# Highly Stereoselective Cyclopropanation of Alkenes with Unsymmetrical Diazomalonates *via* Co(II)-Based Metalloradical Catalysis

by

Jingyi Wang

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Chemistry Morrissey College of Arts and Sciences Boston College

April, 2021

Copyright © 2021, Jingyi Wang

#### ABSTRACT

### Highly Stereoselective Cyclopropanation of Alkenes with Unsymmetrical Diazomalonates *via* Co(II)-Based Metalloradical Catalysis

#### Jingyi Wang

Diazomalonates have been demonstrated, for the first time, as effective radical precursors for asymmetric radical cyclopropanation of alkenes via Co(II)-based metalloradical catalysis (MRC). With an optimized  $D_2$ -symmetric chiral amidoporphyrin as the supporting ligand, the Co(II)-based metalloradical system can efficiently activate unsymmetrical methyl phenyl diazomalonate (MPDM) for the asymmetric cyclopropanation of alkenes, enabling stereoselective construction of 1,1cyclopropanediesters bearing two contiguous chiral centers, including at least one all-carbon quaternary stereogenic center. The Co(II)-catalyzed asymmetric cyclopropanation, which operates at room temperature without slow addition of the diazo compound, is generally applicable to a broad range of olefin substrates and tolerates various functionalities, providing a streamlined synthesis of chiral 1,1cyclopropanediesters in high yields with high level of control in both diastereoselectivity and enantioselectivity. Mechanistic studies on the cyclopropanation reactions, including the use of (E)- and (Z)- $\beta$ -deuterostyrenes, support the underlying stepwise radical pathway for the Co(II)-catalyzed cyclopropanation. In addition to functioning as effective 1,3-dipoles for stereospecific formation of fivemembered ring structures, the resulting enantioenriched methyl phenyl (E)-1,1-cyclopropanediesters serve as useful building blocks for the synthesis of different 1,1-cyclopropanediesters, 1,1cyclopropaneestercarboxylic acids and 1,1-cyclopropaneesteramides while maintaining the original stereochemistry. Additionally, the enantioenriched (E)-1,1-cyclopropanediesters can be converted to (Z)-diastereomers without affecting the high enantiopurity.

**Keywords:** Metalloradical Catalysis (MRC), Cobalt Catalyst, Asymmetric Cyclopropanation of Alkenes, Methyl Phenyl Diazomalonate (MPDM), Synthesis, Stereoselectivity

PhD Advisor: Prof. X. Peter Zhang

Committee Member: Prof. James P. Morken, Prof. Mark L. Snapper

### **TABLE OF CONTENTS**

| TABLE OF CONTENTS i                                                         |
|-----------------------------------------------------------------------------|
| LIST OF TABLES iv                                                           |
| LIST OF SCHEMES                                                             |
| LIST OF FIGURES vii                                                         |
| DEDICATIONviii                                                              |
| ACKNOWLEDGEMENTSix                                                          |
| Chapter 1 Developments of Cyclopropanation of Alkenes with Diazomalonates 1 |
| 1.1 Methodologies Developed for the Cyclopropanation of Alkenes with        |
| Diazomalonates1                                                             |
| 1.1.1 Introduction1                                                         |
| 1.1.2 Irradiation Initiated Cyclopropanation of Alkenes with                |
| Diazomalonates1                                                             |
| 1.1.3 Copper Complexes Catalyzed Cyclopropanation of Alkenes with           |
| Diazomalonates                                                              |
| 1.1.4 Rhodium Catalyzed Cyclopropanation of Alkenes with Dimethyl           |
| Diazomalonates 4                                                            |
| 1.1.5 Ruthenium(II) and Osmium(II) Catalyzed Cyclopropanation of            |
| Alkenes with Dimethyl Diazomalonates                                        |
| 1.2 Recent Developments of Transition Metal Catalyzed Enantioselective      |
| Cyclopropanation of Alkenes with Diazomalonates                             |
| 1.2.1 Introduction7                                                         |
| 1.2.2 Previous Report on Asymmetric Synthesis of 1,1-                       |
| Diestercyclopropanes8                                                       |

| 1.3 Summary and Outlook13                                                              |
|----------------------------------------------------------------------------------------|
| 1.4 References 14                                                                      |
| Chapter 2 Highly Stereoselective Cyclopropanation of Alkenes with Unsymmetrical        |
| Diazomalonates via Co(II)-Based Metalloradical Catalysis18                             |
| 2.1 Introduction18                                                                     |
| 2.2 Results and Discussion18                                                           |
| 2.2.1 Condition Optimization of the Co(II)-Based Catalytic System for                  |
| Enantioselective Cyclopropanation of Styrene with Diazomalonate                        |
|                                                                                        |
| 2.2.2 Asymmetric Radical Cyclopropanation of Different Olefin                          |
| Substrates 21                                                                          |
| Chapter 3 Mechanistic Insights for Radical Cyclopropanation and Further Transformation |
|                                                                                        |
| 3.1 Introdution                                                                        |
| 3.2 Mechanistic Insights for Radical Cyclopropanation                                  |
| 3.3 Further Transformations of 1,1-Cyclopropanediesters                                |
| 3.4 Conclusion                                                                         |
| 3.5 Reference                                                                          |
| Chapter 4 Experimental Section                                                         |
| 4.1 General Considerations                                                             |
| 4.2 Procedure for Diazomalonte Synthesis                                               |
| 4.3 General Procedure for [Co(Por)]-Catalyzed Cyclopropanation                         |
| 4.4 General Procedure for Ester Transformations                                        |
| 4.5 Procedure for Further Transformations                                              |
| 4.5.1 Selective Hydrogenation of Allyl Ester                                           |

| 4.5.2 Application for Synthesis of Polysubstituted Tetrahydrofuran via  |
|-------------------------------------------------------------------------|
| 1,3-Dipole [3+2] Cycloaddition                                          |
| 4.5.3 Stereospecific Conversion of Quatary Carbon with NaI              |
| 4.6 X Ray Crystallography 68                                            |
| 4.7 Experimental Study of Stepwise Radical Mechanism                    |
| 4.7.1 EPR Experiment 71                                                 |
| 4.7.2 HRMS Experiment 73                                                |
| 4.7.3 Probing of the γ-Co(III)-Alkyl Radical Intermediates by Reactions |
| of β-Deuterostyrenes75                                                  |
| 4.8 References                                                          |
| Chapter 5 Spectral Data                                                 |

### LIST OF TABLES

| Table 1 Ligand Effects on the Co(II)-Based Catalytic System for Cyclopropanation of   |
|---------------------------------------------------------------------------------------|
| Styrene with Unsymmetrical Diazomalonates <sup>a</sup> 19                             |
| Table 2 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Alkenes with        |
| Methyl Phenyl Diazomalonate (MPDM) <sup>a</sup> 22                                    |
| Table 3 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Halogenated         |
| Styrenes with Methyl Phenyl Diazomalonate (MPDM) <sup>a</sup> 23                      |
| Table 4 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Styrenes with       |
| Aldehyde and Boron Functionality with Methyl Phenyl Diazomalonate (MPDM) <sup>a</sup> |
|                                                                                       |
| Table 5 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Naphthyl and        |
| Heteroaromatic Alkenes with Methyl Phenyl Diazomalonate (MPDM) <sup>a</sup> 24        |
| Table 6 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of α-Substituted       |
| Styrenes with Methyl Phenyl Diazomalonate (MPDM) <sup>a</sup> 25                      |
| Table 7 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Conjugated Dienes   |
| and Enynes with Methyl Phenyl Diazomalonate (MPDM) <sup>a</sup> <sup>a</sup> .        |
| Table 8 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Electron-Deficient  |
| Alkenes with Methyl Phenyl Diazomalonate (MPDM) <sup>a</sup>                          |
| Table 9 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Aliphatic Alkenes   |
| with Methyl Phenyl Diazomalonate (MPDM) <sup>a</sup> 27                               |
| Table 10 Crystal Data and Structure Refinement for 3n         69                      |

### LIST OF SCHEMES

| Scheme 1 Cyclopropanation of Olefins with Diazomalonate under Irradiation Condition 2 |
|---------------------------------------------------------------------------------------|
| Scheme 2 Irradiation of Isopropylidene Diazomalonate with Alkenes                     |
| Scheme 3 Cyclopropanation of Alkenes with Malonate Thiophene Derivative Ylides        |
| Scheme 4 Cyclopropanation of Phthalimido Olefins with Dimethyl Diazomalonate          |
| Catalyzed by Copper Bronze 3                                                          |
| Scheme 5 Cyclopropanation of Monounsaturated Fatty Esters Bearing Non-activated       |
| Double Bonds with Dimethyl Diazomalonate Catalyzed by Cu(OTf)2 4                      |
| Scheme 6 Cyclopropanation of Alkenes with Diazomalonate Catalyzed by Dirhodium        |
| Catalysis5                                                                            |
| Scheme 7 Cyclopropanation of Alkenes with Iodonium Ylide of Dimethyl Malonate         |
| Catalyzed by Dirhodium Complex5                                                       |
| Scheme 8 Cyclopropanation of Alkenes with Diazo-bis-222-trifluoroethylmalonate        |
| Catalyzed by Dirhodium Catalysis6                                                     |
| Scheme 9 Synthesis of Alkenyl Cyclopropanes by a Tandem Ring-closing Enyne            |
| Metathesis/ Cyclopropanation Catalyzed by Grubbs I Catalysis                          |
| Scheme 10 Cyclopropanation of Styrenes with Diazomalonate Catalyzed by Osmium(II)     |
| Catalysis7                                                                            |
| Scheme 11 Rhodium(II) (S)-N-(arylsulfonyl)prolinate Catalyzed Cyclopropanation of     |
| Diazomalonate with Styrene 8                                                          |
| Scheme 12 Dirhodium(II) Tetrakis[methyl 2-oxaazetidine-4-carboxylate] Catalyzed       |
| Cyclopropanation of Diazomalonate with Styrene9                                       |
| Scheme 13 N-(2',4'-Di-tert-butyl)salicylidene-4-amino[2.2]paracyclophane as an        |
| Asymmetric Ligand for the Enantioselective Cyclopropanation                           |
| Scheme 14 trans-Directing Ability of Amide Groups Bearing Diazo Reagents in           |
| Cyclopropanation10                                                                    |

| Scheme 15 Asymmetric Cyclopropanation of Alkenes with Dimethyl Diazomalonate             |
|------------------------------------------------------------------------------------------|
| Catalyzed by Chiral Diene–Rhodium Complexes11                                            |
| Scheme 16 Copper-Catalyzed Enantioselective Cyclopropanation of Internal Olefins with    |
| Diazomalonates11                                                                         |
| Scheme 17 A Chiral Cagelike Copper(I) Catalyst for the Highly Enantioselective Synthesis |
| of 1,1-Cyclopropane Diesters12                                                           |
| Scheme 18 Nickel(II)-Catalyzed Enantioselective Cyclopropanation of 3-alkenyl-oxindoles  |
| with Phenyliodonium Ylide via Free Carbene13                                             |
| Scheme 19 Working Proposal for Cyclopropanation of Alkenes with Diazomalonates via       |
| Co(II)-Based Metalloradical Catalysis14                                                  |
| Scheme 20 Transformations of the Optically Active Chiral 1,1-Cyclopropanediesters 34     |
| Scheme 21 Stereospecific Chemical Transformations of Optically Active Chiral 1,1-        |
| Cyclopropanediesters                                                                     |
| Scheme 22 Detection of Radical Intermediate I by EPR71                                   |

### **LIST OF FIGURES**

| Figure 1 Achiral and Chiral Co(II)-Based Amidoporphyrin Catalyst Utilized in Condition                                 |
|------------------------------------------------------------------------------------------------------------------------|
| Optimization for the Asymmetric Cyclopropanation of Styrene with                                                       |
| Diazomalonate                                                                                                          |
| Figure 2 Detection of the α-Co(III)-Malonyl Radical Intermediates by EPR                                               |
| Figure 3 Detection of the α-Co(III)-Malonyl Radical Intermediates by HRMS                                              |
| Figure 4 Probing of the $\gamma$ -Co(III)-Alkyl Radical Intermediates by Reactions of $\beta$ -                        |
| Deuterostyrenes with Methyl tert-Butyl Diazomalonate                                                                   |
| Figure 5 Single-Crystal X-Ray Structure of 3n                                                                          |
| Figure 6 Asymmetric Unit and Numbering Scheme of 3n. Atomic Displacement Parameters                                    |
| Was Drawn at 50% Probability69                                                                                         |
| Figure 7 Experimental and Theorectical Simulation of EPR Result                                                        |
| Figure 8 EPR Report                                                                                                    |
| Figure 9 Radical Intermediate Detected by HRMS73                                                                       |
| Figure 10 Experiment and Theorectial Simulation of HRMS74                                                              |
| Figure 11 Upfield <sup>2</sup> H NMR and <sup>1</sup> H NMR for Cyclopropane Isomers 3b from [Co(P4)]-                 |
| Catalyzed Cyclopropanation between: a) <i>tert</i> -Butyl Methyl Diazomalonate (1b)                                    |
| and ( <i>E</i> )-β-Deuterostyrene (( <i>E</i> )-2a <sub>D</sub> ); b) <i>tert</i> -Butyl Methyl Diazomalonate (1b) and |
| (Z)-β-Deuterostyrene ((Z)-2a <sub>D</sub> )                                                                            |
| Figure 12 Upfield <sup>2</sup> H NMR and <sup>1</sup> H NMR for Cyclopropane Isomers 3b from [Co(P1)]-                 |
| Catalyzed Cyclopropanation between: a) tert-Butyl Methyl Diazomalonate (1b)                                            |
| and (E)-β-Deuterostyrene ((E)-2a <sub>D</sub> ); b) tert-Butyl Methyl Diazomalonate (1b) and                           |
| (Z)-β-Deuterostyrene ((Z)-2a <sub>D</sub> )                                                                            |

#### DEDICATION

I dedicate this dissertation to my parents. Without their continuous love, support and encouragement, it would not have been possible.

#### ACKNOWLEDGEMENTS

Firstly, I want to express my gratitude to my advisor Dr. Peter Zhang for his lasting care and guidance over my PhD study and research time. Thanks to the opportunities he provided in training me to be a scientist. His commitment to details has set an outstanding example as what it takes to be a true scientist.

Secondly, I would like to deliver my thankfulness to my committee members: Dr. James P. Morken, Dr. Mark L. Snapper in Boston College as well as my committee members: Dr. Jon Antilla, Dr. Jianfeng Cai, Dr. Edward Turos in University of South Florida. I appreciate very much for their guidance and suggestions over the time of graduate study to my research and career development.

Also, I want to thank all my lab mates that I have worked with over these years for their company and help, especially Dr. Cui Xin, who firstly taught me to become a scientist in organic chemistry, Dr. Duo-Sheng Wang, who always had a solution to the problem I raised up and Jingjing Xie, who assisted and contributed tremendously to projects that I was involved with.

Last but not least, I would like to thank all my friends in Tampa and Boston, including Dr. Xue (Snow) Xu, Dr. Yaqiong Li, Dr. Peng Sang, Dr. Yan Shi, Dr. Siqi Sun, Dr. Tao Liang, Dr. Wenyang Gao, Congzhe Zhang, Cindy Lee, Lucas Parvin, Katherine Lounsbury, Xavier Riart-Ferrer, Dr. Chunyang Zhang, Dr. Ning Ding, Dr. Yan Meng, Dr. Zhenxing Liu, Dr. Jing Jin, Dr. Ming Shan, Ms. Miao Wang, my landlady Juan Liu and her daughter Libby Wu. Without them, the journey to the PhD degree would not have been so memorable.

# Chapter 1 Developments of Cyclopropanation of Alkenes with Diazomalonates

### 1.1 Methodologies Developed for the Cyclopropanation of Alkenes with Diazomalonates

#### **1.1.1 Introduction**

The highly strained cyclopropanes moieties exhibit a remarkable reactivity, and have been caused to probe their applications in organic synthesis.<sup>1,2</sup> Since the late 1970s, there have been continuous effects on development of new methods for the installation of vicinal donor and acceptor substituents on the three-membered ring, which are referred to as donor–acceptor (D–A) cyclopropanes, to increase the reactivity of the C–C bond.<sup>3</sup> Different methods have been developed for the cyclopropanation of alkenes. This section we will introduce the methods developed for the cyclopropanation of alkenes with diazomalonates.

#### **1.1.2 Irradiation Initiated Cyclopropanation of Alkenes with**

#### **Diazomalonates**

The singlet and triplet biscarbomethoxy carbene can be produced by direct and sensitized (with benzophenone) photo irradiation of methyl diazomalonate, the *in situ* produced carbenes can react with different alkenes including terminal and internal alkenes.<sup>4</sup> It was found that the *cis* adducts were predominately formed when *cis* olefins were used under direct irradiation condition. In contrast, major

*trans* adducts were isolated either *cis* olefins or *trans* ones were utilized under the sensitized (with benzophenone) irradiation (Scheme 1).



#### Scheme 1 Cyclopropanation of Olefins with Diazomalonate under Irradiation Condition

The spiro-activated cyclopropanes were originally reported being formed by direct irradiation of isopropylidene diazomalonate with alkenes.<sup>5</sup> In case of 4-tert-butyldimethylsilyloxy-1-cyclopentene, only 15% of the *cis* adduct was formed, whereas 3-*tert*-butyldimethylsilyloxy-1-cyclopentene or *cis*-3,4-methylenedioxy-1-cyclopentene the *trans* adduct was the exclusive produced. It was later proved that the corresponding fused-cyclobutanone (by single crystal X-Ray analysis and spectroscopic methods) was formed *via* a Wolff rearrangement of the initially formed carbene to afford ketene which underwent a remarkably regio- and stereospecific 2+2 cycloaddition with alkenes under the irradiation conditions (Scheme 2).<sup>6</sup>



Scheme 2 Irradiation of Isopropylidene Diazomalonate with Alkenes

Dicarbomethoxy carbene can be generated by photolysis of S-C sulfonium ylides derived from thiophene or its derivatives, the reaction of the generated carbene with 10% *cis*-4-octene in acetonitrile was performed, the results indicated that the *cis*-product was predominantly generated (Scheme 3).<sup>7</sup>



X = CI, Br, I at different position when it is thiophene

# Scheme 3 Cyclopropanation of Alkenes with Malonate Thiophene Derivative Ylides 1.1.3 Copper Complexes Catalyzed Cyclopropanation of Alkenes with

#### Diazomalonates

In 1974, Danishefsky and coworkers reported the preparation of the substituted cyclopropanes by cyclopropanation of phthalimido olefins with dimethyl diazomalonate upon heating the mixture of copper bronze at 140 °C under nitrogen. The products can be transferred into the corresponding fused cyclic compounds using appropriate work-up (Scheme 4).<sup>8</sup>



Scheme 4 Cyclopropanation of Phthalimido Olefins with Dimethyl Diazomalonate Catalyzed by Copper Bronze

In 2008, Tüzün and coworkers reported a DFT study on the mechanism of cyclopropanation via Cu(acac)<sub>2</sub>-catalyzed siazo ester decomposition. They found that the diazo compound bears carbonyl group(s), the four-centered path, involving favorable interactions between copper and the carbonyl group, appears to be a more facile route, whereas the three-centered pathway via direct alkene addition is also a probable facile route for diazo compounds without a C=O group.<sup>9</sup>

The monounsaturated fatty esters with non-activated double bonds have been made to react with dimethyl diazomalonate (DDM) (Scheme 5), in copper catalyzed cyclopropanation reactions. Cyclopropanation reactions of methyl oleate and DDM catalyzed by  $Cu(OTf)_2$  produced the product as high as 99% yield under the conditions of DDM:methyl oleate = 6:1 at 85 °C in 24 h.<sup>10</sup>



Scheme 5 Cyclopropanation of Monounsaturated Fatty Esters Bearing Non-activated Double Bonds with Dimethyl Diazomalonate Catalyzed by Cu(OTf)<sub>2</sub>

#### **1.1.4 Rhodium Catalyzed Cyclopropanation of Alkenes with Dimethyl**

#### Diazomalonates

Dirhodium complex [Rh<sub>2</sub>(esp)<sub>2</sub>; esp =  $\alpha$ ,  $\alpha$ ,  $\alpha$ ,  $\alpha$ -tetramethyl-1,3-benzenedipropanoate] was found to be outstanding catalyst for the cyclopropanation of a wide range of functionalized styrenes, aliphatic and cyclic alkenes with diazomalonate under mild reaction conditions producing the corresponding 1,1cyclopropane diesters (Scheme 6).<sup>11</sup> The terminal alkenes work more efficiently than the internal alkenes do in terms of yields under the same conditions.



### Scheme 6 Cyclopropanation of Alkenes with Diazomalonate Catalyzed by Dirhodium Catalysis

It is found that phenyliodonium ylides can be produced from the reactions of Malonate Esters with  $PhI(OAc)_2$  using KOH as a base, the phenyliodonium ylides can be used as carbene equivalent for cyclopropanation of styrene to afford 1,1-cyclopropane diesters.  $Rh_2(OAc)_4$  and CuOTf were effective for the cyclopropanation reaction, and  $Rh_2(OAc)_4$  was found superior to CuOTf. Thus, various functionalized styrenes were cyclopropanated with phenyliodonium ylides in the presence of 0.1 mol%  $Rh_2(esp)_2$  affording the corresponding 1,1-cyclopropane diesters (Scheme 7).<sup>12</sup>



# Scheme 7 Cyclopropanation of Alkenes with Iodonium Ylide of Dimethyl Malonate Catalyzed by Dirhodium Complex

Bis(2,2,2-trifluoroethyl)cyclopropane-1,1-dicarboxylates were successfully prepared by treating diazo-bis-222-trifluoroethylmalonate with a variety of alkenes in the presence of 0.1 mol% rhodium catalysis  $Rh_2(esp)_2$ . The corresponding esters were reacted with *N*-methylindole under conditions of 10 mol% Yb(OTf)<sub>3</sub> in acetonitrile to produce the expected adducts in good to excellent yields, however the reaction times indicate a greatly enhanced reactivity of the fluorinated substrates (Scheme 8).<sup>13</sup>



Scheme 8 Cyclopropanation of Alkenes with Diazo-bis-222-trifluoroethylmalonate Catalyzed by Dirhodium Catalysis

#### 1.1.5 Ruthenium(II) and Osmium(II) Catalyzed Cyclopropanation of

#### **Alkenes with Dimethyl Diazomalonates**

Alkenyl cyclopropanes were prepared by a tandem ring-closing enyne metathesis/ cyclopropanation by treatment of various diazo compounds with the *in situ* prepared 1,3-dienes using Grubbs I catalyst (Scheme 9).<sup>14</sup>



Scheme 9 Synthesis of Alkenyl Cyclopropanes by a Tandem Ring-closing Enyne Metathesis/ Cyclopropanation Catalyzed by Grubbs I Catalysis

The crystal structure of (5,10,15,20-tetraphenylporphyrinato)ruthenium(II) (diethoxycarbonyl)carbene(methanole) was determined, the complex was proved to be effective catalysis for cyclopropanation of styrene with EDA (ethyl diazoacetate).<sup>15</sup>

The (5,10,15,20-tetra-*p*-tolylporphyrinato)osmium(II) complex was also effective for the cyclopropanation of styrene with diazo reagents (carbene sources). The reaction was proved to proceed more slowly with diester diazo reagents than with monoester diazo reagents (Scheme 10).<sup>16</sup>



Scheme 10 Cyclopropanation of Styrenes with Diazomalonate Catalyzed by Osmium(II) Catalysis

#### **1.2 Recent Developments of Transition Metal Catalyzed Enantioselective**

**Cyclopropanation of Alkenes with Diazomalonates** 

#### **1.2.1 Introduction**

Catalytic cyclopropanation of alkenes with diazomalonates presents a potentially attractive approach for the synthesis of the highly valuable 1,1-cyclopropanediesters with a possibility of controlling stereoselectivity.<sup>17</sup> The application of 1,1-cyclopropanediesters in organic synthesis includes cycloaddition reaction,<sup>18</sup> ring opening reactions<sup>19</sup> and rearrangements.<sup>20</sup> Those further transformations are also utilized in various cases of total synthesis.<sup>21</sup> Compared with symmetrical diazomalonate, asymmetric cyclopropanation with unsymmetrical diazomalonates will create an extra chiral center to generate diastereomers so that the challenge and applications will also increase. To the best of our

knowledge, unsymmetrical diazomalonates have not been previously employed for asymmetric olefin cyclopropanation.

#### 1.2.2 Previous Report on Asymmetric Synthesis of 1,1-Diestercyclopropanes

#### 1.2.2.1 Asymmetric Cyclopropanation with diazomalonates

Because of their low reactivity and inherent challenge of stereocontrol associated with the two similar electron-withdrawing ester groups, the use of diazomalonates as carbene precursors for asymmetric olefin cyclopropanation by existing catalytic systems has been limited with substrate scope and hampered by low enantioselectivity.

In 1996, Davies group reported the Rhodium(II) (*S*)-*N*-(arylsulfonyl)prolinate catalyzed cyclopropanation carbenoids containing two electron withdrawing groups resulted in cyclopropanation with low enantioselectivity as the first and only example of catalytic asymmetric cyclopropanation with diazomalonate (Scheme 11).<sup>22</sup> However, with good yield (63% yield), the enantioselectivity delivered only in a poor level (7%).



# Scheme 11 Rhodium(II) (S)-N-(arylsulfonyl)prolinate Catalyzed Cyclopropanation of Diazomalonate with Styrene

In the year of 2000, Doyle group reported a dirhodium catalyzed intramolecular cyclopropanation. In this study, they were surprised to discover that dirhodium(II) tetrakis[methyl 2-oxaazetidine-4(*S*)-carboxylate],  $Rh_2(4S-MEAZ)_4$  was an effective catalyst for cyclopropanation reactions with dimethyl diazomalonate (Scheme 12).<sup>23</sup> The up to 50% enantioselectivity was the highest yet reported, and even for cyclopropanation of the highly reactive and normally unselective vinyl acetate, the enantiometric excess of the cyclopropanation product was 33%.



## Scheme 12 Dirhodium(II) Tetrakis[methyl 2-oxaazetidine-4-carboxylate] Catalyzed Cyclopropanation of Diazomalonate with Styrene

Glatzhofer group, in the year of 2000, evaluated an asymmetric ligand for the copper-catalyzed cyclopropanation reaction using styrene (Scheme 13).<sup>24</sup> In an attempt to better understand the origin of the enantioselective induction of ligand, (*S*)-ligand was used as the ligand in the cyclopropanation of styrene with diethyldiazomalonate (DDM) synthesized from diethyl malonate using a diazo transfer reaction. The derivative of the 1,1-cyclopropanediester was subjected to polarimetry that revealed an enantioselectivity of 8.5% and the major product had the (*S*) absolute configuration.



