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For lentiviruses such as HIV-1, the viral capsid protein (CA) plays a crucial role 

in replication by facilitating active transport across nuclear pore complexes (NPCs). 

Nucleoporin Nup358/RanBP2 – a large, multidomain protein that comprises the main 

component of cytoplasmic NPC filaments – was previously identified as a potential 

cofactor for HIV-1 nuclear entry, and its C-terminal cyclophilin-like domain (Nup358Cyp) 

is able to interact with the CA of both HIV-1 and HIV-2. The importance of this 

interaction to viral replication is unclear though as certain cell-culture experiments 

suggest CA interaction with Nup358Cyp is dispensable for viral replication, and the CA of 

several other lentiviruses like SIVmac do not appear to interact with the Nup358Cyp 

domain. However, we have found that CA interaction with Nup358 is widely conserved 

among primate lentiviruses and is maintained by natural selection. The exception, 

SIVmac, likely reflects an evolutionary trade-off allowing escape from rhesus macaque 

TRIM5Cyp. Together, our observations are strong evidence that the interaction between 

viral CA and the Nup358Cyp domain must be biologically relevant in vivo.  

Specifically, by comparing interactions between multiple SIVsm/HIV-2 lineage 

CAs and several primate orthologs of Nup358, we identified interspecies differences in 

the Nup358Cyp domain that affect the CA interaction, but only when assayed in 

conjunction with the preceding Ran-binding domain 4 (Nup358R4). We next found that 

selection preserves the interaction during cross-species transmission, resulting in 



adaptation to differences between the Nup358Cyp homologs of the reservoir and spillover 

hosts. For example, SIVsm CA does not interact with human Nup358R4-Cyp, while HIV-2 

CA interacts with both the human and sooty mangabey orthologs. We confirmed these 

distinct interaction phenotypes in an extended set of SIVsm/HIV-2 CAs, and mapped the 

difference to a single position – residue 3173 – in the Nup358Cyp domain. The differing 

ability to interact with human Nup358R4-Cyp is due to residue 85 in the CA 4-5 loops; 

most SIVsm strains encode a glutamine at position 85, whereas most HIV-2 strains 

encode an isoleucine. Reciprocal swaps reverse the interaction phenotypes, such that the 

SIVsm Q85I CA mutant strongly interacts with human Nup358R4-Cyp, while HIV-2 I85Q 

CA mutant does not. This difference also correlates with differences in single- and multi-

cycle infectivity on human cell lines and levels of nuclear import in HeLa cells. Together, 

these results indicate that HIV-2 adapted to human Nup358 during emergence in humans. 

We also examined the ability of our CA panel to interact with Cyclophilin A. 

While all HIV-2 CA interact with CypA, the ability to interact varied among the other 

SIVsm CA tested, and was absent for SIVpbj. Thus, conservation of CA interaction with 

Nup358Cyp does not correlate to the ability to interact with CypA, and is not simply a 

consequence of maintaining the CA-CypA interaction.
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CHAPTER 1: INTRODUCTION
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1.1 Primate Lentiviruses 

1.1.1 Taxonomy 

Lentiviruses are viruses that belong to the Lentivirus genus within the retrovirus 

or Retroviridae family [1]. Retroviruses include a vast and diverse array of enveloped, 

single-stranded positive-sense RNA viruses that infect vertebrate animals and are defined 

by the conversion of the RNA viral genome into DNA and the subsequent insertion of the 

viral DNA into the host chromatin during viral replication. This family is subdivided into 

two subfamilies: Spumaretrovirinae and Orthoretrovirinae. The Spumaretrovirinae 

contains five genera: Bovispumavirus, Equispumavirus, Felispumavirus, 

Prosimiispumavirus, and Simiispumavirus [2]. The Orthoretrovirinae contain six genera: 

Alpharetrovirus, Betaretrovirus, Gammaretrovirus, Deltaretrovirus, Epsilonretrovirus, 

and Lentivirus. Viruses in the Lentivirus genus can be further organized into seven 

distinct monophyletic lineages based on the host species infected: primate 

(simian/prosimian), cologo, carnivoran (feline), bovine, ovine/caprine (small ruminant), 

equine, and lagomorph (Figure 1.1) [3–7]. The primate lentiviruses consist of the human 

immunodeficiency virus type-1 (HIV-1), human immunodeficiency virus type-2 (HIV-2) 

and over 40 different strains of simian immunodeficiency viruses (SIVs) [8]. Each non-

human primate species is typically infected by its own unique SIV virus [9]. HIV-1 is the 

most well-known among these viruses due to it being the cause of acquired 

immunodeficiency syndrome (AIDS).
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Figure 1.1. Lentivirus Phylogeny 
Phylogenetic tree showing select viruses from the different lineages within the Lentivirus 
genus and their evolutionary relationship to one another based on phylogenies published 
in [3,7,10]. Listed on the left is the host species group infected by the viral lineage. 
Figure not drawn to scale. SIVgsn, SIV of greater spot-nosed monkey; SIVmus, SIV of 
mustached monkey; SIVmac, SIV of rhesus macaque; SIVsm, SIV of sooty mangabey; 
SIVcpz, SIV of chimpanzees; SIVagm, SIV of African green monkey; pSIV, prosimian 
immunodeficiency virus; ELVgv, colugo endogenous lentivirus; FIV, feline 
immunodeficiency virus; MELVmpf, Mustelidae endogenous lentivirus of domestic 
ferret genome; BIV, bovine immunodeficiency virus; JDV, Jembrana disease virus; 
CAEV, caprine arthritis-encephalitis virus; MVV, Maedi-Visna virus; EIAV, equine 
infectious anemia virus; RELIK, rabbit endogenous lentivirus K.
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1.1.2 Genomic Structure 

Like all retroviruses, the lentiviral genome encodes for gag, pol, and env genes 

(Figure 1.2A). The gag gene encodes for the group specific antigen (Gag) polyprotein, 

which is eventually cleaved into the viral structural proteins matrix (MA), capsid (CA), 

and Nucleocapsid (NC) as well as p6 and two spacer peptides SP1 and SP2. Within the 

extracellular, mature virion, MA is found associated with the lipid bilayer, CA assembles 

into a protein shell (capsid core) encasing the viral genome, and NC associates with the 

viral RNA (Figure 1.2B) [1]. The pol gene encodes for the viral enzymatic proteins: 

protease (PR), reverse transcriptase (RT), and integrase (IN) (Figure 1.2A). These 

proteins are expressed as a Gag-Pol polyprotein due to a programmed ribosomal 

frameshifting event during Gag translation. During what is known as the maturation step, 

PR in the newly budded virion cleaves the Gag and Gag-Pol polyproteins which leads to 

formation of the conical capsid core [11]. The env gene encodes for envelope 

glycoprotein (Env) that is cleaved into the surface subunit (SU) and transmembrane 

subunit (TM). Env is found on the exterior of the virion and is arranged as a trimer 

(Figure 1.2B) [1].  

Lentiviruses are considered complex retroviruses as their genomes possess an 

additional inventory of genes alongside the standard gag, pol, and env (Figure 1.2A). 

Primate lentiviral genomes encode for the regulatory genes tat and rev as well as several 

accessory genes that can vary among these viruses (Figure 1.2A) [1]. For HIV-1, these 

accessory genes are vif, vpr, vpu, and nef and the encoded proteins perform a variety of 

functions throughout viral replication including counteracting host antiviral proteins [12]. 
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Figure 1.2. HIV-1 genome and virion 
(A) Schematic of the HIV-1 provirus genomic organization. The gag gene (pink) encodes 
for the viral matrix (MA), capsid (CA), spacer peptide 1 (SP1), nucleocapsid (NC), 
spacer peptide 2 (SP2), and p6 proteins. The pol gene (blue) encodes for the viral 
protease (PR), reverse transcriptase (RT), and integrase (IN). The env gene (brown) 
encodes for the viral envelope glycoprotein (Env). The genes which encode for the 
various HIV-1 accessory proteins and regulatory proteins are shown in grey and black, 
respectively. A long terminal repeat (LTR) region (white box) is found at both ends of the 
proviral sequence and has regulatory functions. 
(B) Schematic of the mature HIV-1 virion. Following PR (red) cleavage, the CA protein 
(green/blue protein) forms a conical protein shell around the two copies of the viral RNA 
genome (black curvy lines), and the RT (purple) and IN (yellow) proteins. NC (pink) 
protein coats the viral RNA. The MA (lighter brown) protein is located right below the 
host-derived lipid bilayer (tan). The Env protein is found as a trimer on the exterior of the 
virion, embedded in the lipid bilayer.
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1.1.3 Replication 

Interaction between the Env protein on the virion’s surface and the host receptor 

protein on the target cell initiates retroviral entry (Figure 1.3). Primate lentiviruses utilize 

the host protein CD4 as a primary receptor, and a host chemokine receptor as a co-

receptor for entry. The two chemokine co-receptors frequently associated with primate 

lentiviruses are C-C chemokine receptor 5 (CCR5) and C-X-C chemokine receptor 4 

(CXCR4) [13–20]. The binding of Env to CD4 and then CCR5 or CXCR4 triggers a 

series of protein conformational changes and fusion between the viral and target cell 

membranes, releasing the viral capsid core into the cytoplasm (Figure 1.3) [1]. Encased in 

the deposited viral complex are the two copies of the viral RNA genome, RT, and IN, 

among other host and viral proteins [21–24].  

Once in the target cell cytoplasm, RT begins to convert the viral single-stranded 

RNA genome into double-stranded DNA [25]. At this point, the viral genome and 

associated proteins are known as the reverse transcription complex (RTC), which traffics 

towards the nucleus (Figure 1.3). Once reverse transcription is complete and the viral 

DNA ends are processed by IN, the viral genome and associated proteins are known as 

the pre-integration complex (PIC) [26,27]. While reverse transcription was typically 

thought to be completed prior to nuclear import of the viral genome, recent evident 

indicates that HIV-1 completes reverse transcription within the host cell nucleus [28,29]. 

Upon gaining access to the host chromatin and completion of reverse transcription, IN 

catalyzes the insertion of the viral DNA into the host cell genome (Figure 1.3). 

Lentiviruses are unique from other members of the Retroviridae family in that these 

viruses can productively infect non-dividing cells, undergoing active transport through 
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the nuclear pore complexes (NPCs) which stud the host cell nuclear envelope. This 

distinct ability enables lentiviruses to replicate within cells like macrophages and resting 

CD4+ T cells, which are considered crucial cell types in HIV-1 persistence and 

pathogenesis [30–32]. Once inserted into the host genomic material, the viral genomic 

DNA is known as the provirus (Figure 1.3).  

Proviral expression is regulated by the LTR sequences and enhanced by the trans-

activator of transcription (Tat) viral protein [1]. The regulator of expression of viral 

proteins (Rev) viral protein facilitates nuclear export of intron-containing viral mRNA. 

Unspliced viral mRNA functions as both genetic material for new primate lentiviral 

progeny and the template for Gag and Gag-Pol expression. New primate lentiviral 

progeny assemble at the host cell plasma membrane and particle maturation occurs 

during or immediately following virion release [11].
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Figure 1.3. Early HIV-1 replication 
HIV-1 entry is facilitated by the binding of the viral glycoprotein to the CD4 receptor and 
chemokine co-receptor on the cell surface. This interaction results in fusion between the 
viral cellular membranes and releases the viral capsid core into the cytoplasm. This core 
then traffics towards the nucleus. Along the way, reverse transcriptase begins to convert 
the RNA genome into DNA. Following arrival at the nucleus, the viral genome and 
associated proteins translocate through the nuclear pore complex (NPC) and then 
integrase inserts the viral DNA into the host chromatin, at which point it is referred to as 
the provirus. CypA, Nup358, CPSF6, and Nup153 are HIV-1 co-factors that interact with 
CA to facilitate post-entry steps of early replication. TRIM5α and Mx2 are restriction 
factors that target the CA and block replication prior to integration. CypA, cyclophilin A; 
Nup358, nucleoporin 358; CPSF6, cleavage and polyadenylation specificity factor 
subunit 6; Nup153, nucleoporin 153; TRIM5α, tripartite motif-containing protein 5 alpha 
isoform; Mx2, myxovirus resistance 2.
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1.1.4 Cross-Species Transmission 

SIVs are genetically very diverse and infect a wide range of old-world monkeys 

[33,34]. The nomenclature of primate lentiviruses can be misleading from an 

evolutionary perspective because, in stark contrast, the distinction between HIV-1 and 

SIV of chimpanzees (SIVcpz) is based on their respective hosts, while the two species 

actually share deep homologies [33–36]. Comparison of primate host species and primate 

lentivirus phylogenies show that these viruses have a long history of cross-species 

transmissions [35,37]. Multiple, independent events of SIV spillover into humans have 

occurred over time, giving rise to the four main HIV-1 groups (M, N, O, and P) and nine 

HIV-2 subtypes (A-I) [33–36,38]. HIV-1 group M alone is responsible for more than 

95% of all documented infections [34]. Viruses belonging to the M and N groups of HIV-

1 are thought to have originated from two separate and independent cross-species 

transmission events of SIVcpz [8]. SIVcpz also separately and independently gave rise to 

SIV of gorilla (SIVgor) [39,40]. SIVgor also gave rise to HIV-1 O and P groups from 

independent zoonotic transmission events from gorillas to humans [41]. 

Another source of multiple cross-species transmissions is SIV of sooty 

mangabeys (SIVsm; Figure 1.4). HIV-2 subtypes A through I arose from separate, 

independent cross-over events of SIVsm into humans [35,38,42–45] and the emergence 

of SIVsm in rhesus macaques (Macaca mulatta) gave rise to SIV of rhesus macaques 

(SIVmac) [42,46,47]. SIVsm has additionally jumped into two other macaque species, 

stump-tailed macaques (Macaca arctoides) and pig-tailed macaques (Macaca 

nemestrina), giving rise to SIVstm and SIVpbj, respectively (Figure 1.4) [42,48–53]. Pig-

tailed macaques are also associated with infection by another SIV, SIVmne [54]; 
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however, SIVmne did not originate from a SIVsm spill-over event [55,56]. Each species 

presented a unique set of genetic barriers that placed selective pressure on the virus 

during SIVsm emergence. As such, SIVsm offers a rare opportunity to examine how 

genetic differences between emergent hosts species drive the viral cross-species 

transmission process.
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Figure 1.4. SIVsm has undergone multiple cross-species transmission events 
SIVsm (purple) which infects sooty mangabeys has given rise to multiple primate 
lentiviruses following its emergence into several primate species, including: HIV-2 (blue) 
in humans; SIVstm (orange) in stump-tailed macaques; SIVpbj (green) in pig-tailed 
macaques; and SIVmac (pink) in rhesus macaques.
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1.2 Lentiviral Capsid 

1.2.1 Structure 

In mature virions, the lentiviral capsid core exhibits a fullerene-like cone 

morphology and is composed of the viral CA protein assembled into pentamers and 

hexamers (Figures 1.5A and 1.5B). The CA monomer is a 24 kDa protein that is 

comprised of two independently folding domains: a N-terminal domain (NTD; Figure 

1.5C) and a C-terminal domain (CTD) separated by a small flexible linker [57–59]. The 

CA NTD forms the surface of the intact capsid core and consists of a β-hairpin at the N-

terminus followed by seven α-helices. Between CA α-helix 4 and α-helix 5, there is an 

proline-rich loop that extends from the surface of the assembled CA core and is known as 

the 4-5 loop or CypA-binding loop (Figure 1.5C, highlighted in pink) [60–62]. Despite a 

lack of amino acid sequence homology, the lentiviral CA structures exhibit remarkable 

structural homology (Figure 1.6) [21,63–67]. As with HIV-1, the role of capsid in 

mediating proper reverse-transcription and nuclear import has been established for 

multiple, diverse lentiviruses – highlighting the conservation of capsid functionality 

across this genus [68–71].
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Figure 1.5. HIV-1 CA Structure 
(A-B) Crystal structure of a single HIV-1 hexamer (pdb: 3GV2) as viewed from the side 
(A) or from the top (B). The CA NTD is colored in blue while the CA CTD is colored in 
green. 
(C) Crystal structure of the HIV-1 CA NTD (pdb: 4LQW). The 4-5 loop is highlighted in 
pink.  

HIV-1 CA Hexamer
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B

C

HIV-1 CA NTD
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Figure 1.6. Crystal structures of Lentiviral CA NTD 
Crystal structures of multiple lentiviral CA NTDs and a structural overlay of all the CA 
NTDs. The pdb number is shown above the crystal structure.
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1.2.2 Function 

Prior to integration into the host chromatin, HIV-1 must reverse transcribe the 

viral RNA to DNA. This process is dependent on proper capsid disassembly or uncoating 

as mutations in the CA CTD that either increase or decrease the intrinsic stability of the 

core result in defective reverse transcription [72]. 

While the precise mechanism is unclear, interactions with CPSF6 and CypA 

appear to stabilize the HIV-1 capsid and regulate the timing/kinetics of reverse 

transcription [73–77]. These capsid-cofactor interactions are critical as they enable the 

capsid to shield the viral genome from host antiviral proteins capable of sensing cytosolic 

DNA. Within non-immune cell lines, interactions with CPSF6 and CypA appear to be 

dispensable for replication [72,78,79]. Prior to integration into the host chromatin, HIV-1 

must reverse transcribe the viral RNA to DNA. This process is dependent on proper 

capsid disassembly or uncoating as mutations in the CA CTD that either increase or 

decrease the intrinsic stability of the core result in defective reverse transcription [72]. 

The HIV-1 capsid facilitates proper uncoating through interactions with the peptidyl-

prolyl-cis-trans-isomerase (PPIase) enzyme cyclophilin A (CypA), and the cellular 

protein cleavage and polyadenylation specificity factor 6 (CPSF6). 

1.2.3 Interactions
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Table 1.1. Summary of previous human Nup358-CA interaction studies 
TRIM-Fusion (TF) assay utilizes the capsid binding-dependent restrictive ability of 
TRIM5α to detect CA-host protein interactions and is described in more detail later on. 
ITC, isothermal titration calorimetry; SEC, size-exclusion chromatography; SIVgor, SIV 
of gorilla; SIVcpz, SIV of chimpanzee; FIV, feline immunodeficiency virus; SIVmac, 
SIV of rhesus macaque; SIVmnd, SIV of mandrill; SIVcol, SIV of guereza colobus; 
SIVgsn, SIV of greater spot-nosed monkey; SIVmus, SIV of mustached monkey; 
SIVmon, SIV of mona monkey; EIAV, equine infectious anemia virus; MLV, murine 
leukaemia virus. 
 

