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Abstract 

Increasing students' intentions to pursue mathematics-intensive careers is an urgent 

priority in the United States. To foster these intentions among marginalized student groups, such 

as immigrant students, and achieve equity in their career options, a critical question is whether 

we should allocate a greater proportion of school resources to mathematics over other subjects. 

The aims of this dissertation study were, first, to conceptually model and statistically evaluate 

how a school environment that prioritizes mathematics over other subjects might influence 

students' intentions to pursue mathematics over other academic subjects in the long term, and 

second, how this relationship is mediated by students’ mathematics pursuit attitudes, subjective 

norms, and perceived behavior (Ajzen, 1991), and moderated by their immigrant standing. 

The data for this study stemmed from the U.S. 2012 Programme For International 

Student Assessment Academic & Science (PISA) Student Questionnaire and School 

Questionnaire. A predictive mean matching technique was used to impute missing data that 

would resemble observed data. A 2-1-1 multilevel mediation Structural Equation Modeling 

(SEM) was implemented to accurately measure a school-level effect and student-level effect of 

the relationship of the examined constructs and to test the hypothesized model for the total 

sample. In order to compare immigrant student group and non-immigrant student group in the 

path model, multiple group path analysis was conducted. 

The results of the multilevel SEM model for the total sample presented that, at the school 

level (level 2), the school’s mathematics resources had no statistically significant direct and 
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indirect effects on aggregated students’ intentions to pursue mathematics over other subjects. 

However, at the student level (level 1), students’ experiential and instrumental attitudes toward 

the pursuit of mathematics were positively related to students’ intentions to pursue mathematics 

over other subjects. The results of the multiple group path analysis comparing immigrant and 

non-immigrant student groups also found that the school’s mathematics resources had no 

statistically significant direct and indirect effects on students’ intentions to pursue mathematics 

over other subjects. However, a statistical difference in the overall path model of these two 

groups was found. The implications of this study for researchers, educators, and policymakers 

were discussed.  
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CHAPTER  ONE 

PROBLEM STATEMENT 

Immigrants to the United States have changed the demographics of U.S. schools. One in 

four children in the U.S., accounting for more than 18 million children, has at least one foreign-

born parent (Lou, 2020). The schools that serve the children of immigrants have been reported to 

have a varying range of school resources (Hillmert, 2013; Olivos & Mendoza, 2010; Stanton-

Salazarm & Dornbusch, 1995), which may impact students’ motivation to study particular 

subjects and their overall school performance (e.g., Breda & Napp, 2019; Chiu & Khoo, 2015). 

Moreover, the long-standing unequal distribution of school resources (e.g., qualified teachers) in 

the United States has been exacerbated by COVID-19 (Van Lancker & Parolin, 2020). 

Inadequate resources in some schools have aggravated existing achievement and opportunity 

gaps and reduced students’ engagement in learning (Dorn et al., 2020). These devastating effects 

of the pandemic have caused researchers to revisit the topic of the impact of school resources on 

students’ academic motivation.  

A new approach to examination of the relationship between school resources and 

students’ academic motivation can be derived from the lessons learned in previous research and 

by addressing the limitations of prior studies. The existing literature represents the field’s 

attention to the effects of school resources on students’ motivation for studying particular 

subjects, for example, mathematics or English, rather than on their motivation for both subjects 

in relation to each other and how their different levels across subjects are influenced by amount 

and distribution of school resources. To investigate the relative levels of motivation between 

these critical different subjects, I revisited the idea in social psychology that people tend to think 

of themselves as either math persons or verbal persons but not both (Marsh & Hau, 2003; Marsh, 
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1986). A student who thinks of her/himself as one type of person is likely to gravitate toward that 

subject when given a choice. At the school level, there may also often be a policy of favoring one 

over the other – Some schools have outstanding teachers in one subject area than other areas 

(Hallinan, 1994) -, suggesting that students motivated to study the favored subject will be better 

served than students motivated to study the less favored subject as well as that students’ interests 

will be directed to the favored subject.  

This study is based on the notion of finiteness of resources and that poorly supported 

schools must allocate their resources in conditions of scarcity. Thus, schools that invest their 

resources more in math instruction are likely to allocate fewer resources to teaching other 

subjects and vice versa. Awareness of students’ identity formation (math person or verbal 

person) and of adequacy and allocation resources can provide insight into realities that have not 

much been highlighted in the previous studies (Breda & Napp, 2019). 

Thus, this study is an examination of the extent to which school math resources influence 

students’ motivation to study math over other subjects. Additionally, I compared this relation 

across two groups categorized by immigration status: immigrant students vs. non-immigrant 

students. I hypothesize that these two groups may show differences in the strength of the path of 

the variables considering that immigrant students have a statistically significantly higher odds of 

plans to major in a STEM field at college than non-immigrant students (Chachashvili-Bolotin et 

al., 2019; Porche et al., 2016). To further examine the relationship between immigrant status and 

motivation to study mathematics, I employed the theory of planned behavior (Ajzen, 1991) as a 

theoretical framework. This theory posits that the three socio-cognitive determinants predict 

intentions: attitudes, subjective norms, and perceived control over behavior. These are used to 

explain the variance in the relation between school math resources and students’ intentions to 
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pursue study of math. The data set for this study was drawn from the U.S. 2012 Programme for 

International Student Assessment (PISA), which was the year in which, the PISA survey 

collected data on variables that are part of the theory of planned behavior. A total sample of 

1,108 student from 36 schools were analyzed in this study.  

In this study, I propose using a multilevel mediation structural equation modeling to 

estimate this model in which independent variables are at the school level and the other variables 

are at the individual level. I use a multilevel framework as the PISA data have a nested data 

structure (i.e., students are nested in schools). Failure to address hierarchical nature results in an 

unreliable estimation of the school math resources’ effect on students’ math motivation and 

intention (Raudenbush & Bryk, 1992). However, to my best knowledge, most analyses in 

examining the theory of planned behavior’s constructs in the math education field did not 

consider the hierarchical structure of the data (Arditzoglou & Crawley III, 1992; Blanchard et al., 

2003; Burrus & Moore, 2016; Foltz, Foltz, & Kirschmann, 2015; Hagger & Hamilton, 2020; 

Lipnevichet al., 2011; Lipnevich et al., 2016). My dissertation is unique in that it takes a school-

level effect and a student-level effect into account to test the central hypotheses of my research.  

This study makes three major contributions – theory, practice, and methodology. 

Theoretically, it fills a gap in the literature on the effect of relative levels of school resources on 

students’ math motivation. Students’ mathematics preferences over English have been 

understudied compared to measuring their interest in each subject separately. This dissertation 

also extends the theory of planned behavior by applying it to the math education field, where it 

has been rarely employed. In this process, school math resources are integrated as a predictor of 

students’ math intentions to explain the variance unaccounted for in the model. Also comparing 

culturally different groups can extend empirical findings of the theory by capturing the 
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measurement variance. This study is timely and has implications for policy, given the necessity 

of the schools’ resource redistribution due to the COVID-19 Pandemic. This dissertation also can 

provide practical implications that may guide educators to create intervention strategies that 

correspond to each factor of the research model. Methodologically, it provides a sophisticated 

multilevel mediation SEM and multiple group SEM.  

The present chapter illuminates the background of this dissertation topic and my 

motivation for pursuing it. This chapter begins with the social background and theoretical 

background of the study. Next, the research objectives of this dissertation are described. The 

chapter concludes with a discussion of the theoretical, empirical, and practical implications of 

this study and a description of future chapters.  

Social Background: U.S. Immigrants and Their Intentions to Study Math Over             

Other Subjects 

Why is it important to understand students’ intentions to study math over other subjects 

in the U.S. context? Why is it necessary to connect this understanding to students’ immigrant 

status? Addressing these questions can help schools in the U.S. prepare students for Science, 

Technology, Engineering, and Mathematics (STEM) fields, particularly those that are 

mathematics-intensive. 

Over the past decade, the demand for qualified workers in the STEM industries in the 

United States has rapidly increased, situating it as a linchpin for economic growth. Employment 

in STEM occupations increased by 10.5 percent between May 2009 and May 2015, more than 

twice the 5% growth in non-STEM occupations (Fayer et al., 2017). Among the STEM 

occupations, math-intensive careers such as statisticians, computer engineers, and more recently, 

data scientists, are expected to increase by 28% from 2014 to 2024 in the United States, which is 
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substantially higher than the expected average increase for all occupations of 6%. 

Concomitantly, policies have been implemented to attract immigrant-origin workers in the math-

intensive fields by recruiting foreign-born graduate students or issuing temporary visas to 

foreign-born STEM experts. As a result of these strategies, immigrant-origin workers constitute 

26% of those in U.S. math-intensive careers (American Immigration Council, 2017). 

While some policies have attended to these temporary immigrant-origin workers' 

contributions, the education of immigrant-origin K-12 students has been neglected in the current 

conversation (Porche et al., 2016). Although the U.S. government emphasized encouraging 

minority K-12 students’ access to math-related fields, the focus was on students who were 

historically underrepresented in the STEM field, such as women and racial minority groups, but 

not specifically on immigrant-origin students (Committee on STEM Education, 2018), who are 

estimated to constitute one-third of the nation's schoolchildren younger than 17 by 2050 

(Maxwell, 2014). Failure to address their motivation for learning math may lead to problematic 

consequences in national competitiveness and policy development.  

The notion of verbal and math self-concepts, conceptualized by social psychologist 

Marsh (1986), can be used to explain why students choose to study one subject over another. 

Because a student see her/himself as either a math or verbal person, the two self-concepts are 

relatively uncorrelated at an intra-level (Marsh, 1986). For example, immigrant students who 

tend to perform better in math than other subjects, or whose parents and peers emphasize 

succeeding in math, can be more likely to prioritize studying math over other subjects. However, 

previous studies have seldom statistically measured the relationship between immigrant students’ 

motivation and their pursuit of math-intensive careers (Porche et al., 2016; Schleicher, 2006). 

Thus, the aim of this dissertation study is to extend existing research by examining students’ 
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intentions to study math over other subjects according to immigrant status (i.e., immigrant 

students vs. non-immigrant students).  

Theoretical Background: Extending the Theory of Planned Behavior and                     

School Math Resources 

Students’ math related academic intentions can be examined in terms of theories that 

conceptualize the factors that influence intentions. Over the past 35 years, various constructs that 

influence academic motivation and intention have been investigated through different theoretical 

lenses (Koenka, 2020). One primary theory is the theory of planned behavior, which identifies 

the predictors of an individual’s behavior (Ajzen, 1991; Ajzen & Icek Ajzen, 2006). These 

studies have found that the best predictors of behavior are intentions, and intentions can be 

analyzed in terms of three motivational factors: pursuit attitudes, subjective norms, and perceived 

behavioral control. While the theory of planned behavior has proved its validity through 

empirical research, the theory itself has the limitation that it focuses solely on socio-cognitive 

determinants and neglects other factors that may explain the unaccounted variance in the model 

(Ajzen, 1991; Hamilton & White, 2012). For example, the theory does not take socio-structural 

factors (e.g., SES, gender) and socio-cultural factors (e.g., math education) into account as 

crucial determinants (Hagger & Hamilton, 2020; Schüz, 2017). In the examination of the 

students’ math pursuit intentions, integrating additional variables such as socio-structural and 

socio-cultural factors may increase the model’s explanatory capability across contexts and 

populations. 

In the realm of math education, the influence of school math resources for math 

instruction on students’ math learning has been a major focus in the policy discourse and 

scholarly literature. Since the contentious findings of the Coleman report of 1966 (that school 
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resources were less associated with student achievement than family background), a substantial 

body of research has emerged in which the impact of school resources is measured according to a 

wide array of school resources characteristics. As one characteristic of school resources, the 

qualifications of math teachers have been investigated for the last several decades, including 

types of teacher certification (Goldhaber & Brewer, 2000); teachers’ levels of content 

knowledge, mostly indexed by the number of courses taken in the field (Darling-Hammond, 

2000); and their years of teaching experience (Murnane & Phillips, 1981; Rivkin et al., 2005).  

A major issue with regard to math teacher qualification is a long-standing shortage in the 

supply of teachers in the U.S. education system (e.g., Adnot et al., 2017; Liu et al., 2008). While 

the shortage of math teachers intensified concerns, the U.S. government passed the No Children 

Left Behind Act in 2001, which required teachers to be “highly qualified,” that is, have full 

certification, a bachelor’s degree, and sufficient content knowledge (Smith et al., 2005). More 

strict hiring requirements exacerbated the lack of math teachers, and a subsequent new policy 

called Every Student Succeeds Act of 2015 (ESSA) rescinded the provision of a bachelor’s 

degree. In light of loosened teacher hiring requirements at the federal level, scholarly discussion 

questions increased about the extent to which teacher qualifications can influence students’ 

mathematic learning (Close et al., 2018).  

The large body of research in which the effects of the supply and qualifications of math 

teachers were measured sheds light on students’ math achievement. However, the focus of this 

study is to measure students’ relative intentions to study math over English, specifically, on the 

motivation factors that are relatively neglected in the previous studies (Chiu & Khoo, 2005). 

Further, this study addresses the gap in supply between math teachers and English teachers. The 

unequal distribution of certified teachers was found to be associated with students’ low scores in 
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math, reading, and science (Chiu & Khoo, 2005). In this study, the aim was to estimate the extent 

of the school’s focus on math over English in their resource distribution and its ability to predict 

students’ motivation for math over English. 

Another critical dimension of the current study, which can extend the model, is its 

measurement of model parameters in different subpopulations. As stated in the previous section, 

immigrant students’ math intention is the focal interest of this study. In studies that applied the 

theory of the planned behavior, samples representing different backgrounds had differences in 

the robust predictors of their math achievement and intentions to study math (Lipnevich et al., 

2011; Lipnevich et al., 2016; Porche et al., 2016). Immigrant and non-immigrant groups may 

have different model parameters. Thus, the current study accounts for variations in how a 

school’s math resources’ influence on students’ intentions to pursue math over other subjects by 

considering the theoretical constructs (e.g., math pursuit attitudes, subjective norms, perceived 

behavioral control) and compare the paths of the model among groups of interest. 

Purpose of the Study 

This study's primary purpose is to examine the mediating role of socio-cognitive 

determinants (i.e., mathematics pursuit attitudes, subjective norms, perceived behavioral norms) 

and in the relation between school mathematics resources and students’ intentions to study 

mathematics over other subjects. Toward this end, the following research questions are explored: 

1.  How does a school that prioritizes resources for school math over other subjects 

(regressors x) influence students’ exhibiting intentions to pursue math over other 

subjects (outcome y)? 

2.  Is the resulting effect mediated by students’ math pursuit attitudes, subjective norms, 

perceived behavioral control (mediators m) 
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3. Does this effect change with students’ immigrant standing (moderator z)?” 

Significance of Study 

This dissertation study is undertaken to advance understanding of students’ motivation to 

study math over other subjects both theoretically and methodologically. From a theory 

perspective, this study extends the theory of planned behavior by adding a predictor of school 

resources to students’ math motivation. The socio-cultural factor, which has mostly been 

overlooked by previous researchers, is shown here to help explain the academic motivation of 

students from diverse backgrounds. 

The study also identifies the relationship of the constructs of the theory of planned 

behavior., which helps to articulate the theory. In developing the theory of planned behavior, 

Ajzen (1991) claimed that the relationship was not accurately identified, even though each of the 

three components has its own salient behavioral, normative, and control beliefs about the 

behaviors. Previous empirical studies built on this theory have shown inconsistent findings of the 

relationship of the constructs. In some cases, attitudes were salient in predicting students; 

achievement (Lipnevich et al., 2016), while students’ choice of major was under subjective 

norms control (Foltz et al., 2015). The current study set the hypothesis to identify the extent to 

which each of the three socio-cognitive determinants can explain intentions. This approach will 

clarify the relation of the constructs. 

The study also makes this model more nuanced by adding a new dimension of students’ 

immigration standing: immigrant students vs. non-immigrant students. The examination of the 

moderating effect of immigration standing will draw attention to which group is influenced by 

which factor in the students’ pursuit of math. 
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Moreover, the current study reflects the reality that students must choose the subject in 

which to invest their time, such as selecting math over other subjects. This approach has been 

underexplored in the extensive literature that focuses on students' motivation for one subject 

rather than comparing students’ motivation between subjects.  

This study makes a methodological contribution to empirically test the theory of planned 

behavior by proposing a multilevel moderated mediation structural equation modeling (SEM). 

This study demonstrates the application of multilevel SEM in consideration of multilevel data 

structure and multiple mediators, which has not been attempted in studying the theory of planned 

behavior in the math education field to the best of my knowledge. Additionally, a multiple group 

path analysis was employed to test the model parameters' invariance between an immigrant 

student group and non-immigrant student groups. 

The results of this dissertation will provide practical implications for educators, 

researchers, and policy makers who are interested in developing intervention strategies. The 

modifiable determinants of math intentions identified in this study can be targets for intervention 

using students’ behavior change techniques (Hagger & Hamilton, 2020).  

Definition of Terms 

School Math Resource: Label used in this work to refer to the school resources particularly 

devoted to math with a focus on math teacher allocation. In this work, it was computed 

involving (1) the proportion of math teachers in the teaching staff; (2) the proportion of 

math teachers that are qualified in the total teaching staff that is qualified, as used in the 

works of Breda and Napp (2019). 
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Math pursuit attitudes: The construct reflecting how favorable one feels toward performing 

mathematics. Two dimensions of the math pursuit attitudes: (1) experiential attitude, and 

(2) instrumental attitudes (Fishbein & Ajzen, 2011). 

Math subjective norms: The construct reflecting a person’s perceived social pressure to perform 

mathematics. This study involves two dimensions of math subjective norms, one 

influenced by friends and one influenced by parents (Fishbein & Ajzen, 2011). 

Perceived behavioral control: The construct reflecting a person’s perceived capability to have 

control over her/his math performance (Fishbein & Ajzen, 2011). 

Math pursuit intention over other subject intention: Label used in this work to refer to a person’s 

willingness to pursue math over other subjects in the long term. This study calculates 

three dimensions of math pursuit intention over other subject intention: (1) willingness 

to take more math courses than other subjects at high school; (2) willingness to major in 

a subject in college that requires math-intensive skills; and (3) willingness to pursue 

math-intensive careers over other careers that are not closely related to math skills. 

Multiple imputation by chained equation (MICE): An imputation technique that handle missing 

data by taking a series of estimations where each variable takes its turn in being 

regressed on the other variables (Wulff & Ejlskov, 2017). 

Predictive mean matching: One of the MICE approaches using the predicted value for a given 

observation to identify similar observations (Wulff & Ejlskov, 2017). 

Structural equation modeling (SEM): A comprehensive statistical approach to representing, 

estimating, and testing a theoretical network of (mostly) linear relations between 

variables (Rigdon, 1998 as cited in Suhr, 2003). This approach commonly involves a 

measurement model and structural model. 
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Confirmatory factor analysis (CFA): One of the most commonly used measurement models. A 

multivariate statistical procedure that is used to test whether measures of a factor are 

consistent with a theory’s understanding of the nature of that factor (Jöreskog, 1969). 

The model is of the following form (Lee, 1981, p. 153): 

Σ = ΛΦ𝛬% + Ψ,                                                          (1.1) 

where Λ is a p × k matrix of factor loadings, Φ is a k × k symmetric matrix of factor 

covariances, and Ψ is a p × p diagonal matrix of unique variance.  

Goodness-of-fit: A measure indicating how well a pattern of fixed and free parameters specified 

in the model fits the pattern of variances and covariances from a set of observations 

(Suhr, 2003, p. 3). Examples of fit indices are chi-square and RMSEA (Root Mean 

Square Error of Approximation) 

Model invariance test: A test that evaluates whether survey responders from different groups 

interpret the same items in a similar way or not. 

Structural model: A model showing the relationships between variables such as direct effect and 

indirect effect.  

Overview of the Study 

The dissertation is organized in five chapters. Following the introduction to the problem 

and research question, in Chapter 2, the literature relevant to the contents of the study is 

reviewed. This chapter begins with the framework of this study, the theory of planned behavior, 

followed by related studies addressing the relationships among predictors, mediators, and 

moderators applicable to this study. Chapter 3 provides the research model, instruments, and 

analytic methods of this study. The chapter includes the research hypotheses, the survey 

instruments, and the analytical process of analysis. Chapter 4 presents the results of the study 
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organized by the four research questions. The chapter begins with the results of the measurement 

models and structural models for the total sample, followed by the results of multiple group 

analysis. In Chapter 5, a summary of the study, the discussion of the study’s results, conclusions 

and implications of the study's results are discussed along with the limitations of this study and 

future steps.  
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CHAPTER  TWO  

REVIEW OF THE LITERATURE  

The purpose of the current study is to create a model of to what extent schools’ math 

resources affect students’ intentions to study math over other subjects. Furthermore, the 

relationship between math motivation variables and school math resources are examined. This 

relationship will be compared between immigrant students and non-immigrant students. 

This chapter reviews four lines of the scholarly literature that informs the current study 

and then presents four research hypotheses, one corresponding to each of the lines of the 

literature: (1) the theory of planned behavior; (2) the relationship between school math resources 

and students’ math related academic intentions; (3) the mediating role of attitudes, subjective 

norms, and perceived behavioral control on the relationship between school math resources and 

students’ math intention and; (4) the relationship between immigrant students and school math 

resources within the framework of the theory of planned behavior. Finally, the research model 

that drives the current study is presented. 

The first section of the chapter reviews the theory of planned behavior, which provides 

the framework of the current study. The components of the theory are explicated, and the 

achievements and limitations of the theory as demonstrated in previous studies are discussed. 

Based on this discussion, the research model guiding the current study is presented and justified. 

The second section of the chapter reviews a set of empirical studies of the relationship 

between the independent variable (school math resources)and the dependent variable (students’ 

math intention) of the current study. Specifically, the school math resources that this study 

highlights is math teacher staffing and math teacher qualification. This section presents a 

summary of the decades of research on this relationship followed by a discussion of further 
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research that could be conducted based on the previous literature to provide insight into the 

relationship between the independent variable and the dependent variable.  

The third section of the chapter provides a review of empirical studies of the relationships 

among three motivation variables that are the components of the theory of the planned behavior: 

math pursuit attitudes, subjective norms, and perceived behavioral control. In the research model 

guiding the current study, these variables are hypothesized as mediators. In this section, the 

relationships found among these three variables in previous studies are discussed along with how 

using them as mediators in this study’s model can further the scholarly discussion. 

