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Abstract
Recently there has been a surging interest in the topological phases of matter, including

the symmetry-protected topological phases, symmetry-enriched topological phases, and

topological semimetals. This thesis is aiming at finding new ways of searching and probing

these topological phases of matter in order to deepen our understanding of them.

The body of the thesis consists of three parts. In the first part, we study the search

of filling-enforced topological phases of matter in materials. It shows the existence of

symmetry-protected topological phases enforced by special electron fillings or fractional

spin per unit-cell. This is an extension of the famous Lieb-Schultz-Mattis theorem. The

original LSM theorem states that the symmetric gapped ground state of the system must

exhibit topological order when there’s fractional spin or fractional electron filling per unit-

cell. However, the LSM theorem can be circumvented when commensurate magnetic flux

is present in the system, which enlarge the unit-cells to accommodate integer numbers of

electrons. We utilize this point to prove that the ground state of the system must be a

symmetry-protected topological phase when magnetic translation symmetry is satisfied,

which we coin the name “generalized LSM theorem”. The theorem is proved using two

different methods. The first proof is to use the tensor network representation of the ground



state wave-function. The second proof consists of a physical argument based on the idea of

entanglement pumping. As a byproduct of this theorem, a large class of decorated quantum

dimer models are introduced, which satisfy the condition of the generalized LSM theorem

and exhibit SPT phases as their ground states.

In part II, we switch to the nonlinear response study of Weyl semimetals. Weyl semimet-

als (WSM) have been discovered in time-reversal symmetric materials, featuring monopoles

of Berry’s curvature in momentum space. WSM have been distinguished between Type-I

and II where the velocity tilting of the cone in the later ensures a finite area Fermi sur-

face.To date it has not been clear whether the two types results in any qualitatively new

phenomena. In this part we focus on the shift-current response (σshift(ω)), a second or-

der optical effect generating photocurrents. We find that up to an order unity constant,

σshift(ω) ∼ e3

h2
1
ω

in Type-II WSM, diverging in the low frequency ω → 0 limit. This is in

stark contrast to the vanishing behavior (σshift(ω) ∝ ω) in Type-I WSM. In addition, in

both Type-I and Type-II WSM, a nonzero chemical potential µ relative to nodes leads to

a large peak of shift-current response with a width ∼ |µ|/~ and a height ∼ e3

h
1
|µ| , the latter

diverging in the low doping limit. We show that the origin of these divergences is the sin-

gular Berry’s connections and the Pauli-blocking mechanism. Similar results hold for the

real part of the second harmonic generation, a closely related nonlinear optical response.

In part III, we propose a new kind of thermo-optical experiment: the nonreciprocal

directional dichroism induced by a temperature gradient. The nonreciprocal directional

dichroism effect, which measures the difference in the optical absorption coefficient be-

tween counterpropagating lights, occurs only in systems lacking inversion symmetry. The

introduction of temperature-gradient in an inversion-symmetric system will also yield non-



reciprocal directional dichroism effect. This effect is then applied to quantum magnetism,

where conventional experimental techniques have difficulty detecting magnetic mobile ex-

citations such as magnons or spinons exclusively due to the interference of phonons and

local magnetic impurities. A model calculation is presented to further demonstrate this

phenomenon.
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Chapter 1

General prologue

The best of artists hath no thought to show

which the rough stone in its superfluous shell

doth not include; to break the marble spell

is all the hand that serves the brain can do.

-Michelangelo

1.1 Overview of condensed matter physics

Condensed matter physics is a branch of physics that is dealing with condensed phases of

matter. [1]

The first question one can ask in the field of condensed matter physics is: why are there

so many different phases of matter? In the case of H2O, we know that it can be in the form

of ice, liquid water and water vapor. And through the change of pressure and temperature,

these different phases can transform into each other, with drastically different apperances.

This curious fact even leads the Greek philosopher Thales to make the bold claim that
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Figure 1.1: The p − T phase diagram of water. The first-order liquid-gas transition line

ends at the critical point with Tc = 647K,Pc = 2.2 ∗ 108Pa. The phase transition at the

critical point becomes a second-order one, with continuous change of density and any other

first order derivatives of the thermodynamic potential. Beyond the critical point, there is

no phase transition between liquid water and water vapor.

everything is made of water. [2] Here’s a twist: the difference between liquid water and

water vapor is actually pretty vague. Usually one would differentiate between liquid water

and water vapor through the process of evaporation, which is a first-order transition at

which their densities have an abrupt jump. But the p− T phase diagram shows that this

transition line ends at one point, where the density-difference is zero, and beyond which

there’s no clear distinction between liquid water and water vapor. Are they truly different

phases or just the same kind of phase? [1]

Another interesting point associated with phases of matter is as follows. We know from
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our ordinary experience that liquid and gas are isotropic and uniform (in mathematical

language it means that they are symmetric under the SO(3) spatial rotation and continuous

translation along three directions). At low enough temperature, usually the liquid will form

a crystal, which breaks the SO(3) rotation and continuous translation down to discrete

rotations and discrete translation. This is indeed an astonishing effect, since we know that

the law of electromagnetic force (the dominating force between the atomic scale and the

everyday scale) is apparently isotropic. From quantum mechanics, we also know that the

eigenstates of any Hamiltonian with symmetry G can always be made to be symmetric with

respect to G [3]. There seems no reason for nature to choose a set of non-symmetric states

as the basis in the degenerate space. Let’s take the example of Ising symmetry-breaking in

the transverse-field Ising model as an illustration. [5]

H =
∑
i

−JSz
i S

z
i+1 − hxS

x
i . (1.1)

This model has the spin-z-flip symmetry
∏

i S
x. And when hx = 0, the ground states are

|↑↑ · · ·⟩ and |↓↓ · · ·⟩, which spontaneously breaks the spin-z-flip symmetry. This picture

is not altered significantly when hx ≪ J (below we call them |↑⟩ and |↓⟩ states). The

skeptical might immediately object that the linear combinations (|↑⟩ ± |↓⟩)/
√
2 work just

as well. In fact, for a finite system, the symmetric state has a lower energy than the

anti-symmetric state and the symmetry-breaking phenomenon simply does not occur. The

solution to this puzzle is that in the thermodynamic limit N → ∞, the energy splitting

between the symmetric state and the anti-symmetric state is of order h−N
x , an exponentially

small factor. Therefore they can be treated as degenerate safely. Similar consideration

shows that any matrix elements of a local operator O between |↑⟩ and |↓⟩ states are zero

in the thermodynamic limit. Therefore any local observations of a symmetric observable
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can be described using either |↑⟩ or |↓⟩ states, together with a formal average over them.

Furthermore, we note that the degeneracy of the states can be lifted by an infinitesmal

external magnetic field hz. As a result, we might treat the symmetry-breaking states as

the true physical states in every real sense. [4]

L. Landau has developed the idea of symmetry and symmetry-breaking into a very gen-

eral and powerful theory, which explains not only why there are symmetry breaking and

symmetric phases, but also how phase transition happens between the two. [6] Landau’s

theory of second-order phase transition goes as follows. First, he assumes that near the

symmetry breaking second-order phase transition, there’s an order parameter that charac-

terizes the symmetry breaking. In the example of the transverse-field Ising model, we can

simply choose the average value of σz as the order parameter. The sign and the magnitude

of its value denotes the direction and the degree of the symmetry-breaking. Landau’s next

observation is that the free energy is a functional of the order parameter field, usually

expanded in low order polynomials of the order parameter field and its derivatives. The

transformation rule of the order parameter under the symmetry group imposes restrictions

on the form of the free energy. By minimizing the free energy functional over the order

parameter field, we can obtain the value of the order parameter field in terms of the tunable

parameters in the free energy functional, which are related to external conditions that can

be tuned to trigger the phase transition. It can be clearly seen that in a continuous phase

transition, the order parameter grows continuously from zero, signifying the phenomenon

of symmetry-breaking.

Landau’s theory of second-order phase transition shows that we can characterize phases

of matter in terms of their symmetry properties. Therefore liquid water and water vapor are
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essentially the same phase, but ice is a truly different phase since it has a lower symmetry

than liquid water or water vapor. Landau’s theory also shows continuous phase transition

can only occur between two phases where the symmetry group of one phase is a subgroup

of the symmetry group of the other phase. All the essential physics encoded in this phase

transition can be described in terms of an order parameter field. Therefore from Landau we

have a complete classification and understanding of physical states in terms of symmetry.

The rest seems to systematically apply this machinary to all the known phases of matter.

In fact, in the case of crystallography, there is the classification of crystals in terms of their

different crystal symmetries, which is essentially working out all the point group symmetries

compatible with a periodic array of atoms. We can then fit all the known crystals into this

grand scheme. Without going into any detail, we already know that crystals with the same

symmetry group share many physical properties in common. And the possible structural

transition from one crystal into another crystal with higher or lower symmetry can be

readily predicted using Landau’s theory. [7] Yet this is not the whole story. As we shall see

below, topology also plays an important role in the classification of phases of matter.

1.2 The advent of topological era

What we mean by topology is always associated with some kind of rigidity. The simplest

example to demonstrate the phenomenon of topology is this famous joke: a topologist can-

not tell the difference between a coffee mug and a donut, because they can be continuously

deformed into each other without gluing or tearing. The rigidity lies in the fact that the

number of holes is always the same during the deformation process since we do not al-
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low gluing or tearing processes which are the only operations that can change the number

of holes. [8] Solid state physics naturally provides us with such rigidity here and there,

with various indications toward phenomena of topology. The rigidness of the Fermi surface

topology is ensured by the Pauli exclusion principle-temperature only blur the Fermi surface

by a very small degree at room temperature, therefore the whole Fermi surface topology is

essentially unaltered. [10, 11] And the rigidness of the crystalline defects is ensured by the

fact that an extensive amount of energy is needed to create or destroy a single crystalline

defect. [9] In insulators, i.e., system with a energy gap to charge excitations, the rigidity is

ensured by the relative difficulty of exciting a charged quasiparticle across the energy gap,

and this is the case we are going to explore further in this section.

The modern era of topology in solid state physics begins with the following discover-

ies: the resonating-valence-bond state of quantum magnets, Berezinskii-Kosterlitz-Thouless

transition, integer and fractional quantum Hall effects, the Haldane model and the spin-1

Haldane chain. [?,?,?,12,14–17] And the topological revolution reaches its climax with the

discovery and systematic classification of quantum spin liquids, topological insulators and

symmetry-protected topological phases in interacting bosonic systems. [18–23] These new

discoveries show that there can be different phases even when the symmetries are exactly

the same, and there can even be continuous phase transitions between them (e.g., BKT

transition). Therefore an understanding of these phases certainly calls for a new perspective

which encompasses the Landau paradigm.

Let’s first take a closer look at the Landau paradigm to see what could possibly be

missing. In the Landau paradigm, we have encoded all the relevant information of a state

in terms of a uniform order parameter. For the symmetry-unbroken phase, we know that
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the value of order parameter is zero. One can readily construct such a state as the direct

product of identical wave-function which is a singlet under the symmetry group. In the case

of transverse-field Ising model, we can model the symmetry-unbroken phase with J = 0

as the direct product of spins along the +x direction, |++ · · ·⟩. Landau’s theory tells us

that all the other ground states under different values of J, hz are basically ”the same”

as this simple direct product state, as long as no phase transition occurs. Here by ”the

same” we mean that the physical behavior are qualitatively the same, but can of course

differ quantitatively (below we will try to put this hand-waving argument on a more solid

ground). This line of reasoning can also be applied to the symmetry-breaking phase.

Therefore when applying Landau’s theory of phase transition to the classification of

phases of matter, one might draw a over-generalized conclusion that within every phase

one can find a direct product state, which expresses the essential physical properties of the

phase faithfully. But the new findings of topological phases show that this is definitely not

the case. It is possible that there are some new states that has non-local information stored

in the wave-function, which could not be described by a mere order parameter, and hence

they behave drastically differently from a direct product state. Now it is a good time to

explore further the idea of a phase. Below we shall restrict our discussion to quantum phase

transition (mere convenience) and gapped phases of matter (gapless phases of matter are

still not fully understood). States within the same gapped phase are ”the same” in some

sense, which can be made more precise by the idea of adiabatic evolution [24]. From the

adiabatic theorem, we know that if the Hamiltonian depends on a parameter g and if g

changes relatively slowly with time, then an eigenstate of H(g) will stay as an eigenstate

of H(g) during the course of time evolution. The idea of adiabatic evolution then provides
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us with the definition of a phase: if two gapped states |Ψ0⟩ and |Ψ1⟩ are in the same

phase, then we can always find a family of Hamiltonian H(g) with the tunable parameter

g ∈ [gi, gf ], such that the energy gap for H(g) are finite for all g, and the ground states

of H(gi) and H(gf ) are |Ψ0⟩ and |Ψ1⟩, respectively. This adiabatic time evolution is also

equivalently called lcoal unitary evolution. From this new perspective, what we have said

above can be reiterated as follows: all states in the same phase as a direct product state can

be reached by proper local unitary evolutions, during which the gap of the Hamiltonians

remain open, therefore the direct product state serves as a good representation of this

phase. But the advent of the topological era tells us that even for systems with the same

symmetry, we might have states that cannot be adiabatically connected to each other.

Let’s first discuss the case where there’s no symmetry present in the system. It turns

out that there can be phases other than the conventional trivial phase. This is most

clearly illustrated by the example of Kitaev’s toric code model [25]. This model is an

exactly-solvable spin model with not symmetry at all, and its 2d version has ground state

degeneracy on high-genus Riemann surfaces (the simplest example being torus with genus-

1, which naturally occurs if we impose periodic boundary conditions in the two spatial

directions). This property is of particular interest since it directly reflects the topological

structure of the real space configuration. The difference between the ground states of the

toric code model and a direct product state is pretty clear, since the topological degeneracy

between the 4 ground states of the toric code model on a torus can in no way be lifted by any

local unitary transformation. Since ground state degeneracy usually results from some kind

of symmetry breaking and the development of certain order, Xiao-gang Wen has drawn this

analog and coined a name for such phases as “topological-ordered phases” [26]. This toric
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code model also has other interesting features such as emergent Z2 gauge field, emergent

excitations with non-trivial mutual statistics and the emergence of fermionic excitations in

a purely spin model, all of which are different incarnations of the underlying topological-

ordered ground states. The role of quantum entanglement is also quite clear from the exact

ground state wavefunction, which are a coherent superposition of macroscopic numbers

of quantum states and can in no way be simplified by any adiabatic evolution of gapped

Hamiltonians. This pattern of long-range entanglement of the ground state wave-function

is in fact a characteristic feature of the topological ordered state.

Let’s now discuss idea of adiabatic evolution in the presence of symmetry. Previously

we have impose no restrictions on the Hamiltonian during the adiabatic time evolution

other than the condition that gap is not closed. When the symmetry is present, however,

it is necessary that at intermediate stages during the time evolution, the ground states are

symmetric, so we need to require that the Hamiltonians during the evolution are symmetric.

If we cannot find any symmetric adiabatic time evolution to connect two states with exactly

the same symmetry and without topological order, we can say that these two states belong

to two different phases of matter. Haldane phase and Sz = 0 phase of spin-1 chain are

examples of states with the same symmetry which belong to two different equivalent classes

of symmetric adiabatic time evolution. Band insulators and topological insulators are other

examples. Note that symmetry is essential in the classification of these phases. If symmetry

can be broken in intermediate steps, these states are in fact adiabatically connected to each

other. Therefore they are termed ”Symmetry-protected topological phases” (SPT). The

above discussion also gives us a by-product: there are gapless modes on the boundary of

a SPT phase, since if we view the vacuum as a trivial SPT state, then on the boundary
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between these two different SPT states the gap must be closed for some modes.

Quantum spin liquids show an interesting interplay between symmetry and topology,

specifically in the concept of symmetry fractionalization. When symmetry is present in

the topological ordered states, we can discuss the symmetry properties of the topological

excitations. Due to the fact that physical local operators never create or annihilate a

single topological excitation, topological excitations always come in groups. In this sense

we say that topological excitations are (in a sense) fractions of local excitations. In the

same sense, the quantum numbers carried by topological excitations are also fractions of

the symmetry quantum number of local excitations. This is best illustrated in the case

of spinons in quantum spin liquids, which is a topological ordered state with SO(3) spin

rotation symmetry. Usually in a magnetic ordered state, there are magnons carrying spin-

1 that can be created/annihilated by local spin flip operators. Heuristically, spinons in

quantum spin liquids can be viewed as fractions of magnons, therefore they carry spin-

1/2, which is a projective representation of the SO(3) group. Symmetry fractionalization

also occurs when other kinds of symmetry are present, such as time-reversal symmetry,

crystal symmetries. These are topological-ordered states ”enriched” by symmetry, since the

topological order always exists no matter the presence or absence of symmetry. Therefore

they are termed “Symmetry-enriched topological phases”.

So far we have showed that the idea of classifying phases in terms of equivalence classes

of local unitary evolutions w/o symmetry has included all the new phases beyond Landau

paradigm, therefore providing us with a unified way of systematically classifying phases of

matter.

Finally let me give a short remark on the experimental detections of the topological
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phases. Since the topological nature of these phases are buried in their entanglement

pattern of the wave-functions, the experimental detection of these novel phases of matter

becomes a non-trivial task. The situation of symmetry-protected topological phases is

slightly better, since general principle tells us that the boundary between such a material

and the vacuum exhibit gapless modes [27]. There also exists other types of experiments,

such as topological magnetoelectric effect in the case of topological insulators [28], etc..

One might ask if there are other experiments that can reveal the topological nature of the

SPT phases. The situation of the symmetry-enriched topological phases is less promising,

particularly because proper experimental probe is lacking. More is to be discussed on this

point in the next section.

1.3 Structure of the thesis

Now I delineate the structure of my thesis. Chapter 2 is concerned with a generalized

Lieb-Schultz-Mattis theorem. This is an attempt to set up a general guidance in the

experimental search of SPT phases. The Lieb-Schultz-Mattis theorem, and its extension

by Hastings and Oshikawa [30–32], can be stated as follows: if we have a system with

fractional charge or fractional spin per unit-cell, the ground state of the system cannot be

a symmetric gapped state without topological order. The ground state can be either one

of the three alternatives: 1. it is a gapless state, 2. it breaks some symmetry, 3. it is a

symmetry-enriched topological state (this is only possible in dimension > 1). The HOLSM

theorem is a very useful guide in the field of quantum spin liquid. In a Mott insulator,

we are given spin-1/2 per unit-cell. Suppose in experiments we do not detect any kinds
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of symmetry breaking (spin-rotation, crystal symmetry, etc.), we can say that the ground

state is most likely to be a quantum spin liquid.

On the face value, the HOLSM states the absence of a trivial state without symmetry

breaking and without emergent gauge field. But given the data stated in the set-up, we can

say more about the possible long-range ordered states. For example, in the case of square

lattice with spin-1/2 per site, we can say that if the ground state is a gapped long-range

ordered state with emergent gauge field, one of the gauge excitation must carry spin-1/2,

i.e., it is a fractional excitation. The heuristic picture is as follows. The Mott insulator

has a fractional spin per unit-cell. In order to keep the full translation symmetry and

spin rotation symmetry in the ground state, we need to have spin-1/2 excitations per site

to screen the background spin in the unit-cell. But no local excitation carries S = 1/2

(the most natural spin-flip excitations have spin-1), which means such excitaions must be

topological excitations. [29]

From this new perspective, we find that HOLSM actually provides us with restrictions

on the possible topological ordered states realizable in the system. Is there a similar

theorem restricting possible short-range entangled state realizable in the system? This is

the question posed and solved in Chapter 2. The solution is as follows. Starting from the

HOLSM set-up, we know that there must be topological excitations carrying fraction spin

to exactly screen the fractional spin per unit-cell in order to get a symmetric gapped ground

state. But assume we further insert symmetric flux of symmetry g in each unit-cell (in the

case of U(1) charge symmetry, this is just a magnetic flux), we can have an alternative

solution to the HOLSM constraint: the symmetry flux can provide us with the necessary

fractional spin, thereby avoiding the occurrence of topological excitations. Such a state
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must then be a non-trivial symmetry-protected topological phase, since in a trivial state

(one that is adiabatically connected to vacuum), the symmetry flux of one group g does not

possibly carry the fractional spin of another symmetry group (SO(3) in this case). Under

this general guidance, we consider 2+1D lattice models of interacting bosons or spins, with

both magnetic flux andfractional spin in the unit cell. We propose and prove a modified

Lieb-Shultz Mattis (LSM) theoremin this setting, which applies even when the spin in

the enlarged magnetic unit cell is integral. The nontrivial outcome for gapped ground

states that preserve all symmetries is that one necessarily obtains a symmetry protected

topological (SPT) phase with protected edge states. This allows us to readily construct

models of SPT states by decorating dimer models of Mott insulators to yield SPT phases,

which should be useful in their physical realization. The resulting SPTs display a dyonic

character in thatthey associate charge with symmetry flux, allowing the flux in the unit

cell to screen the projective representation on the sites. We provide an explicit formula

that encapsulates this physics, which identifies a specific set of allowed SPT phases.

Chapter 3 concerns the nonlinar photogalvanic response study of Weyl semimetals [33].

Recently, Weyl semimetals have been discovered in many materials with strong spin-orbit

coupling. The topology of the electronic band structures gives rise to linear band touching

points-Weyl nodes in momentum space, which are monopoles of the Berry’s connection.

These topological semimetals have been shown to host various exotic properties such as

surface Fermi arcs, semi-quantized anomalous Hall effect, angle-dependent negative mag-

netoresistance, novel nonlinear optical effects. [34] The non-linear optical response has

received increasing attention as a means to probe the Berry curvature of materials in gen-

eral. This suggests non-linear optical effects can be used to distinguish between materials
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with different Fermi surface topologies, a question particularly relevant to WSM. Indeed,

shortly after the discovery of the first Type-I WSM material in TaAs, it was realized the

tilt of velocity of the cone can be severe as to result in finite Fermi surfaces at all dop-

ing levels. [35] Nonetheless a clear distinguishing experimental consequence between these

Type-II and their Type-I counterparts has yet to emerge.

The bulk photovoltaic effect (also called shift-current) is long studied in the field of

semiconductors. It is an intrinsic second-order optic effect which converts light into electric

currents. The microscopic mechanism of the BPVE can be heuristically understood as the

change in polarization due to optical absorption, which can be readily represented in terms

of covariant derivatives of Berry connections. Therefore this works as a direct probe of the

Berry connections in the momentum space. This makes Weyl semimetal a natural platform

for such a measurement due to the fact that Berry connection is divergingly large near the

Weyl node.

The dimensional analysis shows that the BPVE response tensor σII(ω) should be e3

h

times one over some energy scale. Naturally one would expect this energy scale to be just

the energy of injecting photon. But a detailed calculation shows that this is only the case

for type-II Weyl semimetal, i.e., σII(ω) ∼ e3

h2ω
. For type-I Weyl semimetal, however, we

find that the leading contribution to the BPVE response is in fact proportional to ω. This

we see as the fundamental difference between type-I and type-II Weyl semimetals. And

the enhancement of BPVE signal in the ω → 0 limit in the type-II Weyl semimetal can be

used as a detection of THz lights. Therefore the study of BPVE in type-II Weyl semimetal

is of both theoretical and practical significance. In addition, in both Type-I and Type-II

WSM, a nonzero chemical potential µ relative to nodes introduce a new energy scale, and
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can be shown to lead to a large peak of shift-current response with a width ∼ |µ|/~ and

a height ∼ e3

h
1
|µ| , the latter diverging in the low doping limit. We show that the origin of

these divergences is the singular Berry’s connections and the Pauli-blocking mechanism.

The second harmonic generation is also studied for the type I and type II Weyl semimetals,

whose real part behaves similarly.

Chapter 4 studies the nonreciprocal directional dichroism in the field of quantum mag-

netism. The last chapter has shown the power of nonlinear electric responses in the field

of topological semimetals. In this chapter, the idea is further explored by the study of

nonlinear thermo-electomagnetic effect. The main motivation of this work is the call for

proper experimental probes in the field of quantum magnetism. Novel states of matter in

quantum magnets like quantum spin liquids attract considerable interest recently. Despite

the existence of a plenty of candidate materials, there is no confirmed quantum spin liquid,

largely due to the lack of proper experimental probes.

The existing experimental probes in this field can be roughly divided into three main

categories:

1. Thermodynamics, including specific heat, magnetic susceptibility, etc.

2. Spectroscopy experiments, including neutron scattering, nuclear magnetic resonance,

optical absorption, Raman scattering, etc.

3. Transport experiments, including electric conductivity, thermal conductivity, etc.

Ideally we would like to directly probe the mobile magnetic excitations in quantum mag-

nets, such as magnons or spinons. Yet the traditional experiments do not probe the mobile

magnetic excitations exclusively. For instance, spectrosocopy experiments like neutron
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scattering receive contributions from disorder-induced local modes, while thermal trans-

port experiments receive contributions from phonons. Here we propose a thermo-optic

experiment which directly probes the mobile magnetic excitations in spatial-inversion sym-

metricand/or time-reversal symmetric Mott insulators: the temperature-gradient-induced

nonreciprocal directional dichroism (TNDD) spectroscopy. This effect is defined as the

difference in the optical absorption coefficient of the material between counterpropogating

lights in the presence of a temperature gradient. Unlike traditional probes, TNDD di-

rectly detects mobile magnetic excitations and decouples from phonons and local magnetic

modes. The microscopic formulation is established and the size of the effect is estimated

using only basic quantities such as mean-free-path, gradient of temperature, strength of the

spin-orbital coupling etc.. The contributions of non-magnetic modes and localized mag-

netic modes are estimated and can be shown to be safely ignored. A concrete microscopic

calculation on Kagome lattice is performed to demonstrate this phenomenon.
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Chapter 2

Dyonic Lieb-Schultz-Mattis theorem

2.1 Overview

The Lieb Shultz Mattis (LSM) theorem [1], appropriately generalized to higher dimen-

sions [2–5], requires that a gapped spin system with fractional spin (eg. S=1/2) per unit

cell possess excitations with fractional statistics (anyon) and fractional quantum numbers

(topological order), if all symmetries (including lattice translations) are preserved. This

has served as a powerful principle to diagnose exotic phases such as the fractional quan-

tum Hall effect, and quantum spin liquids. Furthermore, in some cases the nature of the

resulting topological order can be further constrained by the microscopic data [6, 7].

