Boston College

The Graduate School of Arts and Sciences

Department of Physics

Symmetry and topology in condensed matter physics

a dissertation

by

XU YANG

submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

MAY 2021



© copyright by XU YANG
2021



Symmetry and topology in condensed matter physics

XU YANG

Dissertation advisor: Dr. Ying Ran

Abstract

Recently there has been a surging interest in the topological phases of matter, including
the symmetry-protected topological phases, symmetry-enriched topological phases, and
topological semimetals. This thesis is aiming at finding new ways of searching and probing
these topological phases of matter in order to deepen our understanding of them.

The body of the thesis consists of three parts. In the first part, we study the search
of filling-enforced topological phases of matter in materials. It shows the existence of
symmetry-protected topological phases enforced by special electron fillings or fractional
spin per unit-cell. This is an extension of the famous Lieb-Schultz-Mattis theorem. The
original LSM theorem states that the symmetric gapped ground state of the system must
exhibit topological order when there’s fractional spin or fractional electron filling per unit-
cell. However, the LSM theorem can be circumvented when commensurate magnetic flux
is present in the system, which enlarge the unit-cells to accommodate integer numbers of
electrons. We utilize this point to prove that the ground state of the system must be a
symmetry-protected topological phase when magnetic translation symmetry is satisfied,
which we coin the name “generalized LSM theorem”. The theorem is proved using two

different methods. The first proof is to use the tensor network representation of the ground



state wave-function. The second proof consists of a physical argument based on the idea of
entanglement pumping. As a byproduct of this theorem, a large class of decorated quantum
dimer models are introduced, which satisfy the condition of the generalized LSM theorem
and exhibit SP'T phases as their ground states.

In part II, we switch to the nonlinear response study of Weyl semimetals. Weyl semimet-
als (WSM) have been discovered in time-reversal symmetric materials, featuring monopoles
of Berry’s curvature in momentum space. WSM have been distinguished between Type-I
and II where the velocity tilting of the cone in the later ensures a finite area Fermi sur-
face.To date it has not been clear whether the two types results in any qualitatively new
phenomena. In this part we focus on the shift-current response (o (w)), a second or-
der optical effect generating photocurrents. We find that up to an order unity constant,
Oshift(w) ~ Z—i% in Type-II WSM, diverging in the low frequency w — 0 limit. This is in
stark contrast to the vanishing behavior (ogp;f(w) o w) in Type-I WSM. In addition, in
both Type-I and Type-II WSM, a nonzero chemical potential u relative to nodes leads to

3

a large peak of shift-current response with a width ~ |u|/h and a height ~ %‘—;', the latter
diverging in the low doping limit. We show that the origin of these divergences is the sin-
gular Berry’s connections and the Pauli-blocking mechanism. Similar results hold for the
real part of the second harmonic generation, a closely related nonlinear optical response.
In part III, we propose a new kind of thermo-optical experiment: the nonreciprocal
directional dichroism induced by a temperature gradient. The nonreciprocal directional
dichroism effect, which measures the difference in the optical absorption coefficient be-

tween counterpropagating lights, occurs only in systems lacking inversion symmetry. The

introduction of temperature-gradient in an inversion-symmetric system will also yield non-



reciprocal directional dichroism effect. This effect is then applied to quantum magnetism,
where conventional experimental techniques have difficulty detecting magnetic mobile ex-
citations such as magnons or spinons exclusively due to the interference of phonons and
local magnetic impurities. A model calculation is presented to further demonstrate this

phenomenon.
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Chapter 1

General prologue

The best of artists hath no thought to show
which the rough stone in its superfluous shell
doth not include; to break the marble spell

is all the hand that serves the brain can do.

-Michelangelo

1.1 Overview of condensed matter physics

Condensed matter physics is a branch of physics that is dealing with condensed phases of
matter. [l

The first question one can ask in the field of condensed matter physics is: why are there
so many different phases of matter? In the case of H20, we know that it can be in the form
of ice, liquid water and water vapor. And through the change of pressure and temperature,
these different phases can transform into each other, with drastically different apperances.

This curious fact even leads the Greek philosopher Thales to make the bold claim that
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Figure 1.1: The p — T phase diagram of water. The first-order liquid-gas transition line
ends at the critical point with T, = 647K, P. = 2.2 * 1083Pa. The phase transition at the
critical point becomes a second-order one, with continuous change of density and any other
first order derivatives of the thermodynamic potential. Beyond the critical point, there is

no phase transition between liquid water and water vapor.

everything is made of water. [2] Here’s a twist: the difference between liquid water and
water vapor is actually pretty vague. Usually one would differentiate between liquid water
and water vapor through the process of evaporation, which is a first-order transition at
which their densities have an abrupt jump. But the p — T" phase diagram shows that this
transition line ends at one point, where the density-difference is zero, and beyond which
there’s no clear distinction between liquid water and water vapor. Are they truly different
phases or just the same kind of phase? [l1]

Another interesting point associated with phases of matter is as follows. We know from



our ordinary experience that liquid and gas are isotropic and uniform (in mathematical
language it means that they are symmetric under the SO(3) spatial rotation and continuous
translation along three directions). At low enough temperature, usually the liquid will form
a crystal, which breaks the SO(3) rotation and continuous translation down to discrete
rotations and discrete translation. This is indeed an astonishing effect, since we know that
the law of electromagnetic force (the dominating force between the atomic scale and the
everyday scale) is apparently isotropic. From quantum mechanics, we also know that the
eigenstates of any Hamiltonian with symmetry G can always be made to be symmetric with
respect to G' [3]. There seems no reason for nature to choose a set of non-symmetric states
as the basis in the degenerate space. Let’s take the example of Ising symmetry-breaking in

the transverse-field Ising model as an illustration. [5]
H=> —JSiS;, —h,S. (1.1)

This model has the spin-z-flip symmetry [], S*. And when h, = 0, the ground states are
|1 --+) and |]] ---), which spontaneously breaks the spin-z-flip symmetry. This picture
is not altered significantly when h, < J (below we call them [1) and ||) states). The
skeptical might immediately object that the linear combinations (|1) £ [1))/v/2 work just
as well. In fact, for a finite system, the symmetric state has a lower energy than the
anti-symmetric state and the symmetry-breaking phenomenon simply does not occur. The
solution to this puzzle is that in the thermodynamic limit N — oo, the energy splitting
between the symmetric state and the anti-symmetric state is of order h; Y, an exponentially
small factor. Therefore they can be treated as degenerate safely. Similar consideration
shows that any matrix elements of a local operator O between |1) and ||) states are zero

in the thermodynamic limit. Therefore any local observations of a symmetric observable

3



can be described using either |1) or |]) states, together with a formal average over them.
Furthermore, we note that the degeneracy of the states can be lifted by an infinitesmal
external magnetic field h,. As a result, we might treat the symmetry-breaking states as
the true physical states in every real sense. [4]

L. Landau has developed the idea of symmetry and symmetry-breaking into a very gen-
eral and powerful theory, which explains not only why there are symmetry breaking and
symmetric phases, but also how phase transition happens between the two. [6] Landau’s
theory of second-order phase transition goes as follows. First, he assumes that near the
symmetry breaking second-order phase transition, there’s an order parameter that charac-
terizes the symmetry breaking. In the example of the transverse-field Ising model, we can
simply choose the average value of ¢* as the order parameter. The sign and the magnitude
of its value denotes the direction and the degree of the symmetry-breaking. Landau’s next
observation is that the free energy is a functional of the order parameter field, usually
expanded in low order polynomials of the order parameter field and its derivatives. The
transformation rule of the order parameter under the symmetry group imposes restrictions
on the form of the free energy. By minimizing the free energy functional over the order
parameter field, we can obtain the value of the order parameter field in terms of the tunable
parameters in the free energy functional, which are related to external conditions that can
be tuned to trigger the phase transition. It can be clearly seen that in a continuous phase
transition, the order parameter grows continuously from zero, signifying the phenomenon
of symmetry-breaking.

Landau’s theory of second-order phase transition shows that we can characterize phases

of matter in terms of their symmetry properties. Therefore liquid water and water vapor are



essentially the same phase, but ice is a truly different phase since it has a lower symmetry
than liquid water or water vapor. Landau’s theory also shows continuous phase transition
can only occur between two phases where the symmetry group of one phase is a subgroup
of the symmetry group of the other phase. All the essential physics encoded in this phase
transition can be described in terms of an order parameter field. Therefore from Landau we
have a complete classification and understanding of physical states in terms of symmetry.
The rest seems to systematically apply this machinary to all the known phases of matter.
In fact, in the case of crystallography, there is the classification of crystals in terms of their
different crystal symmetries, which is essentially working out all the point group symmetries
compatible with a periodic array of atoms. We can then fit all the known crystals into this
grand scheme. Without going into any detail, we already know that crystals with the same
symmetry group share many physical properties in common. And the possible structural
transition from one crystal into another crystal with higher or lower symmetry can be
readily predicted using Landau’s theory. [[7] Yet this is not the whole story. As we shall see

below, topology also plays an important role in the classification of phases of matter.

1.2 The advent of topological era

What we mean by topology is always associated with some kind of rigidity. The simplest
example to demonstrate the phenomenon of topology is this famous joke: a topologist can-
not tell the difference between a coffee mug and a donut, because they can be continuously
deformed into each other without gluing or tearing. The rigidity lies in the fact that the

number of holes is always the same during the deformation process since we do not al-



low gluing or tearing processes which are the only operations that can change the number
of holes. [8] Solid state physics naturally provides us with such rigidity here and there,
with various indications toward phenomena of topology. The rigidness of the Fermi surface
topology is ensured by the Pauli exclusion principle-temperature only blur the Fermi surface
by a very small degree at room temperature, therefore the whole Fermi surface topology is
essentially unaltered. [[10,11] And the rigidness of the crystalline defects is ensured by the
fact that an extensive amount of energy is needed to create or destroy a single crystalline
defect. [9] In insulators, i.e., system with a energy gap to charge excitations, the rigidity is
ensured by the relative difficulty of exciting a charged quasiparticle across the energy gap,
and this is the case we are going to explore further in this section.

The modern era of topology in solid state physics begins with the following discover-
ies: the resonating-valence-bond state of quantum magnets, Berezinskii-Kosterlitz-Thouless
transition, integer and fractional quantum Hall effects, the Haldane model and the spin-1
Haldane chain. [?,7,7,[12,14-17] And the topological revolution reaches its climax with the
discovery and systematic classification of quantum spin liquids, topological insulators and
symmetry-protected topological phases in interacting bosonic systems. [18-23] These new
discoveries show that there can be different phases even when the symmetries are exactly
the same, and there can even be continuous phase transitions between them (e.g., BKT
transition). Therefore an understanding of these phases certainly calls for a new perspective
which encompasses the Landau paradigm.

Let’s first take a closer look at the Landau paradigm to see what could possibly be
missing. In the Landau paradigm, we have encoded all the relevant information of a state

in terms of a uniform order parameter. For the symmetry-unbroken phase, we know that



the value of order parameter is zero. One can readily construct such a state as the direct
product of identical wave-function which is a singlet under the symmetry group. In the case
of transverse-field Ising model, we can model the symmetry-unbroken phase with J = 0
as the direct product of spins along the +z direction, |4+ + ---). Landau’s theory tells us
that all the other ground states under different values of .J, h, are basically "the same”
as this simple direct product state, as long as no phase transition occurs. Here by "the
same” we mean that the physical behavior are qualitatively the same, but can of course
differ quantitatively (below we will try to put this hand-waving argument on a more solid
ground). This line of reasoning can also be applied to the symmetry-breaking phase.
Therefore when applying Landau’s theory of phase transition to the classification of
phases of matter, one might draw a over-generalized conclusion that within every phase
one can find a direct product state, which expresses the essential physical properties of the
phase faithfully. But the new findings of topological phases show that this is definitely not
the case. It is possible that there are some new states that has non-local information stored
in the wave-function, which could not be described by a mere order parameter, and hence
they behave drastically differently from a direct product state. Now it is a good time to
explore further the idea of a phase. Below we shall restrict our discussion to quantum phase
transition (mere convenience) and gapped phases of matter (gapless phases of matter are
still not fully understood). States within the same gapped phase are "the same” in some
sense, which can be made more precise by the idea of adiabatic evolution [24]. From the
adiabatic theorem, we know that if the Hamiltonian depends on a parameter g and if g
changes relatively slowly with time, then an eigenstate of H(g) will stay as an eigenstate

of H(g) during the course of time evolution. The idea of adiabatic evolution then provides



us with the definition of a phase: if two gapped states |Wy) and |¥;) are in the same
phase, then we can always find a family of Hamiltonian H(g) with the tunable parameter
g € [gi, gy], such that the energy gap for H(g) are finite for all g, and the ground states
of H(g;) and H(gys) are |¥,) and |¥), respectively. This adiabatic time evolution is also
equivalently called lcoal unitary evolution. From this new perspective, what we have said
above can be reiterated as follows: all states in the same phase as a direct product state can
be reached by proper local unitary evolutions, during which the gap of the Hamiltonians
remain open, therefore the direct product state serves as a good representation of this
phase. But the advent of the topological era tells us that even for systems with the same
symmetry, we might have states that cannot be adiabatically connected to each other.
Let’s first discuss the case where there’s no symmetry present in the system. It turns
out that there can be phases other than the conventional trivial phase. This is most
clearly illustrated by the example of Kitaev’s toric code model [25]. This model is an
exactly-solvable spin model with not symmetry at all, and its 2d version has ground state
degeneracy on high-genus Riemann surfaces (the simplest example being torus with genus-
1, which naturally occurs if we impose periodic boundary conditions in the two spatial
directions). This property is of particular interest since it directly reflects the topological
structure of the real space configuration. The difference between the ground states of the
toric code model and a direct product state is pretty clear, since the topological degeneracy
between the 4 ground states of the toric code model on a torus can in no way be lifted by any
local unitary transformation. Since ground state degeneracy usually results from some kind
of symmetry breaking and the development of certain order, Xiao-gang Wen has drawn this

analog and coined a name for such phases as “topological-ordered phases” [26]. This toric



code model also has other interesting features such as emergent 75 gauge field, emergent
excitations with non-trivial mutual statistics and the emergence of fermionic excitations in
a purely spin model, all of which are different incarnations of the underlying topological-
ordered ground states. The role of quantum entanglement is also quite clear from the exact
ground state wavefunction, which are a coherent superposition of macroscopic numbers
of quantum states and can in no way be simplified by any adiabatic evolution of gapped
Hamiltonians. This pattern of long-range entanglement of the ground state wave-function
is in fact a characteristic feature of the topological ordered state.

Let’s now discuss idea of adiabatic evolution in the presence of symmetry. Previously
we have impose no restrictions on the Hamiltonian during the adiabatic time evolution
other than the condition that gap is not closed. When the symmetry is present, however,
it is necessary that at intermediate stages during the time evolution, the ground states are
symmetric, so we need to require that the Hamiltonians during the evolution are symmetric.
If we cannot find any symmetric adiabatic time evolution to connect two states with exactly
the same symmetry and without topological order, we can say that these two states belong
to two different phases of matter. Haldane phase and S, = 0 phase of spin-1 chain are
examples of states with the same symmetry which belong to two different equivalent classes
of symmetric adiabatic time evolution. Band insulators and topological insulators are other
examples. Note that symmetry is essential in the classification of these phases. If symmetry
can be broken in intermediate steps, these states are in fact adiabatically connected to each
other. Therefore they are termed ”Symmetry-protected topological phases” (SPT). The
above discussion also gives us a by-product: there are gapless modes on the boundary of

a SPT phase, since if we view the vacuum as a trivial SPT state, then on the boundary



between these two different SPT states the gap must be closed for some modes.

Quantum spin liquids show an interesting interplay between symmetry and topology,
specifically in the concept of symmetry fractionalization. When symmetry is present in
the topological ordered states, we can discuss the symmetry properties of the topological
excitations. Due to the fact that physical local operators never create or annihilate a
single topological excitation, topological excitations always come in groups. In this sense
we say that topological excitations are (in a sense) fractions of local excitations. In the
same sense, the quantum numbers carried by topological excitations are also fractions of
the symmetry quantum number of local excitations. This is best illustrated in the case
of spinons in quantum spin liquids, which is a topological ordered state with SO(3) spin
rotation symmetry. Usually in a magnetic ordered state, there are magnons carrying spin-
1 that can be created/annihilated by local spin flip operators. Heuristically, spinons in
quantum spin liquids can be viewed as fractions of magnons, therefore they carry spin-
1/2, which is a projective representation of the SO(3) group. Symmetry fractionalization
also occurs when other kinds of symmetry are present, such as time-reversal symmetry,
crystal symmetries. These are topological-ordered states “enriched” by symmetry, since the
topological order always exists no matter the presence or absence of symmetry. Therefore
they are termed “Symmetry-enriched topological phases”.

So far we have showed that the idea of classifying phases in terms of equivalence classes
of local unitary evolutions w/o symmetry has included all the new phases beyond Landau
paradigm, therefore providing us with a unified way of systematically classifying phases of
madtter.

Finally let me give a short remark on the experimental detections of the topological
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phases. Since the topological nature of these phases are buried in their entanglement
pattern of the wave-functions, the experimental detection of these novel phases of matter
becomes a non-trivial task. The situation of symmetry-protected topological phases is
slightly better, since general principle tells us that the boundary between such a material
and the vacuum exhibit gapless modes [27]. There also exists other types of experiments,
such as topological magnetoelectric effect in the case of topological insulators [2§], etc..
One might ask if there are other experiments that can reveal the topological nature of the
SPT phases. The situation of the symmetry-enriched topological phases is less promising,
particularly because proper experimental probe is lacking. More is to be discussed on this

point in the next section.

1.3 Structure of the thesis

Now I delineate the structure of my thesis. Chapter 2 is concerned with a generalized
Lieb-Schultz-Mattis theorem. This is an attempt to set up a general guidance in the
experimental search of SPT phases. The Lieb-Schultz-Mattis theorem, and its extension
by Hastings and Oshikawa [B0-32], can be stated as follows: if we have a system with
fractional charge or fractional spin per unit-cell, the ground state of the system cannot be
a symmetric gapped state without topological order. The ground state can be either one
of the three alternatives: 1. it is a gapless state, 2. it breaks some symmetry, 3. it is a
symmetry-enriched topological state (this is only possible in dimension > 1). The HOLSM
theorem is a very useful guide in the field of quantum spin liquid. In a Mott insulator,

we are given spin-1/2 per unit-cell. Suppose in experiments we do not detect any kinds
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of symmetry breaking (spin-rotation, crystal symmetry, etc.), we can say that the ground
state is most likely to be a quantum spin liquid.

On the face value, the HOLSM states the absence of a trivial state without symmetry
breaking and without emergent gauge field. But given the data stated in the set-up, we can
say more about the possible long-range ordered states. For example, in the case of square
lattice with spin-1/2 per site, we can say that if the ground state is a gapped long-range
ordered state with emergent gauge field, one of the gauge excitation must carry spin-1/2,
i.e., it is a fractional excitation. The heuristic picture is as follows. The Mott insulator
has a fractional spin per unit-cell. In order to keep the full translation symmetry and
spin rotation symmetry in the ground state, we need to have spin-1/2 excitations per site
to screen the background spin in the unit-cell. But no local excitation carries S = 1/2
(the most natural spin-flip excitations have spin-1), which means such excitaions must be
topological excitations. [29]

From this new perspective, we find that HOLSM actually provides us with restrictions
on the possible topological ordered states realizable in the system. Is there a similar
theorem restricting possible short-range entangled state realizable in the system? This is
the question posed and solved in Chapter 2. The solution is as follows. Starting from the
HOLSM set-up, we know that there must be topological excitations carrying fraction spin
to exactly screen the fractional spin per unit-cell in order to get a symmetric gapped ground
state. But assume we further insert symmetric flux of symmetry ¢ in each unit-cell (in the
case of U(1) charge symmetry, this is just a magnetic flux), we can have an alternative
solution to the HOLSM constraint: the symmetry flux can provide us with the necessary

fractional spin, thereby avoiding the occurrence of topological excitations. Such a state
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must then be a non-trivial symmetry-protected topological phase, since in a trivial state
(one that is adiabatically connected to vacuum), the symmetry flux of one group g does not
possibly carry the fractional spin of another symmetry group (SO(3) in this case). Under
this general guidance, we consider 241D lattice models of interacting bosons or spins, with
both magnetic flux andfractional spin in the unit cell. We propose and prove a modified
Lieb-Shultz Mattis (LSM) theoremin this setting, which applies even when the spin in
the enlarged magnetic unit cell is integral. The nontrivial outcome for gapped ground
states that preserve all symmetries is that one necessarily obtains a symmetry protected
topological (SPT) phase with protected edge states. This allows us to readily construct
models of SPT states by decorating dimer models of Mott insulators to yield SPT phases,
which should be useful in their physical realization. The resulting SPTs display a dyonic
character in thatthey associate charge with symmetry flux, allowing the flux in the unit
cell to screen the projective representation on the sites. We provide an explicit formula
that encapsulates this physics, which identifies a specific set of allowed SPT phases.
Chapter 3 concerns the nonlinar photogalvanic response study of Weyl semimetals [33].
Recently, Weyl semimetals have been discovered in many materials with strong spin-orbit
coupling. The topology of the electronic band structures gives rise to linear band touching
points-Weyl nodes in momentum space, which are monopoles of the Berry’s connection.
These topological semimetals have been shown to host various exotic properties such as
surface Fermi arcs, semi-quantized anomalous Hall effect, angle-dependent negative mag-
netoresistance, novel nonlinear optical effects. [B4] The non-linear optical response has
received increasing attention as a means to probe the Berry curvature of materials in gen-

eral. This suggests non-linear optical effects can be used to distinguish between materials
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with different Fermi surface topologies, a question particularly relevant to WSM. Indeed,
shortly after the discovery of the first Type-I WSM material in TaAs, it was realized the
tilt of velocity of the cone can be severe as to result in finite Fermi surfaces at all dop-
ing levels. [B5] Nonetheless a clear distinguishing experimental consequence between these
Type-II and their Type-I counterparts has yet to emerge.

The bulk photovoltaic effect (also called shift-current) is long studied in the field of
semiconductors. It is an intrinsic second-order optic effect which converts light into electric
currents. The microscopic mechanism of the BPVE can be heuristically understood as the
change in polarization due to optical absorption, which can be readily represented in terms
of covariant derivatives of Berry connections. Therefore this works as a direct probe of the
Berry connections in the momentum space. This makes Weyl semimetal a natural platform
for such a measurement due to the fact that Berry connection is divergingly large near the
Weyl node.

The dimensional analysis shows that the BPVE response tensor ¢’/ (w) should be %
times one over some energy scale. Naturally one would expect this energy scale to be just
the energy of injecting photon. But a detailed calculation shows that this is only the case

e3

II( 5

for type-11 Weyl semimetal, i.e., o' (w) ~ For type-I Weyl semimetal, however, we
find that the leading contribution to the BPVE response is in fact proportional to w. This
we see as the fundamental difference between type-I and type-II Weyl semimetals. And
the enhancement of BPVE signal in the w — 0 limit in the type-II Weyl semimetal can be
used as a detection of THz lights. Therefore the study of BPVE in type-I1 Weyl semimetal
is of both theoretical and practical significance. In addition, in both Type-I and Type-II

WSM, a nonzero chemical potential p relative to nodes introduce a new energy scale, and
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can be shown to lead to a large peak of shift-current response with a width ~ |u|/A and

e 1
h|pl?

a height ~ the latter diverging in the low doping limit. We show that the origin of
these divergences is the singular Berry’s connections and the Pauli-blocking mechanism.
The second harmonic generation is also studied for the type I and type II Weyl semimetals,
whose real part behaves similarly.

Chapter 4 studies the nonreciprocal directional dichroism in the field of quantum mag-
netism. The last chapter has shown the power of nonlinear electric responses in the field
of topological semimetals. In this chapter, the idea is further explored by the study of
nonlinear thermo-electomagnetic effect. The main motivation of this work is the call for
proper experimental probes in the field of quantum magnetism. Novel states of matter in
quantum magnets like quantum spin liquids attract considerable interest recently. Despite
the existence of a plenty of candidate materials, there is no confirmed quantum spin liquid,
largely due to the lack of proper experimental probes.

The existing experimental probes in this field can be roughly divided into three main

categories:

1. Thermodynamics, including specific heat, magnetic susceptibility, etc.

2. Spectroscopy experiments, including neutron scattering, nuclear magnetic resonance,

optical absorption, Raman scattering, etc.