Scheme 13 N-(2',4'-Di-*tert*-butyl)salicylidene-4-amino[2.2]paracyclophane as an Asymmetric Ligand for the Enantioselective Cyclopropanation

In 2008, Charette group reported a novel stereoselective synthesis of cyclopropane bearing geminal dicarboxy groups with excellent enantio- and diastereocontrol utilizing the unprecedented *trans*-directing ability of an amide (Scheme 14).<sup>25</sup> [Rh<sub>2</sub>(*S*-nttl)<sub>4</sub>] was the most promising catalyst, giving >75% ee and >30:1 d.r. when using diazo reagent bearing pyrrolidine amide. The diazo reagent reacts with a variety of mono- and disubstituted alkenes in good to excellent yields.



### Scheme 14 *trans*-Directing Ability of Amide Groups Bearing Diazo Reagents in Cyclopropanation

In 2010, Hayashi group focused on a rhodium(I) catalyst bearing a single coordination site for the decomposition of dimethyl diazomalonate to generate the rhodiumcarbene in the asymmetric cyclopropanation of alkenes (Scheme 15).<sup>26</sup> The use of isolated monomeric rhodium–diene complex [RhCl((R,R)-L<sup>\*</sup>)] combined with NaBArF<sub>4</sub> led to high enantioselectivity. The cyclopropanation of styrene derivatives bearing a variety of substituents on the benzene rings gave the corresponding cyclopropane diesters in good yields, with enantioselectivities ranging from 80 to 90% ee. However, their substrate scope limited to only styrene derivatives and showed no functional group tolerance.



### Scheme 15 Asymmetric Cyclopropanation of Alkenes with Dimethyl Diazomalonate Catalyzed by Chiral Diene–Rhodium Complexes

Recently, in 2017, Tang group reported the first enantioselective copper catalyzed cyclopropanation of internal olefins with diazomalonates. This process provided a new method for the synthesis of chiral 1,1-cyclopropane diesters (Scheme 16).<sup>27</sup> With a chiral bi-side arm bisoxazoline–copper(I) complex, the reaction performed well over a series of substrates, giving the desired products in good yields (up to 95%) and excellent enantioselectivities (90–95% ee).



# Scheme 16 Copper-Catalyzed Enantioselective Cyclopropanation of Internal Olefins with Diazomalonates

#### **1.2.2.2 Phenyliodonium Ylides Utilized as Surrogates of Diazo Reagents**

Because of diazomalonates' low reactivity and difficulties of stereocontrol due to the two similar electron-withdrawing ester groups, the corresponding phenyliodonium ylides, a class of alternative reagents that are more reactive but less stable and difficult to prepare, have been utilized as the surrogates

of diazomalonates for olefin cyclopropanation to synthesize 1,1-cyclopropanediesters with generation of stoichiometric amount of iodobenzene as a byproduct. But the underlying disadvantages involve with one more step of preparation, unstableness and one stoichiometric of byproduct.

In 2012, Tang group developed a facile cagelike bisoxazoline–copper(I) complex chiral catalyst for the catalytic enantioselective cyclopropanation of multisubstituted olefins with phenyliodonium ylide malonate (Scheme 17).<sup>28</sup> The substrates include terminal, disubstituted, and trisubstituted olefins, giving the desired products in excellent yield (up to 99%) with enantioselectivity (up to >99% ee). This protocol provides an efficient method for the synthesis of chiral 1,1-cyclopropane diesters. However, this method was applied under low temperature as -40 °C and proceeded for time as long as 50-133 hours, which could be inconvenient practically.



## Scheme 17 A Chiral Cagelike Copper(I) Catalyst for the Highly Enantioselective Synthesis of 1,1-Cyclopropane Diesters

Feng group, in 2016, reported phenyliodonium ylide as the carbene precursor to promote chiral Lewis acid-catalyzed enantioselective cyclopropanation of the activated alkenes (Scheme 18).<sup>29</sup> A variety of spirocyclopropane-oxindoles, which are versatile building blocks for the synthesis of natural products and pharmaceuticals, with contiguous tertiary and all carbon quaternary centers were obtained in excellent outcomes (up to 99% yield, >19 : 1 d.r., up to 99% ee). The chiral  $N,N^{2}$ -dioxide/Ni(OTf)<sub>2</sub>

complex exhibited excellent performance in the reaction of 3-alkenyl-oxindoles with phenyliodonium ylide malonate under mild reaction conditions.



#### Scheme 18 Nickel(II)-Catalyzed Enantioselective Cyclopropanation of 3-alkenyloxindoles with Phenyliodonium Ylide via Free Carbene

#### **1.3 Summary and Outlook**

Given that asymmetric olefin cyclopropanation with diazomalonates is an important transformation with unaddressed issues, we were prompted to explore a potential solution via the Co(II)-MRC on the supposition that the generation and stabilization of the corresponding  $\alpha$ -Co(III)-malonyl radicals I would be significantly facilitated by the double H-bonding interactions (Scheme 19).



## Scheme 19 Working Proposal for Cyclopropanation of Alkenes with Diazomalonates via Co(II)-Based Metalloradical Catalysis

More challengingly, if unsymmetrical diazomalonates are used, could the stereochemistry of the two newly-formed chiral centers in the resulting 1,1-cyclopropanediesters be controlled? Considering that the two substituents in intermediate I are both ester groups, could the incoming olefin effectively differentiate the two pro-chiral faces of the Co-supported C-centered radical for enantioselective generation of the first stereocenter (Scheme 9)? For the same consideration, could the two similar ester substituents effectively discriminate the two pro-chiral faces of the  $\gamma$ -Co(III)-alkyl radical II during 3-exo-tet radical cyclization for diastereoselective C–C bond formation (Scheme 19)? If these challenges could be addressed through the use of proper [Co(D2-Por\*)] catalyst, it would lead to the development of a new catalytic system for asymmetric cyclopropanediesters, which have been demonstrated as versatile building blocks for wide-ranging synthetic applications.

#### **1.4 References**

- (1) Meijere, A. D. Angew. Chem., Int. Ed. 1979, 18, 809-886.
- (2) (a) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117-3179. (b) De Simone, F.;
   Waser, J. Synthesis 2009, 3353-3376.
- (3) (a) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804-818. (b) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655-671. (c) Chagarovskiy, A. O.; Ivanova, O. A.; Rakhmankulov, E. R.; Budynina, E. M.; Trushkov, I. V.; Melnikov, M. Y. Adv. Synth. Catal. 2010, 352, 3179-3184. (d) Moran, J.; Smith, A. G.; Carris, R. M.; Johnson, J. S.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 18618-18621. (e) Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 9688-9692. (f) De Nanteuil, F.; Waser, J. Angew. Chem., Int. Ed. 2011, 50, 12075-12079. (g) Xiong, H.; Xu, H.; Liao, S.; Xie, Z.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851-7854. (h) Leduc, A. B.; Lebold, T. P.; Kerr, M. A. J. Org. Chem. 2009, 74, 8414-8416. (i) Ivanova, O. A.; Budynina, E. M.; Grishkin, Y. K.; Trushkov, I. V.; Verteletskii, P. V. Angew. Chem., Int. Ed. 2008, 47, 1107-1110. (j) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051-3060. (k) Tang, P.; Gin, Y. Synthesis 2012, 44, 2969. (l) Halskov, K. S.; Kniep, F.; Lauridsen, V. H.; Iversen, E. H.; Donslund, B. S.; Jørgensen, K. A. J. Am. Chem. Soc. 2015, 137, 1685–1691. (m) Cohen, Y.; Cohen, A.; Marek, I. Chem. Rev. 2021, 121, 140–161.
- (4) Jones, Jr. M.; Ando, W.; Hendrick, M. E.; Kulczycki, Jr. A.; Howley, P. M.; Hummel, K. F.;
   Malament D. S. J. Am. Chem. Soc. 1972, 94, 7469-7479.
- (5) Livinghouse, T.; Stevens, R. V. J. Am. Chem. Soc. 1978, 100, 6479-6482.
- (6) Stevens, R. V.; Bisacchi, G. S.; Goldsmith, L.; Strouse, C. E. J. Org. Chem. 1980, 45, 2708-2709.
- (7) Jenks, W. S.; Heying, M. J.; Rockafellow, E. M. Org. Lett. 2009, 11, 955-958.
- (8) Danishefsky, S.; Dynak, J. J. Org. Chem. 1974, 39, 1979-1980.

- (9) Özen, C.; Tüzün, N. S. Organometallics 2008, 27, 4600-4610.
- (10) Angulo, B.; Fraile, J. M.; Herrerjas, C. I.; Mayoral, J. A. RSC Adv. 2017, 7, 19417-19424.
- (11) Bobes, F. G.; Fenster, M. D. B.; Kiau, S.; Kolla, L.; Kolotuchin, S.; Soumeillant, M. Adv. Synth.
   *Catal.* 2008, 350, 813-816.
- (12) Goudreau, S. R.; Marcoux, D.; Charette, A, B. J. Org. Chem. 2009, 74, 470–473.
- (13) Armstrong, E. L.; Kerr, M. A. Org. Chem. Front. 2015, 2, 1045–1047.
- (14) Kim, B. G; Snapper, M. L. J. Am. Chem. Soc. 2006, 128, 52-53.
- (15) Galardon, E.; Maux, P. L.; Toupet, L.; Simonneaux, G. Organometallics 1998, 17, 565-569.
- (16) Hamaker, C. G.; Djukic, J.-P.; Smith, D. A.; Woo, L. K.; Organometallics 2001, 20, 5189-5199.
- (17) (a) Reissig, H. U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. (b) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321. (c) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051. (d) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43, 804. (e) de Nanteuil, F.; De Simone, F.; Frei, R.; Benfatti, F.; Serrano, E.; Waser, J. Chem. Commun. 2014, 50, 10912. (f) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem. Int. Ed. 2014, 53, 5504. (g) Xu, X. F.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396. (h) Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Biomol. Chem. 2015, 13, 655.
- (18) (a) Alajarin, M.; Egea, A.; Orenes, R. A.; Vidal, A. Org. Biomol. Chem. 2016, 14, 10275. (b) Borisov, D. D.; Novikov, R. A.; Tomilov, Y. V. Angew. Chem. Int. Ed. 2016, 55, 12233. (c) Das, S.; Chakrabarty, S.; Daniliuc, C. G.; Studer, A. Org. Lett. 2016, 18, 2784. (d) Fu, X.; Lin, L. L.; Xia, Y.; Zhou, P. F.; Liu, X. H.; Feng, X. M. Org. Biomol. Chem. 2016, 14, 5914. (e) Garve, L. K. B.; Pawliczek, M.; Wallbaum, J.; Jones, P. G.; Werz, D. B. [4+3] Chem. Eur. J. 2016, 22, 521.

- (19) (a) Qu, J. P.; Deng, C.; Zhou, J.; Sun, X. L.; Tang, Y. J. Org. Chem. 2009, 74, 7684. (b) Sapeta, K.; Kerr, M. A. Org. Lett. 2009, 11, 2081. (c) Zhou, Y. Y.; Wang, L. J.; Li, J.; Sun, X. L.; Tang, Y. J. Am. Chem. Soc. 2012, 134, 9066. (d) de Nanteuil, F.; Loup, J.; Waser, J. Org. Lett. 2013, 15, 3738.
  (e) Wales, S. M.; Walker, M. M.; Johnson, J. S. Org. Lett. 2013, 15, 2558.
- (20) Chen, H. Y.; Zhang, J.; Wang, D. Z. Org. Lett. 2015, 17, 2098.
- (21) (a) Carson, C. A.; Kerr, M. A. Angew. Chem. Int. Ed. 2006, 45, 6560. (b) Young, I. S.; Kerr, M. A. J. Am. Chem. Soc. 2007, 129, 1465. (c) Jackson, S. K.; Karadeolian, A.; Driega, A. B.; Kerr, M. A. J. Am. Chem. Soc. 2008, 130, 4196. (d) Leduc, A. B.; Kerr, M. A. Angew. Chem. Int. Ed. 2008, 47, 7945. (e) Carson, C. A.; Kerr, M. A. Org. Lett. 2009, 11, 777.
- (22) Davies, H. M. L.; Bruzinski, P. R.; Fall, M. J. Tetrahedron Lett. 1996, 37, 4133.
- (23) Doyle, M. P.; Davies, S. B.; Hu, W. H. Org. Lett. 2000, 2, 1145.
- (24) Masterson, D. S.; Glatzhofer, D. T. Journal of Molecular Catalysis a-Chemical 2000, 161, 65.
- (25) Marcoux, D.; Charette, A. B. Angew. Chem. Int. Ed. 2008, 47, 10155.
- (26) Nishimura, T.; Maeda, Y.; Hayashi, T. Angew. Chem. Int. Ed. 2010, 49, 7324.
- (27) Deng, C.; Liu, H. K.; Zheng, Z. B.; Wang, L. J.; Yu, X.; Zhang, W. H.; Tang, Y. Org. Lett. 2017, 19, 5717.
- (28) Deng, C.; Wang, L. J.; Zhu, J.; Tang, Y. Angew. Chem. Int. Ed. 2012, 51, 11620.
- (29) Guo, J.; Liu, Y. B.; Li, X. Q.; Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. Sci. 2016, 7, 2717.

# Chapter 2 Highly Stereoselective Cyclopropanation of Alkenes with Unsymmetrical Diazomalonates via Co(II)-Based Metalloradical Catalysis

#### 2.1 Introduction

Here, we want to report the development of the first catalytic system via Co(II)-based MRC that is highly effective for asymmetric cyclopropanation of alkenes with unsymmetrical diazomalonates. We describe the significant ligand effects on the Co(II)-catalyzed cyclopropanation, leading to the identification of a suitable D2-symmetric chiral amidoporphyrin for the catalytic process. We show that the optimized catalytic system is remarkably general and can be efficiently applied to a broad range of alkenes, affording various 1,1-cyclopropanediesters in high yields with effective control in both diastereoselectivity and enantioselectivity of the two newly-constructed contiguous chiral centers. Among other attributes, the Co(II)-based metalloradical system is highlighted by a high degree of functional group tolerance. In addition to demonstrating synthetic utility of the enantioenriched 1,1cyclopropanediester products, we present experimental evidence that agrees with the underlying stepwise radical mechanism for the new Co(II)-based catalytic system.

#### 2.2 Results and Discussion

### 2.2.1 Condition Optimization of the Co(II)-Based Catalytic System for Enantioselective Cyclopropanation of Styrene with Diazomalonate

Our study began with the investigation of catalytic cyclopropanation reaction of styrene (2a) with the unsymmetrical benzyl methyl diazomalonate (1a) (Table 1).

#### Table 1 Ligand Effects on the Co(II)-Based Catalytic System for Cyclopropanation of

| Styrene with Unsymmetrical Diazomaionates | Styrene | with | Unsyn | nmetrical | l Diazon | nalonates |
|-------------------------------------------|---------|------|-------|-----------|----------|-----------|
|-------------------------------------------|---------|------|-------|-----------|----------|-----------|

| RO <sub>2</sub> 0 |                                   | [Co(Por                        | )] (2 mol %    | <sup>(6)</sup> RO <sub>2</sub> C | _ ∧ _H                                 |                     |
|-------------------|-----------------------------------|--------------------------------|----------------|----------------------------------|----------------------------------------|---------------------|
| MeO <sub>2</sub>  |                                   | room te                        | emperature     | e MeO <sub>2</sub> C             |                                        | + 12                |
|                   | 1 2a                              |                                |                | _                                | 3                                      |                     |
| entry             | diazomalonate                     | [Co(Por)]                      | product        | yield (%) <sup>b</sup>           | ( <i>E</i> ):( <i>Z</i> ) <sup>c</sup> | ee (%) <sup>d</sup> |
| 1                 | <b>1a</b> ( <mark>R = Bn</mark> ) | [Co(TPP)]                      | (±)- <b>3a</b> | 0                                | —                                      | —                   |
| 2                 | <b>1a</b> (R = Bn)                | [Co( <b>P1</b> )]              | (±)- <b>3a</b> | 20                               | 51:49                                  | —                   |
| 3                 | <b>1a</b> (R = Bn)                | [Co( <b>P2</b> )]              | (+)- <b>3a</b> | 33                               | 58:42                                  | 46                  |
| 4                 | 1a (R = Bn)                       | [Co( <b>P3</b> )]              | (+)- <b>3a</b> | 37                               | 58:42                                  | 64                  |
| 5                 | <b>1a</b> (R = Bn)                | [Co( <b>P4</b> )]              | (+) <b>-3a</b> | 42                               | 67:33                                  | 75                  |
| 6                 | <b>1b</b> ( $R = {}^{t}Bu$ )      | [Co( <b>P4</b> )] <sup>e</sup> | (+)- <b>3b</b> | 56                               | 88:12                                  | 87                  |
| 7                 | 1c (R = Ph)                       | [Co( <b>P4</b> )]              | (+)- <b>3c</b> | 99                               | 94:6                                   | 96                  |

<sup>*a*</sup> Carried out with diazomalonates **1** (0.10 mmol) and **2a** (0.12 mmol) in toluene at room temperature for 24 h in onetime fashion without slow addition using [Co(Por)] (2 mol %) under N<sub>2</sub>. <sup>*b*</sup> Isolated yields. <sup>*c*</sup> Diastereomeric ratio (dr) determined by <sup>1</sup>H NMR. <sup>*d*</sup> Enantiomeric excess (ee) determined by chiral HPLC. <sup>*e*</sup> Using [Co(Por)] (5 mol %).

It was found that [Co(TPP)] (TPP = 5,10,15,20-tetraphenylporphyrin), the simple Co(II)metalloradical catalyst, was inactive for the transformation, failing to provide any of the desired 1,1cyclopropanediester **3a** (entry 1).



#### Figure 1 Achiral and Chiral Co(II)-Based Amidoporphyrin Catalyst Utilized in Condition Optimization for the Asymmetric Cyclopropanation of Styrene with Diazomalonate

However, with the use of achiral amidoporphyrin catalyst [Co(P1)] (P1 = 3,5-Di'Bu-IbuPhyrin) (Figure 1), the reaction could proceed at room temperature and deliver the desired cyclopropane product **3a** in low but significant yield (Table 1, entry 2). The difference in catalytic activity between [Co(TPP)] and [Co(P1)] signifies the importance of the proposed double hydrogen-bonding interactions in activating and stabilizing the  $\alpha$ -Co(III)-malonyl radical intermediate I (Scheme 19).

On the other hand, the formation of cyclopropane **3a** in almost equal ratio of (*E*)- and (*Z*)diastereomers (Table 1, entry 2) clearly indicates the aforementioned challenge associated with the differentiation of the two similar ester groups during the catalytic process. When using the firstgeneration chiral metalloradical catalyst [Co(P2)] (P2 = 3,5-Di'Bu-ChenPhyrin), it delivered 1,1cyclopropanediester 3a in moderate enantioselectivity while improving both the yield and diastereoselectivity (Table 1, entry 3). When switching to the second-generation metalloradical catalyst [Co(P3)] (P3 = 3,5-Di'Bu-QingPhyrin), which differs from [Co(P2)] by replacing one of the two methyl groups in the chiral amides with a phenyl group for potential  $\pi$ -stacking interactions, it improved the enantioselectivity significantly without affecting the yield and diastereoselectivity (Table 1, entry 4). Further improvements in both stereoselectivities and reactivity were observed by using catalyst [Co(P4)] (P4 = 3,5-Di<sup>*i*</sup>Bu-Xu(2'-Naph)Phyrin) that bears naphthyl groups (Table 1, entry 5), indicating the possibility of enhanced  $\pi$ -stacking interactions. Replacement of diazomalonate 1a by more sterically-hindered tert-butyl methyl diazomalonate (1b) afforded the corresponding 1,1-cyclopropanediester **3b** in higher yield as well as with better diastereoselectivity and enantioselectivity (Table 1, entry 6). To our delight, when methyl phenyl diazomalonate (MPDM; 1c) was used as the radical precursor, the cyclopropanation of styrene by [Co(P4)] gave the corresponding 1,1-cyclopropanediester 3c in almost quantitative yield with 96% ee and 94:6 dr (Table 1, entry 7).

#### 2.2.2 Asymmetric Radical Cyclopropanation of Different Olefin

#### Substrates

Under the optimized conditions, the scope of the [Co(P4)]-catalyzed asymmetric cyclopropanation with MPDM (1c) was investigated by using different types of alkenes as the substrates (Table 2).

#### Table 2 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Alkenes with



#### Methyl Phenyl Diazomalonate (MPDM)<sup>a</sup>

<sup>*a*</sup> Carried out with diazomalonate **1c** (0.10 mmol) and alkene **2** (0.12 mmol) in toluene at room temperature for 24 h in one-time fashion without slow addition using [Co(P4)] (2 mol %) under N<sub>2</sub>; Isolated yields; Diastereomeric ratio (dr) determined by <sup>1</sup>H-NMR; Enantiomeric excesses (ee) determined by chiral HPLC.

Like styrene, styrene derivatives with alkyl substituents could be effectively cyclopropanated with MPDM by [Co(P4)], affording the corresponding 1,1-cyclopropanediesters 3d-3f in almost quantitative yields with both excellent diastereoselectivities and enantioselectivities (Table 2, entries 1–3). The [Co(P4)]/MPDM-based system was able to cyclopropanate sterically encumbered 2-methylstyrene and 2,4-dimethylstyrene as well, forming the desired cyclopropanes 3g and 3h with high enantioselectivities despite in moderate yields and diastereoselectivities (Table 2, entries 4 and 5). Styrenes substituted with both electron-donating and electron-withdrawing groups were found to be also suitable substrates for the catalytic system as demonstrated with the formation of cyclopropanes 3i-3m (Table 2, entries 6–10).

Table 3 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of HalogenatedStyrenes with Methyl Phenyl Diazomalonate (MPDM)<sup>a</sup>



<sup>*a*</sup> Carried out with diazomalonate **1c** (0.10 mmol) and alkene **2** (0.12 mmol) in toluene at room temperature for 24 h in one-time fashion without slow addition using [Co(P4)] (2 mol %) under N<sub>2</sub>; Isolated yields; Diastereomeric ratio (dr) determined by <sup>1</sup>H NMR; Enantiomeric excesses (ee) determined by chiral HPLC. <sup>*b*</sup> Absolute configuration determined by X-ray crystallography. <sup>*c*</sup> With **2** (0.50 mmol).

Additionally, halogenated styrenes, including those substituted with Br, Cl and F atoms, could be catalytically transformed to the desired products 3n-3s in high yields with excellent stereoselectivities (Table 3, entries 11–16). It is worthy of noting that even the highly electrondeficient pentafluorostyrene could be successfully cyclopropanated to produce the desired product 3s (entry 16). Table 4 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Styrenes with Aldehyde and Boron Functionality with Methyl Phenyl Diazomalonate (MPDM)<sup>a</sup>



<sup>*a*</sup> Carried out with diazomalonate **1c** (0.10 mmol) and alkene **2** (0.12 mmol) in toluene at room temperature for 24 h in one-time fashion without slow addition using [Co(**P4**)] (2 mol %) under N<sub>2</sub>; Isolated yields; Diastereomeric ratio (dr) determined by <sup>1</sup>H NMR; Enantiomeric excesses (ee) determined by chiral HPLC. <sup>*b*</sup> With **2** (1.00 mmol). <sup>*c*</sup> Using [Co(**P4**)] (5 mol %).

The Co(II)-catalyzed asymmetric cyclopropanation was shown to tolerate additional functionalities such as chloromethyl, formyl and pinacolborane groups for the production of the functionalized cyclopropanes 3t-3v (Table 4, entries 17–19).

#### Table 5 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Naphthyl and

Heteroaromatic Alkenes with Methyl Phenyl Diazomalonate (MPDM)<sup>a</sup>


<sup>*a*</sup> Carried out with diazomalonate **1c** (0.10 mmol) and alkene **2** (0.12 mmol) in toluene at room temperature for 24 h in one-time fashion without slow addition using [Co(**P4**)] (2 mol %) under N<sub>2</sub>; Isolated yields; Diastereomeric ratio (dr) determined by <sup>1</sup>H NMR; Enantiomeric excesses (ee) determined by chiral HPLC.

Furthermore, the metalloradical system was found to be compatible with polyaromatic and heteroaromatic olefins as exemplified by the stereoselective synthesis of cyclopropane derivatives 3w-3z and 3aa-3ab containing naphthalene, pyrrole, pyridine, indole, benzofuran and benzothiophene, affording the corresponding products very good yields with excellent enantioselectivity, respectively (Table 5, entries 20–25).

### Table 6 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of α-Substituted Styrenes with Methyl Phenyl Diazomalonate (MPDM)<sup>a</sup>



<sup>*a*</sup> Carried out with diazomalonate **1c** (0.10 mmol) and alkene **2** (0.12 mmol) in toluene at room temperature for 24 h in one-time fashion without slow addition using [Co(**P4**)] (2 mol %) under N<sub>2</sub>; Isolated yields; Diastereomeric ratio (dr) determined by <sup>1</sup>H NMR; Enantiomeric excesses (ee) determined by chiral HPLC.

With the use of  $\alpha$ -substituted styrenes as the substrates, the Co(P4)-based catalytic system could efficiently construct cyclopropane structures **3ac–3af** with effective control of the two contiguous quaternary stereocenters with excellent enantioselectivity (Table 6, entries 26–29).

# Table 7 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Conjugated Dienes and Enynes with Methyl Phenyl Diazomalonate (MPDM)<sup>a</sup>



<sup>*a*</sup> Carried out with diazomalonate **1c** (0.10 mmol) and alkene **2** (0.12 mmol) in toluene at room temperature for 24 h in one-time fashion without slow addition using [Co(P4)] (2 mol %) under N<sub>2</sub>; Isolated yields; Diastereomeric ratio (dr) determined by <sup>1</sup>H NMR; Enantiomeric excesses (ee) determined by chiral HPLC.

In addition to aromatic olefins, the [Co(P4)]/MPDM-based asymmetric system could be effectively applied to conjugated dienes and enynes, enabling chemoselective cyclopropanation of the terminal alkene units to form 2-alkenyl- and 2-alkynyl-1,1-cyclopropanediesters **3ag–3ai** with very high enantioselectivity (Table 7, entries 30–32).

# Table 8 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Electron Deficient Alkenes with Methyl Phenyl Diazomalonate (MPDM)<sup>a</sup>



<sup>*a*</sup> Carried out with diazomalonate 1c (0.10 mmol) and alkene 2 (0.12 mmol) in toluene at room temperature for 24 h in one-time fashion without slow addition using [Co(P4)] (2 mol %) under N<sub>2</sub>; Isolated yields; Diastereomeric ratio (dr)

determined by <sup>1</sup>H NMR; Enantiomeric excesses (ee) determined by chiral HPLC. <sup>*b*</sup> With **2** (0.50 mmol). <sup>*c*</sup> With **2** (1.00 mmol). <sup>*d*</sup> Using [Co(**P4**)] (5 mol %). <sup>*e*</sup> With **2** (2.00 mmol).

