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ABSTRACT 

 

Kristina M. Wright: Revising the role of the 
ventrolateral periaqueductal gray in the fear circuit 

(Under the direction of Michael A. McDannald, PhD) 

 
The ability to accurately evaluate and respond to threats is vital to survival. Disruptions in 

neural circuits of fear give rise to maladaptive threat responding, and have clinical 

implications in fear and anxiety disorders. To better inform therapeutic interventions, it is 

imperative that roles for regions classically associated with fear continue to be refined, 

and that novel nodes are incorporated into what is most certainly a larger fear circuit. In 

the canonical view, threat estimates are generated at the level of the amygdala and sent 

to the ventrolateral periaqueductal gray (vlPAG), which organizes an appropriate 

behavioral response, most notably freezing. Despite a multitude of studies successfully 

linking the vlPAG and Pavlovian fear behavior, evidence of a direct neural correlate for 

fear expression in the vlPAG is lacking. By contrast, a role for the caudal substantia nigra 

(cSN) in fear, stands apart from its canonical associations with movement and reward 

processes. Although there is new interest in examining a role for the nigra in fear 

modulation, this is essentially an uncharted area of discovery. The goals of this 

dissertation are three-fold. First, to propose a role for vlPAG activity in threat estimation, 

a function previously restricted to the upstream amygdala. Second, to scrutinize vlPAG 

neural activity using a novel multi-cue Pavlovian procedure and identify the long-

anticipated, direct neural correlate for fear expression. Third, to present causal evidence 

supporting the cSN as a potential node in a circuit that most certainly extends beyond 

regions canonically associated with fear.  
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ESSENTIAL ABBREVIATIONS 

 
 
Adaptive Fear is the ability of a rat to appropriately scale fear behavior to a given threat. 
In the multi-cue Pavlovian fear discrimination procedures discussed in Chapters 2, 3 and 
4, this would reflect highest fear to the danger cue, moderate fear to the uncertainty cue 
and least fear to the safety cue. Any aberration of this (danger > uncertainty > safety) 
pattern would reflect maladaptive or inaccurate fear. Maladaptive fear is clinically 
implicated in fear and anxiety disorders. 
 
CeA refers to the central nucleus of the amygdala: lateral and medial subdivisions. Both 
components send direct GABAergic projections to the vlPAG (Tovote et al., 2016). 
Despite previous evidence implicating the lateral component in the acquisition of 
conditioned fear and the medial component being required for the expression of 
conditioned fear (Ciocchi et al., 2010). 
 
cSN refers to the caudal substantia nigra, between Bregma levels -5.54 and -6.72 mm 
(Paxinos & Watson, 2007). This is the area of interest optogenetically inhibited in Chapter 
4, including both the pars compacta and pars reticulata. 
 
eNpHR refers to the active viral construct AAV-hSyn-eNpHR3.0-EYFP, bilaterally infused 
into caudal substantia nigra neurons in Chapter 4. Laser illumination of neurons 
transfected with this virus will result in silencing of endogenous cSN activity. 
 
PAG refers to all subdivisions of the periaqueductal gray: dorsal PAG, dorsolateral PAG, 
lateral PAG, and ventrolateral PAG. Note: recent evidence suggests the dorsal raphe 
should be included in the periaqueductal complex as an additional component of the most 
caudal control centers of not only defensive, but also appetitive responding (Silva & 
McNaughton, 2019) 
 
SN refers to the entire rostrocaudal and mediolateral extent of the substantia nigra pars 
compacta and reticulata. 
 
vlPAG except in introductions where literature references of a role for the vlPAG in 
defensive behavior are provided, refers to the caudal portion of the vlPAG between 
Bregma levels -7.56 and -8.04mm; the area from which neural activity was recorded in 
Chapters 2 and 3. 
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YFP refers to the inactive (control) viral construct AAV-hSyn-EYFP, bilaterally infused into 
caudal substantia nigra neurons in Chapter 4. Laser illumination of neurons transfected 
with this virus will result in no silencing of endogenous cSN activity. 
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GLOSSARY OF KEY TERMS 

 
 
Differential Firing refers to significant differences in excitatory or inhibitory cued firing, 
between pairs (danger vs. uncertainty or uncertainty vs. safety). Neural activity may be 
significantly higher to a danger cue than a safety cue. 
 
Fear Expression is the behavioral manifestation of fear. In Chapters 2, 3 and 4, this 
behavior is measured using conditioned suppression of nose poking, highly correlated 
with freezing behavior. 
 
Fear Output is a regressor constructed from nose poke suppression ratio data, used to 
evaluate the information contained in awake, behaving neural recordings of the vlPAG 
during multi-cue Pavlovian discrimination in Chapters 2 and 3. 
 
Threat Probability is a regressor constructed from the actual probability of an aversive 
shock during multi-cue Pavlovian discrimination in Chapters 2 and 3. This regressor is 
used to evaluate the information contained in awake, behaving neural recordings of the 
vlPAG, and determine whether vlPAG activity is better captured by threat probability or 
fear output. 
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CHAPTER 1: Introduction to the Ventrolateral Periaqueductal Gray  

and Defensive Behavior 
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1.1 Adaptive Fear 

When confronted with potential harm, an estimate of threat probability must be made, and 

followed by an appropriate fear response. Fear acquisition and the ability to discriminate 

between levels of potential threat are critical to executing adaptive, threat-evoked 

defensive behaviors. Disruptions of neural circuits supporting these functions are 

maladaptive, and clinically implicated in fear and anxiety disorders (Glotzbach-Schoon et 

al., 2013; Johansen et al., 2011; Milad et al., 2008). In post-traumatic stress disorder 

(PTSD), the only major mental disorder with known etiology (Pitman et al., 2012), 

pathological fear is often comorbid with alcohol use disorder (Neupane et al., 2017). This 

combination intensifies societal impact and further disrupts neural circuits of fear. In 

support, evidence from our lab suggests that early life adversity and heavy alcohol 

drinking have the potential to hijack neural circuits supporting adaptive fear behavior 

(Wright et al., 2015; DiLeo et al., 2016). Current strongly recommended treatments for 

PTSD are limited to variations of cognitive behavioral therapy (Clinical Practice Guideline 

for the Treatment of Posttraumatic Stress Disorder (PTSD) in Adults, 2017). Fortunately, 

interest in examining the neural underpinnings of fear is immense and critical to improving 

therapeutic interventions for fear and anxiety disorders (Giustino & Maren, 2015; Silva & 

McNaughton, 2019). This dissertation aims to expand on previous neural investigations 

by refining our current understanding of a brain region canonically associated with fear, 

and proposing the incorporation of a novel node into what is most certainly a larger fear 

circuit.  
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1.2 Periaqueductal Gray  

The periaqueductal gray (PAG) is an expansive, evolutionarily conserved (Silva & 

McNaughton, 2019), midbrain, gray matter area composed of four longitudinal 

rostrocaudal neuronal columns that border the central aqueduct: dorsomedial, 

dorsolateral, lateral and ventrolateral. In rats, far rostral portions of the PAG begin at 

Bregma -4.20 mm (p1, periaqueductal gray) with initial columnar differentiation at Bregma 

-5.28 mm, in the same coronal plane as the parvocellular red nucleus (Paxinos & Watson, 

2007). Extreme caudal portions of this structure extend as far as Bregma -8.76 mm, in 

the same coronal plane as the caudal raphe nucleus (Paxinos & Watson, 2007).  

In humans, blood oxygenation level-dependent functional MRI responses of the PAG are 

implicated in a defense mode promoting immobility or freezing-like behavior (Hermans et 

al., 2013), and structural and biochemical abnormalities of the PAG have been observed 

in patients with panic disorder (Del-Ben & Graeff, 2009). In animals models, the PAG has 

long been implicated in defensive behavior (Fanselow, 1994; LeDoux et al., 1988), as 

well as autonomic regulation in response to threat (Bandler, Carrive, & Zhang, 1991; 

Carrive, 1993), and more recently, predictive fear learning (Cole & McNally, 2009; Walker 

et al., 2019). Microinjections of excitatory amino acids that depolarize cell bodies within 

the PAG elicit an array of defensive behaviors (Bandler et al., 1985), whereas electrical 

stimulation of discreet PAG subdivisions can specifically induce freezing (D. M. L. Vianna 

et al., 2001). However, more contemporary neuroscience approaches like optogenetic 

manipulations (Assareh et al., 2016, 2017; Tovote et al., 2016) have also been used to 

examine the PAG as the final common output of defensive behavior expression. 
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Routinely, this connection is investigated by measuring freezing induced by fear 

conditioning.  

1.3 Fear Conditioning 

In a standard fear conditioning procedure, a neutral auditory cue is paired with an aversive 

foot shock. Prior to conditioning, exposure to the foot shock results in freezing: expression 

of defensive behavior in response to a threat. Freezing is a measurable defensive 

behavior expressed by rodents in response to threat. Over the course of multiple cue-foot 

shock pairings, the previously neutral auditory cue becomes associated with the aversive 

outcome; fear conditioned animals will freeze to cue exposure in the absence of foot 

shock. Variations of procedures like the one just described are incredibly useful for 

examining how fear behavior is acquired and expressed. Combined with neuroscience 

techniques, fear conditioning is an ideal tool for investigating roles for particular brain 

regions and their subdivisions, in fear processes. 
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Figure 1.1 Diagram of caudal 
periaqueductal gray  
 
Bregma -7.68mm with caudal 

ventrolateral periaqueductal gray 

indicated in teal. Additional 

subdivisions of the PAG are 

indicated in white, with dotted 

black line boundaries. Adapted 

from Paxinos & Watson, 2007. 

 

1.4 Ventrolateral periaqueductal gray  

A role for the PAG in fear expression is primarily associated with activity in the caudal 

portion of the ventrolateral column depicted in Figure 1.1 (Carrive et al., 1997). In support, 

robust increases in c-fos, a marker for neuronal activity, were observed in the caudal 

ventrolateral periaqueductal gray (vlPAG) following post-conditioning re-exposure to 

conditioning chambers. In contrast, nearby lateral PAG c-fos expression was sparse and 

limited to its border with the vlPAG. Despite similar projections between the central 

amygdala (CeA) and both subdivisions of the PAG, the vlPAG is better suited to support 

behavioral expression of fear via this functional and anatomical connection (Beitz, 1982; 

Paredes et al., 2000). However, it is important to acknowledge the limitations of this 

particular design. Functional activity could be represented by immediate early genes other 

than c-fos. Additionally, controls were not in place to detect a potential inhibitory link 

(decreased c-fos) between vlPAG activity and fear expression. Nevertheless, a role for 

the vlPAG in freezing has been further corroborated by evidence of decreases in freezing 
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associated with vlPAG electrolytic lesions (Farook et al., 2004), transient increases in 

freezing associated with discrete vlPAG electrical stimulation (D. M. L. Vianna et al., 

2001), and freezing induced by intra-vlPAG optogenetic excitation (Assareh et al., 2016).  

 

 

Figure 1.2 Fear discrimination measured by nose poke rate 

(A) Mean + SEM nose poke during baseline (open bars) and cue (filled bars) plotted for 
each trial type, for all 88 recording sessions. Asterisks indicate a significant difference 
between baseline and cue (paired samples t-test, p < 0.05). Baseline nose poke rates did 
not differ between trial types and rats showed significant reductions in poking to danger 
and uncertainty, but not safety. (B) Relationship between suppression ratio and nose 
poke rate for each cue (3) and session (88) is shown. The two measures were significantly 
correlated, particularly for danger and uncertainty. Data derived from experiments 
detailed in Chapters 2 and 3.  
 

1.5 Conditioned suppression as a measure of fear 

Although most demonstrations of the link between vlPAG activity and fear expression 

depend on freezing as a measure of fear, further work using conditioned suppression has 
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provided additional support for the caudal vlPAG in this function (Arico et al., 2017). 

Conditioned suppression is an established measure of fear (Estes & Skinner, 1941; 

Rescorla, 1968; Wright et al., 2015; DiLeo et al., 2016; R. A. Walker et al., 2018), highly 

correlated with freezing behavior (Bouton & Bolles, 1980). In this preparation, rats are 

trained to nose poke or lever press for a food reward in a fear conditioning chamber. Nose 

poking is a consistent, rapid and measurable behavior motivated by mild food restriction. 

Baseline levels of nose poking are established prior to conditioning and rewarded on a 

schedule completely independent of any cues or shocks. As in fear conditioning, 

defensive behavior to cues is acquired over the course repeatedly pairing a cue with an 

aversive outcome. Critically, in response to threat (an auditory cue associated with 

shock), appetitive responding is suppressed while defensive behavior is engaged to 

address the threat (i.e., freezing, a motor program incompatible with nose poking). Once 

the threat resolves, rats rapidly resume appetitive responding. Thus, nose poke 

suppression is tightly and temporally linked to defensive behavior expression, providing 

a reliable indirect measure of fear expression. However, the utility of this design extends 

beyond this simple example; conditioned suppression is sensitive to different levels of 

uncertain or certain threat. 

Nose poke suppression can be graded (low, medium, or high) depending on the level of 

threat associated with an auditory cue (Figure 1.2 A). In this procedure, rats are 

conditioned to discriminate between three auditory cues: foot shock is always associated 

with the danger cue (probability = 1.00), never associated with the safety cue (p = 0.00) 

and unpredictably associated with the uncertainty cue on 37.5% of trials (p = 0.375). A 
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similar discriminative pattern can be achieved when the probability of shock associated 

with the uncertainty cue is 25% or p = 0.25 (Wright et al., 2015; DiLeo et al., 2016; Ray 

et al., 2020; Strickland et al., 2021). Following conditioning, significant reductions in nose 

poke rate to aversive danger and uncertainty cues are observed Figure 1.2 A, solid red 

and purple bars). By contrast, decreases in nose poking are not observed to the safety 

cue, which does not mount a defensive response that competes with appetitive 

responding. Nose poke suppression is typically reported in the form of a suppression 

ratio, where a value of 1.00 indicates complete suppression (high fear), a value of 0.00 

indicates no suppression (no fear), and intermediate levels of fear correspond to values 

in between these extremes. Suppression ratios are constructed from nose poke rates 

during each cue relative to baseline nose poking outside of cue presentation, and should 

reflect a pattern similar to Figure 1.2 A. In support, nose poke rates are positively 

correlated with suppression ratios [(baseline nose poke rate – cue nose poke rate) / 

(baseline nose poke rate + cue nose poke rate)], which standardize measures of 

suppression across animals (Figure 1.2 B).  

Unlike freezing, conditioned suppression can be used to measure fear expression on sub-

second timescales (DiLeo et al., 2016). Not confounded by freezing, conditioned 

suppression can remain intact even when freezing is disrupted (Amorapanth et al., 1999). 

Combined with in vivo electrophysiological recording, this multi-cue procedure allows for 

assessment of neural activity highly correlated with - but not dependent on - freezing 

behavior, and provides a framework for investigating whether neural activity in response 

to threat corresponds to fear expression (suppression ratio) or threat probability (p = 0.00, 

0.25, 0.375 or 1.00).  
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1.6 Direct electrophysiological support is lacking 

Electrophysiology is a temporally precise tool ideal for examining vlPAG activity in the 

context of fear expression. Yet, there is limited direct electrophysiological support for the 

canonical vlPAG and fear expression association (Bear et al., 2016; Carlson & Birkett, 

2017). Despite the abundance of evidence linking the vlPAG with fear expression, 

freezing only partially accounts for previously reported vlPAG activity (Carrive et al., 1997; 

Vianna et al., 2001; Farook et al., 2004; Assareh et al., 2016; Arico et al., 2017). In theory, 

a complete neural correlate for fear output could be excitatory or inhibitory, but should 

begin when a threat is encountered and continue until the threat is resolved. In the 

laboratory, relationships between vlPAG single-unit activity and freezing have been 

observed in only a minority of neurons (Tovote et al., 2016), weakly at danger cue onset 

(Watson et al., 2016), or mixed with activity that purely reflects a danger cue (Ozawa et 

al., 2017). Further, most of this work has been restricted to recording activity during fear 

extinction, severely limiting the amount of trials during which simultaneous observations 

of robust fear and associated neural activity can occur.  

Due to technical challenges associated with recording during foot shock, previous 

electrophysiology studies have relied heavily on recording PAG activity during extinction 

sessions, instead of directly monitoring activity during ongoing fear conditioning or 

discrimination (Tovote et al., 2016; Watson et al., 2016; Ozawa et al., 2017). Although 

this is valuable for examining aberrant extinction which may underlie excessive fear in 

PTSD (Scott L. Rauch et al., 2006), it fails to capture neural responses to active, ongoing 

threats. Further, disruptions in fear acquisition, conditioning or discrimination, could all 

result in similar excessive fear expression (Pitman, 1988). Although the threat estimates 
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critical to these processes are thought to be generated at the level of the amygdala 

(Fanselow & LeDoux, 1999; Duvarci & Pare, 2014), it is possible that this computational 

association is maintained further downstream in the vlPAG. In support, chemogenetic 

activation of the vlPAG has been associated with impaired fear acquisition (Arico et al., 

2017), and preliminary work from our lab demonstrates that rats with pre-conditioning 

vlPAG dopamine depletions fail to discriminate between danger, uncertainty and safety 

(Wright et al., 2019).  

1.7 Additional weakness in current literature 

Technical limitations aside, previous studies utilized procedures in which only a single 

cue predicted foot shock with certainty (Ozawa et al., 2017; Tovote et al., 2016; Watson 

et al., 2016), precluding the ability to observe neural activity reflecting a range of threat 

probabilities and the uncertainty common to realistic threat encounters. The ideal 

experiment to address previous limitations would capitalize on the temporal precision of 

in vivo single-unit recording and conditioned suppression, while evaluating vlPAG neural 

activity during a range of ongoing certain and uncertain threats (p = 0.00 < 0.375 < 1.00). 

Presumably, a design capable of examining relative, graded levels of within-subjects fear 

could capture whether vlPAG neurons signal amygdala-like threat estimates alongside 

fear expression, which might be able to explain some of the heterogeneity attributed to 

previous electrophysiology findings. But, how would a neural correlate for fear expression 

be distinguished from one for threat probability?  

In the conditioned suppression procedure briefly outlined in section 1.5, rats consistently 

demonstrate adaptive fear via robust discrimination; suppression to danger is high, 
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uncertainty is moderate, and safety is low. However, suppression non-linearly scales to 

shock probability; uncertainty produces more suppression than expected given its 

associated shock probability (Walker et al., 2018; Ray et al., 2018; DiLeo et al., 2016; 

Wright et al., 2015; Berg et al., 2014). The non-linear relationship between behavior and 

shock probability is critical to determining if single-unit activity within the vlPAG is better 

captured by fear output or threat probability. Paired with in vivo optogenetics, this type of 

multi-cue discrimination is also an ideal tool to investigate brain regions, not typically 

associated with fear, that may be necessary for fear expression.   

 

 

Figure 1.3 Midbrain circuit for defensive behavior 

(A) Bregma -2.76mm with lateral and medial central amygdala (CeA) subdivisions in 
purple (top left), and Bregma -7.68mm with caudal vlPAG indicated in teal (bottom right). 
Dotted black line boundaries border additional subdivisions of the vlPAG. Additional 
subdivisions of the CeA and PAG are indicated in white, and not the focus of this 



 

12 

dissertation. (B) Disinhibitory CeA-vlPAG pathway implicated in defensive behavior 
(Tovote et al., 2016). Diagrams adapted from Paxinos & Watson, 2007. 

 

1.8 A Canonical fear circuit 

Despite receiving limited direct sensory input, the PAG is a downstream target of many 

regions which integrate aspects of threat (Gorka et al., 2018) including the central nucleus 

of the amygdala (CeA) and the bed nucleus stria terminalis (Shi & Davis, 1999). The PAG 

also receives afferents from the medial prefrontal cortex, thalamus, hypothalamus, insular 

cortex, and subthalamic nucleus (Paredes et al., 2000), and projects to regions in the 

brainstem and spinal cord, which allow it to interact further with sensory and motor 

information (Keay & Bandler, 2004). As a major point of convergence, the PAG is 

anatomically well-positioned to coordinate defensive behavior by integrating threat-

relevant information from cortical and subcortical brain regions, with sensory information 

from lower spinal processes. 