Viral CA 
Interacts with 

human 
Nup358Cyp? 

Method(s) used to detect interaction 

HIV-1 
Group M Yes 

TF assay [62,80–83]; ITC1 [60,62,84]; Co-
sedimentation assay2 [85]; SEC1 [84]; Co-crystal 
structure [60] 

HIV-1 
Group P3 Yes TF assay [83] 

SIVgor3 Yes TF assay [83] 

SIVcpz3 Yes TF assay [83] 

HIV-2 Yes TF assay [80,82] 

FIV Yes TF assay [81,83]; ITC1 [60] 

SIVmac No TF assay [80,82,83]; ITC1 [62] 

SIVmnd No 

TF assay [80] 

SIVcol No 

SIVgsn No 

SIVmus No 

SIVmon No 

MLV No TF assay [81,83] 
1Performed using purified human Nup358Cyp and purified, monomeric N-terminal 
domain (NTD) of CA. 2Performed using in-vitro assembled CA-like complexes and 
Human Embryonic Kidney 293T/17 (HEK293T/17) cell lysates containing GFP-tagged 
full-length human Nup358 or Nup358ΔR4-Cyp deletion mutant. 3Performed using the 
4-5 loop in an HIV-1 Group M CA background 
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1.3 Nup358 

1.3.1 Structure and Cellular Functions 

Nucleoporin 358 (Nup358; also known as RanBP2) is the largest component of 

the NPC (358 kDa in size) and has a multimodular structure [86,87]. Nup358 plays an 

important role in nucleocytoplasmic trafficking by providing key interaction sites for the 

various components of the transport machinery [88–91]. Nup358 has multiple other 

functions, though, which are facilitated by distinct domains within its structure – 

including a cyclophilin-like domain at its C-terminus (Nup358Cyp) [60,62,80–82,84]. 

Similar to CypA, Nup358Cyp has peptidyl-prolyl-cis-trans-isomerase (PPIase) activity; 

these enzymes are generally thought to facilitate proper protein folding through their 

catalytic activities [60,84,92–94]. Unlike CypA, which is comprised of a single domain, 

Nup358Cyp and the preceding Ran-binding domain 4 (Nup358R4) act in concert as a 

chaperone and these contiguous domains form the R4-Cyp supradomain of Nup358 

(Nup358R4-Cyp) [95–97]. Furthermore, Nup358R4 appears to influence the access/release 

of substrates to/from Nup358Cyp [97]. In other words, proteins that interact with 

Nup358Cyp by itself may not always interact with Nup358Cyp in the context of the 

Nup358R4-Cyp supradomain (which is the biologically-relevant form).  

1.3.2 Role in HIV replication 

Previous studies found that depletion of Nup358 (the entire protein) in human cell 

lines reduced HIV-1 infectivity [60,62,81,85,98,99], and appeared to inhibit replication at 

the point of nuclear import [62,85,98]. These results suggest that HIV-1 utilizes Nup358 

to cross the nuclear pore complex (NPC) prior to integration. However, these findings do 

not necessarily point to a functional role Nup358Cyp in HIV-1 replication. Knockdown 
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(KD) of Nup358 can be cytotoxic in cell lines [81,99–102] and knockout (KO) of 

Nup358 in mice is embryonic lethal [100,101,103]. Meehan et al. found that deletion of 

Nup358Cyp in mouse embryonic fibroblast cells (MEFs) had little effect on HIV-1 

infectivity [81]. Cre-lox mediated KO of murine Nup358 in MEFs reduced HIV-1 

infectivity (although this defect was found to occur at the point of integration and not 

nuclear import). Deletion of the 1,884 C-terminal amino acids of Nup358, however, had 

no effect on HIV-1 infectivity. It is important to consider though that MEFs are neither 

host-species relevant or cell-type relevant for studies of HIV/AIDS. It is possible that 

nuclear import pathways differ between human and mice cells. HIV-1’s dependency on 

several host proteins during nuclear import appears to be dictated by capsid-interactions 

with upstream factors including CPSF6 [62,73–76,99,104–109] and while HIV-1 CA is 

able to interact with murine CPSF6, there is evidence that suggests a functional 

difference between murine CPSF6 and human CPSF6 in HIV-1 replication [106]. It is 

also possible that nuclear import pathways may differ between cell types. HIV/SIV infect 

CD4+ T cells and macrophages in vivo thus it is possible that nuclear import 

requirements differ between fibroblasts and either of these cell types. In support of this 

possibility is the observation that NPC have been shown to vary in nucleoporin 

composition between different cell types [110–115]. Furthermore, it is possible that this 

interaction is important, but at another step of replication that is cell-type specific (i.e., 

innate immune evasion). This statement is true of other CA-interacting factors with roles 

in early infection like CypA and CPSF6 as either KD of CPSF6 or CypA results in a 

defect to HIV-1 replication which appears to be cell-type specific [99,106].  
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1.4 TRIM5α 

TRIM5α (tripartite motif-containing protein 5 alpha isoform) is a cytoplasmic 

host restriction factor that is capable of blocking retroviral replication prior to integration 

[116–118]. This protein belongs to the tripartite motif (TRIM) protein family, whose 

members all contain a Really Interesting New Gene (RING) domain, one or two B-box 

domains and a coiled-coil domain [119]. The presence of these three protein domains in 

this particular order is known as a “RBCC” motif and the term is RBCC is used to 

collectively refer to the RING, B-Box, and coiled-coil domains of TRIM proteins. Some 

TRIM proteins have one or more C-terminal domains subsequent to the RBCC domains. 

In TRIM5α, the RBCC domains are followed by a C-terminal B30.2 or PRYSPRY 

domain that is absent from other TRIM5 isoforms [120].  

TRIM5α acts to restrict retroviral replication by targeting the capsid core 

deposited into the target cell cytoplasm post entry [116–118]. The B30.2/PRYSPRY 

domain mediates CA core recognition through direct interaction with CA and thus 

dictates TRIM5α restriction specificity, whereas the RBCC domains generate the 

TRIM5α restrictive activity [116,121–133]. The self-association properties of both the B-

box 2 and coiled-coil domains impart on TRIM5α the strong proclivity for high-order 

assembly required for retroviral restriction [134]. These assemblies activate the E3 

ubiquitin ligase activity of the RING domain, which promotes further higher-order 

assembly [134]. Precisely how the B30.2/PRYSPRY domain binds CA is unclear but 

recognition appears to be driven through a series of high-avidity but low-affinity 

interactions [121,122,135–137]. 
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In several species, including rhesus macaques, the B30.2/PRYSPRY domain of 

TRIM5α has been replaced with a CypA-derived domain (TRIM5Cyp) [138–144]. Like 

CypA, the C-terminal Cyp domain of TRIM5Cyp proteins binds the lentiviral CA 4-5 

loop; however, the sequences of these domains differ from one another at several residues 

and have different interaction specificities [67,145]. For example, the rhesus macaque 

TRIM5Cyp protein (rhTRIM5Cyp) does not restrict HIV-1 replication and does not bind 

HIV-1 CA, despite HIV-1 CA binding CypA [61,139,144,146,147]. In contrast, 

rhTRIM5Cyp does restrict HIV-2 and binds to the HIV-2 CA 4-5 loop [67]. HIV-1 and 

HIV-2 CA 4-5 loop conformations differ considerably and rhTRIM5Cyp discrimination 

between the two loops stems from a D66N change from the ancestral CypA sequence 

[67].
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CHAPTER 2: MATERIALS AND METHODS
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2.1 Cell Lines 

Crandell-Rees Feline Kidney (CRFK; female; ATCC, #CCL-94), Human 

Embryonic Kidney 293T/17 (HEK293T/17; female; ATCC, #CRL-11268), GP2-293 

(presumed to be female based on the sex of the parental HEK293 cells; Clontech, Takara 

Bio, #631458), and HeLa (female; ATCC, #CCL-2) cells were cultured in Dulbecco’s 

modified Eagle Media (DMEM) supplemented with 10% fetal bovine serum (FBS), 25 

mM HEPES, 2 mM L-glutamine (L-glut), and 1% Penicillin-Streptomycin (Pen-Strep). 

CRFK cell lines engineered to express the HA-tagged TFnull, TF-Nup358, or TF-CypA 

constructs were maintained in similar media that was also supplemented with 5 µg/ml 

puromycin. CRFK cell lines engineered to express HA-tagged TRIM5α alleles were also 

maintained in similar media that was instead supplemented with 0.5 mg/ml G418. THP-1 

cells (male) were obtained through the NIH AIDS Reagent Program, Division of AIDS, 

NIAID, NIH (cat# 9442) from Drs. Li Wu and Vineet N. KewalRamani [148,149] and 

cultured in Roswell Park Memorial Institute (RPMI)-1640 media supplemented with 10% 

FBS, 25 mM HEPES, 2 mM L-glut, 1% Pen-Strep, 1 mM sodium pyruvate, and 0.05 mM 

2-mercaptoethanol. CEMx174-SEAP (sex unknown; Means et al., 1997), U937 (male; 

ATCC, #CRL-1593.2), H9 (male; ATCC, #HTB-176), and Jurkat, Clone E6-1 (male; 

ATCC, #TIB-152) cells were cultured in RPMI-1640 media supplemented with 10% 

FBS, 25 mM HEPES, 2 mM L-glut, and 1% Pen-Strep. SupT1-CCR5 cells (sex is 

presumed to be male based on the sex of the parental SupT1 cells; Means et al., 2001) 

were maintained in similar media that was also supplemented with 300 ng/ml puromycin. 

The B-Lymphocyte cell lines listed in Table 2.1 were cultured in RPMI-1640 

media supplemented with 10% FBS, 25 mM HEPES, 2 mM L-glut, 1% Pen-Strep, and 4 
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µM Zidovudine (AZT). The T-Lymphocyte cell lines listed in Table 2.1 were cultured in 

RPMI-1640 media supplemented with 20% FBS, 25 mM HEPES, 2 mM L-glut, 1% Pen-

Strep, and 100 U/ml of interleukin-2 (IL-2). All cell cultures were kept at 37°C in 5% 

CO2.
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Table 2.1. Sources of RNA/DNA for sooty mangabey, rhesus macaque, and pig-
tailed macaque Nup358 fragments sequenced 
NEPRC, New England Primate Research Center.  
 

Common name Species name Source ID Cell type 

Sooty 
mangabey (sm) Cercocebus atys 

NEPRC FIt B-Lymphocyte 

NEPRC FJy B-Lymphocyte 

NEPRC FMv B-Lymphocyte 

NEPRC FPr B-Lymphocyte 

NEPRC FWl B-Lymphocyte 

NEPRC FWj B-Lymphocyte 

NEPRC FYn B-Lymphocyte 

Rhesus 
macaque (rh) Macaca mulatta 

NEPRC 164.02 B-Lymphocyte 

NEPRC 221 T-Lymphocyte 

NEPRC 444 T-Lymphocyte 

Pig-tailed 
macaque (ptm) 

Macaca 
nemestrina 

NEPRC 5503 B-Lymphocyte 

NEPRC 5403 B-Lymphocyte 

NEPRC 5903 B-Lymphocyte 

NEPRC 6403 B-Lymphocyte 

NEPRC 6603 B-Lymphocyte 
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2.2 Bacteria 

All molecular cloning and plasmid propagation were carried out in One Shot 

Stbl3 Chemically Competent E. coli (Invitrogen, Thermo Fisher, #C73730). Molecular 

cloning cultures were grown on Luria-Bertani (LB) agar at 30°C and plasmid propagation 

cultures were grown in LB media at 30°C while shaking at 250 RPM. Both LB agar and 

LB media were supplemented with either ampicillin or kanamycin, depending on the 

plasmid antibiotic resistance. 

2.3 Plasmids 

2.3.1 Proviral Plasmids 

Single-cycle (replication-incompetent), enhanced green fluorescent protein 

(EGFP) reporter NL4-3 HIV-1 virus was produced from pNL4-3-deltaE-EGFP vector 

which encodes a NL4-3 HIV-1 provirus where Env has been rendered non-functional due 

to the in-frame introduction of EGFP, and was obtained through the NIH AIDS Reagent 

Program, Division of AIDS, NIAID, NIH (Cat# 11100) from Drs. Haili Zhang, Yan 

Zhou, and Robert Siliciano [152]. Single-cycle, EGFP reporter HIV-2 ROD virus was 

produced from a plasmid which encodes a HIV-2 ROD provirus where Env has been 

rendered non-functional due to a deletion at the N-terminus and Nef has been replaced 

with EGFP. The source of this plasmid is unknown but it has been given the name pHIV-

2ROD-Δenv-GFP and the entire plasmid sequence is known (available upon request). 

Single-cycle, EGFP reporter SIVmac239 virus was produced using pV1EGFP plasmid, 

which encodes the SIVmac239 provirus that is envelope-deficient due to deletion at N-

terminus of env and expresses EGFP instead of Nef [153]. Single-cycle, EGFP reporter 

SIVsmE041 virus was produced using pV1EGFP-E041 plasmid, a pV1EGFP-derived 
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plasmid where the 5’ half of SIVsmE041 provirus has been swapped in [153]. Single-

cycle, EGFP reporter SIVpbj1.9 virus was produced using pV1EGFP-pbj1.9 plasmid, 

which was created by amplifying by PCR the 5’ half of SIVsmm PBj14 molecular clone 

1.9 provirus from the pPBj1.9 plasmid [which was obtained through the NIH AIDS 

Reagent Program, Division of AIDS, NIAID, NIH (Cat# 2998) from Dr. James I. Mullins 

[53]] using the primers pbj1.9-NarI-F and pbj1.9-SphI-R. The NarI and SphI restrictions 

sites were used to replace the SIVmac239 sequence in the pV1EGFP plasmid with the 

PCR fragment (SphI restriction site was introduced to the 3’ end of PCR product by 

pbj1.9-SphI-R primer). The 5’ half of SIVsmm PBJ14 molecular clone 1.9 comes from 

SIVpbj non-infectious clone 1.5 (accession number L03295); however, sequencing of 

both pPBj1.9 and pV1EGFP-pbj1.9 plasmids revealed multiple synonymous and non-

synonymous mutations compared to the SIVpbj1.5 reference sequence, including a 

S171L difference in capsid. The amino acid sequence of the capsid is shown in Figure 2.1 

and the sequence of the entire fragment amplified from pPBj1.9 is available upon request. 

Single-cycle, EGFP reporter SIVstm37.16 virus was produced using pV1EGFP-37.16 

plasmid, a pV1EGFP-derived plasmid where the full gag and partial pol of SIVstm37.16 

provirus has been swapped in [153]. Single-cycle, EGFP reporter SIVsmE543 virus was 

produced using pV1EGFP-E543 plasmid, a pV1EGFP-derived plasmid where the 5’ half 

of SIVsmE543 provirus has been swapped in [153]. Single-cycle, EGFP reporter 

SIVsmE660-FL14 and SIVsmE660-FL6 viruses were produced using pV1EGFP-E660 

FL14 and pV1EGFP-E660 FL6, respectively. These plasmids are pV1EGFP-derived 

where the 5’ half of SIVsmE660-FL14 or SIVsmE660-FL6 has been swapped in [154]. 
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Multi-cycle (replication-competent) HIV-2 ROD virus was produced from 

pROD10 plasmid which encodes the full-length HIV-2 ROD provirus that contains a 

mutation in env resulting in a premature stop codon at position 720 and expression of a 

truncated, but functional Env protein. This plasmid was obtained from the Centre for 

AIDS Reagents, NIBSC, UK (NIH-ARP# 12518; CFAR# 232), supported by 

EURIPRED (EC FP7 INFRASTRUCTURES-2012 – INFRA-2012-1.1.5.: Grant Number 

31266). www.euripred.edu/ [155,156]. Multi-cycle SIVsmE543 virus was produced from 

pGEM-E543 plasmid, which encodes the full-length SIVsmE543 provirus [157]. 

The plasmids used to produce single-cycle, EGFP reporter, chimeric SIVmac239 

viruses encoding various SIVsm/HIV-2 capsids were created by replacing the entire 

SIVmac239 CA sequence with the CA from: SIVsmG932 (JX860416); SIVsmD215 

(JX860413); HIV-2 GH-1 (M30895); HIV-2 UC1 (L07625); HIV-2 EHO (U27200); 

SIVsmE041 (HM059825); and HIV-2 ROD (M15390). The SIVsmG932, SIVsmD215, 

HIV-2 GH-1, HIV-2 UC1, and HIV-2 EHO CA sequences were commercially 

synthesized as GeneArt Strings DNA fragments (Invitrogen, Thermo Fisher) and were 

designed to contain silent mutations that created a BsrGI restriction site at nucleotides 3-8 

and disrupted any internal BsrGI sites. Additionally, a BbvCI restriction site was added to 

the C-terminus of each string. The SIVsmE041 CA sequence was amplified by PCR from 

the pV1EGFP-E041 plasmid using the primers E041-CA-BsrGI-F and E041-CA-BbvCI-

R, which add a BsrGI and BbvCI restriction site to the PCR product 5’ and 3’ ends, 

respectively. For the HIV-2 ROD CA sequence, site-directed mutagenetic PCR was 

performed first on the pHIV-2ROD-Δenv-GFP plasmid to introduce silent mutations to 

disrupt an internal BsrGI restriction site, using the 5’ phosphorylated primers ROD-
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shuttle-Horn-F and ROD-shuttle-Horn-R. The HIV-2 ROD CA sequence was then 

amplified by PCR from a properly modified pHIV-2ROD-Δenv-GFP plasmid (confirmed 

by sequencing and BsrGI restriction digest) using the primers ROD-CA-BsrGI-F and 

ROD-CA-BbvCI-R, which add a BsrGI and BbvCI restriction site to the PCR product 5’ 

and 3’ end, respectively. The BsrGI and BbvCI restriction sites were used to replace the 

SIVmac239 CA sequence with the SIVsm/HIV-2 CA in an SIVmac239-based gag-pol 

shuttle vector that contains multiple silent mutations within gag in order to introduce or 

remove certain restriction site to facilitate CA chimerization [66]. The chimeric 

SIVmac239 gag from the shuttle vector was then subcloned into pV1EGFP using DraIII 

and SbfI restriction sites to create the single-cycle, EGFP reporter, chimeric CA 

SIVmac239 proviral plasmids. These plasmids were given the names pV1EGFP-G932 

CA, pV1EGFP-D215 CA, pV1EGFP-GH-1 CA, pV1EGFP-UC1 CA, pV1EGFP-EHO 

CA, pV1EGFP-E041 CA, and pV1EGFP-ROD CA, in which the SIVmac239 CA has 

been completely replaced with the CA of SIVsmG932, SIVsmD215, HIV-2 GH-1, HIV-2 

UC1, HIV-2 EHO, SIVsmE041, or HIV-2 ROD, respectively. An alignment of the CA 

sequences of all SIV/HIV viruses used is shown in Figure 2.1. Sequences of primers used 

are listed in Table 2.2. 

