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Abstract

Due to overuse and misuse of antibiotics, the global threat of antibiotic resistance is a
growing crisis. Three critical issues surrounding antibiotic resistance are the lack of rapid
testing, treatment failure, and evolution of resistance. However, with new technology facil-
itating data collection and powerful statistical learning advances, our understanding of the
bacterial stress response to antibiotics is rapidly expanding. With a recent influx of omics
data, it has become possible to develop powerful computational methods that make the
best use of growing systems-level datasets. In this work, I present several such approaches
that address the three challenges around resistance. While this body of work was motivated
by the antibiotic resistance crisis, the approaches presented here favor generalization, that
is, applicability beyond just one context. First, I present ShinyOmics, a web-based appli-
cation that allow visualization, sharing, exploration and comparison of systems-level data.
An overview of transcriptomics data in the bacterial pathogen Streptococcus pneumoniae led to
the hypothesis that stress-susceptible strains have more chaotic gene expression patterns
than stress-resistant ones. This hypothesis was supported by data from multiple strains,
species, antibiotics and non-antibiotic stress factors, leading to the development of a tran-
scriptomic entropy based, general predictor for bacterial fitness. I show the potential utility
of this predictor in predicting antibiotic susceptibility phenotype, and drug minimum in-
hibitory concentrations, which can be applied to bacterial isolates from patients in the near
future. Predictors for antibiotic susceptibility are of great value when there is large phe-
notypic variability across isolates from the same species. Phenotypic variability is accom-
panied by genomic diversity harbored within a species. I address the genomic diversity by
developing BFClust, a software package that for the first time enables pan-genome analy-
sis with confidence scores. Using pan-genome level information, I then develop predictors
of essential genes unique to certain strains and predictors for genes that acquire adaptive
mutations under prolonged stress exposure. Genes that are essential offer attractive drug
targets, and those that are essential only in certain strains would make great targets for very
narrow-spectrum antibiotics, potentially leading the way to personalized therapies in infec-
tious disease. Finally, the prediction of adaptive outcome can lead to predictions of future
cross-resistance or collateral sensitivities. Overall, this body of work exemplifies how com-
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putational methods can complement the increasingly rapid data generation in the lab, and
pave the way to the development of more effective antibiotic stewardship practices.
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1
Introduction

Bacterial pathogens impose a large burden on human health, as causative agents of various

types of infections. To combat these pathogens, a number of antibiotics have been discov-

ered, developed and used as therapeutics. Discovery of novel antibiotics was at full speed

mid-20th century, which is often referred to as the “golden age of antibiotics”. Through

unnecessary exposure of bacterial populations to antibiotics (antibiotic overuse), and the

use of an antibiotic that is ineffective against a particular pathogen (misuse), the prevalence

of antibiotic resistant pathogens has been increasing205,31. Combined with a stall in novel

antibiotic discovery, this has led many to think the golden age of antibiotics is over.

In this chapter, I describe the three major challenges that make antibiotic resistance a

pressing threat. I summarize the work that has been done to address these challenges,

describe where these approaches have room for improvement and how this thesis fits in

the fight against antibiotic resistance.
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1.1 Antimicrobial resistance related challenges

There are 3 major challenges that contribute to the emergence and spread of antibiotic

resistance: a lack of rapid testing, treatment failure and evolution of resistance. The first

challenge is the lack of rapid testing. Currently, the clinical gold standard is to use culture-

based approaches in order to identify the infection-causing pathogen, and determine its

antibiotic susceptibility profile. These culture-based methods are time consuming104,27,

and are often labor and resource intensive. Antibiotic susceptibility testing (AST) can take

days, which causes a delay in the treatment of the infection. When an infection progresses

aggressively such as in septic patients, every hour of delayed treatment can increase the

mortality risk by 7.6%109. When fast intervention is critical, and AST data is not available,

broad spectrum antibiotics are used to maximize the chances of eliminating the pathogen.

This kind of untargeted approach exposes the entire human microbiota to antibiotics, in-

creasing the likelihood of resistance appearing.

Treatment failure is the second antibiotic resistance related challenge. The prescription

of an antibiotic without confirming its efficacy on the infection-causing pathogen can fail

to clear the infection. In addition, treatment failure can occur due to tolerance, heteroresis-

tance, multi-drug resistance. Antibiotic tolerance is the ability of bacteria to survive under

antibiotic treatment even though they are not resistant12. A mixed population of tolerant

and susceptible bacteria is referred to as persistent, and a mix of resistant and susceptible

bacteria makes up a heteroresistant population. Tolerance and heteroresistance are difficult

(if not impossible) to detect using microdilution plates, especially when the susceptible sub-

population far outnumbers the tolerant or resistant one. Since the detection of tolerance is
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difficult, it is unclear how it can be best addressed. On the other hand, heteroresistance and

multi-drug resistance can be addressed with multiple-drug combinations, however the most

effective combination is difficult to identify due to the number of possible combinations.

The final challenge, and perhaps the most alarming, is the evolution of resistance.

Bacteria can quickly acquire resistance to antibiotics, which makes the utility of antibi-

otics short-lived. This makes it less worthwhile to invest time, money and effort into new

antibiotic discovery. Without new antibiotics, and existing ones becoming increasingly

ineffective, treatment options for infections become severely limited.

These challenges have been difficult to address in the past, due to a limited understanding

of the physiological effects of an antibiotic on a bacterial pathogen. The response triggered

can be specific to the antibiotic-pathogen combination, requiring high-throughput data

collection and sophisticated data analysis methods to gain a comprehensive understanding

of antibiotic mechanisms of action and resistance.

There have been major advances in high-throughput data generation. Simultaneously,

statistical learning approaches are being incorporated into microbiology research. Both of

these factors allow for the 3 antibiotic resistance associated challenges to be addressed in

various ways.

Existing literature focuses either on a single predictive task (e.g. predicting the effec-

tiveness of drug combinations195,209, prediction of susceptibility180); a single approach (e.g.

genome-scale metabolic models129,60); or highlight one method and its general applications,

without an antibiotic resistance focus (e.g. machine learning in microbiology149). Antibi-

otic resistance is a complex, multi-faceted problem; lack of rapid testing, treatment failure

and evolution of resistance are related but separate challenges that need to be tackled si-
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multaneously. For instance, identifying effective drug combinations without considering

the potential evolutionary consequences would be a short-sighted approach that can lead

to new problems in the future. With the increasing availability of large-scale multi-omics

datasets and novel applications of sophistical statistical methods, it is possible to generate

predictive tools that have complementary utility. Together, predictions on antibiotic sus-

ceptibility phenotype, treatment outcome, and evolutionary outcome can inform clinical

decision making in a way that most effectively limits the spread of antibiotic resistance.

In the next section I outline the experimental and mathematical advances that enable the

generation and analysis of large scale, systems-level data. In the following sections I ex-

plore the ways in which each of the three main antibiotic resistance challenges are being

addressed

1.2 Advances in high-throughput technology and statistical methods help address AMR-

related challenges

The challenges outlined in the previous section are likely to be solved now, with techno-

logical and computational innovations being incorporated into infectious disease research.

Omics data generation technology has been improving considerably. This allows for the

identification of new biological information, characterization of new genes and pathways,

and also feeds into computational prediction tools being developed. Here I highlight re-

cent advances in high-throughput data generation that makes the training of complex, data-

driven models possible. I. Whole genome sequencing is most popularly done using short

read technologies such as Illumina17. Recently, long read technologies have made it possi-

ble to generate substantial portions of contiguous genomic sequences152,95. As additional
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benefits, the PacBio platform allows the collection of methylome data64, and the Min-

ION device from Oxford Nanopore Technologies allows real-time data generation in field

work88. II. Phenotypic screens that involve the generation of a mutant library is quickly

being replaced by high throughput technologies such as Tn-Seq198,199,122. These newer

methods have also been shown to be customized for specific purposes. For instance, mi-

crodroplet encapsulation of each mutant makes it possible to decouple the fitness effect of

the mutation itself from the effect of cooperation or competition within the population of

mutants190. III. Transcriptomics for bacterial pathogens has been possible with RNA-Seq

for over a decade145. There are a number of variations of RNA-Seq for prokaryotes155, in-

cluding dual RNA-Seq to profile host and pathogen transcriptomes simultaneously6, and

PETRI-Seq to profile single cells22. It is also possible to use long read technologies to

obtain full transcripts80. IV. Multi-omic data visualization and exploration is becoming

increasingly critical in microbial research. Exploratory visualizations and analyses on a

platform such as ShinyOmics185 (described in Chapter 2) can lead to new hypotheses that

can later be explored further.

New applications of statistical learning are becoming more prevalent in microbiology.

Existing models (such as regression, SVM, random forest85) can be customized and trained

on omics data, and can be used as predictors of clinical outcomes relevant to antibiotic

resistant infectious bacteria. In the next few sections I summarize recent applications of

statistical learning and omics-screens in this field, emphasizing the advancements in the

past decade (Figure 1.1)
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1.3 Addressing a lack of rapid testing

Determining the correct antibiotic to use for a specific infection can be challenging and/or

time consuming. Therefore, clinicians often resort to the use of ineffective or broad-

spectrum antibiotics before AST data is available. The current gold standard relies on

methods that hinge on culturing isolates from a patient sample, and observing their growth

characteristics under antibiotic selection. This is not only time consuming (e.g. when as-

saying slow-growing organisms such as Mycobacterium tuberculosis), but also require the use

of large amounts of growth media, expensive antibiotics, and are extremely labor intensive

when multiple drugs are being screened at multiple concentrations. Moreover, the results

of culture based methods are highly variable, and dependent on factors such as the initial

inoculation density26. While there exist protocols with regulatory-approval that leverage

automation and increase reproducibility, these methods also require the sub-culturing of

clonal isolates from patient samples which can miss variants in a non-homogenous popula-

tion, and remain sensitive to the initial culture density136. Predictors of antibiotic sensitivity

on the other hand, especially if they can be used on patient samples directly, would have

the added advantage of not relying on an initial subculture step. Use of a rapid, point-of-

care diagnostic predictor that can evaluate what antibiotic would be effective for a specific

case has the potential of reducing the spread of antibiotic resistance, as predicted in the-

oretical models194. Determining the appropriate antibiotic treatment that is customized

for one case can also reduce the risk of disrupting the microbiota of the patient, and risk-

ing secondary infections of for instance Clostridium difficile 74. Instead of culture-based AST

methods which are inherently time consuming, labor-intensive, and are not fully repro-
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ducible, rapid diagnostics can rely on the prediction of antibiotic susceptibility from data

that can be obtained much quicker. For instance, nucleic acids can be isolated from bacteria

and sequenced on the order of hours. With the use of computational models that use the

sequencing data and can distinguish between resistant and susceptible isolates, antibiotic

susceptibility can be predicted much quicker than the culture-based AST protocols, which

can take days to weeks.

1.3.1 Prediction of antibiotic susceptibility using genomic sequence data

Certain antibiotics have well-understood resistancemechanisms. The existence of a resistance-

causing genetic element can be a strong predictor of the resistance phenotype. Rule-based

methods use presence/absence of such resistance markers130.

There are several well-characterized examples of the presence of an allele or a genetic

element determining the antibiotic resistance phenotype of the organism. For instance,

the presence of beta-lactamase-coding genes allows the bacterium to destroy beta-lactam

antibiotics, thus conferring resistance to this class of drugs in multiple Gram-negative

species210. SNPs can also confer resistance. A mutation in the gyrA gene that results in

the amino acid change T86I on DNA gyrase, the target of fluoroquinolones, also confers

resistance, by interfering with drug-target binding62. Since many such genetic determinants

that explain different cases of resistance have been characterized, genomic sequences from

clinical samples can be used to identify resistance84.

Rule-based models have the advantage of being straightforward and easily interpretable.

Some use a single “rule” to infer a single type of resistance. For instance, Escherichia coli

resistance to Amoxicillin-Clavulanate can be predicted using beta-lactamase presence, pro-
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moter mutations and copy number49. In a similar, targeted approach, the resistance-causing

SNP in gyrA can be rapidly detected using a using mismatch amplification mutation assay in

Campylobacter jejuni 74. Broader rule-based methods rely heavily on curated databases that list

the genotypic markers of resistance for each antibiotic e.g. CARD and Mykrobe132,91. For

instance, 500 strains of Staphylococcus aureus have been classified as resistant or susceptible

using such genetic presence/absence information78. A more comprehensive tool named

ARIBA allows for a similar approach to be taken with a variety of pathogens92. While

multiple predictions can be made simultaneously, these methods are inherently limited to

resistance mechanisms that are well-studied and characterized. Nevertheless, with faster

sequencing technology, whole genome sequence data becomes more widely available (e.g.

NDARO, PATRIC) to train/test these predictors.

1.3.2 Data-driven prediction of antibiotic susceptibility using omics data

When the resistance mechanism may not be well-understood, generating a rule-based pre-

dictor from prior knowledge is not possible. In these cases, whole genome sequencing

data can be used to train “black-box” type machine learning models, which learn the rules

that associate with resistance phenotype, without a priori knowledge. With this approach

it is possible to identify novel genetic markers that associate with resistance. For instance,

VAMPr uses XGBoost models to predict susceptibility in an extensive dataset spanning 9

species and 29 antibiotics. The authors were able to identify which genetic features were

prioritized in their predictive models, and found a set of well-characterized mutations, as

well as some previously unknown genotype-phenotype associations106.

Beyond genomics, transcriptomics, metabolomics, proteomics screens can also identify
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potential markers of resistance phenotype. With the wider availability and faster collection

of omics data, sophisticated statistical approaches can now be tested on newly generated,

large datasets, yielding powerful predictors of antibiotic resistance. For instance, gene panel

based approaches can use differential expression14 or normalized expression186,89 of a small

set of genes and predict antibiotic susceptibility. Similar to VAMPr, the feature selection

step in these approaches can uncover novel associations between phenotype and transcrip-

tional regulation. Cell morphology after antibiotic exposure can also be used to distinguish

resistant and susceptible strains, as has been demonstrated with S. aureus 150. While all these

methods rely on data collection in vitro, there are also ML models that are trained on the

clinical history of the patient in order to determine the best treatment option213. These

prediction methods show that it is possible to move away from culture-dependent suscep-

tibility testing.

1.4 Addressing treatment failure

1.4.1 Identification of heterogeneous populations that can survive antibiotic treatment

If a pathogenic population is composed of susceptible and resistant sub-populations, an-

tibiotic treatment will only eliminate the susceptible sub-population, and the surviving re-

sistant sub-population may cause recurring infections. It is possible to re-purpose classical

plating-based approaches to detect heteroresistance. For instance, colistin heteroresistance

for Acinetobacter baumannii can be observed as colony growth on the zone of inhibition

around and antibiotic disc. In this approach, the fraction of the population that is resistant

can be estimated with the number of colonies observed in the zone of inhibition166. Similar

to classical AST methods, this culture-dependent approach has the disadvantage of being
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time consuming and resource-intensive. There are more granular approaches that involve

microfluidics and single-cell probing of morphological, genetic and regulatory features.

Using single cell morphological tracking, the ODELAM system allows for individual cells

to be classified as resistant or susceptible87. Bacteria in a mixed population can also be en-

capsulated in microdroplets, in which digital PCR can be performed. This has successfully

detected fluoroquinolone resistance conferring mutations in mixed Legionella pneumophila

populations from patient respiratory samples86. If the characteristic transcriptomic signa-

tures of resistant and susceptible strains are known, it may also be possible to perform

PETRI-Seq22 to classify single bacteria as resistant or susceptible.

1.4.2 Prediction of synergistic drug combinations

Multi-drug resistant strains may not be effectively cleared by a single drug, but can be bet-

ter targeted using a combination of drugs. Certain combinations of antibiotics are known

to act synergistically, where the combination treatment is more effective in stopping bac-

terial growth than expected. Multidrug combinations are recommended for tuberculosis

patients59, however the combination therapy is generally a one-size-fits-all solution that

might include more antibiotics than necessary for a specific patient. Identifying the ef-

fective combinations of fewest drugs is crucial, however, due to the astronomical number

of potential combinations, screening all combinations may be prohibitively expensive and

time-consuming. It is therefore crucial to prioritize potentially efficacious drug combina-

tions in a time-efficient manner.

DIAMOND is an approach that makes in vitro screens faster42. It does so by selecting a

small subset of concentration combinations for a drug pair to be tested. While this makes
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the synergy testing more resource-effective, and makes it possible to multiplex more tests at

a time, DIAMOND still relies on bacterial culture. Alternatively, increased omics data col-

lection and availability, better computational resources enable rapid screening for candidate

combinations. In order to truly screen drug combinations in a high-throughput manner, it

is necessary to use computational methods. A random forest classification approach was

taken with E. coli and Mycobacterium tuberculosis, where the classifier was trained on combi-

nations of phenotypic screen data coming from single-antibiotic exposure conditions127,32.

In fact, in a retrospective patient outcome study, the level of synergysic interaction among

drug pairs predicted in silico and validated in vitro correlated with infection clearance in pa-

tients127. It has yet to be seen whether newly identified drug pairs that don’t yet have

clinical outcome data will be efficacious in trials. Other than its predictive power, an ad-

vantage of random forest in this case is that it can report feature importance in the trained

model. This information can be used in understanding the regulatory basis of drug inter-

action outcomes127. Campos and Zampieri have taken a systems biology approach, going

beyond a single omics data type for training. They combine chemogenomic screens with

metabolomic ones to predict synergy for new drug combinations29. With omics-level data

collection becoming cheaper and easier, it is reasonable to expect an array of computational

models trained on various combinations of such data in the near future.

1.5 Addressing adaptive evolution

Using drugs in combination might be a good solution to treat an individual infection, but

may increase the use of antibiotics overall. Using multiple drugs for a single infection

has the potential benefit of clearing the infection-causing pathogen, but also the risk of
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exposing the commensal microbiota to multiple antibiotics. With increased exposure to

multiple drugs, the likelihood that any one of the commensal bacteria develop resistance

increases. Whether antibiotics are used individually or in combination, their use comes

with the risk of selecting for resistant strains of pathogens. This has inspired the discovery

of new antibiotics116,119. A good antibiotic needs to be effective now, but also in the future.

Resistance can emerge soon after (or sometimes before) the antibiotic is introduced into

clinical practice31, making it crucial to predict bacterial adaptation to antibiotics173,69.

1.5.1 Population genetics models explain the emergence and spread of resistance

The evolutionary trajectories followed by bacteria that acquire resistance can be complex.