In the canonical fear circuit, threat probability estimates (the stored associative strength 

of cue and foot shock) originate in amygdalar nuclei (Davis, 2006; Duvarci & Pare, 2014; 

Fanselow & LeDoux, 1999; Maren et al., 2013). Amygdalar threat estimates are then sent 

to the vlPAG, which organizes the behavioral components of fear output, most notably 

freezing (Figure 1.3 A) (Perusini & Fanselow, 2015; Tovote et al., 2015; Dejean et al., 

2015; Koutsikou et al., 2014; Walker et al., 1997). A current disinhibition model further 

posits that CeA output neurons inhibit local GABAergic neurons in the vlPAG, releasing 

inhibition of glutamatergic output neurons and initiating fear expression (Figure 1.3 B) 

(Oka et al., 2008; Tovote et al., 2016). However, this is only one part of what is most 

certainly a larger circuit for modulating fear behavior.  
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1.9 Substantia nigra  

The ventrolateral periaqueductal gray (vlPAG) has long been implicated in defensive 

behavior (Arico et al., 2017; Assareh et al., 2017; Bandler et al., 1985; Carrive et al., 1997; 

Fanselow, 1993; Kim et al., 1993; Liebman et al., 1970; D. M. L. Vianna et al., 2001). By 

contrast, a role for the substantia nigra (SN) in fear, stands apart from its canonical 

associations with movement and reward processes (Schultz, 1997; Groenewegen, 2003; 

Chinta & Andersen, 2005; Bouchet et al., 2018; Sonne et al., 2020). Recently, activation 

of nigrostriatal dopamine with designer receptors exclusively activated by designer drugs 

(DREADDs) was associated with improved extinction in fear-conditioned rats (Bouchet et 

al., 2018). However, activation of this region is insufficient to establish whether SN activity 

is necessary for fear suppression, and therefore extinction. Further, cell types other than 

dopamine may contribute to a role for the SN in fear, given the direct monosynaptic 

GABAergic projection from the SN to the vlPAG (Kirouac et al., 2004). In an effort to 

expand the canonical fear circuit, I set out to determine if the caudal substantia nigra 

(cSN) is necessary for fear suppression using optogenetics.  

Whereas activation of a brain region examines whether the region has the capacity to 

drive a particular behavior, inhibition experiments are required to determine if 

endogenous activity in that region is required for the behavior to occur. Although 

chemogenetic techniques like DREADDs are valuable for pursuing each of these ends, 

optogenetic manipulations are required for discrete temporal control over activation or 

inhibition. For inhibition, a recombinant adeno-associated virus with enhanced 

halorhodopsin (eNpHR) is infused into the area of interest. Under the human synapsin 

promoter, all neuron types in the area of interest are transduced with light-gated inward 

chloride pumps isolated from halobacteria, rendering them silenced in response to light 



 

14 

illumination. Using this approach, neural activity of the cSN can be silenced during active 

ongoing threats in a multi-cue discrimination procedure. An ideal design to determine not 

only whether cSN activity relevant is required for fear suppression, but also whether there 

is a meaningful place for the cSN in a larger fear circuit. 

1.10 Summary 

In order to refine and expand the canonical fear expression circuit, this dissertation will 

test whether vlPAG activity may be better captured by threat probability, and to determine 

if cSN activity is necessary for fear suppression. Both of these goals will require the multi-

cue Pavlovian discrimination procedure outlined Section 1.5, which measures fear using 

conditioned suppression. However, Chapters 2 and 3 of this dissertation will evaluate 

vlPAG neural activity during ongoing discrimination using awake, behaving single-unit 

recording, whereas Chapter 4 will combine multi-cue discrimination with awake, behaving 

optogenetic inhibition of the cSN.  
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CHAPTER 2: Do cue-excited vlPAG single-units signal  

threat probability or fear output? 

Portions of this chapter have been published in the following research article: 

Wright, K.M. & McDannald, M.A., (2019). Ventrolateral periaqueductal gray neurons 
prioritize threat probability over fear output. eLife, 8: e45013. Dataset available at 
http://crcns.org/data-sets/brainstem/pag-1/about-pag-1 
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2.1 Introduction 

A series of studies have uncovered a vlPAG population showing short-latency increases 

in firing to a certain danger cue. This characteristic would be expected of neurons 

organizing fear output. Yet, robust relationships between vlPAG single-unit activity and 

freezing have yet to be revealed. If not freezing, then what aspect of fear do vlPAG 

neurons signal? Here I challenge the canonical view of the vlPAG and its intimate link to 

fear expression, and test the hypothesis that vlPAG neurons instead signal threat 

probability.  

To accomplish this, I recorded vlPAG neural activity during ongoing, three-cue, Pavlovian 

discrimination with certain and uncertain shocks outlined in Chapter 1: danger (p = 1.00), 

uncertainty (p = 0.375) & safety (p = 0.00). I measured fear using conditioned suppression 

of rewarded nose poking during the entirety of each cue presentation. While suppression 

is strong to danger, intermediate to uncertainty and weak to safety, the uncertainty cue 

produces more suppression than would be expected given its shock probability (Berg et 

al., 2014; Wright et al., 2015; DiLeo et al., 2016; R. A. Walker et al., 2018; M. H. Ray et 

al., 2018). The vlPAG could signal fear expression via conditioned suppression of reward 

seeking (Arico et al., 2017): a long-established measure of fear (Estes and Skinner, 1941) 

highly correlated with freezing behavior (Bouton and Bolles, 1980). However, the 

nonlinearity of this procedure allows us to determine whether vlPAG single-unit activity is 

better captured by threat probability.  

Previous studies identified a population of vlPAG neurons showing short-latency firing 

increases to auditory cues paired with foot shock (Ozawa et al., 2017; Tovote et al., 2016; 

Watson et al., 2016). Thus, this chapter will focus on scrutinizing an expected population 
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of cue-excited single-units in the vlPAG. A complete neural correlate for fear expression 

should be supported by cue-excited neurons that increase firing at the beginning of a 

threat (cue onset) and maintain firing throughout the duration of a threat encounter (cue 

duration). Further, firing of these neurons will directly reflect trial-by-trial behavior. By 

contrast, cue-excited neurons encoding threat probability will linearly increase firing 

according to threat probability (shock probability), irrespective of behavior. 

2.2 Methods  

2.2.1 Subjects 

Ten adult male rats at postnatal day 55 (P55) were obtained from Charles River 

Laboratories in Raleigh, NC. On arrival, rats were single-housed on a 12 hr light cycle 

(lights off at 6:00pm) and allowed three acclimation days with ad libitum access to water 

and standard chow (18% Protein Rodent Diet #2018, Harlan Teklad Global Diets, 

Madison, WI) prior to surgery. Rats were implanted with drivable, sixteen-wire 

microelectrode bundles. Each animal received between eleven and sixteen days to 

recover from surgery with ad libitum access to water and standard chow. Throughout the 

experiment, rats had ad libitum access to water; however, to generate motivation for a 

food-reward, standard chow was restricted to maintain rats at 85% of their free-feeding 

body weight. Three rats were eliminated from the study because electrodes failed to 

register single-unit activity and one rat was eliminated due to incorrect electrode 

placement. Reported data are from the remaining six individuals. All protocols were 

approved by the Boston College Animal Care and Use Committee and all experiments 

were carried out in accordance with the NIH guidelines regarding the care and use of rats 

for experimental procedures.  
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2.2.2 Electrode Assembly 

Microelectrodes were constructed on site and consisted of a drivable bundle of sixteen 

Formvar-Insulated Nichrome wires (25.4 µm diameter: 761500, A-M Systems, Carlsborg, 

WA) within a 27-gauge cannula (B000FN3M7K, Amazon Supply). The cannula bundle 

was attached to a manually operated microdrive calibrated to permit ~0.042 mm 

advancement increments. Two free-hanging 127 µm diameter PFA-coated stainless-steel 

ground wires were also part of the assembly (791400, A-M Systems, Carlsborg, WA). All 

wires were electrically connected to a Nano Strip omnetics connector (A79042-001, 

Omnetics Connector Corp., Minneapolis, MN) on a custom 24-contact, individually-routed 

and gold-immersed circuit board (San Francisco Circuits, San Mateo, CA). 

2.2.3 Surgery 

Aseptic stereotaxic surgery was performed under isoflurane anesthesia (1 to 5% in 

oxygen). Prior to incision, Rimadyl/Carprofen (024751, Henry Schein Animal Health, s.c. 

5 mg/kg) and Ringer’s lactate solution (014792, Henry Schein Animal Health, s.c. 2 to 5 

mL) were administered subcutaneously to the back, and 2% lidocaine (002468, Henry 

Schein Animal Health, s.c. 0.25 mL) was administered subcutaneously above the skull. 

Post-incision, the skull was scoured in a crosshatch pattern with a scalpel blade to 

strengthen implant adhesion. Five screws (two anterior to Bregma, two between Bregma 

and lambda: 3 mm medial to the lateral ridges of the skull, and one on the midline: 5 mm 

posterior of lambda) were installed in the skull to further stabilize the bond between the 

skull, electrode assembly and protective head cap. A 1.4 mm diameter burr hole was 

drilled through the skull, centered on the implant site and the underlying dura was 

removed to expose the cortex. Nichrome recording wires were freshly cut with surgical 
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scissors to extend approximately 2.0 mm beyond the cannula at a 15° angle. Just before 

implant, current was delivered to each recording wire in a saline bath, stripping each tip 

of its formvar insulation. Each omnetics connector contact was stimulated for 2 s using a 

resistor-equipped lead; current was supplied by a 12 V lantern battery. Machine grease 

was placed by the cannula and on the microdrive to prevent orthodontic resin from seizing 

moveable components.  

The electrode assembly was slowly advanced at a 20° angle for implantation dorsal to 

the vlPAG. Coordinates from cortex: anterior-posterior (AP) -8.00 mm, medial-lateral (ML) 

-2.45 mm, and dorsal-ventral (DV) -5.52 mm. Once in place, stripped ends of both ground 

wires were wrapped around the posterior midline screw inserted previously. The 

microdrive base and a protective head cap surrounding the electrode assembly were 

cemented in place on the skull with orthodontic resin (C 22-05-98, Pearson Dental Supply, 

Sylmar, CA) at the end of the procedure, and the omnetics connector was affixed to the 

head cap. 

2.2.4 Behavior Apparatus 

The apparatus for Pavlovian fear conditioning consisted of two individual behavior 

chambers with clear acrylic walls and top, and a grid floor with an acrylic waste pan below. 

Each grid floor bar was electrically connected to an aversive shock generator (Med 

Associates, St. Albans, VT) through a custom grounding device. This permitted the floor 

to be grounded at all times except during shock delivery. A nose poke opening equipped 

with infrared photocells was mounted on a central, acrylic wall panel and an acrylic 

external food cup was mounted on the same wall panel 3 inches below. Each behavior 

chamber was enclosed in a separate sound-attenuating shell. Auditory stimuli were 
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presented through two speakers mounted on the ceiling of the shell, above the behavior 

chamber. 

2.2.5 Behavioral Procedures 

2.2.5.1 Pellet Exposure 

Each rat was exposed to 5 grams of reward pellets in their home cage on P56 & P57. On 

P58, all rats received 30 test pellets released (one per minute) in the behavior chamber 

food cup (F0021, Bio-Serv, Flemington, NJ). 

2.2.5.2 Nose Poke Acquisition 

On P59, all rats were shaped to nose poke for pellet delivery in the behavior chamber 

using a fixed ratio (FR1) schedule in which one nose poke yielded one pellet. Shaping 

sessions lasted 30 min or until approximately 50 nose pokes were completed. On P60, 

all rats received one variable interval (VI30) session in which nose pokes were reinforced 

on average every 30 s. On P61-P64 (inclusive) all rats received four variable interval 

(VI60) sessions in which nose pokes were reinforced on average every 60 s. For the 

remainder of behavioral testing, nose pokes were reinforced on a VI60 schedule 

independent of all Pavlovian contingencies. 

2.2.5.3 Cue Pre-exposure 

On P65 and P66, all rats received one 42 min session of pre-exposure to the three cues 

to be used in Pavlovian discrimination. Pre-exposure consisted of four presentations of 

each cue (12 total presentations) with mean inter-trial intervals (ITIs) of 3.5 min. The order 

of trial type presentation was randomly determined by the behavioral program and 

differed for each rat during each session. Auditory cues were 10 s in duration and 
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consisted of repeating motifs of a broadband click, phaser, or trumpet (listen or download: 

http://mcdannaldlab.org/resources/ardbark). 

2.2.5.4 Pavlovian Fear Discrimination 

Prior to single-unit recording sessions, each rat received eight, 93 min sessions (one per 

day) of fear discrimination, consisting of 32 cue trials with mean ITIs of 3.5 min. Each 10 

s auditory cue was associated with a unique probability of foot shock (0.5 mA, 0.5 s): 

danger, p = 1.00; uncertainty, p = 0.375; and safety, p = 0.00. Cue identity was 

counterbalanced across rats. Foot shock was administered 2 s following the termination 

of the auditory cue on danger and uncertainty shock trials. This was done in order to 

observe possible neural activity during the delay period not driven by an explicit cue. A 

single session consisted of six danger trials, ten uncertainty no-shock trials, six 

uncertainty shock trials, and ten safety trials. The order of trial type presentation was 

randomly determined by the behavioral program, and differed for each rat during each 

session. After the eighth discrimination session, rats were given ad libitum access to 

standard rat chow for at least 24 hours, followed by stereotaxic surgery. Following 

recovery, discrimination (identical to that described above) resumed with single-unit 

recording. Animals received discrimination every other day with recording. After each 

discrimination session with recording, electrodes were advanced either 0.042 mm or 

0.084 mm to record from new units during the following session. 

2.2.6 Histology 

Rats were deeply anesthetized using isoflurane and final electrode coordinates were 

marked by passing current from a 6 V battery through 4 of the 16 nichrome electrode 

wires. Rats were perfused with 0.9% biological saline and 4% paraformaldehyde in a 0.2 
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M Potassium Phosphate Buffered Solution. Brains were extracted and post-fixed in a 10% 

neutral-buffered formalin solution for 24 hr, stored in 10% sucrose/formalin and sectioned 

via microtome. All brains were processed for light microscopy using anti-tryptophan 

hydroxylase immunohistochemistry (T8575, Sigma-Aldrich, St. Louis, MO) and a 

NovaRed chromogen reaction (SK-4800, Vector Laboratories, Burlingame, CA). Sections 

were mounted, imaged using a light microscope and electrode placement was confirmed 

(Paxinos & Watson, 2007). 

2.2.7 Single-unit Data Acquisition 

Sixteen individual recording wires were bundled and soldered to individual channels of 

an Omnetics connector. The bundle was integrated into a microdrive permitting 

advancement in ~0.042 mm increments. The microdrive was cemented on top of the skull 

and the Omnetics connector was affixed to the head cap. During recording sessions, a 

1x amplifying head stage connected the Omnetics connector to the commutator via a 

shielded recording cable (head stage: 40684–020 and Cable: 91809–017, Plexon Inc, 

Dallas TX). Analog neural activity was digitized and high-pass filtered via amplifier to 

remove low-frequency artifacts and sent to the Omniplex D acquisition system (Plexon 

Inc, Dallas TX). Behavioral events (cues, shocks, nose pokes) were controlled and 

recorded by a computer running Med Associates software. Timestamped events from 

Med Associates were sent to Omniplex D acquisition system via a dedicated interface 

module (DIG-716B). The result was a single file (.pl2) containing all time stamps for 

recording and behavior. Single-units were sorted offline with a template-based spike-

sorting algorithm (Offline Sorter V3, Plexon Inc, Dallas TX). Time stamped spikes and 

events (cues, shocks, nose pokes) were extracted and analyzed with statistical routines 
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in MATLAB (Natick, MA). Neural activity was recorded throughout the 500 ms shock 

delivery period. However, we cannot be certain that shock artifacts did not disrupt spike 

collection, so we do not present activity from this period. 

2.2.8 Statistical Analyses 

2.2.8.1 Calculating Suppression Ratios 

Fear was measured by suppression of rewarded nose poking, calculated as a ratio: 

(baseline poke rate – cue poke rate) / (baseline poke rate + cue poke rate) (Rescorla, 

1968; Pickens et al., 2009; Anglada-Figueroa & Quirk, 2005; Arico & McNally, 2014; Lee 

et al., 2005; McDannald & Galarce, 2011). A ratio of ‘1’ indicated high fear, ‘0’ low fear, 

and gradations between intermediate levels of fear. Use of the suppression ratio 

permitted the objective measure of relative fear in 1 s intervals across the cue, as well as 

total fear over the entire 10 s cue presentation (Wright et al., 2015).  

2.2.8.2 Behavior Analysis 

Behavior was analyzed using analysis of variance (ANOVA) with trial type as a factor. 

ANOVA for behavior contained three trial types (danger, uncertainty and safety). 

Uncertainty trial types (shock and no-shock) were collapsed because they did not differ 

for suppression ratio. During cue presentation, rats did not know the current uncertainty 

trial type. Paired samples t-tests were performed on suppression ratios for each cue pair. 

2.2.8.3 K-means Clustering 

The following characteristics were determined for each neuron: baseline firing rate, half 

the duration of the mean waveform and amplitude ratio of the mean waveform. Duration 

was determined by measuring the time (ms) from peak depolarization to the trough of 
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after-hyperpolarization and dividing by two. Amplitude ratio was calculated using (n – p) / 

(n + p), in which p = initial hyperpolarization (in mV) and n = maximal depolarization (in 

mV). This approach has been used to successfully separate neuron types in the ventral 

tegmental area (Roesch et al., 2007). K-means clustering used these three firing 

characteristics to partition the 245 recorded neurons into two clusters (k = 2). Two clusters 

were chosen because previous studies have found that two neuron types, glutamatergic 

vGluT2 neurons and GABAergic GAD1+ neurons, comprise the majority of vlPAG 

neurons, and these neurons can be differentiated by baseline firing rate (Tovote et al., 

2016). ANOVA for cluster results found that only baseline firing rate contributed to cluster 

membership (F1,243 = 829, p < 0.001). Neither amplitude ratio nor duration reached 

significance (Fs < 0.2, ps > 0.6). All neurons were clustered, with the majority falling in 

the low firing rate cluster (n = 199) and the remaining in the high firing rate cluster (n = 

46). 

2.2.8.4 Identifying Cue-excited vlPAG Neurons 

Independent of cluster analysis, all 245 neurons were screened for short-latency, 

excitatory firing to auditory cue onset. This was achieved using a paired, two-tailed t-test 

comparing raw firing rate (spikes/s) during a 2 s baseline period just prior to cue onset 

and during the first, 1 s cue interval. A t-test was performed for each of the three cues 

(danger, uncertainty and safety), and corrected for multiple comparisons (p < 0.017). The 

remaining neurons were screened for longer-latency, excitatory firing to the later portion 

of auditory cues using an identical t-test. Only now, firing rate during a 2 s baseline period 

just prior to cue onset was compared to firing rate during the last, 1 s cue interval.  
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2.2.8.5 Z-score normalization 

For each neuron, and for each trial type, firing rate (spikes/s) was calculated in 100 ms 

bins from 10 s prior to cue onset to 12 s following cue offset, for a total of 320 bins. Mean 

firing rate over the 320 bins was calculated by averaging all trials for each trial type. Mean 

differential firing was calculated for each of the 320 bins by subtracting mean baseline 

firing rate (2 s prior to cue onset), specific to that trial type, from each bin. Mean differential 

firing was Z-score normalized across all trial types within a single neuron, such that mean 

firing = 0, and standard deviation in firing = 1. Z-score normalization was applied to firing 

across the entirety of the recording epoch, as opposed to only the baseline period, in case 

neurons showed little/no baseline activity. As a result, periods of phasic, excitatory firing 

contributed to normalized mean firing rate (0). For this reason, Z-score normalized 

baseline activity is below zero in Figure 2.2 A & C. Z-score normalized firing during cue 

(Figure 2.2 A & C) was analyzed with ANOVA using bin and trial-type as factors. F and p 

values are reported, as well as partial eta squared and observed power.  

For post hoc cue firing analyses (Figure 2.2 B & D), and cue regression analyses, it was 

necessary to calculate normalized firing in 1 s intervals. To do this, differential firing in the 

interval of interest (for example, first cue 1 s interval) was calculated for each individual 

of the 32 trials in a single session. Differential firing in this interval was then Z-score 

transformed. This process was repeated for each interval of interest in order to maximize 

the distribution of firing within a single interval. Importantly, statistical outcomes were 

identical if a single Z-score transformation was applied to all intervals at once.  
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2.2.8.6 Determining Observed and Expected Cue Firing Patterns 

The analysis for Onset neurons (n = 29) utilized mean normalized firing to each cue 

(danger, uncertainty and safety) in the first 1 s interval and analysis for Ramping neurons 

(n = 14) utilized firing in the last 1 s interval. Relative firing to the three cues was used to 

categorize each Onset and Ramping neuron: (d > u > s), (d > s > u), (s > u > d) or (u > d 

> s). Counting the number observed in each category determined the actual number for 

each population.    

2.2.8.7 Population and Single-unit Firing Analyses 

Population firing was analyzed using analysis of variance (ANOVA) with trial type and bin 

(100 ms) as factors. ANOVA for cue firing contained three trial types (danger, uncertainty 

and safety). Uncertainty trial types were collapsed because they did not differ for either 

suppression ratio or firing analysis. This was expected, because rats did not know the 

current uncertainty trial type during cue presentation. F statistic, p value, observed power 

and partial eta squared are reported for effects and interactions. Interval firing was 

compared within a population using a two-tailed, dependent samples t-test.  