3. Transport experiments, including electric conductivity, thermal conductivity, etc.

Ideally we would like to directly probe the mobile magnetic excitations in quantum mag-
nets, such as magnons or spinons. Yet the traditional experiments do not probe the mobile

magnetic excitations exclusively. For instance, spectrosocopy experiments like neutron
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scattering receive contributions from disorder-induced local modes, while thermal trans-
port experiments receive contributions from phonons. Here we propose a thermo-optic
experiment which directly probes the mobile magnetic excitations in spatial-inversion sym-
metricand /or time-reversal symmetric Mott insulators: the temperature-gradient-induced
nonreciprocal directional dichroism (TNDD) spectroscopy. This effect is defined as the
difference in the optical absorption coefficient of the material between counterpropogating
lights in the presence of a temperature gradient. Unlike traditional probes, TNDD di-
rectly detects mobile magnetic excitations and decouples from phonons and local magnetic
modes. The microscopic formulation is established and the size of the effect is estimated
using only basic quantities such as mean-free-path, gradient of temperature, strength of the
spin-orbital coupling etc.. The contributions of non-magnetic modes and localized mag-
netic modes are estimated and can be shown to be safely ignored. A concrete microscopic

calculation on Kagome lattice is performed to demonstrate this phenomenon.
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Chapter 2

Dyonic Lieb-Schultz-Mattis theorem

2.1 Overview

The Lieb Shultz Mattis (LSM) theorem [Ll|, appropriately generalized to higher dimen-
sions [2-D], requires that a gapped spin system with fractional spin (eg. S=1/2) per unit
cell possess excitations with fractional statistics (anyon) and fractional quantum numbers
(topological order), if all symmetries (including lattice translations) are preserved. This
has served as a powerful principle to diagnose exotic phases such as the fractional quan-
tum Hall effect, and quantum spin liquids. Furthermore, in some cases the nature of the
resulting topological order can be further constrained by the microscopic data [6,[7].

In recent years there has been an explosion of activity on symmetry protected topological
(SPT) phases, which feature protected boundary modes although the bulk is short range
entangled (SRE) and in contrast to the situation above, is free of anyon excitations. These
include phases like topological insulators, which can be captured by free fermion models

[8,9], as well as intrinsically interacting phases [10-12] A natural question to ask is - are
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there setting where the microscopic data alone would enforce an SPT phase, in a fashion
analogous to the LSM theorem? If so, for a particular set of microscopic data, can we
further characterize precisely which kinds of SPT orders are mandated?

These questions are answered in the present work. We show that SPT order must arise
when the following conditions are met. The first ingredient is magnetic translation symme-
try, that is an enlargement of the unit cell due to the non-commutativity of the primitive
translation operations. Second, we require that the primitive unit cell (ignoring the non-
commutativity) does not admit a trivial insulating phase. This is arranged by requiring a
projective representation at each lattice site. Finally, we need some compatibility condi-
tions between these two ingredients that allow, among other conditions, that the enlarged
unit cell to be effectively at integer filling, what admits a short range entangled ground
state. The latter is then shown to be an SPT. Furthermore for 2+1D bosonic systems we
explicitly calculate the allowed SPTs compatible with the microscopic specifications. In
addition we construct exactly soluble lattice models of this phenomenon to demonstrate
the validity of our conclusions. This general principle should aid in the search for SPTs in
realistic settings and exposes anew aspect of the interplay between symmetry and topology.

To give some simple plausibility arguments as to how microscopic details can enforce
SPT order, consider free fermions in a magnetic field, when the filling fraction (ratio of
particle density to magnetic flux density) is an integer. Then, an integer number of Landau
levels will be filled, leading to a Chern insulator - which is a SRE topological phase with
gapless edge states. Even in the presence of a lattice , one can establish a similar connection
between the Hall conductance o, the flux ny and electron filling in the unit cell n. [13,[14]

which has been extended to the case of time reversal symmetric topological insulators [[15].
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To state our result more precisely, we consider a two dimensional lattice where the unit
translations obey: T, T, T, 1Ty*1 = g, where g is an element of the symmetry group GG. This
generalizes the notion of a magnetic translation, particles acquire a phase factor depending
on their g charge. We assume g is in the center of the symmetry group G (i.e. commutes
with all other elements), but otherwise consider a general GG, which can either be discrete
or continuous, Abelian or nonAbelian, and can include time reversal implemented by an
antiunitary representatation. Furthermore, in each unit cell a projective representation
of the symmetry group labeled by ‘@’ is present. We derive a formula which provides a
necessary and sufficient condition on these inputs to allow for a SRE phase, and determine
constraints on the resulting SPT. Physically, this formula demands that a symmetry flux g
inserted into this system will precisely generate a projective representation that can screen
‘o’ [15)].

Let us give two physical pictures to view this filling and flux enforced SPTs. First
we describe a vortex condensation based picture, for a system of lattice bosons with a
conserved U(1) charge, with flux n, and filling n;, per lattice unit cell. Although our
chapter focuses on having projective representations per site (rather than fractional filling)
this example will be useful to build intuition. It is well known that a conventional insulator
can be thought of as a condensate of vortices. However, for fractional filling n;, the vortices
see a fractional flux per unit cell [16], and their condensate will break lattice symmetries.
Similarly, the bosons themselves cannot condense without breaking lattice symmetries due
to the fractional flux ny. However the bound state of a vortex and p bosons may be able to
propagate freely if: n, & pngy € Z is an integer. The resulting object is a boson for p even

which can then condense giving rise to a SRE and symmetric insulator. These are nothing
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but the Bosonic Integer quantum Hall insulators at v = n,/ng = p [12,17,18]. Note, here
the condensing particle carries unit vorticity and hence the resulting insulator is free of
topological order [19] and also preserves the U(1) symmetry since the condensing charge is
attached to vorticity. A generalization of this result to include arbitrary symmetry groups
is the main result of this chapter. An interesting exception occurs for p = 1, which is
realized for example when one has bosons at half filling (or a projective representation of
U(1l) x Zy), and a 7 flux in each unit cell. The doubled unit cell is at integer filling. At
first sight it appears we can obtain an insulator by condensing the vortex-charge composite
which sees no net flux in the unit cell. However, this composite is a fermion and cannot
be condensed. This is also seen by a flux threading argument [14] that constrains such
SRE phases to have o,, = odd integer, which is impossible for a SRE topological phase of
bosons [17,18]. Interestingly, this result continues to hold if the U(1) is broken to a discrete
symmetry as shown below.

A second perspective is to begin in a topologically ordered phase with fractionalized ex-
citations and consider confining all exotic excitations by an appropriate anyon condensate.
For example, for bosons at half filling, one could obtain toric code (Z3) topological order
where the e particle carries half charge [20]. The m particle however sees the fractional
charge density as background flux and cannot condense while preserving spatial symme-
tries. This is the situation in the absence of magnetic translations, where the LSM theorem
enforces topological order for gapped symmetric states. However, once we allow for mag-
netic translations with ¢ charge, a way out to an SRE phase may become available. The
m particle, bound to a g charge that sees the magnetic flux, forms a composite object that

may condense uniformly and confine the topological order. At the same time, this leads
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to an SPT phase since the condensing anyon carries nontrivial symmetry charge [21], 22].
Indeed this picture will allows us to construct models of such LSM enforced SPT phases as
we describe below.

Before discussing construction of models, it may be helpful to give a few examples.
Consider a system of degenerate doublets (“S=1/2") on sites of a square lattice. This
site degeneracy may arise from spin rotation invariance (SO(3)), or even just as Kramers
degeneracy protected by time reversal Z7 symmetry. Now consider an additional Z, sym-
metry which is invoked in defining the magnetic translations, i.e. we have a fully frustrated
Ising model on the same lattice. According to our results, in both these situations SRE
ground states are possible but must be SPT phases. While the SPT phase is unique for
the second case of Kramers doublets of Zy x Zs, in the former case of SO(3) x Z, there
is more than one SPT phase possible. Interestingly, if we consider a minor modification of
the Zr x Z5 model, such that the doublets on each site are non Kramers pairs, protected
by the combination of the two symmetries, then no SRE ground state exists (and hence no
SPT exists) that respects all symmetries. These examples are discussed in detail in Section
which also introduces models that realize them.

In constructing models, the first step is to begin in the deconfined phase of a discrete
lattice gauge theory (or of a dimer model). Then, one way to obtain a confined phase is by
decorating the electric field lines with domain walls of a global symmetry. This identification
implies that we have condensed the composite of magnetic flux and symmetry charge. The
resulting confined phase is potentially an SPT if the electric charges are associated with
the appropriate symmetry fractionalization [21,22]. However, to obtain an LSM enforced

SPTs the situation is different since they involve fractional spin on the sites. In a dimer
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model this corresponds to having an odd number of dimers associated with a unit cell, in
which case we cannot decorate them with regular domain walls (which should be closed
loops). However if the global symmetry is also associated with flux in the unit cell (for
example a fully frustrated Ising model), the two kinds of frustration cancel each other out,
and one can still achieve this decoration of electric field line. This is discussed explicitly
in Section @, for a specific model and the resulting state is shown to be the desired SPT.
The model there is one of hardcore bosons on the Kagome lattice tuned to half filling by
particle hole symmetry, previously introduced by Balents Fisher and Girvin [23]. While
their focus was on a Zs spin liquid phase, we decorate their model with an additional Z,
symmetry realized by a fully-frustrated Ising model. The combination is shown to realize
an LSM enforced SPT phase with gapless edge states, but a short range entangled bulk.
Finally in Section @ we discuss the problem for general symmetry groups, and derive
the necessary and sufficient conditions for SRE phases to emerge and identify the class of

SPTs that must be realized. Proofs can be found in the appendices.

2.2 A simple model realizing SPT phase

Our discussion starts from a concrete microscopic model realizing an SPT phase. The
beauty of this model is its simplicity, which only includes two-spin and three spin interac-
tions. It turns out that the crucial features of this model can be systematically generalized
which form the main results of the current study.

The model constructed below (see Eq(@)) is based on the Balents-Fisher-Girvin(BFG)

model [23]. The original BFG model [23] is a model with spin-1/2 residing on Kagome
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Figure 2.1: (color online) Degrees of freedom in the decorated BFG model. The Ising d.o.f.
oy live on the honeycomb lattice and the spin d.o.f. S; lives on the Kagome lattice. The
Ising coupling signs s;; = +1 on red bonds, and s;; = —1 on blue bonds. The thick red

bonds represent the “y-odd zigzag chains” used in Eq. ()

lattice. It is the low energy effective Hamiltonian if we take the J, > J, limit of the
following X X Z Hamiltonian

HY? = J0) 100 S+ Qs =3+ LY (D57, (2.1)

O e ieO O €O

which has a spin-liquid ground state for J, > J, with deconfined spinons as confirmed by
various numerical methods [@,@]

Let’s then take a look at the low energy effective Hamiltonian. The limit J, > J,
ensures that S& = 0 for every hexagon and the resulting Hamiltonian in this low energy

manifold takes the following ring-exchange form

HBFG _ _JringZ(’ Z ¢ z |+ h.c.), (2.2)

Let’s then decorate the X XZ model by putting a layer of Ising spins o inside every
26
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triangle of the Kagome lattice, which comprises a honeycomb lattice. The Ising spins are

in a transverse field, 7.e.,
H'" = > o7, (2.3)
I
with Ising spin o; living on the honeycomb lattices labeled by 1.

We then couple these two layers through a binding term

HYning = — N ONSE - (spy0707), (2.4)
Letey
where the summation is over all the bonds I.J on honeycomb lattice with S; at the bond
center. The sign s;; = +1 are frustrated in the sense that HO srg = —1. We have
I,Je
specifically chosen a choice of s;; in Fig. El! The binding term binds spin-up with Ising

happy bond (s;;070% = +1) and spin-down with Ising un-happy bond (s;jo705 = —1).

The full Hamiltonian we are considering is then given by (see Fig. El])
H = HXXZ +Hbinding 4 Hlsing. (25)

One can divide H into two parts

Hy=J1.> (S5)— > ASi(spoioy).
O i

ee (2.6)

Hy = J. ) [(85)+ (S5)* = 3]+ > hoy.
O I

Considering the the limit where J,, A > J, , h, we can first deal with Hy and then treat
H as a perturbation. All the terms in Hy commutes with each other and hence all the eigen-
states and eigen-energies are known for Hy. In fact, there is a two-to-one mapping from the
ground state sector to the low energy sector of the BFG model (i.e. {S7} configurations

satisfying 3 S* = +1/2 per hexagon). We will consider periodic boundary conditions, and
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the Hilbert space of the original BFG model has four topological sectors labeled by parities
of the [],.,2S; around the non-contractable loops C (which is just the non-contractable
vison flux line [26]). This mapping only map onto one specific topological sector since
[Ticc 257 is identified with [],,.. s7s due to H"™¥"9. The preimage of any low energy
{S?} configuration inside this topological sector are two states |[{S7,+}) and |{S?,—})
(related to each other by a global Ising flip).

It turns out that the effective Hamiltonian in the parameter regime where J, > A >

Ji,h and h2 > Jl has the following form (see Appendlx - for detailed calculation)

10J2 h2
deco.BFG
H 9JA2 x x |+ h.c.). (2.7)

Note that the kinetic term in this effective Hamiltonian is the ring exchange term of four
spins at the ends of each bowtie as in the original BFG model combined with the flipping
term of the two Ising d.o.f. within this bowtie, such that the constraint S?(s;jo50%) = 1
is still satisfied everywhere.

We shall then prove that the ground state of the decorated BFG model is a symmetric
short-range entangled SPT state. In fact, using the mapping P between the Hilbert space

of the decorated BFG model and the original BFG model

P ({SF, +1) + {S5, =1)/V2 = {7 (2.8)

Such a mapping is clearly an isometry. Next we notice that

PHdeco.BFGP—l — HBFG (2 9)
2132
with the identification Jying = %, which can be proven by directly comparing the matrix

elements on the two sides.
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Condensing

(a) Ising-odd vison
e L E—
0 SET: Z2 gauge Ac?  SPT:Ising-defect /
ecarry S% =¥ carry % =%

(b)

Figure 2.2: (color online) (a) Schematic phase diagram of the decorated BFG model by
tuning A. We have already fixed J, > J,,h. In the limit A\ — 0 the Ising layer is
decoupled and the ground state is just that of the original BFG model with Z; topological
order. This is an SET state with spinon carrying S* = 1/2. When A is tuned to be within
the parameter regime where J, > A > J,,h and i—z > {]—j, we have an SPT state with
Ising defect carrying S* = 1/2 as discussed in the main text. There is a possible direct
phase transition triggered by the condensation of Ising-odd visons at some intermediate
Ae. (b) A schematic view of vison condensation. The honeycomb lattice where Ising d.o.f.
lives is shown and the spin d.o.f. lives in the bond center. Two visons are created at the
ends I, J of the string operator afajf[—} 2S%. with S} runs over all the black dot shown in
the graph. Alternatively we can view the string operator as the product of bond variable
S7ojoj, along the thick blue bonds. Due to the constraint S7(s;xojoj) = 1, the string
operator will yield a factor (product of s;x’s along the thick blue bonds) when acting on
the ground state wave-function, which means the visons are condensed and the topological
order is killed. Note that the condensed visons in the present case are dressed by local ¢*

operator and hence carry the quantum number of Z, Ising symmetry, which result in an

SPT state. 29



Hdeco.BFG

Therefore the spectrum of within the Ising-even sector is exactly the same as

that of HPFC inside a specific topological sector, which is known to be gapped. And the

BFG deco.BFG
H H

ground state 1) of , should also be mapped to the ground state |)%) of
However there is still one possibility that there exists a state in the Ising-odd sector with
exactly the same energy as [¢9*), which features the Ising symmetry breaking. This
possibility is ruled out because |¢)%“) has no long-range order in o* as will be discussed
in the context of vison condensation.

The ground state of the original BFG model has Z5 topological order which supports

vison and spinon excitations. In the original BFG model, the vison excitations live in the

honeycomb lattice and are created at the ends of the string of S§ operators [23], i.e.,

J
vrvy = Hp 287, (2.10)
k=i

where two visons are created at I and J (see Fig. @)

deco.

We can see that the visons are condensed in [¢)%“). The vison operator v at site ¢
should now be dressed by the local Ising operators o with I around 7 to obtain
J
pfeco-yleco — 0?03-H—> 25;. (2.11)
k=i

With the constraint that S?(s;;070%) = 1 and the fact that intermediate 0 squared to
1, we know that v{ec-pee must yield a constant (depending only on the product of s;;’s
along the vison string) when acting on [)%-), see Fig. @ for an illustration.

Now it is clear that the correlator o707 is short-range because we have

J
’ <wdeco.’ U;O’? ’wdeco.> ‘ _ ’ <wdeco.’H> 25; ’wdeco.> |,
k=i (2.12)

= | (W 25; 1v) |,
k=1
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where the last correlator exhibits exponential decay since visons are deconfined in the
original BFG model (the last equality holds because P commutes with the string operator).
The above discussions feature the physical picture of the condensation of visons carrying
Ising quantum number, which kills the Zs topological order. We will soon show that the
resulting phase is an SPT phase, which is exactly a realization of the anyon condensation
mechanism to obtain SPT phases proposed in Ref. [21]. In fact, if we start from the
decoupling limit with A = 0 and gradually increase A with all other couplings fixed, we
should be able to see two phases: an SET phase with spinon carrying S* = 1/2 when A
small and an SPT phase resulting from the condensation of Ising-odd visons when A is in
the parameter regime J, > A > J, , h and i—z > % This two phases might be related by
a continuous phase transition at some intermediate .. See Fig. @ for an illustration.
One way to see that the ground state of the decorated BFG model Eq(@) is an
SPT phase is to consider the Ising defects, which turn out to be topologically bound with
S* = £1/2 — a projective representation of the symmetry group (see discussion below).
In order to introduce Ising defects we need to take a branch cut and modify the terms
straddling the branch cut such that only one side is conjugated by the Ising symmetry
. The net effect is that for the bonds I.J crossed by the branch cut, the sign of s;; is
flipped. See Fig. @ for an illustration. To compute the S* quantum number carried by
the Ising defect it is convenient to introduce the equivalent hard-core boson description:
n; = S+ 1/2. Now let’s take a loop C enclosing one of the Ising defect and measure
the total charge within the area D bounded by C. This is done by the following U(1)

transformation
IT T =1 I . (2.13)
OeD icO ieC i€eD/C

31



Figure 2.3: (color online) An pair of Ising defects (only one is shown) is created at the end
points of the branch cut (dashed black line) after modifying the original Hamiltonian H
in Eq(@) into H'. The sign s;; is flipped in H' along the branch cut comparing with
the original model. (red bond: s;; = +1, blue bond: s;; = —1) For any loop C enclosing
the Ising defect as the gray loop shown here, the product [ s;; around the loop flips sign
comparing with the original model. In order that H'*"4"9 does not cost extra energy, the
spin should be flipped wherever s;; changes its sign. As a result, the total S* around the
loop C is changed by an odd integer. The result is that Ising defect is topologically bound

with a half-integer spin. See the discussion in the main text.
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from which we know that the fractional charge part is determined by boson numbers on
the boundary only.

In order that the binding term after modification H"™4"9 does not cost energy, the
boson number n; on the bond I.J across the branch cut should be changed by 1. Since
C only crosses Ising defect line odd times, the total boson numbers around C should be
changed by 1(mod 2). From Eq. (), this amounts to the change of charge within D by
%(mod 1). This fact doesn’t depend on the position of the branch cut or the position of C
we have chosen, indicating that the extra % charge is bounded with the Ising defect. In the
original spin language it means Ising defect carries spin S* = +1/2.

Summary: Before proceeding let’s pay close attention to the symmetry property of the

Hamiltonian in Eq. (@) This model has the following Z,, x (U(1) x Zyy,) onsite symmetry
1. Spin-rotation symmetry U(1): J]e®(72) with 6 € [0, 2n).

2. Spin-flip and Ising-flip symmetry Zy, = {I,h}: [[S? [] o, which flips all the spins
i IeA
on Kagome lattice and Ising d.o.f on A sublattice of the honeycomb lattice. This

symmetry operation leaves the Hamiltonian in Eq. (@) invariant.

3. Ising symmetry Zy, = {I,g}: [[ o7, which flips all the Ising d.o.f. on the honeycomb
T

lattice.

The onsite symmetry group has the direct product structure G = Zy, x (U(1) X Zyp,). In
addition, every unit cell (three kagome sites and two honeycomb sites) carries a nontrivial
projective representation of U(1) X Zy, (i.e. a half-integer spin). Naively one would suspect
that the LSM theorem would rule out a symmetric short-range-entangled state in such a

system. However, due to the frustrated nature of the gluing term, we actually have magnetic
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translation symmetry 7, T, in the system instead of usual translation 77, T;”g', which

can be written as

r.=( I ohmre,

I€y-odd zigzag chains (2 14)
_ orig.
T, =T,

which satisfy the magnetic translation algebra
T,T,T,'T, ' =g (2.15)

Therefore it is still possible for us to have an SPT state. And we also know that the
g-defect carries S* = £+1/2, which has the same projective representation as that carried
by the unit-cell. Below we will find that this is not merely a coincidence and there is
a deep connection between the patterns of short-range entanglement and the projective

representation carried by a unit-cell related by the magnetic translation algebra.

2.3 Main Results

Our main results are captured in two theorems. Theorem-I is easier to state but less general.
Theorem-II is more general but is more mathematically involved to state.

Consider a two-dimensional bosonic quantum system respecting an onsite symmetry
group G (which could contain time-reversal), and g is a unitary symmetry element in the
center of G (i.e., g commutes with any element in GG). The system respects a “magnetic”

translation symmetry group generated by T, T, satisfying the algebra:
T,T,T,'T, " =g, (2.16)

where T, T, are assumed to be the usual translation operations combined with certain site-

dependent onsite unitary transformations. We further assume that the physical degrees of
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freedom (d.o.f.) in each real space unit cell (not the enlarged magnetic unit cell) form a
nontrivial projective representation a of G, specified by a 2-cocycle: Va,b € G, a(a,b) €
U(1) and o € H*(G,U(1)). Precisely, the unitary or antiunitary transformation U,, U, of

a,b € G satisty:
U Uy = afa,b)Uyp, (2.17)

where the left-superscript a in U, denotes the group action of a on U,: if a is unitary
(antiunitary), then U, = U, (“Uy, = Uy, i.e. complex conjugation of U,).

We ask the following question: is it possible for such a system to have a short-range
entangled(SRE) gapped ground state without breaking symmetries?

Here we use the definition of SRE states following Ref. [12]; i.e., those are gapped
quantum phases that can be deformed into the trivial product state via local unitary
transformations. Note that if the system respects usual translational symmetries, this
would be impossible: constrained by a generalized Lieb Shultz Mattis theorem [, 2, 4],
the nontrivial projective representation per unit cell indicates that a gapped liquid ground
state necessarily features topological order. Here because the system respects a magnetic
translation symmetry, it is possible that a SRE liquid ground state exists. We give sufficient
and necessary conditions for such a liquid phase to exist, and show that this SRE liquid
phase must be an SPT phase.

In the presence of an onsite symmetry group G, focusing on bosonic systems specified

by Eq.(,), we have the following theorems:
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Theorem-I. Here we further assume that G = G; x Zy where Zy is the finite
abelian subgroup generated by g. The quantum system above can have a SRE liquid
ground state if and only if the two conditions below are both satisfied. Such a liquid
phase is necessarily a nontrivial SPT phase because the g-symmetry defect must carry

the projective representation a.

1. o¥ ~ 1 € H?(G,U(1)), i.e. N of these projective representations fuse into a

regular representation.

2. The group function (which maps elements of the symmetry group to phases, while

preserving the group relations) v¢(a) =

ZE?Z;, Va € G is a trivial 1-cocycle (or

equivalently, a trivial one-dimensional representation):

ve~ 1€ HY(G,U(1)).

What is the physical meaning of these two conditions? The first condition ensures that
the enlarged magnetic unit cell does not have projective representations. Interestingly, this
is not sufficient to ensure an SRE phase. Additionally, condition 2 must be satisfied, which
essentially states that the symmetry involved in magnetic translations, g, can be chosen to

commute with all other projective group actions in a proper gauge.