The fourth section of the chapter reviews the moderating role of immigrant standing on 

the relationship between school math resources and students’ math intention. A comparison of 

the relationships between variables as identified in studies of immigrant students versus non-

immigrant students will be discussed. This section presents empirical studies of the relationship 

between school math resources and math intentions, including, first, how school math resources 

have differentially affected the learning of these different groups of students' learning and, 

second, how intentions to study math over other subjects differ between immigrant and non-

immigrant students. 

The chapter concludes with a summary of empirical studies that have estimated the 

relationship of school mathematics resources and students' intentions in mathematics over other 

subjects, taking into account the moderating effect of immigrant standing and how these studies' 

limitations suggest the need for further theoretical and methodological considerations.  

The Theory of Planned Behavior as an Underlying Framework 

Though students' access to school math resources and their cognitive abilities are cardinal 

prerequisites for successful math achievement and preferences for math, these determinants do 
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not explain all the variation among individuals in their math achievement and academic 

preference for math over other subjects (Floyd et al., 2003; Lipnevich et al., 2011). Students' 

levels of engagement, perceived value of success, and perceived capability to control their 

performance affect whether they choose to study math (Moore & Burrus, 2019). These socio-

cognitive determinants (i.e., attitude, subjective norms, and perceived behavior control) and 

socio-cultural factors (i.e., math education) can explain students' math preferences. This thesis 

sheds light on the mediating roles of socio-cognitive determinants in examining the relationship 

between school math resources and students' intentions to study math over other subjects. Based 

on Ajzen's (1991) theory of planned behavior, I conceptualize socio-cognitive determinants as 

consisting of these three socio-cognitive factors (i.e., attitude, subjective norms, and perceived 

behavior control) and one factor of intention. 

The constructs of the theory of planned behavior were originated from social psychology, 

where the ways that people believe, feel, and behave are influenced by the actual, imagined, 

perceived, or implied presence of others in society. The theory of planned behavior defines 

theoretical constructs of individual motivational components as determinants of the likelihood of 

performing a specific behavior. According to Montaño & Kasprzyk (2015), a fundamental 

assumption of the theory of planned behavior is that “individuals are rational actors who process 

information and that underlying reasons determine motivation to perform a behavior” (p. 76). 

These reasons determine an individual’s behavioral, normative, and control beliefs, and 

determine her/his attitudes, subjective norms, and perceived behavioral control. Additionally, the 

theory includes factors that motivate attitudes, subjective norms, and perceived behavioral 

control as these influence intentions to engage in a behavior. 
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A misconception about the theory of planned behavior is that the model's focus is 

primarily on rational behavior (Montaño & Kasprzyk, 2015). This misconception may come 

from the word “planned” in the name of the model, which connotes decision-making based on 

conscious reasoning. However, the term does not suggest that the reasons underlying motivation 

and behaviors are necessarily rational or logical.  

Figure 2.1  

The Theory of Planned Behavior 

Attitudes     
     

Subjective norms → Behavioral Intention → Behavior 
     

Perceived behavioral 
control 

    

 
The theory of planned behavior consists of four constructs. The constructs are three 

socio-cognitive factors, including attitudes, subjective norms, and perceived behavioral control, 

and these lead to the fourth, behavioral intention, as illustrated in Figure 2.1. The theory of 

planned behavior claims that the best predictor of behavior is the intention to perform the 

behavior (Ajzen, 1991). 

Attitudes 

Attitudes toward behaviors reflect how favorable one feels toward performing specific 

actions. The construct of attitudes can be divided into two dimensions: experiential and 

instrumental attitudes (Fishbein & Ajzen, 2011). Experiential attitudes involve the extent to 

which an object or behavior is perceived as enjoyable and pleasant. For example, this construct 

measures how much a person likes math and perceives doing math as enjoyable and pleasant. 

This type of attitude represents the intrinsic value the person places on a specific behavior. In 

contrast, instrumental attitudes reflect the extent to which one perceives an object or behavior as 

worthwhile. That is, instrumental attitudes involve one’s perception of the utility cost of an 
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object or behavior. For example, the construct of instrumental attitudes measures whether a 

student finds it useful and worthwhile to study math. 

Subjective Norms 

 Subjective norms denote a person’s perceived social pressure to perform a given 

behavior. According to Fishbein & Ajzen (2011), subjective norms have two dimensions: 

injunctive and descriptive. Injunctive norms refer to rules perceived as mandatory, that is, 

whether people whose judgements matter to one would approve or disapprove of a given 

behavior (Zou & Savani, 2019). For example, students whose parents compel them to study math 

are likely to have intentions to take math courses over other courses. Descriptive norms apply to 

behaviors that are perceived as typically performed by the people around one. For instance, 

having friends who work hard at math predicts a student’s likelihood of taking math courses over 

other courses. 

Perceived Behavioral Control 

 Cognitive self-regulation plays a vital role in predicting behavior (Ajzen, 1991). 

Perceived behavioral control refers to the extent to which a person perceives his/her capability to 

have control over the performance of behavior (Fishbein & Ajzen, 2011).  Students who perceive 

they have high behavioral control over studying math and successfully using math are more 

likely to believe they are capable of doing math than students who do not. These students would 

consider studying math relatively easy because they have control in doing math.   

Perceived behavioral control, a newly added component in the theory of planned 

behavior, is critical because it differentiates the current theory from its previous model of 

reasoned action (Ajzen, 1991). Whereas the last two motivational factors, attitudes, and 
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subjective norms, focus on a person’s keenness to a particular behavior, perceived behavioral 

control highlights a person’s perceived ease or difficulty in performing the behavior.  

Intention 

The final construct of the theory of planned behavior is the intention to perform a 

behavior. Intention refers to the extent to which a person is planning to exert his/her efforts to 

perform a behavior (Ajzen, 1991). The theory of planned behavior views intention as the best 

predictor of performance of a behavior. The stronger one’s intention to perform a behavior, the 

more likely one is to perform it. Intentions mediate among the motivational factors (attitudes, 

subjective norms, and perceived behavior control). Intentions are assumed to express 

motivational factors and can predict behaviors with considerable accuracy (e.g., Sheppard et al., 

1988).  

Reviewing the four constructs of the theory of planned behavior reveals the advantages of 

using this theory in the current study. The theory presents a framework to discern the 

components of the motivation factors that lead to intention to perform a certain behavior. 

Therefore, interventions can be designed to target and change the values linked to specific 

motivation components, resulting in changes in intentions and behaviors. Additionally, the 

theory helps us to understand the reasons that motivate individuals’ intentions to perform. As 

there are specific components of motivation and intention, we can explain an individual’s actions 

by identifying and estimating his/her beliefs regarding the components. Empirical studies have 

found that the components of motivation, intentions, and behavioral outcomes tend to differ 

among different groups (Fishbein et al., 2001). These findings suggest that there may be 

differences in students’ motivation to study math over other subjects, for example according to 

their immigrant status, which is the interest of the current study. 
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The Relationship Between School Math Resources and Students’ Intentions 

School math resources have been considered a critical factor in students’ math learning. 

School math resources extend from material resources to human and cultural resources such as 

teacher staffing and teacher quality (Adler, 2000). According to Smith, Desimone, & Ueno 

(2005), human resources have been of interest in educational research since the Coleman Report 

(Coleman et al., 2004). With regard to human resources, the relationship between teacher 

characteristics and student achievement has been extensively researched focusing on such topics 

as assessment results (Ballou, 1996; Ehrenberg & Brewer, 1994, 1995; Ferguson, 1991; 

Mosteller & Moynihan, 1972); level of content knowledge, mostly indexed by number of courses 

taken in a subject field (Darling-Hammond, 2000); teachers’ years of teaching experience 

(Murnane & Phillips, 1981; Rivkin et al., 2005); and teachers’ levels of participation in content-

related professional development opportunities (Cohen & Hill, 2000; Wenglinsky, 2002; Wiley 

& Yoon, 1995). Interestingly, studies of the association between teacher characteristics and 

student achievement have shown mixed results.  

Teachers are an important factor to increase students’ math motivation. Teacher’s 

positive attitudes to students (Lazarides et al., 2018), teacher support for students (Yu & Singh, 

2018) and teachers’ professional development experiences (Stipek et al., 1998) are positively 

associated with students’ math motivation. These studies showed that the characteristics of 

teachers are statistically associated with students’ math motivation. However, it is unclear 

whether math teacher staffing and math teacher qualification increases students’ math 

motivation. The previous literature mostly focused on the students’ math test scores and their 

statistical dependency on teacher staffing and teacher qualification (e.g., Chiu & Khoo, 2005) 

rather than studying students’ math motivation. This study drew on the sample of fifteen-year-
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olds from 41 countries and found that unequal distribution of certified teachers is associated with 

students’ low scores in math, reading, and science. In that sense, it is necessary to shed light on 

the impact of math teacher staffing and math teacher qualification on the students’ math 

motivation.  

Addressing math teacher staffing and math teacher qualification in this study is helpful to 

inform educational policy directed at math education. U.S. federal K-12 public education policy 

has designated teacher qualifications as a important factor since the No Children Left Behind Act 

of 2001. This policy required teachers to be “highly qualified,” proxied by full certification, a 

bachelor’s degree, and demonstrated content knowledge (Smith et al., 2005). Though a 

subsequent federal policy, the Every Student Succeeds Act of 2015 (ESSA), dispensed with the 

requirement of a bachelor’s degree, teacher qualification has remained an important feature in 

students’ success in schooling as well as in state certification and licensure requirements. The 

findings of the association between math teacher qualification and students’ math motivation can 

guide a policy design.  

Math Teacher Staffing 

Despite the importance of an adequate supply of qualified teachers, teacher staffing has 

been a long-standing and controversial issue in the U.S. K-12 education system (Larrabee & 

Tyack, 1976; Weaver, 1983), especially in math and science (Liu et al., 2008; Murnane & 

Phillips, 1981; Rivkin et al., 2005). The phenomenon of the shortage of math teachers can be 

understood in two different ways, as absolute and as relative. In absolute terms, the supply of 

certified, full-time math teachers is less than the demand. Based on multiple large datasets, 

Ingersoll and Perda (2009) found that, although national numbers present an overabundance of 

new teacher candidates, teaching colleges were producing an undersupply of math teachers, 
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which was not sufficient to replace number of math teachers who retired that year. Rahman and 

colleagues (2017) also pointed out the shortage of in-service certified math teachers. Based on 

the 2015 National Assessment of Educational Progress, they claimed that shortage of certified 

math teachers is a universal phenomenon in the U.S. K-12 school system with systematic 

differences in the percentages of States’ shortfalls. They also found that the percentage of eighth-

graders taught by state-certified math teachers decreased to 90% from the academic 2014-15 to 

the academic year of 2012-2013. These studies confirm that there is an insufficient supply of 

qualified math teachers.   

The notion of the relative shortage of math teachers focuses on the low proportion of 

math teachers among all subject teachers. Colleges underproduce math and science teachers in 

relation to the high demand in understaffed schools and overproduce teacher candidates with 

expertise in already well-staffed subjects such as English, social studies, and elementary 

education (Aragon, 2016). Moreover, based on the national data, Cowan et al. (2016) found that 

the difficulty in hiring math teachers was persistently observed from 1999 to 2012. Even in years 

when hiring needed teachers was generally not a challenge (for example, school year 1993-

1994), the area of math was in jeopardy. This disproportionate concentration of teacher shortages 

in math results in an imbalance in students’ learning opportunities, as they lack adequate 

instruction and support in math that they receive in other subjects such as English. Therefore, it 

appears reasonable to expect students to favor other subjects such as English over math.  

Math Teacher Qualification 

Since the No Children Left Behind Act of 2001, U.S. federal K-12 public education 

policy has designated teacher qualifications as a critical factor. Teacher qualifications are a 

convenient measure to evaluate school quality from a policy perspective as “screening teachers 
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based on qualifications is appealing in its simplicity and is far less demanding than observing 

teachers in the classroom or measuring teacher attitudes, practices, and beliefs (Huang & Moon 

2009, p. 211).” Accurate measurement of teacher qualification's impact on student learning is 

cost-efficient as it can directly be translated into an education policy surrounding teacher 

selection and distribution. 

The conventional assumption is that teachers who have a bachelor’s degree in the 

academic subject teach students better than teachers without a bachelor’s degree. Goldhaber & 

Brewer (2000) analyzed a nationally representative group of school math and science teachers in 

the National Education Longitudinal Study of 1988 dataset (NELS). After controlling for 

individual and family background variables (e.g., sex, race/ethnicity, parental education, family 

structure, family income, and 10-th grade subject test score), they found that 12th-graders who 

were taught by teachers who hold a bachelor's degree in math have higher test scores than 

students who were taught by teachers who do not hold a bachelor’s degree. (class size and the 

percentage of minority students in the class). Rice (2003) also demonstrated the positive effect of 

teachers who have advanced degrees on their high school students’ math achievement. 

Contrary to these studies, some studies suggest that teacher qualification does not 

enhance students’ learning. Palardy & Rumberger (2008) analyzed a nationally representative 

group of elementary school teachers in the Early Childhood Longitudinal Study dataset. Using a 

hierarchical linear model that disentangles the variance components of child, classroom, and 

school, this research found that teachers' backgrounds such as advanced degree, years of teaching 

experience, and certification do not increase students’ math achievement. Croninger et al.'s study 

(2007) provided the similar findings that elementary school teacher’s advanced degree has no 

statistically significant impact on first graders’ math achievements. These results show that 
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teacher qualification tends to have no statistically significant impact on students' academic 

achievement at an elementary school level. These findings are contrary to the positive effect of 

teacher qualification on high school students' math achievement (Goldhaber & Brewer, 2000). 

The comparison between the previous studies is not straightforward as the analytic methods, as 

well as the measures and samples used for each study differ, however, the studies imply that 

findings related to teacher qualification are inconclusive in the previous studies. 

Math Teacher and Student Motivation 

Previous studies have found that teachers’ attitudes (Lazarides et al., 2018), teachers’ 

support for students (Yu & Singh, 2018), and teachers’ professional development (Stipek et al., 

1998) are important factors in students’ learning motivation. However, there is little research on 

the relation between mathematics teachers’ qualifications and students’ mathematics motivation. 

Most studies have focused on the influence of teachers’ qualifications on students’ mathematics 

test scores (e.g., Chiu & Khoo, 2005). However, we know that students’ achievement are 

correlated with their learning motivation (e.g., Amrai et al., 2011). Given this understanding, we 

could hypothesize that teacher qualification influence not only student achievement but also 

student motivation. Williams & Williams (2011) found that students get motivated to study 

harder when they are taught by qualified teachers who represent their teaching abilities (e.g., 

pedagogical and content knowledge) to students. The authors claimed that “probably the most 

important factor that educators target to improve students’ learning (Williams & Williams, 2011, 

p.1). This study sheds light on the impact on the availability of certified mathematics teachers on 

students’ mathematics motivation. 

In particular, in this study, students’ motivation for pursuing mathematics, an area in 

which there is a critical teacher shortage, is compared with their motivation for studying other 
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subjects such as English, in which there is an ample teacher supply. The rationale of the 

comparison of the students’ motivation by subject is to determine whether school environments 

that are more favorable to learning mathematics relative to learning English may affect students’ 

motivation in mathematics over other subjects such as English. Such comparisons have rarely 

been the focus in the literature (Breda & Napp, 2019). For example, Chiu & Khoo (2005) 

focused only on the absolute values of students’ motivations in subjects separately. Drawing on a 

sample of fifteen-year-olds from 41 countries, they found that unequal distribution of certified 

teachers was associated with students’ low scores in mathematics, reading, and science.  

Given that funding and resources are limited in schools, it is reasonable to assume that 

inequities in resource distribution occur, raising the question of whether a school’s relative 

favoring of mathematics over other subjects influences its students’ intention to favor 

mathematics over other subjects. By pursuing this question, the current study adds to the 

literature by examining how comparative advantage in school mathematics resources over 

resources for other subjects influences students’ intentions to favor mathematics over other 

subjects. Based on this review of school mathematics resources and students’ mathematics 

motivation, the first hypothesis of this study is as follows:  

Hypothesis 1: School’s math resources (Schools that prioritizes school math 

resources over other subjects) are positively associated with students’ intention 

(students’ math intention over other subjects). 

The Mediating Roles of Attitudes, Subjective Norms, and Perceived Behavioral Control 

The constructs of the theory of planned behavior originated in the field of social 

psychology, which is concerned with the ways in which people’s beliefs, feelings, and behaviors 

are influenced by the actual, imagined, perceived, or implied presence of others in society. 
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Scholars in a wide range of disciplines have applied the constructs of the theory of planned 

behaviors to their fields. The majority of the application studies have been conducted in the 

public health area for such purposes as estimating health-related behaviors, for example 

intervention for alcohol and drug addiction (Bhochhibhoya & Branscum, 2018) and intervention 

for eating disorders (Godin & Kok, 1996), followed by other disciplines such as leisure 

psychology, for example, prediction of leisure intentions and behaviors (Ajzen & Driver, 1992).  

In the scholarship of math education, the motivation factors that predict and help interpret 

an individual’s behaviors have been perceived as important (Di Martino & Zan, 2001). 

Researchers in math education have employed the constructs of the theory of planned behavior to 

their areas of interest to find differences in the impact of various factors on motivation in a 

variety of contextual and localized environments, thereby strengthening the theory (Arditzoglou 

& Crawley III, 1992; Lipnevich et al., 2011; Niepel et al., 2018). Many previous studies have 

utilized the theory of planned behavior to predict students’ math achievement and students’ 

choice of math as a major in college (Arditzoglou & Crawley III, 1992; Burrus & Moore, 2016; 

Lipnevich et al., 2011; Moore & Burrus, 2019; Niepel et al., 2018). However, no study was 

found that examined how school math resources influence students’ math intentions over other 

subjects and how the components of the theory of planned behavior (i.e., math pursuit attitudes, 

subjective norms, perceived behavioral control) mediate this relationship. Guided by the theory 

of planned behavior, I formulated the second hypothesis to the effect that the three socio-

cognitive determinants (i.e., math pursuit attitudes, subjective norms, perceived behavioral 

control) mediate the relationship between school math resources and students’ intentions. The set 

of hypotheses is presented below. In the following section, I discuss how the theory of planned 

behavior in math has been applied to the field of education and review those emprical studies 
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that can support the hypothesis. The following subsection serves to introduce a body of literature 

with regards to (1) math achievement and the theory of planned behavior; and (2) math courses, 

math careers, and the theory of planned behavior. As the current study focuses on student's 

intention to pursue a math-related career and take math courses, previous studies that fell into the 

second category critically influenced for me to design the current study.  

Math Achievement and The Theory of Planned Behavior 

The constructs of the theory of planned behavior and students’ math achievement 

modeling, which was introduced by Arditzoglou & Crawley III (1992), has produced two strands 

of research: (a) The use of the constructs of the theory of planned behavior to predict students’ 

grades and (b) The use of the constructs of the theory of planned behavior to predict students’ 

choice of math as their major. The first strand investigates the utility of the theory by estimating 

its applicability to students’ math achievement. Arditzoglou & Crawley III (1992) tested the 

utility of structural equation modeling to understand the relationships among the constructs of 

the theory in students’ math, science, and life science achievements. Working with a sample of 

271 Palestinian female 10th-grade students (90, 90, and 91 students responded to the math, life 

science, and general science questionnaire, respectively), the researchers first conducted a simple 

regression analysis and found that the students’ achievement intentions were related directly and 

indirectly to the construct of math attitudes. Also, among the three mediating socio-cognitive 

determinants (i.e., attitudes, subjective norms, perceived behavioral control), only perceived 

control in mathematics was directly associated with achievement. Further analysis that 

incorporated a structural model found that students’ mathematics attitudes predicted their 

achievement intentions. Perceived behavioral control also predicted achievement intentions. 

Interestingly, achievement intention did not predict students’ achievement. This study shows 
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students’ intention to achieve a high score on a test, but not necessarily their intention to pursue a 

math-related career. However, this study's contribution was to provide testing of the 

measurements and structural parts of the theory of planned behavior. Another downside of this 

study is that it did not provide accurate numerical values from the report's analysis, preventing 

precise comparisons with the results of other studies. This study also had a small sample size (90 

students), which raises a question about statistical power. 

Subsequent studies also investigated the applicability of the theory of planned behavior in 

predicting students’ attitudes toward math by using SEM but with different samples. Working 

with samples of middle school students in the U.S. (n=382) and Belarus (n=339), Lipnevich et al. 

(2011) used multivariate analysis to examine the theory’s power to predict the role of math 

attitudes in explaining middle school students’ math grades and presented a visual model of the 

association of their math beliefs and attitudes with their math grades. As data analysis steps, 

confirmatory factor analyses were fit separately for three socio-cognitive determinants (i.e., math 

pursuit attitudes, subjective norms, perceived behavioral control) and the intention variables. 

Then, the study tested two structural models. They found that components of the theory of 

planned behavior (i.e., attitude, subjective norms, perceived control; and intention) explained 

between 25% and 32% of the variance in mathematics grades. In line with the theoretical 

framework of the theory of planned behavior, this research empirically demonstrated that 

mathematics intentions were determined by three socio-cognitive determinants (attitudes, 

subjective norms, perceived control) and predicted students’ mathematics grades. The three 

socio-cognitive determinants explained 63% of the variation in intentions. Intention was 

correlated with attitudes (72%), subjective norms (52%), and perceived behavioral control 

(65%). All paths to intentions were statistically significant, but the strength of the coefficients 
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varied, the weakest being the coefficient for subjective norms and the most robust the coefficient 

for attitudes. 