Single-cycle, EGFP reporter FIV virus was produced from pGINSIN, an FIV-

based transfer vector encoding EGFP [1], and pFP93, an FIV gag-pol packaging 

construct [1]. Single-cycle, EGFP reporter MLV virus was produced from pCIGB, an 

MLV gag-pol packaging plasmid [2], and pLXIN-GFP, a pLXIN-based (Clontech; 

#631501) transfer vector encoding EGFP. Single-cycle, EGFP reporter EIAV virus was 

produced from pEV53D, an EIAV gag-pol packaging plasmid (a gift from John Olsen; 
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Addgene plasmid # 44168) [3], and pEIAV-SIN6.1 CGFPW, an EIAV-based transfer 

vector encoding EGFP (a gift from John Olsen; Addgene plasmid # 44171) [4]. The 

vesicular stomatitis virus G protein (VSV-G) used to psuedotype all single-cycle, EGFP 

reporter viruses and recombinant retroviruses used for CRFK cell transduction was 

produced from pLP-VSVG plasmid (Invitrogen, Thermo Fisher, #K497500).
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Figure 2.1. Amino acid alignment of primate lentiviral capsid sequences 
Amino acid alignment of the HIV/SIV capsids used. Genbank accession numbers: HIV-1 
NL4-3 (M19921); SIVsmE041 (HM059825); SIVsmE543 (U72748); SIVsmE660-FL6 
(JQ864085); SIVsmE660-FL14 (JQ864087); SIVsmG932 (JX860416); SIVsmD215 
(JX860413); SIVmac239 (M33262); HIV-2 ROD (M15390); HIV-2 GH-1 (M30895); 
HIV-2 UC1 (L07625); HIV-2 EHO (U27200); and SIVstm37.16 (M83293).  
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Table 2.2. Oligonucleotides for PCR amplification and site-directed mutagenesis of 
lentiviral proviruses 
 

Primer name Sequence 

pbj1.9-NarI-F 5’-CCGCCTGGTCATCTCGGTACTCGGAC-3’ 

pbj1.9-SphI-R 5’-CTCTAGAGGGCGGTATAGTTGAG-3’ 

E041-CA-BsrGI-F 5’-GCAGCATGTACAGCAAGTAGGT-3’ 

E041-CA-BbvCI-R 5’-ATAATACCTCAGCCATTAGTCTAGCTTTTT-3’ 

ROD-shuttle-Horn-F 5’Phos-TAACCCGACCAACATCCTAGACATAAAAC-3’ 

ROD-shuttle-Horn-R 5’Phos-TACATCCTGACACACTTCTGCAATCCTA-3’ 

ROD-CA-BsrGI-F 5’-ATAATACCTGTACAACATGTAGGCGGCAACTA-3’ 

ROD-CA-BbvCI-R 5’-ATAAGCCCTCAGCCATTAATCTAGCTTTCTG-3’ 

E041-CA-Q85I-F 5’Phos-ATACCAGGTCCAATACCAGCAGGAC-3’ 

E041-CA-Q85I-R 5’Phos-TGGGTGTTGTAAATCCCAATCAGC-3’ 

E041-CA-QP86QPP-Fv2 5’Phos-CCGCCAGGTCCAATAC-3’ 

E041-CA-QPP-R 5’Phos-CTGTGGGTGTTGTAAATCCC-3’ 

E041-CA-G87A-F 5’Phos-GCTCCAATACCAGCAGGACAACTTAG-3’ 

SIVsmE041_CA-G88V_R 5’Phos-TGGCTGTGGGTGTTGTAAATCC-3’ 

E041-CA-IPA91QQ-F 5’Phos-CAACAAGGACAACTTAGAGACCCGAG-3’ 

E041-CA-IPA91QQ-R 5’Phos-TGGACCTGGCTGTGGGTG-3’ 

E041-G87A+QQ-F 5’Phos-GCTCCACAACAAGGACAACTTAGAGAC-3’ 

ROD-CA-I85Q-F 5’Phos-CAGCCAGGCCCCTTACCAG-3’ 

ROD-CA-I85Q-R 5’Phos-TGGATGTTGCACATCCCATTC-3’ 

pbj1.9-CA-P91A-F 5’Phos-GCAGGACAACTTAGAGAGCCAAGAG-3’ 

pbj1.9-CA-P91A-R 5’Phos-TGGTATCGGACCTGGCTGC-3’ 

37.16-CA-ΔP86-F 5’Phos-GGTCCGCTGCCAGCAGG-3’ 

37.16-CA-ΔP86-R 5’Phos-TGGTTGTGGATGCTGCATGTC-3’ 

239-CA-A87G-F 5’Phos-GGTCCACAACAAGGACAACTTAGGG-3’ 

239-CA-A87G-R 5’Phos-TGGTTGTGGGTGCTGCAAGT-3’ 

239-CA-QQ90LPA-F 5’Phos-CTACCAGCAGGACAACTTAGGGAGC-3’ 

239_89IPA91_R 5’Phos-TGGAGCTGGTTGTGGGTGC-3’ 

239-A87G+IPA-F 5’Phos- GGTCCAATACCAGCAGGACAACTTAG-3’ 
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2.3.2 TRIM-Fusion (TF) Assay Plasmids 

The TFnull construct – which consists of an N-terminal HA tag, then the first 303 

amino acids of rhesus macaque (rh) TRIM5Cyp (rhTRIM5Cyp; Genbank accession 

number EU359036), followed by an AsiSI restriction site; an adenine; a stop codon; three 

‘GCC’ repeats; and a MluI restriction site (Figure 2.2A) – was commercially synthesized 

as a GeneArt Strings DNA fragment (Invitrogen, Thermo Fisher) and then amplified by 

PCR using the primers T5fusion_XhoI_F and T5fusion_EcoRI_R, which add a XhoI and 

EcoRI restriction site to the PCR product 5’ and 3’ ends, respectively. The TFnull 

fragment was inserted into pLPCX vector (Clontech; #631511) using XhoI and EcoRI 

restriction sites, creating the pLPCX-TFnull plasmid. The pLPCX vector is a retroviral 

transfer vector that has a puromycin resistance gene for antibiotic selection in eukaryotic 

cells. 

To create the TRIM-Fusion (TF) constructs where the human (hu), sooty 

mangabey (sm), and rhesus macaque (rh) Nup358Cyp or Nup358R4-Cyp, and human CypA 

(huCypA) domain is fused to the rhTRIM5Cyp RBCC domains (Figures 2.2B and 2.2C), 

total RNA was isolated from HEK293T/17 (human), FPr (sooty mangabey), and 444 

(rhesus macaque) cells using RNeasy Mini Kit (Qiagen, #74104) according to 

manufacturer’s protocol. From the isolated RNA, human, sooty mangabey, and rhesus 

macaque Nup358Cyp cDNA was generated by RT-PCR with primers huNup358-

Cyp_AsiSI_F and huNup358-Cyp_MluI_R while human, sooty mangabey, and rhesus 

macaque Nup358R4-Cyp cDNA was generated by RT-PCR with primers huNup358-

RBD4_AsiSI_F and huNup358-Cyp_MluI_R. From the HEK293T/17 isolated RNA, 

huCypA cDNA was generated by RT-PCR with primers huCypA_AsiSI_F and 
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huCypA_MluI_R. All three sets of primers add an AsiSI and MluI restriction site to the 

cDNA product 5’ and 3’ ends, respectively. RT-PCR was performed using SuperScript 

III One-Step RT-PCR System with Platinum Taq High Fidelity DNA Polymerase 

(Invitrogen, Thermo Fisher, #12574030). The human, sooty mangabey, and rhesus 

macaque Nup358-Cyp and Nup358R4-Cyp, and huCypA cDNA products were inserted into 

the pLPCX-TFnull plasmid using AsiSI and MluI restriction sites, creating the pLPCX-

TF-huNup358-Cyp, pLPCX-TF-smNup358-Cyp, pLPCX-TF-rhNup358-Cyp, pLPCX-

TF-huNup358-RBD4/Cyp, pLPCX-TF-smNup358-RBD4/Cyp, pLPCX-TF-rhNup358-

RBD4/Cyp, and pLPCX-TF-huCypA plasmids, respectively. These plasmids encode the 

N-terminal HA-tagged rhTRIM5Cyp RBCC domains fused to huNup358Cyp domain, 

smNup358Cyp domain, rhNup358Cyp domain, huNup358R4-Cyp domains, smNup358R4-Cyp 

domains, rhNup358R4-Cyp domains, or huCypA domain, respectively. The CypA amino 

acid sequence is identical for human, sooty mangabey, and rhesus macaque [83,158]. 

Sequences of primers used are listed in Table 2.3.
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Figure 2.2. Details of TRIM-Fusion (TF) constructs 
(A) Schematic of TFnull construct with its C-terminal sequence shown below. The 
construct has a N-terminal HA tag, followed by the first 303 amino acids of 
rhTRIM5Cyp (Genbank accession number EU359036) – which contains the RBCC (blue 
lettering) – then an AsiSI restriction site (orange lettering); an adenine to maintain the 
correct reading frame (purple lettering); a stop codon (red lettering); three ‘GCC’ repeats; 
and a MluI restriction site (green lettering). Thus, the TFnull construct expresses HA-
tagged rhTRIM5Cyp RBCC domains plus three additional amino acids. The AsiSI and 
MluI (green lettering) restriction sites were used to create the TF-Nup358 and TF-CypA 
constructs (replacing the gray boxed sequence) with the AsiSI restriction site, adenine for 
correct reading frame, and MluI restriction site introduced to inserts by PCR. Figure not 
drawn to scale. 
(B) Sequence alignment of huCypA and human, sooty mangabey, rhesus macaque, and 
pig-tailed macaque Nup358Cyp domains. Residues are numbered based on human CypA 
sequence. Genbank accession numbers for huCypA and huNup358 sequences are 
NM_021130 and NM_006267, respectively.  
(C) Sequence alignment of region between Nup358R4 and Nup358Cyp domains for human, 
sooty mangabey, rhesus macaque, and pig-tailed macaque Nup358 orthologs. Numbering 
shown based on human Nup358 sequence (Genbank accession number NM_006267). 
The R4 domain is identical for all four species. Schematic of Nup358 not drawn to scale.  
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Table 2.3. Oligonucleotides for PCR amplification and site-directed mutagenesis of 
TF constructs 
 
Primer name Sequence 

T5fusion_XhoI_F 5’-ATAATACTCGAGGCCACCATGTACCCATACGAC-3’ 

T5fusion_EcoRI_R 5’-ATAATAGAATTCACGCGTGGCGGCGGCTCAT-3’ 

huNup358-Cyp_AsiSI_F 5’-ATAATAGCGATCGCAGAGACCAATCCTGTG-3’ 

huNup358-Cyp_MluI_R 5’-ATAATAACGCGTTTATATCTGTCCACATTCTGTGATAGTTATT-3’ 

huNup358-
RBD4_AsiSI_F 5’-ATAATAGCGATCGCATCTGGAGAAGAAGATGAAGAA-3’ 

huCypA_AsiSI_F 5’-ATAATAGCGATCGCAATGGTCAACCCCACCGTGTT-3’ 

huCypA_MluI_R 5’-ATAATAACGCGTTTATTCGAGTTGTCCACAGTCAGCAATGGT-3’ 

huNup358-M3045L-F 5’Phos-TTGAAACTCCAGAAAGGACATGTATCACT-3’ 

huNup358-M3045L-R 5’Phos-TAAATTCTGCTGACATTCTTCAAATGTTTTCT-3’ 

huNup358-K3046Q-F 5’Phos-CTCCTCCAGAAAGGACATGTATCACTG-3’ 

huNup358-K3046Q-R 5’Phos-CATTAAATTCTGCTGACATTCTTCAAATGTTT-3’ 

Nup358_delta3aa_F 5’Phos-GCAGCAGAATTATCAAAGGAGACCA-3’ 

Nup358_3aa_R 5’Phos-ATGTCCTTTCTGGAGTTTCATTAAATTCTG-3’ 

huNup358-V3173F-F 5’Phos-TTTATAACACTGAAGAAAGCAGAACATTTGG-3’ 

hu358-V3173W_R 5’Phos-AAATTGAGAATTATTGGTATTCTGGCCTTG-3’ 

smNup358-L3045M-F 5’Phos-ATGCAACTCCAGAAAGGACATGC-3’ 

smNup358-Q3046K-F 5’Phos-AAACTCCAGAAAGGACATGCAGCA-3’ 

smNup358-Q3046K-R 5’Phos-CAATAAATTCTGCTGACATTCTTCAAATGTTTT-3’ 

Nup358_plus3aa_F 5’Phos-GTATCACTGGCAGCAGAATTATCAAAGG-3’ 

smNup358_3aa_R 5’Phos-ATGTCCTTTCTGGAGTTGCAATAAATTCT-3’ 

smNup358-F3170V-F 5’Phos-GTTATAACACTGAAAAAAGCAGAACATTTGGAC-3’ 
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2.4 Sequencing of Nup358 C-Terminal Fragment 

Genomic DNA was isolated from the sooty mangabey, rhesus macaque, and pig-

tailed macaque cell lines listed in Table 2.1 using the Maxwell 16 Cell DNA Purification 

Kit (Promega, #AS1020) according to manufacturer’s protocol. The C-terminal fragment 

of the RANBP2 gene (which encodes the Nup358 protein) was amplified by PCR using 

the primers huNup358-RBD4_AsiSI_F and huNup358-Cyp_MluI_R. PCR was 

performed with Phusion Flash PCR Master Mix (Thermo Scientific, #F548S). PCR 

products were sequenced directly by Eton Bio (Boston, MA) and data were analyzed 

using Geneious (Biomatters Limited, v2020.2.4). 

2.5 Site-Directed Mutagenesis 

2.5.1 Primer Phosphorylation 

The 5’ end of primers used for site-directed mutagenesis were phosphorylated by 

T4 Polynucleotide Kinase (New England Biolabs, cat# M0201S), which was heat 

inactivated at 65°C for 20 minutes prior to use of primers in PCR. 

2.5.2 Lentiviral CA Mutants 

The SIVsmE041 Q85I, A91P, 85QP86➔85QPP87, G87A, and 89IPA91➔89QQ90 CA 

mutants were made by site-directed mutagenetic PCR on pV1EGFP-E041 using the 

following primer pairs: E041-CA-Q85I-F and E041-CA-Q85I-R (for Q85I CA mutation); 

E041-CA-A91P-F and E041-CA-A91P-R (for A91P CA mutation); E041-CA-QP86QPP-

Fv2 and E041-CA-QPP-R (for 85QP86➔85QPP87 CA mutation); E041-CA-G87A-F and 

SIVsmE041_CA-G88V_R (for G87A CA mutation); and E041-CA-IPA91QQ-F and 

E041-CA-IPA91QQ-R (for 89IPA91➔89QQ90 CA mutation). Properly modified clones 

were identified by sequencing and the mutant CA was subcloned into pV1EGFP-E041 
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plasmid using DraIII and SbfI restriction sites to create the single-cycle, EGFP reporter, 

mutant CA SIVsmE041 proviral plasmids. These plasmids were given the names: 

pV1EGFP-E041 Q85I, pV1EGFP-E041 A91P, pV1EGFP-E041 QP➔QPP, pV1EGFP-

E041 G87A, and pV1EGFP-E041 IPA➔QQ, which contain the SIVsmE041 Q85I, A91P, 

85QP86➔85QPP87, G87A, or 89IPA91➔89QQ90 CA mutation, respectively. The SIVsmE041 

G87A + 89IPA91➔89QQ90 CA double mutant was created in a similar fashion except site-

directed mutagenetic PCR was performed on pV1EGFP-E041 IPA➔QQ using the 

primers E041-G87A+QQ-F and SIVsmE041_CA-G88V_R, creating the pV1EGFP-E041 

G87A+IPA➔QQ plasmid.  

The HIV-2 ROD I85Q CA mutant was made by site-directed mutagenetic PCR on 

pHIV-2ROD-Δenv-GFP using the primers ROD-CA-I85Q-F and ROD-CA-I85Q-R. A 

properly modified clone was identified by sequencing and the mutant CA was subcloned 

into pHIV-2ROD-Δenv-GFP and pROD10 plasmids using EcoRV restriction sites to 

create the single-cycle, EGFP reporter, and multi-cycle HIV-2 ROD I85Q mutant CA 

viruses, respectively. These plasmids were given the names pHIV-2ROD-Δenv-GFP 

I85Q and pROD10 I85Q, respectively. 

The SIVpbj1.9 P91A CA mutant was made by site-directed mutagenetic PCR on 

pV1EGFP-pbj1.9 using the primers pbj1.9-CA-P91A-F and pbj1.9-CA-P91A-R. A 

properly modified clone was identified by sequencing and the mutant CA was subcloned 

into pV1EGFP-pbj1.9 using NarI and SphI restriction sites, creating the single-cycle, 

EGFP reporter SIVpbj1.9 P91A CA mutant. This plasmid was given the name 

pV1EGFP-pbj1.9 P91A.  
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The SIVstm37.16 ΔP86 CA mutant was made by site-directed mutagenetic PCR 

on pV1EGFP-37.16 using the primers 37.16-CA-ΔP86-F and 37.16-CA-ΔP86-R. A 

properly modified clone was identified by sequencing and the mutant CA was subcloned 

into pV1EGFP-37.16 using DraIII and SbfI restriction sites, creating the single-cycle, 

EGFP reporter SIVstm37.16 ΔP86 CA mutant. This plasmid was given the name 

pV1EGFP-37.16 ΔP86. 