Theorem-II: Here we do not make extra assumptions on G. The quantum system
above can have a SRE liquid ground state if and only if there exists a 3-cocyle wy:
Va,b,c € G,wy(a,b,c) € U(1) and wy € H*(G,U(1)), such that the group function

020 (a,b) = W is 2-cycle equivalent to a™': §5° ~ a~' € H*(G,U(1)). Such
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a liquid phase is necessarily a nontrivial SPT phase because the g-symmetry defect
must carry the projective representation «. The possible nontrivial SPT phases form a

coset from the classification point of view (see Remark below).

Remark: it is straightforward to show that Va € H*(G,U(1)), v € H'(G,U(1)).
And similarly Yw € H*(G,U(1)), 04 € H*(G,U(1)). The mappings v, : H*(G,U(1)) —
HYG,U(1)) and §, : H}(G,U(1)) = H*(G,U(1)) reducing a n-cocycle to a (n — 1)-
cocycle are the so-called slant-products in mathematical context. <, and ¢, preserve the
multiplication relation in the cohomology group. In particular, there is a subgroup A, €
H3(G,U(1)) such that Vw € A,, 0y ~1¢ H*(G,U(1)), (i.e., A, the kernal of the mapping
dy)-

When the condition in Theorem-II is satisified, wy must be a nontrivial element in
H?3(G,U(1)) because « is nontrivial by assumption. And the realizable SPT phases form a
coset from the classification point of view. More precisely, the 3-cocyle characterizing the
SRE liquid phase must be one of the element in the following coset: wy - A,.

Outline of the proof: The proof of these theorems is a combination of a pumping
argument of entanglement spectra and derivations/constructions based on a recently de-
veloped symmetric tensor-network formulation [21], which we outline here. Basically, if a
SRE liquid phase exists, by the pumping argument of entanglement spectra one knows that
the g-symmetry-defect in this phase must carry the projective representation o, and conse-
quently this phase must be an SPT phase. This physical observation can be further justified

by calculations based on symmetric tensor-networks, leading to the following mathemati-

cal result: if the 3-cocycle characterizing the SRE liquid phase as w € H?*(G,U(1)), then
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1

magnetic translation symmetry dictates d; ~ ™", which is exactly the same mathematical

condition for the g-symmetry-defect carrying the projective representation «. In addition,
based on the symmetric tensor-network formulation, for any w satistying 4, =~ a’l a
SRE liquid phase characterized by w respecting the magnetic translation symmetry can
be constructed. These prove that the conditions in Theorem-II are necessary and suffi-
cient for the SRE liquid phase to exist. In addition, when wy exists, because a 3-cocycle
w € H*(G,U(1)) satisfies 07 ~ o' if and only if w € wp - Ay, the coset structure in the
Remark is also established.

Theorem-I is just a special case of Theorem-II. Namely when G = G} x Z, one can
show that if and only if the two conditions in Theorem-I is satisified does the condition in
Theorem-II is satisfied. The condition-(1) in Theorem-I is well anticipated. If condition-(1)
is not satisfied, then physical degrees of freedom form a nontrivial projective representation
of G even in the enlarged magnetic unit cell (/V times larger than original unit cell), and the
generalized Lieb Shultz Mattis theorem [, 2,4] already forbids a SRE liquid phase to exist.
The condition-(2) is less obvious and more interesting, which puts additional constraints
for the existence of a SRE liquid phase (see example-(4) below).

Before going into the details of the proof, let us consider a few simple examples to see

the applications of the Theorems and the Remark.

2.3.1 Examples

In these examples, the element g in the magnetic translation algebra Eq() generates a
Z1sing = {I, g} Ising symmetry group. For instance, a fully frustrated Ising model on the

square lattice would satisfy this magnetic translation symmetry. The symmetry-enforced
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SPT phases in example-(1,2,3) will be demonstrated via a class of decorated quantum dimer
models, which are exactly solvable at the Rokhsar-Kivelson points [27].

(1) G =S0(3) x ZF™¢, and a spin-1/2 per unit cell: Namely, the projective
representation « per unit cell is nontrivial because only the SO(3) part is projectively
represented, and the Ising and the spin-rotation still commute: a(g,a) = a(a,g), Va € G.
Clearly the two conditions in Theorem-I are both satisified. First, two spin-1/2’s fuse into
a regular SO(3) representation, and 75 (a) = 1,Va € G.

According to Theorem-1, at least one SRE liquid phase can exist and must be an SPT
phase in which the g-symmetry-defect carries a half-integer spin. To understand how many
SPT phases are possibly realized, one can follow the Remark. 0 The result is that among
all possible SPT phases classified by H3*(SO(3) x Zi*™ U(1)) = Z x Z2, only one of the
Zs indices is enforced to be nontrivial. And there are many distinct SPT phases that can
be realized, which form a coset wy - Ay, where A, = Z x Z,. In particular, after gauging the
ngmg symmetry, one may obtain either the toric-code or double-semion topological order,
depending on which SPT phase is realized.

(2) G = ZT x ZF™8, and a Kramer doublet per unit cell: Here ZI' = {I, T} is
the time-reversal symmetrg group. Denoting the Ising and time-reversal transformations on

the physical d.o.f. in one unit cell as U,, and Uy (antiunitary), the projective representation

ISPT phases protected by G = SO(3) x Z4*"9 form a group H3(SO(3) x Z4*™9 U(1)). The Kunneth
formula gives: H3(SO(3)x Z1*™9 U(1)) = H3(SO(3),U(1)) x H3(Z, U (1)) x H2(SO(3), Z3) = Z X Zyx Zs.
Following the Remark, it is straightforward to show that only the Z index in H2(SO(3), Z3) is enforced to

be nontrivial. (Namely wp in Theorem-(2) can be chosen to be the nontrivial element in H2(SO(3), Z),and

the kernal A, = H3(SO(3),U(1)) x H*(SO(3), Z2) = Z x Zs.)
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« per unit cell satisfies:
Uz =1, UrUs = -1, UrU; = U,Ur. (2.18)

For instance, this algebra is satisfied if U, = o, and Uy = i7, for a four-dimensional
local Hilbert space (upon which ¢ and 7 Pauli matrices act). One can check that the
two conditions in Theorem-(1) are both satisfied, and thus at least an SRE liquid phase
can exist and must be an SPT phase in which the g-symmetry-defect carries the projective
representation o (a Kramer-doublet) above.

Naively this example is very similar to the example-(1). However there is an important
difference. In this example, only one SPT phase can be realized — following the Remark,
this is because the kernel subgroup A, is the trivial Z; group. d After gauging the Zi*"
symmetry, one must obtain a toric code topological order. This realizable SPT phase is
topologically identical to the one obtained by decorating Ising domain walls with the ZI
Haldane chains [30].

(3) G = ZT x Z¥™%, and a non-Kramer doublet per unit cell: Here the projective

representation o per unit cell satisfies:
Uz =1, UrUs =1, UrU; = =U,Ur. (2.19)

For instance, U, = 0, and Ur = o0, on a two-dimensional local Hilbert space would satisfy

this algebra. One can check that the two conditions in Theorem-(1) are both satisfied,

2Following the Kunneth formula: H3(Z¥ x Z1¥™ U1)) = H3(ZI,UQ1)) x H3(Zy,U(1)) x
H2(ZY Zy) = Zy x Zy x Zy. In this example, the Z, index in H%(ZZ,Z,) is enforced to be nontriv-
ial, and the Z5 index in H3(Z,U(1)) is enforced to be trivial. This is because here wg in Theorem-2 is the

nontrivial element in H*(Z{, Z5), and the kernel subgroup A, = Z;.
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and thus at least an SRE liquid phase can exist and must be an SPT phase in which the
g-symmetry-defect carries the projective representation o (a Kramer-doublet) above.
Similar to example-(2), there is only one realizable SPT phase. This SPT phase turns
out to be the non-trivial Levin-Gu SPT phase protected by the Z2*™ alone. i Namely,
here after gauging the Zésmg symmetry, one must obtain a double-semion topological order.
(4) G = Z, x ZF¥™8, and a projective representation per unit cell: In this exam-
ple, Z, = {I, h} is another unitary Ising symmetry group. The projective representation «

satisfies:
U; =1, Up =1, U,Up, = —UnU,. (2.20)

For instance, U, = 0,, Uj, = 0, realize this algebra. Two of such projective representations
fuse into a regular representation of G, so the condition-(1) in Theorem-(1) is satisified.

But one can show that the condition-(2) is not satisfied:
o) = -1, (2.21)

i.e., 7¢ is a nontrivial 1-cocycle. Therefore according to Theorem-(1), a SRE liquid phase is
not possible. Without breaking symmetry, this suggests that topological order is inevitable
for gapped systems. This is a somewhat surprising result. If one views the system using

the enlarged magnetic unit cell, there is no reason why a SRE liquid is not allowed.

3Now in this example, wy in Theorem-2 is the nontrivial element in H3(Z2,U(1)), and the kernel

subgroup A, = Z;.
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2.4 Decorated Quantum Dimer Models for SPT phases

Closely related to the decorated-BFG model in Sec.@, in this section we describe a class
of exactly solvable models realizing symmetry-enforced SPT phases. These models are
constructed by decorating quantum dimer models(QDM) with relevant physical degrees of
freedom, whose ground states can be exactly solved at the corresponding Rokhsar-Kivelson
point [27]. Although this class of models can be generalized to other lattices, here we will
focus on the decoration of the QDM on the triangular lattice [32,B83]. In particular, we

will construct models realizing the symmetry-enforced SPT phases in example-(1,2,3) in

Sec.

2.4.1 G =S50(3)x Z*™ a spin-1/2 per unit cell

Continuing with discussions in example-(1) in Sec., in the presence of onsite global
symmetry G = SO(3) x Z3*™ we consider quantum systems with one spin-1/2 per unit
cell in two spatial dimensions respecting the Ising magnetic translation symmetry Eq. ()
Note that we will reserve symbols T}, T,, for the magnetic translations, and use 79", sz’”g'
to represent the original translations.

We will construct two exactly solvable models (model-A and model-B) respecting the
symmetry described above featuring SRE liquid ground states. Although the Ising defects
in both models carry half-integer spins, the two models are in distinct SPT phases. The
simplest way to understand their difference is that, after gauging the Ising symmetry, model-
A has toric-code topological order while model-B has double-semion topological order.

We start with constructing model-A. This model contains two sets of degrees of freedom

(d.o.f.): the Ising-d.o.f. o; which live on a honeycomb lattice and the spin-1/2-d.o.f. S; =
42



Figure 2.4: (color online) The Ising d.o.f. o live on the honeycomb lattice and the spin
d.o.f. 7 lives on the triangular lattice. The Ising coupling signs s;; = +1 on red bonds,
and s;; = —1 on blue vertical bonds. The thick red bonds represent the “y-odd zigzag

chains” used in Eq.(, ). The thick gray horizontal bonds on the triangular lattice

represent the “y-odd rows” used in Eq.(R2.36).
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7;/2 which live on the triangular lattice formed by centers of the hexagons, as shown in

Fig.@. The Hamiltonian of model-A contains three terms:
H = Hg'si9 4 prbinding 4 A (2.22)
where H!5"9 is simply a frustrated nearest-neighbor Ising model:
H'™" = —K " s;,07075. (2.23)
(1)

Here 07,07 are the Ising spins living on the honeycomb sites labled by I, .J, the coupling
constant K > 0, and s;; = +1 defined as in Fig.@. HY"ding i an interaction between the

Ising-d.o.f. and spin-1/2-d.o.f., which commutes with H’*"9:

. 1 a
Hbmdmg — )\ Z 5(1 _ S[JO-;Uj) . PSH—SJ:O? (224)
J

i+
I

where A > 0, 7, 7 labels the sites on the triangular lattice, and the summation of “+” is over
all intersection points between the triangular lattice and the honeycomb lattice as shown
in Fig.@. Psﬁsj:o = i — S, -S; is the operator projecting the two spin-1/2’s on site-i and
site-j into a spin singlet.

H* is more complicated and will be given in Eq() It is straightforward to checked
that H respects the Ising symmetry U, = [[; o7, the spin-rotation symmetry generated by
>-:Si. H also respects magnetic translation operations:

T, = ( 11 o) - T, T, =T, (2.25)

I€y-odd zigzag chains
(see Fig.@), and the magnetic translation algebra Eq() is satisfied. We will show that

the ground state of H is in a gapped liquid phase without topological order. According
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to our general results, this ground state must be in an SPT phase, which we will show
momentarily.

The physical consequence of H'*™9 and H""4"9 is to provide a highly degenerate low
energy manifold, which will be lifted by H4. To understand the low energy manifold,
let us firstly consider H'*™9. Because every hexagonal plaquette frustrated, there will be
at least one bond in each plaquette that is energetically unhappy. Namely the ground
state manifold of H'*™9 is formed by all possible Ising configurations satisfying the “one-
unhappy-Ising-bond-per-plaquette” condition.

HY"ding further constrains the spin-1/2 d.o.f. in the low energy manifold. It has effect
only on the Ising unhappy bonds (syj070% = —1), and energetically binds the two spin-1/2’s
near the unhappy Ising-bond into a spin singlet. The degenerate ground state manifold of
HTsing  fbinding is now clear: it is formed by all such quantum states satisfying the “one-
unhappy-Ising-bond-per-plaquette” condition and the two neighboring spin-1/2’s normal
to every unhappy Ising-bond form a spin singlet.

It is well-known that the Ising configurations satisfying the “one-unhappy-Ising-bond-
per-plaquette” condition are intimately related to the Hilbert space of the QDM [34-36].
Pictorically, any such an Ising configuration can be mapped to a dimer covering (with one
dimer per site) on the triangular lattice by assigning a dimer crossing the unhappy Ising
bond. The effect of H'"¥"9 is simply to energetically binds the two spin-1/2’s in each
dimer into a spin-singlet. Namely if the Ising configuration is given, the state of spin-1/2
d.o.f. is also fixed.

Similar to the model in Sec.@, there is a two-to-one mapping from the ground state

manifold of H'¢"9 4 [¥nding to the QDM Hilbert space, since two low energy states differ
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by a global Ising transformation map into the same state in the QDM. Second, these states
only map to one specific topological sector of the QDM: The parity of the number of dimers
crossing a loop is simply given by the sign of the product ] (1))eloop STJ-

In fact, these relations between the Ising d.o.f. and the dimer d.o.f. can be viewed as
the well-known duality mapping between quantum Ising models and Z, gauge theories [37].
The Ising paramagnet phase is dual to the deconfined Z5 gauge phase in the QDM, while the
Ising ordered phase is dual to the confined Z, gauge theory. More precisely, the “unhappy-
Ising-bond” is dual to the electric flux line (i.e., the dimer) in the gauge theory, and the
“one-unhappy-Ising-bond-per-plaquette” condition in the low energy manifold on the Ising
side is dual to the “one-Zj-gauge-charge-per-site” condition in the QDM. Here, the only
new ingredient apart from this well-known duality is that there are also spin-1/2 d.o.f. on
the Ising side. But due to H*™¥"9_ these spin-1/2’s form a pattern of spin singlets fixed by
the Ising d.o.f., and consequently the duality mapping is not modified after a convention
of the spin-singlet signs is given (see below).

After introducing H4, we will see that the degeneracy in the low energy manifold will
be lifted and the unique ground state on a torus sample is formed. The usual QDM
Hamiltonian on the triangular lattice is:

HYSy=—t > ([67)(Z|+h.c)

plaquettes

+o Y (|87 + | TNS)), (2.26)

plaquettes

where the summation is over all plaquettes (rhombi): “&”, “&”, “0”. The ground states of
this model are exactly known at the RK-point given by ¢ = v > 0, and the superscript T'C’
is highlighting that the topological order is toric-code [32,B8] like in the deconfined phase
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(i.e., the usual Z, gauge theory). At this point HL can be rewritten as a summation of
projectors [32]:

HEG =t Y (167) —|&0)) ((47) - (&)). (2.27)

plaquettes

Clearly the equal weight superposition of all dimer coverings within any fixed topological
sector |®LF) = >~ _|c) (c labels possible dimer coverings) is one ground state of Hj5 since
it is annihilated by all projectors.

Based on the duality mapping, Hjj,, is mapped to H*. Any dimer covering |c) will
be mapped to two Ising configurations |c;) and |ep) distinct from each other by a global
Ising transformation. One can further choose a translationally symmetric sign convention

for the spin-singlets on the nearest neighbor bonds along the three orientations:

Sl

(=) = =),

=)

2

N =08 1),
7)== 140, 228)

Il
Sl

With this sign convention, given a ¢, |¢;) (i = 1 or 2) fully determines a state in the ground
state manifold of H*"9 f%"ding by replacing the dimer configuration by the corresponding
spin-singlet configuration. In addition, {|c), |ce)} for all ¢ form a complete orthornormal

basis in this manifold.
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H* is defined as:

e S <| o Ar h.c.)

+z (| VA

+| foi 7 W foi }) (2.29)
Note that the t-term also flips the two Ising spins inside the plaquette. At the RK point

t =v >0, H4 can again be written as a summation of projectors:

i ()
((&F 1 AT ) 230

To study the ground state of the total Hamiltonian H, it is suffice to focus on the degenerate
ground state manifold of H'$"9 + [¥nding and clearly H* acts within this manifold. In
addition, it is straightforward to show that [®4,) = > (lc1) + |ca)), i.e, the equal weight
superposition of all states in this manifold, is a ground state of Haj because it is annihilated
by every projector in Eq() |P4 ) is clearly a fully symmetric liquid wavefunction.

It is known that for the QDM Eq.(), the RK point of H is exactly at a first-
order phase transition boundary between a deconfined gapped liquid phase (v < t) and a
staggered valence bond solid phase (v > t) [32]. Based on the duality mapping, the model-
A is in a fully symmetric gapped liquid phase for v, < v < t with a unique ground state on
torus. In the limit of K, A > v,t, v, is given by the same critical value v, =~ 0.7t as in the
original QDM [32]. More precisely, in the global Ising-even sector of the Hilbert space of
model-A, this mapping to the Hilbert space of the QDM is given by 1/v/2(|e1) +|c2)) — |c),

and clearly H* is mapped to Hgg v Namely, the full energy spectrum of model-A in the
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Ising-even sector has a one-to-one correspondence with the full energy spectrum of Hgg M-
In addition, in the Ising paramagnetic phase, ground state in the global Ising-odd sector of
model-A has a finite excitation energy which is the same as the energy cost of a Z, gauge
flux in the QDM.

Next we show that the liquid phase v. < v < t in model-A is an SPT phase because
the Ising defects carry half-integer spins. Similar to the discussion in Sec.@ (see Fig.@),
after a pair of Ising defects are spatially separated the original Hamiltonian H is modified
into H'. Comparing with H, the s;; flips sign in H" whenever the bond I — J crosses the
branch cut. Namely, for any loop on the honeycomb lattice enclosing a single Ising defect,
the product [] s;; along the loop changes sign. In order not to cost H™"4n9 energy, the
parity of the number of dimers crossing this loop also flips. Consequently, an Ising defect
is topologically bound with a monomer (an unpaired site on the triangular lattice). This
monomer clearly carries a half-integer spin in model-A, which can be detected by the local
spin susceptibility at low temperatures.

Next, we demonstrate a different symmetry-enforced SPT phase using the model-B

defined as follows:
H — HIsing +Hbinding —|—HB (231>

Comparing with the model-A in Eq.(), only the last term is modified:

e S (| EFWET I ETNET )+ s (-l fF D
+w§ <—z‘t| ¢ \+h.c.> +W§ —it| ¢ /Q% |+ h.c.
“ Q
(2.32)
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One can straightforwardly check that the model-B defined in Eq.(,) also respects the
Ising symmetry, the SO(3) spin-rotation symmetry, and the magnetic translation symmetry
Eq() Below we show that in a finite parameter regime v/, < v < ¢, the model-B is in
a gapped liquid phase, and this phase is another SPT phase.

In the ground state manifold of H'*"9 4 [b™ding the duality transformation maps H”
into the following QDM Hamiltonian:

HES\ =v > (162)(67) +|Z)(&))

plaquettes

+ Y —it(JEINT |+ YA+ [ O NG ) + he. (2.33)

N,m,@

This QDM was firstly introduced and studied in Ref. [33], where the exactly solvable RK
point ¢ = v has been shown to be adjacent a gapped liquid phase for v < t. Interestingly,
this phase was demonstrated to have a double-semion topological order (the superscript DS
here is to highlight this fact). By the duality mapping, we know that in a finite parameter
regime v, < v < t, the model-B is in a gapped liquid phase.

Similar to previous disussion on the model-A, it is straightforward to show that the
Ising defect in the gapped liquid phase of model-B also carries half-integer spin, so it is
also an SPT phase. To see the difference from the SPT phase realized in model-A, let us
consider the Ising symmetry only. It is known that Ising symmetry itself can protect two
paramagetic phases: the trivial phase and the SPT phase. Levin and Gu pointed out [39]
that the duality mapping maps the usual Ising paramagnet to the toric-code topological
order, while the nontrivial Ising SPT phase maps to the double semion topological order.
Consequently, the SPT phases realized in model-A and model-B are different because the

Ising symmetry alone already distinguishes them.
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2.4.2 G=2I'xzm

Here we demonstrate symmetry-enforced SPT phases outlined in example-(2) and (3) in
Sec.. Unlike the G = SO(3) x Z3*™ case, here we show that symmetry conditions
fully determine the SPT phase. The models below have the same Hilbert space as in the
G = SO(3) x Z*™9 case (i.e., o on the honeycomb lattice and 7; on the triangular lattice),
but with different symmetries defined.

A Kramer doublet per unit cell: A simple generalization is for example-(2) (i.e.,
a Kramer-doublet per unit cell) where we can recycle the model-A. Namely, defining the
Ising symmetry U, = [[, 07 as before and the antiunitary time-reversal symmetry as Uy =
™" = i1V, clearly model-A respect all the required symmetries. In addition, we have
one Kramer doublet 7 per unit cell. According to our discussion in example-(2), this SRE
liquid phase realized in v, < v <t must be an SPT phase in which the Ising defect carries
a Kramer doublet, which is obviously realized in model-A. In addition, after gauging Z3°"
symmetry, one necessarily obtains the toric-code topological order, which is confirmed in
model-A.

On the other hand, model-B, gauging which gives double-semion topological order,
explicitly breaks the time-reversal symmetry defined above.

A non-Kramer doublet per unit cell: Now let us move on to example-(3) in

Sec.. In order to construct a model realizing the non-Kramer doublet projective rep-

resentation defined in Eq.(), let us define the following symmetry operations:
U, =7]] o7 Ur = 1°. (2.34)

Consequently we have one non-Kramer doublet 7 per unit cell. The model Hamiltonian in
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this example will be given by
H = HIsing + F[binding + [:[B’ (235)

where H'*™9 is given in Eq.(), Hbinding jg ip Eq() HP has the same form as H? in
Eq.(), but with a modified interpretations of the dimers: replacing the |=)’s defined
in Eq.(2.29)

(see discussions below and Fig.@). Eventually we will show that in a finite regime v < ¢

==»)’s and |==)’s defined in Eq.(,) depending the dimer positions

this model features a SRE gapped liquid ground state which is the Levin-Gu Ising SPT
phase, consistent with discussions in Sec..

We will construct a model similar to H = H*™94 {¥nding | but respecting a magnetic
translation operations different from Eq() since U, is now different. In particular, we

define magnetic translations:

T.=( J[ =)( 1T o¥) T,

i€y-odd row Iey-odd zigzag chains

T, =T, (2.36)

(see Fig.@), which satisifies Eq() with g = [ [, 77 [, of following Eq() Although
H'9 still respects all the symmetries, H*™¥"9 does not respect g and T),. This is because
the usual spin singlets |=) in the projector ]—c’sﬁsjzo = |=)(=| does not respect g and
T,. We therefore need to modify these dimer states and the projectors.

We define the following dimer states formed by the 7 spins:

|<::>>

Sl

s (1) + ),

S5+ 1R ).
|T/T>+|f> . (2.37)
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Figure 2.5: To construct model in Eq.(), the dimer states living on the nearest neighbor
bonds on the triangular lattice have a spatial dependent pattern: the dimer states living

on the dashed bonds are defined in Eq.(), and those living on the dotted bonds are

defined in Eq. ()

Clearly these dimer states are both Ising and time-reversal even according to Eq()

Under the magnetic translation 7, in Eq.(), dimer states with |\ ) and [ /)

connecting even and odd rows on the triangular lattice will transform into the following

states:

Sl

=08 =1
1
S =120. (239

| /)

Note that these dotted dimer states are Ising even, but time-reversal odd according to

Eq() The magnetic translational symmetric assignment of the dimer states is given in

Fig.(@): the states |-==s),

\ ), | /) are assigned on the dashed bonds, while the states

|\ ), | /) are assigned on the dotted bonds.