Burrus and Moore (2016) replicated and extended Lipnevich et al.'s (2011) study to 

examine the extent to which the constructs of the theory of planned behavior predict students’ 

math achievement but with a different population, U.S. high school juniors (11th graders) and 

seniors (12th graders), most of whom had recently taken the ACT math test. The researchers 

added more independent variables to the model, including high school math grades, number of 

math courses taken, gender, race/ethnicity, socioeconomic status (i.e., parental income, father’s 

educational level), and conscientiousness. They employed a multiple linear regression model to 

predict students’ ACT math scores by controlling students’ background information as follows: 

Step 1. math course GPA; Step 2. conscientiousness; and Step 3. four components of the theory 

of planned behavior (i.e., attitudes, subjective norms, perceived control, and intentions). Results 

showed that the predictive capability of the theory of planned behavior model held for high 

school students. ACT math scores were positively correlated with math attitudes (r = 0.42**1), 

subjective norms (r = 0.21**), perceived behavioral control (r = 0.29**), and intentions (r = 

0.18**). Also, math course GPA was positively correlated with math attitudes (r = 0.39**), 

subjective norms (r = 0.16**), perceived behavioral control (r = 0.28**), and intentions (r = 

0.22**). Among the theory's components, math attitudes presented greater incremental validity 

in predicting ACT math test scores than student background variables. However, neither 

perceived behavioral control nor subjective norms statistically significantly predicted ACT math 

test scores in the model. These findings mostly mirror the findings of Lipnevich et al. (2011). 

However, Burrus & Moore’s study (2016) found that students’ math intentions negatively 

                                                
1 ** p < 0.05 
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predicted ACT math scores. Note that math intentions that Burrus & Moore (2016) measured 

denotes a general intention to study mathematics hard (e.g., “I will try to work hard to make sure 

I learn math.” 

Lipnevich et al. (2016) expanded the previous studies by employing the constructs of the 

theory of planned behavior to estimate variations in student achievement. Cognitive ability (i.e., 

reasoning ability) and the Big Five personality dimensions (i.e., Extraversion, Neuroticism, 

Conscientiousness, Agreeableness, and Openness to experience) were added predictors of math 

grades. The researchers used a hierarchical linear model to investigate the incremental 

contributions of the constructs of the theory of planned behavior to explaining math grades above 

and beyond cognitive ability and the Big Five personality dimensions. The sample comprised 

German college students (n=179) and Belarus college students (n=202), populations that had not 

been investigated previously. The researchers conducted analyses using structural equation 

modeling and hierarchical linear modeling for both samples. The hierarchical linear model 

comprised four steps: Control variables in Step 1, reasoning ability in Step 2, Big Five 

personality dimensions in Step 3, and the theory of planned behavior in Step 4. Results 

highlighted that the importance of the components of the theory of planned behavior in 

predicting math achievement, with math attitudes explaining 21% (Germany) and 7% (Belarus) 

of variance in math grades over cognitive ability and the Big Five personality dimensions. 

Among those components, math attitudes yielded a statistically significant beta weight: Germany 

(.414, p < .001), Belarus (.277, p<.001). However, for both the German and the Belarus samples, 

neither intentions, perceived behavioral control, nor subjective norms were statistically 

associated with students’ math grades.2 The study results revealed that the amount of variance 

                                                
2 As a potential explanation for these unusual results, the authors attributed the time frame of collecting survey data 
on variables that are part of the theory of planned behavior and students' grades. The authors collected students' 
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explained by the components of the theory of planned behavior differed between two 

independent and culturally different samples. Also, it was found that one component can explain 

math grades substantively more than other components, in this case, math attitudes, which 

incrementally explained math grades. 

Math Courses, Math Careers, and The Theory of Planned Behavior 

Above in this section, the second strand of the literature in which the theory of planned 

behavior was applied focused its use to examine the extent to which the components of the 

theory can explain students’ intention to study math. The studies on this topic covered a wide 

range of samples and employed different variables, resulting in slightly contrasting results (Foltz 

et al., 2015; Moore & Burrus, 2019).  

Foltz et al. (2015) studied STEM retention, specifically, whether the theory of planned 

behavior's components apply to the intent to graduate of U.S. students in a freshman chemistry 

course. The study tested the hypothesis that intention is correlated with the other three 

components of the theory (attitudes, subjective norms, perceived behavioral control): Subjective 

norms were statistically associated with intention to remain in the STEM field whereas attitude 

and perceived behavioral control were not. This finding is different from those of studies 

showing that math attitudes were a fundamental construct influencing students’ pursuit of the 

STEM field (Lipnevich et al., 2016). The study also found that 16% of the variation in intention 

to graduate was explained by the model of the theory of planned behavior, implying that the 

theory of planned behavior explain the intention of students’ choice of major. This study offered 

                                                
grades prior to the survey, potentially resulting in students' math attitudes and other constructs changes due to their 
grades. The authors suggested future studies would redress this issue (Lipnevich et al., 2016, p. 77). Also, as college 
students are already a selective sample, the results can be different from a conventional expectation of the 
relationships of the constructs in this model. 
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insights that the constructs of the theory of planned behavior can explain students’ STEM 

retention. However, this study had limitations in that the sample was limited to a single group of 

students at a single university (n=336). Moreover, this study did not control the variables such as 

socioeconomic backgrounds that may influence the student’s STEM retention and the variables 

of the theory of planned behavior.  

Moore & Burrus (2019) augmented previous methodological approaches by including 

more control variables to measure the impact of the theory of planned behavior on students’ 

intention to major in a STEM field and have a STEM career. The sample comprised 1,958 U.S. 

high school students (11th  and 12th graders), who completed the ACT test and participated in a 

survey. Results demonstrated that the components of the theory of planned behavior accounted 

for an 4% and 5% of variance in college STEM major intentions and career intentions, 

respectively, which was not accounted for by other variables (math course GPA, type of math 

courses taken, conscientiousness, vocational interests, and student demographic information). 

Specifically, they found STEM attitudes were the most predictive component. A one-unit 

increase in math attitudes increased the odds of college STEM major intentions by a factor of 

49% (𝛽	= 0.40*) and of STEM career intentions by a factor of 57% (𝛽	= 0.45*) after controlling 

for a host of other variables. Math intentions were also a statistically significant predictor of 

STEM college major intentions (odds ratio = 1.2) but not of STEM career intentions. 

Based on the literature outlined I constructed hypotheses regarding the relationships 

among mathematics pursuit attitudes, subjective norms, and perceived behavioral norms, the 

underlying beliefs which are posited to make independent contributions to predicting behavior of 

interest (e.g., Foltz et al., 2015; Moore & Burrus, 2019). The studies found the specific 

behavioral, normative, or control beliefs most strongly associated with intention and behavior. 
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For example, Lipnevich et al. (2016) found that attitudes were salient in predicting students’ 

achievement, while Foltz et al. (2015) reported that subjective norms strongly influenced 

students’ choices of major. Identifying the relations of these three constructs to the prediction of 

intentions has both theoretical and empirical implications. First, the nature of these relations can 

articulate the theory. In developing the theory of planned behavior, Ajzen (1991) claimed that the 

relationships to behavior were not accurately identified, even though each of the three 

components has its own salient behavioral, normative, and control beliefs. In the current study, 

the hypothesis was formulated to identify the extent to which each of the three socio-cognitive 

determinants can explain intentions. From an empirical stance, such identification would provide 

guidance as to which constructs should be targeted for intervention efforts (Montaño & 

Kasprzyk, 2015). Therefore, the second hypothesis examines each motivation construct’s impact 

on predicting students’ intentions to study math over other subjects. 

Hypothesis 2. The relationship between a school’s mathematics resources and students’ 

intention variables’ is mediated by students' motivation variables (math pursuit attitudes; 

subjective norms, and perceived behavioral control). 

Moderating Role of Immigrant Standing in the Relationship Between School Math 

Resources and Students’ Intentions 

Immigrant students were reported to experience the persistent inequalities that were 

reproduced in schooling over time (Hillmert, 2013; Olivos & Mendoza, 2010; Stanton-Salazar & 

Dornbusch, 1995), though schools were traditionally regarded as the main agent of socialization 

and integration (Mannion, 2016). Children of immigrants have been historically marginalized 

and under- supported as they tend to go to schools that lack resources. For example, Schwartz  

and Stiefel (2004) found that school resources decreased with the representation of students from  
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immigrant families. These relationships were also found to reflect differences in the educational 

needs of immigrant students due to such factors as poverty, language, and race. It is also 

plausible that the distribution of school mathematics resources varies within a school so that 

immigrant students receive fewer benefits than native speakers. Furthermore, these students’ 

mathematics learning can be assumed to differ depending on their particular characteristics, such 

as their immigration status and type.  

This section begins with a host of theories that conceptualize immigrant students’ 

learning in math education to situate my study in the line of the existing studies. Then, I 

introduce the empirical studies that revealed immigrant students' unique nature in their math 

motivation and intentions to justify the third hypothesis of this study. 

Theory Framing Immigrant Students’ Learning in Math Education 

The intersection of math and English proficiency has been a critical focus of scholars 

interested in math education for children of immigrants. Immigrant students tend to use a 

language other than English at home and bring their language assets to school, creating 

diversified classroom landscapes. Responding to these, much research in the past two decades, 

has been motivated by an interest in examining how immigrant students learn math in English 

(de Araujo et al., 2018). These investigations have been approached from various perspectives, 

including sociocultural theory and sociopolitical theory (Barwell et al., 2017; de Araujo et al., 

2018). 

Early researchers who incorporated insights from cognitive theories and psychology 

treated math learning separately from English language learning or other sociocultural contexts. 

Researchers grounded in this perspective have investigated the influence of cognitive-process 

loads on immigrant students’ mathematical thinking and performance. Miura et al. (1993) 
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investigated whether variability in students’ math performance can be explained by differences 

in cognitive representation of language spoken, comparing Asian and non-Asian-language 

groups. Taking a quasi-experimental approach, Miura et al. (1999) further examined the 

influence of language characteristics on math thinking and performance. These studies indicated 

that cognitive representation of number and place value differs depending on the language 

spoken and influences math influence. One advantage of this theoretical perspective is that it 

supports analysis of an individual’s mental processes to identify effective cognitive learning 

strategies. However, a drawback is that it does not account for sociocultural contexts, such as 

those that govern immigrant students’ math learning environments. 

An alternative approach to examining immigrant students’ math learning in relation to 

their English proficiency is to highlight how their use of English and mathematical performance 

are linked to sociocultural environments. For this approach,  de Araujo et al. (2018) identified 

two strands of inquiry in math education: sociolinguistic theory (e.g., Khisty & Chval, 2002; 

Schleppegrell, 2007) and sociocultural theory on learning math (Moschkovich, 2002, 2007, 

2013; Razfar, 2012, 2013). From the perspective of sociolinguistic theories of language in math 

classrooms, there is a specific linguistic register that students have to be familiar with to gain 

knowledge. The focal interest of this research is to examine how immigrant students, plausibly 

English language learners, acquire access to the linguistic register in the math classroom (Pimm, 

2019). Schleppegrell (2007) pointed out the need to consider linguistic structures in math 

teaching, such as the multi-semiotic formations and implicit logical relationships. This approach 

is largely built on a functional linguistics perspective that focuses on linguistics.  

Sociocultural theory-based research extended linguists' work to include how students are 

“being” in math classrooms. Teaching and learning mathematics involves participation in certain 
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mathematics cultural practices (Steele, 2001). The researchers founded on this framework how 

students understand culturally established mathematical practices in communications with others 

(e.g., peers and teachers). A third theoretical approach to the investigation of the intersection of 

math and English learning is based on a sociopolitical perspective (de Araujo et al., 2018). This 

stance highlights political power dynamics and identity formation (Gutiérrez, 2013). The 

scholars employing this framework see math as one body of knowledge that transcends language, 

experience, culture, and power (Kalinec-Craig, 2014). While investigating the educational 

phenomenon of their interest, they take an equity stance and advocate for social justice by 

foregrounding the voices of marginalized students and the power dynamics that occur in teaching 

and learning math (Gutiérrez, 2013; Kalinec-Craig, 2014; Planas & Civil, 2009; Takeuchi, 2018; 

Turner et al., 2009). Studies of immigrant students’ math learning that take this perspective shed 

light on integrating students’ funds of knowledge in school math (Turner & Celedón-Pattichis, 

2011), facilitating parents’ involvement (Takeuchi, 2018), empowering teachers through 

professional development (Planas & Civil, 2009). These researchers also explore the knowledge 

and experiences that are considered personally and socially meaningful to marginalized 

populations as well as power dynamics in education, with the aim of countering the dominant 

deficit perspectives on marginalized populations and fostering their active engagement within 

their contexts.  

The three theoretical perspectives reviewed above provide insights useful for finding the 

missing link in examining the immigrant students’ intentions to study math over other subjects, 

including English. The theory of planned behavior, which is the framework of the current study, 

is largely based on the cognitive theory introduced in the first place of this section. Though the 

theory of planned behavior is considered a parsimonious model of behavior prediction, it 
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explains a portion of unaccounted for variance (Hamilton & White, 2012). Ajzen (1991), the 

developer of the theory of planned behavior, acknowledged that additional predictors might help 

explain a proportion of unaccounted for variance in the intentions or behaviors. The benefit of 

the theory is to determine the individual immigrant students’ psychological factors; however, it 

neglects sociocultural factors at play in the immigrant students’ intentions. Also, the structural 

and cultural barriers imposed on immigrant students would result in inequity issues, as 

highlighted in the sociopolitical view.  

As part of an effort to explain the unaccounted for variance in immigrant students’ 

intentions to study math over other subjects, the current study incorporates sociocultural factors 

and creates a model that expands the theory of planned behavior. School math resources are 

integrated as a primary predictor in the model, and other demographic factors (i.e., The three 

individual-level variables: gender; socioeconomic status; and race/ethnicity) are controlled. This 

expanded model addresses potential differences between immigrant students and non-immigrant 

students in the distribution of the school resources and impact on math learning. Historically, in 

the U.S. public education system, immigrant students have access to fewer school resources than 

non-immigrant children (Chu, 2009; Schwartz & Stiefel, 2004; Smith-davis, 2002). Federal 

funding has not addressed particular legislation with regards to resources for immigrant students 

except from the Emergency Immigrant Education Program (EIEP) (Schwartz & Stiefel, 2004). 

Larger classes and less spending have been documented. Supportive programs such as 

counseling and parental outreach have been found to be less available to immigrant students than 

to other students. Some researchers (e.g., Chu, 2009; Schwartz & Stiefel, 2004) have argued that 

having adequately trained, qualified licensed teachers can help compensate for the lack of other 
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school resources. Thus, access to qualified teachers is incorporated as an important factor related 

to immigrant students’ decision to study math. 

Immigrant Students and The Theory of Planned Behavior 

Numerous studies have found that culturally different groups show different patterns in 

the mediating roles of the three socio-cognitive determinants of the theory of planned behavior, 

with regard to Hispanic-American students (Arditzoglou & Crawley III, 1992), African-

American students (Lee, 2012), U.S. students versus Belarus students (Lipnevich et al., 2011), 

and German students versus Belarus students (Lipnevich et al., 2016). For example, Lipnevich et 

al. (2016) examined the extent to which  the three socio-cognitive determinants explained 

German college students (n = 179) and Belarus students’ (n = 202) mathematics grades. 

Attitudes showed a statistically significant beta weight for both groups, but the extent to which 

attitudes were explanatory differed (German sample: B=.414, p <.001; Belarusian sample: 

B=.277, p <.001). The results demonstrated that even after controlling for cognitive ability and 

personality, the amount of variance in math grades explained by math attitudes was high for the 

German sample (16%) and the Belarusian sample (6%)  Neither intentions, perceived behavioral 

control nor subjective norms were statistically related to students’ mathematics grades for both 

samples.  

A handful of ethnographies suggest that immigrant students have unique attitudes, 

subjective norms, and greater perceived behavioral control in school performance than native-

born students (e.g., Fuligni, 1997). Despite the unique challenges that immigrant students often 

face due to socioeconomic background, many immigrant students are in a family/or in peer 

environment that strongly supports their school performance (Fuligni, 1997).  Immigrant parents 

from diverse countries (e.g., India, Indochina, Central America, Laos, and Vietnam) emphasize 
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their children's academic success (Caplan et al., 1991; Gibson & Ogbu, 1991; Santos, Suarez-

Orozco, & Suarez-Orozco, 1995; Waters, 1994). Steinberg et al. (1992) found that immigrant 

students reported a high level of peer support in academics, which can counterbalance the 

negative impact of some parenting practices. Positive family and peer involvement has also been 

reported to crucially encourage immigrant students to pursue the math field (Chachashvili-

Bolotin et al., 2019; Onuma et al., 2020).  

There are studies that focused on immigrant students with regard to the relation of school 

math resources to their math intention. Areepattamannil (2012) examined the immigrant 

students’ mathematics and science achievements proxied by their self-concept in each subject. 

Based on a sample of 1,752 Canadian students who participated in the TIMSS 2007 survey, the 

study found that immigrant students, both first-generation and second-generation students, 

showed a positive correlation between positive affect toward mathematics and self-perceived 

competence in mathematics (0.48 and 0.48, respectively). 

  Further, the overall multiple regression analysis found that both groups’ positive affect 

toward mathematics and science and self-perceived competence in mathematics and science had 

statistically significant predictive effects on their mathematics achievement (first-generation 

immigrant student𝑠:	𝑅/=0.36, F (7, 772)=62.03, p < 0.001; second-generation immigrant 

student𝑠: 𝑅/=0.42, F (7, 964)=99.72,  p < 0.001,). Additionally, self-perceived competence in 

mathematics had a statistically significant positive predictive effect on mathematics achievement 

for both groups (first-generation immigrant students: B=63.29, p < 0.001; second-generation 

immigrant students: B=60.94, p < 0.001). However, positive affect toward mathematics had a 

statistically significant negative predictive effect on mathematics achievement for both groups 

(first-generation immigrant students: B=-13.09, p < 0.001; second-generation immigrant 
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students: B=-11.25,  p < 0.001). As shown above, the two groups were quite similar in that the 

predictors of self-perceived competence in mathematics and positive affect toward mathematics 

were positively associated with mathematics achievement. 

 Porche et al. (2016) compared STEM pursuit between immigrant students and non-

immigrant students. They found that immigrant students are more likely to pursue a STEM field 

than U.S.-born peers. They investigated the relationship between immigrant status and the 

determinants of STEM persistence of 1,073 U.S. high school freshmen and sophomores, 18% of 

whom were first-generation immigrants to the United States from over 40 different countries. 

The researchers found that first-generation immigrant students reported statistically higher 

ratings of aspiration for studying STEM in college or any combination of STEM disciplines than 

U.S.-born peers. Additionally, first-generation immigrant students had statistically higher levels 

of both science and mathematics self-concept. This study did not compare first-generation and 

second-generation immigrant students. Based on these findings, I further postulate the following 

hypothesis concerning differences between immigrant and non-immigrant students in terms of 

the three socio-cognitive determinants: 

Hypothesis 3: The effect of the school’s mathematics resources on student 

intention will be stronger in the immigrant student group than in the non-

immigrant student group. 

Summary  

Empirical studies have demonstrated how the constructs of the theory of planned 

behavior play a role in explaining students' math intention. One thing to note is that previous 

studies defined a student's math intentions differently according to their research interests. In 

Table 2.1, I list the existing research relevant to how intention has been defined to provide a 
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clear link to the current study. In this study, the long-term math intentions of a sample of middle 

school students are assessed, highlighting on intentions to (1) take additional math courses over 

other courses; (2) major in a subject in college that prioritizes math skills over other skills; (3) 

pursue a career that involves high level math skills. 

Table 2.1.  

Summary of Studies that Empirically Tested the Theory of Planned Behavior in Math Education 

Field 

Intention Sample Method Results on the relationship of the 
constructs of TPB (References) 

Math 
achievement 
intention 

U.S. middle school 
students (n=382) & 
Belarus student (n=339) 

Single-level 
SEM 

Attitudes showed the most positive 
dependency on intention among three 
motivational constructs (Lipnevich et al., 
2011). 

U.S. middle school 
students (n=752 from 8 
schools)  

Longitudinal 
SEM 

All three motivational constructs had a 
statistically significant association with 
math achievement intention (Niepel et al., 
2018) 

11th and 12th grade U.S. 
students (n=1,958) 

Hierarchical 
linear 
regression 

Attitudes showed the most positive 
dependency on intention among three 
motivational constructs (Burrus & Moore, 
2016). 

10th grade Palestinian 
students (n=271)  

Single-level 
SEM 

Both attitude and perceived behavioral 
control, but not subjective norm influence 
achievement intention (Arditzoglou & 
Crawley III, 1992).  

Germany and Belarus 
college students 
(n=179, n=202) 

Hierarchical 
linear 
regression 

Only attitudes showed a positive link to 
math achievement intention (Lipnevich et 
al., 2016). 

STEM 
majors and 
careers 

11th and 12th grade U.S. 
students (n=1,958) 

Hierarchical 
logistic 
regression 

Attitude was the only statistically 
predictive component to choose STEM 
college majors and STEM careers (Moore 
& Burrus, 2019). 

U.S college students 
(n=316) 

Single-level 
SEM 

Subjective norms are statistically 
correlated with the intention to graduate 
(Foltz et al., 2015). 

9th and 10th U.S. 
immigrant students 
(n=1,073) 

Mixed-
method 
analysis 

Immigrant student reported high self-
concept and their high math self-concept 
was linked to their aspirations for college 
study in STEM (Porche et al., 2016). 
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Building on findings in previous studies (Table 2.1), the aim of the current study is to 

further understanding of students’ math intentions. First, data in the second category of Table 

2.1. did not represent U.S. middle school students’ intentions to pursue STEM majors or careers. 

The current study fills a gap in the literature by addressing how middle school students are 

motivated to take more math courses in high school, choose a math major in college, and pursue 

a math-related career. Second, the current study’s methodology is novel in that it employs 

multiple imputations based on Bayesian estimation to handle missing data, which was not 

attempted in previous studies, as addressed in Table 2.1. Third, the current study employs a 

multilevel mediation SEM to reflect the data structure.  