2.2.8.8 Single-unit Linear Regression 

Single-unit, linear regression was used to determine the degree to which fear output 

and/or threat probability explained trial-by-trial variation in firing of single neurons in a 

specific time interval. The cue analysis used 1 s intervals. For each regression, all 32 

trials from a single session were ordered by type. Z-firing was specified for the interval of 

interest. The fear output regressor was the suppression ratio for the entire 10 s cue, for 

that specific trial. The probability regressor was the foot shock probability associated with 

each specific cue (danger, p = 1.00; uncertainty, p = 0.375; and safety, p = 0.00). 
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Regression (using the regress function in Matlab) required a separate, constant input. To 

better visualize the organization of the regression input, the complete regression input for 

first interval firing of an Onset neuron is shown below. 

The regression output of greatest interest was the beta coefficient for each regressor (fear 

output and probability), quantifying the strength (greater distance from zero = stronger) 

and direction (>0 = positive) of the predictive relationship between each regressor and 

single-unit firing.  
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Table 2.1 Onset neuron sample regression input 

A sample of the regression input for an Onset neuron during the first interval (first second) 
of cue presentation. Trial types are colored as follows: danger (red), uncertainty shock 
and no-shock (purple), and safety (blue). Regressors are colored as well: threat 
probability (pink) and fear output (gray). Beta coefficients (regression output) for each 
regressor are separate (bottom right). 
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2.2.8.9 Threat Probability Tuning Curve 

Single-unit, linear regression was performed using the fear output and probability 

regressors as above. Only now, nine separate regression analyses were performed in 

which the uncertainty component of the probability regressor was systematically varied 

from 0 to 1 in 0.125 increments (0.000, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875 

and 1.000). The result of primary interest was the mean beta coefficient for the probability 

regressor from each variant of regression, as plotted in Figure 2.6 D & H.  

 

2.3 Results 
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Figure 2.1 Fear Discrimination, Histology, and vlPAG single-unit activity  

(A) Pavlovian fear discrimination consisted of three cues, each predicting a unique 
probability of foot shock: danger, p = 1.00 (red); uncertainty, p = 0.375 (purple); and 
safety, p = 0.00 (blue). (B) Microelectrode bundle placements for all rats (n = 6) and all 
neurons (n = 245) during recording sessions are represented by red bars. (C) Mean + 
SEM suppression ratio during the entire 10 s cue for danger, uncertainty, and safety trials 
is shown for all sessions in which single-units were recorded (n = 88). Discrimination was 
observed for each cue pair (danger vs. uncertainty, t87 = 12.36, p = 7.44×10−21, red 
asterisk; uncertainty vs. safety, t87 = 20.85, p = 3.50×10−35, blue asterisk). (D) Mean ± 
SEM suppression ratio during each 1 s interval of 10 s cue presentation for danger, 
uncertainty, and safety trials is shown (n = 88). Discrimination was observed during every 
interval for each cue pair (danger vs. uncertainty, all t87 > 3.00, all p < 0.005 [Bonferroni 
correction for 10 tests], red asterisks; uncertainty vs. safety, all t87 > 7.00, all p < 0.005, 
blue asterisks). (E) Scatterplot comparing half the duration of the waveform (x axis) to 
baseline firing rate (y axis) in all recorded neurons (n = 245). Clustering revealed two 
populations based on baseline firing rate (High Firing Rate (HFR), open circles; Low Firing 
Rate (LFR), solid gray circles). X symbols indicate cluster centroids. Onset neurons (n = 
29, peach), Ramping neurons (n = 14, wine) and HFR cue-responsive neurons (n = 3, 
wine outline) are indicated. (F and G) Representative single-units from the (F) Onset 
population and (G) Ramping population. Cue onset (On) and offset (Off) indicated by 
vertical black lines. Shock delivery indicated by yellow bars. Trial-by-trial firing (top four 
raster plots), as well as mean firing (bottom, line graphs) are shown for each neuron. 
Each raster tick represents a spike and each row of spikes reflects one trial [danger (n = 
6), uncertainty shock (n = 6), uncertainty omission (n = 10), safety (n = 10)]. The bottom 
row of spikes in each raster plot corresponds to the first cue trial, subsequent trials are 
above. Line graphs: Mean firing rate (Hz) across all trials for each cue was constructed 
using 100 ms bins and smoothed, cue boundaries and shock visualization maintained 
from raster plots above.  
 

Six adult male, Long Evans rats were trained to nose poke in a central port in order to 

receive a food pellet from a cup below. During fear discrimination (Figure 2.1 A), three 

distinct auditory cues predicted unique foot shock probabilities: danger (p = 1.00), 

uncertainty (p = 0.375) and safety (p = 0.00). Trial order was randomized for each rat 

during each session. Fear was measured with suppression ratio and was calculated by 

comparing nose poke rates during baseline and cue periods (see Methods). After eight 
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discrimination sessions, rats were implanted with 16-wire, drivable microelectrode 

bundles dorsal to the vlPAG (Figure 2.1 B). Following recovery, rats were returned to fear 

discrimination. Single-units were isolated and held for the duration of each recording 

session. The electrode bundle was advanced ~40–80 µm between sessions to record 

from new single-units in subsequent sessions. 

Across all 88 recording sessions, all rats demonstrated excellent discriminative fear: high 

to danger, intermediate to uncertainty, and low to safety (Figure 2.1 C). ANOVA for 

suppression ratios for the total 10 s cue [within factor: cue (danger vs. uncertainty vs. 

safety)] found a significant effect of cue (F2,174 = 592.00, p = 2.32×10−78, ηp2 = 0.87, 

observed power (op) = 1.00). Paired t-tests confirmed differing ratios for each cue (danger 

vs. uncertainty, t87 = 12.36, p = 7.44×10−21; uncertainty vs. safety, t87 = 20.85, p = 

3.50×10−35). Visualizing nose poke rates to each cue revealed a discrimination pattern 

matching that for suppression ratio (Figure 1.2). While the foot shock probability 

associated with uncertainty was closer to safety: danger (p = 1.00) >> uncertainty (p = 

0.375) > safety (p = 0.00); the mean suppression ratio to uncertainty was closer to danger: 

danger (ratio = 0.80) > uncertainty (ratio = 0.53) >> safety (ratio = 0.03) (Figure 2.1 C). 

The non-linear relationship between shock probability and behavior was critical for 

regression analyses that sought to determine if single-unit firing was better captured by 

threat probability or fear output. 

When the total cue period was divided into 10, 1 s intervals, discrimination was observed 

in each interval and maintained over cue presentation (Figure 2.1 D). ANOVA for 

suppression ratios [within factors: cue (danger vs. uncertainty vs. safety) and interval (1-

10)] found a significant effect of cue (F2,174 = 489.40, p = 3.59×10−72, ηp2 = 0.85, op = 
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1.00) and a cue x interval interaction (F18,1566 = 6.21, p = 5.90×10−15, ηp2 = 0.07, op = 

1.00). Suppression ratios are artificially high when calculated in short intervals, making 

for a poor measure of absolute fear. However, this artificial skewing is observed equally 

to all cues, making suppression ratios in short intervals a valid, relative measure of fear. 

2.3.1 vlPAG neurons are responsive at cue onset or ramp over cue presentation 

I recorded the activity of 245 neurons in six rats over 88 fear discrimination sessions. A 

previous study optogenetically identified vlPAG glutamate neurons with low baseline firing 

rates, compared to GABA neurons exhibiting higher baseline firing rates (Tovote et al., 

2016). K-means clustering was performed for all 245 neurons using baseline firing rate 

and waveform characteristics: amplitude ratio and half the duration (Roesch et al., 2007). 

All neurons separated into one of two clusters purely on the basis of baseline firing rate 

(Figure 2.1 E), with majority of neurons falling into the low firing rate (LFR) cluster (n = 

199) and the remaining in the high firing rate (HFR) cluster (n = 46). 

Independent of cluster membership, the cue-responsiveness of each neuron was 

determined (n = 245). I identified 29 neurons (obtained from 5/6 rats, ~12% of all neurons 

recorded) with phasic increases in firing to danger, uncertainty, or safety (t-test for firing 

rate, baseline [2 s prior to cue onset] vs. first 1 s cue interval, p < 0.017, Bonferroni 

correction for three tests). All 29, cue-responsive neurons belonged to the LFR cluster, 

and were referred to as the Onset population (single-unit example, Figure 2.1 F). 

Consistent with Ozawa et al., 2017, 17 neurons increased firing to at least one cue during 

the last 1 s cue interval (interval > baseline, p < 0.017). Three of these neurons belonged 

to the HFR cluster and were likely a unique class of neurons. The remaining 14 cue-

responsive neurons (obtained from 4/6 rats, ~6% of all neurons recorded) belonged to 
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the LFR cluster, and were referred to as the Ramping population (single-unit example, 

Figure 2.1 G). All further analyses were performed on the 29 Onset neurons and 14 

Ramping neurons. 

Figure 2.2 vlPAG neurons are responsive to cue onset or ramp over cue 
presentation  

(A) Mean, Z-score normalized firing to danger (red), uncertainty (purple) and safety (blue) 
is shown for the 1 s pre-cue period and the 10 s cue period for the Onset population (n = 
29). Cue onset (On) and offset (Off) are indicated by vertical black lines. (B) Mean + SEM, 
Z-score normalized firing during the first, 1 s cue interval (left) and the last, 1 s cue interval 
(right), is shown for each cue. Differential firing was observed for danger vs. uncertainty 
(t28 = 4.54, p = 9.70×10−4, red asterisk) but not for uncertainty vs. safety (t28 = 1.37, p = 
0.18), in the first interval. No differences were observed for danger vs. uncertainty (t28 = 
1.69, p = 0.10) or uncertainty vs. safety, (t28 = 0.60, p = 0.55) in the last interval. (C) 
Normalized firing for the Ramping population (n = 14) plotted as in A. (D) First and last 
interval firing for the Ramping population (n = 14) plotted as in B. Differential firing was 
not observed for danger vs. uncertainty (t13 = 0.62, p = 0.55) or uncertainty vs. safety (t13 
= 0.24, p = 0.82), in the first interval. By contrast, differential firing was observed for 
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danger vs. uncertainty (t13 = 3.17, p = 7.41×10−3, red asterisk) and uncertainty vs. safety 
(t13 = 8.26, p = 2.00×10−6, blue asterisk), in the last interval. (E) A t-test comparing danger 
(red) and uncertainty (purple) population firing to safety in a 1 s window was slid across 
the 10 s cue in 100 ms increments. P value of t-test reported on y axis. Dotted line 
indicates p=0.05. Inset: Mean + SEM change in firing rate from the first window of activity 
departed from safety to the last interval, is shown for danger (red) and uncertainty 
(purple). ns = no significance of a paired t-test. 
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Figure 2.3 Trial by trial firing for Onset and Ramping neurons 

(A, left) Raw firing rate (Hz) for the Onset population (n = 29) is shown across cue 
presentation for each of the six danger trials. Trials are color-coded from dark (first trial) 
to light (last trial) with ‘On’ indicating cue onset and ‘Off’ indicating cue offset. (A, right) 
Population mean firing rate is shown for the first 1 s cue interval (dashed box in A), for 
each trial. Color scheme maintained from (A, left). Population mean baseline firing (2 s 
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prior to cue presentation) is shown for each individual trial (gray circles). Identical plots 
using unique color schemes (uncertainty, purple and safety, blue) were made for each 
trial type: (B) uncertainty shock, (C) uncertainty omission and (D) safety. Note that 
increased cue firing over baseline tended to be highest on trial 1, but was observed for 
every individual trial for all cues. A nearly identical set of plots were made for the Ramping 
population (n = 14, E - H), only now population mean firing rate for each trial (right) is 
shown for the last 1 s interval of the cue (dashed box on left). Increased cue firing over 
baseline was consistently observed on danger and uncertainty trials, but not safety trials. 
Firing patterns observed for the mean of all trials (Figure 2.2 A), (C) were observed at the 
single trial level for Onset and Ramping populations. 
 

2.3.2 vlPAG neurons show differential firing that is maximal to danger 
 
Despite identifying neurons without regard for relative firing to the three cues, differential 

firing was observed in Onset neurons at single-unit (Figure 2.1 F) and population (Figure 

2.2 A) levels. Onset neurons (n = 29) sharply increased activity during the first 1 s cue 

interval: greatest firing to danger, lesser firing to uncertainty, and least firing to safety 

(Figure 2.2 B, Left). The differential firing pattern diminished over cue presentation and 

was completely absent by the last 1 s cue interval (Figure 2.2 B, Right). ANOVA for 

normalized firing rate (Z-score transformation) for the 29 Onset neurons [data from Figure 

2.2 A; within factors: cue (danger vs. uncertainty vs. safety) and bin (100 ms: 1 s prior to 

cue onset through 10 s cue)] revealed main effects of cue and bin (Fs > 9, ps < 0.01, ηp2 

> 0.20, op > 0.95) but most critically, a cue x bin interaction (F218,6104 = 1.94, p < 0.01, ηp2 

= 0.06, op = 1.00). Consistent with the ANOVA interaction, Onset neurons showed 

significantly greater firing to danger compared to uncertainty in the first 1 s cue interval 

(t28 = 4.54, p = 9.70×10−5). While numerically greater, firing to uncertainty over safety 

failed to reach significance in the first 1 s interval (t28 = 1.37, p = 0.18). However, ANOVA 

restricted to uncertainty and safety (100 ms: 1 s prior to cue onset through first 5 s of the 

cue) revealed a significant cue x bin interaction (F59,1652 = 1.50, p = 0.01, ηp2= 0.051, op 
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= 1.00). Differential firing was not observed to danger vs. uncertainty (t28 = 1.69, p = 0.10) 

or to uncertainty vs. safety (t28 = 0.60, p = 0.55) in the last 1 s cue interval. 

Differential firing was observed in Ramping neurons at single-unit (Figure 2.1 G) and 

population (Figure 2.2 C) levels. Ramping neurons (n = 14) did not increase firing to any 

cue during the first 1 s cue interval (Figure 2.2 D, Left). Instead, activity ramped over cue 

presentation and greatest firing was observed during the last 1 s cue interval (Figure 2.2 

D, Right). Ramping activity was most apparent to danger, intermediate to uncertainty, and 

absent to safety. The temporal firing pattern (onset → offset) was consistent across trials 

(Figure 2.3). ANOVA for normalized firing rate for the 14 Ramping neurons [data from 

Figure 2.2 C; within factors: cue (danger vs. uncertainty vs. safety) and bin (100 ms: 1 s 

prior to cue onset through 10 s cue)] revealed main effects of cue and bin (Fs > 60, ps < 

0.01, ηp2 > 0.40, op = 1.00) and a cue x bin interaction (F218,2834 = 4.33, p < 0.01, ηp2 = 

0.24, op = 1.00). Illustrative of the ANOVA interaction, Ramping neurons showed no 

significant differences in firing to danger vs. uncertainty (t13 = 0.62, p = 0.55) or uncertainty 

vs. safety (t13 = 0.24, p = 0.81) in the first 1 s cue interval. However, differential firing to 

danger vs. uncertainty (t13 = 3.17, p = 7.41×10−3) and uncertainty vs. safety (t13 = 8.26, p 

= 2.00×10−6), was observed in the last 1 s cue interval. 

Ramping activity to danger and uncertainty could be the product of the time at which 

activity began to increase, or the rate of increase. I performed a two-tailed t-test for 

population firing to danger vs. safety (Figure 2.2 E, red line) and uncertainty vs. safety 

(Figure 2.2 E, purple line) in 1 s windows, starting with cue onset. I slid the 1 s window 

across the 10 s cue in 100 ms increments, to reveal the time at which danger and 

uncertainty population firing departed from safety. I then calculated the rate of firing 
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increase from the departure window to the last 1 s interval for danger and uncertainty. 

Differential firing was determined by the time of departure from safety, as opposed to the 

rate of increase. Ramping activity to danger emerged earlier (Figure 2.2 E red line; 2.8 s 

following cue onset for p < 0.05) than ramping activity to uncertainty (Figure 2.2 E purple 

line; 5.7 s following cue onset for p < 0.05). Change in firing rate from the window of safety 

departure to the last 1 s cue interval did not differ between danger and uncertainty (Figure 

2.2 E, Inset). 

 

Figure 2.4 Single-unit biases in Onset and Ramping populations 

(A) Normalized firing to uncertainty (purple) vs. danger (red) during the first, 1 s cue 
interval is plotted for all Onset neurons (n = 29). Trendline, the square of the Pearson 
correlation coefficient (R2) with associated p value (p), and sign test p value p(s) are 
shown for each plot. (B) Normalized firing to safety (blue) vs. uncertainty (purple) during 
the first, 1 s cue interval is plotted for Onset neurons (n = 29). (C) Normalized firing to 
danger in the first, 1 s cue interval vs. the last, 1 s cue interval is plotted for Onset neurons 
(n = 29). (D) Number of observed neurons (closed circle) vs shuffled distribution (median, 
25th percentile, 75th percentile, lowest/highest non-outliers) shown for four most common 
firing patterns: danger > uncertainty > safety, danger > safety > uncertainty, safety > 
uncertainty > danger, and uncertainty > danger > safety. (E) Normalized firing to 
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uncertainty (purple) vs. danger (red) during the last, 1 s cue interval is plotted for Ramping 
neurons (n = 14). (F) Normalized firing to safety (blue) vs. uncertainty (purple) during the 
last, 1 s cue interval is plotted for Ramping neurons (n = 14). (G) Normalized firing to 
danger in the first, 1 s cue interval vs. the last, 1 s cue interval is plotted for Ramping 
neurons (n = 14). (H) Number of observed neurons vs shuffled distribution reported as in 
D. 

 
2.3.3 Population biases are evident in vlPAG single-units 

To demonstrate that Onset population activity was the result of a consistent bias across 

neurons, I directly compared single-unit firing to cue pairs. Danger and uncertainty firing 

were correlated, and single-units were biased towards greater firing to danger (Figure 2.4 

A). Uncertainty and safety firing were also correlated; however, the single-unit bias 

towards greater firing to uncertainty was not significant (Figure 2.4 B). Underscoring their 

specificity to cue onset, single-units were biased towards greater firing to danger in the 

first 1 s cue interval compared to the last interval, and there was no correlation between 

firing in the two epochs (Figure 2.4 C). Examining relative cue firing for each Onset neuron 

in the first 1 s interval revealed the most common pattern to be: danger > uncertainty > 

safety (n = 14). This was the only pattern to contain more units than would be expected 

than chance (Figure 2.4 D). 

The same analysis was performed for the Ramping population, only for the last 1 s 

interval. Ramping neurons showed a differential firing pattern. A significant correlation 

between firing to danger and uncertainty was observed, along with a single-unit bias 

towards greater firing to danger (Figure 2.4 E). Only now, there was no correlation 

between uncertainty and safety firing, but a consistent bias towards greater uncertainty 

firing (Figure 2.4 F). Ramping single-units were biased towards danger activity in the last 

1 s cue interval, and there was no correlation between firing in the two epochs (Figure 2.4 
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G). The most common firing pattern in the last 1 s interval was: danger > uncertainty > 

safety (n = 11). Similar to the Onset population, this was the only pattern to contain more 

units than expected by chance (Figure 2.4 H). 

VlPAG activity is greatest to danger, the cue most strongly suppressing rewarded nose 

poking. It is therefore possible that Onset and Ramping neurons are simply responsive to 

nose poke cessation. To examine this possibility, I identified naturally occurring periods 

of nose poke cessation in inter-trial intervals, when no cues were presented. This analysis 

found no meaningful changes in Onset or Ramping activity during periods of nose poke 

cessation, demonstrating activity patterns are specific to cue-induced suppression of 

nose poking. 

At first glance, the firing patterns of Onset and Ramping neurons appear to support the 

prevailing hypothesis that vlPAG neurons signal fear output. Differential fear (Figure 2.1 

C) and differential firing (Figure 2.2 B & D) show the same general pattern: danger > 

uncertainty > safety. However, closer inspection reveals that relative differences in fear 

do not match relative differences in firing. Rats showed robust discrimination between 

uncertainty and safety, regardless of the temporal resolution with which fear was 

measured (Figure 2.1 C & D). Yet, robust differential firing to uncertainty and safety was 

modest in the Onset population (Figure 2.2 B, left; Figure 2.4 B). The Ramping population 

showed stronger differential firing between uncertainty and safety (Figure 2.2 D, right; 

Figure 2.4 F), but this pattern did not emerge until the end of the cue. Fear discrimination 

was reliably detected in the first 1 s interval (Figure 2.1 D), indicating that Ramping 

neurons cannot organize fear output early in cue presentation. While inconsistencies 

between fear output and neural activity are evident for the Onset and Ramping 
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populations, further analyses are required to conclusively test the relative contributions of 

threat probability and fear output to vlPAG single-unit activity. 