However, established models on population dynamics can explain how certain lineages fix

in a population143. An increasing numbers of lab-directed adaptive evolution experiments,

including Lenski’s decades-long evolution experiment confirm and improve existing pop-

ulation dynamics models114. In the context of antibiotic resistance, the determinism in

evolution can be seen in the similarity of genotypes in bacterial populations adapted to an-

tibiotics in a morbidostat193. In this study, all five populations adapted under trimethoprim

selection acquired mutations in the same gene, dhfr, which encodes the drug target.

In addition to lab-directed adaptation experiments, microbial evolution can be studied

on a larger scale, using retrospective analysis of genomic sequences from isolates collected

from patients. Rapid whole-genome sequencing of surveillance and outbreak populations

facilitates large-scale retrospective studies on adaptation. For instance, the negative fre-

quency dependent selection model was proposed to be governing the genetic content of

Streptococcus pneumoniae strains from distinct populations? . This work was followed up with
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a study showing the predictive ability of NFDS in determining which strains increase or

decrease in their prevalence in a population9.

Studies on real-world bacterial populations are done on samples that experience not only

antibiotics, but also other selective pressures as well. Therefore, the findings on an in vitro

population might not necessarily be concordant with those from an outbreak population.

However, a study on both experimentally adapted and clinical strains of beta-lactam resis-

tant E. coli identified common trajectories for mutations in beta-lactamase82.

1.5.2 Data-driven models for a priori prediction of resistance

While population genetics models retrospectively explain the observed adaptive trajectory,

it is also possible to make a priori predictions on resistant strains that haven’t been observed

yet. Several studies take a data-driven approach to identify which genes will acquire adap-

tive mutations as a population is continually exposed to antibiotics. Better computational

resources (in terms of hardware and more efficient code) make it possible to train complex

models to this end. For instance, a machine learning model trained on experiment meta-

data predicts adaptive outcome in E. coli, although with modest precision and recall207.

A big challenge in this type of prediction is the class imbalance – that there are very few

genes that acquire adaptive mutations. Therefore, the growing compendium of adaptive

evolution experiments is likely to improve performance on such models by providing large

datasets to train on.

13



1.5.3 Novel antimicrobial discovery

Antibiotic discovery has been driven by prospecting approaches that identify existingmolecules

that microbes use to kill competitors inhabiting the same niche. An example of this is the

discovery of teixobactin in a screen of soil bacteria that were difficult or impossible to

culture previously119. This approach is more recently being replaced by computer-aided

design of novel antibiotic candidates. For instance, computer-aided search for antimicro-

bial peptides is becoming a promising avenue, with increasing ease of peptide synthesis148.

It is also possible to train a model to learn the molecular features of an effective antibiotic,

and screen through vast chemical libraries. This approach led to the recent discovery of

halicin, which was validated to be effective against multiple clinically relevant pathogens178.

1.6 Overview of this thesis

In this thesis, I present a body of work that addresses the three challenges of antibiotic re-

sistance through innovative computational approaches, leveraging recent advances in high-

throughput screens and statistical methods. In Chapter 2, I present ShinyOmics, a data

visualization and analysis platform that allows convenient exploration of multi-omics data.

By generating customizable plots, tables and comparisons across datasets, ShinyOmics has

enabled novel hypotheses to be generated and later tested. One such hypothesis was tran-

scriptomic entropy being a general predictor of fitness under antibiotic stress, which can be

used as an alternative to AST. In Chapter 3, I validate this hypothesis, and show that quan-

tifying entropy yields a simple fitness predictor that generalizes for a number of bacterial

species, antibiotic conditions, and is even applicable to non-antibiotic conditions. In Chap-
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ters 4 and 5, I focus on the S. pneumoniae pan-genome and population structure, and train

predictors of gene essentiality and adaptability, addressing treatment failure and evolution

towards antibiotic resistance. Chapter 4 presents BFClust, a pangenome clustering tool that

is unique in its ability to report confidence scores on its output. Reliable, high-confidence

clustering results are necessary for the cross-strain comparisons and phylogenetic analyses

involved in the predictions in Chapter 5. The prediction of essential genes, especially in

context-specific cases, has the potential to identify targets of narrow-spectrum antibiotics

that can be used in a personalized fashion for each infection case, making treatment failure

less likely. Finally, the predictions on gene adaptability presented in Chapter 5 incorpo-

rate short-term stress response data from the ancestral strain and pan-genomic data in an

ensemble machine learning model, distinguishing them from existing approaches.

Overall, this thesis outlines a significant knowledge and code base that addresses the

antibiotic resistance crisis from multiple angles. While the motivation behind the work

presented here is addressing the antibiotic resistance crisis, the approaches I develop are

meant to be generally applicable, therefore have the potential to contribute to other areas

of research as well.
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Figure 1.1: Notable studies in the past decade that address the three antibiotic resistance challenges are summarized on a
timeline. Each annotated point represent one study cited in this chapter. The vertical bars are colored based on the specific
challenge. Green: addressing the lack of rapid testing, blue: addressing treatment failure, purple: addressing the evolution of
resistace
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2
ShinyOmics: Collaborative Exploration of

Omics-Data *

2.1 Background

Omics-profiling is becoming increasingly prevalent in many subfields in biology. For ex-

ample, genome-wide transcriptomics have been used in studies of gene expression during

embryonic stem cell differentiation, host-pathogen interactions, identification of biomark-

ers associated with antibiotic resistance and cancer disease progression40,211,6,14,103,204,146,126.

Similarly, proteomic screens can identify proteins relevant for virulence, or cancer biomark-

ers215,1,13,5. Furthermore, phenotypic profiling using transposon insertion sequencing (Tn-

Seq) in human pathogens has identified genes involved in colonization, infection, and in-

trinsic antibiotic resistance; and has been used in genetic interactionmapping201,198,202,72,200,97.

Since genome-wide multi-omic profiling is paving the way to such varied and clinically

*Adapted from Surujon D, van Opijnen T. ShinyOmics: collaborative exploration of omics-data. BMC
Bioinformatics. 2020 Jan 17;21(1):22. Author contributions: DS developed the application and wrote the
paper. DS and TvO edited and approved the final manuscript.
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relevant applications, considerable effort has gone into establishing analysis pipelines that

process the resulting data. Tools such as DESeq2125 and MAGenTA133 are used for statis-

tical analysis of differential gene expression and fitness changes respectively. However, the

volume of the analyzed data can make interpretation and comprehensive evaluation non-

trivial. Moreover, these tools often do not accommodate easy incorporation of metadata

pertaining to genes and/or experimental conditions. This makes it time consuming and

labor intensive to apply custom analysis protocols on each dataset, especially if the user has

limited programming experience.

ShinyOmics offers several visualization and comparison options that are designed to

assist in novel hypothesis generation, as well as data management, online sharing and ex-

ploration. Sharing a single URL can enable your collaborators and readers to interactively

explore your datasets, and generate publication-quality figures. Moreover, ShinyOmics can

be used as an interactive supplement accompanying research articles or presentations.

Existing tools for user-friendly data exploration and visualization include Stemformat-

ics38, Metascape220, and mixOmics153. Stemformatics is an online portal that assembles

gene expression data from stem cell datasets. While it provides an interactive visual in-

terface, Stemformatics is tailored for stem cell research, and hosts a specific and focused

dataset that does not expand to fields other than stem cell research. Metascape does allow

users to supply their own datasets (often in the form of a gene list extracted from DE

or other omics profiling data), and can merge information from public databases as well

as perform functional enrichment and network analyses. The heavy dependence on well-

curated annotation and information on public databases can be a limitation for researchers

working with less well-characterized organisms, where these annotations may not be read-
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ily available; or available to the user but not yet made public. Moreover, even though the

user can provide gene lists extracted from different omics screens, these analyses are per-

formed independently. mixOmics is an R package that allows the user to interact with

and analyze their own (potentially unpublished) data with less reliance on public databases,

and consider multi-omics data simultaneously. It provides multiple pipelines focused on

dimensionality reduction and feature selection, which can be extremely valuable in deter-

mining what signatures are associated with for instance disease outcome. However, if a

researcher’s interests are more specific, e.g. asking what expression changes are observed

for a specific set of genes, a more customizable platform may be better suited.

To complement existing tools, we present ShinyOmics, a browser-based interface that

allows for customizable visualizations of genome-wide profiling data, incorporating user-

supplied metadata from genes and experimental conditions, and network connectedness

of genes. It is straightforward to swap out the existing datasets loaded in ShinyOmics

with user-generated custom data; e.g. standard output from DESeq2 can directly be in-

corporated. This feature of ShinyOmics also facilitates data management and sharing; for

example, a lab can host a fully interactive instance of ShinyOmics with their own data mak-

ing it accessible to collaborators across the world through a URL. This creates a convenient

alternative over transferring and describing a large number of spreadsheets and data files

between labs. Moreover, ShinyOmics can be deployed with new data obtained in a research

project, as an interactive supplement that can be included in a manuscript submission, or

academic presentation. This chapter is a description of the application, and serves as a

walkthrough of the kinds of preliminary analyses that can be done using it.
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2.2 Implementation

ShinyOmics was developed in R version 3.4.3189, using RStudio version 1.1.419188. Run-

ning the app locally requires the packages ggplot2? (v3.1.0), visNetwork3 (v2.0.5), RCol-

orBrewer139 (v.1.1), igraph48 (v1.2.2), heatmaply71 (v.0.16.0), shinyHeatmaply170 (v.0.1.0)

and shiny33 (v1.2.0).

An example of the app with data from221,70,161 is available at183. The source code for the

app and detailed usage notes can be accessed from the ShinyOmics GitHub repository181.

Detailed usage notes are also provided in the aforementioned link.

There are three types of custom data that can be added; genome-wide profiling data,

strain metadata, and network data. The main reference file for the app is “exptsheet.csv”

under the “data” subdirectory. Any added experiment needs to be recorded in this file,

with the corresponding profiling and metadata file locations specified. At minimum expt-

sheet.csv should have columns “Experiment”, “Time”, “Name”, “DataFile”, “Strain”, and

“MetadataFile”. There can be as many additional columns as desired to record metadata

of the experiments. For profiling data files, the standard output of DESeq2 can be directly

transferred to the “data” directory. Alternatively, a file with at least the columns “Gene”,

“Value” (e.g. log2 fold change of expression), and “padj” can be provided. While the data

source can be any organism or strain, eukaryotic datasets with tens of thousands of genes

are likely to cause significant lag in the application loading. We therefore recommend, in

the case of eukaryotic data, filtering the dataset (based on the number and quality of reads,

or variability among replicates) and working with only a subset of a few thousand genes at

most. There needs to be one metadata file per strain, and the minimum requirement for
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each metadata file is one column labeled “Gene”. Each metadata file can have as many

columns as desired, all selectors on the app will adjust accordingly. Finally, the networks

should be specified as edge tables, with two columns: “source” and “target”, and be named

“[Name]_Edges.csv” in the “data/networks/” subdirectory. The network statistics will be

computed automatically.

When the app is first loaded in the browser, all data/metadata files and the experiment

sheet will be screened and validated for the requirements mentioned above. If the files

provided do not fit these specifications, pop up error messages will indicate what caused

the validation to fail, in which file(s), and the app will load with no data.

2.3 Results

We provide a version of ShinyOmics pre-loaded with multi-omic data from two human

pathogens; Streptococcus pneumoniae and Mycobacterium tuberculosis. The S. pneumoniae dataset

includes Tn-Seq and RNA-Seq data from two strains (TIGR4 and 19F) that were exposed

to 1xMinimum Inhibitory Concentration (MIC) of kanamycin (KAN), levofloxacin (LVX),

rifampicin (RIF), vancomycin (VNC) and penicillin (PEN) for 2-4 hours221. Differential

expression (DE) on the RNA-Seq data was evaluated as the fold change in transcript abun-

dance comparing antibiotic conditions to a no-antibiotic control using DESeq2125. Fitness

change (dW) on the Tn-Seq data was evaluated comparing antibiotic to no-antibiotic con-

ditions as described in97. The M. tuberculosis dataset includes microarray data70 and pro-

teomics data161 under hypoxic conditions over a span of up to 20 days of culture in vitro.

In its current configuration there are four panels that allow for different types of visualiza-

tion: Single Experiment, Comparison of 2 Experiments, Comparison of All Experiments,
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and Network Visualization.

In ShinyOmics the first panel is designed to explore relationships between a value as-

sociated with all genes (e.g. DE, dW, protein abundance) and any other user supplied

metadata (Figure 2.1). The user can include other genome-wide profile data (e.g. change

in fitness, dW) in the metadata fields, or as a separate experimental data file. In the Single

Experiment panel, DE is plotted against the selected metadata type. For instance, in the

preloaded dataset, one can answer whether there are significant DE changes appearing in a

specific cellular function, by selecting “Tag1” (primary functional tag of the gene) from the

dropdown menu labelled “Variable” (Figure 2.1). The resulting scatter plot has each gene

as a point, with the categorical variable “Tag1” on the x-axis and DE on the y-axis. The

plot is faceted by timepoints, i.e. each timepoint in the selected experiment is a separate

panel. The user can select which timepoints to display or hide using the checkboxes on the

right. There are several visualization tuning options, such as changing the transparency of

points, or in the case of categorical x-axis variables, adding some noise (or “jitter”) to the

x-coordinate of each point (such that individual points do not overlap) and/or superim-

posing a violin plot. It is also possible to display only a subset of genes by pasting a gene

list in the text box (“Paste gene list”), subsetting the genes by a metadata variable (“Select

genes by metadata variable”), or to select genes directly from the plot by dragging a rect-

angle to define a region of interest (or “brushing”) the plot. The brushed genes will be

displayed in the table below. Clicking anywhere on the plot will reset the brushing. In the

example provided, it is possible to identify a set of genetic information processing genes

that are upregulated drastically when S. pneumoniae is exposed to kanamycin (Figure 2.1).

Kanamycin, an aminoglycoside, is a protein synthesis inhibitor that triggers the incorpo-
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ration of erroneous amino acids during protein synthesis, leading to an accumulation of

misfolded proteins [38]. In S. pneumoniae TIGR4, the Clp protease ATP-binding subunit

(SP_0338) is upregulated 256-fold (Figure 2.1), indicating a response by this organism to

alleviate the antibiotic stress through the destruction of misfolded proteins. This is ac-

companied by the simultaneous upregulation of chaperones dnaK and grpE (SP_0517 and

SP_0516), whose function it is to repair denatured and misfolded proteins160.

The Compare 2 Experiments panel allows for quick pairwise comparisons of experi-

ments (Figure 2.2). Here, one can plot the DE of one experiment against another, for the

timepoints that are in common in both experiments. There is a selector for the color of the

points (e.g. one can color each gene by functional category, or any other metadata feature).

The plot is brushable, similar to the Single Experiment panel. As an example, the DE of

two antibiotics are compared in Figure 2.2. Vancomycin and penicillin are both cell wall

synthesis inhibitors, and the transcriptomic changes in response to these antibiotics appear

highly correlated, especially in the later timepoints (Figure 2.2). This global similarity in

transcriptional profiles is unique to the PEN-VNC pair, and is not observed when compar-

ing antibiotics of different classes. In contrast, at 90-minutes a group of genes are brushed

(SP_0044-SP_0054, Figure 2.2) belonging to the category “Nucleotide metabolism” that

turn out to be downregulated across most of the tested antibiotics, including the RNA

synthesis inhibitor Rifampicin, and the DNA synthesis inhibitor Levofloxacin. This set of

genes are part of the purine biosynthesis pathway, and their downregulation might point

to a common antibiotic response in S. pneumoniae TIGR4.

It is also possible to see whether different systems under the same condition harbor

similar responses using the Compare 2 Experiments panel. Comparison of Tn-Seq and
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RNA-Seq data from S. pneumoniae antibiotic experiments and a comparison of microarray

and proteomic data from M. tuberculosis shows a lack of similarity in the responses in the

different screens (Figure 2.3). This is in accordance with previous findings that systems-

level data are often quite distinct, and different systems should not be taken as substitutes

of one another, but rather complementary parts of the organism as a whole97,76.

To identify general patterns across many experimental conditions, the Compare All Ex-

periments panel can be used (Figure 2.4). On the left of this panel, a heatmap shows all

genes across all conditions, with optional dendrograms showing hierarchical clustering.

The heatmap on the bottom is interactive, and shows only a user-specified set of genes,

and conditions. On the right side of the panel, principal component analysis (PCA) re-

sults are visualized. The first scatter plot shows all experiments on any combination of

the top 10 principal components. The user can select which components to plot, and a

metadata variable to color the points by (e.g. in order to see whether the experiments are

separated by antibiotic, one can select “AB” as the color variable in the pre-loaded dataset).

For instance, Figure 2.4 shows clear separation of Rifampicin from the other 4 antibiotics.

Rifampicin, being an RNA synthesis inhibitor, elicits the most dramatic changes in expres-

sion out of the 5 antibiotics included. The last plot shows the percent variance explained by

each principal component. The informative components will be those that explain more

of the variance in the data. A common way of selecting important components is to look

for an ‘elbow’ in the last plot (i.e. a relatively clear point on a line where the slope changes

drastically) and consider the components before the elbow30.

In order to evaluate whether genes with for instance significant DE (DEGs) or dW are

related to one another in a network context, the last panel (Network) allows visualization
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of a user supplied network of genes. Common types of biologically meaningful networks

include protein-protein interaction162, transcription regulatory61 metabolic98 and genetic

interaction44 networks. Depending on the organism, these networks can be manually cu-

rated, inferred bioinformatically90,171,217, or might already be experimentally mapped out.

The preloaded metabolic networks were generated by Jensen et al.97. It is also important

to keep in mind what kind of network is being used, in order to draw meaningful conclu-

sions from the network analysis. For example, all DEGs localizing on a certain part of

the transcription regulatory network may be a result of the DEGs belonging to the same

regulon. However, the same phenomenon on a metabolic network may mean a specific

metabolic pathway is being activated, which would imply a functional relationship between

DEGs. The panel allows the user to select the experiment, timepoint and network, lead-

ing to DEGs marked on the network as red and blue nodes for up- and down-regulation

respectively. On the example metabolic network of S. pneumoniae 19F (initially generated

in97 ), the 120-minute VNC response is overlaid (Figure 2.5). It is possible to pick out nu-

merous groups of interconnected genes that are up- or down-regulated together, although

there are also examples of upregulated genes being adjacent to downregulated or non-DE

genes. On the left, the network itself will be visualized in an interactive plot that allows

zooming, selecting and dragging of nodes. On the right, a set of selectors allow for a cus-

tom scatter plot to be made, relating network characteristics of nodes (e.g. degree) to DE or

any other metadata supplied by the user. As an example, network degree is plotted against

sequence diameter (how variable the sequence is across multiple strains of S. pneumoniae),

and genes are colored by whether or not they are essential in 19F (Figure 2.5), showing a

lack of relationship between these variables. Similar to scatter plots in the other panels, this
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plot is also brushable, and brushed points are displayed in the table below.