Last, the current study revisits the definitions of the constructs of the theory of planned 

behavior. Previous empirical studies followed a four-factor model (attitudes, subjective norms, 

perceived behavior, and intention). However, the theoretical rationale of the theory of planned 

behavior shows that the first two constructs could be more specified, such as subdividing 

attitudes into experiential attitude and instrumental attitude. This study will fit a commonly used 

four-factor model along with a six-factor model that reflects more specified definitions of these 

construct: Math pursuit experiential attitude, math pursuit instrumental attitude, math subjective 

norms influenced by friends, math subjective norms influenced by parents, perceived behavioral 

control, and math intention.  
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CHAPTER THREE 

METHODOLOGY 

The main purpose of this study is to estimate the effect of school math resources on a 

student’s intention to study math over other subjects in school (e.g., taking more math courses at 

high school; majoring in math at college; and pursuing a math-intensive career) by considering 

the mediating roles of socio-cognitive factors (i.e., math pursuit attitudes, subjective norms, 

perceived behavioral control) and the moderating role of immigrant standing (i.e., immigrant 

students vs. non-immigrant students). The intent of this analysis is to determine the factors that 

are associated with students’ intentions to study math. In the current study, particular attention is 

paid to both sociocultural factors (i.e., school math resources) and socio-cognitive factors (i.e., 

math pursuit attitudes, subjective norms, and perceived behavioral control). This study is also an 

examination of the effect of a student’s immigration status on the relationships among these 

factors in estimating his/her intentions to study math. To accomplish these aims, the study is 

guided by the following research questions: (1) How does a school that prioritizes resources for 

school math over other subjects (regressors x) influence students’ exhibiting intentions to pursue 

math over other subjects (outcome y)?; (2) Is the resulting effect mediated by students’ math 

pursuit attitudes, subjective norms, perceived behavioral control (mediators m); (3) Is it 

associated with students’ immigrant standing (moderator z)?” 

To address the first two research questions, I apply a proposed 2-1-1 multilevel mediation 

SEM model in which only two observed independent variables (𝑥2) are measured at level 2 

(Fang, Wen, & Hau, 2019; Preacher, Zhang, & Zyphu, 2011; Preacher, Zyphur, & Zhang, 2010). 

The data are composed of two hierarchical levels, in which I represents the number of the first 

level units (schools), and J the number of subjects (students) within a unit (school): School’s 
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math resource variables (	𝑥23), Student’s intention variables (𝑦23), Student’s immigration 

variables (𝑧23), and Student’s motivation variables (𝑚23). Multilevel SEM was used for its 

unique benefits for the PISA dataset, which can produce more accurate estimates than a single-

level approach to hierarchical data structure that decomposes a school-level effect and student-

level effect. I also took a two-step approach that involves first analyzing a measurement model 

for a latent construct and then analyzing a structural model in accordance with Anderson & 

Gerbing (1988). The goals of the analysis are to evaluate the estimated effects based on the 

research hypotheses, investigate patterns of effects within a set of variables (e.g., school math 

resources, math pursuit attitudes). Then, to address a third research question, I investigated the 

group differences with respect to estimated effects. Measurement invariance was tested, and then 

a structural model was tested. One limitation in this multiple group analysis was that it had to be 

run at a single level due to our data’s small cluster size. Detailed information was provided later 

in the analytic process part.  

Details of the research methodology employed in the current study are presented in this 

chapter as follows: (a) research model, (b) Multilevel Mediation Structural Equation Modeling 

and Multiple Group Analysis, (c) instruments, and (d) procedures and data analysis. The first 

section presents the research design. The second section provides a brief introduction to 

mediation, moderation, and moderated mediation in the context of models for hierarchical data 

structures. The third section provides information on the sample, variables, sampling, and 

selection bias. Then, the fourth section offers a missing data handling strategy that this study 

took, which was a predictive mean matching technique based on a Bayesian framework. The last 

section describes details about procedures and data analysis.  
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Research Model 

The research model for this study is presented in Figure 3.1. This baseline theoretical 

model was formed based on the theories and previous studies discussed in Chapter 2. The 

research model is based on the premise that school math resources influence a student’s intention 

to study math. The relationship between these constructs is hypothesized to be mediated by three 

socio-cognitive factors (i.e., math pursuit attitudes, subjective norms, and perceived behavioral 

control). Additionally, the research model includes the moderating effects of group standing (i.e., 

immigrant students versus non-immigrant students) on the variables. The direct effect of school 

math resources on intention to pursue math over other subjects is omitted from Figure 3.1. For 

the sake of clarity, control variables are not presented in this research model: Gender, 

socioeconomic status, and race/ethnicity. 

Figure 3.1 

Overview of the Research Model  

 
Note. Each rectangle refers to an observed variable and each oval to a latent variable. For the sake of 

clarity, direct effects, confounding variables, and differences between in-group and between-group of the 

mediating effects are excluded in this figure.  
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The research model posits the hypothesis linked to each factor in this model. The first 

hypothesis refers to the relationship between the independent variable (𝑥2) of this research and 

the dependent variable (𝑦23).  

Hypothesis 1. School’s math resources (degree to which schools that prioritize 

school math resources over other subjects) are positively associated with 

students’ intention (students’ math intention over other subjects). 

The second hypothesis is related to the mediating roles of socio-cognitive 

determinants (𝑚23)	in the linkage of school math resource variables (𝑥2) and students’ 

math intention variables (𝑦23).  

Hypothesis 2. The relationship between a school’s mathematics resource variables and 

students’ intention variables’ is mediated by students' motivation variables. 

The third hypothesis deals with the group difference (immigrant students vs. non-

immigrant students) (𝑧23) in the relationship of the factors in the current study.  

Hypothesis 3. The effect of the school’s mathematics resources on student 

intention will be stronger in the immigrant student group than in the non-

immigrant student group. 

Multilevel Mediation Structural Equation Modeling and Multiple Group Analysis 

The current study employs a multilevel mediation structural equation modeling and 

multiple-group mediation structural equation modeling. To preface the discussion of multilevel 

moderated mediation, in this section, I define basic concepts associated with Multilevel 

Structural Equation Modeling. Then, I describe the concepts related to mediation, moderation, 

and moderated mediation in an SEM framework. Finally, I describe the use of multilevel 
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moderated mediation SEM. This section was built on developments presented in previous 

methodological studies (Depaoli & Clifton, 2015; Fang et al., 2019; Rusá et al., 2018; Wang & 

Preacher, 2015; Zyphur et al., 2019). 

Mediation at a Single Level and at Multiple Levels 

Mediation occurs when the effect of an independent variable (x) on a dependent variable 

(y) is transmitted by a mediator (m) (Preacher et al., 2007). Mediation analysis examines the 

means by which x exerts its effect on Y (See Figure 3.2). Figure 3.3 depicts a path diagram of the 

mediation model. The mediation effect is quantified as the product of the two regression 

coefficients 𝑎9: and 𝑏<9 . 𝑎9:. This product denotes to the unstandardized slope coefficient of 

m regressed on x. 𝑏<9  and 𝑐%<: refers to the conditional coefficients of y regressed on m and x, 

respectively (Wang & Preacher, 2015). This mediation effect model can be written as a 

regression equation: 

𝑚2 =  𝑣9 + 𝑎9:𝑥2 + 𝜀9,2                                                (1.1) 

𝑦2 = 𝑣<	+ 𝑏<9𝑚2 + 𝑐%<:𝑥2 + 𝜀<,2,                                              (1.2) 

wherein 𝑣9 and 𝑣<  represents intercept and 𝜀9,2 and 𝜀<,2 represents a regression residual. 

The two regression coefficients 𝑎9: and 𝑏<9  represent the indirect effect of x on y via m. In a 

classic theory, researchers typically test for mediation by examining whether 𝑎9:𝑏<9 	≠ 0. 

Figure 3.2 

Path diagram of a mediation model (Zyphur et al., 2019, p. 475) 
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Equations 1.1 and 1.2 represent a mediation effect at a single level. As Preacher et al. 

(2010) point out, the use of single-level mediation is inappropriate for multilevel data structures 

because “the assumption of independence of observations is violated when clustered data are 

used, leading to downwardly biased standard errors if ordinary regression is used” (p. 209). In 

the multilevel model, observed variables reflect between- and within-group parts when data are 

nested (Zyphur et al., 2018, p. 483). In turn, the mediation model in Equations 1.1 and 1.2 can be 

re-formulated by decomposing the between-components and within-components of relevant 

variables (For simplicity, I omit random slopes).  

𝑚D3 =  𝑣D9 + 𝑎D9:𝑥D3 + 𝜀D9,3                                               (1.3) 

𝑦D3 = 𝑣D<	+ 𝑏D<9𝑚D3 + 𝑐%D<:𝑥D3 + 𝜀D<,3                                              (1.4) 

𝑚E23  =  𝑎E9:𝑥E23  + 𝜀E9,23                                                (1.5) 

𝑦E23  = 𝑏E<9𝑚E23  + 𝑐%E<:𝑥E23 + 𝜀E<,23,                                              (1.6) 

wherein a B subscript refers to a between-group component (i.e., a school mean) and a W 

subscript refers to a within-group component (i.e., a student’s relative standing after subtracting 

the school mean). To test for mediation, researchers will typically check the indirect effects 

being 𝑎D9:𝑏D<9  (between-group) and 𝑎E<9𝑏E<9  (within-group), respectively.  

Previous empirical studies have tested mediation models in various settings, depending 

on the level at which independent variable x, mediator m, and dependent variable y are measured. 

The most frequently used multilevel mediation model is found to be a 2-1-1 model with an 

independent variable at level 2, a mediator at level 1, and a dependent variable at level 1. This 

so-called upper level mediation is prevalent in educational and organizational studies, in which 

researchers tend to look for treatment effects on an individuals’ outcomes (e.g., Hom et al., 2009; 



 49 

Zhang, Zyphur, & Preacher, 2009). A group-level treatment is hypothesized to impact a person-

level outcome through a person-level mediator.  

The current study also employs a 2-1-1 model to examine how school resources (𝑥3,	level 

2) affect students’ math intentions over other subjects (𝑦23 ,	level 1) via students’ math motivation 

(𝑚23,	level 1). The school resources variable is a between-level predictor of only between-level 

variability in students’ math intentions over other subjects. Thus, what matters is not simply to 

measure whether students’ math motivation mediates the relationship between the school 

resources variable and the student math intention variables, but also whether, and to what extent, 

between-level variability in student math motivation serves as a mediator of the cluster-level 

effect of school resources on the between-level component of math intentions.  

Moderation at a Single Level and at Multiple Levels 

Moderation (z) is said to occur when the strength of the relationship between two 

variables is dependent on a third variable. According to Preacher et al. (2007), the third variable, 

called a moderation variable, “interacts with x in predicting y if the regression weight of y on x 

varies as a function of z (p. 186).” z could be a continuous variable or categorical variable. A 

simple moderation is expressed as an equation form (Zyphur et al., 2019):  

𝑦2= 𝑣<  + 𝑐<:𝑥2 + 𝑐<F𝑧2 + 𝑐<:F𝑥2𝑧2 + 𝜀<,2,                           (2.1) 

wherein i is a unit of observation; v is an intercept; c is a regression coefficient; and 𝜀 is a 

residual. The conditional effect, 𝑐<:F𝑥2𝑧2, is that x’s effect on y differs across the levels of z. In a 

classic theory, researchers typically test for moderation by estimating a confidence interval around 

𝑐<:F. Figure 3.3. represents (a) a conceptual diagram of a moderation model and (b) a path diagram 
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of a moderation model, wherein covariances among predictors are accounted for when deriving 

coefficients rather than explicitly estimated. 

Figure 3.3 

Moderation model (Zyphur et al., 2019, p. 475) 

 
 

Multilevel moderation implies the same extension to both the between group and within 

group cases as discussed in the section of multilevel mediation. The equation for multilevel 

moderation would be as follows (for concision, I omit random slopes, again): 

𝑦D3	= 𝑣D< + 𝑐D<:𝑥D3 + 𝑐D<F𝑧D3 + 𝑐D<:F𝑥D3𝑧D3 + 𝜀D<,3                           (2.2) 

𝑦E23 	= 𝑐E<:𝑥E23 + 𝑐GHI𝑧E23  + + 𝑐E<:F𝑥E23𝑧E23  + 𝜀E<,23,                           (2.3) 

where moderation has a similar form except that B parts indicate groups and the W parts 

indicate individuals. The B coefficients can be utilized to make inferences about groups. The W 

coefficients can be utilized to make inferences about individuals. B and W moderation effects 

will be defined by examining 𝑐D<:F and 𝑐E<:F. 

Moderated Mediation at a Single Level and a Multiple Levels 

Moderated mediation occurs when the strength of a mediation effect is conditional on the 

level of a moderator variable. James et al. (1984) explained moderated mediation assessment as 

involving relations that required the addition of a moderator, either the 𝑚J  = f (x) or the 𝑦K = f (m) 

relations, or both (p. 314). Generally, this method entails first demonstrating an interaction effect 

of an independent variable (x) and a mediator (m) on a dependent variable (y), then showing a 
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moderator (z) of that effect. Moderated mediation is different from mediated moderation. The 

mediated moderation method probes the interaction effect of an independent variable (x) and a 

moderator (z) on a mediator (m) and on a dependent variable (y) separately. In other words, 

mediated moderation does not demand the examination of conditional indirect effects (Preacher 

et al., 2007, p. 193). Because the conditional effect of students’ immigrant standing is of interest 

in this study, a moderated mediation approach is taken. This study tests the mediational model, 

an independent variable (x) -> a mediator (m) -> dependent variable (y) in separate groups, where 

an immigrant (=1), otherwise non-immigrant (=0). The third hypothesis of the current study is a 

moderated mediation hypothesis and it is examined with the multiple group SEM analysis.  

Figure 3.4 provides a diagram of a single-level moderated mediation model. Figure 3.4 

includes (a) a conceptual diagram of our single-level moderated mediation model; and (b) a path 

diagram of the single-level moderated mediation model, wherein predictor covariances are 

explicitly estimated, including a covariance among m and mw. Path coefficients are given with 𝑎 

terms referring to initial paths in a mediation effects equation, 𝑏 terms indicating second paths in 

a mediation effects equation, and 𝑐% paths indicating direct effects. The equation of this model 

can be formulated as follows (Zyphur et al., 2019): 

	𝑚2 =  𝑣9 + 𝑎9:𝑥2 + 𝑎9F𝑧2 + 𝑎9:F𝑥2𝑧2 + 𝜀9,2                                 (3.1) 

                      𝑦2 =  𝑣<  + 𝑏<9𝑚2 + 𝑏<9F𝑚2𝑧2 + 𝑐%<:𝑥2 + 𝑐%<F𝑧2	+ 𝑐%<:F𝑥2𝑧2+ 𝜀<,2,                    (3.2) 

wherein z moderates the effect of x on m and m on y. z moderates the direct effect of x on y. 

The moderation coefficients are 𝑎9:F and 𝑏<9F , both of which are multiplied by z. As shown in 

Figure 3.3 (Moderation model), 𝑎9:F enables moderation of the path linking the independent 

variable (x) and the mediator (m). 𝑏<9F  enables moderation of the path linking the mediator (m) 
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and dependent variable (y). Note that 𝑏<9  is part of the mediation effects that involve paths 𝑎9: 

and 𝑎9:F, and these paths can be moderated by z when multiplied by 𝑏<9F.  

Figure 3.4  

Moderated Mediation Model (Zyphur et al., 2019, p. 476) 

 
 
Note. (a) A conceptual diagram of our single-level moderated mediation model; (b) A path 

diagram of our single-level moderated mediation model, wherein predictor covariances are 

explicitly estimated, including a covariance among m and mw.  

Path coefficients are labeled as in our equations, with 𝑎 terms indicating initial paths in a 

mediation effects equation, 𝑏 terms indicating second paths in a mediation effects equation, and 

𝑐% paths indicating direct effects.  

 
Moderated mediation model in a multilevel framework has the same extension to the 

between-group (B) and the within-group (W) case. Equations 3.1 and 3.2 can be reformulated as 

follows: 

𝑚D3 =  𝑣D9 + 𝑎D9:𝑥D3 + 𝑎D9F𝑧D3 + 𝑎D9:F𝑥D3𝑧D3 + 𝜀D9,3                                 (3.3) 

    𝑦D3 =  𝑣D< + 𝑏D<9𝑚D3 + 𝑏D<9F𝑚D3𝑧D3 + 𝑐%D<:𝑥D3 + 𝑐%D<F𝑧D3	+ 𝑐%D<:F𝑥D3𝑧D3+ 𝜀D<,3       (3.4) 

𝑚E23  = 𝑎E9:𝑥E23 + 𝑎L9F𝑧E23  + 𝑎E9:F𝑥E23𝑧E23  + 𝜀E9,23                                  (3.5) 

𝑦E23  =  𝑏E<9𝑚E23 + 𝑏E<9F𝑚E23𝑧E23  + 𝑐%E<:𝑥E23  

                                                     + 𝑐%E<F𝑧E23 	+ 𝑐%E<:F𝑥E23𝑧E23+ 𝜀E<,23,                               (3.6) 
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wherein all terms are as before (Equations 3.1, and 3.2), but the B parts apply to groups 

and the W parts apply to individuals. The same logic of moderated mediation exists, with B 

indirect effects for groups as (𝑎D9: + 𝑎D9:F𝑧D3)(	𝑏D<9  + 𝑏D<9F𝑧D3) and B direct effects for 

groups as (𝑐%D<: + 𝑐%D<:F𝑧D3). W indirect and direct effects for individuals are indicated as 

(𝑎E9:  + 𝑎E9:F𝑧E23)(	𝑏E<9 + 𝑏D<9F𝑧E23 ) and (𝑐%E<:  + 𝑐%E<:F𝑧E23), respectively. 

Multilevel Structural Equation Model Specification 

Multilevel Structural Equation Modeling (MSEM) is a combined set of the features of 

multilevel modeling (MLM) and structural equation modeling (SEM), which extends 

conventional latent variable modeling to accommodate a hierarchical data structure (Depaoli & 

Clifton, 2015, p. 327). MLM offers a framework for the analysis of multilevel data structure that 

have parameters that vary at more than one level. It accounts for variations in parameter values 

due to the sampling of units at more than one level, such as individuals who are nested within 

aggregate units (Raudenbush & Bryk, 1992; Snijders & Bosker, 1999). SEM offers a framework 

for testing hypothesis about relationships of the variables to make inferences about unobservable 

latent constructs from observed variables. SEM accounts for error in the measurement of 

constructs in multivariate data by modeling parameter values such as means and covariances 

(Bollen, 1989). The combination of MLM and SEM allows the measurement of variances of 

variables by partitioning the variance of variables in nested data: W components and B 

components. In this study, the following questions were built following (Depaoli & Clifton, 

2015). 

𝑦23  = µ	+ 𝑦E23  + 𝑦D3                                                       (4.1) 
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In Equation 4.1, 𝑦23  is a vector of observation i in cluster j where the B components 𝑦D3 

and the W components 𝑦E23  are independent; µ indicates the grand means. The item responses 

𝑦23  are conditionally normally distributed with group means µ3 (i.e., random intercepts) and 

covariance matrix ∑ −E.  The random effects µ3 are normally distributed with expected value µ 

and covariance matrix ∑ −D.  

For observed ordinal response variables, it is assumed that the category choice is derived 

from normally distributed continuous latent response variable 𝑦∗23. A vector of unknown 

thresholds denoted by 𝛼3 = (𝛼R, … , 𝛼T)U is assumed to exist, such that:  

𝑦23  = k,     iff  𝛼T  < 𝑦∗23 < 𝛼TVR,     k = 0, … , K,                           (4.2)   

with -∞ = 𝛼X < 𝛼R < … < 𝛼T  < 𝛼TVR = ∞. For dichotomous indicators, latent response variable is 

𝑦∗23 = 1 if 𝑦23  > 0 and 𝑦∗23 = 0 otherwise.  

Like conventional SEM, MSEM consists of a separate measurement model and structural 

model, but each model can be split into the B components and the W components. Measurement 

models are models that relate observed indicators to the latent constructs. Structural models 

indicate how the latent constructs relate to each other. The measurement model and the structural 

model at the within-group level have the following forms: 

y23  = 𝜇3 + ΛEηE23 + 𝜀E23                                                      (4.3) 

ηE23  = 𝛽EηE23  + 𝜁E23                                                         (4.4) 

Equation 4.3, the measurement model for the W component, includes ΛE, a factor 

loading matrix that is multiplied by a vector of a unit-level latent variable ηE23 that includes the 

latent variable and the latent covariate; 𝜀E23  denotes a vector of W residuals. The structural 

model for the W component, Equation 4.4 includes the term 𝛽E, indicating a matrix of structural 
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coefficients; ηE23 , indicating a vector of unit-level latent variables; and 𝜁E23 , indicating a factor 

of errors distributed as multivariate normal. In other words, W structural model is in 𝛽E. To 

estimate W moderated mediation parameters, 𝛽E needs to be examined.  

The measurement model and the structural model for the between-group component are 

respectively denoted as: 

𝜇3 = 𝜇 + ΛDηD3 + 𝜀D3                                                     (4.5) 

ηD = 𝛽DηD3 + 𝜁D3                                                        (4.6) 

ΛD , ηD3, 𝜀D3, 𝛽D, and 𝜁D3 are the terms for B components corresponding to the within-

group terms ΛE, ηE23 , 𝜀E23 , 𝛽E, and 𝜁E23 . In other words, the B structural model is in 𝛽. To 

estimate B moderated mediation parameters, 𝛽 needs a particular examination. 

Instruments 

This section illustrates the sample used for this study and identifies the measures used for 

testing the measurement model and the structural model of the present study. 

Sample 
This study's sample stemmed from two datasets of the 2012 Programme for International 

Student Assessment (PISA): The U.S. 2012 PISA Student Questionnaire and the U.S. 2012 PISA 

School Questionnaire. Initially, approximately 4,978 US students from 162 schools completed 

the 2012 PISA background questionnaire. I will decrease selection bias by including students 

whose parents had only one option in their selection of schools for their children (item SC04 of 

the U.S. PISA 2012 School Questionnaire): Which of the following statements best describes the 

schooling available to students in your location? The three answer options were granted to 

survey respondents. This dissertation only included survey respondents who selected option (3): 
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(1) There are two or more other schools in this area that compete for our students; (2) There is 

one other school in this area that competes for our students; and (3) There are no other schools in 

this area that compete for our students. Then, the set of samples included a total of 1,108 students 

from 36 schools with 90% non-immigrant students (n=1,004) and 10% immigrant students 

(n=104).  

Measures 

The independent variables related to school resources (𝑥3) that I use are at the school 

level, namely a. the proportion of mathematics teachers in the total teaching staff and b. the 

proportion of qualified math teachers in the total qualified teaching staff. The latent outcome 

variable (𝑦23), students’ math pursuit intentions over other subjects, is estimated by five binary 

items. Three latent mediators (𝑚23) include math pursuit attitudes (eight ordinal observed 

indicators), subjective norms (six ordinal observed indicators) and third, perceived behavioral 

control (six ordinal observed indicators). The effect of a single moderator (𝑧23), immigrant 

standing, is measured after being categorized into immigrant student group and non-immigrant 

student group. I include possibly confounding variables at the school level (𝑐2)  and the student 

level (𝑐23) in the model. A detailed description of the variables used in the analysis can be found 

in Part 3, Variables list. 