By replacing the spin singlets in PsiJrsj:O = |=) (=] by the corresponding |-

::>> <e::>
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and |.=-) (=] in the spatial dependent fashion in Fig.@, we modify H"""m9 paturally as

HUmding = — Xy %(1 — 510507%)  (Jo===) (===
Y Z %(1 — 8150507%) + (| ) (), (2.39)
4

Now HTsing 4 fbinding pespects all the required symmetries, but one still need terms like
H4 or H® to lift the ground state degeneracy to reach a SRE gapped liquid phase. In order

to preserve the Ising and magnetic translation symmetry, it is natural to replace the dimer

states |=) by the corresponding |-==-) and |--). Let us denote the resulting modified
Hamiltonians as H* or H?. Both modified models H'$"9 4 Hbinding 1 A and Hsm9 4
Hbinding 1 B are solvable, by duality mapping to the HggM and Hé’g v Trespectively.
These two models both give SRE gapped ground states in the regime v < ¢ respecting the
magnetic translation symmetry and the Ising symmetry, gauging which give toric-code and
double semion topological order respectively.

Finally, let us consider the time-reversal symmetry in Eq() Importantly, |-===)’s are
time-reversal even while |.=) are time-reversal odd. As shown in the pattern Fig.@, any
dimer resonant term like |£/) (47| will involve an odd number of |-} states. Consequently,
only HB is time-reversal symmetric, while H* explicitly breaks the time-reversal. In fact
according to Theorem-1, it is impossible to have a SRE liquid respecting all the required

symmetries and gauging the Ising symmetry gives a toric code topological order.
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2.5 Proof of Theorems

Here we present a combination of physical argument and mathematical derivations based
on symmetric tensor network formulation [21,40-47]. We will focus on Theorem-II, and in
Appendix we show that Theorem-I can be viewed as its special case.

We need to show the condition in Theorem-II is necessary and sufficient for a SRE
liquid phase to exist, which must be an SPT phase. To show this condition is necessary,
we consider such a SRE liquid phase and the pumping of the entanglement spectra during
an adiabatic process in Sec., leading to an observation that a g-symmetry defect must
carry a projective representation «. In a SRE liquid phase characterized by 3-cocycle w, we
use the symmetric tensor-network formulation in Sec. to establish that the projective
representation carried by a g-symmetry defect is given by (5‘9")_1. Since the projective
representation carried by a symmetry defect is physical and independent of formulation,
together with the pumping argument, the necessary condition in Theorem-II is established
independent of formulation.

As a complementary calculation, we also explicitly compute the projective representa-
tion carried by a g-symmetry defect in a SRE liquid phase representable within the sym-
metry tensor-network formulation in Appendix., which turns out to be «, consistent
with the previous discussion [4§].

To further show that the condition is also sufficient, we will show that for any 3-cocycle
wo satisfying (5;0)_1 ~ «, generic symmetric tensor network wavefunctions representing a

SRE liquid phase characterized by wg can be constructed in Sec..
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2.5.1 Entanglement Pumping argument

Here let us assume a SRE liquid phase exist. It is straightforward to show that after a local
unitary transformation (a site dependent U, action) without changing the physical action
of G, one can always choose a gauge in which 7, = T;”g' and T, = (Hy_odd U,) - Ters-.
Then we consider putting this SRE liquid on a infinite cylinder C' along the z-direction,
with L, number of unit cells across the y-direction loop. We choose L, = [, - N + d,, where
l,,d, are integers, g% = I and 0 < d, < N. Note that if d, # 0 this choice of L, will
explicitly break the 7, symmetry.

This infinite long cylinder can be viewed as a one-dimensional system, and for a large
enough L, the onsite symmetry G will be respected. We will study the entanglement
spectrum of this one dimensional system at a particular cut xzo + 1/2. A SRE liquid
respecting G symmetry dictates that entanglement states at this cut carry a particular
projective representation £ of G' [49,b0)].

Next, we adiabatically create a g-symmetry defect /anti-defect pair at a given y-coordinate
and separate them to infinity along the x-direction. After repeating this procedure for every
y-coordinate, we totally move L, number of g-symmetry defects acrosses the entanglement
cut xo+1/2. As shown in Fig.@, the final Hamiltonian is related with the original Hamil-
tonian by the original translation operation T?"%-. Therefore, the final entanglement states
at the cut zo+1/2 is equivalent to the initial entanglement states at a different cut: zo—1/2.

Because the initial entanglement states at zo — 1/2 differs from the initial entanglement
states at xo 4+ 1/2 by a column of unit cells along y-direction, we conclude that the final
entanglement eigenstates at xo + 1/2 must carry the a® - £ projective representation. This

pumping of the entanglement projective representation can only be explained by the pro-
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Figure 2.6: Illustration of adiabatically separating a pair of g-defect/antidefect along the -
direction with ¢ = I. For simplicity, one may imagine Hamiltonian to host nearest neighbor
(NN) terms. Along the z-direction, due to the magnetic translation symmetry Eq.(2.16),
the NN interactions on the vertical bonds have a three-unit-cell periodicity (solid,dashed
and dotted bonds). While the g-defect crosses the entanglement cut at xy + 1/2, the
Hamiltonian along the branch cut (dashed gray line) is effectively translated along x-
direction by one unit cell. After separating such pairs of defects for every row, the final

Hamiltonian is related to the original Hamiltonian by 7779
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jective representation & carried by a g-symmetry defect, and (&)fv ~ a%. But because N

g-defect fuse into a trivial object, we must have (&)Y ~ 1. Consequently & = .

2.5.2 Symmetry-enforced constraints on SPT cocycles

Here we consider an SPT wavefunction represented using the symmetric tensor-network for-
mulation [21]. The advantage of this formulation is that it allows us to introduce symmetry
defects conveniently.

The local symmetry transformation of an onsite symmetry a on a g-defect is given by the
application of of U, inside a disk D covering the g-defect, together with an application of
unitary operations on the virtual degrees of freedom on the boundary of D. This boundary
operation should be defined in such a way that after these two operations, no excitation is
created near the boundary of D. In Appendix we explictly constructed such bound-
ary operations. With these boundary operations, we explicitly show that the projective
representaion carried by the g-defect is given by ((5;")_1 in an SPT phase characterized by

the 3-cocycle w, which is given without proof in Ref. [4§].

2.5.3 Generic constructions of Symmetry-enforced SPT wave-
functions

Our strategy here is to start from an SPT state characterized by a 3-cocycle w with a regular
representation of G per unit cell and respecting the usual translation symmetry 7.7 T, y"”g .
Such a state can be generically represented using the symmetric tensor-network formula-
tion [21]. In particular, the symmetric tensor-network needs to satisfy a collection of

algebraic equations (constraints). Then we show that after properly modifying these alge-
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braic constraints, the new tensor-network will respect the magnetic translation symmetry
T,,T,, at the same time the physical d.o.f. must carry a projective representation (59‘")*1
per unit cell (otherwise the wavefunction vanishes). The tensor-network states satisfying
these modified constraints are generic constructions of the SPT states in Theorem-II.

The details of the construction can be found in Appendix .

2.6 Discussion

Generalized Hastings-Oshikawa-Lieb-Schultz-Mattis theorems put strong constraints on
possible symmetric quantum states of matter. In particular, in the presence of transla-
tion symmetry and a projective representation of the onsite symmetry group per unit cell,
it is impossible to have a gapped short-range entangled (SRE) symmetric ground state.
In this chapter we discuss that in the presence of magnetic translation symmetry, gapped
SRE symmetric ground states could exist, which are enforced to be symmetry protected
topological (SPT) phases. Focusing on bosonic systems in two spatial dimensions, we pro-
vide the generic necessary and sufficient condition for such symmetry-enforced SPT phases
to occur in Theorem-I and II. When the condition is satisified, we sharply characterize the
coset structure of the realizable SPT phases in the Remark.

The condition-(2) in Theorem-I is particular non-obvious. It states that if symmetries
protecting the fractional spin (projective representation) per unit cell and those generating
the magnetic translations fail to commute with one another, then SRE liquid state is
impossible even if the fractional spins fuse into an integer spin (regular representation) in

the magnetic unit cell.
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In addition, we design a class of decorated quantum dimer models realizing some of
these symmetry-enforced SPT phases, which are exactly solvable at the corresponding
Rokhsar-Kivelson points. A particularly simple model realizing a symmetry-enforced SPT
phase is given in Sec.@ by coupling a Balents-Fisher-Girvin spin liquid with a layer of
pure-transverse-field Ising spins via three-spin interactions. This model also demonstrates
the route to obtain SPT phases via condensing anyons in SET phases [21,22].

It is interesting to consider the situation of fermions with magnetic translation symme-
tries, in which case (generalized) Hastings-Oshikawa-Lieb-Schultz-Mattis theorem apply for
fractional filled systems with regular translation symmetries. In fact, earlier works [13,/14]
establish the magnetic translation symmetry protected integer Hall conductivity, and a
recent work by Wu et.al. studied the magnetic translation enforced quantum spin Hall
insulators in fractionally filled fermionic systems [15]. Connecting with these works, the
present work focuses on bosonic systems with projective representation per unit cell, but

obtains systematic results.
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2.7 Appendices

2.7.1 Perturbation study of the decorated Balents-Fisher-Girvin

model

The Hamiltonian for the decorated BFG model can be split into two parts

Hdeco.BFG — HO + Hl;

Ho=J.) (S5 = Y ASi(sioio)),
o) .

i
I e |

Hy=J.Y SfS;+Y hoi,
(i-9) 1

(2.40)

where (i, j) runs over first, second, third neighbors within a hexagon of Kagome plaquette.

Let’s take the limit J,, A > J,,h and only focus on the low energy Hamiltonian in
the ground state manifold of Hy. Then we can treat H; as a small perturbation and use
the conventional Brillouin-Wigner perturbation to derive the effective Hamiltonian. The

effective Hamiltonian is then given by (take Ey as the ground state energy of Hy),
Hepp = Eo + Py(Hy + HiGoHy + H\GoHVGoHy + -+ ) Py, (2.41)

where Gy = P.(Ey — Hy) 'P, and P,/P. are the projector onto the the ground/excited
states of Hj.

We will work under the limit J, > X and calculate the effective Hamiltonian order by
order to find the leading non-constant terms in J; and h since we have not specified the
relation between them yet. Let’s denote N as the number of Kagome unit-cell. The zeroth
order energy is Fy = —%N A. Higher order terms are as follows:

1. H), = P,H,P, = 0.
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2. H? off = = P,H\GyH,P; = 9N2Jz+2)\ 2N - h . The first term comes from the process of

switching a pair of spin-up and spin-down and then switching back within a hexagon.
The second term comes from the process of flipping a Ising d.o.f. twice. To this order,

we only have constant terms.

3. HY, = P,H\GyH\GyH, P,

e 9 = (2J+2

i O (STSSESTSTST + 878 ST ST SES),
7j7k)

where the summation runs over all ordered triplets (7,7, k) with (i,7), (j, k), (k, 1)
appearing in Hy. The term S;S; Sy S;7 S/ S, = (1/2 + 57)(1/2 — S%)(1/2 — S§)
measures the energy of the configuration with S7 = 1/2,57 = —1/2,S; = —1/2.
And the term S} S; S;S7 SIS = (1/2 4 S7)(1/2 + S7)(1/2 — Sf) measures the
energy of the configuration with S7 = 1/2,5% = 1/2,5; = —1/2. To this order, the
term does depend on the spin configuration and is the leading non-constant term in

Jy.

2 p2 v V 4
4. H) = P,H\GyH\GyHiGyHy Py = — 575 5 WA, | +he)+ 000 +
>

(’)(f;\f )+ O(% 7 ), where we have used the limit J, > A. The first term is a kinetic

term which is the leading non-constant contribution in A. The latter three terms
are not written out explicitly due to the following reason. Terms proportional to

4
j—g are less significant compared to that from the 3-rd order perturbation. Terms

proportional to —4 (process of flipping two different Ising d.o.f. twice) is a constant.

And the potential term proportional to (process of separately flipping Ising d.o.f

J)\Q

twice and exchanging spin-up and down twice) is also a constant in the limit J, > .

. J3 J2 h?
The leading non-constant terms are terms of order =%+ and terms of order where
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the latter is what we want. So we further require ’;—2 > % such that the term obtained
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from the 3rd-order perturbation can be neglected.

Then we achieve the decorated BFG model

e, N
Hotg = =g S 0 oy 1+he) (2.42)

in the parameter regime where J, > A > J,, h and ';—z > ﬂ—L

2.7.2 Theorem-I as a special case of Theorem-II

Necessary condition for the existence of SRE state: constraints on the on-
site projective representation First we prove that only when the on-site projective

representation « satisfies the following 2 conditions is a SRE ground state possible.
1. oV ~1€e H*G,U(1)).
« ~ 1
2. 75(a) 1€ HY(G,U(1)).

Suppose the unit-cell is enlarged along x-direction to include N original unit-cell, then
we have TN T, T, NT, ' = gV = 1,i.e., we have usual translation T,", T, in the enlarged unit-
cell. From Hastings’ theorem we know that for a SRE ground state to exist, the enlarged
unit-cell must carry usual representation. Hence we know o is a trivial 2-cocycle.

Next, we know from Theorem-II that for such a SRE state to exist, there must exist a
3-cocycle w € H*(G,U(1)), such that 6% (a,b) = a(a,b)™" up to a 2-coboundary. By tuning
the 2-coboundary of a(a,b), we are tuning the 1-coboundary of v (a). Therefore we have

a w w __ 65 (a,
Yo (a) = ¢ (a), where v (a) = é(gjz :

=

N

54(a, g) = w(a, g,9)w(g,a,9)

g = W(g,(l, 9)7
w(a,g,9) (2.43)
o) - L0800
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Therefore we always have 7%(a) = 1, which means v (a) ~ 1 € H'(G,U(1)).

Sufficient condition for the existence of SRE state: explicit construction of
the 3-cocycle We shall show that the necessary condition given in the last section is also
sufficient. To be more specific, we will construct a 3-cocycle w € H3(G,U(1)) out of «
given ¥ ~ 1 € H*(G,U(1)) and 75 (a) ~ 1 € H'(G,U(1)), such that 62 (a,b) = a(a,b)~".
From Theorem-I1, we know that such an SRE state described by 3-cocycle w € H?(G,U(1))
always exist, which completes our proof of Theorem-I.

Let’s first fix a canonical gauge of a(a,b). Due to the direct product structure G =

Gy X Zn, we denote a general group element a € G as
a:gnahluna:()?l"'N_l;haGGI- (244)

We are given the condition that ol is a trivial 2-cocycle in H?(G,U(1)). Let’s first
tune the 2-coboundary of a(a,b) such that a” = 1. Then «a(a,b) € Zy.
We also know that

Vg (@) € BY(G,U(1)). (2.45)

If G; is a unitary group, then fyg‘(a) = 1. If G; has anti-unitary operations, we should
generally represent ¢ (a) as the 1-coboundary %

Therefore we know that

— L e Iy, € Zow. (2.46)
ay

We choose the 2-coboundary §(a) = 6(g)"™ where §(g) = V1.

Then under the 2-coboundary d(a) we have

ala,b) —

a(a,b), (2.47)



where (n)y =n forn < N and (n)y =n — N forn > N.

Here the change of a(a,b) is always a Zx element since

6(g)" - (6(g)™)
5(9)(”a+nb>N

(Z)N=Dm € Zy,if ng +ny < N. (2.48)

YN=Dmo L ANIN=D) € 7 if g +np > N,

(

=[5

Then after the change of 2-coboundary, we still have o¥ = 1.

But 7' (a) is changed as follows

— = =1,
ala,g)  2(g) @y N

2o(a) = alg,a)  dg) v _ AN (2.49)

where we have used Eq. (2.48) and the fact that 4?Y = 1. Then after the change of
2-coboundary we always have 77 (a) = 1.
In summary, we have fixed o¥ = 1 and a(g, a) = a(a, g) as the canonical gauge choice.
With the condition o = 1 and a(g,a) = a(a,g), we can explicitly construct the

3-cocycle as follows:
w(a, b, c) = [a(b,c) 1" s, =1/ — 1 for a unitary/anti-unitary. (2.50)

First let’s prove w(a, b, ¢) is indeed a 3-cocycle. We have
w(a, b, c)w(a, be, d)w(b, ¢, d)*
= [a(b, &)~ [au(be, d) ] [a(c, d) ~1]mses (2.51)
= (e, d) 5o (b, ed) oo (e, d) o,
where in the last equality we have used the 2-cocycle condition of «, i.e.,

a(b, c)a(be, d) = alc,d)* (b, cd). (2.52)
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And we also have

w(ab, ¢, d)w(a, b, cd)
(2.53)

= [a(e, ) a(b, cd) e,

which equals Eq. () since o = 1. Therefore w satisfies the 3-cocycle condition

w(a,b, c)w(a,be, d)w(b, c,d)*® = w(ab, c,d)w(a, b, cd). (2.54)

1

)

Next we show that the slant product of w with respect to g gives us a~

o ) @labgelg.a) _ [ofb.g) T [ala,b) ]
KR ) a(g.b) e 255

= oz(a,b)_l,

where we have used «a(b, g) = a(g,b).

2.7.3 A brief introduction to symmetric tensor network repre-
sentation of SPT phases

In this appendix we want to briefly summarize the symmetric tensor network representation
of SPT phases and fix the notations for future convenience. More details of the general
formalism can be found in Ref. [21,47]. Basic set-up Let’s consider a PEPS state formed
by infinite numbers of site tensors and discuss the symmetry implementation on such state
[40-47]. We assume that for a symmetric PEPS the symmetry transformed tensors and the

original tensors are related by a gauge transformation:
WygoT =T, (2.56)

where T is the tensor states with all internal legs uncontracted and W, is the product of

the gauge transformation acting on all internal legs of the tensor network.
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The invariant gauge group (IGG) is the group of all the gauge transformations leaving
the uncontracted tensor T invariant. These are denoted as global IGG in contrast to the
plaquette IGG introduced later. The global IGG naturally arises from the following tensor
equations:

T = WoaW,bo T = Wyabo T, (2.57)

from which we know that

Wa @ Wb = T]((I, b)Wab, (258)

where 7(a, b) should leave the tensor invariant and hence is an IGG element.

And we have the associativity condition for n(a, b):

n(a,b)n(ab, c) =" n(b, c)n(a, be). (2.59)

The global IGG elements are a characteristic of symmetry breaking or topological order.
In order to obtain an SPT state, we require all the global IGG elements can be decomposed
into the product of plaquette IGG elements as shown in Fig @, i.e., n(a,b) = [, \p(a,b).
There is a global phase ambiguity in such decomposition, namely we have Hp Ap = Hp XpAp
with x, a global phase since Hp Xp = I. The decomposible global IGG tells us that
topological order is killed and the resulting phases should be an SPT phase described by

the 3-cocycle w, which arises as the phase ambiguity when lift Eq. () to plaquette IGG,
M@ D)X (ab, &) = wy(a, b, )7, (b, €)My a, be). (2.60)

The w shown above is a well-defined 3-cocycle since the phase ambiguities in A will only
modify it by a 3-coboundary.
Representation of §;'(a,b) using plaquette IGG In this subsection we want to give

a representation of the slant product &;'(a,b) in terms of plaquette IGG for an SPT state
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p1 P2 P1 P2

Figure 2.7: The decomposition of global IGG into plaquette IGG. \’s from different pla-
quettes commutes with each other, and the action of any two A’s in the same plaquette

leave the tensor invariant.

characterized by 3-cocycle w, where g lies in the center of the whole symmetry group G.

First, from definition we have

" w(a, b, g)w(g,a,b)
o7 (a,b) =

o(a,g.b) (2.61)

The 3-cocycle arises from the decomposition of global IGG into the plaquette IGG, see

Eq. () Therefore in order to compute d¢(a, b), we need the following equations:
Ap(a,b) - Ap(ab, g) = wla, b, g) - Ap(b, 9) - Ap(a, bg),
(g, @) - Mp(9a,b) = w(g, a,b) -9 Ay(a,b) - Ay(g, ab), (2.62)
Ap(a, ) - Ap(ag, b) = w(a, g,0) - Ap(g,b) - Ap(a, gb).
Writing Eq. () in a more convenient way (we ignore the subscript p henceforth):
w(a,b,g) = A" (a,bg) " A7H(b, g) - A, b) - A(ab, g),
w(g,a,b) = X\ (g,ab) "9 X7 (a,b) - Mg, a) - M(ga, b), (2.63)

w(a,g,b) = A" (ag,b)A " (a, g) """ A(g, D) - A(a, gb).
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We have
0(a,0) = [w(g, a,b)] - [w™*(a,9,b)] - [w(a,b, g)]
= A7 (g,ab) "9 AN (a,b) - (Mg, a) - A (a, 9)] (2.64)
et [\(g,) - A1 (b, g)] - Ma, b) - A(ab, g)

We can simplify Eq. (2.64) by defining WsW,a = &,(g)Waa,a € G, where &(g) =

[T Xa(g). Another way of computing &,(g) is

£a(9) = WegWaa(Weg) ™ (Waa)™ = (g, a)n~'(a, 9)

(2.65)
— Xa(9) = Mg, )\ (a, g).
Then Eq. () becomes
Xa(9) V" No(g) = 69 (a,b) Y9 Na, ) - Aas(g) - A (a, b). (2.66)

2.7.4 The projective representation carried by a g-symmetry-

defect

In this section we want to give a tensor proof of the following fact [48]: for an SPT state
characterized by the 3-cocycle w(a,b,c) € H*(G,U(1)), the projective representation car-
ried by the symmetry g-defect is represented by the inverse of the slant product [0%(a, b)]~".

To this end, we first create an open g-defect string with a pair of g-defects on the two
ends in the given ground-state SPT wave-function |¥). The wave-function is denoted as
|W e pect). This is done in the tensor language by inserting W, strings and modifying the
tensors close to the defect core as shown in Fig. @

Let’s take a patch enclosing one of the two g-defects and measure the projective repre-

sentation carried by the g-defect. Before the insertion of the g-defect, the local symmetry
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action U(a) on the patch is defined as acting W, on the virtual legs on the edge and D(a)
on the physical legs inside the patch, i.e.,

U= [] wW.]]D(. (2.67)

boundary bulk

The symmetry operation should leave |¥) invariant up to a phase. Then the projective

representation inside the patch is measured by acting
D(a) - D(b) - [D(aob)]™* (2.68)

on the physical legs inside the patch. Alternatively, we can do this by monitoring the

inverse of the phase generated by acting n(a,b) = W, -* W, - (W)™

on the boundary
virtual legs since, by our assumption, the action of U(a)U(b)U(ab)™! leaves the patch fully
invariant.

In general , acting n(a, b) on the virtual legs of a tensor leaves the tensor invariant only

up to a phase. Therefore 7 itself is not a global IGG. Instead, we have
n(a,b) = Wa(a,b)n'(a,b), (2.69)

where W, (a, b) is a pure-phase gauge transformation which yields the extra phase for each

site and 7/(a, b) leaves every tensor invariant. Now 7’(a, b) is decomposable and we denote

it as n'(a,b) = [[ A\p(a,b).

As for our present case, suppose we have the action of [[ 7(a,b) on the ground
boundary

state wave-function

T nab)|w)=e?w), (2.70)

boundary

from which we know that the projective representation inside the patch is just [ [, (D(a)-

D(b) - [D(ao b)) = e,
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From the previous discussion we have

e J[ nlab)= T[] u'(ab). (2.71)

boundary boundary

After the insertion of g-defect, the new local symmetry operation U?(a) should be
defined as acting W, on the virtual legs on the edge and D(a) on the physical legs inside
the patch. Here we have used the W, as shown in Fig. @ where W, on the bond crossing the
defect line is changed to be [\,(g9)](d) - W, and remains W, elsewhere. This newly-defined
W, ensures that no boundary excitations are created. The physical symmetry operation in
the bulk should still be the same.

