)a+ ψ1(z1, y1) > (<)0

W (X,Z) = −(2n − k)a+ ψ2(z2, y2) ≥ (≤)0

Hence, the signs for W (Y,X), W (Z, Y ), and W (X,Z) indicate a violation of

transitivity.
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2. Two persons are different.

WLOG, suppose ψ2(z2, y2) ≤ (≥)(2n − k)a.

We can find x′1 = x2n+k
1 such that f(x′1, z1) = ak, then f(x′1, y1) = 2na. Suppose

there are three allocations X = (x′1, x2, x3, ..., xn), Y = (z1, y2, x3, ..., xn) and

Z = (y1, z2, x3, ..., xn), we have

W (Y,X) = ψ1(z1, x
′
1) + ψ2(y2, x2) = 0

W (Z, Y ) = ψ1(y1, z1) + ψ2(z2, y2) < (>)0

W (X,Z) = ψ1(x′1, y1) + ψ2(x2, z2) = 0

Then the signs for W (Y,X), W (Z, Y ), and W (X,Z) also indicate a violation

of transitivity.

Therefore, to guarantee transitivity, no persons have non-linear regret functions.

�

A.8 Proof of Example 2.3

Proof: Suppose there are three allocations X = (x1, x2), Y = (y1, y2) and Z =

(z1, z2). WLOG, we assume x1 ≤ y1 ≤ z1, then

W (Y,X) = (y1 − x1)3 + (y2 − x2)3

W (Z, Y ) = (z1 − y1)3 + (z2 − y2)3

W (X,Z) = (x1 − z1)3 + (x2 − z2)3

Since the relationship among (x2, y2, z2) is arbitrary, we need to consider the fol-

lowing six conditions:

1. z2 ≥ y2 ≥ x2.

The signs for W (Y,X), W (Z, Y ) and W (X,Z) will be +,+,−, which means it

is transitive.

2. z2 ≥ x2 ≥ y2.

The signs will be ?,+,−, which means it is transitive.
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3. y2 ≥ z2 ≥ x2,

The signs will be +, ?,−, which means it is transitive.

4. x2 ≥ y2 ≥ z2.

Consider the following three possibilities:

(a) The signs of W (Y,X) and W (Z, Y ) are different. Then it is transitive.

(b) The signs are +,+. Then we have y1− x1 > x2− y2 and z1− y1 > y2− z2,

which indicates z1 − x1 > x2 − z2, therefore, the sign of W (X,Z) is −. In

sum, the signs are +,+,−, which means it is transitive.

(c) The signs are−,−. Similarly, we have y1−x1 < x2−y2 and z1−y1 < y2−z2,

which indicates z1 − x1 < x2 − z2, therefore, the sign of W (X,Z) is +. In

sum, the signs are −,−,+, which means it is transitive.

5. x2 ≥ z2 ≥ y2.

So far, we know the signs are ?,+, ?. Consider the following two possibilities:

(a) The signs are −,+, ?. Then it is transitive.

(b) The signs are +,+, ?. We can write

W (X,Z) = (x1 − y1 + y1 − z1)3 + (x2 − y2 + y2 − z2)3

= (x1 − y1)3 + (y1 − z1)3 + (x2 − y2)3 + (y2 − z2)3

+3(x1 − y1)(y1 − z1)(x1 − z1) + 3(x2 − y2)(y2 − z2)(x2 − z2)

As (x1−y1)3 +(y1−z1)3 +(x2−y2)3 +(y2−z2)3 is the opposite of W (Y,X)

plus W (Z, Y ), it is negative. In addition, (x1 − y1)(y1 − z1)(x1 − z1) is

negative and (x2 − y2)(y2 − z2)(x2 − z2) is also negative, so the signs are

+,+,−, which is transitive.

6. y2 ≥ x2 ≥ z2.

So far, we know the signs are +, ?, ?. Consider the following two possibilities:

(a) The signs are +,−, ?. Then it is transitive.

(b) The signs are +,+, ?. Similarly, as the sign of (x2 − y2)(y2 − z2)(x2 − z2)

is negative, the signs are +,+,−, which is transitive.
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As we have exhausted the possibilities, it is transitive.

�

B Proofs of Chapter 3

B.1 Lemmas

B.1.1 Lemma B.1

Lemma B.1 If

W (X, Y ) = V (. . . , 0, ψi1(xi1, yi1), . . . , ψig(xig, yig), 0, . . . , 0,

ψj1(xj1, yj1), . . . , ψjg(xjg, yjg), 0, . . .)

and ψik(xik, yik) > 0 > ψjk(xjk, yjk) for any k ∈ {1, . . . , g}, then

|ψik(xik, yik)| > |ψjk(xjk, yjk)| for any k ∈ {1, . . . , g} ⇐⇒ X � Y

and

|ψik(xik, yik)| < |ψjk(xjk, yjk)| for any k ∈ {1, . . . , g} ⇐⇒ Y � X

Proof: Given

W (X, Y ) = V (. . . , 0, ψi1(xi1, yi1), . . . , ψig(xig, yig), 0, . . . , 0,

ψj1(xj1, yj1), . . . , ψjg(xjg, yjg), 0, . . .)

we have

W (Y,X) = V (. . . , 0, ψi1(yi1, xi1), . . . , ψig(yig, xig), 0, . . . , 0,

ψj1(yj1, xj1), . . . , ψjg(yjg, xjg), 0, . . .)

As the functions ψ(x, y) are skew symmetric,

W (Y,X) = V (. . . , 0,−ψi1(xi1, yi1), . . . ,−ψig(xig, yig), 0, . . . , 0,

−ψj1(xj1, yj1), . . . ,−ψjg(xjg, yjg), 0, . . .)
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If ψik(xik, yik) = −ψjk(xjk, yjk) for any k ∈ {1, . . . , g},

W (Y,X) = V (. . . , 0, ψj1(xj1, yj1), . . . , ψjg(xjg, yjg), 0, . . . , 0,

ψi1(xi1, yi1), . . . , ψig(xig, yig), 0, . . .)

By anonymity,

W (Y,X) = V (. . . , 0, ψi1(xi1, yi1), . . . , ψig(xig, yig), 0, . . . , 0,

ψj1(xj1, yj1), . . . , ψjg(xjg, yjg), 0, . . .) = W (X, Y )

Therefore,

ψik(xik, yik) = −ψjk(xjk, yjk) for any k ∈ {1, . . . , g} ⇐⇒ X ∼ Y

By monotonicity and continuity, if ψik(xik, yik) > 0 > ψjk(xjk, yjk) for any k ∈
{1, . . . , g}, we have

|ψik(xik, yik)| > |ψjk(xjk, yjk)| for any k ∈ {1, . . . , g} ⇐⇒ X � Y

|ψik(xik, yik)| < |ψjk(xjk, yjk)| for any k ∈ {1, . . . , g} ⇐⇒ Y � X �

B.1.2 Lemma B.2

Lemma B.2 Suppose 0 < α1 6 . . . 6 αn. Given two rankings and (α1, . . . , αk), if

V (ψ1, . . . , ψk, 0, . . . , 0) > 0, ψk+1 < 0, . . . , and ψk+j < 0, where 1 6 j 6 n − k then

there exists α∗k+1, such that

V (ψ1, . . . , ψk, ψk+1(αk+1), . . . , ψk+j(αk+1), 0, . . . , 0) > 0

for any αk+1 > α∗k+1.

Proof: By monotonicity and continuity, either for all αk+1 > αk,

V (ψ1, . . . , ψk, ψk+1(αk+1), . . . , ψk+j(αk+1), 0, . . . , 0) > 0

or there exists α∗k+1,2 > αk, such that

V (ψ1, . . . , ψk, ψk+1(α∗k+1,2), . . . , ψk+j(α
∗
k+1,2), 0, . . . , 0) = 0
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If it is the first case, let α∗k+1 = αk; if it is the second case, let α∗k+1 = α∗k+1,2. Then

for any αk+1 > α∗k+1, we have

V (ψ1, . . . , ψk, ψk+1(αk+1), . . . , ψk+j(αk+1), 0, . . . , 0) > 0
�

B.2 Proof of Claim 3.1

There are six possible rankings, {D1, . . . , D6}, as is shown in the table.

Table B.1: Possible Rankings

D1 = (1
3
, 2

3
, 1) D2 = (1

3
, 1, 2

3
) D3 = (2

3
, 1

3
, 1)

D4 = (2
3
, 1, 1

3
) D5 = (1, 1

3
, 2

3
) D6 = (1, 2

3
, 1

3
)

Consider a 6 × 6 matrix. Each element (i, j) in the matrix tells the relationship

between Di and Dj. “+” in (i, j) says Di � Dj; “0” means Di ∼ Dj; “−” indicates

Dj � Di; and “?” stands for an unknown relationship between Di and Dj.

Given a matrix, if there is no “?”, we can tell whether the preference order is

transitive by the following steps.

Step 1: Check each row. If there are only 0 or + in the i row, then Di is the best

ranking. If multiple rows satisfy this condition, and all of the rows are exactly the

same, then the corresponding rankings are the best and they are indifferent. If no

row satisfies or multiple satisfying rows are different, then the preference orders are

not transitive.

Step 2: If i row satisfies the above condition, then remove i row and i column,

and get a 5× 5 matrix. Repeat checking and removing. If we can remove till there is

no element left, then the preference orders are transitive. Otherwise, they are not.

Consider relative definitions. By Lemma 1, we have

W (D1, D2) = V

(
ψ

(
2

3
, 1, α2

)
, ψ

(
1,

2

3
, α3

))
> 0

Similarly, we can get Matrix 1.

For those ? in the matrix, we have

W (D1, D4) = V

(
ψ

(
1

3
,
2

3
, α1

)
, ψ

(
2

3
, 1, α2

)
, ψ

(
1,

1

3
, α3

))

W (D3, D6) = V

(
ψ

(
2

3
, 1, α1

)
, ψ

(
1

3
,
2

3
, α2

)
, ψ

(
1,

1

3
, α3

))
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Table B.2: Matrix 1

1 2 3 4 5 6
1 0 + + ? ? +
2 − 0 ? + + ?
3 − ? 0 + + ?
4 ? − − 0 ? +
5 ? − − ? 0 +
6 − ? ? − − 0

W (D1, D5) = V

(
ψ

(
1

3
, 1, α1

)
, ψ

(
2

3
,
1

3
, α2

)
, ψ

(
1,

2

3
, α3

))
W (D2, D6) = V

(
ψ

(
1

3
, 1, α1

)
, ψ

(
1,

2

3
, α2

)
, ψ

(
2

3
,
1

3
, α3

))
W (D2, D3) = V

(
ψ

(
1

3
,
2

3
, α1

)
, ψ

(
1,

1

3
, α2

)
, ψ

(
2

3
, 1, α3

))
W (D4, D5) = V

(
ψ

(
2

3
, 1, α1

)
, ψ

(
1,

1

3
, α2

)
, ψ

(
1

3
,
2

3
, α3

))
By Lemma 1 and 2, given {α1, α2}, we can find α∗3 such thatW (D1, D4), W (D3, D6),

W (D1, D5) and W (D2, D6) are positive for any α3 > α∗3. Now we have Matrix 2.

Table B.3: Matrix 2

1 2 3 4 5 6
1 0 + + + + +
2 − 0 ? + + +
3 − ? 0 + + +
4 − − − 0 ? +
5 − − − ? 0 +
6 − − − − − 0

By Matrix 2, we have

1 � (2, 3) � (4, 5) � 6

Note that the elements (2, 3) and (3, 2), and the elements (4, 5) and (5, 4) have oppo-

site signs. Therefore, the preference order is transitive no matter what the signs of

W (D2, D3) and W (D4, D5) are. For example,

1. If W (D2, D3) > 0, W (D4, D5) > 0, then

1 � 2 % 3 � 4 % 5 � 6
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2. If W (D2, D3) > 0, W (D4, D5) < 0, then

1 � 2 % 3 � 5 � 4 � 6

3. If W (D2, D3) < 0, W (D4, D5) > 0, then

1 � 3 � 2 � 4 % 5 � 6

4. If W (D2, D3) < 0, W (D4, D5) < 0, then

1 � 3 � 2 � 5 � 4 � 6
�

B.3 Proof of Theorem 3.1

Let Ω be the set of all possible rankings, and Y be the set Ω \ X∗. Define set Yk
as all possible rankings where their differences between X∗ only involve the first

k ∈ {2, . . . , n} individuals. Note that for each ranking Y i
k ∈ Yk, the kth person’s

ranking has to be different from X∗. Then {Y2, . . . ,Yn} are independent sets and

Y = Y2 ∪ Y3 ∪ . . . ∪ Yn.