2.4 Conclusion

While genome-wide profiling can be incredibly valuable in a variety of applications, initial

exploratory analysis of large datasets can be a daunting task. For instance, enumerating

the DE of each gene with tools such as DESeq2 is a necessary but insufficient step in

such analyses. ShinyOmics is a simple platform for facilitating initial exploratory analysis

of omic-profiling data and hypothesis generating. The emphasis on relating genome-wide

profiling to custom, user supplied metadata enables the user to make functional associa-

tions between any set of features of genes. Moreover, ShinyOmics serves as a convenient

data management and sharing tool. Deploying an instance of ShinyOmics with data from

a new study results in an interactive supplement for research articles or presentations. For

example, a modified version of ShinyOmics accompanying a manuscript with the full an-

tibiotic response dataset from221 can be found at184.
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Figure 2.1: The tabs above allow the user to navigate to different panels. On the left, there is an experiment selector
(where options are populated from the experiment sheet supplied by the user), a gene list selector (when empty, all genes
are displayed), a variable selector, and several visualization customization options. Here, the T4 kanamycin (”T4_KAN”)
experiment is displayed as a scatterplot. Setting the x-axis variable to ”Tag1” splits genes by functional Tag. 4 genes are
brushed at timepoint 240 (blue rectangle), whose identity and metadata are displayed in the table (bottom).

27



Figure 2.2: On the left are selectors for the two experiments to be compared, and a color variable. Here, DE from vancomycin
(VNC) and the penicillin (PEN) are being compared for T4. Blue box on the plot indicates a set of brushed points. The table
below the plot (cropped) displays all available information regarding the brushed points.

Figure 2.3: A. For the TIGR4 KAN experiment, RNA-Seq (Experiment 1) is plotted against Tn-seq (Experiment 2). B. For the
M. tuberculosis hypoxia experiment, microarray data (Experiment1) is plotted against proteomics data (Experiment 2).
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Figure 2.4: The heatmap shows DE of all experiments included in the experiment sheet for a specific strain (T4: TIGR4). The
dendrogram on the heatmap and the PCA (colored by antibiotic) shows that the RNA synthesis inhibitor rifampicin (RIF) is
most dissimilar to other antibiotics. AB: antibiotic. KAN: Kanamycin. LVX: Levofloxacin. VNC: Vancomycin. PEN: Penicillin.
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Figure 2.5: The selectors on the upper left allow the user to select a network to display, and a specific experiment and
timepoint to overlay. Each gene is a node, and links are defined by the type of network used. The 19F Metabolic (“Metab19F”)
network has two genes linked, if their gene products participate in the same reaction, or subsequent reactions in the
metabolism of 19F. In the Vancomycin experiment shown (at 120 minutes), significantly up- and down-regulated genes
appear as red and blue nodes respectively. The selectors on the right help generate a scatter plot (lower right) that can
relate network-related information (e.g. network degree) to metadata. In the example plot, degree is plotted against sequence
diameter i.e. variability of homologous sequences across different strains of S. pneumoniae.
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3
Entropy of a bacterial stress response is a

generalizable predictor for fitness and

antibiotic sensitivity *

3.1 Background

It is generally assumed that in order to overcome a stress, bacteria activate a response

such as the stringent response under nutrient deprivation15,124,34 or the SOS response in

the presence of DNA damage58,8. Measuring the activation of a specific response, or

genes associated with this response, can thereby function as an indicator of what type

of stress is occurring in a bacterium. For instance, lexA, encoding a master regulator of

*Adapted from Zhu Z, Surujon D, Ortiz-Marquez JC, Huo W, Isberg RR, Bento J, et al. Entropy of a
bacterial stress response is a generalizable predictor for fitness and antibiotic sensitivity. Nature Communi-
cations. 2020 Aug 31;11(1):4365. Author contributions: TvO devised the study. ZZ, JO, WH, and TvO
performed the wet-lab experiments. DS performed the computational experiments. JB contributed to the
key conceptual ideas. ZZ, DS, JO, WH, RI, JB, and TvO analyzed the data. ZZ, DS, JO, JB, and TvO.
interpreted results and wrote the paper. ZZ, DS, JO, WH, RI, JB, and TvO. approved the final manuscript.
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the SOS response in Escherichia coli and Salmonella 120,214, is upregulated in response to flu-

oroquinolones, indicative of the DNA damage resulting from this class of antibiotics214.

Moreover, genes implicated in a stress response can help construct statistical models for

predicting growth/fitness outcomes under that stress. For instance, gene-panels have been

assembled from transcriptomic data to predict whether a bacterium can successfully grow

in the presence of specific antibiotics14,186,89,19,105. This type of prediction of growth under

antibiotic conditions can lead to point-of-care diagnostics that guide decisions on antibiotic

prescription216.

Whilemethods that are based on a known stress-response or a gene-panel can be valuable

in determining a bacterium’s sensitivity to a stress, these methods have limited applicability:

they only work for small sets of strains, species or environments. For instance, responses

such as the stringent or SOS response are only well characterized in a small number of

species, genes in a gene-panel may not be present in other strains or species, and responses

are not necessarily regulated in the same manner in different strains or species25,10. This

means that every time such an approach is applied to a new strain, species or condition, a

new gene-panel needs to be assembled and validated, which requires the collection of large

amounts of data for model training. In contrast, a universal stress response signature would

allow for the development of a predictive model that would work for multiple species and

conditions, without relying on collecting new data for different settings. While certain or-

ganisms may elicit a ”general stress response”, i.e. regulatory changes coordinated by the

same mechanism in response to different types of stress, this general response has not been

defined for many species, and it is still not clear to what extent the downstream transcrip-

tional changes triggered under different stress factors overlap79. Until this point, there is
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no generally agreed upon stress response signature that performs as a fitness predictor,

with equal or better performance than the gene-panel approaches.

One possible key ingredient in building a universal predictor is to base a prediction not on

specific genes, but rather on a bacterium’s global response to stress. A global, genome-wide

stress response can be captured on at least two organizational levels; RNA-Seq captures

transcriptional changes, while transposon-insertion sequencing (Tn-Seq) characterizes the

phenotypic importance of genes, i.e. a gene’s contribution to fitness in a specific envi-

ronment97,198,201,200,199,202. We have previously shown that when an organism is challenged

with an evolutionarily familiar stress (i.e. one that has been experienced for many gener-

ations), it triggers a subtle response, whereas the response becomes more chaotic when

the bacterium responds to a relatively unfamiliar stress, for instance antibiotics97. This

suggests that the degree to which a bacterium is adapted to a specific stress may be pre-

dicted from the global response it elicits. It is possible to observe genome-wide differences

between stress-susceptible and stress-resistant bacteria in data from previously published

transcriptomic studies that mostly focus on gene-panel approaches. Specifically, in these

data it can be observed that the number of differentially expressed genes, and the magni-

tude of changes in expression seem to be more dramatic in stress-susceptible strains than

stress-resistant ones14,186,89,19,105,206. Therefore, if these are indeed characteristic differences

between responses coming from stress-sensitive and stress-resistant bacteria, and these dif-

ferences can be appropriately quantified, an opportunity would arise to define a universal

method that can predict fitness for multiple species and conditions.

In this study we generate and analyze a substantial transcriptomic dataset for the bacterial

pathogen Streptococcus pneumoniae. To validate our dataset, existing gene-panel approaches
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are replicated and scrutinized as a point-of-comparison. Thereby, we first demonstrate that

bacterial fitness under antibiotic or nutrient stress can be predicted by expression profiles

from small gene-panels, while a separate panel can predict an antibiotic’s mechanism of ac-

tion. We highlight the limitations of these existing approaches by showing that gene-panels

are sensitive to model parameters and the data they are trained on, and are limited to strains

and species that share the same genes. With the goal to develop a general approach, we

explore the observation that global transcriptional disorder seems to be a common stress

feature in bacteria. It turns out that increasing disorder stems from an increasing loss of

dependencies among genes (e.g. regulatory interactions). These dependencies manifest as

correlations in gene expression patterns, and by accounting for these dependencies, the

statistical definition of entropy can be used to accurately quantify the amount of disorder

in the system. First, we show that when entropy is calculated using time-series RNA-Seq

data and dependencies amongst genes are accounted for, stress-sensitive strains have higher

entropy than stress-insensitive ones. This enables fitness predictions using a simple deci-

sion rule, where if entropy is either above or below a threshold, fitness is respectively low

or high. Importantly, this entropy-based method achieves better performance in predict-

ing fitness outcomes compared to existing gene-panel approaches. In order to simplify

the approach, we show that entropy can be calculated using a single time-point, and does

not necessarily require time-series data to achieve high accuracy. To highlight the univer-

sality of entropy, in addition to evaluating performance on a previously unseen test set,

validation experiments are performed for 7 Gram-negative and Gram-positive pathogenic

species, and the approach is applied to multiple published datasets. Moreover, we show

that transcriptional entropy is correlated with the level of antibiotic sensitivity, enabling
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MIC predictions. Overall, we develop a large new experimental dataset, and a species-

independent fitness prediction method based on entropy. By carefully defining entropy,

we illustrate that entropy does not simply capture large changes in expression, but instead

builds upon a very intuitive notion of disorder, and enables predictions on bacterial fitness.

We present gene-panel based methods as a baseline for comparison, and demonstrate that

entropy-based methods perform better, are robust to parameter tuning, and can accom-

modate different amounts of data to enable fitness predictions. Most importantly, unlike

gene-panels entropy-based predictions generalize to previously unseen settings, and tomul-

tiple pathogenic bacteria.

3.2 Materials and Methods

3.2.1 Bacterial strains, culture media and growth curve assays

S. pneumoniae strain TIGR4 (T4; NC_003028.3) is a serotype 4 strain originally isolated

from a Norwegian patient47,48, Taiwan-19F (19F; NC_012469.1) is a multi-drug resistant

strain168,134 and D39 (NC_008533) is a commonly used serotype 2 strain originally isolated

from a patient about 90 years ago111. Strain PG1 and PG19 were isolated from adults with

pneumococcal bacteremia infection and included in the Pneumococcal Bacteremia Collec-

tion Nijmegen (PBCN)45. All S. pneumoniae gene numbers refer to the T4 genome. E. coli

strain AR538, Klebsiella pneumoniae strain AR497 and Salmonella enterica subsp Typhimurium

strain AR635 were clinical isolates obtained from the Center of Disease Control (CDC).

Staphylococcus aureus strain MN6 was kindly provided by George Sakoulas (Center of Immu-

nity, Infection and Inflammation, UCSD School of Medicine). Unless otherwise specified,

S. pneumoniae strains were cultivated in Todd Hewitt medium with 5% yeast extract (THY)
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with 5μL per mL oxyrase (Oxyrase, Inc) or on sheep’s blood agar plates (Northeastern Lab-

oratories) at 37oC with 5% CO2. Acinetobacter baumannii, E. coli. K. pneumoniae, S. aureus and

S. Typhimurium were cultured in Mueller Hinton broth II (Sigma) at 37oC with 220rpm

constant shaking. RNA-Seq experiments of S. pneumoniae under nutrient-depletion and

antibiotic conditions were performed in semi-defined minimal medium (SDMM)97. RNA-

Seq experiments forA. baumannii, S. Typhimurium, E. coli. K. pneumoniae, and S. aureus were

performed in Mueller Hinton broth II. Single strain growth assays were performed three

times using 96-well plates by taking OD600 measurements on a Tecan Infinite 200 PRO

plate reader.

3.2.2 Temporal RNA-Seq sample collection, preparation and analysis

In nutrient RNA-Seq experiments, T4, D39 and adapted D39 were collected at 30 and

90min after depletion of D39-essential nutrients. In the training set antibiotic RNA-Seq

experiments, wild-type and adapted T4 or 19F were collected at 10, 20, 30, 45, 60, 90,

120min post-vancomycin, rifampicin or penicillin treatment. Additional time points at 150,

180, 210 and 240min were collected in levofloxacin and kanamycin experiments due to the

slower transcriptional response. In the test set antibiotic RNA-Seq experiments, wild-type

T4 and 19F were collected at 30 and 120min post-cefepime, ciprofloxacin, daptomycin or

tetracycline treatment. Ciprofloxacin-adapted T4 and 19F were collected at 30 and 120min

post-ciprofloxacin treatment. T4 was collected at 30 and 120min post-amoxicillin, ceftri-

axone, imipenem, linezolid, moxifloxacin or tobramycin treatment. Wild-type strains were

exposed to 1xMIC antibiotics; antibiotic-adapted strains were exposed to 1xMIC (i.e. same

concentration as wild-type) and 1.5-2xMIC of the respective antibiotic. Cell pellets were
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collected by centrifugation at 4000 rpm at 4oC and snap frozen and stored at −80oC un-

til RNA isolation with the RNeasy Mini Kit (Qiagen). 400ng of total RNA from each

sample was used for generating cDNA libraries following the RNAtag-Seq protocol169 as

previously described97. PCR amplified cDNA libraries were sequenced on an Illumina

NextSeq500 generating a high sequencing depth of 7.5 million reads per sample83. Raw

sequencing data were converted to fastq files using the bcl2fastq software (v2.19, Illumina

BaseSpace). RNA-Seq data was processed using an in-house developed analysis pipeline.

In brief, raw reads are demultiplexed by 5’ and 3’ indices169, trimmed to 59 base pairs, and

quality filtered (96% sequence quality>Q14). Filtered reads are mapped to the correspond-

ing reference genomes using bowtie2 (v2.2.6) with the –very-sensitive option (-D 20 –R 3

–N 0 –L 20 –i S, 1, 0.50)110. Mapped reads are aggregated by featureCount and differ-

ential expression is calculated with DESeq2 (v1.10.1)118,125. In each pairwise differential

expression comparison, significant differential expression is filtered based on two criteria:

|log2foldchange| > 1 and adjustedp − value(padj) < 0.05. All differential expression compar-

isons are made between the presence and absence of the antibiotic or nutrient at the same

time point. The reproducibility of transcriptomic data was confirmed by an overall high

Spearman correlation across biological replicates (R > 0.95). Furthermore, the consistent

patterns we observe in DE for the training, test and validation experiments, as well as the

similarity of DE from experiments using antibiotics with the same MOA, point to the high

quality and reproducibility of our dataset. n.b. comparison of experiments can be done

using the ShinyOmics supplement
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3.2.3 Experimental evolution

D39 was used as the parental strain in nutrient-depletion evolution experiments; T4 and

19F were used as parental strains in antibiotic evolution experiments. Four replicate pop-

ulations were grown in fresh chemically defined medium (CDM) with a decreasing con-

centration of uracil or L-Valine for nutrient adaptation populations, or an increasing con-

centration of ciprofloxacin, cefepime, levofloxacin, kanamycin, penicillin, rifampicin, or

vancomycin for antibiotic adaptation populations. Four replicate populations were serial

passaged in CDM or SDMM as controls to identify background adaptations in nutrient or

antibiotic adaptation experiments, respectively. When populations were adapted to their

nutrient or antibiotic environment, a single colony was picked from each experiment and

checked for its adaptive phenotype by growth curve experiments.

3.2.4 Determination of relative minimal inhibitory concentration (MIC)

1 − 5 × 105 CFU of mid-exponential bacteria in 100μL was diluted with 100μL of fresh

medium with a single antibiotic to achieve a final concentration gradient of cefepime (T4:

0.008-0.8 μg per mL; 19F: 0.6-2.4 μg per mL), ciprofloxacin (S. pneumoniae strains: 0.125-

4.0 μg per mL; other species: 0.0125-25 μg per mL), daptomycin (15-55 μg per mL), lev-

ofloxacin (0.1-2 μg per mL), kanamycin (35-250 μg per mL), penicillin (T4: 0.02-0.055 μg

per mL, 19F: 1-4 μg per mL), rifampicin (0.005-0.04 μg per mL), tetracycline (T4: 4-18

μg per mL; 19F: 19-22 μg per mL); amoxicillin (0.01-0.16μg per mL), imipenem (0.0005-

0.045μg per mL), ceftriaxone (0.0005-0.009μg per mL), linezolid (0.05-0.65μg per mL), to-

bramycin (35-255μg per mL), cotrimoxazole (0.5-7.5μg per mL); moxifloxacin (0.05-0.70μg

per mL), and vancomycin (0.1-0.5 μg per mL) in 96-well plates. Each concentration was
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tested in triplicate. Growth was monitored on a Tecan Infinite 200 PRO plate reader at

37oC for 16 hours. MIC is determined as the lowest concentration that abolishes bacterial

growth.

3.2.5 Selection of a gene panel for fitness prediction

Differential expression data from experiments from all experimental timepoints with time≥60min

were assembled in R (v3.6.2). The data were split into training and test sets, yielding a train-

ing set of 138 and a test set of 19 experiments. Genes with incomplete data (e.g. genes

unique to one strain) were omitted. The differential expression data was then scaled such

that the values for each gene had mean = 0 and variance = 1. A binomial logistic regression

model was fit to the training set with glmnet v3.0-2. In order to determine the appropriate

value of the regularization parameter λ, 5-fold crossvalidation was performed on the train-

ing set, and mean squared error (MSE) of the crossvalidation set for each of the 5 folds

was computed as a measure of classification error. The value of λ was selected to be the

largest at which the MSE is within 1 standard deviation of the minimal MSE overall68,108.

The heatmap of DE for this gene panel was generated using heatmaply (v1.0).

Evaluation of the gene panel’s sensitivity to input data was done using another 5-fold

crossvalidation strategy, where for each fold, the training portion includes 80% of the orig-

inal training dataset. The model was fit with the same strategy as above, selecting the best

λ for each fold.

Evaluation of the gene panel’s sensitivity to λ was done using the standard output of the

glmnet function.

For gene panels specific to a single MOA, the training and test sets were filtered to
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include only experiments from that MOA. The model fitting procedure was the same for

all gene panels that predict fitness. Performance statistics and visualization were done using

plotmo (v3.5.6), caret (v6.0-85), PRROC (v1.3.1) and ggplot2(v3.2.1).

3.2.6 PCA and Trajectory clustering

For principal component analysis (PCA), differential expression (log2fold change of +/-

antibiotic comparisons) data from all 255 experimental conditions (per time point per an-

tibiotic from all experiments excluding CIP-validation set with A. baumannii, E. coli, K.

pneumoniae, S. Typhimurium, S. aureus, S. pneumoniae serotype 1 and 23F strains) were as-

sembled in R (v3.6.2). The function “prcomp” was used for PCA. Timepoints of the same

experiment were connected to form trajectories. Since not all experiments are on the exact

same time scale (e.g. KAN experiments extend to 240min whereas RIF experiments cover

120min), equivalent timepoints for each experiment were determined to be (itmax)/6 for

i = 1, 2, , 6 and tmax being the latest time point available for the corresponding experiment.