We will then use []},,undary 7(a,b) to measure the projective representation inside the
patch, where 7j(a,b) = W, -* W, - (W,)~'. Far away from the defect core, the tensor
wave-function is basically the same as before. And ]}, udary 71(@,b) Will be the same as
[ Tooundary 71(a; b) except at the bond crossing the defect line, see Fig. 2.10. The n(a,b) at

the bond crossing the defect line should be W, -2 W, - (W)t

Ma(@)](d) - Wa - o(@))(d) - W+ ([Nap(9))(d) - W)™
= Pa(@)l(d) " (9)](d) - Wa - Wy - (Wan) ™ A5 (9))(d) (2.72)
= Ma(@)l(d) ¥ o(9))(d) - n(a, b) - [N (9))(d).

We can work with the decomposable 1/ (a, b) at the boundary if we keep track of the ¢

phase. After going through the calculation as shown in Fig. , we have

[T 70, 0) [ Waepeer) = €62 (a,b) [Vaepecr) - (2.73)
bdr

Comparing Eq. () with Eq. () and note that projective representation is defined
through the inverse of Eq. (), we know that the g-defect carries [0(a,b)]™" projective

representation.
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2.7.5 Consequence of the magnetic translation symmetry in tensor-
network formulation

The magnetic translation symmetry and on-site projective representation constrain the
possible symmetric short-range entangled states in a system. Specifically, we have the
following fact: for a system with on-site projective representation of the on-site symmetry
group G characterized by a(a,b) and magnetic translation symmetry T,7,T, T, = g, an
SPT ground state described by the 3-cocycle w € H3(G,U(1)) can be realized as its ground
state only when 0¢'(a, b) = a(a, b)™".

Basic set-up We have T,.T,T, T, = g, which leads to
W, T, Wr, T,(Wr, T,,) ™ (Wr, T,)) ™ = W,g. (2.74)
We define 7(a,b) as
Wa @ Wb = n(a, b)Wab. (275)

By acting n(a,b) on T, we will get an extra phase a(a,b)™! per unit-cell, therefore it is
not a global /GG. However, we can define a pure-phase gauge transformation W («(a,b))
which yields exactly the phase a(a,b)™" for every site tensor, see Fig. for an illustration.

Then we can write n(a,b) as
n(a,b) = W(a(a,b))n'(a,b), (2.76)

where 7'(a,b) = [[ A(a,b) is an IGG and is decomposable.
Similarly since we have D(g) o D(a) = v,(g9)D(a) o D(g) on physical leg, where v,(g) =
a(g,a)/a(a,g) € HY(G,U(1)). We write the action of W,g on W,a as

Ya9Waa = W (74(9))éa(g) - Waa, (2.77)
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where {,(a) = [[ A\y(a) is a decomposable /GG element and the definition of W (7,(g)) is
the same as W(a(a,b)).

And as for T, T,, we have
el Woa = W(va(Te))a(T2) Waa, ete.. (2.78)
We act Eq. () on W,a and obtain an IGG equation
Was g H(T,) MWodWiyTv ¢ U, ) WieTe £4(T) - €u(To) = &al9), (2.79)

which, when lift to plaquette IGG, should give us (we have absorbed the phase ambiguity

into the definition of A\,(g))
WINTHT,) o N (T) T Ma(T) - Ma(T) = Aa(9)- (2.80)
Acting W,g We first act W,g on Eq. (), then we have
Wod[W,aW,b] ="99 [n(a, b)Wapab)

= W(va(9)) “* W((9))alg) " &(g) - WaaWib (2.81)

=W n(a, b) : W(’Vab(g»gab(g)wabah

which then leads to

Ea(g) " &lg) =" 0/ (a,b) - Ea(g) - 7' (a,b), (2.82)

where extra phase factors W(a(a, b)), W(v.(g)) all cancel.

When lifting Eq. () to plaquette, we have (from Eq. (R.60))
)\a(g) Waa )\b(g) = 5:;(&, b) W A(av b) ' Aab(g) ’ A(aa b)_l' (283)

Acting translation We have another way of deriving Eq. () We first act W, T,

on the two sides of Eq. () and obtain an IGG equation,

ga(T;t) Waa §b<T$) =Wr T n(a’ b) ' gab(Tfﬂ)n(av b)_17 (284)
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where the extra W (va(T%)), W (v (T%)), W (var(1%)) cancel since we have v,(1;) -* v(T:) =

/Yab(T:c) .

When lift Eq. () to plaquette IGG, we have
No(Ty) 2 Ny(T,) = [ee(a, b)]7Y 7T X(a, D) Ay (T )N (a, b), (2.85)

where [[[a(a, b)] 7 =71 W (a(a,b)) - W(a(a,b))™! and the plaquette IGG [a(a,b)] ¥ are

just loops of phases as shown in Fig. .

Similarly we have
AalT,) 7 0(Ty) =50 A(a, ) (T)A (0, ), (2.56)

where there is no extra factor coming from "7 W (a(a,b)) - W(a(a,b))™! since it is T,
Invariant.

With Eq. () and Eq. () we can explicitly calculate the action of
W, T.Wr, T,(Wr, Tp) " (Wr, T,) !

on Eq. () in terms of plaquette IGG. The action of Wy, T,Wy, T,/ (Wr, T,,) (W, T,,)
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on LHS of Eq. () is

Wad [N () 7o Np(T))] 7 VoW [N (T,) Ve Ny (T)]
WraTe P‘a(Ty)Waa)‘b(Ty)] : [)‘a(Tx)Waa)‘b<Tr>]

:ngWaa )\b—l (Ty

) ot AT,

o (L) et Wae XL (T )W Ty AT )]

T )‘a(Ty> W TeWaa /\b(Ty) ) )‘a(Tw)Waa)‘b(Tw)
= Aa(g) WX U(T) - A (g) e [V T U (T )N N (T) T AN (T)]

a a

W ls Aa(Ty) - Aa(T)
(2.87)
WaaWr, Ty )\b(Ty) Waa )\b(Tm)
— )\a(g) WaaWyg >\b_1(Ty) WaaWygWr, Ty )\b_l(Tx) . [)\;1(g)ng)\gl(Ty)ngWTyTy)\gl(Tx)
Mt Aa(Ty)Aa(T3)]
WaaWr, Ty )\b(Ty)Waa/\b(T$)
= Aa(g) M [MoONH(T) Mo AT ) T A(T) M (T)]
= Xal9) " Mo(9),
where we have used Eq. () and Eq. () in the first three equalities and we have used

Eq. () in the last two equalities.
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The action of Wq, T,Wr, T,(Wr, T,,) " (Wr,T,,) " on RHS of Eq. () is

VT 0, (T a8 T [, 0)

WreTe Na, 0) Aap(To) A (a, b)) 7!

WrTe WryTu ) (a, ) Ay (T,) A" (a, b)] - a(a, b)Y V=T X(a, b) Aoy (T2) A" (a, b)

(2.88)

="l fa(a, b) 77 - ala, b)Y 00 Na, 0)ING (T)

Ty \H(T) VT )y (T3) - A(T2) - A (a,b)

= a(a,b)™" 97 Ma,b) - Aa(9) - A (a, D),
where we have used Eq. () and a~!(a,b) is just a plaquette IGG with loop of phases
a1(a,b).

Combining Eq. () with Eq. (), we have
Aa(g) " Mo(g) = a7 a,0)"IM(a,0) - Aap(g) - A7 (a, D). (2.89)
Comparing Eq. () with Eq. (), we have

a a,b) = o7 (a,b). (2.90)

It is easy to see that the global phase ambiguities in Eq. (kZSd),(tZESEwb,(I‘ZSd) will at most

modify the LHS of Eq. () up to a 2-cobounday, therefore it should be understood as

the 2-cycle equivalence 8y ~ o~ € H*(G,U(1)).

2.7.6 Generic constructions of symmetry-enforced SPT tensor-
network wavefunctions

In this section we want to construct an SPT state with on-site symmetry group G, magnetic

translation symmetry satisfying 7, 7,7, T, . ! = g where the SPT is characterized by the
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3-cocycle w € H3(G,U(1)) and the on-site symmetry group is represented projectively with

the 2-cocycle a(a,b) equal to the inverse of the slant product of w with respect to g,i.e.,
a(a,b) ~ [62(a,b)] 7" € H*(G,U(1)). (2.91)

To achieve this goal, we will use the tensor network formalism. Let’s start from a
SPT tensor wavefunction with the symmetry group Z? x G described by a 3-cocycle w €
H?*(G,U(1)), where Z* represents the usual translation 77", T, Then we know that
every tensor is invariant under the action D(a) on physical leg together with [[ W, on all
the virtual legs, from which we have a set of tensor equations. Here we require D(a) to
be a direct sum of usual representation D;(a) and projective representation Dy(a) with
2-cocycle [0¢(a,b)]"!. We choose the gauge transformation Wioris., Wperis. to be identity

for simplicity. The global IGG n(a, b) comes from the following tensor equation:
Wa 4 Wb = n(a, b)Wab, (2.92)

where 7(a,b) is decomposable, i.e., n(a,b) = [[Ay(a,b). We require tensors to be fully
invariant under n(a, b) without even generating phases. This condition ensures D(a) on the
physical legs to be projected onto D;(a) sector.

We define Wo9W,a = £,(g)Waa, where &,(9) = [] Ma(g) is a decomposable global IGG.
More generally we define We9" W, = &,(g, 2)W,, where &,(g,7) = [[ X\a(g,z). Then we

have the following relation:
Xa(g,x+1) ="99 N\o(g,2) - Aa(9)- (2.93)
Then we change our tensor wave-function in the following way:

1. We revise the original tensor such that it is invariant under the symmetry operation

and the new plaquette IGG defined in Fig. . Note that this step is necessary for
7



us to obtain a symmetric and non-vanishing tensor wave-function after the insertion

of Wy.

2. We insert [W,(u)]” on the upper leg of every tensor as shown in Fig. . Physically

it means inserting one g-defect per unit-cell.

3. We define the new on-site symmetry operation W, and translation symmetry Wr,
as shown in Fig. . We will show that the new tensor is invariant under such

symmetry transformations.

From the last section we have shown that every g-defect carries a projective represen-
tation represented by (5;(a, b)~1, therefore one would expect after insertion of g-defects, we
now have one 5;(a, b)~! projective representation per unit-cell. Let’s show it more clearly
through explicit calculations.

First, let’s show that the revised tensor wave-function satisfies all the required symme-

tries. It’s apparent that the new tensor has magnetic translation symmetry Wr, 1o, Wr, T,

defined in Fig. , i.e.
W, T,Wr, T,(Wr, T,,) ™ (Wr, T,,)) ™" = W,g. (2.94)

It can be proven that the new tensor is invariant under the new symmetry transfor-
mation W,a as shown in Fig. . The invariance of the new tensor 7% under the new
plaquette IGG is also apparent as shown in Fig. . Then we know that Eq. () still
holds for this state, which means the new state obtained is still an SPT state described by
the same 3-cocycle w.

Finally we want to show that the new tensor now carries a projective representation

[02(a,b)]~" per unit-cell. Tt can be proven that by acting W, -« Wy, - W, on all the virtual
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legs of a tensor we will get a phase d/(a, b) for every tensor as shown in Fig, .

In doing so we need the following identity
Aa(g: )" No(g, ) M@, 0) Aap(g, )~ -9 [Ma,0) 7] = [85 (a, )" (2.95)

Let’s denote the LHS of Eq. (2.99) as f(z). From Eq. (2.66) we have f(1) = 62(a,b),
then we need to find out the relation between f(x) and f(z + 1). Using A(g,x) ="99
A(g,z — 1) - A(g), we can rewrite Eq. (2.95) as
99X (g, 2 = D)™ TN (g, 2 — 1) - M)A @, D)V A (g, w — 1) - Aan(9)) -9 [A(a, b))
=" (g, 2 = DAalg)] "N (g, 2 — 1) 7 Ny (g) M@, D) Aap(9) ™
[N (g, = 1)) [Ma,0) 7Y
=99 Na(g, 7 = D)[Aa(9)€ (9] N (g, 2 — 1)€a(9) " No(9) M@, D) Nas(9) "

Wod gy (g, = 1)] 7199 [N (a, b) 7]
= 62(a,0)"9N\a(g, v — DAa(9)& (9] N9, 7 — 1)[Ea(9) Xal(9) V9 A(a, b)
Wos (g, — 1)) 71997 [Ma,0) 7]
= 0%(a, )" Ny (g, 2 — D) Ny(g, 2 — D)A(a,b) - Aap(g, 2 — 1) 719" N(a,b) 7).
(2.96)

The above derivation tells us that f(z) = 62 (a,b)"s9 f(z — 1), therefore by induction
we have f(z) = [0¢ (a, b)]".
With the help of Eq. (), we can readily calculate the new IGG 7(a,b) = W, - W, -

Wa_bl. The 7j(a,b) on the up and down virtual legs are just n(a,b) defined before. The
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N(a,b) on the left leg is computed as follows:

Aalg, —2)(d) - Wa - [Mo(g, —2)[(d) -* Wo - ([Aas(g, —2))(d) - Wap) ™"

= [)‘a(ga —J,’)](d) Waa [)‘b(gv _l')]<d) ) Wa @ Wb ' (Wab)_l[)‘ab(gv _l')]<d)_1

(2.97)
= [Xalg, =2)[(d) - [No(g, —2))(d) - n(a, ) - Nas(g, —2)](d) ™
= [0 (. 0)][Ma, 0)](w) -9 [Ma, )] (d).
Similarly, we have on the right leg
[0 (a, )] -V (M@, 0))(d) 7" - [Ma, b)) (w). (2.98)

Therefore, as shown in Fig. , we know that 7j(a, b) is just 6. (a, b) times the product
of plaquette IGG shown in Fig. which leaves the tensor invariant up to a phase d;(a, ).
Then on the physical leg we are forced to have D(a)D(b) = [0%(a,b)] " D(ab), i.c., D(a) is

projected onto Dy(a) sector. So the desired on-site projective representation is achieved.

30



Wy (u) ! W,(u) ! Wo(u) W, (u) !

g ! - defect g — defect

Figure 2.8: An example of g-defect line. The g-defect line is obtained by inserting W, on
only one side of the virtual legs crossed by the red dashed line. The tensors close to the
defect core should be revised in order to make the tensor wave-function symmetric and non-
vanishing. Following the usual convention, we say that the defect line always points from
g~ *-defect to g-defect, and we always insert W, to the left when one goes forward along
the line. Therefore in the figure we can identify the right end as the g-defect (remember
W,(d) = W,(u)~"). The grey area encloses a g-defect and we can to measure its projective
representation through the action of 1/(a, b) on the boundary virtual legs, see the discussion

in the main text.
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D(a) D(a) D(a)
e A W) heeene- Wy yt
D) G Dlayngs - D) Gy(u) s Sk Sl
Pa@)](@) - W = Dol Tt ol
D(a) D(a) D(a)
Wa

Figure 2.9: Invariance of the wave-function under U9(a). In the figure we can see that

W, = [Aa(9)](d) - W, where the defect line crosses the boundary and W, = W, elsewhere.
Such a definition ensures that no boundary excitations are created by acting UY(a) (for
the moment we do not care about what happens at the defect core). In deriving the
second figure, we have used the invariance of the tensor under W,a, the identity Wan_l =

W, €.(9)W, and invariance of the tensor under plaquette IGG Aq(g).
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nla, b) n'(a,b)
s b R
Aalg) -7 Aolg) - m(a,b) - Ay — e Xalo) M lg) (@ b) 0T
nla, b) 7'(a,b)
[A(a, b)](d) (M) ()
Ma, B)](u) ! (s8] ()™ [\Lart(r)
......................................... REEYCR)) (€5 R T
) Wy(u)™! W, ()" Wo(u)™* i 7 ()1 W A0
= €%32(a,b) "I i —  €98(a,b)  Wopm) “""i’ G
A, B)](w) ! (M) () !
et [ALes8]](r)
(A (n~!
[A(a, b))(d) (MED)I(d) y«;ﬂ
(Ma, b))~ [AerB))(u)~?
W(u)™!
...... basssnsnnnnnsfnnsnnnnnnnsshasnnnnnnnm
Wod NpeB(r) 1 Wy(u) ! Wy(u)™!

Figure 2.10: Measurement of projective representation carried by g-defect. From Eq. (),
we know that 7j(a,b) = A.(g) -"V*@ X\y(g) - m(a,b) - A, where the boundary is crossed by the
defect line and 7(a,b) = n(a,b) elsewhere. In the first equality we have used Eq. ()
In the second equality we have used the decomposition of 7'(a,b) and Eq. (R.66). In the
third equality we have used the tensor invariance under plaquette IGG. In the last equality
we have used the identity A\(r)~" - W, =W -Wo X\(r)~! and the tensor invariance under

plaquette IGG.
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Figure 2.11: The definition of phase-gauge transformation W(«(a,b)).

— a~a T -« a-oa +——
—t a— - a-a + - —
-
— la-a'da- a_a'l
—t a—a 1+ -« - —

Figure 2.12: The decomposition rule of W7=1=1 (a(a, b)) - W (a(a, b))~ (LHS) as a product

of plaquette IGG A(a(a,b)) (RHS).
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(a) Pa(@](D) - Wa

D(a)

y2 Pp3

qu () )‘Pa (l)_l

Figure 2.13: The original tensor before insertion of g-defect is required to be invariant

under the revised symmetry operation and the revised plaquette IGG.
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al Wa - [Aalg, —z = 1))(d) ™
T(@w)
Wa
@) ()7 INa,b)]pa (1)
(d) W
p1 P2
Wa)™* (A(a, B)]py () a0 (A(a, b)) () !
M@, Bl () (@, Bl (1)
P4 p3
(M@, 0)]p, (1) " (M@, B)]p (1)

Figure 2.14: (a) The definition of the new tensor 7@ after the insertion of [W,(u)]* to
the upper leg of every original tensor 7%, (b) The new translation operation Wy, T),.
It can be readily checked that 7% is invariant under such translation. Note that we
have T, = g¥T2", T, = T"% and Wy, = 1. (c) The new on-site symmetry operation
W,a. Tt is shown in Fig. that 7% is invariant under such symmetry operation. (d)
The new plaquette IGG for the new tensor 7% . As before, N’s from different plaquettes
commute with each other, and the action of any two A’s in the same plaquette leave the

tensor invariant. The tensor 7% invariance under plaquette IGGs follows trivially from

Fig. .
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g
Wu {n(.q: _-'L')
WJ:
D(a) g D(a) Wa
[Aalg, —2))(d) - Wa Wa-Palgs =z = D))" = [alg, —2)](d) - Wa Wa - [Aalg, =& = 1))(d)~"
Wﬂ WIL
Wi w;
[Palg, =2))(r) - Palg, —2)]() - a9 (D! Wa9[xq(g, —z — 1))(1) Wy
= [elg,—2)l(d) Palg,—z = D)D) = Palg, —z = D)(d) ™' =

Figure 2.15: The revised tensor T(x, y) is invariant under the newly-defined symmetry op-
eration. The first equality comes from the commutation relation W, W5 = Wi, (g, —x)W,.
In the second equality we have used the invariance of tensor under W, as shown in Fig.
and the decomposition of &,(g, —x). In the third equality we have used the identity
(g, —2)(1) =99 [No(g,—z — D)](1) - M\a(g9)(1). And we have also used the invariance of

tensor under plaquette IGG as in Fig. in the third and fourth equalities.

87



Wa * Wy W5!
‘ u‘b" * n(a,b) W
9 7T 1
Dia) o D(t) o D{ab)~* D(a) = D(b) o D(a w D(a) o D(b) o D(ab)

W, - Wy - ) Wt Wy - W' = 65(a, )M (g, B)](w) 9" [A(a, b)) (d) @0 e Bl (ablw = §2(a, b)

n(a,b)

W, @ Wy - W,

Figure 2.16: Every site-tensor carries a projective representation characterized by
[02(a,b)]". We show this by acting W,aWyb(Wosab)~' on both the physical legs and
the virtual legs of tensor 7% which should leave the tensor invariant without gen-
erating any phase. But from the calculation we find that the action on vitrual legs
will contribute a factor (5;"(a,b), therefore the representation on the physical legs are
D(a)- D(b) = [5; (a, b)]"'D(ab), i.e., they are projected onto the Dy(a) sector with projec-
tive representation. In the calculation above, we have used Eq. () in the first equality.
And we have used the invariance of the tensor under the plaquette IGG defined in Fig.

in the second equality.
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Chapter 3

Divergent bulk photovoltaic effect in

Weyl semimetals

3.1 Introduction

Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs
of grapheneupon breaking time-reversal or inversion symmetry. Electrons in a Weyl semimetal
behave as Weylfermions, which have many exotic properties, such as chiral anomaly and
magnetic monopoles in thecrystal momentum space. The surface state of a Weyl semimetal
displays pairs of entangled Fermi arcs at two opposite surfaces. To linear order, the
electrons near a Weyl node can be described by the effective two-by-two Hamiltonian:
HWYel = (3 k*a® — p)og + > ap k*Babop, where p is the chemical potential, k is the mo-
mentum relative to the Weyl node, a/b = z,vy, z, 0, are the Pauli matrices and oy is the

identity matrix. After choosing the frame of the principal axes and a proper basis, the
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off-diagonal elements in S can be eliminated:
HY = (hk -0, — 1) 00 + b Y _(k"v"0,). (3.1)

Here apart from the generally anisotropic velocity v, another velocity v, describes the tilting
of the bands and breaks the degeneracy between the bands at k and —l;, with the chemical
potential () usually nonzero.

It is known that either inversion symmetry or time-reversal symmetry needs to be broken
in order to realize the Weyl nodes, and the experimentally confirmed Weyl semimetals
have been overwhelmingly non-centrosymmetric and time-reversal symmetric, including the
(Nb,Ta)(As,P) and W;_,Mo,Tey series [2-8]. When the tilting velocity is large enough,
which is realized in materials like W;_, Mo, Tey, the system can becomes a Type-11 WSM [[],
since along some directions the two energy bands share the same sign of the velocity. Such
a system must have finite size Fermi surfaces (Flg@l(d))E The type of a Weyl node is

determined by a dimensionless number W:

W = /(o [v7)2 + (vf [o¥)? + (vf [v*)?, (3.2)

and a Type-I(Type-I1I) Weyl node is realized if W < 1 (W > 1).

As we show later, the bulk photovoltaic effect [10] with its direct connection to Berry
curvature, [?,[11] offers a method to distinguish these two types. It has also attracted
significant interest due to its potential applications in renewable energy generation [12] and

fast photo-detectors [[13,[14]. The intrinsic contributions to the BPVE can be expressed as

!Consequently it may be more accurate to call it a Type-II Weyl metal instead of a semimetal. However

to be consistent with existing literature we follow the existing naming convention.
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the second order nonlinear photocurrent response:
j* = 05" (W) E* (w) B (~w), (3.3)

where, a/b/c = x,y, z, T is the DC electric current density, E(t) = Re[E(w)e ™! +
E(—w)e™" is the electric field of the light. In order to have a nonzero o, inversion sym-
metry needs to be broken, which happens to be also a condition to realize WSM. Generally
speaking, 04 has both intraband and interband contributions. However, for time-reversal
symmetric materials with linear polarized light, it turns out that this photocurrent response
only has interband contributions, which has been coined the shift-current (o3> = afjﬁfﬁ) as

it results from a change in the center of mass of the electrons upon optical excitation.

Perturbation theory within the single-particle framework [11],15,[16] gives:

ored [ 3k
O-gllzz?ft(w) = F/ (27T)3 Z]gzbg[fnm ’ 5(wmn - w)}v (34)

n,m

where n, m label energy bands, fiwy, (k) = E, (k) — E,(k) is the energy difference between

the two bands. fum(k) = fu(k) — fm(k) is the difference of the Fermi-Dirac function

between the two bands. The gauge invariant quantity 79%¢(k)

5 10[1) i T il

where 7o (k) = i (U (K)| e |un (K)) is nothing but the non-Abelian Berry’s connection
(with Tgnn;b(];) its generalized derivative: ry, ., = 85,%;" — i[Ab (k) — Ab(K)]re (K), and

AL (E) = i(up (K)|Opp|un (F)) the usual intraband Berry’s connection).

It has been pointed out that the shift current response is related to the topology of the
band structure [?]. Indeed the quantities responsible for o4 directly involves the Abelian
and non-Abelian Berry’s phases. Because Weyl nodes are monopoles of the Abelian Berry’s
connection, these quantities are expected to be diverging and singular near Weyl nodes,

which motivates us to carefully study the resulting nonlinear optical effects.
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Eq(@) has a familiar form of the Fermi’s golden rule. Indeed, considering the case of

linearly polarized light along the b-direction, one has:

1% — ’r2m|2RZm7b? (no summation on indices) (3.5)

where the gauge invariant real space displacement énmb(lg) is the so-called “shift-vector”,

defined as:

_— OArg[rt ]
nm,b(k) - T

+ AC(k) — A% (), (3.6)

If one interprets Eq(@,@) as the Fermi’s golden rule, |r? |? is just the matrix-element
factor for the optical absorption. Thus, eﬁnm’b(lz) should be viewed as the dipole moment
induced the photo-excited particle-hole pair, giving rise to a rate of change in polarization,
i.e., DC photocurrent.