I need to find conditions such that if they are satisfied, then X∗ � Y i
k for any

Y i
k ∈ Yk and k ∈ {2, . . . , n}; and if they are not satisfied, there exists at least one

ranking preferred to X∗.

1. If k = 2, X∗ � Y 1
2 is always true as α1 < α2 is given.

2. If k = 3, we have Y3 = {Y 1
3 , . . . , Y

4
3 }. To simplify, I use relative definitions, but

the proof also applies to absolute definitions.

Y 1
3 =

(
2

n
,

3

n
,

1

n
,

4

n
, · · · , 1

)

Y 2
3 =

(
3

n
,

1

n
,

2

n
,

4

n
, · · · , 1

)
Y 3

3 =

(
1

n
,

3

n
,

2

n
,

4

n
, · · · , 1

)
Y 4

3 =

(
3

n
,

2

n
,

1

n
,

4

n
, · · · , 1

)
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Then

W (X∗, Y 1
3 ) = V

(
ψ

(
1

n
,

2

n
, α1

)
, ψ

(
2

n
,

3

n
, α2

)
, ψ

(
3

n
,

1

n
, α3

)
, 0, . . . , 0

)
(B.1)

W (X∗, Y 2
3 ) = V

(
ψ

(
1

n
,

3

n
, α1

)
, ψ

(
2

n
,

1

n
, α2

)
, ψ

(
3

n
,

2

n
, α3

)
, 0, . . . , 0

)
(B.2)

W (X∗, Y 3
3 ) = V

(
0, ψ

(
2

n
,

3

n
, α2

)
, ψ

(
3

n
,

2

n
, α3

)
, 0, . . . , 0

)
(B.3)

W (X∗, Y 4
3 ) = V

(
ψ

(
1

n
,

3

n
, α1

)
, 0, ψ

(
3

n
,

1

n
, α3

)
, 0, . . . , 0

)
(B.4)

By Lemma B.1, equations (B.3) and (B.4) are greater than 0. So I only need

to discuss equations (B.1) and (B.2). By Lemma B.1 again, we have

V

(
ψ

(
1

n
,

2

n
, α1

)
, ψ

(
2

n
,

3

n
, α2

)
, 0, . . . , 0

)
> 0

V

(
ψ

(
1

n
,

3

n
, α1

)
, ψ

(
2

n
,

1

n
, α2

)
, 0, . . . , 0

)
> 0

By Lemma B.2, we can always find α∗3,1 > α2 and α∗3,2 > α2, such that if

α3 > α∗3 = max{α∗3,1, α∗3,2}, then both equations (B.1) and (B.2) are greater

than 0. Therefore, if α3 > α∗3, W (X∗, Y i
3 ) > 0 for each Y i

3 ∈ Y3 and X∗ is the

best; if α3 < α∗3, W (X∗, Y i
3 ) < 0 for some Y i

3 ∈ Y3 and X∗ is not the best.

3. If k > 3, and the conditions are satisfied such that X∗ � Y i
j , where Y i

j ∈
Y2 ∪ . . . ∪ Yk−1.

I want to find conditions such that if they are satisfied, X∗ � Y i
k for any Y i

k ∈ Yk;
if not, X∗ is not the best choice.

Similarly, I use relative definition. Suppose individual k gets rank k′

n
, and

individual k′′ gets rank k
n

in Y i
k . As the kth individual always gets a worse rank

in X∗ than in Y i
k , we have k′ < k and ψ

(
k
n
, k
′

n
, αk
)
< 0.

W (X∗, Y i
k ) = V

(
ψ1, . . . , ψ

(
k′′

n
,
k

n
, αk′′

)
, . . . , ψk−1, ψ

(
k

n
,
k′

n
, αk

)
, 0, . . . , 0

)
(B.5)

Consider another ranking Y i
k−1 ∈ Yk−1, the only difference between Y i

k and Y i
k−1

is that individual k gets ranking k
n

and individual k′′ gets ranking k′

n
in Y i

k−1.

We have
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W (X∗, Y i
k−1) = V

(
ψ1, . . . , ψ

(
k′′

n
,
k′

n
, αk′′

)
, . . . , ψk−1, 0, . . . , 0

)
By W (X∗, Y i

k−1) > 0 and monotonicity, we have

V

(
ψ1, . . . , ψ

(
k′′

n
,
k

n
, αk′′

)
, . . . , ψk−1, 0, . . . , 0

)
> W (X∗, Y i

k−1) > 0 (B.6)

By lemma B.2, we can find α∗k > αk−1 such that if αk > α∗k, we have X∗ � Y i
k

for any Y i
k ∈ Yk and X∗ is the best; if αk < α∗k, X

∗ is not the best.

By induction on k, if k = n and αn > α∗n, then X∗ is the best choice. �

To understand the way to get critical value functions, I discuss more details when

the aggregate function is additive. Define Y j
k as one of the rankings where person k

takes position k − j and individuals {k + 1, . . . , n} take the same positions as X∗.

Suppose person k − j, whose original position has been taken by person k takes

position p2. So on and so forth, finally, a person pm takes position k. Define such a

loop as one circle and write it as

k → k − j → p2 → . . .→ pm → k

Define T as the first term of equation (B.6). Given j, to get αjk, I want to minimize

the value of T . Therefore, it satisfies the followings.

1. There should be only one circle involved in the equation. Denote it circle 1.

Suppose not, there is another circle denoted by circle 2. The aggregation of

circle 2 must be positive because of the induction process, which increases the

value of T .

2. In circle 1, only person k gets a better rank in Y j
k than X∗, while all the others

get lower rank in Y j
k , which implies that

k − j < p2 < . . . < pm < k

Suppose not, part of the circle, (pl, . . . , pt), satisfies pl−1 < pl, pt < pt+1 and

pl > . . . > pt. To simplify, I use absolute rankings. We have

T ′ = . . .+ ψ(pl−1, pl, αpl−1
) + ψ(pl, pl+1, αpl) + . . .
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+ψ(pt, pt+1, αpt) + ψ(pt+1, pt+2, αpt+1) + . . .

By regret aversion,

ψ(pl−1, pl, αpl−1
) > ψ(pl−1, pt, αpl−1

) + ψ(pt, pt−1, αpl−1
) + . . .+ ψ(pl+1, pl, αpl−1

)

> ψ(pl+1, pl, αpl) + . . .+ ψ(pt, pt−1, αpt−1) + ψ(pl−1, pt, αpl−1
)

Then

ψ(pl−1, pt, αpl−1
) < ψ(pl−1, pl, αpl−1

) + ψ(pl, pl+1, αpl) + . . .+ ψ(pt−1, pt, αpt−1)

Therefore, if we remove persons (pl, . . . , pt−1), T will be smaller. The circle

changes to

k → k − j → . . .→ pl−1 → pt . . .→ pm → k

and we have

T ′′ = . . .+ ψ(gl−1, gt, αpl−1
) + . . . < T ′

If pl−1 > pt, we can keep removing. In the end, we have only one circle and

each person except person k gets a lower rank in this circle.

3. Given j, in circle 1, person k moves upward j positions, and the persons from

k − j to k − 1 move downward 1 position.

Suppose not. At least one person moves down s positions, where s > 1, then by

regret aversion, we can decrease T by moving this person downward 1 position,

and the next person s− 1 positions. Keep breaking down, it ends up with each

person moving downward 1 position.

Therefore, given j, the particular equation to calculate αjk is the following

ψ(k − j, k, αjk) = ψ(k − j, k − j + 1, αk−j) + . . .+ ψ(k − 1, k, αk−1)

And

α∗k = max(α1
k, . . . , α

k−1
k )
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B.4 Proof of Theorem 3.2

By the proof of Theorem 3.1, we have

W (X∗, Y i
k ) = ψ

(
1

n
, αk−i

)
+ . . .+ ψ

(
1

n
, αk−1

)
− ψ

(
i

n
, αik

)
= 0

⇒ ψ(
i

n
, αik) =

k−1∑
j=k−i

ψ(
1

n
, αj) (B.7)

Take derivative with respect to n on both sides,

ψ1(
i

n
, αik)(−

i

n2
) + ψ2(

i

n
, αik)

∂αik
∂n

= − 1

n2

k−1∑
j=k−i

ψ1(
1

n
, αj)

=⇒ ψ2(
i

n
, αik)

∂αik
∂n

= − 1

n2

k−1∑
j=k−i

[
ψ1(

1

n
, αj)− ψ1(

i

n
, αik)

]

=⇒ ∂αik
∂n

=
1

n2

1

ψ2( i
n
, αik)

k−1∑
j=k−i

[
ψ1(

i

n
, αik)− ψ1(

1

n
, αj)

]
(B.8)

As ψ2(y − x, αi) < 0 for any i, I want to show that

ψ1(
i

n
, αik)−

1

i

k−1∑
j=k−i

ψ1(
1

n
, αj) > 0

for any i ∈ [1, k − 1]. Let ψ1( 1
n
, ᾱk,i) = 1

i

∑k−1
j=k−i ψ1( 1

n
, αj), then

ψ1(
i

n
, αik)− ψ1(

1

n
, ᾱk,i) > 0

which is the assumption.

Moreover, I want to show that there exists k for which α∗k is not constant. If

α∗k = αik, where i > 1, by equation (B.8), if ψ1( i
n
, αik)− ψ1( 1

n
, αj) > 0 and αj 6= αk−1

for some j, then
∂α∗k
∂n

> 0 . So I only need to show that for some k, α∗k 6= α1
k = αk−1.

Suppose not, we have αk−1 = αk−2 = . . . = α2 and αik 6 αk−1 for any i > 1,

because α∗k is the maximum value among αjk, where j ∈ [1, k − 1]. By monotonicity,
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ψ( i
n
, αik) > ψ( i

n
, αk−1). By equation (B.7), we have

ψ(
i

n
, αik) = i · ψ(

1

n
, αk−1) > ψ(

i

n
, αk−1)

A violation of regret aversion.

Regarding the limiting case, I will prove it by induction.

1. k = 3.

Recall that we have

ψ

(
i

n
, αik

)
=

k−1∑
j=k−i

ψ

(
1

n
, αj

)
If k = 3, i could be either 1 or 2. If i = 1, we have α1

3 = α2. If i = 2, we have

ψ

(
2

n
, α2

3

)
= ψ

(
1

n
, α1

)
+ ψ

(
1

n
, α2

)
I want to show that,

lim
n→∞

ψ
(

1
n
, α1

)
+ ψ

(
1
n
, α2

)
ψ
(

2
n
, α2

) > 1

Because this inequality implies that limn→∞ α
2
3 < α2, so limn→∞ α

∗
3 = α2. As

n → ∞, both the denominator and numerator of the LHS of the inequality go

to zero. Use L’Hopital’s Rule, we have

LHS =
ψ1 (0, α1) + ψ1 (0, α2)

2ψ1 (0, α2)
> 1

which is implied by α1 < α2.

2. k > 3, given the claim is true for {3, . . . , k − 1}.

(a) If i ∈ [1, k − 2], we have

ψ

(
i

n
, αik

)
=

k−1∑
j=k−i

ψ

(
1

n
, αj

)
= i · ψ

(
1

n
, α2

)

Again, by L’Hopital’s Rule, we have

lim
n→∞

ψ
(
i
n
, α2

)
ψ
(

1
n
, α2

) =
i · ψ1 (0, α2)

ψ1 (0, α2)
= i
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Therefore, limn→∞ ψ
(
i
n
, αik
)

= ψ
(
i
n
, α2

)
, then limn→∞ α

i
k = α2 for i ∈

[1, k − 2].

(b) Consider i = k − 1, we have

ψ

(
k − 1

n
, αk−1

k

)
=

k−1∑
j=1

ψ

(
1

n
, αj

)

= (k − 2)ψ

(
1

n
, α2

)
+ ψ

(
1

n
, α1

)
By L’Hopital’s Rule, if n→∞, we have

lim
n→∞

(k − 2)ψ
(

1
n
, α2

)
+ ψ

(
1
n
, α1

)
ψ
(
k−1
n
, α2

) =
(k − 2)ψ1 (0, α2) + ψ1 (0, α1)

(k − 1)ψ1 (0, α2)
> 1

as ψ12(y−x, α) < 0, which implies ψ1 (0, α1) > ψ1 (0, α2). We have αk−1
k <

α2.