If a timepoint did not correspond to an existing RNA-Seq data point, this time point was

inferred by linear interpolation of the existing trajectories. To cluster these trajectories, a

trajectory-distance metric between two trajectories X and Y is defined as the sum of Eu-

clidean distances (‘dist’, on the principal component coordinates) (i = 1)6dist(Xi,Yi) of all

timepoints i. All pairwise distances are computed for all pairs of trajectories included in the

analysis (WT strains with low fitness, for PSI, DSI, CWSI and RSI). K-means clustering in

MATLAB with K = 4 is used on the pairwise distances to cluster the trajectories.
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3.2.7 Selection of a gene panel for MOA prediction

Differential expression (log2 fold change of drug/no drug comparison) data from all an-

tibiotic experiments with low fitness outcome and time ≥ 60 minutes were assembled in R

(v3.6.2). The data were split into training and test sets, yielding a training set of 39 and a

test set of 15 experiments. Similar to the fitness gene panel data preparation, genes with in-

complete data were omitted. A multinomial logistic regression model was fit to the training

set with glmnet v3.0-2. The appropriate value of λ was selected using a similar crossvali-

dation scheme to the fitness gene panel: the largest λ at which the corssvalidation error is

within 1 standard deviation of the minimal error overall. Visualization, and evaluation of

the model’s performance, sensitivity to input and λ were done as described in the “Selection

of gene panel for fitness prediction” section above.

3.2.8 Gene set enrichment analysis

Gene panels for S. pneumoniae were evaluated for enrichment of functional categories, using

a hypergeometric test, and Benjamini-Hochberg correction for multiple comparisons.

3.2.9 Quantifying entropy of transcriptomic data

Entropy (H) for a time-course experiment is defined as in Equation 3.1. The DE data for

the timecourse is assembles into a single matrix S, where columns are individual genes, and

rows are different time points. The covariances across all pairs of columns (i.e. genes)

is computed using the ‘cov‘ function in R (v3.6.2) to generate the covariance matrix Σ.

Σ is then used as input for the ‘glasso‘ function within the glasso package (v1.10), which

generates a regularized covariance matrix (Σρ). Multiple values of ρ are scanned between 0
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and 5, and for each value of ρ, the error on the training set was computed. The value of

ρ was determined to be that which minimized error. Using this value of ρ, multiple values

of threshold t were scanned within the range of entropy values within the training set. The

value of t was determined to be that which maximized accuracy on the training set.

Entropy of a single timepoint (Hstp) is defined as in Equation 3.2. The variance (σ2) of

the whole-transcriptome DE distribution is computed using the ‘var’ function in R (v3.6.2).

The threshold value t was determined by scanning the range of Hstp values in the training

set, and finding the t that maximized accuracy on this dataset.

The predictive performance of all entropy models was evaluated on both the training

and test sets using caret (v6.0-85), PRROC (v1.3.1); and visualized using ggplot2(v3.2.1).

3.3 Results

3.3.1 Existing methods have several limitations, and do not generalize

Previously, the expression levels of specific genes have been used to predict susceptibility

of a specific species under a specific antibiotic stress14,19,206. In contrast, the goal here is

to identify a general predictor of fitness (presence or absence of growth) that does not

only work for a specific stress or species, but instead extends to as many previously unseen

settings (i.e. species and conditions) as possible. We hypothesized that, in line with existing

approaches, a gene-panel that predicts fitness could be generated. This panel, when trained

on expression data coming from multiple stress conditions, would then predict bacterial

fitness for any condition (rather than a specific condition). Importantly, we would thereby

also be able to assess how sensitive such models are to input data and model parameters.

Below we first show that gene-panel models indeed are highly sensitive to these factors
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and thereby have limited generalizability. Subsequently, we develop an alternative approach

using entropy, that is generalizable, robust, and condition-agnostic (i.e. applicable to many

conditions).

To test the first hypothesis, whether a gene-panel model can be trained that predicts

fitness for many different conditions, a large RNA-Seq dataset was generated for the hu-

man pathogen Streptococcus pneumoniae. To produce transcriptomic response profiles from

multiple stress conditions, S. pneumoniae strains TIGR4 (T4) and Taiwan-19F (19F) were

grown in the presence or absence of 1x the minimum inhibitory concentration (MIC) of

16 antibiotics representing 4 mechanisms of action (MOA). These include cell wall synthe-

sis inhibitors (CWSI), DNA synthesis inhibitors (DSI), protein synthesis inhibitors (PSI)

and RNA synthesis inhibitors ((RSI); Figure 3.1A). Each strain was exposed to each an-

tibiotic for 2 to 4 hours and cells were harvested for RNA-Seq at various time points.

As T4 and 19F are susceptible to most antibiotics used, the transcriptional profiles in the

presence of antibiotics mostly represent cases of low fitness (Figure 3.1A, sensitive strain,

1xMIC). In order to find patterns that differentiate fitness outcomes, we generated adapted

strains with increased fitness in the presence of antibiotics by serial passaging wildtype T4

and 19F in the presence of increasing amounts of antibiotics. Four independent adapted

populations for each strain were selected on individual antibiotics. These adapted strains

could grow in the presence of antibiotic at 1.5xMIC of the wildtype strain, albeit with a

small growth defect. In parallel, RNA-Seq was performed on S. pneumoniae strains D39

and T4 in a chemically defined medium, and media from which either uracil, Glycine or

L-Valine was removed, which are essential for D39 but not T4. This enabled the potential

identification of a common stress signature that is shared between antibiotic exposure and
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nutrient deprivation, and across multiple strains. Lastly, D39 was adapted to grow in the

absence of each individual nutrient, after which RNA-Seq was repeated for adapted clones

(It is possible to visualize and explore these data using a ShinyOmics185 based app online

at http://bioinformatics.bc.edu/shiny/ABX).

Transcriptome data was separated into a training set for parameter fitting, and a test set.

The test set includes a completely different set of antibiotic conditions, to enable proper

evaluation of model performance on previously unseen data. A condition-agnostic pre-

dictor of fitness was developed by fitting a regression model on the training set, which

includes high and low fitness outcomes from 5 antibiotics (representing 4 MOAs), 3 nutri-

ent depletion conditions, and from 3 S. pneumoniae strain backgrounds. Lasso-regularization

was used in order to limit the number of features, thereby lowering the risk of overfitting

the model (there are over 1500 genes in common for the 3 strains, therefore there are as

many potential features that could be used)68. In order to avoid any bias in the selection of

features, the regularization strength (λ) was automatically determined using crossvalidation

analysis on the training data (Figure 3.1B)68,108. The resulting model (which contains 28

genes and an intercept) has an accuracy of 0.93 and 0.77 on the training and the unseen

test set respectively (Figure 3.1C, Figure 3.2).

Fitness predictions that rely on the expression of specific genes are potentially influenced

by the data used during training206. A model robust to input data would recover mostly

the same features (i.e. genes) when small subsets of input are omitted during parameter

fitting. In order to test the sensitivity of the regression model to input data, the same

type of regression model was trained on 5 different subsets of the training dataset, each

time omitting a different 20% of the data. The features included and their coefficients
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varied greatly in these experiments (Figure 3.1D), with only 5 out of 28 genes in the model

common to all iterations of model fitting. To assess sensitivity of the gene-panel to the

regularization strength (i.e. λ), the same model was trained using different values for λ.

While the coefficients of individual genes vary drastically (Figure 3.1E), the performance at

different values of λ remains similar (Figure 3.1B, Figure 3.2B). This indicates that there are

genes that contain similar information for classification purposes, and are interchangeable.

Thus, we demonstrate that the gene-panel approach is sensitive not only to input data, but

also to model parameters. An implication of this sensitivity is that the genes in a gene-panel

that are selected in an automatic fashion can be influenced by how the model is trained.

Therefore, interpreting these genes as the determinant biological factors for fitness can be

problematic. Furthermore, enrichment analysis reveals there are no significantly enriched

functional categories in this gene-panel (Figure 3.2E). This suggests that a gene-panel is not

a suitable approach for developing a condition-agnostic model, since no specific common

response to different stresses can be detected that separates low fitness cases from high

fitness ones.

While a condition-agnostic gene-panel is sensitive to input data and model parameter λ,

it remains to be seen whether condition-specific models suffer from the same issue as well.

For threeMOA’s for which we generated data for multiple antibiotics (CWSI, DSI, and PSI),

regularized regression models were trained, and the models’ sensitivities to input data and λ

were evaluated. In all 3 cases, the models change with input and λ, and show no enrichment

for specific functional categories (Figure 3.3). In contrast, some published gene-panels have

shown functional enrichment19. However, this is likely because the published gene-panels

have been developed for single antibiotics. Therefore, the genes in those panels are highly
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selective for the species-specific response that is triggered in a particular stress. In contrast,

in this work, we identify predictors that differentiate high and low fitness cases for multiple

stresses. The fact that there is no enrichment on our gene-panels is suggestive of a lack of

a general response, characterized by a set of specific genes, that gets triggered under many

different circumstances.

Besides a lack of functional enrichment, neither the MOA-specific nor the condition-

agnostic gene-panels developed here include genes that are known direct-targets of the

antibiotics used. Moreover, in addition to being sensitive to input data and regularization

strength, the condition-agnostic fitness gene-panel is limited in its applicability to other

species, as genes in this panel lack homologs in other Gram-positive as well as Gram-

negative species (Figure 3.1F). In fact, this homology problem is a limitation of previously

published gene-panels as well (Figure 3.1G). Gene-panel based models therefore not only

require re-training for each new condition, but also when they are to be implemented for a

new species. This shows that gene-panel approaches in general not only need to be applied

and interpreted with caution, but there is also no good evidence to expect that they can be

turned into a generalizable fitness predictor that is both species and condition-agnostic.

3.3.2 Gene-level transcriptional responses are unique to the type of stress

We hypothesized that one of the reasons why it may be non-trivial to produce a condition-

agnostic model is because the different conditions (i.e. MOA’s of different antibiotics)

trigger such distinct responses that it is unlikely to identify a common signature among

them. To determine whether responses from different antibiotics that fall under the same

MOA cluster together, principal component analysis (PCA) was performed on the com-
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plete differential expression dataset. Each experiment is presented as one trajectory, con-

necting individual timepoints within that experiment (Figure 3.4A). K-means clustering of

all experiments’ trajectories showed that transcriptional responses to drugs within the same

MOA tend to follow similar trajectories over time (Figure 3.4A, B).

To further analyze whether different MOA’s trigger different responses, a multi-class

logistic regression model was fit on the training dataset, and evaluated on the test set. If

a simple classifier can successfully distinguish between different MOA’s, this would imply

that there are discriminating signals specific to each MOA. Similar to the fitness prediction,

the regularization parameter was selected via a principled automatic procedure (without

making any arbitrary decisions) to avoid overfitting (Figure 3.5A). This simple regression

model is able to classify MOA’s with an accuracy of 1 on the training set, and with only

a single misclassification in the test set (Figure 3.4C, Figure 3.5D). Similar to our fitness

panel, enrichment analysis of the 34 genes in this MOA panel reveals no significantly en-

riched functional categories (Figure 3.5E). While some of the genes in the panel are relevant

to the action of specific antibiotics, it is not immediately evident how each individual gene

is relevant for the classification. For instance, DNA gyrase A (SP_1219) appears in the

MOA panel, and is a direct target of fluoroquinolones LVX and CIP, belonging to the

class DSI. However, it is downregulated to a higher extent under both RSI compared to

DSI stress, and thus does not have much discriminating power on its own (Figure 3.5D).

Compared to the fitness prediction panel, the features in theMOA panel are more robust to

parameter tuning (Figure 3.5B), and to input data (Figure 3.5C). This suggests that MOA

prediction is an easier task than fitness prediction using existing gene-panel approaches.

Previous studies have demonstrated it is possible to train a classifier that predicts MOA
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from whole transcriptome data93,24. However, it was unclear whether MOA could be pre-

dicted from the expression of a few genes. Our model could therefore, for instance, be

implemented to classify the MOA of novel antimicrobials, without having to profile the

entire transcriptome.

3.3.3 Entropy as a measure of transcriptional disorder predicts fitness

While the practical application of theMOAmodel may be useful, the main goal of this work

is to build a versatile toolbox for fitness predictions that does not have many parameters

to tune, does not rely on specific genes, and therefore possibly has improved generaliz-

ability compared to gene-panel models. To accomplish this, we focused on the following

observation that we made in the data presented in this work, as well as in previously pub-

lished studies19,105,206,101: bacteria with low-fitness in a given condition trigger larger, and

seemingly more chaotic gene expression changes than those with high fitness (Figure 3.6A,

B). Specifically, the temporal response of the wildtype strain with low fitness shows an

escalating response over time, with increasing and fluctuating transcriptional changes. In

contrast the response of the adapted strain, with high fitness, is contained with only small

changes in expression (Figure 3.6A). Since these characteristics can be observed for many

different stress-types and species, it could possibly be turned into a generalizable predictor

of fitness if appropriately captured. Importantly, these types of patterns in the data evoke

statistical entropy, which is a well-established concept that captures the amount of disorder

in a system (Figure 3.6B). Figure 3.6B shows 3 hypothetical scenarios. Genes in scenarios

1 and 2 have some sort of regulatory interaction, for instance because they are in the same

operon. In scenario 2, the individual genes’ expression patterns have differences in magni-
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tude and direction, but all genes still have similar overall expression trajectories that co-vary.

Therefore, the first 2 scenarios are illustrative of strong dependencies among genes. In con-

trast, scenario 3 highlights a more disordered pattern, and a lack of dependencies between

genes, which results in this scenario’s entropy being the highest. We hypothesized that with

increasing amounts of stress (i.e. when the fitness of the bacterium is lowered), the bac-

terium experiences increasing amounts of dysregulation, resulting in a loss of dependencies

in expression among genes. A loss of such dependencies results in more and more genes

changing in expression independently (and perhaps seemingly randomly), resulting in an

increase in entropy. Based on this idea, we aimed to quantify the amount of disorder in a

transcriptomic response by computing entropy. To predict fitness, we then use a simple

decision rule on a single feature, which avoids overfitting, where entropy higher than a

threshold t predicts low fitness, and entropy lower than t predicts high fitness.

To calculate entropy on a transcriptomic dataset with multiple timepoints, we redefine

the classical statistical concept of entropy (H) of a multivariate Gaussian distribution as

follows:

H = ln(|Σρ|) (3.1)

Where Σ is the empirical covariance matrix (Σρ is the empirical covariance of genei and

genej computed from the time series data), and |Σ| denotes the determinant of Σ2,135,28,174.

Σρ is a graphical-lasso regularized Σ, where ρ denotes the regularization strength.

Entropy is computed from experiments with multiple timepoints as follows. 1. The

temporal differential expression (DE) data is used to compute a gene-gene empirical co-

variance matrix Σ. 2. Graphical lasso67 is applied to Σ to obtain a regularized inverse of
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this covariance matrix (Σ−1
ρ ). The matrix Σ−1

ρ represents a network of dependencies of the

regulatory interactions of the genes. 3. The inverse of this matrix (Σρ) can then be used in

Equation 3.1 to compute entropy (Figure 3.7).

It is important to note that, with the described approach, a high entropy response re-

flects large changes in magnitude in the transcriptome that come from independently re-

sponding genes. This means that large changes in magnitude can still result in low entropy,

when changes in expression are synchronized among genes (Figure 3.6B). Synchronization

thus comes from dependencies between genes, for instance due to regulatory interactions,

which can vary based on the condition. Here, it is assumed that there is a sparse network

of such dependencies (i.e. regulatory interactions), which are specifically determined for

each experimental condition. These regulatory interactions for each experiment are in-

ferred by computing a covariance matrix Σ from temporal DE data. The inverse of this

covariance matrix (Σ−1) is interpretable as the (condition-specific) regulatory interaction

network, where gene pairs have a zero value on Σ−1 when their expression patterns are not

directly dependent on each other. Like most biological networks, the condition-specific

regulatory interaction network is expected to be sparse191,51,70. However, raw values on

Σ−1 empirically measured using RNA-Seq data, are mostly non-zero, resulting in a dense

network, potentially due to noise in data collection. Regularization is thereby applied on

Σ−1 to estimate a de-noised, sparse network of interactions Σρ , more likely to represent

real, biologically relevant regulatory dependencies.

Training of this multi time-point entropy model includes the determination of two pa-

rameters: regularization strength ρ and threshold t. This is accomplished by first determin-

ing ρ by 5-fold crossvalidation (on the training set), and then determining t for this selected
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ρ. ρ at 1.5 minimizes crossvalidation error (Figure 3.6C), and using this value of ρ on the

full training set, results in a threshold t of 1066.25. This in turn yields an accuracy of 0.97

and 0.84 in the training and test sets respectively. Receiver-operator characteristic (ROC)

curve analysis shows that entropy can effectively separate high and low fitness cases, with

an area under the ROC (AUROC) curve of 0.99 and 0.91 for the training and test sets

respectively (Figure 3.6D). Precision-Recall (PR) curve analysis reveals that entropy can

detect high-fitness cases, with an area under the PR curve (AUPRC) of 0.99 and 0.98 for

the training and test sets respectively (Figure 3.6E). Both ROC and PR analyses thus show

much better performance of entropy compared to the gene-panel on the test set (Table

3.1). Unlike the gene-panel based fitness prediction models, the entropy model is robust

to the selection of regularization strength ρ. It is possible to set ρ to be an extreme value

and still get comparable performance to the model above (Figure 3.8). Here, two such ex-

treme values are considered. For instance, if ρ =∞ (i.e. the co-variances among genes are

ignored and genes’ responses are assumed to be independent), entropy can be computed as

the average of the logarithm of variances of all genes. In this case, the training and test set

accuracies are 0.94 and 0.74 respectively, which is comparable to the fitness gene-panel. If,

on the other extreme, ρ = 0, i.e. entropy is computed directly on the non-regularized co-

variance matrix, the model will over-correct for a dense network. In this case, the training

and test set accuracies are 0.86 and 0.32 respectively. In this case, the poor performance on

the test set is likely due entropy being sensitive to the number of experimental timepoints

used. The training set (which is used for determining t) contains mostly experiments with

7 timepoints or more, whereas the test set contains experiments with only 2 timepoints

For ρ = 0 it appears that the value of t determined on the training set is inappropriate
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for the test set. Yet the low-fitness experiments in the test set still have higher entropy

than high-fitness experiments. Thus, a lower threshold for entropy could perform better

on experiments with fewer timepoints. While the model is sensitive to extreme changes in

regularization, this sensitivity is not as severe as the gene-panels, since the extreme value

of ρ = ∞ also yields a test set accuracy of 0.74, which is comparable to the gene-panel

method with a 0.79 test set accuracy. That said, the entropy-based model operates with

highest accuracy when biologically realistic assumptions are made, and ρ is optimized.