 

Figure 2.5 vlPAG neurons prioritize threat probability over fear output  

(A) Mean + SEM beta coefficient is shown for each regressor, during the first, 1 s cue 
interval, for the Onset population (n = 29): probability (pink), fear output (dark gray). The 
beta coefficient for probability was significantly greater than that for fear output (probability 
vs. fear output, t28 = 3.96, p = 4.65 ×10−4). *paired samples t-test, p < 0.05. #single-sample 
t-test comparison to zero, p < 0.05, color indicates regressor compared to zero. (B) Beta 
coefficient for fear output (dark gray) vs. probability (pink) during the first, 1 s cue interval 
is plotted for all Onset neurons (n = 29). Trendline, the square of the Pearson correlation 
coefficient (R2) with associated p value, and sign test p value comparing each regressor 
to zero is shown. (C) Mean ± SEM beta coefficient is shown for each regressor, during 
each 1 s cue interval, for the Onset population (n = 29). Dash outlined box indicates 
interval analyzed in (A). (D) Mean beta coefficient for probability is shown for each of the 
nine uncertainty assignments for the Onset population (n = 29). Dashed line indicates the 
actual foot shock probability associated with uncertainty (0.375). (E) Mean + SEM beta 
coefficient is shown for each regressor, during the last, 1 s cue interval, for the Ramping 
population (n = 14). The beta coefficient for probability did not differ from fear output 
(probability vs. fear output, t13 = 1.18, p = 0.258). *paired samples t-test, p < 0.05. #single-
sample t-test comparison to zero, p < 0.05, color indicates regressor compared to zero. 
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(F) Beta coefficient for fear output (dark gray) vs. probability (pink) during the last, 1 s cue 
interval is plotted for Ramping neurons (n = 14). (G) Mean ± SEM beta coefficient is shown 
for each regressor, during each 1 s cue interval, for the Ramping population (n = 14). 
Dash outlined box indicates interval analyzed in (E). (H) Mean beta coefficient for 
probability is shown for each of the nine uncertainty assignments for the Ramping 
population (n = 14). Dashed line indicates the actual foot shock probability associated 
with uncertainty (0.375). 
 

2.3.4 Onset neurons signal threat probability 

Simultaneous linear regression for single-unit firing was used to formally test the degree 

to which vlPAG activity is captured by fear output and threat probability (Figure 2.5). 

Normalized firing rate for each trial was calculated for each single-unit (32 total: six 

danger, six uncertainty shock, 10 uncertainty omission, and 10 safety), in 1 s bins over 

the 10 s cue. Fear output was the suppression ratio on that trial. Threat probability was 

the shock probability associated with the cue: danger: 1.00, uncertainty: 0.375 and safety: 

0.00. Fear output and threat probability were used as regressors to explain trial-by-trial 

variance in single-unit firing. Statistical output was a beta coefficient quantifying the 

strength (|>0| = stronger) and direction (>0 = positive) of the predictive relationship 

between each regressor and single-unit firing. Beta coefficients for single-units 

comprising the Onset and Ramping populations were subjected to ANOVA with regressor 

(fear output vs. threat probability) and interval (1 s cue intervals) as factors. This approach 

was used to determine the relative contribution of fear output and threat probability to 

single-unit firing over the course of cue presentation. 

The results of primary interest for the Onset population came from the first 1 s cue interval, 

when activity was highest and differential firing was observed. Linear regression 

unequivocally revealed that Onset single-unit activity was captured by threat probability 

(Figure 2.5 A). The beta coefficient for threat probability regressor was positive and 
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significant, exceeding the beta coefficient for fear output, which failed to differ from zero. 

The population bias was observed across Onset neurons, such that single-unit beta 

coefficients were positively biased toward threat probability, but not fear output (Figure 

2.5 B).  

Examining the entirety of cue presentation, threat probability signaling was highest in the 

first interval, persisted several more seconds and diminished toward the last interval 

(Figure 2.5 C). Fear output did not account for variance in single-unit firing during any 

interval. Consistent with this description, ANOVA for beta coefficient with factors of 

regressor (2 total) and interval (10 total) revealed a main effect of regressor (F1,28 = 6.73, 

p = 0.015, ηp2 = 0.19, op = 0.71) and a regressor x interval interaction (F9,252 = 2.85, p = 

0.003, ηp2 = 0.09, op = 0.96).   

The threat probability regressor in the above analyses utilized the actual shock probability 

assigned to each cue. Of course, the subjects had no a priori knowledge of shock 

probability assignments. It is then possible that vlPAG activity is ‘tuned’ to an alternative 

shock probability. To examine this, single-unit linear regression for normalized firing in 

the first 1 s cue interval was performed, maintaining the probabilities for danger (1.00) 

and safety (0.00), but incrementing the probability assigned to uncertainty from 0 to 1 in 

0.125 steps (0.000, 0.125, 0.250, 0.375, 0.500, 0.625, 0.750, 0.875, and 1.000). The 

mean beta coefficient for each of the nine increments is plotted as a threat-tuning curve 

for the Onset population (Figure 2.5 D). The beta coefficient resulting from regression 

using the actual shock probability (uncertainty = 0.375), was the ‘peak’ of the tuning curve. 

This result is particularly revealing for the analysis in which the uncertainty assignment 

was 0.000 (first data point on the curve Figure 2.5 D). Onset neurons showed high firing 
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to danger but lower and more similar firing to uncertainty and safety, leaving open the 

possibility that Onset neurons signal a more binary output (danger = 1.000) > (uncertainty 

and safety = 0.000). However, the actual uncertainty assignment (0.375) captured single-

unit activity better than the binary assignment (0.000), revealing that Onset activity 

reflected an estimate of the actual threat probability. 

2.3.5 Ramping neurons prioritize threat probability over fear output 
 
Linear regression for the Ramping population in the last 1 s cue interval revealed that 

single-unit activity was captured by a mixture of threat probability and fear output (Figure 

2.5 E). Ramping single-units were biased towards positive beta coefficients for probability 

and fear output (Figure 2.5 F), but there was no correlation between these regressors. 

Linear regression for all ten intervals revealed that threat probability signaling was 

prioritized over fear output (Figure 2.5 G). ANOVA for beta coefficient with factors of 

regressor (2 total) and interval (10 total) revealed a main effect of regressor (F1,13 = 5.90, 

p = 0.03, ηp2 = 0.31, op = 0.61), but no regressor x interval interaction (F9,117 = 1.12, p = 

0.37, ηp2 = 0.08, op = 0.53).  

If Ramping neurons contain information about threat probability as well as fear output, the 

tuning curve for ramping neurons should be shifted right of 0.375. This is because the 

relative weighting of uncertainty differs for threat probability (danger >> uncertainty > 

safety) and fear output (danger > uncertainty >> safety). I constructed a population threat-

tuning curve for normalized firing during the last 1 s interval (Figure 2.5 H, as in Figure 

2.5 D). Tuning was shifted right of the actual probability, with a ‘peak’ of 0.625. This is 

consistent with mixed signaling of fear output and threat probability during the last 1 s 

interval by Ramping neurons, rather than a pure threat probability signal. 
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2.4 Discussion 

Chapter 2 set out to scrutinize cue-excited vlPAG neurons and determine if their activity 

reflected fear output. Consistent with previous reports (Tovote et al., 2016; Watson et al., 

2016; Ozawa et al., 2017), I identified a population of Onset neurons with short-latency 

excitation to danger. Consistent with the most recent report (Ozawa et al., 2017), I found 

a Ramping population that increased activity over danger presentation. Onset activity 

reflected an estimate of threat probability, invariant of fear output. Ramping activity 

reflected threat probability and fear output, though probability emerged earlier and was 

stronger overall. While vlPAG signals for fear output could potentially emerge at the 

ensemble level (Jones et al., 2007; Zhou et al., 2018), it appears these multi-unit codes 

would be composed of cue-excited single-units primarily signaling threat probability. 

Activity reflecting fear output may be found in other vlPAG populations, such as neurons 

showing inhibition of firing to cues (Tovote et al., 2015), or single-units that are not cue-

responsive (Insanally et al., 2019). Yet, this would still mean that signals for threat 

probability and fear output co-exist in the vlPAG. 

It is important to note that these results are correlative and that Onset neuron activity may 

not play a causal role in fear output. Previous work has found that short-latency, excitatory 

responses to danger are largely observed in glutamatergic vlPAG neurons, and that 

excitation of this population is sufficient to produce freezing (Tovote et al., 2016). Though 

all Onset neurons fell into the low firing cluster, which could be consistent with 

glutamatergic firing (Ono et al., 2017). However, we cannot conclude these were 

glutamatergic neurons. Before further discussing implications, it is important to consider 

alternative accounts for the observed Onset and Ramping firing patterns. 
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It is possible that vlPAG neurons signaling fear output are anatomically distinct from those 

recording in this preparation. However, I intentionally recorded single-unit activity from 

the caudal portion of the vlPAG, the subdivision of the PAG implicated in conditioned fear 

expression. Further, vlPAG manipulations that disrupt fear-related behaviors typically 

include this more caudal region (De Oca et al., 1998), and high-resolution functional 

magnetic resonance imaging reveals caudal vlPAG activation specific to aversive stimuli 

in humans (Satpute et al., 2013). I observed threat probability signaling across the entire 

rostrocaudal extent of these recordings (Bregma −7.56mm through −8.04mm), but the 

vlPAG stretches ~0.64mm beyond our most caudal recording site. It is therefore possible 

that neurons signaling fear output are restricted to the extreme caudal vlPAG. Maybe the 

vlPAG signals fear output, but we did not measure the relevant output? 

Previous studies have failed to find robust relationships between vlPAG activity and cued 

freezing. Here, I used conditioned suppression of rewarded nose poking to provide an 

objective measure of fear, and to perhaps better capture vlPAG activity. This measure of 

fear did not capture Onset neuron firing, and only partially captured Ramping neuron firing 

at the end of cue presentation. Further, Onset and Ramping activity were not merely 

driven by nose poke cessation. If not freezing, conditioned suppression, or nose poke 

cessation then perhaps another measure of fear? 

Danger cues elicit active fear responses: escape-like behaviors such as darting (Greiner 

et al., 2019; Gruene et al., 2015). However, darting is prevalent in females, but less so in 

males. Further, the males used in this study had extensive experience with fear 

discrimination, and at no point was escape from the foot shock possible. Irrespective of 

the type of fear measure, most fear behaviors are initiated at cue onset and maintained 
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until the aversive event occurs. Yet, I did not observe a substantial population of neurons 

with these temporal firing characteristics, making cue-excited vlPAG activity a poor 

candidate for sustained fear output.  

Neurons responsive toward the end of cue presentation were more heterogeneous, in 

baseline firing rate and signaling. Ramping neurons prioritized threat probability, but also 

signaled fear output. However, without sustained fear output signaling, Ramping activity 

could not drive fear output in full. Further, differential fear expression to safety, uncertainty 

and danger was observed even in the first second of cue presentation, when Ramping 

neurons were unresponsive. Ramping neurons may provide a threat probability estimate 

that increases as threat draws nearer and peaks when threat is imminent. Alternatively, 

Ramping neurons may help sustain threat estimates in the absence of explicit stimuli, 

such as in trace conditioning (McEchron et al., 1998; Buchel et al., 1999), or simply 

estimate more precisely when the noxious event will occur. In support, shifts toward PAG-

centric activity are apparent in humans, as capture becomes imminent (Mobbs et al., 

2007) or natural threats draw closer (Mobbs et al., 2010); with the caveat that neither of 

these studies could specify the activated PAG subregion. 

If fear output via conditioned suppression is non-linear, and vlPAG activity scales linearly 

to threat probability, how does the vlPAG fit into fear output? Non-linear fear output may 

mean that threat systems evolved to avoid predation, not to precisely match the degree 

of defensive behavior to threat probability. In response to uncertain threats, erring on the 

side of increased fear may promote survival. Nonetheless, between the Onset and 

Ramping populations, the vlPAG contains an estimate of threat probability during the 

entirety of a threat encounter. While cue-excited, vlPAG activity may not signal fear 
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output, it is rich with information that would inform a variety of fear processes and 

behaviors.  
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CHAPTER 3: Do cue-inhibited vlPAG single-units signal  

threat probability or fear output? 

Portions of this chapter have been published in the following research article: 

Wright, K.M., Jhou, T.C., Pimpinelli, D. & McDannald, M.A. (2019). Cue-inhibited 
ventrolateral periaqueductal gray neurons signal fear output and threat probability in male 
rats. eLife, 8:e50054.  
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3.1 Introduction 

In the previous Chapter, I scrutinized an expected population of cue-excited vlPAG units 

in an effort to reveal a direct neural correlate of fear expression in the vlPAG, and clarify 

some of the heterogeneity attributed to previous findings. However, I found that cue-

excited vlPAG is better captured by threat probability. Although cue-excited single-units 

have been the focus of a neural substrate for fear output, cue-inhibited vlPAG single-units 

have also been found (Tovote et al., 2016). Further, optogenetic inhibition of this 

functional type promotes freezing. Among the vlPAG single-units recorded in Chapter 2, 

a considerable number inhibited activity on cue presentation (91/245, ~37% of single-

units recorded), particularly to danger. Here, I sought to determine if a neural correlate 

for fear expression may instead reside in cue-inhibited vlPAG neurons; an expected 

neural correlate, in an unexpected population. 

A complete neural correlate for fear expression should be supported by cue-inhibited 

neurons that decrease firing at the beginning of a threat (cue onset) and maintain 

decreased firing throughout the duration of a threat encounter (cue duration). Similar to 

cue-excited neurons, cue-inhibited neurons signaling fear expression will directly reflect 

trial-by-trial behavior. By contrast, cue-inhibited neurons encoding threat probability 

should linearly decrease firing according to threat probability (shock probability), 

irrespective of behavior. 

 
3.2 Methods 

With the exception of statistical approaches detailed below, all methods used in Chapter 

3 were maintained precisely as established in Chapter 2 (See Chapter 2.2.1 through 

2.2.8.1: Subjects, Electrode Assembly, Surgery, Behavior Apparatus, Behavioral 
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Procedures, Histology, Single-unit Data Acquisition, and Calculating Suppression Ratios 

for complete details).  

3.2.1 Statistical Analyses 

3.2.2.1 Behavior Analysis 

Suppression ratios were analyzed using analysis of variance (ANOVA) with trial type as 

a factor. ANOVA for behavior contained three trial types (danger, uncertainty and safety). 

Uncertainty trial types (shock and no-shock) were collapsed because they did not differ 

for suppression ratio; during cue presentation, rats did not know the current uncertainty 

trial type. 95% bootstrap confidence intervals were constructed for differential 

suppression ratios to determine if discrimination was observed between each cue pair. 

3.2.2.2 95% bootstrap confidence intervals 

95% bootstrap confidence intervals were constructed using the bootci function in Matlab. 

For each bootstrap, a distribution was created by sampling the data 1,000 times with 

replacement. Studentized confidence intervals were constructed with the final outputs 

being the mean, lower bound and upper bound of the 95% bootstrap confidence interval.  

3.2.2.3 Identifying cue-inhibited vlPAG neurons 

All 245 neurons were screened for inhibitory firing during the first or last 5 s of danger and 

uncertainty cue presentation. This was achieved using a paired, two-tailed t-test 

comparing raw firing rate (spikes/s) during a 10 s baseline period just prior to cue onset 

with firing during the first or last, 5 s of cue presentation (p < 0.0125; Bonferroni corrected 

for 6 comparisons). Safety-responsive neurons were excluded because few neurons 

showed significant decreases in firing to safety. 
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3.2.2.4 Z-Score Normalization 

For each neuron, and for each trial, firing rate (spikes/s) was calculated in 100 ms bins 

from 20 s prior to cue onset to 20 s following cue offset, for a total of 500 bins. Differential 

firing was calculated for each bin (n = 500) by subtracting mean baseline firing rate (2 s 

prior to cue onset) on that trial. Differential firing for each single-unit was Z-score 

normalized across all trials such that mean firing = 0, and standard deviation in firing = 1. 

Z-score normalization was applied to firing across all 500 bins, as opposed to only the 

bins prior to cue onset, in case neurons showed little/no baseline activity. Z-score 

normalized firing was analyzed with ANOVA using bin and trial-type as factors (Figure 3.2 

A & C). F and p values are reported, as well as partial eta squared and observed power. 

3.2.2.5 Identifying Flip and Sustain Neurons  

Normalized firing (Z-score) of each cue-inhibited neuron was averaged over the first 

(early) and last (late) 5 s of danger cue presentation. K-means clustering (k = 2) applied 

to early and late firing of all danger-inhibited neurons (n = 95) revealed two clusters of 

approximately equal size. Neuron identity screening at this stage revealed four neurons 

previously analyzed in Aim 1. These neurons were removed and did not undergo further 

analyses. Aim 2 considers 91 cue-inhibited neurons for analysis: Flip neurons (n = 45), 

which were inhibited early but excited late, and Sustain neurons (n = 46), which 

maintained inhibition throughout danger cue presentation. 

3.2.2.6 Waveform Analyses 

Baseline firing rate, half duration and amplitude ratio of the mean waveform were 

determined for each Flip and Sustain neuron. Baseline firing rate (spikes/s) was 

calculated using the 10 s baseline period just prior to cue presentation. Half duration was 
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determined by measuring the time (ms) from peak depolarization to the trough of after-

hyperpolarization and dividing by 2. Amplitude ratio was calculated using (n – p) / (n + p), 

where p = initial hyperpolarization (in mV) and n = maximal depolarization (in mV). 

3.2.2.7 Population Firing Analyses 

Flip and Sustain population firing (Figure 3.2) were analyzed using analysis of variance 

(ANOVA) with trial type and bin (250 ms) as factors. ANOVA for normalized firing 

contained three trial types: danger, uncertainty and safety. Uncertainty trial types were 

collapsed because they did not differ for either suppression ratio or firing analysis. This 

was expected; during cue presentation rats did not know the current uncertainty trial type. 

F statistic, p value, observed power and partial eta squared are reported for effects and 

interactions. Bootstrap confidence intervals were performed for mean normalized firing to 

danger vs. uncertainty and uncertainty vs. safety during the first (early) and last (late) five 

seconds of cue presentation.  

3.2.2.8 Single-unit Linear Regression 

As in Chapter 2, single-unit linear regression was used to determine the degree to which 

fear output and threat probability explained trial-by-trial variation in single-unit firing during 

specific 1 s cue intervals. The 32 trials composing a single session were ordered by trial 

type and Z-score normalized firing was specified for each trial and interval. The fear output 

regressor was the mean suppression ratio for the entire 10 s cue for the specific trial. The 

probability regressor was the foot shock probability associated with each cue (danger = 

1.00, uncertainty = 0.375, safety = 0.00). The regression output of greatest interest is the 

beta coefficient (β) for each regressor (fear output and threat probability), which quantifies 

the strength (greater distance from zero = stronger) and direction (>0 = positive, <0 = 
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negative) of the predictive relationship between each regressor and single-unit firing. 

ANOVA, bootstrap confidence intervals, sign test and Pearson’s correlation coefficient 

were all used to analyze beta coefficients for Z-score normalized firing.  

3.2.2.9 Threat probability tuning curve 

Nine separate regression analyses were performed as above. Only now, the value 

assigned to the uncertainty component of the threat probability regressor was 

systematically increased from 0 to 1 in 0.125 steps (0.000, 0.125, 0.250, 0.375, 0.500, 

0.625, 0.750, 0.875 and 1.000). The first regression used the value of 0.000, second 

regression 0.125 and so on. Regression was performed for each 1 s interval of the 10 s 

cue. Beta coefficients for the first 5 s of cue and the last 5 s of cue were averaged to 

produce early and late threat tuning curves. 
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3.3 Results 

 

Figure 3.1 Fear discrimination, histology, heat plot and waveform characteristics 

(A) Pavlovian fear discrimination consisted of three cues predicting unique foot shock 
probabilities: danger, p = 1.00 (red); uncertainty, p = 0.375 (purple); and safety, p = 0.00 
(blue). (B) Microelectrode bundle placements for all rats (n = 6) and all neurons (n = 245) 
during recording sessions are represented by salmon bars. (C) Mean + individual (data 
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points) suppression ratio for danger, uncertainty, and safety is shown for all recording 
sessions (n = 88). (D) Normalized firing rate in 1 s intervals is shown for each Flip (n = 
45, top) and Sustain (n = 46, bottom) neuron for each trial type (danger, uncertainty and 
safety). Color scale for normalized firing rate is shown to the right; red indicates high firing 
and blue low firing. Cue onset and offset are indicated. Single-unit waveform properties 
of Flip (periwinkle) and Sustain (seafoam) neurons are shown: (E) baseline firing rate, (F) 
half the duration, and (G) amplitude ratio. +95% bootstrap confidence interval for 
differential suppression ratio does not contain zero. 

 

Maintained from Chapter 2, rats demonstrated excellent discriminative fear: high to 

danger, intermediate to uncertainty, and low to safety (Figure 3.1 C). ANOVA for 

suppression ratios for the total 10 s cue [factor: cue (danger vs. uncertainty vs. safety)] 

found a significant effect of cue (F2,174 = 592.00, p = 2.32×10−78, ηp2 = 0.87, observed 

power (op) = 1.00). This time, 95% bootstrap confidence intervals were constructed for 

differential suppression ratios to determine if discrimination was observed between each 

cue pair. Indicative of full cue discrimination, the 95% bootstrap confidence interval did 

not contain zero for danger vs. uncertainty (Mean = 0.30, 95% CI [(lower bound) 0.24, 

(upper bound) 0.34]) or uncertainty vs. safety (M = 0.50, 95% CI [0.44, 0.56]) (Figure 3.1 

C). 