Therefore, limn→∞ α
∗
k → α2 for k > 3. �

B.5 Proof of Example 3.3

Given x < y, we have

ψ1(y − x, α) = α(y − x)α−1

I want to show that

ψ1

(
j

n
, αjk

)
= αjk

(
j

n

)αjk−1

> ψ1

(
1

n
, ᾱk,j

)
=

1

j

k−1∑
i=k−j

αi

(
1

n

)αi−1

which is

αjk

(
j

n

)αjk
>

k−1∑
i=k−j

αi

(
1

n

)αi
By the definition of αjk, we have

(
j

n

)αjk
=

k−1∑
i=k−j

(
1

n

)αi

105



By αjk > αi,

αjk

(
j

n

)αjk
=

k−1∑
i=k−j

αjk

(
1

n

)αi
>

k−1∑
i=k−j

αi

(
1

n

)αi
for i = k − j, . . . , k − 1. �

B.6 Proof of Theorem 3.1∗

Let ΩG be the set of all possible rankings, and Y be the set ΩG \ XG. Define set

Yk as all possible rankings where their differences between XG only involve the first

k ∈ {2, . . . , I} groups. Note that for each ranking Y j
k ∈ Yk, at least one individual

in the kth group has a rank different from her rank in XG. Then {Y2, . . . ,YI} are

independent sets and Y = Y2 ∪ Y3 ∪ . . . ∪ YI .
We need to find conditions such that if they are satisfied, then XG � Y j

k for any

Y j
k ∈ Yk and for any k ∈ {2, . . . , I}; if not, XG is not the best choice.

1. k = 2. Let α∗2 = αN1 . Suppose a set of individuals A2 in group 2 of XG are not

in group 2 of Y j
2 , where Y j

2 ∈ Y2. And a set of individuals A′2 in group 2 of Y j
2

are not in group 2 of XG. Sets A2 and A′2 have the same number of individuals.

As αnI+1 > α∗2, the individuals in set A′2 are more sensitive than the individuals

in set A2. By lemma 1, we have XG � Y j
2 , where Y j

2 is any ranking in Y2.

2. If k > 2, and the conditions are satisfied such that XG � Y j
k−1, where Y j

k−1 ∈
Y2 ∪ . . . ∪ Yk−1.

Suppose a set of individuals Ak in the kth group of XG has different rank in

Y j
k , and a set of individuals A′k in the kth group of Y j

k is not in the kth group

of XG. Define the set of other individuals, who are not in either Ak or A′k but

have different rank in XG and Y j
k , as A′′k. We have

W (XG, Y
j
k ) = V (ψm1, . . .︸ ︷︷ ︸

m1∈A′k

, ψm2 , . . .︸ ︷︷ ︸
m2∈A′′k

, ψm3 , . . .︸ ︷︷ ︸
m3∈Ak

, 0) (B.9)

As each individual in Ak gets a lower rank in XG than in Y j
k , we have ψm3 < 0

where m3 ∈ Ak.

Consider another ranking Y j
k−1 ∈ Yk−1, the only difference between Y j

k and Y j
k−1

is that individuals Ak stay in the kth group and individuals A′k take the positions

of individuals Ak in Y j
k . We have W (XG, Y

j
k−1) > 0. By monotonicity, we have
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V (ψ′m1, . . .︸ ︷︷ ︸
m1∈A′k

, ψm2 , . . .︸ ︷︷ ︸
m2∈A′′k

, 0, . . .︸ ︷︷ ︸
m3∈Ak

, 0) > 0

By lemma B.2, we can find αk∗ > αNk−1
such that if αNk−1+1 > αk∗, we have

XG � Y i
k for any Y i

k ∈ Yk and XG is the best; if αNk−1+1 < αk∗, XG is not the

best.

By induction on k, if k = I and αNI−1+1 > αI∗, then XG is the best choice. �

To understand the way to get critical value functions, I discuss more details when

the aggregate function is additive. Given j, to get αjk, we want the value of equation

(B.10) be as small as possible.

V ′ = ψm1 + . . .︸ ︷︷ ︸
m1∈A′k

+ψm2 + . . .︸ ︷︷ ︸
m2∈A′′k

+ 0, . . .︸ ︷︷ ︸
m3∈Ak

+0 (B.10)

From XG to Y j
k , observe that one person p0 in group k moves to group g1. The

person p1 in group g1, whose original position has been taken by person p0, moves

to group g2. So on and so forth, finally, a person in group gm moves to group k and

takes the original position of person p0. Note that gi 6 k for any i ∈ {1, . . . ,m}.
Define such a loop as one circle and write it as

p0 → p1 → p2 → . . .→ pm → p0

or

k → g1 → g2 → . . .→ gm → k

1. I claim that to get αjk, there should be only one circle involved in equation

(B.10). Denote it circle 1. Suppose not, there is another circle denoted circle

2. If no persons in group k were involved in circle 2, then the aggregation of

circle 2 must be positive because of the induction, which increases the value

of V ′. If circle 2 involves at least one person in group k, we can calculate αjk
separately. If the critical values calculated from the two circles are different,

then we should only keep the circle leading to a greater αjk; otherwise, the extra

circle also increases the value of V ′. Because the α values of group k have to be

strictly greater than the larger critical value. Thus, there is only one circle.

2. I claim that it is impossible to have more than one persons from the same group

in one circle as we can always break it into several circles. Consider the following
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circle

p0 → p1 → . . .→ pu−1 → pu → . . .→ pv−1 → pv → . . .→ pm → p0

where pu and pv are from the same group. Then we can break this circle into

two circles as

p0 → p1 → . . .→ pu−1 → pv → . . .→ pm → p0

and

pv−1 → pu → . . .→ pv−1

Therefore, we have only one person from group k in circle 1. As person Nk−1 +1

has the highest level of sensitivity in group k, if this person has a smaller level

of sensitivity than the critical value, then everyone in group k has. So we only

need to consider the circles including person Nk−1 + 1 and calculate the critical

value of αjNk−1
as αk,j.

3. I claim that in circle 1, only person p0 gets a higher rank in Y j
k , while all the

others get lower rank in Y j
k , which implies that

p1 < p2 < . . . < pm < p0

or

g1 < g2 < . . . < gm < k

Suppose not, part of the circle, (pl, . . . , pt) in groups (gl, . . . , gt), satisfies gl−1 <

gl > . . . > gt < gt+1. To simplify, let the group number stands for the rank. We

have

V ′1 = . . .+ ψ(gl−1, gl, αpl−1
) + ψ(gl, gl+1, αpl) + . . .

+ψ(gt, gt+1, αpt) + ψ(gt+1, gt+2, αpt+1) + . . .

By regret aversion,

ψ(gl−1, gl, αpl−1
) > ψ(gl−1, gt, αpl−1

) + ψ(gt, gt−1, αpl−1
) + . . .+ ψ(gl+1, gl, αpl−1

)

> ψ(gl+1, gl, αpl) + . . .+ ψ(gt, gt−1, αpt−1) + ψ(gl−1, gt, αpl−1
)
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Then

ψ(gl−1, gt, αpl−1
) < ψ(gl−1, gl, αpl−1

) + ψ(gl, gl+1, αpl) + . . .+ ψ(gt−1, gt, αpt−1)

Therefore, if remove persons (pl, . . . , pt−1), the value of V ′ will decrease. The

circle changes to

p0 → p1 → . . .→ pl−1 → pt . . .→ pm → p0

or

k → g1 → . . .→ gl−1 → gt . . .→ gm → k

and we have

V ′2 = . . .+ ψ(gl−1, gt, αpl−1
) + . . . < V ′1

If gl−1 > gt, we can keep removing. In the end, we have only one circle and each

person except person p0 gets a lower rank in this circle.

4. I claim that given j, in circle 1, the most sensitive person in group k moves

upward j groups, and the least sensitive persons in group k − j to group k − 1

moves downward 1 group. Suppose not. First, if at least one person is not

the least sensitive person in the group, then we can replace this person by the

least sensitive person and it decreases the value of V ′. Second, if at least one

person moves downward s groups, where s > 1, then by regret aversion, we can

decrease the value of V ′ by moving this person down by 1 group, and the least

sensitive person in the next group by s−1 groups. Keep breaking down, it ends

up with each person moving downward 1 group.

Therefore, given any j = 1, . . . , k − 1, the particular equation to calculate αk,j is

the following

ψ(k − j, k, αk,j) = ψ(k − j, k − j + 1, αNk−j) + . . .+ ψ(k − 1, k, αNk−1
)

and

αk∗ = maxj{αk,j}

XG is the best among Y2 ∪ . . . ∪ Yk if and only if αNk−1+1 > αk∗.

By induction, we have XG is the best if and only if αNk−1+1 > αk∗ for any k =

{2, . . . , I}. �
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B.7 Proof of Claim 3.2

Suppose XG is not the best. As ν is stable, there is a best ranking X ′G for ν, and

X ′G � XG. Suppose X ′G and XG differ only in (some of) the first k groups. Suppose

a set of individuals Gk are in the kth group of XG but not in the kth group of X ′G;

and a set of individuals G′k are in the kth group of X ′G but not in the kth group of

XG. Sets Gk and G′k are disjoint and have the same number of individuals (recall that

XG and X ′G have the same structure ν). As XG puts people in a descending order of

sensitivity, the individuals in Gk are in the kth group and they are the least sensitive

people before the (k + 1)th group. Therefore, all individuals in G′k are more sensitive

than the individuals in Gk.

Suppose both Gk and G′k have m individuals. Starting from X ′G, switch the

positions of individuals in Gk and G′k in the following way. Put the individuals in

each set in a descending order of sensitivity. Switch the positions of individual j in

Gk and individual j in G′k, where j = 1, . . . ,m. Define the new ranking as Xk
G.

Observe that all individuals in G′k get a higher rank in Xk
G than in X ′G. As all of

them are more sensitive than the individuals in Gk, by Lemma 1, we have Xk
G � X ′G.

A contradiction. �

B.8 Proof of Claim 3.3

Consider a structure with one group. It has a best choice as there is only one ranking

in the choice set.

Consider structures with two groups. There are n − 1 of them. The structures

are [i, n − i] for any i = 1, . . . , n − 1. By the proof of Theorem 1∗, we only need to

compare the sensitivities of person i and i + 1. As person i is more sensitive than

person i + 1, where αi < αi+1, X∗G is always preferred to the alternative rankings.

Therefore, the n− 1 structures with two groups are stable. �

B.9 Proof of Claim 3.4

Consider a case where each group has the same level of sensitivity. The sequence of

sensitivities is simplified as (α1, . . . , αI). Create a sequence

α∗ = (α1, α2, α
∗
3, . . . , α

∗
I)

where α∗3 > α2 and α∗i is the critical value of αi for i = 3, . . . , I.
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Consider any alternative structures ν ′ = [n1, n2, n
′
3, . . . , n

′
I ]. Suppose the first

different group between ν and ν ′ is group k > 3. There are two cases: one is n′k > nk

where ν ′ merges group k with some other individuals; the other one is n′k < nk where

ν ′ splits group k. I can show that the critical value of group k in ν ′ is larger than αk

in the first case, and the critical value of group k + 1 in ν ′ is larger than αk which

is the actual value of group k + 1 in the second case. Then ν ′ is not stable in either

case and ν is the only stable structure and therefore the optimal stable structure.

1. If n′k > nk.

First, I want to show that α∗k = αk−1
k given α∗3 > α2 and αi = α∗i for i = 3, . . . , I.

I prove it by induction on k. For k = 3, we have α∗3 = max{α1
3, α

2
3}. As α1

3 = α2

and α∗3 > α2, we have α∗3 = α2
3. If it is true for k − 1, then I need to show that

it is also true for k. Recall that αjk is implied by the equation

ψ

(
nk−j + 2(nk−j+1 + . . .+ nk−1) + nk

2n
, αjk

)

= ψ

(
nk−j + nk−j+1

2n
, αk−j

)
+ . . .+ ψ

(
nk−2 + nk−1

2n
, αk−2

)
+ψ

(
nk−1 + nk

2n
, αk−1

)
= ψ

(
nk−j + 2(nk−j+1 + . . .+ nk−2) + nk−1

2n
, αj−1

k−1

)
+ψ

(
nk−1 + nk

2n
, αk−1

)
By the assumption, αjk increases with both terms

nk−j+2(nk−j+1+...+nk−2)+nk−1

2n
and

αj−1
k−1. As both of them are maximized at j = k−1, we have j = k−1. Therefore,

α∗k = αk−1
k for each k > 3.

Second, I want to show that α∗k
′ increases with n′k. By the first part, α∗k

′ = αk−1
k
′,

then we have

ψ

(
n1 + 2(n2 + . . .+ nk−1) + nk

2n
, α∗k

′
)

= ψ

(
n1 + 2(n2 + . . .+ nk−2) + nk−1

2n
, αk−1

)
+ ψ

(
nk−1 + n′k

2n
, αk−1

)
As α∗k

′ = αk when n′k = nk, again by the assumption, α∗k
′ > αk when n′k > nk.

Therefore, αk is smaller than the critical value and ν ′ is not stable.
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2. If n′k < nk.