The SIVmac239 A87G, and 89QQ90➔89IPA91 CA mutants were made by site-

directed mutagenetic PCR on pV1EGFP using the following primer pairs: 239-CA-

A87G-F and 239-CA-A87G-R (for A87G CA mutation); and 239-CA-QQ90LPA-F and 

239_89IPA91_R (for 89QQ90➔89IPA91 CA mutation). Properly modified clones were 

identified by sequencing and the mutant CA was subcloned into pV1EGFP plasmid using 

DraIII and SbfI restriction sites to create the single-cycle, EGFP reporter, mutant CA 

SIVmac239 proviral plasmids. These plasmids were given the names pV1EGFP-A87G, 

and pV1EGFP-QQ➔IPA, which contain the SIVmac239 A87G, or 89QQ90➔89IPA91 CA 

mutation, respectively. The SIVmac239 A87G + 89QQ90➔89IPA91 CA double mutant was 

created in a similar fashion except site-directed mutagenetic PCR was performed on 

pV1EGFP-QQ➔IPA using the primers 239-A87G+IPA-F and 239-CA-A87G-R, 

creating the pV1EGFP-A87G+QQ➔IPA plasmid. 

All site-directed mutagenetic PCR was performed using 5’ phosphorylated 

primers. Sequences of primers used are listed in Table 2.2. 

The creation of SIVmac239 S97R, SIVsmE543 R98S, and SIVsmE543 P37S CA 

mutants has been previously described [153,159].  
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2.5.3 TF-Nup358 Mutants 

The TF-huNup358R4-Cyp M3045L, K3046Q, Δ3052VSL3054, and V3173F mutant 

constructs were made by site-directed mutagenetic PCR on pLPCX-TF-huNup358-

RBD4/Cyp using the following primer pairs: huNup358-M3045L-F and huNup358-

M3045L-R (for M3045L mutant); huNup358-K3046Q-F and huNup358-K3046Q-R (for 

K3046Q mutant); Nup358_delta3aa_F and Nup358_3aa_R (for Δ3052VSL3054 mutant); 

and huNup358-V3173F-F and hu358-V3173W_R (for V3173F mutant). The generated 

TF-huNup358R4-Cyp mutant plasmids were given the names: pLPCX-TF-huNup358-

RBD4/Cyp M3045L, pLPCX-TF-huNup358-RBD4/Cyp K3046Q, pLPCX-TF-

huNup358-RBD4/Cyp ΔVSL, and pLPCX-TF-huNup358-RBD4/Cyp V3173F. These 

plasmids encode the N-terminal HA-tagged rhTRIM5Cyp RBCC domains fused to 

huNup358R4-Cyp domains containing a M3045L, K3046Q, Δ3052VSL3054 (deletion of 

“VSL” residue stretch at positions 3052-3054), or V3137F mutation, respectively. The 

residue numbering of the mutations is in respect to their position within the full-length 

human Nup358 protein.  

The TF-smNup358R4-Cyp L3045M, Q3046K, +3052VSL3054, and F3173V mutants 

were made by site-directed mutagenetic PCR on pLPCX-TF-smNup358-RBD4/Cyp 

using the following primer pairs: smNup358-L3045M-F and huNup358-M3045L-R (for 

L3045M mutant); smNup358-Q3046K-F and smNup358-Q3046K-R (for Q3046K 

mutant); Nup358_plus3aa_F and smNup358_3aa_R (for +3052VSL3054 mutant); and 

smNup358-F3170V-F and hu358-V3173W_R (for F3173V mutant). The generated TF-

smNup358R4-Cyp mutant plasmids were given the names: pLPCX-TF-smNup358-

RBD4/Cyp L3045M, pLPCX-TF-smNup358-RBD4/Cyp Q3046K, pLPCX-TF-
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smNup358-RBD4/Cyp +VSL, and pLPCX-TF-smNup358-RBD4/Cyp F3170V. These 

plasmids encode the N-terminal HA-tagged rhTRIM5Cyp RBCC domains fused to sooty 

mangabey Nup358R4-Cyp domains containing a L3045M, Q3046K, +3052VSL3054 

(insertion of “VSL” residues at positions 3052-3054), or V3137F mutation, respectively. 

Note: the residue numbering of the mutations is in respect to their position relative to the 

full-length human Nup358 protein (the F3173V mutation of smNup358R4-Cyp is at residue 

3170 of the full-length sooty mangabey Nup358 protein).  

All site-directed mutagenetic PCR was performed using 5’ phosphorylated 

primers. Sequences of primers used are listed in Table 2.3. 

2.6 Immunoblotting 

Stable CRFK cells expressing the various HA-tagged TF-Nup358/CypA 

constructs were lysed in NP-40 lysis buffer [55 mM TRIS-HCl, (pH 7.5), 150 mM NaCl, 

1% (v/v) IgePal NP-40] and lysate was cleared by centrifugation at 16,100 x g for 10 

minutes at 4°C. Protein concentration of the cleared lysate was determined using Quick 

Start Bradford 1X Dye Reagent (Bio-Rad, #5000205) and 40 µg of each sample (mixed 

with appropriate amount of 2X Laemmli sample buffer and boiled for 5 minutes at 

100°C) were separated by SDS-PAGE then transferred onto polyvinylidene fluoride 

(PVDF) membrane. PVDF membranes were blocked using 5% non-fat milk in PBS. HA 

was detected using 1:2000 dilution of HRP-conjugated rabbit polyclonal PA1-29751 

antibody (Invitrogen, Thermo Fisher, #PA1-29751) in 1% non-fat milk in PBS. Β-actin 

was detected using 1:5000 dilution of HRP-conjugated mouse monoclonal mAbcam 8226 

antibody (Abcam, ab20272) in 1% non-fat milk in PBS. Probed membranes were 

developed using Amersham ECL Prime Western Blotting Detection Reagent (GE 
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Healthcare Life Sciences, Cytiva, RPN2236). In between incubations with different 

antibodies, PVDF membranes were stripped using Restore Western Blot Stripping Buffer 

(Thermo Fisher, #21059). Membrane washings were performed using PBS with 0.05% 

Tween-20. 

2.7 Virus Production 

All single-cycle, EGFP reporter HIV/SIV viruses were produced in HEK293T/17 

cells by co-transfection of the appropriate proviral plasmid and pVSV-G in a 2:1 ratio. 

Single-cycle, EGFP reporter FIV virus was produced in HEK293T/17 cells by co-

transfection of pGINSIN, pFP93, and pVSV-G in a 3:2:1 ratio. Single-cycle, EGFP 

reporter EIAV virus was produced in HEK293T/17 cells by co-transfection of pEIAV-

SIN6.1 CGFPW, pEV53D, and pVSV-G in a 3:2:1 ratio. Single-cycle, EGFP reporter 

MLV virus was produced in HEK293T/17 cells by co-transfection of pLXIN-GFP, 

pCIGB, and pVSV-G in a 3:2:1 ratio. Multi-cycle HIV-2 ROD and SIVsmE543 viruses 

were produced in HEK293T/17 cells by transfection of pROD10 or pGEM-E543 

plasmid, respectively. Recombinant retroviruses used for CRFK cell transduction were 

produced in GP2-293 cells by co-transfection of pLPCX vector only (empty vector) or 

pLPCX-TF construct plasmid and pVSV-G in a 1:1 ratio. All transfections were 

performed using GenJet In Vitro DNA Transfection Reagent (SignaGen Laboratories, 

#SL100488). Transfection media was left on cells overnight and then replaced with fresh 

culture media. Supernatant was collected 72 hours post-transfection for single-cycle, 

EGFP reporter and multi-cycle viruses, and 48 hours post-transfection for recombinant 

retroviruses packaging either pLPCX vector only or pLPCX-TF construct. Supernatants 
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were clarified by centrifugation at 500 x g for 10 minutes at room temperature, then 

aliquoted and stored at -80°C. 

2.8 Stable Cell Line Creation 

CRFK were seeded at a concentration of 1 x 105 cells per well in 6-well plates in 

a total volume of 2 ml of culture media. The following day, media was replaced with 1 

ml of VSV-G pseudotyped, recombinant retrovirus packaging either pLPCX vector only 

or pLPCX-TF construct and plates were centrifuged at 800 x g for two hours at 32°C. At 

24 hours post-transduction, viral supernatant was removed and replaced with fresh 

culture media. Starting 48 hours post-transduction, stable CRFK cell lines were selected 

in culture media supplemented with 10 µg/ml puromycin and subsequently maintained in 

culture media supplemented with 5 µg/ml puromycin. 

2.9 THP-1/U937 Differentiation 

THP-1 or U937 cells were seeded at a concentration of 5 x 105 cells per well in 

12-well plates in a total volume of 1 ml culture media supplemented with 150 nM 

phorbol 12-myristate 13-acetate (PMA). 72 hours later, PMA-containing media was 

removed and adhered cells in each well were washed twice with culture media and left in 

1 ml fresh culture media overnight prior to infection. 

2.10 Infectivity Assays 

2.10.1 Single-Cycle Viral Infections 

CRFK cells expressing the TF constructs or HA-tagged TRIM5 alleles were 

seeded at a concentration of 5 x 104 cells per well in 24-well plates in a total volume of 

500 µl of culture media. The following day, media was replaced with 250 µl of fresh 

culture media containing the appropriate amount of VSV-G pseudotyped, single-cycle, 
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EGFP reporter virus. For differentiated U937 or THP-1 cell infections, the day after 

PMA-containing media was removed and differentiated cells were left in 1 ml culture 

media, media was replaced with 500 µl of fresh culture media and then 50 µl of VSV-G 

pseudotyped, single-cycle, EGFP reporter virus was added to each well. For 

undifferentiated U937 or THP-1 cell infections and H9, CEMx174-SEAP, Jurkat E6-1, or 

SupT1-CCR5 cell infections, cells were seeded at a concentration of 8 x 104 cells per well 

in 12-well plates in a total volume of 500 µl of culture media. 50 µl of VSV-G 

pseudotyped, single-cycle, EGFP reporter virus was then added to each well. For 293T or 

HeLa cell infections, 5 x 104 cells were seeded per well in 24-well plate in a total volume 

of 500 µl of culture media. The following day, media was replaced with 200 µl of fresh 

culture media and then 50 µl of VSV-G pseudotyped, single-cycle, EGFP reporter virus 

was added to each well. All infections were performed in triplicate. After three days, 

samples were fixed in phosphate buffered saline (PBS) with 1% paraformaldehyde and 

EGFP expression was analyzed by flow cytometry using a FACSCanto flow cytometer 

(BD Biosciences) and the accompanying FACSDIVA software (v6.1.3). 

2.10.2 Multi-Cycle Viral Infections 

Jurkat E6-1, H9, CEMx174-SEAP, or SupT1-CCR5 cells were seeded at a 

concentration of 1 x 106 per flask in T25 flasks in a total volume of 1 ml of culture media. 

50 µl of multi-cycle HIV-2 ROD or SIVsmE543 virus encoding WT CA or residue 85 

mutant CA was then added to each flask. The following day, cells were pelleted at 200 x 

g for three minutes, washed with 1 ml of fresh culture media, and then resuspended in 4 

ml of fresh culture media. Starting 48 hours post-infection, timepoints were collected 

daily by removing 1 ml of culture (media and cells) from each flask and replacing it with 
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1 ml of fresh culture media. Virus particles were isolated from collected timepoints by 

centrifuging samples at 250 x g for 10 minutes at 4°C, transferring the supernatant into 

new microcentrifuge tube and centrifuging at 8,000 x g for 10 minutes at 4°C, then 

transferring the supernatant once more into a new microcentrifuge tube and centrifuging 

at 20,817 x g for 2 hours and 15 minutes at 4°C. Finally, supernatant was discarded and 

viral pellets were stored at -80°C. Once all timepoints were collected, viral RT amounts 

were quantified using the Reverse Transcriptase Assay, Colorimetric Kit (Roche, Sigma-

Aldrich, #11468120910), according to manufacturer’s protocols.
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CHAPTER 3: RESULTS
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3.1 Nup358-CA interaction altered during SIVsm emergence 

Detection of capsid-host protein interactions through conventional biochemical 

means can be difficult since the interaction may only occur in the context of the 

assembled capsid core, or the host protein has an increased affinity for the capsid core 

[122,131,160–163]. Therefore, we chose an assay that capitalizes on the capsid binding-

dependent restrictive abilities of TRIM5α in order to detect host protein-capsid 

interactions during infection of cells in culture – informally known as the TRIM-Fusion 

(TF) assay. In this assay, either the B30.2/PRYSPRY domain of TRIM5α or the Cyp 

domain of TRIM5Cyp is replaced with the potential CA-interacting host protein of 

interest (i.e., the potential CA-interacting protein domain is fused to the TRIM5 RBCC 

domains). Cell lines are then created that stably express this artificial restriction factor 

and interaction is assessed by infection with the retrovirus of interest (Figure 3.1). 

Typically, CRFK cells are used for the stable cell line creation as cats naturally encode a 

truncated TRIM5 protein: eliminating the possibility of endogenous TRIM5 interfering 

with the expression or function of the engineered restriction factor [164]. Like TRIM5α, 

viruses whose CA interacts with the fused domain will be restricted in the stable cell line 

whereas viruses whose CA does not interact will be unrestricted. This assay has been 

used to detect and characterize other host proteins that interact with HIV-1 CA 

interactions, including: CypA [62]; Nup153 [165]; CPSF6 [166]; and Nup358Cyp 

[62,80,82,83]. For Nup153 and CPSF6, the specific residues that mediate interaction with 

the CA core were identified using the TF assay prior to the solved co-crystal structures 

[105,165–167].
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Figure 3.1. Schematic illustrating the TF assay 
The potential CA-binding host protein domain of interest (DOI) is fused to the 
rhTRIM5Cyp RBCC domains and then stably expressed in CRFK cells. Expression of 
the engineered restriction factor in the stable cell line is confirmed by western blotting. 
Stable cell lines are infected with EGFP reporter retrovirus containing the CA of interest. 
Viral infectivity is assessed 72 hours post-infection using flow cytometry by calculating 
the percentage of EGFP positive cells. A decrease in percentage of EGFP positive cells 
(or infected cells) compared to the control cells indicates interaction between the viral 
CA and fused DOI while no change indicates no detectable interaction.
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We replaced the C-terminal Cyp domain of rhTRIM5Cyp with the Nup358Cyp or 

the Nup358R4-Cyp supradomain from human (Homo sapiens; TF-huNup358Cyp and TF-

huNup358R4-Cyp, respectively), sooty mangabey (Cercocebus atys; TF-smNup358Cyp and 

TF-smNup358R4-Cyp, respectively), and rhesus macaque (Macaca mulatta; TF-

rhNup358Cyp and TF-rhNup358R4-Cyp, respectively). We also generated a TRIM5-CypA 

fusion using the human CypA (huCypA) domain (Figures 3.2A and 3.2B); only the 

human ortholog was created as the CypA amino acid sequence is identical for human, 

sooty mangabey, and rhesus macaque [83,158]. The created constructs (referred to here 

as TF constructs), which have an N-terminal HA tag, were stably introduced into CRFK 

cells and expression was confirmed by western blotting (Figure 3.2C). For the TF-

Nup358R4-Cyp constructs, two cell lines were independently created that expressed the 

same construct (Figure 3.2C). The RBCC only construct (TFnull) lacks a C-terminal 

interaction domain and therefore is incapable of restriction [121,122,125,126,129,130] 

(Figure 3.2B; see also Figure 2.2A). CRFK cells transduced with empty vector (pLPCX) 

or TFnull both serve as negative control cell lines. If the fused domain of the TF 

construct is able to interact with the lentiviral CA, there will be a decrease in infectivity 

compared to the TFnull cell line. 

The ability of these constructs to restrict retroviral replication was confirmed by 

infecting the stable cell lines with a single-cycle version of HIV-1 isolate NL4-3 (NL4-3 

HIV-1) encoding an EGFP reporter. The empty vector pLPCX and TFnull cell lines 

displayed similar levels of NL4-3 HIV-1 infectivity as expected (Figure 3.3A, compare 

grey and black bars). Consistent with previous observations, the human TF-Nup358Cyp 

and TF-CypA constructs restricted NL4-3 HIV-1 infection compared to the control cell 
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lines (Figure 3.3A, compare blue Cyp and green bars to grey and black bars) [62,80–83]. 