3.3.1 vlPAG neurons flip to excitation or sustain inhibition over cue presentation 
 
Out of 245 recorded neurons in six male Long Evans rats over 88 fear discrimination 

sessions, I identified 91 neurons (~37% of all neurons recorded) with significant 

decreases in firing rate to danger or uncertainty. Visualization of all cue-inhibited neurons 

revealed heterogeneous inhibition of danger firing during the last 5 seconds of cue 

presentation (Figure 3.1 D, left danger panel). K-means clustering was performed for all 

cue-inhibited neurons on early (first 5 s) and late (last 5 s) firing to danger, to determine 
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whether this heterogeneity reflected the activity of two separate populations. The first 

cluster (n = 45) consisted of neurons that were danger-inhibited early, but danger-excited 

late. These neurons are referred to as the Flip population. The second cluster (n = 46) 

consisted of neurons that were danger-inhibited early and late, and are referred to as the 

Sustain population. Independent samples t-tests for waveform properties revealed no 

differences between Flip and Sustain neurons, indicating these populations could only be 

distinguished by their function (Figure 3.1 E–G): baseline firing, t89 = 0.95, p = 0.343; half 

the duration, t89 = 0.77, p = 0.444; amplitude ratio t89 = 0.10, p = 0.918. 
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Figure 3.2 vlPAG neurons flip to excitation or sustain inhibition over cue 
presentation  

(A) Mean normalized firing to danger (red), uncertainty (purple) and safety (blue) is shown 
for the 2 s pre-cue period, 10 s cue period, and 2 s delay period for the Flip population (n 
= 45). Cue onset (On) and offset (Off) are indicated by vertical black lines. (B) Mean (bar) 
and individual (data points), normalized firing for Flip neurons during the first 5 s of cue 
presentation (Early, left) and the last 5 s of cue presentation (Late, right) is shown for 
each cue. (C) Mean normalized firing for the Sustain population (n = 45), shown as in A. 
(D) Mean and individual (data points), normalized firing for Sustain neurons, as in B. +95% 
bootstrap confidence interval for differential firing does not contain zero. #95% bootstrap 
confidence interval for normalized firing does not contain zero. 
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Figure 3.3 Trial by trial firing for Flip and Sustain neurons 

(A, left) Normalized firing rate for the Flip population (n = 45) is shown across cue 
presentation for each of the six danger trials. Trials are color-coded from dark (first trial) 
to light (last trial) with ‘On’ indicating cue onset and ‘Off’ indicating cue offset. (A, center) 
Mean population firing rate for the first 5 s of cue presentation (early) is shown for each 
trial. Color scheme maintained from A, left. Mean population baseline firing rate (2 s prior 
to cue presentation) is shown for each trial (gray). (A, right) Firing for the last 5 s of cue 
presentation (late) shown as in A, center. Identical figures using unique color schemes 
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were made for each trial type: (B) uncertainty shock, (C) uncertainty omission and (D) 
safety. An identical set of figures were made for the Sustain population (n = 46; E–H). 
 

3.3.2 Flip and sustain populations show differential cue firing 

A vlPAG signal for fear output should begin at cue onset, continue throughout cue 

presentation, and discriminate between danger, uncertainty and safety. To determine if 

cue-inhibited vlPAG neurons complied with these requirements, I examined mean 

population activity over cue presentation for Flip and Sustain neurons. Flip neurons were 

initially inhibited to uncertainty and danger, but lesser to safety (Figure 3.2 A). As cue 

presentation continued, inhibition to uncertainty weakened toward safety and firing to 

danger switched from inhibition to excitation (Figure 3.2 A). ANOVA for normalized firing 

rate (Z-score) for the 45 Flip neurons [Figure 3.2 A; within factors: trial-type (danger, 

uncertainty and safety) and bin (250 ms bins encompassing: 2 s baseline, 10 s cue, and 

2 s delay)] revealed main effects of cue (F2,88 = 16.58, p = 7.74×10−7, ηp2 = 0.27, op = 

1.00) and bin (F55,2420 = 14.83, p = 1.03×10−114, ηp2 = 0.25, op = 1.00), but most critically 

a cue x bin interaction (F110,4840 = 7.85, p = 8.89×10−106, ηp2 = 0.15, op = 1.00). The 

population pattern was consistent across individual trials, though late danger excitation 

was least on the first and last trials (Figure 3.3) 

95% bootstrap confidence intervals were constructed to determine if differential firing was 

observed early and late in cue presentation for Flip neurons. Differential firing was not 

observed to danger vs. uncertainty early (M = 0.04, 95% CI [−0.05, 0.11]), but was 

observed late when danger flipped to excitation (M = 0.35, 95% CI [0.26, 0.42]) (Figure 

3.2 B, +plus signs). In contrast, differential firing was observed to uncertainty vs. safety 

early (M = −0.18, 95% CI [−0.26, –0.11]), but not late (M = −0.05, 95% CI [−0.14, 0.05]) 
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(Figure 3.2 B). Furthermore, the 95% bootstrap confidence intervals for normalized firing 

rate did not contain zero for any cues in either period (Figure 3.2 B, #pound signs), 

indicating the Flip population was responsive to all cues early and late. 

Sustain neurons showed differential inhibition of firing throughout cue presentation: 

danger < uncertainty < safety (Figure 3.2 C). ANOVA for normalized firing rate [Figure 3.2 

C; factors maintained from above] revealed main effects of cue (F2,86 = 72.25, p = 

3.88×10−19, ηp2 = 0.63, op = 1.00) and bin (F55,2365 = 14.91, p = 6.13×10−115, ηp2 = 0.26, 

op = 1.00), as well as a cue x bin interaction (F110,4730 = 5.24, p = 1.17×10−59, ηp2 = 0.11, 

op = 1.00). Differential firing was observed early and late in cue presentation. In support, 

the 95% bootstrap confidence interval for differential firing did not contain zero for danger 

vs. uncertainty (Early: M = −0.24, 95% CI [−0.35, –0.14], Late: M = −0.18, 95% CI [−0.25, 

–0.11]) and uncertainty vs. safety (Early: M = −0.23, 95% CI [−0.32, –0.15], Late: M = 

−0.27, 95% CI [−0.35, 0.18]) during either cue period (Figure 3.2 D, +plus signs). Even 

more, the 95% bootstrap confidence interval for normalized firing did not contain zero for 

danger and uncertainty during both periods, but did contain zero for safety during both 

periods (Figure 3.2 D, #pound signs). Not only was differential firing observed, but Sustain 

neurons were selectively responsive to danger and uncertainty. 
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Figure 3.4 Population biases are evident in single-units 

(A) Normalized firing to danger (red) vs. uncertainty (purple) during the first 5 s of cue 
presentation is plotted for all Flip neurons (n = 45). Trendline, the square of the Pearson 
correlation coefficient (R2) with associated p value (p), and sign test p value (p(s)) are 
shown for each plot. (B) Normalized firing to danger vs. uncertainty during the last 5 s of 
cue presentation for all Flip neurons. (C) Normalized firing to uncertainty (purple) vs. 
safety (blue) during the first 5 s of cue presentation is plotted for all Flip neurons. (D) 
Normalized firing to uncertainty vs. safety during the last 5 s of cue presentation is plotted 
for all Flip neurons. All graph properties for E - H are maintained from A - D. (E) 
Normalized firing to danger (red) vs. uncertainty (purple) during the first 5 s of cue 
presentation is plotted for all Sustain neurons (n = 46). (F) Normalized firing to danger vs. 
uncertainty during the last 5 s of cue presentation for all Sustain neurons. (G) Normalized 
firing to uncertainty (purple) vs. safety (blue) during the first 5 s of cue presentation is 
plotted for all Sustain neurons. (D) Normalized firing to uncertainty vs. safety during the 
last 5 s of cue presentation is plotted for all Sustain neurons. 
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3.3.3 Population biases are evident in single-units 
 
If the vlPAG signals fear output, one would expect population-level signals to be observed 

at the single-unit level. To examine this, we used sign tests to identify whether single-unit 

firing was biased away from zero during early and late cue presentation. Flip single-units 

were biased towards decreased firing to danger [Early: (p(sign) = 9.33×10−9)] and 

uncertainty [Early: (p(s) = 5.89×10−11)] during early cue presentation Figure 3.4 A). 

Strikingly, and consistent with the population response, Flip neurons were biased towards 

increased firing to danger [Late: (p(s) = 8.24×10−4)], but decreased firing to uncertainty 

[Late: (p(s) = 2.47×10−4)] during late cue presentation (Figure 3.4 B). Contrary to the 

population result, there was no bias away from zero in single-unit firing to safety early or 

late (Figure 3.4 C & D). Single-unit biases of Sustain neurons mirrored those observed in 

the population. Sustain single-units showed a consistent bias toward decreased firing to 

danger [Early: p(s) = 3.08×10−11, Late: p(s) = 2.84×10−14)] and uncertainty [(Early: p(s) = 

3.10×10−7, Late: (p(s) = 5.10×10−9)] throughout cue presentation (Figure 3.4 E & F). 

Further, Sustain single-units showed no bias in firing to safety in either cue period (Figure 

3.4 G & H). Observing fully differential firing by single-units throughout cue presentation 

further marks Sustain neurons as a candidate for signaling fear output. 
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Figure 3.5 Sustain and Flip populations signal threat probability and fear output 

(A) Mean ± SEM beta coefficients are shown for each regressor (probability: pink, fear 
output: dark gray), in 1 s intervals, for the Flip population (n = 45).  (B) Beta coefficients 
during the first, 5 s of cue presentation (Early) for fear output and threat probability are 
plotted for all Flip neurons. Navy dashed trendline, the square of Pearson’s correlation 
coefficient (R2) with associated p value, and sign test p value demonstrating regressor 
bias shown. Background shading indicates negative beta coefficients, color coded by 
regressor. (C) Beta coefficients during the last 5 s of cue presentation (Late) for fear 
output and threat probability are plotted for all Flip neurons. (D) Mean ± SEM beta 
coefficients are shown for each regressor for the Sustain population (n = 46). All graph 
properties maintained from A. (E) Beta coefficients during Early cue presentation for fear 
output and threat probability are plotted for all Sustain neurons. All graph properties 
maintained from B. (F) Beta coefficients during Late cue presentation for fear output and 
threat probability are plotted for all Sustain neurons. #95% bootstrap confidence interval 
for beta coefficient does not contain zero. 
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3.3.4 Flip neurons switch to threat probability signaling from early to late cue 
presentation 
 
Descriptive analyses reveal two cue-inhibited populations with distinct temporal activity 

patterns. However, these analyses do not reveal the information signaled by each 

population. As in Chapter 2, I used linear regression for single-unit firing to formally test 

the degree to which Flip and Sustain neurons signaled fear output and threat probability 

(Figure 3.5). For each single-unit, the normalized firing rate was calculated for each trial 

(32 total: six danger, six uncertainty shock, 10 uncertainty omission, and 10 safety) in 1 s 

bins, over the course of cue presentation (14 s total: 2 s pre-cue, 10 s cue, 2 s post-cue). 

Fear output was the suppression ratio on that trial. Threat probability was the shock 

probability associated with the cue: danger: 1.00, uncertainty: 0.375 and safety: 0.00. 

Fear output and threat probability were used as regressors to explain trial-by-trial variance 

in single-unit firing. The regression output for each single-unit was a beta coefficient 

quantifying the strength (|>0| = stronger) and direction (>0 = positive and <0 = negative) 

of the predictive relationship between the regressor and single-unit firing. Beta 

coefficients for single-units were subjected to ANOVA with regressor (fear output vs. 

threat probability) and interval (1 s cue intervals) as factors. 

Single-unit regression revealed an early-to-late switch in threat probability signaling in 

Flip neurons (Figure 3.5 A). ANOVA for beta coefficients with factors of regressor (fear 

output vs. threat probability) and interval was performed for three periods: baseline (two 

intervals), cue (10 intervals) and delay (two intervals). The baseline and delay ANOVAs 

returned no main effects or interactions (all Fs < 0.6, all ps > 0.4). In contrast, the cue 

ANOVA found significant main effects, but most critically a regressor x interval interaction 

(F9,396 = 3.56, p = 2.85×10−4, ηp2 = 0.075, op = 0.990). The interaction was driven by 
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negative beta coefficients for fear output and threat probability in two, early cue intervals 

(95% bootstrap confidence interval did not contain zero, #pound signs), that gave way to 

positive beta coefficients specific to threat probability in all late cue intervals (95% 

bootstrap confidence interval did not contain zero, #pound signs; Figure 3.5 A). Further 

supporting the interaction, beta coefficients for Flip single-units were not biased away 

from zero for fear output and threat probability during the first 5 s cue period [Probability 

Early: p(s) = 0.37, Fear Output Early: p(s) = 0.14] (Figure 3.5 B). However, there was 

positive bias toward threat probability, but not fear output, during the last 5 s cue period 

[Probability Late: p(s) = 2.47×10−4, Fear Output Late: p(s) = 0.77] (Figure 3.5 C). Fear 

responses are sustained for the cue duration, yet Flip neurons do not consistently signal 

threat probability or fear output in early cue presentation. The inconsistency in signaling 

reveals that Flip neurons are not a suitable neural substrate for governing fear output 

throughout cue presentation. 

3.3.5 Sustain neurons signal fear output and threat probability throughout cue 
presentation 

Linear regression revealed consistent signals for fear output and threat probability in 

Sustain neurons. Beta coefficients were negative at cue onset for each regressor, and 

maintained negativity throughout cue presentation (Figure 3.5 D). ANOVA for beta 

coefficients with factors of regressor and interval was performed as before for baseline, 

cue and delay. The baseline ANOVA returned no main effects or interaction (all Fs < 1, 

all ps > 0.3). The cue ANOVA found only a main effect of bin (F9,405 = 4.23, p = 2.90×10−5, 

ηp2 = 0.086, op = 0.997), indicating similar signaling of fear output and threat probability. 

The delay ANOVA found only a main effect of regressor (F1,45 = 7.27, p = 0.01, ηp2 = 

0.14, op = 0.751), indicating a difference in signaling of fear output and threat probability 
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during the delay period. For each regressor over the 10, 1 s cue intervals, the 95% 

bootstrap confidence interval did not contain zero, indicating that fear output and threat 

probability signaling were both observed throughout cue presentation. Consistent with 

equivalent signaling of fear output and probability throughout cue presentation, single-

unit beta coefficients for each regressor were biased away from zero for fear output and 

threat probability during early and late cue presentation [Probability (Early: p(s) = 

1.83×10−6 and Late: p(s) = 4.06×10−5), Fear Output (Early: p(s) = 0.002 and Late: p(s) = 

1.56×10−4)] (Figure 3.5 E & F). Further, single-unit beta coefficients for threat probability 

and fear output were correlated early and late (Early: R2 = 0.41, p = 2.38×10−6 and Late: 

R2 = 0.37, p = 9.55×10−6). The majority of Sustain single-units showed negative beta 

coefficients for both regressors. However, even the extremes of the distribution showed 

signaling for both regressors, albeit in opposing directions. Sustain neurons signal fear 

output and threat probability throughout cue presentation.  
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Figure 3.6 Probability tuning 

(A) Mean beta coefficient for probability is shown for early (light pink) or late (hot pink) 
cue presentation for each of nine uncertainty assignments for the Flip population (n = 45). 
The peak or trough of each curve is indicated by a single point with the corresponding 
uncertainty assignment highlighted in the same color on the x axis below. Purple dashed 
line indicates the actual foot shock probability associated with uncertainty (p = 0.375). 
Gray dashed line indicates the mean proportional distance of uncertainty between danger 
and safety (suppression ratio). The blue-to-red color bar at the top of the figure 
demonstrates that a leftward shift along the x-axis reflects an uncertainty assignment 
similar in quality to safety (p = 0.000) versus those that would be more similar to a danger 
cue on the far right (p = 1.000). (B) All graph properties maintained from A, but applied to 
the Sustain population. 
 

3.3.6 Differential threat tuning in flip and sustain neurons 

The threat probability regressor in the above analyses utilized the actual shock probability 

assigned to uncertainty (0.375). Of course, the subjects, and by extension their neurons, 

had no a priori knowledge of the actual shock probability. Thus, it is possible that Flip and 

Sustain single-units are ‘tuned’ to alternative shock probabilities. To test this, we 

performed single-unit linear regression for normalized firing in each 1 s interval as before, 

maintaining the probabilities for danger (1.00) and safety (0.00), but incrementing the 
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probability assigned to uncertainty from 0 to 1 in 0.125 steps (0.000, 0.125, 0.250, 0.375, 

0.500, 0.625, 0.750, 0.875, and 1.000). Threat probability beta coefficients were averaged 

over early and late cue presentation. The mean beta coefficient for each uncertainty 

assignment is plotted as a threat-tuning curve, early and late, for each population (Figure 

3.6).  

Flip neurons were tuned to alternative foot shock probabilities and this tuning changed 

from early to late cue presentation. Early threat overestimation (equating uncertainty to 

danger) gave way to late underestimation (equating uncertainty to safety). The tuning 

curve trough for early cue presentation occurred at 0.750 (Figure 3.6 A, light pink); 

overshooting the actual probability of 0.375 (Figure 3.6 A, dashed purple line) and 

exceeding mean fear output of 0.625 (Figure 3.6 A, dashed gray line). The tuning curve 

peak for late cue presentation occurred at 0.250 (Figure 3.6 A, dark pink); undershooting 

the actual probability and mean fear output (Figure 3.6 A, dashed purple line and dashed 

gray line, respectively). ANOVA for beta coefficient with factors of time (early vs. late) and 

uncertainty assignment (9) found both main effects and the interaction to be significant 

(all Fs > 13, all ps < 0.001). The relative firing patterns of Flip neurons do not approximate 

the actual probability of foot shock or the pattern of fear output, and further indicate that 

these neurons are unlikely to govern fear output. 

In contrast, Sustain neuron tuning consistently fell between the bounds of the actual foot 

shock probability and the mean fear output, changing only subtly over cue presentation 

(Figure 3.6 B). The trough of the tuning curve occurred at an assignment of 0.500 early 

and at an assignment of 0.625 late. ANOVA found a main effect of assignment (F8,360 = 

5.66, p = 8.85×10−7, ηp2 = 0.112, op = 1.00) and a time x assignment interaction (F8,360 = 
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3.25, p = 0.001, ηp2 = 0.067, op = 0.971). The stability of Sustain tuning and the bias 

toward mean fear output further suggests this population as a candidate for fear output. 

3.4 Discussion 

Chapter 3 set out to scrutinize cue-inhibited vlPAG neurons and determine if their activity 

reflected fear output. I recorded vlPAG single-unit activity while rats discriminated 

between danger, uncertainty and safety, found two cue-responsive populations, and 

revealed a long-awaited complete neural correlate for fear output in the vlPAG. Flip 

neurons were inhibited to danger early, but excited to danger late. Sustain neurons 

maintained graded decreases in firing to threat-related cues throughout cue presentation. 

Flip activity reflected threat probability signaling during the last half of cue presentation. 

Sustain activity consistently reflected fear output alongside an estimate of threat 

probability throughout the entirety of cue presentation. Activity reflecting fear output has 

now been identified in the vlPAG, albeit residing in an unexpected, cue-inhibited 

population. However, it co-exists with signals for threat probability: within the same 

population and among other functional populations.  

Although Flip neurons are not suitable candidates for signaling fear output, they may help 

sustain threat estimates in the absence of explicit stimuli (McEchron et al., 1998; Buchel 

et al., 1999), or simply estimate when a shock will occur. Consistent with this speculation, 

peak activity of Flip neurons occurred just prior to shock presentation and declined toward 

baseline shortly after. This finding is in general accord with previous work demonstrating 

a shift from distal to proximate threats, corresponds to a shift from prefrontal to 

periaqueductal activity (Mobbs et al., 2007; Mobbs et al., 2010). This may sound similar 
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to the proposed role for the Ramping population in Chapter 2, which will be addressed in 

Chapter 5. 

By contrast, patterned activity of Sustain neurons complies with basic assumptions of a 

complete neural correlate for fear output. Sustain neurons decreased firing to threat-

related cues, but did not decrease firing to safety. Moreover, neural activity fully 

discriminated between danger, uncertainty and safety from cue onset through shock 

presentation, before returning to baseline. Population biases toward fear output and 

threat probability were maintained at the single-unit level. Interestingly, while threat 

probability signaling was observed in Sustain single-units, the probability to which 

neurons were tuned exceeded the actual probability of 0.375, better approximating fear 

output. Although causal evidence that Sustain neurons drive a discriminative fear 

response is beyond the scope of these results, a complete neural correlate for fear output 

in a population of vlPAG neurons has been identified. 