In recent years there has been an explosion of activity on symmetry protected topological

(SPT) phases, which feature protected boundary modes although the bulk is short range

entangled (SRE) and in contrast to the situation above, is free of anyon excitations. These

include phases like topological insulators, which can be captured by free fermion models

[8, 9], as well as intrinsically interacting phases [10–12] A natural question to ask is - are
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there setting where the microscopic data alone would enforce an SPT phase, in a fashion

analogous to the LSM theorem? If so, for a particular set of microscopic data, can we

further characterize precisely which kinds of SPT orders are mandated?

These questions are answered in the present work. We show that SPT order must arise

when the following conditions are met. The first ingredient is magnetic translation symme-

try, that is an enlargement of the unit cell due to the non-commutativity of the primitive

translation operations. Second, we require that the primitive unit cell (ignoring the non-

commutativity) does not admit a trivial insulating phase. This is arranged by requiring a

projective representation at each lattice site. Finally, we need some compatibility condi-

tions between these two ingredients that allow, among other conditions, that the enlarged

unit cell to be effectively at integer filling, what admits a short range entangled ground

state. The latter is then shown to be an SPT. Furthermore for 2+1D bosonic systems we

explicitly calculate the allowed SPTs compatible with the microscopic specifications. In

addition we construct exactly soluble lattice models of this phenomenon to demonstrate

the validity of our conclusions. This general principle should aid in the search for SPTs in

realistic settings and exposes anew aspect of the interplay between symmetry and topology.

To give some simple plausibility arguments as to how microscopic details can enforce

SPT order, consider free fermions in a magnetic field, when the filling fraction (ratio of

particle density to magnetic flux density) is an integer. Then, an integer number of Landau

levels will be filled, leading to a Chern insulator - which is a SRE topological phase with

gapless edge states. Even in the presence of a lattice , one can establish a similar connection

between the Hall conductance σxy, the flux nϕ and electron filling in the unit cell ne [13,14]

which has been extended to the case of time reversal symmetric topological insulators [15].
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To state our result more precisely, we consider a two dimensional lattice where the unit

translations obey: TxTyT−1
x T−1

y = g, where g is an element of the symmetry group G. This

generalizes the notion of a magnetic translation, particles acquire a phase factor depending

on their g charge. We assume g is in the center of the symmetry group G (i.e. commutes

with all other elements), but otherwise consider a general G, which can either be discrete

or continuous, Abelian or nonAbelian, and can include time reversal implemented by an

antiunitary representatation. Furthermore, in each unit cell a projective representation

of the symmetry group labeled by ‘α’ is present. We derive a formula which provides a

necessary and sufficient condition on these inputs to allow for a SRE phase, and determine

constraints on the resulting SPT. Physically, this formula demands that a symmetry flux g

inserted into this system will precisely generate a projective representation that can screen

‘α’ [15].

Let us give two physical pictures to view this filling and flux enforced SPTs. First

we describe a vortex condensation based picture, for a system of lattice bosons with a

conserved U(1) charge, with flux nϕ and filling nb per lattice unit cell. Although our

chapter focuses on having projective representations per site (rather than fractional filling)

this example will be useful to build intuition. It is well known that a conventional insulator

can be thought of as a condensate of vortices. However, for fractional filling nb, the vortices

see a fractional flux per unit cell [16], and their condensate will break lattice symmetries.

Similarly, the bosons themselves cannot condense without breaking lattice symmetries due

to the fractional flux nϕ. However the bound state of a vortex and p bosons may be able to

propagate freely if: nb ± pnϕ ∈ Z is an integer. The resulting object is a boson for p even

which can then condense giving rise to a SRE and symmetric insulator. These are nothing
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but the Bosonic Integer quantum Hall insulators at ν = nb/nϕ = p [12, 17, 18]. Note, here

the condensing particle carries unit vorticity and hence the resulting insulator is free of

topological order [19] and also preserves the U(1) symmetry since the condensing charge is

attached to vorticity. A generalization of this result to include arbitrary symmetry groups

is the main result of this chapter. An interesting exception occurs for p = 1, which is

realized for example when one has bosons at half filling (or a projective representation of

U(1) o Z2), and a π flux in each unit cell. The doubled unit cell is at integer filling. At

first sight it appears we can obtain an insulator by condensing the vortex-charge composite

which sees no net flux in the unit cell. However, this composite is a fermion and cannot

be condensed. This is also seen by a flux threading argument [14] that constrains such

SRE phases to have σxy = odd integer, which is impossible for a SRE topological phase of

bosons [17,18]. Interestingly, this result continues to hold if the U(1) is broken to a discrete

symmetry as shown below.

A second perspective is to begin in a topologically ordered phase with fractionalized ex-

citations and consider confining all exotic excitations by an appropriate anyon condensate.

For example, for bosons at half filling, one could obtain toric code (Z2) topological order

where the e particle carries half charge [20]. The m particle however sees the fractional

charge density as background flux and cannot condense while preserving spatial symme-

tries. This is the situation in the absence of magnetic translations, where the LSM theorem

enforces topological order for gapped symmetric states. However, once we allow for mag-

netic translations with g charge, a way out to an SRE phase may become available. The

m particle, bound to a g charge that sees the magnetic flux, forms a composite object that

may condense uniformly and confine the topological order. At the same time, this leads
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to an SPT phase since the condensing anyon carries nontrivial symmetry charge [21, 22].

Indeed this picture will allows us to construct models of such LSM enforced SPT phases as

we describe below.

Before discussing construction of models, it may be helpful to give a few examples.

Consider a system of degenerate doublets (“S=1/2”) on sites of a square lattice. This

site degeneracy may arise from spin rotation invariance (SO(3)), or even just as Kramers

degeneracy protected by time reversal ZT
2 symmetry. Now consider an additional Z2 sym-

metry which is invoked in defining the magnetic translations, i.e. we have a fully frustrated

Ising model on the same lattice. According to our results, in both these situations SRE

ground states are possible but must be SPT phases. While the SPT phase is unique for

the second case of Kramers doublets of ZT × Z2, in the former case of SO(3) × Z2 there

is more than one SPT phase possible. Interestingly, if we consider a minor modification of

the ZT × Z2 model, such that the doublets on each site are non Kramers pairs, protected

by the combination of the two symmetries, then no SRE ground state exists (and hence no

SPT exists) that respects all symmetries. These examples are discussed in detail in Section

2.3.1 which also introduces models that realize them.

In constructing models, the first step is to begin in the deconfined phase of a discrete

lattice gauge theory (or of a dimer model). Then, one way to obtain a confined phase is by

decorating the electric field lines with domain walls of a global symmetry. This identification

implies that we have condensed the composite of magnetic flux and symmetry charge. The

resulting confined phase is potentially an SPT if the electric charges are associated with

the appropriate symmetry fractionalization [21, 22]. However, to obtain an LSM enforced

SPTs the situation is different since they involve fractional spin on the sites. In a dimer
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model this corresponds to having an odd number of dimers associated with a unit cell, in

which case we cannot decorate them with regular domain walls (which should be closed

loops). However if the global symmetry is also associated with flux in the unit cell (for

example a fully frustrated Ising model), the two kinds of frustration cancel each other out,

and one can still achieve this decoration of electric field line. This is discussed explicitly

in Section 2.2, for a specific model and the resulting state is shown to be the desired SPT.

The model there is one of hardcore bosons on the Kagome lattice tuned to half filling by

particle hole symmetry, previously introduced by Balents Fisher and Girvin [23]. While

their focus was on a Z2 spin liquid phase, we decorate their model with an additional Z2

symmetry realized by a fully-frustrated Ising model. The combination is shown to realize

an LSM enforced SPT phase with gapless edge states, but a short range entangled bulk.

Finally in Section 2.3 we discuss the problem for general symmetry groups, and derive

the necessary and sufficient conditions for SRE phases to emerge and identify the class of

SPTs that must be realized. Proofs can be found in the appendices.

2.2 A simple model realizing SPT phase

Our discussion starts from a concrete microscopic model realizing an SPT phase. The

beauty of this model is its simplicity, which only includes two-spin and three spin interac-

tions. It turns out that the crucial features of this model can be systematically generalized

which form the main results of the current study.

The model constructed below (see Eq.(2.5)) is based on the Balents-Fisher-Girvin(BFG)

model [23]. The original BFG model [23] is a model with spin-1/2 residing on Kagome
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Figure 2.1: (color online) Degrees of freedom in the decorated BFG model. The Ising d.o.f.

σI live on the honeycomb lattice and the spin d.o.f. Si lives on the Kagome lattice. The

Ising coupling signs sIJ = +1 on red bonds, and sIJ = −1 on blue bonds. The thick red

bonds represent the “y-odd zigzag chains” used in Eq. (2.14)

lattice. It is the low energy effective Hamiltonian if we take the Jz ≫ J⊥ limit of the

following XXZ Hamiltonian

HXXZ = J⊥
∑
7

[(
∑
i∈7

Sx
i )

2 + (
∑
i∈7

Sy
i )

2 − 3] + Jz
∑
7

(
∑
i∈7

Sz
i )

2, (2.1)

which has a spin-liquid ground state for Jz ≫ J⊥ with deconfined spinons as confirmed by

various numerical methods [24, 25].

Let’s then take a look at the low energy effective Hamiltonian. The limit Jz ≫ J⊥

ensures that Sz7 = 0 for every hexagon and the resulting Hamiltonian in this low energy

manifold takes the following ring-exchange form

HBFG = −Jring
∑
▷◁

(
∣∣ ↓ ↑

↑ ↓
〉〈 ↑ ↓

↓ ↑
∣∣+ h.c.), (2.2)

with Jring = J2
⊥/Jz.

Let’s then decorate the XXZ model by putting a layer of Ising spins σ inside every
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triangle of the Kagome lattice, which comprises a honeycomb lattice. The Ising spins are

in a transverse field, i.e.,

HIsing = h
∑
I

σx
I , (2.3)

with Ising spin σI living on the honeycomb lattices labeled by I.

We then couple these two layers through a binding term

Hbinding = −
∑

I
i

J

λSz
i · (sIJσz

Iσ
z
J), (2.4)

where the summation is over all the bonds IJ on honeycomb lattice with Si at the bond

center. The sign sIJ = ±1 are frustrated in the sense that
∏

I,J∈7 sIJ = −1. We have

specifically chosen a choice of sIJ in Fig. 2.1. The binding term binds spin-up with Ising

happy bond (sIJσz
Iσ

z
J = +1) and spin-down with Ising un-happy bond (sIJσz

Iσ
z
J = −1).

The full Hamiltonian we are considering is then given by (see Fig. 2.1)

H = HXXZ +Hbinding +HIsing. (2.5)

One can divide H into two parts

H0 = Jz
∑
7

(Sz7)2 −
∑

I
i

J

λSz
i (sIJσ

z
Iσ

z
J).

H1 = J⊥
∑
7

[(Sx7)2 + (Sy7)2 − 3] +
∑
I

hσx
I .

(2.6)

Considering the the limit where Jz, λ≫ J⊥, h, we can first deal with H0 and then treat

H1 as a perturbation. All the terms in H0 commutes with each other and hence all the eigen-

states and eigen-energies are known for H0. In fact, there is a two-to-one mapping from the

ground state sector to the low energy sector of the BFG model (i.e. {Sz
i } configurations

satisfying 3 Sz = +1/2 per hexagon). We will consider periodic boundary conditions, and
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the Hilbert space of the original BFG model has four topological sectors labeled by parities

of the
∏

k∈C 2S
z
k around the non-contractable loops C (which is just the non-contractable

vison flux line [26]). This mapping only map onto one specific topological sector since∏
k∈C 2S

z
k is identified with

∏
IJ∈C sIJ due to Hbinding. The preimage of any low energy

{Sz
i } configuration inside this topological sector are two states |{Sz

i ,+}⟩ and |{Sz
i ,−}⟩

(related to each other by a global Ising flip).

It turns out that the effective Hamiltonian in the parameter regime where Jz ≫ λ ≫

J⊥, h and h2

λ2 ≫ J⊥
Jz

has the following form (see Appendix. 2.7.1 for detailed calculation)

Hdeco.BFG = −10J2
⊥h

2

9Jzλ2

∑
▷◁

(
∣∣ ↓ ↑

↑ ↓

−σz
I

−σz
J

〉〈 ↑ ↓

↓ ↑

σz
I

σz
J

∣∣+ h.c.). (2.7)

Note that the kinetic term in this effective Hamiltonian is the ring exchange term of four

spins at the ends of each bowtie as in the original BFG model combined with the flipping

term of the two Ising d.o.f. within this bowtie, such that the constraint Sz
i (sIJσ

z
Iσ

z
J) = 1

is still satisfied everywhere.

We shall then prove that the ground state of the decorated BFG model is a symmetric

short-range entangled SPT state. In fact, using the mapping P between the Hilbert space

of the decorated BFG model and the original BFG model

P : (|{Sz
i ,+}⟩+ |{Sz

i ,−}⟩)/
√
2 → |{Sz

i }⟩ . (2.8)

Such a mapping is clearly an isometry. Next we notice that

PHdeco.BFGP−1 = HBFG, (2.9)

with the identification Jring = 10J2
⊥h2

9Jzλ2 , which can be proven by directly comparing the matrix

elements on the two sides.
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Figure 2.2: (color online) (a) Schematic phase diagram of the decorated BFG model by

tuning λ. We have already fixed Jz ≫ J⊥, h. In the limit λ → 0 the Ising layer is

decoupled and the ground state is just that of the original BFG model with Z2 topological

order. This is an SET state with spinon carrying Sz = 1/2. When λ is tuned to be within

the parameter regime where Jz ≫ λ ≫ J⊥, h and h2

λ2 ≫ J⊥
Jz

, we have an SPT state with

Ising defect carrying Sz = 1/2 as discussed in the main text. There is a possible direct

phase transition triggered by the condensation of Ising-odd visons at some intermediate

λc. (b) A schematic view of vison condensation. The honeycomb lattice where Ising d.o.f.

lives is shown and the spin d.o.f. lives in the bond center. Two visons are created at the

ends I, J of the string operator σz
Iσ

z
J

j∏
k=i

−→ 2Sz
k . with Sz

k runs over all the black dot shown in

the graph. Alternatively we can view the string operator as the product of bond variable

Sz
i σ

z
Iσ

z
K along the thick blue bonds. Due to the constraint Sz

i (sIKσ
z
Iσ

z
K) = 1, the string

operator will yield a factor (product of sIK ’s along the thick blue bonds) when acting on

the ground state wave-function, which means the visons are condensed and the topological

order is killed. Note that the condensed visons in the present case are dressed by local σz

operator and hence carry the quantum number of Z2 Ising symmetry, which result in an

SPT state. 29



Therefore the spectrum of Hdeco.BFG within the Ising-even sector is exactly the same as

that of HBFG inside a specific topological sector, which is known to be gapped. And the

ground state |ψ⟩ of HBFG, should also be mapped to the ground state |ψdeco.⟩ of Hdeco.BFG.

However there is still one possibility that there exists a state in the Ising-odd sector with

exactly the same energy as |ψdeco.⟩, which features the Ising symmetry breaking. This

possibility is ruled out because |ψdeco.⟩ has no long-range order in σz as will be discussed

in the context of vison condensation.

The ground state of the original BFG model has Z2 topological order which supports

vison and spinon excitations. In the original BFG model, the vison excitations live in the

honeycomb lattice and are created at the ends of the string of Sz
k operators [23], i.e.,

vIvJ =

j∏
k=i

−→ 2Sz
k , (2.10)

where two visons are created at I and J (see Fig. 2.2).

We can see that the visons are condensed in |ψdeco.⟩. The vison operator vdeco. at site i

should now be dressed by the local Ising operators σz
I with I around i to obtain

vdeco.I vdeco.J = σz
Iσ

z
J

j∏
k=i

−→ 2Sz
k . (2.11)

With the constraint that Sz
i (sIJσ

z
Iσ

z
J) ≡ 1 and the fact that intermediate σz squared to

1, we know that vdeco.I vdeco.J must yield a constant (depending only on the product of sIJ ’s

along the vison string) when acting on |ψdeco.⟩, see Fig. 2.2 for an illustration.

Now it is clear that the correlator σz
Iσ

z
J is short-range because we have

| ⟨ψdeco.|σz
Iσ

z
J |ψdeco.⟩ | = | ⟨ψdeco.|

j∏
k=i

−→ 2Sz
k |ψdeco.⟩ |,

= | ⟨ψ|
j∏

k=i

−→ 2Sz
k |ψ⟩ |,

(2.12)
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where the last correlator exhibits exponential decay since visons are deconfined in the

original BFG model (the last equality holds because P commutes with the string operator).

The above discussions feature the physical picture of the condensation of visons carrying

Ising quantum number, which kills the Z2 topological order. We will soon show that the

resulting phase is an SPT phase, which is exactly a realization of the anyon condensation

mechanism to obtain SPT phases proposed in Ref. [21]. In fact, if we start from the

decoupling limit with λ = 0 and gradually increase λ with all other couplings fixed, we

should be able to see two phases: an SET phase with spinon carrying Sz = 1/2 when λ

small and an SPT phase resulting from the condensation of Ising-odd visons when λ is in

the parameter regime Jz ≫ λ≫ J⊥, h and h2

λ2 ≫ J⊥
Jz

. This two phases might be related by

a continuous phase transition at some intermediate λc. See Fig. 2.2 for an illustration.

One way to see that the ground state of the decorated BFG model Eq.(2.7) is an

SPT phase is to consider the Ising defects, which turn out to be topologically bound with

Sz = ±1/2 — a projective representation of the symmetry group (see discussion below).

In order to introduce Ising defects we need to take a branch cut and modify the terms

straddling the branch cut such that only one side is conjugated by the Ising symmetry

σx. The net effect is that for the bonds IJ crossed by the branch cut, the sign of sIJ is

flipped. See Fig. 2.3 for an illustration. To compute the Sz quantum number carried by

the Ising defect it is convenient to introduce the equivalent hard-core boson description:

ni ≡ Sz
i + 1/2. Now let’s take a loop C enclosing one of the Ising defect and measure

the total charge within the area D bounded by C. This is done by the following U(1)

transformation ∏
7∈D

(
∏
i∈7

ei
θ
2
ni) =

∏
i∈C

ei
θ
2
ni ·

∏
i∈D/C

eiθni , (2.13)
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Figure 2.3: (color online) An pair of Ising defects (only one is shown) is created at the end

points of the branch cut (dashed black line) after modifying the original Hamiltonian H

in Eq.(2.5) into H ′. The sign sIJ is flipped in H ′ along the branch cut comparing with

the original model. (red bond: sIJ = +1, blue bond: sIJ = −1) For any loop C enclosing

the Ising defect as the gray loop shown here, the product
∏
sIJ around the loop flips sign

comparing with the original model. In order that H ′binding does not cost extra energy, the

spin should be flipped wherever sIJ changes its sign. As a result, the total Sz around the

loop C is changed by an odd integer. The result is that Ising defect is topologically bound

with a half-integer spin. See the discussion in the main text.
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from which we know that the fractional charge part is determined by boson numbers on

the boundary only.

In order that the binding term after modification H ′binding does not cost energy, the

boson number ni on the bond IJ across the branch cut should be changed by 1. Since

C only crosses Ising defect line odd times, the total boson numbers around C should be

changed by 1(mod 2). From Eq. (2.13), this amounts to the change of charge within D by

1
2
(mod 1). This fact doesn’t depend on the position of the branch cut or the position of C

we have chosen, indicating that the extra 1
2

charge is bounded with the Ising defect. In the

original spin language it means Ising defect carries spin Sz = ±1/2.

Summary: Before proceeding let’s pay close attention to the symmetry property of the

Hamiltonian in Eq. (2.5). This model has the following Z2g×(U(1)oZ2h) onsite symmetry

1. Spin-rotation symmetry U(1):
∏
i

eiθ(S
z
i +

1
2
), with θ ∈ [0, 2π).

2. Spin-flip and Ising-flip symmetry Z2h = {I, h}:
∏
i

Sx
i

∏
I∈A

σx
I , which flips all the spins

on Kagome lattice and Ising d.o.f on A sublattice of the honeycomb lattice. This

symmetry operation leaves the Hamiltonian in Eq. (2.5) invariant.

3. Ising symmetry Z2g = {I, g}:
∏
I

σx
I , which flips all the Ising d.o.f. on the honeycomb

lattice.

The onsite symmetry group has the direct product structure G = Z2g×(U(1)oZ2h). In

addition, every unit cell (three kagome sites and two honeycomb sites) carries a nontrivial

projective representation of U(1)oZ2h (i.e. a half-integer spin). Naively one would suspect

that the LSM theorem would rule out a symmetric short-range-entangled state in such a

system. However, due to the frustrated nature of the gluing term, we actually have magnetic
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translation symmetry Tx, Ty in the system instead of usual translation T orig.
x , T orig.

y , which

can be written as

Tx = (
∏

I∈y-odd zigzag chains
σx
I )T

orig.
x ,

Ty = T orig.
y ,

(2.14)

which satisfy the magnetic translation algebra

TxTyT
−1
x T−1

y = g. (2.15)

Therefore it is still possible for us to have an SPT state. And we also know that the

g-defect carries Sz = ±1/2, which has the same projective representation as that carried

by the unit-cell. Below we will find that this is not merely a coincidence and there is

a deep connection between the patterns of short-range entanglement and the projective

representation carried by a unit-cell related by the magnetic translation algebra.

2.3 Main Results

Our main results are captured in two theorems. Theorem-I is easier to state but less general.

Theorem-II is more general but is more mathematically involved to state.

Consider a two-dimensional bosonic quantum system respecting an onsite symmetry

group G (which could contain time-reversal), and g is a unitary symmetry element in the

center of G (i.e., g commutes with any element in G). The system respects a “magnetic”

translation symmetry group generated by Tx, Ty satisfying the algebra:

TxTyT
−1
x T−1

y = g, (2.16)

where Tx, Ty are assumed to be the usual translation operations combined with certain site-

dependent onsite unitary transformations. We further assume that the physical degrees of
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freedom (d.o.f.) in each real space unit cell (not the enlarged magnetic unit cell) form a

nontrivial projective representation α of G, specified by a 2-cocycle: ∀a, b ∈ G,α(a, b) ∈

U(1) and α ∈ H2(G,U(1)). Precisely, the unitary or antiunitary transformation Ua, Ub of

a, b ∈ G satisfy:

Ua
aUb = α(a, b)Uab, (2.17)

where the left-superscript a in aUb denotes the group action of a on Ub: if a is unitary

(antiunitary), then aUb = Ub (aUb = U∗
b , i.e. complex conjugation of Ub).

We ask the following question: is it possible for such a system to have a short-range

entangled(SRE) gapped ground state without breaking symmetries?

Here we use the definition of SRE states following Ref. [12]; i.e., those are gapped

quantum phases that can be deformed into the trivial product state via local unitary

transformations. Note that if the system respects usual translational symmetries, this

would be impossible: constrained by a generalized Lieb Shultz Mattis theorem [1, 2, 4],

the nontrivial projective representation per unit cell indicates that a gapped liquid ground

state necessarily features topological order. Here because the system respects a magnetic

translation symmetry, it is possible that a SRE liquid ground state exists. We give sufficient

and necessary conditions for such a liquid phase to exist, and show that this SRE liquid

phase must be an SPT phase.

In the presence of an onsite symmetry group G, focusing on bosonic systems specified

by Eq.(2.16,2.17), we have the following theorems:
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Theorem-I: Here we further assume that G = G1 × ZN where ZN is the finite

abelian subgroup generated by g. The quantum system above can have a SRE liquid

ground state if and only if the two conditions below are both satisfied. Such a liquid

phase is necessarily a nontrivial SPT phase because the g-symmetry defect must carry

the projective representation α.

1. αN ≃ 1 ∈ H2(G,U(1)), i.e. N of these projective representations fuse into a

regular representation.

2. The group function (which maps elements of the symmetry group to phases, while

preserving the group relations) γαg (a) ≡ α(g,a)
α(a,g)

, ∀a ∈ G is a trivial 1-cocycle (or

equivalently, a trivial one-dimensional representation):

γαg ≃ 1 ∈ H1(G,U(1)).

What is the physical meaning of these two conditions? The first condition ensures that

the enlarged magnetic unit cell does not have projective representations. Interestingly, this

is not sufficient to ensure an SRE phase. Additionally, condition 2 must be satisfied, which

essentially states that the symmetry involved in magnetic translations, g, can be chosen to

commute with all other projective group actions in a proper gauge.

Theorem-II: Here we do not make extra assumptions on G. The quantum system

above can have a SRE liquid ground state if and only if there exists a 3-cocyle ω0:

∀a, b, c ∈ G,ω0(a, b, c) ∈ U(1) and ω0 ∈ H3(G,U(1)), such that the group function

δω0
g (a, b) ≡ ω0(g,a,b)ω0(a,b,g)

ω0(a,g,b)
is 2-cycle equivalent to α−1: δω0

g ≃ α−1 ∈ H2(G,U(1)). Such
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a liquid phase is necessarily a nontrivial SPT phase because the g-symmetry defect

must carry the projective representation α. The possible nontrivial SPT phases form a

coset from the classification point of view (see Remark below).