First, I want to show that if n′k + n′k+1 < nk, then the structure is not stable.

Consider α2
k+2
′, we have

ψ

(
n′k + 2n′k+1 + n′k+2

2n
, α2

k+2

)

= ψ

(
n′k + n′k+1

2n
, αk

)
+ ψ

(
n′k+1 + n′k+2

2n
, αk

)
< ψ

(
n′k + 2n′k+1 + n′k+2

2n
, αk

)
Then αk < α2

k+2 6 α∗k+2
′ and it is not stable. Therefore, nk 6 n′k + n′k+1.

Second, I want to show that α∗k+1
′ > αk. Note that

ψ

(
n1 + 2(n2 + . . .+ n′k) + n′k+1

2n
, αkk+1

′
)

= ψ

(
n1 + 2(n2 + . . .+ nk−2) + nk−1

2n
, αk−1

)
+ ψ

(
nk−1 + n′k

2n
, αk−1

)
+ψ

(
n′k + n′k+1

2n
, αk

)
and

ψ

(
n1 + 2(n2 + . . .+ nk−1) + nk

2n
, αk

)
= ψ

(
n1 + 2(n2 + . . .+ nk−2) + nk−1

2n
, αk−1

)
+ ψ

(
nk−1 + nk

2n
, αk−1

)
We have

ψ

(
n1 + 2(n2 + . . .+ n′k) + n′k+1

2n
, αkk+1

′
)

= ψ

(
n1 + 2(n2 + . . .+ nk−1) + nk

2n
, αk

)
− ψ

(
nk−1 + nk

2n
, αk−1

)
+ψ

(
nk−1 + n′k

2n
, αk−1

)
+ ψ

(
n′k + n′k+1

2n
, αk

)
As n′k < nk, we have

ψ

(
nk−1 + nk

2n
, αk−1

)
> ψ

(
nk−1 + n′k

2n
, αk−1

)

112



+ψ

(
nk − n′k

2n
, αk−1

)
then

−ψ
(
nk−1 + nk

2n
, αk−1

)
+ ψ

(
nk−1 + n′k

2n
, αk−1

)
< −ψ

(
nk − n′k

2n
, αk−1

)
We have

ψ

(
n1 + 2(n2 + . . .+ n′k) + n′k+1

2n
, αkk+1

′
)

< ψ

(
n1 + 2(n2 + . . .+ nk−1) + nk

2n
, αk

)
− ψ

(
nk − n′k

2n
, αk−1

)
+ψ

(
n′k + n′k+1

2n
, αk

)
The first part indicates that nk < 2n′k + n′k+1. By strict convexity, we have

ψ(x, α) + ψ(z − x, α) < ψ(y, α) + ψ(z − y, α), where y < x < z − x < z − y.22

So

ψ

(
n1 + 2(n2 + . . .+ nk−1) + nk

2n
, αk

)
+ ψ

(
n′k + n′k+1

2n
, αk

)
< ψ

(
n1 + 2(n2 + . . .+ n′k) + n′k+1

2n
, αk

)
+ ψ

(
nk − n′k

2n
, αk−1

)
Then

ψ

(
n1 + 2(n2 + . . .+ n′k) + n′k+1

2n
, αkk+1

′
)

< ψ

(
n1 + 2(n2 + . . .+ n′k) + n′k+1

2n
, αk

)
Therefore, αk < αkk+1

′ 6 α∗k+1
′ and the structure is not stable.

By strict convexity, we have ψ(x + y, α) > ψ(x, α) + ψ(y, α). Given ∂ψ(x,α)
∂α

< 0, for

some very small 0 6 ε1 6 ε2, we can still have ψ(x+y, α+ε2) > ψ(x, α)+ψ(y, α+ε1).

Therefore, if the sensitivities of each group are slightly different, the claim still holds.

�

22Convexity indicates that f ′′(x) < 0. Then ψ(x,α)−ψ(y,α)
x−y < ψ(z−y,α)−ψ(z−x,α)

(z−y)−(z−x) as the LHS can

be seen as the slope of some point between y and x and the RHS can be seen as the slope of some
point between z − x and z − y. Therefore, ψ(x, α) + ψ(z − x, α) < ψ(y, α) + ψ(z − y, α).
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C Proofs of Chapter 4

C.1 Appendix I

Recall α̂ = ŴfŴgα̂h + Ŵf

(
1− Ŵg

)
α̂g + (1− Ŵf )α̂f . To avoid confusion, we collect

our notation here. The sample and population moments are

ĝ(α, β) ≡ 1

n

n∑
i=1

G(Zi, α, β), ĥ(α, γ) ≡ 1

n

n∑
i=1

H(Zi, α, γ), f̂(α, β, γ) ≡ 1

n

n∑
i=1

F (Zi, α, β, γ),

g0(α, β) ≡ E{G(Z, α, β)}, h0(α, γ) ≡ E{H(Z, α, γ)}, f0(α, β, γ) ≡ E{F (Z, α, β, γ)}.

The true and pseudo-true parameters are (θj = θj0 if the model is correct, j = g, h, f)

θg0 ≡ {α0, β0}, θh0 ≡ {α0, γ0}, θf0 ≡ {α0, β0, γ0}, θg ≡ {αg, βg}, θh ≡ {αh, γh}, θf ≡ {αf , βf , γf},

cg ≡ g0(θg) 6= 0 if θg 6= θg0, ch ≡ h0(θh) 6= 0 if θh 6= θh0 , cf ≡ f0(θf ) 6= 0 if θf 6= θf0 .

With Ω̂g →p Ωg and Ω̂h →p Ωh,

{α̂g, β̂g} minimizes Q̃g(α, β) ≡ ĝ(α, β)
′
Ω̂gĝ(α, β), {α̂h, γ̂h} minimizes Q̃h(α, γ) ≡ ĥ(α, γ)′Ω̂hĥ(α, γ),

{αg, βg} minimizes Q̃g
0(α, β) ≡ g0(α, β)′Ωgg0(α, β), {αh, γh} minimizes Q̃h

0(α, γ) ≡ h0(α, γ)′Ωhh0(α, γ);

Q̂g(α, β) ≡ Q̃g(α, β)

kg
, Q̂h(α, γ) ≡ Q̃h(α, γ)

kh
, Q̂g ≡ Q̂g(α̂g, β̂g), Q̂

h ≡ Q̂h(α̂h, γ̂h), Q
g
0 ≡

c
′
gΩgcg

kg
, Qh

0 ≡
c
′

hΩhch
kh

;

Ŵg ≡
Q̂g(α̂g, β̂g)

Q̂g(α̂g, β̂g) + Q̂h(α̂h, γ̂h)
and Ŵf ≡ 1− 1

nτ Q̂f (α̂f , β̂f , γ̂f ) + 1
.

C.1.1 Proof of Lemma 4.1

To obtain the probability limits of Ŵg and Ŵf , first we consider without loss of

generality the probability limit of Q̂g when model G is correctly specified, and when

it’s misspecified. The asymptotics for Q̂h and Q̂f are obtained following the same

logic. After these derivations, we then obtain the probability limits of Ŵg and Ŵf

based on Q̂g, Q̂h and Q̂f . First we have

nQ̂g = {Ω̂1/2
g

√
nĝ(θ̂g)}′{Ω̂1/2

g

√
nĝ(θ̂g)} 1

kg
. (C.1)
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From the first order condition for θ̂g minimizing Q̃g(θ), we have

√
n∇θĝ(θ̂g) · Ω̂gĝ(θ̂g) = 0.

Taylor-expanding the last term ĝ(θ̂g) around θg gives

0 =
√
n∇θĝ(θ̂g) · Ω̂g{ĝ(θg) +∇θ′ ĝ(θ

g
)(θ̂g − θg)}

= ∇θĝ(θ̂g) · Ω̂g

√
nĝ(θg) +∇θĝ(θ̂g) · Ω̂g∇θ′ ĝ(θ

g
)
√
n(θ̂g − θg)

where θ
g

is a mean value between θg and θ̂g. If the model is correctly specified,

θg = θg0. This gives

√
n(θ̂g − θg) = −(Ĥg)−1∇θĝ(θ̂g) · Ω̂g

√
nĝ(θg) where Ĥg ≡ ∇θĝ(θ̂g)Ω̂g∇θ′ ĝ(θ

g
).

(C.2)

Case i). Suppose that G is correctly specified. By Assumption A1, A2, A3, A5,

and A6, the conditions of Theorem 2.1 of in Newey and McFadden (1994) (uniqueness,

compactness, continuity, and uniform convergence) hold for GMM estimation of model

G, so that θ̂g →p θg0. For Ω̂
1/2
g
√
nĝ(θ̂g) in equation (C.1), expanding ĝ around θg0, we

have

Ω̂1/2
g

√
nĝ(θ̂g) = Ω̂1/2

g

√
nĝ(θg0) + Ω̂1/2

g ∇θ′ ĝ(θ
g
)
√
n(θ̂g − θg0)

where θ
g

is a mean value between θg0 and θ̂g. Plug equation (C.2) with θg replaced by

θg0 into this equation to get

Ω̂1/2
g

√
nĝ(θ̂g) = Ω̂1/2

g

√
nĝ(θg0)− Ω̂1/2

g ∇θ′ ĝ(θ
g
)(Ĥg)−1∇θĝ(θ̂g)Ω̂g

√
nĝ(θg0)

= {Ik̃g − Ω̂1/2
g ∇θ′ ĝ(θ

g
)(Ĥg)−1∇θĝ(θ̂g)Ω̂1/2

g } · Ω̂1/2
g

√
nĝ(θg0) = Π̂∗gΩ̂

1/2
g

√
nĝ(θg0) (C.3)

where Π̂∗g ≡ Ik̃g − Ω̂1/2
g ∇θ′ ĝ(θ

g
)(Ĥg)−1∇θĝ(θ̂g)Ω̂1/2

g

and Ik̃g is the k̃g × k̃g identity matrix and k̃g is the number of moments in the model

G.

Under Assumption A7, A9, A10, A11 and A12,
√
nĝ(θg0) →d N(0,Σg) where

Σg = E{G(Z, θg0)G(Z, θg0)′}, and with Ω−1
g = Σg, Ω̂

1/2
g
√
nĝ(θg0) →d N(0, Ik̃g). By

Assumption A11, ∇θĝ(θ
g
)→p ∇θg0(θg0), ∇θĝ(θ̂g)→p ∇θg0(θg0), and Ĥg →p Hg which

is non-singular by Assumption A8. Then, we have

Π̂∗g →p Π∗g ≡ Ik̃g − Ω1/2
g ∇θ′g0(θg0)(Hg)−1∇θg0(θg0)Ω1/2

g
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where Π̂∗g is a k̃g × k̃g symmetric matrix that is idempotent with trace(Πg) = kg,

kg ≡ k̃g − k∗g where k∗g is the number of parameters in the model G. Therefore,

nQ̂g = {Ω̂1/2
g

√
nĝ(θg0)}′Π̂∗g{Ω̂1/2

g

√
nĝ(θg0)}/kg →d χ2

kg/kg.

Case ii). Suppose that G is misspecified. Under Assumption A1, A3, A4, A5, and

A6, θ̂g →p θg 6= θg0 by Lemma 1 of Hall (2000). For Ω̂
1/2
g
√
nĝ(θ̂g) in (C.1), Taylor-

expand ĝ around θg to get, with cg ≡ g0(αg, βg)

Ω̂1/2
g

√
nĝ(θ̂g) = Ω̂1/2

g

√
nĝ(θg) + Ω̂1/2

g ∇θ′ ĝ(θ
g
)
√
n(θ̂g − θg)

= Ω̂1/2
g

√
n{ĝ(θg)− cg}+ Ω̂1/2

g ∇θ′ ĝ(θ
g
)
√
n(θ̂g − θg) + Ω̂1/2

g

√
ncg. (C.4)

Under Assumption A7, A9, A10, A11 and Ω̂
1/2
g →p Ω

1/2
g , the first term is asymp-

totically normal. Also, by Assumptions A12 to A15, using Theorem 2 of Hall and

Inoue (2003),
√
n(θ̂g − θg) is asymptotically normal with mean zero. Thus, the sum

of first two terms in (C.4) are bounded in probability. However, the third term in

(C.4) diverges at the rate
√
n (= Op(n

1/2)), and consequently, nQ̂g diverges at the

rate n as n→∞.

In short, the asymptotics of nQ̂g is summarized as follows:

Case i) G is correctly specified =⇒ nQ̂g →d χ2
kg
/kg as n→∞

Case ii) G is misspecified =⇒ nQ̂g diverges as n→∞.

In the following, we investigate the probability limits of Ŵg and Ŵf , using these

results.