3.3.4 A simpler model of entropy predicts fitness from a single timepoint

The time course experiments accurately capture a bacterium’s survival in a test environ-

ment, but they are labor intensive and potentially expensive. In cases where temporal in-

formation may not be available or is prohibitively expensive to generate, computing covari-

ance across genes is not possible. However, entropy can still be determined for a single-

timepoint transcriptome profile as follows112:

Hstp = ln(σ2) (3.2)

Where σ2 is the variance of the distribution of differential expression across genes for

a single timepoint (Figure 3.9A, B). This simpler definition of entropy enables the ap-

proach to be applied even in settings where temporal transcriptional information cannot

be obtained. Similar to the temporal models, a threshold t for entropy was determined

automatically (in this case t = 2.08), which is the value that maximizes classification ac-

curacy in the training set which contains data from multiple timepoints. Analogous to the

temporal models, low fitness is associated with higher entropy compared to high fitness
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conditions (Figure 3.9). The single-timepoint variant of entropy outperforms gene-panels:

on the test set, the area under ROC curve is 0.88 for entropy, and 0.75 for the gene-panel

(Figure 3.9D). Similarly, for the test set, the area under the PR curve is 0.96 for entropy,

whereas for the gene-panel, it is 0.32 (Figure 3.9E). Moreover, the single timepoint variant

of entropy can classify low and high fitness cases with an accuracy of 0.81 and 0.61 in the

training and previously unseen test sets respectively (Figure 3.9F). However, our data shows

that different antibiotics trigger responses in a time-dependent manner, which may lead to

ambiguities in the entropy-based prediction of fitness for early timepoints for antibiotics

that cause a slower response (e.g. KAN, Figure 3.9C). Therefore, predictions based on

(slightly) later timepoints might result in improved accuracy. To test this, the training and

test datasets were split into early (≤45 minutes of stress exposure) and late (≥60 minutes

of exposure) timepoints. Two new thresholds for entropy were determined: tearly = 0.94

on the early timepoints and tlate = 2.11 on the late timepoints within the training data. On

the early timepoints, tearly achieves an accuracy of 0.75 and 0.63 on the training and test sets

respectively. On the later timepoints, tlate yields a high accuracy of 0.88 and 0.84 on the train-

ing and test datasets, only including 3 false positive predictions in the test data set (Figure

3.9G). This shows that entropy computed on data from later time points results in a higher

predictive accuracy of fitness outcome than earlier time points (Figure 3.9G). Biologically

this also makes sense, because while only some antibiotics trigger a clear response within

30-60 minutes after exposure, all antibiotics trigger an increasingly pronounced response as

exposure times progress past 60 minutes. The time dependency of an antibiotic response

thus makes it more difficult to accurately predict fitness using data from early timepoints.

This time dependency would affect the gene-panel for fitness predictions as well. Even
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though the gene-panel is trained and tested on only the later timepoints and has far poorer

performance compared to entropy trained and tested on the same (late) timepoints. More-

over, entropy trained on early timepoints does only slightly worse than gene-panels trained

on late timepoints, with only 3 additional misclassifications. This highlights that despite

the time dependency of an antibiotic response, our new entropy-based approach can make

predictions on at least two time frames, unlike gene-panels.

Overall, the entropy model (and its variants) has several advantages. First, it is based

on a simple, and intuitive principle: large and independent changes in the transcriptome

are indicative of dysregulation, and beyond a threshold predictive of low fitness. Second,

it is possible to simplify the entropy-based model to accommodate less data (i.e. single

timepoint transcriptome). Third, an entropy-based model has few parameters (at most 2

parameters need to be determined), and is therefore less likely to be overfit to data. Fourth,

themodel does not depend on the identity of specific genes, whomay ormay not be present

in different strains/species. Fifth, the model could be easily applied to other data types (e.g.

proteomics, metabolomics). Therefore, an entropy-based model is more likely than a gene-

panel based approach to be generalizable to previously unseen conditions and species.

3.3.5 Entropy-based predictions generalize across species and conditions

To test if the entropy-based approach is indeed generalizable and successfully predicts fit-

ness for other S. pneumoniae strains and other species, a new RNA-Seq dataset was generated

under CIP exposure for S. Typhimurium, S. aureus, E. coli, K. pneumoniae and two additional

S. pneumoniae strains representing serotypes 1 and 23F. These five species represent both

Gram-negative and Gram-positive bacteria and cover a wide range of CIP MICs (Figure
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3.10A). Since the single-timepoint variant of entropy is the most practical (in terms of data

collection and cost), the generalizability of entropy to previously unseen species was eval-

uated using this model. RNA-Seq was performed at 120 minutes post exposure to 1µg per

mL of CIP. The overall response characteristics are similar to what was observed for S.

pneumoniae, with 120 minutes exposure to 1µg per mL CIP triggering expression changes

with higher variance from bacterial cultures having low fitness (S. Typhimurium and S.

pneumoniae serotype 1), compared to those with high fitness (S. pneumoniae serotype 23F,

E. coli and K. pneumoniae) (Figure 3.10B). Single-timepoint entropy was computed for the

transcriptome of each of these previously unseen isolates. Importantly, with the original

threshold of 2.08, which was determined duringmodel training with data from S. pneumoniae

in Figure 3.10, fitness outcomes could be predicted for the new organisms with 100% accu-

racy, indicating that the single-timepoint entropy measure, which uses the least amount of

data compared to other variants of entropy, is a species-independent generalizable feature

for fitness outcome.

Furthermore, the entropy measurement of each strain was found to be inversely pro-

portional to the CIP MIC (Figure 3.10C), consistent with transcriptional disruption being

proportional to stress sensitivity. The correlation between entropy and CIP sensitivity in

Figure 3.10C (left panel) therefore implies that the antibiotic sensitivity of other species

could be predicted from its transcriptomic entropy. To test this, entropy was calculated for

A. baumannii isolates that are either low (ATCC 17978) or high (LAC-4) virulence, by col-

lecting RNA-Seq profiles after 120 minute exposure to 1 µg per mL of CIP. Using a linear

regression model, the CIP MICs of the A. baumannii strains were predicted to be 0.04 and

10.45µg per mL, which are proximate to the measured MIC’s of 0.07 and 8.5µg per mL for
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ATCC 17978 and LAC-4, respectively (Figure 3.10D). This demonstrates that entropy is

not simply a binary indicator of fitness outcomes. Even when using a single timepoint i.e.

the least amount of transcriptomic information, entropy can be applied to determine the

antibiotic sensitivity level for new unseen species that were not in any training data.

To further validate the approach, data from Bhattacharyya et al.19 was used. In this

RNA-Seq dataset, susceptible and resistant strains from 3 species were exposed to 3 dif-

ferent antibiotics (2 of which were not present in our dataset). Again, by using the entropy

threshold of 2.08 (obtained above through training on the S. pneumoniae data) susceptible

strains with low fitness are successfully separated from resistant strains with high fitness

(Figure 3.10E).

Finally, to explore the applicability of entropy beyond nutrient and antibiotic stress,

entropy-based fitness classification was performed on a published collection of 193 My-

cobacterium tuberculosis transcription factor over-expression (TFOE) strains154. Upon TFOE,

these strains exhibit fitness changes, ranging from severe growth defects to small growth

advantages128. Over-expression of a single transcription factor can thereby exert stress on

the bacterium that can result in different fitness outcomes. By calculating entropy from

whole-genome microarray data collected from each TFOE strain, it is possible to distin-

guish strains based on their fitness levels at an accuracy of 0.78, using a newly trained

entropy threshold for this dataset (Figure 3.10F). This result compares favorably with a

much more complicated approach involving the integration of each TFOE transcriptional

profile into condition-specific metabolic models154. Overall, these data clearly highlight

the strength of entropy, which has the potential to be utilized as a generalizable fitness pre-

diction method for both antibiotic and non-antibiotic stress, and a large variety of bacterial
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strains and species.

3.4 Discussion

A major goal of this work is to determine if there is a quantifiable feature that can accu-

rately predict bacterial fitness in an environment, independent of strain, species or the type

of stress. To be generalizable, the selected feature needs to be common across species and

environments. By generating a large experimental dataset and analyzing published ones,

we show that such a feature exists, namely transcriptomic entropy, which quantifies the

level of transcriptional disorder while a bacterium is responding to the environment. It is

important to realize that entropy is not simply a measure of large magnitude changes in

the transcriptome. Instead, entropy takes into account condition-specific transcriptional

dependencies among genes, and quantifies the amount of independent changes. The un-

derlying assumption is that gene expression patterns lose underlying dependencies and

become more stochastic with increasing amounts of stress. The difference between sim-

ple measures of magnitude changes and more controlled measures of entropy is illustrated

in Figure 3.6B. We show that entropy is a flexible, and generalizable predictor of bacte-

rial fitness in a variety of different environments, it can be used with time-course data or

single-timepoint data, and can even be used to predict the MIC of an antibiotic. This study

demonstrates how entropy-based predictive models can be implemented in several ways,

by using different amounts of data, resulting in different types of predictions. Even using

a single timepoint, it is possible to predict both fitness as a binary outcome, as well as the

MIC of an antibiotic (Figure 3.10D), highlighting entropy as a very flexible framework that

can be adapted to different settings.
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We use current gene-panel based approaches for two reasons: 1) To search for a gene-

panel that would capture a general stress-response (if it exists), and thus would represent

a set of genes and associated regulatory changes coordinated by the same mechanisms in

response to different types of stress. The existence of such a general response has been

mostly connected to the manner in which rpoS responds to stress in E. coli and a small

number of other species. However, it is largely unclear which genes respond downstream

of rpoS, whether this response is accompanied by stress-specific responses, to what extent

these transcriptional changes overlap across species and in response to different types of

stress79. Moreover, if such a general stress response exists widely across species, it is un-

clear whether there is any predictive information to be extracted from it. Importantly, we

were unable to identify such a gene-panel within the dataset we generated for S. pneumoniae

and other species, as well as in the published datasets we explored; 2) As a point of compar-

ison for our entropy-based approach. This comparison highlights that an entropy-based

approach yields better performance than a gene-panel based approach, and has at least 3

additional advantages over existing gene-panel approaches: a) It is independent of specific

genes, whereas gene-panels focus entirely on specific genes. This might lead researchers to

interpret genes present in a particular panel as those most relevant to the stress response.

However, caution should be taken in the interpretation of these gene panels, because it

turns out that the genes that appear in these panels are strongly influenced by model pa-

rameters (λ) and input data (Figure 3.1). b) An entropy-based method has few (at most 2)

parameters, and therefore does not risk overfitting (unlike gene-based approaches, where

there is at least one parameter per each transcriptionally measured gene). c) The entropy

method generalizes across different antibiotic and non-antibiotic conditions, and across
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different species. This is not the case for gene-panel based methods, which can only make

predictions on the same conditions as the data they were trained on (i.e. one model is

predictive for a specific species and a specific antibiotic). And even though a gene-panel

may only use expression of a limited number of genes to predict fitness, and may therefore

seem to be relatively easy to implement in a clinical setting, each new antibiotic-species

combination requires the collection of an entirely new training dataset. This makes gene-

panel approaches costly. Although in this paper we focus mainly on accuracy of fitness

predictions, there are additional biological insights to be gleaned from the data presented

in this work. For instance, the inverse covariance matrix from Equation (1) represents a

network that reveals regulatory interactions among genes. The covariance network infer-

ence using graphical-lasso regularization presented here is to the best of our knowledge an

improvement upon other methods (e.g. WGCNA217), which will be explored in depth in

future work. Thus, it is possible that the networks generated in this work will be applicable

in other ways, e.g. in the identification of novel regulators, their targets, or the prediction

of transcriptional changes that follow a perturbation.

By demonstrating the feasibility of predictions of fitness outcomes and antibiotic sensi-

tivity, we envision several possibilities of integrating entropy-based predictions in a clinical

diagnostic setting. Currently, AST is often performed using culture-based methods. These

methods may take days and even weeks for slow-growing species such as M. tuberculosis 96,

delaying diagnosis and treatment in clinical settings. Therefore, it is desirable to be able to

predict the fitness outcome of such slow-growing species as early as possible, for instance

using RNA expression data. Another potential application of our entropy-based fitness

predictions is monitoring an active infection in vivo. Performing transcriptome profiling
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and predicting the fitness of the infectious agent directly in its host environment would

allow for monitoring of disease progression, and determining if and when treatment is nec-

essary. Simultaneously profiling the pathogen and the host using dual RNA-Seq212,6, and

predicting the fitness of both could also be valuable in assessing the state and progression

of an infection.

Admittedly, direct implementation of RNA-Seq in diagnostic tests might not (yet) be

practical, as RNA-Seq experiments still remain relatively expensive, labor-intensive and

time-consuming. In particular, time-course experiments such as those included in this study

increase in cost linearly with an increasing number of time points. However, the advances

in technology are likely to reduce cost much more drastically than a linear model, as is

observed for many sequencing approaches. To implement temporal entropy, it is important

to recognize that more timepoints will yield better results. However, even 2 timepoints gives

robust results. The most economic approach would clearly be the single-timepoint model,

which has comparable performance to the temporal models, with the only disadvantage

that it lacks possible insights that could be gleaned from the covariance networks temporal

entropy is based on. With the advent of real-time sequencing technologies, such as Oxford

Nanopore Technologies, the speed of data collection may soon be improved significantly.

Additionally, a transcriptome can be sub sampled by monitoring conserved genes across

species. In this scenario, transcriptional entropy can be obtained via more economical gene

expression technologies, such as NanoString nCounter73 or the Luminex platform55. To

conclude, we present an approach that uses entropy to predicting fitness independently

of gene-identity, gene-function, and type of stress. This approach can be applied as a