Similarly, both the rhesus macaque and sooty mangabey TF-Nup358Cyp constructs and 

all three of the TF-Nup358R4-Cyp constructs restricted NL4-3 HIV-1 infection (Figure 

3.3A, compare the purple and pink Cyp bars and the blue, purple, and pink R4-Cyp bars 

to the grey and black bars). This loss of infectivity indicates that the Nup358Cyp domain 

from all three species interacts with NL4-3 HIV-1 CA, even in the presence of the R4 

domain (Figure 3.3A, compare the Cyp bars to R4-Cyp bars). The observed interaction 

between NL4-3 HIV-1 CA and smNup358Cyp is in line with a previous observation that 

the V3173F mutation had little impact on interaction between purified HIV-1 CA N-

terminal domain (NTD) and huNup358Cyp, as measured by isothermal titration 

calorimetry (ITC) [60].
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Figure 3.2. TF constructs and stable cell lines created 
(A) Schematic of Nup358 protein with its various domains depicted. NTD, N-terminal 
domain (red); LRR, leucine-rich region (orange); R1-4, Ran-binding domain 1-4 
(yellow); ZnF, zinc-finger region (light green); KBD, kinesin-binding domain (blue); 
CLD, cyclophilin-like domain (teal); Cyp, cyclophilin (purple). In between some of the 
domains are unstructured regions (depicted in light grey). Domain boundaries are 
indicated by residue numbers. Residue numbering is based off the human Nup358 
ortholog (Genbank accession number NP_006258). Figure not drawn to scale. 
(B) Schematic of rhTRIM5Cyp protein, TFnull negative control construct, TF-
Nup358Cyp, TF-Nup358R4-Cyp, and TF-CypA experimental constructs. rh, rhesus macaque; 
RBCC, the RING, B-Box, and Coiled-coil domains of rhTRIM5Cyp (blue); Cyp, 
cyclophilin domain (Cyp domain of rhTRIM5Cyp shown in dark grey; Nup358Cyp shown 
in purple); R4, Ran-binding domain 4 (yellow); HA, HA-tag (pink); CypA, Cyclophilin 
A (green). Figure not drawn to scale. 
(C) Western blot of CRFK cells transduced to stably express HA-tagged TF constructs or 
empty vector pLPCX. For each of the TF-Nup358R4-Cyp constructs, two cell lines were 
independently created that expressed the same construct. 
For additional details regarding construction of the TF constructs, see Methods Section 
2.3.2 and Figure 2.2.  
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Figure 3.3. Differences in Primate lentiviral CA interaction with Nup358Cyp, 
Nup358R4-Cyp, and CypA 
(A-F) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter NL4-3 HIV-1 (A), 
HIV-2 ROD (B), SIVmac239 (C), SIVsmE041 (D), SIVpbj1.9 (E), and SIVstm37.16 (F) 
on CRFK cells stably expressing TF-CypA (green bar), and human (blue bars), sooty 
mangabey (purple bars), or rhesus macaque (pink bars) orthologs of TF-Nup358Cyp or 
TF-Nup358R4-Cyp. Empty vector pLPCX (grey bar) and TFnull (black bar), which 
contains only the rhTRIM5Cyp RBCC domains, serve as negative controls. Infectivity, or 
the total percentage of EGFP positive cells, was measured by flow cytometry. The fold-
changes in infectivity compared to TFnull are shown next to the bars. Results are 
representative of at least three independent experiments, with error bars indicating ± 
standard deviation.
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Similar to what we observed for NL4-3 HIV-1, all TF constructs restricted HIV-2 

isolate ROD (HIV-2 ROD; Figure 3.3B). Interaction with huNup358Cyp has been 

previously observed for HIV-2 CA using the TF assay [80,82] and while early CA-CypA 

research suggested that HIV-2 CA did not interact with CypA [147,168–171], more 

recent work identified a direct interaction between HIV-2 CA and CypA using ITC [67]. 

In contrast to NL4-3 HIV-1 and HIV-2 ROD CA, none of the TF constructs restricted 

SIVmac isolate 239 (SIVmac239; Figure 3.3C), indicating that SIVmac239 CA is unable 

to interact with the Nup358Cyp, Nup358R4-Cyp, or CypA from all three species. The 

inability to interact with huNup358Cyp and CypA is in line with previous observations 

[62,80–83,147,170,171]. The ability of the rhesus macaque TF-Nup358Cyp and TF-

Nup358R4-Cyp orthologs to strongly restricted NL4-3 HIV-1 and HIV-2 ROD (Figures 

3.3A and 3.3B, compare purple Cyp and R4-Cyp bars to grey and black bars) indicate 

that the fused domains of these constructs are properly folded and loss of interaction is 

specific to SIVmac239. 

For SIVsm isolate E041 (SIVsmE041), all three of the TF-Nup358Cyp constructs 

and the rhesus macaque and sooty mangabey TF-Nup358R4-Cyp constructs strongly 

restricted replication (Figure 3.3D); however, human TF-Nup358R4-Cyp and TF-CypA 

only restricted SIVsmE041 replication by ~2 or 3-fold compared to the TFnull control 

(Figure 3.3D, compare blue R4-Cyp and green bars to black bar), indicating weak 

interaction between the fused domains and SIVsmE041 CA. Again, as both of these 

constructs strongly restricted NL4-3 HIV-1 and HIV-2 ROD (Figures 3.3A and 3.3B, 

compare blue R4-Cyp and green bars to grey and black bars), this diminished interaction 

is specific to the SIVsmE041 CA. Thus, SIVsmE041 CA loses the ability to strongly 
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interact with the huNup358Cyp domain in the huNup358R4-Cyp supradomain (Figure 3.3D, 

compare blue Cyp bar to blue R4-Cyp bars). Looking at the results in the context of 

SIVsm cross-species transmission, emergence of SIVmac coincided with complete loss 

of CA interaction with CypA/Nup358Cyp (Figures 3.3C and 3.3D, compare blue, purple, 

and pink Cyp and R4-Cyp and green bars), while emergence of HIV-2 coincided with 

stronger interaction with huNup358R4-Cyp domains and CypA (Figures 3.3B and 3.3D, 

compare blue R4-Cyp and green bars). 

SIVsm has jumped into two other macaque species: stump-tailed macaques (stm; 

Macaca arctoides), and pig-tailed macaques (ptm; Macaca nemestrina), giving rise to 

SIV of stump-tailed macaques (SIVstm) and SIV of pig-tailed macaques (SIVpbj), 

respectively [42,48–53]. Thus, we decided to test the ability of these two viruses to 

interact with Nup358 and CypA. Sequencing of multiple individuals revealed that the 

ptmNup358R4-Cyp and smNup358R4-Cyp amino acid sequences are identical (see Figures 

2.2B and 2.2C). In contrast to SIVmac239, we observed that both SIVpbj isolate 1.9 

(SIVpbj1.9) and SIVstm isolate 37.16 (SIVstm37.16) maintained CA interaction with 

Nup358 (Figures 3.3E and 3.3F). For SIVpbj1.9, both the sooty mangabey and rhesus 

macaque TF-Nup358Cyp and TF-Nup358R4-Cyp orthologs restricted replication, indicating 

interaction between those fused domains and SIVpbj1.9 CA (Figure 3.3E, compare 

purple and pink Cyp and R4-Cyp bars to grey and black bars); however, the human TF-

Nup358Cyp ortholog only weakly restricted SIVpbj1.9 (Figure 3.3E, compare blue Cyp 

bar to grey and black bars) – indicating weak SIVpbj1.9 CA interaction with 

huNup358Cyp. Additionally, human TF-Nup358R4-Cyp and TF-CypA orthologs both failed 

to restrict SIVpbj1.9 replication (Figure 3.3E, compare blue R4-Cyp and green bars to 



 

 54 

grey and black bars) – indicating a lack of interaction between SIVpbj1.9 CA and 

huNup358R4-Cyp, and CypA. These observations, when compared to the ancestral SIVsm 

CA, suggest a complete loss of huNup358R4-Cyp and CypA interaction following the 

emergence of SIVsm as SIVpbj (Figures 3.3D and 3.3E, compare blue R4-Cyp bars and 

green bars). As far as the authors know, the SIVpbj1.9 CA is the first lentiviral capsid to 

be able to interact with Nup358Cyp but not CypA. 

In contrast to SIVpbj1.9, only the rhesus macaque TF-Nup358R4-Cyp ortholog was 

capable of strong SIVstm37.16 restriction as the sooty mangabey ortholog only reduced 

infectivity by ~1.3 or 1.6-fold, compared to the TFnull control (Figure 3.3F, compare 

purple and pink R4-Cyp bars to black bar). Thus, of the three Nup358R4-Cyp constructs, 

SIVstm37.16 CA only interacts with the rhesus macaque ortholog. Additionally, 

SIVstm37.16 CA interacts with CypA as the virus was strongly restricted in the TF-CypA 

cell line (Figure 3.3F, compare green bar to grey and black bars). Compared to the 

ancestral interaction phenotype, SIVsm CA lost the ability to interact with its original 

host species’ Nup358R4-Cyp domains during its emergence as SIVstm, but maintained the 

ability to interact with the rhesus macaque Nup358R4-Cyp domains (Figures 3.3D and 3.3F, 

compare purple and pink R4-Cyp bars). The CA-Nup358/CypA interaction phenotypes 

observed in Figure 3.3 have been summarized in Table 3.1.
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Table 3.1. Summary of CA-Nup358/CypA interaction phenotypes from Figure 3.3 
‘–’ = no interaction (a fold-change in infectivity of >0.7 compared to TFnull) 
‘+’ = weak interaction (a fold-change in infectivity of 0.2< and <0.7 compared to TFnull) 
‘+++’ = strong interaction (a fold-change in infectivity of <0.2 compared to TFnull) 
 

Viral CA 
Nup358Cyp Nup358R4-Cyp 

CypA 
hu sm rh hu sm rh 

NL4-3 HIV-1 +++ +++ +++ +++ +++ +++ +++ 

HIV-2 ROD +++ +++ +++ +++ +++ +++ +++ 

SIVmac239 – – – – – – – 

SIVsmE041 +++ +++ +++ + +++ +++ + 

SIVpbj1.9 + +++ +++ – +++ +++ – 

SIVstm37.16 – +++ +++ – + +++ +++ 
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Analytical ultracentrifugation using purified SIVstm37.16 CA NTD and human, 

sooty mangabey, and rhesus macaque Nup358Cyp domains confirmed that the TF assay 

results were indicative of direct protein-protein interaction affinity (Table 3.2). The 

observed Kd values of 380 µM and 160 µM for smNup358Cyp and rhNup358Cyp domains, 

respectively, are in line with previously observed values for HIV-1 CA NTD and 

huNup358Cyp [60,84].
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Table 3.2. Results of analytical ultracentrifugation using purified SIVstm37.16 CA 
NTD and Nup358Cyp 
 

Nup358Cyp ortholog Kd (µM) 

Human 57000 

Sooty mangabey 380 

Rhesus macaque 160 
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Using the TF cell lines, we also examined the ability of the human, sooty 

mangabey, and rhesus macaque Nup358Cyp domains and Nup358R4-Cyp supradomains and 

huCypA, to interact with the CA of several non-primate retroviruses (Figure 3.4). As we 

observed little difference in viral infectivity levels between the empty vector pLPCX and 

TFnull negative control lines (Figure 3.3, compare grey and black bars), only the TFnull 

cell line was used in the rest of the TF assay performed. None of the TF constructs were 

able to restrict infectivity of murine leukemia virus (MLV; Figure 3.4A), a retrovirus 

belonging to the Gammaretrovirus genus. The lack of observed interaction is consistent 

with previous observations that MLV CA does not interact with either CypA or 

Nup358Cyp [65,81,83,147,171] and the absence of an elongated proline-rich loop between 

MLV CA α-helix 4 and α-helix 5 [57]. The non-primate lentivirus feline 

immunodeficiency virus (FIV) CA strongly interacted with all of the TF constructs 

(Figure 3.4B), similar to NL4-3 HIV-1 and HIV-2 ROD CA (Figures 3.3A and 3.3B). 

The FIV CA results are in line with previous work showing FIV CA interaction with the 

Nup358Cyp domain and CypA from multiple species [60,65,69,81,83]. In contrast to FIV, 

the non-primate lentivirus equine infectious anemia virus (EIAV) CA did not interact 

with CypA or any of the Nup358Cyp or Nup358R4-Cyp orthologs (Figure 3.4C). Despite 

EIAV CA exhibiting the proline-rich 4-5 surface loop characteristic of lentiviral CA 

[172], the lack of interaction witnessed is in agreement with previous observations that 

EIAV is unable to bind CypA [65].
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Figure 3.4. Nup358Cyp/CypA interaction is variable in non-primate retroviral CA 
(A-C) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter MLV (A), FIV 
(B), and EIAV (C) on CRFK cells stably expressing TF-CypA (green bar), and human 
(blue bars), sooty mangabey (purple bars), or rhesus macaque (pink bars) orthologs of 
TF-Nup358Cyp or TF-Nup358R4-Cyp. TFnull, which contains only the rhTRIM5Cyp RBCC 
domains, serves as a negative control (black bar). Infectivity, or the total percentage of 
EGFP positive cells, was measured by flow cytometry. The fold-changes in infectivity 
compared to TFnull are shown next to the bars. Results are representative of at least two 
independent experiments, with error bars indicating ± standard deviation.
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3.2 Nup358R4-Cyp interaction phenotype is conserved among SIVsm/HIV-2 CA 

We decided to test capsids from multiple SIVsm/HIV-2 isolates to confirm that 

the interaction phenotypes we observed in Figure 3.3 were not specific to those particular 

isolates. Similar to SIVsmE041, SIVsm isolate E543 (SIVsmE543) interacted strongly 

with all three Nup358Cyp orthologs and the rhesus macaque and sooty mangabey 

Nup358R4-Cyp orthologs and weakly with huNup358R4-Cyp (Figure 3.5A). We observed 

similar interaction phenotypes for the CA of SIVsm isolate E660 (SIVsmE660) clone 

FL6 (SIVsmE660-FL6) and SIVsmE660 clone FL14 (SIVsmE660-FL14) (Figures 3.5B 

and 3.5C). We then designed SIVmac239-based chimeric viruses that encode the CA of 

SIVsm isolates G932 and D215 (SIVsmG932 and SIVsmD215, respectively) and several 

HIV-2 isolates (see Figure 2.1 for CA sequences). Similar to the other SIVsm CA, 

SIVsmG932 CA interacted with both the sooty mangabey and rhesus macaque 

Nup358Cyp domains and Nup358R4-Cyp supradomains (Figure 3.5D, compare purple and 

pink Cyp bars to purple and pink R4-Cyp bars), and human Nup358Cyp domain but not 

the Nup358R4-Cyp supradomain (Figure 3.5D, compare blue Cyp bar to blue R4-Cyp bars). 

Virions produced by the SIVmac239-based chimeric virus encoding SIVsmD215 CA 

were non-infectious (data not shown).  

Interestingly, we observed that while poor huNup358R4-Cyp interaction was 

conserved among SIVsm CAs, the ability to interact with CypA was not; we observed 

strong, weak, and the complete loss of CypA interaction among the different SIVsm CAs 

(Figures 3.5A-3.5D, compare green bars). Identical to what we observed for HIV-2 ROD, 

the CA of HIV-2 isolates GH-1, UC1, and EHO (HIV-2 GH-1, HIV-2 UC1, and HIV-2 

EHO, respectively) strongly interacted with CypA, and the Nup358Cyp domains and 
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Nup358R4-Cyp supradomains from all three species (Figures 3.5E-3.5G). The observed 

interaction phenotypes using the CA chimeric viruses are most likely similar to what 

would be observed in the non-chimeric context as replacing the CA of SIVmac239 with 

SIVsmE041 or HIV-2 ROD CA recapitulated the interaction phenotype observed for the 

non-chimeric SIVsmE041 and HIV-2 ROD viruses (Figures 3.6A-3.6C).
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Figure 3.5. Nup358R4-Cyp interaction phenotypes are consistent among the CA of 
SIVsm and HIV-2 isolates. 
(A-F) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter SIVsmE543 (A), 
SIVsmE660-FL6 (B), SIVsmE660-FL10 (C), and SIVmac239-based chimeric virus 
encoding the SIVsmG932 CA (D), HIV-2 GH-1 CA (E), HIV-2 UC1 CA (F), or HIV-2 
EHO CA (G) on CRFK cells stably expressing TF-CypA (green bar), and human (blue 
bars), sooty mangabey (purple bars), or rhesus macaque (pink bars) orthologs of TF-
Nup358Cyp or TF-Nup358R4-Cyp. TFnull, which contains only the rhTRIM5Cyp RBCC 
domains, serves as the negative control (black bar). Infectivity, or the total percentage of 
EGFP positive cells, was measured by flow cytometry. The fold-changes in infectivity 
compared to TFnull are shown next to the bars. Results are representative of at least three 
independent experiments, with error bars indicating ± standard deviation.  
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Figure 3.6. Validation of CA chimeric virus interaction phenotypes 
(A-C) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter SIVmac239 (A) 
and SIVmac239 where the CA has been replaced with the CA of SIVsmE041 (B) or 
HIV-2 ROD (C) on CRFK cells stably expressing TF-CypA (green bar) and human (blue 
bars), sooty mangabey (purple bars), or rhesus macaque (pink bars) orthologs of TF-
Nup358Cyp or TF-Nup358R4-Cyp. TFnull, which contains only the rhTRIM5Cyp RBCC 
domains, serves as the negative control (black bar). Infectivity, or the total percentage of 
EGFP positive cells, was measured by flow cytometry. The fold-changes in infectivity 
compared to TFnull are shown next to the bars. Results are representative of at least three 
independent experiments, with error bars indicating ± standard deviation. Above each 
graph is a schematic of the gag-pol of the virus used below. Pink, purple, and blue 
coloring correspond to regions deriving from SIVmac239, SIVsmE041, and HIV-2 ROD, 
respectively.
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3.3 SIVsm/HIV-2 CA residue 85 influences human Nup358R4-Cyp interaction 

HIV-1 CA interacts with Nup358Cyp via the 4-5 loop that extends from the surface 

of the assembled CA core [60,62,83]. Thus, we hypothesized that the genetic difference 

between SIVsm and HIV-2 CA responsible for their different huNup358R4-Cyp interaction 

abilities would be located in that region. An alignment of the CA 4-5 loops from 

SIVsmE041 and HIV-2 ROD shows that they differ at only three positions (Figure 3.7A; 

see Figure 2.1 for sequence alignment of full CA protein). Of those differences, position 

85 is the only change where the encoded residues differ in polarity and size, with 

SIVsmE041 CA encoding a glutamine and HIV-2 ROD CA an isoleucine (Figure 3.7A). 

Furthermore, based on the X-ray crystal structure of HIV-1 CA NTD in complex with 

huNup358Cyp domain, the residue equivalent to SIVsmE041 and HIV-2 ROD CA position 

85 (V86 in NL4-3 HIV-1 CA) is located close to residues on Nup358Cyp that surround the 

domain’s active site (Figure 3.7B). These adjacent residues on Nup358Cyp are known as 

gate-keeper residues as they have been shown to dictate substrate specificity for the 

active site of cyclophilin domains [173]. 

To ask whether the Q85I change in CA was responsible for the enhancement of 

huNup358R4-Cyp interaction observed for HIV-2 CA compared to the ancestral SIVsm CA, 

we engineered this residue change in SIVsmE041 CA and tested its effect on 

Nup358/CypA interaction using the TF cell lines (Figure 3.7D). Like wild-type (WT) 

SIVsmE041 CA, the SIVsmE041 Q85I mutant CA strongly interacted with all three 

species’ Nup358Cyp domains and the sooty mangabey and rhesus macaque Nup358R4-Cyp 

supradomain (Figures 3.7C and 3.7D, compare Cyp bars and purple and pink R4-Cyp 

bars to black bar). The Q85I mutant CA also strongly interacted with huNup358R4-Cyp and 
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CypA, with its overall Nup358/CypA interaction phenotype matching that of HIV-2 ROD 

CA (Figures 3.7D and 3.7E). Reverting position 85 to the ancestral glutamine in HIV-2 

ROD CA disrupted interaction with huNup358R4-Cyp (Figure 3.7F), with the HIV-2 ROD 

I85Q mutant CA capable of only weak interaction like SIVsmE041 CA (Figures 3.7C and 

3.7F, compare blue R4-Cyp bars).  