Remark: it is straightforward to show that ∀α ∈ H2(G,U(1)), γαg ∈ H1(G,U(1)).

And similarly ∀ω ∈ H3(G,U(1)), δωg ∈ H2(G,U(1)). The mappings γg : H2(G,U(1)) →

H1(G,U(1)) and δg : H3(G,U(1)) → H2(G,U(1)) reducing a n-cocycle to a (n − 1)-

cocycle are the so-called slant-products in mathematical context. γg and δg preserve the

multiplication relation in the cohomology group. In particular, there is a subgroup Ag ∈

H3(G,U(1)) such that ∀ω ∈ Ag, δ
ω
g ≃ 1 ∈ H2(G,U(1)), (i.e., Ag the kernal of the mapping

δg).

When the condition in Theorem-II is satisified, ω0 must be a nontrivial element in

H3(G,U(1)) because α is nontrivial by assumption. And the realizable SPT phases form a

coset from the classification point of view. More precisely, the 3-cocyle characterizing the

SRE liquid phase must be one of the element in the following coset: ω0 · Ag.

Outline of the proof: The proof of these theorems is a combination of a pumping

argument of entanglement spectra and derivations/constructions based on a recently de-

veloped symmetric tensor-network formulation [21], which we outline here. Basically, if a

SRE liquid phase exists, by the pumping argument of entanglement spectra one knows that

the g-symmetry-defect in this phase must carry the projective representation α, and conse-

quently this phase must be an SPT phase. This physical observation can be further justified

by calculations based on symmetric tensor-networks, leading to the following mathemati-

cal result: if the 3-cocycle characterizing the SRE liquid phase as ω ∈ H3(G,U(1)), then
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magnetic translation symmetry dictates δωg ≃ α−1, which is exactly the same mathematical

condition for the g-symmetry-defect carrying the projective representation α. In addition,

based on the symmetric tensor-network formulation, for any ω satisfying δωg ≃ α−1, a

SRE liquid phase characterized by ω respecting the magnetic translation symmetry can

be constructed. These prove that the conditions in Theorem-II are necessary and suffi-

cient for the SRE liquid phase to exist. In addition, when ω0 exists, because a 3-cocycle

ω ∈ H3(G,U(1)) satisfies δωg ≃ α−1 if and only if ω ∈ ω0 · Ag, the coset structure in the

Remark is also established.

Theorem-I is just a special case of Theorem-II. Namely when G = G1 × ZN , one can

show that if and only if the two conditions in Theorem-I is satisified does the condition in

Theorem-II is satisfied. The condition-(1) in Theorem-I is well anticipated. If condition-(1)

is not satisfied, then physical degrees of freedom form a nontrivial projective representation

of G even in the enlarged magnetic unit cell (N times larger than original unit cell), and the

generalized Lieb Shultz Mattis theorem [1,2,4] already forbids a SRE liquid phase to exist.

The condition-(2) is less obvious and more interesting, which puts additional constraints

for the existence of a SRE liquid phase (see example-(4) below).

Before going into the details of the proof, let us consider a few simple examples to see

the applications of the Theorems and the Remark.

2.3.1 Examples

In these examples, the element g in the magnetic translation algebra Eq.(2.16) generates a

ZIsing
2 ≡ {I, g} Ising symmetry group. For instance, a fully frustrated Ising model on the

square lattice would satisfy this magnetic translation symmetry. The symmetry-enforced
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SPT phases in example-(1,2,3) will be demonstrated via a class of decorated quantum dimer

models, which are exactly solvable at the Rokhsar-Kivelson points [27].

(1) G = SO(3)× ZIsing
2 , and a spin-1/2 per unit cell: Namely, the projective

representation α per unit cell is nontrivial because only the SO(3) part is projectively

represented, and the Ising and the spin-rotation still commute: α(g, a) = α(a, g), ∀a ∈ G.

Clearly the two conditions in Theorem-I are both satisified. First, two spin-1/2’s fuse into

a regular SO(3) representation, and γαg (a) = 1,∀a ∈ G.

According to Theorem-I, at least one SRE liquid phase can exist and must be an SPT

phase in which the g-symmetry-defect carries a half-integer spin. To understand how many

SPT phases are possibly realized, one can follow the Remark. 1 The result is that among

all possible SPT phases classified by H3(SO(3) × ZIsing
2 , U(1)) = Z × Z2

2 , only one of the

Z2 indices is enforced to be nontrivial. And there are many distinct SPT phases that can

be realized, which form a coset ω0 ·Ag, where Ag = Z×Z2. In particular, after gauging the

ZIsing
2 symmetry, one may obtain either the toric-code or double-semion topological order,

depending on which SPT phase is realized.

(2) G = ZT
2 × ZIsing

2 , and a Kramer doublet per unit cell: Here ZT
2 = {I, T } is

the time-reversal symmetrg group. Denoting the Ising and time-reversal transformations on

the physical d.o.f. in one unit cell as Ug, and UT (antiunitary), the projective representation

1SPT phases protected by G = SO(3)× ZIsing
2 form a group H3(SO(3)× ZIsing

2 , U(1)). The Kunneth

formula gives: H3(SO(3)×ZIsing
2 , U(1)) = H3(SO(3), U(1))×H3(Z2, U(1))×H2(SO(3), Z2) = Z×Z2×Z2.

Following the Remark, it is straightforward to show that only the Z2 index in H2(SO(3), Z2) is enforced to

be nontrivial. (Namely ω0 in Theorem-(2) can be chosen to be the nontrivial element in H2(SO(3), Z2),and

the kernal Ag = H3(SO(3), U(1))×H2(SO(3), Z2) = Z × Z2.)
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α per unit cell satisfies:

U2
g = 1, UT U

∗
T = −1, UT U

∗
g = UgUT . (2.18)

For instance, this algebra is satisfied if Ug = σx and UT = iτy for a four-dimensional

local Hilbert space (upon which σ and τ Pauli matrices act). One can check that the

two conditions in Theorem-(1) are both satisfied, and thus at least an SRE liquid phase

can exist and must be an SPT phase in which the g-symmetry-defect carries the projective

representation α (a Kramer-doublet) above.

Naively this example is very similar to the example-(1). However there is an important

difference. In this example, only one SPT phase can be realized — following the Remark,

this is because the kernel subgroup Ag is the trivial Z1 group. 2 After gauging the ZIsing
2

symmetry, one must obtain a toric code topological order. This realizable SPT phase is

topologically identical to the one obtained by decorating Ising domain walls with the ZT
2

Haldane chains [30].

(3) G = ZT
2 × ZIsing

2 , and a non-Kramer doublet per unit cell: Here the projective

representation α per unit cell satisfies:

U2
g = 1, UT U

∗
T = 1, UT U

∗
g = −UgUT . (2.19)

For instance, Ug = σx and UT = σz on a two-dimensional local Hilbert space would satisfy

this algebra. One can check that the two conditions in Theorem-(1) are both satisfied,

2Following the Kunneth formula: H3(ZT
2 × ZIsing

2 , U(1)) = H3(ZT
2 , U(1)) × H3(Z2, U(1)) ×

H2(ZT
2 , Z2) = Z1 × Z2 × Z2. In this example, the Z2 index in H2(ZT

2 , Z2) is enforced to be nontriv-

ial, and the Z2 index in H3(Z2, U(1)) is enforced to be trivial. This is because here ω0 in Theorem-2 is the

nontrivial element in H2(ZT
2 , Z2), and the kernel subgroup Ag = Z1.
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and thus at least an SRE liquid phase can exist and must be an SPT phase in which the

g-symmetry-defect carries the projective representation α (a Kramer-doublet) above.

Similar to example-(2), there is only one realizable SPT phase. This SPT phase turns

out to be the non-trivial Levin-Gu SPT phase protected by the ZIsing
2 alone. 3 Namely,

here after gauging the ZIsing
2 symmetry, one must obtain a double-semion topological order.

(4) G = Z′
2 × ZIsing

2 , and a projective representation per unit cell: In this exam-

ple, Z ′
2 = {I, h} is another unitary Ising symmetry group. The projective representation α

satisfies:

U2
g = 1, U2

h = 1, UgUh = −UhUg. (2.20)

For instance, Ug = σx, Uh = σz realize this algebra. Two of such projective representations

fuse into a regular representation of G, so the condition-(1) in Theorem-(1) is satisified.

But one can show that the condition-(2) is not satisfied:

γαg (h) = −1, (2.21)

i.e., γαg is a nontrivial 1-cocycle. Therefore according to Theorem-(1), a SRE liquid phase is

not possible. Without breaking symmetry, this suggests that topological order is inevitable

for gapped systems. This is a somewhat surprising result. If one views the system using

the enlarged magnetic unit cell, there is no reason why a SRE liquid is not allowed.

3Now in this example, ω0 in Theorem-2 is the nontrivial element in H3(Z2, U(1)), and the kernel

subgroup Ag = Z1.

41



2.4 Decorated Quantum Dimer Models for SPT phases

Closely related to the decorated-BFG model in Sec.2.2, in this section we describe a class

of exactly solvable models realizing symmetry-enforced SPT phases. These models are

constructed by decorating quantum dimer models(QDM) with relevant physical degrees of

freedom, whose ground states can be exactly solved at the corresponding Rokhsar-Kivelson

point [27]. Although this class of models can be generalized to other lattices, here we will

focus on the decoration of the QDM on the triangular lattice [32, 33]. In particular, we

will construct models realizing the symmetry-enforced SPT phases in example-(1,2,3) in

Sec.2.3.1

2.4.1 G = SO(3)× ZIsing
2 , a spin-1/2 per unit cell

Continuing with discussions in example-(1) in Sec.2.3.1, in the presence of onsite global

symmetry G = SO(3) × ZIsing
2 , we consider quantum systems with one spin-1/2 per unit

cell in two spatial dimensions respecting the Ising magnetic translation symmetry Eq.(2.16).

Note that we will reserve symbols Tx, Ty for the magnetic translations, and use T orig.
x , T orig.

y

to represent the original translations.

We will construct two exactly solvable models (model-A and model-B) respecting the

symmetry described above featuring SRE liquid ground states. Although the Ising defects

in both models carry half-integer spins, the two models are in distinct SPT phases. The

simplest way to understand their difference is that, after gauging the Ising symmetry, model-

A has toric-code topological order while model-B has double-semion topological order.

We start with constructing model-A. This model contains two sets of degrees of freedom

(d.o.f.): the Ising-d.o.f. σI which live on a honeycomb lattice and the spin-1/2-d.o.f. Si =
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Tx

Ty

σI
σJ

τj

τi

Figure 2.4: (color online) The Ising d.o.f. σ live on the honeycomb lattice and the spin

d.o.f. τ lives on the triangular lattice. The Ising coupling signs sIJ = +1 on red bonds,

and sIJ = −1 on blue vertical bonds. The thick red bonds represent the “y-odd zigzag

chains” used in Eq.(2.25,2.36 ). The thick gray horizontal bonds on the triangular lattice

represent the “y-odd rows” used in Eq.(2.36).

43



τi/2 which live on the triangular lattice formed by centers of the hexagons, as shown in

Fig.2.4. The Hamiltonian of model-A contains three terms:

H = HIsing +Hbinding +HA. (2.22)

where HIsing is simply a frustrated nearest-neighbor Ising model:

HIsing = −K
∑
⟨IJ⟩

sIJσ
z
Iσ

z
J . (2.23)

Here σz
I , σ

z
J are the Ising spins living on the honeycomb sites labled by I, J , the coupling

constant K > 0, and sIJ = ±1 defined as in Fig.2.4. Hbinding is an interaction between the

Ising-d.o.f. and spin-1/2-d.o.f., which commutes with HIsing:

Hbinding = −λ
∑

i j
I

J

1

2
(1− sIJσ

z
Iσ

z
J) · P̂Si+Sj=0, (2.24)

where λ > 0, i, j labels the sites on the triangular lattice, and the summation of “ ” is over

all intersection points between the triangular lattice and the honeycomb lattice as shown

in Fig.2.4. P̂Si+Sj=0 ≡ 1
4
−Si ·Sj is the operator projecting the two spin-1/2’s on site-i and

site-j into a spin singlet.

HA is more complicated and will be given in Eq.(2.29). It is straightforward to checked

that H respects the Ising symmetry Ug ≡
∏

I σ
x
I , the spin-rotation symmetry generated by∑

i Si. H also respects magnetic translation operations:

Tx = (
∏

I∈y-odd zigzag chains
σx
I ) · T orig.

x , Ty = T orig.
y , (2.25)

(see Fig.2.4), and the magnetic translation algebra Eq.(2.16) is satisfied. We will show that

the ground state of H is in a gapped liquid phase without topological order. According
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to our general results, this ground state must be in an SPT phase, which we will show

momentarily.

The physical consequence of HIsing and Hbinding is to provide a highly degenerate low

energy manifold, which will be lifted by HA. To understand the low energy manifold,

let us firstly consider HIsing. Because every hexagonal plaquette frustrated, there will be

at least one bond in each plaquette that is energetically unhappy. Namely the ground

state manifold of HIsing is formed by all possible Ising configurations satisfying the “one-

unhappy-Ising-bond-per-plaquette” condition.

Hbinding further constrains the spin-1/2 d.o.f. in the low energy manifold. It has effect

only on the Ising unhappy bonds (sIJσz
Iσ

z
J = −1), and energetically binds the two spin-1/2’s

near the unhappy Ising-bond into a spin singlet. The degenerate ground state manifold of

HIsing +Hbinding is now clear: it is formed by all such quantum states satisfying the “one-

unhappy-Ising-bond-per-plaquette” condition and the two neighboring spin-1/2’s normal

to every unhappy Ising-bond form a spin singlet.

It is well-known that the Ising configurations satisfying the “one-unhappy-Ising-bond-

per-plaquette” condition are intimately related to the Hilbert space of the QDM [34–36].

Pictorically, any such an Ising configuration can be mapped to a dimer covering (with one

dimer per site) on the triangular lattice by assigning a dimer crossing the unhappy Ising

bond. The effect of Hbinding is simply to energetically binds the two spin-1/2’s in each

dimer into a spin-singlet. Namely if the Ising configuration is given, the state of spin-1/2

d.o.f. is also fixed.

Similar to the model in Sec.2.2, there is a two-to-one mapping from the ground state

manifold of HIsing +Hbinding to the QDM Hilbert space, since two low energy states differ

45



by a global Ising transformation map into the same state in the QDM. Second, these states

only map to one specific topological sector of the QDM: The parity of the number of dimers

crossing a loop is simply given by the sign of the product
∏

⟨IJ⟩∈loop sIJ .

In fact, these relations between the Ising d.o.f. and the dimer d.o.f. can be viewed as

the well-known duality mapping between quantum Ising models and Z2 gauge theories [37].

The Ising paramagnet phase is dual to the deconfined Z2 gauge phase in the QDM, while the

Ising ordered phase is dual to the confined Z2 gauge theory. More precisely, the “unhappy-

Ising-bond” is dual to the electric flux line (i.e., the dimer) in the gauge theory, and the

“one-unhappy-Ising-bond-per-plaquette” condition in the low energy manifold on the Ising

side is dual to the “one-Z2-gauge-charge-per-site” condition in the QDM. Here, the only

new ingredient apart from this well-known duality is that there are also spin-1/2 d.o.f. on

the Ising side. But due to Hbinding, these spin-1/2’s form a pattern of spin singlets fixed by

the Ising d.o.f., and consequently the duality mapping is not modified after a convention

of the spin-singlet signs is given (see below).

After introducing HA, we will see that the degeneracy in the low energy manifold will

be lifted and the unique ground state on a torus sample is formed. The usual QDM

Hamiltonian on the triangular lattice is:

HTC
QDM = −t

∑
plaquettes

(
| ⟩⟨ |+ h.c.

)
+ v

∑
plaquettes

(
| ⟩⟨ |+ | ⟩⟨ |

)
, (2.26)

where the summation is over all plaquettes (rhombi): “ ”, “ ”, “ ”. The ground states of

this model are exactly known at the RK-point given by t = v > 0, and the superscript TC

is highlighting that the topological order is toric-code [32, 38] like in the deconfined phase
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(i.e., the usual Z2 gauge theory). At this point HTC
RK can be rewritten as a summation of

projectors [32]:

HTC
RK = t

∑
plaquettes

(
| ⟩ − | ⟩

)(
⟨ | − ⟨ |

)
. (2.27)

Clearly the equal weight superposition of all dimer coverings within any fixed topological

sector |ΦTC
RK⟩ =

∑
c |c⟩ (c labels possible dimer coverings) is one ground state of HTC

RK since

it is annihilated by all projectors.

Based on the duality mapping, HTC
QDM is mapped to HA. Any dimer covering |c⟩ will

be mapped to two Ising configurations |c1⟩ and |c2⟩ distinct from each other by a global

Ising transformation. One can further choose a translationally symmetric sign convention

for the spin-singlets on the nearest neighbor bonds along the three orientations:

| ⟩ ≡ 1√
2

(
|↑↑↑ ↓↓↓⟩ − |↓↓↓ ↑↑↑⟩

)
,

| ⟩ ≡ 1√
2

(∣∣
↑↑↑

↓↓↓ 〉
−
∣∣

↓↓↓
↑↑↑ 〉)

,

| ⟩ ≡ 1√
2

(∣∣ ↑↑↑
↓↓↓

〉
−
∣∣ ↓↓↓
↑↑↑

〉)
⟩. (2.28)

With this sign convention, given a c, |ci⟩ (i = 1 or 2) fully determines a state in the ground

state manifold of HIsing+Hbinding by replacing the dimer configuration by the corresponding

spin-singlet configuration. In addition, {|c1⟩, |c2⟩} for all c form a complete orthornormal

basis in this manifold.
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HA is defined as:

HA =− t

σz
I ,σ

z
J=±1∑

plaquettes

(∣∣ −σz
I

−σz
J
〉〈

σz
I

σz
J
∣∣+ h.c.

)

+ v

σz
I ,σ

z
J=±1∑

plaquettes

(∣∣ σz
I

σz
J
〉〈

σz
I

σz
J
∣∣

+
∣∣ σz

I

σz
J
〉〈

σz
I

σz
J
∣∣) (2.29)

Note that the t-term also flips the two Ising spins inside the plaquette. At the RK point

t = v > 0, HA can again be written as a summation of projectors:

HA
RK = t

σz
I ,σ

z
J=±1∑

plaquettes

(∣∣ −σz
I

−σz
J
〉
−
∣∣ σz

I

σz
J
〉)

·

(〈
−σz

I

−σz
J
∣∣− 〈 σz

I

σz
J
∣∣) (2.30)

To study the ground state of the total Hamiltonian H, it is suffice to focus on the degenerate

ground state manifold of HIsing + Hbinding, and clearly HA acts within this manifold. In

addition, it is straightforward to show that |ΦA
RK⟩ =

∑
c(|c1⟩ + |c2⟩), i.e, the equal weight

superposition of all states in this manifold, is a ground state of HA
RK because it is annihilated

by every projector in Eq.(2.30). |ΦA
RK⟩ is clearly a fully symmetric liquid wavefunction.

It is known that for the QDM Eq.(2.26), the RK point of H is exactly at a first-

order phase transition boundary between a deconfined gapped liquid phase (v < t) and a

staggered valence bond solid phase (v > t) [32]. Based on the duality mapping, the model-

A is in a fully symmetric gapped liquid phase for vc < v < t with a unique ground state on

torus. In the limit of K,λ ≫ v, t, vc is given by the same critical value vc ≈ 0.7t as in the

original QDM [32]. More precisely, in the global Ising-even sector of the Hilbert space of

model-A, this mapping to the Hilbert space of the QDM is given by 1/
√
2(|c1⟩+ |c2⟩) → |c⟩,

and clearly HA is mapped to HTC
QDM . Namely, the full energy spectrum of model-A in the
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Ising-even sector has a one-to-one correspondence with the full energy spectrum of HTC
QDM .

In addition, in the Ising paramagnetic phase, ground state in the global Ising-odd sector of

model-A has a finite excitation energy which is the same as the energy cost of a Z2 gauge

flux in the QDM.

Next we show that the liquid phase vc < v < t in model-A is an SPT phase because

the Ising defects carry half-integer spins. Similar to the discussion in Sec.2.2 (see Fig.2.3),

after a pair of Ising defects are spatially separated the original Hamiltonian H is modified

into H ′. Comparing with H, the sIJ flips sign in H ′ whenever the bond I − J crosses the

branch cut. Namely, for any loop on the honeycomb lattice enclosing a single Ising defect,

the product
∏
sIJ along the loop changes sign. In order not to cost H ′binding energy, the

parity of the number of dimers crossing this loop also flips. Consequently, an Ising defect

is topologically bound with a monomer (an unpaired site on the triangular lattice). This

monomer clearly carries a half-integer spin in model-A, which can be detected by the local

spin susceptibility at low temperatures.

Next, we demonstrate a different symmetry-enforced SPT phase using the model-B

defined as follows:

H = HIsing +Hbinding +HB. (2.31)

Comparing with the model-A in Eq.(2.22), only the last term is modified:

HB =v

σz
I ,σ

z
J=±1∑

plaquettes

(∣∣ σz
I

σz
J
〉〈

σz
I

σz
J
∣∣+ ∣∣ σz

I

σz
J
〉〈

σz
I

σz
J
∣∣)+

σz
I ,σ

z
J=±1∑ (

−it
∣∣ −σz

I

−σz
J
〉〈

σz
I

σz
J
∣∣+ h.c.

)

+

σz
I ,σ

z
J=±1∑ (

−it
∣∣ −σz

I

−σz
J

〉〈
σz
I

σz
J

∣∣+ h.c.

)
+

σz
I ,σ

z
J=±1∑ −it

∣∣ −σz
I

−σz
J

〉〈 σz
I

σz
J

∣∣+ h.c.


(2.32)
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One can straightforwardly check that the model-B defined in Eq.(2.31,2.32) also respects the

Ising symmetry, the SO(3) spin-rotation symmetry, and the magnetic translation symmetry

Eq.(2.16). Below we show that in a finite parameter regime v′c < v < t, the model-B is in

a gapped liquid phase, and this phase is another SPT phase.

In the ground state manifold of HIsing +Hbinding, the duality transformation maps HB

into the following QDM Hamiltonian:

HDS
QDM = v

∑
plaquettes

(
| ⟩⟨ |+ | ⟩⟨ |

)
+
∑
, ,

−it
(
| ⟩⟨ |+ | ⟩⟨ |+ | ⟩⟨ |

)
+ h.c. (2.33)

This QDM was firstly introduced and studied in Ref. [33], where the exactly solvable RK

point t = v has been shown to be adjacent a gapped liquid phase for v ≲ t. Interestingly,

this phase was demonstrated to have a double-semion topological order (the superscript DS

here is to highlight this fact). By the duality mapping, we know that in a finite parameter

regime v′c < v < t, the model-B is in a gapped liquid phase.

Similar to previous disussion on the model-A, it is straightforward to show that the

Ising defect in the gapped liquid phase of model-B also carries half-integer spin, so it is

also an SPT phase. To see the difference from the SPT phase realized in model-A, let us

consider the Ising symmetry only. It is known that Ising symmetry itself can protect two

paramagetic phases: the trivial phase and the SPT phase. Levin and Gu pointed out [39]

that the duality mapping maps the usual Ising paramagnet to the toric-code topological

order, while the nontrivial Ising SPT phase maps to the double semion topological order.

Consequently, the SPT phases realized in model-A and model-B are different because the

Ising symmetry alone already distinguishes them.

50



2.4.2 G = ZT
2 × ZIsing

2

Here we demonstrate symmetry-enforced SPT phases outlined in example-(2) and (3) in

Sec.2.3.1. Unlike the G = SO(3) × ZIsing
2 case, here we show that symmetry conditions

fully determine the SPT phase. The models below have the same Hilbert space as in the

G = SO(3)×ZIsing
2 case (i.e., σI on the honeycomb lattice and τi on the triangular lattice),

but with different symmetries defined.

A Kramer doublet per unit cell: A simple generalization is for example-(2) (i.e.,

a Kramer-doublet per unit cell) where we can recycle the model-A. Namely, defining the

Ising symmetry Ug =
∏

I σ
x
I as before and the antiunitary time-reversal symmetry as UT =

eiπS
y
= iτ y, clearly model-A respect all the required symmetries. In addition, we have

one Kramer doublet τ per unit cell. According to our discussion in example-(2), this SRE

liquid phase realized in vc < v < t must be an SPT phase in which the Ising defect carries

a Kramer doublet, which is obviously realized in model-A. In addition, after gauging ZIsing
2

symmetry, one necessarily obtains the toric-code topological order, which is confirmed in

model-A.

On the other hand, model-B, gauging which gives double-semion topological order,

explicitly breaks the time-reversal symmetry defined above.

A non-Kramer doublet per unit cell: Now let us move on to example-(3) in

Sec.2.3.1. In order to construct a model realizing the non-Kramer doublet projective rep-

resentation defined in Eq.(2.19), let us define the following symmetry operations:

Ug = τ z
∏
I

σx
I , UT = τ x. (2.34)

Consequently we have one non-Kramer doublet τ per unit cell. The model Hamiltonian in
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this example will be given by

H = HIsing + H̃binding + H̃B, (2.35)

where HIsing is given in Eq.(2.23), H̃binding is in Eq.(2.39). H̃B has the same form as HB in

Eq.(2.32), but with a modified interpretations of the dimers: replacing the | ⟩’s defined

in Eq.(2.28) by | ⟩’s and | ⟩’s defined in Eq.(2.37,2.38) depending the dimer positions

(see discussions below and Fig.2.5). Eventually we will show that in a finite regime v ≲ t

this model features a SRE gapped liquid ground state which is the Levin-Gu Ising SPT

phase, consistent with discussions in Sec.2.3.1.