Motivated by photogalvanic applications [12-14], previously the shift-current response
has been mainly discussed in the context of insulators [11,[16], where the low temperature
Oshife vanishes when hw is below the band gap. It is convenient to introduce the optical

joint density of states including the factor f,,, responsible for the Pauli-blocking effect:

JDOS(w) = / % S [ 8(emn — )] (3.7)

m,n

For most materials, 72%

(E) is a smooth function of momentum, and according to Eq(@)
the response oy is essentially proportional to JDOS. It has been proposed that engi-
neering JDOS in semiconductors may be a route to optimize the BPVE [17]. Although
the JDOS o w? is small due to the linear dispersion in WSM, recent second harmonic [1§]

and photocurrent experiments [?,19] show that these materials host large nonlinear optical

effects at least in the infrared regimes. In this chapter we show that the WSM actually fea-
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Type-1 WSM:

(b) &, e (©)
k ; O hift
shift X W:
w

Type I WSM:
f
”ail:fft @
abc (;3
sh1ft hgw

Figure 3.1: (color online) Considering the p = 0 situation, in (a),(d) we schematically

plot the dispersion relations near a Type-I (Type-II) Weyl node. At zero temperature, the
momentum space surfaces contributing to JDOS (defined in Eq(@)) are qualitatively
different in (b) Type-I WSM and (e) Type-II WSM, leading to drastically different scaling

behaviors of ogp; shown in (c),(f).

ture divergent nonlinear optical responses in the low frequency regime due to the singular

Berry’s phases near the Weyl nodes.

3.2 Main results

Our main results are summarized in Fig. @ and Fig. @ For simplicity let us start
with the zero doping case = 0. In the absence of extrinsic scattering processes, simple
dimensional analysis shows that up to fundamental constants %, oshift(w) is proportional
to the inverse of an energy scale, which could involve either an intrinsic energy scale ¢ of
the material, the temperature kg7, or the photon energy hw.

At zero doping and zero temperature, the linear Weyl equation Eq(@) does not con-

. e3 . . . . .
tain an energy scale, therefore ogp;s(w) must be either ~ ﬁl or vanishing in this linear
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Figure 3.2: (color online) At T' = 0, the quasi-universal (i.e., p-independent) line shapes
of the doping-induced peaks of o, in Type-I (top) and Type-II(bottom) WSM based on
results Eq(@) of linearly dispersive nodes. The peak’s frequency range has been re-scaled
by a u factor and its height has been re-scaled by a 1/u factor, the latter diverges in the

low doping limit.

approximation. The former divergent case is exactly realized in Type-II WSM (Flg@(f})
In Type-I WSM, however, we will show that zero doping and zero temperature leads to
Tshift(w) ~ %% (F ig.@(c)), where ¢ is an intrinsic energy scale due to the band-bending
(i.e., deviation from linear dispersion) —typically ~0.1-0.2eV.

Next, we discuss the reason for the drastic difference between Type-I and Type-II
WSM, as well as the effect of doping. A careful evaluation of oy in Eq. (@) based on
the linear Weyl equation Eq(@) shows that, at T = 0, a single Weyl node contributes (At

T # 0, a general and more complicated analytic result is shown in supplemental material
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Eq.(3.39B.3d)):

b,,d

abc X Ui v inear
O'an-ft - W : Z [Edcaﬁ + (b A C)] ' O-iwde (W) (38)
d
where:
li 2 2 €
ot = (cos|f]sin[0;]” — cos[fy]sin[fs]?) - o (3.9)
and: 6; = arccos[24——], 6, = arccos [ ] (3.10)

w w

Up to an order unity constant o35, (w) is determined by oli7¢"(w). Here W is defined in
Eq.(@), €ape 1s the Levi-Civita antisymmetric tensor, and we have chosen the convention

w > 0. x = sign[v™v¥v®| = £1 is the chirality of the Weyl node (i.e., monopole charge).

Note that we have chosen the frame z,y, 2 to be right-handed. We have also defined a

function arccos[s] = 0 if s > 1, arccos[s] = 7 if s < —1, and arccos[s] = arccos[s] if
—-1<s<1.

Interestingly, due to the chirality factor in this result, we know that this 1/w divergent
term is absent in Dirac semimetals, because in those systems each Dirac node can be viewed
as two Weyl nodes with opposite chiralities sharing the same set of u, #; and opposite v.
It can also be immediately seen from Eq. (@) that the 1/w divergence is absent for o,
due to the Levi-Civita antisymmetric tensor.

The physical meaning of the two angles 6,0, is the following. For the moment it is
convenient to re-scale the momentum in x,y, z directions so that v* = v¥ = v* = v. The
energy conservation 0(wy,, — w) constrains our consideration on a sphere in the re-scaled
momentum space, whose radius equals 27“ The re-scaled v; can be used to define a special
axis to set up a spherical coordinate system. Generally speaking, Pauli blocking takes over

in certain solid angle regions. Namely the factor f,,, further constrains the sphere into a
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region between the polar angles 6, and 6, (See Fig.@(e) for an illustration).

In Type-I WSM (W < 1) at zero doping, the whole sphere contributes, consistent with
0p =0and 0y = 7 (Flg@(b)) But this is exactly a situation when the 6-dependent
factor in Eq.(@), and thus the 1/w term in ogp,f, vanishes. (Note that, in this case, a
careful analysis including band-bending effects shows that even the constant order vanishes,
leaving the next order oy, o< w in the low frequency limit. See supplemental information.)

But in Type-II WSM (W > 1) at zero doping, only the part of the sphere between 6; , =

L

o) contributes (Fig.@(e)), leading to the 1/w divergent response.

arccos|+

This results from the strongly angle dependent diverging Berry connection in WSM,
despite the integrand 2% in Eq(@) scaling as % The full angular average over the 47
solid angle would annihilate the 1/w term in og5,. However, Pauli-blocking could take
over in certain angular regions, removing the net cancellation and retaining the divergent
term.

In particular, at 7' = 0, in Type-I WSM (W < 1) with finite u, this 1/w term survives
only over a frequency range: 12'_—“”', < hw < 12_|—“| (Thus in the extreme case when v; = 0 and

W = 0, this term vanishes.) In fact, it is straightforward to show that, ¢!™¢" would also

change sign exactly at iw = 2|p|. Altogether this leads to a large peak in the oyt (w) with

a width ~ |u|/h and a height ~ % . |_llt|’ featuring a characteristic sign-changing line-shape
(Fig.@ top). Similarly a finite u truncates the 1/w divergence in Type-II WSM and leads
to a sign-changing large peak when Aw ~ p (Fig.@ bottom).

As shown in Fig.@, the line-shapes of these peaks are quasi-universal: they only depend

on the dimensionless number W. Different values of doping p only re-scale the peak’s

frequency range by a p factor and its height by a 1/u factor. This means that one may
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use u to control the frequency range of the peak to engineer tunable frequency-sensitive
photo-electric devices.

Temperature and impurities— At finite temperatures, the Fermi-Dirac distribution
would smear out and truncate the divergences when hw < kpT (which is confirmed in
our tight-binding model calculations F ig.). But at low temperatures kg1 < hw these
divergences are not significantly modified. (See supplemental material Eq.(,) for a
general analytic form of the ogp; s within linear-dispersion approximation.) However even
at zero temperature, impurities give rise to scattering, while finite temperature enables
other scattering mechanisms (e.g. electron-phonon). These scatterings, which can be phe-
nomenologically characterized by a scattering time 7, have been ignored so far. Namely,
even at low temperatures kg1’ < hw our result Eq(@) holds only in the long scattering
time w7 > 1 limit with the divergences truncated when w < % For instance, previous ex-
periments report that 7 in the Type-I WSM TaAs is of the order of a pico-second [20, 21].
This suggests that our predicted striking response can be observed in the Terahertz or
higher frequency regimes.

A conceptually interesting situation occurs when a finite temperature is introduced in
the p = 0 Type-I WSM, where divergence is absent at 7" = 0 due to angular cancellation
discussed before. However when T # 0, the thermally excited particle-hole pairs partially
play the role of doping, and there is no reason for a full angular cancellation. In this case,
simple dimensional analysis leads to striking results: we expect a temperature-induced peak
of the intrinsic oy when Aw ~ kgT', whose height ~ % diverging in the low 7' limit.
(see supplemental material Eq() and Fig.@) This is observed in our tight-binding

model calculations (see Fig.@(a)).
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The size of the effects —It is interesting to estimate the size of effects in the divergent
regimes; e.g., when hw ~ p for Type-1 WSM or fAiw 2 p in Type-II WSM, in the presence of
a temperature kg1 < hw. Previously shift-current responses have not be much studied in
the low frequency (e.g. Terahertz) regimes. Note that even in a generic multiband metal,
Oshift 1s expected to vanish at zero temperature in the low frequency regimes. This is simply
because the energy conservation §(w,, —w) and f,, in JDOS constrain both the valence
band and the conduction band at the Fermi level when w — 0, which would not occur due
to band-repulsions.

Plugging in w = 1THz, the estimated size of ot ~ Z—z% in the divergent regimes is
~ 0.014/V?, several orders of magnitudes larger than known reported values in visible or
infrared regimes [22-27|

Tight-binding model— To concretely illustrate the predicted responses we compute the

Oshift tensor using a minimal time-reversal symmetric 4-band tight-binding model featuring

4 Weyl nodes: [1§]
H'™ =1[(2.5 — cosk” — cos k¥ — cos k*)7, + sin k¥,
+ 0.5 cos k¥s, 7, + sink*s, 7, + (S cos k™ — po)| — 1, (3.11)

where s,(spin) and 7,(orbital) are two sets of Pauli matrices. ¢ is an overall energy scale
which can be 0.1 — 0.5eV, to be broadly consistent with the relevant energy scales in
existing Weyl materials. Symmetries in this model include: time-reversal is,K (K is
conjugation), x — —z mirror s,, and y — —y mirror s,7,. The four Weyl nodes are
located at (k¥ = £0.920, kY = 4+0.464,k* = 0), with an energy uot and pg = 0.606¢. A
positive parameter £ controls the tilting velocity 7;: for & < 1(¢ > 1), Type-I(Type-1I)

WSM is realized. We choose £ = 0.5 (£ = 1.5), corresponding to W = 0.539(WW = 1.616),
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as the representative for Type-I (Type-II) WSM.

We numerically compute Jgggft, using the full formula Eq(@) without resorting to the
linear approximation. The results of a particular component o3, are plotted in Fig. for
various doping levels and temperatures, which are fully consistent with previous discussions.

Second harmonic generation— Another directly related second order nonlinear optical
response is the second harmonic generation (SHG), in which light at frequency w drives cur-
rent at frequency 2w [28]. Defining SHG response tensor j*(2w) = 02% - (w, 2w) E*(w) B¢ (w),

it is known that the real part Re[osp¢| is given by the interband contribution, and within

the two-band approximation and linear-node approximation, we have

abe 3 abe
Re[O-Sl}-]G<wv 2("))] = _éasgift(w) (312)

where a2, (w) given by Eq. (@) (see supplemental information). BE por example, similar

to Ospift, the zero temperature Re[ogpc| features a similar 1 /w divergence in Type-II WSM
when p = 0, and large peak behaviors in both Type-I and Type-II WSM when p # 0. And
even at u = 0, a finite temperature induces a large peak in Re[ogn¢] in Type-I1 WSM with
a width ~ kgT and a height ~ %

Possible applications— In this chapter we report the 1/w diverging DC photovoltaic

effect in the low frequency regime in WSM, due to the combination of the diverging Berry’s

curvature and Pauli-blocking effect. Fast Terahertz photon detection has been a long

2Previously another identity is known within general two-band approximation: Relo¢}a(w,2w)] =

—oit, (W) + 504, (2w) [?], which naively is inconsistent with Eq.(B.12). However within linear-node

approximation we have shown that Thift (w) = 0, which is consistent with both identities.

3Interestingly, the intraband contribution of SHG is responsible for Im[osg¢], which has been pointed

out to be a Fermi surface Berry’s curvature effect and contains a 1/w term [B1,32]
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standing challenge. The reported large photovoltaic effect may be useful for this purpose.
In addition, the doping-induced large peak regimes of og5r in WSM, whose frequency
ranges are controlled by p, may be useful as a tunable frequency-sensitive probe for far-

infrared or Terahertz photons, i.e., a spectrum analyzer.

3.3 Appendices

3.3.1 Shift current in type-I Weyl semi-metal

In this section we shall prove that for a generic type-1 Weyl semi-metal with Fermi level
at the Weyl nodes, the leading term in the shift current tensor will be proportional to w
when w — 0.

The low energy physics can be captured by the following generic 2-band Hamiltonian

with chemical potential i set to zero

H = fOUO —I— Z in'Z', (313)

1=x,Y,2

where fy, f; are functions of k and f; = 0 when £ = 0. The eigenvalues are E. = fy + ¢,
E, = fo — € with € = \/W Since the tilting will not affect the shift current tensor, we
will set fy to be zero.

The shift current tensor for the 2-band model is obtained by doing the following integral

[11,17]

abe 2me3 Bk abe
Usiliift(w) = F/ (27].)3[&? [fCU ) 6(w0v B wﬂ? (3'14)

where 2% has the following explicitly gauge-invariant expression

Igfc = Z[%(fmfi,bfj,ac - fi,bfj,afm%)@jm —+ (b < C)], (315)

Z’.]7m
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where €;j,, is the Levi-Civita symbol.
Now let’s prove that terms proportional to 1/w (denoted as ¢(~Y(w) below) and terms

ab¢ yanish in the low frequency limit w — 0.

independent of w (denoted as ¢(®)(w) below) in o
A simple order of estimate with k ~ w when w — 0 tells us that only the k-linear terms
and k-quadratic terms in f; will contribute to ¢~ (w) and ¢(®)(w). Therefore it suffices to
consider a linear node plus some quadratic corrections. It is always possible to choose the

following form of f; by an affine transformation which does not affect the integral (hvg is

set to be 1 throughout this section)
fi = ki + aukika, (3.16)

where «;j; is a rank-3 tensor symmetric respect to the interchange j <+ [ and repeated
indices are summed over.

In the spherical coordinate system, we have
k, = rsin[f]cos[¢], k, = rsin[f]sin[¢], k, = rcos[f]. (3.17)

And the unit vector k = (sin[f]cos[¢], sin[f]sin[@], cos[d]) will be used below to simplify the
notation.

When w is small, k; ~ r ~ w and we can expand € in powers of r
e=r+7rf(0,0) +O@?), (3.18)

where f(0, ¢) is a function of «;j;;, 0, ¢. It is easy to obtain the explicit form of f(6, ¢), but
for our purpose we only need the fact that f(0,¢) = —f(m — 0,7 + ¢) since it comes from

the angular dependence of terms involving 3 k;’s.
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In the same spirit we can expand 1% in powers of r

1
10 = —€am—— T (b ¢) = —€pam?” - T beo),
c €

hete (k. by, k)

2

hove(ky, k,, k)

2

I = 26,jm tjackm + + (b ©) = 2r€ymjackm + 1 (0o

€ €

(3.19)

where h**¢(k,, k,, k.) is a homogeneous polynomial of degree 3, whose explicit form, for our
purpose, is not important.

The integral then becomes

() = const # / 40 / P2dr I (r, 0, )5(2¢(r, 0, &) — w), (3.20)

where d€) = sin[0]dfde.
When w — 0, we know that for any fixed 6, ¢ there is only one solution r(6, ¢) to the
equation 2¢(r(6, ¢), 0, ¢) = w, from which we can solve r as a function of 6 and ¢. In fact,

we can expand (6, ¢) in powers of w with f(6, ¢) defined before

w

r(0,0) =5 - “’Z 0, 6) + OP). (3.21)

The integral can then be written as

5% (w) :const*/dQ—M[I(O) 7L + O(w?)]

W 8€|7« (0,6) abc abc

—const s [ dQZ (0,07  20(0,611(0.0) + OWHII + 15+ O] (32

_const*/dQé[l—2wf(€,¢)+(’)( MO 1 1D 4 o)

Terms that are of order 1/w comes from the integral over I (bl with 7(6, ¢) set to w/2 in
Eq.(B.22)

oD (w) = const*/ dQ— ([(

abc

1 .
)= const*/ dQ;[—ebam(k)m(k)ch(b < ¢)| = constx(—e€pge—€cap) = 0,

(3.23)
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where we have used the fact that [ (k) (k)n.dQ = 476,, ..

Terms that are independent of w comes from the following 3 integrals:
1 A
050) = const * /dQ—(Iégi) = const * /de(Q, O)[—€vamkmke + (b <> ¢)], (3.24)
w

1
01(,(}) = const*/dQ—([(l)
w

abc

) = constx / AQ€pjmjackm + P (ky, ky, k) /24 (b > ¢)] (3.25)

and

o\ = const * / dQf(0,0)IY)) = const * / AL (0, ) [—€pam (k) m(k)e + (b < ¢)]. (3.26)

It is easy to see that under (0, ¢) — (7—0, m+¢), the integrand of Eq. (l324!),(t32d),(t32d)

all change sign, therefore they are all equal to zero.
In conclusion, we have analytically shown that in the low frequency limit w — 0, term
be

that diverges as 1/w and term that is independent of w in the shift current tensor o

vanish. Therefore the leading term in ¢® will be proportional to w.

3.3.2 Analytical formula for the shift current in Weyl semi-metal
with tilting and doping in low-frequency limit

In this section we will obtain an analytical formula of the shift-current tensor for a Weyl
node with both tilting and nonzero chemical potential within the linear approximation at
zero temperature. This formula captures the physics of type-I and type-II Weyl semimetals
with or without doping in a unified fashion.

Let’s consider the following generic Hamiltonian

H = (hk ' — p)og + Y hkio. (3.27)

i:zzyvz
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We will choose the following parameterization v;k; = rO;; l%j, where O;; is an orthogonal

matrix and k = (sin[f]cos[¢], sin[f]sin[¢], cos[f]). The orghogonal matrix O is chosen such

that

_Z> -0 = (07 07 W)? (328)

where W = \/ (%) + (5)2 + (%)2 In fact the third column of O is fully determined

= W(v_’ E’ U_z) (3.29)

In this new coordinate system, we have

abe 2me? Pk abe e3sign[v,v,v,
ottin0) = 2o [ SRl s — )] =

h? (2m)3 m /T2drdQ]f§Cf21 0(2r —w).
(3.30)
where ¢ is given by
U;sz;uc [0k Octkrepam + (b > ¢)] (3.31)
and fy; is given by
far = eﬁ(hWrcos[G]l—hr—u) +1 eB(hWTcos[é‘}l—i-hr_#) IR (3.32)

which is a function of r and 6.

Therefore we have

ot () = e3sign (v, v,V )V UV,

Thift 8wh2v,v,v, /Sin[Q]degbel(w/Q, 0)[OnmjkijOctkireram + (b 4+ ).

(3.33)

The angular integration can be easily done:

/de21(w/2,9)l%ml%n - /de21(w/2 0) (k20 A+ (k2—k2)0pm nOm3) = -Omn—1-g(w0, 2, W)Opm nOm.3,

(3.34)
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where c is a constant, z = e* is the fugacity and @ = ﬂTﬁ“ The isotropic part ¢ - d,,,, does
not contribute to the shift current tensor as in the case of type-I Weyl semimetal without
doping. And the anisotropic part can be evaluated by first integrating over ¢ and then
integrating over x = cos[f] to yield

2 14z teWw ] 4 - le(W-Dw
Wo n[l + o 1e(+W)w ) 1+ 2—16—(1+W)w]

g(w,z, W) = — /_1(33:2 — 1) for(w/2,x)dx =

6
. Z [Lin(_z—le(l—W)w) + Lin(_z—le(l—i-W)w) . Lin(_z—le—(1+W)w) . Lin(_z—le(—1+W)w)]

(3.35)
where Li,(x) is the polylogarithm of order n.
Therefore after inserting Eq() and Eq() into Eq() we have the following

result

Tsign (v, vy v;)

abc UpU inear
Uslgift(w) = ST 2 ’ [Edca (;d)dg + (b < C):| ’ Uibode (w) (336)
. e3
where: ol (w) = [g(ww, 2, W) - ——]

Therefore up to an order 1 constant, the shift-current response tensor is determined by

the function o7¢* Let’s discuss two simple limits of Eq. () First, when p = 0, the

node

function g only depends on the dimensionless variable w, which gives us the scaling form

Tshigt(W)|g = b Tsnipe(bw) |/ (3.37)

We plot this scaling behavior at finite temperatures and u = 0 for a few representative
values of W in Fig.@. In particular for Type-I WSM at p = 0, T' # 0 induces a peak of
oshift whose widthoe kT and heightoc 1/kpT. This behavior is also observed in Fig.3(a)

in our tight-binding model calculations.
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Next, when 3 — 0o, we can obtain a simpler form of g(w, z, W). In fact, an easier way

is to replace the Fermi-Dirac distribution function by the Heaviside step function:

for = O(r—k-0" 4/ h)—O(—r—k-T'+pu/h) = O(r(1=Wecos|8])+p/h)—O(—r(1+Wcos[d])+u/h).
(3.38)
The Heaviside step function together with the ¢ function constraint the integration
region of #, therefore we will introduce the following two # angles to characterize the upper

and lower limit of the integration

2u 2
61 = arccos|[22——], 6, = arccos [ ] (3.39)
where the function arccos(s] is defined in the following way: arccos[s] = 0 if s > 1,
arccos|s] = 7 if s < —1, and arccos[s] = arccos[s] if —1 < s < 1.
After integration we have
li 2 2 €
ot (w, 2, W) |10 = (cos|f;]sin[0;]” — cos[f]sin[0s] )%, (3.40)
which gives us the shift-current tensor at zero-temperature:
) = I e UL )] cosfty sy - cosfulsinB?) 5 (3.41)
o (w) = | €dea ¢)| - (cos[f:]sin[f]* — cos[fs]sin — (3.
shift Q2 S CHE ! ! 2 2 2w

3.3.3 Analytical formula for the second-harmonic-generation in
Weyl semi-metal with tilting and doping in low-frequency
limit
The second-harmonic-generation (SHG) response tensor is defined via j(2w) = 0% . (w, 2w) E*(w) E¢

From the standard time-dependent perturbation theory [28,833,34], we have the following
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expression for the real part of the SHG response tensor

aoc dkS a, C QUZ”m{'Uz 'Ucm}
Refotioo. 2] = s 3 [ Aty + ot indy 50,

o Wmp + Wnp
ab ¢ vgln{vfzpv;c)m}
+ (wmnvnm + Wiy, nm)fmn (CU - wnm) + —(fmp(s(w - Ome) - fnp(S(w - wnp))]?
Wpm + Wpn
(3.42)
where v}, = 3 (m| 0y H |n), wid, = 75 (m| Ok, 0k, H |n) and {0} 05, } = v} vs, + v b, .

Note that since we are dealing with generic tight-binding models, a careful derivation
following Ref. [33] yields the extra w%, terms which are absent in the literatures listed
above.

For a 2-band model within the linear approximation, Eq. () can be simplified to be

s .3 3 a b c
abc e dk Uye {UCUAC’U} . 3.43
Re[USHG<w 2w)] 2h / (271')3 wg fcv[86(2w wcv) (5((,«} ch)] ( . )

where A! =wv! —! —and v/c corresponds to valence/conduction bands respectively.

In the linear approximation, we have the following identity

b — Zm{ b AC } Aa {’Umn ’rCLm}

3 3
Winn Winn

(3.44)

Therefore we can rewrite Eq. () as follows

ime3 dk3

) fv0< Tey vca+rcvrvca)[85(2w wcv)_é(w_wcv)]v (3'45)

Re[odq(w, 2w)] = o Jy, @y

where we have used the fact that the integration over %W vanishes due to time-

cv
reversal symmetry.