Interestingly, despite the observed change in huNup358R4-Cyp interaction ability, 

the HIV-2 ROD I85Q mutant CA strongly interacted with CypA like the HIV-2 ROD 

WT CA (Figures 3.7E and 3.7F, compare green bars). While previous CA mutations 

identified to disrupt Nup358Cyp interaction also abolished CypA interaction [62,80,81], 

the I85Q CA mutation shows that these interactions can be genetically distinguished from 

one another. Alignments of the CA of multiple SIVsm and HIV-2 isolates reveal that the 

majority of SIVsm CA encode a glutamine at position 85 (Figure 3.7G, right pie chart, 

and Figure 3.8A) while most HIV-2 CA encode an isoleucine (Figure 3.7G, left pie chart, 

and Figure 3.8B), further supporting that the observed CA-Nup358 interaction 

phenotypes of the SIVsm and HIV-2 CAs we tested are representative of most SIVsm 

and HIV-2 CA proteins.
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Figure 3.7. Glutamine-to-isoleucine change at SIVsm/HIV-2 CA residue 85 alters 
human Nup358R4-Cyp interaction 
(A) Alignment of SIVsmE041 and HIV-2 ROD CA 4-5 loop sequences. 
(B) Crystal structure of huNup358Cyp (purple) interaction with NL4-3 HIV-1 CA NTD 
(pdb: 4LQW) with only the 4-5 loop shown (blue). The HIV-1 CA equivalent of 
SIVsm/HIV-2 CA residue 85 is highlighted in pink (position 86 in HIV-1 NL4-3 CA). 
Image created in PyMOL. 
(C-F) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter SIVsmE041 with 
WT CA (C) or Q85I mutant CA (D), and HIV-2 ROD with WT CA (E) or I85Q mutant 
CA (F) on CRFK cells stably expressing TF-CypA (green bar), and human (blue bars), 
sooty mangabey (purple bars), or rhesus macaque (pink bars) orthologs of TF-Nup358Cyp 
or TF-Nup358R4-Cyp. TFnull, which contains only the rhTRIM5Cyp RBCC domains, 
serves as the negative control (black bar). Infectivity, or the total percentage of EGFP 
positive cells, was measured by flow cytometry. The fold-changes in infectivity 
compared to TFnull are shown next to the bars. Results are representative of at least three 
independent experiments, with error bars indicating ± standard deviation. 
(G) Pie chart showing the distribution of residues encoded at position 85 of SIVsm CA 
(right) and HIV-2 CA (left) proteins based on sequence alignments obtained from the Los 
Alamos database.  
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Figure 3.8. Alignment of SIVsm/HIV-2 CA 4-5 loops 
(A-B) Amino acid alignment of the 4-5 loop from SIVsm (A) and HIV-2 (B) capsids 
obtained from the Los Alamos database. The Genbank accession number is written in 
parenthesis next to each isolate name. Residue 85 of CA is boxed in grey. Residues are 
numbered based on SIVsmE041 (A) or HIV-2 ROD (B) CA sequences. Red asterisks 
indicate viral CAs we tested with the TF assay. For HIV-2 sequences, the subtype is 
indicated on the left.

A B
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3.4 Isoleucine at CA residue 85 enhances SIVsm/HIV-2 nuclear import in human 

cells 

To see what impact CA residue 85 has on SIVsm/HIV-2 infectivity in human 

cells, we infected multiple human cell lines with serially-diluted HIV-2 ROD and 

SIVsmE041 virus encoding WT CA or the corresponding residue 85 mutant CA. On 

HEK293T/17 and HeLa cells – two human epithelial cell lines – we observed that the 

Q85I change in SIVsmE041 CA enhanced infectivity compared to the WT CA (Figures 

3.9A and 3.9B), while the I85Q reversion in CA reduced HIV-2 ROD infectivity (Figures 

3.9C and 3.9D). We found that these differences in infectivity were observable over the 

dilution series (Figure 3.9) and the WT CA and mutant CA viral supernatants contained 

similar amounts of reverse transcriptase (Table 3.3), suggesting that the observed changes 

in infectivity were not due to differences in the number of viral particles in the 

supernatants. 

Next, we wanted to see what effect changes at CA position 85 had on infectivity 

in cell types that more relative to HIV/SIV replication in vivo, such as macrophages and 

CD4+ T-cells. THP-1 and U937 cells are two different human (pro-) monocytic cell lines 

that can be differentiated into macrophages using phorbol-12-myristate-13-acetate (PMA) 

[174]. We infected these cell lines – both undifferentiated (and thus actively dividing) 

and differentiated into macrophages (thus non-dividing) – with serially-diluted HIV-2 

ROD and SIVsmE041 virus encoding WT CA or residue 85 mutant CA (Figure 3.10). 

Additionally, for THP-1, we performed identical infections using SIVsmE543 virus 

instead (Figures 3.10E and 3.10F). Similar to our observations in HEK293T/17 and HeLa 

cells, the Q85I CA change for the SIVsm viruses increased infectivity (Figures 3.10A-
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3.10F), while the I85Q reversion decreased HIV-2 infectivity (Figures 3.10G-3.10J). 

While overall infectivity was lower in differentiated cells compared to their 

undifferentiated counterparts, the impact of CA residue 85 on viral replication was the 

same (compare Figures 3.10A and 3.10B; Figures 3.10C and 3.10D; Figures 3.10E and 

3.10F; Figures 3.10G and 3.10H; and Figures 3.10I and 3.10J).  

We observed that CA residue 85 had similar effects on HIV-2 ROD, SIVsmE041, 

and SIVsmE543 infectivity in four different human T-cell lines (Figure 3.11). To confirm 

that these observed differences were not an artifact of using the VSV-G pseudotyped, 

single-cycle, EGFP reporter viruses, we infected all four T-cell lines with multi-cycle, 

full-length HIV-2 ROD or SIVsmE543 encoding WT CA or residue 85 mutant CA and 

measured viral replication over a period of approximately three weeks (Figure 3.12). 

Both SIVsmE543 viruses failed to replicate in H9 and Jurkat E6-1 cells (Figures 3.11B 

and 3.11C) while both HIV-2 ROD viruses failed to replicate in CEMx174-SEAP and H9 

cells (Figures 3.11E and 3.11F). This absence of replication is most likely due to 

differences in co-receptor expression patterns as the single-cycle, EGFP reporter viruses 

pseudotyped with VSV-G (which has a broad host-cell range [175]) were capable of 

infecting all of the T-cell lines (Figure 3.11), and that in the case of the CEMx174-SEAP 

and Jurkat E6-1 cells, replication was observed for the other multi-cycle virus (Figure 

3.12, compare panels A and E, and C and D). While SIVsmE543 WT CA and Q85I 

mutant CA viruses eventually reached similar replication levels in CEMx174-SEAP and 

SupT1-CCR5 cells, the Q85I mutant appeared to replicate slightly faster initially (Figures 

3.12A and 3.12D). For HIV-2 ROD, the impact of CA residue 85 on replication was 

much more pronounced (Figures 3.13G and 3.13H), as the I85Q CA mutation almost 
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completely attenuated HIV-2 ROD replication in Jurkat E6-1 and SupT1-CCR5 cells 

compared to the WT CA.
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Figure 3.9. Isoleucine at CA residue 85 increases SIVsm/HIV-2 infectivity in human 
epithelial cell lines 
(A-B) Infectivity of serial dilutions of VSV-G pseudotyped, single-cycle, EGFP reporter 
SIVsmE041 encoding WT CA (darker purple bars) or Q85I mutant CA (lighter purple 
bars) in HEK293T/17 (A), and HeLa (B) cells. 
(C-D) Infectivity of serial dilutions of VSV-G pseudotyped, single-cycle, EGFP reporter 
HIV-2 ROD encoding WT CA (darker blue bars) or I85Q mutant CA (lighter blue bars) 
in HEK293T/17 (C), and HeLa (D) cells. Infectivity, or the total percentage of EGFP 
positive cells, was measured by flow cytometry. Results are representative of at least two 
independent experiments, with error bars indicating ± standard deviation. Paired two-
tailed Student’s t-test was used to assess significance.  
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Table 3.3. Reverse transcriptase (RT) concentrations of SIV/HIV supernatants 
 

Virus RT concentration (ng/ml) 

VSV-G pseudotyped, 
EGFP reporter viruses 

HIV-2 ROD WT 3.514 
HIV-2 ROD I85Q 3.497 
SIVsmE041 WT 3.522 
SIVsmE041 Q85I 3.497 

Full-length, replication-
competent viruses 

HIV-2 ROD WT 3.532 
HIV-2 ROD I85Q 3.473 
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Figure 3.10. Isoleucine at CA residue 85 increases SIVsm/HIV-2 infectivity in 
dividing and non-dividing human myeloid cell lines 
(A-D) Infectivity of serial dilutions of VSV-G pseudotyped, single-cycle, EGFP reporter 
SIVsmE041 encoding WT CA (darker purple bars) or Q85I mutant CA (lighter purple 
bars) in undifferentiated (A) and differentiated (B) THP-1 cells and undifferentiated (C) 
and differentiated (D) U937 cells. 
(E-F) Infectivity of serial dilutions of VSV-G pseudotyped, single-cycle, EGFP reporter 
SIVsmE543 encoding WT CA (darker orange bars) or Q85I mutant CA (lighter orange 
bars) in undifferentiated (E) and differentiated (F) THP-1 cells.  
(G-J) Infectivity of serial dilutions of VSV-G pseudotyped, single-cycle, EGFP reporter 
HIV-2 ROD encoding WT CA (darker blue bars) or I85Q mutant CA (lighter blue bars) 
in undifferentiated (G) and differentiated (H) THP-1 cells and undifferentiated (I) and 
differentiated (J) U937 cells. Infectivity, or the total percentage of EGFP positive cells, 
was measured by flow cytometry. Results are representative of at least two independent 
experiments, with error bars indicating ± standard deviation. Paired two-tailed Student’s 
t-test was used to assess significance.  
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Figure 3.11. Isoleucine at CA residue 85 increases SIVsm/HIV-2 infectivity in 
human T-cell lines 
(A-D) Infectivity of serial dilutions of VSV-G pseudotyped, single-cycle, EGFP reporter 
SIVsmE041 encoding WT CA (darker purple bars) or Q85I mutant CA (lighter purple 
bars) in CEMx174-SEAP (A), H9 (B), Jurkat E6-1 (C), and SupT1-CCR5 (D) cells. 
(E-H) Infectivity of serial dilutions of VSV-G pseudotyped, single-cycle, EGFP reporter 
SIVsmE543 encoding WT CA (darker orange bars) or Q85I mutant CA (lighter orange 
bars) in CEMx174-SEAP (E), H9 (F), Jurkat E6-1 (G), and SupT1-CCR5 (H) cells. 
(I-L) Infectivity of serial dilutions of VSV-G pseudotyped, single-cycle, EGFP reporter 
HIV-2 ROD encoding WT CA (darker blue bars) or I85Q mutant CA (lighter blue bars) 
in CEMx174-SEAP (I), H9 (J), Jurkat E6-1 (K), and SupT1-CCR5 (L) cells. Infectivity, 
or the total percentage of EGFP positive cells, was measured by flow cytometry. Results 
are representative of at least two independent experiments, with error bars indicating ± 
standard deviation. Paired two-tailed Student’s t-test was used to assess significance.  
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Figure 3.12. SIVsm/HIV-2 replication in human T-cell lines 
(A-D) Replication of multi-cycle SIVsmE543 virus encoding WT CA (darker orange 
circles) or Q85I mutant CA (lighter orange triangles) in CEMx174-SEAP (A), H9 (B), 
Jurkat E6-1 (C), and SupT1-CCR5 (D) cells. 
(E-H) Replication of multi-cycle HIV-2 ROD virus encoding WT CA (darker blue 
circles) or I85Q mutant CA (lighter blue triangles) in CEMx174-SEAP (E), H9 (F), 
Jurkat E6-1 (G), and SupT1-CCR5 (H) cells. Replication was measured by measuring RT 
concentration in cell supernatant at indicated timepoints. Results are representative of at 
least two independent experiments.
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As Nup358 has been implicated in facilitating the nuclear import of HIV-1 

[60,62,85,98,99,176], we decided to test the effect of CA residue 85 on SIVsmE041 and 

HIV-2 ROD nuclear import in human cells. APOBEC3F (A3F) is a DNA cytidine 

deaminase previously identified as a primate lentivirus host restriction factor [177,178]. 

In the absence of the lentiviral accessory protein Vif – which counteracts the antiviral 

activity of A3F by causing its proteosomal degradation [179] – A3F is readily 

incorporated into assembling virions in the producer cell and remains stably associated 

with the viral protein complex in the target cell even following nuclear import [180,181]. 

Expression of yellow fluorescent protein (YFP)-tagged A3F (A3F-YFP) during Vif-

deficient SIV/HIV assembly results in YFP-labeled virions whose nuclear import 

dynamics can be analyzed in infected target cells using live-cell imaging (Figures 3.13A 

and 3.13B) [180,181]. We observed that the Q85I CA mutation increased nuclear import 

for SIVsmE041 in HeLa cells (Figure 3.13C, compare light and dark purple bars) 

whereas the I85Q CA mutation reduced nuclear import for HIV-2 ROD (Figure 3.13C, 

compare light and dark blue bars). These results suggest that the changes in infectivity 

observed between SIVsm and HIV-2 viruses encoding WT CA or the respective residue 

85 mutant CA (Figures 3.9-3.12) may be due to differences in viral nuclear import 

kinetics.
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Figure 3.13. Isoleucine at CA residue 85 increases SIVsm/HIV-2 nuclear import 
levels in HeLa cells 
(A) A3F-YFP (which is packaged into the virion within the producer cell) stays 
associated with the viral protein/genomic complex during infection of the target cell, 
even after the viral complex is imported into the nucleus.  
(B) Representative confocal images of HeLa cells infected with A3F-YFP-labeled HIV-2 
ROD particles containing WT CA (top panel) or I85Q CA mutation (bottom panel). The 
nuclear envelope is stained using an anti-Lamin A/C antibody. 
(C) The percentage of total A3F-YFP-labeled particles found in the nucleus following 
HeLa cell infection with A3F-YFP-labeled SIVsmE041 particles containing WT CA 
(darker purple bar) or Q85I mutant CA (lighter purple bar) or A3F-YFP-labeled HIV-2 
ROD particles containing WT CA (darker blue bar) or I85Q mutant CA (lighter blue bar). 
Unpaired two-tailed Student’s t-test was used to assess significance. *p ≤ 0.05 
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3.5 Changes in CA 4-5 loop responsible for alterations in Nup358/CypA interactions 

of SIVpbj and SIVstm 

As we identified CA residue 85 as genetic determinant of SIVsm and HIV-2 CA 

interaction with the human Nup358R4-Cyp supradomain, we decided to look at whether 

amino acids differences in the CA 4-5 loops of SIVstm and SIVpbj were responsible for 

the observed changes in Nup358/CypA interaction compared to the ancestral SIVsm CA 

(Figures 3.3D-3.3F). Comparing the SIVsmE041 and SIVpbj.19 CA 4-5 loop sequences, 

the only significant difference appears at CA position 91, with SIVsmE041 encoding an 

alanine and SIVpbj1.9 encoding a proline (Figures 3.14A and 3.14B; see Figure 2.1 for 

sequence alignment of full CA protein). We found that engineering the A91P change in 

SIVsmE041 CA further disrupted interaction with huNup358R4-Cyp and CypA (Figures 

3.14C and 3.14D, compare the blue R4-Cyp bars and the green bars), resulting in the 

SIVsmE041 P91A mutant CA possessing a similar Nup358/CypA interaction phenotype 

as the SIVpbj1.9 WT CA (Figures 3.14D and 3.14E). The reverse P91A mutation in 

SIVpbj1.9 CA strengthened CypA interaction compared to the WT CA (Figures 3.14E 

and 3.14F, compare green bars), resulting in a similar ability to interact with CypA as 

observed for SIVsmE041 WT CA (Figures 3.14C and 3.14F, compare green bars), but 

had no impact on huNup358R4-Cyp interaction (Figures 3.14E and 3.14F, compare blue 

R4-Cyp bars). This observation suggests that additional residue exchanges between 

SIVsmE041 and SIVpbj1.9 CA are necessary to recapitulate the weak huNup358R4-Cyp 

interaction of SIVsmE041 CA in the SIVpbj1.9 P91A mutant CA. Neither CA mutation 

altered interaction with the sooty mangabey or rhesus macaque Nup358R4-Cyp orthologs 

(Figures 3.14C-3.14F, compare purple and pink R4-Cyp bars). Thus, the change at 
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position 91 of SIVpbj1.9 CA disrupts interaction with the host species’ CypA but not 

Nup358R4-Cyp. 