We will construct a model similar toH = HIsing+Hbinding+..., but respecting a magnetic

translation operations different from Eq.(2.25) since Ug is now different. In particular, we

define magnetic translations:

Tx =
( ∏
i∈y-odd row

τ z
i

)( ∏
I∈y-odd zigzag chains

σx
I

)
T orig.
x ,

Ty = T orig.
y , (2.36)

(see Fig.2.4), which satisifies Eq.(2.16) with g =
∏

i τ
z
i

∏
I σ

x
I following Eq.(2.34). Although

HIsing still respects all the symmetries, Hbinding does not respect g and Tx. This is because

the usual spin singlets | ⟩ in the projector P̂Si+Sj=0 = | ⟩⟨ | does not respect g and

Tx. We therefore need to modify these dimer states and the projectors.

We define the following dimer states formed by the τ spins:

| ⟩ ≡ 1√
2

(
|↑↑↑ ↑↑↑⟩+ |↓↓↓ ↓↓↓⟩

)
,

| ⟩ ≡ 1√
2

(∣∣
↑↑↑

↑↑↑ 〉
+
∣∣

↓↓↓
↓↓↓ 〉)

,

| ⟩ ≡ 1√
2

(∣∣ ↑↑↑
↑↑↑

〉
+
∣∣ ↓↓↓
↓↓↓

〉)
⟩. (2.37)
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Figure 2.5: To construct model in Eq.(2.35), the dimer states living on the nearest neighbor

bonds on the triangular lattice have a spatial dependent pattern: the dimer states living

on the dashed bonds are defined in Eq.(2.37), and those living on the dotted bonds are

defined in Eq.(2.38).

Clearly these dimer states are both Ising and time-reversal even according to Eq.(2.34).

Under the magnetic translation Tx in Eq.(2.36), dimer states with | ⟩ and | ⟩

connecting even and odd rows on the triangular lattice will transform into the following

states:

| ⟩ ≡ 1√
2

(∣∣
↑↑↑

↑↑↑ 〉
−
∣∣

↓↓↓
↓↓↓ 〉)

,

| ⟩ ≡ 1√
2

(∣∣ ↑↑↑
↑↑↑

〉
−
∣∣ ↓↓↓
↓↓↓

〉)
⟩. (2.38)

Note that these dotted dimer states are Ising even, but time-reversal odd according to

Eq.(2.34). The magnetic translational symmetric assignment of the dimer states is given in

Fig.(2.5): the states | ⟩, | ⟩, | ⟩ are assigned on the dashed bonds, while the states

| ⟩, | ⟩ are assigned on the dotted bonds.

By replacing the spin singlets in P̂Si+Sj=0 = | ⟩⟨ | by the corresponding | ⟩⟨ |
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and | ⟩⟨ | in the spatial dependent fashion in Fig.2.5, we modify Hbinding naturally as

H̃binding = −λ
∑

i j
I

J

1

2
(1− sIJσ

z
Iσ

z
J) ·

(
| ⟩⟨ |

)

− λ
∑

i j
I

J

1

2
(1− sIJσ

z
Iσ

z
J) ·

(
| ⟩⟨ |

)
, (2.39)

Now HIsing+ H̃binding respects all the required symmetries, but one still need terms like

HA or HB to lift the ground state degeneracy to reach a SRE gapped liquid phase. In order

to preserve the Ising and magnetic translation symmetry, it is natural to replace the dimer

states | ⟩ by the corresponding | ⟩ and | ⟩. Let us denote the resulting modified

Hamiltonians as H̃A or H̃B. Both modified models HIsing + H̃binding + H̃A and HIsing +

H̃binding + H̃B are solvable, by duality mapping to the HTC
QDM and HDS

QDM respectively.

These two models both give SRE gapped ground states in the regime v ≲ t respecting the

magnetic translation symmetry and the Ising symmetry, gauging which give toric-code and

double semion topological order respectively.

Finally, let us consider the time-reversal symmetry in Eq.(2.19). Importantly, | ⟩’s are

time-reversal even while | ⟩ are time-reversal odd. As shown in the pattern Fig.2.5, any

dimer resonant term like | ⟩⟨ | will involve an odd number of | ⟩ states. Consequently,

only H̃B is time-reversal symmetric, while H̃A explicitly breaks the time-reversal. In fact

according to Theorem-I, it is impossible to have a SRE liquid respecting all the required

symmetries and gauging the Ising symmetry gives a toric code topological order.
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2.5 Proof of Theorems

Here we present a combination of physical argument and mathematical derivations based

on symmetric tensor network formulation [21,40–47]. We will focus on Theorem-II, and in

Appendix2.7.2 we show that Theorem-I can be viewed as its special case.

We need to show the condition in Theorem-II is necessary and sufficient for a SRE

liquid phase to exist, which must be an SPT phase. To show this condition is necessary,

we consider such a SRE liquid phase and the pumping of the entanglement spectra during

an adiabatic process in Sec.2.5.1, leading to an observation that a g-symmetry defect must

carry a projective representation α. In a SRE liquid phase characterized by 3-cocycle ω, we

use the symmetric tensor-network formulation in Sec.2.5.2 to establish that the projective

representation carried by a g-symmetry defect is given by (δωg )
−1. Since the projective

representation carried by a symmetry defect is physical and independent of formulation,

together with the pumping argument, the necessary condition in Theorem-II is established

independent of formulation.

As a complementary calculation, we also explicitly compute the projective representa-

tion carried by a g-symmetry defect in a SRE liquid phase representable within the sym-

metry tensor-network formulation in Appendix.2.7.5, which turns out to be α, consistent

with the previous discussion [48].

To further show that the condition is also sufficient, we will show that for any 3-cocycle

ω0 satisfying (δω0
g )−1 ≃ α, generic symmetric tensor network wavefunctions representing a

SRE liquid phase characterized by ω0 can be constructed in Sec.2.5.3.
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2.5.1 Entanglement Pumping argument

Here let us assume a SRE liquid phase exist. It is straightforward to show that after a local

unitary transformation (a site dependent Ug action) without changing the physical action

of G, one can always choose a gauge in which Ty = T orig.
y and Tx = (

∏
y−odd Ug) · T orig.

x .

Then we consider putting this SRE liquid on a infinite cylinder C along the x-direction,

with Ly number of unit cells across the y-direction loop. We choose Ly = ly ·N + dy where

ly, dy are integers, gN = I and 0 ≤ dy < N . Note that if dy ̸= 0 this choice of Ly will

explicitly break the Tx symmetry.

This infinite long cylinder can be viewed as a one-dimensional system, and for a large

enough Ly the onsite symmetry G will be respected. We will study the entanglement

spectrum of this one dimensional system at a particular cut x0 + 1/2. A SRE liquid

respecting G symmetry dictates that entanglement states at this cut carry a particular

projective representation ξ of G [49, 50].

Next, we adiabatically create a g-symmetry defect/anti-defect pair at a given y-coordinate

and separate them to infinity along the x-direction. After repeating this procedure for every

y-coordinate, we totally move Ly number of g-symmetry defects acrosses the entanglement

cut x0+1/2. As shown in Fig.2.6, the final Hamiltonian is related with the original Hamil-

tonian by the original translation operation T orig.
x . Therefore, the final entanglement states

at the cut x0+1/2 is equivalent to the initial entanglement states at a different cut: x0−1/2.

Because the initial entanglement states at x0−1/2 differs from the initial entanglement

states at x0 + 1/2 by a column of unit cells along y-direction, we conclude that the final

entanglement eigenstates at x0 +1/2 must carry the αdy · ξ projective representation. This

pumping of the entanglement projective representation can only be explained by the pro-
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x0+1/2

Figure 2.6: Illustration of adiabatically separating a pair of g-defect/antidefect along the x-

direction with g3 = I. For simplicity, one may imagine Hamiltonian to host nearest neighbor

(NN) terms. Along the x-direction, due to the magnetic translation symmetry Eq.(2.16),

the NN interactions on the vertical bonds have a three-unit-cell periodicity (solid,dashed

and dotted bonds). While the g-defect crosses the entanglement cut at x0 + 1/2, the

Hamiltonian along the branch cut (dashed gray line) is effectively translated along x-

direction by one unit cell. After separating such pairs of defects for every row, the final

Hamiltonian is related to the original Hamiltonian by T orig.
x .
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jective representation α̃ carried by a g-symmetry defect, and (α̃)Ly ≃ αdy . But because N

g-defect fuse into a trivial object, we must have (α̃)N ≃ 1. Consequently α̃ = α.

2.5.2 Symmetry-enforced constraints on SPT cocycles

Here we consider an SPT wavefunction represented using the symmetric tensor-network for-

mulation [21]. The advantage of this formulation is that it allows us to introduce symmetry

defects conveniently.

The local symmetry transformation of an onsite symmetry a on a g-defect is given by the

application of of Ua inside a disk D covering the g-defect, together with an application of

unitary operations on the virtual degrees of freedom on the boundary of D. This boundary

operation should be defined in such a way that after these two operations, no excitation is

created near the boundary of D. In Appendix 2.7.4 we explictly constructed such bound-

ary operations. With these boundary operations, we explicitly show that the projective

representaion carried by the g-defect is given by (δωg )
−1 in an SPT phase characterized by

the 3-cocycle ω, which is given without proof in Ref. [48].

2.5.3 Generic constructions of Symmetry-enforced SPT wave-

functions

Our strategy here is to start from an SPT state characterized by a 3-cocycle ω with a regular

representation of G per unit cell and respecting the usual translation symmetry T orig.
x , T orig.

y .

Such a state can be generically represented using the symmetric tensor-network formula-

tion [21]. In particular, the symmetric tensor-network needs to satisfy a collection of

algebraic equations (constraints). Then we show that after properly modifying these alge-
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braic constraints, the new tensor-network will respect the magnetic translation symmetry

Tx, Ty, at the same time the physical d.o.f. must carry a projective representation (δωg )
−1

per unit cell (otherwise the wavefunction vanishes). The tensor-network states satisfying

these modified constraints are generic constructions of the SPT states in Theorem-II.

The details of the construction can be found in Appendix 2.7.6.

2.6 Discussion

Generalized Hastings-Oshikawa-Lieb-Schultz-Mattis theorems put strong constraints on

possible symmetric quantum states of matter. In particular, in the presence of transla-

tion symmetry and a projective representation of the onsite symmetry group per unit cell,

it is impossible to have a gapped short-range entangled (SRE) symmetric ground state.

In this chapter we discuss that in the presence of magnetic translation symmetry, gapped

SRE symmetric ground states could exist, which are enforced to be symmetry protected

topological (SPT) phases. Focusing on bosonic systems in two spatial dimensions, we pro-

vide the generic necessary and sufficient condition for such symmetry-enforced SPT phases

to occur in Theorem-I and II. When the condition is satisified, we sharply characterize the

coset structure of the realizable SPT phases in the Remark.

The condition-(2) in Theorem-I is particular non-obvious. It states that if symmetries

protecting the fractional spin (projective representation) per unit cell and those generating

the magnetic translations fail to commute with one another, then SRE liquid state is

impossible even if the fractional spins fuse into an integer spin (regular representation) in

the magnetic unit cell.
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In addition, we design a class of decorated quantum dimer models realizing some of

these symmetry-enforced SPT phases, which are exactly solvable at the corresponding

Rokhsar-Kivelson points. A particularly simple model realizing a symmetry-enforced SPT

phase is given in Sec.2.2 by coupling a Balents-Fisher-Girvin spin liquid with a layer of

pure-transverse-field Ising spins via three-spin interactions. This model also demonstrates

the route to obtain SPT phases via condensing anyons in SET phases [21, 22].

It is interesting to consider the situation of fermions with magnetic translation symme-

tries, in which case (generalized) Hastings-Oshikawa-Lieb-Schultz-Mattis theorem apply for

fractional filled systems with regular translation symmetries. In fact, earlier works [13, 14]

establish the magnetic translation symmetry protected integer Hall conductivity, and a

recent work by Wu et.al. studied the magnetic translation enforced quantum spin Hall

insulators in fractionally filled fermionic systems [15]. Connecting with these works, the

present work focuses on bosonic systems with projective representation per unit cell, but

obtains systematic results.
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2.7 Appendices

2.7.1 Perturbation study of the decorated Balents-Fisher-Girvin

model

The Hamiltonian for the decorated BFG model can be split into two parts

Hdeco.BFG = H0 +H1,

H0 = Jz
∑
7

(Sz7)2 −
∑

I
i

J

λSz
i (sIJσ

z
Iσ

z
J),

H1 = J⊥
∑
(i,j)

S+
i S

−
j +

∑
I

hσx
I ,

(2.40)

where (i, j) runs over first, second, third neighbors within a hexagon of Kagome plaquette.

Let’s take the limit Jz, λ ≫ J⊥, h and only focus on the low energy Hamiltonian in

the ground state manifold of H0. Then we can treat H1 as a small perturbation and use

the conventional Brillouin-Wigner perturbation to derive the effective Hamiltonian. The

effective Hamiltonian is then given by (take E0 as the ground state energy of H0),

Heff = E0 + Pg(H1 +H1G
′
0H1 +H1G

′
0H1G

′
0H1 + · · · )Pg, (2.41)

where G′
0 = Pe(E0 − H0)

−1Pe and Pg/Pe are the projector onto the the ground/excited

states of H0.

We will work under the limit Jz ≫ λ and calculate the effective Hamiltonian order by

order to find the leading non-constant terms in J⊥ and h since we have not specified the

relation between them yet. Let’s denote N as the number of Kagome unit-cell. The zeroth

order energy is E0 = −3
2
Nλ. Higher order terms are as follows:

1. H(1)
eff = PgH1Pg = 0.
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2. H(2)
eff = PgH1G

′
0H1Pg = −9N

J2
⊥

2Jz+2λ
−2N · h2

3λ
. The first term comes from the process of

switching a pair of spin-up and spin-down and then switching back within a hexagon.

The second term comes from the process of flipping a Ising d.o.f. twice. To this order,

we only have constant terms.

3. H(3)
eff = PgH1G

′
0H1G

′
0H1Pg =

J3
⊥

(2Jz+2λ)2

∑
(i,j,k)

(S+
i S

−
k S

+
k S

−
j S

+
j S

−
i + S+

j S
−
k S

+
i S

−
j S

+
k S

−
i ),

where the summation runs over all ordered triplets (i, j, k) with (i, j), (j, k), (k, i)

appearing in H1. The term S+
i S

−
k S

+
k S

−
j S

+
j S

−
i = (1/2 + Sz

i )(1/2 − Sz
j )(1/2 − Sz

k)

measures the energy of the configuration with Sz
i = 1/2, Sz

j = −1/2, Sz
k = −1/2.

And the term S+
j S

−
k S

+
i S

−
j S

+
k S

−
i = (1/2 + Sz

i )(1/2 + Sz
j )(1/2 − Sz

k) measures the

energy of the configuration with Sz
i = 1/2, Sz

j = 1/2, Sz
k = −1/2. To this order, the

term does depend on the spin configuration and is the leading non-constant term in

J⊥.

4. H(4)
eff = PgH1G

′
0H1G

′
0H1G

′
0H1Pg = −10J2

⊥h2

9Jzλ2

∑
▷◁

(
∣∣ ↓ ↑

↑ ↓

−σz
I

−σz
J

〉〈 ↑ ↓

↓ ↑

σz
I

σz
J

∣∣+ h.c.) +O(h
4

λ3 ) +

O(
J2
⊥h2

Jzλ2 ) + O(
J4
⊥
J3
z
), where we have used the limit Jz ≫ λ. The first term is a kinetic

term which is the leading non-constant contribution in h. The latter three terms

are not written out explicitly due to the following reason. Terms proportional to

J4
⊥
J3
z

are less significant compared to that from the 3-rd order perturbation. Terms

proportional to h4

λ3 (process of flipping two different Ising d.o.f. twice) is a constant.

And the potential term proportional to J2
⊥h2

Jzλ2 (process of separately flipping Ising d.o.f

twice and exchanging spin-up and down twice) is also a constant in the limit Jz ≫ λ.

The leading non-constant terms are terms of order J3
⊥
J2
z

and terms of order J2
⊥h2

Jzλ2 , where

the latter is what we want. So we further require h2

λ2 ≫ J⊥
Jz

such that the term obtained
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from the 3rd-order perturbation can be neglected.

Then we achieve the decorated BFG model

Heff = −10J2
⊥h

2

9Jzλ2

∑
▷◁

(
∣∣ ↓ ↑

↑ ↓

−σz
I

−σz
J

〉〈 ↑ ↓

↓ ↑

σz
I

σz
J

∣∣+ h.c.) (2.42)

in the parameter regime where Jz ≫ λ≫ J⊥, h and h2

λ2 ≫ J⊥
Jz

.

2.7.2 Theorem-I as a special case of Theorem-II

Necessary condition for the existence of SRE state: constraints on the on-

site projective representation First we prove that only when the on-site projective

representation α satisfies the following 2 conditions is a SRE ground state possible.

1. αN ≃ 1 ∈ H2(G,U(1)).

2. γαg (a) ≃ 1 ∈ H1(G,U(1)).

Suppose the unit-cell is enlarged along x-direction to include N original unit-cell, then

we have TN
x TyT

−N
x T−1

y = gN = 1,i.e., we have usual translation TN
x , Ty in the enlarged unit-

cell. From Hastings’ theorem we know that for a SRE ground state to exist, the enlarged

unit-cell must carry usual representation. Hence we know αN is a trivial 2-cocycle.

Next, we know from Theorem-II that for such a SRE state to exist, there must exist a

3-cocycle ω ∈ H3(G,U(1)), such that δωg (a, b) = α(a, b)−1 up to a 2-coboundary. By tuning

the 2-coboundary of α(a, b), we are tuning the 1-coboundary of γαg (a). Therefore we have

γαg (a) ≃ γωg (a), where γωg (a) ≡
δωg (a,g)

δωg (g,a)
.

δωg (a, g) =
ω(a, g, g)ω(g, a, g)

ω(a, g, g)
= ω(g, a, g),

δωg (g, a) =
ω(g, a, g)ω(g, g, a)

ω(g, g, a)
= ω(g, a, g).

(2.43)
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Therefore we always have γωg (a) = 1, which means γαg (a) ≃ 1 ∈ H1(G,U(1)).

Sufficient condition for the existence of SRE state: explicit construction of

the 3-cocycle We shall show that the necessary condition given in the last section is also

sufficient. To be more specific, we will construct a 3-cocycle ω ∈ H3(G,U(1)) out of α

given αN ≃ 1 ∈ H2(G,U(1)) and γαg (a) ≃ 1 ∈ H1(G,U(1)), such that δωg (a, b) = α(a, b)−1.

From Theorem-II, we know that such an SRE state described by 3-cocycle ω ∈ H3(G,U(1))

always exist, which completes our proof of Theorem-I.

Let’s first fix a canonical gauge of α(a, b). Due to the direct product structure G =

G1 × ZN , we denote a general group element a ∈ G as

a = gnaha, na = 0, 1 · · ·N − 1, ha ∈ G1. (2.44)

We are given the condition that αN is a trivial 2-cocycle in H2(G,U(1)). Let’s first

tune the 2-coboundary of α(a, b) such that αN = 1. Then α(a, b) ∈ ZN .

We also know that

γαg (a) ∈ B1(G,U(1)). (2.45)

If G1 is a unitary group, then γαg (a) ≡ 1. If G1 has anti-unitary operations, we should

generally represent γαg (a) as the 1-coboundary γ
aγ

.

Therefore we know that

α(g, a)

α(a, g)
=

γ
aγ

∈ ZN ,→ γ ∈ Z2N . (2.46)

We choose the 2-coboundary δ(a) = δ(g)na where δ(g) = γN−1.

Then under the 2-coboundary δ(a) we have

α(a, b) → δ(g)na ·a (δ(g)nb)

δ(g)⟨na+nb⟩N
α(a, b), (2.47)
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where ⟨n⟩N = n for n < N and ⟨n⟩N = n−N for n ≥ N .

Here the change of α(a, b) is always a ZN element since

δ(g)na ·a (δ(g)nb)

δ(g)⟨na+nb⟩N

=


(
aγ
γ
)(N−1)nb ∈ ZN , if na + nb < N.

(
aγ
γ
)(N−1)nb · γN(N−1) ∈ ZN , if na + nb ≥ N.

(2.48)

Then after the change of 2-coboundary, we still have αN = 1.

But γαg (a) is changed as follows

γαg (a) =
α(g, a)

α(a, g)
→ δ(g)

aδ(g)
· γ
aγ

=
γN

aγN
= 1, (2.49)

where we have used Eq. (2.48) and the fact that γ2N = 1. Then after the change of

2-coboundary we always have γαg (a) = 1.

In summary, we have fixed αN = 1 and α(g, a) = α(a, g) as the canonical gauge choice.

With the condition αN = 1 and α(g, a) = α(a, g), we can explicitly construct the

3-cocycle as follows:

ω(a, b, c) = [α(b, c)−1]nasa , sa = 1/− 1 for a unitary/anti-unitary. (2.50)

First let’s prove ω(a, b, c) is indeed a 3-cocycle. We have

ω(a, b, c)ω(a, bc, d)ω(b, c, d)sa

= [α(b, c)−1]nasa [α(bc, d)−1]nasa [α(c, d)−1]nbsasb

= [α(c, d)−1]nasasb [α(b, cd)−1]nasa [α(c, d)−1]nbsasb ,

(2.51)

where in the last equality we have used the 2-cocycle condition of α, i.e.,

α(b, c)α(bc, d) = α(c, d)sbα(b, cd). (2.52)
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And we also have

ω(ab, c, d)ω(a, b, cd)

= [α(c, d)−1](⟨na+nb⟩N )sasb · [α(b, cd)−1]nasa ,

(2.53)

which equals Eq. (2.51) since αN = 1. Therefore ω satisfies the 3-cocycle condition

ω(a, b, c)ω(a, bc, d)ω(b, c, d)sa = ω(ab, c, d)ω(a, b, cd). (2.54)

Next we show that the slant product of ω with respect to g gives us α−1,

δωg (a, b) =
ω(a, b, g)ω(g, a, b)

ω(a, g, b)
=

[α(b, g)−1]nasa [α(a, b)−1]

[α(g, b)−1]nasa

= α(a, b)−1,

(2.55)

where we have used α(b, g) = α(g, b).

2.7.3 A brief introduction to symmetric tensor network repre-

sentation of SPT phases

In this appendix we want to briefly summarize the symmetric tensor network representation

of SPT phases and fix the notations for future convenience. More details of the general

formalism can be found in Ref. [21,47]. Basic set-up Let’s consider a PEPS state formed

by infinite numbers of site tensors and discuss the symmetry implementation on such state

[40–47]. We assume that for a symmetric PEPS the symmetry transformed tensors and the

original tensors are related by a gauge transformation:

Wgg ◦ T = T, (2.56)

where T is the tensor states with all internal legs uncontracted and Wg is the product of

the gauge transformation acting on all internal legs of the tensor network.
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The invariant gauge group (IGG) is the group of all the gauge transformations leaving

the uncontracted tensor T invariant. These are denoted as global IGG in contrast to the

plaquette IGG introduced later. The global IGG naturally arises from the following tensor

equations:

T = WaaWbb ◦ T = Wabab ◦ T, (2.57)

from which we know that

Wa ·a Wb = η(a, b)Wab, (2.58)

where η(a, b) should leave the tensor invariant and hence is an IGG element.

And we have the associativity condition for η(a, b):

η(a, b)η(ab, c) =Waa η(b, c)η(a, bc). (2.59)

The global IGG elements are a characteristic of symmetry breaking or topological order.

In order to obtain an SPT state, we require all the global IGG elements can be decomposed

into the product of plaquette IGG elements as shown in Fig 2.7, i.e., η(a, b) =
∏

p λp(a, b).

There is a global phase ambiguity in such decomposition, namely we have
∏

p λp =
∏

p χpλp

with χp a global phase since
∏

p χp = I. The decomposible global IGG tells us that

topological order is killed and the resulting phases should be an SPT phase described by

the 3-cocycle ω, which arises as the phase ambiguity when lift Eq. (2.59) to plaquette IGG,

λp(a, b)λp(ab, c) = ωp(a, b, c)
Waaλp(b, c)λp(a, bc). (2.60)

The ω shown above is a well-defined 3-cocycle since the phase ambiguities in λ will only

modify it by a 3-coboundary.

Representation of δωg (a, b) using plaquette IGG In this subsection we want to give

a representation of the slant product δωg (a, b) in terms of plaquette IGG for an SPT state
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Figure 2.7: The decomposition of global IGG into plaquette IGG. λ’s from different pla-

quettes commutes with each other, and the action of any two λ’s in the same plaquette

leave the tensor invariant.

characterized by 3-cocycle ω, where g lies in the center of the whole symmetry group G.

First, from definition we have

δωg (a, b) =
ω(a, b, g)ω(g, a, b)

ω(a, g, b)
(2.61)

The 3-cocycle arises from the decomposition of global IGG into the plaquette IGG, see

Eq. (2.60). Therefore in order to compute δωg (a, b), we need the following equations:

λp(a, b) · λp(ab, g) = ω(a, b, g) ·a λp(b, g) · λp(a, bg),

λp(g, a) · λp(ga, b) = ω(g, a, b) ·g λp(a, b) · λp(g, ab),

λp(a, g) · λp(ag, b) = ω(a, g, b) ·a λp(g, b) · λp(a, gb).

(2.62)

Writing Eq. (2.62) in a more convenient way (we ignore the subscript p henceforth):

ω(a, b, g) = λ−1(a, bg) ·Waa λ−1(b, g) · λ(a, b) · λ(ab, g),

ω(g, a, b) = λ−1(g, ab) ·Wgg λ−1(a, b) · λ(g, a) · λ(ga, b),

ω−1(a, g, b) = λ−1(ag, b)λ−1(a, g) ·Waa λ(g, b) · λ(a, gb).