Furthermore, electron-deficient alkenes such as acrylonitrile, methyl vinyl ketone and methyl acrylate, which are typically problematic substrates for existing catalytic systems involving electrophilic metallocarbene intermediates, could also be productively cyclopropanated with MPDM by [Co(P4)], providing the highly-electrophilic multi-functionalized cyclopropanes **3aj–3al** with excellent enantioselectivities albeit varied diastereoselectivities due to relatively smaller sizes compared with aromatic olefins (Table 8, entries 33–35). Electron-rich alkenes such as *N*-vinylphthalimide and vinyl benzoate could also serve as good substrates for the asymmetric cyclopropanation, affording the corresponding donor-acceptor cyclopropanes **3am** and **3am** stereoselectively (Table 8, entries 36 and 37).

## Table 9 [Co(P4)]-Catalyzed Asymmetric Radical Cyclopropanation of Aliphatic Alkenes with Methyl Phenyl Diazomalonate (MPDM)<sup>a</sup>



<sup>*a*</sup> Carried out with diazomalonate **1c** (0.10 mmol) and alkene **2** (0.12 mmol) in toluene at room temperature for 24 h in one-time fashion without slow addition using [Co(P4)] (2 mol %) under N<sub>2</sub>; Isolated yields; Diastereomeric ratio (dr) determined by <sup>1</sup>H NMR; Enantiomeric excesses (ee) determined by chiral HPLC. <sup>*b*</sup> With **2** (1.00 mmol). <sup>*c*</sup> Using [Co(P4)] (5 mol %). <sup>*d*</sup> At 40 °C.

Moreover, aliphatic alkenes, which represent another class of challenging substrates for asymmetric cyclopropanation, could be cyclopropanated as well by the Co(II)-based metalloradical system as exemplified by the stereoselective formation of cyclopropanes **3ao–3ar** in good to excellent yields (Table 9, entries 38–41). It is worth to note the remarkable degree of functional

tolerance to the alkyl alcohol and alkyl bromide in the asymmetric formation of 1,1cyclopropanediesters **3aq** and **3ar** (Table 9, entries 40 and 41).

## **Chapter 3 Mechanistic Insights for Radical Cyclopropanation and Further Transformation**

#### **3.1 Introdution**

With the exploration of the optimized cyclopropanation reaction condition and the broad olefin scope applied into the Co(II)-based metalloradical catalysis (MRC), the next important investigation would be that to discover evidence of mechanistic studies of the stepwise radical pathway and the further transformation of the synthetically useful 1,1-diestercyclopropanes. Mechanistic studies could greatly facilitate the understanding of Co(II)-based metalloradical catalysis (MRC) and help the further design of new catalysts.

#### **3.2 Mechanistic Insights for Radical Cyclopropanation**

The profile of reactivity and selectivity displayed by the Co(II)-catalyzed olefin cyclopropanation is consistent with the proposed stepwise radical mechanism that involves key intermediacies of  $\alpha$ -Co(III)-malonyl radical I and  $\gamma$ -Co(III)-alkyl radical II (Scheme 19). To obtain direct evidences for the proposed mechanism, several mechanistic experiments were conducted (Figures 2-3).

In an effort to directly detect the  $\alpha$ -Co(III)-malonyl radical intermediates, the isotropic electron paramagnetic resonance (EPR) spectrum was recorded at room temperature for the reaction solution of [Co(**P1**)] with diazomalonate **1c** in benzene in the absence of alkenes (Figure 2). The spectrum displays strong well-resolved octet signals with observed isotropic g-value of ~2.00. The signals are

diagnostic of Co(III)-supported organic radicals, which is consistent with the formation of  $\alpha$ -Co(III)alkyl radical I[Co(**P1**)]/**1c** upon metalloradical activation of diazomalonate **1c** by [Co(**P1**)] with spin translocation from the Co(II)-center to the  $\alpha$ -C-atom. The observed octet signals could be agreeably simulated on the basis of hyperfine coupling by <sup>59</sup>Co (I = 7/2) with g value of 2.00297 and A<sub>(Co)</sub> of 86.4 MHz (see Chapter 4 for experimental details).



Figure 2 Detection of the α-Co(III)-Malonyl Radical Intermediates by EPR

Additionaly,  $\alpha$ -Co(III)-alkyl radical I<sub>[Co(P1)]/1c</sub> from the reaction mixture of [Co(P1)] with diazomalonate 1c could also be detected by high-resolution mass spectrometry (HRMS) with ESI ionization in the absence of any additives as electron carriers (Figure 3). The obtained spectrum clearly revealed a signal corresponding to [(P1)Co(C(CO<sub>2</sub>CH<sub>3</sub>)(CO<sub>2</sub>C<sub>6</sub>H<sub>5</sub>))]+ (m/z = 1427.6666), which resulted from neutral  $\alpha$ -Co(III)-malonyl radical intermediate I<sub>[Co(P1)]/1c</sub> by the loss of one electron. Both the exact mass and the pattern of isotope distribution determined by ESI-HRMS

matched almost perfectly with those calculated from the formula  $[(P1)Co C(CO_2CH_3)(CO_2C_6H_5)]^+$  (see Chapter 4 for experimental details).



Figure 3 Detection of the α-Co(III)-Malonyl Radical Intermediates by HRMS

To probe the intermediacy of  $\gamma$ -Co(III)-alkyl radical **II** associated with subsequent steps of radical addition and radical cyclization in the proposed mechanism, both (*E*)- and (*Z*)- $\beta$ -deuterostyrene ((*E*)-**2a**<sub>D</sub> and (*Z*)-**2a**<sub>D</sub>) were utilized as the substrates for the Co(II)-catalyzed cyclopropanation (Figure 4). Different from concerted mechanism that gives rise to stereospecific products, stepwise radical mechanism may generate four possible isotopomers of the cyclopropanes from the reaction of both (*E*)-**2a**<sub>D</sub> and (*Z*)-**2a**<sub>D</sub> due to potential rotation of the  $\beta$ -C–C bond in  $\gamma$ -Co(III)-alkyl radical intermediate **II** before the ring closure. To this end, unsymmetrical *tert*-butyl methyl diazomalonate (**1b**) was chosen as the radical precursor for the probing experiments because of its

noticeable slower reaction rate, which was expected to provide higher probability of the  $\beta$ -C–C bond rotation in the corresponding  $\gamma$ -Co(III)-alkyl radical intermediate **II**.



### Figure 4 Probing of the $\gamma$ -Co(III)-Alkyl Radical Intermediates by Reactions of $\beta$ -Deuterostyrenes with Methyl tert-Butyl Diazomalonate

As expected, it was found that the Co(II)-catalyzed cyclopropanation reactions of both (*E*)-2a<sub>D</sub> and (*Z*)-2a<sub>D</sub> with 1b generated the cyclopropane product as a mixture of four diastereomers: (*E*;*E*)-3b<sub>D</sub>; (*Z*;*Z*)-3b<sub>D</sub>; (*Z*;*E*)-3b<sub>D</sub>; and (*E*;*Z*)-3b<sub>D</sub> (Figure 4). Among the four isotopomers, the ratio of (*Z*;*E*)-3b<sub>D</sub> to (*Z*;*Z*)-3b<sub>D</sub> could be experimentally determined from analysis of the reaction mixtures by <sup>1</sup>Hand <sup>2</sup>H-NMR. When [Co(P4)] was used as the catalyst, cyclopropanation of (*E*)-2a<sub>D</sub> with 1b gave a 96:4 ratio of (*Z*;*E*)-3b<sub>D</sub> to (*Z*;*Z*)-3b<sub>D</sub> whereas the ration was switched to 4:96 for the cyclopropanation of (*Z*)-2a<sub>D</sub> with 1b. The observation of (*Z*;*Z*)-3b<sub>D</sub> from (*E*)-2a<sub>D</sub> and (*Z*;*E*)-3b<sub>D</sub> from (*Z*)-2a<sub>D</sub> is evidently a result of the rotation of the β-C–C bond in intermediates  $\Pi_{1b/(E)-2aD}$  and  $\Pi_{1b/(Z)-2aD}$ , respectively. When sterically less hindered [Co(P1)] was used as the catalyst, a significantly different isotopomeric ratio of (*Z*;*E*)-3b<sub>D</sub> and (*Z*;*Z*)-3b<sub>D</sub> (from 96:4 to 88:12) was observed for both reactions of (*E*)-2a<sub>D</sub> (from 96:4 to 88:12) and (*Z*)-2a<sub>D</sub> (from 4:96 to 12:88). The observed difference in the ratio of (*Z*;*E*)-3b<sub>D</sub> to (*Z*;*Z*)-3b<sub>D</sub> indicates that the less-crowded ligand environment of [Co(P1)] permitted relatively more facile rotation of the β-C–C bond in the  $\gamma$ -Co(III)-alkyl radical intermediates  $\Pi_{1b/(E)-2aD}$  and  $\Pi_{1b/(Z)-2aD}$ . Together with the direct observation of the  $\alpha$ -Co(III)-alkyl radical intermediate I by EPR and HRMS, these results provided convincing evidence to support the underlying stepwise radical mechanism for Co(II)-catalyzed olefin cyclopropanation with diazomalonates (see Chapter 4 for experimental details).

#### **3.3 Further Transformations of 1,1-Cyclopropanediesters**

In view of the difference in reactivity between methyl and phenyl esters, the resulting enantioenriched (E)-1,1-cyclopropanediesters from the Co(II)-catalyzed asymmetric cyclopropanation could be stereospecifically transformed to different chiral cyclopropane derivatives (Scheme 20). For example, the better leaving ability of phenoxy over methoxy group enabled selective transesterification of phenyl ester with various alcohols as exemplified with 1,1cyclopropanediester (E)-3n for the acyl transfer reactions.<sup>1</sup> In the presence of  $K_2CO_3$  as the base, the unsymmetrical methyl phenyl diester (E)-**3n** could readily react with methanol in DMF to form the symmetric bismethyl diester 4a in near quantitative yield (99%) with full retention of the original high enantiopurity (100% es). Under the similar conditions, methyl phenyl diester (E)-**3n** underwent selective transesterification reactions with allylic alcohol and benzyl alcohol as well, producing methyl allyl diester (E)-4b and methyl benzyl diester (E)-4c, respectively, in high yields (93% and 92%) with full retention of the original high (E)-diastereometic purity (100% ds) as well as enantiopurity (100% es). In addition to transesterification, (E)-**3n** could proceed selective amidation, as demonstrated with the stereospecific formation of 1,1-cyclopropaneesteramide (Z)-4d in near quantitative yield (99%) without diminishing the original high diastereomeric purity (100% ds) and enantiopurity (100% es) when reacting with *n*-hexylamine under the similar conditions.



Scheme 20 Transformations of the Optically Active Chiral 1,1-Cyclopropanediesters

Besides the transesterification and amidation reactions, the resulting enantioenriched 1,1cyclopropanediesters from the catalytic process could be transformed to form other interesting compounds (Scheme 21). For example, the allylic group in the transesterification product (*E*)-**4b** was effectively removed by Pd-catalyzed hydrogenation reaction,<sup>2</sup> producing the corresponding 1,1cyclopropaneester carboxylic acid (*Z*)-**4e** in high yield (94%) with retention of the original diastereomeric purity (100% ds) but some loss of the optical purity (75% es). As the donor-acceptor type of cyclopropanes, the resulting enantioenriched 1,1-cyclopropanediesters could function as effective 1,3-dipoles to undergo [3+2] cycloaddition as shown by the 1,3-dipolar cycloaddition of 1,1-cyclopropanediester (*E*)-**3n** with benzaldehyde under the catalysis of Sn(OTf)<sub>2</sub>, affording multisubstituted tetrahydrofuran (*E*;*E*)-**5** containing three stereocenters in high yield (87%) with excellent diastereoselectivity (>20:1 dr) and high enantioselectivity (95% ee). While (*E*)-diastereomers were produced as the major diastereomers in [Co(**P4**)]-catalyzed olefin cyclopropanation with MPDM, the (*Z*)-diastereomers could be generated through an iodide-mediated stereospecific conversion. For example, when (*E*)-**3n** was treated with NaI (5.0 equiv) at room temperature, it resulted in the conversion to (*Z*)-**3n** as the major diastereomer without loss of the original optical purity (97% ee).



Scheme 21 Stereospecific Chemical Transformations of Optically Active Chiral 1,1-Cyclopropanediesters

#### **3.4 Conclusion**

In conclusion, we have found ligand effects on the cyclopropanation of olefins, the double hydrogen-bonding interactions play important role in activating and stabilizing the  $\alpha$ -Co(III)-malonyl radical intermediate, and  $\pi$ -stacking between the substrates and catalysts also plays key roles in controlling both activity and enantioselectivity. We have developed the first catalytic system via Co(II)-based metalloradical catalysis (MRC) that is highly effective for asymmetric cyclopropanation of alkenes including various functionalized styrenes, conjugated dienes and enynes, heteroaromatic alkens, and aliphatic alkenes with methyl phenyl diazomalonate (MPDM), a common unsymmetrical diazomalonate, affording the corresponding 1,1-cyclopropanediesters with high diastereoselectivity and enantioselectivity. With  $D_2$ -symmetric chiral amidoporphyrin 3,5-Di'Bu-

Xu(2'-Naph)Phyrin as the supporting ligand, the Co(II)-based metalloradical system can also efficaciously activate MPDM even at room temperature to cyclopropanate different  $\alpha$ -substituted alkenes, affording 1,1-cyclopropanediesters bearing two contiguous stereogenic centers in high yields with a high level of control in both diastereoselectivity and enantioselectivity. Mechanistic studies on cyclopropanation reactions of (*E*)- and (*Z*)- $\beta$ -deuterostyrenes, together with direct observation of  $\alpha$ -Co(III)-malonyl radical intermediates, provide direct evidence in supporting the underlying stepwise radical pathway for the Co(II)-catalyzed process. The resulting enantioenriched (*E*)-1,1-cyclopropanediesters from the new catalytic radical process, as showcased in a number of stereospecific transformations including transesterification with different alcohols, transamination, and 1,3-dipole cycloaddition. The resultants should find useful synthetic applications.

#### **3.5 Reference**

- (1) Watson, D. A.; Fan, X. X.; Buchwald, S. L. J Org Chem 2008, 73, 7096.
- (2) Chandrasekhar, S.; Reddy, C. R.; Rao, R. J. Tetrahedron 2001, 57, 3435.

### **Chapter 4 Experimental Section**

#### 4.1 General Considerations

All cyclopropanation reactions were performed under an atmosphere of nitrogen in oven-dried Schlenk tubes using standard Schlenk techniques. Chemical reagents and anhydrous solvents are commercially available from Sigma-Aldrich, Oakwood Products Inc., Alfa Aesar, TCI, Acros, Strem, or Matrix Scientific and used as received unless otherwise stated. Thin layer chromatography (TLC) was performed on Merck TLC plates (silica gel 60 F254). Flash column chromatography was performed with ICN silica gel (60 Å, 230-400 mesh, 32-63 µm).

<sup>1</sup>H NMR and <sup>13</sup>C NMR were recorded on a Varian600 (600 MHz), Varian500 (500 MHz) or a Varian Inova400 (400 MHz) instrument with chemical shifts reported relative to residual solvent. <sup>19</sup>F NMR were recorded on a Varian Inova400 (400 MHz) instrument. HPLC measurements were carried out on a Shimadzu HPLC system with Chiralcel OD-H, OJ-H, AD-H and Chiralpak IA, IB, IC, ID, IE, IF columns. Infrared spectra were measured with a Nicolet Avatar 320 spectrometer with a Smart Miracle accessory. Optical rotations were measured on a Rudolph Research Analytical AUTOPOL® IV digital polarimeter. HRMS data was obtained on an Agilent 6200 LC/MS ESI/TOF mass spectrometer and JEOL Accu TOF Dart mass spectrometer. HRMS data was obtained on an. X-ray diffraction data were collected using Bruker-AXS SMART-APEXII CCD diffractometer using Kα radiation ( $\lambda = 1.54178$  Å).

#### 4.2 Procedure for Diazomalonte Synthesis



**Benzyl methyl malonate (1a')** Following a reported procedure,<sup>1</sup> to *N*,*N*-dimethylformamide (DMF) (15 mL) was added potassium methyl malonate (5.125 mmol, 1.025 equiv) with vigorous stirring and then benzyl bromide (5.0 mmol, 1.0 equiv). The reaction mixture was stirred for 16 h at room temperature. After the reaction finished, the mixture was diluted with ethyl acetate (25 mL), washed three times with water (3 × 30 mL), dried over sodium sulfate, and evaporated to give **1a'** as colorless oil (94%). TLC: Hexane:EtOAc = 8:1;  $R_f = 0.3$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.36 (d, *J* = 3.4 Hz, 5H), 5.18 (s, 2H), 3.73 (s, 3H), 3.43 (s, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  166.69, 166.17, 135.17, 128.45, 128.29, 128.12, 67.07, 52.34, 41.18. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>11</sub>H<sub>12</sub>O<sub>4</sub>Na<sup>+</sup>: 231.0628; Found: 231.0632. IR (neat, cm<sup>-1</sup>): *v*2954, 1756, 1338, 1277, 1214, 1152, 1022.



**Methyl phenyl malonate (1c')** Following a reported procedure on a similar reaction,<sup>2</sup> phenol (8.5 mmol, 1.0 equiv) was dissolved in anhydrous dichloromethane (50 mL) and then the solution was cooled to 0 °C. Methyl 3-chloro-3-oxopropanoate (10.4 mmol, 1.22 equiv) and triethylamine (11.9 mmol, 1.4 equiv) were slowly added. After 30 min, the reaction mixture was warmed up to room temperature and stirred for overnight. Solvent was evaporated under reduced pressure, water (50 mL) was added, and the mixture was extracted with ethyl acetate for three times ( $3 \times 50$  mL). The combined organic phases were washed with saturated aq. NaHCO<sub>3</sub> ( $2 \times 30$  mL) and brine (30 mL),

dried over sodium sulfate, and concentrated under reduced pressure. The yellow crude product was purified by column chromatography on silica gel (dichloromethane) to yield **1c'** as a colorless oil (93%). TLC: DCM;  $R_f = 0.7$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.38 (td, J = 7.6, 6.7, 1.2 Hz, 2H), 7.27 – 7.22 (m, 1H), 7.15 – 7.10 (m, 2H), 3.79 (s, 3H), 3.61 (s, 2H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  166.46, 164.84, 150.27, 129.34, 126.04, 121.19, 52.51, 41.19. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>10</sub>H<sub>11</sub>O<sub>4</sub><sup>+</sup>: 195.0652; Found: 195.0662. IR (neat, cm<sup>-1</sup>): *v*2955, 2923, 2850, 1768, 1743, 1339, 1262, 1196, 1163, 1140.



**General procedure:** Following a reported procedure on a similar reaction,<sup>3</sup> unsymmetrical malonate **1'** (8.3 mmol, 1.0 equiv) was dissolved in acetonitrile (45 mL) and then the stirred solution was cooled to 0 °C. Triethylamine (24.9 mmol, 3.0 equiv) and *p*-(acetamido)benzenesulfonyl azide (*p*-ABSA) (12.4 mmol, 1.5 equiv) were added to the reaction mixture. The reaction was gradually warmed up to room temperature and stirred for overnight. Then the suspension of the reaction mixture was filtered, washed with ether (50 mL), and the filtrate was then concentrated under reduced pressure. The yellow crude products were purified by column chromatography on silica gel (hexane/ethyl acetate) to afford pure products **1**.



**1-benzyl 3-methyl 2-diazomalonate (1a)** Yield: 86%. Light yellow oil. TLC: Hexane:EtOAc = 3:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$ 7.43 - 7.27 (m, 5H), 5.26 (s, 2H), 3.82 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  161.23, 160.56, 135.17, 128.46, 128.29, 128.09, 66.83, 52.35. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>11</sub>H<sub>10</sub>N<sub>2</sub>O<sub>4</sub>Na<sup>+</sup>: 257.0533; Found: 257.0533. IR (neat, cm<sup>-1</sup>):  $\nu$  3034, 2957, 2139, 1762, 1739, 1695, 1438, 1383, 1331, 1273, 1104.



**1-(***tert***-butyl) 3-methyl 2-diazomalonate (1b)** Starting material *tert*-butyl methyl malonate is commercially available from Sigma-Aldrich. Yield: 88%. Light yellow oil . TLC: Hexane:EtOAc = 3:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz,

CDCl<sub>3</sub>):  $\delta$  3.83 (s, 3H), 1.51 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  162.04, 159.68, 83.08, 52.35, 28.14. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>8</sub>H<sub>12</sub>N<sub>2</sub>O<sub>4</sub>Na<sup>+</sup>: 223.0689; Found: 223.0695. IR (neat, cm<sup>-1</sup>):  $\nu$  2980, 2138, 1763, 1694, 1438, 1371, 1342, 1105.

**1-phenyl 3-methyl 2-diazomalonate (1c)** Yield: 86%. Light yellow solid. TLC: Hexane:EtOAc = 4:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.39 (t, *J* = 8.0 Hz, 2H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 2H), 3.89 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  161.17, 159.25, 149.84, 129.44, 126.18, 121.46, 52.70. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for: C<sub>10</sub>H<sub>8</sub>N<sub>2</sub>O<sub>4</sub>Na<sup>+</sup>: 243.0376; Found: 243.0361. IR (neat, cm<sup>-1</sup>): *v* 3464, 3041, 2959, 2161, 1727, 1685, 1334, 1260, 1189, 1160, 1053.

#### 4.3 General Procedure for [Co(Por)]-Catalyzed Cyclopropanation



**General procedure:** Diazomalonate 1 (0.12 mmol, 1.2 equiv) and [Co(Por)] (2 mol %) was added to an oven-dried Schlenk tube. The Schlenk tube was then evacuated and back filled with nitrogen for 3 times. Olefin 2 (0.10 mmol, 1.0 equiv) and toluene (0.5 mL) were added *via* gas tight syringe. Teflon screw cap was used to close the Schlenk tube. The mixture was then stirred at room temperature for 24 h. Solvent was evaporated under reduced pressure. The crude products were purified by column chromatography on silica gel to afford pure products **3** as a mixture of *trans/cis* diastereomers.

**BnO**<sub>2</sub>**C MeO**<sub>2</sub>**C i**-benzyl 1-methyl (1*S*,2*R*)-2-phenylcyclopropane-1,1-dicarboxylate (3a) Yield: 67%; 65:35 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 8:1; R<sub>f</sub> = 0.5. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 – 7.31 (m, 4H), 7.30 – 7.17 (m, 5H), 7.01 – 6.98 (m, 1H), 5.33 – 5.15 (m, 2H), 3.36 (s, 3H), 3.26 (ddd, *J* = 12.1, 9.1, 7.9 Hz, 1H), 2.22 (ddd, *J* = 8.1, 5.2, 1.2 Hz, 1H), 1.76 (dt, *J* = 9.2, 5.1 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  169.52, 166.93, 135.55, 134.51, 128.45, 128.30, 128.22, 128.13, 127.77, 127.37, 67.21, 52.14, 37.38, 32.52, 19.12. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>19</sub>O<sub>4</sub><sup>+</sup>: 311.1278; Found: 311.1290. IR (neat, cm<sup>-1</sup>): *v*3032, 2952, 2924, 1731, 1332, 1278, 1217, 1131. HPLC (chiral ID, 3% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>major</sub>* = 16.5 min, *t<sub>minor</sub>* = 22.5 min, 75% *ee*. [a]<sub>D</sub><sup>20</sup> = +37.6° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).



Hexane:EtOAc = 8:1;  $R_f = 0.5$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.29 – 7.16 (m, 5H), 3.37 (s, 3H), 3.12 (dd, J = 9.1, 8.0 Hz, 1H), 2.09 (dd, J = 7.9, 5.1 Hz, 1H), 1.65 (dd, J = 9.2, 5.1 Hz, 1H), 1.48 (s, 9H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  168.62, 167.54, 135.04, 128.31, 128.08, 127.15, 82.02, 52.01, 38.50, 31.55, 27.98, 18.56. HRMS (DART) ( $[M+H]^+$ ) Calcd. for C<sub>16</sub>H<sub>21</sub>O<sub>4</sub><sup>+</sup>: 277.1434; Found: 277.1441. IR (neat, cm<sup>-1</sup>): *v* 2979, 1724, 1456, 1369, 1333, 1295, 1218, 1172, 1134. HPLC (chiral IC, 2% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 11.3$  min,  $t_{minor} = 12.3$  min, 87% *ee*.  $[a]_D^{20} = +65.9^\circ$  (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C 1-methyl 1-phenyl (1*S*,2*R*)-2-phenylcyclopropane-1,1-dicarboxylate (3c) MeO<sub>2</sub>C Yield: 99%; 94:6 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 8:1;  $R_f = 0.6. {}^{1}H$  NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 – 7.34 (m, 2H), 7.33 – 7.21 (m, 6H), 7.15 (d, *J* = 7.5 Hz, 2H), 3.42 (s, 3H), 3.37(t, *J* = 11.0, 1H), 2.34 (dd, *J* = 8.2, 5.2 Hz, 1H), 1.90 (dd, *J* = 9.3, 5.2 Hz, 1H).  ${}^{13}C$  NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.45, 166.74, 150.58, 134.24, 129.41, 128.52, 128.21, 127.54, 126.05, 121.36, 52.39, 37.35, 32.97, 19.69. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for: C<sub>18</sub>H<sub>16</sub>O<sub>4</sub>Na<sup>+</sup>: 319.0941; Found: 319.0933. IR (neat, cm<sup>-1</sup>): *v* 3031, 2951, 1731, 1263, 1214, 1190, 1160, 1117. HPLC (chiral AD-H, 1.5% isopropanol-hexane, rate 1 ml/min): *trans*-isomer: *t<sub>major</sub>* = 19.7 min, *t<sub>minor</sub>* = 30.2 min, 96% *ee*. [a]<sub>D</sub><sup>20</sup> = +133.7° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(*p*-tolyl)cyclopropane-1,1-dicarboxylate MeO<sub>2</sub>C (3d) Yield: 99%; 94:6 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 8:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.44 – 7.36 (m, 2H), 7.28 – 7.23 (m, 1H), 7.18 – 7.13 (m, 4H), 7.11 (d, *J* = 8.0 Hz, 2H), 3.46 (d, *J* = 0.6 Hz, 3H), 3.35 (t, *J* = 8.7 Hz, 1H), 2.40 – 2.27 (dd+s, 4H), 1.89 (dd, *J* = 9.3, 5.2 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.51, 166.83, 150.59, 137.20, 131.10, 129.38, 128.91, 128.38, 126.01, 121.37, 52.39, 37.25, 32.85, 21.08, 19.77. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>18</sub>O<sub>4</sub>Na<sup>+</sup>: 333.1097; Found: 333.1083. IR (neat, cm<sup>-1</sup>): *v* 

2951, 1731, 1263, 1211, 1190, 1160, 1113. HPLC (chiral OJ-H, 35% isopropanol-hexane, rate 0.6 ml/min): *trans*-isomer:  $t_{major} = 61.1 \text{ min}, t_{minor} = 78.7 \text{ min}, 97\%$  *ee*. [a]<sub>D</sub><sup>20</sup> = +113.2° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(*m*-tolyl)cyclopropane-1,1-dicarboxylate MeO<sub>2</sub>C (3e) Yield: 99%; 95:5 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 8:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 (dd, J = 8.5, 7.4 Hz, 2H), 7.29 – 7.23 (m, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.18 – 7.14 (m, 2H), 7.11 – 7.02 (m, 3H), 3.46 (s, 3H), 3.35 (t, J = 8.7 Hz, 1H), 2.34 (dd+s, J = 5.2 Hz, 4H), 1.90 (dd, J = 9.3, 5.2 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.51, 166.80, 150.60, 137.83, 134.18, 129.41, 129.38, 128.31, 128.08, 126.04, 125.36, 121.38, 52.39, 37.30, 33.02, 21.33, 19.80. HRMS (ESI) ([M+H]<sup>+</sup>) Calcd. for: C<sub>19</sub>H<sub>19</sub>O<sub>4</sub><sup>+</sup>: 311.1278; Found: 311.1279. IR (neat, cm<sup>-1</sup>):  $\nu$  2951, 1732, 1329, 1265, 1204, 1190, 1160, 1117. HPLC (chiral OJ-H, 10% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>minor</sub>* = 53.2 min, *t<sub>major</sub>* = 56.3 min, 98% *ee*. [a]<sub>D</sub><sup>20</sup> = +115.5° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(4-(*tert*-butyl)phenyl)cyclopropane-1,1-MeO<sub>2</sub>C dicarboxylate (3f) Yield: 99%; 91:9 diastereomeric ratio. White solid. TLC: Hexane:EtOAc = 8:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 (dd, J = 8.5, 7.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.25 (t, J = 7.3 Hz, 1H), 7.22 – 7.13 (m, 4H), 3.43 (s, 3H), 3.35 (t, J = 8.7Hz, 1H), 2.34 (dd, J = 8.2, 5.2 Hz, 1H), 1.90 (dd, J = 9.3, 5.2 Hz, 1H), 1.31 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.54, 166.86, 150.60, 150.50, 131.12, 129.39, 128.16, 125.09, 121.38, 52.32, 37.31, 34.47, 32.80, 31.31, 31.26, 19.81. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>22</sub>H<sub>24</sub>O<sub>4</sub>Na<sup>+</sup>: 375.1567; Found: 375.1563. IR (neat, cm<sup>-1</sup>):  $\nu$ 2952, 2867, 1737, 1721, 1266, 1190, 1121. HPLC (chiral OJ-H, 8% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{minor} = 23.7 \text{ min}, t_{major} = 40.8 \text{ min}, 96\% ee.$ [a]<sub>D</sub><sup>20</sup> = +95.8° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).



8:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (dd, J = 8.5, 7.4 Hz, 2H), 7.29 – 7.22 (m, 1H), 7.20 – 7.07 (m, 6H), 3.37 (s, 3H), 3.31 (t, J = 8.7 Hz, 1H), 2.47 (dd, J = 8.4, 5.2 Hz, 1H), 2.43 (s, 3H), 1.92 (dd, J = 9.2, 5.2 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.59, 166.75, 150.66, 139.00, 132.35, 129.76, 129.44, 127.71, 127.36, 126.05, 125.55, 121.37, 52.26, 36.41, 32.14, 19.42, 19.17. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>18</sub>NaO<sub>4</sub><sup>+</sup>: 333.1097; Found: 333.1083. IR (neat, cm<sup>-1</sup>): v2951, 1731, 1268, 1191, 1160, 1118, 1083, 1068. HPLC (chiral OJ-H, 35% isopropanol-hexane, rate 0.6 ml/min): *trans*-isomer:  $t_{minor} = 33.4$  min,  $t_{major} = 47.3$  min, 94% *ee*. [a]<sub>D</sub><sup>20</sup> = +29.3° (c = 1).



TLC: Hexane:EtOAc = 8:1;  $R_f = 0.5$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (ddd, J = 8.5, 7.4, 0.9 Hz, 2H), 7.27 – 7.25 (m, 1H), 7.16 (dt, J = 8.6, 1.0 Hz, 2H), 7.01 – 6.95 (m, 3H), 3.40 (s, 3H), 3.28 (t, J = 8.9 Hz, 1H), 2.44 (ddd, J = 8.4, 5.1, 0.9 Hz, 1H), 2.39 (s, 3H), 2.30 (s, 3H), 1.90 (ddd, J = 9.2, 5.1, 0.9 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  168.64, 166.85, 150.68, 138.72, 137.33, 130.67, 129.42, 129.13, 127.32, 126.16, 126.01, 121.38, 52.27, 36.39, 32.05, 21.03, 19.31, 19.26. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>20</sub>H<sub>21</sub>O<sub>4</sub><sup>+</sup>: 325.1434; Found: 325.1446. IR (neat, cm<sup>-1</sup>):  $\nu$  2951, 1730, 1268, 1190, 1113, 1081, 750, 687. HPLC (chiral IC, 4% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{minor} = 14.7$  min,  $t_{major} = 17.3$  min, 96% *ee*. [a]<sub>D</sub><sup>20</sup> = +88.6° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(4-methoxyphenyl)cyclopropane-1,1-MeO<sub>2</sub>C dicarboxylate (3i) Yield: 94%; 73:27diastereomeric ratio. White solid. TLC: Hexane:EtOAc = 3:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (t, *J* = 7.7 Hz, 2H), 7.31 –

7.14 (m, 5H), 6.87 – 6.81 (m, 2H), 3.87 (s, 1H), 3.81 (d, J = 5.2 Hz, 4H), 3.47 (s, 3H), 3.41 – 3.30 (m, 1H), 2.31 (ddd, J = 13.4, 8.1, 5.2 Hz, 2H), 1.90 (dd, J = 9.3, 5.1 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.52, 166.86, 158.98, 150.61, 129.70, 129.39, 126.11, 126.01, 121.38, 113.61, 55.19, 52.41, 37.20, 32.65, 19.86. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>18</sub>O<sub>5</sub>Na<sup>+</sup>: 349.1046; Found: 349.1051. IR (neat, cm<sup>-1</sup>): v 2956, 2838, 1727, 1249, 1214, 1192, 1182, 1168, 1109. HPLC (chiral OD-H, 2% isopropanol-hexane, rate 1 ml/min): *trans*-isomer:  $t_{major} = 16.7$  min,  $t_{minor} = 27.2$  min, 93% *ee*. [a]<sub>D</sub><sup>20</sup> = +73.1° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-([1,1'-biphenyl]-4-yl)cyclopropane-1,1dicarboxylate (3j) Yield: 84%; 85:15 diastereomeric ratio. White solid. TLC: Hexane:EtOAc = 8:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.63 – 7.54 (m, 4H), 7.48 – 7.32 (m, 7H), 7.30 – 7.25 (m, 1H), 7.21 – 7.16 (m, 2H), 3.48 (s, 3H), 3.42 (t, *J* = 8.8 Hz, 1H), 2.40 (dd, *J* = 8.1, 5.3 Hz, 1H), 1.95 (dd, *J* = 9.3, 5.3 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.42, 166.77, 150.60, 140.45, 140.31, 133.31, 129.43, 128.94, 128.76, 127.37, 126.95, 126.85, 126.07, 121.37, 52.49, 37.46, 32.74, 19.82. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>24</sub>H<sub>20</sub>O<sub>4</sub>Na<sup>+</sup>: 395.1254; Found: 395.1259. IR (neat, cm<sup>-1</sup>): *v* 2955, 2923, 2850, 1757, 1731, 1270, 1209, 1193, 1171, 1111. HPLC (chiral OJ-H, 35% isopropanol-hexane, rate 0.6 ml/min): *trans*-isomer: *t<sub>minor</sub>* = 90.2 min, *t<sub>major</sub>* = 266.7 min, 96% *ee*. [a]<sub>D</sub><sup>20</sup> = +127.8° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>). PhO<sub>2</sub>C H I-methyl 1-phenyl (1*S*,2*R*)-2-(3-nitrophenyl)cyclopropane-1,1dicarboxylate (3k) Yield: 68%; 91:9 diastereomeric ratio. Colorless oil. TLC: Hexane:DCM = 1:1;  $R_f = 0.3$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.15 (dd, J = 9.2, 1.8 Hz, 2H), 7.62 (dd, J = 7.8, 1.6 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.30 – 7.24 (m, 1H), 7.19 – 7.13 (m, 2H), 3.50 (s, 3H), 3.43 (t, J = 8.7 Hz, 1H), 2.39 (dd, J = 8.1, 5.5 Hz, 1H), 1.99 (dd, J = 9.3, 5.5 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.84, 166.31, 150.47, 148.13, 136.69, 134.81, 129.51, 129.23, 126.27, 123.68, 122.66, 121.26, 52.73, 37.36, 31.72, 19.72. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>15</sub>NO<sub>6</sub>Na<sup>+</sup>: 364.0792; Found: 364.0792. IR (neat, cm<sup>-1</sup>):  $\nu$  2953, 1731, 1528, 1348, 1264, 1217, 1190, 1118. HPLC (chiral OJ-H, 40% isopropanol-hexane, rate 0.6 ml/min): *trans*isomer:  $t_{minor} = 94.0$  min,  $t_{major} = 100.3$  min, 97% *ee*. [a]p<sup>20</sup> = +109.4° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(4-cyanophenyl)cyclopropane-1,1-MeO<sub>2</sub>C dicarboxylate (3l) Yield: 98%; 90:10 diastereomeric ratio. Light yellow oil. TLC: Hexane:EtOAc = 5:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.60 (d, J = 8.3 Hz, 2H), 7.44 – 7.34 (m, 4H), 7.27 (d, J = 7.5 Hz, 1H), 7.18 – 7.10 (m, 2H), 3.48 (s, 3H), 3.41 – 3.34 (m, 1H), 2.34 (dd, J = 8.1, 5.5 Hz, 1H), 1.96 (dd, J = 9.2, 5.5 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.81, 166.26, 150.48, 139.97, 131.99, 129.49, 129.34, 126.24, 121.22, 118.50, 111.48, 52.68, 37.71, 32.13, 19.59. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>16</sub>NO<sub>4</sub><sup>+</sup>: 322.1074; Found: 322.1075. IR (neat, cm<sup>-1</sup>): *v*2953, 2228, 1731, 1332, 1265, 1191, 1115, 848, 753. HPLC (chiral ID, 15% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 19.6$  min,  $t_{minor} = 20.5$  min, 97% *ee*. [a]<sub>D</sub><sup>20</sup> = +160.6° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>). PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(4-MeO<sub>2</sub>C (trifluoromethyl)phenyl)cyclopropane-1,1-dicarboxylate (3m) Yield: 60%; 91:9 diastereomeric ratio. White solid. TLC: Hexane:EtOAc = 3:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.57 (d, *J* = 8.1 Hz, 2H), 7.40 (td, *J* = 8.8, 7.5 Hz, 4H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.18 – 7.13 (m, 2H), 3.47 (s, 3H), 3.39 (t, *J* = 8.7 Hz, 1H), 2.36 (dd, *J* = 8.1, 5.4 Hz, 1H), 1.95 (dd, *J* = 9.3, 5.4 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.09, 166.44, 150.51, 138.49, 129.49, 128.96, 126.21, 125.19, 125.16, 121.29, 120.89, 52.62, 37.49, 32.16, 19.67. <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>)  $\delta$ -63.09 (s). HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>15</sub>F<sub>3</sub>O<sub>4</sub>Na<sup>+</sup>: 387.0815; Found: 387.0819. IR (neat, cm<sup>-1</sup>):  $\nu$  2952, 1736, 1324, 1262, 1200, 1157, 1111, 1068, 1016. HPLC (chiral OJ-H, 25% isopropanol-hexane, rate 0.7 ml/min): *trans*-isomer: *t<sub>minor</sub>* = 24.0 min, *t<sub>major</sub>* = 133.3 min, 96% *ee*. [a]<sub>D</sub><sup>20</sup> = +64.4° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-MeO<sub>2</sub>C dicarboxylate (3n) Yield: 99%; 95:5 diastereomeric ratio. White solid. TLC: Hexane:EtOAc = 4:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 (dd, J = 9.8, 3.3 Hz, 2H), 7.39 (d, J = 7.8 Hz, 2H), 7.26 (m, 1H), 7.18 – 7.09 (m, 4H), 3.48 (s, 3H), 3.31 (t, J = 8.7 Hz, 1H), 2.30 (dd, J = 8.1, 5.4 Hz, 1H), 1.90 (dd, J = 9.3, 5.3 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.19, 166.54, 150.52, 133.35, 131.36, 130.26, 129.44, 126.13, 121.61, 121.30, 52.59, 37.27, 32.17, 19.65. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>15</sub>BrO<sub>4</sub>Na<sup>+</sup>: 397.0046; Found: 397.0040. IR (neat, cm<sup>-1</sup>): v2954, 1748, 1727, 1274, 1216, 1192, 1162, 1124. HPLC (chiral OJ-H, 38% isopropanol-hexane, rate 0.6 ml/min): *trans*-isomer:  $t_{minor} = 40.0$  min,  $t_{major} = 190.1$  min, 95% *ee*. [a]<sub>D</sub><sup>20</sup> = +115.4° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>). PhO<sub>2</sub>C, H MeO<sub>2</sub>C, Br **1-methyl 1-phenyl** (1*S*,2*R*)-2-(3-bromophenyl)cyclopropane-1,1 **dicarboxylate** (3o) Yield: 99%; 94:6 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 4:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.46 – 7.37 (m, 4H), 7.29 – 7.23 (m, 1H), 7.21 – 7.13 (m, 4H), 3.50 (s, 3H), 3.38 – 3.28 (m, 1H), 2.30 (dd, *J* = 8.2, 5.4 Hz, 1H), 1.90 (dd, *J* = 9.2, 5.3 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.15, 166.47, 150.52, 136.73, 131.78, 130.71, 129.74, 129.45, 127.16, 126.15, 122.25, 121.31, 52.58, 37.31, 32.12, 19.67. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>15</sub>BrO<sub>4</sub>Na<sup>+</sup>: 397.0046; Found: 397.0022. IR (neat, cm<sup>-1</sup>): *v* 2951, 1731, 1262, 1213, 1190, 1160, 1117. HPLC (chiral AD-H, 1.3% isopropanol-hexane, rate 1 ml/min): *trans*-isomer: *t<sub>major</sub>* = 20.0 min, *t<sub>minor</sub>* = 30.8 min, 97% *ee*. [a]p<sup>20</sup> = +86.9° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*S*)-2-(2-bromophenyl)cyclopropane-1,1-MeO<sub>2</sub>C Br dicarboxylate (3p) Yield: 99%; 79:21 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 4:1; R<sub>f</sub> = 0.6. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.59 (dd, *J* = 8.3, 1.2 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.31 – 7.09 (m, 6H), 3.47 (t, *J* = 8.9 Hz, 1H), 3.44 (s, 3H), 2.41 (dd, *J* = 8.4, 5.3 Hz, 1H), 2.00 (dd, *J* = 9.2, 5.3 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.98, 166.66, 150.65, 134.09, 132.50, 129.42, 129.17, 129.11, 127.00, 126.03, 121.41, 121.05, 52.40, 36.56, 34.57, 19.66. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>15</sub>BrO<sub>4</sub>Na<sup>+</sup>: 397.0046; Found: 397.0034. IR (neat, cm<sup>-1</sup>): *v* 2951, 1730, 1279, 1264, 1213, 1190, 1160, 1113, 1083, 1066. HPLC (chiral OJ-H, 15% isopropanolhexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>major</sub>* = 48.1 min, *t<sub>minor</sub>* = 73.8 min, 95% *ee*. [a]<sub>D</sub><sup>20</sup> = +11.9° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).



1-methyl 1-phenyl (1*S*,2*R*)-2-(4-chlorophenyl)cyclopropane-1,1dicarboxylate (3q) Yield: 99%; 94:6 diastereomeric ratio. White solid. TLC: Hexane:EtOAc = 5:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (t, J = 7.9 Hz, 2H), 7.28 (q, J = 8.4 Hz, 3H), 7.21 (d, J = 8.5 Hz, 2H), 7.18 – 7.13 (m, 2H), 3.49 (s, 3H), 3.34 (t, J = 8.7 Hz, 1H), 2.31 (dd, J = 8.1, 5.3 Hz, 1H), 1.91 (dd, J = 9.3, 5.3 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.22, 166.57, 150.53, 133.47, 132.81, 129.93, 129.44, 128.41, 126.13, 121.31, 52.57, 37.31, 32.13, 19.70. HRMS (ESI) ([M+H]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>16</sub>ClO<sub>4</sub><sup>+</sup>: 331.0732; Found: 331.0735. IR (neat, cm<sup>-1</sup>): v 2950, 1740, 1720, 1263, 1215, 1193, 1127, 1014. HPLC (chiral OJ-H, 35% isopropanol-hexane, rate 0.6 ml/min): *trans*-isomer:  $t_{minor} = 45.8$  min,  $t_{major} = 185.9$  min, 97% *ee*. [a]<sub>D</sub><sup>20</sup> = +111.0° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(4-fluorophenyl)cyclopropane-1,1-MeO<sub>2</sub>C F dicarboxylate (3r) Yield: 76%; 94:6 diastereometric ratio. Colorless oil. TLC: Hexane:EtOAc = 5:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 – 7.36 (m, 2H), 7.29 – 7.20 (m, 3H), 7.18 – 7.12 (m, 2H), 7.03 – 6.96 (m, 2H), 3.47 (s, 3H), 3.35 (t, *J* = 8.7 Hz, 1H), 2.31 (dd, *J* = 8.1, 5.3 Hz, 1H), 1.91 (dd, *J* = 9.3, 5.3 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.30, 166.65, 162.18 (d, *J* = 246.8 Hz), 150.54, 130.25 (d, *J* = 9.2 Hz), 129.96 (d, *J* = 4.1 Hz), 129.43, 126.10, 121.32, 115.16 (d, *J* = 22.2 Hz), 52.48, 37.20, 32.13, 19.79. <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>):  $\delta$ -115.03 (tt, *J* = 8.6, 5.3 Hz). HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>15</sub>FO<sub>4</sub>Na<sup>+</sup>: 337.0847; Found: 337.0849. IR (neat, cm<sup>-1</sup>): *v* 2953, 1731, 1513, 1264, 1213, 1190, 1159, 1118. HPLC (chiral OJ-H, 20% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>minor</sub>* = 40.4 min, *t<sub>major</sub>* = 108.1 min, 96% *ee*. [a]<sub>D</sub><sup>20</sup> = +111.7° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).



Hexane:EtOAc = 3:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 (dd, J = 8.5, 7.4 Hz, 2H), 7.30 – 7.25 (m, 1H), 7.18 – 7.14 (m, 2H), 3.70 (s, 3H), 3.03 (t, J = 9.0 Hz, 1H), 2.37 (dd, J = 8.3, 5.6 Hz, 1H), 2.12 (dd, J = 9.6, 5.6 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.27, 167.23, 150.53, 146.40 (d, J = 249.5 Hz), 140.69 (d, J = 255.3 Hz), 137.37 (dt, J = 251.5, 18.4 Hz), 129.51, 126.25, 121.18, 109.13 (td, J = 16.2, 4.8 Hz), 53.05, 34.38, 21.70, 20.54 (t, J = 4.4 Hz). <sup>19</sup>F NMR (375 MHz, CDCl<sub>3</sub>):  $\delta$  -141.56 (dd, J = 21.9, 7.9 Hz), -154.87 (t, J = 20.3 Hz), -162.88 (td, J = 21.8, 8.0 Hz). HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>11</sub>F<sub>5</sub>O<sub>4</sub>Na<sup>+</sup>: 409.0470; Found: 409.0469. IR (neat, cm<sup>-1</sup>):  $\nu$  2960, 1757, 1728, 1497, 1487, 1210, 1190. HPLC (chiral OD-H, 1% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 23.7$  min,  $t_{minor} = 27.6$  min, 96% *ee*. [a]<sub>D</sub><sup>20</sup> = +71.2° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(4-(chloromethyl)phenyl)cyclopropane-MeO<sub>2</sub>C 1,1-dicarboxylate (3t) Yield: 81%; 91:9 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 4:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 – 7.38 (m, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 7.28 – 7.23 (m, 3H), 7.18 – 7.13 (m, 2H), 4.57 (s, 2H), 3.45 (s, 3H), 3.36 (t, *J* = 8.7 Hz, 1H), 2.34 (dd, *J* = 8.2, 5.3 Hz, 1H), 1.91 (dd, *J* = 9.3, 5.3 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.32, 166.66, 150.55, 136.79, 134.62, 129.44, 128.92, 128.47, 126.11, 121.34, 52.50, 45.81, 37.38, 32.54, 19.75. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>17</sub>ClO<sub>4</sub>Na<sup>+</sup>: 367.0708; Found: 367.0694. IR (neat, cm<sup>-1</sup>): *v* 3101, 2951, 1750, 1730, 1264, 1211, 1191, 1169, 1158, 1114. HPLC (chiral AD-H, 2% isopropanol-hexane, rate 1 ml/min): *trans*-isomer: *t<sub>major</sub>* = 23.2 min, *t<sub>minor</sub>* = 45.2 min, 96% *ee*. [a]<sub>D</sub><sup>20</sup> = +82.9° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).



TLC: Hexane:EtOAc = 3:1;  $R_f = 0.3$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  10.02 (s, 1H), 7.79 (d, J = 2.0 Hz, 2H), 7.57 – 7.53 (m, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.28 – 7.25 (m, 1H), 7.18 – 7.13 (m, 2H), 3.45 (s, 3H), 3.42 (d, J = 8.8 Hz, 1H), 2.40 (dd, J = 8.1, 5.4 Hz, 1H), 1.96 (dd, J = 9.2, 5.4 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  191.93, 168.10, 166.49, 150.55, 136.42, 135.71, 134.67, 129.78, 129.48, 129.01, 128.99, 126.19, 121.31, 52.56, 37.34, 32.17, 19.64. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>17</sub>O<sub>5</sub><sup>+</sup>: 325.1071; Found: 325.1072. IR (neat, cm<sup>-1</sup>): *v* 2951, 2874, 1731, 1697, 1331, 1267, 1191, 1119, 752, 690. HPLC (chiral OJ-H, 40% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 78.4$  min, >99% *ee*. [a]<sub>D</sub><sup>20</sup> = +79.2° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).





TLC: Hexane:EtOAc = 8:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.85 – 7.76 (m, 3H), 7.71 (d, J = 1.7 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.44 – 7.38 (m, 3H), 7.29 – 7.24 (m, 1H), 7.18 (dd, J = 7.8, 1.2 Hz, 2H), 3.53 (t, J = 8.6 Hz, 1H), 3.37 (s, 3H), 2.49 (dd, J = 8.1, 5.3 Hz, 1H), 1.99 (dd, J = 9.2, 5.2 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.46, 166.75, 150.61, 133.09, 132.71, 131.79, 129.43, 127.86, 127.79, 127.58, 127.32, 126.61, 126.19, 126.08, 126.00, 121.38, 52.45, 37.51, 33.17, 19.88. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>22</sub>H<sub>18</sub>O<sub>4</sub>Na<sup>+</sup>: 369.1097; Found: 369.1097. IR (neat, cm<sup>-1</sup>): v 3006, 2957, 1747, 1727, 1216, 1185, 1120. HPLC (chiral AD-H, 2% isopropanol-hexane, rate 1 ml/min): *trans*-isomer:  $t_{major} = 19.2$  min,  $t_{minor} = 21.9$  min, 97% *ee*. [a]<sub>D</sub><sup>20</sup> = +178.5° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H<sub>Boc</sub> MeO<sub>2</sub>C 1-methyl 1-phenyl (1*S*,2*S*)-2-(1-(*tert*-butoxycarbonyl)-1*H*-pyrrol-2vl)cyclopropane-1,1-dicarboxylate (3x) Yield: 80%; 83:17 diastereomeric

ratio. Colorless oil. TLC: Hexane:EtOAc = 10:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.39 (dd, J = 8.5, 7.4 Hz, 2H), 7.28 – 7.22 (m, 2H), 7.15 (dd, J = 8.7, 1.2 Hz, 2H), 6.06 (t, J = 3.3 Hz, 1H), 6.03 (dt, J = 3.2, 1.5 Hz, 1H), 3.58 (t, J = 8.5 Hz, 1H), 3.48 (s, 3H), 2.16 (dd, J = 8.0, 5.0 Hz, 1H), 1.98 (dd, J = 9.0, 5.0 Hz, 1H), 1.62 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.44, 166.92, 150.69, 149.12, 129.38, 125.93, 122.72, 121.40, 113.04, 109.61, 83.85, 52.37, 36.36, 27.98, 27.81, 20.32. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>21</sub>H<sub>23</sub>NO<sub>6</sub>Na<sup>+</sup>: 408.1418; Found: 408.1400. IR (neat, cm<sup>-1</sup>):  $\nu$  2979, 1733, 1327, 1303, 1261, 1191, 1160, 1125, 1091. HPLC (chiral IC, 4% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 13.1$  min,  $t_{minor} = 17.2$  min, 74% *ee*. [a]<sub>D</sub><sup>20</sup> = +2.6° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO2CH1-methyl1-phenyl(1S,2S)-2-(pyridin-2-yl)cyclopropane-1,1-MeO2CNdicarboxylate (3y) Yield: 96%; > 99:1 diastereometric ratio. Colorless oil.

TLC: Hexane:EtOAc = 3:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.47 (dt, J = 4.6, 1.4 Hz, 1H), 7.63 (td, J = 7.7, 1.9 Hz, 1H), 7.42 – 7.31 (m, 3H), 7.28 – 7.21 (m, 1H), 7.18 – 7.08 (m, 3H), 3.55 (s, 3H), 3.26 (dd, J = 9.1, 7.5 Hz, 1H), 2.50 (dd, J = 7.5, 4.6 Hz, 1H), 1.98 (dd, J = 9.1, 4.6 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.45, 166.89, 155.05, 150.48, 148.99, 136.24, 129.37, 126.07, 123.92, 122.01, 121.36, 52.44, 37.90, 33.43, 20.94. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>17</sub>H<sub>15</sub>NO<sub>4</sub>Na<sup>+</sup>: 320.0893; Found: 320.0900. IR (neat, cm<sup>-1</sup>):  $\nu$  2950, 1735, 1260, 1189, 1160, 1121. HPLC (chiral AD-H, 2.5% isopropanol-hexane, rate 1 ml/min): *trans*-isomer:  $t_{major} = 26.7$  min,  $t_{minor} = 47.0$  min, 94% *ee*. [a]<sub>D</sub><sup>20</sup> = +153.2° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H I -methyl 1-phenyl (1*S*,2*R*)-2-(1-(*tert*-butoxycarbonyl)-1*H*-indol-3yl)cyclopropane-1,1-dicarboxylate (3z) Yield: 99%; 95:5 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 10:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  8.12 (d, *J* = 7.8 Hz, 1H), 7.71 – 7.65 (m, 1H), 7.46 – 7.39 (m, 3H), 7.37 – 7.31 (m, 1H), 7.27 (dd, *J* = 8.0, 6.8 Hz, 2H), 7.22 – 7.17 (m, 2H), 3.41 (s, 3H), 3.32 (ddd, *J* = 9.2, 7.9, 1.4 Hz, 1H), 2.27 (dd, *J* = 8.0, 4.9 Hz, 1H), 1.97 (dd, *J* = 9.2, 4.9 Hz, 1H), 1.68 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.48, 166.97, 150.61, 149.42, 135.34, 130.25, 129.44, 126.09, 124.67, 124.18, 122.59, 121.34, 119.18, 115.14, 114.96, 83.84, 52.42, 36.18, 28.16, 23.94, 19.70. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>25</sub>H<sub>25</sub>NO<sub>6</sub>Na<sup>+</sup>: 458.1574; Found: 458.1569. IR (neat, cm<sup>-1</sup>): *v* 2989, 1757, 1725, 1370, 1258, 1151. HPLC (chiral IF, 2% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>major</sub>* = 13.9 min, *t<sub>minor</sub>* = 17.5 min, 94% *ee*. [a]<sub>D</sub><sup>20</sup> = +68.3° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).