 Compared to the SIVsmE041, SIVstm37.16 CA contains a proline 

insertion within the 4-5 loop at position 86 (Figures 3.15A and 3.15B; see Figure 2.1 for 

sequence alignment of full CA protein). The SIVsmE041 QP➔QPP mutant CA, where a 

proline was inserted after CA residue Q85, had almost completely lost the ability to 

interact with smNup358R4-Cyp (Figures 3.15C and 3.15D, compare purple R4-Cyp bars), 

similar to what was observed for the SIVstm37.16 WT CA (Figures 3.15D and 3.15E, 

compare purple R4-Cyp bars). We also observed that the SIVsmE041 QP➔QPP mutant 

CA lacked the ability to interact with huNup358Cyp and huNup358R4-Cyp but strongly 

interacted with CypA like SIVstm37.16 WT CA (Figures 3.15D and 3.15E, compare 

green bars). Deletion of residue P86 in SIVstm37.16 CA restored smNup358R4-Cyp 

interaction (Figures 3.15E and 3.15F, compare purple R4-Cyp bars) but had no effect on 

CypA or huNup358R4-Cyp interaction and only partially restored huNup358Cyp interaction 

(Figures 3.15E and 3.15F, compare the green bars, the blue Cyp bars, and the blue R4-

Cyp bars). Thus, the SIVstm37.16 ΔP86 mutant CA did not completely mimic the 

Nup358/CypA interaction profile of the SIVsmE041 WT CA. Neither CA mutation 

appeared to affect rhesus macaque Nup358R4-Cyp interaction (Figures 3.15C-3.15F, pink 

R4-Cyp bars). 
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Figure 3.14. Alanine-to-Proline change at SIVpbj CA residue 91 disrupts CypA but 
not Nup358 interaction 
(A) Alignment of SIVsmE041 and SIVpbj1.9 CA 4-5 loop sequences. 
(B) Crystal structure of huNup358Cyp (purple) interaction with NL4-3 HIV-1 CA NTD 
(pdb: 4LQW) with only the 4-5 loop shown (blue). The residue equivalent to position 91 
in SIVsmE041 CA is highlighted in pink (position 93 in HIV-1 NL4-3 CA). Image 
created in PyMOL. 
(C-F) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter SIVsmE041 with 
WT CA (C) or A91P mutant CA (D), and SIVpbj1.9 with WT CA (E) or P91A mutant 
CA (F) on CRFK cells stably expressing TF-CypA (green bar), and human (blue bars), 
sooty mangabey (purple bars), or rhesus macaque (pink bars) orthologs of TF-Nup358Cyp 
or TF-Nup358R4-Cyp. TFnull, which contains only the rhTRIM5Cyp RBCC domains, 
serves as the negative control (black bar). Infectivity, or the total percentage of EGFP 
positive cells, was measured by flow cytometry. The fold-changes in infectivity 
compared to TFnull are shown next to the bars. Results are representative of at least three 
independent experiments, with error bars indicating ± standard deviation.  
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Figure 3.15. Proline-insertion in 4-5 loop of SIVstm CA results in loss of sooty 
mangabey but not rhesus macaque Nup358 
(A) Alignment of SIVsmE041 and SIVstm37.16 CA 4-5 loop sequences. Residues are 
numbered based on SIVstm37.16 CA sequence. 
(B) Crystal structure of huNup358Cyp (purple) interaction with NL4-3 HIV-1 CA NTD 
(pdb: 4LQW) with only the 4-5 loop shown (blue). The residue equivalent to position 86 
in SIVsmE041 CA is highlighted in pink (position 88 in HIV-1 NL4-3 CA). Image 
created in PyMOL. 
(C-F) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter SIVsmE041 with 
WT CA (C) or 85QP86➔85QPP87 mutant CA (D), and SIVstm37.16 with WT CA (E) or 
ΔP86 mutant CA (F) on CRFK cells stably expressing TF-CypA (green bar), and human 
(blue bars), sooty mangabey (purple bars), or rhesus macaque (pink bars) orthologs of 
TF-Nup358Cyp or TF-Nup358R4-Cyp. TFnull, which contains only the rhTRIM5Cyp RBCC 
domains, serves as the negative control (black bar). Infectivity, or the total percentage of 
EGFP positive cells, was measured by flow cytometry. The fold-changes in infectivity 
compared to TFnull are shown next to the bars. Results are representative of at least three 
independent experiments, with error bars indicating ± standard deviation. 
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3.6 Nup358Cyp residue 3173 modulates SIVsm CA interaction in context of human 

Nup358R4-Cyp supradomain 

As SIVsm CA strongly interacted with the sooty mangabey but not human 

Nup358R4-Cyp supradomains (Figure 3.3D, compare blue and purple R4-Cyp bars), we 

wanted to map the genetic difference between the two species responsible for this 

differential interaction ability. Comparing the human and sooty mangabey Nup358R4-Cyp 

sequences, there are several differences that lie in the short span of residues between the 

Nup358R4 and Nup358Cyp domains (referred to here as the “linker region”), including a 

three-residue deletion present in sooty mangabey ortholog (Figure 3.16A, top alignment; 

see also Figure 2.2C), as well as single residue change in the Nup358Cyp domain (Figure 

3.16A, bottom alignment; see also Figure 2.2B). We created a panel of human and sooty 

mangabey TF-Nup358R4-Cyp constructs containing reciprocal exchanges of each residue 

difference and stably expressed them in CRFK cells (Figure 3.16B). None of the residue 

exchanges impacted HIV-2 ROD CA interaction with either hu- or smNup358R4-Cyp as 

infectivity was strongly restricted in all the mutant TF-Nup358R4-Cyp cell lines (Figure 

3.16D). This result was expected as HIV-2 ROD CA interacts strongly both species’ 

Nup358R4-Cyp and confirms that proper domain folding is occurring in the mutant TF-

Nup358R4-Cyp constructs. As also expected, there was no change in SIVmac239 infectivity 

in the WT and mutant TF-Nup358R4-Cyp cell lines compared to TFnull (Figure 3.16E), 

which indicates SIVmac239 CA does not interact with any of the Nup358R4-Cyp mutants 

and further confirms that the domains were correctly folded. 

We found that residue 3173 in Nup358Cyp plays a pivotal role in the ability of 

SIVsm CA to interact with the human and sooty mangabey Nup358R4-Cyp supradomains 
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(Figure 3.16F). This residue, which sits within the Nup358Cyp domain active site (Figure 

3.16C), is a valine in humans and a phenylalanine in sooty mangabeys (Figure 3.16A; see 

also Figure 2.2B). Whereas SIVsmE041 CA weakly interacted with the other mutant 

huNup358R4-Cyp domains like with WT huNup358R4-Cyp, it strongly interacted with the 

huNup358R4-Cyp V3173F mutant to a similar extent as with the WT smNup358R4-Cyp 

domains (Figure 3.16F; compare blue V3173F bar with WT purple bars). Conversely, the 

F3173V mutation in smNup358R4-Cyp weakened the interaction with SIVsmE041 CA, 

resulting in an interaction phenotype similar to that of WT huNup358R4-Cyp (Figure 

3.16D, compare purple F3173V bar with WT blue bars). Residue 3173 had a similar 

impact on Nup358R4-Cyp interaction for SIVpbj1.9 as well (Figure 3.16G, compare blue 

V3173F bar to WT blue bars, and purple F3173V bar to purple WT bars), with residue 

3173 having a much stronger impact only in the context of the Nup358R4-Cyp 

supradomain. We observed a similar impact of residue 3173 on Nup358R4-Cyp interaction 

with SIVsm CAs tested (Figures 3.16H-3.16J) as well as the SIVsmE041/SIVpbj1.9 

residue 91 CA mutants and the SIVstm37.16 ΔP86 CA mutant (Figures 3.17A-3.17C). 

Like HIV-2 ROD, all HIV-2 CAs tested interacted strongly with both the WT and mutant 

human and sooty mangabey Nup358R4-Cyp constructs (3.17D-3.17G). 

These observations are particularly interesting as SIVsm CA is able to interact 

with both the human and sooty mangabey Nup358Cyp domains, despite residue 3173 

forming part of the hydrophobic pocket of this domain into which HIV-1 CA P90 residue 

binds and mutational studies showing that this residue and the equivalent residue 113 in 

CypA are important for interaction of HIV-1 CA [60,84,182]. Thus, the 

valine/phenylalanine difference in human and sooty mangabey Nup358Cyp impacts 
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SIVsm CA interaction when present alongside the Nup358R4 domain. Our previous 

observations from SIVstm37.16 further support the hypothesis that residue differences in 

Nup358Cyp may impact CA interaction only in the context of the Nup358R4-Cyp 

supradomain (Figure 3.18A). Sooty mangabey and rhesus macaque Nup358R4-Cyp 

orthologs differ only at residue 3163, which flanks the Nup358Cyp active site (Figures 

3.18B and 3.18C). Yet, while SIVstm37.16 CA strongly interacts with both the sooty 

mangabey and rhesus macaque Nup358Cyp domains, CA interaction is almost completely 

abolished with the sooty mangabey but not rhesus macaque Nup358R4/Cyp supradomain – 

despite identical Nup358R4 + linker region sequence added in front of the sooty mangabey 

and rhesus macaque Nup358Cyp domains to create their Nup358R4-Cyp counterparts.
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Figure 3.16. Residue 3173 in huNup358Cyp domain modulates SIVsm CA interaction 
in the context of huNup358R4-Cyp supradomain 
(A) Schematic of Nup358R4-Cyp domains highlighting residue differences between human 
and sooty mangabey orthologs. R4, Ran-binding domain 4 (yellow); Cyp, cyclophilin 
(purple); the “linker region” between the two domains is shown in light grey. Figure not 
drawn to scale. Residue numbering based on human Nup358 ortholog.  
(B) Western blot of CRFK cells transduced to stably express empty vector pLPCX, or 
HA-tagged TFnull, WT or mutant human and sooty mangabey orthologs of TF-
Nup358R4-Cyp. For each of the WT TF-Nup358R4-Cyp constructs, two independently cell 
lines were created that expressed the same construct. 
(C) Crystal structure of huNup358Cyp (purple) interaction with NL4-3 HIV-1 CA NTD 
(pdb: 4LQW) with only the 4-5 loop shown (blue). Residue 3173 in Nup358Cyp domain is 
highlighted in pink. Image created in PyMOL. 
(D-J) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter HIV-2 ROD (D), 
SIVmac239 (E), SIVsmE041 (F), SIVpbj1.9 (G), SIVsmE543 (H), and SIVmac239-
based chimeric virus encoding the SIVsmE041 CA (I), or SIVsmG932 CA (J) on CRFK 
cells stably expressing WT (solid bars) or mutant (striped bars) human (blue bars) or 
sooty mangabey (purple bars) orthologs of TF-Nup358R4-Cyp. TFnull, which contains only 
the rhTRIM5Cyp RBCC domains, serves as the negative control (black bar). Infectivity, 
or the total percentage of EGFP positive cells, was measured by flow cytometry. The 
fold-changes in infectivity compared to TFnull are shown next to the bars. Results are 
representative of at least three independent experiments, with error bars indicating ± 
standard deviation.  
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Figure 3.17. Addition of Nup358R4 impacts CA interaction with human Nup358Cyp 
(A-G) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter SIVsmE041 with 
A91P mutant CA (A), SIVpbj1.9 with P91A mutant CA (B), and SIVstm37.16 with 
ΔP86 mutant CA (C), and SIVmac239-based chimeric virus expressing the HIV-2 ROD 
CA (D), HIV-2 GH-1 CA (E, HIV-2 UC1 CA (F), or HIV-2 EHO CA (G), on CRFK 
cells stably expressing WT (solid bars) or mutant (striped bars) human (blue bars) or 
sooty mangabey (purple bars) orthologs of TF-Nup358R4-Cyp. TFnull, which contains only 
the rhTRIM5Cyp RBCC domains, serves as the negative control (black bar). Infectivity, 
or the total percentage of EGFP positive cells, was measured by flow cytometry. The 
fold-changes in infectivity compared to TFnull are shown next to the bars. Results are 
representative of at least three independent experiments, with error bars indicating ± 
standard deviation.  
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Figure 3.18. Residue 3163 in smNup358Cyp domain modulates SIVstm CA 
interaction in the context of smNup358R4-Cyp supradomain 
(A) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter SIVstm37.16 on 
CRFK cells stably expressing TF-CypA (green bar), and human (blue bars), sooty 
mangabey (purple bars), or rhesus macaque (pink bars) orthologs of TF-Nup358Cyp or 
TF-Nup358R4-Cyp. TFnull, which contains only the rhTRIM5Cyp RBCC domains, serves 
as the negative control (black bar). Infectivity, or the total percentage of EGFP positive 
cells, was measured by flow cytometry. The fold-changes in infectivity compared to 
TFnull are shown next to the bars. Results are representative of at least three independent 
experiments, with error bars indicating ± standard deviation. 
(B) Schematic of Nup358R4-Cyp domains highlighting the single residue difference 
between sooty mangabey and rhesus macaque orthologs. Residues are numbered based 
on human Nup358 sequence. Figure not drawn to scale. 
(C) Crystal structure of huNup358Cyp (purple) interaction with NL4-3 HIV-1 CA NTD 
(pdb: 4LQW) with only the 4-5 loop shown (blue). Residue 3163 in Nup358Cyp domain is 
highlighted in pink. Image created in PyMOL.
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3.7 Escape mutations in SIVmac CA 4-5 loop from rhesus TRIM5Cyp disrupt 

Nup358 interaction 

In contrast to the other viruses tested, SIVmac239 CA does not detectably interact 

with Nup358Cyp or CypA (Figure. 3.3C) [62,80–83,147,170,171]. An alignment of the 

SIVsmE041 and SIVmac239 CA 4-5 loops reveal several differences between the two 

capsids – in particular a glycine to alanine change at residue 87 and the replacement of 

the isoleucine-proline-alanine stretch of residues at positions 89-91 to a glutamine-

glutamine motif (Figures 3.19A and 3.199B). We created a series of SIVsmE041 and 

SIVmac239 CA mutants that contained these differences individually and together, and 

tested their effects on Nup358/CypA interaction (Figures 3.19C-3.19J). Neither 

SIVmac239 single CA mutant recapitulated the ancestral SIVsmE041 CA Nup358/CypA 

interaction phenotype (Figures 3.19D and 3.19E, compare with Figure 3.19G). We did 

observe that SIVmac239 QQ➔IPA mutant CA interacted with the sooty mangabey and 

rhesus macaque Nup358Cyp domains; however, these interactions were not detectable in 

the Nup358R4-Cyp supradomain orthologs (Figure 3.19E, compare purple and pink Cyp 

bars with purple and pink R4-Cyp bars). Only reversions at both sites in SIVmac239 CA 

4-5 loop to the ancestral SIVsmE041 sequences resulted in restoration of the 

Nup358/CypA interaction (Figure 3.19F). Interestingly, we observed that either the 

G87A substitution or the IPA➔QQ substitution is capable of disrupting SIVsmE041 

interaction with Nup358R4-Cyp (Figures 3.19H and 3.19I); although – similar to the 

SIVmac239 QQ➔IPA mutant CA – the SIVsmE041 G87A mutant CA was able to 

interact with the sooty mangabey and rhesus macaque Nup358Cyp domains (Figures 
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3.19E and 3.19H). We did observe that the SIVsmE041 G87A + IPA➔QQ double 

mutant CA weakly interacts with CypA, despite the G87A single CA mutant having lost 

CypA interaction (Figures 3.19H and 3.19J, compare green bars), suggesting additional 

residue swaps may be necessary to fully recapitulate the loss of CypA interaction 

observed for SIVmac239 WT CA. Thus, while introduction of either G87A or IPA➔QQ 

substitutions is sufficient to disrupt SIVsmE041 CA interaction with Nup358R4-Cyp, 

both sites must be reverted to the ancestral state in SIVmac239 CA to restore the 

Nup358R4-Cyp interaction. 

Previous work from our lab and others has shown that the SIVsm CA faced 

selective pressure from rhesus macaque TRIM5 (rhTRIM5) gene during its emergence 

within the species as SIVmac [153,154,159]. Rhesus macaques encode multiple TRIM5 

alleles that are typically categorized into three functional groups: rhTRIM5αTFP 

(consisting of the mamu-1, mamu-2, and mamu-3 alleles, which all encode residues TFP 

at positions 339-341 of the B30.2/PRYSPRY domain); rhTRIM5αQ (consisting of the 

mamu-4 and mamu-5 alleles which encode a Q at position 339); and rhTRIM5Cyp 

(where a CypA-derived domain has completely replaced the TRIM5 C-terminal 

B30.2/PRYSPRY domain) [139,144,153,154,159,183,184]. SIVsm is sensitive to 

restriction by rhTRIM5αTFP and rhTRIM5Cyp but not rhTRIM5Q whereas SIVmac is 

resistant to all three alleles. This resistance is attributed to several amino acid 

substitutions in SIVmac CA, including the QQ motif at positions 89-90 in 4-5 loop, 

which imparts resistance to rhTRIM5Cyp [153,154,159]. To assess the impact of the 

SIVsmE041 and SIVmac239 CA 4-5 loop amino acid differences described above on 

rhTRIM5 restriction, we infected cells expressing the various sooty mangabey and rhesus 
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macaque TRIM5 alleles and human TRIM5α with the panel of SIVsmE041/SIVmac239 

CA mutants used in Figure 9 (Figures 3.20A-3.20H). As expected, SIVmac239 encoding 

the WT CA was resistant to all rhTRIM5 alleles (Figure 3.20A). Reverting residue A87 

in SIVmac239 CA to the ancestral glycine resulted in gain of sensitivity to the 

rhTRIM5TFP alleles (Figure 3.20B), in line with previous results from our group [66]. The 

SIVmac239 QQ➔IPA CA mutant was sensitive to rhTRIM5TFP and rhTRIM5Cyp 

restriction (Figure 3.20C), with this CA mutant showing stronger sensitivity to 

rhTRIM5TFP restriction than the A87G mutant (Figures 3.20B and 3.20C, compare pink 

rhTRIM5TFP bars). The SIVmac239 G87A + QQ➔IPA double mutant CA was also 

sensitive to rhTRIM5TFP and rhTRIM5Cyp alleles (Figure 3.20D), although sensitivity to 

rhTRIM5TFP restriction was like that of the A87G CA mutant (Figures 3.20B and 3.20D, 

compare pink rhTRIM5TFP bars). In accordance with previous observations, 

SIVsmE041 encoding the WT CA was restricted by all three rhTRIM5TFP alleles and 

rhTRIM5Cyp (Figure 3.20E) [153,154,159]. While the G87A mutation in SIVsmE041 

CA has little impact on sensitivity to either rhTRIM5TFP or rhTRIM5Cyp (Figure 3.20F), 

both the SIVsmE041 IPA➔QQ CA mutant and SIVsmE041 G87A + IPA➔QQ CA 

double mutant were resistant to rhTRIM5Cyp restriction (Figures 3.20G and 3.20H).
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Figure 3.19. Reversion of specific sites in SIVmac CA 4-5 loop to ancestral residues 
restores interaction with Nup358R4-Cyp 
(A) Alignment of SIVmac239 and SIVsmE041 CA 4-5 loop sequences. Residues are 
numbered based on SIVsmE041 CA sequence. 
(B) Crystal structure of huNup358Cyp (purple) interaction with NL4-3 HIV-1 CA NTD 
(pdb: 4LQW) with only the 4-5 loop shown (blue). The residues equivalent to position 87 
and residues 89-91 in SIVsmE041 CA are highlighted in pink (positions 89 and 91-93 in 
HIV-1 NL4-3 CA). Image created in PyMOL. 
(C-J) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter SIVmac239 with 
WT CA (C) or A87G (D), 89QQ90➔89IPA91 (E), or A87G + 89QQ90➔89IPA91 (F) mutant 
CA and SIVsmE041 with WT CA (G) or G87A (H), 89IPA91➔89QQ90 (I), or G87A + 
89IPA91➔89QQ90 (J) mutant CA on CRFK cells stably expressing TF-CypA (green bar) 
and human (blue bars), sooty mangabey (purple bars), or rhesus macaque (pink bars) 
orthologs of TF-Nup358Cyp or TF-Nup358R4-Cyp. TFnull, which contains only the 
rhTRIM5Cyp RBCC domains, serves as the negative control (black bar). Infectivity, or 
the total percentage of EGFP positive cells, was measured by flow cytometry. The fold-
changes in infectivity compared to TFnull are shown next to the bars. Results are 
representative of at least three independent experiments, with error bars indicating ± 
standard deviation.  
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Figure 3.20. Modifications in SIVmac CA 4-5 loop that disrupt Nup358 interaction 
provide protection against rhTRIM5Cyp restriction 
(A-H) Infectivity of VSV-G pseudotyped, single-cycle, EGFP reporter SIVmac239 with 
WT CA (A) or A87G (B), 89QQ90➔89IPA91 (C), or A87G + 89QQ90➔89IPA91 (D) mutant 
CA and SIVsmE041 with WT CA (E) or G87A (F), 89IPA91➔89QQ90 (G), or G87A + 
89IPA91➔89QQ90 (H) mutant CA on CRFK cells stably expressing human (blue bar), 
sooty mangabey (purple bars), and rhesus macaque (pink bars) TRIM5α alleles or 
rhTRIM5Cyp (green bar). The pQCXIN cell line, which has been transduced with empty 
vector pQCXIN, serves as the negative control (black bar). Infectivity, or the total 
percentage of EGFP positive cells, was measured by flow cytometry. The fold-changes in 
infectivity compared to pQCXIN are shown next to the bars. Results are representative of 
at least three independent experiments, with error bars indicating ± SD.