Case 1). Suppose both g0(α0, β0) = 0 and h0(α0, γ0) = 0. Then, f0(α0, β0, γ0) =

0. By A1, A2, A3, A5, and A6, {α̂g, β̂g} →p {α0, β0}, {α̂h, γ̂h} →p {α0, γ0}, and

{α̂f , β̂f , γ̂f} →p {α0, β0, γ0}, so Q̂g →p 0, Q̂h →p 0, and Q̂f →p 0. For nτ Q̂f , following

the same derivation in (C.3), we have

nτ Q̂f = nτ f̂(α̂f , β̂f , γ̂f )
′Ω̂f f̂(α̂f , β̂f , γ̂f )

1

kf

= nτ−1
{

Π̂f Ω̂
1/2
f

√
nf̂(θf0 )

}′ {
Π̂f Ω̂

1/2
f

√
nf̂(θf0 )

} 1

kf
= nτ−1χ̂2

kf

1

kf

where Π̂f ≡ Ik̃f−Ω̂
1/2
f ∇θ′ f̂(θ

f
)(Ĥf )−1∇θf̂(θ̂f )Ω̂

1/2
f and χ̂2

kf
≡ {Π̂f Ω̂

1/2
f

√
nf̂(θf0 )}′{Π̂f Ω̂

1/2
f

√
nf̂(θf0 )}.
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Following the same steps as in Case i) of Lemma 1, we have χ̂2
kf
→d χ2

kf
which is

bounded in probability, and consequently, nτ Q̂f →p 0 for τ < 1, and

Ŵf = 1− 1

nτ Q̂f + 1
= 1− 1

nτ−1nQ̂f + 1
→p 0.

As for Ŵg, due to nQ̂g(α̂g, β̂g) →d χ2
kg
/kg and nQ̂h(α̂h, γ̂h) →d χ2

kh
/kh, Ŵg =

nQ̂g(α̂g, β̂g)/{nQ̂g(α̂g, β̂g) + nQ̂h(α̂h, γ̂h)} converges to a ratio of possibly dependent

random variables, which lies between zero and one with probability one. We do

not need the limiting distribution of Ŵg
23, as it is enough to have Ŵg bounded in

probability to ensure ŴfŴg →p 0 when Ŵf →p 0.

Case 2). Suppose g0(α0, β0) = 0 but h0(α0, γ0) 6= 0. Then {α̂g, β̂g} →p {α0, β0},
{α̂h, γ̂h} →p {αh, γh}, and {α̂f , β̂f , γ̂f} →p {αf , βf , γf}. By the continuous mapping

theorem and uniform convergence of Q̂g and Q̂h, we have Q̂g →p Qg
0 = c

′
gΩgcg/kg = 0,

Q̂h →p Qh
0 = c

′

hΩhch/kh > 0, and Q̂f →p Qf
0 = c

′

fΩfcf/kf > 0. From Case ii), nQ̂h

diverges as n→∞ while nQ̂g is bounded in probability, and thus Ŵg = nQ̂g/(nQ̂g +

nQ̂h)→p 0. As for Ŵf , due to Q̂f →p Qf
0 = c

′

fΩfcf/kf > 0, we have

Ŵf = 1− 1

nτ Q̂f + 1
= 1− 1

nτ−1nQ̂f + 1
→p 1

and ŴfŴg →p 0.

Case 3). Suppose now g0(α0, β0) 6= 0 but h0(α0, γ0) = 0. Then {α̂g, β̂g} →p

{αg, βg}, {α̂h, γ̂h} →p {α0, γ0}, and {α̂f , β̂f , γ̂f} →p {αf , βf , γf}. So Q̂g →p Qg
0 =

c
′
gΩgcg/kg > 0, Q̂h →p Qh

0 = c
′

hΩhch/kh = 0, and Q̂f →p Qf
0 = c

′

fΩfcf/kf > 0.

Following the same argument as in Case 2), Ŵg →p 1 and Ŵf →p 1. In short, the

probability limits of Ŵf and ŴgŴf are categorized as follows:

Case 1) Both G and H are correctly specified =⇒ Ŵf →p 0 and ŴfŴg →p 0

Case 2) G is correctly specified, but H is not =⇒ Ŵf →p 1 and ŴfŴg →p 0

Case 3) H is correctly specified, but G is not =⇒ Ŵf →p 1 and ŴfŴfg →p 1.

Q.E.D.

23If Q̂g and Q̂f happen to be independent, then Ŵg would be a ratio of independent Chi-squareds
and so converges to a beta distribution with shape parameters kg/2 and kk/2. But there is no reason
to impose that these distributions be independent.
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C.1.2 Proof of Theorem 4.2

Recall equation (4.1) and rewrite it as

α̂ = α0 + ŴfŴg(α̂h − α0) + Ŵf

(
1− Ŵg

)
(α̂g − α0) + (1− Ŵf )(α̂f − α0)

=⇒
√
n(α̂− α0) = ŴfŴg

√
n(α̂h − α0) + Ŵf

(
1− Ŵg

)√
n(α̂g − α0) + (1− Ŵf )

√
n(α̂f − α0)

= ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − αg) + (1− Ŵf )

√
n(α̂f − αf ) (C.5)

+ ŴfŴg

√
n(αh − α0) + Ŵf

(
1− Ŵg

)√
n(αg − α0) + (1− Ŵf )

√
n(αf − α0)

Now we show the asymptotic normality of α̂ and the form of Ṽ depending on

which model is correct.

Case 1). Suppose G and H are both correct. Then, because of αg = αh = αf = α0,

αg, αh, αf in the first line of (C.5) are replaced by α0, and the second line dis-

appears. Following the same argument as in Theorem 3.4 of Newey and McFad-

den, under Assumption A7, A9, A10 and A11, the central limit theorem yields

n−1/2
∑
i

G(Zi, α0, β0) →d N(0,Σg) where Σg = E{G(Z, α0, β0)G(Z, α0, β0)′}. Along

with ĝ(α̂, β̂g) →p g0(θg0) = 0 and ∇αĝ(α̂, β̂g) →p ∇αg0(θg0), we can establish asymp-

totic normality of
√
n(α̂g − α0). Following the same argument, along with the con-

sistency of (α̂h, β̂h) and (α̂f , β̂f , γ̂f ), the asymptotic normality of
√
n(α̂h − α0) and

√
n(α̂f − α0) are established. Therefore, by Lemma 1 on Ŵf →p 0 and ŴgŴf →p 0,

and boundedness of
√
n(α̂g − α0) and

√
n(α̂h − α0) in probability, the asymptotic

normality of
√
n(α̂f − α0), and the continuous mapping theorem, we have

√
n(α̂− α0)→d N(0, Ṽ f ).

By Assumption A8

1

n

∑
i

η̂fi η̂
f ′
i →p Ṽ f ≡ E(ηfηf ′) where

√
n(α̂f − α0) =

1√
n

∑
i

η̂fi ;

η̂fi is the influence function of α̂f (the details of η̂fi are given in (C.14) of the Appendix

III), making Ṽ f = Ṽ .

Case 2). Suppose G is correct, but H is not (αh − α0 ≡ δh 6= 0). In this case, F
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is also misspecified (αf − α0 ≡ δf 6= 0). Then, (C.5) can be rewritten as

√
n(α̂− α0) = ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − α0) + (1− Ŵf )

√
n(α̂f − αf )

+ ŴfŴg

√
nδh + (1− Ŵf )

√
nδf (C.6)

By Theorem 1, (α̂g, β̂g)→p (α0, β0), while (α̂h, γ̂h)→p (αh, γh) and (α̂f , β̂f , γ̂f )→p

(αf , βf , γf ). Following the same argument as above, we have the asymptotic normality

of
√
n(α̂g − α0). Under Assumption A7, A9, A10, A11, A12, A13, A14, and A15, by

Theorem 2 of Hall and Inoue (2003),
√
n(α̂h−αh) is asymptotically normal with mean

zero and a complex form of the variance. The same argument holds for
√
n(α̂f − αf )

too. In the second line of (C.6), ŴfŴg

√
n =

(
1− 1

Op(nτ )+1

)
Op(1)

Op(1)+Op(n)
O(
√
n) and

(1 − Ŵf )
√
n = 1

Op(nτ )+1
O(
√
n), and thus for τ > 1/2, the second line disappears as

n → ∞. By Lemma 1 on Ŵf →p 1 and ŴgŴf →p 0, boundedness of
√
n(α̂h − αh)

and
√
n(α̂f − αf ) in probability, the asymptotic normality of

√
n(α̂g − α0) and the

continuous mapping theorem, we have
√
n(α̂−α0)→d N(0, Ṽ g). By Assumption A8,

we get

1

n

∑
i

η̂gi η̂
g′
i →p Ṽ g ≡ E(ηgηg′) where

√
n(α̂g − α0) =

1√
n

∑
i

η̂gi ;

η̂gi is the influence function of α̂g (the details of η̂gi are given in (C.16) of the Appendix

III), making Ṽ g = Ṽ .

Case 3). Suppose H is correct, but G is not (=⇒ αg − α0 ≡ δg 6= 0). Then the

same argument as in Case 2) applies, replacing Ŵg with 1 − Ŵg, and switching the

roles of β and γ and the roles of g and h.

C.2 Appendix II

Let the model G be “locally misspecified” when the parameter in the data generating

process takes the form θg = θg0 + δgn
−s for a constant δg and s > 0, while θg0 satisfies

E{G(Z, θg0)} = 0 due to Assumption A3. Analogously, let the model H be “locally

misspecified” when the parameter in the data generating process is θh = θh0 + δhn
−s

with E{H(Z, θh0 )} = 0. When s = 1/2, δgn
−s is ‘Pitman drift’ as in Pitman (1949),

Newey and West (1987), Bera and Yoon (1993) and Newey and McFadden (1994).
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When model G or H is locally misspecified, we have, respectively,

g0(θg) ≡ g0(θg0) +∇θ′g0(θ̃g)δgn
−s = ∇θ′g0(θ̃g)δgn

−s with ωg ≡ ∇θ′g0(θ̃g)δg,

h0(θh) ≡ h0(θh0 ) +∇θ′h0(θ̃h)δhn
−s = ∇θ′h0(θ̃h)δhn

−s with ωh ≡ ∇θ′h0(θ̃g)δh,

θ̃g is a mean value between θg and θg0, and θ̃h is a mean value between θh and θh0 .

Before presenting the detailed proofs, we summarize here our main findings when

one of the models is locally misspecified but another is correctly specified. Sup-

pose that model H is correctly specified and model G is locally misspecified, with

θg = θg0 + δgn
−s. This local misspecification does not affect the consistency of our

estimator α̂, because the local misspecification reduces to the correct specification

as n → ∞ and the weights Ŵg and ŴgŴf still have finite probability limits under

the local misspecification. As for asymptotic distribution, when s > 0.5, the limiting

distribution of
√
n(α̂−α0) is the same as when both models are correct, because the

drift approaches 0 sufficiently quickly. Second, when s = 0.5, α̂ is consistent but not
√
n-consistent. Third, when s < 0.5, if s + 0.5 < τ , then the asymptotic distribu-

tion of
√
n(α̂ − α0) is the same as if model G was globally misspecified (and is still

√
n-consistent, because asymptotically all weight goes on model H) .

Assumption A16: Either 1) model G is correct but model H is locally misspec-

ified, or 2) model H is correct but model G is locally misspecified.

C.2.1 Lemma App.1

Lemma App.1: Let Assumption A1 and Assumptions A3 to A16 hold. For any τ

with 0 < τ < 1, Ŵf and ŴgŴf have finite probability limits.

Proof for Lemma App.1.

Analogously to the proof for Lemma 1, first we consider without loss of generality

the probability limit of Q̂g when the model is locally misspecified. Then, the proba-

bility limits of Q̂h and Q̂f can be found following the same logic. Next, we find the

probability limits of Ŵg and Ŵf , based on those of Q̂g, Q̂h, and Q̂f .

Case iii). Suppose that G is locally misspecified (θg = θg0 + δgn
−s). Replacing θg0

with θg in (C.3) gives

Ω̂1/2
g

√
nĝ(θ̂g) = Π̂∗gΩ̂

1/2
g

√
nĝ(θg) = Π̂∗gΩ̂

1/2
g

√
n{ĝ(θg)−ωgn−s}+Π̂∗gΩ̂

1/2
g ωgn

1/2−s (C.7)
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note E{ĝ(θg)} = g0(θg) = ∇θ′g0(θ̃g)δgn
−s = ωgn

−s. Under Assumption A1, A2,

A3, A5, and A6, the corresponding GMM estimator is still consistent θ̂g →p θg0 by

Theorem 9.1 of Newey and McFadden (1994). By Assumption A8, A11 and A12,

∇θĝ(θ̄g)→p ∇θg(θg0) for θ̄g in Π̂∗g and Ω̂−1
g →p Ω−1

g = E{G(Z, θg0)G(Z, θg0)′}, and thus,

Π̂∗g →p Π∗g, which is a k̃g× k̃g symmetric and idempotent matrix with trace(Πg) = kg.