An influential theory posits that vlPAG output is achieved through a disinhibition 

mechanism (Tovote et al., 2016): GABAergic vlPAG interneurons with high baseline firing 

rates receive inputs from GABAergic CeA projection neurons (Figure 1.3 B). Activation of 

GABAergic projections from the CeA (increased firing in response to danger cues) inhibits 

and reduces firing of GABAergic vlPAG interneurons. In turn, this interneuron inhibition 

releases local inhibition of vlPAG glutamatergic projection neurons, which increase firing 

to promote freezing through downstream projections. Consistent with a disinhibition 

mechanism, we observed Sustain neurons that have high baseline firing rates (Figure 3.1 

E, purple). However, we observed many Sustain neurons that had low baseline firing 

rates, including those with baseline rates just above zero. While we cannot conclusively 
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determine neuron type from baseline firing, it is likely that cue-inhibited neurons are not 

uniformly GABAergic interneurons. While inconsistent with a pure disinhibition 

mechanism, our results are consistent with an alternative view in which the vlPAG 

contains unique output populations that separately convey information via excitation and 

inhibition (Lau and Vaughan, 2014). Most likely, the vlPAG utilizes disinhibition, as well 

as independent signaling via cue-excited and cue-inhibited projection populations to 

inform behavior. 
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CHAPTER 4:  Is endogenous cSN necessary for fear suppression? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

74 

4.1 Introduction 

Fear is the product of a larger circuit that extends beyond the vlPAG. Whereas a role for 

the vlPAG in fear is commonplace, a role for the substantia nigra (SN) in fear stands apart 

from its canonical associations with movement and reward processes (Schultz, 1997; 

Groenewegen, 2003; Chinta & Andersen, 2005; Bouchet et al., 2018; Sonne et al., 2020). 

However, new interest in examining the substantia nigra through a fear lens, by way of 

its dopamine population, is beginning to surface. Dopamine is a widely examined 

neuromodulator with distinct neural populations scattered throughout the midbrain. 

Traditionally implicated in movement, reward value and reward prediction error, recent 

evidence suggests a role for dopamine in mediating aversive functions (Lutas et al., 2019; 

Robinson et al., 2019).  

Previous work has tied dopamine activity to fear extinction (Abraham et al., 2014), but 

only recently has this association been investigated in nigral dopamine. Specifically, 

activation of dopamine in the SN has been implicated fear extinction facilitation (Bouchet 

et al., 2018). In this preparation, Gq-coupled receptors exclusively activated by designer 

drugs (Gq-DREADDs) were employed to increase phasic activation of a discrete 

population of dopamine neurons during fear extinction. Rats that received SN Clozapine-

N-oxide (SN CNO: active DREADD group) and vehicle (control group) rats both acquired 

comparable levels of fear extinction during two days of 20 CS presentation. SN CNO rats 

displayed significantly less freezing versus controls during extinction and demonstrated 

blocked renewal of fear in a new context. Together, these findings strongly link SN 

dopamine with fear extinction and renewal. However, there is still much left to uncover.  

Although a link with fear extinction has been established, a role for the SN in fear 

conditioning or discrimination remains unknown. Further, chemogenetic activation of the 
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SN is insufficient to determine whether endogenous SN activity is necessary for fear 

suppression, and therefore extinction. Finally, cell types other than dopamine may 

contribute to a role for the SN in fear. Given a direct monosynaptic GABAergic projection 

from the SN to the vlPAG (Kirouac et al., 2004), at the very least, the SN has the ability 

to interact with downstream signals for threat probability and fear output. 

To expand on previous work connecting the SN and fear, I paired a similar version of the 

fear discrimination procedure from chapters 2 and 3 with bilateral optogentic inhibition of 

the caudal substantia nigra to investigate whether endogenous cSN activity is necessary 

for suppression of defensive behavior. In this procedure, three auditory cues predict 

unique foot shock probabilities as before: danger (p = 1.00), uncertainty (p = 0.25) and 

safety (p = 0.00). However, a foot shock probability of p = 0.25 was assigned to the 

uncertainty cue. A lower probability of shock was utilized in this preparation because there 

are far fewer trials required for optogenetic experiments versus in vivo recordings, and a 

shock probability of 0.25 is sufficient to achieve complete discrimination (danger > 

uncertainty > safety) on a shorter experimental timeline. 

4.2 Methods 

4.2.1 Subjects 

Subjects were 17 male Long Evans rats approximately 60 days old on arrival, obtained 

from Charles River Laboratories, and maintained on a 12-hr light cycle (lights off at 6:00 

PM). Upon arrival, rats were individually housed and acclimated to the animal facility with 

food and water freely available for three days. Following acclimation, rats were restricted 

to and maintained at 85% of their free-feeding body weight. All rats were returned to ad 

libitum food, received surgery, recovered, and were once again maintained at 85% of 
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their free-feeding body weight for the duration of behavioral testing. All protocols were 

approved by the Boston College Animal Care and Use Committee and all experiments 

were carried out in accordance with the NIH guidelines regarding the care and use of rats 

for experimental procedures. 

4.2.2 Optogenetic Ferrule and Fiber Optic Cable Assembly 

Optical ferrules were constructed using 2.5mm Ceramic Dome Ferrule Assemblies: 

230um ID, bore tolerance: -0/+10um, Concentricity < 20um (MM-FER2002S15-2300: 

Precision Fiber Products, Chula Vista, CA) paired with multimode optical fiber, 0.22 NA, 

High-OH, Ø200 µm Core for 250 - 1200 nm (FG200UEA: ThorLabs, Newton, NJ). 

Ferrules were assembled, polished, and inspected for flares. Light output was tested with 

a Si Sensor Power Meter (PM160: Thorlabs, Newton, NJ) and a 532nm, 500 mW green 

laser identical to those used for light illumination during behavior testing (Shanghai Laser 

& Optics Century Co., Ltd., Shanghai, China). Ferrules were polished until 30-40mW of 

light from the laser source could reliably produce 25mW of light output from an attached 

ferrule. Source laser mW requirements (to achieve 25mW ferrule output) were matched 

for each ferrule pair implanted during surgery. This way, the same amount of source laser 

light would result in equivalent light intensities in each hemisphere. Bilateral behavior 

cables consisted of a single metal-shielded shaft encompassing two cladded multimode 

optical fibers, 0.39 NA, High-OH, Ø200 µm Core for 300 - 1200 nm, TECS Clad: 

ThorLabs, Newton, NJ). A wye splitter at each end separated each fiber from the central 

shaft to accommodate individual ferrule-to-ferrule connections with implants on the rat’s 

head and multimode FC connections to the 1x2 rotary commutator above the 

experimental chamber (MM-CON2004-2300 MM FC Connectors with 230um ferrules: 
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Precision Fiber Products, Chula Vista, CA). Following fabrication, all cables were re-

tested prior to each illumination behavior session to ensure that there was a difference of 

no more than 5 mW of laser output between each side of the cable. Finally, the source 

laser power was calibrated for each light illumination session, so that the final cable output 

would pass the amount of light required for paired ferrule implants to permit either 

12.5mW or 25mW light delivery into the brain. Detailed Ferrule and Cable Assembly 

protocols are available for download at: http://mcdannaldlab.org/resources/optogenetics. 

4.2.3 Surgery 

Stereotaxic surgery was performed in aseptic conditions under isoflurane anesthesia (1–

5% in oxygen). Rimadyl (subcutaneous, 5 mg/kg), Lidocaine (subcutaneous, 2%), and 

Lactated Ringer’s solution (~2–5 mL) were administered preoperatively (R - 024751, L - 

002468 & LR - 14792: Henry Schein Vet, Waltham, MA). The skull was exposed via 

midline incision and scoured in a crosshatch pattern with a scalpel blade to increase resin 

adhesion. Nine holes were drilled: five for screws, two for infusion and two for ferrules. 

Five screws were installed in the skull to stabilize the connection between the skull, 

bilateral optical ferrule implants and a protective head cap (screw placements: two 

anterior to bregma, two between bregma and lambda about ~3 mm medial to the lateral 

ridges of the skull, and one on the midline ~5 mm posterior of lambda). Infusions were 

delivered at a rate of ~0.11 μl/min, using a 2 μl Neuros syringe (65459-01: Hamilton 

Company, Reno, NV) controlled by a microsyringe pump (UMP3-2: World Precision 

Instruments, Sarasota, FL). Rats received bilateral 0.5 μl infusions of halorhodopsin, 

AAV5-hSyn-eNpHR3.0-YFP (n = 9) or a control fluorophore AAV5-hSyn-EYFP (n = 8) 

aimed at the caudal substantia nigra (cSN): AP -7.10mm, ML +/- 1.90mm, DV -7.75mm 
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(UNC Vector Core, Chapel Hill, NC). Bilateral optical ferrules were implanted dorsal to 

the cSN at a 15° angle: AP -6.85mm, ML +/- 3.08mm, DV -6.50mm. Ferrule implants were 

protected by a black, light-occluding head cap made from a modified 50mL falcon tube. 

The head cap and ferrules were cemented to the skull using orthodontic resin (C 22-05-

98: Pearson Dental Supply, Sylmar, CA). Post-surgery, rats received 8-12 days of 

undisturbed recovery and 14 days of oral Cephalexin (049167: Henry Schein Vet, 

Waltham, MA) mixed with Froot Loops to encourage consumption. Dust caps protected 

the ends of optical ferrule implants during recovery and all behavior sessions when fiber 

optic cables were not in use. 

4.2.4 Behavior Apparatus  

The apparatus consisted of four individual experimental chambers (internal dimensions: 

30.5 cm x 24.1 cm x 29.2 cm) with aluminum front and back walls, clear acrylic sides and 

top, and a grid floor (0.48 cm diameter bars spaced 1.6 cm apart). Each grid floor bar was 

electrically connected to an aversive foot shock generator (Med Associates, St. Albans, 

VT). An external food cup was present at the center of one wall 2.5 cm above the grid 

floor. A central panel nose poke opening, equipped with infrared photocells (sampled at 

approximately 1 kHz), was centered 8.5 cm above the food cup. Each experimental 

chamber was enclosed in a sound-attenuating shell. Green lasers (532nm) were used to 

illuminate the caudal substantia nigra. A 5-inch diameter hole in the chamber ceiling 

funneled to a ~1.5 inch whole just below the commutator, permitting fiber optic cables to 

be threaded into the experimental chamber from above, and allowed them to move freely 

with each animal during optogenetic behavior sessions. Fiber optic cables were 

suspended from a 1 x 2 fiber optic rotary commutator (Doric: Quebec, Canada) mounted 
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to the shell ceiling. Two speakers were mounted 20 cm apart on the shell ceiling. 

Chambers were illuminated with a small strip of red LED lights mounted on the shell 

ceiling. 

4.2.5 Behavioral procedures 

4.2.5.1 Pellet Exposure 

Each rat was exposed to 4 grams of reward pellets in their home cage on two days, 

followed by one day of automatic pellet delivery to the food cup inside the experimental 

chamber (F0021, Bio-Serv Flemington, NJ).  

4.2.5.2 Nose Poke Acquisition 

Each rat was shaped to nose poke for pellet delivery using a fixed ratio schedule in which 

one nose poke yielded one pellet. Nose poke acquisition sessions lasted for 30 minutes 

or until approximately 50 nose pokes were completed. Rats moved on to variable interval 

(VI) schedules in which nose pokes were reinforced on average every 30 s (day 1), or 60 

s (days 2-5). For the remainder of behavioral testing, nose pokes were reinforced on a 

VI-60 schedule independent of all Pavlovian contingencies. 

4.2.5.3 Cue Pre-exposure 

Each rat was pre-exposed to the three auditory cues to be used in Pavlovian 

discrimination in two, 42-minute sessions. The 10 s auditory cues were repeating, 500 

ms motifs of a horn, siren or broadband click and can be heard as .wav files here: 

http://mcdannaldlab.org/resources/ardbark. Previous studies have found these cues to 

be equally salient, yet readily discriminable (Wright et al., 2015; DiLeo et al., 2016). 

Sessions consisted of four presentations of each cue (12 total presentations) with a mean 
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inter-trial interval of 3.5 min. The order of trial type presentation was randomly determined 

by the behavioral program, and differed for each rat during each session.  

4.2.5.4 Pavlovian Fear Discrimination 

Following pre-exposure, all rats received 8, 64-minute behavior-only discrimination 

sessions. A single session consisted of 18 cue trials: four danger trials, six uncertainty 

no-shock trials, two uncertainty shock trials, and six safety trials, with a mean inter-trial 

interval of 3.5 min. Each auditory cue was associated with a different probability of foot 

shock (0.5 mA, 0.5 s): danger, p = 1.00; uncertainty, p = 0.25; and safety, p = 0.00. The 

physical identities of the cues were counterbalanced, so that the same sound was 

associated with different probabilities of foot shock across rats. Foot shock was 

administered two seconds following the termination of the auditory cue. 

4.2.6 Light Illumination 

The remaining 10 discrimination sessions were divided into 5, 2-session blocks. All rats 

were habituated to optogenetic cables in the first 2-session block. For one group of rats 

[(eNpHR (n = 3), YFP (n = 4)], the next 8 sessions consisted of 2-session blocks of CUE 

illumination, no illumination, ITI illumination and no illumination. During CUE illumination 

sessions, 532 nm green light was delivered bilaterally for the entirety of all 10 s cues. 

During ITI illumination sessions, light was delivered for 10 s ITI periods between cue trials. 

No illumination sessions provided measures of Pre and Post illumination fear behavior 

for comparison to illumination trials, rats were not plugged into behavior cables during 

block three and block five of no illumination. A second group of rats [(eNpHR (n=6), YFP 

(n=4)] received the exact same procedure, only ITI illumination was given first to 

counterbalance for potential order effects. Due to a programming error, ITI illumination 
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sessions in each group received one additional 10-second illumination (versus CUE 

illumination sessions) for a total of 19, 10 s illumination periods.  

Increased intensity of laser illumination could result in more firing inhibition and stronger 

behavioral outcomes. Unsure of which illumination strength would be sufficient and ideal 

to inhibit cSN activity of transduced neurons, I tested two illumination intensities: a more 

typical intensity of 12.5mW, and a higher intensity of 25mW. If SN activity is required for 

fear suppression, 12.5mW of laser illumination may be insufficient to induce a change in 

behavior. If this were the case, I would expect to see a dose effect: 12.5mW illumination 

would result in lesser or no behavioral change compared to 25mW illumination. However, 

if 12.5mW illumination was sufficient to saturate the transduction area and induce 

behavior change, both illumination intensities would result in equivalent behavioral 

effects.  

To examine the possibility of an effect of dose with respect to laser illumination, animals 

in each group received either 12.5mW or 25mW of 532nm green laser light during the 

optogenetic procedure. Of the animals that received CUE illumination first [(eNpHR (n=3), 

YFP (n=4)], all 4 YFP controls and two of three eNpHR rats received 25mW illumination. 

Of the animals that received ITI illumination first [(eNpHR (n=6), YFP (n=4)], two YFP 

controls and two eNpHR rats received 12.5mW bilateral illumination of the cSN; the 

remaining 2 YFP controls and 4 eNpHR rats received 25mW illumination. Altogether, five 

animals received 12.5mW illumination and the remaining twelve received 25mW bilateral 

illumination. Both illumination intensity (12.5mW vs. 25mW) and order of illumination 

(CUE illumination first vs. ITI illumination first) were included as factors main ANOVA 

findings. 
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4.2.7 Histology  

Rats were deeply anesthetized using isoflurane, perfused with 0.9% biological saline and 

4% paraformaldehyde in a 0.2 M potassium phosphate buffered solution. Brains were 

extracted, post-fixed in 10% neutral-buffered formalin for 24 hr, stored in 10% 

sucrose/formalin and sectioned via microtome. All brains were processed for fluorescent 

microscopy using anti-tyrosine hydroxylase immunohistochemistry (Millipore Sigma 

AB152 primary paired with Jackson Immuno 711-585-152 pre-conjugated Alexa 594 

secondary) and NeuroTrace 435/455 (Thermofisher N21479). 

4.2.8 Statistical Analysis  

4.2.8.1 Behavior Analyses 

Behavioral data were acquired using Med Associates, Med-PC IV (RRID:SCR_012156) 

software. Raw data were processed in Matlab (RRID:SCR_001622) to extract time 

stamps for nose pokes, cues, foot shocks and illumination. Baseline nose poke rate was 

the mean of the 20 s prior to cue presentation. Cue nose poke rate was the mean of the 

10 s cue. Suppression of rewarded nose poking was calculated as a ratio: (baseline poke 

rate – cue poke rate) / (baseline poke rate +cue poke rate) (Rescorla, 1968; Pickens et 

al., 2009; Anglada-Figueroa and Quirk, 2005; Arico and McNally, 2014; Lee et al., 2005; 

McDannald and Galarce, 2011). A ratio of ‘1.00’ indicated high fear and ‘0.00’ indicated 

low fear. Gradations between these upper and lower bounds indicated intermediate levels 

of fear. Use of the suppression ratio permitted an objective measure of fear across cue 

and illumination presentations. 

Suppression ratios were analyzed using repeated measures ANOVA in SPSS 

(RRID:SCR_002865) with between factors: group (eNpHR/YFP), light intensity (12.5 mW 
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or 25 mW of laser illumination) and order (CUE versus ITI illumination first) and within 

factors: cue (danger, uncertainty, safety), block (2-session blocks 1 through 5) & 

Illumination (CUE versus ITI laser illumination). Partial eta squared (ηp2) and observed 

power (op) are reported for all ANOVA results as indicators of effect size. 95% bootstrap 

confidence intervals were constructed to support ANOVA results. Pearson’s correlation 

coefficient (R2) was used to compare suppression ratios during cue and illumination. For 

all analyses, p < 0.05 is considered significant. 
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4.3 Results 
 

Figure 4.1 Histology and transduction mapping 

(A) Representative fluorescent microscopy images of viral transduction from YFP control 
with bilateral infusions of AAV-hSyn-EYFP (yellow). Fluorescent immunohistochemistry 
labeling of tyrosine hydroxylase (TH) for rostrocaudal orientation (red), and NeuroTrace 
(NT) neuron cell body labeling for visualizing overall slice composition (blue). (B) Extent 
of transduction (yellow) and fibre optic ferrule placements (black squares) plotted for all 
rats YFP (n = 8, left) and eNpHR (n = 9, right). Atlas images redrawn from (Paxinos & 
Watson, 2007). 
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Seventeen adult male, Long Evans rats received bilateral infusions of either enhanced 

halorhodopsin (eNpHR: AAV-hSyn-eNpHR3.0-EYFP) or a control fluorophore (YFP 

control: AAV-hSyn-EYFP), and accompanying bilateral optical ferrules dorsal to the 

caudal substantia nigra (cSN). The cSN was successfully transducted between Bregma 

levels -5.54 and -6.72 mm, in both YFP controls (n = 8) and eNpHR (n = 9) rats (Paxinos 

& Watson, 2007). While somewhat diffuse, transduction was concentrated in tyrosine 

hydroxylase-containing region substantia nigra compacta (dorsal tier) and the reticulata, 

with each individual showing greater than 90% YFP expression in the cSN at Bregma -

6.60 mm. Areas of most consistent transduction for each group of rats are the deepest 

yellow: between Bregma -6.12 mm and -6.84 mm for YFP controls, or Bregma -5.88 mm 

and -6.60 mm for eNpHR rats. Ferrule placements were confirmed to be dorsal to the 

cSN, at Bregma -6.36 mm +/- 0.72 mm. Each rat’s complete transduction and ferrule tip 

placements were drawn from fluorescent slices processed for tyrosine hydroxylase 

immunohistochemistry and Neurotrace (Figure 4.1 A), made translucent and stacked for 

visualization (Figure 4.1 B). 
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Figure 4.2 Pavlovian discrimination and experiment timeline  

(A) Nose poking rat in fear conditioning chamber with light blocking headcap, plugged 
into bilateral optogenetic cables to permit light delivery. (B)  Pavlovian fear discrimination 
consisted of three auditory cues, each predicting a unique probability of foot shock: 
danger, p = 1.00 (red); uncertainty, p = 0.25 (purple); and safety, p = 0.00. (C) Laser light 
was administered for 10 seconds during cue presentation (CUE Illumination) or an 
equivalent duration intertrial interval (ITI Illumination). Order of illumination CUE first (top) 
or ITI first (bottom) was counterbalanced. One session of Pavlovian discrimination 
occurred each day and each block contained two sessions (10 total sessions over 5 
blocks). 

 

Following recovery from surgery, all rats were trained to nose poke for a food reward 

(Figure 4.2 A). During fear discrimination, three distinct auditory cues predicted unique 

foot shock probabilities: danger (p = 1.00), uncertainty (p = 0.25) and safety (p = 0.00) 



 

87 

(Figure 4.2 B). Trial order was randomized for each rat during each session. Fear was 

measured with suppression ratio and calculated by comparing nose poke rates during 

baseline and cue periods (see 4.2 Methods: 4.2.8.1 Behavior Analyses).  

After eight discrimination sessions, rats received 10 additional discrimination sessions 

with and without light illumination (Figure 4.2 C). To minimize the effect of cable 

attachment on fear behavior, all rats were habituated to optogenetic cables in Block 1 (no 

illumination). For one group of rats [(eNpHR (n = 3), YFP controls (n = 4)], the next 8 

sessions consisted of 2-session blocks: CUE illumination (Block 2) → no illumination 

(Block 3) → ITI illumination (Block 4) → no illumination (Block 5). A second group of rats 

[(eNpHR (n=6), YFP controls (n=4)] received the exact same procedure, only ITI 

illumination was given first to counterbalance potential effects of illumination type order. 