Independent Variable: School’s math resource variables  

The U.S. 2012 PISA school questionnaire provides information on school resources 

particularly devoted to math. I derive two variables to measure the levels of school resources 

dedicated to math relative to other subjects. These variables aggregate part-time and full-time 

teachers by computing the total number of teachers in each relevant group as the sum of full-time 



 57 

teachers and one-half times the number of part-time teachers. I adapted the computation of the 

school’s relative resources of math over other subjects from Breda & Napp (2019)’s article.  

• The proportion of math teachers in the teaching staff 

o SC09Q11 "No. of teachers - Total Full-Time" 

o SC09Q12 "No. of teachers - Total Part-Time" 

o SC10Q11 "No. of math teachers - Total Full-Time" 

o SC10Q12 "No. of math teachers - Total Part-time" 

• The proportion of math teachers that are qualified in the total teaching staff that is 

qualified 

o SC09Q31 "No. of teachers - at least Bachelors Qualified Full-Time" 

o SC09Q32 "No. of teachers - at least Bachelors Qualified Part-Time” 

o SC10Q61 "No. of math teachers - BA/BS or MA/MS Qual Full-Time" 

o SC10Q62 "No. of math teachers - BA/BS or MA/MS Qual Part-Time" 

o SC10Q21 "No. of math teachers - BA/BS or MA/MS Qual Math Major Full-Time" 

o SC10Q22 "No. of math teachers - BA/BS or MA/MS Qual Math Major Part-Time" 

Dependent variable: Student’s intention variables 

Math pursuit intention over intentions in other subjects is measured using five items from 

the U.S. 2012 PISA Student Questionnaire: ST48Q01 to ST48Q05. Specifically, students 

reported their intentions to use math in their future studies and careers through five forced-choice 

format items: “Please darken only one of the following two circles. All items were reverse-coded 

for a higher score to reflect higher math intention (math intention =1, otherwise 0). 

• Taking math courses 

o ST48Q01 “(1) I intend to take additional math courses after I finish high school. (2) I 

intend to take additional English courses after I finish high school.” 

o ST48Q04 “(1) I plan on taking as many math classes as I can during my education. 

(2) I plan on taking as many science classes as I can during my education.” 

• Math as college major and future careers 
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o ST48Q02 “ (1) I plan on majoring in a subject in college that requires math skills. (2) 

I plan on majoring in a subject in college that requires science skills.” 

o ST48Q05 “(1) I am planning on pursuing a career that involves a lot of math. (2) I am 

planning on pursuing a career that involves a lot of science.” 
 

Mediating variable 

The U.S. 2012 PISA student questionnaire asked students to report their math motivation. 

A mediating variable consists of three variables of socio-cognitive determinants (e.g., math 

pursuit attitudes, subjective norms, perceived behavioral control) derived from the theory of 

planned behavior and one socio-environmental factor (i.e., school math resources). The items are 

responded using a four-point scale from strongly disagree (=4) to strongly agree (=1). I reverse-

coded some items to indicate a higher score corresponds to higher attitudes, subjective norms, 

and perceived behavioral control. 

Math Pursuit Attitudes. Two types of attitudes are relevant to math pursuit attitudes: 

Experiential attitude and instrumental attitude  (Fishbein & Ajzen, 2010; Moore & Burrus, 

2019): Experiential attitude involves a perception of a person who considers math or doing math 

as enjoyable and pleasant. This type of attitude counts a person’s intrinsic value as a motivation 

for his/her certain behavior. Instrumental attitude involves a perception of a person who thinks 

math or doing math has a utility cost. Students who have an instrumental attitude find it useful 

and worthwhile to study math. The variables used to estimate experiential attitudes and 

instrumental attitudes are shown as follows (The variable name of the construct: ST29 from the 

U.S. 2012 PISA Student Questionnaire): 

• ST29Q01 “I enjoy reading about math.” 

• ST29Q03 “I look forward to my math lessons.” 

• ST29Q04 “I do math because I enjoy it.” 

• ST29Q06 “I am interested in the things I learn in math.” 
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• ST29Q02 “Making an effort in math is worth it because it will help me in the work 

that I want to do later on.” 

• ST29Q05 “Learning math is worthwhile for me because it will improve my career 

prospects.” 

• ST29Q07 “Math is an important subject for me because I need it for what I want to 

study later on.” 

• ST29Q08 “I will learn many things in math that will help me get a job.” 

 
For the Math pursuit attitude variables, students answered on a four-point scale with the 

following categories: Strongly agree (=1), Agree(=2), Disagree(=3), and Strongly disagree(=4). 

The Math pursuit attitude variables are reverse-coded so that a higher experiential attitude and 

instrumental attitude correspond to a higher level of attitudes on all items. 

Subjective Norms. Subjective norm denotes a person’s perceived social pressure to 

perform a given behavior. According to Fishbein & Ajzen (2010), subjective norms include two 

dimensions: Injunctive norms and descriptive norms. Injunctive norms refer to a perceived rule 

that should be followed. It involves a perception of to what extent other people would approve or 

disapprove of a given behavior (Zou & Savani, 2019). For example, students who have parents 

who oblige them to study math are more likely to take a math course over other courses. 

Descriptive norms refer to perceived behaviors that are usually performed by other people. The 

descriptive norms are built on observations of what people around a person do. For instance, 

students who are surrounded by friends who do well in math predict their likelihood of taking a 

math course over other courses. The 2012 U.S. PISA Student dataset has six items related to 

subjective norms that capture only descriptive norms. These six items reflect parents’ influence 

and friends’ influence to perform math, with three items relevant to friends’ influences, and three 

items linked to parents’ influences (The variable name of the construct: ST35 the U.S. 2012 

PISA Student Questionnaire): 
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• ST35Q01 “Most of my friends do well in math.” 

• ST35Q02 “Most of my friends work hard at math.” 

• ST35Q03 “My friends enjoy taking math tests.” 

• ST35Q04 “My parents believe it’s important for me to study math.” 

• ST35Q05 “My parents believe that math is important for my career.” 

• ST35Q06 “My parents like math.” 

For the Subjective norm variables, students answered on a four-point scale with the 

following categories: Strongly agree(=1, Agree(=2), Disagree(=3), and Strongly disagree(=4). 

These variables are reverse-coded so that a higher ST35 corresponds to a higher level of social 

norms on all items. 

Perceived Behavioral Control. Perceived behavioral control denotes the extent to which 

a person perceives his/her capability to perform control over behavior performance (Ajzen & 

Icek Ajzen, 2006).  Students who have high perceived behavioral control over math are those 

students who believe that doing math is within their control. The U.S. 2012 PISA Student 

Questionnaire provided six items related to perceived behavior control over math (The variable 

name of the construct: ST43 the U.S. 2012 PISA Student Questionnaire):  

• ST43Q01 “If I put in enough effort, I can succeed in math.” 

• ST43Q02 “Whether or not I do well in math is completely up to me.” 

• ST43Q03 “Family demands or other problems prevent me from putting a lot of time 

into my math work.” 

• ST43Q04 “If I had different teachers, I would try harder in math.” 

• ST43Q05 “If I wanted to, I could do well in math.” 

• ST43Q06 “I do badly in math whether or not I study for my exams.”  

 

To indicate that a higher point of the items of the Perceived behavioral control construct 

corresponds to a higher level of the perceived behavioral control, the three variables of 
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ST43Q01, ST43Q02, and ST43Q05 were reverse-coded. The other three variables, ST43Q03, 

ST43Q04, and ST43Q06, kept their initial coding results as these items used the negative 

wording that reversed the response scale.  

Moderating Variable 

The U.S. 2012 PISA student questionnaire asked students to report the country of origin 

of themselves, their mother and father (ST20Q01; ST20Q02; ST20Q03): “In what country were 

you and your parents born? Please darken only one circle in each column. (See Table 1)” I 

derived a variable that categorizes a student into an immigrant or non-immigrant student. 

 
Table 3.1  

The Item Used for Building a Moderating Variable  

 You Mother Father 
United States O O O 
Other country O O O 

 

Controlled variable 

The control variables are included.  

• Gender: ST04Q01 “(1) Female, (2) Male” 

• Socioeconomic status: ST13N01 “Mother’s highest schooling; ST17N01 Father’s highest 

schooling.”  

• Race/ethnicity: RACETHC “White, Black or African American, Asian, American Indian 

or Alaska Native, Native Hawaiian or Other Pacific Islander.” 
 

Bayesian Estimation to Handling Missing Observations 

Handling missing data is crucial to avoid substantial sampling and measurement bias. 

The PISA 2012 assessment design has a rotation design that produces a vast amount of missing 
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data by design. In this study, a Bayesian imputation method, using multiple imputation by 

chained equation (MICE), was employed to precisely impute missing values. The specific 

technique used was predictive mean matching. This matching method is known for producing 

imputed values quite similar to “real” values. I ran the predictive mean matching estimation via 

the R package Multivariate Imputation by Chained Equations (MICE). As von Davier (2013) 

suggested, I also set this chained method to start with only observed variables while excluding 

plausible values (i.e., test scores). Below, I provide a brief introduction of the Bayesian 

framework to help readers understand predictive mean matching. Next, more detailed 

information about the PISA 2012 Questionnaire design is addressed, followed by an overview of 

the predictive mean matching method with its diagnostics. Last, I present the process and 

multiple imputation results of the current study. 

Bayesian Estimation 

The Bayesian framework originated over 250 years ago in Bayes’ introduction of a 

method to take prior beliefs into account in data analysis (van de Schoot et al., 2017). 

Conceptually, Bayesian inference is simple. Bayes’ theorem provides a mechanism for including 

one’s knowledge about a theory with data and generating the probability of a theory given the 

data (Baldwin & Fellingham, 2013, p.153). 

𝑝(theory|data) = f(ghih|ijklmH)	f(ijklmH)	
f(ghih)	

 ,                                     (4.7)  
 

wherein p(theory|data) is known as the posterior distribution; p(data|theory) refers to the 

probability of the data given a theory (typically known as the likelihood); p(theory) indicates the 

probability of the theory prior to the data (known as the prior); and p(data) is the probability of 

the data. In other words, the Bayesian approach assumes that prior knowledge (i.e., theory) about 

parameter values (e.g., mean and standard deviation) in a descriptive model may exist. These 
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parameter values have some prior credibility that can be informative but also uncertain. The 

Bayesian method reallocates credibility to these parameter values consistent with their prior 

assumptions and the data. This reallocated credibility formalizes the posterior distribution over 

these parameter values. 

Speaking colloquially, as Kruschke & Vanpaemel (2015, p. 279) pointed out, this process 

of formalization is quite similar to the logic of the detective Sherlock Holmes: “When a person 

has eliminated the impossible, then whatever remains, no matter how improbable, must be the 

truth (Doyle, 1890).” Sherlock Holmes has low credible initial knowledge. Then, he gathers 

evidence based on that prior knowledge. Finally, he reallocates credibility to the possibilities 

remaining after impossibilities are eliminated. All inferences follow from Bayes’ theorem. 

Essential in Bayesian estimation is finding the most credible parameter values for the model by 

looking at how uncertainty changes when new data are considered. In sum, Bayesian analysis has 

“a distribution of credibility over the space of parameter values (p. 280)” that can provide 

enormous flexibility in designing models.  

Bayesian estimation provides various advantages that the classical frequentist approach 

cannot deliver. Key is that a researcher can interpret parameter uncertainty represented by 

posterior distribution (Kruschke & Vanpaemel, 2015). Bayesian intervals (i.e., credible intervals) 

treat their bounds as fixed and the parameter as a random variable. In this sense, the interpretable 

answers would be like the true parameter having a probability of 0.95 of falling into a 95% 

credible interval. It is different from the conventional frequentist interpretation of parameters, 

which uses confidence intervals derived from sampling distributions. Intervals' bounds are 

treated as random variables and the population parameter as fixed. The interpretable answers 

would be something like, "we are 95% confident that the population parameter is between lower 
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bound x and upper bound y." The frequentist approach demands constructing sampling 

distributions from the auxiliary null hypothesis along with p-value and deviation statistics to 

determine whether or not an estimated parameter value is statistically significant (Kruschke & 

Vanpaemel, 2015, p. 281). The limitation of a frequentist approach is that, even though it can 

find a maximum-likelihood estimate (MLE) of parameter values in a multilevel non-linear 

model, the subsequent task of interpreting the MLE's uncertainty is daunting. Bayesian 

estimation does not construct sampling distributions from the auxiliary null hypothesis, and it 

can provide a clear view of parameter uncertainty when a researcher has prior knowledge about 

the joint distribution of parameters. Researchers need to take steps to compare multiple models 

in a Bayesian approach to get some evidence about whether the model (e.g., SEM) best 

represents the data-generating mechanisms. Bayesian methods will inform the explanatory 

powers of the models based on the posterior odds ratio approach unlike a frequentist model 

selection approach. Bayesian analysis offers a convenient setting for a wide range of complicated 

models such as multilevel settings (SAS, 2017). Based on this understanding, I chose a Bayesian 

multiple imputation for the analysis of the dataset from the U.S. PISA 2012 Questionnaire. 

The PISA 2012 Assessment Design 

 PISA 2012 introduced a rotation design for the Student Context Questionnaire to ensure 

extensive coverage of student context questions while minimizing student burden and fatigue 

caused by excessive survey length. A rotation design, which is also commonly called a matrix 

sampling design, uses item packages distributed over a number of different booklets (OECD, 

2012). The design consists of Forms A, B, and C. The forms include a systematic combination of 

clusters of items. Each form has a common part and a rotating part. The rotating part consists of 

two rotated clusters of items, thereby overlapping one of the clusters between the two rotated 
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forms. In other words, one-third of the items in the dataset have missing values by design. 

Students are randomly allocated to one of the three forms. 

Table 3.2. presents a matrix sampling design of PISA 2012 Student Context 

Questionnaire. The common part includes commonly used demographic variables such as 

student’s age, parents’ occupation, and immigrant status. The current study’s moderating 

variable (i.e., immigrant status) and control variables (e.g., gender) are included in this common 

part. Cluster 1 includes math motivation variables (i.e., math pursuit attitudes (ST29), subjective 

norms (ST35), perceived behavioral control (ST43)) and math intention variables (i.e., 

mathematics intentions (ST48)), which corresponds to the current study’s mediators and 

dependent variable, respectively. Note that Form C does not have Cluster 1, which requires a 

certain approach to deal with missing data. 

Table 3.2. 

PISA Student Questionnaire Matrix Sampling Design (Kaplan & Su, 2016; OECD, 2012) 

Form A Form B Form C 
Common part Common part Common part 

Cluster 1 Cluster 1 Cluster 1 missing 

Cluster 2 Cluster 2 missing Cluster 2 

Cluster 3 missing Cluster 3  Cluster 3  

Note. For detailed information for each item refer to Table 6.3 and Table 6.4 in the PISA 2012 

assessment and analytical framework (OECD, 2012, pp. 193-194).  

In handling missing data, it is necessary to classify missing data problems based on the 

likelihood of the data being missing (Donald B. Rubin, 1976): Missing completely at random 

(MCAR); Missing at random (MAR), and Missing not at random (MNAR). MCAR denotes that 

the probability of being missing is the same for all cases. MAR means that the chance of being 

missing is the same only within groups defined by the observed data. MAR is more common 
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than MCAR. MNAR indicates that being missingness depends not only on observed data but 

also on unobserved data. Though the PISA 2012 Student Questionnaire is designed to have 

missing values for one-third of its items in any form, the use of listwise deletion in handling data 

is not recommended. Because listwise deletion can not only reduce the statistical power of the 

tests but also lead to bias in the results. A multiple imputation method can generate unbiased 

results under MCAR or MAR (Enders, 2010; Little & Rubin, 2019). PISA has a large number of 

variables. As long as mass imputation of covariates is employed, there can be an equal amount of 

bias in the estimates of relationships with other variables (Fetter, 2001).  

Predictive mean matching 

Definitions  

Multiple imputation for missing data is drawn from the Bayesian framework. The 

Bayesian approach treats missing values as unobserved random variables, which have a 

distribution depending on the observed variables (Rubin, 1987, 2004). Multiple imputation by 

chained equations (MICE), which employs a univariate regression model consistent with the 

scale of the variable with missing data, is widely used in statistical analyses. Observed data are 

treated as predictors for missing values. Kaplan and Su (2016) used the data from the PISA 2012 

Student Context Questionnaire to show which multiple imputations reproduce the marginal 

distributions of the data most accurately. In this study, three algorithms were used: first,  

predictive mean matching for all items; second, Bayesian linear regression under the normal 

model for continuous items; and third, proportional odds logistic regression for categorical 

variables. Empirical evidence was found that predictive mean matching produced the densities of 

imputed values that were closest to those of the observed values. Drawn on this study, I chose 

predictive mean matching as an imputation method in the current study.  
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Predictive mean matching can be defined as following (Kaplan & Su, 2016, p. 59; Vink 

et al., 2014, p. 65). Let 𝑋opq be the predictors with observed data and let 𝑋92qq  be the predictors 

with missing data on the target variable y. 

1. Use linear regression of 𝑌opq given 𝑋opq to estimate 𝛽s , 𝜎K, and 𝜀̂ by means of ordinary 

least squares. 

2. Draw 𝜎/∗ as 𝜎/∗= 𝜀̂v𝜀̂ / A, where A is a 𝜒/ variate with 𝑛opq – r degrees of freedom. 

3. Draw 𝛽∗ from a multivariate normal distribution centered at 𝛽s  with covariance matrix 

𝜎/∗	(𝑋yopq	𝑋opq)zR. 

4. Calculate 𝑌{opq = 𝑋opq 𝛽s  and 𝑌{92q = 𝑋92q	𝛽∗ .  

5. For each 𝑌{92q,2, find ∆ = | 𝑌{opq	- 𝑌{92q,2|.  

6. Randomly sample one value from (∆(R), ∆(/), ∆(})), where ∆(R), ∆(/), and ∆(}) are the 

three smallest elements in ∆, respectively, and take the corresponding 𝑌opq.2 as the 

imputation. 

7. Repeat steps 1-6 m times, each time saving the completed dataset. 

In the current study, all observed variables in the student questionnaire were used for 

multiple imputations using pmm in the R package MICE, including the common part and 

clusters. Multiple imputation was performed five times (m = 5), which is the standard number in 

most of the multiple imputation studies.  

Diagnostics 

The validity of the imputed data was assessed according to the criteria set by Rässler 

(2002) and procedures suggested by Kaplan and Su (2016). Rässler (2002) identified four levels 

of imputation validity: First, preserving individual values; second, preserving joint distributions; 
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third, preserving correlation/covariance structure; and fourth, preserving marginal distributions. 

In the current study, the third and fourth levels were checked to meet the minimum requirement.  

To assess how well the imputed data reproduce the original marginal distributions, I 

created plots of item densities that displayed imputed data values and original data values by 

item. The two density distributions in a plot were expected to be close to each other under the 

assumption of MCAR. Figure 3.5. presents the kernel density plots for four items, each 

representing one construct of the theory of planned behavior (math pursuit attitudes; math 

subjective norms, perceived behavior; and math intention). I created these plots using a 

predictive mean matching technique under five imputations in the R program. The density plots 

present that the density estimates of the imputed and observed data have no stark discrepancies. 

This finding can be interpreted as indicating that the distributions match up well, and imputed 

data can be used for further analysis instead of observed data with missing values.  

I performed one more check on distributional discrepancies by examining the correlations 

between imputed values and the values in the original dataset, as recommended by Rässler's 

2002) third level of imputation validity. Table 3.3 displays the computed correlations among four 

items within each rotated form. As these four items were included only in Form A and Form B, I 

provided the correlation values corresponding to these two forms. Table 3.3 shows that each 

correlation of two items of the imputed values is similar to that of the observed values. In other 

words, the correlations are well-preserved in the imputed datasets when a predictive mean 

matching method under five imputations is used. The results of both the kernel density plots and 

the correlation estimation suggest that multiple imputations appropriately reproduced the 

observed values. Thus, it was justifiable to use imputed data to proceed with confirmatory factor 

analysis and structural modeling.  
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Figure 3.5 

Kernel Density Plots of Imputed and Observed Values for Item ST29Q07, ST35Q06, ST43Q06, 

and ST48Q02 Using Predictive Mean Matching (pmm) under Five Imputations 

 

  

  
 

Table 3.3 

Correlations among Items ST29Q07, ST35Q04, ST43Q06, and ST48Q04 within Each Booklet 

Using pmm under Five Imputations 

 ST29Q07 
with 
ST35Q06 

ST29Q07 
with 
ST43Q06 

ST29Q07 
with 
ST48Q02 

ST35Q06 
with 
ST43Q06 

ST35Q06 
with 
ST48Q02 

ST43Q06 
with 
ST48Q02 

Form A 0.35 (0.36) 0.30 (0.30) 0.21 (0.21) 0.05 (0.06) 0.12 (0.13) 0.12 (0.13) 
Form B 0.26 (0.27) 0.23 (0.23) 0.17 (0.18) 0.01 (0.01) 0.14 (0.12) 0.10 (0.10) 

Note. Each cell contains a correlation values from imputed values and observed values. 

Estimates in the bracket () denote a correlation value from observed data.  
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Analytic Methods 

I applied a proposed 2-1-1 multilevel mediation SEM model in which only two observed 

independent variables (𝑿𝒊) are measured at level 2. In analyzing data, I used R statistical 

software. The primary package that I used for the SEM model was the lavaan package that was 

specifically developed for latent variable analyses (More information: https://lavaan.ugent.be/). 

The SEM for this study consisted of three steps. As Anderson & Gerbing, (1988) suggested, a 

measurement model was first tested to evaluate its reliability and validity. For a measurement 

model, confirmatory factor analysis (CFA) was applied to test whether measures of a latent 

variable are consistent with the theory of planned behavior. Then, a path model was tested with 

the observed and latent variables evaluated via the measurement model. In the analysis of a path 

model, the model for the total sample was first fitted. Then, I tested the measurement invariance 

across an immigrant student group and non-immigrant student group to compare their path 

models further. After these two groups interpreted a given set of items in a conceptually similar 

manner, I performed a multigroup path model analysis that compared an immigrant student 

group’s path model to a non-immigrant student group’s one. The following section describes 

each step in more detail: (a) Measurement Model; (b) Measurement Invariance Test; (c) 

Structural Model. 