Therefore, applying the same the argument in Case i) of Lemma 1, along with the

consistency of θ̂g, the first term in the right-hand side of (C.7) is asymptotically

standard normal, and thus bounded in probability. Consequently, we can characterize

the asymptotics of Ω̂
1/2
g
√
nĝ(θ̂g) depending on s using the last term Π̂∗gΩ̂

1/2
g ωgn

1/2−s

in (C.7).

If s = 1/2, then Π̂∗gΩ̂
1/2
g ωgn

1/2−s →p Π∗gΩ
1/2
g ωg and Ω̂

1/2
g
√
nĝ(θ̂g) is asymptotically

normal with mean Π∗gΩ
1/2
g ωg and unit variance. Hence,

nQ̂g = {Ω̂1/2
g

√
nĝ(θ̂g)}′Ω̂1/2

g

√
nĝ(θ̂g)→d χ2

kg(ω
′
gΩ

1/2
g Π∗gΩ

1/2
g ωg)/kg;

χ2
kg

(ω′gΩ
1/2
g Π∗gΩ

1/2
g ωg) is the noncentral chi-squared distribution with noncentrality

parameter ω′gΩ
1/2
g Π∗gΩ

1/2
g ωg. If s > 1/2 in (C.7), the noncentrality parameter shrinks

to zero, so that nQ̂g →d χ2
kg

(0)/kg as n→∞, analogously to Case i) of Lemma 1. If

s < 1/2 in (C.7), then Π̂∗gΩ̂
1/2
g ωgn

1/2−s = Op(n
1/2−s) diverges as n→∞, analogously

to Case ii) of Lemma 1. In short,

Case iii) with s < 1/2 =⇒ nQ̂g diverges as n→∞;

Case iii) with s = 1/2 =⇒ nQ̂g →d χ2
kg

(ω′gΩ
1/2
g Π∗gΩ

1/2
g ωg)/kg as n→∞;

Case iii) with s > 1/2 =⇒ nQ̂g →d χ2
kg

(0)/kg as n→∞.

Next, we investigate the probability limits of Ŵg and Ŵf based on those of Q̂g, Q̂h,

and Q̂f , doing analogously to what was done for Case iii).

Case 4). Suppose that model G is correct, but H is locally misspecified with

θh = θh0 + δhn
−s. In this case, F is also locally misspecified with θf = θf0 + δfn

−s for

some δf .

Case 4-1). If s = 1/2, as shown in Case iii), nQ̂h →d χ
2
kh

(ω′hΩ
1/2
h Π∗hΩ

1/2
h ωh)/kh and

nQ̂f →d χ
2
kf

(ω′fΩ
1/2
f Π∗fΩ

1/2
f ωf )/kf for some ωf as n→∞. Thus Ŵg = nQ̂g(α̂g, β̂g)/{nQ̂g(α̂g, β̂g)+

nQ̂h(α̂h, γ̂h)} converges to a distribution on (0, 1). For Ŵf , we have

Ŵf = 1− 1

nτ Q̂f + 1
= 1− 1

nτ−1nQ̂f + 1
→p 0,
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because nQ̂f is bounded in probability, and nτ−1 →p 0. Thus, ŴgŴf →p 0.

Case 4-2). If s > 1/2, as shown in Case iii), nQ̂h →d χ
2
kh
/kh, and nQ̂f →d χ

2
kf
/kf .

Therefore, it is asymptotically the same as Case 1) of Lemma 1.

Case 4-3). If s < 1/2, as shown in Case iii), nQ̂h and nQ̂f are Op(n
2(1/2−s)),

as each is a squared version of a term analogous to (C.7). In this case, whereas

Ŵg →p 0, convergence of Ŵf depends on the relationship between τ and s. Be-

cause nτ Q̂f = O(nτ−1)Op(n
2(1/2−s)) = Op(n

τ−2s), when τ > 2s, nτ Q̂f diverges to

result in Ŵf →p 1 and ŴgŴf →p 0. When τ < 2s, nτ Q̂f →p 0, and conse-

quently Ŵf →p 0 and ŴfŴg →p 0. When τ = 2s, however, (C.7) shows that

nτ Q̂f →p ω′fΩ
1/2
f Π∗fΩ

1/2
f ωf because only the last term of (C.7) matters, so that

Ŵf →p W ∗
f ≡ 1− (ω′fΩ

1/2
f Π∗fΩ

1/2
f ωf + 1)−1 and ŴgŴf →p 0.

Case 5). Suppose that model G is locally misspecified with θg = θg0 + δgn
−s, but

model H is correct. Then essentially the same arguments as in Case 4) apply.

Case 5-1). If s = 1/2, then nQ̂g →d χ2
kg

(ω′gΩ
1/2
g Π∗gΩ

1/2
g ωg)/kg and nQ̂f →d

χ2
kf

(ω′fΩ
1/2
f Π∗fΩ

1/2
f ωf )/kf . Thus, Ŵf →p 0 and ŴgŴf →p 0.

Case 5-2). If s > 1/2, then nQ̂g →d χ
2
kg
/kg, and nQ̂f →d χ

2
kf
/kf as n→∞, which

is asymptotically the same as Case 1) of Lemma 1.

Case 5-3). If s < 1/2, then since nQ̂g and nQ̂f diverge, Ŵg →p 1 but the asymp-

totics of Ŵf depends on the relationship between τ and s. For τ > 2s, nτ−1nQ̂f

diverges, and thus, Ŵf →p 1 and ŴgŴf →p 1; for τ < 2s, Ŵf →p 0 and ŴgŴf →p 0.

When τ = 2s, Ŵf →p W ∗
f and ŴgŴf →p W ∗

f because Ŵg →p 1.

In sum, the probability limits of Ŵf and ŴgŴf are categorized as follows:

Case 4-1) and 4-2) with s ≥ 1/2, =⇒ Ŵf →p 0 and ŴgŴf →p 0

Case 4-3) with s < 1/2 and 2s < τ =⇒ Ŵf →p 1 and ŴgŴf →p 0

Case 4-3) with s < 1/2 and τ = 2s =⇒ Ŵf →p W ∗
f and ŴgŴf →p 0

Case 4-3) with s < 1/2 and τ < 2s =⇒ Ŵf →p 0 and ŴgŴf →p 0

Case 5-1) and 5-2) with s ≥ 1/2, =⇒ Ŵf →p 0 and ŴgŴf →p 0

Case 5-3) with s < 1/2 and 2s < τ =⇒ Ŵf →p 1 and ŴgŴf →p 1

Case 5-3) with s < 1/2 and τ = 2s =⇒ Ŵf →p W ∗
f and ŴgŴf →p W ∗

f

Case 5-3) with s < 1/2 and τ < 2s =⇒ Ŵf →p 0 and ŴgŴf →p 0.

Q.E.D.
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C.2.2 Theorem App.1

Theorem App.1: Under Assumptions A1 and A3 to A16, for α̂ given by equation

(4.1), α̂→p α0.

Proof for Theorem App.1.

Case 4). Suppose that G is correct, but H is the locally misspecified with θh =

θh0 + δhn
−s. By Theorem 9.1 of in Newey and McFadden (1994), still {α̂g, β̂g} →p

{α0, β0}, {α̂h, γ̂h} →p {α0, γ0} and {α̂f , β̂f , γ̂f} →p {α0, β0, γ0}. By Lemma App.1, if

s ≥ 1/2, then Ŵf →p 0 and ŴgŴf →p 0, and the consistency of α̂ in (4.1) follows

from consistency of α̂f . If s < 1/2, the probability limits of Ŵf and ŴgŴf depend

on the relationship between τ and s. If s < 1/2 and τ < 2s, the limits are the same

as in the case with s ≥ 1/2 by Lemma App.1, and thus, the same argument holds

for α̂. If s < 1/2 and τ > 2s, by Lemma App.1 Ŵf →p 1 and ŴgŴf →p 0 and the

consistency of α̂ follows from the consistency of α̂g. If s < 1/2 and τ = 2s, then by

Lemma App.1 Ŵf →p W ∗
f and ŴgŴf →p 0 and the consistency of α̂ follows from the

consistency of α̂g and α̂f , and α̂g − α̂f →p 0.

Case 5). Suppose that H is correct, but G is locally misspecified. Then, essentially

the same arguments as in Case 4 apply. Q.E.D.

C.2.3 Theorem App.2

Theorem App.2: Under Assumptions A1 and A3 to A16, for 1/2 < τ < 1, when

s > 1/2 or s+ 1/2 < τ , there exists a matrix Ṽ such that

√
n(α̂− α0)→d N(0, Ṽ ),

and

1

n

∑
i

η̂iη̂
′
i →p Ṽ

where η̂i ≡ ŴfŴgη̂
h
i + Ŵf (1− Ŵg)η̂

g
i + (1− Ŵf )η̂

f
i .

Proof of Theorem App.2.
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To ease referencing, recall (C.5):

√
n(α̂− α0) = ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − αg) + (1− Ŵf )

√
n(α̂f − αf )

+ ŴfŴg

√
n(αh − α0) + Ŵf

(
1− Ŵg

)√
n(αg − α0) + (1− Ŵf )

√
n(αf − α0).

Case 4). Suppose model G is correct (αg = α0), but H is locally misspecified with

αh = α0 + δhn
−s; then F is also locally misspecified with αf = α0 + δfn

−s. Rewrite

(C.5) as

√
n(α̂− α0) = ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − α0) + (1− Ŵf )

√
n(α̂f − αf )

+ ŴfŴgδhn
1/2−s + (1− Ŵf )δfn

1/2−s. (C.8)

Following the same argument in Case 1) of Theorem 2, we can establish asymptotic

normality of
√
n(α̂g − α0). Call (C.15) in the Appendix III below replacing g with h

to have
√
n(α̂h − αh) = Â−1

h ∇αĥ(θ̂h)Ω̂∗h
√
nĥ(θh)

where

Âh ≡ ∇αĥ(θ̂h)Ω̂∗h∇α′ĥ(θ
h
), Ω̂∗h ≡ Ω̂

1/2′
h Π̂hΩ̂

1/2
h ,

Π̂h ≡ [Ik̃h − Ω̂
1/2
h ∇γ′ĥ(θ

h
){∇γĥ(θ̂h)Ω̂h∇γ′ĥ(θ

h
)}−1∇γĥ(θ̂h)Ω̂

1/2′
h ].

With h0(θh) ≡ ωhn
−s, add and subtract E{ĥ(θh)} = ωhn

−s to get

√
n(α̂h−αh) = Â−1

h ∇αĥ(θ̂h)Ω̂∗h
√
n{ĥ(θh)−ωhn−s}+Â−1

h ∇αĥ(θ̂h)Ω̂∗h
√
nωhn

−s. (C.9)

Applying the vectorization part in Hall and Inoue (2003, p.367) and using the pop-

ulation first-order condition ∇αh0(θh)Ω∗hh0(θh) = 0, rewrite ∇αĥ(θ̂h)Ω̂∗h
√
nωhn

−s in

the last term other than Â−1
h as

√
n∇αĥ(θ̂h)Ω̂∗hωhn

−s =
√
n{∇αĥ(θ̂h)−∇αĥ(θh)}Ω̂∗hωhn−s +

√
n{∇αĥ(θh)−∇αh0(θh)}Ω̂∗hωhn−s +∇αh0(θh)

√
n(Ω̂∗h − Ω∗h)ωhn

−s

= ωhn
−sM̂h

√
n(α̂h − αh) +

√
n{∇αĥ(θh)−∇αh0(θh)}Ω̂∗hωhn−s +∇αh0(θh)

√
n(Ω̂∗h − Ω∗h)ωhn

−s

(C.10)

for some symmetric k∗h × k∗h matrix M̂h involving the second-order derivative of h(·)
that is bounded in probability. Plugging (C.10) into (C.9) and solving for

√
n(α̂h−αh)
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gives

√
n(α̂h − αh) = [Ik∗h − Â

−1
h ωhn

−sM̂h]−1Â−1
h Γ̂h, (C.11)

Γ̂h ≡ ∇αĥ(θ̂h)Ω̂∗h
√
n{ĥ(θh)− ωhn−s}

+
√
n{∇αĥ(θh)−∇αh0(θh)}Ω̂∗hωhn−s +∇αh0(θh)

√
n(Ω̂∗h − Ω∗h)ωhn

−s.

