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1 Abstract

Using the AdS/CFT correspondence, it has been shown that the ratio of shear viscosity to entropy
density is bounded from below in strongly coupled field theories with a gravity dual. More recently,
this bound has been shown to be grossly violated in novel non-Fermi liquids and the unitary Fermi
gas in the presence of superfluid fluctuations above Tc. Nevertheless, a holographic approach to
such systems which break the lower bound have been strongly reliant on AdS spacetimes with
massive gravitons. In this work, we propose a violation of the viscosity over entropy bound in
3+1 dimensional AdS spacetimes that support stable black hole solutions with non-zero scalar field.
Such a black hole is shown to be characterized by a novel phase transition at large negative mass,
where the underlying thermodynamics agrees with the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF)-
like phase seen in the unitary Fermi gas near Tc and the bound is similarly broken. Such a work
paves the way for a holographic description of strongly-entangled quantum fluids at high Reynolds
number.

2 Introduction

It has been shown that strongly interacting quantum field theories in d dimensions can be described
in term of d + 1 dimensional weakly interacting gravitational systems in anti-de Sitter space. This
one-to-one correspondence is known as the anti-de Sitter space/conformal field theory (AdS/CFT)
correspondence [1]. In more recent years, the AdS/CFT correspondence has been used to propose a
universal lower bound (the KSS bound) on the ratio of shear viscosity to entropy density in strongly
coupled field theories, given as [2, 3, 4, 5]:

η

s
≥ ~

4πkB
(1)

Often, natural units are taken such that ~ and kB are unity, and Eq 1 takes the form η
s ≥

1
4π In

more recent years, however, this bound has been shown to be violated in multiple systems, including
holographic solids [6], and the unitary Fermi gas in the presence of superfluid fluctuations [7]. It
is known from [8] that cooper pairing in a conformal field theory will be dual to a scalar field in
the corresponding Einstein gravity theory. Thus, due to the breaking of the bound in [7] due to a
cooper pairing instability, we expect to see a violation of the KSS bound in a black hole surrounded
by a non-zero scalar hair.

Typically, in space with vanishing cosmological constant Λ, this scalar hair would be disallowed
by the no-hair theorem, which states that properties of black holes are restricted to mass, angular
momentum, and charge [9]. However, for Λ < 0, anti-de Sitter space, scalar hair is well documented
and allowable [10].

In this paper, we consider the Mart́ınez, Tronosco, Zanelli (MTZ) black hole, a black hole solution
with a minimally coupled scalar field in 3 + 1 dimensional anti-de Sitter space. We show that for
positive mass and small negative mass, the formation of scalar hair is given by a continuous phase
transition, and for large negative mass, the formation of hair is given by a first order, ice-like, phase
transition. However, by considering particles coupled to the scalar hair, we determine that this
negative mass regime is dis-allowable due to a naked singularity in the scalar hair for sufficiently
large negative mass. In Section 8, we plot η

s as a function of black hole mass, showing that the KSS
bound can be arbitrarily broken in the small negative mass regime before becoming negative and
diverging, indicating a superradiant instability of the black hole [11]. This prevents the black hole
from reaching large negative masses, where further superradiant instabilities are also found.

2



3 Background

3.1 Einstein’s Field Equation for the Schwarzschild Case

So as to establish a method for finding the exact form of a metric, we will solve for the exact form
of the simplest case: the Schwarzschild metric, which describes a static spherically symmetric body
in free space of mass M . Thus, we can begin with the following metric ansatz using the (+−−−)
metric convention:

ds2 =
∑
µν

gµνdx
µdxν = U(r)dt2 − V (r)dr2 − r2dθ2 − r2 sin2 θdφ2 (2)

We see here that without loss of generality, we have set g22 = g33 = 1 due to the spherical
symmetry of the system (note that we are also working with natural units where c = 1).

Now we must obtain Einstein’s field equation for the Schwarzschild case, which can be done by
minimizing the Einstein Hilbert action given as [12]:

S =

∫
LdV =

1

2κ

∫
d4xR

√
−g (3)

Here L is the Lagrange density, R is the Ricci scalar, κ = 8πG
c4 is Einstein’s gravitational constant,

and g is the determinant of the metric tensor. Note that g must be accompanied by a negative sign
(−) under the square root to ensure that

√
−g ∈ R since the determinant of the metric with metric

signature (− + ++) will be negative. To minimize this action, we will consider the variation of
S with respect to the metric that vanishes at infinity (more specifically the inverse metric, gµν),
namely δS, which by the product rule yields:

δS =
1

2κ

∫
d4x δ(R

√
−g) (4)

By definition of the Ricci scalar, we have R = gµνRµν where Rµν is the Ricci curvature tensor,
defined below as the trace of the Riemann curvature tensor over the first and third indices which
can be written in terms of the affine connection [12]:

Rµν ≡ Rβµβν = Γβνµ,β − Γββµ,ν + ΓββαΓανµ − ΓβναΓαβµ (5)

The Christoffel symbols above can be written as [13]:

Γµνσ =
1

2
gµλ{gλν,σ + gλσ,ν − gνσ,λ} (6)

Note that in the definition of the Ricci tensor above, we have used the notation Γβνσ,ρ, where the

comma indicates differentiation of Γβνσ with respect to the ρ-th component using the normal deriva-
tive operator ∂ρ. Thus, Γβνσ,ρ = ∂ρΓ

β
νσ. We will use these notations interchangeably depending on

the context. (Also note that a semicolon, i.e. Γβνσ;ρ would indicate the covariant derivative).

Thus, we can rewrite Eq 4 using the product rule as:

δS =
1

2κ

∫
d4x (Rδ(

√
−g) +

√
−ggµνδRµν +

√
−gδgµνRµν) (7)

To simplify this, we can consider this as as three separate integrals,those being:

A1 =
1

2κ

∫
d4x Rδ(

√
−g) (8)

A2 =
1

2κ

∫
d4x
√
−ggµνδRµν (9)

A3 =
1

2κ

∫
d4x
√
−gδgµνRµν (10)

3



For A1, calculating this integral amounts to calculating the variation δ
√
−g which, by the chain

rule, gives:

δ
√
−g = − δg

2
√
−g

(11)

However, since we want all terms to be in terms of variations of the metric, this needs some
further manipulation, which in turn requires the following identity for some general matrix M [12]:

ln(det(M)) = Tr(ln(M)) (12)

Thus, for M = gµν , we have:

ln(g) = Tr(ln(gµν)) (13)

Taking the variation of the LHS, (using standard logarithmic differentiation rules) we obtain:

δ ln(g) =
δg

g
(14)

Similarly the RHS becomes:

δTr(ln(gµν)) = gµνδgµν (15)

Note that due to the fact that gµν is diagonal, by Einstein summation notation, we have that
Tr((gµν)−1δgµν) = gµνδgµν . In general, however, we can actually move δ inside of the trace since
the trace is a sum, and δ is linear. Thus, we can now equate these to results, giving:

δg

g
= gµνδgµν (16)

Therefore, we have te following expansion of δg:

δg = ggµνδgµν (17)

which we can substitute into Eq 11 above, giving:

δ
√
−g = −gg

µνδgµν
2
√
−g

(18)

However, since we want each term to be in terms of δgµν instead of δgµν , we can use the property
of the metric tensor that it raises and lowers indices and simplifying g√

−g = −
√
−g to rewrite Eq 18

as:

δ
√
−g = −

√
−ggµνgµλgνσδgλσ

2
(19)

Using this same property, we can simplify again, and re-index dummy indices to give:

δ
√
−g = −

√
−ggµνδgµν

2
(20)

Therefore, we can rewrite A1 in the desired form:

A1 = − 1

2κ

∫
d4x R

√
−ggµνδgµν

2
(21)

Now we will rewrite A2 in the desired for. To do this, we must calculate δRµν , which by the Eq
5 above indicates that this largely amounts to calculating δRρµλν

For this we will rewrite the Riemann tensor using the ∂λ notation since it will be easier to keep
track of in sea of Christoffel Symbols:

Rρµλν = ∂λΓρνµ + ΓρλσΓσνµ − ∂νΓρλµ − ΓρνσΓσλµ (22)

Thus, we can calculate δRρµλν using the product rule:
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δRρµλν = ∂λ(δΓρνµ) + ΓσνµδΓ
ρ
λσ + ΓρλσδΓ

σ
νµ − ∂ν(δΓρλµ)− ΓσλµδΓ

ρ
νσ − ΓρνσδΓ

σ
λµ (23)

Now, note that since the Christoffel symbol is symmetric about its lower indices, i.e. Γρνµ = Γρµν ,
we can write 0 = −ΓσλνδΓ

ρ
σµ + ΓσνλδΓ

ρ
σµ. Adding this to Eq 23, we obtain:

δRρµλν = ∂λ(δΓρνµ)+ΓρλσδΓ
σ
νµ+ΓσνµδΓ

ρ
λσ−∂ν(δΓρλµ)−ΓσλµδΓ

ρ
νσ−ΓρνσδΓ

σ
λµ−ΓσλνδΓ

ρ
σµ+ΓσνλδΓ

ρ
σµ (24)

Now, let us note the definition of covariant derivative of some general tensor T
µ1µ2...µj

ν1ν2...νk , which
is given as [13]:

∇λTµ1µ2...µj
ν1ν2...νk

= ∂λT
µ1µ2...µj

ν1ν2...νk
+

k∑
i=1

ΓµiλσT
µ1...σ...µj

ν1ν2...νk
−

k∑
i=1

ΓσλνiT
µ1µ2...µk

ν1...σ...νj (25)

where in the sums given above in Eq 25, σ replaces the ith µ (as in the first sum) or the ith ν
(as in the second sum). Thus, consider the covariant derivative of the variation of Γρνµ, which itself
is a tensor. With respect to the λth basis element, from the definition in Eq 25 above, we have that
this becomes:

∇λ(δΓρνµ) = ∂λ(δΓρνµ) + ΓρλσδΓ
σ
νµ − ΓσλνδΓ

ρ
σµ − ΓσλµδΓ

ρ
νσ (26)

Similarly, with respect to the νth basis element, we have

∇ν(δΓρνµ) = ∂ν(δΓρλµ) + ΓρνσδΓ
σ
λµ − ΓσνλδΓ

ρ
σµ − ΓσνµδΓ

ρ
λσ (27)

Now, rearranging Eq 24 in a convenient way, we obtain:

δRρµλν = ∂λ(δΓρνµ)+ΓρλσδΓ
σ
νµ−ΓσλνδΓ

ρ
σµ−ΓσλµδΓ

ρ
νσ−∂ν(δΓρλµ)−ΓρνσδΓ

σ
λµ+ΓσνλδΓ

ρ
σµ+ΓσνµδΓ

ρ
λσ (28)

which using Eq 26 and Eq 27, simplifies nicely to:

δRρµλν = ∇λ(δΓρνµ)−∇ν(δΓρνµ) (29)

Thus, taking the trace over the first and third indices, we obtain the variation of the Ricci tensor:

δRµν = ∇β(δΓβνµ)−∇ν(δΓββµ) (30)

Thus, substituting this into Eq 9, we obtain:

A =
1

2κ

∫
d4x
√
−ggµν(∇β(δΓβνµ)−∇ν(δΓββµ)) (31)

Since the covariant derivative is compatible with the metric by definition, we can rewrite this
with some relabeling of dummy indices as:

A =
1

2κ

∫
d4x
√
−g∇λ(gµν(δΓλνµ)− gµλ(δΓββµ)) (32)

Now, since δΓλµν is going to be a function of δgµν which we have arbitrarily set to zero at the
boundary, by Stokes’ Theorem, we have that A is vanishing. (Note that in general we cannot assume
that δgµν vanishes at infinity, but in our case, the Schwarzschild case, this is allowable).

Finally, since A3 is already in the desired form, we are done. Thus, we have that the final form
of the action when varied with respect to the metric reads:

δS =
1

2κ

∫
d4x
√
−g
(
Rµν −

gµν
2
R

)
δgµν (33)

Minimizing, we obtain Einstein’s field equations for the Schwarzschild case:
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Rµν −
1

2
gµνR = 0 (34)

Note that in general there may be a non-zero stress energy tensor, Tµν , such as seen later in
this work. These terms would appear explicitly in the Lagrange density, and we would have a set of
non-homogeneous set of field equations instead of a homogeneous set as in Eq 34.

3.2 Explicit Forms of Einstein’s Field Equations for the Schwarzschild
Case

Next, our task is to write out the explicit forms of Einstein’s field equations for the Schwarzschild
case, which will allow us to solve for the Schwarzschild metric. Let us begin by explicitly expanding
Eq 5:

Rµν = Γ0
µν,0 − Γ0

µ0,ν + ΓαµνΓ0
α0 − Γαµ0Γ0

αν (35)

+Γ1
µν,1 − Γ1

µ1,ν + ΓαµνΓ1
α1 − Γαµ1Γ1

αν

+Γ2
µν,2 − Γ2

µ2,ν + ΓαµνΓ2
α2 − Γαµ2Γ2

αν

+Γ3
µν,3 − Γ3

µ3,ν + ΓαµνΓ3
α3 − Γαµ3Γ3

αν .

Now, note for the cases where µ 6= ν, Rµν = 0 (See Appendix, Section 11.2, for explicit calcu-
lation of these cases, and Section 11.1 for explicit calculation of these Christoffel Symbols for the
general metric ansatz given in Eq 2).