(2.63)
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We have

δωg (a, b) = [ω(g, a, b)] · [ω−1(a, g, b)] · [ω(a, b, g)]

= λ−1(g, ab) ·Wgg λ−1(a, b) · [λ(g, a) · λ−1(a, g)]

·Waa [λ(g, b) · λ−1(b, g)] · λ(a, b) · λ(ab, g)

(2.64)

We can simplify Eq. (2.64) by defining WggWaa = ξa(g)Waa, a ∈ G, where ξa(g) =∏
λa(g). Another way of computing ξa(g) is

ξa(g) = WggWaa(Wgg)
−1(Waa)

−1 = η(g, a)η−1(a, g)

→ λa(g) = λ(g, a)λ−1(a, g).

(2.65)

Then Eq. (2.64) becomes

λa(g) ·Waa λb(g) = δωg (a, b) ·Wgg λ(a, b) · λab(g) · λ−1(a, b). (2.66)

2.7.4 The projective representation carried by a g-symmetry-

defect

In this section we want to give a tensor proof of the following fact [48]: for an SPT state

characterized by the 3-cocycle ω(a, b, c) ∈ H3(G,U(1)), the projective representation car-

ried by the symmetry g-defect is represented by the inverse of the slant product [δωg (a, b)]−1.

To this end, we first create an open g-defect string with a pair of g-defects on the two

ends in the given ground-state SPT wave-function |Ψ⟩. The wave-function is denoted as

|Ψdefect⟩. This is done in the tensor language by inserting Wg strings and modifying the

tensors close to the defect core as shown in Fig. 2.8.

Let’s take a patch enclosing one of the two g-defects and measure the projective repre-

sentation carried by the g-defect. Before the insertion of the g-defect, the local symmetry
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action U(a) on the patch is defined as acting Wa on the virtual legs on the edge and D(a)

on the physical legs inside the patch, i.e.,

U(a) =
∏

boundary
Wa

∏
bulk

D(a). (2.67)

The symmetry operation should leave |Ψ⟩ invariant up to a phase. Then the projective

representation inside the patch is measured by acting

D(a) ·D(b) · [D(a ◦ b)]−1 (2.68)

on the physical legs inside the patch. Alternatively, we can do this by monitoring the

inverse of the phase generated by acting η(a, b) ≡ Wa ·a Wb · (Wab)
−1 on the boundary

virtual legs since, by our assumption, the action of U(a)U(b)U(ab)−1 leaves the patch fully

invariant.

In general , acting η(a, b) on the virtual legs of a tensor leaves the tensor invariant only

up to a phase. Therefore η itself is not a global IGG. Instead, we have

η(a, b) = Wx(a, b)η
′(a, b), (2.69)

where Wx(a, b) is a pure-phase gauge transformation which yields the extra phase for each

site and η′(a, b) leaves every tensor invariant. Now η′(a, b) is decomposable and we denote

it as η′(a, b) =
∏
λp(a, b).

As for our present case, suppose we have the action of
∏

boundary
η(a, b) on the ground

state wave-function ∏
boundary

η(a, b) |Ψ⟩ = eiϕ |Ψ⟩ , (2.70)

from which we know that the projective representation inside the patch is just
∏

bulk(D(a) ·

D(b) · [D(a ◦ b)]−1) = e−iϕ.
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From the previous discussion we have

e−iϕ
∏

boundary
η(a, b) =

∏
boundary

η′(a, b). (2.71)

After the insertion of g-defect, the new local symmetry operation U g(a) should be

defined as acting W̃a on the virtual legs on the edge and D(a) on the physical legs inside

the patch. Here we have used the W̃a as shown in Fig. 2.9 where W̃a on the bond crossing the

defect line is changed to be [λa(g)](d) ·Wa and remains Wa elsewhere. This newly-defined

W̃a ensures that no boundary excitations are created. The physical symmetry operation in

the bulk should still be the same.

We will then use
∏

boundary η̃(a, b) to measure the projective representation inside the

patch, where η̃(a, b) ≡ W̃a ·a W̃b · (W̃ab)
−1. Far away from the defect core, the tensor

wave-function is basically the same as before. And
∏

boundary η̃(a, b) will be the same as∏
boundary η(a, b) except at the bond crossing the defect line, see Fig. 2.10. The η̃(a, b) at

the bond crossing the defect line should be W̃a ·a W̃b · (Wab)
−1:

[λa(g)](d) ·Wa ·a [λb(g)](d) ·a Wb · ([λab(g)](d) ·Wab)
−1

= [λa(g)](d) ·Waa [λb(g)](d) ·Wa ·a Wb · (Wab)
−1[λ−1

ab (g)](d)

= [λa(g)](d) ·Waa [λb(g)](d) · η(a, b) · [λ−1
ab (g)](d).

(2.72)

We can work with the decomposable η′(a, b) at the boundary if we keep track of the eiϕ

phase. After going through the calculation as shown in Fig. 2.10, we have

∏
bdr

η̃(a, b) |Ψdefect⟩ = eiϕδωg (a, b) |Ψdefect⟩ . (2.73)

Comparing Eq. (2.70) with Eq. (2.73) and note that projective representation is defined

through the inverse of Eq. (2.70), we know that the g-defect carries [δωg (a, b)]
−1 projective

representation.
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2.7.5 Consequence of the magnetic translation symmetry in tensor-

network formulation

The magnetic translation symmetry and on-site projective representation constrain the

possible symmetric short-range entangled states in a system. Specifically, we have the

following fact: for a system with on-site projective representation of the on-site symmetry

group G characterized by α(a, b) and magnetic translation symmetry TxTyT−1
x T−1

y = g, an

SPT ground state described by the 3-cocycle ω ∈ H3(G,U(1)) can be realized as its ground

state only when δωg (a, b) = α(a, b)−1.

Basic set-up We have TxTyT−1
x T−1

y = g, which leads to

WTxTxWTyTy(WTxTx)
−1(WTyTy)

−1 = Wgg. (2.74)

We define η(a, b) as

Wa ·a Wb = η(a, b)Wab. (2.75)

By acting η(a, b) on T, we will get an extra phase α(a, b)−1 per unit-cell, therefore it is

not a global IGG. However, we can define a pure-phase gauge transformation W (α(a, b))

which yields exactly the phase α(a, b)−1 for every site tensor, see Fig. for an illustration.

Then we can write η(a, b) as

η(a, b) = W (α(a, b))η′(a, b), (2.76)

where η′(a, b) =
∏
λ(a, b) is an IGG and is decomposable.

Similarly since we have D(g) ◦D(a) = γa(g)D(a) ◦D(g) on physical leg, where γa(g) =

α(g, a)/α(a, g) ∈ H1(G,U(1)). We write the action of Wgg on Waa as

WggWaa = W (γa(g))ξa(g) ·Waa, (2.77)
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where ξg(a) =
∏
λg(a) is a decomposable IGG element and the definition of W (γa(g)) is

the same as W (α(a, b)).

And as for Tx, Ty, we have

WTxTxWaa = W (γa(Tx))ξa(Tx)Waa, etc.. (2.78)

We act Eq. (2.74) on Waa and obtain an IGG equation

Wggξ−1
a (Ty) ·WggWTyTy ξ−1

a (Tx) ·WTxTx ξa(Ty) · ξa(Tx) = ξa(g), (2.79)

which, when lift to plaquette IGG, should give us (we have absorbed the phase ambiguity

into the definition of λa(g))

Wggλ−1
a (Ty) ·WggWTyTy λ−1

a (Tx) ·WTxTx λa(Ty) · λa(Tx) = λa(g). (2.80)

Acting Wgg We first act Wgg on Eq. (2.75), then we have

Wgg[WaaWbb] =
Wgg [η(a, b)Wabab]

⇒ W (γa(g)) ·a W (γb(g))ξa(g) ·Waa ξb(g) ·WaaWbb

=Wgg η(a, b) ·W (γab(g))ξab(g)Wabab,

(2.81)

which then leads to

ξa(g) ·Waa ξb(g) =
Wgg η′(a, b) · ξab(g) · η′−1(a, b), (2.82)

where extra phase factors W (α(a, b)), W (γa(g)) all cancel.

When lifting Eq. (2.82) to plaquette, we have (from Eq. (2.66))

λa(g) ·Waa λb(g) = δωg (a, b) ·Wgg λ(a, b) · λab(g) · λ(a, b)−1. (2.83)

Acting translation We have another way of deriving Eq. (2.83). We first act WTxTx

on the two sides of Eq. (2.75) and obtain an IGG equation,

ξa(Tx) ·Waa ξb(Tx) =
WTxTx η(a, b) · ξab(Tx)η(a, b)−1, (2.84)
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where the extra W (γa(Tx)),W (γb(Tx)),W (γab(Tx)) cancel since we have γa(Tx) ·a γb(Tx) =

γab(Tx).

When lift Eq. (2.84) to plaquette IGG, we have

λa(Tx) ·Waa λb(Tx) = [α(a, b)]−y ·WTxTx λ(a, b)λab(Tx)λ
−1(a, b), (2.85)

where
∏
[α(a, b)]−y =WTxTx W (α(a, b)) ·W (α(a, b))−1 and the plaquette IGG [α(a, b)]−y are

just loops of phases as shown in Fig. 2.12.

Similarly we have

λa(Ty) ·Waa λb(Ty) =
WTyTy λ(a, b)λab(Ty)λ

−1(a, b), (2.86)

where there is no extra factor coming from WTyTyW (α(a, b)) ·W (α(a, b))−1 since it is Ty

invariant.

With Eq. (2.85) and Eq. (2.86) we can explicitly calculate the action of

WTxTxWTyTy(WTxTx)
−1(WTyTy)

−1

on Eq. (2.75) in terms of plaquette IGG. The action of WTxTxWTyTy(WTxTx)
−1(WTyTy)

−1
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on LHS of Eq. (2.75) is

Wgg[λa(Ty) ·Waa λb(Ty)]
−1 ·WggWTyTy [λa(Tx)

Waaλb(Tx)]
−1

·WTxTx [λa(Ty)
Waaλb(Ty)] · [λa(Tx)Waaλb(Tx)]

=WggWaa λ−1
b (Ty) ·Wgg [λ−1

a (Ty) ·WTyTyWaa λ−1
b (Tx)

WTyTyλ−1
a (Tx)]

·WTxTx λa(Ty) ·WTxTxWaa λb(Ty) · λa(Tx)Waaλb(Tx)

= λa(g)
WaaWggλ−1

b (Ty) · λ−1
a (g) ·Wgg [WaaWTyTyλ−1

b (Tx)λ
−1
a (Ty)

WTyTyλ−1
a (Tx)]

·WTxTx λa(Ty) · λa(Tx)

·WaaWTxTx λb(Ty) ·Waa λb(Tx)

= λa(g) ·WaaWgg λ−1
b (Ty) ·WaaWggWTyTy λ−1

b (Tx) · [λ−1
a (g)Wggλ−1

a (Ty)
WggWTyTyλ−1

a (Tx)

·WTxTx λa(Ty)λa(Tx)]

·WaaWTxTx λb(Ty)
Waaλb(Tx)

= λa(g) ·Waa [Wggλ−1
b (Ty) ·WggWTyTy λ−1

b (Tx) ·WTxTx λb(Ty)λb(Tx)]

= λa(g) ·Waa λb(g),

(2.87)

where we have used Eq. (2.77) and Eq. (2.78) in the first three equalities and we have used

Eq. (2.80) in the last two equalities.
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The action of WTxTxWTyTy(WTxTx)
−1(WTyTy)

−1 on RHS of Eq. (2.75) is

Wgg[WTyTyλ(a, b)λab(Ty)λ
−1(a, b)]−1 ·WggWTyTy [α(a, b)−y

·WTxTx λ(a, b)λab(Tx)λ
−1(a, b)]−1

·WTxTx [WTyTyλ(a, b)λab(Ty)λ
−1(a, b)] · α(a, b)−y ·WTxTx λ(a, b)λab(Tx)λ

−1(a, b)

=WTyTy [α(a, b)−y]−1 · α(a, b)−y ·Wgg λ(a, b)Wggλ−1
ab (Ty)

·WggWTyTy λ−1
ab (Tx) ·

WTxTx λab(Ty) · λab(Tx) · λ−1(a, b)

= α(a, b)−1 ·Wgg λ(a, b) · λab(g) · λ−1(a, b),

(2.88)

where we have used Eq. (2.80) and α−1(a, b) is just a plaquette IGG with loop of phases

α−1(a, b).

Combining Eq. (2.87) with Eq. (2.88), we have

λa(g) ·Waa λb(g) = α−1(a, b)Wggλ(a, b) · λab(g) · λ−1(a, b). (2.89)

Comparing Eq. (2.89) with Eq. (2.83), we have

α−1(a, b) = δωg (a, b). (2.90)

It is easy to see that the global phase ambiguities in Eq. (2.80),(2.85),(2.86) will at most

modify the LHS of Eq. (2.90) up to a 2-cobounday, therefore it should be understood as

the 2-cycle equivalence δωg ≃ α−1 ∈ H2(G,U(1)).

2.7.6 Generic constructions of symmetry-enforced SPT tensor-

network wavefunctions

In this section we want to construct an SPT state with on-site symmetry group G, magnetic

translation symmetry satisfying TxTyT
−1
x T−1

y = g where the SPT is characterized by the
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3-cocycle ω ∈ H3(G,U(1)) and the on-site symmetry group is represented projectively with

the 2-cocycle α(a, b) equal to the inverse of the slant product of ω with respect to g,i.e.,

α(a, b) ≃ [δωg (a, b)]
−1 ∈ H2(G,U(1)). (2.91)

To achieve this goal, we will use the tensor network formalism. Let’s start from a

SPT tensor wavefunction with the symmetry group Z2 × G described by a 3-cocycle ω ∈

H3(G,U(1)), where Z2 represents the usual translation T orig.
x , T orig.

y . Then we know that

every tensor is invariant under the action D(a) on physical leg together with
∏
Wa on all

the virtual legs, from which we have a set of tensor equations. Here we require D(a) to

be a direct sum of usual representation D1(a) and projective representation D2(a) with

2-cocycle [δωg (a, b)]
−1. We choose the gauge transformation WT orig.

x
,WT orig.

y
to be identity

for simplicity. The global IGG η(a, b) comes from the following tensor equation:

Wa ·a Wb = η(a, b)Wab, (2.92)

where η(a, b) is decomposable, i.e., η(a, b) =
∏
λp(a, b). We require tensors to be fully

invariant under η(a, b) without even generating phases. This condition ensures D(a) on the

physical legs to be projected onto D1(a) sector.

We define WggWaa = ξa(g)Waa, where ξa(g) =
∏
λa(g) is a decomposable global IGG.

More generally we define (Wgg)xWa = ξa(g, x)Wa, where ξa(g, x) =
∏
λa(g, x). Then we

have the following relation:

λa(g, x+ 1) =Wgg λa(g, x) · λa(g). (2.93)

Then we change our tensor wave-function in the following way:

1. We revise the original tensor such that it is invariant under the symmetry operation

and the new plaquette IGG defined in Fig. 2.13. Note that this step is necessary for
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us to obtain a symmetric and non-vanishing tensor wave-function after the insertion

of Wg.

2. We insert [Wg(u)]
x on the upper leg of every tensor as shown in Fig. 2.14. Physically

it means inserting one g-defect per unit-cell.

3. We define the new on-site symmetry operation W̃a and translation symmetry WTx

as shown in Fig. 2.14. We will show that the new tensor is invariant under such

symmetry transformations.

From the last section we have shown that every g-defect carries a projective represen-

tation represented by δωg (a, b)−1, therefore one would expect after insertion of g-defects, we

now have one δωg (a, b)−1 projective representation per unit-cell. Let’s show it more clearly

through explicit calculations.

First, let’s show that the revised tensor wave-function satisfies all the required symme-

tries. It’s apparent that the new tensor has magnetic translation symmetry WTxTx,WTyTy

defined in Fig. 2.14, i.e.

WTxTxWTyTy(WTxTx)
−1(WTyTy)

−1 = Wgg. (2.94)

It can be proven that the new tensor is invariant under the new symmetry transfor-

mation W̃aa as shown in Fig. 2.15. The invariance of the new tensor T̃ (x,y) under the new

plaquette IGG is also apparent as shown in Fig. 2.14. Then we know that Eq. (2.60) still

holds for this state, which means the new state obtained is still an SPT state described by

the same 3-cocycle ω.

Finally we want to show that the new tensor now carries a projective representation

[δωg (a, b)]
−1 per unit-cell. It can be proven that by acting W̃a ·a W̃b · W̃−1

ab on all the virtual
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legs of a tensor we will get a phase δωg (a, b) for every tensor as shown in Fig. 2.16.

In doing so we need the following identity

λa(g, x)
Waaλb(g, x)λ(a, b)λab(g, x)

−1 ·(Wgg)x [λ(a, b)−1] = [δωg (a, b)]
x. (2.95)

Let’s denote the LHS of Eq. (2.95) as f(x). From Eq. (2.66) we have f(1) = δωg (a, b),

then we need to find out the relation between f(x) and f(x + 1). Using λ(g, x) =Wgg

λ(g, x− 1) · λ(g), we can rewrite Eq. (2.95) as

[Wggλa(g, x− 1)λa(g)]
Waa[Wggλb(g, x− 1) · λb(g)]λ(a, b)[Wggλab(g, x− 1) · λab(g)]−1 ·(Wgg)x [λ(a, b)−1]

= [Wggλa(g, x− 1)λa(g)]
WaaWggλb(g, x− 1) ·Waa λb(g)λ(a, b)λab(g)

−1

· [Wggλab(g, x− 1)]−1 ·(Wgg)x [λ(a, b)−1]

=Wgg λa(g, x− 1)[λa(g)ξ
−1
a (g)]WggWaaλb(g, x− 1)ξa(g)

Waaλb(g)λ(a, b)λab(g)
−1

·Wgg [λab(g, x− 1)]−1 ·(Wgg)x [λ(a, b)−1]

= δωg (a, b)
Wggλa(g, x− 1)[λa(g)ξ

−1
a (g)]WggWaaλb(g, x− 1)[ξa(g)λa(g)

−1]Wggλ(a, b)

·Wgg [λab(g, x− 1)]−1 ·(Wgg)x [λ(a, b)−1]

= δωg (a, b)
Wgg[λa(g, x− 1)Waaλb(g, x− 1)λ(a, b) · λab(g, x− 1)−1 ·(Wgg)x−1

λ(a, b)−1].

(2.96)

The above derivation tells us that f(x) = δωg (a, b)
Wggf(x − 1), therefore by induction

we have f(x) = [δωg (a, b)]
x.

With the help of Eq. (2.95), we can readily calculate the new IGG η̃(a, b) ≡ W̃a ·a W̃b ·

W̃−1
ab . The η̃(a, b) on the up and down virtual legs are just η(a, b) defined before. The
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η̃(a, b) on the left leg is computed as follows:

[λa(g,−x)](d) ·Wa ·a [λb(g,−x)](d) ·a Wb · ([λab(g,−x)](d) ·Wab)
−1

= [λa(g,−x)](d) ·Waa [λb(g,−x)](d) ·Wa ·a Wb · (Wab)
−1[λab(g,−x)](d)−1

= [λa(g,−x)](d) ·Waa [λb(g,−x)](d) · η(a, b) · [λab(g,−x)](d)−1

= [δωg (a, b)]
−x[λ(a, b)](u)−1 ·(Wgg)−x

[λ(a, b)](d).

(2.97)

Similarly, we have on the right leg

[δωg (a, b)]
x+1 ·(Wgg)−x−1

[λ(a, b)](d)−1 · [λ(a, b)](u). (2.98)

Therefore, as shown in Fig. 2.16, we know that η̃(a, b) is just δωg (a, b) times the product

of plaquette IGG shown in Fig. 2.14 which leaves the tensor invariant up to a phase δωg (a, b).

Then on the physical leg we are forced to have D(a)D(b) = [δωg (a, b)]
−1D(ab), i.e., D(a) is

projected onto D2(a) sector. So the desired on-site projective representation is achieved.
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Figure 2.8: An example of g-defect line. The g-defect line is obtained by inserting Wg on

only one side of the virtual legs crossed by the red dashed line. The tensors close to the

defect core should be revised in order to make the tensor wave-function symmetric and non-

vanishing. Following the usual convention, we say that the defect line always points from

g−1-defect to g-defect, and we always insert Wg to the left when one goes forward along

the line. Therefore in the figure we can identify the right end as the g-defect (remember

Wg(d) = Wg(u)
−1). The grey area encloses a g-defect and we can to measure its projective

representation through the action of η′(a, b) on the boundary virtual legs, see the discussion

in the main text.
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Figure 2.9: Invariance of the wave-function under U g(a). In the figure we can see that

W̃a = [λa(g)](d) ·Wa where the defect line crosses the boundary and W̃a = Wa elsewhere.

Such a definition ensures that no boundary excitations are created by acting U g(a) (for

the moment we do not care about what happens at the defect core). In deriving the

second figure, we have used the invariance of the tensor under Waa, the identity WaW
−1
g =

W−1
g ξa(g)Wa and invariance of the tensor under plaquette IGG λa(g).
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Figure 2.10: Measurement of projective representation carried by g-defect. From Eq. (2.72),

we know that η̃(a, b) = λa(g) ·Waa λb(g) · η(a, b) · λ−1
ab where the boundary is crossed by the

defect line and η̃(a, b) = η(a, b) elsewhere. In the first equality we have used Eq. (2.71).

In the second equality we have used the decomposition of η′(a, b) and Eq. (2.66). In the

third equality we have used the tensor invariance under plaquette IGG. In the last equality

we have used the identity λ(r)−1 ·W−1
g = W−1

g ·Wg λ(r)−1 and the tensor invariance under

plaquette IGG.
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Figure 2.11: The definition of phase-gauge transformation W (α(a, b)).

Figure 2.12: The decomposition rule of WTxTxW (α(a, b)) ·W (α(a, b))−1 (LHS) as a product

of plaquette IGG λ(α(a, b)) (RHS).
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Figure 2.13: The original tensor before insertion of g-defect is required to be invariant

under the revised symmetry operation and the revised plaquette IGG.
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Figure 2.14: (a) The definition of the new tensor T̃ (x,y) after the insertion of [Wg(u)]
x to

the upper leg of every original tensor T (x,y). (b) The new translation operation WTxTx.

It can be readily checked that T̃ (x,y) is invariant under such translation. Note that we

have Tx = gyT orig.
x , Ty = T orig.

y and WTy = 1. (c) The new on-site symmetry operation

W̃aa. It is shown in Fig. 2.15 that T̃ (x,y) is invariant under such symmetry operation. (d)

The new plaquette IGG for the new tensor T̃ (x,y). As before, λ’s from different plaquettes

commute with each other, and the action of any two λ’s in the same plaquette leave the

tensor invariant. The tensor T̃ (x,y) invariance under plaquette IGGs follows trivially from

Fig. 2.13.
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Figure 2.15: The revised tensor T̃ (x, y) is invariant under the newly-defined symmetry op-

eration. The first equality comes from the commutation relation WaW
x
g = W x

g ξa(g,−x)Wa.

In the second equality we have used the invariance of tensor under Wa as shown in Fig. 2.13

and the decomposition of ξa(g,−x). In the third equality we have used the identity

λa(g,−x)(l) =Wgg [λa(g,−x − 1)](l) · λa(g)(l). And we have also used the invariance of

tensor under plaquette IGG as in Fig. 2.14 in the third and fourth equalities.
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Figure 2.16: Every site-tensor carries a projective representation characterized by

[δωg (a, b)]
−1. We show this by acting W̃aaW̃bb(W̃abab)

−1 on both the physical legs and

the virtual legs of tensor T̃ (x,y), which should leave the tensor invariant without gen-

erating any phase. But from the calculation we find that the action on vitrual legs

will contribute a factor δωg (a, b), therefore the representation on the physical legs are

D(a) ·D(b) = [δωg (a, b)]
−1D(ab), i.e., they are projected onto the D2(a) sector with projec-

tive representation. In the calculation above, we have used Eq. (2.95) in the first equality.

And we have used the invariance of the tensor under the plaquette IGG defined in Fig. 2.14

in the second equality.
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Chapter 3

Divergent bulk photovoltaic effect in

Weyl semimetals

3.1 Introduction

Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs

of grapheneupon breaking time-reversal or inversion symmetry. Electrons in a Weyl semimetal

behave as Weylfermions, which have many exotic properties, such as chiral anomaly and

magnetic monopoles in thecrystal momentum space. The surface state of a Weyl semimetal

displays pairs of entangled Fermi arcs at two opposite surfaces. To linear order, the

electrons near a Weyl node can be described by the effective two-by-two Hamiltonian:

HWeyl = (
∑

a k
aαa − µ)σ0 +

∑
a,b k

aβabσb, where µ is the chemical potential, k⃗ is the mo-

mentum relative to the Weyl node, a/b = x, y, z, σb are the Pauli matrices and σ0 is the

identity matrix. After choosing the frame of the principal axes and a proper basis, the
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off-diagonal elements in β can be eliminated:

HWeyl = (~k⃗ · v⃗t − µ) σ0 + ~
∑
a

(kavaσa). (3.1)

Here apart from the generally anisotropic velocity v⃗, another velocity v⃗t describes the tilting

of the bands and breaks the degeneracy between the bands at k⃗ and −k⃗, with the chemical

potential (µ) usually nonzero.