1-methyl 1-phenyl (1*S*,2*S*)-2-(benzofuran-2-yl)cyclopropane-1,1dicarboxylate (3aa) Yield: 98%; 85:15 diastereomeric ratio. Colorless oil. TLC: Hexane: EtOAc = 5:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.54 – 7.49 (m, 1H), 7.45 – 7.37 (m, 3H), 7.26 (d, J = 2.7 Hz, 2H), 7.23 – 7.19 (m, 1H), 7.18 – 7.14 (m, 2H), 6.60 (s, 1H), 3.88 (s, 1H), 3.57 (s, 3H), 3.37 (dd, J = 9.4, 7.9 Hz, 1H), 2.37 (dd, J = 7.8, 5.2 Hz, 1H), 2.04 (dd, J = 9.5, 5.2 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.72, 166.50, 154.85, 152.21, 150.47, 129.46, 128.17, 126.21, 124.19, 122.86, 121.31, 120.78, 110.85, 104.85, 52.88, 37.00, 26.13, 19.63. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>20</sub>H<sub>17</sub>O<sub>5</sub><sup>+</sup>: 337.1071; Found: 337.1067. IR (neat, cm<sup>-1</sup>): v 2951, 1735, 1454, 1330, 1255, 1207, 1190, 1118, 750. HPLC (chiral WHELK, 20% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{minor} = 17.3$  min,  $t_{major} = 19.2$  min, 96% *ee*. [a] $_D^{20} = +137.2^{\circ}$  (c = 0.5, CH<sub>2</sub>Cl<sub>2</sub>).



1-methyl 1-phenyl (1*S*,2*S*)-2-(benzo[*b*]thiophen-3-yl)cyclopropane-1,1-

dicarboxylate (3ab) Yield: 94%; 92:8 diastereomeric ratio. Colorless oil.

TLC: Hexane: EtOAc = 5:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.94 (dd, J = 7.9, 1.0 Hz, 1H), 7.84 (dd, J = 8.0, 1.0 Hz, 1H), 7.46 – 7.41 (m, 3H), 7.38 (t, J = 7.5 Hz, 1H), 7.28 (td, J = 7.6, 1.1 Hz, 1H), 7.23 – 7.21 (m, 1H), 7.20 (d, J = 4.3 Hz, 2H), 3.50 – 3.45 (m, 1H), 3.31 (s, 3H), 2.40 (dd, J =8.0, 5.1 Hz, 1H), 2.02 (dd, J = 9.2, 5.1 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.35, 166.74, 150.65, 140.06, 138.95, 129.74, 129.47, 126.13, 124.64, 124.20, 123.96, 122.69, 121.95, 121.34, 52.37, 36.48, 26.50, 19.59. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>20</sub>H<sub>17</sub>O<sub>4</sub>S<sup>+</sup>: 353.0842; Found: 353.0828. IR (neat, cm<sup>-1</sup>):  $\nu$  2950, 1732, 1313, 1269, 1209, 1191, 1118, 759, 710. HPLC (chiral ID, 10% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 11.3$  min,  $t_{minor} = 13.9$  min, 96% *ee*. [a]<sub>D</sub><sup>20</sup> = +20.4° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO2CMe1-methyl1-phenyl(1S,2R)-2-methyl-2-phenylcyclopropane-1,1-MeO2Cdicarboxylate (3ac)Yield: 99%; 89:11diastereomeric ratio.Colorless oil.

TLC: Hexane:EtOAc = 8:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 (dd, J = 8.5, 7.4 Hz, 2H), 7.38 – 7.23 (m, 6H), 7.21 – 7.16 (m, 2H), 3.45 (s, 3H), 2.31 (d, J = 5.3 Hz, 1H), 1.83 (d, J = 5.3 Hz, 1H), 1.69 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.83, 167.08, 150.83, 140.88, 129.48, 128.28, 128.23, 127.18, 126.05, 121.43, 52.30, 40.46, 38.47, 25.21, 24.77. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>18</sub>O<sub>4</sub>Na<sup>+</sup>: 333.1097; Found: 333.1089. IR (neat, cm<sup>-1</sup>): v2952, 1733, 1221, 1190, 1092, 1074. HPLC (chiral IC, 8% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{minor} = 13.8$  min,  $t_{major} =$ 20.2 min, 97% *ee*. [a]<sub>D</sub><sup>20</sup> = +41.8° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C

MeO<sub>2</sub>C



oil. TLC: Hexane:EtOAc = 8:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 – 7.40 (m, 2H), 7.36 – 7.22 (m, 5H), 7.18 (dd, J = 7.7, 1.1 Hz, 2H), 3.51 (s, 3H), 2.26 (d, J = 5.4 Hz, 1H), 1.83 (d, J = 5.4 Hz, 1H), 1.66 (s, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  167.70, 166.78, 150.77, 139.45, 132.96, 129.64, 129.50, 128.51, 126.11, 121.35, 52.46, 40.43, 37.58, 25.25, 24.71. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>18</sub>ClO<sub>4</sub><sup>+</sup>: 345.0888; Found: 345.0895. IR (neat, cm<sup>-1</sup>):  $\nu$ 2967, 1738, 1493, 1230, 1194, 1090. HPLC (chiral IC, 5% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>minor</sub>* = 13.1 min, *t<sub>major</sub>* = 19.6 min, 98% *ee*. [a]<sub>D</sub><sup>20</sup> = +72.0° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO2CF1-methyl1-phenyl(1*S*,2*S*)-2-fluoro-2-phenylcyclopropane-1,1-MeO2Cdicarboxylate (3ae)Yield: 88%; 92:8 diastereomeric ratio. Colorless oil. TLC:Hexane:EtOAc = 5:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.57 (ddd, J = 6.5, 2.7, 1.6 Hz, 2H),7.48 - 7.39 (m, 5H), 7.31 - 7.25 (m, 1H), 7.24 - 7.18 (m, 2H), 3.55 (s, 3H), 2.58 (dd, J = 20.4, 7.8

Hz, 1H), 2.49 (dd, J = 14.1, 7.9 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  166.12, 163.84 (d, J = 2.9

Hz), 150.84, 131.81 (d, J = 21.0 Hz), 129.94 (d, J = 2.7 Hz), 129.48, 128.40 (d, J = 4.4 Hz), 128.37, 126.18, 121.45, 84.84 (d, J = 228.9 Hz), 52.77, 40.97 (d, J = 15.3 Hz), 21.76 (d, J = 10.5 Hz). <sup>19</sup>F NMR (470 MHz, CDCl<sub>3</sub>)  $\delta$  -158.08 (dd, J = 20.5, 14.1 Hz). HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>16</sub>FO<sub>4</sub><sup>+</sup>: 315.1027; Found: 315.1013. IR (neat, cm<sup>-1</sup>): v 2954, 1763, 1738, 1685, 1191, 1159, 1135, 751, 688. HPLC (chiral OJ-H, 50% isopropanol-hexane, rate 0.4 ml/min): *trans*-isomer: *t<sub>minor</sub>* = 79.4 min, *t<sub>major</sub>* = 193.5 min, 94% *ee*. [a]<sub>D</sub><sup>20</sup> = +0.4° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C

MeO<sub>2</sub>C

# 1-methyl1-phenyl(1S,2S)-2-chloro-2-phenylcyclopropane-1,1-dicarboxylate (3af)Yield: 78%; 92:8 diastereomeric ratio. Light yellow oil.

TLC: Hexane:EtOAc = 5:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.52 (dd, J = 8.1, 1.5 Hz, 2H), 7.46 – 7.41 (m, 2H), 7.40 – 7.34 (m, 3H), 7.31 – 7.27 (m, 1H), 7.27 – 7.23 (m, 2H), 3.53 (s, 3H), 2.62 (d, J = 7.1 Hz, 1H), 2.46 (d, J = 7.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  165.99, 164.33, 150.90, 136.96, 129.49, 129.10, 128.72, 128.51, 126.23, 121.47, 52.89, 52.68, 42.33, 26.31. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>16</sub>ClO<sub>4</sub><sup>+</sup>: 331.0732; Found: 331.0724. IR (neat, cm<sup>-1</sup>): v 3030, 2952, 1736, 1249, 1191, 1109, 738, 697. HPLC (chiral OD-H, 2.5% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{minor} = 27.3$  min,  $t_{major} = 32.7$  min, 98% *ee*. [a]<sub>D</sub><sup>20</sup> = +72.0° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

### PhO<sub>2</sub>C Me 1-methyl 1-phenyl (1*S*,2*R*)-2-methyl-2-(prop-1-en-2-yl)cyclopropane-1,1- $MeO_2C$ dicarboxylate (3ag) Yield: 54%; 60:40 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 6:1; R<sub>f</sub> = 0.6. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>): $\delta$ 7.40 (dd, *J* = 8.5, 7.4 Hz, 2H), 7.27 – 7.23 (m, 1H), 7.15 – 7.10 (m, 2H), 5.02 – 4.89 (m, 2H), 3.74 (s, 3H), 2.02 (d, *J* = 5.2 Hz, 1H), 1.83 (s, 3H), 1.63 (t, *J* = 4.8 Hz, 1H), 1.48 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): $\delta$ 168.19, 167.10, 150.80, 144.00, 129.42, 125.98, 121.39, 113.66, 52.52, 40.01, 39.42, 25.89, 21.27, 20.42. HRMS (ESI)

 $([M+Na]^+)$  Calcd. for C<sub>16</sub>H<sub>18</sub>O<sub>4</sub>Na<sup>+</sup>: 297.1097; Found: 297.1106. IR (neat, cm<sup>-1</sup>): v2952, 1732, 1262, 1220, 1190, 1069. HPLC (chiral IC, 5% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{minor} = 12.1 \text{ min}, t_{major} = 24.7 \text{ min}, 87\%$  ee.  $[a]_D^{20} = +10.3^\circ$  (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-((*E*)-styryl)cyclopropane-1,1-dicarboxylate MeO<sub>2</sub>C (3ah) Yield: 99%; 68:32 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 8:1; R<sub>f</sub> = 0.3. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.40 (dd, *J* = 8.5, 7.4 Hz, 2H), 7.37 – 7.29 (m, 4H), 7.28 – 7.19 (m, 2H), 7.16 – 7.11 (m, 2H), 6.72 (d, *J* = 15.8 Hz, 1H), 5.90 (dd, *J* = 15.8, 8.8 Hz, 1H), 3.80 (s, 3H), 2.96 – 2.86 (m, 1H), 2.01 (dd, *J* = 7.7, 5.1 Hz, 1H), 1.87 (dd, *J* = 9.0, 5.0 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.17, 167.71, 150.57, 136.57, 134.23, 129.43, 128.58, 127.70, 126.18, 126.06, 124.12, 121.34, 52.86, 36.17, 32.14, 21.88. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>20</sub>H<sub>18</sub>O<sub>4</sub>Na<sup>+</sup>: 345.1097; Found: 345.1102. IR (neat, cm<sup>-1</sup>): *v* 3026, 2952, 1728, 1277, 1191, 1114. HPLC (chiral OD-H, 2% isopropanol-hexane, rate 1 ml/min): *trans*-isomer: *t<sub>minor</sub>* = 21.6 min, *t<sub>major</sub>* = 44.5 min, 82% *ee*; *cis*-isomer: *t<sub>major</sub>* = 13.3 min, *<sub>minor</sub>* = 25.9 min, 83% *ee*. [a]<sub>D</sub><sup>20</sup> = +65.3° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*R*)-2-(phenylethynyl)cyclopropane-1,1-MeO<sub>2</sub>C h dicarboxylate (3ai) Yield: 81%; 74:26 diastereomeric ratio. Light yellow oil. TLC: Hexane: EtOAc = 5:1;  $R_f = 0.3$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.39 (dd, J = 7.6, 2.2 Hz, 3H), 7.33 – 7.23 (m, 5H), 7.16 – 7.11 (m, 2H), 3.87 (s, 3H), 2.82 (dd, J = 9.2, 7.3 Hz, 1H), 2.12 (dd, J = 7.4, 4.7 Hz, 1H), 1.86 (dd, J = 9.2, 4.7 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.36, 166.59, 150.46, 131.74, 129.49, 128.35, 128.28, 126.23, 122.57, 121.28, 84.92, 80.84, 53.05, 36.59, 22.93, 18.20. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>20</sub>H<sub>17</sub>O<sub>4</sub><sup>+</sup>: 321.1121; Found: 321.1118. IR (neat, cm<sup>-1</sup>): v 2952, 1734, 1491, 1329, 1274, 1191, 1116, 755, 700. HPLC (chiral ID, 10% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 16.1 \text{ min}, t_{minor} = 20.9 \text{ min}, 82\% \ ee. \ [a]_D^{20} = +149.2^\circ \ (c = 1, CH_2Cl_2).$ 

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*S*)-2-cyanocyclopropane-1,1-dicarboxylate (3aj) MeO<sub>2</sub>C V Yield: 73%; 80:20 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 4:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 (dd, J = 8.5, 7.4 Hz, 2H), 7.31 – 7.26 (m, 1H), 7.11 (dd, J = 8.6, 1.2 Hz, 2H), 3.94 (s, 3H), 2.63 (dd, J = 9.5, 7.2 Hz, 1H), 2.24 (dd, J = 7.3, 5.4 Hz, 1H), 1.90 (dd, J = 9.5, 5.4 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  165.45, 165.10, 150.12, 129.63, 126.64, 120.95, 116.01, 53.83, 34.90, 20.23, 12.61. HRMS (ESI) ([M-CN+2H]<sup>+</sup>) Calcd. for  $C_{12}H_{13}O_4^+$ : 221.0808; Found: 221.0844. IR (neat, cm<sup>-1</sup>): v 3044, 2957, 1736, 1265, 1209, 1189, 1160, 1120. HPLC (chiral OD-H, 8% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 22.1$  min,  $t_{minor} = 33.1$  min, 95% *ee*. [a]<sub>D</sub><sup>20</sup> = +80.0° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H MeO<sub>2</sub>C I-methyl 1-phenyl (1*S*,2*S*)-2-acetylcyclopropane-1,1-dicarboxylate (3ak) Yield: 72%; 75:25 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc =

4:1;  $R_f = 0.3$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.38 (dd, J = 8.5, 7.4 Hz, 2H), 7.28 – 7.23 (m, 1H), 7.11 (dd, J = 8.6, 1.2 Hz, 2H), 3.78 (s, 3H), 2.99 (dd, J = 8.6, 6.9 Hz, 1H), 2.41 (s, 3H), 2.12 (dd, J = 6.9, 4.4 Hz, 1H), 1.78 (dd, J = 8.6, 4.4 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  202.88, 167.64, 166.04, 150.25, 129.48, 126.36, 121.19, 53.08, 38.77, 34.48, 31.63, 21.33. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>14</sub>O<sub>5</sub>Na<sup>+</sup>: 285.0733; Found: 285.0732. IR (neat, cm<sup>-1</sup>): v 2954, 1739, 1709, 1259, 1208, 1190, 1171, 1161, 1119. HPLC (chiral IC, 20% isopropanol-hexane, rate 0.8 ml/min): *trans*isomer:  $t_{minor} = 18.4$  min,  $t_{major} = 31.3$  min, 96% *ee*. [a]<sub>D</sub><sup>20</sup> = +93.9° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>). PhO<sub>2</sub>C H (3a) MeO<sub>2</sub>C H (3a) Yield: 85%; 54:46 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 4:1; R<sub>f</sub> = 0.5. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.38 (ddd, J = 8.5, 7.5, 5.6 Hz, 2H), 7.27 – 7.22 (m, 1H), 7.16 – 7.08 (m, 2H), 3.81 (s, 3H), 3.75 (s, 3H), 2.74 (dt, J = 8.8, 6.7 Hz, 1H), 2.12 (ddd, J = 7.0, 4.8, 1.4 Hz, 1H), 1.82 (ddd, J = 16.3, 8.8, 4.8 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  169.62, 167.32, 166.02, 150.23, 129.48, 126.36, 121.19, 53.13, 52.58, 36.67, 28.20, 20.37. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>14</sub>H<sub>14</sub>O<sub>6</sub>Na<sup>+</sup>: 301.0683; Found: 301.0673. IR (neat, cm<sup>-1</sup>): v2955, 2917, 2849, 1730, 1264, 1223, 1190, 1162, 1118. HPLC (chiral IF, 3% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{minor}$  = 20.0 min,  $t_{major}$  = 26.4 min, 90% *ee*. [a]<sub>D</sub><sup>20</sup> = +27.6° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*S*)-2-(1,3-dioxoisoindolin-2-yl)cyclopropane-MeO<sub>2</sub>C 1,1-dicarboxylate (3am) Yield: 77%; 91:9 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 3:1;  $R_f = 0.3$ . <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.86 (dd, J = 5.5, 3.1 Hz, 2H), 7.74 (dd, J = 5.5, 3.0 Hz, 2H), 7.41 (dd, J = 8.5, 7.4 Hz, 2H), 7.29 – 7.23 (m, 1H), 7.21 – 7.16 (m, 2H), 3.82 (dd, J = 8.5, 6.7 Hz, 1H), 3.69 (s, 3H), 2.83 (t, J = 6.6 Hz, 1H), 2.20 (dd, J = 8.6, 6.5 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  167.76, 166.76, 166.66, 150.52, 134.32, 131.43, 129.45, 126.16, 123.50, 121.29, 53.07, 35.13, 33.34, 20.06. HRMS (ESI) ([M+H]<sup>+</sup>) Calcd. for C<sub>20</sub>H<sub>16</sub>NO<sub>6</sub><sup>+</sup>: 366.0972; Found: 366.0974. IR (neat, cm<sup>-1</sup>): v 2954, 1780, 1714, 1392, 1323, 1214, 1189, 1161, 1109, 1088. HPLC (chiral IC, 20% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>major</sub>* = 38.5 min, *t<sub>minor</sub>* = 51.7 min, 95% *ee*. [a]<sub>D</sub><sup>20</sup> = +75.3° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>). PhO<sub>2</sub>C H (1*S*,2*S*)-2-(benzoyloxy)cyclopropane-1,1dicarboxylate (3an) Yield: 94%; 75:25 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 5:1; R<sub>f</sub> = 0.3. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.97 (dt, *J* = 8.4, 1.6 Hz, 1H), 7.59 (ddt, *J* = 7.3, 6.2, 1.3 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.41 – 7.37 (m, 2H), 7.30 – 7.23 (m, 2H), 7.16 – 7.12 (m, 2H), 5.27 – 5.18 (m, 1H), 3.74 (s, 3H), 2.30 (dd, *J* = 6.8, 5.2 Hz, 1H), 2.01 (t, *J* = 6.9 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  166.69, 165.92, 165.62, 150.27, 133.64, 129.62, 129.45, 128.54, 126.21, 121.29, 57.53, 53.04, 34.55, 20.29. HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>16</sub>O<sub>6</sub>Na<sup>+</sup>: 363.0839; Found: 363.0842. IR (neat, cm<sup>-1</sup>): *v* 2953, 1732, 1261, 1213, 1189, 1161, 1091, 1023. HPLC (chiral OD-H, 3% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>major</sub>* = 18.9 min, *t<sub>minor</sub>* = 30.3 min, 71% *ee*; *cis*-isomer: *t<sub>minor</sub>* = 16.2 min, *t<sub>major</sub>* = 17.4 min, 65% *ee*. [a]<sub>D</sub><sup>20</sup> = +44.4° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*S*)-2-hexylcyclopropane-1,1-dicarboxylate (3ao) Yield: 74%; 80:20 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 4:1;  $R_f = 0.8$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.43 – 7.34 (m, 2H), 7.28 – 7.20 (m, 1H), 7.10 (m, 2H), 3.81 (s, 3H), 2.06 (m, 1H), 1.61 – 1.41 (m, 5H), 1.40 – 1.20 (m, 7H), 0.95 – 0.84 (m, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  169.13, 168.46, 150.64, 129.35, 125.91, 121.38, 52.57, 34.06, 31.67, 29.36, 28.91, 28.79, 28.52, 22.55, 22.02, 14.03. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>25</sub>O<sub>4</sub><sup>+</sup>: 305.1747; Found: 305.1754. IR (neat, cm<sup>-1</sup>): *v*2954, 2926, 2854, 2359, 1737, 1593, 1493, 1457, 1437, 1336, 1277, 1211, 1162, 1122, 1070. HPLC (chiral IB, 0.1% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>major</sub>* = 29.1 min, *t<sub>minor</sub>* = 38.2 min, 72% *ee*. [a]<sub>D</sub><sup>20</sup> = +29.8° (c = 1).
PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*S*)-2-phenethylcyclopropane-1,1-dicarboxylate MeO<sub>2</sub>C (3ap) Yield: 77%; 83:17 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 4:1;  $R_f = 0.8$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.41 – 7.35 (m, 2H), 7.30 (td, J = 7.7, 1.9 Hz, 2H), 7.26 – 7.18 (m, 4H), 7.12 – 7.07 (m, 2H), 3.82 (s, 3H), 2.83 – 2.70 (m, 2H), 2.10 (dtd, J = 9.0, 7.7, 6.7 Hz, 1H), 1.86 (ddt, J = 13.2, 8.9, 6.4 Hz, 1H), 1.68 – 1.61 (m, 1H), 1.59 (dd, J = 9.1, 4.7 Hz, 1H), 1.55 (dd, J = 7.9, 4.7 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  168.93, 168.37, 150.60, 141.18, 129.38, 128.44, 128.42, 126.04, 125.95, 121.35, 52.69, 35.12, 34.06, 30.58, 28.78, 21.81. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>20</sub>H<sub>21</sub>O<sub>4</sub><sup>+</sup>: 325.1434; Found: 325.1451. IR (neat, cm<sup>-1</sup>):  $\nu$ 3026, 2926, 2859, 1811, 1736, 1593, 1494, 1455, 1437, 1392, 1336, 1277, 1212, 1162, 1123, 1069, 1052, 1029, 920. HPLC (chiral IB, 0.8% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>major</sub>* = 14.5 min, *t<sub>minor</sub>* = 15.9 min, 80% *ee*. [a]<sub>D</sub><sup>20</sup> = +34.8° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

## PhO<sub>2</sub>C H MeO<sub>2</sub>C I - methyl 1-phenyl (1*S*,2*S*)-2-(3-hydroxypropyl)cyclopropane-1,1-

dicarboxylate (3aq) Yield: 99%; 82:18 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 1:1;  $R_f = 0.3$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.37 (ddd, J = 10.8, 5.8, 2.1 Hz, 2H), 7.25 – 7.21 (m, 1H), 7.14 – 7.06 (m, 2H), 3.81 (s, 3H), 3.67 (ddt, J = 12.8, 6.5, 2.9 Hz, 2H), 2.05 (dtd, J = 9.0, 7.7, 6.6 Hz, 1H), 1.72 (p, J = 6.9 Hz, 2H), 1.66 – 1.57 (m, 2H), 1.57 – 1.35 (m, 3H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  168.98, 168.41, 150.58, 129.38, 125.97, 121.34, 62.07, 52.69, 34.12, 31.79, 28.84, 24.82, 21.84. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>15</sub>H<sub>19</sub>O<sub>5</sub><sup>+</sup>: 279.1227; Found: 279.1230. IR (neat, cm<sup>-1</sup>): v3360, 2951, 1731, 1271, 1162, 1121. HPLC (chiral IE, 12% isopropanolhexane, rate 0.8 ml/min): *trans*-isomer:  $t_{minor} = 17.1$  min,  $t_{major} = 23.5$  min, 74% *ee*. [a] $_D^{20} = +29.3^{\circ}$  (c = 1, CH<sub>2</sub>Cl<sub>2</sub>). PhO<sub>2</sub>C H 1-methyl 1-phenyl (1*S*,2*S*)-2-(4-bromobutyl)cyclopropane-1,1-MeO<sub>2</sub>C Br dicarboxylate (3ar) Yield: 70%; 79:21 diastereomeric ratio. Colorless oil. TLC: Hexane:EtOAc = 4:1;  $R_f = 0.6$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 – 7.34 (m, 2H), 7.26 – 7.21 (m, 1H), 7.13 – 7.07 (m, 2H), 3.83 (s, 3H), 3.42 (td, *J* = 6.7, 1.9 Hz, 2H), 2.05 (m, 1H), 1.98 – 1.83 (m, 2H), 1.74 – 1.47 (m, 5H), 1.44 – 1.28 (m, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  168.92, 168.34, 150.59, 129.38, 125.97, 121.34, 52.72, 34.02, 33.41, 32.27, 28.79, 27.67, 27.39, 21.83. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>16</sub>H<sub>20</sub>BrO<sub>4</sub><sup>+</sup>: 355.0539; Found: 355.0545. IR (neat, cm<sup>-1</sup>): *v* 2920, 2849, 1811, 1732, 1593, 1492, 1457, 1436, 1333, 1276, 1257, 1210, 1162, 1123, 1069, 922. HPLC (chiral IA, 0.6% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer: *t<sub>major</sub>* = 17.1 min, *t<sub>minor</sub>* = 20.5 min, 63% *ee*. [a]<sub>D</sub><sup>20</sup> = +23.2° (c = 1).

#### 4.4 General Procedure for Ester Transformations



**General procedure:** Following a reported procedure,<sup>4</sup> to an oven-dried 10 mL Schlenk tube was added potassium carbonate (0.05 mmol, 0.5 equiv) and 1-methyl 1-phenyl (1S,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate **3n** (0.1 mmol, 1.0 equiv). Then, the nucleophile (0.3 or 1.0 mmol, 3.0 or 10.0 equiv) and *N*,*N*-dimethylformamide (DMF) (1 mL) were added to the tube *via* syringe. A Teflon screw cap was capped and the Schlenk tube was placed in 70 °C oil bath and stirred for 1 or 2 hours. The tube was cooled to room temperature after reaction. The reaction mixture was washed with water (10 mL) and extracted with diethyl ether for three times (3 × 10 mL). The combined organic phases were dried over sodium sulfate and concentrated under reduced

pressure. The light vellow crude product was purified by column chromatography on silica gel (hexane/ethyl acetate) to afford pure products 4.