Now we must compute the four cases of Rµν such that µ = ν. Let us begin with R00 (once again,
each of these are explicitly calculated in Appendix, Section 11.2):

R00 = Γ0
00,0 − Γ0

00,0 + Γα00Γ0
α0 − Γα00Γ0

α0 (36)

+Γ1
00,1 − Γ1

01,0 + Γα00Γ1
α1 − Γα01Γ1

α0

+Γ2
00,2 − Γ2

02,0 + Γα00Γ2
α2 − Γα02Γ2

α0

+Γ3
00,3 − Γ3

03,0 + Γα00Γ3
α3 − Γα03Γ3

α0

Thus, compiling our non-vanishing terms, we obtain

R00 = Γ1
00,1 − Γ1

01Γ1
10 + Γ1

00Γ1
11 + Γ1

00Γ2
12 + Γ1

00Γ3
13

which explicitly becomes:

R00 = − 1

4V 2

dV

dr

dU

dr
+

1

2V

d2U

dr2
− 1

4UV

(
dU

dr

)2

+
1

V r

dU

dr
(37)

Next we can obtain R11, given as:

R11 = Γ0
11,0 − Γ0

10,1 + Γα11Γ0
α0 − Γα10Γ0

α1 (38)

+Γ1
11,1 − Γ1

11,1 + Γα11Γ1
α1 − Γα11Γ1

α1

+Γ2
11,2 − Γ2

12,1 + Γα11Γ2
α2 − Γα12Γ2

α1

+Γ3
11,3 − Γ3

13,1 + Γα11Γ3
α3 − Γα13Γ3

α1

Compiling our non-vanishing terms for R11 we obtain:
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R11 = −Γ0
10,1 − Γ0

10Γ0
01 + Γ1

11Γ0
10 + Γ1

11Γ2
12 + Γ1

11Γ3
13

which explicitly becomes:

R11 = − 1

2U

d2U

dr2
+

1

4U2

(
dU

dr

)2

+
1

4UV

dU

dr

dV

dr
+

1

V r

dV

dr
(39)

Next we will obtain R22 which is given as:

R22 = Γ0
22,0 − Γ0

20,2 + Γα22Γ0
α0 − Γα20Γ0

α2 (40)

+Γ1
22,1 − Γ1

21,2 + Γα22Γ1
α1 − Γα21Γ1

α2

+Γ2
22,2 − Γ2

22,2 + Γα22Γ2
α2 − Γα22Γ2

α2

+Γ2
22,3 − Γ3

23,2 + Γα22Γ3
α3 − Γα23Γ3

α2

Compiling the non-vanishing terms, we obtain:

R22 = Γ1
22Γ0

10 + Γ1
22,1 + Γ1

22Γ1
11 − Γ3

23,2 − Γ3
23Γ3

32 + Γ1
22Γ3

13

which explicitly becomes:

R22 = − r

2UV

dU

dr
+

r

2V 2

dV

dr
+ 1− 1

V
(41)

Now we can obtain the final term, R33:

R33 = Γ0
33,0 − Γ0

30,3 + Γα33Γ0
α0 − Γα30Γ0

α3 (42)

+Γ1
33,1 − Γ1

31,3 + Γα33Γ1
α1 − Γα31Γ1

α3

+Γ2
33,2 − Γ2

32,3 + Γα33Γ2
α2 − Γα32Γ2

α3

+Γ3
33,3 − Γ3

33,3 + Γα33Γ3
α3 − Γα33Γ3

α3

Compiling these terms, we obtain

R33 = Γ1
33Γ0

10 + Γ1
33,1 − Γ3

31Γ1
33 + Γ1

33Γ1
11 + Γ2

33,2 + Γ3
32Γ2

33 + Γ1
33Γ2

12

R33 = −r sin2 θ

2UV
+
r sin2 θ

2V 2

dV

dr
+ sin2 θ − sin2 θ

V

R33 =

(
− r

2UV

dU

dr
+

r

2V 2

dV

dr
+ 1− 1

V

)
sin2 θ (43)

We can rewrite this in terms of R22
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R33 = R22 sin2 θ (44)

Important to solving Einstein’s field equation is the Ricci scalar, given as:

R = gµνRµν (45)

which using the Einstein summation convention tells us to sum over all µν. Plugging in the
above results, we obtain:

R = − 1

2UV 2

dV

dr

dU

dr
+

1

UV

d2U

dr2
− 1

2U2V

(
dU

dr

)2

− 2

V 2r

dV

dr
+

2

rUV

dU

dr
− 2

r2
+

2

r2V
(46)

Steps to obtaining this are given explicitly in the Appendices, Section 11.2, below.

3.3 The Schwarzschild Metric

Now that we have the Ricci curvature tensor and the Ricci scalar, we can plug these into Eq 34,
giving:

R00 −
1

2
g00R = 0 (47)

R11 −
1

2
g11R = 0 (48)

R22 −
1

2
g22R = 0 (49)

R33 −
1

2
g33R = 0 (50)

All steps in the following calculation are performed explicitly in the Appendix Section 11.3
Plugging in the results above to Eq 47 gives:

1

V 2

dV

dr
+

1

r

(
1− 1

V

)
= 0 (51)

Next, plugging in the results above to Eq 48 gives:

− 1

U

dU

dr
+

1g

r
(V − 1) = 0 (52)

Next, plugging in the results above to Eq 49 gives:

− 1

U

dU

dr
+

1

V

dV

dr
+

r

2UV

dU

dr

dV

dr
− r

U

d2U

dr2
+

r

2U2

(
dU

dr

)2

= 0 (53)

This is the same result as for µν = 33 and thus that equation will be omitted here.

Now that we have a system of equations, we can use these to solve for the components of the
metric. Rearranging the result from Eq 51,

−dr
r

=
dV

V − 1
− dV

V
(54)

Integrating both sides of this, we get

ln
1

r
+K = ln

V − 1

V
(55)
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Letting C = eK , we get

C

r
=
V − 1

V
(56)

Which when solved for V becomes:

V =
1

1− C
r

(57)

We can then plug this into Eq 52, giving:

− 1

U

dU

dr
+

1

r

( C
r

1− C
r

)
= 0 (58)

Rearranging, we obtain: (
1

r − C
− 1

r

)
dr =

dU

U
(59)

Thus, integrating as above, we get:

ln
r − C
r

= lnU +A (60)

Without loss of generality, here we take A = 0, giving:

U =
r − C
r

Which when put in the same form as above gives

U = 1− C

r
(61)

Plugging these results into Eq 2, we obtain:

ds2 = (1− C

r
)dt2 −

(
1

1− C
r

)
dr2 − r2dθ2 − r2 sin2 θdφ2 (62)

Connecting this with Newtonian Gravity using c as the escape velocity, we find that C = 2GM
c2 ,

giving the final form the Schwarzschild metric:

ds2 = (1− 2GM

c2r
)dt2 −

(
1

1− 2GM
c2r

)
dr2 − r2dθ2 − r2 sin2 θdφ2 (63)

4 The MTZ Black Hole

4.1 Einstein’s Field Equation for a Black Hole with Scalar Hair

We will now consider a new metric ansatz for a black hole with scalar hair, given as [14]:

ds2 = −f(r)dt2 + f−1(r)dr2 + a2(r)dΩ2 (64)

where Ω is the solid angle. Note that since we are dealing with anti de-Sitter space, dΩ2 =
1

1−kρ2 dρ
2 + ρ2dϕ2 where ρ = sinθ. Additionally, for the sake of convention, we have taken the

metric signature (− + + +). To obtain an exact metric, we must formulate Einstein’s field equa-
tions under the new conditions, which include the scalar field. These new conditions yield a new
Lagrangian, and thus a new action, given as [15]:
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S =

∫
d4x
√
−g(

1

2κ
R− 1

2
gµν∇µφ∇νφ− V (φ)) (65)

where 1
2κR is as in the Lagrangian in the case derived above, 1

2g
µν∇µφ∇νφ is the kinetic term

of the Lagrangian contributed by the scalar hair and V (φ) is the potential contributed by the scalar
hair. Here, we include the cosmological constant, Λ = − 6

κl2 (l is the length of the AdS space), in
the potential by V (0) = Λ. Additionally, by definition of covariant derivative, since φ is a scalar
field, the covariant derivative is equivalent to the partial derivative and the second term of Eq 65
becomes 1

2g
µν∂µφ∂νφ. Thus, we can proceed as in the Schwarzschild case above by minimizing the

action as follows:

δS

δgµν
=

δ

δgµν
√
−g
[

1

2κ
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
= 0 (66)

We can now expand the derivative on left hand side of the equation term by term. We can set:

A1 =
δ

δgµν
1

2κ

√
−gR (67)

A2 = − δ

δgµν

√
−g
2

gµν∂µφ∂νφ (68)

A3 = − δ

δgµν
√
−gV (φ) (69)

So then we have that δS
δgµν = A1 + A2 + A3. The first term is exactly the same as in the

Schwarzschild case, and thus gives the same result:

A1 =

√
−g

2κ
Rµν −

√
−g

4κ
gµνR (70)

Proceeding with the second term by the product rule, we obtain:

δ

δgµν

[√
−g
2

gµν∂µφ∂νφ

]
= −
√
−g
4

gµνg
µν∂µφ∂νφ+

√
−g
2

∂µφ∂νφ (71)

where we have used the variation of
√
−g from the Schwarzschild case above. Now, using the

fact that gµνg
µν = δµµ = 4 (note that this is due to the Einstein summation convention where

δµµ =

n−1∑
i=0

δµµ = n, where in our case, n = 4), Eq 71 simplifies to:

δ

δgµν

[√
−g
2

gµν∂µφ∂νφ

]
= −
√
−g∂µφ∂νφ+

√
−g
2

∂µφ∂νφ = −
√
−g
2

∂µφ∂νφ (72)

Thus, we have that:

A2 =

√
−g
2

∂µφ∂νφ (73)
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Finally, the third term, again by the product rule becomes:

A3 = − d

dgµν
[
√
−gV (φ)] =

√
−g
2

gµνV (φ)−
√
−g dV (φ)

dgµν
(74)

Here we see that since the potential is dependent on φ only, we can say:

A3 =

√
−g
2

gµνV (φ) (75)

Thus, combining these terms, we obtain:

√
−g

2κ
Rµν −

√
−g

4κ
gµνR+

√
−g
2

∂µφ∂νφ+

√
−g
2

gµνV (φ) = 0 (76)

Canceling
√
−g and rearranging, we obtain Einstein’s field equation:

Rµν −
1

2
gµνR = κ

[
− ∂µφ∂νφ− gµνV (φ)

]
(77)

Eq 77 can be simplified by multiplying on the left by gµν and solving for R in the following steps:

gµνRµν −
1

2
gµνgµνR+ κgµν∂µφ∂νφ+ κgµνgµνV (φ) = 0 (78)

By using the value of gµνgµν from above, and the definition of the Ricci scalar from Eq 45, this
simplifies to:

R = κgµν∂µφ∂νφ+ 4κV (φ) (79)

Thus, we can substitute this into the above equation, giving:

Rµν −
κ

2
gµνg

µν∂µφ∂νφ− 2κgµνV (φ) + κ∂µφ∂νφ+ κgµνV (φ) = 0 (80)

Simplifying in the same fashion as above, we have the final form of Einstein’s field equation for
the hairy black hole (as seen in [14]):

Rµν − κ(∂µφ∂νφ+ gµνV (φ)) = 0 (81)

Now, as above, to solve for the exact metric of the black hole, we must solve Einstein’s equation.
To do this, we must first calculate the Christoffel symbols, and then the Ricci tensors (explicit
calculations of the Christoffel symbols and the Ricci tensors in more detail, along with the Ricci
scalar for good measure, can be found in ).
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4.2 Ricci Curvature Tensor Components and Explicit Einstein Field Equa-
tions for the Hairy Black Hole

As a reminder, the definition of the Ricci curvature tensor is given as:

Rµν = Γ0
µν,0 − Γ0

µ0,ν + ΓαµνΓ0
α0 − Γαµ0Γ0

αν (82)

+Γ1
µν,1 − Γ1

µ1,ν + ΓαµνΓ1
α1 − Γαµ1Γ1

αν

+Γ2
µν,2 − Γ2

µ2,ν + ΓαµνΓ2
α2 − Γαµ2Γ2

αν

+Γ3
µν,3 − Γ3

µ3,ν + ΓαµνΓ3
α3 − Γαµ3Γ3

αν .

First, let us consider R0i, which is thus given as:

R0i = Γ0
0i,0 − Γ0

00,i + Γα0iΓ
0
α0 − Γα00Γ0

αi (83)

+Γ1
0i,1 − Γ1

01,i + Γα0iΓ
1
α1 − Γα01Γ1

αi

+Γ2
0i,2 − Γ2

02,i + Γα0iΓ
2
α2 − Γα02Γ2

αi

+Γ2
0i,3 − Γ3

03,i + Γα0iΓ
3
α3 − Γα03Γ3

αi

Since all of the above terms are vanishing, we have that:

R0i = 0 (84)

as was for the Schwarzschild case.
Next, we will consider Rij for i 6= j:

Rij = Γ0
ij,0 − Γ0

i0,j + ΓαijΓ
0
α0 − Γαi0Γ0

αj (85)

+Γ1
ij,1 − Γ1

i1,j + ΓαijΓ
1
α1 − Γαi1Γ1

αj

+Γ2
ij,2 − Γ2

i2,j + ΓαijΓ
2
α2 − Γαi2Γ2

αj

+Γ3
ij,3 − Γ3

i3,j + ΓαijΓ
3
α3 − Γαi3Γ3

αj .

Compiling these terms we see that this component is vanishing:

Rij = 0 (86)

Next we will consider R00, given as:

R00 = Γ0
00,0 − Γ0

00,0 + Γα00Γ0
α0 − Γα00Γ0

α0 (87)

+Γ1
00,1 − Γ1

01,0 + Γα00Γ1
α1 − Γα01Γ1

α0

+Γ2
00,2 − Γ2

02,0 + Γα00Γ2
α2 − Γα02Γ2

α0

+Γ3
00,3 − Γ3

03,0 + Γα00Γ3
α3 − Γα03Γ3

α0
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Thus, compiling these, we obtain:

R00 = −1

2
f ′′(r)f(r)− f ′(r)f(r)a′(r)

a(r)
(88)

Next, consider R11, given as:

R11 = Γ0
11,0 − Γ0

10,1 + Γα11Γ0
α0 − Γα10Γ0

α1 (89)

+Γ1
11,1 − Γ1

11,1 + Γα11Γ1
α1 − Γα11Γ1

α1

+Γ2
11,2 − Γ2

12,1 + Γα11Γ2
α2 − Γα12Γ2

α1

+Γ3
11,3 − Γ3

13,1 + Γα11Γ3
α3 − Γα13Γ3

α1

Thus compiling these above terms nd simplifying, we obtain:

R11 =
1

2

f ′′(r)

f(r)
+ 2

a′′(r)

a(r)
+
f ′(r)a′(r)

f(r)a(r)
(90)

Next, consider R22, which is give as

R22 = Γ0
22,0 − Γ0

20,2 + Γα22Γ0
α0 − Γα20Γ0

α2 (91)

+Γ1
22,1 − Γ1

21,2 + Γα22Γ1
α1 − Γα21Γ1

α2

+Γ2
22,2 − Γ2

22,2 + Γα22Γ2
α2 − Γα22Γ2

α2

+Γ2
22,3 − Γ3

23,2 + Γα22Γ3
α3 − Γα23Γ3

α2

Compiling and simplifying, we obtain:

R22 =
f ′(r)a′(r)a(r) + f(r)(a′(r))2 + f(r)a(r)a′′(r)− k

1− kρ2
(92)

Finally, consider R33, which is given as:

R33 = Γ0
33,0 − Γ0

30,3 + Γα33Γ0
α0 − Γα30Γ0

α3 (93)

+Γ1
33,1 − Γ1

31,3 + Γα33Γ1
α1 − Γα31Γ1

α3

+Γ2
33,2 − Γ2

32,3 + Γα33Γ2
α2 − Γα32Γ2

α3

+Γ3
33,3 − Γ3

33,3 + Γα33Γ3
α3 − Γα33Γ3

α3

Thus, compiling and simplifying, we obtain:

R33 = f(r)a(r)a′′(r)ρ2 − kρ2 (94)