It is known that either inversion symmetry or time-reversal symmetry needs to be broken

in order to realize the Weyl nodes, and the experimentally confirmed Weyl semimetals

have been overwhelmingly non-centrosymmetric and time-reversal symmetric, including the

(Nb,Ta)(As,P) and W1−xMoxTe2 series [2–8]. When the tilting velocity is large enough,

which is realized in materials like W1−xMoxTe2, the system can becomes a Type-II WSM [7],

since along some directions the two energy bands share the same sign of the velocity. Such

a system must have finite size Fermi surfaces (Fig.3.1(d))1. The type of a Weyl node is

determined by a dimensionless number W :

W ≡
√

(vxt /v
x)2 + (vyt /v

y)2 + (vzt /v
z)2, (3.2)

and a Type-I(Type-II) Weyl node is realized if W < 1 (W > 1).

As we show later, the bulk photovoltaic effect [10] with its direct connection to Berry

curvature, [?, 11] offers a method to distinguish these two types. It has also attracted

significant interest due to its potential applications in renewable energy generation [12] and

fast photo-detectors [13,14]. The intrinsic contributions to the BPVE can be expressed as

1Consequently it may be more accurate to call it a Type-II Weyl metal instead of a semimetal. However

to be consistent with existing literature we follow the existing naming convention.
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the second order nonlinear photocurrent response:

ja = σabc
2 (ω)Eb(ω)Ec(−ω), (3.3)

where, a/b/c = x, y, z, −→
j is the DC electric current density, E⃗(t) = Re[E⃗(ω)e−iωt +

E⃗(−ω)eiωt] is the electric field of the light. In order to have a nonzero σ2, inversion sym-

metry needs to be broken, which happens to be also a condition to realize WSM. Generally

speaking, σabc
2 has both intraband and interband contributions. However, for time-reversal

symmetric materials with linear polarized light, it turns out that this photocurrent response

only has interband contributions, which has been coined the shift-current(σabc
2 = σabc

shift) as

it results from a change in the center of mass of the electrons upon optical excitation.

Perturbation theory within the single-particle framework [11, 15, 16] gives:

σabc
shift(ω) =

2πe3

~2

∫
d3k⃗

(2π)3

∑
n,m

Iabcmn[fnm · δ(ωmn − ω)], (3.4)

where n,m label energy bands, ~ωmn(k⃗) ≡ Em(k⃗)−En(k⃗) is the energy difference between

the two bands. fnm(k⃗) = fn(k⃗) − fm(k⃗) is the difference of the Fermi-Dirac function

between the two bands. The gauge invariant quantity Iabcmn(k⃗) ≡ 1
2
· Im[rbmnr

c
nm;a+r

c
mnr

b
nm;a],

where ramn(k⃗) ≡ i⟨um(k⃗)|∂ka |un(k⃗)⟩ is nothing but the non-Abelian Berry’s connection

(with ramn;b(k⃗) its generalized derivative: ramn;b ≡ ∂ramn

∂kb
− i[Ab

m(k⃗) − Ab
n(k⃗)]r

a
mn(k⃗), and

Ab
n(k⃗) ≡ i⟨un(k⃗)|∂kb|un(k⃗)⟩ the usual intraband Berry’s connection).

It has been pointed out that the shift current response is related to the topology of the

band structure [?]. Indeed the quantities responsible for σshift directly involves the Abelian

and non-Abelian Berry’s phases. Because Weyl nodes are monopoles of the Abelian Berry’s

connection, these quantities are expected to be diverging and singular near Weyl nodes,

which motivates us to carefully study the resulting nonlinear optical effects.
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Eq.(3.4) has a familiar form of the Fermi’s golden rule. Indeed, considering the case of

linearly polarized light along the b-direction, one has:

Iabbmn = |rbnm|2Ra
nm,b, (no summation on indices) (3.5)

where the gauge invariant real space displacement R⃗nm,b(k⃗) is the so-called “shift-vector”,

defined as:

Ra
nm,b(k⃗) ≡ −∂Arg[rbnm]

∂ka
+ Aa

n(k⃗)− Aa
m(k⃗), (3.6)

If one interprets Eq.(3.4,3.5) as the Fermi’s golden rule, |rbnm|2 is just the matrix-element

factor for the optical absorption. Thus, eR⃗nm,b(k⃗) should be viewed as the dipole moment

induced the photo-excited particle-hole pair, giving rise to a rate of change in polarization,

i.e., DC photocurrent.

Motivated by photogalvanic applications [12–14], previously the shift-current response

has been mainly discussed in the context of insulators [11, 16], where the low temperature

σshift vanishes when ~ω is below the band gap. It is convenient to introduce the optical

joint density of states including the factor fnm responsible for the Pauli-blocking effect:

JDOS(ω) ≡
∫

d3k⃗

(2π)3

∑
m,n

[fnm · δ(ωmn − ω)] (3.7)

For most materials, Iabcmn(k⃗) is a smooth function of momentum, and according to Eq.(3.4)

the response σshift is essentially proportional to JDOS. It has been proposed that engi-

neering JDOS in semiconductors may be a route to optimize the BPVE [17]. Although

the JDOS ∝ ω2 is small due to the linear dispersion in WSM, recent second harmonic [18]

and photocurrent experiments [?,19] show that these materials host large nonlinear optical

effects at least in the infrared regimes. In this chapter we show that the WSM actually fea-
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(a) (b)

Type-I WSM:

(c)

(d) (e)

Type-II WSM:

(f)

Figure 3.1: (color online) Considering the µ = 0 situation, in (a),(d) we schematically

plot the dispersion relations near a Type-I (Type-II) Weyl node. At zero temperature, the

momentum space surfaces contributing to JDOS (defined in Eq.(3.7)) are qualitatively

different in (b) Type-I WSM and (e) Type-II WSM, leading to drastically different scaling

behaviors of σshift shown in (c),(f).

ture divergent nonlinear optical responses in the low frequency regime due to the singular

Berry’s phases near the Weyl nodes.

3.2 Main results

Our main results are summarized in Fig. 3.1 and Fig. 3.2. For simplicity let us start

with the zero doping case µ = 0. In the absence of extrinsic scattering processes, simple

dimensional analysis shows that up to fundamental constants e3

h
, σshift(ω) is proportional

to the inverse of an energy scale, which could involve either an intrinsic energy scale t of

the material, the temperature kBT , or the photon energy ~ω.

At zero doping and zero temperature, the linear Weyl equation Eq.(3.1) does not con-

tain an energy scale, therefore σshift(ω) must be either ∼ e3

h2
1
ω

or vanishing in this linear
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Figure 3.2: (color online) At T = 0, the quasi-universal (i.e., µ-independent) line shapes

of the doping-induced peaks of σshift in Type-I (top) and Type-II(bottom) WSM based on

results Eq.(3.9) of linearly dispersive nodes. The peak’s frequency range has been re-scaled

by a µ factor and its height has been re-scaled by a 1/µ factor, the latter diverges in the

low doping limit.

approximation. The former divergent case is exactly realized in Type-II WSM (Fig.3.1(f)).

In Type-I WSM, however, we will show that zero doping and zero temperature leads to

σshift(ω) ∼ e3

h
~ω
t2

(Fig.3.1(c)), where t is an intrinsic energy scale due to the band-bending

(i.e., deviation from linear dispersion) —typically ∼0.1-0.2eV.

Next, we discuss the reason for the drastic difference between Type-I and Type-II

WSM, as well as the effect of doping. A careful evaluation of σshift in Eq.(3.4) based on

the linear Weyl equation Eq.(3.1) shows that, at T = 0, a single Weyl node contributes (At

T ̸= 0, a general and more complicated analytic result is shown in supplemental material
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Eq.(3.35,3.36)):

σabc
shift =

πχ

8W 2
·
∑
d

[
ϵdca

vbtv
d
t

(vd)2
+ (b↔ c)

]
· σlinear

node (ω) (3.8)

where:

σlinear
node ≡ (cos[θ1]sin[θ1]2 − cos[θ2]sin[θ2]2) ·

e3

h2ω
, (3.9)

and: θ1 ≡ ãrccos
[ 2µ
~ω + 1

W

]
, θ2 ≡ ãrccos

[ 2µ
~ω − 1

W

]
. (3.10)

Up to an order unity constant σabc
shift(ω) is determined by σlinear

node (ω). Here W is defined in

Eq.(3.2), ϵabc is the Levi-Civita antisymmetric tensor, and we have chosen the convention

ω > 0. χ ≡ sign[vxvyvz] = ±1 is the chirality of the Weyl node (i.e., monopole charge).

Note that we have chosen the frame x, y, z to be right-handed. We have also defined a

function ãrccos[s] ≡ 0 if s ⩾ 1, ãrccos[s] ≡ π if s ⩽ −1, and ãrccos[s] ≡ arccos[s] if

−1 < s < 1.

Interestingly, due to the chirality factor in this result, we know that this 1/ω divergent

term is absent in Dirac semimetals, because in those systems each Dirac node can be viewed

as two Weyl nodes with opposite chiralities sharing the same set of µ, v⃗t and opposite v⃗.

It can also be immediately seen from Eq. (3.8) that the 1/ω divergence is absent for σaaa
shift

due to the Levi-Civita antisymmetric tensor.

The physical meaning of the two angles θ1,θ2 is the following. For the moment it is

convenient to re-scale the momentum in x, y, z directions so that vx = vy = vz = v. The

energy conservation δ(ωmn − ω) constrains our consideration on a sphere in the re-scaled

momentum space, whose radius equals 2ω
v

. The re-scaled v⃗t can be used to define a special

axis to set up a spherical coordinate system. Generally speaking, Pauli blocking takes over

in certain solid angle regions. Namely the factor fnm further constrains the sphere into a
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region between the polar angles θ1 and θ2 (See Fig.3.1(e) for an illustration).

In Type-I WSM (W < 1) at zero doping, the whole sphere contributes, consistent with

θ1 = 0 and θ2 = π (Fig.3.1(b)). But this is exactly a situation when the θ-dependent

factor in Eq.(3.9), and thus the 1/ω term in σshift, vanishes. (Note that, in this case, a

careful analysis including band-bending effects shows that even the constant order vanishes,

leaving the next order σshift ∝ ω in the low frequency limit. See supplemental information.)

But in Type-II WSM (W > 1) at zero doping, only the part of the sphere between θ1,2 =

arccos[± 1
W
] contributes (Fig.3.1(e)), leading to the 1/ω divergent response.

This results from the strongly angle dependent diverging Berry connection in WSM,

despite the integrand Iabcmn in Eq.(3.4) scaling as 1
ω3 . The full angular average over the 4π

solid angle would annihilate the 1/ω term in σshift. However, Pauli-blocking could take

over in certain angular regions, removing the net cancellation and retaining the divergent

term.

In particular, at T = 0, in Type-I WSM (W < 1) with finite µ, this 1/ω term survives

only over a frequency range: 2|µ|
1+W

⩽ ~ω ⩽ 2|µ|
1−W

. (Thus in the extreme case when vt = 0 and

W = 0, this term vanishes.) In fact, it is straightforward to show that, σlinear
node would also

change sign exactly at ~ω = 2|µ|. Altogether this leads to a large peak in the σshift(ω) with

a width ∼ |µ|/~ and a height ∼ e3

h
· 1
|µ| , featuring a characteristic sign-changing line-shape

(Fig.3.2 top). Similarly a finite µ truncates the 1/ω divergence in Type-II WSM and leads

to a sign-changing large peak when ~ω ∼ µ (Fig.3.2 bottom).

As shown in Fig.3.2, the line-shapes of these peaks are quasi-universal: they only depend

on the dimensionless number W . Different values of doping µ only re-scale the peak’s

frequency range by a µ factor and its height by a 1/µ factor. This means that one may
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use µ to control the frequency range of the peak to engineer tunable frequency-sensitive

photo-electric devices.

Temperature and impurities— At finite temperatures, the Fermi-Dirac distribution

would smear out and truncate the divergences when ~ω ≲ kBT (which is confirmed in

our tight-binding model calculations Fig.3.3). But at low temperatures kBT ≪ ~ω these

divergences are not significantly modified. (See supplemental material Eq.(3.35,3.36) for a

general analytic form of the σshift within linear-dispersion approximation.) However even

at zero temperature, impurities give rise to scattering, while finite temperature enables

other scattering mechanisms (e.g. electron-phonon). These scatterings, which can be phe-

nomenologically characterized by a scattering time τ , have been ignored so far. Namely,

even at low temperatures kBT ≪ ~ω our result Eq.(3.8) holds only in the long scattering

time ωτ ≫ 1 limit with the divergences truncated when ω ≲ 1
τ
. For instance, previous ex-

periments report that τ in the Type-I WSM TaAs is of the order of a pico-second [20, 21].

This suggests that our predicted striking response can be observed in the Terahertz or

higher frequency regimes.

A conceptually interesting situation occurs when a finite temperature is introduced in

the µ = 0 Type-I WSM, where divergence is absent at T = 0 due to angular cancellation

discussed before. However when T ̸= 0, the thermally excited particle-hole pairs partially

play the role of doping, and there is no reason for a full angular cancellation. In this case,

simple dimensional analysis leads to striking results: we expect a temperature-induced peak

of the intrinsic σshift when ~ω ∼ kBT , whose height ∼ e3

hkBT
diverging in the low T limit.

(see supplemental material Eq.(3.35) and Fig.3.4) This is observed in our tight-binding

model calculations (see Fig.3.3(a)).
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The size of the effects —It is interesting to estimate the size of effects in the divergent

regimes; e.g., when ~ω ∼ µ for Type-I WSM or ~ω ≳ µ in Type-II WSM, in the presence of

a temperature kBT ≪ ~ω. Previously shift-current responses have not be much studied in

the low frequency (e.g. Terahertz) regimes. Note that even in a generic multiband metal,

σshift is expected to vanish at zero temperature in the low frequency regimes. This is simply

because the energy conservation δ(ωmn − ω) and fnm in JDOS constrain both the valence

band and the conduction band at the Fermi level when ω → 0, which would not occur due

to band-repulsions.

Plugging in ω = 1THz, the estimated size of σshift ∼ e3

h2
1
ω

in the divergent regimes is

∼ 0.01A/V 2, several orders of magnitudes larger than known reported values in visible or

infrared regimes [22–27]

Tight-binding model— To concretely illustrate the predicted responses we compute the

σshift tensor using a minimal time-reversal symmetric 4-band tight-binding model featuring

4 Weyl nodes: [18]

HTB = t
[
(2.5− cos kx − cos ky − cos kz)τx + sin kyτy

+ 0.5 cos kysxτy + sin kzsxτz + (ξ cos kx − µ0)
]
− µ, (3.11)

where sa(spin) and τa(orbital) are two sets of Pauli matrices. t is an overall energy scale

which can be 0.1 − 0.5eV, to be broadly consistent with the relevant energy scales in

existing Weyl materials. Symmetries in this model include: time-reversal isyK (K is

conjugation), x → −x mirror sx, and y → −y mirror syτx. The four Weyl nodes are

located at (kx = ±0.920, ky = ±0.464, kz = 0), with an energy µ0t and µ0 = 0.606ξ. A

positive parameter ξ controls the tilting velocity v⃗t: for ξ < 1(ξ > 1), Type-I(Type-II)

WSM is realized. We choose ξ = 0.5 (ξ = 1.5), corresponding to W = 0.539(W = 1.616),

102



as the representative for Type-I (Type-II) WSM.

We numerically compute σabc
shift, using the full formula Eq.(3.4) without resorting to the

linear approximation. The results of a particular component σzxx
shift are plotted in Fig.3.3 for

various doping levels and temperatures, which are fully consistent with previous discussions.

Second harmonic generation— Another directly related second order nonlinear optical

response is the second harmonic generation (SHG), in which light at frequency ω drives cur-

rent at frequency 2ω [28]. Defining SHG response tensor ja(2ω) = σabc
SHG(ω, 2ω)E

b(ω)Ec(ω),

it is known that the real part Re[σSHG] is given by the interband contribution, and within

the two-band approximation and linear-node approximation, we have

Re[σabc
SHG(ω, 2ω)] = −3

2
σabc
shift(ω) (3.12)

where σabc
shift(ω) given by Eq. (3.8) (see supplemental information). 2 3. For example, similar

to σshift, the zero temperature Re[σSHG] features a similar 1/ω divergence in Type-II WSM

when µ = 0, and large peak behaviors in both Type-I and Type-II WSM when µ ̸= 0. And

even at µ = 0, a finite temperature induces a large peak in Re[σSHG] in Type-I WSM with

a width ∼ kBT and a height ∼ e3

hkBT
.

Possible applications— In this chapter we report the 1/ω diverging DC photovoltaic

effect in the low frequency regime in WSM, due to the combination of the diverging Berry’s

curvature and Pauli-blocking effect. Fast Terahertz photon detection has been a long

2Previously another identity is known within general two-band approximation: Re[σaaa
SHG(ω, 2ω)] =

−σaaa
shift(ω) +

1
2σ

aaa
shift(2ω) [?], which naively is inconsistent with Eq.(3.12). However within linear-node

approximation we have shown that σaaa
shift(ω) = 0, which is consistent with both identities.

3Interestingly, the intraband contribution of SHG is responsible for Im[σSHG], which has been pointed

out to be a Fermi surface Berry’s curvature effect and contains a 1/ω term [31,32]
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standing challenge. The reported large photovoltaic effect may be useful for this purpose.

In addition, the doping-induced large peak regimes of σshift in WSM, whose frequency

ranges are controlled by µ, may be useful as a tunable frequency-sensitive probe for far-

infrared or Terahertz photons, i.e., a spectrum analyzer.

3.3 Appendices

3.3.1 Shift current in type-I Weyl semi-metal

In this section we shall prove that for a generic type-I Weyl semi-metal with Fermi level

at the Weyl nodes, the leading term in the shift current tensor will be proportional to ω

when ω → 0.

The low energy physics can be captured by the following generic 2-band Hamiltonian

with chemical potential µ set to zero

H = f0σ0 +
∑

i=x,y,z

fiσi, (3.13)

where f0, fi are functions of k and fi = 0 when k = 0. The eigenvalues are Ec = f0 + ϵ,

Ev = f0 − ϵ with ϵ =
√∑

i f
2
i . Since the tilting will not affect the shift current tensor, we

will set f0 to be zero.

The shift current tensor for the 2-band model is obtained by doing the following integral

[11, 17]

σabc
shift(ω) =

2πe3

~2

∫
d3k⃗

(2π)3
Iabccv [fcv · δ(ωcv − ω)], (3.14)

where Iabccv has the following explicitly gauge-invariant expression

Iabccv =
∑
i,j,m

[
1

8ϵ3
(fmfi,bfj,ac − fi,bfj,afm

ϵ,c
ϵ
)ϵijm + (b↔ c)], (3.15)
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where ϵijm is the Levi-Civita symbol.

Now let’s prove that terms proportional to 1/ω (denoted as σ(−1)(ω) below) and terms

independent of ω (denoted as σ(0)(ω) below) in σabc vanish in the low frequency limit ω → 0.

A simple order of estimate with k ∼ ω when ω → 0 tells us that only the k-linear terms

and k-quadratic terms in fi will contribute to σ(−1)(ω) and σ(0)(ω). Therefore it suffices to

consider a linear node plus some quadratic corrections. It is always possible to choose the

following form of fi by an affine transformation which does not affect the integral (~vF is

set to be 1 throughout this section)

fi = ki + αijlkjkl, (3.16)

where αijl is a rank-3 tensor symmetric respect to the interchange j ↔ l and repeated

indices are summed over.

In the spherical coordinate system, we have

kx = rsin[θ]cos[ϕ], ky = rsin[θ]sin[ϕ], kz = rcos[θ]. (3.17)

And the unit vector k̂ = (sin[θ]cos[ϕ], sin[θ]sin[ϕ], cos[θ]) will be used below to simplify the

notation.

When ω is small, ki ∼ r ∼ ω and we can expand ϵ in powers of r

ϵ = r + r2f(θ, ϕ) +O(r3), (3.18)

where f(θ, ϕ) is a function of αijl, θ, ϕ. It is easy to obtain the explicit form of f(θ, ϕ), but

for our purpose we only need the fact that f(θ, ϕ) = −f(π − θ, π + ϕ) since it comes from

the angular dependence of terms involving 3 ki’s.
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In the same spirit we can expand Iabc in powers of r

Iabc =
1

8ϵ3
[I

(0)
abc + I

(1)
abc +O(r2)], with

I(0) = −ϵbam
kmkc
ϵ2

+ (b↔ c) = −ϵbamr2
k̂mk̂c
ϵ2

+ (b↔ c),

I(1) = 2ϵbjmαjackm +
habc(kx, ky, kz)

ϵ2
+ (b↔ c) = 2rϵbjmαjack̂m + r3

habc(k̂x, k̂y, k̂z)

ϵ2
+ (b↔ c)

(3.19)

where habc(kx, ky, kz) is a homogeneous polynomial of degree 3, whose explicit form, for our

purpose, is not important.

The integral then becomes

σabc(ω) = const ∗
∫
dΩ(

∫
r2drIabc(r, θ, ϕ)δ(2ϵ(r, θ, ϕ)− ω)), (3.20)

where dΩ = sin[θ]dθdϕ.

When ω → 0, we know that for any fixed θ, ϕ there is only one solution r(θ, ϕ) to the

equation 2ϵ(r(θ, ϕ), θ, ϕ) = ω, from which we can solve r as a function of θ and ϕ. In fact,

we can expand r(θ, ϕ) in powers of ω with f(θ, ϕ) defined before

r(θ, ϕ) =
ω

2
− ω2

4
f(θ, ϕ) +O(ω3). (3.21)

The integral can then be written as

σabc(ω) = const ∗
∫
dΩ

1

ω3

r(θ, ϕ)2

∂rϵ|r=r(θ,ϕ)

[I
(0)
abc + I

(1)
abc +O(ω2)]

= const ∗
∫
dΩ

1

ω3
[r(θ, ϕ)2 − 2r(θ, ϕ)3f(θ, ϕ) +O(ω4)][I

(0)
abc + I

(1)
abc +O(ω2)]

= const ∗
∫
dΩ

1

ω
[1− 2ωf(θ, ϕ) +O(ω2)][I

(0)
abc + I

(1)
abc +O(ω2)]

(3.22)

Terms that are of order 1/ω comes from the integral over I(0)abc with r(θ, ϕ) set to ω/2 in

Eq.(3.22)

σ(−1)(ω) = const∗
∫
dΩ

1

ω
(I

(0)
abc) = const∗

∫
dΩ

1

ω
[−ϵbam(k̂)m(k̂)c+(b↔ c)] = const∗(−ϵbac−ϵcab) = 0,

(3.23)
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where we have used the fact that
∫
(k̂)m(k̂)ndΩ = 4π

3
δm,n.

Terms that are independent of ω comes from the following 3 integrals:

σ
(0)
I = const ∗

∫
dΩ

1

ω
(I

(0)
abc) = const ∗

∫
dΩf(θ, ϕ)[−ϵbamk̂mk̂c + (b↔ c)], (3.24)

σ
(0)
II = const∗

∫
dΩ

1

ω
(I

(1)
abc) = const∗

∫
dΩ[ϵbjmαjack̂m+habc(k̂x, k̂y, k̂z)/2+(b↔ c)] (3.25)

and

σ
(0)
III = const ∗

∫
dΩf(θ, ϕ)(I

(0)
abc) = const ∗

∫
dΩf(θ, ϕ)[−ϵbam(k̂)m(k̂)c + (b↔ c)]. (3.26)

It is easy to see that under (θ, ϕ) → (π−θ, π+ϕ), the integrand of Eq.(3.24),(3.25),(3.26)

all change sign, therefore they are all equal to zero.

In conclusion, we have analytically shown that in the low frequency limit ω → 0, term

that diverges as 1/ω and term that is independent of ω in the shift current tensor σabc

vanish. Therefore the leading term in σabc will be proportional to ω.

3.3.2 Analytical formula for the shift current in Weyl semi-metal

with tilting and doping in low-frequency limit

In this section we will obtain an analytical formula of the shift-current tensor for a Weyl

node with both tilting and nonzero chemical potential within the linear approximation at

zero temperature. This formula captures the physics of type-I and type-II Weyl semimetals

with or without doping in a unified fashion.

Let’s consider the following generic Hamiltonian

H = (~k⃗ · v⃗t − µ)σ0 +
∑

i=x,y,z

~kiviσi. (3.27)
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We will choose the following parameterization viki = rOij k̂j, where Oij is an orthogonal

matrix and k̂ = (sin[θ]cos[ϕ], sin[θ]sin[ϕ], cos[θ]). The orghogonal matrix O is chosen such

that

(
vtx
vx
,
vty
vy
,
vtz
vz
) ·O = (0, 0,W ), (3.28)

where W =
√

(v
t
x

vx
)2 + (

vty
vy
)2 + (v

t
z

vz
)2. In fact the third column of O is fully determined

(O13, O23, O33) =
1

W
(
vtx
vx
,
vty
vy
,
vtz
vz
). (3.29)

In this new coordinate system, we have

σabc
shift(ω) =

2πe3

~2

∫
d3k⃗

(2π)3
Iabc12 [f21 · δ(ω12 −ω)] =

e3sign[vxvyvz]
4π2~2vxvyvz

∫
r2drdΩIabc12 f21 · δ(2r−ω).

(3.30)

where Iabc12 is given by

− vavbvc
8r3

[Omj k̂jOclk̂lϵbam + (b↔ c)] (3.31)

and f21 is given by

f21 =
1

eβ(~Wrcos[θ]−~r−µ) + 1
− 1

eβ(~Wrcos[θ]+~r−µ) + 1
, (3.32)

which is a function of r and θ.

Therefore we have

σabc
shift(ω) = −e

3sign(vxvyvz)vavbvc
8ωh2vxvyvz

∫
sin[θ]dθdϕf21(ω/2, θ)[Omj k̂jOclk̂lϵbam + (b↔ c)].