(R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate Dimethyl (4a) Yield: 99%. Colorless oil. TLC: Hexane: EtOAc = 5:1;  $R_f = 0.4$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.41 – 7.37 (m, 2H), 7.09 – 7.04 (m, 2H), 3.78 (s, 3H), 3.41 (s, 3H), 3.16 (dd, J = 9.1, 8.1 Hz, 1H), 2.14 (dd, J = 8.0, 5.3 Hz, 1H), 1.74 (dd, J = 9.2, 5.3 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  169.93, 166.80, 133.67, 131.29, 130.15, 121.43, 52.86, 52.37, 37.14, 31.77, 19.07. HRMS (DART) ( $[M+H]^+$ ) Calcd. for  $C_{13}H_{14}BrO_4^+$ : 313.0070; Found: 313.0082. IR (neat, cm<sup>-1</sup>): v 2952, 1726, 1436, 1281, 1217, 1131. HPLC (chiral ID, 2% isopropanol-hexane, rate 0.8 ml/min):  $t_{major} = 12.4 \text{ min}, t_{minor} = 15.7 \text{ min}, 97\% ee. [a]_D^{20} = +89.0^{\circ}$  (c  $= 1, CH_2Cl_2).$ 

1-allyl 1-methyl (1S,2R)-2-(4-bromophenyl)cyclopropane-1,1dicarboxylate (4b) Yield: 93%. White solid. TLC: Hexane:EtOAc MeO<sub>2</sub>C = 5:1;  $R_f$  = 0.6. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 – 7.37 (m, 2H), 7.09 - 7.05 (m, 2H), 5.92 (ddt, J = 17.1, 10.8, 5.5 Hz, 1H), 5.35 (dq, J = 17.2, 1.6 Hz, 1H), 5.25 (dq, J = 10.5, 1.3 Hz, 1H), 4.72 (ddt, J = 13.4, 5.5, 1.5 Hz, 1H), 4.65 (ddt, J = 13.5, 5.6, 1.5 Hz, 1H), 3.42 (s, 3H), 3.17 (dd, *J* = 9.2, 8.0 Hz, 1H), 2.15 (dd, *J* = 8.0, 5.3 Hz, 1H), 1.74 (dd, *J* = 9.2, 5.3 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 169.11, 166.76, 133.66, 131.53, 131.28, 130.17, 121.42, 118.30, 66.19, 52.34, 37.25, 31.72, 19.09. HRMS (DART) ( $[M+H]^+$ ) Calcd. for C<sub>15</sub>H<sub>16</sub>BrO<sub>4</sub><sup>+</sup>: 339.0226; Found: 339.0233. IR (neat, cm<sup>-1</sup>): v 2956, 1734, 1710, 1435, 1323, 1267, 1212, 1193, 1179, 1134, 1007, 932, 904. HPLC (chiral ID, 2% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} =$  10.7 min,  $t_{minor} = 13.2$  min, 97% *ee*. [a]<sub>D</sub><sup>20</sup> = +95.4° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

1-benzyl 1-methyl (1*S*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate (4c) Yield: 92%. Colorless oil. TLC: Hexane:EtOAc = 5:1; R<sub>f</sub> = 0.6. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 7.42 - 7.31 (m, 6H), 7.10 – 7.05 (m, 2H), 5.28 (d, J = 12.5 Hz, 1H), 5.18 (d, J = 12.5 Hz, 1H), 3.41 (s, 3H), 3.20 (dd, J = 9.1, 8.1 Hz, 1H), 2.16 (dd, J = 8.0, 5.3 Hz, 1H), 1.76 (dd, J = 9.2, 5.3 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 169.25, 166.74, 135.42, 133.63, 131.28, 130.20, 128.54, 128.26, 127.81, 121.43, 67.34, 52.33, 37.31, 31.75, 19.10. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>19</sub>H<sub>18</sub>BrO<sub>4</sub><sup>+</sup>: 389.0383; Found: 389.0401. IR (neat, cm<sup>-1</sup>): v 2950, 1724, 1436, 1330, 1273, 1215, 1177, 1128, 1073, 1011. HPLC (chiral ID, 3% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 12.5$ min,  $t_{minor} = 14.9$  min, 97% *ee*. [a]<sub>D</sub><sup>20</sup> = +89.2° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).



([M+H]<sup>+</sup>) Calcd. for C<sub>18</sub>H<sub>25</sub>BrNO<sub>3</sub><sup>+</sup>: 382.1012; Found: 382.1019. IR (neat, cm<sup>-1</sup>): v3363, 2952, 2927,

2856, 1709, 1659, 1537, 1144. HPLC (chiral ID, 5% isopropanol-hexane, rate 0.8 ml/min): *trans*isomer:  $t_{major} = 12.8 \text{ min}, t_{minor} = 14.5 \text{ min}, 97\%$  ee. [a]<sub>D</sub><sup>20</sup> = +94.4° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

#### 4.5 Procedure for Further Transformations

#### 4.5.1 Selective Hydrogenation of Allyl Ester



(1*R*,2*R*)-2-(4-bromophenyl)-1-(methoxycarbonyl)cyclopropane-1-carboxylic acid (4e) Following a reported procedure,<sup>5</sup> to a THF (1 mL) solution of 1-allyl 1-methyl (1S,2R)-2-(4bromophenyl)cyclopropane-1,1-dicarboxylate **4b** (0.1 mmol, 1.0 equiv) was added polymethylhydrosiloxane (PMHS) (0.2 mmol, 2.0 equiv), tetrakis(triphenylphosphine)palladium  $[Pd(PPh_3)_4]$  (20 mol %) and ZnCl<sub>2</sub> (0.1 mmol, 1.0 equiv). The reaction was conducted at room temperature with rigorous stirring. Upon completion of the reaction (monitored by TLC), the reaction mixture was washed with water (10 mL) and extracted with diethyl ether for three times ( $3 \times 10$  mL). The combined organic phases were dried over sodium sulfate and concentrated under reduced pressure. The light yellow crude product was purified by column chromatography on silica gel (hexane/ethyl acetate) to afford pure products 4e. Yield: 94%. White solid. TLC: Hexane:EtOAc = 1:1;  $R_f = 0.1$ . <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.47 – 7.40 (m, 2H), 7.14 – 7.09 (m, 2H), 3.34 (s+t, 4H), 2.35 (dd, J = 8.5, 4.9 Hz, 1H), 2.27 (dd, J = 9.4, 4.9 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$ 172.74, 170.44, 133.10, 131.43, 130.76, 121.94, 52.70, 39.24, 33.73, 21.23. HRMS (DART) ([M+H]<sup>+</sup>) Calcd. for C<sub>12</sub>H<sub>12</sub>BrO<sub>4</sub><sup>+</sup>: 298.9913; Found: 298.9924. IR (neat, cm<sup>-1</sup>): v 2954, 2918, 2849,

2576, 1733, 1693, 1492, 1434, 1409, 1376, 1314, 1218, 1192, 1146, 1096, 1071, 1009, 973, 945, 925, 901. HPLC (chiral IA, 20% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{major} = 12.7$  min,  $t_{minor} = 13.7$  min, 73% *ee*.  $[a]_D^{20} = +95.837^\circ$  (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

### 4.5.2 Application for Synthesis of Polysubstituted Tetrahydrofuran via

#### 1,3-Dipole [3+2] Cycloaddition



#### 3-methyl 3-phenyl (2*R*,3*S*,5*R*)-5-(4-bromophenyl)-2-phenyldihydrofuran-3,3(2*H*)-

**dicarboxylate (5)** Following a reported procedure,<sup>6</sup> to a small vial was added 1-methyl 1-phenyl (1*S*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate **3n** (0.1 mmol, 1.0 equiv) and Sn(OTf)<sub>2</sub> (0.05 mmol. 0.5 equiv). Then, dichloromethane (1 mL) and benzaldehyde (0.3 mmol, 3.0 equiv) were added to the vial *via* syringe. Reaction was monitored by TLC. Upon completion of the reaction, the reaction mixture was filtered through a plug of Celite with 10 mL of diethyl ether. The organic mixture was concentrated under reduced pressure. The light yellow crude product was purified by column chromatography on silica gel (hexane/ethyl acetate) to afford pure products **5**. Yield: 87%; > 20:1 diastereomeric ratio. White solid. TLC: Hexane:EtOAc = 5:1; R<sub>f</sub> = 0.4. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.65 – 7.60 (m, 2H), 7.55 – 7.51 (m, 2H), 7.47 – 7.43 (m, 2H), 7.41 – 7.37 (m, 3H), 7.20 – 7.15 (m, 2H), 7.13 – 7.09 (m, 1H), 6.23 – 6.19 (m, 2H), 5.92 (s, 1H), 5.00 (dd, *J* = 10.3, 6.3 Hz, 1H), 3.93 (s, 3H), 3.05 (dd, *J* = 13.6, 10.3 Hz, 1H), 2.84 (dd, *J* = 13.6, 6.4 Hz, 1H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  170.99, 167.76, 149.85, 138.82, 137.26, 131.66, 129.11, 128.49, 128.31, 128.27,

127.49, 126.03, 122.05, 120.84, 84.55, 79.06, 65.86, 53.20, 43.42. HRMS (DART) ([M+NH<sub>4</sub>]<sup>+</sup>) Calcd. for  $C_{25}H_{25}BrNO_5^+$ : 498.0911; Found: 498.0929. IR (neat, cm<sup>-1</sup>): *v* 2952, 1733, 1592, 1488, 1455, 1434, 1354, 1259, 1223, 1188, 1161, 1110, 1067, 1046, 1027, 1009, 974, 919. HPLC (chiral IB, 3% isopropanol-hexane, rate 0.8 ml/min): *trans*-isomer:  $t_{minor} = 12.4$  min,  $t_{major} = 14.2$  min, 95% *ee.* [a]<sub>D</sub><sup>20</sup> = -50.6° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

#### 4.5.3 Stereospecific Conversion of Quatary Carbon with NaI



**1-methyl 1-phenyl (1***R***,***2<i>R***)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate (3n)** Following a reported procedure,<sup>3</sup> 1-methyl 1-phenyl (1*S*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate **3n** (0.1 mmol, 1.0 equiv) was dissolved into 1 mL of acetone. Then sodium iodide (NaI) (0.5 mmol, 5.0 equiv) was added to the vial. Reaction was stirred at room temperature for 24 h. Upon completion of the reaction, the reaction mixture was filtered through a plug of Celite with 10 mL of diethyl ether. The filtrate was concentrated under reduced pressure affording products **7**. Yield: 99%; 67:33 *cis:trans* diastereomeric ratio. White solid. TLC: Hexane:EtOAc = 5:1; R<sub>f</sub> = 0.6. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>):  $\delta$  7.47 (d, *J* = 8.4 Hz, 2H), 7.28 – 7.23 (m, 2H), 7.19 (d, *J* = 8.5 Hz, 2H), 7.15 – 7.14 (m, 1H), 6.52 – 6.45 (m, 2H), 3.87 (s, 3H), 3.33 (t, *J* = 8.7 Hz, 1H), 2.27 (dd, *J* = 8.0, 5.5 Hz, 1H), 1.86 (dd, *J*=9.2, 5.5 Hz, 1H) (*trans* diastereomer see **3n**). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>):  $\delta$  169.72, 165.16, 150.29, 133.33, 131.52, 130.47, 129.33, 125.99, 121.72, 121.04, 53.05, 37.35, 32.21, 18.98 (*trans* diastereomer see **3n**). HRMS (ESI) ([M+Na]<sup>+</sup>) Calcd. for: C<sub>18</sub>H<sub>15</sub>BrO<sub>4</sub>Na<sup>+</sup>: 397.0046; Found: 397.0040. IR (neat, cm<sup>-1</sup>):  $\nu$  2951, 1732, 1491, 1436, 1325, 1283, 1210, 1119. HPLC (chiral IC, 8%

isopropanol-hexane, rate 0.8 ml/min): *cis*-isomer:  $t_{major} = 14.8 \text{ min}, t_{minor} = 15.5 \text{ min}, 97\%$  *ee*, *trans*-isomer:  $t_{minor} = 17.0 \text{ min}, t_{major} = 17.6 \text{ min}, 97\%$  *ee*. [a]<sub>D</sub><sup>20</sup> = 119.6° (c = 1, CH<sub>2</sub>Cl<sub>2</sub>).

#### 4.6 X Ray Crystallography



#### Figure 5 Single-Crystal X-Ray Structure of 3n

X-ray diffraction data for **3n** were collected using Bruker-AXS SMART-APEXII CCD diffractometer using K $\alpha$  radiation ( $\lambda = 1.54178$  Å). Indexing was performed using *APEX2* (Difference Vectors method).<sup>7</sup> Data integration and reduction were performed using SaintPlus 6.01. Absorption correction was performed by multi-scan method implemented in SADABS.<sup>8</sup> Space groups were determined using XPREP implemented in APEX2.<sup>7</sup> The structure was solved using SHELXS-97 (direct methods) and refined using SHELXL-2013<sup>9</sup> (full-matrix least-squares on F<sup>2</sup>) contained in APEX2,<sup>7</sup> WinGX v1.70.01<sup>10,11,12</sup> and OLEX2<sup>13,14</sup>. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms of -CH, -CH<sub>2</sub> and -CH<sub>3</sub> groups were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters: Uiso(H) = 1.2, Ueq(-CH,-CH<sub>2</sub>[-CH<sub>3</sub>]). Crystal data and refinement conditions are shown in **Table 10**. Ellipsoid plot of asymmetric unit and numbering scheme are shown on **Figure 6**.



Figure 6 Asymmetric Unit and Numbering Scheme of 3n. Atomic Displacement Parameters Was Drawn at 50% Probability

| Identification code | 3n                  |
|---------------------|---------------------|
| Empirical formula   | $C_{18}H_{15}BrO_4$ |
| Formula weight      | 375.21              |
| Temperature/K       | 296.15              |
| Crystal system      | monoclinic          |
| Space group         | P2 <sub>1</sub>     |
| a/Å                 | 7.9944(2)           |
| b/Å                 | 5.67570(10)         |
| c/Å                 | 18.9770(4)          |
|                     |                     |

#### Table 10 Crystal Data and Structure Refinement for 3n

| a/°                                                   | 90                                                 |  |
|-------------------------------------------------------|----------------------------------------------------|--|
| β/°                                                   | 95.7430(10)                                        |  |
| γ/°                                                   | 90                                                 |  |
| Volume/Å <sup>3</sup>                                 | 856.74(3)                                          |  |
| Ζ                                                     | 2                                                  |  |
| $ ho_{ m calc} { m g/cm}^3$                           | 1.454                                              |  |
| $\mu/\mathrm{mm}^{-1}$                                | 3.419                                              |  |
| F(000)                                                | 380.0                                              |  |
| Crystal size/mm <sup>3</sup>                          | 0.25 	imes 0.11 	imes 0.02                         |  |
| Radiation                                             | $CuK\alpha$ ( $\lambda = 1.54178$ )                |  |
| $2\Theta$ range for data collection/° 4.68 to 142.404 |                                                    |  |
| Index ranges                                          | $-9 \le h \le 9, -6 \le k \le 6, -22 \le l \le 23$ |  |
| Reflections collected                                 | 10466                                              |  |
| Independent reflections                               | 3101 [ $R_{int} = 0.0428$ , $R_{sigma} = 0.0441$ ] |  |
| Data/restraints/parameters                            | 3101/1/209                                         |  |
| Goodness-of-fit on F <sup>2</sup>                     | 1.077                                              |  |
| Final R indexes $[I \ge 2\sigma(I)]$                  | $R_1 = 0.0358, wR_2 = 0.0981$                      |  |
|                                                       |                                                    |  |

 Final R indexes [all data]
  $R_1 = 0.0382$ , wR<sub>2</sub> = 0.1003

 Largest diff. peak/hole / e Å<sup>-3</sup> 0.53/-0.27

 Flack parameter
 0.003(12)

### 4.7 Experimental Study of Stepwise Radical Mechanism

#### **4.7.1 EPR Experiment**

Characterization of the α-Co(III)-Akyl Radical I by EPR.



#### Scheme 22 Detection of Radical Intermediate I by EPR

**Procedure for EPR Experiment**: To an over-dried Schlenk tube, [Co(P1)] (2 mol %) was added. The Schlenk tube was then evacuated and backfilled with nitrogen for 3 times. The Teflon screw cap was replaced with a rubber septum, and TrocN<sub>3</sub> (0.1mmol) and Benzene (0.5 mL) were added via a gas-tight syringe. The mixture was then stirred at room temperature for 2h and transferred into a degassed EPR tube (filled with argon) through a gas tight syringe. The sample was then carried out for EPR experiment at room temperature (EPR settings: T = 298 K; microwave frequency: 9.37762 GHz; power: 20 mW; modulation amplitude: 1.0 G).

X-band EPR spectra were recorded on a Bruker EMX-Plus spectrometer (Bruker BioSpin). Simulations of the EPR spectra were performed by iteration of the isotropic g-values and line widths using the EPR simulation program SpinFit in Xenon.

#### **EPR Simulation Details:**



Figure 7 Experimental and Theorectical Simulation of EPR Result

| 00                                                   | X                                       | Spin Fitti        | ng            |                                                    |
|------------------------------------------------------|-----------------------------------------|-------------------|---------------|----------------------------------------------------|
| Load <u>R</u> ep                                     | ort Options                             |                   |               |                                                    |
| Radical:                                             | Add Remov                               | e                 |               |                                                    |
| Name<br>g Factor<br>Line Width<br>Line Shape<br>Area | Rad1<br>2.00297<br>11.9355<br>0<br>2392 |                   |               |                                                    |
| Linear                                               | LW 0.1329                               | Qua               | adratic LW [0 | . 8645                                             |
| Nucleus: S<br>Add 7<br>Remove<br>Top                 | pin/2 Mult<br>1                         | HFS[6]<br>30.8242 | Fit Line      | e Positions<br>e Width/Shape<br>Residual<br>Slices |
| Show                                                 | Fit                                     |                   | Close         | Help                                               |

### Figure 8 EPR Report

g = 2.00297

 $A_{(Co)} = 30.8242 \text{ x } 2.00236 \text{ x} 1.399611451 = 86.38 \text{ MHz}$ 

### 4.7.2 HRMS Experiment



Figure 9 Radical Intermediate Detected by HRMS

**Procedure for HRMS Experiment:** Diazo **1a** was dissolved in 0.5mL of acetonitrile and added in a HPLC vial (vial A, degassed and backfilled with argon). At the same time, [Co(P1)] (2 mol %) was charged into another HPLC vial (vial B, degassed and backfilled with argon) and dissolved in acetonitrile (0.5 mL). After mixing equal amount of solutions from vial A (0.1 mL) and vial B (0.1 mL), the sample was further diluted with CH<sub>3</sub>CN and immediately injected into HRMS instrument. The HRMS experiment was carried out in the absence of any additives such as formic acid, which commonly act as electron carriers for ionization, allowing for the detection of the molecular ion signals corresponding to Co(III)-alkyl radical (C<sub>86</sub>H<sub>96</sub>CoN<sub>8</sub>O<sub>8</sub>·) by the loss of one electron.



**Figure 10 Experiment and Theorectial Simulation of HRMS** 

### 4.7.3 Probing of the γ-Co(III)-Alkyl Radical Intermediates by Reactions



### of $\beta$ -Deuterostyrenes

Figure 11 Upfield <sup>2</sup>H NMR and <sup>1</sup>H NMR for Cyclopropane Isomers 3b from [Co(P4)]-Catalyzed Cyclopropanation between: a) *tert*-Butyl Methyl Diazomalonate (1b) and (*E*)-β-Deuterostyrene ((*E*)-2a<sub>D</sub>); b) *tert*-Butyl Methyl Diazomalonate (1b) and (*Z*)-β-Deuterostyrene ((*Z*)-2a<sub>D</sub>)



Figure 12 Upfield <sup>2</sup>H NMR and <sup>1</sup>H NMR for Cyclopropane Isomers 3b from [Co(P1)]-Catalyzed Cyclopropanation between: a) *tert*-Butyl Methyl Diazomalonate (1b) and (*E*)- $\beta$ -Deuterostyrene ((*E*)-2a<sub>D</sub>); b) *tert*-Butyl Methyl Diazomalonate (1b) and (*Z*)- $\beta$ -Deuterostyrene ((*Z*)-2a<sub>D</sub>)

#### 4.8 References

- (1) Wolfe, S.; Ro, S.; Kim, C. K.; Shi, Z. *Canadian Journal of Chemistry-Revue Canadienne De Chimie* **2001**, *79*, 1238.
- (2) von Nussbaum, F.; Ruth, M.; Spiteller, P.; Hubscher-Weissert, T.; Lobermann, F.; Polborn,
  K.; Steglich, W. *Eur. J. Org. Chem.* 2012, 380.

- (3) Xu, X.; Zhu, S. F.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem. Int. Ed. 2013, 52, 11857.
- (4) Watson, D. A.; Fan, X. X.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7096.
- (5) Chandrasekhar, S.; Reddy, C. R.; Rao, R. J. Tetrahedron 2001, 57, 3435.
- (6) (a) Pohlhaus, P. D.; Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014. (b) Pohlhaus, P. D.;
  Sanders, S. D.; Parsons, A. T.; Li, W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642.
- (7) Bruker. APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. 2013.
- (8) Bruker. SAINT-V8.32A. Data Reduction Software. 2013.
- (9) Sheldrick, G. M. SADABS. Program for Empirical Absorption Correction. University of Gottingen, Germany, 1996.
- (10) Farrugia L. J. Appl. Cryst. 1999, 32, 837-838.
- (11) Sheldrick, G. M. SHELXL. Program for the Refinement of Crystal, 1997.
- (12) Sheldrick, G. M. Acta Cryst. 1990, A46, 467-473.
- (13) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
- (14) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program. *J. Appl. Cryst.*, 2009, 42, 339-341.

# **Chapter 5 Spectral Data**

### benzyl methyl malonate









### benzyl methyl malonate



## methyl phenyl malonate



## methyl phenyl malonate



### 1-benzyl 3-methyl 2-diazomalonate



### 1-benzyl 3-methyl 2-diazomalonate



## 1-(tert-butyl) 3-methyl 2-diazomalonate



1-(tert-butyl) 3-methyl 2-diazomalonate



1-phenyl 3-methyl 2-diazomalonate

7.411 7.407 7.392 7.392 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.385 7.285 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.251 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.551 7.5517 -3.888





1-phenyl 3-methyl 2-diazomalonate

~161.173 ~159.244

-149.840





 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378

 7.3378









```
JYW-0218-ID-3%-0.8ml-2
C:\EZStart\Projects\Default\Data\JYW-0218-ID-3%-0.8ml-2
C:\Documents and Settings\zhang\Desktop\DSW\Report-1120.met
```





| Г | Totals |         |
|---|--------|---------|
|   |        | 100.000 |
| _ |        |         |

```
JYW-0219-ID-3%-0.8ml
C:\EZStart\Projects\Default\Data\JYW-0219-ID-3%-0.8ml
C:\Documents and Settings\zhang\Desktop\DSW\Report-1120.met
```







```
JYW-0216-IC-2%-0.8ml-2
C:\EZStart\Projects\Default\Data\JYW-0216-IC-2%-0.8ml-2
C:\Documents and Settings\zhang\Desktop\DSW\Report-1120.met
```





1-(*tert*-butyl) 1-methyl (1*S*,2*R*)-2-phenylcyclopropane-1,1-dicarboxylate

```
JYW-0217-IC-2%-0.8ml
C:\EZStart\Projects\Default\Data\JYW-0217-IC-2%-0.8ml
C:\Documents and Settings\zhang\Desktop\DSW\Report-1120.met
```


1-methyl 1-phenyl (1*S*,2*R*)-2-phenylcyclopropane-1,1-dicarboxylate





1-methyl 1-phenyl (1*S*,2*R*)-2-phenylcyclopropane-1,1-dicarboxylate



```
1-methyl 1-phenyl (1S,2R)-2-phenylcyclopropane-1,1-dicarboxylate

JYW-II-39-newADH-1.5%-1mlre

C:\EZStart\Projects\Default\Method\LK-10%-0.8-90min.met

C:\EZStart\Projects\Default\Data\JYW-II-39-newADH-1.5%-1mlre
```





| 6: 2 | 25 | nm, | 4 | nm |
|------|----|-----|---|----|
|------|----|-----|---|----|

| _ |   |   |    |   |   |   |
|---|---|---|----|---|---|---|
| P |   | 9 | 11 |   | + | q |
| 1 | ~ | - | -  | - | - | - |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 19.676         | 27.503       | 1    |
|      | 24.332         | 22.417       | 2    |
|      | 29.748         | 27.778       | 3    |
|      | 53.132         | 22.302       | 4    |
|      |                |              |      |

| Totals |         |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2R)-2-phenylcyclopropane-1,1-dicarboxylate
JYW-II-108A-newADH-1.5%-1ml
C:\EZStart\Projects\Default\Method\LK-10%-0.8-90min.met
C:\EZStart\Projects\Default\Data\JYW-II-108A-newADH-1.5%-1ml
```







1-methyl 1-phenyl (1S,2R)-2-(p-tolyl)cyclopropane-1,1-dicarboxylate



## 1-methyl 1-phenyl (1*S*,2*R*)-2-(*p*-tolyl)cyclopropane-1,1-dicarboxylate



| PDA Ch1 | 220nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 64.922    | 7949939  | 49.903  |
| 2       | 78.410    | 7980734  | 50.097  |
| Total   |           | 15930673 | 100.000 |

## 1-methyl 1-phenyl (1*S*,2*R*)-2-(*p*-tolyl)cyclopropane-1,1-dicarboxylate



100.000

191305943

Total

1-methyl 1-phenyl (1S,2R)-2-(m-tolyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(m-tolyl)cyclopropane-1,1-dicarboxylate



```
1-methyl 1-phenyl (1S,2R)-2-(m-tolyl)cyclopropane-1,1-dicarboxylate
JYW-II-110A-OJH-10%-0.8mlre
C:\EZStart\Projects\Default\Method\LK0.8-3%.met
C:\EZStart\Projects\Default\Data\JYW-II-110A-OJH-10%-0.8mlre
```





| 3: 225 nm, 4 nm | 3: | 220 | nm, | 4 | nm |
|-----------------|----|-----|-----|---|----|
|-----------------|----|-----|-----|---|----|

Results

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 12.628         | 23.308       | 1    |
|      | 15.828         | 23.521       | 2    |
|      | 52.408         | 26.590       | 3    |
|      | 58.540         | 26.581       | 4    |

| TOTALS |         |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2R)-2-(m-tolyl)cyclopropane-1,1-dicarboxylate
JYW-II-110B-OJH-10%-0.8mlre
C:\EZStart\Projects\Default\Method\LK0.8-3%.met
C:\EZStart\Projects\Default\Data\JYW-II-110B-OJH-10%-0.8mlre
```