Under Assumptions A12 to A16,
√
n{∇αĥ(θh) − ∇αh0(θh)} and

√
n(Ω̂∗h − Ω∗h)

are bounded in probability, so that the last two terms of Γ̂h converge to zero in

probability. Under Assumption A7, A9, A10 and A11,
√
n{ĥ(θh)−ωhn−s} is asymp-

totically normal with mean zero. Therefore, due to θ̂h →p θ0 (from Theorem 9.1 of

Newey and McFadden, 1994), ωhn
−sM̂h →p 0, ∇θĥ(θ̂h) →p ∇θh0(θh0 ), Ω̂∗h →p Ω∗h,

Ω̂−1
h →p Ω−1

h = E{H(Z, α0, γ0)H(Z, α0, γ0)′}, and the continuous mapping theorem,

we get
√
n(α̂h − αh)→d N(0, Ṽ h)

where Ṽ h is the same asymptotic variance as in Case 3) as if model H were correct.

Analogously, the same argument holds for
√
n(α̂f − αf ), so that we have

√
n(α̂f −

αf )→d N(0, Ṽ f ) as if model F were correct. Hence, all of
√
n(α̂g−α0),

√
n(α̂h−αh)

and
√
n(α̂f − αf ) in the first line of (C.8) are asymptotically normal with mean

zero and variance being that of the corresponding GMM estimator under correct

specification.

Recall (C.8):

√
n(α̂− α0) = ŴfŴg

√
n(α̂h − αh) + Ŵf

(
1− Ŵg

)√
n(α̂g − α0) + (1− Ŵf )

√
n(α̂f − αf )

+ ŴfŴgδhn
1/2−s + (1− Ŵf )δfn

1/2−s.

Recalling (C.7) and its “squared version”, we have

nQ̂h = Op(n
2(1/2−s)) and nQ̂f = Op(n

2(1/2−s)) =⇒ nτ Q̂f = nτ−1nQ̂f = Op(n
τ−1+2(1/2−s)) = Op(n

τ−2s).

Consequently, for the last two terms in (C.8), we get

ŴfŴgδhn
1/2−s + (1− Ŵf )δfn

1/2−s =

(
1− 1

nτ Q̂f + 1

)(
nQ̂g · δhn1/2−s

nQ̂g + nQ̂h

)
+

(
1

nτ Q̂f + 1

)
δfn

1/2−s

=

(
1− 1

Op(nτ−2s) + 1

)(
Op(1)O(n1/2−s)

Op(1) +Op(n2(1/2−s))

)
+

(
1

Op(nτ−2s) + 1

)
O(n1/2−s).

(C.12)
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For the first term in the left-hand side in (C.12), if s = 1/2, its probability limit is zero

because Ŵf →p 0 and Ŵgn
1/2−s is bounded in probability. If s > 1/2, the probability

limit is zero because Ŵf →p 0 and Ŵgn
1/2−s →p 0. If s < 1/2, the probability limit

is zero because Ŵf is bounded between zero and one in probability and Ŵgn
1/2−s →p

0. Therefore, the first term in the left-hand side in (C.12) disappears as n → ∞,

regardless of s. However, the probability limit of the second term (1 − Ŵf )δfn
1/2−s

in the left-hand side in (C.12) varies, depending on the relationship between s and

τ . So, the asymptotic behavior of
√
n(α̂ − α0) depends on the values of s and τ as

follows.

Case 4-1). If s = 1/2, Ŵf →p 0 and (1−Ŵf )δfn
1/2−s →p δf as n→∞. By Lemma

App.1, Ŵf →p 0 and ŴgŴf →p 0, boundedness of
√
n(α̂g − α0) and

√
n(α̂h − αh) in

probability, the asymptotic normality of
√
n(α̂f − αf ) and the continuous mapping

theorem, only (1− Ŵf )
√
n(α̂f − αf ) survives in (C.8) and we get

√
n(α̂− α0)→d N(δf , Ṽ

f ).

Case 4-2). If s > 1/2, Ŵf →p 0 and (1− Ŵf )δfn
1/2−s →p 0 as n→∞. Therefore,

we get ŴgŴf →p 0 by Lemma App.1. Hence,

√
n(α̂− α0)→d N(0, Ṽ f ),

which is asymptotically equivalent to Case 1).

Case 4-3). If s < 1/2, the probability limit of the second term in (C.12) depends

on s and τ :

(1− Ŵf )δfn
1/2−s =

(
1

Op(nτ−2s) + 1

)
O(n1/2−s) = Op(n

s+1/2−τ ).

When s + 1/2 < τ , (1 − Ŵf )δfn
1/2−s disappears as n → ∞, which implies that

the second line of (C.8) disappears. Due to s < 1/2,

s+ 1/2 < τ =⇒ 2s < 1/2 + s < τ =⇒ Ŵf →p 1 because of 2s < τ , and ŴgŴf →p 0

by Lemma App.1. Therefore, by the boundedness of
√
n(α̂h − αh) and

√
n(α̂f − αf )

in probability, the asymptotic normality of
√
n(α̂g−α0) and the continuous mapping

theorem, we have
√
n(α̂− α0)→d N(0, Ṽ g),
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which is asymptotically equivalent to Case 2) of Theorem 2.

When s+ 1/2 > τ , (1− Ŵf )δfn
1/2−s diverges as n→∞. Therefore,

√
n(α̂− α0)

is not bounded in probability.

When s + 1/2 = τ , (1− Ŵf )δfn
1/2−s converges to a constant, say ν, times δf , as

n→∞. Also, we have

s+ 1/2 = τ =⇒ 2s < 1/2 + s = τ =⇒ Ŵf →p 1 because of 2s < τ , and ŴgŴf →p 0.

Therefore, by the boundedness of
√
n(α̂h − αh) and

√
n(α̂f − αf ) in probability, the

asymptotic normality of
√
n(α̂g − α0) and the continuous mapping theorem, we get

√
n(α̂− α0)→d N(νδf , Ṽ

g).

In sum, when G is correct but H is locally misspecified,
√
n(α̂ − α0)→d N(0, Ṽ f ) if

s > 1/2, or
√
n(α̂− α0)→d N(0, Ṽ g) if s+ 1/2 < τ .

Case 5). Suppose H is correct specified, but G is locally misspecified with αg =

αg0 + δgn
−s. Then essentially the same arguments as in Case 4) apply, replacing Ŵg

with 1− Ŵg, and switching the roles of β and γ and the roles of g and h. Q.E.D.

C.3 Appendix III

Derivation of η̂fi , η̂gi , and η̂hi .

To find the influence functions η̂fi , let θ̂f denote the first-stage estimator

θ̂f ≡ (α̂f , β̂f , γ̂
f ) = arg min

{α,β,γ}∈Θα×Θβ×Θγ
Q̃f (α, β, γ) = f̂(α, β, γ)Ω̂f f̂(α, β, γ).

Under Assumption A7 and A10-12, the following first-order conditions in the first-

stage for θ̂f hold:

FDf
α =

∂Q̃f (θ̂f )

∂α
= ∇αf̂(θ̂f )Ω̂f f̂(θ̂f ) = 0, FDf

β =
∂Q̃f (θ̂f )

∂β
= ∇β f̂(θ̂f )Ω̂f f̂(θ̂f ) = 0,

FDf
γ =

∂Q̃f (θ̂f )

∂γ
= ∇γ f̂(θ̂f )Ω̂f f̂(θ̂f ) = 0.

Expend f̂ around the unique minimizer θf ≡ {αf , βf , γf} to get

f̂(θ̂f ) = f̂(θf ) +∇α′ f̂(θ
f
)(α̂f − αf ) +∇β′ f̂(θ

f
)(β̂ − βf ) +∇γ′ f̂(θ

f
)(γ̂ − γf )
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where θ
f

is the mean value to apply the mean value theorem. Substitute these into

each FDf to get

FDf
α = ∇αf̂(θ̂f )Ω̂f{f̂(θf ) +∇α′ f̂(θ

f
)(α̂f − αf ) +∇β′ f̂(θ

f
)(β̂f − βf ) +∇γ′ f̂(θ

f
)(γ̂ − γf )},

FDf
β = ∇β f̂(θ̂f )Ω̂f{f̂(θf ) +∇α′ f̂(θ

f
)(α̂f − αf ) +∇β′ f̂(θ

f
)(β̂f − βf ) +∇γ′ f̂(θ

f
)(γ̂ − γf )}.

FDf
γ = ∇γ f̂(θ̂f )Ω̂f{f̂(θf ) +∇α′ f̂(θ

f
)(α̂f − αf ) +∇β′ f̂(θ

f
)(β̂f − βf ) +∇γ′ f̂(θ

f
)(γ̂ − γf )},

FDf = {FDf
α, FD

f
β , FD

f
γ} = Îf + Ĥf (θ̂f − θf ), and from these,

√
n(θ̂f − θf ) = Ĥf−1

√
nÎf ,

Îf ≡

 ∇αf̂(θ̂f )Ω̂f f̂(θf )

∇β f̂(θ̂f )Ω̂f f̂(θf )

∇γ f̂(θ̂f )Ω̂f f̂(θf )

 , Ĥf ≡

 ∇αf̂(θ̂f )Ω̂f∇α′ f̂(θ
f
) ∇αf̂(θ̂f )Ω̂f∇β′ f̂(θ

f
) ∇αf̂(θ̂f )Ω̂f∇γ′ f̂(θ

f
)

∇β f̂(θ̂f )Ω̂f∇α′ f̂(θ
f
) ∇β f̂(θ̂f )Ω̂f∇β′ f̂(θ

f
) ∇β f̂(θ̂f )Ω̂f∇γ′ f̂(θ

f
)

∇γ f̂(θ̂f )Ω̂f∇α′ f̂(θ
f
) ∇γ f̂(θ̂f )Ω̂f∇β′ f̂(θ

f
) ∇γ f̂(θ̂f )Ω̂f∇γ′ f̂(θ

f
)

 .
In this expression for

√
n(θ̂f − θf ), examine the part for

√
n(α̂f − αf ), i.e., the first

kα × 1 components:

√
n(α̂f − αf ) = Â−1

f ∇αf̂(θ̂f )Ω̂∗f
√
nf̂(θf ), Âf ≡ ∇αf̂(θ̂f )Ω̂∗f∇α′ f̂(θ

f
), Ω̂∗f ≡ Ω̂

1/2
f Π̂f Ω̂

1/2
f ,

(C.13)

Π̂f ≡ Ik̃f − Ω̂
1/2
f ∇β f̂(θ

f
){∇β f̂(θ̂f )Ω̂f∇β′ f̂(θ

f
)}−1∇β f̂(θ̂f )Ω̂

1/2
f

− Ω̂
1/2
f ∇γ f̂(θ

f
){∇γ f̂(θ̂f )Ω̂f∇γ′ f̂(θ

f
)}−1∇γ f̂(θ̂f )Ω̂

1/2
f .

Then we have

√
n(α̂f − αf ) =

1√
n

∑
i

η̂fi , η̂fi ≡ Â−1
f ∇αf̂(θ̂f )Ω̂∗fF (Zi, θ

f ), (C.14)

and η̂fi is the influence function of the first-stage estimate α̂f . If F is correct, θf is

replaced by θf0 .

To find the influence functions η̂gi , let θ̂g denote the first-stage estimator

θ̂g ≡ (α̂g, β̂g) = arg min
{α,β}∈Θα×Θβ

Q̃g(α, β) = ĝ(α, β)Ω̂gĝ(α, β).

Under Assumption A7 and A10-12, with probability approaching one, the following

first-order conditions in the first-stage for θ̂g hold:

FDg
α =

∂Q̃g(θ̂g)

∂α
= ∇αĝ(θ̂g)Ω̂gĝ(θ̂g) = 0, FDg

β =
∂Q̃g(θ̂g)

∂β
= ∇β ĝ(θ̂g)Ω̂gĝ(θ̂g) = 0.
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Expend ĝ around the unique minimizer θg ≡ {αg, βg} to get

ĝ(θ̂g) = ĝ(θg) + {∇α′ ĝ(θ
g
)}(α̂g − αg) + {∇β

′̂g(θ
g
)}(β̂ − βg)

where θ
g

is the value for the mean value theorem. Substitute these into each FDg to

get

FDg
α = ∇αĝ(θ̂g)Ω̂g[ĝ(θg) +∇α′ ĝ(θ

g
)(α̂g − αg) +∇β′ ĝ(θ

g
)(β̂g − βg)]

FDg
β = ∇β ĝ(θ̂g)Ω̂g[ĝ(θg) +∇α′ ĝ(θ

g
)(α̂g − αg) +∇β′ ĝ(θ

g
)(β̂g − βg)]

FDg = {FDg
α, FD

g
β} = Îg + Ĥg(θ̂g − θg), and from these,

√
n(θ̂g − θg) = Ĥg−1

√
nÎg,

Îg ≡
[∇αĝ(θ̂g)Ω̂gĝ(θg)

∇β ĝ(θ̂g)Ω̂gĝ(θg)

]
, Ĥg ≡

[
∇αĝ(θ̂g)Ω̂g∇α′ ĝ(θ

g
) ∇αĝ(θ̂g)Ω̂g∇β′ ĝ(θ

g
)

∇β ĝ(θ̂g)Ω̂g∇α′ ĝ(θ
g
) ∇β ĝ(θ̂g)Ω̂g∇β′ ĝ(θ

g
)

]
.