A

0 20 40 60 80
TRIM5Cyp
mamu-5
mamu-4
mamu-3
mamu-2
mamu-1
ceat-4
ceat-3
ceat-2
ceat-1
human

pQCXIN

% EGFP positive cells

SIVmac239 WT

1.34

1.34
1.32

1.42
1.33

1.05
1.17

1.36

1.31
1.28

0.95

1.00

So
ot

y

R
he

su
s TF

P
Q

B

0 20 40 60 80
TRIM5Cyp
mamu-5
mamu-4
mamu-3
mamu-2
mamu-1
ceat-4
ceat-3
ceat-2
ceat-1
human

pQCXIN

% EGFP positive cells

SIVmac239 A87G

1.10
1.13

1.47
1.49

0.41
0.50
0.50

1.43
0.82

0.65

1.00

1.20

So
ot

y

R
he

su
s TF

P
Q

C

0 20 40 60 80
TRIM5Cyp
mamu-5
mamu-4
mamu-3
mamu-2
mamu-1
ceat-4
ceat-3
ceat-2
ceat-1
human

pQCXIN

% EGFP positive cells

SIVmac239 QQ IPA

1.15
0.77

1.35
1.39

0.03
0.05
0.03

1.43
1.13

0.43

1.00

0.21

So
ot

y

R
he

su
s TF

P
Q

D

0 20 40 60 80 100
TRIM5Cyp
mamu-5
mamu-4
mamu-3
mamu-2
mamu-1
ceat-4
ceat-3
ceat-2
ceat-1
human

pQCXIN

% EGFP positive cells

SIVmac239 A87G + QQ IPA

1.36
1.31

1.74
1.63

0.62
0.75

1.30

1.82
1.25

0.35

1.00

0.39

So
ot

y

R
he

su
s TF

P
Q

E

0 20 40 60 80
TRIM5Cyp
mamu-5
mamu-4
mamu-3
mamu-2
mamu-1
ceat-4
ceat-3
ceat-2
ceat-1
human

pQCXIN

% EGFP positive cells

SIVsmE041 WT

1.20
0.74

1.53
1.55

0.02
0.02
0.01

1.44
1.13

0.44

1.00

0.37

So
ot

y

R
he

su
s TF

P
Q

F

0 20 40 60 80
TRIM5Cyp
mamu-5
mamu-4
mamu-3
mamu-2
mamu-1
ceat-4
ceat-3
ceat-2
ceat-1
human

pQCXIN

% EGFP positive cells

SIVsmE041 G87A

1.57
1.17

1.82
1.93

0.09
0.11
0.09

1.71
1.12

1.24

1.00

0.47

So
ot

y

R
he

su
s TF

P
Q

G

0 20 40 60 80
TRIM5Cyp
mamu-5
mamu-4
mamu-3
mamu-2
mamu-1
ceat-4
ceat-3
ceat-2
ceat-1
human

pQCXIN

% EGFP positive cells

SIVsmE041 IPA QQ

1.28
0.89

1.51
1.49

0.02
0.02
0.02

1.62
1.42

0.54

1.00

1.85

So
ot

y

R
he

su
s TF

P
Q

H

0 20 40 60
TRIM5Cyp
mamu-5
mamu-4
mamu-3
mamu-2
mamu-1
ceat-4
ceat-3
ceat-2
ceat-1
human

pQCXIN

% EGFP positive cells

SIVsmE041 G87A + IPA QQ

1.56
1.33

1.88
1.48

0.02
0.01
0.02

2.07
1.35

1.26

1.00

1.91

So
ot

y

R
he

su
s TF

P
Q



 93 
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During viral replication, lentiviruses gain access to the host chromatin through 

active transport of the viral genome and associated proteins across the nuclear envelope. 

Multiple screens identified Nup358 as a possible co-factor for HIV-1 replication and 

published studies confirm a physical interaction between the HIV-1 CA 4-5 loop and the 

C-terminal Cyclophilin (Cyp) domain of Nup358; this proline-rich loop that extends from 

the assembled capsid core surface is the same site that also binds the cytoplasmic protein 

cyclophilin A (CypA) and the C-terminal Cyp domains of naturally occurring TRIM-Cyp 

fusion proteins. As Nup358 comprises the main component of the cytoplasmic fibrils 

extending from the nuclear pore complex (NPC), Nup358 has been hypothesized to 

potentially play a role in viral docking at the NPC and/or viral active transportation into 

the nucleus; however; the precise role(s) of the CA-Nup358Cyp interaction during 

lentiviral replication remain unclear. 

Characterizing lentivirus capsid cores interaction with Nup358 is complicated by 

two considerations: first, the relevant interaction likely involves multimeric assemblies of 

CA, and not individual CA protein monomers; and second, Nup358 is a massive (358 

kDa in size), multi-domain protein that has numerous cellular functions. In order to 

specifically examine the interaction between lentivirus capsids and Nup358Cyp domain, 

we capitalized on an assay that allowed us to evaluate the interaction in the relevant 

context using single-cycle infection. In addition, based on a review of the relevant 

literature on Nup358, we chose to examine CA interaction with Cyp domain of Nup358 

alone (Nup358Cyp) and as part of a “supradomain” which is comprised of the adjacent 

Nup358R4 and Nup358Cyp domains (Nup358R4-Cyp). Finally, by examining the interaction 

in the context of lentiviral cross-species transmission and emergence, we discovered that: 
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(1) CA interaction with Nup358Cyp is a conserved and possibly ancestral property of 

primate lentiviruses; and, (2) the CA-Nup358Cyp interaction is selectively advantageous 

and therefore contributes to viral fitness in vivo. 

Our data revealed two important considerations when examining lentiviral CA 

interactions with Nup358Cyp: (1) interspecies genetic differences in the Nup358Cyp 

domain can affect the interaction; and, (2) the Nup358R4 domain can have a critical 

impact on the results of such studies. For the large part, previous work examining the 

breath of this viral-host interaction have utilized only the human ortholog – despite using 

non-human lentiviral CA’s – and the Nup358Cyp domain in isolation – despite evidence of 

the upstream Nup358R4 domain influencing Nup358Cyp substrate affinity [60,62,80–83]. 

Our data for SIVpbj and SIVstm shows that interspecies genetic differences in Nup358Cyp 

can impact interaction even when the Nup358Cyp domain is considered by itself (Figures 

3.13E and 3.13F, compare the blue human Cyp bar to purple sooty mangabey and pink 

rhesus macaque Cyp bars). Meyerson et al. 2018 came to similar conclusions when using 

CA 4-5 loops from viruses of the SIVrcm/SIVcpz/HIV-1 lineage and the relevant host 

species Nup358Cyp orthologs [83]. However, we demonstrated for SIVsm, SIVpbj, and 

SIVstm that the impact of genetic differences present in the Nup358Cyp domain is 

observable only in the context of the Nup358R4-Cyp supradomain (Figures 3.16, 3.17 and 

3.18). As the virus encounters the full length Nup358 protein during infection (i.e., 

always encounters Nup358Cyp domain alongside the Nup358R4 domain), examining this 

interaction in the context of Nup358R4-Cyp is more biologically relevant than just the 

Nup358Cyp domain alone. It should be noted that the R4 domain appears to only restrict 

the range of CA’s that can interact with Nup358Cyp as we did not observe a case where a 
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CA could not interact with a specific species’ Nup358Cyp domain alone but able to 

interact with that species’ Nup358R4-Cyp. 

In the absence of a co-crystal structure of CA interacting with Nup358R4-Cyp, it is 

impossible to definitively state what effect R4 is having on CA’s interaction with 

Nup358Cyp or if the CA interacts with the R4 domain as well as the Cyp domain within 

the context of the R4-Cyp supradomain. There are two possibilities as to how Nup358R4 

is affecting CA-Nup358Cyp interaction: steric hindrance or alterations to the PPIase active 

site of Nup358Cyp. We hypothesize the latter to be true, based on the fact that changing 

residues in the Cyp domain is enough to restore the interaction with the Nup358R4-Cyp 

supradomain (Figures 3.16, 3.17 and 3.18); if Nup358R4 was to sterically hinder access to 

Nup358Cyp, we would not expect any change in the Cyp domain to affect the CA-

Nup358R4-Cyp interaction. In further support of this hypothesis, previous work has found 

that the addition of the R4 domain can affect the PPIase activity of Nup358Cyp toward 

certain four amino acid-long prolyl substrates [97] and multiple small molecules are able 

to influence Nup358Cyp PPIase activity despite being predicted to bind sites outside of the 

active site [185]. In rhTRIM5Cyp, the PPIase active site of the fused Cyp domain 

fluctuates between several conformations, allowing it to interact with substrates that 

differ significantly in structure [67]. It is possible that the presence of Nup358R4 domain 

“locks” the Nup358Cyp active site in a particular conformation where residues 

surrounding the active site then have a greater impact on CA interaction than when the 

Nup358Cyp domain is alone (i.e., Nup358R4 is not present). 

Our data also indicates that human Nup358R4-Cyp domains presented a genetic 

barrier to the cross-species transmission and emergence of SIVsm into humans as HIV-2. 
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All of the SIVsm CA’s we tested weakly interacted with human Nup358R4-Cyp (Figures 

3.5A-3.5D), whereas all HIV-2 CA’s tested strongly interacted with human Nup358R4-Cyp 

(Figures 3.5E-3.5G). The HIV-2 CA’s tested come from subtypes A and B (Figure 3.8B). 

As each subtype is thought to have arisen from an independent and separate SIVsm cross-

species transmission event [43–45], our data suggests that adaptation to better interact 

with huNup358R4-Cyp occurred in both spillover events. Adaptation to huNup358R4-Cyp 

appears to be associated with a glutamine to isoleucine change at residue position 85 of 

SIVsm CA (Figure 3.7). Residue 85 is to be well-conserved among SIVsm/HIV-2 

isolates, suggesting that the huNup358R4-Cyp interaction phenotypes we observed for the 

isolates in this study are widely conserved (Figure 3.7G and Figure 3.8). It should be 

noted that the HIV-2 EHO CA encodes a serine at position 85 but shares the same 

Nup358R4-Cyp interaction phenotype as the CA’s that encode isoleucine at residue 85 

(Figures 3.5 and 3.8B), suggesting that HIV-2 CA’s with S85 also strongly interact with 

human Nup358R4-Cyp. We identified genetic differences at Nup358 residue 3173 of sooty 

mangabeys and humans as responsible for the differential ability of SIVsm to interact 

with both species’ Nup358R4-Cyp (Figure 3.16). Meyerson et al. 2018 also presented 

evidence that Nup358 exerted selective pressure upon the emergence of SIVrcm into 

chimpanzees as SIVcpz and the emergence of SIVcpz into gorillas as SIVgor [83]. Using 

human Nup358Cyp alone, their data did not suggest that the human ortholog presented a 

genetic barrier for SIVcpz or SIVgor for emergence into human as HIV-1 group M or 

HIV-1 group P, respectively. It is possible that re-examining those interactions using the 

Nup358R4-Cyp supradomain would show that human Nup358 did present a genetic barrier 

to those cross-species transmission events. 
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HIV-1 interacts with human NUP358Cyp and CypA via the CA 4-5 loop with the 

apical proline at position 90 sitting within the PPIase active site pocket [60,62,83]. Our 

data suggest that viruses belonging to the SIVsm/HIV-2 lineage interact in a similar 

fashion as we found that changes to residues in the 4-5 loop affect Nup358Cyp/CypA 

interaction (Figures 3.3, 3.5-3.7). We found that human lentiviral CAs display a broader 

range of interaction when compared to the simian-specific orthologs. In fact, while 

SIVsm CA’s interact unevenly with CypA but consistently with the Nup358Cyp domain 

(Figures 3.5A-3.5D) and SIVpbj interacts with Nup358Cyp but not CypA (Figure 3.3E), 

all HIV-2 isolates strongly interact with Nup358Cyp and CypA (Figures 3.3B and 3.5E-

G). This observation intriguingly suggests how, in HIVs, affinity for CypA might itself 

be the consequence of the interaction with Nup358R4-Cyp, and not the reverse, as it may 

appear less disingenuous to expect. We also found that HIV-1 and HIV-2 appear to 

interact with rhesus macaque and sooty mangabey Nup358Cyp orthologs, regardless of the 

presence of the R4 domain, suggesting that human Nup358R4-Cyp interaction may result in 

a more “flexible” 4-5 loop in regards to the ability to tolerate residue changes in the 

Nup358Cyp domain. Meehan et al. 2014 found that HIV-1 CA was able to interact with 

the mouse Nup358Cyp ortholog [81]. As Meyerson et al. 2014, found that HIV-1 M group 

CA 4-5 loop could not interact with gorilla Nup358Cyp or HIV-1 P group CA 4-5 loop 

could not interact with chimpanzee Nup358Cyp, it is possible that the observed 

“flexibility” of HIV-1 and HIV-2 is limited to Old-World monkey Nup358Cyp orthologs. 

Our work is the first to the authors’ knowledge to show that lentiviruses that 

infect old world monkeys are able to interact with Nup358Cyp. While Mamede et al., 2013 

examined the ability of a panel of SIVs of Old-World monkeys’ ability to interact with 
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Nup358Cyp and drew the conclusion that only HIV-2 was able to interact, they only tested 

the Nup358Cyp ortholog. Their results lead them to suggest that interaction with 

Nup358Cyp could be a human lentivirus-specific adaptation; however, both this work and 

Meyerson’s et al. 2018 demonstrate the presence of this interaction for multiple non-

human primate lentiviruses indicating the interaction is more widespread than previously 

expected. It is possible that Mamede et al 2013 would have identified this interaction in 

their tested panel had they used the relevant host species’ orthologs of Nup358Cyp. 

In contrast to what we observe for SIVstm and SIVpbj, Nup358Cyp interaction 

appears to have been lost during the emergence of SIVsm into rhesus macaques as 

SIVmac (Figure 3.3). This loss of interaction appears to be due to changes in the CA 4-5 

loop. It is interesting to note that either one of the two observed changes in the 4-5 loop is 

enough to disrupt interaction with Nup358Cyp (Figure 3.19). We found that one of the 

changes (IPA➔QQ) that causes loss of Nup358-CypA interaction also results in 

resistance to restriction by the rhTRIM5Cyp allele. As both the Cyp domain of 

TRIM5Cyp and the Nup358Cyp domain interact with the capsid 4-5 loop, it is reasonable 

to hypothesize based on our data that selective pressure from TRIM5Cyp contributed to 

the loss of Nup358Cyp interaction observed in SIVmac239 CA. However, most likely the 

presence of additional selective pressures also acting on CA contributed to the loss of 

Nup358Cyp interaction as the SIVpbj1.9 CA maintained Nup358 interaction following 

emergence in pig-tailed macaques despite this species only encoding the TRIM5Cyp 

allele at their TRIM5 locus [139,144,146,186,187]. It is possible that dual selective 

pressure from the rhTRIM5αTFP alleles and rhTRIM5Cyp drove the loss of this 

interaction. Previous work from our group has shown that rhTRIM5αTFP targets multiple 
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CA residues that have been associated with HIV-1 cofactor interaction/dependency, 

including Nup358 [66]. It is also possible that other CA-targeting restriction factors may 

have placed selective pressure resulting in loss of the Nup358Cyp interaction, such as 

Mx2, although this could easily be experimentally validated by testing whether SIVsm is 

restricted by the rhesus macaque Mx2 ortholog. The conservation of the Nup358Cyp 

interaction among primate lentiviruses and the observation of genetic differences in 

Nup358Cyp exerting selective pressure during cross-species transmission together argues 

that this interaction is important to viral replication. Thus, in the case of SIVmac, the loss 

of said interaction was most likely an evolutionary trade-off to escape from rhesus 

macaque TRIM5 restriction.
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