fundamental building block for generalizable predictors of fitness and MICs for Gram-
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positive and negative species alike, and thereby possibly improve clinical decision-making.
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Figure 3.1: (A) Project setup and overview. Wildtype and adapted strains of S. pneumoniae are exposed to multiple antibiotics,
belonging to 4 different classes, and their fitness outcomes in each condition is determined by growth curves. Temporal
RNA-Seq data is used to train models that predict the MOA of an antibiotic, and the fitness outcome of a strain using
gene-panel approaches. The concept of entropy is developed expanding predictions to MIC and fitness for other strains
and species in the presence of antibiotics and in non-antibiotic conditions. (B) A gene-panel for fitness prediction is generated
by a regularized logistic regression model fit on differential expression data from the training set. The selected value of λ =
0.0428 is shown as a dashed line, resulting in 28 genes in this panel. Red points and error bars represent mean ± standard
deviation of error across n = 5 crossvalidation folds. (C) Prediction performance of the fitness gene-panel is shown as
confusion matrices for the training (top) and test (bottom) datasets. The gene-panel generates 10 and 4 false positives, and
an overall accuracy of 0.93 and 0.77 in the training and test data sets respectively. (D) Coefficients of individual features
(i.e. genes) are plotted for the model trained on the full dataset, and 5 crossvalidation training folds, where 20% of the data
is omitted during model fitting. The gene-panel is highly affected by training data, indicated by many genes having nonzero
coefficients on some folds, but not others. Only 5 out of the 28 genes in the fitness gene-panel are maintained as predictors
in the regression models across all folds. (E) Each gene’s coefficient is plotted as an individual line, against varying values of
λ. The gene panel is highly affected by λ, indicated by the nonmonotonic increase or decrease in the coefficient in each gene.
In fact, there are many genes that have nonzero coefficients only for a small range of λ. Dashed line depicts the selected
value of λ as in B. (F) The presence and absence of each of the 28 genes in the S. pneumoniae fitness panel is highly variable
across 5 Gram-positive and Gram-negative species. (G) A published E. coli CIP sensitivity panel11 also suffers from a lack of
conservation across the same group of species.
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Figure 3.2: (A)Heatmaps show the differential expression (log2FoldChange) of each gene in the panel in each of the 19 stress
conditions. Each row is a gene in the panel, and each column is a different experiment (experimental timepoints are separate
columns). Top: Training set data, Bottom: Test set data. The top bar above the heatmap shows the observed fitness outcome
(light blue: low fitness, dark blue: high fitness). The middle and bottom bars above the heatmaps indicate the MOA and identity
of the stress respectively. Dendrograms on the top and side of the heatmaps show hierarchical clustering of the columns and
rows respectively. (B) Balanced accuracy of the regression model is similar for training and test sets at different values of λ.
For λ < 0.05, both train and test set accuracies are > 0.85, despite the models selecting different sets of genes (Figure 3.1E).
(C) Receiver-operator characteristic (ROC) curve for the fitness gene-panel. The area under the curve is 0.99 and 0.75 for
the training and test sets respectively. (D) Precision-Recall (PR) curve for the fitness gene-panel. The area under the curve is
0.99 and 0.31 for the training and test sets respectively. (E) No functional category is enriched in the fitness gene-panel. For
each category present in the gene-panel, a hypergeometric test was performed, and the resulting p-value is adjusted for false
discoveries (padj). No category had padj<0.01.
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Figure 3.3: (A-D) CWSI-specific panel. (E-H) DSI-specific panel. (I-L) PSI-specific panel. A, E, I show the crossvalidation
analysis that determine the value of lambda (as in Figure 3.1B). The selected lambda is shown as the dashed line. Red points
and error bars represent mean ±standard deviation of error across n = 5 crossvalidation folds. B, F, J show the coefficients
of each gene changing depending on lambda. C, G, K show the coefficients of each gene changing with different input data
used. Full dataset: coefficients obtained when the regression model is trained on all available training data for a specific MOA.
Crossvalidation fold: coefficients obtained when the model is trained on 80% of the available training data. D, H, L show
enrichment analysis of each gene-panel predicting fitness specific to CWSI, DSI, PSI respectively (similar to Figure 3.2E).
There are no functional categories with padj<0.01.
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Figure 3.4: (A) Principal component analysis (PCA) on differential expression datasets from sensitive S. pneumoniae strains
T4 and 19F grown in the presence of 16 different antibiotics at 1xMIC depicts antibiotic responses as temporal transcriptional
trajectories. Each line describes the trajectory of one of one strain in the presence of a CWSI (AMX, CEF, CFT, IMI, PEN,
VNC), DSI (CIP, COT, LVX, MOX) PSI (KAN, LIN, TET, TOB) or RSI (RIF). Trajectories for each strain are largely grouped
based on their MOA, and grouped-trajectories become more distinct over time. The size of each data point increases with
the time of antibiotic exposure; each trajectory is split into 6 timepoints, e.g. for an experiment that spans 120’ each point
indicates a 20’ increment. Abbreviations are as in Figure 3.1. (B) In order to quantify the separation of the PCA trajectories by
an antibiotic’s MOA, pairwise distances between PCA trajectories were computed (see Methods). Pairs of transcriptional
trajectories obtained using drugs within the same MOA tend to have smaller distances than pairs obtained using drugs
with different MOA’s. K-means clustering of the trajectory distances groups the trajectories mostly by MOA, although some
PSI and CWSI trajectories are grouped with DSI ones. The top and bottom bars above the heatmap show the K-means
clustering result, and the real MOA of each trajectory respectively, which have 64% agreement. (C) Confusion matrices
indicating the performance of the gene-panel that predicts MOA. This panel was generated using a multi-class regression
model and consists of 34 genes. The gene-panel correctly predicts the MOA on all training set data and only misclassifies a
single experiment on the previously unseen test dataset, showing the different MOA’s being easily distinguishable with simple
gene-based methods.
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Figure 3.5: (A) Crossvalidation analysis was applied to determine the best value of lambda on the multi-class regression
model that predicts MOA. Unlike the 2-class models, error is evaluated as multinomial deviance. Otherwise, lambda is
determined the same way as in Figure 3.1B. Red points and error bars represent mean ±standard deviation of error across
n = 5 crossvalidation folds. (B) Coefficients of each gene for each class (i.e. MOA, shown as separate sub-panels)
change monotonically as lambda is decreased. This is indicative of the genes being more consistent than the gene-panels
that predict fitness (Figure 3.1E, Figure 3.3B, F, J). (C) Coefficients of each gene, for each class (sub-panels) are affected
by input data. Analysis similar to that done in Figure 3.1D and Figure 3.3C, G, K. (D) Heatmaps show differential expression
(log2FoldChange) of each gene in the MOA gene-panel (rows) in each experimental condition (columns). The bars directly
above the heatmaps show the MOA and the antibiotic. Top panel: training set. Bottom panel: test set. Dendrograms above
heatmaps show hierarchical clustering of the experiments. (E) Functional category enrichment analysis was done similarly to
Figure 3.2E. There are no categories with padj<0.01.
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Figure 3.6: (A) Depiction of the transcriptomic response of wildtype T4 and VNC-adapted T4 in response to 1xMIC-wt of
VNC. Differential expression (DE) of each gene over time is represented as a line. The response of the wildtype is more
disordered than the adapted-response, and has higher entropy. (B) Entropy captures disorder in a transcriptome and not
simply high-magnitude changes. The top panel shows 3 hypothetical scenarios, where DE of four individual genes are
tracked over time. In scenarios 1 and 2, the individual genes are dependent on each other and follow similar transcriptional
trajectories. In scenario 3, dependencies are largely absent and the overall changes in DE seem much more disordered. In
the bottom panel, magnitude changes (blue, quantified as the sum of absolute DE), and entropy (red) for the 3 scenarios are
compared. While the largest changes in magnitude are in scenario 1, both scenario 1 and 2 have relatively low entropy, due
to dependencies among genes. In scenario 3 overall DE is similar to the other two scenarios, but the magnitude changes
have lost much of their dependency and have become disordered, resulting in high entropy. (C) Selection of regularization
parameter ρ. 5-fold crossvalidation was used to determine the best choice of ρ. Error (1-accuracy) is reported as the mean
± standard deviation across 5 folds. The value of ρ that minimizes the mean crossvalidation error is determined to be 1.5
(red dashed line). (D) Performance of temporal entropy-based fitness prediction is shown as receiver-operator characteristic
(ROC) curves plotting the sensitivity against the false positive rate across a range of thresholds for training (black) and test
(red) datasets. The area under the ROC (AUROC) curve shows how well the predictor can separate high and low fitness.
The AUROC is 0.89 and 0.94 for the training and test set respectively. (E) Performance of temporal entropy-based fitness
prediction is shown as Precision-Recall (PR) curves plotting precision against recall across a range of thresholds for training
(black) and test (red) datasets. The area under the PR curve (AUPRC) shows how well the predictor can detect high fitness
cases. The AUPRC is 0.88 and 0.98 for the training and test set respectively. (F) Entropy of all experiments in the training
(top panel) and test (bottom panel) sets. Each experiment is represented as an individual bar, colored according to the
experimentally determined fitness outcome. Bars above the entropy threshold (Entropy = 1066.25) are predicted to be low
fitness and bars below the threshold are predicted to be high fitness. Both training and test sets score very well with an
accuracy of 0.97 and 0.84 respectively.
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Figure 3.7: The observable DE patterns are assumed to be influenced by condition-specific networks of interactions among
genes. These interactions are unknown, but can be inferred from the covariances among genes. Entropy quantifies disorder
on a transcriptome, taking into account these interactions. In order to achieve this, we first compute the covariance matrix
(Σ) across genes, and take its inverse (Σ−1). The support of this inverse covariance matrix yields a dense network, which
is the “uncorrected” version of the real coexpression network. Since the real network is assumed to be sparse, we apply
graphical lasso to retrieve a sparse network Σ−1

ρ , and invert the resulting matrix (Σρ). Entropy is defined as the logarithm of
the determinant of this matrix.

Model Group Cohen’s
Kappa

AUROC AUPRC Sensitivity Specificity Balanced
Accuracy

F1

Gene Panel Training 0.8224 0.993956 0.997277 1 0.772727 0.886364 0.949495
Gene Panel Test 0.5366 0.75 0.314235 1 0.733333 0.866667 0.666667
Temporal
entropy (rho

= ∞)

Training 0.875 0.982639 0.967558 0.958333 0.916667 0.9375 0.958333

Temporal
entropy (rho

= ∞)

Test 0.4571 0.933333 0.980821 1 0.666667 0.833333 0.615385

Temporal
entropy (rho

= 0)

Training 0.6512 0.913194 0.862189 1 0.583333 0.791667 0.90566

Temporal
entropy (rho

= 0)

Test 0.0608 0.85 0.944888 1 0.133333 0.566667 0.380952

Temporal
entropy (rho
= 1.5)

Training 0.9388 0.993056 0.986079 0.958333 1 0.979167 0.978723

Temporal
entropy (rho
= 1.5)

Test 0.5649 0.916667 0.97502 0.75 0.866667 0.808333 0.666667

Entropy
(single

timepoint)

Training 0.5417 0.790149 0.771126 0.97351 0.5125 0.743005 0.872404

Entropy
(single

timepoint)

Test 0.2963 0.875 0.963406 1 0.5 0.75 0.516129

Entropy
(single

timepoint;
early)

Training 0.4291 0.70516 0.709462 0.947368 0.444444 0.695906 0.824427

Entropy
(single

timepoint;
early)

Test 0.24 0.8 0.90758 0.75 0.6 0.675 0.461538

Entropy
(single

timepoint;
late)

Training 0.7001 0.897727 0.861196 0.957447 0.704545 0.830996 0.913706

Entropy
(single

timepoint;
late)

Test 0.6275 1 1 1 0.8 0.9 0.727273

Table 3.1: Model: name of the model. Group: training or test set.
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Figure 3.8: (A) (Same as Figure 3.6C) To test whether entropy was sensitive to regularization parameter rho, two extreme
values of rho were used, as opposed to the optimal value of ρ = 1.5 determined based on crossvalidation error. Black
points and error bars represent mean ± standard deviation of error across n = 5 crossvalidation folds. (B) For ρ = 0
(corresponding to no regularization, and a dense network of gene-to-gene interactions), and for ρ = ∞ (corresponding to
no interactions, and an empty network), the resulting networks for wildtype T4 exposed to VNC are shown. (C) These two
extreme models were evaluated using ROC and PR curves, and resulted in areas under the curve ≥0.85 for all cases in both
PR and ROC, for training and test datasets.
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Figure 3.9: (A) Genome-wide differential expression (indicated as log2FoldChange Antibiotic/NDC (no drug control)) shows
significantly wider distributions in antibiotic-sensitive strains (wtTIGR4 and wt19F) compared to antibiotic-adapted strains in
the presence of VNC and RIF, respectively in a two-sided Kolmogorov-Smirnov test. ∗∗ : 0.0001 < p < 0.001; ∗ ∗ ∗ :
p < 0.0001. (B) Entropy for a single time point is defined as the log-transformed variance of the distribution of differential
expression across genes for a specific timepoint. (C) Single time point entropy is calculated from differential expression of all
genes in experiments in the training (left panels) and test (right panels) datasets at each time point and plotted against time
post-stress exposure. Dashed red line indicates the entropy threshold (2.08) for the single-timepoint entropy predictions of
fitness. (D, E) The performance of the single time-point entropy-based fitness prediction (applied to all timepoints, ranging
from 10’ to 240’) is shown as ROC (D) and PR (E) curves. The area under the ROC curve is 0.79 and 0.88 for training and test
sets respectively. The area under the PR curve is 0.77 and 0.96 for training and test sets respectively. (F) Confusion matrix
of single time-point entropy-based fitness prediction of the training (top panel) and test (bottom panel) datasets, highlights
a good performance, but shows that there are a relatively large number of false positives. (G) Entropy values of individual
experiments in the training (top) and test (bottom) sets, separated by time. Left and right panels show early (≤45 minutes)
and late (> 45 minutes) timepoints respectively. It turns out that most false positive predictions in panel F come from early
timepoints due to a lack in transcriptional changes within the first 45 minutes after antibiotic exposure. In contrast, antibiotic
exposure longer than 45 minutes (late timepoints) leads to a clear separation of high and low fitness and high accuracy in
training and test data sets.
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Figure 3.10: (A) Six strains representing 5 species are ranked from low to high CIP minimal inhibitory concentrations
(MICCIP) tested by growth curve assays. The multi-species CIP RNA-Seq is performed at two CIP concentrations: 1) 1µg
per mL for all 6 strains corresponding to 2 low fitness outcomes (red squares) and 4 high fitness outcomes (cyan squares); 2)
MICCIP for strains that are insensitive to 1µg per mL of CIP, i.e. S. pneumoniae serotype 23F, S. aureus UCSD Mn6, E. coli
AR538, and K. pneumoniae AR497, corresponding to 4 additional low fitness outcomes. The number of genes that change in
expression upon exposure to 1µg per mL CIP (|log2FoldChange| > 1 and p-adj < 0.05) as well as their change in magnitude
is inversely correlated to their CIP sensitivity (B) and their entropy (C). Additionally, strains withMICCIP higher than 1µg
per mL revert to triggering a large number of differential expression genes (B) and a high entropy (C) at their respective
1 × MICCIP. (D) Using a linear regression model (black line; error band: 95% confidence interval for the regression),
MIC’s are predicted for A. baumannii strains ATCC 17978 and LAC-4 based on their entropy at 1µg per mL of CIP. The
predicted (green datapoint) and measured (yellow datapoint) MIC for the two strains are highly accurate indicating that
entropy can be used as a quantitative predictor. (E) Further validation of the generalizability of the single time-point entropy
approach on published expression data11. The universal entropy threshold of 2.08 trained on our S. pneumoniae data, was
successfully used to predict fitness outcomes of susceptible and resistant strains from 3 species in the presence of 3 different
antibiotics. Importantly, six of the species-antibiotic combinations (GEN-A.b/E.c/K.p and MER-A.b/E.c/K.p) were not present
in our datasets, which highlights the universality and generalizability of the entropy based approach. A.b: A. baumannii, E.c:
E.coli, K.p: K. pneumoniae. (F) Entropy calculated from transcriptional profiles of 193 M. tuberculosis transcription factor
over-expression (TFOE) strains from reference 154 separates strains with a >30% fitness defect upon TFOE induction (red)
from strains with a fitness advantage or <30% fitness defect upon induction (cyan). At the threshold of 0.71 (red dotted line),
fitness outcomes are correctly predicted at an accuracy of 0.78.
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4
Boundary-Forest Clustering: Large-Scale

Consensus Clustering of Biological

Sequences *

4.1 Background

Most bacterial species harbor large amounts of sequence diversity. For example, any given

strain of the human respiratory bacterial pathogen Streptococcus pneumoniae has about 2,100

genes in its genome, but two strains can differ by the presence or absence of hundreds of

genes. In fact, the core genome (the genes shared by all strains) is estimated to be anywhere

between 15-50% of the pangenome (the entire genetic repertoire of the species, thought to

contain between 5,000-10,000 genes)54,46,203. In species such as S. pneumoniae where there

*Adapted from Surujon D, Ghazal N, Weiss J, Bento J, van Opijnen T. Boundary-Forest Clustering:
Large-Scale Consensus Clustering of Biological Sequences. PLOS Computational Biology. Under review. Au-
thor contributions: DS, JB and TvO conceptualized the study, DS, NG, and JW performed computational
experiments, DS and JB wrote the manuscript, DS, JB and TvO edited the manuscript. All authors approved
the final manuscript.
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is a large amount of genetic diversity, phylogenetic studies or studies that compare multiple

strains first necessitate identifying which genetic elements are the same across the different

strains.

Establishing gene correspondence is often achieved by orthologue clustering, which

groups orthologues of the same gene based on sequence similarity. An ideal orthologue

clustering method is scalable, accurate, allows cluster augmentation (the addition of new

sequences to a clustered set, without changing the initial clustering), and assigns a confi-

dence score to the clusters it outputs. Earlier approaches for orthologue clustering such as

PanOCT65 and PGAP219, involve all-against-all sequence comparisons, which compares

each sequence to all other sequences in the dataset, and uses all of these comparisons to

cluster. With such an approach, the number of comparisons increase quadratically with the

number of data points, making these methods inapplicable for large datasets. PopPUNK

is a more recent tool that also performs all pairwise comparisons113. However, PopPUNK

is designed to cluster strains rather than coding sequences, for downstream population

structure analysis. Since its use case is different than orthologue clustering tools, we have

excluded PopPUNK in our comparisons. Other approaches such as CD-HIT117 and Use-

arch UCLUST56 require the user to choose a sequence similarity threshold for the clusters.

These direct threshold methods ensure that sequences that are more dissimilar than the

threshold do not appear in the same cluster, and are extremely fast. CD-HIT has been used

for pan-genome clustering for different microbial species203,102,165, while UCLUST is the

default clustering algorithm in the Bacterial Pan Genome Analysis tool (BPGA)35, which is

also used for multiple species’ pan-genome analysis75,176,222,121,18. Importantly, when using

direct-threshold methods, the correct value of the threshold may be difficult or impos-
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sible to determine, and an incorrectly chosen threshold value directly impacts clustering

accuracy.

An alternative to direct-threshold methods are network-based methods, such as spectral

clustering or Markov clustering (MCL)85,57. These methods represent each sequence as a

node in a network, and sequences are connected to one another according to how similar

they are. The resulting network can then be partitioned into clusters based on its topol-

ogy. Since generating the network requires all-against-all comparisons, these methods also

do not scale out-of-the-box. To overcome this challenge, four newer software solutions

for pan-genome clustering, PanX53, Roary147, PIRATE16 and Panaroo192 first use a repre-

sentative selection step – which reduces the redundancy in, and the size of, the dataset by

grouping extremely similar sequences together. For each group, a representative sequence

is picked, and the representatives are then clustered using MCL or alternative network-

based approaches. The cluster membership for the representatives is then extrapolated to

all sequences.

There are multiple strategies for representative selection. For instance, PanX separates

consecutive input sequences into groups, then performs clustering within each one of

these groups, and finally, selects one representative from each cluster from each group.

Alternatively, Roary, PIRATE and Panaroo use CD-HIT as their representative selection

method147,16,192. In either case, only a single set of representatives is selected, and there is

no guarantee that this set best represents the whole dataset, which is a critical limitation.

Two additional challenges for pan-genome clustering are a lack of cluster augmentation,

and a lack of confidence scores on the clustering output. Currently CD-HIT and Panaroo

are the only clustering tools that enable cluster augmentation, while no software produces

79



confidence scores, which are important in evaluating the ambiguity in the clustering results.

To overcome these challenges, we developed BFClust and made available a MATLAB

and a python implementation. BFClust uses a Boundary-Forest as a representative selection

step, resulting in multiple sets of representatives that are stored. Each set of representatives

is then clustered using MCL, yielding a clustering ensemble. A final consensus clustering

step yields a single clustering solution from the ensemble. This approach has 2 main ad-

vantages: 1. multiple sets of representatives and consensus clustering enable calculation of

confidence scores; 2. storing the Boundary-Forest enables quick cluster augmentation.

In this work, we evaluate the performance of 7 clustering methods (including hierar-

chical, K-means, spectral and MCL), and show that network-based methods such as MCL

outperform others. BFClust using MCL is then compared to UCLUST, CD-HIT, PanX,

Roary, PIRATE and Panaroo, which highlights that BFClust and PanX have high accu-

racy and robustness to noise when evaluated on a synthetic dataset generated in silico with

known cluster assignments. In real pan-genome datasets, BFClust identifies clusters with

low confidence scores, even in the core genome. Since such clusters most likely do not

represent real orthologues, the confidence score can thus serve as a means to filter cluster-

ing results, only retaining unambiguous clusters. To the best of our knowledge, BFClust

is the only clustering solution that produces confidence scores, offers automatic cluster

augmentation, and updates confidence scores during cluster augmentation.
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4.2 Materials and Methods

4.2.1 Minigenome sequence sets

Nucleotide sequences spanning the first 10 annotated CDS sequences from S. pneumoniae

strain TIGR4 were selected (nucleotides 1-27310, spanning locus tags: SP_0001-SP_0010)

and used as an initial synthetic “minigenome”. Each minigenomes dataset contains 50

copies of these 10 genes, where random independent nucleotide mutations are allowed at

a rate r. The mutation rate r is equal to the probability that one nucleotide is replaced with

a different random nucleotide. We generated 100 such nucleotide-based “minigenomes”

datasets, namely, 10 datasets for each of 10 different values of r, ranging from r = 0 to

r = 0.4. As BFClust uses amino acid sequences by default, the nucleotide sequences

for each gene were translated into amino acid sequences. To use Roary and panX, the

nucleotide sequences and CDS annotations were converted into GFF3 and genbank files

respectively.

4.2.2 Synthetic Escherichia coli datasets

In order to test performance on a more realistic dataset, where the ground truth is known,

synthetic pangenome datasets were generated using simurg63. In particular, each pangenome

dataset included 10 strains, each having a modified genome, sampled from the referenceE.

coli strain K-12 (ASM584v2). The core genome was set to be 2000 genes, with gene gain

and loss probabilities in the accessory genomes being 10−8 and 10−11 respectively. A total

of 109 generations were simulated, and 10 organisms were selected from each simulation

to form the synthetic pangenome set. For substitution rates, values ranging from 10−12 to
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10−7 per site per generation were used.