Thus, using these values for the Ricci tensor elements and Eq 81, we obtain 4 independent dif-
ferential equations, 3 of which are necessary. They are as follows:

R00 − κ(∂0φ∂0φ+ g00V (φ)) = 0 (95)
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R11 − κ(∂1φ∂1φ+ g11V (φ)) = 0 (96)

R22 − κ(∂2φ∂2φ+ g22V (φ)) = 0 (97)

R33 − κ(∂3φ∂3φ+ g33V (φ)) = 0 (98)

Thus, substituting the above results into these above equations, we respectively obtain the fol-
lowing differential equations, which can also be found in [14]:

f ′′(r) + 2
a′(r)

a(r)
f ′(r) + 2κV (φ) = 0 (99)

a′(r)

a(r)
f ′(r) +

((
a′(r)

a(r)

)2

+
a′′(r)

a(r)
f(r)

)
− k

a2(r)
+ κV (φ) = 0 (100)

f ′′(r) + 2
a′(r)

a(r)
f ′(r) +

(
4
a′′(r)

a(r)
+ 2κ(φ′(r))2

)
f(r) + 2κV (φ) = 0 (101)

We want to eliminate the potential term, V (φ), from the above equations to have them in terms
of only elements of the metric. To do this, we can use Eq 99, which gives us the following:

κV (φ) = −1

2
f ′′(r)− a′(r)

a(r)
f ′(r) (102)

Thus, substituting this result into Eq 100 gives:

f ′′(r)− 2

((
a′(r)

a(r)

)2

+
a′(r)

a(r)

)
f(r) +

2k

a(r)2
= 0

Substituting into Eq 101 gives:

a′′(r)− 1

2
a(r)(φ′(r))2 = 0

Thus, combining these with the Klein-Gordon equation for our scalar field, φ, we have the three
final differential equations [14]:

f ′′(r)− 2

((
a′(r)

a(r)

)2

+
a′(r)

a(r)

)
f(r) +

2k

a(r)2
= 0 (103)

a′′(r)− 1

2
a(r)(φ′(r))2 = 0 (104)

�φ = gµν∇µ∇νφ =
dV (φ)

dφ
(105)

4.3 The MTZ Solution

A famous solution to differential equations Eq 103-105, the MTZ (Mart́ınez, Troncoso, Zanelli) so-

lution [14, 15], is found under the following change of coordinates [14]: dr′

r′2 = dr
(a(r))2 . This solution

is given as:

ds2 =
r(r + 2Gµ)

(r +Gµ)2

[
−
(
r2

l2
−
(

1 +
Gµ

r

)2)
dt2 +

(
r2

l2
−
(

1 +
Gµ

r

)2)−1
dr2 + r2dΩ2

]
(106)
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Where above, G is Newton’s gravitational constant, and µ is an integration constant related to
mass of the black hole:

M =
σ

4π
µ (107)

Where σ is the area of the spatial 2-section, namely Σ, a 2-dimensional manifold with constant
negative curvature k [14, 15]. Since we are working in anti de Sitter space, the topology of the
semi-Riemannian manifold is given as: R2 × Σ [15]. The potential and scalar field in Eq 105 are
given in this solution as:

V (φ) = − 3

4πGl2
sinh2

(√
4πG

3
φ

)
(108)

φ =

√
3

4πG
arctan

(
Gµ

r +Gµ

)
(109)

However, it is useful to consider the following conformal transformation [15]:

ĝµν =

(
1− 4πG

3
φ̂2
)−1

gµν φ̂ =

√
3

4πG
tanh

(√
4πG

3
φ

)
(110)

This transformation yields the following forms of the metric and scalar hair:

dŝ2 = −
(
r2

l2
−
(

1 +
Gµ

r

)2)
dt2 +

(
r2

l2
−
(

1 +
Gµ

r

)2)−1
dr2 + r2dΩ2 (111)

φ̂ =

√
3

4πG

Gµ

r +Gµ
(112)

Going forward, we will refer to the metric above as gµν instead of ĝµν , and similarly the line

element dŝ2 as ds2, and φ̂ as φ for ease of notation. Now, by solving:

r2

l2
−
(

1 +
Gµ

r

)2

= 0 (113)

We can obtain the event horizons of the MTZ black hole. Note that since this is a quartic poly-
nomial, we will have four independent solutions, given below as:

r1 =
l

2

(
1 +

√
1 +

4Gµ

l

)
(114)

r2 =
l

2

(
1−

√
1 +

4Gµ

l

)
(115)

r3 =
l

2

(
− 1 +

√
1− 4Gµ

l

)
(116)

r4 =
l

2

(
− 1−

√
1− 4Gµ

l

)
(117)
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However, note that r4 is nonphysical, and thus we will exclude this result. Below is the plot
depicting these event horizons, along with the singularity in the scalar hair, Eq 112:

Figure 1: Event Horizons of the MTZ Black Hole as a Function of Re-normalized Black Hole Mass

Note here that these event horizons are displayed for negative mass, for reasons that will be
explored in the following section. Also note that at Gµ

l = − 1
4 , the two outermost event horizons

(namely those in blue and orange) become imaginary, exposing a singularity in the the scalar hair.
Additionally, we can see that for positive mass, r2 becomes negative and is nonphysical, and similarly,
r3 becomes negative and eventually acquires an imaginary component, and is similarly nonphysical.
Thus, we can conclude that r1 is the only event horizon for µ > 0.

5 Thermodynamics

It is important to note that the solution to the action given in Eq 65 with vanishing scalar hair, the
vacuum solution (or topological AdS black hole), is found to have the metric given as [15]:

ds2 = −
(
ρ2

l2
− 1− 2Gµ

ρ

)
dt2 +

(
ρ2

l2
− 1− 2Gµ

ρ

)−1
dρ2 + ρ2dΩ2 (118)

Note that the above metric yields only one event horizon that is real-valued for all µ. One can
easily see this by solving:

ρ2

l2
− 1− 2Gµ

ρ
= 0 (119)

One sees that this yields ρ1 ∈ R ∀µ, and ρ2, ρ3 ∈ C such that ρ2, ρ3 /∈ R ∀µ 6= 0.

It is also important to note that the scalar hair cannot be vanishing for non-zero mass, as is
obvious when looking at Eq 112. Thus, for any given µ 6= 0, one can determine whether the
topological black hole or the hairy black hole is the stable solution which can be done through
calculating the difference in free energy.

5.1 Free Energy

Recall that the Bekenstein-Hawking entropy is dependent on th outermost event horizon. Addition-
ally, recall from Section 4.3 that for Gµ

l > −s 14 , the outermost event horizon is given as:
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r1 =
l

2

(
1 +

√
1 +

4Gµ

l

)
(120)

And for Gµ
l < − 1

4 , the outermost event horizon is given as:

r3 =
l

2

(
− 1 +

√
1− 4Gµ

l

)
(121)

Thus, solving for µ in each case, we obtain:

µ1 =

(
r21
Gl
− r1
G

)
=
r1
G

(
r1
l
− 1

)
(122)

µ3 = −
(
r23
Gl

+
r3
G

)
= −r3

G

(
r3
l

+ 1

)
(123)

Now, recall the definition of the MTZ black hole mass:

M =
σ

4π
µ (124)

Additionally, we have the following form of the Bekenstein-Hawking entropy [15]:

S =
σ

4G
a2(r1,3) (125)

Thus, let us first consider the region Gµ
l > − 1

4 where r1 is our outermost event horizon. Note
that the mass in this region is given as:

M1 =
σr1
4πG

(
r1
l
− 1

)
(126)

We can see that since r1 ≥ 0, M1 ≥ 0 for r1 ≥ l and M1 < 0 for 0 < r1 < l, which is the case for
− 1

4 <
Gµ
l < 0, as was desired.

Now, note that for the MTZ metric, a2(rh) =
r3h(rh + 2Gµ)

(rh +Gµ)2
,(where rh is the radius of the

outermst event horizon at a given mass) thus giving that for r1, Eq 125 becomes:

S1 =
σ

4G

r31(r1 + 2Gµ)

(r1 +Gµ)2
(127)

Substituting Eq 122 into Eq 127:

S1 =
σ

4G

r31(r1 + 2G r1
G ( r1l − 1))

(r1 +G r1
G ( r1l − 1))2

=
σ

4G

r31(r1 +
2r21
l − 2r1)

(r1 − r21
l − r1)2
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Simplifying, we obtain:

S1
σl2

4G

(
2r1
l
− 1

)
(128)

Now, note that the temperature of the MTZ black hole is given as [15]:

T =
1

2πl

(
2rh
l
− 1

)
(129)

The critical temperature, Tc, is T at rh = l, which evaluating T accordingly, we can see that [15]:

Tc =
1

2πl
(130)

From these values, we can obtain the free energy of the MTZ black hole, which is given as:

F = M − TS (131)

Thus, substituting the above results for the thermodynamics of the MTZ black hole into Eq 131,
we obtain:

FMTZ =
σr1
4πG

(
r1
l
− l
)
− σl2

4G

(
2r1
l

)[
1

2πl

(
2r1
l
− 1

)]
=

σl

4πG

(
r21
l
− r1

l

)
− σl

4πG

(
2r21
l2
− 2r1

l
+

1

2

)
=

σl

4πG

(
− r21
l2

+
2r1
l
− 1− r1

l
+ 1− 1

2

)
Note that in the final step above, we have added and subtracted a 1 to make way for further

simplification in terms of T and Tc. Thus, let us calculate two values, namely (T −Tc) and (T −Tc)2
from the above definitions. The first is simple, and is given as:

T − Tc =
1

2πl

(
2r1,3
l
− 1

)
− 1

2πl
=

1

πl

(
r1,3
l
− 1

)
(132)

Next, we can compute (T − Tc)2 by squaring the above result, which becomes:

(T − Tc)2 =
1

π2l2

(
r21,3
l2
− 2r1,3

l
+ 1

)
(133)

Thus, noting Eq 132 and Eq 133, we can rewrite the free energy in its final form:

FMTZ =
σl

8πG
(−1− 2πl(T − Tc)− 2π2l2(T − Tc)2) (134)

Thus, let us now perform the same calculation for the topological black hole solution. For the
sake of book-keeping, let us rename the radius of the event horizon for this black hole ρ. The
temperature for the topological black hole is given as:

T =
3

4πl

(
ρ

l
− l

3ρ

)
(135)

the critical temperature is the same as that given in Eq 130, and the entropy of the topological
is given as:

S =
σρ2

4G
(136)
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and the mass is given as:

M =
σρ

8πG

(
ρ2

l2
− 1

)
(137)

Thus, given these values, we can obtain the free energy of the topological black hole:

FTBH =
σρ

8πG

(
ρ2

l2
− 1

)
− 3

4πl

(
ρ

l
− l

3ρ

)(
σρ2

4G

)
=

σρ3

8πGl2
− σρ

8πG
− 3σρ3

16πGl2
+

σρ

16πG

= − σρ

16πG

(
ρ2

l2
+ 1

)
Thus, in order to determine energetic favorability, we must also put this in terms of T and Tc.

For this case, it is easiest to write ρ in terms of T and Tc and substitute this result into our above
expression for FTBH . Thus, consider the expression for T , in which we can substitute Tc, giving:

T =
3lTc
2ρ

(
ρ2

l2
− 1

3

)
We can rearrange this as:

ρ2 − 2lT

3Tc
ρ− l

3
= 0

Using the quadratic formula, we can find the roots of this quadratic equation:

ρ =
l

3

T

Tc
± l

√
T 2

9T 2
c

+
3

9

=
l

3

T

Tc
± l l

3

√
T 2

T 2
c

+ 3

=
l

3

(
T

Tc
±

√
T 2

T 2
c

+ 3

)

Now, note that since

√
T 2

T 2
c

+ 3 >
T

Tc
, and since we consider only ρ ∈ [0,∞), we can disregard

the negative sign and use only the positive sign, giving that:

ρ =
l

3

(
T

Tc
+

√
T 2

T 2
c

+ 3

)
Thus, substituting this result into our current form of FMTZ , we obtain:

FTBH = − σl

16πG

(
1

3

[
T

Tc
+

√
T 2

T 2
c

+ 3

])(
1

9

[
T

Tc
+

√
T 2

T 2
c

+ 3

]2
+ 1

)

= − σl

16πG

(
1

3

)[
2T 3

9T 3
c

+
2T 2

9T 2
c

√
T 2

T 2
c

+ 3 +
4T

3Tc
+

2T 2

9T 2
c

√
T 2

T 2
c

+ 3 +
2T 3

9T 3
c

+
2T

3Tc
+

4

3

√
T 2

T 2
c

+ 3

]
Thus, combining like terms, we obtain:

FTBH = − σl

8πG

(
1

3

)[
2T 3

9T 3
c

+
T

Tc
+

(
2T 2

9T 2
c

+
2

3

)√
T 2

T 2
c

+ 3

]
(138)

Thus, to put this in a form that is more desirable, let us apply Taylor’s theorem and expand Eq
138 about Tc to four terms, which gives:
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FTBH = − σl

8πG
[1 + 2πl(T − Tc) + 2π2l2(T − Tc)2 + π3l3(T − Tc)3] (139)

Thus, with Eq 134 and Eq 138, we can calculate the difference in free energy in the region
Gµ
l > − 1

4 , which is given as the difference:

∆F1 = FTBH − FMTZ (140)

Which thus gives:

∆F1 = −σπ
3l4

8πG
(T − Tc)3 (141)

Thus, by definition of continuous phase transition, we can see that the formation (or de-formation)
of scalar hair around the black hole will be a continuous phase transition in this region. Additionally,
we can see for T > Tc, ∆F1 < 0, and thus the MTZ solution in this region is unstable. Namely, the
MTZ solution in this region would decay into the vacuum solution, i.e. the hair would be ”absorbed”
by the black hole, as described in [15]. This region, T > Tc corresponds to r1 > l, or Gµ

l > 0, i.e.
positive black hole mass. Similarly, for T < Tc, ∆F1 > 0, indicating that the MTZ solution is the
stable solution in this region. This region corresponds to − 1

4 <
Gµ
l < 0.

Now, since r1 disappears at Gµ
l = − 1

4 , we must repeat the above calculation using r3 for
Gµ
l < − 1

4 . Since we already have FTBH , this amounts to calculating FMTZ using r3 the out-
ermost event horizon in this region.