1-methyl 1-phenyl (1*S*,2*R*)-2-(4-(*tert*-butyl)phenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(4-(tert-butyl)phenyl)cyclopropane-1,1-dicarboxylate







| 3 | : | 22 | 6 | nm. | 4 | nm |
|---|---|----|---|-----|---|----|
| - |   |    | ~ |     | - |    |

| _ |         |   |    |   |   |   |
|---|---------|---|----|---|---|---|
| P |         | 9 | 11 |   | + | c |
| - | · · · · | _ | -  | - | _ | - |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 9.556          | 27.900       | 1    |
|      | 13.188         | 27.943       | 2    |
|      | 23.692         | 22.063       | 3    |
|      | 42.340         | 22.094       | 4    |

| Totals |         |
|--------|---------|
|        | 100.000 |







| R | e | s | 11 | 1 | t. | 8 |
|---|---|---|----|---|----|---|
| - | _ | - | -  | - | ~  |   |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 23.712         | 2.086        | 1    |
|      | 40.808         | 97.914       | 2    |

| Totals |         |
|--------|---------|
|        | 100.000 |

1-methyl 1-phenyl (1*S*,2*R*)-2-(*o*-tolyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(o-tolyl)cyclopropane-1,1-dicarboxylate

| ~168.585<br>~166.755 | -150.657 | -138.995<br>132.354<br>129.763<br>129.763<br>127.361<br>127.361<br>121.368<br>121.368 | -52.264 | 36.408<br>32.135 | 19.417<br>19.174 |
|----------------------|----------|---------------------------------------------------------------------------------------|---------|------------------|------------------|
| 1 (                  | 1        |                                                                                       | I       | 1 1              | и                |



\* Peaks corresponding to minor diastereomer



```
1-methyl 1-phenyl (1S,2R)-2-(o-tolyl)cyclopropane-1,1-dicarboxylate
JYW-II-116A-OJH-35%-0.6mlre
C:\EZStart\Projects\Default\Method\ywang1.0.met
C:\EZStart\Projects\Default\Data\JYW-II-116A-OJH-35%-0.6mlre
```



3: 206 nm, 4 nm

```
Results
```

| Pk # Name | Retention Time | Area Percent |
|-----------|----------------|--------------|
| 1         | 14.180         | 25.593       |
| 2         | 21.596         | 25.814       |
| 3         | 33.240         | 24.318       |
| 4         | 48.044         | 24.274       |

| Totals |         |
|--------|---------|
|        | 100.000 |

PhO<sub>2</sub>C

75:25 dr 94% ee

MeO<sub>2</sub>C

```
1-methyl 1-phenyl (1S,2R)-2-(o-tolyl)cyclopropane-1,1-dicarboxylate
JYW-II-127-OJH-35%-0.6ml
C:\EZStart\Projects\Default\Method\ywang1.0.met
C:\EZStart\Projects\Default\Data\JYW-II-127-OJH-35%-0.6ml
```



PhO<sub>2</sub>C MeO<sub>2</sub>C 75:25 dr 94% ee

| Pk #   | Name | Retention Time | Area Percent |
|--------|------|----------------|--------------|
| 1      |      | 33.432         | 3.193        |
| 2      |      | 47.372         | 96.807       |
|        |      |                |              |
| Totals |      |                |              |
|        |      |                | 100.000      |

## 1-methyl 1-phenyl (1S,2R)-2-(2,4-dimethylphenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(2,4-dimethylphenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(2,4-dimethylphenyl)cyclopropane-1,1-dicarboxylate





| PDA Ch1 | 230nm     |  |
|---------|-----------|--|
| Peak#   | Ret. Time |  |
| 1       | 12 749    |  |

|   |    |          | • |            |   |
|---|----|----------|---|------------|---|
| - | 02 |          |   | <b>b</b> 1 | 0 |
|   | Ca | <u> </u> | a | UI         |   |
|   |    |          |   | -          |   |

| Peak# | Ret. Time | Area    | Area%   |
|-------|-----------|---------|---------|
| 1     | 13.748    | 2498869 | 26.389  |
| 2     | 14.553    | 2243244 | 23.690  |
| 3     | 16.148    | 2479598 | 26.186  |
| 4     | 17.110    | 2247559 | 23.735  |
| Total |           | 9469270 | 100.000 |

1-methyl 1-phenyl (1*S*,2*R*)-2-(2,4-dimethylphenyl)cyclopropane-1,1-dicarboxylate



Peak Table

| PDA Ch1 | 230nm     |         |         |
|---------|-----------|---------|---------|
| Peak#   | Ret. Time | Area    | Area%   |
| 1       | 14.678    | 126167  | 2.098   |
| 2       | 17.250    | 5886232 | 97.902  |
| Total   |           | 6012398 | 100.000 |

1-methyl 1-phenyl (1S,2R)-2-(4-methoxyphenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(4-methoxyphenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(4-methoxyphenyl)cyclopropane-1,1-dicarboxylate

```
JYW-II-121-ODH-2%-1mlRE
C:\EZStart\Projects\Default\Method\ywang0.8-1.0%.met
C:\EZStart\Projects\Default\Data\JYW-II-121-ODH-2%-1mlRE
```







| Pk #   | Name | Retention Time | Area Percent |
|--------|------|----------------|--------------|
| 1      |      | 17.680         | 50.444       |
| 2      |      | 27.196         | 49.556       |
|        |      |                |              |
| Totals |      |                |              |
|        |      |                | 100.000      |

1-methyl 1-phenyl (1S,2R)-2-(4-methoxyphenyl)cyclopropane-1,1-dicarboxylate

```
JYW-II-125-ODH-2%-1ml
C:\EZStart\Projects\Default\Method\ywang0.8-1.0%.met
C:\EZStart\Projects\Default\Data\JYW-II-125-ODH-2%-1ml
```







| Pk #   | Name | Retention Time | Area Percent |
|--------|------|----------------|--------------|
| 1      |      | 16.748         | 96.380       |
| 2      |      | 27.248         | 3.620        |
|        |      |                |              |
| Totals |      |                |              |
|        |      |                | 100.000      |

## 1-methyl 1-phenyl (1*S*,2*R*)-2-([1,1'-biphenyl]-4-yl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-([1,1'-biphenyl]-4-yl)cyclopropane-1,1-dicarboxylate







|--|

| _ |   |   |   |   |   |   |
|---|---|---|---|---|---|---|
| R | e | s | u | Т | t | s |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 30.984         | 22.909       | 1    |
|      | 40.404         | 22.652       | 2    |
|      | 84.788         | 27.216       | 3    |
|      | 282.868        | 27.223       | 4    |

| Totals |         |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2R)-2-([1,1'-biphenyl]-4-yl)cyclopropane-1,1-dicarboxylate
    JYW-II-231-0JH-35%-0.6ml
    C:\EZStart\Projects\Default\Method\PS-2-37-20DH2%1.met
    C:\EZStart\Projects\Default\Data\JYW-II-231-0JH-35%-0.6ml
```



3: 261 nm, 4 nm

Results

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 90.196         | 1.719        | 1    |
|      | 266.664        | 98.281       | 2    |

| Totals |         |
|--------|---------|
|        | 100.000 |

PhO<sub>2</sub>C MeO<sub>2</sub>C

85:15 dr

96% ee

Ph

1-methyl 1-phenyl (1*S*,2*R*)-2-(3-nitrophenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1*S*,2*R*)-2-(3-nitrophenyl)cyclopropane-1,1-dicarboxylate



```
1-methyl 1-phenyl (1S,2R)-2-(3-nitrophenyl)cyclopropane-1,1-dicarboxylate
    JYW-II-193A-OJH-40%-0.6ml
    C:\EZStart\Projects\Default\Method\LK0.8-3%.met
    C:\EZStart\Projects\Default\Data\JYW-II-193A-OJH-40%-0.6ml
```





| 4: | 241 | nm, | 4 | nm |
|----|-----|-----|---|----|
|----|-----|-----|---|----|

| _   |     |        |     |
|-----|-----|--------|-----|
| P.  | 0 9 | 11 I I | t 9 |
| 1.0 | _   |        | 60  |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 23.232         | 25.549       | 1    |
|      | 30.280         | 25.676       | 2    |
|      | 92.660         | 24.382       | 3    |
|      | 101.640        | 24.393       | 4    |

| Totals |         |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2R)-2-(3-nitrophenyl)cyclopropane-1,1-dicarboxylate
    JYW-II-214-0JH-40%-0.6ml
    C:\EZStart\Projects\Default\Method\LK0.8-3%.met
    C:\EZStart\Projects\Default\Data\JYW-II-214-0JH-40%-0.6ml
```


| 61 | 60       | 42 | 40 | 40       | 40 | 39 | 38 | 38 | 36 | 36 | 28 | 26 | 25 | 15 | 15       | 15       | 14       | 13 |
|----|----------|----|----|----------|----|----|----|----|----|----|----|----|----|----|----------|----------|----------|----|
| Ľ. | <u> </u> |    | 2. | <u> </u> | N  | 7. | 7. | 7. | 7. | 7  | 7. | 7  | 7  | 7. | <u> </u> | <u> </u> | <u> </u> | 7. |









Peak Table

| PDA Ch1 | 235nm     |         |         |
|---------|-----------|---------|---------|
| Peak#   | Ret. Time | Area    | Area%   |
| 1       | 19.703    | 677399  | 8.557   |
| 2       | 20.542    | 677559  | 8.559   |
| 3       | 23.256    | 3282947 | 41.473  |
| 4       | 30.739    | 3278000 | 41.410  |
| Total   |           | 7915904 | 100.000 |



Peak Table

| PDA Chl | 235nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 19.636    | 30910384 | 98.734  |
| 2       | 20.531    | 396194   | 1.266   |
| Total   |           | 31306578 | 100.000 |

1-methyl 1-phenyl (1S,2R)-2-(4-(trifluoromethyl)phenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(4-(trifluoromethyl)phenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(4-(trifluoromethyl)phenyl)cyclopropane-1,1-dicarboxylate



20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 f1 (ppm)





| 3: | 225 | nm, | 4 | nm |
|----|-----|-----|---|----|
|----|-----|-----|---|----|

| _  |   |   |    | - |   |   |
|----|---|---|----|---|---|---|
|    |   | 0 | 11 |   | + | 9 |
| 1. | _ | - | -  | _ | - | - |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 9.244          | 30.973       | 1    |
|      | 11.000         | 30.072       | 2    |
|      | 23.668         | 19.282       | 3    |
|      | 137.136        | 19.673       | 4    |

| 100.000 |  |
|---------|--|





| 5. 225 may 1 ma |
|-----------------|
|-----------------|

Results

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 24.060         | 2.103        | 1    |
|      | 133.344        | 97.897       | 2    |

| Totals |         |
|--------|---------|
|        | 100.000 |



142



143

1-methyl 1-phenyl (1*S*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate

```
JYW-II-100-OJH-38%-0.6ml
C:\EZStart\Projects\Default\Method\ywang1.0.met
C:\EZStart\Projects\Default\Data\JYW-II-100-OJH-38%-0.6ml
```







Results

| Pk # Name | Retention Time | Area Percent |
|-----------|----------------|--------------|
| 1         | 12.756         | 27.262       |
| 2         | 17.568         | 27.198       |
| 3         | 38.344         | 22.735       |
| 4         | 190.600        | 22.806       |

| Totals |         |
|--------|---------|
|        | 100.000 |

1-methyl 1-phenyl (1*S*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate

```
JYW-II-101-OJH-38%-0.6ml
C:\EZStart\Projects\Default\Method\ywang1.0.met
C:\EZStart\Projects\Default\Data\JYW-II-101-OJH-38%-0.6ml
```







| Pk # Name | Retention Time | Area Percent |
|-----------|----------------|--------------|
| 1         | 39.972         | 2.580        |
| 2         | 190.128        | 97.420       |
|           |                |              |

| Totals |         |
|--------|---------|
|        | 100.000 |





```
1-methyl 1-phenyl (1S,2R)-2-(3-bromophenyl)cyclopropane-1,1-dicarboxylate
JYW-II-109A-newADH-1.3%-1ml
C:\EZStart\Projects\Default\Method\XC-5%-ADH0.8ml.met
C:\EZStart\Projects\Default\Data\JYW-II-109A-newADH-1.3%-1ml
```



| Totals | 100,000 |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2R)-2-(3-bromophenyl)cyclopropane-1,1-dicarboxylate
JYW-II-109B-newADH-1.3%-1ml
C:\EZStart\Projects\Default\Method\XC-5%-ADH0.8ml.met
C:\EZStart\Projects\Default\Data\JYW-II-109B-newADH-1.3%-1ml
```







1-methyl 1-phenyl (1*S*,2*S*)-2-(2-bromophenyl)cyclopropane-1,1-dicarboxylate



|   | •    |          | <br>       |   |
|---|------|----------|------------|---|
|   | 00   | -        | <b>b</b> 1 | 0 |
|   | C 41 | <b>K</b> | <br>D      |   |
| _ | ~    | _        | ~.         | - |

| PDA Ch1 | 210nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 22.591    | 16725852 | 28.442  |
| 2       | 40.057    | 16824867 | 28.610  |
| 3       | 49.228    | 12556413 | 21.352  |
| 4       | 72.659    | 12699893 | 21.596  |
| Total   |           | 58807026 | 100.000 |

1-methyl 1-phenyl (1*S*,2*S*)-2-(2-bromophenyl)cyclopropane-1,1-dicarboxylate



| PDA Chl | 190nm     |           |         |
|---------|-----------|-----------|---------|
| Peak#   | Ret. Time | Area      | Area%   |
| 1       | 48.126    | 105573494 | 97.745  |
| 2       | 73.750    | 2435808   | 2.255   |
| Total   |           | 108009302 | 100.000 |





```
1-methyl 1-phenyl (1S,2R)-2-(4-chlorophenyl)cyclopropane-1,1-dicarboxylate
    JYW-II-99-OJH-35%-0.6ml
    C:\EZStart\Projects\Default\Method\LK0.8-3%.met
    C:\EZStart\Projects\Default\Data\JYW-II-99-OJH-35%-0.6ml
```





| 3:       | 225 | nm. | 4 | nm |
|----------|-----|-----|---|----|
| <u> </u> | 220 |     | - |    |

| _ |   |   |    |   |   |   |
|---|---|---|----|---|---|---|
|   |   | 0 | 11 |   | + | - |
| - | - | - | -  | _ | - | - |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 13.008         | 27.450       | 1    |
|      | 18.340         | 27.430       | 2    |
|      | 44.792         | 22.426       | 3    |
|      | 200.732        | 22.693       | 4    |

| Totals |         |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2R)-2-(4-chlorophenyl)cyclopropane-1,1-dicarboxylate
JYW-II-102-OJH-35%-0.6ml
C:\EZStart\Projects\Default\Method\LK0.8-3%.met
C:\EZStart\Projects\Default\Data\JYW-II-102-OJH-35%-0.6ml
```





1-methyl 1-phenyl (1S,2R)-2-(4-fluorophenyl)cyclopropane-1,1-dicarboxylate



| 4 @ @ 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|-----------------------------------------|
| -0040000000400                          |
| , , , , , , , , , , , , , , , , , , ,   |
| 4444444444000000000                     |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |

| $\begin{array}{c} 8814\\ 8828\\ 8836\\ 8859\\ 8859\\ 8864\\ 8863\\ 8887\\ 8887\\ 8887\\ 8887\\ 8887\\ 8887\\ 8887\\ 8887\\ 8887\\ 8010\\ 0010\\ 0010\\ 0033\\ 0070\\ 0070\\ 00025\\ 0003\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 444444444400000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

PhO<sub>2</sub>C MeO<sub>2</sub>C F 94:6 dr \* Peaks corresponding





20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 f1 (ppm)





| 6: | 225 | nm, | 4 | nm |
|----|-----|-----|---|----|
|----|-----|-----|---|----|

| _ |   |   |    |   |   |
|---|---|---|----|---|---|
| R | e | s | 11 | t | 5 |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 10.860         | 22.462       | 1    |
|      | 15.136         | 22.306       | 2    |
|      | 39.428         | 27.451       | 3    |
|      | 110.640        | 27.781       | 4    |

| Totals |         |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2R)-2-(4-fluorophenyl)cyclopropane-1,1-dicarboxylate
JYW-II-215A-OJH-20%-0.8ml
C:\EZStart\Projects\Default\Method\LK-10%-0.8-90min.met
C:\EZStart\Projects\Default\Data\JYW-II-215A-OJH-20%-0.8ml
```





| 6: | 225 | nm, | 4 | nm |
|----|-----|-----|---|----|
|----|-----|-----|---|----|

Results

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 40.424         | 1.895        | 1    |
|      | 108.072        | 98.105       | 2    |

| Totals |         |
|--------|---------|
|        | 100.000 |

1-methyl 1-phenyl (1S,2S)-2-(perfluorophenyl)cyclopropane-1,1-dicarboxylate







1-methyl 1-phenyl (1S,2S)-2-(perfluorophenyl)cyclopropane-1,1-dicarboxylate



```
1-methyl 1-phenyl (1S,2S)-2-(perfluorophenyl)cyclopropane-1,1-dicarboxylate
    JYW-II-155A-ODH-1%-0.8ml
    C:\EZStart\Projects\Default\Method\LK0.8-3%.met
    C:\EZStart\Projects\Default\Data\JYW-II-155A-ODH-1%-0.8ml
```





| 4: | 246 | nm, | 4 | nm |
|----|-----|-----|---|----|
|----|-----|-----|---|----|

| _ |   |   |    |   |   |   |
|---|---|---|----|---|---|---|
| R |   | 9 | 11 |   | + | q |
| - | - | - | -  | - | - | - |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 13.440         | 26.624       | 1    |
|      | 16.252         | 26.268       | 2    |
|      | 24.508         | 23.894       | 3    |
|      | 27.232         | 23.214       | 4    |
|      |                |              |      |

| Totals |         |
|--------|---------|
|        | 100.000 |





| 4 | : | 246 | nm, | 4 | nm |
|---|---|-----|-----|---|----|
|---|---|-----|-----|---|----|

| _ |   |   |    |   |   |   |
|---|---|---|----|---|---|---|
| P |   | 9 | 11 |   | + | 9 |
| 1 | - | - | -  | - | - | - |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 23.708         | 98.174       | 1    |
|      | 27.624         | 1.826        | 2    |

| Totale |         |
|--------|---------|
| IUCAIS |         |
|        | 100,000 |
|        | 100.000 |
|        |         |


1-methyl 1-phenyl (1S,2R)-2-(4-(chloromethyl)phenyl)cyclopropane-1,1-dicarboxylate







| 4: 237 nm | n, 4 mm |
|-----------|---------|
|-----------|---------|

| _  |          |    |      |   |   |
|----|----------|----|------|---|---|
| R  |          | 81 | 1 I. | + | 9 |
| 1. | <u> </u> |    | _    | - | - |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 19.388         | 26.417       | 1    |
|      | 23.764         | 23.279       | 2    |
|      | 43.168         | 23.373       | 3    |
|      | 73.780         | 26.931       | 4    |
|      |                |              |      |

| Totals |         |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2R)-2-(4-(chloromethyl)phenyl)cyclopropane-1,1-dicarboxylate

JYW-II-107B-newADH-2%-1ml

C:\EZStart\Projects\Default\Method\LK-10%-0.8-90min.met

C:\EZStart\Projects\Default\Data\JYW-II-107B-newADH-2%-1ml
```



| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 23.284         | 98.052       | 1    |
|      | 45.264         | 1.948        | 2    |

| Totals |         |
|--------|---------|
|        | 100.000 |

.CI

1-methyl 1-phenyl (1S,2R)-2-(3-formylphenyl)cyclopropane-1,1-dicarboxylate









1-methyl 1-phenyl (1S,2R)-2-(3-formylphenyl)cyclopropane-1,1-dicarboxylate



## 1-methyl 1-phenyl (1*S*,2*R*)-2-(3-formylphenyl)cyclopropane-1,1-dicarboxylate





| PDA Ch1 | 190nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 16.054    | 3671799  | 24.285  |
| 2       | 21.107    | 3665083  | 24.241  |
| 3       | 68.376    | 3853197  | 25.485  |
| 4       | 82.627    | 3929454  | 25.989  |
| Total   |           | 15119532 | 100.000 |

| <b>n</b> • |           |   |    |   |
|------------|-----------|---|----|---|
| Deal       | - 1       |   | ы  | 0 |
| rea        | <u>, </u> | a | υı |   |





| PDA Ch1 | 266nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 78.368    | 10265090 | 100.000 |
| Total   |           | 10265090 | 100.000 |

1-methyl 1-phenyl (1S,2R)-2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)cyclopropane-1,1-dicarboxylate

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357

 1.357





1-methyl 1-phenyl (1S,2R)-2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)cyclopropane-1,1-dicarboxylate





Peak Table

| nn |  |  |  |
|----|--|--|--|
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |

| <u>I DA OII</u> | 2401111   |         |         |
|-----------------|-----------|---------|---------|
| Peak#           | Ret. Time | Area    | Area%   |
| 1               | 10.860    | 281739  | 14.976  |
| 2               | 11.749    | 651161  | 34.614  |
| 3               | 14.614    | 279195  | 14.841  |
| 4               | 16.774    | 669136  | 35.569  |
| Total           |           | 1881232 | 100.000 |

1-methyl 1-phenyl (1S,2R)-2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)cyclopropane-1,1-dicarboxylate



Peak Table

| PDA Ch1 | 240nm     |         |         |
|---------|-----------|---------|---------|
| Peak#   | Ret. Time | Area    | Area%   |
| 1       | 11.742    | 2252112 | 99.527  |
| 2       | 16.790    | 10695   | 0.473   |
| Total   |           | 2262807 | 100.000 |

1-methyl 1-phenyl (1S,2R)-2-(naphthalen-2-yl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(naphthalen-2-yl)cyclopropane-1,1-dicarboxylate









| _ |   |   |    |   |   |
|---|---|---|----|---|---|
| R | e | s | 11 | t | S |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 19.484         | 25.748       | 1    |
|      | 22.064         | 25.488       | 2    |
|      | 45.060         | 24.503       | 3    |
|      | 62.476         | 24.261       | 4    |

| Totals |         |
|--------|---------|
|        | 100.000 |





| 4 | : | 245 | nm, | 4 | nm |
|---|---|-----|-----|---|----|
|---|---|-----|-----|---|----|

| _ |   |    |   |   |   |
|---|---|----|---|---|---|
|   | 0 | 11 |   | + | 0 |
| - | - | u. | - | - | - |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 19.180         | 98.740       | 1    |
|      | 21.932         | 1.260        | 2    |

| Totale |         |
|--------|---------|
| IUGais |         |
|        | 100,000 |
|        | 100.000 |
|        |         |



1-methyl 1-phenyl (1S,2S)-2-(1-(tert-butoxycarbonyl)-1H-pyrrol-2-yl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2S)-2-(1-(tert-butoxycarbonyl)-1H-pyrrol-2-yl)cyclopropane-1,1-dicarboxylate



| ł | 'DA Chi | 190nm     |          |         |
|---|---------|-----------|----------|---------|
|   | Peak#   | Ret. Time | Area     | Area%   |
|   | 1       | 13.072    | 5923851  | 19.609  |
| Γ | 2       | 17.193    | 5922288  | 19.604  |
|   | 3       | 18.699    | 9204952  | 30.471  |
| Γ | 4       | 21.858    | 9158044  | 30.315  |
| Γ | Total   |           | 30209137 | 100.000 |

1-methyl 1-phenyl (1S,2S)-2-(1-(tert-butoxycarbonyl)-1H-pyrrol-2-yl)cyclopropane-1,1-dicarboxylate



| PDA Chi | 245nm     |         |         |
|---------|-----------|---------|---------|
| Peak#   | Ret. Time | Area    | Area%   |
| 1       | 13.138    | 3966636 | 86.935  |
| 2       | 17.243    | 596146  | 13.065  |
| Total   |           | 4562782 | 100.000 |





1-methyl 1-phenyl (1*S*,2*S*)-2-(pyridin-2-yl)cyclopropane-1,1-dicarboxylate







1-methyl 1-phenyl (1S,2R)-2-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)cyclopropane-1,1-dicarboxylate



| PDA Ch1 | 215nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 13.880    | 8783285  | 27.437  |
| 2       | 15.672    | 7209545  | 22.521  |
| 3       | 16.866    | 8731120  | 27.274  |
| 4       | 19.686    | 7288469  | 22.768  |
| Total   |           | 32012420 | 100.000 |

1-methyl 1-phenyl (1S,2R)-2-(1-(tert-butoxycarbonyl)-1H-indol-3-yl)cyclopropane-1,1-dicarboxylate



Peak Table

| PDA Ch1 | 215nm     |         |         |
|---------|-----------|---------|---------|
| Peak#   | Ret. Time | Area    | Area%   |
| 1       | 13.897    | 8445249 | 97.088  |
| 2       | 17.503    | 253269  | 2.912   |
| Total   |           | 8698518 | 100.000 |

1-methyl 1-phenyl (1S,2S)-2-(benzofuran-2-yl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2S)-2-(benzofuran-2-yl)cyclopropane-1,1-dicarboxylate



f1(ppm)

### 1-methyl 1-phenyl (1S,2S)-2-(benzofuran-2-yl)cyclopropane-1,1-dicarboxylate

C:\EZStart\Projects\Default\Data\JYW-0877-whelk-20%-0.8ml3 C:\EZStart\Projects\Default\Method\report-SMG.met



# 1-methyl 1-phenyl (1S,2S)-2-(benzofuran-2-yl)cyclopropane-1,1-dicarboxylate



C:\EZStart\Projects\Default\Data\JYW-0872-whelk-20%-0.8ml2

1-methyl 1-phenyl (1S,2S)-2-(benzo[b]thiophen-3-yl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2S)-2-(benzo[b]thiophen-3-yl)cyclopropane-1,1-dicarboxylate



### 1-methyl 1-phenyl (1*S*,2*S*)-2-(benzo[*b*]thiophen-3-yl)cyclopropane-1,1-dicarboxylate

C:\EZStart\Projects\Default\Data\JYW-0869-ID-10%-0.8ml2 C:\EZStart\Projects\Default\Method\report-SMG.met



## 1-methyl 1-phenyl (1*S*,2*S*)-2-(benzo[*b*]thiophen-3-yl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1*S*,2*R*)-2-methyl-2-phenylcyclopropane-1,1-dicarboxylate


1-methyl 1-phenyl (1S,2R)-2-methyl-2-phenylcyclopropane-1,1-dicarboxylate







|   |      |      | <br> |   |
|---|------|------|------|---|
| - | 00   |      |      | 0 |
|   | C 41 | N. I |      |   |
|   |      |      | ~    |   |

| PDA Ch1 | 200nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 11.213    | 12375109 | 23.128  |
| 2       | 13.628    | 14353166 | 26.825  |
| 3       | 15.176    | 12376432 | 23.131  |
| 4       | 20.110    | 14402228 | 26.917  |
| Total   |           | 53506935 | 100.000 |





Peak Table

| PDA Ch1 | 200nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 13.778    | 393540   | 1.473   |
| 2       | 20.194    | 26318698 | 98.527  |
| Total   |           | 26712238 | 100.000 |