4.2.3 Streptococcus pneumoniae datasets

The “RefSeq” dataset (N = 23) contains 21 annotated chromosome sequences from the

RefSeq database144 and 2 strains our lab uses in its studies: BHN97157 and 22F-CT (CDC

Pneumococcal surveillance isolate). The “MA” dataset (N = 616) is a set of isolates

from46, collected from children between 2000-2007 from Massachusetts. The “Nijmegen”

dataset (N = 350) includes isolates from invasive pneumococcal disease (IPD) patients in

Nijmegen, Netherlands, collected between 2001-201145. The “Maela” dataset (N = 348) is

comprised of scaffold-level assemblies of carriage isolates collected from the Maela refugee

camp in Thailand between 2007-201037.

Existing CDS annotations on these genomes were used as the input sequences to be

clustered. Since the Nijmegen dataset did not have annotations, the contig fasta files were

annotated using Prokka163. The genomes were then converted to genbank format, with

dnaA as the first coding sequence using custom in-house scripts. The translated sequences

of all CDS annotations were then extracted into a fasta file for each dataset using Biopy-

thon41. When necessary, the genbank files were converted to GFF3 for use with Roary,

PIRATE and Panaroo. The GFF files retain CDS start and end coordinates on the chro-

mosome/contig.

4.2.4 Prochlorococcus dataset

The assembled, annotated genomes from Biller et al.20 were downloaded as annotated gen-

bank records. They were then converted into GFF and fasta records for use with different
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software.

4.2.5 Boundary-Forest

Within BFClust, a large sequence dataset is reduced to a set of representative sequences

using Boundary-Forests. For each input dataset, 10 randomized read orders are generated.

The sequences are read in these orders and 10 different Boundary-Trees are constructed

as described in131. Briefly, the first sequence that is read is placed as the root node, and the

second as its child. For each subsequent sequence read, it is compared to the root node,

and all its children using Smith-Waterman distance172. If the sequence being processed

is within a pre-determined distance similarity threshold t of a node already on the tree,

then this node on the tree becomes its representative. This means that the sequence being

processed is marked with the identity of the representative, and is not included in the tree.

Otherwise, the sequence is compared to the current node, and all its children, and added

to the tree as a child of the node that it is closest to. Most of the input sequences are not

included in the tree and are simply associated with a representative on the tree. Boundary-

Trees contain 2% of the original input sequences, making the clustering of large numbers

of (e.g. 1 million) sequences possible. By default, the sequence distance similarity threshold

is 0.1 and each node is allowed up to 10 children. We found that the clustering results on

the minigenomes dataset were not altered when these parameters were changed.

BFClust was developed in MATLAB R2017b and the source code is available under

the MIT license here. In order to make BFClust available without the need of proprietary

compilers, a python version was also developed, under the MIT license, found here.
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4.2.6 Clustering

An all-against-all pairwise comparison is done on the representative sequences obtained

from each Boundary-Tree to construct a distance matrix S. For each of the following

methods, excluding MCL, and each of the 10 replicate trees, a custom range number of

clusters K is considered. In the clustering of S. pneumoniae pangenomes, a range of K =

3000, 3200, 3400, , 6000 clusters is used.

Hierarchical Clustering: an agglomerative hierarchical cluster tree is generated using

Ward’s linkage100 on S. Then, the representative sequences are split into K clusters.

K-means Clustering: S is clustered using Lloyd’s algorithm123, with K-means++ for

cluster center initialization7. This is an approach to partition sequences into K clusters,

by iteratively selecting K cluster centroids, assigning points to their closest centroids, and

updating the centroids based on the new cluster assignments.

K-means Vectorized: Since K-means is commonly applied to vector data in Euclidean

space, we extract from S, vectors in Euclidean space. For this, we first generate the symmet-

ric matrix M, where Mij =
S21j+S2i1−S2ij

2 . Then, the eigenvalue decomposition M = UVUT is

computed, where U is orthogonal and V is diagonal. The product U
√
V gives Euclidean

coordinates for all data points. For the vectorized K-means algorithm, we use the same

kmeans function, but with U
√
V as input instead of S.

Spectral Clustering: The distance matrix S is transformed into an unweighted adja-

cency matrix W by applying a Gaussian kernel, and thresholding. Then, the graph Lapla-

cian (L) and L’s eigenvalue decomposition is computed. The top eigenvectors are then

clustered using the standard kmeans function. We consider three variants of spectral clus-

tering. One just as described before, which we call SpectralNN, one where L is normalized
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as in167, which we call SpectralSM (for Shi-Malik), and one where L is normalized as in140,

which we call SpectralNJW (for Ng-Jordan-Weiss).

Markov Clustering (MCL): Similar to Spectral clustering, MCL also uses the adjacency

matrix W. W is column-normalized to yield a stochastic matrix. Then a series of expan-

sion (taking matrix power)-inflation (taking element-wise power)-renormalization steps are

applied iteratively on this matrix until the resulting matrix does not change. The nonzero

elements of the diagonal correspond to attractor nodes. Each attractor, together with all

its neighbors inW form a cluster197.

The run parameters used with each clustering software can be found at the BFClust

GitHub repository Data in Figures 2, 5, and 6 were obtained using the MATLAB imple-

mentation of BFClust, whereas data in Figures 3 and 4 were generated with the python

implementation.

4.2.7 Error and selection of best number of clusters

In cases where the ground truth is not known, we use the sum of squared errors (SSE) as

a measure of clustering quality. SSE is defined as follows:

SSE(K) =
K∑
i=1

|ci|∑
j=1

|xj − mi|2

Where K is the total number of clusters, ci is the i’th cluster, and |ci| is the number of

elements in ci. mi is the medioid (sequence that has the smallest total distance to all other

points within the cluster), and xj is the j’th element in ci. We compute SSE for a user-defined

range of K values. The most appropriate number of clusters is determined to be the elbow

point, or the point of maximal curvature, of the SSE vs K curve. We detect this point by

85

https://github.com/dsurujon/BFClust_scripts_data/blob/master/protocols/Time_Memory_compare.md
https://github.com/dsurujon/BFClust_scripts_data/blob/master/protocols/Time_Memory_compare.md


finding the value of K where the second derivative of SSE(K) is maximized.

4.2.8 Consensus clustering

In order to aggregate the replicate Boundary-Forest clustering results, consensus cluster-

ing is used179. First the cluster assignments are extended such that each point that was

excluded from the Boundary-Tree gets the cluster assignment of its representative on the

tree. This is done for the 10 Boundary-Trees, generating a feature vector of 10 clustering

assignments for each sequence, for each clustering method. We then use K-medioids clus-

tering, a scalable method, to cluster these feature vectors. For the number of clusters, we

use the mode of the best number of clusters from each tree. The feature vectors associated

with each sequence is stored for later use, in cluster augmentation.

4.2.9 Cluster augmentation

Given an existing set of clustered sequences, and a new set of sequences, cluster augmen-

tation assigns the new sequences to the closest existing cluster. The new sequences can

be processed directly, or the used can choose to do a round of representative selection

to reduce the size of the new dataset. A set of representatives is selected from the input

sequences by constructing a Boundary-Tree. The representative sequences are then run

through the existing Boundary-Forest that was generated when the first set of sequences

were clustered. Each representative sequence in the new set traverses each tree in the

Boundary-Forest, starting from the root node, by moving to the closest child node. In

each tree, the representative is assigned the same cluster as the node it has the smallest

Smith-Waterman distance to. This results in as many cluster assignments as the number of
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trees in the forest. These cluster assignments are taken as a vector, having the same length

as the existing feature vector of clustering assignments prior to consensus clustering. The

closest existing cluster for each new sequence is determined by 1. finding the vector v in

the list of stored feature vectors that is closest to the new cluster assignment vector, and 2.

assigning to the new sequence the same cluster as that of vector v.

4.2.10 Matching of two clustering partitions

In order to compare two clustering results, or to compare the misclustering error against a

known ground truth, we apply the Hungarian matching algorithm138. Briefly, for clustering

A and clustering B, if we have n and m clusters respectively, we generate an empty cost

matrixM: a (n+m)×(n+m)matrix of zeros, with each row representing a cluster inA, and

each column representing a cluster in B. The (i, j)th entry in this matrix is the dissimilarity

cost between cluster i from clusteringA and cluster j from clustering B. The entries on the

upper left n× m section of M, i.e. M(1 : n, 1 : m), are populated with the total number of

mismatches between clusters i and j from clustering A and B respectively. That is, the sum

|Ai \Bj|+ |Bj \Ai|, where |S| denotes the size of a set S. The blockM(n+1 : n+m, 1 : m)

represents the costs of clusters in B having no representatives in A. Each column in this

block is populated with |Bj| for cluster j. Similarly, M(1 : n, 1 + m : n + m) is populated

with |Ai|. Finally, M(n + 1 : n + m, 1 + m : n + m) only has 0 cost. We use this sum of

costs to be the error between two clusterings (or a clustering and the ground truth, when

the ground truth is known).
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4.2.11 Overlap of two clustering partitions

We define the overlap between clustering partitions C1 and C2 on the same dataset as the

fraction of clusters in C1 that are conserved in C2. In other words, if a cluster in C1 has all

its members in the same cluster inC2 (with possibly other sequences included in this cluster

in C2), it counts towards the overlap. Note that this overlap measure is not symmetrical

(i.e. Overlap(C1,C2) is not necessarily the same as Overlap(C2,C1)).

4.2.12 Confidence scores

We use definitions of item and cluster confidence scores similar to those defined by Monti

et al.137. For a dataset of size N, that has been clustered on T Boundary-Trees, we define a

consensus matrixM which is aN×Nmatrix, whereM(i, j) is the proportion of times that

items i and j have appeared in the same cluster. The item consensus for item i belonging

to cluster k is defined as ci(k) = 1
|k|

∑
j∈k M(i, j) i.e. the average consensus between i and

other items belonging to the same cluster. Similarly, the cluster consensus for cluster k is

defined as ck = 1
|k|2

∑
i,j∈k M(i, j) i.e. the average consensus between all pairs of items in

cluster k.

4.3 Results

4.3.1 Algorithm Overview

Clustering of sequences using BFClust has three major steps: 1. representative selection

i.e. reducing redundancy in the input data using Boundary-Forest; 2. clustering of each set

of representatives associated with each Boundary-Tree into an ensemble of clustering solu-
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tions; and 3. deriving a consensus clustering from this ensemble of solutions (Figure 4.1).

Once a consensus clustering is obtained, each cluster is assigned a cluster confidence score,

and each amino acid sequence is given an item consensus score, based on the agreement

of the clustering produced using the different Boundary-Trees.

A naïve way to cluster all sequences from many bacterial genomes would be to look

at all-vs-all pairwise sequence comparisons. Since all-vs-all pairwise comparisons require

a computational effort that scales quadratically (O(N2) comparisons) with the number of

sequences (N), it is beneficial to apply a representative selection scheme such that a group

of extremely similar sequences is represented by a single sequence. We achieve this by

constructing a Boundary-Forest (see Appendix for pseudocode). In a Boundary-Forest,

n Boundary-Trees are constructed, with n = 10 as the default size of the forest. Before

constructing each Boundary-Tree, the order of sequences is randomized. The Boundary-

Tree is constructed by placing the first sequence as the root, and the second sequence as its

child. Then, each subsequent sequence is compared to the root node and its children. If the

Smith-Waterman distance172 between the incoming sequence and a node in the Boundary-

Tree is smaller than a pre-set threshold t, the incoming sequence is represented by this

node, and omitted from the tree. If the incoming sequence is not within the threshold

of the root node or its children, we select the node (among the parent and children being

compared to the incoming sequence) with smallest distance to the incoming sequence. If

the newly selected node also has children, we repeat the comparison, moving down the tree

until a representative is found that is sufficiently close to the incoming sequence. If such

a node is found, we assign this node as the representative of the incoming sequence, and

start processing the next incoming sequence. If no node within distance t is found on the
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tree, the new sequence is added as a child of a leaf in the tree. To control the breadth of

the tree, the maximum number of children allowed for each node is limited (with the pa-

rameter “MaxChild”). Note that below, we explore the sensitivity of the approach to these

parameters. Since any Boundary-Tree that is constructed is sensitive to the order in which

the sequences are read, a single tree is not guaranteed to capture a set of representatives

that leads to highly accurate downstream clustering. Therefore, multiple Boundary-Trees

(the Boundary-Forest) are used, which can be thought of as multiple ‘opinions’ on what

representative sequences should be chosen. Once the sequence set is reduced to n sets of

representatives, stored as a forest of n trees, the pairwise distances are computed within

each set of representatives, and well-established clustering algorithms are applied.

After clustering the representatives, the cluster assignments of the representatives are

extended to the full dataset. This is a necessary step for comparing the clustering output to

the ground truth, comparing two clustering outputs to each other, and for consensus clus-

tering, as these actions are performed on the full dataset, and not on the representatives.

During the construction of each Boundary-Tree, each sequence is assigned a representa-

tive (or is itself a representative) based on sequence similarity. Cluster extension from the

representatives to the full dataset is done by assigning each sequence the cluster of its rep-

resentative. The representatives of each Boundary-Tree are used to produce one clustering

output, the whole Boundary-Forest thus leading to an ensemble of possible clustering out-

puts. Consensus clustering across the clustering ensemble is then applied, combining the

clustering output obtained from each tree, to improve accuracy. Finally, BFClust compares

how the different clustering outputs in the ensemble contribute to the consensus cluster-

ing, and using the differences in these contributions it assigns an item confidence score to
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the membership of each sequence to its consensus cluster, and a cluster confidence score

to the existence of each cluster.

4.3.2 Boundary-Forest reduces redundancy in the sequence set

In order to evaluate whether Boundary-Forest effectively reduces an input dataset into a

small set of representatives by removing redundant sequences, we studied how much this

step reduces the size of the dataset, how this reduction depends on the algorithm’s pa-

rameters, and how, in turn, this affects downstream clustering accuracy. We generated

a small test dataset (‘minigenomes’), with 500 sequences of varying length (ranging from

65 to 1170 amino acids). This dataset has 50 noisy copies of 10 genes, and therefore 10

inherent sequence clusters. The noise is independent, random changes in the nucleotide

sequence with probability 0.01 per nucleotide. Since BFClust uses amino acid sequences by

default, the perturbed nucleotide sequences were then translated into perturbed amino acid

sequences in silico. As the changes introduced to the sequences are random, 10 replicate

sequence sets with the same mutation probability were generated. Figure 4.2A shows how

the size of the Boundary-Tree constructed from this dataset is robust to two parameters

that are crucial in constructing the Boundary-Tree: MaxChild and the sequence similarity

threshold t. A detailed description of all parameters used in BFClust is provided in S1 Ap-

pendix. While a drastically small threshold value (t = 0.01) results in larger trees (which

is intuitive, since with a smaller similarity threshold, fewer sequences can be represented

by the same node), the size of the tree is robust to a large range of t and MaxChild val-

ues. Once a tree is generated, applying downstream clustering still may require all pairwise

comparisons on the representatives. However, the number of pairwise comparisons are

91



now greatly reduced; for example, a tree generated withMaxChild = 10 and t = 0.1 has 15

nodes (Figure 4.2A), which requires only
(15
2

)
= 105 pairwise comparisons for clustering,

versus
(500
2

)
125,000 when clustering the entire dataset. Importantly, the construction of

each Boundary-Tree also requires relatively few sequence comparisons itself: for example,

4500 comparisons are sufficient to generate the Boundary-Tree, whenMaxChild > 2 (Fig-

ure 4.2B). The trees constructed are also relatively shallow (Figure 4.2C), meaning that the

addition of a new sequence to an existing forest will require very few sequence comparisons

(the number of comparisons grows with the depth of the tree) and will thus be very fast,

which is relevant when we later discuss clustering augmentation. This is in line with the

results reported by the creators of Boundary-Forest, where the depth of Boundary-Trees

was shown to depend logarithmically on the number of data points for multiple datasets131.

Importantly, applying the full BFClust pipeline with varying the parameters MaxChild and

t did not alter the clustering output, and the recovered clusters using any combination of

these parameters (in the ranges presented in Figure 4.2) were identical to the ground truth

and resulted in no error in clustering output.

There are alternatives to representative selection that involve simpler algorithms than

Boundary-Forest; two approaches we discuss here are a random sampling and a naïve sam-

pling strategy. Random sampling is the selection of representatives randomly from the full

set of sequences. This is not a viable strategy, as it does not guarantee that all clusters will

be selected. For example, on the set of 500 sequences with 10 known clusters, a random

selection is likely to include at least one representative from all 10 clusters only when a

sufficiently large number of sequences (e.g. N = 50) are randomly selected. In this case,

a 10-fold reduction in the number of representatives (compared to the full sequence set)
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may seem promising. However, in real pan-genome datasets, this reduction might result

in hundreds of thousands of representative sequences, which would still be prohibitively

numerous for downstream clustering. Moreover, in real sequence sets it is not clear how

many sequence clusters are present, and random sampling risks missing smaller clusters.

Thus, estimating the number of random samples to be selected such that all clusters will

be represented is difficult, if not impossible.

In the second, naïve sampling scheme, sequences are read in a random order, and the

first sequence is placed into a ‘representatives’ group. Each incoming sequence is then

compared to the existing representatives, and if no representative closer than a threshold

t is found, the incoming sequence is added to the representatives group. Both CD-HIT

and UCLUST apply this naïve sampling strategy. On the small 500-sequence minigenomes

dataset, the number of representatives selected by the naïve sampling and Boundary-Tree

are similar (Table 4.1). However, cluster augmentation, which is a key advance we present

below, requires the comparison of new sequences to all of the representatives in the case of

naïve sampling, while in the Boundary-Tree, the traversal of a much smaller subset of rep-

resentatives is required. The number of comparisons on a Boundary-Tree is dependent on

the tree depth, and the number of children each node has, which is limited with the Max-

Child parameter. With MaxChild = 10, the estimated number of possible comparisons in

the Boundary-Tree for new sequences would be at worst 10 × (tree depth), whereas in the

naïve scheme it would be equal to the current size of the representatives set. The advantage

of the Boundary-Forest becomes apparent when a larger sequence set is considered. For

instance, 20 S. pneumoniae strains were selected from the RefSeq database, and the coding

sequences were subjected to naïve sampling and Boundary-Tree sampling. While the num-
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ber of representatives in the Boundary-Tree is about twice as large as the representatives

picked with naïve sampling, the trees are shallow. The number of comparisons needed to

process a new sequence in the Boundary-Tree is 90, which is about 35-fold smaller than

the comparisons using the naïve representative set ( 3265). Therefore, we conclude that the

extra effort at the beginning of constructing the Boundary-Forest results in more efficient

sample processing as the sequence dataset grows larger.