Measurement Model 

CFA presumes that researchers know how the latent structure of the studied measures 

would look, such as the number of factors and what manifest variables are related to which latent 

variable. The CFA tests the unidimensionality, reliability, and validity of each latent variable. 

The unidimensionality test of the CFA precedes the reliability and validity tests. Each observed 

variable in the measurement model is expected to be sufficiently unidimensional to one latent 
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variable. As a latent variable is not directly observed, at least three observed variables are 

required to define one latent variable. Each observed variable is expected to have a factor loading 

of 0.6 or greater. Whether a measurement model is fit or not is determined by various model fit 

indices. Conventionally, three fitness categories are used to examine the model fit, as shown in 

Table 3.4: Absolute fit, incremental fit, and parsimonious fit. This table also introduces a set of 

widely-used fit indices corresponding to each category (e.g.,  Root Mean Square Error of 

Approximation, RMSEA). In this study, at least one fit index per category was used to determine 

the model fit as recommended by Hair et al. (2010). 

Table 3.4 

Level of Acceptance to the Goodness-of-fit Indices 

Category Model fit indices Reference values References  
Absolute fit Chisq (Discrepancy Chi Square) p-value > 0.05 Wheaton et al. 

(1977) 
RMSEA (Root Mean Square of Error 
Approximation) 

RMSEA < 0.08 Browne & 
Cudeck (1992) 

SRMR (Standardized Root Mean 
Squared Residual) 

SRMR < 0.08 Hu & Bentler 
(1999) 

GFI (Goodness of Fit Index) GFI > 0.9 Jöreskog & 
Sörbom (1986) 

Incremental 
fit 

CFI (Comparative Fit Index) CFI > 0.9 Bentler (1990) 
TLI (Tucker-Lewis Index) TLI > 0.9 Bentler & Bonett 

(1980) 
Parsimonious 
fit 

Chisq/df (Chi Square/Degrees of 
Freedom) 

Chisq/df < 0.3 Marsh & 
Hocevar (1985) 

 

In the current study, it was assumed that the data could be appropriate for a four-factor 

model (i.e., math pursuit attitudes, math subjective norms, perceived behavioral control, and 

math intention) or a six-factor model (i.e., math pursuit experiential attitudes, math pursuit 

instrumental attitudes, math subjective norms influenced by friends, math subjective norms 

influenced by parents, perceived behavioral control, and math intention). Although the four 
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factor model had usually been tested in previous studies, I assumed that the six factor model 

could have a better model fit considering what each construct meant. For example, my friends’ 

influence on me is different from my parents’ influence. I first fit the four-factor model and then 

compare the model fit with the fit of the six-factor model. The six-factor model showed a better 

model fit than the four-factor model, as shown in Table 3.5. Given the theoretical definition and 

the results of the empirical testing, I deemed the six-factor model as more appropriate to fit the 

data. Therefore, I performed further analysis with the six-factor model. 

Table 3.5 

The Model Fit of a Four-factor Model #1 and a Six-factor Model #2 

 A four-factor model  #1 A six-factor model #2 
The number 
of items 

24 items 24 items  

The model fit 
indices  

𝜒/ (df = 246.00) = 2917.29 (p 
< .001), RMSEA: 0.10; SRMR: 
0.11, GFI: 0.78, CFI: 0.68, TLI: 
0.64 

𝜒/ (df = 237,00) = 1343.41 (p < .001), 
RMSEA: 0.07; SRMR: 0.07, GFI: 
0.91, CFI: 0.87, TLI: 0.84 

 

As shown in Table 3.5., the model fit for the six-factor model does not meet the 

recommended requirements for a good model. If their default models have a poor fit, researchers 

commonly revise them by considering the factor loading and modification index. The observed 

variables that have factor loadings of less than 0.6, can be removed one by one beginning with 

the lowest factor loading until the model has a good fit (Kwahk, 2019, p. 5). If the model fit is 

still not acceptable after eliminating the items with low factor loadings, a follow-up approach is 

to check the modification index (i.e., LaGrange Multiplier), which is an estimate of the amount 

of the chi-square value that would be decreased if a single parameter restriction is eliminated 
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from the model (MacCallum et al., 1992).3 The use of the modification index helps to identify 

what changes can improve model fit (e.g., highlighting residual correlations). A downside of this 

approach is the risk of overfitting the model too closely to a given dataset. For this reason, a 

revised model should be carefully developed.  

In the current study, I carefully revised the default model (i.e., six-factor model with 24 

items) while acknowledging the pros and cons of using the modification index. Initially, the 

default measurement model had 24 items. Then, I revised a model for it to have 21 items because 

the construct of perceived behavior control showed low validity and reliability values. This 

construct (i.e., perceived behavior control) had three negatively-worded items and three 

positively-worded items, and the difference in wording seemed to hinder internal reliability. I 

removed the three negatively-worded items (ST43Q03, ST43Q04 & ST43Q06) with the result 

that the model fit indices improved and indicated a better fit, as shown in Table 3.5. 

As shown in Table 3.6., besides the chi-square value, the other model fit indices indicated 

that the revised model had an acceptable fit. Not all items showed factor loading values greater 

than 0.6, suggesting that removal of more items could be considered. However, to keep at least 

three items per latent variable, I retained the remaining 21 items. Though the model fit was not 

ideal due to an unsatisfactory chi-square value, the other indices corresponding to a category of 

“absolute fit” (i.e., RMSEA, standardized root mean residual (SRMR), and the goodness of fit 

indices (GFI)) showed a good fit. The ANOVA test results showed that the model fit of the 

revised model was statistically significantly better than the fit of the first model (𝜒/ difference = 

466.95, df difference = 63, p < 0.001). 

                                                
3 I also studied the concept of modification index on this website. https://centerstat.org/what-are-modification-
indices-and-should-i-use-them-when-fitting-sems-to-my-own-data/ 
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Table 3.6 

The Model fit of a Six-factor Model #2 and a Six-factor Model #3 

 A six-factor model #2 A six-factor model #3 
The 
number of 
items 

24 items 21 items  
Note. 3 items were removed 
(ST43Q03, ST43Q04 & ST43Q06) 

The model 
fit indices  

𝜒/ (df = 237.00) = 1343.41 (p < .01), 
RMSEA: 0.07; SRMR: 0.07, GFI: 
0.91, CFI: 0.87, TLI: 0.84 

𝜒/ (df = 167,00) = 791.77 (p < .01), 
RMSEA: 0.06; SRMR: 0.06, GFI: 
0.94, CFI: 0.92, TLI: 0.90 

 

Reliability and Validity 

After ensuring the unidimensionality of the model, I checked whether the scales were 

reliable and presented construct validity. Reliability is a measure of the consistency of a latent 

variable across corresponding items. Three criteria were used for evaluating reliability: first, 

Cronbach’s coefficient (𝛼), a measure of internal consistency; second, composite reliability 

(CR); and average variance extracted (AVE):  

                                                     Cronbach’s 𝛼  =  ��
�V(�zR)�

 ,                                                   (5.1) 

wherein 𝑛 refers to the number of items, 𝑐 is the average inter-item covariance among the 

items and 𝑣 denotes the average variance. The reasonable threshold for Cronbach’s 𝛼 can be 

anywhere from 0.7 and up (Nunnally & Bernstein, 1994). 

                                                      CR = (	∑ ��	�
��� )�

(	∑ ��	�
��� )�	V	∑ �(��)	�

��� 	
,                                                    (5.2) 

wherein 𝜆2 refers to standardized loading for the ith item, 𝑣(𝜀2) equals to the variance of 

the error term for the ith item and 𝑛 refers to the number of items. The acceptable value of CR is 

equal to or greater than 0.7 (Bagozzi & Yi, 1988).  

                                                    AVE = ∑ ��	�
���

∑ ��
�	�

��� V	∑ �(��)	�
��� 	

,                                                   (5.3) 
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wherein 𝜆2 refers to standardized loading for the ith item, 𝑣(𝜀2) equals to the variance of 

the error term for the ith item and 𝑛 refers to the number of items. The reasonable value of AVE 

equals to 0.5 or above 0.5 (Fornell & Larcker, 1981).  

Construct validity is commonly evaluated by using the concepts of convergent validity 

and discriminant validity. Convergent validity refers to the extent to which the items of a latent 

variable that theoretically should be related are in reality related. Convergent validity is 

considered good when the items under one latent variable have high intercorrelations and high 

factor loadings. Convergent validity is also evaluated using the Average Variance Extracted 

(AVE) value. An AVE value higher than 0.5 meets the threshold of a good convergent validity. 

Discriminant validity is established when the items that should not be related theoretically are 

not in fact related. The AVE value is also often used to evaluate discriminant validity. If the 

positive square root of the AVE for each latent variable should be greater than the squared 

correlation involving the latent variables (Fornell & Larcker, 1981).  

The analysis of the reliability coefficients for the revised model with 21 items revealed 

that the fifth latent variable, Math subjective norms influenced by parents, did not establish 

sufficient evidence of acceptable reliability and validity (Table 3.7). One item under that latent 

variable , “My parents like math (ST35Q06),” had a low factor loading, which decreased the 

reliability and validity value. I removed this item and re-ran the analysis with the remaining 20 

items. The analysis of the reliability and validity values of model #4 with the 20 items showed 

overall acceptable values.  

As the number of the items (n=20) had been finalized, I re-ran the CFA on model #4, the 

final model. Table 3.8 presents the model fits of this model. The ANOVA test revealed that the 

revised model and final model were statistically different from each other (𝜒/ difference = 35.42, 
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df difference = 6, p < 0.001). I set model #4 as a final measurement model for a single-level 

CFA. In the finding section, I reported the details of the factor loadings, reliability values, and 

correlation values of this final model for a single-level CFA. Additionally, I also fit a multilevel 

CFA and provide the multilevel CFA results in the finding section.  

Table 3.7 

Reliability Values of the Six-factor Model #3 (21 items) and the Six-factor Model #4 (20 items) 

  
Latent Variable 

Cronbach’s 𝛼 CR AVE 
Model 

#3 
Model 

#4 
Model 

#3 
Model 

#4 
Model 

#3 
Model 

#4 
1 Math pursuit experiential 

attitudes 
0.85 0.85 0.85 0.85 0.59 0.59 

2 Math pursuit instrumental 
attitudes 

0.83 0.83 0.83 0.83 0.55 0.55 

3 Math subjective norms 
influenced by friends 

0.69 0.69 0.71 0.71 0.46 0.46 

4 Math subjective norms 
influenced by parents 

0.55 0.68 0.60 0.71 0.36 0.59 

5 Perceived behavioral 
control 

0.68 0.68 0.69 0.69 0.41 0.41 

6 Math pursuit intention over 
other subjects 

0.74 0.74 0.76 0.76 0.46 0.46 

Note. Model #3=A six-factor model with 21 items, Model #4=A six-factor model with 20 items  

Table 3.8 

The Model Fits of the Six-factor Model #2, #3, and #4 

 A six-factor model #2 A six-factor model #3 A six-factor model #4 
The 
number 
of items 

24 items 21 items  
* 3 items were removed 
(ST43Q03, ST43Q04 & 
ST43Q06) 

20 items 
*One more item were 
removed (ST35Q06) 

The 
model fit 
indices  

𝜒/ (df = 237.00) = 
1343.41 (p < .01), 
RMSEA: 0.07;  
SRMR: 0.07,  
GFI: 0.91,  
CFI: 0.87,  
TLI: 0.84 

𝜒/ (df = 167.00) = 
791.77 (p < .01), 
RMSEA: 0.06;  
SRMR: 0.06,  
GFI: 0.94,  
CFI: 0.92,  
TLI: 0.90 

𝜒/ (df = 168.00) = 
841.04 (p < .01), 
RMSEA: 0.06;  
SRMR: 0.07,  
GFI: 0.93,  
CFI: 0.91,  
TLI: 0.89 
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Measurement Invariance Test  

The analysis of measurement invariance of latent constructs was run as a part of 

multigroup confirmatory factor analysis. This measurement invariance test evaluates whether 

survey responders from different groups interpret the same items in a similar way or not. For a 

comparison of groups to be valid, measurement invariance should be ensured. If it is not ensured, 

it means that groups responded differently to the measures and consequently, it is invalid to 

compare the groups on that factor (van de Schoot et al., 2012, p. 3). The test of measurement 

invariance involves setting cross-group constraints on parameters such as factor loadings, 

intercepts, and residual variances. Testing was conducted step-by-step by comparing 

hierarchically more constrained with less constrained models (Davidov et al. 2014; Vandenberg 

& Lance, 2000 cited by Cieciuch et al., 2019), as shown in Table 3.9: (a) configural invariance; 

(b) weak/loading invariance; (c) strong/scalar invariance, and; (d) strict invariance. After testing 

the measurement model’s invariance, I provided the results in the finding section by providing 

the model results (e.g., factor loadings) and the model fit of each model. 

Table 3.9 

Tests for Measurement Invariance (Xu, 2012, p. 8) 

 Measurement invariance 
test 

Constrained 
parameters 

Free parameters Comparison model 

1 Configural invariance FMean (= 0) fl+inter+res+var  
2 Weak/metric invariance fl+Fmean (= 0) inter+res+var Configural invariance 
3 Strong/scalar invariance fl+inter res+var+Fmean* Weak/loading invariance 
4 Strict in invariance fl+inter+res Fmean*+var Strong/scalar invariance 

Note. fl = factor loadings, inter = item intercepts, res = item residual variances, Fmean = mean of 

latent variable, var = variance of latent variable, Fmean is fixed to 0 in group 1 and estimated in 

the other group. 
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Structural Model 

The structural model was used to test the three hypotheses of the current study. The SEM 

results included the structural path and estimates at each level of the model. First, I verified the 

path model for the total sample. Then, I tested the multigroup SEM model. The first model for 

the total sample was measured with a multilevel framework (i.e., school level and student level). 

However, the multigroup path model was measured at a single level due to the small cluster size 

of the immigrant student group, 104 immigrant students from 21 schools in the dataset, with a 

mean value of 5. When a multigroup path model was estimated at a multilevel, the R software 

announced a warning message that some variables had no variations. Thereby, despite the 

multilevel data structure, the multigroup path model analysis had to be estimated at a single 

level. To check group differences, I conducted an ANOVA test between the model that freely 

estimated all parameters and the model that constrained all parameters equally across the groups.  
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CHAPTER FOUR 

RESULTS 

Considering the following three research questions, this chapter presents the results of the 

procedures and analysis described in Chapter 3. The research questions are presented with 

information about the questionnaire examined and the hypotheses applied. Then  subsequently 

the results presented, which is followed by a summary of the results for the three central research 

questions.  

1. How does a school that prioritizes resources for school math over other subjects 

(regressors x) influence students’ exhibiting intentions to pursue math over other 

subjects (outcome y)? 

2.  Is the resulting effect mediated by students’ math pursuit attitudes, subjective norms, 

perceived behavioral control (mediators m)? 

3. Does this effect change with students’ immigrant standing (moderator z)?” 

First, in this study, the latent structure of six latent variables and corresponding observed 

variables in data drawn from the 2012 U.S. PISA School Questionnaire and Student Context 

Questionnaire was examined. The measurement model was performed at both a single level and 

at a multilevel (i.e., students located at level 1 were nested within schools located at level 2). 

Although a structural model for the total sample was fit to a multilevel framework, due to small 

cluster size, a multiple group structural model had to be fit to a single-level framework. The 

results of both measurement models showed the presence of six latent variable structures with a 

reasonable model fit. The structural model for the total sample also presented a good fit. The 

structural model indicated that a school’s math variables did not influence students’ intentions to 

pursue math over other subjects in the long term (Hypothesis 1). There was also no mediation 
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effect of students’ math pursuit attitudes, subjective norms, and perceived behavioral control 

(Hypothesis 2). The multigroup analysis of the structural model revealed that an immigrant 

student group and non-immigrant student group differed from one another in relationships 

among some variables (Hypothesis 3). The following section provides details of the results with 

figures and tables.  

Measurement Model 

Single Level Measurement Model 

A set of CFAs was conducted to test the model for the total sample, comprising an 

immigrant student group and non-immigrant student group. I tested a six-factor confirmatory 

factor analysis model with 20 items: (1) math pursuit experiential attitudes, (2) math pursuit 

instrumental attitudes, (3) math subjective norms influenced by friends, (4) math subjective 

norms influenced by parents, (5) perceived behavioral control, and (6)  math pursuit intention 

over other subjects.  

The  fit of the six-factor model for the total sample is presented in Table 4.1. Most of the 

fit statistics used for model evaluation indicated that this model had an acceptable fit: The 

RMSEA (0.06) was equivalent to a good fit. The SRMR value was 0.07. GFI (0.93), CFI (0.91) 

and TLI (0.89) showed a reasonable fit as well. However, the Chi-square/df value was greater 

than 3 (𝜒/ = 841.04, degree of freedom (df) = 168, p < .01), which indicated a poor fit. These 

conflicting results are not rare in applied research because it is harder to achieve a good fit with 

the chi-square value than the CFI and TLI values (Cieciuch et al., 2019). Additionally, I provide 

the factor loadings of each item, showing that 45% of the items (n=9/20) had factor loadings 

above 0.6. The factor loading values of two constructs’ measures (i.e., perceived behavioral 
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control and math intention over other subjects) were found to be relatively lower than the factor 

loadings for the other constructs.  

Next, I analyzed the CFA model separately for an immigrant student group and non-

immigrant student group. The model for the non-immigrant student group fitted the data well 

while the immigrant student group’s model did not show the relatively good fit, as presented in 

Table 4.1. This result appeared plausible given that the sample size of the immigrant student 

group (n=104) was substantively smaller than that of the non-immigrant student group 

(n=1,104). An immigrant student group’s model fit indices and factor loadings are presented in 

Table 4.1 as well:  𝜒/ (df = 168) = 276.59 p < .01, RMSEA = 0.08, SRMR = 0.08, GFI = 0.82, 

CFI =0.86, TLI: 0.82. The model for the non-immigrant student group showed a good fit: 𝜒/= 

798.65, df = 168, p < .01, RMSEA = 0.06, SRMR = 0.07, GFI = 0.93, CFI = 0.91, and TLI 0.89. 

For comparison, I provided these two groups’ factor loadings and z-values in Table 4.1 along 

with those values for the total sample. 

Table 4.1 

Items, Standardized Loadings, and z values of the Four-factor Measurement Model 

 
 
Latent Variable Name 
  Scaled Item 

 
Total 

sample 

 
Immigrant 

student 
group 

Non-
immigrant 

student 
group 

𝜆: z 𝜆: z 𝜆: z 
Math pursuit experiential attitudes       

I enjoy reading about math. 0.63 25.71 0.68 8.78 0.62 24.28 
I look forward to my math lessons. 0.71 29.51 0.63 8.90 0.71 28.10 
I do math because I enjoy it. 0.77 31.49 0.81 10.89 0.76 29.67 
I am interested in the things I learn in math. 0.67 27.34 0.57 8.05 0.68 26.27 

Math pursuit instrumental attitudes       
Making an effort in math is worth it because it will help 
me in the work that I want to do later on. 

0.61 26.39 0.38 4.91 0.63 26.13 

Learning math is worthwhile for me because it will 
improve my career prospects. 

0.64 28.09 0.62 8.28 0.64 26.72 
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Latent Variable Name 

  Scaled Item 

 
Total 

sample 

 
Immigrant 

student 
group 

Non-
immigrant 

student 
group 

𝜆: z 𝜆: z 𝜆: z 
Math is an important subject for me because I need it for 
what I want to study later on. 

0.70 28.96 0.69 10.02 0.70 27.37 

I will learn many things in math that will help me get a 
job. 

0.56 23.19 0.51 6.43 0.57 22.58 

Math subjective norms influenced by friends 
Most of my friends do well in math. 0.58 21.58 0.47 6.69 0.59 20.83 
Most of my friends work hard at math. 0.61 21.51 0.68 8.30 0.60 20.11 
My friends enjoy taking math tests. 0.34 13.63 0.50 6.26 0.33 12.44 

Math subjective norms influenced by parents 
My parents believe it’s important for me to study math. 0.41 16.60 0.29 3.51 0.42 16.28 

My parents believe that math is important for my career. 0.70 22.08 0.93 5.37 0.68 21.22 

Perceived behavioral control       
If I put in enough effort, I can succeed in math. 0.47 22.04 0.53 6.74 0.47 20.97 
Whether or not I do well in math is completely up to me. 0.48 18.44 0.44 5.40 0.49 17.68 
If I wanted to, I could do well in math. 0.47 17.81 0.43 4.96 0.47 17.12 

Math pursuit intention over other subjects.        
I intend to take additional math courses over English 
courses after I finish high school. 

0.19 11.92 0.19 3.90 0.19 11.25 

I plan on taking as many math classes as I can during my 
education over science classes. 

0.40 28.21 0.43 9.84 0.40 26.37 

I plan on majoring in a subject in college that requires 
math skills over science skills.  

0.32 21.62 0.22 4.58 0.33 21.38 

I am planning on pursuing a career that involves a lot of 
math over science. 

0.40 27.84 0.45 10.31 0.39 26.21 

Goodness of fit 
RMSEA SRMR GFI CFI TLI 

Total sample model 𝜒/ (df = 168) = 841.04 (p < .01)    0.06 0.07 0.93 0.91 0.89 
Immigrant student group 𝜒/ (df = 168) = 276.59 (p < .01)    0.08 0.08 0.82 0.86 0.82 
Non-immigrant student group 𝜒/ (df = 168) = 798.65 (p < .01) 0.06 0.07 0.93 0.91 0.89 
Note. z = Z value, df = degree of freedom, RMSEA = root mean square error of approximation; 

SRMR = standardized root mean square residual; CFI = comparative fit index; TLI = Tucker-

Lewis index 
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Composite Reliability (Single Level) 

Table 4.2 shows the composite reliability, descriptive statistics, and correlations for 

the six latent variables along with other variables used for a structural model (e.g., control 

variable). The reliability analysis found that all the latent variables had acceptable reliability 

values, similar to or greater than 0.70 (Nunnally & Bernstein, 1994).  