Thus, we can substitute our value of µ1 into Eq 124, which becomes:

M3 = − σr3
4πG

(
r3
l

+ 1

)
(142)

Once again, note that for the MTZ metric, a2(r3) =
r33(r3 + 2Gµ)

(r3 +Gµ)2
,thus giving that Eq 125

becomes:

S =
σ

4G

r33(r3 + 2Gµ)

(r3 +Gµ)2
(143)

Substituting what we obtained for µ above, the entropy becomes:

S =
σ

4G

r33(r3 − 2G r3
G ( r3l + 1))

(r3 −G r3
G ( r3l + 1))2

=
σ

4G

r33(r3 − 2r23
l − 2r3)

(r3 − r23
l − r3)2

Which simplifies to:

S = −σl
2

4G

(
2r3
l

+ 1

)
(144)

Again, note that the temperature of the MTZ black hole is given as:

T =
1

2πl

(
2rh
l
− 1

)
(145)

And again, the critical temperature is given as:
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Tc =
1

2πl
(146)

From these values, we can obtain the free energy of the MTZ black hole using Eq 131:

FMTZ = − σr3
4πG

(
r3
l

+ 1

)
+
σl2

4G

[
1

2πl

(
2r3
l
− l
)](

2r3
l

+ l

)
thus, distributing we obtain:

FMTZ = − σr23
4πGl

− σr3
4πG

+
σr23

2πGl
− σl

8πG

=
σr23

4πGl
− σr3

4πG
− σl

8πG

=
σl

4πG

(
r23
l2
− r3

l
− 1

2

)
Thus, returning to the free energy calculation, for the sake of future substitution, let us rewrite

−r3
l

as −2r3
l

+
r3
l

and let us add and subtract 1. Thus the free energy becomes:

FMTZ =
σl

4πG

(
r23
l2
− 2r3

l
+
r3
l
− 1

2
+ 1− 1

)
=

σl

4πG

[(
r23
l2
− 2r3

l
+ 1

)
+

(
r3
l
− 1

)
− 1

2

]
We can now substitute our above calculations:

FMTZ =
σl

4πG

(
π2l2(T − Tc)2 + πl(T − Tc)−

1

2

)
Thus, factoring out a −1

2
, we obtain our final desired form of the free energy:

FMTZ = − σl

8πG
(1− 2πl(T − Tc)− 2π2l2(T − Tc)2) (147)

Thus, as above, let us calculate ∆F2 using Eq 139 and Eq 147, which becomes:

∆F2 = − σl

8πG
[4πl(T − Tc) + 4π2l2(T − Tc)2 + π3l3(T − Tc)3] (148)

Thus, we can see that the formation of hair in this region of the MTZ solution is given by a first
order phase transition, and is the energetically favorable solution (rather than the vacuum solution).
Note that while this region was initially disregarded by Mart́ınez, Troncoso, and Zanelli because of
a naked singularity in the scalar hair, due to the fact that the formation of hair in this region is
supported by a first order phase transition, this region is still of interest regarding violation of the
KSS bound. The fact that the phase transition will be first order implies that the phase transition is
ice-like, namely a liquid-solid phase transition. Since the KSS bound has been shown to be broken
in holographic solids [6], it is worthwhile to investigate η

s in this large negative mass regime.
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6 Trajectories of Particles Coupled to the Scalar Field in the
Large Negative Mass Regime

To determine whether or not it is valid to consider this large negative mass regime, we now consider
a similar system considered by Jacob Bekenstein in [16], where considered are particles coupled to
a scalar field identical to the MTZ scalar field under the conformal transformation given in Eq 110.
Here, we will reproduce this calculation in an explicit fashion.

6.1 Explicit Reproduction of Bekenstein’s Black Holes with Scalar Charge
Section 3

Thus, let us consider the metric and scalar hair as provided in [16]:

ds2 = −
(

1− M

r

)2

dt2 +

(
1− M

r

)−2
dr2 + r2dΩ2 (149)

ψ =
q

r −M
(150)

where M is a parameter given as:

M = 2q

√
π

3

Note that there is a singularity in Eq 150 at r = M ; however, we claim that this singularity
is not a physical. Thus, we want to show that trajectories of particles coupled to the scalar field
diverge at r = M at infinite proper time. For such particles, we have the action given as [16]:

S = −
∫

(m+ fφ)

(
− gαβ

dxα

dλ

dxβ

dλ

)
dλ (151)

where m is the rest mass of the particle, f is the coupling strength of the particle to the field φ.
Minimizing this action with respect to xν gives the following equation of motion [16]:

(m+fφ)
d2xν

dλ2
=

[
1

2
(m+fφ)

d

dλ
ln

(
−gαβ

dxα

dλ

dxβ

dλ

)
−fφ,α

dxα

dλ

]
dxν

dλ
−f
(
−gαβ

dxα

dλ

dxβ

dλ

)
φ,ν (152)

Since Eq 151 is invariant with respect to λ, we are able to arbitrarily set [16]:

−gαβ
dxα

dλ

dxβ

dλ
= m−2(m+ fφ)2 =

(
dτ

dλ

)2

(153)

Note that the second equality above comes from the fact that in the proper time frame, dxτ =
dyτ = dzτ = 0 and thus gαβdx

αdxβ = ds2 = −dτ2 + dxτ + dyτ + dzτ = −dτ2
Substituting this into Eq 152, we obtain:

(m+ fφ)
d2xν

dλ2
=

[
1

2
(m+ fφ)

d

dλ
ln(m−2(m+ fφ)2)− fφ,α

dxα

dλ

]
dxν

dλ
− f(m−2(m+ fφ)2)φ,ν

=

[
1

2
(m+ fφ)(2)

d

dλ
(ln(m+ fφ)− ln(m))− fφ,α

dxα

dλ

]
dxν

dλ
− f(m−2(m+ fφ)2)φ,ν

=

[
(m+ fφ)

fφ,α
dxα

dλ

m+ fφ
− fφ,α

dxα

dλ

]
dxν

dλ
− f(m−2(m+ fφ)2)φ,ν

= −fm−2(m+ fφ)2φ,ν

Thus, canceling (m+ fφ) from each side gives our new equation of motion:
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d2xν

dλ2
= −fm−2(m+ fφ)2φ,ν (154)

Now, using the Killing equation ξαφ
,α = 0 as given in [16], we can multiply each side of Eq 154

by ξν and integrate to obtain the constant of motion for the Killing vector ξν :∫
ξν
d2xν

dλ2
dλ = −

∫
fm−2(m+ fφ)2ξνφ

,νdλ

We see that the RHS becomes 0 due to the Killing equation given above, and thus, integrating
the LHS, we obtain:

ξν
dxν

dλ
+ E = 0

We claim that since Eq 149 is time independent, we thus have time-like Killing vector given as
ξα = δα0 where δα0 is the Kronecker delta. Note that ξα = gαβξ

β by properties of the metric tensor.

Proof. Suppose that ξα = δα0 and gαβ,0 = 0. Thus, we want to show that ξα satisfies the Killing
equation, ξα;β + ξβ;α = 0. First, note the Killing Condition: ξα;β + ξβ;α ≡ ξα,β + ξβ,α − 2Γραβξρ.

From the above identity, ξα = gαβξ
β = gαβδ

β
0 = gα0, we can rewrite this as:

ξα;β + ξβ;α ≡ ξα,β + ξβ,α − 2Γραβξρ = gα0,β + gβ0,α − gρσ(gσα,β + gσβ,α − gαβ,σ)gρ0

Now, note that since metric tensor components gµν ∈ R, and since Einstein summation notation
dictates that the third term above is a summation over the components, we can rewrite this as:

gα0,β + gβ0,α − gρσ(gσα,β + gσβ,α − gαβ,σ)gρ0 = gα0,β + gβ0,α − gρσgρ0(gσα,β + gσβ,α − gαβ,σ)

= gα0,β + gβ0,α − δσ0 (gσα,β + gσβ,α − gαβ,σ)

= gα0,β + gβ0,α − g0α,β − g0β,α + gαβ,0)

Since the metric tensor is symmetric about the diagonal, the first four terms cancel, and we are
left with

ξα;β + ξβ;α = gαβ,0

which, by hypothesis, is equal to zero, and thus we have ξα;β + ξβ;α = 0, as was to be shown.

Thus, let us rewrite our above result:

E = −ξν
dxν

dλ
(155)

which, using the result of the proof above, gives that

−ξν
dxν

dλ
= −gν0

dxν

dλ

Since the metric tensor is represented by a diagonal matrix, we have that ν = 0, and since
g00 = −(1− M

r )2, we can rewrite Eq 155 as:

E =

(
1− M

r

)2
dt

dλ
(156)

Now, let us expand Eq 153, which is given as:

−gαβ
dxα

dλ

dxβ

dλ
= m−2(m+ fφ)2

Expanding for orbits of angular momentum zero (without loss of generality)and distributing the
m−2, we obtain:
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(
1− M

r

)2(
dt

dλ

)2

−
(

1− M

r

)−2(
dr

dλ

)2

=

(
1 +

f

m

q

r −M

)2

Substituting Eq 156, we obtain:(
1− M

r

)−2
E2 −

(
1− M

r

)−2(
dr

dλ

)2

=

(
1 +

f

m

q

r −M

)2

Multiplying by (1− M
r )2 and rearranging for ( drdλ )2, we obtain:(

dr

dλ

)2

= E2 −
(

1− M

r

)2(
1 +

f

m

q

r −M

)2

and thus we have:

dr

dλ
= ±

(
E2 −

(
1− M

r

)2(
1 +

f

m

q

r −M

)2) 1
2

To better understand this result, let us factor an r out of the denominator of the hair term and
expand the parentheses:

dr

dλ
= ±

[
E2 −

(
1− M

r

)2(
1 +

f

mr

q

1−M/r

)2] 1
2

(157)

which thus becomes:

dr

dλ
= ±

[
E2 −

(
1− M

r
+
fq

mr

)2] 1
2

(158)

Now, note for r →M , Eq 158 becomes:

dr

dλ
= ±

[
E2 −

(
fq

mM

)2] 1
2

We can thus see for
fq

mM
sufficiently small, dr

dλ ≈ ±E, which indicates that dr
dλ never changes

sign for r ≥M and thus does not change direction, and thus there certainly is no infinite potential

barrier, as there would be if the singularity were physical. Additionally, we see that for | fq
mM

| ≥ E,

dr
dλ does change sign for r ≥ M and thus the particle does change direction as a result of a finite
potential barrier [16].

To make more sense of this result, it would be more useful to consider dr
dτ , where τ is proper

time. To do this, we will use the chain rule:

dr

dλ
=
dr

dτ

dτ

dλ

Rearranging, we obtain:

dr

dτ
=
dr

dλ

(
dτ

dλ

)−1
We know dr

dλ from Eq 157, and we know dτ
dλ from Eq 153, which is stated again explicitly below:

dτ

dλ
=

[(
1 +

f

m

q

r −M

)2] 1
2

Thus, the above expression becomes:

dr

dτ
= ±

[
E2 −

(
1− M

r

)2(
1 +

f

m

q

r −M

)2] 1
2
[(

1 +
f

m

q

r −M

)−2] 1
2
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= ±
[
E2

(
1 +

f

m

q

r −M

)−2
−
(

1− M

r

)2] 1
2

Now, note for r → M , we have that f
m

q
r−M >> 1. Thus, applying this approximation and

factoring a 1/r2 (which then becomes 1/M2) out of the second term, we obtain:

dr

dτ
= ±

[
E2

(
m(r −M)

fq

)2

− 1

M2
(r −M)2

] 1
2

Factoring out M−2(r −M)2, we obtain our final form:

dr

dτ
= ±

[
E2

(
mM

fq

)2

− 1

] 1
2

M−1(r −M) (159)

For the final step, let us define:

1

K
= ±

[
E2

(
mM

fq

)2

− 1

] 1
2

M−1

thus giving:

dr

dτ
=

1

K
(r −M)

which is an easy differential equation, yielding:

τ = K ln(r −M) (160)

which shows that the particle’s trajectory diverges at infinite proper time, showing that the
singularity at r = M is not a physical singularity.

6.2 Particles in the MTZ Metric Coupled to the MTZ Hair

Now, consider the MTZ metric given in Eq 111 and the MTZ scalar hair (with r0 = Gµ), given as:

ds2 = −
(
r2

l2
−
(

1 +
r0
r

)2)
dt2 +

(
r2

l2
−
(

1 +
r0
r

)2)−1
dr2 + r2dΩ2 (161)

φ(r) =

√
3

4πG

r0
r + r0

(162)

Now, since the above calculation was in general until Eq 156, we can begin with the general form
of the constant of motion, given as:

E = −g00
dt

dλ

Thus, substituting our value from Eq 161, we obtain our new constant of motion:

E =

(
r2

l2
−
(

1 +
r0
r

)2)
dt

dλ
(163)

Once again, we will expand Eq 153 for orbits with zero angular momentum, and thus only time
and radial terms survive:
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(
r2

l2
−
(

1 +
r0
r

)2)(
dt

dλ

)2

−
(
r2

l2
−
(

1 +
r0
r

)2)−1(
dr

dλ

)2

=

(
1 +

f

m

√
3

4πG

r0
r + r0

)2

As above, we will substitute Eq 163 and solve for dr
dλ , which yields:

dr

dλ
= ±

[
E2 −

(
r2

l2
−
(

1 +
r0
r

)2)(
1 +

f

m

√
3

4πG

r0
r + r0

)2] 1
2

(164)

Now, note that we have:

(
dτ

dλ

)−1
=

[(
1 +

f

m

√
3

4πG

r0
r + r0

)−2] 1
2

which follows from Eq 153. Thus, we will once again manipulate the chain rule, giving:

dr

dτ
=
dr

dλ

(
dτ

dλ

)−1

which substituting the above two results yields:

dr

dτ
=

[
E2

(
1 +

f

m

√
3

4πG

r0
r + r0

)−2
−
(
r2

l2
−
(

1 +
r0
r

)2)] 1
2

Now, consider r → −r0, where f
m

√
3

4πG ( r0
r+r0

) >> 1, in which case the above becomes:

dr

dτ
=

[
E2

(
m

f

)2
4πG

3

(
r + r0
r0

)2

− r2

l2

] 1
2

(165)

Note that the differential equation given in Eq 165 is a separable differential equation, allowing
us to integrate and obtain the proper time, τ , as in Section 6.1. For ease of calculation, we will
rename K = E2(mf ) 4πG

3 , and set l2 = 1 and r0 = −2, we obtain the following result:

τ =

2i ln

[
2i(−8 + 4(r − 2) +K2(r − 2))√

4−K2
+ 2
√
−16− 16(r − 2)− 4(r − 2)2 +K2(r − 2)2

]
√

4−K2
(166)

Plotting the real and imaginary parts of this as a function of r with K = 10, we obtain the
following plot:
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Figure 2: Real and Imaginary Components Proper Time of Particles Coupled to the MTZ Hair as
a Function of r with K = 10

Here, we see that the proper time actually picks up an imaginary component before the singu-
larity in the scalar hair, which here is at r = 2, but neither component diverges at the singularity
as in the case studied in [16]. Additionally, we can look at |τ |2:

Figure 3: Squared Magnitude of Proper Time of Particles Coupled to the MTZ Hair as a Function
of r with K = 10

Interestingly, in this plot of the mod of τ with respect to r, we see that this actually becomes
non-differentiable at r = 2.5.