In this expression for
√
n(θ̂g − θg), examine the part for

√
n(α̂g − αg), i.e., the first

kα × 1 components:

√
n(α̂g − αg) = Â−1

g ∇αĝ(θ̂g)Ω̂∗g
√
nĝ(θg), Âg ≡ ∇αĝ(θ̂g)Ω̂∗g∇αĝ(θ

g
), Ω̂∗g ≡ Ω̂1/2

g Π̂gΩ̂
1/2
g ,

(C.15)

Π̂g ≡ Ik̃g − Ω̂1/2
g ∇g′ ĝ(θ

g
){∇β ĝ(θ̂g)Ω̂g∇β′ ĝ(θ

g
)}−1∇β ĝ(θ̂g)Ω̂1/2

g .

Then, we have

√
n(α̂g − αg) =

1√
n

∑
i

η̂gi , η̂gi ≡ Â−1
g ∇αĝ(θ̂g)Ω̂∗gG(Zi, θ

g), (C.16)

and η̂gi is the influence function of the first-stage estimate α̂g. If G is correct, θg is

replaced by θg0.

Analogously, we can obtain the influence function η̂hi switching the roles of β and

γ, and switching the roles of g and h. If H is correct, θh is replaced by θh0 .
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C.4 Appendix IV

Over-Identified Doubly Robust Identification and
Estimation

by Arthur Lewbel, Jin-Young Choi, and Zhuzhu
Zhou

Original 2018, Revised February 2021

Supplemental Online Appendix

In this Supplemental Appendix, we provide two additional examples of applying

our ODR estimator. For both examples, DR estimators already exist, so we can com-

paring the requirements of our ODR estimator to existing DR applications. The first

example is average treatment effect estimation, while the second concerns additive

regression models.

Average Treatment Effect Estimation
Going back to the earliest DR estimators like Robins, Rotnitzky, and van der Laan

(2000), Scharfstein, Rotnitzky, and Robins (1999), and Robins, Rotnitzky, and Zhao

(1994), here we describe the construction of DR estimates of average treatment effects,

as in, e.g., Bang and Robins (2005), Funk, Westreich, Wiesen, Stürmer, Brookhart,

and Davidian (2011), Rose and van der Laan (2014), Lunceford and Davidian (2004),

S loczyński and Wooldridge (2018) and Wooldridge (2007). We then show how this

model could alternatively be estimated using our ODR construction. Note that other

DR estimators of treatment effects also exist, e.g., Lee and Lee (2018).

The assumption in this application is that either the conditional mean of the

outcome or the propensity score of treatment is correctly parametrically specified.

Let Z = {Y, T,X} where Y is an outcome, T is a binary treatment indicator, and X

is a J vector of other covariates (including a constant). The average treatment effect

we wish to estimate is

α = E{E(Y |T = 1, X)− E(Y |T = 0, X)}. (C.17)

As is well known, an alternative propensity score weighted expression for the same

average treatment effect is

α = E

{
Y T

E(T |X)
− Y (1− T )

1− E(T |X)

}
. (C.18)
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Let G̃ (T,X, β) be the proposed functional form of the conditional mean of the

outcome, for some K vector of parameters β. So if G̃ is correctly specified, then

G̃ (T,X, β) = E(Y |T,X). Similarly, let H̃ (X, γ) be the proposed functional form of

the propensity score for some J vector of parameters γ, so if H̃ is correctly specified,

then H̃ (X, γ) = E(T |X).

One standard estimator of α, based on equation (C.17), consists of first estimating

β by least squares, minimizing the sample average of E[{Y − G̃ (T,X, β)}2], and then

estimating α as the sample average of G̃ (1, X, β) − G̃ (0, X, β). This estimator is

equivalent to GMM estimation of α and β, using the vector of moments

E

[
{Y − G̃ (T,X, β)}r1 (T,X)

α− {G̃ (1, X, β)− G̃ (0, X, β)}

]
= 0 (C.19)

for some vector valued function r1 (T,X). Least squares estimation of β specifically

chooses r1 (T,X) to equal ∂G̃ (T,X, β) /∂β, but alternative functions could be used,

corresponding to, e.g., weighted least squares estimation, or to the score functions

associated with a maximum likelihood based estimator of β, given a parameterization

for the error terms Y −G̃ (T,X, β). Note that to identify the K vector β, the function

r1 (T,X) needs to be a K̃ vector for some K̃ ≥ K. The problem with this estimator is

that in general α will not be consistently estimated if the functional form of G̃ (T,X, β)

is not the correct specification of E(Y |T,X).

An alternative common estimator of α, based on equation (C.18), consists of first

estimating γ by least squares, minimizing the sample average of E[{T − H̃ (X, γ)}2],

and then estimating α as the sample average of Y T

H̃(X,γ)
− Y (1−T )

1−H̃(X,γ)
. This estimator is

equivalent to GMM estimation of α and γ, using the vector of moments

E

[
{T − H̃ (X, γ)}r2 (X)

α−
{

Y T

H̃(X,γ)
− Y (1−T )

1−H̃(X,γ)

} ] = 0 (C.20)

for some J̃ vector valued function r2 (X). As above, least squares estimation of γ sets

r2 (X) equal to ∂H̃ (X, γ) /∂γ, but as above alternative functions could be chosen for

r2 (X). To identify the J vector γ, the function r2 (X) needs to be a J̃ vector for

some J̃ ≥ J . With this estimator, in general α will not be consistently estimated if

the functional form of H̃ (X, γ) is not the correct specification of E(T |X).

A doubly robust estimator like that of Bang and Robins (2005) and other authors

131



assumes α can be expressed as

α = E

{
Y T

H̃ (X, γ)
− Y (1− T )

1− H̃ (X, γ)
+
T − H̃ (X, γ)

H̃ (X, γ)
G̃ (1, X, β)− T − H̃ (X, γ)

1− H̃ (X, γ)
G̃ (0, X, β)

}
.

(C.21)

Observe that if H̃ (X, γ) = E(T |X), then the first two terms in the above expecta-

tion equal equation (C.18) and the second two terms have mean zero. By rearranging

terms, equation (C.21) can be rewritten as

α = E

[
G̃ (1, X, β)− G̃ (0, X, β) +

T

H̃ (X, γ)
{Y − G̃ (1, X, β)} − 1− T

1− H̃ (X, γ)
{Y − G̃ (0, X, β)}

]
.

(C.22)

Rewriting the equation this way, it can be seen that if G̃ (T,X, β) = E(Y |T,X),

then the first two terms in equation (C.22) equal equation (C.17), and the second

two terms have mean zero. This shows that equation (C.21) or equivalently (C.22)

is doubly robust, in that it equals the average treatment effect α if either G̃ (T,X, β)

or H̃ (X, γ) is correctly specified. The GMM estimator associated with this doubly

robust estimator estimates α, β, and γ, using the moments

E


{Y − G̃ (T,X, β)}r1 (T,X)

{T − H̃ (X, γ)}r2 (X)

α−
{

Y T

H̃(X,γ)
− Y (1−T )

1−H̃(X,γ)
+ T−H̃(X,γ)

H̃(X,γ)
G̃ (1, X, β)− T−H̃(X,γ)

1−H̃(X,γ)
G̃ (0, X, β)

}
 = 0.

(C.23)

Construction of this doubly robust estimator required finding equation (C.21)

which is special to the problem at hand and possesses the DR property. In general,

finding such expressions for any particular problem may be difficult or impossible.

In contrast, our proposed ODR estimator does not require any such creativity.

All that is required for constructing our ODR for this problem is to know the two

alternative standard estimators, based on equations (C.17) and (C.18), expressed in

GMM form, i.e., equation (C.19) and equation (C.20). Just define G(Z, α, β) to be

the vector of functions given in equation (C.19) and define H(Z, α, γ) to be the vector

of functions given in equation (C.20). That is,

G(Z, α, β) =

[
{Y − G̃ (T,X, β)}r1 (T,X)

α− {G̃ (1, X, β)− G̃ (0, X, β)}

]
(C.24)
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and

H(Z, α, γ) =

[
{T − H̃ (X, γ)}r2 (X)

α−
{

Y T

H̃(X,γ)
− Y (1−T )

1−H̃(X,γ)

} ] . (C.25)

These functions can then be plugged into the expressions in the previous section

to obtain our ODR estimator, equation (4.1), without having to find an expression

like equation (C.21) with its difficult to satisfy properties.

The vector r2 (X) can include any functions of X as long as the corresponding

moments E{H(Z, α, γ)} exist. To satisfy the required overidentification (discussed

earlier, and formally given later in Assumption A3), we will want to choose r2 (X) to

include J̃ elements where J̃ is strictly greater than J . What we require is that, if the

propensity score is incorrectly specified, then there is no α, γ (in the set of permitted

values) that satisfies the moments E{H(Z, α, γ)} = 0, while, if the propensity score

is correctly specified, then the only α, γ that satisfies E{H(Z, α, γ)} = 0 is α0, γ0.

By the same logic, we will want to choose the K̃ vector r1 (T,X) to include strictly

more than K elements. For efficiency, it could be sensible to let r2 (X) and r1 (T,X)

include ∂H̃ (X, γ) /∂γ and ∂G̃ (T,X, β) /∂β, respectively.

An Instrumental Variables Additive Regression Model
Okui, Small, Tan, and Robins (2012) propose a DR estimator for an instrumental

variables (IV) additive regression model. The model is the additive regression

Y = M(W,α) + G̃(X) + U, (C.26)

E(Q | X) = H̃(X),

E (U | X,Q) = 0, (C.27)

where Y is an observed outcome variable, W is a S vector of observed exogenous

covariates, X is a J vector of observed confounders, and Q is a K ≥ S vector of

observed instruments. Note that this model has features that are unusual for instru-

mental variables estimation, in particular, the assumption that E (U | X,Q) = 0 is

stronger than the usual E (U | Q) = 0 assumption. The function M(W,α) is assumed

to be correctly parameterized, and the goal is estimation of α.

Okui, Small, Tan, and Robins (2012) construct a DR estimator assuming that,

in addition to the above, either G̃(X) = G̃(X, β) is correctly parameterized, or that

H̃(X) = H̃(X, γ) is correctly parameterized. Let Z = {Y,W,X,Q}, and let r1(X)

and r2(X) be vectors of functions chosen by the user. DefineG(α, β, Z) andH(α, γ, Z)
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by

G(Z, α, β) =

[
{Y −M(W,α)− G̃(X, β)}r1(X)

{Y −M(W,α)− G̃(X, β)}Q

]
(C.28)

and

H(Z, α, γ) =

[
{Q− H̃(X, γ)}r2(X)

{Y −M(W,α)}{Q− H̃(X, γ)}

]
. (C.29)

Okui, Small, Tan, and Robins (2012) take r1(X) = ∂G̃(X, β)/∂β and r2(X) =

∂H̃(X, γ)/∂γ. If G̃(X, β) is correctly specified, then E{G(Z, α, β)} = 0, while if

H̃(X, γ) is correctly specified then E{H(Z, α, γ)} = 0.

To get their doubly robust estimator, Okui, Small, Tan, and Robins (2012) first

specify G̃(Xi, β) and H̃(Xi, γ), then estimate γ̂ by the moment:

E(Q|Xi) = H̃(Xi, γ)

and then estimate α and β by minimizing a quadratic form of B̂(α, β; γ̂), where

B̂(α, β; γ̂) =
1

n

n∑
i=1

[
{Yi −M(Wi, α)− G̃(Xi, β)}{Qi − H̃(Xi, γ̂)}

{Yi −M(Wi, α)− G̃(Xi, β)}r1(Xi)

]
.

In place of the Okui, Small, Tan, and Robins (2012) DR construction, we could

estimate this model using the ODR estimator, equation (4.1), with G and H given by

equations (C.28) and (C.29). To satisfy the required overidentification (Assumption

A3), r1(X) and r2(X) need to include more than J elements. So, e.g., we would

want to include at least one more function of X into r1(X) and r2(X), in addition to

the functions ∂G̃(X, β)/∂β and ∂H̃(X, γ)/∂γ used by Okui, Small, Tan, and Robins

(2012).
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