(3.33)

The angular integration can be easily done:

∫
dΩf21(ω/2, θ)k̂mk̂n =

∫
dΩf21(ω/2, θ)(k̂

2
xδm,n+(k̂2z−k̂2x)δm,nδm,3) = c·δm,n−π·g(ϖ, z,W )δm,nδm,3,

(3.34)
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where c is a constant, z = eβµ is the fugacity and ϖ = β~ω
2

. The isotropic part c · δm,n does

not contribute to the shift current tensor as in the case of type-I Weyl semimetal without

doping. And the anisotropic part can be evaluated by first integrating over ϕ and then

integrating over x = cos[θ] to yield

g(ϖ, z,W ) = −
∫ 1

−1

(3x2 − 1)f21(ω/2, x)dx =
2

Wϖ
ln[1 + z−1e(1−W )ϖ

1 + z−1e(1+W )ϖ
· 1 + z−1e(W−1)ϖ

1 + z−1e−(1+W )ϖ
]

−
∑
n=2,3

6

W nϖn
[Lin(−z−1e(1−W )ϖ) + Lin(−z−1e(1+W )ϖ)− Lin(−z−1e−(1+W )ϖ)− Lin(−z−1e(−1+W )ϖ)],

(3.35)

where Lin(x) is the polylogarithm of order n.

Therefore after inserting Eq.(3.29) and Eq.(3.34) into Eq.(3.33) we have the following

result

σabc
shift(ω) =

πsign(vxvyvz)
8W 2

·
[
ϵdca

vtbv
t
d

(vd)2
+ (b↔ c)

]
· σlinear

node (ω) (3.36)

where: σlinear
node (ω) ≡

[
g(ϖ, z,W ) · e3

h2ω

]
Therefore up to an order 1 constant, the shift-current response tensor is determined by

the function σlinear
node . Let’s discuss two simple limits of Eq. (3.35). First, when µ = 0, the

function g only depends on the dimensionless variable ϖ, which gives us the scaling form

σshift(ω)|β = b · σshift(bω)|β/b (3.37)

We plot this scaling behavior at finite temperatures and µ = 0 for a few representative

values of W in Fig.3.4. In particular for Type-I WSM at µ = 0, T ̸= 0 induces a peak of

σshift whose width∝ kBT and height∝ 1/kBT . This behavior is also observed in Fig.3(a)

in our tight-binding model calculations.
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Next, when β → ∞, we can obtain a simpler form of g(ϖ, z,W ). In fact, an easier way

is to replace the Fermi-Dirac distribution function by the Heaviside step function:

f21 = Θ(r−k⃗·v⃗t+µ/~)−Θ(−r−k⃗·v⃗t+µ/~) = Θ(r(1−W cos[θ])+µ/~)−Θ(−r(1+W cos[θ])+µ/~).

(3.38)

The Heaviside step function together with the δ function constraint the integration

region of θ, therefore we will introduce the following two θ angles to characterize the upper

and lower limit of the integration

θ1 ≡ ãrccos
[ 2µ
~ω + 1

W

]
, θ2 ≡ ãrccos

[ 2µ
~ω − 1

W

]
(3.39)

where the function ãrccos[s] is defined in the following way: ãrccos[s] ≡ 0 if s ⩾ 1,

ãrccos[s] ≡ π if s ⩽ −1, and ãrccos[s] ≡ arccos[s] if −1 < s < 1.

After integration we have

σlinear
node (ϖ, z,W )|T→0 = (cos[θ1]sin[θ1]2 − cos[θ2]sin[θ2]2)

e3

h2ω
, (3.40)

which gives us the shift-current tensor at zero-temperature:

σabc
shift(ω) =

πsign(vxvyvz)
8W 2

·
[
ϵdca

vtbv
t
d

(vd)2
+(b↔ c)

]
·(cos[θ1]sin[θ1]2−cos[θ2]sin[θ2]2)

e3

h2ω
(3.41)

3.3.3 Analytical formula for the second-harmonic-generation in

Weyl semi-metal with tilting and doping in low-frequency

limit

The second-harmonic-generation (SHG) response tensor is defined via ja(2ω) = σabc
SHG(ω, 2ω)E

b(ω)Ec(ω).

From the standard time-dependent perturbation theory [28,33,34], we have the following
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expression for the real part of the SHG response tensor

Re[σabc
SHG(ω, 2ω)] =

iπe3

2~2ω2

∑
m,n,p

∫
BZ

dk3

(2π)3
[(vamnw

bc
nm +

2vamn{vbnpvcpm}
ωmp + ωnp

)fmnδ(2ω − ωnm)

+ (wab
mnv

c
nm + wac

mnv
b
nm)fmnδ(ω − ωnm) +

vamn{vbnpvcpm}
ωpm + ωpn

(fmpδ(ω − ωpm)− fnpδ(ω − ωnp))],

(3.42)

where vimn ≡ 1
~ ⟨m| ∂kiH |n⟩, wij

mn ≡ 1
~2 ⟨m| ∂ki∂kjH |n⟩ and {vbnpvcpm} = vbnpv

c
pm + vcnpv

b
pm.

Note that since we are dealing with generic tight-binding models, a careful derivation

following Ref. [33] yields the extra wij
mn terms which are absent in the literatures listed

above.

For a 2-band model within the linear approximation, Eq. (3.42) can be simplified to be

Re[σabc
SHG(ω, 2ω)] =

iπe3

2~2

∫
BZ

dk3

(2π)3
vavc{vbcv∆c

cv}
ω3
cv

fcv[8δ(2ω − ωcv)− δ(ω − ωcv)], (3.43)

where ∆i
nm ≡ vinn − vimm and v/c corresponds to valence/conduction bands respectively.

In the linear approximation, we have the following identity

rbmnr
c
nm;a + rcmnr

b
nm;a = −v

a
nm{vbmn∆

c
mn}

ω3
mn

− ∆a
mn{vbmnv

c
nm}

ω3
mn

. (3.44)

Therefore we can rewrite Eq. (3.43) as follows

Re[σabc
SHG(ω, 2ω)] =

iπe3

2~2

∫
BZ

dk3

(2π)3
fvc(r

b
cvr

c
vc;a+ rccvr

b
vc;a)[8δ(2ω−ωcv)− δ(ω−ωcv)], (3.45)

where we have used the fact that the integration over ∆a
cv{vbcvvcvc}

ω3
cv

vanishes due to time-

reversal symmetry.

Eq. (3.45) assumes a very similar form to the expression of shift-current. In fact, it’s

easy to see that within the linear approximation we have Re[σabc
SHG(ω, 2ω)] = −4σabc

shift(2ω)+

1
2
σabc
shift(ω) = −3

2
σabc
shift(ω), where σabc

shift(ω) is given by Eq. (3.36). As a consequence, all the
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discussions of leading-order terms in

Re[σabc
SHG(ω, 2ω)]

with the presence of tilting and doping at non-zero temperature naturally follow that of

σabc
shift(ω) in the last section.
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Figure 3.3: (color online) Numerically computed σzxx
shift(ω) using the full tight-binding model

Eq.(3.11) with parameters in the main text (squares and triangles), comparing with analytic

linear-node results after summing over four Weyl nodes σlinear
node (ω) (dashed lines). At zero

doping, (a): σshift ∝ ω at T = 0 in Type-I WSM in the low frequency regime; a finite

temperature partially plays the role of doping and induces a peak of σshift whose width

∝ T and height ∝ 1/T (see supplemental material Fig.3.4); (d): σshift ∝ 1/ω at T = 0 in

Type-II WSM, fully consistent with the result Eq.(3.8) within the linear approximation.

This divergence is truncated by a finite temperature below ~ω ∼ 5kBT . (b)(c)(e)(f): At

finite dopings σshift feature large peaks whose width ∝ µ and height ∝ 1/µ. At T = 0

these large peaks are well captured by Eq.(3.8) (the slight deviations for µ = 0.1t cases are

due to expected band-bending effects.). At kBT = 0.02t the peaks for µ = 0.02t cases are

strongly smeared out, while those for µ = 0.1t are quantitatively reduced.
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Figure 3.4: At zero doping µ = 0, based on the linear-node result Eq.(3.35), we find that

a finite temperature induces a peak of σshift in Type-I WSM (left), and truncate the 1/ω

divergence in Type-II WSM(right) when ~ω ∼ kBT . Note that the frequency range is

re-scaled by a kBT factor while σshift is re-scaled by a 1/kBT factor. The line shapes of

these curves only depend on W but independent of kBT .
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Chapter 4

Nonreciprocal directional dichroism

induced by a temperature gradient as

a probe for mobile spin dynamics in

quantum magnets

4.1 Introduction

Quantum spin liquids(QSL), proposed by Anderson [1] for spatial dimensions > 1, attracted

considerable interest in the past decades (see Ref. [2–5] for reviews). Although theoret-

ically these novel states of matter are known to exist and have even been successfully

classified [6,7], to date there is no experimentally confirmed QSL material. As a matter of

fact, an increasing list of candidate QSL materials emerges recently due to the extensive

experimental efforts, including, for instance, Herbertsmithite [8, 9], α-RuCl3 under a mag-
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netic field [10], and quantum spin ice materials [11, 12]. An outstanding challenge in this

field is the lack of appropriate experimental probes. Traditional probes for magnetic ex-

citations include thermodynamic measurements, various spectroscopy measurements such

as neutron scattering and nuclear magnetic resonance, and the thermal transport. Ideally,

one would like to directly probe the mobile magnetic excitations in a QSL, such as the

fractionalized spinons. The major limitation of traditional probes is from the contributions

of other degrees of freedom; e.g., the spectroscopy measurements couple to local impurity

modes, while the thermal transport couple to phonons. It is highly nontrivial to directly

probe the intrinsic contribution from the mobile magnetic excitations. To highlight this

challenge, there is no known direct probe to even detect the mobility gap of magnetic

excitations, which is fundamentally important in the field of topologically ordered states.

In this chapter we propose a thermo-optic experiment which serves as a new probe

for mobile magnetic excitations in Mott insulators respecting either the spatial inversion

symmetry I or the time-reversal symmetry T 1, or both: the temperature-gradient-induced

nonreciprocal directional dichroism (TNDD). In a sense TNDD combines the thermal trans-

port and optical spectroscopy together, and effectively decouples from phonon and local

magnetic modes.

4.2 The effect of TNDD

Theory of TNDD Nonreciprocal directional dichroism (NDD) is a phenomenon referring

to the difference in the optical absorption coefficient between counterpropagating lights [14].

1or time-reversal symmetry combined with a spatial translation such as in an antiferromagnet
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From the Fermi’s golden rule, NDD for linearly polarized lights is due to the interference

between the electric dipole and magnetic dipole processes [15]2:

δn̂α(ω) ≡ αn̂(ω)− α−n̂(ω) =
2µr

ϵ0c2
2π

~
· ~ω
V

∑
i,f

(ρi − ρf ) · 2

· Re[⟨i|P⃗ · Ê |f⟩⟨f |M⃗ · B̂|i⟩] · δ(Ef − Ei − ~ω) (4.1)

where α±n̂(ω) is the optical absorption coefficient of counterpropagating lights (along ±n̂)

at frequency ω, which are I (or T ) images of each other. P⃗ (M⃗) is the electric polarization

(magnetic moment) operator. Ê (B̂) is the direction of the electric field (magnetic field)

and n̂ ∼ Ê × B̂. |i⟩, |f⟩ label the initial and final states in the optical transition (ρi and ρf

are their density matrix elements), ϵ0 and c are the vacuum permittivity and the speed of

light, V is the volume of the material, and µr is the material’s relative permeability. Clearly

both I and T need to be broken to have a nonzero NDD because Re[⟨i|P |f⟩ · ⟨f |M |i⟩] is

odd under either symmetry operation. NDD has been actively applied in the field of

multiferroics [17–25] to probe the dynamical coupling between electricity and magnetism.

The TNDD spectroscopy essentially detects the joint density of states of mobile mag-

netic excitations, and can be intuitively understood as follows (see Fig.4.1(a)). Consider a

Mott insulator respecting I and/or T so that NDD vanishes in thermal equilibrium. In the

presence of a temperature gradient, the system reaches a nonequilibrium steady state with

a nonzero heat current carried by mobile excitations. For simplicity one may assume that

excitations of the system are well-described by quasiparticles, e.g., spinons or magnons,

phonons, etc. The leading order nonequilibrium change of ρi and ρf in Eq.(4.1) satisfies

2In general NDD receives contributions from higher order multipole processes. [66] However in the

context of Mott insulators the electric-dipole-magnetic-dipole contribution Eq.4.1 dominates.
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δρi, δρf ∝ ∇T · τ from a simple Boltzmann equation analysis, where τ is the relaxation

time.

The crucial observation is that this nonequilibrium state breaks both the inversion

symmetry (by ∇T ) and the time-reversal symmetry (by τ). Consequently one expects

a NDD signal proportional to ∇T · τ . Precisely speaking TNDD is a second-order thermo-

electromagnetic nonlinear response: it is a change of optical absorption (a linear response)

due to a temperature gradient. The factor ∇T ·τ in TNDD indicates that it is a generaliza-

tion of Drude-phenomenon to nonlinear responses. Notice that the Drude-phenomenon is

independent of whether the system has a quasiparticle description or not. Even in the ab-

sence of quasiparticle descriptions, strongly interacting liquids may have nearly conserved

momentum. The relaxation time τ in Drude physics should be interpreted as the momen-

tum relaxation time [26]. This indicates that TNDD discussed here can be generalized to

systems without quasiparticle descriptions such as the U(1)-Dirac spin liquid [27–29] and

the spinon Fermi surface state [30, 31].

Advantages of TNDD spectroscopy Now we comment on the major advantages

of TNDD as a probe of spin dynamics. First, TNDD is a dynamical spectroscopy with

the frequency resolution in contrast to the DC thermal transport, and essentially probes

the joint density of states of magnetic excitations. Second, the fact that TNDD only

receives contributions from Re[⟨i|P |f⟩ · ⟨f |M |i⟩] dictates that the phonons’ contribution

can be safely ignored: The natural unit for the magnetic moment of phonon, the nuclear

magneton, is more than three orders of magnitudes smaller than that of the electron, the

Bohr magneton.

In addition, at the intuitive level, a local magnetic mode (e.g. from a magnetic impurity
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atom) can only couple to a local temperature instead of a temperature gradient. A local

temperature respects both I (after taking disorder-average) and T . Consequently, such

local modes are not expected to contribute to TNDD either. From a more careful estimate

(see App.4.4.1 for detailed discussions), we find that the contribution to TNDD from local-

ized modes with a localization length ξ, comparing to the contribution from the intrinsic

mobile magnetic modes, is at least down by a factor of ξ/lm, where lm is the mean-free

path of the mobile magnetic excitations. We have assumed that ξ ≪ lm: for local magnetic

modes carried by magnetic impurity atoms or crystalline defects, typically ξ is comparable

with the lattice spacing a, while usually lm ≫ a in a reasonably clean Mott insulator at

low temperatures.

Estimate of the TNDD response One may estimate the size of TNDD signal in a

spin-orbital coupled Mott insulator. The relevant dimensionless ratio limiting the experi-

mental resolution is:

TNDD(ω) ≡ δn̂α(ω)

αn̂(ω) + α−n̂(ω)
. (4.2)

In a Mott insulator, the polarization carried by a magnetic excitation can be estimated

as ζ · e · a, where a is the lattice spacing and ζ is dimensionless. Assuming the average

temperature of the system kBT to be comparable to the magnetic excitation energy3, we

find that (see App.4.4.2 for details):

TNDD(ω) ∼
(
D

J

)2
ζ

α
· |∇T | · lm

T
∼
(
D

J

)2

· |∇T | · lm
T

, (4.3)

3Similar to a thermal transport experiment, if the temperature of the system is far below the magnetic

excitation energy, a temperature gradient would not efficiently affect the magnetic excitation distributions

and would not lead to a sizable TNDD.
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in the limit of a weak spin-orbit coupling. Here α ≈ 1/137 is the fine-structure constant

and we used ζ ∼ 10−2 ∼ α in typical transition metal Mott insulators [33]. Notice that in

the absence of spin-orbit coupling, TNDD vanishes since the spin magnetic moment M is

a spin-triplet4. D and J are the Dzyaloshinskii-Moriya(DM) interaction and the exchange

interaction respectively. In a system with a strong spin-orbit coupling one may setD/J ∼ 1,

and TNDD(ω) is proportional to the ratio of the temperature change across lm and the

temperature. To optimize signal, one may choose a large temperature gradient such that

∇T · w ∼ T where w is the linear system size along the ∇T direction, and TNDD(ω) ∼

lm/w. For instance, lm of magnetic excitations in a quantum spin ice material was reported

to be of the order of a micron [35]. For a typical millimeter sample size, TNDD(ω) can be

as large as 10−3, well detectable within the currently available experimental technology.

Crystal symmetry analysis TNDD can be phenomenologically described by a tensor

η:

δn̂α(ω) =
∑
a,b,c

ηabc(ω)ÊaB̂b∇cT (4.4)

The symmetry condition for ηabc(ω) is determined by the fusion rule of two vectors (Ê ,∇T )

and one pseudovector (B̂) into a trivial representation under the point group. For any point

group, symmetry always allows nonzero ηabc: one may always consider the case n̂ ∼ Ê × B̂

to be parallel to ∇T .

As an example, we find that there are four independent response coefficients for the D3d

4We only consider the contribution from the spin magnetic moment in this chapter. The orbital magnetic

moment in a Mott insulator is a spin-singlet but is much smaller than the spin magnetic moment, by a

factor of (t/U)2 in the (t/U)-expansion. [33,67]
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point group:

δn̂α = η1∇zT (Ê × B̂)z + η2B̂z(Ê × ∇T )z + η3Êz(B̂ × ∇T )z

+ η4
[
(ÊxB̂y + ÊyB̂x)∇yT − (ÊxB̂x − ÊyB̂y)∇xT

]
(4.5)

Here the x-axis is a C2-axis and the yz-plane is a σd mirror-plane in the D3d group. The

D3d point group is realized in the QSL candidate Herbertsmithite, in the Heisenberg model

on the Kagome lattice with DM interactions (see below and Fig.4.1(b)), as well as in

the generalized Kitaev-Heisenberg model on the honeycomb lattice [36–38], relevant for

Na2IrO3 [39] and RuCl3 [40–42].

Microscopic model We present a concrete microscopic calculation for the TNDD

spectrum. The nearest neighbor spin-1/2 Hamiltonian under consideration is on the kagome

lattice:

H = J
∑
<ij>

S⃗i · S⃗j +
∑
<ij>

D⃗ij · S⃗i × S⃗j, (4.6)

This model is relevant for various QSL candidate materials such as ZnCu3(OH)6Cl2 (Her-

bertsmithite) and Cu3Zn(OH)6FBr, and respects both T and I. Based on the D3d crystal

symmetry for the kagome plane, the DM vector D⃗ij = −D⃗ji has two independent coupling

constants: Dz (out-of-plane) and Dp (in-plane) [43] (see Fig.4.1(b)). Precisely speaking:

D⃗ij = dij · (Dz · ẑ +Dp · ẑ × r̂ij), (4.7)

where dij = ±1, r̂ij is the unit vector along the direction from the site-j to the site-i. As

shown in Fig.4.1(b), in each bow-tie: d12 = d23 = d31 = 1, d34 = d45 = d53 = −1.

Dipole-coupling with an external electric field δH = −E⃗ · P⃗ , the electric polarization P⃗
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Figure 4.1: (a): A schematic illustration of the TNDD effect: in the presence of a tem-

perature gradient, the optical absorption coefficients for counterpropagating lights become

different, which essentially probes the joint density of states of mobile magnetic excitations.

(b) A Kagome lattice and the Dzyaloshinskii–Moriya vectors D⃗ij.

has the following form for the nearest neighbor terms [44]5:

Py =
ζea√
3
[S⃗3 · (S⃗2 + S⃗1 − S⃗5 − S⃗4)− 2S⃗1 · S⃗2 + 2S⃗5 · S⃗4],

Px =ζea · [S⃗3 · (S⃗2 − S⃗1 + S⃗5 − S⃗4)], (4.8)

where e < 0 is the electron charge, a is the nearest neighbor distance, and ζ is a dimension-

less coupling constant (in this chapter S⃗ = σ⃗/2.) ζ can be generated via a t/U expansion

in a Hubbard model [46]. In the leading order J = 4t2

U
and ζ = 12t3

U3 [44]. 6

Q1 = Q2 Z2 spin liquid: Schwinger boson mean-field treatment There are

extensive numerical evidences that the Heisenberg model on the kagome lattice may realize

a QSL ground state, although the nature of the QSL is under debate [29, 48–52]. The

5Generally the polarization operator contains spin-triplet terms similar to DM interactions. Here for

simplicity we only consider spin-singlet terms which dominate in the weak spin-orbit coupling limit.
6ζ also receives contribution from the magneto-elastic coupling. For a typical transition metal Mott

insulator, this contribution to polarization is similar in size as the contribution from the t/U -expansion

[33,44].
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present work does not attempt to resolve this long-standing puzzle. Instead, we will focus

on one candidate spin liquid state, which may be realized in the model Eq.(4.6): Sachdev’s

Q1 = Q2 Z2 QSL [53]. The Q1 = Q2 QSL is a gapped state and can be described using the

Schwinger boson mean-field theory [54–56], in which spin is represented by bosonic spinons:

S⃗i =
1
2
b†iασ⃗αβbiβ, while boson number per site is subject to the constraint b†iαbiα = 2S. We

then do the usual mean-field decoupling and diagonalize the quadratic mean-field spinon

Hamiltonian to obtain three spinon bands. We treat DM interaction as a perturbation and

keep contributions up to the linear order of D/J . Under this approximation we arrive at

the following mean-field Hamiltonian.

HMF = −µ
∑
i

(b†iαbiα − 2S)− J

2

∑
⟨ij⟩

(A∗
ijÂij + h.c.)

+
∑
⟨ij⟩

(
D⃗ij

4
· Aij

ˆ⃗
C†

ij + h.c.), (4.9)

where operators Âij ≡ biαϵαβbjβ and Ĉij ≡ −ibiα(ϵσ⃗)αβbjβ. HMF may be viewed as an ansatz

to construct variational spin-liquid wavefunctions with parameters Aij, µ. In Sachdev’s

Q1 = Q2 state, Aij have the following spatial pattern: Aij = dijA, and A can be chosen to

be real. See Appendix. 4.4.3 for more details.

After Bogoliubov diagonalization, three bands are found: HMF =
∑α=↑,↓

k⃗,u=1,2,3
Eu,⃗kγ

α†
u,⃗k
γα
u,⃗k

as shown in Fig.4.2, where ↑, ↓ label the Kramers degeneracy. Tuning chemical potential

µ so that the band structure is near the boson condensation at Γ, the lowest energy band

u = 1 is well described by a relativistic boson disperson:

E1,⃗k ≈
√
∆2 + ~2k2v2, (4.10)

where ∆ is the bosonic spinon gap.
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Figure 4.2: The Schwinger boson band dispersion (blue solid lines) for the mean-field

Hamiltonian Eq.(4.9) of Sachdev’s Q1 = Q2 Z2 QSL with parameters A = 1, Dz = Dp =

0.1J , and µ = −1.792J . The low energy band-1 near the Γ point is well described by

the relativistic dispersion Eq.(4.10) with gap ∆ = 0.16J (red line). The two-spinon (red

dots at ±k⃗) contribution to the TNDD response computed in Eq.(4.11) and App.4.4.3 is

illustrated.

TNDD contributed from the bosonic spinons In the low temperature limit, the

two-spinon contribution dominates TNDD with |f⟩ ∼ γα,†
u,⃗k
γβ†
v,−k⃗

|i⟩ in Eq.(4.1). 7. ρi, ρf in

Eq.(4.1) is related to the nonequilibrium bosonic spinon occupation gu,⃗k. From a simple

Boltzmann equation analysis with a single relaxation time τ , gu,⃗k deviates from the equilib-

rium occupation g0
u,⃗k

= 1

e
β(r⃗)E

u,k⃗−1
by δgu,⃗k =

∂g0
u,k⃗

(r⃗)

∂E
Eu,⃗k

τ v⃗
u,k⃗

·∇T

T (r⃗)
, where v⃗u,⃗k =

∂E
u,k⃗

~∂k⃗
. This

δgu,⃗k is responsible for TNDD.

Since TNDD is a bulk response we consider a 3D system consisting of stacked 2D layers

each described by the model Eq.(4.6) with an interlayer distance d. Using the electric

polarization Eq.(4.8) and spin magnetic moment M⃗ = gsµBS⃗, in App.(4.4.3 we compute

the low temperature/energy TNDD response tensor defined in Eq.(4.4) within our mean-

7Notice that a single spinon excitation is not gauge invariant and does not contribute to physical

responses
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Figure 4.3: The bosonic two-spinon contribution to TNDD spectra of Sachdev’s Q1 = Q2

Z2 QSL Eq.(4.9) at the temperature kBT = 0.7∆ (solid black line) and kBT = 0.4∆ (solid

red line), together with the two-spinon joint density of states (dashed blue line).

field treatment (corresponding to η2 in Eq.(4.5)). As plotted in Fig.4.3, we find that

(x, y, z-directions are illustrated in Fig.4.1)

ηxzy(ω) = C ·
[
1 + 2g0(~ω/2)

]
· (kBT )3

·
[
3G3(z)− 3lnz ·G2(z) + (lnz)2G1(z)

]
· e−

√
(~ω/2)2−∆2/∆ · ~ω · JDOS(~ω) · τ · v

T
. (4.11)

Here the constant C ≡ 8πu0α
2ζaa0 · µrgsa3

~3v3 , where a0 is the Bohr radius. u0 ∝ (D/J)2 is

a dimensionless constant related to the mean-field band structure and can be determined

numerically. For the parameters Dz = Dp = 0.1J and µ = −1.792J we find that u0 =

0.603. The 3D optical joint density of states JDOS(~ω) ≡ D · ~ω · Θ(~ω − 2∆) where

D ≡ 1
8π~2v2d . g0(~ω/2) = 1

eℏω/2kBT−1
, z ≡ e

− ∆
kBT , and Gν(z) ≡ 1

Γ(ν)

∫∞
0

xν−1dx
z−1ex−1

is the Bose-

Einstein integral. Eq.(4.11) holds when the temperature and the photon energy are within

the regime of the relativistic dispersion Eq.(4.10).