Math pursuit experiential attitudes had the reliability value (𝜶 = 0.85), followed by math 

pursuit instrumental attitudes (𝜶 = 0.83), math subjective norms influenced by friends (𝜶 = 

0.71), math subjective norms influenced by parents (𝜶 = 0.71), perceived behavioral control (𝜶 = 

0.69), and math pursuit intention over other subjects (𝜶 = 0.76). The mean scores of the 

mediators of the current study ranged between 2.27 to 3.23, which is closer to the value of “agree 

(=3).” Standard deviations for the mediators are ranged from 0.37 to 0.75. The mean score of the 

dependent variable (i.e., math pursuit intention over other subjects) was 0.5 on a scale of 

preferring math over other subjects (=1) and preferring other subjects over math (=1). The 

correlation coefficients for the latent variables are ranged from 0.06 to 0.46, which showed the 

weak or moderate associations between the latent variables.  
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Table 4.2 

Composite Reliability, Descriptive Statistics, and Correlations for the Latent Variables 

 Variable 
name 

1 2 3 4 5 6 7 8 9 10 11 

1 [C] Gender -           
2 [C] SES 0.04 -          
3 [C] Race 0.00 -0.19 

*** 
-         

4 [I] MR1 0.00 -0.08 
** 

0.09 
** 

-        

5 [I] MR2 -0.02 0.05 0.00 -0.18 
*** 

-       

6 [M] MPA1 -0.02 0.01 -0.01 -0.01 0.02 -      
7 [M] MPA2 -0.04 0.04 -0.03 0.00 0.01 0.46 

*** 
-     

8 [M] MSN1 -0.01 0.06 -0.02 -0.09 
** 

-0.03 0.16 
*** 

0.16 
*** 

-    

9 [M] MSN2  -0.05 0.07* 0.03 0.02 0.01 0.22 
*** 

0.44 
*** 

0.04 -   

10 [M] PBC 0.03 0.10** 0.00 -0.06 0.01 0.28 
*** 

0.32 
*** 

0.19 
*** 

0.30 
*** 

-  

11 [D] MI 0.09* -0.02 -0.01 0.02 -0.01 0.24 
*** 

0.23 
*** 

0.12 
*** 

0.06 0.12 
*** 

- 

12 Mean - - - 0.17 0.64 2.27 3.00 2.53 3.21 3.23 0.50 
13 SD - - - 0.19 0.37 0.75 0.69 0.61 0.65 0.58 0.37 
14 CR - - - - - 0.85 0.83 0.71 0.71 0.69 0.76 
Note. [C]=control variable, [I]=independent variable, [M]=mediating variable, [D]=dependent 

variable  

SES=socioeconomic status, MR1=the proportion of math teachers in the teaching staff, MR2= 

the proportion of math teachers that are qualified in the total teaching staff that is qualified, 

MPA1=math pursuit experiential attitudes, MPA2=math pursuit instrumental attitudes; 

MSN1=math subjective norms influenced by friends, MSN2=math subjective norms influenced 

by parents, PBC=perceived behavioral control, MI=math pursuit intention over other subjects 

CR = Composite Reliability, SD = Standard deviation,  

*** p < .001, ** p < .01, * p < .05 
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The items of the latent variable (6) ~ (10) were reverse-coded as having a four-point scale from 

strongly disagree (=1) to strongly agree (=4); The items for the latent variable were reverse-

coded for a higher score to reflect high math intention (math intention = 1, otherwise = 0).  

T-test 

I ran a t-test to see whether there were statistical differences between an immigrant 

student group and a non-immigrant student group in the mean values of the six latent variables. 

The independent-samples t-test showed no significant difference between the mean values across 

the latent variables (Table 4.3). Though the immigrant student group had slightly higher mean 

values in five out of six latent variables regarding math motivation and intention, those 

differences are statistically insignificant.  

Table 4.3 

Descriptive Statistics and t test of Immigrant Status Group 

  
Variable name 

Immigrant 
student group 

Non-immigrant 
student group 

 

Mean (SD) Mean (SD) t test 
1 Math pursuit 

experiential attitudes 
2.35 (0.73) 2.26 (0.75) t = -1.28 

2 Math pursuit 
instrumental attitudes 

3.00 (0.63) 2.99 (0.70) t = -0.09 

3 Math subjective norms 
influenced by friends 

2.49 (0.64) 2.54 (0.60) t = 0.69 

4 Math subjective norms 
influenced by parents 

3.27 (0.66) 3.20 (0.65) t = -1.09 

5 Perceived behavioral 
control 

3.25 (0.58) 3.23 (0.58) t = -0.33 

6 Math pursuit intention 
over other subjects 

0.53 (0.37) 0.50 (0.37) t = -0.82 

Note. Mean (SD), ** p <=.01 
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Multilevel Measurement Model 

As the data used in this study had a nested data structure (i.e., students were nested within 

school), I employed a multilevel CFA to test the latent structure of the scale items and 

investigate the validity. To demonstrate the appropriateness and usefulness of using a multilevel 

framework, this section presents the results of the intraclass correlation coefficients and Pearson 

correlation coefficients, followed by the results of the multilevel CFA.  

Intraclass and Pearson Correlations 

Table 4.4 demonstrates the Intraclass correlation coefficients (ICC) and the Pearson 

correlation coefficients assessed at both levels of the analysis. The ICC 1 values reflected the 

degree of the total variance associated with the school level. They indicate the extent to which 

students in the same school were similar in their math motivation (i.e., five latent variables, 

respectively) and math intention (one latent variable). The ICC 2 values denote the degree to 

which the groups’ (i.e., school) means differ. The ICC 1 values ranged from less than 0.01 to 

0.03, which demonstrates a very small amount of total variance occurring at the school level. The 

cut-off level of the ICC for assuming consistency of measures in the same unit is 0.10 (Lüdtke et 

al., 2011). The ICC 2 values ranged from -0.14 to 0.37, which was lower than the acceptable 

threshold of 0.7. The results of the two types of ICC values implied that the students in the same 

school in this study’s dataset did not resemble each other in their math motivation and intention. 

Table 4.4 shows that the three control variables (i.e., gender, SES, and race) had a 

statistically significant correlation with at least one of the dependent variables (e.g., gender and 

math pursuit instrumental variable 𝛼 = - 0.36*). Therefore, it appeared reasonable that these 

three variables were set as a control variable in the hypothesized model at both levels. The latent 

and manifest correlations at level 2 revealed that both school’s math resource variables (MR1 & 
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MR2) were not statistically correlated with aggregated students’ math intention over other 

subjects, which indicated that the first hypothesis of the study might not be supported in a 

structural model. Next, aggregated student’s math pursuit instrumental attitudes were positively 

correlated with aggregated student’s math subjective norms influenced by parents (𝛼 = 0.62***), 

aggregated student’s perceived behavioral control (𝛼 = 0.46**), and aggregated student’ math 

pursuit intention over other subjects (𝛼 = 0.36*).  

Table 4.4 

Intraclass Correlation and Pearson Correlations for the Latent Variables at Both Levels 

 Variable 
name 

1 2 3 4 5 6 7 8 9 10 11 

1 [C] Gender - 0.04 -0.01 - - -0.02 -0.02 -0.01 -0.05 0.04 0.09** 
2 [C] SES 0.15 - -0.13 

*** 
- - 0.03 0.04 0.06 

* 
0.09** 0.12**

* 
-0.03 

3 [C] Race 0.06 -0.54 
*** 

- - - -0.01 -0.02 0.01 0.00 -0.03 -0.02 

4 [I] MR1 0.03 -0.22 0.21 - - - - - - - - 
5 [I] MR2 -0.16 0.15 0.00 -0.18 - - - - - - - 
6 [M] MPA1 -0.02 -0.25 0.00 -0.03 0.07 - 0.48 

*** 
0.15 
*** 

0.22 
*** 

0.28 
*** 

0.24 
*** 

7 [M] MPA2 -0.36* 0.07 -0.15 0.02 0.04 0.19 - 0.16 
*** 

0.43 
*** 

0.31 
*** 

0.22 
*** 

8 [M] MSN1 -0.06 0.05 -0.31 -0.45 -0.15 0.28 0.16 - 0.04 0.19 
*** 

0.11** 

9 [M] MSN2  -0.10 -0.21 0.30 0.09 0.04 0.32 0.62 
*** 

0.05 - 0.29 
*** 

0.05 

10 [M] PBC -0.16 -0.16 0.27 -0.23 0.05 0.29 0.46** 0.17 0.48** - 0.13 
*** 

11 [D] MI -0.12 0.04 0.09 0.12 -0.07 0.18 0.36* 0.17 0.23 0.16 - 
12 Mean - - - 0.17 0.64 2.27 3.00 2.53 3.21 3.23 0.50 
13 SD - - - 0.19 0.37 0.75 0.69 0.61 0.65 0.58 0.37 
14 ICC1 - - - - - 0.02 0.01 0.01 0.00 0.03 0.00 
15 ICC2 - - - - - 0.37 0.29 0.28 -0.14 0.48 0.12 

Note. Correlations between level 1 variables are provided above the diagonal; Correlations   

between level 2 variables are presented below the diagonal 

*p < 0.05, **p < 0.01, ***p < 0.001 
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[C]=control variable, [I]=independent variable, [M]=mediating variable, [D]=dependent variable             

SES=socioeconomic status, MR1=the proportion of math teachers in the teaching staff, MR2= 

the proportion of math teachers that are qualified in the total teaching staff that is qualified, 

MPA1=math pursuit experiential attitudes, MPA2=math pursuit instrumental attitudes; 

MSN1=math subjective norms influenced by friends, MSN2=math subjective norms influenced 

by parents, PBC=perceived behavioral control, MI=math pursuit intention over other subjects 

 
Contrary to their relationships shown at level 2, at level 1, most of the latent variables 

were statistically significantly correlated. This result was in line with the results of the analysis 

of the inter correlation coefficients, which found that students within the same school did not 

share much resemblance.  

Multilevel Confirmatory Factor Analysis 

The multilevel CFA model was run to test the latent structure of the scaled items at level 

1 and level 2. The six-factor model analysis yielded a set of acceptable fit values to the data 

except for the RMSEA value:  𝜒/ (df = 307) = 828.81, p < .001), RMSEA = 0.04, SRMR= 0.68, 

CFI=0.93, TLI=0.92.  

The factor loadings of most variables at level 1 were in the reasonable range: (a) math 

pursuit experiential attitudes: 0.61-0.75; (b) math pursuit instrumental attitudes: 0.57-0.70; (c) 

math subjective norms influenced by friends: 0.33-0.61; (d) math subjective norms influenced by 

parents: 0.47-0.69; (e) perceived behavior control: 0.46-0.47; (f) math intention over other 

subject 0.18-0.40. At level 2, all the factor loadings (ranging from 0.00-0.15) were less than the 

threshold of a good factor loading, 0.06. This result reaffirmed that schools might not play a 

substantial role in students’ math motivation and intention.  
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Measurement Invariance Test 

Measurement invariance was tested to ensure that comparisons across an immigrant 

student group and a non-immigrant student group were valid. As explained in this study’s 

methodology section, the multiple group structural model had to be run at a single level as some 

level 1 variables had no variation within a cluster. For this reason, the measurement invariance 

test was run using a single-level CFA model (i.e., a six-factor model #4). I implemented the four 

consecutive steps in measurement tests: (1) configural invariance test, (2) metric invariance test 

(constrained loadings), (3) scalar invariance test (constrained loadings and intercepts), and (4) 

strict invariance test(constrained loadings, intercepts and residuals).  

Table 4.5 

The Results of the Four Measurement Invariance Tests  

 1. Configural 
invariance 

2. Weak/metric 
invariance 

3. Strong/scalar 
invariance 

4. Strict in 
invariance 

𝜒/(df) 1075.24 (336) 1109.22 (356) 1139.01 (371) 1165.76 (392) 
90% CI [0.06, 0.07] [0.06, 0.07] [0.06, 0.07] [0.06, 0.06] 
RMSEA 0.06 0.06 0.06 0.06 
SRMR 0.07 0.07 0.07 0.07 
GFI 0.99 0.99 0.99 0.99 
CFI 0.91 0.90 0.90 0.90 
TLI 0.88 0.89 0.89 0.89 

Note. 90% CI = 90% confidence interval, RMSEA: Root of Mean Square Error of 

Approximation, SRMR: Standardized Root Mean Square Residual, GFI: (Adjusted) Goodness of 

Fit, CFI: Comparative Fit Index, and TLI: Tucker-Lewis Index. 

The results of the four measurement invariance tests showed evidence that there was no 

configural variance. The weak/metric model and strong/scalar model showed a statistical 

difference. The last model, “strict invariance,” showed no statistical difference from the third 
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strong/scalar invariance model. The analysis also showed that apart from the chi-square value 

with df, the other fit indices were the same across the four models (See Table 4.5). 

First, the configural invariance model had a good fit. Second, the results of testing a 

weak/metric model in which the factor loadings were constrained to be equivalent across the 

groups showed that the RMSEA (=0.06), SRMR (=0.07), GFI (0.99), CFI (0.90), and TLI (0.89) 

values were the same as those of the first configural model. Additionally, the RMSEA value 

(0.06) fell within the others’ confidence intervals, as recommended by Cheung and Rensvold 

(2002). However, the chi-square fit (𝜒/) increased from 1075.24 to 1109.22, and the ANOVA 

test result indicated that the first and second models were a significantly different (p = 0.027*) 

from one another, which indicated non-invariance. While this result was surprising, the other 

indices besides the chi-square showed a good model fit, and the factor loadings were similar 

across the two groups. According to Cieciuch et al (2019, p. 16), as long as the theoretical 

model and measurement instrument are sound, non-invariance may be used as a useful source 

concerning group differences. Thus, I decided to move to the third model that tested the 

strong/scalar invariance.  

Third, I tested the scalar invariance model by constraining factor loadings and intercepts 

to be equal across the groups. The results revealed that the scalar model had a good fit (𝜒/(df = 

371) = 1139.01 (p < .01), RMSEA = 0.06, 90% confidence interval [CI], [0.06, 0.07], SRMR = 

0.07, GFI = 0.99, CFI = 0.90, TLI = 0.89). There was no change in the RMSEA, SRMR, GFI, 

CFI, and TLI values from those of the second model. Last, the strict invariance model 

constrained item residual variances to be equal across groups. The model indices and the 

ANOVA test results revealed that there was no statistically significant difference between the 

third and fourth models. 
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The set of the four measurement invariance tests demonstrated that the multigroup 

analysis could be valid. The model fit across the invariance was not ideal; however, the factor 

loadings were similar across the groups. Therefore,  a multigroup path analysis was conducted 

to determine whether an immigrant student group and non-immigrant student group 

demonstrate statistically significant differences in the structural parameters. The following 

sections present the results of the structural model for the total sample, which is followed by the 

results of the multigroup path analysis across the groups.  

Table 4.6 

Descriptive Statistics of the Factor Loadings Across the Groups 

  
Latent Variable 

Immigrant 
student group 

Non-immigrant 
student group 

Mean (SD) Mean (SD) 
1 Math pursuit experiential attitudes 0.67 (0.10) 0.69 (0.06) 
2 Math pursuit instrumental attitudes 0.55 (0.14) 0.64 (0.05) 
3 Math subjective norms influenced by friends 0.55 (0.11) 0.51 (0.15) 
4 Math subjective norms influenced by parents 0.61 (0.45) 0.55 (0.18) 
5 Perceived behavioral control 0.47 (0.06) 0.48 (0.01) 
6 Math pursuit intention over other subjects 0.32 (0.14) 0.33 (0.10) 

 Note. SD = Standard deviation 

Structural Model  

This section provides the results from the analysis of the path model. A 2-1-1 multilevel 

mediation SEM and a multiple group SEM were conducted to verify the path model and test 

three hypothesis: 

(1) School’s math resources (Schools that prioritizes resources for math over other 

subjects) are positively associated with students’ intention (students’ math intention 

over other subjects). 
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(2) The relationship between a school’s mathematics resources and students’ intention is 

mediated by students' motivation (i.e., math pursuit experiential and instrumental 

attitudes; subjective norms influenced by friends and parents, and perceived 

behavioral control). 

(3) The effect of the school’s mathematics resources on student intention will be stronger 

in the immigrant student group than in the non-immigrant student group. 

The intent of first hypothesis was to measure the direct effect of the model. The intent of 

second hypothesis was to estimate the mediation effect, and that of the last hypothesis was to 

test the moderating effect. What follows are the analysis results that demonstrate the fit of the 

hypothesized model for the total sample and the two subsequent multigroup SEMs.  

Structural Model Test for the Total Sample 

The multilevel mediation SEM analysis involved examining direct and indirect paths 

from the school’s math resources to students’ math pursuit intention over other subjects mediated 

by student motivation variables. The structural model for the total sample was a 2-1-1 mediation 

SEM where the independent variables (i.e., school’s math resources) were measured at level 2 

(i.e., school level), and the other variables, mediators (i.e., student’s motivation variable) and 

dependent variables (i.e., student’s intention variable) were measured at level 1 (i.e., individual 

level). I specified random intercepts (i.e., cluster = school) and fixed slopes in the multilevel 

SEM. Technically, the mediation effects (i.e., indirect effects) were measured at level 2 by 

estimating the means of the student’s motivation variables and student’s intention variables at 

level 2. Figure 4.1 shows the results of the SEM model for the total sample. The goodness-of-fit 

indices for the first multilevel SEM for total sample showed an acceptable result: 𝜒/	(df = 485) = 

1051.55 (p < .001), RMSEA = 0.03, SRMR = 0.34, CFI = 0.93, TLI = 0.91.  
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The first path model for the total sample revealed that school math resources (i.e., schools 

that prioritize resources for math over other subjects) are not statistically associated with 

students’ intention to study math over other subjects in the long term. In other words, the first 

hypothesis was not supported in the model. Mediation analysis revealed that none of the student 

motivation variables statistically significantly mediated the relationship between school math 

resources and students’ math intentions. Thus, the second research hypothesis was rejected.  

Figure 4.1 

Standardized Parameter Estimates for Pathways Among the Constructs for the Total Sample of 

the 2-1-1 Multilevel Mediation Model 

 

 

Note: Each rectangle refers to an observed variable and each oval to a latent variable. For the 

sake of clarity, confounding variables are excluded from this figure. Among the standardized 

parameter estimates presented between the school’s math resource variables and the student’s 

motivation variables, the values on the left are standardized parameter estimates for pathways 
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from “the proportion of math teachers in the teacher staff” to a corresponding student’s 

motivation variable. The other values in parentheses are the estimates for pathways from “the 

proportion of math teachers that are qualified in the total teaching staff that is qualified” to a 

corresponding student’s motivation variable. 

 

Though the first two hypotheses were rejected, there were some interesting findings from 

this model. A student’s math pursuit intention over other subjects were statistically and 

positively associated with his/her math pursuit experiential attitudes (𝛽 = 0.05, SD: 0.02 , p < 

0.001) and math pursuit instrumental attitudes (𝛽 = 0.04, SD: 0.02 , p < 0.001). These 

associations were statistically significant at the student’s level (Level 1) but not at the school 

level (Level 2). These results indicated that a student’s math pursuit intention over other 

subjects was likely to depend on individual factors and not much on the effect of school 

resources allocation.  

Multigroup path analysis 

To test the third hypothesis of this study, that the effect of the school’s mathematics 

resources on student intention will be stronger in the immigrant student group than in the non-

immigrant student group, I estimated the multigroup SEM model that compared the regression 

parameters of the two groups. The goodness-of-fit indices for this model indicated the conflicting 

results as to whether the hypothesized model had an acceptable fit: 𝜒/	(df = 488) = 1952.86 (p 

< .001), RMSEA = 0.07, SRMR = 0.12, GFI = 0.99, CFI = 0.81, TLI = 0.78. The RMSEA and 

GFI values indicated the hypothesized model had a good fit, but the other fit indices 

demonstrated that it did not fit the data well. Figure 4.2 presented earlier in this chapter provides 

the results of the standardized parameter estimates for pathways among the variables for the 

multigroup model. First, none of these groups showed a direct or indirect effect of school math 
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resources on students’ intention to study math over other subjects in the long term. Therefore, 

this study’s last hypothesis was not supported.  

Figure 4.2 

Standardized Parameter Estimates for Pathways Among the Constructs of the Multiple Group 

Model Comparing an Immigrant Student Group with a Non-immigrant Student Group 

 

 

Note: [I] = immigrant student group, [N] = non-immigrant student group. 

*** p < 0.001, ** p < 0.01, * p < 0.05. 

Each rectangle refers to an observed variable and each oval to a latent variable. For the sake of 

clarity, confounding variables are excluded from this figure. Among the standardized parameter 

estimates presented between the school’s math resource variables and the student’s motivation 

variables, the values on the left without parentheses are standardized parameter estimates for 

pathways from “the proportion of math teachers in the teacher staff” to a corresponding student’s 

motivation variable. The other values in parentheses are the estimates for pathways from “the 
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proportion of math teachers that are qualified in the total teaching staff that is qualified” to a 

corresponding student’s motivation variable. 

 

However, there were other interesting findings. One of the two school math resource 

variables, the proportion of math teachers in the teaching staff, showed some statistical 

significance with other variables, whereas the other school math resources did not (See Figure 

4.2). Additionally, as the theory of planned behavior suggests, this study’s data showed that 

some student’s math motivation variables statistically significantly predicted students’ math 

pursuit intention over other subjects: (1) students’ math pursuit experiential attitudes and 

students’ intention variables: [Immigrant group] 𝛽 = 0.19 (p < 0.01) & [Non-immigrant group] 𝛽 

= 0.09 (p < 0.01); (2) students’ math pursuit instrumental attitudes and students’ intention 

variables [Immigrant group] 𝛽 = 0.25 (p < 0.01)  & [Non-immigrant group] 𝛽 = 0.05 (p < 0.01). 

However, students’ math subjective norms influenced by parents were negatively associated with 

students’ intention variables only for the immigrant student group.  