Due to the fact that the proper time is not divergent at the singularity in the scalar hair, we have
that the point r = −Gµ is singular [17]. Thus, we should expect to see some sort of instability of
the black hole before the large negative mass regime that prevents the continuous variation of black
hole mass below Gµ

l = − 1
4 .
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7 A Method for Calculating Viscosity over Entropy in the
MTZ System

Thus, we want to actually calculate η/s for this system. To do this, we will use the method given in
[18], namely we will consider a perturbation of the metric, a gravitational wave (quantized by the
graviton) of frequency ω, given as δgµν = eiωth(u) where the radial component of this perturbation,
the shear mode, the satisfies the following equation of motion [18]:

h(u)

(
− 2m2VX

f(u)
− 2iω

uf(u)

)
+ h′(u)

(
f ′(u)

f(u)
+

2iω

f(u)
− 2

u

)
+ h′′(u) = 0 (167)

Above, VX is the derivative of potential associated with the mass of the graviton (which we will

assume, in general, to not be restricted to zero) with respect to X = r2

l2 , m is the mass of the
graviton, and f refers to the function of the metric as described in Eq 64, where by convention, we
have taken u = 1

u . Note that while in [18] the system considered was an AdS Schwarzschild black
hole, Eq 167 still holds since both the Schwarzschild black hole and the MTZ black hole are of the
same form, namely that given in Eq 64. Thus, Multiplying Eq 167 by uf(u), we obtain our desired
form of the equation of motion, given as:

hxy(u)(−2um2VX)− 2iω) + h′xy(u)(uf ′(u) + 2iuω − 2f(u)) + uf(u)h′′xy(u) = 0 (168)

Thus, substituting the the blackening factor (i.e. f(u)) from the MTZ solution, we obtain:

(−2iω)h(u)+

(
2

u2L2
+2Gµu(1+Gµu)+2iu−1ω− 2

u2L2
+2(1+Gµu)2

)
h′(u)+u−1

(
1

u2L2
−(1+Gµu)2

)
h′′(u) = 0

After expanding and simplifying, we obtain:

(−2iω)h(u) + (6Gµu+ 4G2µ2u2 + 2iu−1ω + 2)h′(u) + u−1
(

1

u2L2
− (1 +Gµu)2

)
h′′(r) = 0 (169)

In general, fields in the bulk can be expanded as [18]:

Φ(t, ~x) = A(~x)r−a(1 + · · · ) +B(~x)r−b(1 + · · · ) (170)

Where A(~x) and B(~x) are defined as the ”leading” and ”subleading” terms, respectively, and
are integration constants obtained from the following procedure [18]: Eq 169 is integrated from the
boundary (i.e. r at ∞) to some arbitrary point in the bulk, and again from the outermost event
horizon to the same point in the bulk. In the case of the field h(r), we have [18]:

h(r) = hl(ω)(1 + · · · ) + hs(ω)(1 + · · · ) (171)
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Where hl(ω) and hs(ω) are the leading and subleading terms described above. The viscosity can
intuitively be understood as the response of the black hole to these perturbations in the metric, and
will be related to the imaginary component of the Green’s function as [18]:

η = lim
ω→0

[
− 1

ω
ImG(ω)

]
(172)

Where, from the AdS/CFT dictionary, we can write the Green’s function as [18]:

G(ω) =
3hs(ω)

2hl(ω)
(173)

Additionally, the entropy density of the system is given in terms of the AdS length, l, and the
event horizon rh [18]:

s =
2πl2

r2h
(174)

Thus, compiling Eq 172 and Eq 174, we obtain:

η

s
= lim
ω→0

[
− r2h

2πl2ω
ImG(ω)

]
(175)

The following section details our numerical results from the above outlined procedure.

8 Viscosity over Entropy: Numerical Results

Renaming µ = M , we obtain the following plot for η/s as a function of re-normalized black hole
mass M :

Figure 4: η/s in the MTZ Black Hole as a Function of Black Hole Mass
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In the small negative mass regime, we can see arbitrary breaking of the bound before η/s be-
comes negative, and eventually diverges as it approaches M = − 1

4 . Negative viscosity has been
shown to correspond to a superradiant instability of the black hole [11], thus indicating that mass
cannot continuously varied past M = − 1

4 . This supports the claim from Section 6.2.

In the large negative mass regime, we can see a pathology in the model right around M = − 1
2 ,

where the ratio of η/s becomes negative, which is not physical.

So as to see if the pathology at M = − 1
2 could be eliminated, the equation of motion given in

Eq 167 was adjusted in the Mathematica code to include non-zero graviton mass. η/s was plotted
again as a function of black hole mass, M , for graviton mass values of m = 0.01, m = 0.1, and
m = 1. Plot behavior became strange for m = 1. For m = 0.01, plot looked similar to the case with
massless graviton. At m = 0.1, a new plot was generated, which qualitatively looked similar to if
the plot were inverted about the horizontal axis. At M = − 1

2 , η/s was positive instead of negative.
Thus, between m = 0.01 and m = 0.1, η/s must have a zero (by the Intermediate Value Theorem).
η/s was then plotted as a function of m between 0.01 and 0.1 at M = −0.5. This was used to
approximate a value of m such that η/s was not negative at M ≈ −0.5. Thus, η/s was plotted
again as a function of M with m = 0.046. For this, the data showed that η/s was still negative
at M = −0.47. Thus, repeating the above procedure, η/s as a function of m for M = −0.47 to
approximate a value of m for which η/s had a zero to enter this value back into the plot of η/s as
a function of M . This plot contained zero between m = 0.052 and m = 0.053. Thus, m = 0.053
was substituted into the plot of η/s as a function ofM since η/s was positive atm = 0.053, as desired.

For m = 0.052, we have the following plot of η/s.

Figure 5: η/s in the MTZ Black Hole as a Function of Black Hole Mass for m = 0.052

Note that now that we have increased graviton mass to 0.052 from m = 0 as in Figure 4, we
have a second local minimum that dips negative at M ≈ −0.33. Thus, we can plot η/s as a function
of graviton mass for M = −0.47 and M = −0.33, which are the two local minima depicted in the
middle section of the plot in Figure 4.
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Figure 6: η/s in the MTZ Black Hole as a Function of Graviton Mass for M = −0.47

Figure 7: η/s in the MTZ Black Hole as a Function of Graviton Mass for M = −0.33

Upon examining the raw data for η/s as a function of graviton mass for M = −0.33 and
M = −0.47, one can see that zero occurs for M = −0.47 in the interval m ∈ [0.0523, 0.0524]
and for M = −0.33 in the interval m ∈ [0.0519, 0.0520]. Thus, η/s is negative at both M values
on the interval m ∈ [0.0520, 0.0523], and are opposite signs elsewhere. Thus, this negative viscosity
cannot be eliminated in the large negative mass regime. Furthermore, we can note that in Figure 5,
η/s is negative for − 1

4 < m < 0, indicating that the small negative mass regime is unstable. Thus,
we can conclude that the MTZ solution is unstable due to superradiant instabilities [11] for graviton
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mass m = 0.052 and larger (as is shown below).

Further investigations into behavior of η/s for larger graviton masses appear to show similarly
unstable behavior, for example setting m = 0.1 and m = 1, as shown below.

Figure 8: η/s in the MTZ Black Hole as a Function of BH Mass for m = 0.1

Figure 9: η/s in the MTZ Black Hole as a Function of BH Mass for m = 0.1

In addition to the above investigation of the pathology in the model for large negative mass,
consider a different form of the potential associated with the massive graviton, i.e. V = X2 = ( rL )4.
This new form shows up in the equation of motion, and for graviton masses considered above (i.e.
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less than 0.1), the form of η/s as a function of black hole mass, M , is qualitatively indistinguishable
from that above for m = 0. However, when m = 0, we obtain the following behavior:

Figure 10: η/s in the MTZ Black Hole as a Function of Black Hole Mass for m = 1

We see that η/s remains positive on the interval M ∈ [−1.2,−0.2], however η/s is once again
negative for small negative mass, and large negative mass beyond M = −1.2.

9 Summary

While we have shown that the formation of hair in the large negative mass regime is given by a
first order phase transition, we also showed that trajectories of particles coupled to this scalar hair
diverge at the singularity in the scalar hair at finite proper time. This indicates that the naked
singularity in the scalar hair for Gµ

l < − 1
4 is pathological. Thus, mass values in the negative mass

regime beyond Gµ
l = − 1

4 would violate weak cosmic censorship [19].

In the small negative mass regime, namely − 1
4 <

Gµ
l < 0, we have shown that for zero gravi-

ton mass, the KSS bound can be arbitrarily broken in a system holographically dual to the MTZ
black hole system. At a certain value slightly above Gµ

l = − 1
4 , viscosity becomes negative and then

diverges, indicating a superradiant instability of the black hole as the black hole mass approaches
this value, and thus mass cannot be continuously varied to reach − 1

4 . In the negative mass regime
beyond − 1

4 , there are unavoidable superradiant instabilities, namely negative viscosity, that cannot
be removed by varying graviton mass in the set of graviton potentials considered above (namely
V (X) = X2 and V (X) = X3). The emergent superradiant instability that arises as a result of
continuously decreasing the black hole mass introduces a form of cosmic censorship, preventing the
singularity in the scalar hair from becoming visible to the asymptotic observer for sufficiently nega-
tive black hole mass.

This work provides a new means of grossly violating the KSS bound in a holographic context
that is not dependent on graviton mass. Future work could include studying the ratio of shear
viscosity to entropy density in systems similar to the MTZ solution, or other non-trivial hairy black
hole solutions in anti-de Sitter space.
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11 Appendices

11.1 Christoffel Symbols for the Schwarzschild Case

We can now derive the various Christoffel symbols below. It must be noted that the Greek
sub/superscripts span dimensions 0-3 while latin sub/superscripts span only dimensions 1-3, where
0 is the time dimension by convention. Additionally, since gµν is diagonal gµν such that µ 6= ν
is vanishing. Also, when being differentiated in the given coordinate system (spherical), the only
dimension in which a nonzero derivative is found is when i, j = 1 (or the radial dimension). It should
also be mentioned that the Christoffel symbols are symmetric about the two subscripts due to the
symmetry of the metric tensor, and that they are equal to zero ∀λ 6= µ due to the diagonal nature
of the metric tensor. Below are all the possible Christoffel symbols that are relevant to the metric
tensor”

Γ0
00 =

1

2
g00{g00,0 + g00,0 − g00,0} = 0

Γ0
0i =

1

2
g00{g00,i + g0i,0 − g0i,0} =

1

2U

dU

dr
(i = 1, else = 0)

Γ0
ij =

1

2
g00{g0i,j + g0j,i − gij,0} = 0

Γ1
00 =

1

2
g11{g10,0 + g10,0 − g00,1} =

1

2V

dU

dr

Γ1
0i =

1

2
g11{g10,i + g1i,0 − g0i,1} = 0

Γ1
ij,i 6=j =

1

2
g11{g1i,j + g1j,i − gij,1} = 0

Γ1
11 =

1

2
g11{g11,1 + g11,1 − g11,1} = − 1

2V

(
− dV

dr

)
=

1

2V

dV

dr

Γ1
22 =

1

2
g11{g12,2 + g12,2 − g22,1} = − 1

2V

(
− d

dr
(r2)

)
= − r

V

Γ1
33 =

1

2
g11{g13,3 + g13,3 − g33,1} = − 1

2V

(
− d

dr
(r2 sin2 θ)

)
= −r sin2 θ

V

Γ2
00 =

1

2
g22{g20,0 + g20,0 − g00,2} = 0

Γ2
0i =

1

2
g22{g20,i + g2i,0 − g0i,2} = 0

Γ2
ii,i=1,2 =

1

2
g22{g2i,i + g2i,i − gii,2} = 0

34



Γ2
ii,i=3 =

1

2
g22{g2i,i + g2i,i − gii,2} = − 1

2r2

(
d

dθ
(r2 sin2 θ)

)
= − sin θ cos θ

Γ2
12 =

1

2
g22{g21,2 + g22,1 − g12,2} =

1

r

Γ2
13 =

1

2
g22{g21,3 + g23,1 − g13,2} = 0

Γ2
23 =

1

2
g22{g22,3 + g23,2 − g23,2} = 0

Γ3
00 =

1

2
g33{g30,0 + g30,0 − g00,3} = 0

Γ3
0i =

1

2
g33{g30,i + g3i,0 − g0i,3} = 0

Γ3
ii =

1

2
g33{g3i,i + g3i,i − gii,3} = 0

Γ3
12 =

1

2
g33{g31,2 + g32,1 − g12,3} = 0

Γ3
13 =

1

2
g33{g33,1 + g31,3 − g13,3} = − 1

2r2 sin2 θ

(
d

dr
(−r2 sin2 θ)

)
=

1

r

Γ3
23 =

1

2
g33{g32,2 + g33,2 − g23,3} = − 1

2r2 sin2 θ

(
d

dθ
(−r2 sin2 θ)

)
=

cos θ

sin θ
= cot θ

11.2 Explicit Calculation of Ricci Curvature Tensor Components and the
Ricci Scalar for the Schwarzschild Case

Once again, let us begin by explicitly expanding Eq 5:

Rµν = Γ0
µν,0 − Γ0

µ0,ν + ΓαµνΓ0
α0 − Γαµ0Γ0

αν (176)

+Γ1
µν,1 − Γ1

µ1,ν + ΓαµνΓ1
α1 − Γαµ1Γ1

αν

+Γ2
µν,2 − Γ2

µ2,ν + ΓαµνΓ2
α2 − Γαµ2Γ2

αν

+Γ3
µν,3 − Γ3

µ3,ν + ΓαµνΓ3
α3 − Γαµ3Γ3

αν .

Thus, we can start with the case where µ 6= ν

Rij = Γ0
ij,0 − Γ0

i0,j + ΓαijΓ
0
α0 − Γαi0Γ0

αj (177)

+Γ1
ij,1 − Γ1

i1,j + ΓαijΓ
1
α1 − Γαi1Γ1

αj

+Γ2
ij,2 − Γ2

i2,j + ΓαijΓ
2
α2 − Γαi2Γ2

αj

+Γ3
ij,3 − Γ3

i3,j + ΓαijΓ
3
α3 − Γαi3Γ3

αj .

Plugging in the Christoffel symbols into this, we obtain the following, though this will be ex-
plained out thoroughly in English since many of the cancellations and emergent values come about
for logical reasons that are not quite trivial:

• Since the system does not evolve with time, and since the first term is differentiated with
respect to time, the term is vanishing.

• The second term before being differentiated is 1
2U

dU
dr . However, this is then differentiated with

respect to j, which is defined as not being equal to i, which in this case must be 1 for the term
not to equal 0. This expression is a function of only r and when differentiated by anything
other than r, it becomes zero, and thus the term disappears.
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• The second symbol of the third term forces α = 1 for the term to be non-vanishing. However,
for the first symbol of the third term α = 1 drives the term to 0, thus giving that the term is
vanishing ∀α.