1-methyl 1-phenyl (1S,2R)-2-(4-chlorophenyl)-2-methylcyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(4-chlorophenyl)-2-methylcyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2R)-2-(4-chlorophenyl)-2-methylcyclopropane-1,1-dicarboxylate



JYW-0370-IC-5%-0.8ml-3.lcd

mAU



| Peak | Table |
|------|-------|
|      |       |

| PDA Ch1 | 216nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 9.707     | 3480281  | 24.801  |
| 2       | 10.497    | 3445988  | 24.556  |
| 3       | 13.069    | 3540085  | 25.227  |
| 4       | 19.644    | 3566620  | 25.416  |
| Total   |           | 14032975 | 100.000 |

CI

1-methyl 1-phenyl (1S,2R)-2-(4-chlorophenyl)-2-methylcyclopropane-1,1-dicarboxylate



Peak Table

| PDA Ch1 | 215nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 13.137    | 209864   | 0.893   |
| 2       | 19.628    | 23278892 | 99.107  |
| Total   |           | 23488756 | 100.000 |

1-methyl 1-phenyl (1*S*,2*S*)-2-fluoro-2-phenylcyclopropane-1,1-dicarboxylate



#### 1-methyl 1-phenyl (1S,2S)-2-fluoro-2-phenylcyclopropane-1,1-dicarboxylate





## 1-methyl 1-phenyl (1*S*,2*S*)-2-fluoro-2-phenylcyclopropane-1,1-dicarboxylate

JYW-0912-50%-0.4mL

C:\Documents and Settings\zhang\Desktop\Lucas\LSP-HEX-0.8mL.met C:\EZStart\Projects\Default\Data\JYW-0912-50%-0.4mL



PhO<sub>2</sub>C MeO<sub>2</sub>C 92:8 dr 94% ee

| 6: | 220   | nm, | 4 | nm |
|----|-------|-----|---|----|
| Re | esult | s   |   |    |
|    |       |     |   |    |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 25.120         | 24.279       | 1    |
|      | 56.315         | 24.744       | 2    |
|      | 77.717         | 25.389       | 3    |
|      | 194.283        | 25.588       | 4    |

| 100.000 | 100.000 |
|---------|---------|

### 1-methyl 1-phenyl (1*S*,2*S*)-2-fluoro-2-phenylcyclopropane-1,1-dicarboxylate



| Totals |         |  |
|--------|---------|--|
|        | 100.000 |  |
|        |         |  |

1-methyl 1-phenyl (1*S*,2*S*)-2-chloro-2-phenylcyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2S)-2-chloro-2-phenylcyclopropane-1,1-dicarboxylate



## 1-methyl 1-phenyl (1S,2S)-2-chloro-2-phenylcyclopropane-1,1-dicarboxylate



Peak Table

| PDA Chl | 200nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 23.248    | 7078731  | 19.682  |
| 2       | 24.870    | 6994895  | 19.449  |
| 3       | 27.252    | 10853149 | 30.177  |
| 4       | 33.174    | 11038416 | 30.692  |
| Total   |           | 35965191 | 100.000 |

#### 1-methyl 1-phenyl (1S,2S)-2-chloro-2-phenylcyclopropane-1,1-dicarboxylate



Peak Table

| PDA Ch1 | 200nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 27.262    | 274898   | 1.135   |
| 2       | 32.734    | 23941298 | 98.865  |
| Total   |           | 24216196 | 100.000 |

1-methyl 1-phenyl (1S,2R)-2-methyl-2-(prop-1-en-2-yl)cyclopropane-1,1-dicarboxylate







1-methyl 1-phenyl (1S,2R)-2-methyl-2-(prop-1-en-2-yl)cyclopropane-1,1-dicarboxylate



| _ | 00   | - | 0 |   | 0 |
|---|------|---|---|---|---|
| - | C 41 | ĸ |   |   |   |
|   |      |   |   | ~ |   |

| PDA Ch1 | 215nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 10.608    | 4032660  | 26.731  |
| 2       | 12.581    | 3502609  | 23.217  |
| 3       | 13.355    | 4063189  | 26.933  |
| 4       | 25.307    | 3487625  | 23.118  |
| Total   |           | 15086082 | 100.000 |

1-methyl 1-phenyl (1S,2R)-2-methyl-2-(prop-1-en-2-yl)cyclopropane-1,1-dicarboxylate



Peak Table

| PDA Ch1 | 200nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 12.073    | 794735   | 6.494   |
| 2       | 24.674    | 11443173 | 93.506  |
| Total   |           | 12237908 | 100.000 |

#### 1-methyl 1-phenyl (1*S*,2*R*)-2-((*E*)-styryl)cyclopropane-1,1-dicarboxylate



225

1-methyl 1-phenyl (1S,2R)-2-((E)-styryl)cyclopropane-1,1-dicarboxylate



```
1-methyl 1-phenyl (1S,2R)-2-((E)-styryl)cyclopropane-1,1-dicarboxylate
JYW-II-183A-ODH-2%-1ml
C:\EZStart\Projects\Default\Method\ywang0.8.met
C:\EZStart\Projects\Default\Data\JYW-II-183A-ODH-2%-1ml
```





| 4: 225 | nm, | 4 | nm |
|--------|-----|---|----|
|--------|-----|---|----|

Results

| Pk # Name | Retention Time | Area Percent |
|-----------|----------------|--------------|
| 1         | 13.068         | 29.761       |
| 2         | 20.756         | 20.192       |
| 3         | 34.044         | 29.938       |
| 4         | 43.836         | 20.109       |

| Totals |         |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2R)-2-((E)-styryl)cyclopropane-1,1-dicarboxylate
JYW-II-183B-ODH-2%-1ml
C:\EZStart\Projects\Default\Method\LK-10%-0.8-90min.met
C:\EZStart\Projects\Default\Data\JYW-II-183B-ODH-2%-1ml
```





| 4: | 280 | nm, | 4 | nm |
|----|-----|-----|---|----|
|----|-----|-----|---|----|

Results

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 13.328         | 26.652       | 1    |
|      | 21.596         | 6.222        | 2    |
|      | 35.872         | 2.347        | 3    |
|      | 44.492         | 64.779       | 4    |
|      |                |              |      |

| Totals |         |
|--------|---------|
|        | 100.000 |

1-methyl 1-phenyl (1*S*,2*R*)-2-(phenylethynyl)cyclopropane-1,1-dicarboxylate

| 7.40<br>7.39 | 7.38 | 7.31           | L7.30 | لاح 29<br>لاح 29 | L7.26 | <sup>ر</sup> / . 26<br>ر 7 . 13 | L7.13<br>L7.12 | 7.12<br>7.11 |     |     | -3.87<br>-3.86          | 2.85                      | 52.84<br>72.84 | 72.83<br>72.83 | 2.82          | <sup>2</sup> .81 | 2.13         | 2.12<br>2.11 | <br>   | <sup>2</sup> 2.08                                     | L1.88                           |                         | 1.82                | -1.81 |
|--------------|------|----------------|-------|------------------|-------|---------------------------------|----------------|--------------|-----|-----|-------------------------|---------------------------|----------------|----------------|---------------|------------------|--------------|--------------|--------|-------------------------------------------------------|---------------------------------|-------------------------|---------------------|-------|
|              |      |                |       |                  |       |                                 |                |              |     |     |                         |                           |                |                |               |                  |              |              | ۱<br>۲ | PhO <sub>2</sub><br>MeO <sub>2</sub><br>Peak<br>to mi | C<br>74:26<br>s corr<br>nor dia | dr<br>espond<br>astered | `Ph<br>ding<br>omer |       |
|              |      |                |       |                  |       |                                 |                |              |     |     |                         | *<br>                     |                |                |               |                  | <b>/</b> *   |              | ~      | _1                                                    |                                 |                         |                     |       |
|              | 3.27 | 4.91∄<br>2.03∄ |       |                  |       |                                 |                |              |     |     | (<br> <br>              | 2.70<br>0.84 <sup>€</sup> |                |                | 1.13 	riangle |                  | 1.00<br>0.35 | 1.03<br>0.36 |        |                                                       |                                 |                         |                     |       |
| 8.0          | 7.5  | 7              | .0    | 6.5              |       | 6.0                             | 5.5            | 5            | 5.0 | 4.5 | 4.<br>f1 <sub>(</sub> p | 0<br>pm)                  | 3.5            | 3              | .0            | 2.5              | 2.           | 0            | 1.5    | 1                                                     | L.0                             | 0.5                     |                     | 0.0   |

229

## 1-methyl 1-phenyl (1*S*,2*R*)-2-(phenylethynyl)cyclopropane-1,1-dicarboxylate



### 1-methyl 1-phenyl (1*S*,2*R*)-2-(phenylethynyl)cyclopropane-1,1-dicarboxylate



Peak Table

| PDA Chl | 254nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 14.931    | 5164555  | 24.085  |
| 2       | 16.473    | 5673370  | 26.457  |
| 3       | 21.234    | 5577688  | 26.011  |
| 4       | 40.555    | 5027850  | 23.447  |
| Total   |           | 21443464 | 100.000 |

Ph

# 1-methyl 1-phenyl (1S,2R)-2-(phenylethynyl)cyclopropane-1,1-dicarboxylate



Peak Table

| PDA Ch1 | 254nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 16.157    | 22040458 | 90.758  |
| 2       | 20.910    | 2244376  | 9.242   |
| Total   |           | 24284833 | 100.000 |







|   | 00  |     | - |   | 0 |
|---|-----|-----|---|---|---|
| - | Cal | N 1 |   | U |   |
|   |     |     |   | - |   |

| PDA Ch1 | 198nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 18.624    | 16566434 | 27.108  |
| 2       | 20.114    | 16685250 | 27.303  |
| 3       | 22.018    | 13888347 | 22.726  |
| 4       | 32.436    | 13971672 | 22.863  |
| Total   |           | 61111703 | 100.000 |



Peak Table

| PDA Ch1 205nm |           |          |         |  |  |  |
|---------------|-----------|----------|---------|--|--|--|
| Peak#         | Ret. Time | Area     | Area%   |  |  |  |
| 1             | 22.057    | 17413507 | 97.496  |  |  |  |
| 2             | 33.065    | 447178   | 2.504   |  |  |  |
| Total         |           | 17860685 | 100.000 |  |  |  |

1-methyl 1-phenyl (1S,2S)-2-acetylcyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1S,2S)-2-acetylcyclopropane-1,1-dicarboxylate





|   |    |   | • |            |   |
|---|----|---|---|------------|---|
| _ | 00 | - |   | <b>b</b> 1 | 0 |
|   | Ca |   |   | UI         |   |
|   | _  |   |   | _          |   |

| PDA Ch1 | 190nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 18.011    | 7110667  | 21.593  |
| 2       | 24.261    | 9455803  | 28.714  |
| 3       | 30.957    | 7004693  | 21.271  |
| 4       | 34.569    | 9359414  | 28.422  |
| Total   |           | 32930578 | 100.000 |



Peak Table

| F | DA Ch1 | 190nm     |         |         |
|---|--------|-----------|---------|---------|
|   | Peak#  | Ret. Time | Area    | Area%   |
| Γ | 1      | 18.406    | 109744  | 2.102   |
| Γ | 2      | 31.291    | 5112133 | 97.898  |
| Γ | Total  |           | 5221877 | 100.000 |
1,2-dimethyl 1-phenyl (1*S*,2*S*)-cyclopropane-1,1,2-tricarboxylate



1,2-dimethyl 1-phenyl (1*S*,2*S*)-cyclopropane-1,1,2-tricarboxylate



1,2-dimethyl 1-phenyl (1*S*,2*S*)-cyclopropane-1,1,2-tricarboxylate



Peak Table

nm

| PDA Ch1 | 213nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 19.549    | 2237481  | 15.628  |
| 2       | 20.658    | 4868574  | 34.006  |
| 3       | 24.376    | 4946766  | 34.552  |
| 4       | 26.281    | 2263907  | 15.813  |
| Total   |           | 14316728 | 100.000 |

1,2-dimethyl 1-phenyl (1*S*,2*S*)-cyclopropane-1,1,2-tricarboxylate



| D | aal | - 1 |   | -1 |   |
|---|-----|-----|---|----|---|
| г | eau | K 1 | a | UJ | e |
|   |     |     |   |    |   |

| PDA Ch1 213nm |           |         |         |  |  |  |  |
|---------------|-----------|---------|---------|--|--|--|--|
| Peak#         | Ret. Time | Area    | Area%   |  |  |  |  |
| 1             | 20.032    | 269074  | 4.945   |  |  |  |  |
| 2             | 26.396    | 5172315 | 95.055  |  |  |  |  |
| Total         |           | 5441389 | 100.000 |  |  |  |  |



1-methyl 1-phenyl (1S,2S)-2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1*S*,2*S*)-2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate



|   |    | <br>· · · | 1.1 | _ |
|---|----|-----------|-----|---|
| - | ea | 2         | nı  | 0 |
|   | ua | <br>a     | Ο,  |   |

| PDA Ch1 220nm |           |           |         |  |  |  |  |
|---------------|-----------|-----------|---------|--|--|--|--|
| Peak#         | Ret. Time | Area      | Area%   |  |  |  |  |
| 1             | 30.355    | 33707299  | 27.157  |  |  |  |  |
| 2             | 33.535    | 33827736  | 27.254  |  |  |  |  |
| 3             | 38.550    | 28080462  | 22.623  |  |  |  |  |
| 4             | 51.199    | 28506884  | 22.967  |  |  |  |  |
| Total         |           | 124122380 | 100.000 |  |  |  |  |



Peak Table

| PDA Ch1 220nm |           |          |         |  |  |  |  |
|---------------|-----------|----------|---------|--|--|--|--|
| Peak#         | Ret. Time | Area     | Area%   |  |  |  |  |
| 1             | 38.461    | 63522341 | 97.251  |  |  |  |  |
| 2             | 51.724    | 1795600  | 2.749   |  |  |  |  |
| Total         |           | 65317941 | 100.000 |  |  |  |  |

1-methyl 1-phenyl (1S,2S)-2-(benzoyloxy)cyclopropane-1,1-dicarboxylate









```
1-methyl 1-phenyl (1S,2S)-2-(benzoyloxy)cyclopropane-1,1-dicarboxylate

JYW-II-273-ODH-3%-0.8ml

C:\EZStart\Projects\Default\Method\lk-5%0.8.met

C:\EZStart\Projects\Default\Data\JYW-II-273-ODH-3%-0.8ml
```



PhO<sub>2</sub>C MeO<sub>2</sub>C` Ph 75:25 dr 71% ee

| C  | 225 |     |   |    |
|----|-----|-----|---|----|
| 6: | 225 | nm, | 4 | nm |
|    |     |     |   |    |

Results

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 16.528         | 8.858        | 1    |
|      | 17.796         | 8.648        | 2    |
|      | 19.392         | 41.438       | 3    |
|      | 30.664         | 41.056       | 4    |
|      |                |              |      |

| Totals |         |
|--------|---------|
|        | 100.000 |

```
1-methyl 1-phenyl (1S,2S)-2-(benzoyloxy)cyclopropane-1,1-dicarboxylate
JYW-III-88-ODH-3%-0.8ml
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\JYW-III-88-ODH-3%-0.8ml
```



Results

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 16.196         | 3.830        | 1    |
|      | 17.388         | 18.129       | 2    |
|      | 18.904         | 66.612       | 3    |
|      | 30.288         | 11.430       | 4    |
|      |                |              |      |

| Totals |         |
|--------|---------|
|        | 100.000 |

PhO<sub>2</sub>C

75:25 dr 71% ee

Ph

MeO<sub>2</sub>C`

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834

 0.8834









Peak Table

| р | D | A        | Ch  | 1 220 | 0mm |
|---|---|----------|-----|-------|-----|
|   | _ | <u> </u> | ωщ. |       |     |

| PDA Chi | 220 <b>nm</b> |         |         |
|---------|---------------|---------|---------|
| Peak#   | Ret. Time     | Area    | Area%   |
| 1       | 24.175        | 1188409 | 15.806  |
| 2       | 27.839        | 2568482 | 34.162  |
| 3       | 30.347        | 1184503 | 15.754  |
| 4       | 37.732        | 2577118 | 34.277  |
| Total   |               | 7518513 | 100.000 |

nm



| -    |     | <br> |   |
|------|-----|------|---|
| Log  |     |      | 0 |
| E Ca | n 1 |      |   |
|      |     | -    |   |

| PDA Chi | 220nm     |         |         |
|---------|-----------|---------|---------|
| Peak#   | Ret. Time | Area    | Area%   |
| 1       | 29.120    | 8119675 | 85.902  |
| 2       | 38.183    | 1332540 | 14.098  |
| Total   |           | 9452215 | 100.000 |

DD A CI 1 220

7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.3395 7.









258



| - |    |     | <br> |   |
|---|----|-----|------|---|
|   | 00 | -   |      | 0 |
| - |    | N 1 | <br> |   |
|   |    |     | -    |   |

| PDA Chl | 220nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 11.512    | 2003845  | 14.316  |
| 2       | 12.306    | 2027166  | 14.483  |
| 3       | 14.628    | 4992747  | 35.670  |
| 4       | 15.800    | 4973469  | 35.532  |
| Tota    | 1         | 13997226 | 100.000 |



Peak Table

| PDA Ch1 | 220nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 14.488    | 11079412 | 90.007  |
| 2       | 15.851    | 1230143  | 9.993   |
| Total   |           | 12309555 | 100.000 |









| P | eal | ĸТ | al | ole |
|---|-----|----|----|-----|
|   |     |    |    |     |

| PDA Ch1 | 205nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 14.821    | 3181113  | 11.509  |
| 2       | 16.163    | 3116582  | 11.276  |
| 3       | 17.081    | 10576011 | 38.263  |
| 4       | 24.045    | 10766576 | 38.952  |
| Total   |           | 27640283 | 100.000 |



Peak Table

| PDA Ch1 | 205nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 17.064    | 5543080  | 13.006  |
| 2       | 23.536    | 37074751 | 86.994  |
| Total   |           | 42617831 | 100.000 |

1-methyl 1-phenyl (1*S*,2*S*)-2-(4-bromobutyl)cyclopropane-1,1-dicarboxylate











|   |    |   | • |   |  |
|---|----|---|---|---|--|
| _ | 00 | - |   |   |  |
|   | ca |   |   |   |  |
|   |    |   |   | ~ |  |

| PDA Ch1 | 220nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 16.290    | 1842990  | 14.699  |
| 2       | 17.256    | 4405685  | 35.138  |
| 3       | 20.382    | 4470254  | 35.653  |
| 4       | 22.161    | 1819321  | 14.510  |
| Total   |           | 12538251 | 100.000 |





| <b>D</b> |      |  |
|----------|------|--|
| Log      | b l  |  |
| E C d    | <br> |  |
|          |      |  |

| PDA Ch1 | 220nm     |         |         |
|---------|-----------|---------|---------|
| Peak#   | Ret. Time | Area    | Area%   |
| 1       | 17.075    | 6444153 | 81.518  |
| 2       | 20.464    | 1461059 | 18.482  |
| Total   |           | 7905211 | 100.000 |

dimethyl (R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate



dimethyl (R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate



dimethyl (R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate
JYW-IV-149-ID-2%-0.8ml2
C:\EZStart\Projects\Default\Data\JYW-IV-149-ID-2%-0.8ml2





3: 248 nm, 4 nm

| Res | ults |  |
|-----|------|--|
|     |      |  |

| Name   | Retention Time | Area Percent | Pk # |
|--------|----------------|--------------|------|
|        | 12.220         | 49.330       | 1    |
|        | 14.984         | 50.670       | 2    |
| Totals |                | 100.000      |      |

```
dimethyl (R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate
JYW-IV-157-ID-2%-0.8ml
C:\EZStart\Projects\Default\Data\JYW-IV-157-ID-2%-0.8ml
```



| Name   | Retention Time | Area Percent | PK # |
|--------|----------------|--------------|------|
|        | 12.444         | 98.457       | 1    |
|        | 15.740         | 1.543        | 2    |
| Totals |                | 100,000      |      |

1-allyl 1-methyl (1S,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate



1-allyl 1-methyl (1S,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate



1-allyl 1-methyl (1*S*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate

```
JYW-IV-147A-ID-2%-0.8ml2
C:\EZStart\Projects\Default\Data\JYW-IV-147A-ID-2%-0.8ml2
```









| _   |     | <b>-</b> - |  |
|-----|-----|------------|--|
|     | Q11 | 11         |  |
| I'C | 24  |            |  |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 10.648         | 49.614       | 1    |
|      | 13.112         | 50.386       | 2    |

| Totale |          |
|--------|----------|
| IOCAIS | * 00 000 |
|        | 100.000  |

1-allyl 1-methyl (1*S*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate

```
JYW-IV-158-ID-2%-0.8ml
C:\EZStart\Projects\Default\Data\JYW-IV-158-ID-2%-0.8ml
```









| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 10.668         | 98.725       | 1    |
|      | 13.188         | 1.275        | 2    |

| Totals |         |
|--------|---------|
|        | 100.000 |
1-benzyl 1-methyl (1S,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate



1-benzyl 1-methyl (1S,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate



0

# 1-benzyl 1-methyl (1S,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate





100.000

Results

| Pk # Name | Retention Time | Area Percent |
|-----------|----------------|--------------|
| 1         | 12.712         | 49.352       |
| 2         | 14.764         | 50.648       |
|           |                |              |
| Totals    |                |              |

1-benzyl 1-methyl (1*S*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate

```
JYW-IV-181-ID-3%-0.8ml
C:\EZStart\Projects\Default\Method\untitled.met
C:\EZStart\Projects\Default\Data\JYW-IV-181-ID-3%-0.8ml
```





| Pk # Name | Retention Time | Area Percent |
|-----------|----------------|--------------|
| 1         | 12.548         | 98.208       |
| 2         | 14.888         | 1.792        |

| Totals | 100.000 |
|--------|---------|
|        |         |

Br

0

trans, 97% ee

MeO<sub>2</sub>C

Ph'

methyl (1*R*,2*R*)-2-(4-bromophenyl)-1-(hexylcarbamoyl)cyclopropane-1-carboxylate



methyl (1R,2R)-2-(4-bromophenyl)-1-(hexylcarbamoyl)cyclopropane-1-carboxylate

| 171.099<br>167.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>√134.606</li> <li>√131.110</li> <li>√130.804</li> <li>−121.165</li> </ul>                              |                                       | -51.512                                       | ~40.033<br>36.427<br>36.427<br>31.441<br>29.340<br>726.642<br>13.986<br>713.986 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | MeO <sub>2</sub> C                    | `Br                                           |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                                       |                                               |                                                                                 |
| .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                       |                                               |                                                                                 |
| with the state of | ter Transmitter of Trately Transmitter of Market and Market and Market and Market and Market and Market and Mar | ๛๛๚๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛ | MURCHM-WARMAN COURSES OF STUDIONAL PRODUCTION |                                                                                 |
| 180 170 160 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140 130 120                                                                                                     | 110 100 90 80<br>f1 (ppm)             | 70 60 50                                      | 40 30 20 10 0<br>282                                                            |

methyl (1R,2R)-2-(4-bromophenyl)-1-(hexylcarbamoyl)cyclopropane-1-carboxylate

```
JYW-IV-161-ID-5%-0.8ml2
C:\EZStart\Projects\Default\Data\JYW-IV-161-ID-5%-0.8ml2
```



methyl (1*R*,2*R*)-2-(4-bromophenyl)-1-(hexylcarbamoyl)cyclopropane-1-carboxylate

```
JYW-IV-165-ID-5%-0.8ml
C:\EZStart\Projects\Default\Data\JYW-IV-165-ID-5%-0.8ml
```





285



286

```
JYW-IV-177-IA-20%-0.8ml2
C:\EZStart\Projects\Default\Data\JYW-IV-177-IA-20%-0.8ml2
C:\Documents and Settings\zhang\Desktop\DSW\Report-1120.met
```





```
JYW-0235-IA-20%-0.8ml
C:\EZStart\Projects\Default\Data\JYW-0235-IA-20%-0.8ml
C:\Documents and Settings\zhang\Desktop\DSW\0404.met
```





#### 3-methyl 3-phenyl (2R,3S,5R)-5-(4-bromophenyl)-2-phenyldihydrofuran-3,3(2H)-dicarboxylate





3-methyl 3-phenyl (2R,3S,5R)-5-(4-bromophenyl)-2-phenyldihydrofuran-3,3(2H)-dicarboxylate



3-methyl 3-phenyl (2R,3S,5R)-5-(4-bromophenyl)-2-phenyldihydrofuran-3,3(2H)-dicarboxylate

```
JYW-IV-199-2-IB-3%-0.8ml2
```

C:\EZStart\Projects\Default\Data\JYW-IV-199-2-IB-3%-0.8ml2





| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 12.188         | 49.951       | 1    |
|      | 14.112         | 50.049       | 2    |

| Totals |         |
|--------|---------|
|        | 100.000 |

Br

MeO<sub>2</sub>C, I

> 20:1 dr

95% ee

3-methyl 3-phenyl (2R,3S,5R)-5-(4-bromophenyl)-2-phenyldihydrofuran-3,3(2H)-dicarboxylate

```
JYW-IV-198-IB-3%-0.8ml
```

C:\EZStart\Projects\Default\Data\JYW-IV-198-IB-3%-0.8ml





| 5: | 223  | nm, | 4 | nm |
|----|------|-----|---|----|
| Re | sult | s   |   |    |

| Name | Retention Time | Area Percent | Pk # |
|------|----------------|--------------|------|
|      | 12.436         | 2.519        | 1    |
|      | 14.172         | 97.481       | 2    |

| Totals |         |
|--------|---------|
|        | 100.000 |

1-methyl 1-phenyl (1*R*,2*R*)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate



1-methyl 1-phenyl (1R,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate



# 1-methyl 1-phenyl (1R,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate



| PDA Chi | 220nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 14.815    | 9736587  | 30.711  |
| 2       | 15.520    | 9678428  | 30.527  |
| 3       | 17.074    | 6243444  | 19.693  |
| 4       | 17.688    | 6045894  | 19.070  |
| Total   |           | 31704354 | 100.000 |

DD 4 CH 1 000

|   |     |      |      | • |
|---|-----|------|------|---|
| P | e a |      | 3    | h |
|   | ua. | n. 1 | L CL | υ |



1-methyl 1-phenyl (1R,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate

Peak Table

| PDA Ch1 | 220nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 14.773    | 20075490 | 98.800  |
| 2       | 15.489    | 243823   | 1.200   |
| Total   |           | 20319313 | 100.000 |



1-methyl 1-phenyl (1R,2R)-2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate

Peak Table

| PDA Ch1 | 220nm     |          |         |
|---------|-----------|----------|---------|
| Peak#   | Ret. Time | Area     | Area%   |
| 1       | 17.036    | 111008   | 1.012   |
| 2       | 17.643    | 10863003 | 98.988  |
| Total   |           | 10974011 | 100.000 |