Eq. () assumes a very similar form to the expression of shift-current. In fact, it’s

easy to see that within the linear approximation we have Re[o¢jq(w, 2w)] = —40%¢;, (2w) +

500 (W) = —205¢, (W), where 0%, (w) is given by Eq. () As a consequence, all the
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discussions of leading-order terms in
Re[o§fc(w, 2w)]

with the presence of tilting and doping at non-zero temperature naturally follow that of

o, (w) in the last section.
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Figure 3.3: (color online) Numerically computed o3, (w) using the full tight-binding model
Eq() with parameters in the main text (squares and triangles), comparing with analytic
linear-node results after summing over four Weyl nodes o' () (dashed lines). At zero
doping, (a): ogpipte X w at T = 0 in Type-I WSM in the low frequency regime; a finite
temperature partially plays the role of doping and induces a peak of ogipr Wwhose width
o« T and height o< 1/T" (see supplemental material Fig.@); (d): oshift x 1/w at T'=0 in
Type-II WSM, fully consistent with the result Eq(@) within the linear approximation.
This divergence is truncated by a finite temperature below fw ~ 5kgT. (b)(c)(e)(f): At
finite dopings ogife feature large peaks whose width o p and height o< 1/pu. At T = 0
these large peaks are well captured by Eq(@) (the slight deviations for p = 0.1t cases are

due to expected band-bending effects.). At kpT = 0.02¢ the peaks for u = 0.02¢ cases are

strongly smeared out, while those for u = 0.1t are quantitatively reduced.
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Figure 3.4: At zero doping . = 0, based on the linear-node result Eq.(), we find that

a finite temperature induces a peak of o, in Type-I WSM (left), and truncate the 1/w

divergence in Type-II WSM(right) when fw ~ kgT. Note that the frequency range is

re-scaled by a kg1 factor while ogp,f is re-scaled by a 1/kgT factor. The line shapes of

these curves only depend on W but independent of kgT'.
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Chapter 4

Nonreciprocal directional dichroism
induced by a temperature gradient as
a probe for mobile spin dynamics in

quantum magnets

4.1 Introduction

Quantum spin liquids(QSL), proposed by Anderson [1] for spatial dimensions > 1, attracted
considerable interest in the past decades (see Ref. [2-5] for reviews). Although theoret-
ically these novel states of matter are known to exist and have even been successfully
classified [6,7], to date there is no experimentally confirmed QSL material. As a matter of
fact, an increasing list of candidate QSL materials emerges recently due to the extensive

experimental efforts, including, for instance, Herbertsmithite [8,09], a-RuCl; under a mag-
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netic field [10], and quantum spin ice materials [11,[12]. An outstanding challenge in this
field is the lack of appropriate experimental probes. Traditional probes for magnetic ex-
citations include thermodynamic measurements, various spectroscopy measurements such
as neutron scattering and nuclear magnetic resonance, and the thermal transport. Ideally,
one would like to directly probe the mobile magnetic excitations in a QSL, such as the
fractionalized spinons. The major limitation of traditional probes is from the contributions
of other degrees of freedom; e.g., the spectroscopy measurements couple to local impurity
modes, while the thermal transport couple to phonons. It is highly nontrivial to directly
probe the intrinsic contribution from the mobile magnetic excitations. To highlight this
challenge, there is no known direct probe to even detect the mobility gap of magnetic
excitations, which is fundamentally important in the field of topologically ordered states.
In this chapter we propose a thermo-optic experiment which serves as a new probe
for mobile magnetic excitations in Mott insulators respecting either the spatial inversion
symmetry Z or the time-reversal symmetry T ﬂ, or both: the temperature-gradient-induced
nonreciprocal directional dichroism (TNDD). In a sense TNDD combines the thermal trans-
port and optical spectroscopy together, and effectively decouples from phonon and local

magnetic modes.

4.2 The effect of TNDD

Theory of TNDD Nonreciprocal directional dichroism (NDD) is a phenomenon referring

to the difference in the optical absorption coefficient between counterpropagating lights [[14].

Lor time-reversal symmetry combined with a spatial translation such as in an antiferromagnet
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From the Fermi’s golden rule, NDD for linearly polarized lights is due to the interference

between the electric dipole and magnetic dipole processes [15]5:

Gua) = an(w) — o) = 252 DL S = py) -2
i,f
Rel(ilP - 1) (7131 - Bl - 6(E; — B, — hw) (4.1

where a;(w) is the optical absorption coefficient of counterpropagating lights (along +n)
at frequency w, which are Z (or 7)) images of each other. P (M) is the electric polarization
(magnetic moment) operator. £ (B) is the direction of the electric field (magnetic field)
and 71 ~ & x B. |i),|f) label the initial and final states in the optical transition (p; and p;
are their density matrix elements), ¢y and ¢ are the vacuum permittivity and the speed of
light, V' is the volume of the material, and p, is the material’s relative permeability. Clearly
both Z and 7T need to be broken to have a nonzero NDD because Re[(i|P|f) - (f|M]i)] is
odd under either symmetry operation. NDD has been actively applied in the field of
multiferroics [17-25] to probe the dynamical coupling between electricity and magnetism.

The TNDD spectroscopy essentially detects the joint density of states of mobile mag-
netic excitations, and can be intuitively understood as follows (see F ig.@(a)). Consider a
Mott insulator respecting Z and/or T so that NDD vanishes in thermal equilibrium. In the
presence of a temperature gradient, the system reaches a nonequilibrium steady state with
a nonzero heat current carried by mobile excitations. For simplicity one may assume that
excitations of the system are well-described by quasiparticles, e.g., spinons or magnons,

phonons, etc. The leading order nonequilibrium change of p; and p; in Eq(@) satisfies

2In general NDD receives contributions from higher order multipole processes. [66] However in the

context of Mott insulators the electric-dipole-magnetic-dipole contribution Eq.@ dominates.
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dpi, 0py o< VT - 7 from a simple Boltzmann equation analysis, where 7 is the relaxation
time.

The crucial observation is that this nonequilibrium state breaks both the inversion
symmetry (by VT ) and the time-reversal symmetry (by 7). Consequently one expects
a NDD signal proportional to VT - 7. Precisely speaking TNDD is a second-order thermo-
electromagnetic nonlinear response: it is a change of optical absorption (a linear response)
due to a temperature gradient. The factor V7I'-7 in TNDD indicates that it is a generaliza-
tion of Drude-phenomenon to nonlinear responses. Notice that the Drude-phenomenon is
independent of whether the system has a quasiparticle description or not. Even in the ab-
sence of quasiparticle descriptions, strongly interacting liquids may have nearly conserved
momentum. The relaxation time 7 in Drude physics should be interpreted as the momen-
tum relaxation time [26]. This indicates that TNDD discussed here can be generalized to
systems without quasiparticle descriptions such as the U(1)-Dirac spin liquid [27-29] and
the spinon Fermi surface state [30,31].

Advantages of TNDD spectroscopy Now we comment on the major advantages
of TNDD as a probe of spin dynamics. First, TNDD is a dynamical spectroscopy with
the frequency resolution in contrast to the DC thermal transport, and essentially probes
the joint density of states of magnetic excitations. Second, the fact that TNDD only
receives contributions from Re[(i|P|f) - (f|M|i)] dictates that the phonons’ contribution
can be safely ignored: The natural unit for the magnetic moment of phonon, the nuclear
magneton, is more than three orders of magnitudes smaller than that of the electron, the
Bohr magneton.

In addition, at the intuitive level, a local magnetic mode (e.g. from a magnetic impurity
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atom) can only couple to a local temperature instead of a temperature gradient. A local
temperature respects both Z (after taking disorder-average) and 7. Consequently, such
local modes are not expected to contribute to TNDD either. From a more careful estimate
(see App. for detailed discussions), we find that the contribution to TNDD from local-
ized modes with a localization length &, comparing to the contribution from the intrinsic
mobile magnetic modes, is at least down by a factor of £/l,,, where [, is the mean-free
path of the mobile magnetic excitations. We have assumed that ¢ < [,,,: for local magnetic
modes carried by magnetic impurity atoms or crystalline defects, typically & is comparable
with the lattice spacing a, while usually [,, > a in a reasonably clean Mott insulator at
low temperatures.

Estimate of the TNDD response One may estimate the size of TNDD signal in a
spin-orbital coupled Mott insulator. The relevant dimensionless ratio limiting the experi-

mental resolution is:

TNDD(w) = — (w(s)ﬁi(;")ﬁ o (4.2)

In a Mott insulator, the polarization carried by a magnetic excitation can be estimated
as ( - e - a, where a is the lattice spacing and ( is dimensionless. Assuming the average

temperature of the system kg7 to be comparable to the magnetic excitation energya, we

find that (see App. for details):

D\’ ¢ |VT|-ln D\* |VT| -l
TNDD(w) ~ (7) E'%N (7) % (4.3)

3Similar to a thermal transport experiment, if the temperature of the system is far below the magnetic
excitation energy, a temperature gradient would not efficiently affect the magnetic excitation distributions
and would not lead to a sizable TNDD.
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in the limit of a weak spin-orbit coupling. Here av =~ 1/137 is the fine-structure constant
and we used ¢ ~ 1072 ~ « in typical transition metal Mott insulators [33]. Notice that in
the absence of spin-orbit coupling, TNDD vanishes since the spin magnetic moment M is
a spin—triplet@. D and J are the Dzyaloshinskii-Moriya(DM) interaction and the exchange
interaction respectively. In a system with a strong spin-orbit coupling one may set D/J ~ 1,
and TN DD(w) is proportional to the ratio of the temperature change across [,, and the
temperature. To optimize signal, one may choose a large temperature gradient such that
VT - w ~ T where w is the linear system size along the VT direction, and TN DD(w) ~
ln/w. For instance, [,,, of magnetic excitations in a quantum spin ice material was reported
to be of the order of a micron [35]. For a typical millimeter sample size, TN DD(w) can be
as large as 1073, well detectable within the currently available experimental technology.

Crystal symmetry analysis TNDD can be phenomenologically described by a tensor

Z nabc (c:’ B (44)

a,b,c

The symmetry condition for 7,,.(w) is determined by the fusion rule of two vectors (€, VT)
and one pseudovector (l’;’) into a trivial representation under the point group. For any point
group, symmetry always allows nonzero 7,,.: one may always consider the case n ~ ExB
to be parallel to VT

As an example, we find that there are four independent response coefficients for the D3,

4We only consider the contribution from the spin magnetic moment in this chapter. The orbital magnetic
moment in a Mott insulator is a spin-singlet but is much smaller than the spin magnetic moment, by a

factor of (t/U)? in the (t/U)-expansion. [33,67]
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point group:

Snov = mVLT(E X B), + 12B.(€ X VT). + n3E.(B x VT).

C[(EaB, + EBIV,T — (E.B, — £,8,)V.T] (4.5)

Here the x-axis is a Cs-axis and the yz-plane is a o4 mirror-plane in the D3y group. The
D34 point group is realized in the QSL candidate Herbertsmithite, in the Heisenberg model
on the Kagome lattice with DM interactions (see below and Fig.@(b)), as well as in
the generalized Kitaev-Heisenberg model on the honeycomb lattice [36-3§], relevant for
NayIrO3 [39] and RuCl; [40-42].

Microscopic model We present a concrete microscopic calculation for the TNDD
spectrum. The nearest neighbor spin-1/2 Hamiltonian under consideration is on the kagome
lattice:

H=7Y S-S+> D85 x5 (4.6)

<ij> <ij>
This model is relevant for various QSL candidate materials such as ZnCuz(OH)Cly (Her-
bertsmithite) and CusZn(OH)gFBr, and respects both 7 and Z. Based on the D3, crystal
symmetry for the kagome plane, the DM vector ﬁij = —ﬁji has two independent coupling

constants: D, (out-of-plane) and D, (in-plane) [43] (see Fig.@(b)). Precisely speaking:
Dij =di; - (D. -2+ D, - 2 x 1), (4.7)

where d;; = £1, 7;; is the unit vector along the direction from the site-j to the site-i. As
shown in Flg@(b), in each bow-tie: d12 = d23 = d31 = ]_, d34 = d45 = d53 = —1.

Dipole-coupling with an external electric field 6 H = —E- ]3, the electric polarization P
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ap(w) — a_q(w) o

Figure 4.1: (a): A schematic illustration of the TNDD effect: in the presence of a tem-
perature gradient, the optical absorption coefficients for counterpropagating lights become
different, which essentially probes the joint density of states of mobile magnetic excitations.

(b) A Kagome lattice and the Dzyaloshinskii-Moriya vectors D;;.

has the following form for the nearest neighbor terms [44]5:

P, =18, (S, + 8 — G5 — §,) — 28, - S, + 255 - 5,
Y \/§[3 (2 1 5 4) 1 2 5 4]
Px :Cea-[§3~(§2—§1+§5—§4)], (48)

where e < 0 is the electron charge, a is the nearest neighbor distance, and ( is a dimension-
less coupling constant (in this chapter S = d/2.) ¢ can be generated via a t/U expansion
in a Hubbard model [46]. In the leading order J = % and ¢ = 15—?: [44]. i

Q1 = Q2 Zs spin liquid: Schwinger boson mean-field treatment There are
extensive numerical evidences that the Heisenberg model on the kagome lattice may realize

a QSL ground state, although the nature of the QSL is under debate [29,48-52]. The

5Generally the polarization operator contains spin-triplet terms similar to DM interactions. Here for

simplicity we only consider spin-singlet terms which dominate in the weak spin-orbit coupling limit.

6¢ also receives contribution from the magneto-elastic coupling. For a typical transition metal Mott
insulator, this contribution to polarization is similar in size as the contribution from the t/U-expansion

B3, 14].
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present work does not attempt to resolve this long-standing puzzle. Instead, we will focus
on one candidate spin liquid state, which may be realized in the model Eq(@) Sachdev’s
Q1 = Q2 Zy QSL [53]. The Q1 = Q3 QSL is a gapped state and can be described using the
Schwinger boson mean-field theory [54-56], in which spin is represented by bosonic spinons:
S = ijaaagbzg, while boson number per site is subject to the constraint b obia = 25. We
then do the usual mean-field decoupling and diagonalize the quadratic mean-field spinon
Hamiltonian to obtain three spinon bands. We treat DM interaction as a perturbation and

keep contributions up to the linear order of D/J. Under this approximation we arrive at

the following mean-field Hamiltonian.

T 10 i
Hyp = —MZ (b big — 25) — 5 > (A5 A+ he)
(i5)
+ Z Ay Gl hee), (4.9)
where operators Aij = bin€apbjp and C’ij = —ibin(€0)apbjs. Hyp may be viewed as an ansatz

to construct variational spin-liquid wavefunctions with parameters A;;, . In Sachdev’s
Q1 = Q2 state, A;; have the following spatial pattern: A;; = d;;A, and A can be chosen to

be real. See Appendix. for more details.

o=tl [ _of o

After Bogoliubov diagonalization, three bands are found: Hyp = ZE wmt23 PuiVy ok

as shown in Fig.@, where 1, ] label the Kramers degeneracy. Tuning chemical potential
1 so that the band structure is near the boson condensation at I', the lowest energy band

u = 1 is well described by a relativistic boson disperson:
B,z = VA2 + B2k, (4.10)

where A is the bosonic spinon gap.
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E/J band — 3

Figure 4.2: The Schwinger boson band dispersion (blue solid lines) for the mean-field
Hamiltonian Eq(@) of Sachdev’s Q1 = Q2 Zy QSL with parameters A =1, D, = D, =
0.1J, and p = —1.792J. The low energy band-1 near the I' point is well described by
the relativistic dispersion Eq() with gap A = 0.16J (red line). The two-spinon (red
dots at :|:l§) contribution to the TNDD response computed in Eq() and App. is

illustrated.

TNDD contributed from the bosonic spinons In the low temperature limit, the

two-spinon contribution dominates TNDD with |f) ~ Z%V?—E i) in Eq(@) i} pi, Py I

Eq(@) is related to the nonequilibrium bosonic spinon occupation g, z. From a simple

Boltzmann equation analysis with a single relaxation time 7, g deviates from the equilib-

dg° _(7) 5 VT OE -
1 1 0 — 1 L — ke L uk = u,k :
rium occupation 9o = e by c5gwC = —5% A NG where Ui = ok This

) 9, 1s responsible for TNDD.

Since TNDD is a bulk response we consider a 3D system consisting of stacked 2D layers
each described by the model Eq(@) with an interlayer distance d. Using the electric
polarization Eq(@) and spin magnetic moment M = gs,uBg , in App.( we compute

the low temperature/energy TNDD response tensor defined in Eq(@) within our mean-

"Notice that a single spinon excitation is not gauge invariant and does not contribute to physical

responses
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Figure 4.3: The bosonic two-spinon contribution to TNDD spectra of Sachdev’s @)1 = Q>

Zs QSL Eq(@) at the temperature kgT = 0.7A (solid black line) and kT = 0.4A (solid

red line), together with the two-spinon joint density of states (dashed blue line).

field treatment (corresponding to 7, in Eq(@)) As plotted in Fig., we find that

(x,y, z-directions are illustrated in Fig.@)

Nezy(w) = C - [14 2¢°(hw/2)] - (kpT)?
- [3G3(2) = 3Inz - Ga(z) + (Inz)?G4(2)]

e~ VIW/2DP=82A py . JDOS (hw) - v

<

(4.11)

Here the constant C = 8ruga®Caag - “,ggggg, where ag is the Bohr radius. wg o< (D/J)?
a dimensionless constant related to the mean-field band structure and can be determined
numerically. For the parameters D, = D, = 0.1J and p = —1.792J we find that w, =
0.603. The 3D optical joint density of states JDOS(hw) = D - hw - ©(hw — 2A) where
D= o5y 90 (hw/2) = hw/+BT1v z=e kgT, and G,(z) = F(V) J £ id‘vl is the Bose-
Einstein integral. Eq() holds when the temperature and the photon energy are within
the regime of the relativistic dispersion Eq()

In the limit kT < A, Eq() can be simplified and we have 7,.,(w) o e 2/ksT

where the thermal activation factor can be traced back to dg;. Importantly, beyond the

mean-field treatment, TNDD is generally o dp;,0py o< VI - 7 in Eq.(@), and a thermal
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activation factor e~ 2/ksT

in TNDD is always due to the energy diffusion near the mobility
gap A. Therefore TNDD can serve as a sharp measurement of the mobility gap A of the

magnetic excitations.

4.3 Discussion and conclusion

Bosonic vs. fermionic spinons We computed the TNDD response contributed from bosonic
spinons in the Sachdev’s ()1 = Q)2 Zs QSL. Fermionic spinons also exist in this Zy QSL
and their contribution to TNDD can be similarly computed in a dual Abrikosov fermion
approach [58,59]. Without pursuing this calculation in details, one expects that the bosonic
factor [1 4+ 2¢°(Aw/2)] (Bose-Einstein integrals) in Eq() will be replaced by the cor-
responding fermionic factor [1 — 2f%(fw/2)] (Fermi-Dirac integrals), where f°(hw/2) =
1/(e™/2k5T 4 1). The contributions from the bosonic spinons and fermionic spinons have
different temperature dependence, which, in principle, may be used to detect the statistics
of quasiparticles in certain situations.

Magnetically ordered states It is also interesting to consider the TNDD response in a
conventional magnetically ordered state respecting either Z, or 7 combined with a lattice-
translation symmetry (as in the case of an antiferromagnet), or both. One may similarly
consider the two-magnon contribution to the TNDD response, which probes the joint den-
sity of states of magnons. Our estimate Eq(@) will be modified as follows (see Appendix
for details). If the magnetic order is non-collinear, which breaks spin-rotational sym-
metry completely, the (D/J)? factor in Eq(@) is replaced by ~ 1. If the magnetic order

is collinear, which only breaks the spin-rotation symmetry down to U(1), the (D/J)? factor
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is replaced by D/J.

Conclusion In this chapter we propose the temperature-gradient-induced nonrecipro-
cal directional dichroism (TNDD) spectroscopy experiment in Mott insulators. Comparing
with traditional probes for magnetic excitations, TNND spectroscopy has unique advan-
tages: it directly probes mobile magnetic excitations and decouples from local impurity

A/kBT ip the tempera-

modes and phonon modes. For instance, an activation behavior oc e~
ture dependence of TNDD sharply measures the mobility gap A of the magnetic excitations,
a quantity challenging to measure using traditional probes but of fundamental importance
in the field of topologically ordered QSL.

The present work can be viewed as one example in a large category of nonlinear thermo-
electromagnetic responses. There are other interesting effects. For instance, a temperature

gradient also induces a circular dichroism in a system respecting both 7 and Z. We leave

these other responses as topics of future studies.

4.4 Appendices

4.4.1 Localized modes

Let us consider the situation of a Mott insulator in the presence of impurities/disorders,
which could introduce localized magnetic modes. Below we consider the contribution to
TNDD response from these localized modes.

Firstly, we comment on the meaning of “localized modes” discussed here. In an isolated
localized phase of matter, like a many-body localized phase(see Ref. [60,61] for reviews),

thermalization breaks down and the meaning of a temperature-gradient is unclear. We are
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NOT discussing the TNDD response in this situation.

In realistic quantum materials, the magnetic localized modes are coupled with a thermal
bath (e.g., phonon thermal bath) and a local temperature is well defined. To facilitate the
discussion, one may consider a system with a U(1) spin rotation symmetry in order to
sharply define a magnetic localized mode. In addition, we assume a finite mobility gap A
of the U(1) charge, and magnetic localized excitations may exist below A. Assuming [,,
being the mean-free path for mobile magnetic excitations, practically the localized magnetic
modes may fall into two regimes according to the localization length &:

(1): &€ < l,,. This is the more common situation realized in practical materials. Here
the localized magnetic modes may be extrinsic magnetic impurity atoms, or may form at
crystalline defects. They may also form at the centers of the vortices of valence bond solid
(VBS) order [62]. Typically the localization length £ of these magnetic modes is of the
same order as the lattice spacing a, while [,,, > a in a reasonably clean Mott insulator.

It is difficult to model a magnetic localized mode with & ~ a since lattice scale details
cannot be neglected. Instead, we consider the following situation ¢ < ¢ < [, so that a
low energy effective description is still valid. As a crude model for such magnetic localized
modes, one may consider a quantum dot of size ¢ in the presence of a temperature gradient;
for instance, the left (right) edge of the quantum dot is in contact with a heat reservior
at temperature T, (Tg). The modes in the quantum dot are travelling ballistically since
¢ < l,. Consequently the right-mover (left-mover) in the quantum dot is at temperature
Ty, (Tg). Such a nonequilibrium ensemble is quantitatively comparable with a large (energy-
)diffusive system in the presence of the same temperature gradient but with [, ~ & (for

example, see Eq()) Namely, in the present situation, & replaces the role of [, in our
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estimate Eq(@) we conclude that the dimensionless ration TN DD(w) contributed by
such localized modes is reduced by a factor of ~ &/I,,.

(2): € > l,,,. In this situation, the system hosts would-be mobile modes. These modes
scatter with disorder multiple times before eventually become localized. For instance,
Anderson weak-localization in two spatial dimensions happens with & parametrically larger
than [,,. It is instructive to consider a system size L satisfying & > L > [,,. For such a
system size the localization physics is not present yet. Because photon absorption is still a
local process, we expect that the contribution to the TNDD response from such localized
modes to be comparable with that from mobile modes.

In summary, the contribution to TNDD response from localized modes in the regime
¢ < I, can be safely neglected. In the opposite regime & > [,,,, the localized modes still
contribute to TNDD significantly. Nevertheless, the localized modes in the latter regime

are would-be extended (mobile) states in the absence of disorder.

4.4.2 Spin-orbit coupling and the estimate of TNDD response

From the discussion in the main text and Eq.(@), up to matrix element effects, the TNDD
spectroscopy directly probes the joint density of states JDOS(hw) of the mobile magnetic

excitations:
po(w) = ap(w) — a_p(w) < hw - JDOS(hw) - VT - 1 (4.12)

In order to estimate the optical absorption coeffient «; in a Mott insulator, one need to
estimate the strength of electric polarization and the magnetic dipole moment. It turns out
that they are comparable in a typical transition metal Mott insulator, which is drastically

different from the case of a band metal/insulator. In the latter case the electric polarization

133



carried by a typical particle-hole excitation is ~ e - a where e is the electron charge and
a is the lattice constant, while the magnetic moment carried by the same excitation is of
the order of a Bohr magneton ug. For a given electromagnetic wave, the magnetic dipole
energy scale pup - B is smaller than the electric dipole energy scale e - a - E by roughly a
factor of the fine-structure constant ~ 1/137, which is why the magnetic dipole processes
are often neglected in a band metal/insulator.