In the limit kBT ≪ ∆, Eq.(4.11) can be simplified and we have ηxzy(ω) ∝ e−∆/kBT ,

where the thermal activation factor can be traced back to δgk⃗. Importantly, beyond the

mean-field treatment, TNDD is generally ∝ δρi, δρf ∝ ∇T · τ in Eq.(4.1), and a thermal
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activation factor e−∆/kBT in TNDD is always due to the energy diffusion near the mobility

gap ∆. Therefore TNDD can serve as a sharp measurement of the mobility gap ∆ of the

magnetic excitations.

4.3 Discussion and conclusion

Bosonic vs. fermionic spinons We computed the TNDD response contributed from bosonic

spinons in the Sachdev’s Q1 = Q2 Z2 QSL. Fermionic spinons also exist in this Z2 QSL

and their contribution to TNDD can be similarly computed in a dual Abrikosov fermion

approach [58,59]. Without pursuing this calculation in details, one expects that the bosonic

factor [1 + 2g0(~ω/2)] (Bose-Einstein integrals) in Eq.(4.11) will be replaced by the cor-

responding fermionic factor [1 − 2f 0(~ω/2)] (Fermi-Dirac integrals), where f 0(~ω/2) =

1/(e~ω/2kBT + 1). The contributions from the bosonic spinons and fermionic spinons have

different temperature dependence, which, in principle, may be used to detect the statistics

of quasiparticles in certain situations.

Magnetically ordered states It is also interesting to consider the TNDD response in a

conventional magnetically ordered state respecting either I, or T combined with a lattice-

translation symmetry (as in the case of an antiferromagnet), or both. One may similarly

consider the two-magnon contribution to the TNDD response, which probes the joint den-

sity of states of magnons. Our estimate Eq.(4.3) will be modified as follows (see Appendix

4.4.2 for details). If the magnetic order is non-collinear, which breaks spin-rotational sym-

metry completely, the (D/J)2 factor in Eq.(4.3) is replaced by ∼ 1. If the magnetic order

is collinear, which only breaks the spin-rotation symmetry down to U(1), the (D/J)2 factor
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is replaced by D/J .

Conclusion In this chapter we propose the temperature-gradient-induced nonrecipro-

cal directional dichroism (TNDD) spectroscopy experiment in Mott insulators. Comparing

with traditional probes for magnetic excitations, TNND spectroscopy has unique advan-

tages: it directly probes mobile magnetic excitations and decouples from local impurity

modes and phonon modes. For instance, an activation behavior ∝ e−∆/kBT in the tempera-

ture dependence of TNDD sharply measures the mobility gap ∆ of the magnetic excitations,

a quantity challenging to measure using traditional probes but of fundamental importance

in the field of topologically ordered QSL.

The present work can be viewed as one example in a large category of nonlinear thermo-

electromagnetic responses. There are other interesting effects. For instance, a temperature

gradient also induces a circular dichroism in a system respecting both T and I. We leave

these other responses as topics of future studies.

4.4 Appendices

4.4.1 Localized modes

Let us consider the situation of a Mott insulator in the presence of impurities/disorders,

which could introduce localized magnetic modes. Below we consider the contribution to

TNDD response from these localized modes.

Firstly, we comment on the meaning of “localized modes” discussed here. In an isolated

localized phase of matter, like a many-body localized phase(see Ref. [60, 61] for reviews),

thermalization breaks down and the meaning of a temperature-gradient is unclear. We are
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NOT discussing the TNDD response in this situation.

In realistic quantum materials, the magnetic localized modes are coupled with a thermal

bath (e.g., phonon thermal bath) and a local temperature is well defined. To facilitate the

discussion, one may consider a system with a U(1) spin rotation symmetry in order to

sharply define a magnetic localized mode. In addition, we assume a finite mobility gap ∆

of the U(1) charge, and magnetic localized excitations may exist below ∆. Assuming lm

being the mean-free path for mobile magnetic excitations, practically the localized magnetic

modes may fall into two regimes according to the localization length ξ:

(1): ξ ≪ lm. This is the more common situation realized in practical materials. Here

the localized magnetic modes may be extrinsic magnetic impurity atoms, or may form at

crystalline defects. They may also form at the centers of the vortices of valence bond solid

(VBS) order [62]. Typically the localization length ξ of these magnetic modes is of the

same order as the lattice spacing a, while lm ≫ a in a reasonably clean Mott insulator.

It is difficult to model a magnetic localized mode with ξ ∼ a since lattice scale details

cannot be neglected. Instead, we consider the following situation a ≪ ξ ≪ lm so that a

low energy effective description is still valid. As a crude model for such magnetic localized

modes, one may consider a quantum dot of size ξ in the presence of a temperature gradient;

for instance, the left (right) edge of the quantum dot is in contact with a heat reservior

at temperature TL (TR). The modes in the quantum dot are travelling ballistically since

ξ ≪ lm. Consequently the right-mover (left-mover) in the quantum dot is at temperature

TL (TR). Such a nonequilibrium ensemble is quantitatively comparable with a large (energy-

)diffusive system in the presence of the same temperature gradient but with lm ∼ ξ (for

example, see Eq.(4.24)). Namely, in the present situation, ξ replaces the role of lm in our
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estimate Eq.(4.3). we conclude that the dimensionless ration TNDD(ω) contributed by

such localized modes is reduced by a factor of ∼ ξ/lm.

(2): ξ ≫ lm. In this situation, the system hosts would-be mobile modes. These modes

scatter with disorder multiple times before eventually become localized. For instance,

Anderson weak-localization in two spatial dimensions happens with ξ parametrically larger

than lm. It is instructive to consider a system size L satisfying ξ > L > lm. For such a

system size the localization physics is not present yet. Because photon absorption is still a

local process, we expect that the contribution to the TNDD response from such localized

modes to be comparable with that from mobile modes.

In summary, the contribution to TNDD response from localized modes in the regime

ξ ≪ lm can be safely neglected. In the opposite regime ξ ≫ lm, the localized modes still

contribute to TNDD significantly. Nevertheless, the localized modes in the latter regime

are would-be extended (mobile) states in the absence of disorder.

4.4.2 Spin-orbit coupling and the estimate of TNDD response

From the discussion in the main text and Eq.(4.1), up to matrix element effects, the TNDD

spectroscopy directly probes the joint density of states JDOS(~ω) of the mobile magnetic

excitations:

δn̂α(ω) ≡ αn̂(ω)− α−n̂(ω) ∝ ~ω · JDOS(~ω) · ∇T · τ (4.12)

In order to estimate the optical absorption coeffient αn̂ in a Mott insulator, one need to

estimate the strength of electric polarization and the magnetic dipole moment. It turns out

that they are comparable in a typical transition metal Mott insulator, which is drastically

different from the case of a band metal/insulator. In the latter case the electric polarization
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carried by a typical particle-hole excitation is ∼ e · a where e is the electron charge and

a is the lattice constant, while the magnetic moment carried by the same excitation is of

the order of a Bohr magneton µB. For a given electromagnetic wave, the magnetic dipole

energy scale µB · B is smaller than the electric dipole energy scale e · a · E by roughly a

factor of the fine-structure constant ∼ 1/137, which is why the magnetic dipole processes

are often neglected in a band metal/insulator.

In a Mott insulator, however, the electric polarization carried by a magnetic excitation

is heavily reduced. In the framework of the Hubbard model, this electric polarization can

be estimated as ζ ·e ·a where the dimensionless factor ζ ∼ 8(t/U)3 [33]. On the other hand,

the magnetic dipole moment carried by the same excitation is still ∼ µB. As a result, they

would have comparable sizes for typical 3d transition metal Mott insulators with t/U ∼ 10.

The absorption coefficient due to the electric dipole processes can be estimated based

on the Fermi’s golden rule:

αn̂(ω) ∼
2

nrϵ0c

2π

~
· |⟨f |P |i⟩|2 · ~ω · JDOS(~ω)

∼ 16π2

nr

αζ2a2 · ~ω · JDOS(~ω). (4.13)

where nr is the relative refractive index of the material, c is the speed of light, α is the

fine structure constant ∼ 1/137, and JDOS(~ω) is the joint density of states for the

relevant excitations at photon energy ~ω. We assume that the temperature is comparable

with the magnetic excitation energy scale, and we have used the typical matrix element

⟨f |P |i⟩ ∼ ζ · e · a where a is the lattice constant.

Notice that JDOS(~ω) may be estimated as ∼ 1
a3

1
W

where a is the lattice constant

and W is the band width of the excitations. For a typical photon energy ∼ W , one finds
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that ~ω · JDOS(~ω) ∼ 1/a3, independent of the nature of the excitations. For instance,

the interband absorption coefficient α(ω) in a band metal/insulator is typically ∼ 107m−1.

The dimensionless coupling constant ζ reduces by a factor of 102 in transition metal Mott

insultors, which gives the absorption coefficient ∼ 103m−1, broadly consistent with the

tera-Hertz penetration depth (∼ 1mm) for these quantum magnets [63, 64].

The TNDD response can be similarly estimated. We first consider the case of a quantum

paramagnet.

δn̂α(ω) ∼
2µr

ϵ0c2
2π

~
· (ρi − ρf ) · 2 · Re[⟨f |P |i⟩⟨i|M |f⟩]

· ~ω · JDOS(~ω) (4.14)

We again assume that the temperature is comparable with the magnetic excitation energy

scale, and consequently the effect of temperature gradient in (ρi − ρf ) can be estimated by

the dimensionless factor |∇T |·lm
T

where lm is the mean-free path of the magnetic excitations.

If the spin-orbit coupling (SOC) is strong one may estimate ⟨f |P |i⟩ ∼ ζea while ⟨i|M |f⟩ ∼

gsµB (gs is the g-factor the spin magnetic moment.). Putting together we have:

δn̂α(ω) ∼ 16π2µrgsα
2ζa0a ·

|∇T | · lm
T

· ~ω · JDOS(~ω),

if strong SOC. (4.15)

Here a0 is the Bohr radius.

From Eq.(4.13,4.15), and a0 ∼ a, we can estimate that if the spin-orbit coupling is

strong and the temperature is comparable with the magnetic excitation energy scale, the

dimensionles ratio TNDD in Eq.(4.2)

TNDD(ω) ∼ α

ζ

|∇T | · lm
T

∼ |∇T | · lm
T

, if strong SOC. (4.16)

135



Here we used the fact that for a typical transition metal Mott insulator ζ ∼ 10−2 ∼ α.

In the absence of the SOC, ⟨i|M |f⟩ = 0 because M⃗ = gsµBS⃗ is proportional to the

conserved total spin S⃗ (We only consider the spin magnetic moment. The orbital magnetic

moment in Mott insulators is much smaller and neglected.). In the limit of a weak SOC:

D/J ≪ 1, the TNDD response can be estimated as follows. The only effect of the weak

SOC is in the matrix element product: ⟨f |P |i⟩⟨i|M |f⟩.

For the magnetic dipole matrix element: ⟨i|M |f⟩ ∝ 1
Ef−Ei

⟨i|[S,H]|f⟩ ∝ ⟨f |D⃗ · [S, S⃗i ×

S⃗j]|i⟩. Notice that the operator of the commutator is a spin triplet. There are two possi-

bilities: (1): the states |f⟩ and |i⟩ differ by spin-1 in the limit D/J → 0. For instance, |f⟩

may be a spin triplet while |i⟩ is a spin singlet in that limit; (2): the states |f⟩ and |i⟩ have

the same spin in the limit D/J → 0.

In the situation-(2), the magnetic dipole matrix element ⟨i|M |f⟩ ∝ (D/J)2, because

the wavefunction corrections of |f⟩ and |i⟩ due to nonzero D/J need to be considered. In

this situation, the electric dipole matrix element ⟨f |P |i⟩ ∝ (D/J)0 since P is a spin singlet

operator in the limit of D/J → 0. Therefore in situation-(2) we have ⟨f |P |i⟩⟨i|M |f⟩ ∝

(D/J)2.

In the situation-(1), a similar consideration leads to: ⟨i|M |f⟩ ∝ (D/J) and ⟨f |P |i⟩ ∝

(D/J). So we still have ⟨f |P |i⟩⟨i|M |f⟩ ∝ (D/J)2.

In summary, we have the following estimate in a quantum paramagnet assuming the

temperature is comparable with the magnetic excitation energy scale:

TNDD(ω) ∼
(
D

J

)2
α

ζ

|∇T | · lm
T

∼
(
D

J

)2 |∇T | · lm
T

, if weak SOC. (4.17)

136



Next we estimate the TNDD response in magnetic ordered states due to magnon excita-

tions. Even in the absence of microscopic SOC, the (D/J)2 factor in the estimate Eq.(4.17)

will be replaced by ∼ 1 in a non-collinear magnetic ordered state, because the spin-rotation

symmetry is completely broken.

In a collinear magnetic ordered state, the spin rotation symmetry is broken down to U(1)

in the absence of SOC. The electric polarization operator P is expected to carry zero charge

under this U(1) rotation. To have a nonzero matrix element product ⟨f |P |i⟩⟨i|M |f⟩, one

must consider the linear-order effect of the SOC. Therefore in this case the (D/J)2 factor

in the estimate Eq.(4.17) will be replaced by ∼ D/J .

4.4.3 Details of the mean-field calculation for TNDD

In this section we provide a detailed account of the Schwinger boson mean-field theory.

The spin is represented by bosonic spinons

S⃗i =
1

2
b†iασ⃗αβbiβ, (4.18)

while boson number per site is subject to the constraint:

b†iαbiα = κ. (4.19)

Although κ = 2S for spin-S, it will be convenient to consider κ to be a continuous param-

eter, taking on any non-negative value [53, 65].

Considering the operator identities S⃗i ·S⃗j = −1
2
Â†

ijÂij+
κ2

4
and S⃗i×S⃗j =

1
4
[
ˆ⃗
C†

ijÂij+h.c.],

where

Âij = −Âji = biαϵαβbjβ,
ˆ⃗
Cij =

ˆ⃗
Cji = −ibiα(ϵσ⃗)αβbjβ. (4.20)
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standard mean-field decoupling of Eq.(4.6) leads to the mean-field Hamiltonian:

HMF = −J
2

∑
<ij>

(A∗
ijÂij + AijÂ

†
ij − |Aij|2)

+
∑
<ij>

D⃗ij

4
· (C⃗∗

ijÂij + Aij
ˆ⃗
C†

ij − C⃗∗
ijAij + h.c.)

− µ
∑
i

(b†iαbiα − κ). (4.21)

Here the chemical potential µ is introduced to enforce constraint Eq.(4.19) on the mean-field

level. HMF may be viewed as an ansatz to construct variational spin-liquid wavefunctions

with parameters Aij, C⃗ij, µ.

We will consider the case of a small D/J and keep contributions up to the linear

order of D/J . Under this approximation we will set the parameter (not the operator ˆ⃗
Cij)

C⃗ij ∝ D/J to zero in Eq.(4.21) below, which yields Eq.(4.9) in the main text. We also

focus on Sachdev’s Q1 = Q2 state, where Aij happens to have the following spatial pattern:

Aij = dijA, and A is chosen to be real.

After diagonalizing HMF in the momentum space, there are three Kramers degenerate

Bogoliubov boson bands (see Fig.4.2):

HMF =

u=1,2,3∑
k⃗,α=↑,↓

Eu,⃗kγ
α†
u,⃗k
γα
u,⃗k
. (4.22)

Notice that spin is not a good quantum number and ↑, ↓ are simply labelling the two-fold

Kramers degeneracy for each band.

In the presence of a temperature gradient ∇T (r⃗), the occupation of Bogoliubov spinons

gu,⃗k = ⟨nu,⃗k⟩ (where nu,⃗k = γ†
u,⃗k
γu,⃗k) deviates from the thermal equilibrium value g0

u,⃗k
. For

simplicity, we consider the steady state Boltzmann equation within a single relaxation-time
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approximation:

v⃗u,⃗k · ∇r⃗gu,⃗k(r⃗) = −
gu,⃗k(r⃗)− g0

u,⃗k
(r⃗)

τ
, (4.23)

where g0
u,⃗k

(r⃗) = 1

e
E
u,k⃗

/kBT (r)
+1

, v⃗u,⃗k = 1
~∇k⃗Eu,⃗k. To the leading order, these give δgu,⃗k(r⃗) ≡

gu,⃗k(r⃗)− g0
u,⃗k

(r⃗):

δgu,⃗k(r⃗) ≡ δg↑
u,⃗k

(r⃗) = δg↓
u,⃗k

(r⃗) =
∂g0

u,⃗k
(r⃗)

∂E
Eu,⃗k

τ v⃗u,⃗k · ∇T
T (r⃗)

(4.24)

Since the velocity v⃗u,⃗k = −v⃗u,−k⃗, we have:

δgu,⃗k(r⃗) = −δgu,−k⃗(r⃗) (4.25)

To be concrete, we focus on the case Ê = x̂ and B̂ = ẑ, with the light propagating

direction n̂ = −ŷ and the temperature gradient ∇T ∝ ŷ(the η2 response in Eq.(4.5)). In

order to compute the matrix elements in Eq.(4.1), one writes Px and Mz in terms of the

Bogoliubov bosons, and selects the relevant terms:

Px →
v,α,w,α′∑

q⃗

Xv,α,w,α′

q⃗ γα†v,q⃗γ
α′†
w,−q⃗ + h.c.

+
1

A

v,α,w,α′,t,β∑
q⃗,p⃗

Y v,α,w,α′,t,β
q⃗,p⃗ γα†v,q⃗γ

α′†
w,−q⃗γ

β†
t,p⃗γ

β
t,p⃗ + h.c.,

Mz = −gsµb

∑
i

b†iα
σz
αβ

2
biβ

→
v,α,w,α′∑

q⃗

Zv,α,w,α′

q⃗ γα†v,q⃗γ
α′†
w,−q⃗ + h.c.. (4.26)

The objects Xv,α,w,α′

q⃗ , Y v,α,w,α′,t,β
q⃗,p⃗ , Zv,α,w,α′

q⃗ are determined by the Bogoliubov transforma-

tion from Eq.(4.9) to Eq.(4.22).

Plugging in Eq.(4.1), one finds

δn̂α(ω) =
8πµr

ϵ0c2d
Re[I(ω)], (4.27)
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where

I(ω) =
ω

A

v,α,w,α′∑
q⃗

[
Xv,α,w,α′

q⃗ +
1

A

t,β∑
p⃗

Y v,α,w,α′,t,β
q⃗,p⃗ · gt,p⃗

]∗
· Zv,α,w,α′

q⃗ (1 + gv,q⃗ + gw,−q⃗) · δ(Ev,q⃗ + Ew,−q⃗ − ~ω). (4.28)

Here the bosonic factor (1 + gv,q⃗ + gw,−q⃗) is well anticipated from the golden rule. The

factor gt,p⃗ appears because of the quartic interactions in P⃗ in Eq.(4.8).

It is a good moment to study the symmetry property of I(ω). In thermal equilibrium,

it is straightforward to see that the inversion symmetry alone dictates I(ω) = 0, while

time-reversal symmetry alone allows a nonzero imaginary part of I(ω) (giving rise to the

well-known natural circular dichroism in noncentrosymmetric systems).

Next we consider the effect of nonequilibrium occupation δgu,⃗k in Eq.(4.24). Expanding

Eq.(4.28) gives three contributions, I = I(A) + I(B) + I(C):

I(A)(ω) ∝ X∗ · Z · (δgv,q⃗ + δgw,−q⃗),

I(B)(ω) ∝ Y ∗ · Z · g0t,p⃗ · (δgv,q⃗ + δgw,−q⃗),

I(C)(ω) ∝ Y ∗ · Z · δgt,p⃗ · (1 + g0v,q⃗ + g0w,−q⃗). (4.29)

While the inversion symmetry allows all these contributions, the time-reversal symmetry

only allows their real parts: the directional dichroism. In addition, in the special situation

that v = w, namely if the created two spinons are in the same band, obviously I(A)(ω) =

I(B)(ω) = 0 due to Eq.(4.25) and only I(C)(ω) is nonzero.

Focusing on the low temperature/energy TNDD spectroscopy, one may consider the

contribution v = w = t = 1 from the lowest energy band only (see Fig.4.2 for a plot of the
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Figure 4.4: The fit log(Wq⃗,p⃗/[py · (ζea4gsµB)]) = log(u0) −
√
E2

1,q⃗ −∆2/∆ (i.e., Eq.(4.31)

with u⃗ = uŷ = u0ζea
4gsµB ŷ) with only one fitting parameter u0. In each case 696 data

points with both
√
E2

1,p⃗ −∆2/∆ and
√
E2

1,q⃗ −∆2/∆ between 0.5 and 1.7 are plotted. Since

many data points are related by the lattice symmetry and/or share the same momentum

q⃗ (but different p⃗), the visibly different data points are much fewer. We set A = 1,

and consider three cases of different SOC strength: case-(a): Dz = Dp = 0.025J (and

µ = −1.752J); case-(b): Dz = Dp = 0.05J (and µ = −1.765J); case-(c) Dz = Dp = 0.1J

(and µ = −1.792J). Notice that for each case the chemical potential µ is tuned so that

the spinon gap is fixed to be ∆ = 0.16J . As shown in this figure, we numerically find that

u0 = 0.0378 in case-(a), u0 = 0.151 = 0.0378·3.99 in case-(b), and u0 = 0.603 = 0.151·3.99

in case-(c). The scaling u0 ∝ (D/J)2 is confirmed.
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band structure), and compute I(ω) = I(C)(ω) analytically. In this case:

I(C)(ω) =
ω

A2

∑
q⃗,p⃗

Wq⃗,p⃗ · δg1,p⃗(1 + 2g01,q⃗)δ(2E1,q⃗ − ~ω),

where Wq⃗,p⃗ ≡
∑
α,α′,β

(Y 1,α,1,α′,1,β
q⃗,p⃗ )∗ · Z1,α,1,α′

q⃗ . (4.30)

Wq⃗,p⃗ is a real function satisfying Wq⃗,p⃗ = −W−q⃗,−p⃗ due to the inversion symmetry. Taylor

expanding near the Γ-point, to the leading order one expects: Wq⃗,p⃗ ≈ u⃗ · p⃗+ v⃗ · q⃗. In fact,

interestingly, we numerically found that Wq⃗,p⃗ can be well described as

Wq⃗,p⃗ = (u⃗ · p⃗) e−
√

E2
1,q⃗

−∆2/∆ (4.31)

in the momentum regime where the relativistic dispersion Eq.(4.10) holds (see Fig.4.4 for

details). We do not attempt to analytically justify Eq.(4.31) here since it deviates from the

main purpose of this chapter. Eq.(4.30,4.31) then lead to:

I(C)(ω) =
ω

A2

∑
p⃗

(u⃗ · p⃗ δg1,p⃗)

·
∑
q⃗

e−
√

E2
1,q⃗

−∆2/∆(1 + 2g01,q⃗)δ(2E1,q⃗ − ~ω). (4.32)

Crystal symmetry and dimensional analysis show that u⃗ = uŷ = u0ζea
4gsµB ŷ, consistent

with the η2 response in Eq.(4.5). The dimensionless number u0 is expect to be ∼ (D/J)2

and can be determined numerically (see Fig.4.4 for details).

With Eq.(4.24,4.27,4.10,4.32) the low temperature/energy TNDD response can be com-

puted within our mean-field treatment:

δŷα(ω) = C ·
[
1 + 2g0(~ω/2)

]
· (kBT )3

·
[
3G3(z)− 3lnz ·G2(z) + (lnz)2G1(z)

]
· e−

√
(~ω/2)2−∆2/∆ · ~ω · JDOS(~ω) · ∇yT · τ · v

T
. (4.33)
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This is just the Eq.(4.11) in the main text.

We can apply the estimate in the previous section to the present example as follows.

We firstly estimate αn̂ due to the electric dipole processes following the golden rule:

αn̂(ω) ∼
2

nrϵ0c

2π

~
(ζea)2[1 + 2g0(~ω/2)]~ω · JDOS(~ω)

=
16π2

nr

αζ2a2[1 + 2g0(~ω/2)]~ω · JDOS(~ω), (4.34)

where nr is material’s relative refractive index. For the situation with kBT ∼ J ∼ ~v
a

and

~ω ∼ 2∆, Eq.(4.11,4.34) give the dimensionless ratio TNDD(ω) in Eq.(4.2):

TNDD(ω) ∼ αa0
ζa

· u0
∇yT · τ · v

T
, (4.35)

confirming the estimate Eq.(4.3) since u0 ∝ (D/J)2.

Finally, we would like to remark on the validity of the mean-field treatment. Although

we performed the calculation within the mean-field approach, the main component of the

calculation (Eq.(4.29,4.30) in App.4.4.3) is justified as long as the quasiparticle description

is valid. These microscopic contributions to TNDD can be written down phenomenologi-

cally as a low quasiparticle-density expansion, up to the second order ∝ gp⃗ · gq⃗. Some other

components of the calculation (e.g., the matrix element behavior Eq.(4.31) ) may receive

corrections moving beyond the mean-field approximation, but these would not change the

result of TNDD response qualitatively.
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