• The first symbol in the fourth term is only non-vanishing for α = 0, which forces i = 1.
However, for the second symbol of the fourth term, since i 6= j, j 6= i, and thus the fourth
term is vanishing.

• The fifth term is 0 for all i 6= j (See Appendices).

• The sixth term is only non-vanishing when i = 1. However, since i 6= j, and when the term is
vanishing when differentiated by anything other than r (which is represented by 1), the term
is vanishing.

• By examining the second symbol of the seventh term, one can see that α = 1 or else the term is
vanishing. However, this drives the first symbol of the seventh term to 0, and thus the seventh
term is vanishing.

• For the first symbol of the eighth term, by looking at the Appendices where the explicit
Christoffel Symbols are given for this case, one can see that the term is only non-vanishing for
α = i. However, by doing the same for the second symbol of the eighth term, one finds that it
is only non-vanishing for α = j. These conditions are mutually exclusive since i 6= j, and thus
the eighth term is vanishing.

• The ninth term is only non-vanishing before differentiation when i, j = 1, 2. However this
returns a function of r, which when differentiated by θ is 0 and the term is thus vanishing.

• The tenth term before being differentiated is non-vanishing only when i = 1. However, this
term is a function of only r, and since j 6= i, term is differentiated with respect to any variable
other than r, and thus the tenth term is vanishing.

• The second symbol of the eleventh term forces α = 1 in order to be non-zero. However, for
the first symbol of the eleventh term, when α = 1, the term equals 0, and thus the entire term
is vanishing.

• The two symbol of the twelfth term are non-vanishing individually for three cases: α = 1 and
i = 2, α = 2 and i = 1, and α = 3 and i = 3. For the first case, the second symbol of the
twelfth term is only non-vanishing for j = 2. But since i = 2, and i 6= j, the term is vanishing
overall. For the second case, the second symbol of the twelfth term is only non-vanishing for
j = 1. But similarly, since i = 1, and i 6= j, the term is vanishing overall. The final case is
the exact same as the first two where j must equal 3 to be non-vanishing, but i = 3, which
disallows this condition, and thus the twelfth term is completely vanishing.

• None of the Christoffel symbols are functions of φ. The thirteenth term is differentiated with
respect to φ and therefore the term equals 0.

• Before differentiation, the fourteenth term is only non-vanishing for i = 1, 2. However, since
when i = 1 and i = 2 the term is a function of r (1) and θ (2) respectively, and since the term
is then differentiated by j where i 6= j, the term is vanishing.

• For the first symbol of the fifteenth term to be non-vanishing, α must equal 2 or 3. However,
if α = 3, then the second symbol is vanishing. Thus we are left with α = 2, which gives
Γ2
12Γ3

23 = 1
r cot θ.

• For the sixteenth term, we have a similar case to the twelfth term where for certain α, the only
case in which both terms are non-vanishing are when i = j, which is a contradiction to the
condition that i 6= j. The only case in which this does not occur is when α = 3, which fores i
and j to equal 1 and 2 in no particular order (due to symmetry of Christoffel symbols). This
results in the sixteenth term simplifying to −Γ3

13Γ3
23 = − 1

r cot θ.Thus this cancels pairwise
with the fifteenth term.
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Thus, we have

Rij = 0 (178)

The next case that must be considered for µ 6= ν is R0i, which is given as the following:

R0i = Γ0
0i,0 − Γ0

00,i + Γα0iΓ
0
α0 − Γα00Γ0

αi (179)

+Γ1
0i,1 − Γ1

01,i + Γα0iΓ
1
α1 − Γα01Γ1

αi

+Γ2
0i,2 − Γ2

02,i + Γα0iΓ
2
α2 − Γα02Γ2

αi

+Γ2
0i,3 − Γ3

03,i + Γα0iΓ
3
α3 − Γα03Γ3

αi

• The first term is differentiated with respect to time, and since this is a static body, this term
is vanishing.

• The second term of this is zero since the Christoffel symbol prior to differentiation is zero,
which when differentiated is also zero.

• The first symbol in the third term is only non-vanishing for α = 0; however, this drives the
second symbol to zero, and thus the term is vanishing.

• The first symbol in fourth term is only non-vanishing for α = 1, but the second symbol is only
non-vanishing for α = 0, which is contradiction and thus the fourth term is also zero.

• The fifth and sixth terms are vanishing since the Christoffel symbols prior to differentiation
are zero, which when differentiated is also zero.

• The first symbol in the seventh term is non-vanishing for α = 0, which drives the second
symbol to zero, and thus the whole term is vanishing.

• The eighth term is vanishing for the same reason as the seventh term.

• The ninth and tenth terms are vanishing for the same reason as the second term.

• The eleventh and twelfth terms are vanishing for the same reason as seventh term.

• The thirteenth and fourteenth terms are vanishing for the same reason as the second term.

• The fifteenth and sixteenth terms are vanishing for the same reason as the seventh term.

Thus we have that

Rij = 0 (180)

thus giving that ∀µ, ν such that µ 6= ν, Rµν = 0.

Now we must compute the four cases of Rµν such that µ = ν. Let us begin with R00:

R00 = Γ0
00,0 − Γ0

00,0 + Γα00Γ0
α0 − Γα00Γ0

α0 (181)

+Γ1
00,1 − Γ1

01,0 + Γα00Γ1
α1 − Γα01Γ1

α0

+Γ2
00,2 − Γ2

02,0 + Γα00Γ2
α2 − Γα02Γ2

α0

+Γ3
00,3 − Γ3

03,0 + Γα00Γ3
α3 − Γα03Γ3

α0

• The Christoffel symbols of the first and second terms are zero and thus the first and second
terms are zero (also cancel pairwise).

• The third term is only non-vanishing for α = 1, however this is also true for the fourth term,
and the third and fourth terms cancel pairwise.
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• The fifth term Christoffel symbol before differentiation yields Γ1
00 = 1

2V
dU
dr , which when differ-

entiated yields Γ1
00,1 = − 1

2V 2
dV
dr

dU
dr + 1

2V
d2U
dr2 .

• The sixth term is differentiated with respect to time and since this is a static body, this term
is vanishing.

• The first symbol of the seventh term is only non-vanishing for α = 1. Thus, this yields
Γ1
00Γ1

11 = 1
4V 2

dU
dr

dV
dr .

• The first symbol of the eighth term is only non-zero for α = 0, which thus gives −Γ0
01Γ1

00 =
− 1

4UV (dUdr )2.

• The ninth and tenth term Christoffel symbols are zero before differentiation and are thus
vanishing (see Appendices).

• The eleventh term is only non-vanishing for α = 1, yielding Γ1
00Γ2

12 = 1
2V r

dU
dr .

• The first symbol of the twelfth term is vanishing ∀α and thus the term is vanishing.

• The Christoffel symbol in the thirteenth and fourteenth terms are zero before differentiation
and are therefore vanishing.

• The fifteenth term is only non-vanishing for α = 1, giving Γ1
00Γ3

13 = 1
2V r

dU
dr .

• The first symbol of the final term is vanishing ∀α and therefore the term is vanishing.

Thus, compiling our non-vanishing terms, we obtain

R00 = Γ1
00,1 − Γ1

01Γ1
10 + Γ1

00Γ1
11 + Γ1

00Γ2
12 + Γ1

00Γ3
13

R00 = − 1

2V 2

dV

dr

dU

dr
+

1

2V

d2U

dr2
− 1

4UV

(
dU

dr

)2

+
1

4V 2

dU

dr

dV

dr
+

1

2V r

dU

dr
+

1

2V r

dU

dr

R00 = − 1

4V 2

dV

dr

dU

dr
+

1

2V

d2U

dr2
− 1

4UV

(
dU

dr

)2

+
1

V r

dU

dr
(182)

Next we can obtain R11, given as:

R11 = Γ0
11,0 − Γ0

10,1 + Γα11Γ0
α0 − Γα10Γ0

α1 (183)

+Γ1
11,1 − Γ1

11,1 + Γα11Γ1
α1 − Γα11Γ1

α1

+Γ2
11,2 − Γ2

12,1 + Γα11Γ2
α2 − Γα12Γ2

α1

+Γ3
11,3 − Γ3

13,1 + Γα11Γ3
α3 − Γα13Γ3

α1

• The Christoffel symbol of the first term before differentiation is zero, and thus the term is
vanishing.

• The Christoffel symbol of the second term before differentiation is given as − 1
2U

dU
dr . Thus,

when differentiated with respect to r, the term becomes − 1
2U

d2U
dr2 + 1

2U2 (dUdr )2.

• The first symbol of the third term is only non-vanishing for α = 1, therefore giving Γ1
11Γ0

10 =
1

4UV
dU
dr

dV
dr .

• Both symbols of the fourth term are only non-vanishing for α = 0, which gives −Γ0
10Γ0

01 =
−(Γ0

01)2 = − 1
4U2 (dUdr )2.

• The fifth and sixth terms are both nonzero, though since they cancel pairwise, there is no need
to determine what exactly each one equals.

• The seventh and the eighth terms also cancel pairwise.
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• The ninth term symbol before differentiation is zero and thus the term is vanishing.

• The tenth term symbol before differentiation is −Γ2
12 = − 1

r , which when differentiated with
respect to r gives −Γ2

12,1 = 1
r2 .

• The eleventh term is only non-vanishing for α = 1 which gives Γ1
11Γ2

12 = 1
2V r

dV
dr .

• The twelfth term is only non-vanishing for α = 2. This thus gives −Γ2
12Γ2

21 = − 1
r2 , which

cancels pairwise with the tenth term.

• The thirteenth term symbol before differentiation is zero and thus the term is vanishing.

• The fourteenth term symbol before differentiation is −Γ3
13 = − 1

r , which when differentiated
with respect to r gives −Γ3

13,1 = 1
r2 .

• The fifteenth term is only non-vanishing for α = 1 which gives Γ1
11Γ3

13 = 1
2V r

dV
dr .

• The final term is only non-vanishing for α = 3. This thus gives −Γ3
13Γ3

31 = − 1
r2 ,which cancels

pairwise with the fourteenth term.

Compiling our non-vanishing terms for R11 we obtain

R11 = −Γ0
10,1 − Γ0

10Γ0
01 + Γ1

11Γ0
10 + Γ1

11Γ2
12 + Γ1

11Γ3
13

R11 = − 1

2U

d2U

dr2
+

1

2U2

(
dU

dr

)2

− 1

4U2

(
dU

dr

)2

+
1

4UV

dU

dr

dV

dr
+

1

2V r

dV

dr
+

1

2V r

dV

dr

R11 = − 1

2U

d2U

dr2
+

1

4U2

(
dU

dr

)2

+
1

4UV

dU

dr

dV

dr
+

1

V r

dV

dr
(184)

Next we will obtain R22 which is given as:

R22 = Γ0
22,0 − Γ0

20,2 + Γα22Γ0
α0 − Γα20Γ0

α2 (185)

+Γ1
22,1 − Γ1

21,2 + Γα22Γ1
α1 − Γα21Γ1

α2

+Γ2
22,2 − Γ2

22,2 + Γα22Γ2
α2 − Γα22Γ2

α2

+Γ2
22,3 − Γ3

23,2 + Γα22Γ3
α3 − Γα23Γ3

α2

• The first and second term symbols are zero before differentiation and thus the terms are
vanishing.

• The third term is only non-vanishing for α = 1, which gives Γ1
22Γ0

10 = − r
2UV

dU
dr .

• The fourth term is vanishing ∀α.

• The fifth term symbol before differentiation is Γ1
22 = − r

V which when differentiated gives

− 1
V + r

V 2
dV
dr .

• The sixth term symbols is zero before differentiation and thus the term is vanishing.

• The seventh term is only non-vanishing for α = 1, which gives Γ1
22Γ1

11 = − r
2V 2

dV
dr .

• The eighth term is only non-vanishing for α = 2, which gives −Γ2
21Γ1

22 = 1
V , which cancels

pairwise with the fifth symbol.

• The ninth and tenth terms cancel pairwise.

• The eleventh and twelfth terms cancel pairwise.

• The thirteenth term symbol is zero before differentiation and is thus vanishing.
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• The fourteenth term symbol before differentiation is −Γ3
23 = cot θ, which when differentiated

with respect to θ gives −Γ3
23,2 = csc2 θ.

• The fifteenth term is only non-vanishing for α = 1, which gives Γ1
22Γ3

13 = − 1
V .

• The final term is only non-vanishing for α = 3 which gives −Γ3
23Γ3

32 = − cot2 θ.

Compiling these non-vanishing terms, we obtain

R22 = Γ1
22Γ0

10 + Γ1
22,1 + Γ1

22Γ1
11 − Γ3

23,2 − Γ3
23Γ3

32 + Γ1
22Γ3

13

R22 = − r

2UV

dU

dr
− 1

V
+

r

V 2

dV

dr
+

1

V
− r

2V 2

dV

dr
+ csc2 θ − cot2 θ − 1

V

R22 = − r

2UV

dU

dr
+

r

2V 2

dV

dr
+ 1− 1

V
(186)

Now we can obtain the final term, R33:

R33 = Γ0
33,0 − Γ0

30,3 + Γα33Γ0
α0 − Γα30Γ0

α3 (187)

+Γ1
33,1 − Γ1

31,3 + Γα33Γ1
α1 − Γα31Γ1

α3

+Γ2
33,2 − Γ2

32,3 + Γα33Γ2
α2 − Γα32Γ2

α3

+Γ3
33,3 − Γ3

33,3 + Γα33Γ3
α3 − Γα33Γ3

α3

• The first and second term symbols are zero prior to differentiation and therefore are vanishing.

• The third term is only non-vanishing for α = 1, which gives −Γ1
33Γ0

10 = r sin2 θ
2UV

dU
dr .

• The fourth term is vanishing ∀α.

• The fifth term symbol before being differentiated gives −Gamma133 = − r sin
2 θ

V which when

differentiated with respect to r gives Γ1
33,1 = − sin2 θ

V + r sin2 θ
V 2

dV
dr .

• Before differentiation, the sixth term gives −Γ3
13 = − 1

r , which when differentiated with respect
to φ is vanishing.

• The seventh term is only non-vanishing for α = 1, which gives Γ1
33Γ1

11 = − r sin
2 θ

2V 2
dV
dr .

• The eighth term is only non-vanishing for α = 3 which gives −Γ3
31Γ1

33 = sin2 θ
V .

• The ninth term prior to differentiation is − sin θ cos θ, which when differentiated with respect
to θ gives Γ2

33,2 = − cos2 θ + sin2 θ.

• The tenth term is vanishing before differentiation, and thus remains 0.

• The second symbol of the eleventh term is only non-zero for α = 1, thus making the eleventh

term Γ1
33Γ2

12 = − sin2 θ
V .