During CUE illumination sessions, 532 nm green light was delivered bilaterally for all 10 

s of each auditory cue (danger = 4, uncertainty = 8, safety = 6). During ITI illumination 

sessions, light was delivered for 10 s between cue trials. Pre- and Post-illumination fear 

behavior for all critical comparisons to illumination fear behavior (Blocks 2 & 4) came from 

no illumination sessions (Blocks 1, 3 & 5).  
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Figure 4.3 Baseline nose poking and pre-illumination discrimination 

(A) Baseline nose poking per second for YFP controls (gray) and eNpHR rats (black) 
throughout behavioral testing. Dotted line indicates division between behavior-only 
sessions (left sessions, 1-8) and blocked illumination sessions (right sessions, 2-18). (B) 
Nose poke suppression to danger (red), uncertainty (purple), and safety (blue) cue 
presentation during the first eight sessions of Pavlovian fear discrimination for YFP 
controls. (C) Nose poke suppression for eNpHR rats, all graph properties maintained from 
B. 
 

4.3.1 Baseline nose poking 

It is essential that rats in each group demonstrate similar levels of baseline nose poking 

for nose poke suppression to reflect an accurate measure of fear. The SN is canonically 

implicated in movement. To ensure our results did not reflect a movement deficit, it was 

especially important that baseline nose poking was consistent between groups 
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throughout behavior testing. Critically, YFP controls and eNpHR rats demonstrated 

equivalent baseline nose poke rates throughout all 18 sessions of discrimination (Figure 

4.3 A). In support, ANOVA for baseline nose poke rate [between factors: group (YFP vs. 

eNpHR), illumination intensity (12.5 mW vs. 25 mW) and illumination order (ITI-CUE vs. 

CUE-ITI); within factors: session (18)] found a main effect of session (F17,170 = 3.027, p = 

1.27 x 10-4, ηp2 = 0.23, op = 0.99), as well as a trend toward significance for a group by 

session interaction (F17,170 = 1.66, p = 0.056, ηp2 = 0.142, op = 0.92). However, this trend 

may have been due to incorporating excessive additional variance attributed to including 

illumination intensity and order as factors, which were counterbalanced across groups. 

ANOVA for baseline nose poke rate excluding illumination intensity and order [between 

factor: group (YFP vs. eNpHR); within factor: session (18)] found only a main effect of 

session (F17,255 = 3.027, p = 9.00 x 10-6, ηp2 = 0.19, op = 1.00). Critically, no main effect 

of group was detected in either ANOVA. These results minimize concerns that group 

differences observed during fear discrimination result from underlying differences in 

baseline rewarded nose poking.  

4.3.2 Pre-illumination fear discrimination 

Consistent with previous studies, suppression ratios were initially high to all cues (Wright 

et al., 2015; DiLeo et al., 2016; Walker et al., 2018) and full discrimination (danger > 

uncertainty > safety) was observed by the eighth session. Suppression ratios were high 

to danger, intermediate to uncertainty, and low to safety (Figure 4.3 B & C). To observe 

meaningful, differential effects of light illumination in YFP versus eNpHR rats, both groups 

must demonstrate equivalent fear discrimination prior to light illumination. Critically, YFP 

controls and eNpHR rats acquired equivalent discrimination prior to light illumination. In 
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support, ANOVA for suppression ratios [between factor: group (YFP vs. eNpHR); within 

factors: cue (danger vs. uncertainty vs. safety) & session (8)] found a significant effect of 

cue (F2,30 = 37.12, p = 7.73 x 10-9, ηp2 = 0.71, op = 1.00), session (F7,105 = 18.07, p = 1.41 

x 10-15, ηp2 = 0.55, op = 1.00), and a cue x session interaction (F14,210 = 5.47, p = 6.48 x 

10-9, ηp2 = 0.27, op = 1.00). ANOVA revealed no main effect of or interaction with group 

(Fs < 1.51, ps > 0.237). Thus, differences in fear discrimination during illumination blocks 

cannot be attributed to differences in pre-illumination discrimination. 
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Figure 4.4 cSN inhibition globally inflates fear 

(A) Mean + SEM nose poke suppression during 10 s danger (red), uncertainty (purple) 
and safety (blue) cue presentation for YFP controls (gray/left) and eNpHR rats 
(black/right) in each two-session block (pre/illumination/post: blocks 1-3 (top) and 3-5 
(bottom) in Figure 4.2 C). Green bar background indicates laser illumination during cue 
presentation (CUE illumination). (B) Mean + SEM nose poke suppression during danger, 
uncertainty and safety cue presentation for YFP controls and eNpHR rats when 10 s laser 
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illumination occurred outside of cue presentation (ITI illumination) in each two-session 
block (pre/illumination/post: blocks 3-5 (top) and 1-3 (bottom) in Figure 4.2 C). Coloring 
maintained from A. (C) Mean + SEM nose poke suppression during 10 s ITI period for 
YFP controls (gray) and eNpHR rats (black) for each two-session block when 10 s laser 
illumination occurred outside of cue presentation. Green bar background indicates laser 
illumination during ITI period (ITI illumination). Data are from the same blocks represented 
in panel B. +Black plus signs indicate 95% bootstrap confidence intervals for mean 
differential suppression ratio (Illumination - pre or illumination - post) do not contain zero. 
+Purple plus signs indicate 95% bootstrap confidence interval for uncertainty differential 
suppression ratio (illumination - pre or illumination - post) does not contain zero. 
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Table 4.1 Complete ANOVA with all factors 

ANOVA table of within-subjects effects with all possible factors [between factors: group 
(YFP vs. eNpHR), illumination intensity (12.5 mW vs. 25 mW) and counterbalanced 
procedure order (ITI illumination first - CUE illumination last vs. CUE illumination first - ITI 
illumination last); within factors: illumination (10 s illumination during CUEs vs. 10 s 
illumination during ITIs), cue (danger vs. uncertainty vs. safety) & block (3, 2-session 
blocks: Pre-illumination vs. Illumination vs. Post-illumination)]. F statistic, associated p 
value, partial eta squared (ηp2) and observed power reported for all effects. Significant 
effects indicated in bold text (p < 0.05). Critical and significant three-way, illumination x 
block x group interaction (green background). Insignificant four-way, illumination x cue x 
block x group interaction (red background).  
 
 
4.3.3 Endogenous cSN activity is necessary for fear suppression 

A causal role for the cSN in fear suppression requires illumination-dependent increases 

in fear specific to eNpHR rats during CUE illumination. Following this logic, it is critical 

that changes in behavior are not due to dose-response illumination effects: whether 

animals received 12.5mW or 25mW of laser illumination. Or, due to order of illumination 

presentation: whether animals received CUE illumination or ITI illumination first. In 

support, no dose-response illumination effects, nor interactions between group and 

illumination were observed, regardless of intensity or order. Further, collapsing across 

illumination order and intensity, ANOVA revealed no group x illumination interaction 

(Table 4.1, Row 2). Complete ANOVA results with all factors are reported in Table 4.1.  

Changes in suppression ratios during illumination could be driven by responses to any 

one of the cues: danger, uncertainty or safety. However, increases in suppression driven 

by the uncertainty cue would be most likely: an aversive cue with room to observe an 

increase in suppression as it approaches ceiling suppression of 1.00. Increases in 

suppression driven solely by the uncertainty cue would require a significant four-way, 

illumination x cue x block x group interaction, which we did not find (Table 4.1, Row 44 
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highlighted in red). Instead, ANOVA for suppression ratio [between factors: group (YFP 

vs. eNpHR), intensity (12.5 mW vs. 25 mW) and order (ITI-CUE vs. CUE-ITI); within 

factors: illumination (CUE vs. ITI illumination), cue (danger vs. uncertainty vs. safety) & 

block (3, 2-session blocks: Pre vs. CUE Illumination vs. Post)] found a significant three-

way, illumination x block x group interaction (F2,20 = 5.69, p = 0.011, ηp2 = 0.36, op = 

0.81), indicating the increase in suppression was observed globally, to all cues. It is still 

possible that changes in cued behavior were driven solely by the uncertainty cue, but that 

the complete ANOVA was unable to detect the supporting four-way interaction due to the 

inclusion of extraneous factors.  

Eliminating illumination intensity and order, an additional ANOVA for suppression ratio 

was performed with factors of illumination, group, cue and block. ANOVA revealed a main 

effect of cue (F2,30 = 96.67, p = 8.37 x 10-14, ηp2 = 0.87, op = 1.00). Although discrimination 

remained consistent, visual inspection suggested a dominant pattern of increased 

suppression when the laser was present (Figure 4.4 A). In support, the ANOVA revealed 

a main effect of block (F2,30 = 8.41, p = 0.001, ηp2 = 0.36, op =0.95). Indeed, rats generally 

increased suppression during illumination blocks. In agreement with the complete 

ANOVA, the simplified version also failed to identify a significant four-way interaction, but 

found a significant three-way, illumination x group x block interaction (F2,30 = 6.79, p = 

0.004, ηp2 = 0.31, op = 0.89). Critically, only eNpHR rats in the CUE illumination condition 

increased suppression to all cues (Figure 4.4 A, right), this pattern was not observed 

under any other experimental condition (Figure 4.4 A, left and B). In support, the 95% 

bootstrap CI for differential suppression ratio, for the mean of all cues (mean CUE 

Illumination - mean CUE Pre illumination) did not contain zero for CUE illumination 
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sessions in eNpHR rats (M = 0.16, 95% CI [0.02, 0.34]) (Figure 4.4 A right, +black plus 

sign). Moreover, this global increase in suppression was driven mostly, but not solely, by 

suppression to the uncertainty cue. In support, the 95% bootstrap CI for differential 

suppression ratio, (uncertainty CUE Illumination - uncertainty CUE Pre illumination) (M = 

0.22, 95% CI [0.09, 0.43]) also did not contain zero for CUE illumination sessions in 

eNpHR rats (Figure 4.4 A right, +purple plus sign). 

 

 
 
Figure 4.5 Light illumination and suppression 

(A) Differential suppression ratios (Illumination - Pre illumination) are plotted for YFP 
controls (gray). Suppression ratios reflect behavior during cue laser epochs within CUE 
illumination sessions (dark green, y-axis) vs. differential suppression ratios (Illumination - 
Pre illumination) during laser-only epochs from ITI illumination (light green, x-axis) 
sessions. (B) Differential suppression ratios as described in A, plotted for eNpHR rats 
(black). 
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4.3.4 Global inflation of fear is specific to cue presentation  

The SN is canonically implicated in movement by way of its dopaminergic inputs to the 

striatum and GABAergic projections to the thalamus (Groenewegen, 2003). Thus, it is 

possible that inhibition of cSN activity is sufficient to suppress nose poking, a movement, 

in absence of cue presentation. This interpretation could be consistent with only eNpHR 

rats demonstrating increased suppression during cue presentation. However, increased 

suppression would also be observed when laser illumination was delivered alone. 

Critically, ITI illumination sessions were designed to capture suppression during this 

exact, laser-only condition. To determine if global inflation of fear was specific cue 

presentation at the group level, we performed an additional ANOVA for suppression ratio 

during the laser-only epochs from ITI illumination sessions (Figure 4.4 C). Critically, 

ANOVA for suppression ratio during ITI l alone [between factor: group (YFP vs. eNpHR) 

and within factor: block (3, 2-session blocks: Pre vs. ITI Illumination vs. Post)] revealed 

no main effect of block or group, and no block x group interaction. Although we find no 

effect of illumination at the group level it is still possible that weaker, laser-only effects 

could be observed at the level of the individual. 

To address this possibility, we asked whether suppression during CUE illumination was 

related to suppression during laser-only epochs from ITI illumination sessions (Figure 

4.5). If laser illumination alone impacted suppression at the individual level, eNpHR rats 

with large increases in suppression during CUE illumination, should increase suppression 

similarly during laser-only epochs. Moreover, if these effects were due to inhibition of cSN 

activity, this relationship should not be observed in YFP rats. No relationships between 

differential suppression ratios for CUE illumination versus laser-only epochs were found 
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at the level of the individual. Laser illumination alone was insufficient to induce a change 

in behavior at the group or individual level. Thus, global increases in suppression, specific 

to eNpHR rats, were due inhibition of cSN firing during cue presentation. Endogenous SN 

activity is not only capable of suppressing fear (Bouchet et al., 2018), but also necessary 

for suppressing fear. 

4.4 Discussion 

I optogenetically inhibited SN activity during the entirety of cue presentation in male rats 

while they discriminated between danger, uncertainty and safety. Previous work has 

demonstrated that dopaminergic neurons in the SN increase their activity in response to 

not only reward, but also adversity (Frank & Surmeier, 2009). More recently, Bouchet et 

al., 2018 identified a connection between SN DA activation and improved fear extinction. 

Although these are important and novel pieces of a larger SN and fear narrative, they do 

not consider roles for cell types other than dopamine in fear. Nor do they consider 

potential contributions of the SN to other fear processes, such as discrimination. 

Extending the current state of this literature, I demonstrated that optogentically inhibiting 

endogenous SN activity during fear discrimination globally increases fear to danger, 

uncertainty and safety.  

Before considering further implications of these results, it is necessary to address some 

limitations. This experiment used only adult male rats, and makes no claims about 

whether similar global inflation of fear would be observed in biologically female rats. 

However, sex-specific investigations will be critical going forward. The cSN is necessary 

for suppression of fear, and activation of dopaminergic SN neurons has the ability to 

facilitate fear extinction. Many have suggested that PTSD may be a stress-induced 
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disorder of fear circuitry (Shin & Handwerger, 2009), which could be mediated by 

excessive fear conditioning or impaired fear extinction (Pitman, 1988). In the United 

States, the risk of PTSD is twofold higher in women (Breslau, 2002), which may reflect 

sex differences in underlying aberrant fear circuitry, but certainly reflects a need to 

consider sex-differences in future experiments. Further investigation of roles for specific 

cell types within the SN in the context of fear is also necessary.  

Our manipulation, under control of the human synapsin promoter, was not cell-type-

specific. As such, global inflation I observed could be driven by the optogenetic inhibition 

of dopaminergic (Bouchet et al., 2018), glutamatergic (Yamaguchi et al., 2013), or 

GABAergic (Brown et al., 2014) neurons of the cSN. Non-specific manipulation was a 

great way to begin a causal investigation of the SN in fear. Going forward, cell-type-

specific and subdivision-specific manipulations will be necessary to evaluate 

contributions of the cSN to fear discrimination.  

Part of a direct pathway facilitating motor output, the reticular component of the SN is one 

of two major GABAergic outputs of the basal ganglia (Brown et al., 2014). The validity of 

the direct and indirect pathway model has come into question (Nambu, 2008). However, 

in the canonical view, activation of these outputs targets pre-motor areas, ‘releasing the 

brakes’ and facilitating motor behavior (Groenewegen, 2003). As part of the nigrostriatal 

pathway, dopaminergic neurons of the SN compacta are critical inputs to the basal 

ganglia, classically implicated in movement, and recently implicated in fear extinction. 

Although we did not observe effects of inhibition specific to movement, our design 

uniformly inhibited activity in both components of the SN, and contributions of the reticular 

component to fear have yet to be dismissed.  
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Chapter 5: Summary of Results and Discussion 
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Figure 5.1 Functional Populations of the caudal vlPAG 

(A) Four functional populations of the caudal vlPAG identified in Chapters 2 and 3 

depicted alongside non-cue-responsive units (gray), the final unanalyzed subdivision of 

all recorded single-units. Warm tones reflect cue-excited function populations: Onset 

(peach) & Ramping (wine). Cool tones reflect cue-inhibited populations: Flip (periwinkle) 

& Sustain (seafoam). (B) Alternative arrangement of function populations, where Flip and 

Ramping neurons comprise a single population that signals Threat Timing (wine and 

periwinkle candy stripe). 
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Figure 5.2 Firing and Regression Summary 

(A) Mean, Z-score normalized firing to danger (red), uncertainty (purple) and safety (blue) 
is shown for the 1 s pre-cue period and the 10 s cue period for the Onset population (n = 
29). (B) Mean ± SEM beta coefficient is shown for each regressor, in 1 s intervals, for the 
Onset population: probability (pink), fear output (dark gray). (C) Normalized firing for the 
Ramping population (n = 14) plotted as in A. (D) Mean ± SEM beta coefficient is shown 
for each regressor, in 1 s intervals, for the Ramping population. (E) Normalized firing for 
the Flip population (n = 45) plotted as in A. (F) Mean ± SEM beta coefficients are shown 
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for each regressor, in 1 s intervals, for the Flip population. (G) Normalized firing for the 
Sustain population (n = 46) plotted as in A. (H) Mean ± SEM beta coefficient is shown for 
each regressor, in 1 s intervals, for the Sustain population. Cue onset (On) and offset 
(Off) are indicated by vertical black lines for all firing graphs in the left column. Colored 
backgrounds correspond to Figure 5.1 A. 
 
 
5.1 Summary of Results  

In Chapters 2 and 3, I recorded vlPAG single-unit activity while rats underwent fear 

discrimination in which three auditory cues predicted unique foot shock probabilities. 

These findings expanded the functional diversity of vlPAG neurons. Observing robust 

vlPAG threat-related activity was expected, given its essential role in defensive behavior 

(Bandler and Depaulis, 1991; Fanselow, 1991; Carrive et al., 1997). However, the 

diversity of information contained in these signals is surprising (Figure 5.1 A). I identified 

single-units with short-latency excitation to cue onset (Figure 5.2 A, Onset), longer-

latency excitation to cue offset (Figure 5.2 C, Ramping), early cue inhibition which gave 

rise to late cue danger excitation (Figure 5.2 E, Flip), and sustained scaled inhibition over 

the course of cue presentation (Figure 5.2 G, Sustain). Altogether, these findings reveal 

diverse temporal responding and threat signaling in the vlPAG.  

Chapter 2 found a cue-excited population that exclusively signaled threat probability 

(Figure 5.2 B, Onset) as well as a cue-excited population that prioritized threat probability 

signaling over fear output (Figure 5.2 D, Ramping). Chapter 3 found patterned activity 

and signaling of neurons resembling that of previously identified Ramping neurons 

(Figure 5.2 F, Flip), and a population of cue-inhibited neurons containing a complete 

neural correlate for fear output, but also containing information about threat probability 

(Figure 5.2 H, Sustain). It is clear that the vlPAG contains a combination of signals that 

solely reflect threat probability, prioritize threat probability, or signal a combination of fear 



 

104 

output and threat probability throughout cue presentation. However, single-units that 

demonstrate a pure reflection of fear output, in direct accordance with the longstanding 

hypothesis of vlPAG function, remain elusive.  

Activity exclusively reflecting fear output could potentially emerge within the vlPAG at the 

ensemble level (Jones et al., 2007; Zhou et al., 2018). Yet, this level of activity would still 

be constructed from neural correlates for threat probability at the single-unit level, unless 

it could be found in non-cue-responsive single-units (Insanally et al., 2019) (Figure 5.1, 

gray). Alternatively, it is still possible (although unlikely) that neural activity purely 

reflecting fear output may reside in neurons in the extreme caudal vlPAG: in the ~0.64mm 

just beyond our recording site. It is also possible that neural activity purely reflecting fear 

output, irrespective of threat probability may not be necessary to drive defensive behavior.  

Nonetheless, signals for threat probability and fear output co-exist in the vlPAG. Although 

the results presented in Chapters 2 and 3 are purely correlative, these signals could play 

a causal role in fear expression. Determining the causal, behavioral implications of these 

functional populations would require identifying the cell type (or types) within each 

functional population. Then, using transgenic rats, examining the behavioral impact of 

optogenetically inhibiting each discrete functional type during ongoing behavior. This is 

particularly challenging in transgenic rat models, which are limited in type compared to 

mice, and do not express Cre recombinase (the would-be target of a Cre-mediated 

optogenetic construct) in every region of interest. Moreover, some of the functional types 

we observed demonstrate widely varied baseline firings rates (Ramping, Flip and 

Sustain), and may consist of more than one neuron type. If this were the case, a 

transgenic rodent model designed to target one cell type, would not be able to silence an 
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entire functional population. Leaving part of the population intact would preclude us from 

determining whether activity of that population as a whole was necessary to behavior. All 

of these caveats are beyond the scope of this dissertation. However, a non-cell-type-

specific version of this optogenetic procedure is not beyond this document, and was 

employed in Chapter 4 to evaluate a causal role for the cSN in fear.  