In a Mott insulator, however, the electric polarization carried by a magnetic excitation
is heavily reduced. In the framework of the Hubbard model, this electric polarization can
be estimated as ¢ - e-a where the dimensionless factor ¢ ~ 8(¢/U)? [33]. On the other hand,
the magnetic dipole moment carried by the same excitation is still ~ pg. As a result, they
would have comparable sizes for typical 3d transition metal Mott insulators with ¢/U ~ 10.

The absorption coefficient due to the electric dipole processes can be estimated based

on the Fermi’s golden rule:

2 2w
R ~ - PliV? . - JD
aaw) ~ g [P - hw - JDOS ()
2
~ 30 20 b - TDOS (). (4.13)

r

where n, is the relative refractive index of the material, ¢ is the speed of light, a is the
fine structure constant ~ 1/137, and JDOS(fw) is the joint density of states for the
relevant excitations at photon energy hw. We assume that the temperature is comparable
with the magnetic excitation energy scale, and we have used the typical matrix element
(f|P]i) ~ (- e-a where a is the lattice constant.

Notice that JDOS(hw) may be estimated as ~ a%% where a is the lattice constant

and W is the band width of the excitations. For a typical photon energy ~ W, one finds
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that hw - JDOS(hw) ~ 1/a®, independent of the nature of the excitations. For instance,
the interband absorption coefficient o/(w) in a band metal/insulator is typically ~ 10"m~1.
The dimensionless coupling constant ¢ reduces by a factor of 10? in transition metal Mott
insultors, which gives the absorption coefficient ~ 10>m~!, broadly consistent with the
tera-Hertz penetration depth (~ 1mm) for these quantum magnets [63,64].

The TNDD response can be similarly estimated. We first consider the case of a quantum

paramagnet.
5 24, 21 2 - Re[(f|Pli)(i| M
s0(w) ~ 55 (= ) 2 Rel(FIP1) (1]
- hw - JDOS (hw) (4.14)

We again assume that the temperature is comparable with the magnetic excitation energy
scale, and consequently the effect of temperature gradient in (p; — py) can be estimated by

. . VT |-l
the dimensionless factor %

where [,,, is the mean-free path of the magnetic excitations.
If the spin-orbit coupling (SOC) is strong one may estimate (f|P|i) ~ Cea while (i|M|f) ~

gsis (gs is the g-factor the spin magnetic moment.). Putting together we have:

Tl -1
Saa(w) ~ 1672 p,.gsaCaga - N# - hw - JDOS (hw),
if strong SOC. (4.15)

Here ag is the Bohr radius.

From Eq.(,), and ag ~ a, we can estimate that if the spin-orbit coupling is

strong and the temperature is comparable with the magnetic excitation energy scale, the

dimensionles ratio TN DD in Eq(@)

C T T

TNDD(w) ~ , if strong SOC. (4.16)
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Here we used the fact that for a typical transition metal Mott insulator ¢ ~ 1072 ~ a.

In the absence of the SOC, (i|M|f) = 0 because M = g,upS is proportional to the
conserved total spin S (We only consider the spin magnetic moment. The orbital magnetic
moment in Mott insulators is much smaller and neglected.). In the limit of a weak SOC:
D/J < 1, the TNDD response can be estimated as follows. The only effect of the weak

SOC is in the matrix element product: (f|P|i)(i|M|f).

For the magnetic dipole matrix element: (i|M|f) o EfiEi (i|[S, H]|f) o< (f|D - [S, S; x
@]]z) Notice that the operator of the commutator is a spin triplet. There are two possi-
bilities: (1): the states |f) and |¢) differ by spin-1 in the limit D/J — 0. For instance, |f)
may be a spin triplet while |7) is a spin singlet in that limit; (2): the states |f) and |¢) have
the same spin in the limit D/J — 0.

In the situation-(2), the magnetic dipole matrix element (i|M|f) o (D/J)?, because
the wavefunction corrections of |f) and |i) due to nonzero D/J need to be considered. In
this situation, the electric dipole matrix element (f|Pli) o< (D/J)? since P is a spin singlet
operator in the limit of D/J — 0. Therefore in situation-(2) we have (f|P|i){i|M|f)
(D/J)%

In the situation-(1), a similar consideration leads to: (i|M|f) o (D/J) and (f|P]i) o
(D/J). So we still have (f|P|i){i|M|f) o< (D/J)2.

In summary, we have the following estimate in a quantum paramagnet assuming the

temperature is comparable with the magnetic excitation energy scale:

2
TNDD(w) ~ (?) %’VT%

D\’ |VT| 1, |
~ (7) o if weak SOC. (4.17)
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Next we estimate the TNDD response in magnetic ordered states due to magnon excita-
tions. Even in the absence of microscopic SOC, the (D/J)? factor in the estimate Eq()
will be replaced by ~ 1 in a non-collinear magnetic ordered state, because the spin-rotation
symmetry is completely broken.

In a collinear magnetic ordered state, the spin rotation symmetry is broken down to U (1)
in the absence of SOC. The electric polarization operator P is expected to carry zero charge
under this U(1) rotation. To have a nonzero matrix element product (f|P|i)(i|M|f), one
must consider the linear-order effect of the SOC. Therefore in this case the (D/J)? factor

in the estimate Eq() will be replaced by ~ D/J.

4.4.3 Details of the mean-field calculation for TNDD

In this section we provide a detailed account of the Schwinger boson mean-field theory.

The spin is represented by bosonic spinons

.1
S; = §bjaaaﬁbw, (4.18)

while boson number per site is subject to the constraint:

bl bie = k. (4.19)

Although k = 25 for spin-S, it will be convenient to consider x to be a continuous param-

eter, taking on any non-negative value [53,65].

Considering the operator identities §Z§J = —%flijflij—i—% and 5’1 X S_’; = i[éjjﬁij+h.c.],
where
Aij = _Aji = biaeaﬁbjﬁa C_:ij = C_;ji = —ibm(eé’)aﬁbjﬁ. (420)
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standard mean-field decoupling of Eq(@) leads to the mean-field Hamiltonian:

J "
Hyr = D) Z(AijAZJ + AU |AZJ| )

<ij>

+ Z Di ar Ay + AyClL — G Ay + hee)

<ij>

- NZ bl bio — K). (4.21)

Here the chemical potential p is introduced to enforce constraint Eq() on the mean-field
level. Hy;r may be viewed as an ansatz to construct variational spin-liquid wavefunctions
with parameters A;;, éij, I

We will consider the case of a small D/J and keep contributions up to the linear
order of D/J. Under this approximation we will set the parameter (not the operator CZ)
Ci; o< D/.J to zero in Eq() below, which yields Eq(@) in the main text. We also
focus on Sachdev’s Q)1 = Q)2 state, where A;; happens to have the following spatial pattern:
A;j = d;;A, and A is chosen to be real.

After diagonalizing Hj,r in the momentum space, there are three Kramers degenerate

Bogoliubov boson bands (see Fig.@):

u=1,2,3

Hur= 3. Bl (422
k=11

Notice that spin is not a good quantum number and 7, | are simply labelling the two-fold
Kramers degeneracy for each band.

In the presence of a temperature gradient VT'(7), the occupation of Bogoliubov spinons
9ui = (n,z) (where n, = 7;]27”’,—5) deviates from the thermal equilibrium value 92,;‘5' For

simplicity, we consider the steady state Boltzmann equation within a single relaxation-time
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approximation:

95 (1) = g0 (1)
Ui Vig,z(7) = — . et (4.23)

T

where ggﬁ(F) = T Uk = = 3V;E, ;. To the leading order, these give dg, HOE

u,

o . 00,2 70,5 VT
00,1(7) = b0 7) = 89! ) = —EF, i (1.21)
Since the velocity 17%,3 = —27”7_,3, we have:

To be concrete, we focus on the case £ = & and B = %, with the light propagating
direction n = —¢ and the temperature gradient V7' o g(the 7y response in Eq(@)) In
order to compute the matrix elements in Eq.(@), one writes P, and M, in terms of the

Bogoliubov bosons, and selects the relevant terms:

v,0,w,a’
Py Y Xpew eyttt bl
q

/
U,0,W, »t76

1 v,0,W,Q at o
T3 2L Vet Loy + hee,
a.p
= _gsy’bzbza 2,862/3
- > Z;i’“’wa%‘fg ot 4 hee. (4.26)

The objects X o Y;’;’w’a/’t’ﬂ , Z;i’o"“”a/ are determined by the Bogoliubov transforma-

tion from Eq(@) to Eq()

Plugging in Eq.(@), one finds

dna(w) = Re[I(w)], (4.27)



where

v,a,w,a’
w

t,B
v,0,w,o 1 v,a,w,a \t, 3
@ =53 X 4 yORL e
2

—

q

*

2 (U Gog + Guq)  0(Bug + B g — hw). (4.28)

Here the bosonic factor (1 + gu g + gw,—gz) is well anticipated from the golden rule. The
factor g, 5 appears because of the quartic interactions in P in Eq(@)

It is a good moment to study the symmetry property of /(w). In thermal equilibrium,
it is straightforward to see that the inversion symmetry alone dictates [(w) = 0, while
time-reversal symmetry alone allows a nonzero imaginary part of I(w) (giving rise to the
well-known natural circular dichroism in noncentrosymmetric systems).

Next we consider the effect of nonequilibrium occupation dg,, 7 in Eq() Expanding

Eq() gives three contributions, I = I 4 [(B) 4 [(©);

™ (w) xX*-Z- <5gv,ti'+ 5910,—(7)7
1P w) o< Y* - Z - g0 5 (6Gug+ 0gu,—q),

IO o Y™ Z g1 (1+ g0 2+ 90 _2). (4.29)

While the inversion symmetry allows all these contributions, the time-reversal symmetry
only allows their real parts: the directional dichroism. In addition, in the special situation
that v = w, namely if the created two spinons are in the same band, obviously (4 (w) =
IB)(w) = 0 due to Eq.(1.25) and only (@) (w) is nonzero.

Focusing on the low temperature/energy TNDD spectroscopy, one may consider the

contribution v = w =t = 1 from the lowest energy band only (see Fig.@ for a plot of the

140



= 4 ~__
a ~—
3 T D.=D,=01J
) — T
3 -2 ~—_
ST T— —
= "
g ~++__ D.,=D,=0.05]
= O T
RO T e ——
s — —
= \H\\Dz =D, =0.025J
< T
_5 \I\\.\; i

I I I
0.0 0.5 1.0 1.5 2.0

Figure 4.4: The fit log(Wgz;/[p, - (Cea*gsup)]) = log(wg) — Ei(j— A?/A (ie., Eq()
with @ = wi = woea’gspupy) with only one fitting parameter wg. In each case 696 data
points with both , /E? . — A2/Aand ,/E} - — A%/A between 0.5 and 1.7 are plotted. Since
many data points are related by the lattice symmetry and/or share the same momentum
¢ (but different p), the visibly different data points are much fewer. We set A = 1,
and consider three cases of different SOC strength: case-(a): D, = D, = 0.025J (and
u = —1.752J); case-(b): D, = D, = 0.05J (and u = —1.765J); case-(c) D, = D, = 0.1.J
(and p = —1.792J). Notice that for each case the chemical potential p is tuned so that
the spinon gap is fixed to be A = 0.16J. As shown in this figure, we numerically find that
up = 0.0378 in case-(a), wo = 0.151 = 0.0378-3.99 in case-(b), and wg = 0.603 = 0.151-3.99

in case-(c). The scaling wg o< (D/J)?* is confirmed.
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band structure), and compute I(w) = I'“)(w) analytically. In this case:

w
IVw) = =35> Wap- 5g15(1 + 240 )5 (2B 4 — hw),

=12
q,p
where Wy 5 = Z ( (711’;1’1’6“/’1’5)* : qu’a’l’a/. (4.30)
a7a/7ﬁ
Wz is a real function satisfying Wz ; = —W_z_5 due to the inversion symmetry. Taylor

expanding near the I'-point, to the leading order one expects: Wy ; ~ w - p'+ ¢ - ¢. In fact,

interestingly, we numerically found that W55 can be well described as
Wi = (@ - p) e~ VFra 84 (4.31)

in the momentum regime where the relativistic dispersion Eq() holds (see Fig.@ for
details). We do not attempt to analytically justify Eq() here since it deviates from the

main purpose of this chapter. Eq.(,) then lead to:

W N
I'Ow) = 75 > (7o)

p

D eV BLam S8 (1 4 260 )6(2B1 5 — hw). (4.32)
q

Crystal symmetry and dimensional analysis show that @ = w§ = woCea*g,pupi, consistent
with the 7, response in Eq(@) The dimensionless number w is expect to be ~ (D/J)?

and can be determined numerically (see Fig.@ for details).

With Eq.(|4.24|,|4.27|,|4.1d,|4.3j) the low temperature/energy TNDD response can be com-

puted within our mean-field treatment:

dga(w) =C - [1+2¢°(hw/2)] - (kT)?

- [3G3(2) — 3Inz - Ga(z) + (Inz)*G4(2)]

e VOE=AA L TDOS () - w (4.33)
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This is just the Eq() in the main text.
We can apply the estimate in the previous section to the present example as follows.

We firstly estimate a; due to the electric dipole processes following the golden rule:

2 2m

aq(w) ~ W(Cea)Z[l +2¢°(hw/2)|hw - JDOS (hw)

N.€9C

— @agzcﬁp + 2¢°(hw/2)]hw - JDOS (hw), (4.34)

where n, is material’s relative refractive index. For the situation with kg1 ~ J ~ % and
hw ~ 2A, Eq.(,) give the dimensionless ratio TN DD (w) in Eq(@)

aayg V,T-7-v
S
Ca ° T ’

TNDD(w) ~ (4.35)

confirming the estimate Eq() since wg o< (D/J)%.

Finally, we would like to remark on the validity of the mean-field treatment. Although
we performed the calculation within the mean-field approach, the main component of the
calculation (Eq.(,) in App.) is justified as long as the quasiparticle description
is valid. These microscopic contributions to TNDD can be written down phenomenologi-
cally as a low quasiparticle-density expansion, up to the second order o g;- g7. Some other
components of the calculation (e.g., the matrix element behavior Eq() ) may receive
corrections moving beyond the mean-field approximation, but these would not change the

result of TNDD response qualitatively.

143



Bibliography

[1] P. Anderson, Materials Research Bulletin 8, 153 (1973).

[2] P. A. Lee, Journal of Physics: Conference Series 529, 012001 (2014).

[3] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017).

[4] L. Savary and L. Balents, Reports on Progress in Physics 80, 016502 (2016).

[5] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil,

Science 367 (2020), 10.1126/science.aay0668,
[6] X.-G. Wen, Phys. Rev. B 65, 165113 (2002).
[7] X.-G. Wen, Rev. Mod. Phys. 89, 041004 (2017).

[8] M. P. Shores, E. A. Nytko, B. M. Bartlett, and D. G. Nocera, Journal of the American

Chemical Society 127, 13462 (2005),
[9] M. R. Norman, Rev. Mod. Phys. 88, 041002 (2016).

[10] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K. Sugii, N. Kurita, H.

Tanaka, J. Nasu, Y. Motome, T. Shibauchi, and Y. Matsuda, Nature 559, 227 (2018).

[11] M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69, 064404 (2004).
144



[12]

[13]

[15]

[17]

[18]

[19]

[20]

[21]

M. J. P. Gingras and P. A. McClarty, Reports on Progress in Physics 77, 056501

(2014).

Or time-reversal symmetry combined with a spatial translation such as in an antifer-

romagnet

R. Fuchs, The Philosophical Magazine: A Journal of Theoretical Experimental and

Applied Physics 11, 647 (1965), https://doi.org/10.1080/14786436508224252.

D. Szaller, S. Bord “acs, V. Kocsis, T. R70 om, U. Nagel, and I. K ezsm “arki, Phys.

Rev. B 89, 184419 (2014).

In general NDD receives contributions from higher order multipole processes. [66] How-
ever in the context of Mott insulators the electric-dipole-magnetic-dipole contribution

Eq.[l! dominates.

J. Goulon, A. Rogalev, C. Goulon-Ginet, G. Benayoun, L. Paolasini, C. Brouder, C.

Malgrange, and P. A. Metcalf, Phys. Rev. Lett. 85, 4385 (2000).

M. Kubota, T. Arima, Y. Kaneko, J. P. He, X. Z. Yu, and Y. Tokura, Phys. Rev. Lett.

92, 137401 (2004).
T. Arima, Journal of Physics: Condensed Matter 20, 434211 (2008).

[. K ezsm “arki, N. Kida, H. Murakawa, S. Bord “acs, Y. Onose, and Y. Tokura, Phys.

Rev. Lett. 106, 057403 (2011).

Y. Takahashi, R. Shimano, Y. Kaneko, H. Murakawa, and Y. Tokura, Nature Physics

8, 121 (2012).

145



[22] Y. Okamura, F. Kagawa, M. Mochizuki, M. Kubota, S. Seki, S. Ishiwata, M. Kawasaki,

Y. Onose, and Y. Tokura, Nature Communications 4, 2391 (2013).

[23] 1. Kzsmrki, D. Szaller, S. Bordcs, V. Kocsis, Y. Tokunaga, Y. Taguchi, H. Murakawa,
Y. Tokura, H. Engelkamp, T. Rm, and U. Nagel, Nature Communications 5, 3203

(2014).

[24] S. Toyoda, N. Abe, S. Kimura, Y. H. Matsuda, T. Nomura, A. Ikeda, S. Takeyama,

and T. Arima, Phys. Rev. Lett. 115, 267207 (2015).

[25] Y. Tokura and N. Nagaosa, Nature Communications 9, 3740 (2018).

[26] P. Jung and A. Rosch, Phys. Rev. B 75, 245104 (2007).

[27] 1. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).

[28] M. Hermele, T. Senthil, M. P. A. Fisher, P. A. Lee, N. Nagaosa, and X.-G. Wen, Phys.

Rev. B 70, 214437 (2004).

[29] Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett. 98, 117205 (2007).

[30] O. I. Motrunich, Phys. Rev. B 72, 045105 (2005).

[31] S.-S. Lee and P. A. Lee, Phys. Rev. Lett. 95, 036403 (2005).

[32] Similar to a thermal transport experiment, if the temperature of the system is far
below the magnetic excitation energy, a temperature gradient would not efficiently

affect the magnetic excitation distributions and would not lead to a sizable TNDD.

[33] L. N. Bulaevskii, C. D. Batista, M. V. Mostovoy, and D. I. Khomskii, Phys. Rev. B

78, 024402 (2008).
146



[34]

[35]

[36]

[37]

[39]

[40]

[42]

[43]

[44]

We only consider the contribution from the spin magnetic moment in this chapter.
The orbital magnetic moment in a Mott insulator is a spin-singlet but is much smaller

than the spin magnetic moment, by a factor of (¢/U)? in the (t/U)-expansion. [33,67]

Y. Tokiwa, T. Yamashita, D. Terazawa, K. Kimura, Y. Kasahara, T. Onishi, Y. Kato,
M. Halim, P. Gegenwart, T. Shibauchi, S. Nakatsuji, E.-G. Moon, and Y. Matsuda,

Journal of the Physical Society of Japan 87, 064702 (2018).

G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009).

J. c. v. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett. 105, 027204 (2010).

H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler, Nature Reviews

Physics 1, 264 (2019).

Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412 (2010).

J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu, Y. Zhao, D. Parshall,

and Y.-J. Kim, Phys. Rev. B 91, 144420 (2015).

R. D. Johnson, S. C. Williams, A. A. Haghighirad, J. Singleton, V. Zapf, P. Manuel,
I[. I. Mazin, Y. Li, H. O. Jeschke, R. Valent "1, and R. Coldea, Phys. Rev. B 92, 235119

(2015).

H. B. Cao, A. Banerjee, J.-Q. Yan, C. A. Bridges, M. D. Lumsden, D. G. Mandrus, D.

A. Tennant, B. C. Chakoumakos, and S. E. Nagler, Phys. Rev. B 93, 134423 (2016).

M. Elhajal, B. Canals, and C. Lacroix, Phys. Rev. B 66, 014422 (2002).

A. C. Potter, T. Senthil, and P. A. Lee, Phys. Rev. B 87, 245106 (2013).
147



[45] Generally the polarization operator contains spin-triplet terms similar to DM interac-
tions. Here for simplicity we only consider spin-singlet terms which dominate in the

weak spin-orbit coupling limit.

[46] A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev. B 37, 9753 (1988).

[47] ¢ also receives contribution from the magneto-elastic coupling. For a typical transi-
tion metal Mott insulator, this contribution to polarization is similar in size as the

contribution from the ¢/U-expansion [33,44].

[48] S. Yan, D. A. Huse, and S. R. White, Science 332, 1173 (2011).

[49] S. Depenbrock, 1. P. McCulloch, and U. Schollw”ock, Phys. Rev. Lett. 109, 067201

(2012).

[50] Y. Igbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B 87, 060405 (2013).

[51] H. J. Liao, Z. Y. Xie, J. Chen, Z. Y. Liu, H. D. Xie, R. Z. Huang, B. Normand, and

T. Xiang, Phys. Rev. Lett. 118, 137202 (2017).

[52] Y.-C. He, M. P. Zaletel, M. Oshikawa, and F. Pollmann, Phys. Rev. X 7, 031020

(2017).

[53] S. Sachdev, Phys. Rev. B 45, 12377 (1992).

[54] D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988).

[55] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).

[56] S. Sachdev and N. Read, International Journal of Modern Physics B 05, 219 (1991).

148



[57] Notice that a single spinon excitation is not gauge invariant and does not contribute

to physical responses

[58] Y.-M. Lu, Y. Ran, and P. A. Lee, Phys. Rev. B 83, 224413 (2011).

[59] Y.-M. Lu, G. Y. Cho, and A. Vishwanath, Phys. Rev. B 96, 205150 (2017).

[60] R. Nandkishore and D. A. Huse, Annual Review of Condensed Matter Physics 6, 15

(2015).

[61] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91, 021001

(2019).

[62] M. Levin and T. Senthil, Phys. Rev. B 70, 220403 (2004).

[63] D. V. Pilon, C. H. Lui, T. H. Han, D. Shrekenhamer, A. J. Frenzel, W. J. Padilla, Y.

S. Lee, and N. Gedik, Phys. Rev. Lett. 111, 127401 (2013).

[64] A. Little, L. Wu, P. Lampen-Kelley, A. Banerjee, S. Patankar, D. Rees, C. A. Bridges,
J.-Q. Yan, D. Mandrus, S. E. Nagler, and J. Orenstein, Phys. Rev. Lett. 119, 227201

(2017).

[65] F. Wang and A. Vishwanath, Phys. Rev. B 74, 174423 (2006).

[66] Y. Gao and D. Xiao, Phys. Rev. Lett. 122, 227402 (2019).

[67] O. I. Motrunich, Phys. Rev. B 73, 155115 (2006).

149



	General prologue
	Overview of condensed matter physics
	The advent of topological era
	Structure of the thesis

	Dyonic Lieb-Schultz-Mattis theorem
	Overview
	A simple model realizing SPT phase
	Main Results
	Examples

	Decorated Quantum Dimer Models for SPT phases
	G=SO(3)Z2Ising, a spin-1/2 per unit cell
	G=Z2TZ2Ising

	Proof of Theorems
	Entanglement Pumping argument
	Symmetry-enforced constraints on SPT cocycles
	Generic constructions of Symmetry-enforced SPT wavefunctions

	Discussion
	Appendices
	Perturbation study of the decorated Balents-Fisher-Girvin model
	Theorem-I as a special case of Theorem-II
	A brief introduction to symmetric tensor network representation of SPT phases
	The projective representation carried by a g-symmetry-defect
	Consequence of the magnetic translation symmetry in tensor-network formulation
	Generic constructions of symmetry-enforced SPT tensor-network wavefunctions


	Divergent bulk photovoltaic effect in Weyl semimetals
	Introduction
	Main results
	Appendices
	Shift current in type-I Weyl semi-metal
	Analytical formula for the shift current in Weyl semi-metal with tilting and doping in low-frequency limit
	Analytical formula for the second-harmonic-generation in Weyl semi-metal with tilting and doping in low-frequency limit


	Nonreciprocal directional dichroism induced by a temperature gradient as a probe for mobile spin dynamics in quantum magnets
	Introduction
	The effect of TNDD
	Discussion and conclusion
	Appendices
	Localized modes
	Spin-orbit coupling and the estimate of TNDD response
	Details of the mean-field calculation for TNDD