The two groups showed differences in the size, direction, and significance of some 

regression coefficients. To emphasize the differences across these two groups, I created Table 

4.7, which includes only the standardized regression parameters with statistically significant 

differences. Reading this table alongside Figure 4.2 may enhance the comparison. There were 

four cases in which only one of the groups showed a statistical significance in their regression 

coefficients: (1) a school’s proportion of math teachers in the teaching staff was negatively 

associated with an immigrant student group’s math pursuit experiential attitudes (𝛽 = -0.75, SD: 

0.35 , p < 0.05), but not with those of a non-immigrant student group (𝛽 = 0.08, SD: 0.11 , p > 

0.05); (2) a school’s proportion of math teachers’ in the teaching staff was negatively linked to 

an immigrant student group’s math pursuit instrumental attitudes (𝛽 = -0.44, SD: 0.21 , p < 
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0.05), but not with those of a non-immigrant student group (𝛽 = 0.09, SD: 0.11 , p > 0.05); (3) a 

school’s proportion of math teachers’ in the teaching staff was negatively associated with an 

non-immigrant student group’s math subjective norms influenced by friends (𝛽 = -0.37, SD: 

0.11 , p < 0.01), but not with those of an immigrant student group (𝛽 = -0.08, SD: 0.25 , p > 

0.05); (4) students’ math subjective norms influenced by parents were statistically and negatively 

linked to an immigrant student group’s math pursuit intention over other subjects (𝛽 = -0.30, SD: 

0.15 , p < 0.01), but not with that of a non-immigrant student group’s one (𝛽 = -0.10, SD: 0.03 , 

p > 0.05). 

Table 4.7 

The Standardized Regression Coefficients Showing a Statistical Significance in the Multiple 

Group Path Model 

Group Dependent Independent Coeff-
icient 

z 
value 

p-value 
(Sig) 

I Math pursuit intention 
over other subjects 

Math pursuit experiential 
attitudes 

0.19 2.78 0.005** 

Math pursuit intention 
over other subjects 

Math pursuit instrumental 
attitudes 

0.25 2.05 0.040* 

Math pursuit intention 
over other subjects 

Math subjective norms 
influenced by parents 

-0.30 -2.04 0.041* 

Math pursuit experiential 
attitudes 

The proportion of math 
teachers in the teaching staff 

-0.75 -2.12 0.034* 

Math pursuit 
instrumental attitudes 

The proportion of math 
teachers in the teaching staff 

-0.44 -2.08 0.037* 

N Math pursuit intention 
over other subjects 

Math pursuit experiential 
attitudes 

0.09 3.76 <0.001*** 

Math pursuit intention 
over other subjects 

Math pursuit instrumental 
attitudes 

0.05 2.15 0.031* 

Math subjective norms 
influenced by friends 

The proportion of math 
teachers in the teaching staff 

-0.37 -3.41 0.001*** 

Note. I = immigrant student group, N = non-immigrant student group. 

***p < 0.001, **p < 0.01, *p < 0.05. 

 



 98 

I also ran comparisons between the multiple group model with free parameters and the 

multiple group model in which equality constraints were imposed on regression parameters. The 

ANOVA test found that the difference in chi-square between these two models was statistically 

different: (𝜒/	(df = 12) = 390.47, p < 0.001). This result indicated that the paths of the constructs 

differed between the immigrant student group and non-immigrant student group. Therefore, I can 

conclude these two groups showed different statistical associations in the following linkages. (a) 

The proportion of math teachers in the teaching staff – math pursuit experiential attitudes; (b) 

The proportion of math teachers in the teaching staff – math pursuit instrumental attitudes; (c) 

The proportion of math teachers in the teaching staff – math subjective norms influenced by 

friends; (d) Math pursuit experiential attitudes – math pursuit intention over other subjects; (e)  

Math pursuit instrumental attitudes – math pursuit intention over other subjects; (f)  Math 

subjective norms influenced by parents – math pursuit intention over other subjects. 

Chapter Summary 

The results of the multilevel SEM model for the total sample presented that, at the school 

level (level 2), the school’s math resources had no statistically significant direct and indirect 

effects on aggregated students’ intentions to pursue math over other subjects. However, at the 

student level (level 1), students’ experiential and instrumental attitudes toward the pursuit of 

math were positively related to students’ intentions to pursue math over other subjects. The 

results of the multiple group path analysis comparing immigrant and non-immigrant student 

groups also found that the school’s math resources had no statistically significant direct and 

indirect effects on students’ intentions to pursue math over other subjects. However, a statistical 

difference in the overall path model of these two groups was found. Students in the immigrant 

group were less likely than non-immigrant students to be motivated to study math when the 
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school had a larger proportion of math teachers in the teaching staff. Additionally, the immigrant 

students’ intentions to study math over other subjects were positively associated with their math 

pursuit experiential and instrumental attitudes but negatively linked to their math subjective 

norms as influenced by their parents. 
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CHAPTER FIVE 

SUMMARY, DISCUSSIONS AND IMPLICATIONS 

The previous chapter presented the results of this dissertation study. This chapter first 

section provides the summary of the study, including the purpose, research questions, and 

methodology. The next section is a discussion of the results of the study. The conclusions and 

implications section also provides the limitations of the study and some recommendations for 

further research. 

Summary 

Drawing on the theory of planned behavior framework, in this study, the aimed was to 

conceptually model and statistically evaluate how a school environment that prioritizes math 

over other subjects might influence students’ intentions to pursue math over other academic 

subjects in the long term. This study examined the following three research questions. 

1.  How does a school that prioritizes resources for school math over other subjects 

(regressors x) influence students’ exhibiting intentions to pursue math over other 

subjects (outcome y)? 

2.  Is the resulting effect mediated by students’ math pursuit attitudes, subjective norms, 

perceived behavioral control (mediators m) 

3. Does this effect change with students’ immigrant standing (moderator z)?” 

This study is conceptually unique in that it captured students’ math motivation in relation to 

other subjects, rather than independently from other subjects. Using the 2012 U.S. PISA dataset, 

which was the year in which, the PISA survey collected data on variables that are part of the 

theory of planned behavior. The data of a total of 1,108 students nested in 36 schools were 
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analyzed. This analysis was methodologically rigorous. I used multiple imputations by chained 

equation (i.e., predictive mean matching) to minimize biased estimates that could be generated 

from the PISA 2012’s rotated sampling design. The study employed a multilevel SEM 

framework to estimate the measurement and structural model for the total sample. However, for 

the multiple group analysis (an immigrant student group & a non-immigrant student group), a 

single level measurement and structural model were conducted due to the small cluster size of 

the data. The SEM model analysis for the total sample yielded results showing that there was no 

direct effect of a school’s math resources on the students’ intentions to pursue math over other 

subjects (Hypothesis 1). Also, no mediation effect of student’s math motivation was found in this 

relationship (Hypothesis 2). The multiple group SEM model analysis found that the immigrant 

student group and non-immigrant student group had a statistically significant difference in their 

path models. However, school math resources were not found to have either direct and indirect 

effect on these two groups’ intention to study math in the long term and pursue math-intensive 

careers.  

In the following discussion section, I situate the analytical methods and research findings 

(Hypotheses 1, 2, & 3) in relation to previous studies.  

Discussion of the Results of the Study 

There has been a growing consensus among researchers that incorporating social, 

psychological, and educational factors would extend the structural model of the theory of 

planned behavior and increase the theory’s explanatory power (Areepattamannil et al., 2016). To 

this literature, the current study added consideration of school math resources as an independent 

variable to test a plausible alternative model. The results demonstrated that school math 

resources were not statistically associated with students’ intentions to pursue math over other 
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subjects. This result may indicate that solely attending a math-oriented school does not guarantee 

that students will be motivated to prefer math over other subjects in the long term. Specifically, 

in this study, school math resources were measured as the proportion of math teachers within the 

teaching staff and the proportion of math teachers who hold a bachelor’s degree and who hold a 

bachelor degree’s in math. This result means that teachers’ advanced degrees cannot statistically 

predict student’s math intentions. This result is consistent with some earlier studies (Croninger et 

al., 2007; Palardy & Rumberger, 2008; Williams & Williams, 2011), but is in contrast to Rice's 

(2003) finding that the more teachers have advanced degrees, the more likely their students have 

high achievement.  

 This study suggests that when teachers’ effect on students’ math motivation is measured 

at an adequate level (i.e., school-level), the relationship might not be as robust as the No Child 

Left Behind (NCLB) advocates believed it to be. 

Again, the direct effect of the quantity and quality of math teachers on students’ 

preference for math over other subjects in the long term was found to be statistically 

insignificant. These results may suggest the need to examine alternative measures of math 

teachers’ quality. Numerous studies have addressed such measures of teachers’ quality as their 

attitudes (Lazarides et al., 2018), their support of students (Yu & Singh, 2018), and their 

participation in professional development (Stipek et al., 1998). Math teacher’s certifications and 

advanced degrees have benefits from a policy point of view. They are relatively easily translated 

into criteria for evaluating teachers’ expertise compared to observing their actual classroom 

practices. However, the current study’s results may imply that NCLB and the educational trends 

that they generated might benefit from exploring more appropriate criteria for selecting math 

teachers likely to improve students’ math motivation. The estimated insignificant direct effect of 
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the school’s math resources on the student’s intention to prioritize math over other subject also 

requires exploring mediators that might demonstrate the indirect effects.  

The results of the test of the second hypothesis found no mediation effects of the 

components of the theory of planned behavior in the overall SEM for the total sample as well as 

the SEM for the immigrant group. This result is different from most previous studies, which 

found that students’ attitudes, subjective norms, and perceived control behaviors could predict 

their intentions (Foltz et al., 2015; Moore & Burrus, 2019; Porche et al., 2016). This difference 

may stem from the current study’s integration of the school-level variable and a multilevel 

framework. The current study’s finding was that the school math resources did not increase 

aggregated school-level students’ preference for math over other subjects via aggregated school-

level students’ math motivation. Future studies using the multilevel framework and integrating 

school-level variables could extend the field’s understanding of the mediating roles of students’ 

attitudes, subjective norms, and perceived control behavior.  

At Level 1 (i.e., student level), some motivation variables were statistically associated 

with the intention variable, but the relationship was not statistically significant at Level 2. The 

relationship between residual ratings of math motivation dimension and residual ratings of math 

intention dimension was measured at Level 1. Students’ math pursuit experiential attitudes and 

math pursuit instrumental attitudes were positively linked to their intention to pursue math over 

other subjects. These results at Level 1 are in accordance with Lipnevich et al., (2011), who 

found that among the three student math motivation variables (i.e., math pursuit attitudes, math 

subjective norms, and perceived behavior control), students’ math attitudes most statistically 

significantly predict their math intention. However, the current study’s finding of an statistically 

insignificant relationship between students’ math subjective norms and math intentions was in 
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contrast with Foltz et al.'s (2015) finding. This discrepancy may be attributed to the different age 

groups in the two studies (i.e., undergraduate vs. middle schoolers) and their different definitions 

of subjective norms. 

In regards to the mediators, it is noteworthy that in this study a six-factor model was used 

that separated math pursuit attitudes into (a) math pursuit experiential attitudes and (b) math 

pursuit instrumental attitudes, and math subjective norms into (c) math subjective norms 

influenced by friends and (d) math subjective norms influenced by parents, whereas math pursuit 

attitudes and math subjective norms were not subdivided in previous empirical studies, in which 

a four-factor model was used. However, for this study, the data analysis showed that subdividing 

these two factors provided more nuanced results. For example, the two constructs, (a) math 

subjective norms influenced by friends and (b) math subjective norms influenced by parents, 

showed a substantial mean difference (M= 2.53 & M=3.21, respectively), Their correlation 

coefficients were also found to be statistically insignificant. Thus, the current study suggests that 

researchers might employ the six-factor model of the theory of planned behavior rather than the 

four-factor model. 

The third hypothesis of the current study posited that the association between the school’s 

math resources and students’ intentions to pursue math over other subjects would be stronger for 

immigrant than for non-immigrant student groups. However, analysis using the multiple group 

SEM model did not support this hypothesis. There was no statistically significant difference 

between the two groups in terms of the direct relationship between school math resources and 

their math intentions. This result was congruent with the multilevel SEM model for the total 

sample that showed no direct effect between school math resources and students’ intentions. 
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Although no difference between the two groups in the magnitude of the direct effect was 

observed, the result of the multiple group path analysis was statistically different. This difference 

between the two groups in the path model is plausible in that various studies have found that 

culturally different groups presented divergent patterns in the relationships of the construct of the 

theory of planned behavior (Arditzoglou & Crawley III, 1992; F. A. Lee, 2012; Lipnevich et al., 

2011, 2016).  

In the present study, the multiple group path analysis showed a statistically negative 

association between the school’s proportion of math teachers in the teaching staff and the 

immigrant student group’s experiential and instrumental math pursuit attitudes as well as their 

math subjective norms influenced by friends. That is, the greater the proportion of math teachers 

on the staff, the less likely that immigrant students were motivated to study math, while there 

was no statistically significant association for the non-immigrant student group. This seemingly 

paradoxical negative association for the immigrant group challenges the conventional wisdom 

that immigrant students attending a math-intensive school would be more motivated to pursue 

further math studies and calls for in-depth inquiry into the math motivation of immigrant 

students through interviews. 

On the other hand, with regards to the relationship between students’ motivation 

variables and intention variables, immigrant students showed a stronger positive effect than non-

immigrant students of math pursuit experiential attitudes and math pursuit instrumental attitudes 

on their intentions to pursue math over other subjects. In particular, the strong association 

between the immigrant group’s math intentions and math pursuit instrumental attitudes (a 

measure of students’ perception of the importance of math for their future) is aligned with Cho 

and Hwang's longitudinal ethnographic study (2019). Thus, it seems plausible that immigrant 
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students view math as having instrumental value by preparing them to pursue math-intensive 

careers that can lead to their success in society. 

Additionally, unlike the non-immigrant student group, the immigrant student group 

presented a statistically negative relationship between their perceived parents’ emphasis on the 

importance of studying math and their pursuit of learning math in the long term. This result 

contradicts the findings of previous research showing that positive family involvement 

substantially encouraged immigrant students to pursue the math field (Chachashvili-Bolotin et 

al., 2019; Onuma et al., 2020). This incongruence may reflect limitations in the data used in this 

study, which did not capture complexities within the immigrant student group, such as students’ 

national origins (Dronkers & Levels, 2007; Levels et al., 2008).  

Conclusions and Implications of the Study 

Many educational researchers who accept the validity of the theory of planned behavior 

have empirically tested the relationships among its constructs. However, studies that consider the 

nested data structure and school-level variables remain rare in the literature. The integration of 

school-level variables means that planned behavior is no longer considered as solely an intra-

personal variable but as responsive to contextual influences (Burić & Kim, 2020). This approach 

is beneficial as it can help find a practical way to increase students' math motivation.  

Findings from this research contribute to the scarce empirical evidence regarding the 

effects of school-level variables, particularly the quantity and quality of math teachers within a 

school, on students' long term math intentions. In this study, no direct or mediation effect of 

school math resources was found when these were indicated by (a) the proportion of the math 

teachers in the teaching staff and (b) the proportion of math teachers that are qualified in the 

entire staff that is qualified. This finding can be used as a policy implication that teacher 



 107 

selection based on a teacher's bachelor's degree attainment and/or bachelor's degree with a math-

related major may not meaningfully improve students' math motivation and intention, in contrary 

to the assumption of the NCLB legislation. Basing judgment of teachers’ quality solely on their 

undergraduate major and achievement of teacher certification may falsely predict a positive 

impact on students' math motivation. Policymakers may want to focus primarily on an alternative 

measure of teacher quality that can be observed in classroom practice such as how mathematics 

teachers communicate with other students. One of the reasons that the U.S. states utilized a 

mathematic teacher’s bachelor’s degree attainment and certification attainment as criteria of the 

teacher quality comes from its relative simplicity than measuring teacher attitudes, practice, and 

beliefs (Huang & Moon, 2009). The results of this study encourage to consider other valuable 

measures of teacher quality despite its possible more effort to evaluate that effectiveness on 

students’ motivations. 

This study also provides a novel conceptual framework that captures students’ relative 

levels of math motivation in comparison with motivation in other subjects. The consideration of 

relative preference in this study is more plausible considering that students have preferences 

among subjects. This empirically and practically sensitive framework is vital in understanding 

students’ math motivation. This approach also extends the theory of planned behavior by 

examining the applicability and predictive power of the theory when students’ intentions to 

pursue math over another subject is added. Also, given the fitness of most schools' resource 

availability, in this study the effect of the level of school resources dedicated to math relative to 

other subjects was examined. This approach warrants further research to fine-tune the theory of 

planned behavior to reflect reality better. 
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This study was methodologically rigorous in that it employed a multiple imputation 

method (i.e., predictive mean matching) and multilevel structural equation modeling in analyzing 

the 2012 U.S. PISA dataset to test the hypotheses. The predictive mean matching method 

enabled replacement of missing values with values that were statistically similar to the original 

dataset. The multilevel structural equation modeling found that aggregated students’ math 

motivation and intention at the school level has no statistically significant link, in contradiction 

to previous findings in which the relationship was measured at a student level. The results 

obtained here emphasize the use of a multilevel framework for a hierarchical data structure in 

which students are nested within school to measure the examined constructs accurately and 

minimize measurement error. 

Given the results from this research that showed the statistical difference in math 

motivation and math intention between an immigrant student group and a non-immigrant student 

group, educators may develop intervention strategies. They might investigate what types of 

motivation variables to modify to increase students’ intentions to study math. For example, the 

results of this study imply that immigrant students are less likely to take math courses and pursue 

math careers if their parents overly emphasize the necessity of studying math. Educators may 

open a discussion platform in which parents and students freely talk about their perceptions of 

learning math.  

The demand for math-intensive careers in the U.S. has continually increased, and schools 

play a critical role in engaging students in studying math. Schools and educational policies need 

to develop practices that enhance students’ math motivation while considering students’ interests 

and a school’s available resources. Although this study is limited to a sample of the U.S. eighth 

and ninth graders, its results shed light on how students are motivated to pursue math in the long 
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term and suggest that successful intervention strategies can differ according to students' 

immigration standing.  

Limitations and Recommendations for Future Research 

A few limitations of this study should be noted in relation to future research. First, this 

study was based on the U.S. 2012 PISA dataset and employed a cross-sectional design, which 

does not support conclusions regarding causal links between the target constructs. The typically 

strong assumptions required for drawing causal inferences can rarely be met in international 

large scale assessment data (Rutkowski & Delandshere, 2016). This study’s findings have to be 

interpreted cautiously, keeping in mind that the statistical associations found between the 

variables do not prove causation. Recently, a growing body of research has addressed the issue 

of drawing causal inferences with large-scale assessment data from a Bayesian perspective 

(Kaplan, 2016; Kaplan & McCarty, 2013). Future studies may address the possible causal 

ordering of the constructs of the theory of planned behavior measured in the PISA dataset.  

Another limitation of the current study was the possible sampling bias of the PISA 

dataset due to its rotated sampling design. To overcome this challenge, I applied a multiple 

imputations by chained equation approach, specifically a predictive mean matching method, 

which Kaplan and Su (2016) proved to be a valid approach in dealing with the 2012 PISA 

dataset. Indeed, the imputed values had a distribution similar to that of the original dataset. Also, 

to reduce the possible sampling bias of a math-intensive school being selected by students 

already interested in math, my sample included only students who were attending a math-

intensive school by default, having no other option. Nevertheless, there was no guarantee of zero 

sampling bias. Future studies may wish to minimize the sampling bias using other advanced 

imputation techniques. 
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Third, the integration of the multilevel framework in the examination of intraclass 

correlation coefficients indicated that students within the same school did not share a similar 

degree of math motivation and math intention. The failure to meet the threshold value of ICC 1 

(> 0.1) and ICC2 (> 0.7) suggested by Lüdtke et al. (2011) should be noted in interpreting the 

results. This study’s approach is still valuabINle in that a multilevel framework was employed in 

measuring the relationships among the constructs of the planned of behavior. I suggest future 

research to examine the relationships among the constructs at both the between-level (i.e., 

student level) and the within-level (i.e., school level) for accurate measurement of the effect. One 

option that could be examined among school resources can be curriculum and educational 

materials, as this study only human resources in math instruction were considered. 

Fourth, the measurement models had a reasonable but not perfect fit to the data. Some 

variables showed low factor loadings (e.g., ST48Q01), and low discriminant validity was 

observed as some latent variables had statistically significant correlation coefficients. However, 

the current study represented a novel step in the use of a six-factor model for analysis, which 

improved content validity and discriminant validity both theoretically and empirically. This six-

factor model showed a better model fit (𝜒/(df=485) = 1051.55, p < 0.001)  than a four-factor 

model (𝜒/(df =174) = 876.46, p < 0.001). Also, the six-factor model exhibited higher reliability 

coefficients. Future researchers may continue to test this six-factor model of the theory of 

planned behavior. Accumulation of the empirical findings may further validate the six-factor 

model’s superiority over four-factor models and help re-specify the constructs of the theory of 

planned behavior. 

Fifth, the third hypothesis was tested at the student level of analysis even though students 

were nested within the school level. This single-level multiple group path analysis was 
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unavoidable given the warning of R software against the situation in which “one or more 

individual-level variables have no variation within a cluster.” The inability to implement 

multilevel multiple group analysis can be partially attributed to the small sample size and cluster 

size of the immigrant student group. Despite this apparent limitation of the analysis, I made sure 

to carry out the necessary procedure to run a multiple group path analysis. I ran a four-step 

model invariance test to establish model invariance across the groups. Researchers interested in 

measuring the school math resource effect on these two groups' math motivation in a multilevel 

framework may wish to collect data with a larger sample size and cluster size than that of the 

2012 U.S. PISA dataset. 

Sixth, this study did not reflect complexities within an immigrant student group in 

measuring their math motivation and intention. In this study, student variables that had 

statistically significant correlations with latent factors (gender, socioeconomic status, and 

race/ethnicity) were controlled. However, numerous differences within an immigrant student 

group, such as an immigration generation, which could influence their math motivation, were 

omitted due to a restricted immigrant student sample size (Chachashvili-Bolotin et al., 2019; 

Chu, 2009; Onuma et al., 2020; Porche et al., 2016; Takeuchi, 2018). Immigrant students’ 

country of origin and country of destination were not considered in this study as the data from 

U.S 2012 PISA questionnaire did not reveal them in public. Future researchers may wish to 

develop a survey designed to capture the complex nature of an immigrant student group and 

administer it to a sufficiently large immigrant student sample.  

Last, next year, 2022, OECD’s PISA will administer their triannual questionnaire and the 

focus will be devoted to mathematics. I have a plan to replicate the analysis of the current study 

to the data from 2022 questionnaire to evaluate the sensitivity of this study’s results to cohort and 
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time variation. The results of the sensitivity test will allow to test the generalizability of the 

current study’s results. 
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