I inhibited cSN activity during the entirety of all danger, uncertainty and safety cues to 

determine whether endogenous cSN activity was necessary for suppression of 

conditioned fear. CSN Inhibition resulted in global inflation of fear to all cues. Critically, 

this effect was specific to CUE-Illumination in eNpHR rats. Endogenous cSN activity is 

not only capable (Bouchet et al., 2018), but also required for fear suppression. It is clear 

that the cSN should be considered as a novel node in the fear circuit. In fact, cSN activity 

could modulate some of the functional vlPAG populations revealed in Chapters 2 and 3 

via a direct, robust projection from the SN to the vlPAG (Kirouac et al., 2004).  
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Figure 5.3 Revising the fear circuit 

Top left to bottom right: Bregma +3.72mm with prelimbic mPFC (PL) indicated in rust, 
Bregma -2.76mm with lateral and medial central amygdala (CeA) subdivisions indicated 
in purple, Bregma -6.36mm with pars compacta and pars reticulata components of the 
caudal substantia nigra (inhibited in Chapter 4) indicated in marigold, and Bregma -
7.68mm with caudal vlPAG (Chapter 2 and 3 recordings) indicated in teal (bottom right). 
Additional subdivisions of the CeA and PAG are indicated in white, and not the focus of 
this dissertation. Diagrams adapted from Paxinos & Watson, 2007. 
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5.2 Discussion 

5.2.1 The vlPAG as a site of integration 

It is nearly universally accepted that the amygdala is a key node of dysfunction in stress 

(Rauch et al., 2000) and anxiety disorders (Etkin & Wager, 2007). This may be driven in 

part by technical considerations: whole-brain functional magnetic resonance imaging 

(fMRI) can detect amygdala BOLD signals (Johnstone et al., 2005), while detecting 

subregion-specific PAG BOLD signals requires less common, high-field strength fMRI 

(Satpute et al., 2013). Perhaps the primary intellectual driver is that the amygdala is 

theorized to be a privileged site of integration and learning in the fear circuit (Admon et 

al., 2013; Mahan & Ressler, 2012). The functional populations identified in Chapters 2 

and 3 illustrate that the amygdala is not privileged in this regard, and mark the vlPAG as 

a likely node of dysfunction in psychiatric disorders of fear and anxiety. Appreciation for 

the vlPAG as a site of integration will hasten mapping of a more complete fear circuit. 

Moreover, deliberate study of vlPAG function (Arico et al., 2017; Assareh et al., 2017; 

Rozeske et al., 2018) and dysfunction in psychiatric disease (Yeh et al., 2017), will be 

essential to developing effective therapies for disorders characterized by exaggerated 

threat estimation and aberrant fear. In addition to highlighting the vlPAG as a site of 

integration, the functional populations identified in Chapters 2 and 3 also pose interesting 

questions about the functional relationship between the vlPAG and the CeA. 

5.2.2 Rethinking the functional CeA-vlPAG relationship 

VlPAG threat probability signals may be trained up by the CeA, but become CeA-

independent with sufficient training (Ozawa et al., 2017). Consistent with this 

interpretation, the CeA is essential to the acquisition of conditioned suppression with 
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limited training, but extended training mitigates the effects of CeA lesions (Lee et al., 

2005; McDannald, 2010). However, I do not expect the CeA to become inessential 

following extensive fear discrimination training; threat probability estimates should 

continue to be updated as needed. In support, the CeA is likely essential to updating 

vlPAG threat probability signaling (McNally et al., 2011; Ozawa et al., 2017). 

5.2.3 Predatory imminence continuum 

The findings of Chapters 2 and 3 are best understood through comparison to the account 

of vlPAG function outlined in the predatory imminence continuum (PIC): a highly 

influential theory of defensive behavior (Fanselow & Lester, 1988). Organizing features 

of the PIC are time and degree of threat. As predation becomes more imminent (pre-

encounter → post-encounter → circa-strike), the form and intensity of defensive 

behaviors change. Cued fear is argued to capture post-encounter defenses: immobility 

elicited when predators are nearby. In the neural instantiation of the PIC, the amygdala 

integrates information about environmental stimuli (auditory cues here), nociceptive 

information (foot shock) and time, to produce a signal for degree of threat (Fanselow & 

Lester, 1988). This amygdala-derived signal is relayed to the vlPAG to organize fear 

output (Fanselow, 1991, 1994). Implicit in the PIC model, is that the vlPAG does not 

contain information about time or degree of threat – only the resultant fear output. Yet, I 

found vlPAG neurons containing detailed information about degree of threat. 

Although threat probability signaling was prioritized (Ramping and Flip) and consistent 

(Sustain) in other functional populations, information solely about degree of threat to 

challenge the vlPAG PIC model, was specific to Onset neurons. Onset activity may be 



 

109 

used to organize a variety of fear responses, but these neurons do not intrinsically signal 

fear output. What might that look like? 

Onset vlPAG neurons may organize fear responses via projections to the central 

amygdala (CeA) for fear updating, to the magnocellular nucleus of the medulla (Mc) 

(Tovote et al., 2016) and rostral ventromedial medulla (RVM) for fear output via freezing 

(D. M. Vianna et al., 2008). Or, Onset projections to midline/intralaminar thalamus could 

rapidly relay threat probability estimates to a larger fear network (basolateral amygdala, 

prelimbic cortex, infralimbic cortex, insular cortex, etc.) (Buchanan & Thompson, 1994; 

Krout & Loewy, 2000; Sengupta & McNally, 2014; Vertes et al., 2015), promoting a variety 

of threat-related processes (Faull et al., 2016). Whereas the activity pattern of Onset 

neurons is distinct and reflects degree of threat, activity patterns of Flip and Ramping 

neurons are noticeably similar. In fact, Flip and Ramping activity may contain information 

about threat timing, another element of the canonically amygdala-centric, PIC model.  
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Figure 5.4 Threat timing pilot 

(A) Mean ± SEM suppression ratio to Cue 50 during 14, 10 s intervals (20 s pre-cue, 100 
s of cue presentation and 20 s post-cue) is shown for female rats (n = 8). Blocks reflect 5 
sessions each of 20-session Threat Timing procedure: Cue 50 vs. Cue 100 
discrimination. Suppression to Cue 50 ranges from dark purple (Block 1) to light purple 
(Block 4). Time of cue onset and offset are indicated with ‘On’ and ‘Off” and time of shock 
is indicated with a dotted vertical line accompanied by a red ‘S’ atop. (B) Mean ± SEM 
suppression ratio of same female rats to Cue 100. Suppression to Cue 100 ranges from 
red (Block 1) to yellow (Block 4). All other graph properties maintained from A, applied to 
Cue 100 behavior. 

 

5.2.4 Flip and Ramping neurons likely signal threat timing 

There are many similarities between Flip and Ramping neurons. In terms of signaling, 

Flip and Ramping neurons both prioritize threat probability toward the last half of cue 

presentation. In terms of firing, Flip and Ramping populations demonstrate brief 

decreases in activity at the time of cue presentation, that ultimately give way to gradual 

increases in firing to shock-predictive cues (danger and uncertainty). Like Flip neurons 

(Figure 3.2 A), Ramping neurons continue firing to shock-predictive cues through a 2 s 

post-cue delay, and diminish firing just after shock delivery has occurred (Wright et al., 

2019; Wright & McDannald, 2019). Indeed, Flip and Ramping neurons may comprise a 
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single Threat Timing population, critical for timing impending noxious events (Figure 5.1 

B). The multi-cue discrimination procedure described in Chapters 2 through 4 was not 

designed to examine whether vlPAG single-units signal threat timing. So, I drew from a 

classic temporal discrimination task (Rosas & Alonso, 1996), to devise and pilot a new 

behavioral procedure, which can be used at a later time to test whether Flip and Ramping 

neurons actually signal Threat Timing. 

5.2.4.1 Investigating threat timing 

In the threat timing procedure, rats are trained to nose poke for a food reward and fear is 

measured using suppression ratio as previously described (Methods: Chapter 2, 3 and 

4). Rats are habituated to two, to-be-continued auditory cues, followed by 5, 4-session 

blocks of discrimination. Unlike previous procedures with 10-second cues and uncertain 

shocks, threat timing discrimination consists of 100-second cues, always associated with 

shock. Foot shock occurs halfway through Cue 50 (50 seconds into cue presentation) 

and at the end of Cue 100 (at the 100th second of cue presentation). Within the first 4-

session block, rats are able to discriminate between Cue 50 and Cue 100 (Figure 5.4).  

Rats demonstrate increased suppression to Cue 50 between the time of cue onset and 

foot shock presentation. Suppression diminishes during the 10 seconds following foot 

shock, before increasing again until cue termination. Pre-shock suppression to Cue 50 is 

higher than post-shock suppression to Cue 50, and post-shock suppression decreases 

over each discrimination block (Figure 5.4 A). By contrast, suppression to Cue 100 

increases from the time of cue onset, is maintained throughout cue presentation, and 

diminishes during the 10 seconds following foot shock/cue termination (Figure 5.4 B). 
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Paired with single-unit recording, signals specific to threat timing can be isolated using 

this procedure, while threat probability stays the same.  

To determine whether Flip and Ramping neurons signal Threat Timing, caudal vlPAG 

activity will need to be recorded while rats receive threat timing discrimination. What might 

firing of Threat Timing neurons look like in this procedure? Increases in firing should be 

observed to Cue 50 and Cue 100, and maximal firing to each cue should be observed 

just prior to foot shock. Although maximal firing to the two cues should be the same (both 

shocks are identical), the rate of increased firing toward maximal firing should differ. 

Specifically, the slope of firing to Cue 50 from the time of cue onset to the time of foot 

shock, should be exactly double that of Cue 100. This is because there is exactly half the 

amount of time to reach maximal firing to the Cue 50 cue. Moreover, Threat Timing 

neurons would fire toward shock delivery, irrespective of behavior. Threat Timing neurons 

would not be expected to increase firing post-shock, despite increased post-shock fear 

suppression observed to Cue 50 (Figure 5.4 A, intervals 6 - 10). The range of baseline 

firing rates within the Ramping and Flip populations suggests there may be GABAergic 

and glutamatergic neurons in the vlPAG that signal Threat Timing.  

5.2.4.2 Threat Timing neurons are likely more than one cell type 

In Chapter 2, 17 neurons increased firing to at least one cue during the last, 1 s cue 

interval. Three of these neurons were outliers, belonged to a separate high firing rate 

cluster (~70 - 110 Hz), and were excluded from Ramping (~0 - 30 Hz) population 

analyses. In Chapter 3, Flip neurons, demonstrated a wide range of baseline firing rates 

(~0 - 150 Hz) and similar patterned activity. Combined, this evidence suggests the 

previously excluded units should be included in a combined Threat Timing population, 
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and that the combined population likely consists of more than one cell type on the basis 

of baseline firing rate: high firing (HF) and low firing (LF). GABAergic and glutamatergic 

cue-responsive units have been identified in the vlPAG previously. Of the two, GABAergic 

neurons demonstrated higher baseline firing (Tovote et al., 2016). Although speculative, 

Threat Timing neurons may be GABAergic (HF) and glutamatergic (LF).  

 

For the remainder of this discussion, I will consider Threat Timing neurons as one of three 

functional vlPAG populations, alongside the Onset and Sustain populations (as depicted 

in Figure 5.1 B). Moreover, I will incorporate all of these functional populations into a 

single, likely model of vlPAG interconnectivity. Combined with considering contributions 

of novel fear-related inputs to the vlPAG, the remainder of this document serves to revise 

the role of the ventrolateral periaqueductal gray in the fear circuit. 
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Figure 5.5 Revised vlPAG circuitry 

Schematic of revised caudal ventrolateral periaqueductal gray (vlPAG) microcircuitry. 
Colored neurons refer to functional vlPAG populations according to the alternative 
arrangement posed in Figure 5.1 B. Black neurons are inputs to the vlPAG. Solid filled 
neurons are putatively glutamatergic. Colored neurons with white fill are putatively 
GABAergic. Black neurons with white fill are verified GABAergic projections to the vlPAG. 
Circle ends indicate projection neurons and squares ends indicate interneurons. Brain 
regions are color coded blocks: prelimbic medial prefrontal cortex (PL: rust), medial and 
lateral central amygdala (CeA: purple), caudal substantia nigra pars compacta and pars 
reticulata (SN: marigold), caudal vlPAG (vlPAG: teal), and magnocellular nucleus of the 
medulla as one of many structures which could receive functional vlPAG output (Mc+: 
gray). Fear output (dark gray) and threat probability (pink) signaling of Sustain (seafoam) 
and Onset (peach) are indicated with colored text. Threat timing neurons are candy 
striped (periwinkle and wine). 
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5.2.5 A different type of disinhibition 

GABAergic vlPAG neurons demonstrate higher baseline firing. HF Threat Timing neurons 

may be GABAergic. In the current disinhibition microcircuit, inhibition of GABAergic 

interneurons leads to activation of glutamatergic vlPAG output neurons which induce 

freezing (Tovote et al., 2016). HF Threat Timing neurons may be GABAergic interneurons 

(Figure 5.5, candy stripe white fill). In this way, the brief decrease in Threat Timing firing 

observed at the beginning of cue presentation, would allow for increased activity in a 

separate functional population to occur. Which population might that be? Miraculously, 

the brief decrease in firing observed in Threat Timing neurons is restricted to the first 1 s 

interval of cue presentation. At that exact time, for that exact duration, a sharp increase 

in Onset firing is observed (Figure 5.2 A, C and E). Consistent with the disinhibition 

microcircuit (Figure 1.3), GABAergic CeA inputs would provide the brief inhibition required 

to disinhibit Onset activity. This would enable Onset firing, and allow Onset signals to 

inform fear output signals (local to the magnocellular nucleus of the medulla (Mc)) 

downstream. By contrast, LF Threat Timing neurons may be glutamatergic output 

neurons of the vlPAG (Figure 5.5, candy stripe solid fill).  

In the disinhibition model, this would imply that GABAergic Threat Timing neurons could 

synapse on glutamatergic Threat Timing neurons. However, a second threat timing signal 

would be far more valuable as a separate, output projection. Moreover, increased firing 

is required to observe the actual Threat Timing component (maximal firing just prior to 

foot shock) of patterned activity, which would not be possible with GABAergic input alone. 

Although CeA neurons preferentially synapse on GABAergic vlPAG cells, they also 

project to glutamatergic vlPAG neurons. According to the PIC model, amygdala derived 
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information about threat timing could proceed to the vlPAG via this direct projection. 

However, this presents a similar problem: CeA projections to the vlPAG are also 

GABAergic. If LF Threat Timing neurons received either of these GABAergic projections, 

they would need additional excitatory input to increase firing as threat draws near.  

5.2.6 A glutamatergic vlPAG Input 

A source of threat relevant glutamatergic input to the caudal vlPAG unclear. However, the 

prelimbic medial prefrontal cortex (PL) is part of a triad of brain regions (including the 

hippocampus and amygdala) implicated in fear expression. Specifically, the PL is thought 

to exert top-down control over the canonical site of threat integration: the amygdala 

(Giustino & Maren, 2015). PL to amygdala projections implicated in top-down control of 

fear are glutamatergic (DeFelipe & Fariñas, 1992). As an additional site of threat 

integration, it is possible the PL may also exert top-down glutamatergic control over the 

caudal vlPAG. Indeed, there is a direct projection from the PL to the caudal vlPAG (Beitz, 

1982), and some have already suggested the PL may bypass the amygdala to directly 

influence freezing behavior (Giustino & Maren, 2015). Similar to the amygdalar projection, 

it would be reasonable to suggest input to the vlPAG from the PL is also glutamatergic 

(Figure 5.4, solid black projection), and that this input could increase firing of Threat 

Timing neurons for signaling impending noxious events. If LF Threat Timing neurons are 

glutamatergic output neurons, where might they project to?  

5.2.7 Updating Threat Timing 

As a complimentary site of threat timing integration, glutamatergic Threat Timing 

projections from the vlPAG could return to the amygdala for further processing and 

updating. Similar to the Onset threat probability signal, vlPAG threat timing (thought to be 
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part of amygdalar-centric threat integration) signals may be trained up by the CeA, but 

become CeA-independent with sufficient training. Like Threat Timing neurons, Sustain 

neurons demonstrate a wide range of baseline firing rates, and likely consist of HF 

GABAergic and LF glutamatergic neurons. 

5.2.8 Sustain neurons are putatively GABAergic and glutamatergic 

In line with previously mentioned reports of vlPAG firing rates, HF Sustain neurons are 

likely GABAergic, whereas LF Sustain neurons are likely glutamatergic. In the canonical 

circuit, vlPAG fear output signals are sent to the RVM or Mc to influence downstream 

behavior. Thus, it is sensible to presume that both HF and LF Sustain neurons, encoding 

fear output, are GABAergic or glutamatergic vlPAG projection neurons (Figure 5.4, white 

fill and solid seafoam). Sustain neurons are cue-inhibited, and require decreases in firing 

to signal fear output. Decreases in firing are likely mediated by GABAergic inputs to 

Sustain neurons. 

The SN provides GABAergic input to the vlPAG. However, the results of Chapter 4 

strongly suggest this projection does not likely influence the firing of either HF or LF 

Sustain neurons. Decreases in firing are the hallmark of Sustain neurons and fear output 

in the vlPAG. Moreover, decreases in Sustain firing are associated with increased fear. 

In Chapter 4, silencing the cSN would have removed inhibition from Sustain neurons, 

diminishing the decreased firing required to signal fear output. Increased firing in Sustain 

neurons (less of a decrease) would give rise to decreased fear. However, I observed 

global inflation of fear to all cues. Thus, it is more likely the CeA provides GABAergic 

inhibition to Sustain output neurons (Figure 5.4). 
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5.2.9 Substantia Nigra and the vlPAG microcircuit 

Is there another way the substantia nigra might fit into the vlPAG microcircuit? The recent 

disinhibition model suggests that GABAergic CeA output neurons synapse on local 

GABAergic vlPAG interneurons (Tovote et al., 2016). In turn, the inhibition of local vlPAG 

interneurons in this microcircuit, releases inhibition of glutamatergic vlPAG output 

neurons and permits fear expression. It is possible that the GABAergic projections from 

the SN to vlPAG (Kirouac et al., 2004) behave similarly: also synapses on local vlPAG 

GABAergic interneurons. If this were the case, inhibiting the SN in our manipulation would 

have had no effect on fear suppression: disinhibition of glutamatergic vlPAG output would 

not occur if GABAergic SN output to the vlPAG was silenced. I observed a global increase 

in fear in eNpHR rats (Figure 4.4 A, right). Instead of using a similar disinhibition 

microcircuit, GABAergic SN output to the vlPAG is more likely to influence a cue-excited 

population: Onset neurons.  

5.2.10 Onset hub of signal integration  

Unlike any other functional population, Cue-excited Onset neurons signal threat 

probability, invariant of fear output. Similar to the amygdala, Onset neurons of the vlPAG 

are incredibly well-suited to integrate many types of information that can inform fear 

output and wide range of threat-related processes. In stark contrast to the canonical view 

of vlPAG function, short-latency cue-excited Onset neurons are not simple fear output 

relays. They are sophisticated, computational units that likely project to downstream pre-

motor targets, and more. Unlike Sustain and Threat Timing neurons, Onset neurons 

uniformly belong to one putatively glutamatergic (LF) cluster. Like Sustain neurons, and 
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Threat Timing neurons, in order for threat probability signals to leave the vlPAG, they 

must project.  

In the revised disinhibition circuit, briefly inhibited Threat Timing neurons give rise to peak 

Onset firing and threat probability signalling. This projection also allows Onset neurons to 

receive information about Threat Timing which, when varied, could be critical to assessing 

level of threat, and informing an appropriate defensive response. Onset neurons are also 

well-suited to receive glutamatergic input from the PL, because their signaling depends 

on increased firing. In turn, PL activity related to fear expression has the ability to execute 

top-down control over Onset firing, potentially overriding vlPAG-level computation, to 

drive fear expression in downstream regions (RVM/Mc). However, that is not all. Activity 

of GABAergic cSN neurons also has the ability to interact with Onset neurons (Figure 5.5, 

SN input). Unlike Threat Timing neurons, which only increase firing to aversive cues, 

Onset firing increases are observed to all cues (danger, uncertainty and safety). Global 

increases in fear were observed to all cues following cSN inhibition, suggesting a role for 

the cSN in overall modulation of fear suppression. Interestingly, silencing a GABAergic 

projection to vlPAG Onset neurons, would release Onset inhibition and likely result in a 

global firing increase in Onset firing. In absence of cSN inhibition, Onset firing could be 

driven even higher by glutamatergic PL input, maximizing threat probability output of the 

vlPAG to Onset neuron targets.   

5.2.11 Conclusions 

The results of this work have contributed a wealth of information to our understanding of 

vlPAG function. The vlPAG is a critical site of threat processing that likely uses a 

combination of direct inhibition, excitation and disinhibition to integrate and distribute a 
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diverse range of information about fear output, threat probability, and threat timing. 

Concurrent with these findings, there is increasing evidence that vlPAG dysfunction may 

contribute to a variety of psychiatric disorders (George et al., 2019). Indeed, further 

understanding of the factors that determine vlPAG neuron function: cell-type (Li et al., 

2016), transcriptome (Okaty et al., 2015; Okaty et al., 2019), connectome (Rozeske et 

al., 2018) and more (McPherson et al., 2018), will be essential to understanding the neural 

mechanisms underlying adaptive and maladaptive fear, and informing improved 

therapeutic interventions for fear and anxiety disorders.  
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