• The second symbol of the twelfth term is only non-vanishing for α = 3, which forces the first
symbol to zero, which causes the entire term to become −Γ3

32Γ2
33 = sin θ cos θ cot θ = cos2 θ.

• The thirteenth and fourteenth terms are vanishing prior to differentiation and thus remain 0.

• The fifteenth and sixteenth terms cancel pairwise.
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Compiling these terms, we obtain

R33 = Γ1
33Γ0

10 + Γ1
33,1 − Γ3

31Γ1
33 + Γ1

33Γ1
11 + Γ2

33,2 + Γ3
32Γ2

33 + Γ1
33Γ2

12

R33 = −r sin2 θ

2UV
− sin2 θ

V
+
r sin2 θ

V 2

dV

dr
+

sin2 θ

V
− r sin2 θ

2V 2

dV

dr
− cos2 θ + sin2 θ + cos2 θ − sin2 θ

V

R33 = −r sin2 θ

2UV
+
r sin2 θ

2V 2

dV

dr
+ sin2 θ − sin2 θ

V

R33 =

(
− r

2UV

dU

dr
+

r

2V 2

dV

dr
+ 1− 1

V

)
sin2 θ (188)

We can rewrite this in terms of R22

R33 = R22 sin2 θ (189)

Important to solving Einstein’s field equation is the Ricci scalar, given as:

R = gµνRµν (190)

which using the Einstein summation convention tells us to sum over all µν. Plugging in the
above results, we obtain:

R = − 1

4UV 2

dV

dr

dU

dr
+

1

2UV

d2U

dr2
− 1

4U2V

(
dU

dr

)2

+
1

UV r

dU

dr
(191)

+
1

2UV

d2U

dr2
− 1

4U2V

(
dU

dr

)2

− 1

4UV 2

dU

dr

dV

dr
− 1

V 2r

dV

dr

+
1

2rUV

dU

dr
− 1

2rV 2

dV

dr
− 1

r2
+

1

r2V

+
1

2rUV

dU

dr
− 1

2rV 2

dV

dr
− 1

r2
+

1

r2V

This, this simplifies to:

R = − 1

2UV 2

dV

dr

dU

dr
+

1

UV

d2U

dr2
− 1

2U2V

(
dU

dr

)2

− 2

V 2r

dV

dr
+

2

rUV

dU

dr
− 2

r2
+

2

r2V
(192)

11.3 The Schwarzschild Metric Explicit Steps

Reiterating Eq 34:

R00 −
1

2
g00R = 0 (193)

R11 −
1

2
g11R = 0 (194)

R22 −
1

2
g22R = 0 (195)

R33 −
1

2
g33R = 0 (196)

Plugging in the results above Eq 193 and canceling minus signs gives:

1

4V 2

dV

dr

dU

dr
− 1

2V

d2U

dr2
+

1

4UV

(
dU

dr

)2

− 1

V r

dU

dr
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−U
2

(
1

2UV 2

dV

dr

dU

dr
− 1

UV

d2U

dr2
+

1

2U2V

(
dU

dr

)2

+
2

V 2r

dV

dr
− 2

rUV

dU

dr
+

2

r2
− 2

r2V

)
= 0

1

4V 2

dV

dr

dU

dr
− 1

2V

d2U

dr2
+

1

4UV

(
dU

dr

)2

− 1

V r

dU

dr

1

4V 2

dV

dr

dU

dr
− 1

2V

d2U

dr2
+

1

4UV

(
dU

dr

)2

+
U

V 2r

dV

dr
− 1

rV

dU

dr
+

2

r2

(
1− 1

V

)
= 0

This simplifies to the following:

1

V 2

dV

dr
+

1

r

(
1− 1

V

)
= 0 (197)

Next, plugging in the results above Eq 194 and canceling minus signs gives:

1

2U

d2U

dr2
− 1

4U2

(
dU

dr

)2

− 1

4UV

dU

dr

dV

dr
− 1

V r

dV

dr

+
V

2

(
1

2UV 2

dV

dr

dU

dr
− 1

UV

d2U

dr2
+

1

2U2V

(
dU

dr

)2

+
2

V 2r

dV

dr
− 2

rUV

dU

dr
+

2

r2
− 2

r2V

)
= 0

1

2U

d2U

dr2
− 1

4U2

(
dU

dr

)2

− 1

4UV

dU

dr

dV

dr
− 1

V r

dV

dr

+
1

4UV

dV

dr

dU

dr
− 1

2U

d2U

dr2
+

1

4U2

(
dU

dr

)2

+
1

V r

dV

dr
− 1

rU

dU

dr
+
V

r2

(
1− 1

V

)
= 0

This simplifies to the following:

− 1

U

dU

dr
+

1g

r
(V − 1) = 0 (198)

Next, plugging in the results above Eq 195 and canceling minus signs gives:

r

2UV

dU

dr
− r

2V 2

dV

dr
− 1 +

1

V

+
r2

2

(
1

2UV 2

dV

dr

dU

dr
− 1

UV

d2U

dr2
+

1

2U2V

(
dU

dr

)2

+
2

V 2r

dV

dr
− 2

rUV

dU

dr
+

2

r2
− 2

r2V

)
= 0

r

2UV

dU

dr
− r

2V 2

dV

dr
− 1 +

1

V

+
r2

4UV 2

dV

dr

dU

dr
− r2

2UV

d2U

dr2
+

r2

4U2V

(
dU

dr

)2

+
r

V 2

dV

dr
− r

UV

dU

dr
+ 1− 1

V
= 0

This simplifies to the following:

− 1

U

dU

dr
+

1

V

dV

dr
+

r

2UV

dU

dr

dV

dr
− r

U

d2U

dr2
+

r

2U2

(
dU

dr

)2

= 0 (199)

This is the same result as for µν = 33 and thus that equation will again be omitted here.

Now that we have a system of equations, we can use these to solve for the components of the
metric. Taking the first equation’s result,

1

V 2

dV

dr
+

1

r

(
1− 1

V

)
= 0

Rearranging, we obtain:

−1

r

(
1− 1

V

)
=

1

V 2

dV

dr
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−dr
r

=
dV

V 2(1− 1
V )

=
dV

V (V − 1)
=

dV

V − 1
− dV

V

Integrating both sides of this, we get

−
∫
dr

r
=

∫
dV

(V − 1)
−
∫
dV

V

ln
1

r
+K = ln

V − 1

V

Letting C = eK , we get

C

r
=
V − 1

V
Which when solved for V becomes:

CV

r
= V − 1

1 = V − CV

r

V =
1

1− C
r

(200)

We can then plug this into Eq 198, giving:

− 1

U

dU

dr
+

1

r

(
1

1− C
r

−
1− C

r

1− C
r

)
= 0

− 1

U

dU

dr
+

1

r

( C
r

1− C
r

)
= 0

Rearranging, we obtain:

dr

r

(
C

r − C

)
=
dU

U(
1

r − C
− 1

r

)
dr =

dU

U

Thus, integrating as above, we get:

ln
r − C
r

= lnU +A

Without loss of generality, here we take A = 0, giving:

U =
r − C
r

Which when put in the same form as above gives

U = 1− C

r
(201)

Plugging these results into Eq 2, we obtain:

ds2 = (1− C

r
)dt2 −

(
1

1− C
r

)
dr2 − r2dθ2 − r2 sin2 θdφ2 (202)

Connecting this with Newtonian Gravity using c as the escape velocity, we find that C = 2GM
c2 ,

giving the final form the Schwarzschild metric:

ds2 = (1− 2GM

c2r
)dt2 −

(
1

1− 2GM
c2r

)
dr2 − r2dθ2 − r2 sin2 θdφ2 (203)
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11.4 Christoffel Symbols for a Black Hole with Scalar Hair

The definition of a Christoffel symbol remains the same and is thus given as:

Γµνσ =
1

2
gµλ{gλν,σ + gλσ,ν − gνσ,λ}

Thus giving

Γ0
00 =

1

2
g00{g00,0 + g00,0 − g00,0} = 0

Γ0
0i =

1

2
g00{g00,i + g0i,0 − g0i,0} =

1

2

f ′(r)

f(r)
(i = 1, else = 0)

Γ0
ij =

1

2
g00{g0i,j + g0j,i − gij,0} = 0

Γ1
00 =

1

2
g11{g10,0 + g10,0 − g00,1} =

1

2
f ′(r)f(r)

Γ1
0i =

1

2
g11{g10,i + g1i,0 − g0i,1} = 0

Γ1
ij,i 6=j =

1

2
g11{g1i,j + g1j,i − gij,1} = 0

Γ1
11 =

1

2
g11{g11,1 + g11,1 − g11,1} = −1

2

f ′(r)

f(r)

Γ1
22 =

1

2
g11{g12,2 + g12,2 − g22,1} =

−f(r)a(r)a′(r)

1− kρ2

Γ1
33 =

1

2
g11{g13,3 + g13,3 − g33,1} = −f(r)a(r)a′(r)ρ2

Γ2
00 =

1

2
g22{g20,0 + g20,0 − g00,2} = 0

Γ2
0i =

1

2
g22{g20,i + g2i,0 − g0i,2} = 0

Γ2
11 =

1

2
g22{g21,1 + g21,1 − g11,2} = 0

Γ2
22 =

1

2
g22{g22,2 + g22,2 − g22,2} =

1

2
g22g22,2 =

kρ

1− kρ2

Γ2
33 =

1

2
g22{g23,3 + g23,3 − g33,2} = −ρ(1− kρ2)

Γ2
12 =

1

2
g22{g21,2 + g22,1 − g12,2} =

a′(r)

a(r)

Γ2
23 =

1

2
g22{g22,3 + g23,2 − g23,2} = 0

Γ2
13 =

1

2
g22{g21,3 + g23,1 − g13,2} = 0

Γ3
00 =

1

2
g33{g30,0 + g30,0 − g00,3} = 0

Γ3
0i =

1

2
g33{g30,i + g3i,0 − g0i,3} =

1

2
g33g33,0 = 0
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Γ3
ii =

1

2
g33{g3i,i + g3i,i − gii,3} = 0

Γ3
12 =

1

2
g33{g31,2 + g32,1 − g12,3} = 0

Γ3
23 =

1

2
g33{g32,3 + g33,2 − g23,3} =

1

ρ

Γ3
13 =

1

2
g33{g31,3 + g33,1 − g13,3} =

a′(r)

a(r)

11.5 Explicit Calculation of the Ricci Tensor Components for the Hairy
Black Hole

As a reminder, the definition of the Ricci curvature tensor is given as:

Rµν = Γ0
µν,0 − Γ0

µ0,ν + ΓαµνΓ0
α0 − Γαµ0Γ0

αν (204)

+Γ1
µν,1 − Γ1

µ1,ν + ΓαµνΓ1
α1 − Γαµ1Γ1

αν

+Γ2
µν,2 − Γ2

µ2,ν + ΓαµνΓ2
α2 − Γαµ2Γ2

αν

+Γ3
µν,3 − Γ3

µ3,ν + ΓαµνΓ3
α3 − Γαµ3Γ3

αν .

First, let us consider R0i, which is thus given as:

R0i = Γ0
0i,0 − Γ0

00,i + Γα0iΓ
0
α0 − Γα00Γ0

αi (205)

+Γ1
0i,1 − Γ1

01,i + Γα0iΓ
1
α1 − Γα01Γ1

αi

+Γ2
0i,2 − Γ2

02,i + Γα0iΓ
2
α2 − Γα02Γ2

αi

+Γ2
0i,3 − Γ3

03,i + Γα0iΓ
3
α3 − Γα03Γ3

αi

Now for the sake of book-keeping, let us number each term, i.e. Γ0
0i,0 is 1, Γ0

00,i is 2, and so on.

1. Vanishing since Γ0
0i = 0 as given above.

2. Vanishing since Γ0
00 = 0 as given above.

3. The first symbol in this term is non-zero for α = 0. However, as above, we have that Γ0
00 = 0

giving that the second symbol is vanishing for α = 0 and thus the whole term is vanishing.

4. The first symbol in this term is non-zero for α = 1. However, as above, we have that Γ0
1i = 0

giving that the second symbol is vanishing for α = 1 and thus the term is vanishing.

5. Vanishing since Γ1
01 = 0 as given above.

6. Vanishing since Γ0
01 = 0 as given above.

7. The first symbol in this term is non-zero for α = 0. However, as above, we have that Γ1
01 = 0

giving that the second symbol is vanishing for α = 0 and thus the term is vanishing.

8. The first symbol in this term is non-zero for α = 0. However, as above, we have that Γ0
0i = 0

giving that the second symbol is vanishing for α = 0 and thus the term is vanishing.

9. Vanishing since Γ2
0i = 0 as given above.

10. Vanishing since Γ2
02 = 0 as given above.
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11. The first symbol in this term is non-zero for α = 0. However, as above, we have that Γ2
02 = 0

giving that the second symbol is vanishing for α = 0 and thus the term is vanishing.

12. Vanishing since the first symbol is vanishing ∀α.

13. Vanishing since Γ3
0i = 0 as given above.

14. Vanishing since Γ3
03 = 0 as given above.

15. The first symbol is non-zero for only α = 0, for which the second symbol is zero, and thus the
whole term is vanishing.

16. Vanishing since the first symbol is zero ∀α.

Since every term is zero for R0i, we have that

R0i = 0 (206)

as was for the Schwarzschild case.
Next, we will consider Rij for i 6= j

Rij = Γ0
ij,0 − Γ0

i0,j + ΓαijΓ
0
α0 − Γαi0Γ0

αj (207)

+Γ1
ij,1 − Γ1

i1,j + ΓαijΓ
1
α1 − Γαi1Γ1

αj

+Γ2
ij,2 − Γ2

i2,j + ΓαijΓ
2
α2 − Γαi2Γ2

αj

+Γ3
ij,3 − Γ3

i3,j + ΓαijΓ
3
α3 − Γαi3Γ3

αj .

Continuing as above, we have:

1. Vanishing since Γ0
ij = 0.

2. Non-zero for i = 1 before differentiation. Since i 6= j, j = 2, but Γ0
01 is independent of Ω, and

thus the term is vanishing.

3. The first symbol is non-zero for α = 2, but since Γ0
20 = 0, the term is vanishing.

4. The first symbol is non-zero only for α = 0 and i = 1. The second symbol is non-zero only for
α = 0 and j = 1. But i 6= j, and therefore the term is vanishing.

5. Vanishing since Γ1
ij = 0.

6. Before differentiation, the term is non-zero for i = 1. Since i 6= j, we have that j = 2. But since
Γ1
11 is independent of ρ, the term is vanishing.

7. The first symbol is non-zero for α = 2. However, since Γ1
21 = 0 and thus the second symbol is

zero for α = 2 and thus the term is vanishing.

8. For α = 1, the first symbol is non-zero for i = 1. However, the second symbol for α = 1 is
non-zero for j = 1, but i 6= j so the term is vanishing for α = 1. For α = 2, the first symbol is
non-zero for i = 2, and when α = 2, the second symbol is non-zero for j = 2. But again, i 6= j
and thus the term is vanishing.

9. Since Γ2
12 is independent of ρ, the term is vanishing.

10. Before differentiation, the term is non-zero for i = 1, which implies that j = 2. However, since
Γ2
12 is independent of ρ, we have that the term is vanishing.

11. The first symbol is non-zero for α = 2, 3, and the second symbol is non-zero for α = 1, 2. Thus,
taking the intersection of these two sets, we can say that α = 2, and thus the term becomes
Γ2
12Γ2

22. However, note that this is equal to the previous term, and thus the two terms cancel
pairwise.
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12. For α = 1, the first symbol is non-zero for i = 2 which implies that j = 1 since i 6= j. For this
case, the second symbol becomes Γ2

11, which as given above is zero and thus the term is vanishing
for α = 1. For α = 2, the first term is non-zero for i = 1, which implies that j = 2. Thus,the

second symbol becomes Γ2
22 =

kρ

1− kρ2
. Thus, the term becomes Γ2

12Γ2
22

13. All symbols are independent of φ and thus the term is vanishing.

14. Before differentiation, the symbol is non-zero for i = 1, 2. For i = 1, we have that the symbol is
dependent on only r, and thus after differentiation, the symbol is zero for j = 2, 3, which it must
since i 6= j and thus the term is vanishing. Similarly, for i = 2, j = 1, 3 since i 6= j, and since
for i = 2, the symbol is dependent on only ρ, we can say that after differentiation with respect
to either r or φ (i.e. j = 1, 3), the symbol is vanishing.

15. The first symbol is non-zero for α = 2, 3, and the second symbol is non-zero for α = 1, 2. Thus,
taking the intersection of these two sets, we have that α = 2 and i = 1 an j = 2 (without loss of
generality due to the symmetry of the Christoffel symbols). Thus, the term becomes −Γ2

12Γ3
23,

which note is the additive inverse of the previous term, and thus the two terms cancel pairwise.

16. The first symbol is non-zero only for α = 3 and i = 1, 2. The second symbol for α = 3 is non-zero
only for j = 1, 2. Thus, we have two cases where i = 1 and j = 2 or i = 2 and j = 1, which
produce the same result, and the term becomes Γ3

13Γ3
23

Compiling these results, we see that we have

Rij = 0 (208)

Next we will consider R00, given as:

R00 = Γ0
00,0 − Γ0

00,0 + Γα00Γ0
α0 − Γα00Γ0

α0 (209)

+Γ1
00,1 − Γ1

01,0 + Γα00Γ1
α1 − Γα01Γ1

α0

+Γ2
00,2 − Γ2

02,0 + Γα00Γ2
α2 − Γα02Γ2

α0

+Γ3
00,3 − Γ3

03,0 + Γα00Γ3
α3 − Γα03Γ3

α0

Continuing, we have:

1. Vanishing since Γ0
00 = 0.

2. Vanishing since Γ0
00 = 0.

3. Cancels pairwise with the fourth term.

4. Cancels pairwise with the third term.

5. Before differentiation, we have Γ1
00 =

1

2
f ′(r)f(r). Thus, differentiating with respect to r and

multiplying by −1, we obtain −1

2
f ′′(r)f(r)− 1

2
(f ′(r))2

6. As above, Γ1
01 = 0 and thus the term is vanishing.

7. The first symbol is non-zero only for α = 1 and thus the term becomes

−Γ1
00Γ1

11 = −1

2
f ′(r)f(r)

(
− 1

2

f ′(r)

f(r)

)
=

1

4
(f ′(r))2.
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8. The first symbol of this term is non-zero only for α = 0, which makes the second symbol become

Γ1
00. Thus, the term becomes

(
1

2

f ′(r)

f(r)

)(
1

2
f ′(r)f(r)

)
=

1

4
(f ′(r))2

9. Vanishing since Γ2
00 = 0, as given above.

10. Vanishing since Γ2
02 = 0, as given above.

11. The first symbol is non-zero for only α = 1, giving that the second term becomes Γ2
12. Thus, the

term becomes −Γ1
00Γ2

12 = −
(

1

2
f ′(r)f(r)

)(
a′(r)

a(r)

)
= −f

′(r)f(r)a′(r)

2a(r)
.

12. The first symbol is vanishing ∀α and thus the term is vanishing.

13. Vanishing since Γ3
00 = 0 as given above.

14. Vanishing since Γ3
0i = 0 as given above.

15. The first symbol is non-zero for only α = 1. Thus, the term becomes−Γ1
00Γ3

13 =
1

2
f ′(r)f(r)

(
a′(r)

a(r)

)
16. The first symbol is vanishing ∀α and thus the term is vanishing.

Thus, compiling these results, we obtain:

R00 = −1

2
f ′′(r)f(r)− f ′(r)f(r)a′(r)

a(r)
(210)

Next, consider R11, given as:

R11 = Γ0
11,0 − Γ0

10,1 + Γα11Γ0
α0 − Γα10Γ0

α1 (211)

+Γ1
11,1 − Γ1

11,1 + Γα11Γ1
α1 − Γα11Γ1

α1

+Γ2
11,2 − Γ2

12,1 + Γα11Γ2
α2 − Γα12Γ2

α1

+Γ3
11,3 − Γ3

13,1 + Γα11Γ3
α3 − Γα13Γ3

α1

1. Vanishing since Γ0
11 = 0 as given above.

2. Before differentiation, we have Γ0
01 =

1

2

f ′(r)

f(r)
. Thus, differentiating, we obtain

1

2
(f ′′(r)f−1(r) −

(f ′(r))2f−2(r)) =
1

2

f ′′(r)

f(r)
− 1

2

(
f ′(r)

f(r)

)2

.

3. The first symbol is non-zero only for α = 1. Thus, the term becomes −
(
− 1

2

f ′(r)

f(r)

)(
1

2

f ′(r)

f(r)

)
=

1

4

(
f ′(r)

f(r)

)2

4. The first symbol is non-zero for only α = 0. Thus the term becomes (Γ0
01)2 =

1

4

(
f ′(r)

f(r)

)2

5. Cancels pairwise with the sixth term.

6. Cancels pairwise with the fifth term.

7. Cancels pairwise with the eighth term.

8. Cancels pairwise with the seventh term.
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9. Vanishing since Γ2
11 = 0 as given above.

10. Before differentiation, we have Γ2
12 =

a′(r)

a(r)
. Thus, differentiating, we obtain Γ2

12,1 =
d

dr

(
a′(r)

a(r)

)
=

a′′(r)

a(r)
−
(
a′(r)

a(r)

)2

.

11. The first symbol is non-zero for only α = 1, which thus makes the term become−
(
−1

2

f ′(r)

f(r)

)(
a′(r)

a(r)

)
=

1

2

f ′(r)a′(r)

f(r)a(r)

12. The first symbol is non-zero for only α = 2. Thus, the term becomes (Γ2
12)2 =

(
a′(r)

a(r)

)2

.

13. Vanishing since Γ3
ii = 0, as given above.

14. Before differentiation, we have Γ3
13 =

a′(r)

a(r)
. Thus, differentiating, we have Γ3

13,1 =
d

dr

(
a′(r)

a(r)

)
=

a′′(r)

a(r)
−
(
a′(r)

a(r)

)2

15. The first symbol is non-zero for only α = 1, thus making the term −Γ1
11Γ3

13 =
1

2

f ′(r)

f(r)

(
a′(r)

a(r)

)

16. The first symbol is non-zero for only α = 3, and thus the term becomes (Γ3
13)2 =

(
a′(r)

a(r)

)2

Thus compiling these above terms, we obtain:

R11 =
1

2

f ′′(r)

f(r)
−1

2

(
f ′(r)

f(r)

)2

+
1

4

(
f ′(r)

f(r)

)2

+
1

4

(
f ′(r)

f(r)

)2

+
a′′(r)

a(r)
−
(
a′(r)

a(r)

)2

+

(
a′(r)

a(r)

)2

+
1

2

f ′(r)a′(r)

f(r)a(r)

+
a′′(r)

a(r)
−
(
a′(r)

a(r)

)2

+

(
a′(r)

a(r)

)2

+
1

2

f ′(r)

f(r)

(
a′(r)

a(r)

)
Thus, simplifying, we obtain:

R11 =
1

2

f ′′(r)

f(r)
+ 2

a′′(r)

a(r)
+
f ′(r)a′(r)

f(r)a(r)
(212)

Next, consider R22, which is give as

R22 = Γ0
22,0 − Γ0

20,2 + Γα22Γ0
α0 − Γα20Γ0

α2 (213)

+Γ1
22,1 − Γ1

21,2 + Γα22Γ1
α1 − Γα21Γ1

α2

+Γ2
22,2 − Γ2

22,2 + Γα22Γ2
α2 − Γα22Γ2

α2

+Γ2
22,3 − Γ3

23,2 + Γα22Γ3
α3 − Γα23Γ3

α2

1. Vanishing since Γ0
22 = 0 as given above.

2. Vanishing since Γ0
02 = 0 as given above.

3. The second symbol is non-zero for only α = 1, and thus the term becomes−−f(r)a(r)a′(r)

1− kρ2

(
1

2

f ′(r)

f(r)

)
=

f ′(r)a(r)a′(r)

2(1− kρ2)
.

4. The first symbol is vanishing ∀α and thus the term is vanishing.
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5. Before differentiation, we have
f(r)a(r)a′(r)

1− kρ2
. Thus, differentiating, we obtain

f ′(r)a′(r)a(r) + f(r)(a′(r))2 + f(r)a(r)a′′(r)

1− kρ2
.

6. Vanishing since Γ1
12 = 0 as given above.

7. The second symbol is non-zero for only α = 1, and thus we obtain−
(
−1

2

f ′(r)

f(r)

)(
−f(r)a(r)a′(r)

1− kρ2

)
=

−f
′(r)a(r)a′(r)

2(1− kρ2)
.

8. The first symbol is non-zero for only α = 2. Thus, we obtain

(
a′(r)

a(r)

)(
−f(r)a(r)a′(r)

1− kρ2

)
=

−f(r)(a′(r))2

1− kρ2

9. Cancels pairwise with the tenth term.

10. Cancels pairwise with the ninth term.

11. Cancels pairwise with the twelfth term.

12. Cancels pairwise with the eleventh term.

13. Vanishing since Γ3
ii = 0 as given above.

14. Before differentiation, the symbol is given as Γ3
23 =

1

ρ
. Thus, differentiating with respect to ρ,

we obtain Γ3
23,2 = − 1

ρ2
.

15. Both symbols are non-zero only for α = 1, 2, in which case we sum over the two results, which

are −Γ1
22Γ3

13 =
f(r)a(r)a′(r)

1− kρ2

(
a′(r)

a(r)

)
=
f(r)(a′(r))2

1− kρ2
and −Γ2

22Γ3
23 = − k

1− kρ2
respectively.

16. The first term is only non-zero for α = 3, in which case the term becomes (Γ3
23)2 =

1

ρ2
, which we

see cancels pairwise with term number 13.

Thus, compiling, we obtain:

R22 =
f ′(r)a(r)a′(r)

2(1− kρ2)
+
f ′(r)a′(r)a(r) + f(r)(a′(r))2 + f(r)a(r)a′′(r)

1− kρ2
− f(r)(a′(r))2

1− kρ2
− f
′(r)a(r)a′(r)

2(1− kρ2)

+
f(r)(a′(r))2

1− kρ2
− k

1− kρ2

which thus simplifies to:

R22 =
f ′(r)a′(r)a(r) + f(r)(a′(r))2 + f(r)a(r)a′′(r)− k

1− kρ2
(214)

Finally, consider R33, which is give as:

R33 = Γ0
33,0 − Γ0

30,3 + Γα33Γ0
α0 − Γα30Γ0

α3 (215)

+Γ1
33,1 − Γ1

31,3 + Γα33Γ1
α1 − Γα31Γ1

α3

+Γ2
33,2 − Γ2

32,3 + Γα33Γ2
α2 − Γα32Γ2

α3

+Γ3
33,3 − Γ3

33,3 + Γα33Γ3
α3 − Γα33Γ3

α3
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1. Vanishing since Γ0
ii = 0 as given above.

2. Vanishing since Γ0
0i = 0 as given above.

3. The second symbol is non-zero for only α = 1, and thus the term becomes−Γ1
33Γ0

01 = −f(r)a(r)a′(r)ρ2
(
f ′(r)

2f(r)

)
=

−1

2
f ′(r)a(r)a′(r)ρ2.

4. Vanishing since the first symbol is zero ∀α.

5. Before differentiation, we have f(r)a(r)a′(r)ρ2. Thus, differentiating, we obtain f ′(r)a′(r)a(r)ρ2+
f(r)(a′(r))2ρ2 + f(r)a(r)a′′(r)ρ2.

6. Vanishing since Γ1
ij = 0 as given above.

7. Both symbols are non-zero for only α = 1, for which the term becomes−Γ1
33Γ1

11 = −f(r)a(r)a′(r)ρ2
(
f ′(r)

2f(r)

)
=

−1

2
f ′(r)a(r)a′(r)ρ2.

8. Both symbols are non-zero for only α = 3. Thus, the term becomes Γ3
13Γ1

33 = −f(r)a(r)a′(r)ρ2
(
a′(r)

a(r)

)
=

−f(r)(a′(r))2ρ2.

9. Before differentiation, we have −Γ2
33 = ρ(1 − kρ2). Thus, differentiating with respect to ρ, we

have −Γ2
33,2 = 1− 3kρ2.

10. Vanishing since Γ2
23 = 0 as given above.

11. Both symbols are non-zero for α = 1, 2, in which case we sum over the two results, which are

−Γ1
33Γ2

12 = f(r)a(r)a′(r)ρ2
(
a′(r)

a(r)

)
= f(r)(a′(r))2ρ2 and −Γ2

33Γ2
22 = ρ(1− kρ2)

kρ

1− kρ2
= kρ2.

12. The first symbol is non-zero for only α = 3, and thus the symbol becomes Γ3
23Γ2

33 = −(1− kρ2)

13. Cancels pairwise with the fourteenth term.

14. Cancels pairwise with the thirteenth term.

15. Cancels pairwise with the sixteenth term.

16. Cancels pairwise with the fifteenth term.

Thus, compiling, we obtain:

R33 = −1

2
f ′(r)a(r)a′(r)ρ2 + f ′(r)a′(r)a(r)ρ2 + f(r)(a′(r))2ρ2 + f(r)a(r)a′′(r)ρ2 − f(r)(a′(r))2ρ2

−1

2
f ′(r)a(r)a′(r)ρ2 + 1− 3kρ2 − (1− kρ2) + kρ2

which simplifies to:

R33 = f(r)a(r)a′′(r)ρ2 − kρ2 (216)
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