4.3.3 BFClust can compute cluster confidence scores

The consensus clustering step across the Boundary-Forest not only reduces error, but it

also allows confidence estimation for the existence of each cluster, and for the membership

of each sequence in its consensus cluster. By comparing the clustering done using the

representatives on each Boundary-Tree, it is possible to measure how frequently a cluster

has the same members, and use this value as an estimate of cluster confidence. We define a

cluster confidence score (for each cluster) and an item confidence score (for each sequence),

and include both sets of values in the BFClust output. Both values depend on the consensus

index137. The consensus index of a pair of sequences i and j is the number of times that

they appear together in the same cluster across n Boundary-Trees, divided by the total

number n of Boundary-Trees used. The item confidence score for item i is the average

consensus index between i and all other members of the same consensus cluster. The

cluster confidence score is the average consensus index between all pairs of items within

the same consensus cluster (Figure 4.3). Both scores take a value between 0 and 1, and a

score of 1 indicates perfect agreement of cluster memberships across the Boundary-Forest.
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4.3.4 Cluster augmentation: addition of new sequences to an existing clustering.

A major advantage of the BFClust algorithm is that it stores the Boundary-Forest contain-

ing representatives from all previously processed input sequences. This allows BFClust to

add new sequences to an existing clustering/partition while being able to update the con-

fidence scores without much computational work. To achieve this, a cluster augmentation

method is implemented (see Figure 4.4A for a schematic overview). A set of incoming

input sequences can either be used as-is, or optionally are reduced to a new set of repre-

sentatives by constructing a new Boundary-Tree. These new sequences (or representatives)

are then run through each tree in the existing forest (corresponding to the already clustered

set of sequences), and for each new representative, a close match on each of the 10 trees

is identified. The cluster membership associated with each tree is extracted for these close

matches from the previously computed clustering. Each new sequence is assigned the same

clustering membership as that of the corresponding close match within each tree. This re-

sults in a vector of cluster assignments for each new sequence. Afterwards, the vectors

composed of the cluster memberships for the new input representatives from each tree are

turned into a consensus cluster assignment using a nearest neighbor search on the cluster

assignments of the datapoints in the existing dataset. If an initial representative selection

step was used, the consensus clustering on each input representative is then extended to

the entire input set, using the same procedure of cluster extension during de novo clustering.

The runtime of de novo clustering and cluster augmentation scales tractably with in-

creasing number of data points (Figure 4.4B). For de novo clustering, increasing numbers of

strains of S. pneumoniae were included. For cluster augmentation, the 5 additional strains

were augmented onto the already-clustered data. The runtime remains the same, regardless
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of the size of the existing clustered dataset. (Figure 3B). Memory usage on the other hand

does depend on the size of the existing dataset (Figure 4.4C).

4.3.5 Comparison and benchmarking with existing methods

We selected four existing sequence clustering methods to compare BFClust against. The

first is Usearch UCLUST56, a very fast and scalable algorithm that is also the basis of sev-

eral other pangenome phylogenetic analysis pipelines such as SaturnV66, PanPhlAn159 and

BPGA35. Second, we consider CD-HIT, another scalable software that has been used di-

rectly in pan-genome analysis102,165 and for representative selection in other pipelines such

as Roary147, PIRATE16 and Panaroo192. These three tools are also included, as they al-

low pan-genome analysis of several hundred genomes at once, and therefore have been

utilized in recent studies151,158. Finally, PanX53 is included, another recent software that

can be used with hundreds of genomes. First, the runtime and memory usage of the four

software tools was compared to BFClust (Figure 4.5A-B). The direct-threshold methods

UCLUST and CD-HIT are orders of magnitude faster than the other methods and have a

small memory footprint. On the other hand, methods that employ network-based cluster-

ing take far longer, and use more memory. With 250 input genomes, which corresponds

to 500,000 coding sequences to be clustered, BFClust has a larger runtime and memory

footprint (Figure 4.5A-B, Table 4.2). The increased memory use can be explained by the

ensemble clustering approach BFClust employs, which is critical for computing confidence

scores. The time and memory use, while higher in BFClust, do scale similarly to most other

modern clustering tools.

In order to compare the sensitivity to noise of our approach to existing methods for
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biological sequence clustering, we generated an extended set of test sequences. Here, we

made 10 replicates of small pangenomes of Escherichia coli. The reference strain K-12 was

evolved in silico, with both de novo mutations and lateral gene transfer events allowed63.

The de novomutation rate was varied between 10−12 and 10−7 mutations per nucleotide per

generation. The clustering output was compared to the known cluster assignments for each

mutation rate. For a mutation rate of 10−10 per nucleotide per generation, BFClust, PanX

and PIRATE are the three tools that have high overlap with the real cluster assignments. In

contrast, Roary and Panaroo have less overlap with the real clusters at low substitution rates

(e.g. 10−11) and UCLUST and CD-HIT have a very sharp drop-off (Figure 4.5C, Table 4.2).

The location of this drop off depends on the threshold chosen by the user; more stringent

thresholds would result in the accuracy to drop at a smaller substitution rate. Based on

this, we recommend using PIRATE, PanX or BFClust when a high amount of variation is

expected in the sequence data, either due to genetic variation, or noise from error-prone

sequencing technologies95. An overall comparison of all 7 approaches are summarized in

Table 4.2.

4.3.6 Clustering of real pan-genomes

To demonstrate the applicability of BFClust beyond synthetic datasets, several real pan-

genome S. pneumoniae datasets were explored. S. pneumoniae is a naturally competent, op-

portunistic human pathogen that is known to have a relatively large pan-genome, partially

shaped by recombination events54,46. Since in a real pan-genome, the ground truth for clus-

tering is unknown, it is not possible to compute clustering error. Therefore, in this section

we compare different clustering methods to each other and see whether they yield consis-
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tent outputs, in addition to exploring the cluster confidence scores generated by BFClust.

Previously, core and pan-genome analyses using Roary had revealed that across different

datasets of pneumococcal isolates, the core genome is not conserved, and the size of the

pan-genome is not the same across datasets203. However, it is unclear whether this is a

consequence of the datasets (which come from different populations that are also geo-

graphically separated) and/or an artifact of the clustering method used. In order to avoid

any bias associated with a specific dataset, we compiled 4 datasets in this study: 1. RefSeq

(closed, chromosomal genomes, n=20)144 2. Maela (annotated contigs from a Thai refugee

camp, n=348)37; 3. Nijmegen (annotated contigs from a Dutch hospital, n=350)45; and

4. MA (annotated contigs from surveillance data from Massachusetts, n=616)46. Despite

being the smallest dataset, the RefSeq set is the most diverse, as these strains have collec-

tion dates and countries of origin that vary the most. The Nijmegen dataset is comprised

of pneumococcal isolates from invasive pneumococcal disease patients, whereas the MA

and Maela datasets are collections of pneumococcal isolates from healthy individuals (i.e.

carriage isolates).

First, we evaluated whether the core and accessory genome profiles detected by each

method are consistent. A reasonable expectation for a given tool is that it produces similar

core and pan-genome size estimates for the 3 larger datasets (MA, Maela, Nijmegen). This

expectation is met by all methods but Roary, which shows a big discrepancy in the core and

pan genome size across these datasets (Figure 4.6A, B). Relative to the other methods, it ap-

pears that Roary underestimates the core genome size, and over-estimates the pan-genome

size (Figure 4.6A, B). In comparison, BFClust and PanX both find a larger core genome

and a smaller accessory genome compared to the other methods, whereas UCLUST and
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CD-HIT find a similarly sized core genome, but a larger accessory genome compared to

BFClust and PanX (Figure 4.6).

In order to compare the agreement between clustering methods on a given dataset, we

computed cluster overlap: the proportion of clusters generated by onemethod that are fully

contained within another cluster generated by a second method (note that this measure is

sensitive to the direction of comparison; agreement of method A with B is not necessarily

the same as the agreement of B with A; see Methods). Interestingly, on the same datasets,

CD-HIT and UCLUST had the highest agreement, as determined by cluster overlap (Fig-

ure 4.6C). BFClust and PanX were also in high agreement. Roary appears to have poor

agreement with other methods in one direction, which could be attributed to the fact that

it is producing many more clusters, fewer of which end up in the core genome. This is po-

tentially a consequence of Roary using CD-HIT for the first step of selecting representative

sequences, as both were sensitive to noise.

Clustering of pan-genome sequences can be the first step of phylogenetic analyses. For

instance, the SNPs within the core genome can be used to generate phylogenetic trees

and make conclusions on population structure46. In these analyses, it is essential that the

clustering is unambiguous; incorrect clustering would potentially lead to misleading conclu-

sions. We therefore computed the cluster confidence scores for each cluster obtained using

BFClust, on each of the 4 S. pneumoniae datasets. The majority of the clusters had a score

near 1, indicating very little ambiguity in the clustering output (Figure 4.7). Specifically, we

observe high-confidence clustering in the core genome; the mean score for core genome

clusters is > 0.999 (and the median score = 1) in all 4 datasets. In the 3 larger datasets

(Maela, MA and Nijmegen), we observe that the lower scoring clusters are mainly in the
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accessory genome, shared by less than a third of the strains included. In all datasets, there

exists a single cluster with a much lower score than the average, present in the majority

(and in some datasets all) of the strains included (marked in red in Figure 4.7). This clus-

ter is comprised mostly of sequences of very short length ( 30 amino acids), annotated as

hypothetical genes. It is unclear whether these short sequences are artifacts of sequencing

errors, annotation errors, incomplete genome assembly or a combination of these factors.

In order to extend our analysis beyond a single species, a set of Prochlorococcus genomes

were clustered, and the results of the 7 methods were compared. This dataset comes from

a marine cyanobacterium species complex with much greater genomic diversity than S.

pneumoniae 20. BFClust identified 5703 clusters, 939 of which belonged to the core genome.

These values are similar to the core and pan genome sizes reported using PanX53, as well as

those found here using PanX and PIRATE (Figure 4.8A). The agreement across methods

is within the same range as the S. pneumoniae datasets (Figure 4.8B). However, the overall

consensus scores of clusters are lower in this dataset, potentially due to the high amount of

diversity in this collection of strains (Figure 4.8C). This indicates that the solutions found

by any one method may have uncertainty, however methods that do not employ a con-

sensus clustering step might give the user a false sense of security in the correctness of

their output. The uncertainty in the clustering output is potentially a result of the large

amount of diversity of this species complex. In fact, all methods’ outputs suggest that

Prochlorococcus has a large, open pangenome (Figure 4.8A). This is not surprising, as this

species complex occupies and is adapted to marine niches that vary in light intensity, nutri-

ents available and temperature. Given the low confidence scores, clustering results in this

highly diverse dataset should be interpreted with the increased uncertainty in mind.
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4.4 Discussion

When clustering a set of sequences from a bacterial pan-genome, there are multiple options

regarding the software/algorithm to choose from. We observed that direct-thresholdmeth-

ods such as UCLUST and CD-HIT are extremely fast, have the advantage of scalability, but

they often do poorly in terms of accuracy and sensitivity to noise (Figure 4.5). They also re-

quire the user to select a sequence similarity threshold, assuming all sequence clusters have

similar sequence diversity, which is not always true. Different genetic elements are subject

to different selective pressures, and therefore sequence conservation/diversification may

be associated with multiple factors, e.g. essentiality99, rendering the use of a single thresh-

old problematic. Therefore, it is more advisable to first reduce the dataset into a smaller

representative set (potentially using these faster methods) and then apply a more rigorous

clustering method.

For the selection of representative sequences, we propose the use of Boundary-Forest,

which is supported by existing numerical experiments showing the improved accuracy and

speed of Boundary-Forest compared to other algorithms131. Its implementation is also

very simple (see pseudocode in Appendix). The inclusion of multiple trees in the forest

and downstream application of consensus clustering reduces errors, and results in BFClust

being highly tolerant to noise, especially when used with network-based downstreammeth-

ods such as MCL. Furthermore, the use of multiple Boundary-Trees makes it possible to

compute confidence scores. Saving a copy of the shallow Boundary-Trees allows rapid

cluster augmentation without having to alter the existing clustering assignments, which is

highly desirable for consistency. Moreover, augmentation can be done while updating the
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clustering confidence scores. This makes BFClust the only pan-genome clustering method

that can generate such a cluster confidence score, both during de novo clustering and dur-

ing cluster augmentation. These added features do come with a small cost of runtime and

memory – they are both an order of magnitude larger than most other tools, but scale

similarly (Figure 4.5). The majority of the time is spent on Boundary-Tree generation, and

more specifically during the sequence comparisons. The current implementation of BF-

Clust uses non-compiled python functions. Use of compiled and speed-optimized software

such as the NCBI BLAST+ suite can potentially increase speed during the Boundary-Tree

generation step, as it is approximately 1000x faster than the current implementation. The

increased memory use can be addressed by using swap files on computers where solid state

drive space can supplement random access memory.

The cluster augmentation strategy implemented in BFClust (and in CD-HIT) is distinct

from online clustering methods, which update the clustering, as new data points become

available. This can potentially change the cluster memberships of the already-clustered

dataset. BFClust on the other hand performs cluster augmentation by using a K-nearest

neighbor search to find a cluster in the existing dataset that is a close match of the incoming

sequence, without altering the existing clustering. This K-nearest neighbors search could

potentially be replaced by a K-means or K-medioids clustering on the full combined set

of already-clustered and incoming sequences, in order to make BFClust more similar to an

online method. However, it is not clear whether the same K value (total number of clusters,

which was used in the initial clustering) would apply to the full set with the incoming se-

quences included. BIRCH218 and stream clustering81 are two examples of online clustering

algorithms, however it is not known whether they would apply well to biological sequences,
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as they are non-network-based methods. The BFClust strategy has a number of advanta-

geous features that can be explored further. Since each of the trees generated in BFClust

has a small depth, the number of comparisons one needs to make for a new sequence

set is relatively small (tree depth × 10 trees). Thus, this method offers a framework that

makes the rapid integration of new clinically important isolates and their sequences possi-

ble. In the same vein, it is possible to quickly compare the clustering results of two different

datasets (e.g. isolates of the same species of bacteria, collected from different geographical

locations) by running one set through the Boundary-Forest of the other. Moreover, the

networks that are generated as intermediate steps in clustering may harbor novel data that

remains unexplored in this work. For instance, it may be possible to extract additional in-

formation from the network connectivity of sequences, and infer evolutionary trajectories

of different genes under differing selective pressures36.

In conclusion, UCLUST and CD-HIT may not be best suited for pan-genome cluster-

ing, as they depend on a user-supplied similarity threshold. UCLUST, CD-HIT, Roary and

Panaroo are sensitive to noise in the data. Nevertheless, the speed of UCLUST and CD-

HIT make these methods attractive alternatives to BLAST when querying large datasets.

Overall, BFClust and PanX are pan-genome orthologue clustering methods that are in high

agreement, and can tolerate noise in the sequence dataset. However, when the dataset is

highly diverse, we observed that there is a lot of uncertainty in the clustering results, as

shown by the low consensus scores on the Prochlorococcus dataset (Figure 4.8B). Pana-

roo and PIRATE have lower runtimes and memory requirements as an advantage. PanX

has the advantage of informative and interactive visualizations, whereas BFClust has the

added features of estimating confidence scores. Moreover, most pan-genome clustering
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methods (with the exception of CD-HIT and Panaroo) do not readily allow cluster aug-

mentation, and to the best of our knowledge, no previous clustering method enables cluster

augmentation while being able to output confidence scores. Confidence scores are crucial

in pan-genome clustering, as they allow the researcher to avoid using ambiguous clusters

(i.e. clusters with a low score) in downstream analyses and interpretation. With the con-

fidence score of BFClust, such clusters can automatically be detected and excluded from

further analysis.
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Figure 4.1: From the input sequences, multiple sets of representatives are selected using Boundary-Forest. Each set of
representatives is stored as a Boundary-Tree. This reduces a large input dataset to a small set of representative sequences in
the forest. Then, representatives on each tree are clustered using MCL. For comparison purposes, the following alternative
algorithms were tested: Hierarchical, 2 variants of K-means, and 3 variants of Spectral clustering. Once representative
sequences on each tree are clustered, the cluster assignments are extended to the full input sequence set, producing a
clustering ensemble i.e. one clustering output associated with each set of representatives. A consensus clustering step is then
used to take the clustering ensemble across the trees and produce a single clustering solution, as well as confidence scores.
Cluster consensus scores are calculated for each cluster, and item consensus scores are calculated for each sequence within
each cluster.

Figure 4.2: Boundary-Trees were generated from a 500-sequence dataset, in order to select representatives. The trees are
small, shallow and quickly constructed. MaxChild: maximum number of children allowed for one node. Threshold: sequence
similarity threshold, below which a sequence is assigned the tree node as a representative. (A) The size (number of nodes)
of the Boundary-Tree (B) Number of calls made to the sequence comparison function (C) The depth of the resulting tree,
dependent on MaxChild and Threshold. Overall, the tree depth/size/number of calls made to construct the tree are robust to
user defined parameters MaxChild and threshold. Points are the mean ± standard deviation for 10 replicates.

Dataset N Representatives
(Naïve
Sampling)

Representatives
(Boundary-
Tree)

Tree depth BT
comparisons

minigenomes 500 15.5±5.6 13.2±2.0 4.5±0.8 45
RefSeq 42010 3264.7±5.4 6579.8±78.3 9±0.82 90

Table 4.1: Comparison of naïve sampling and Boundary-Trees as representative selection methods. Representatives were
selected from two datasets (minigenomes, a synthetic small sequence set; and RefSeq, sequences from 20 S. pneumoniae
strains present in the RefSeq database), using either naïve sampling or Boundary-Trees. N: number of sequences in the
dataset. Representatives: number of representatives selected with naïve sampling or Boundary-Tree. Tree depth: depth of
a Boundary-Tree. Mean±standard deviation of 10 replicate sets of representatives are reported. BT comparisons: expected
number of comparisons that will be made during cluster augmentation using Boundary-Trees (note this value is the same as
tree depth multiplied by the number of children allowed, which is 10 by default).
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Figure 4.3: In this example, 10 sequences coming from 3 clusters are processed using BFClust. First, the Boundary-Forest
is generated (for the sake of example, we use a forest with only 4 trees). In each tree, the nodes are marked by the identity
of the representative sequence, and which other sequences they represent (in parentheses). E.g. in tree 1, the root node
is sequence 1, and it represents sequences 2 and 3. The representatives on the Boundary-Trees (highlighted in blue) are
then clustered, resulting in clusters A-C or A-D, and the clustering output is then extended to the full dataset. After cluster
extension, consensus clustering is performed, using each row of cluster assignments as the input. To compute confidence
scores, a consensus matrix is generated, where each entry is the consensus index between two input sequences, which
is the overlap of cluster assignments between these two sequences across the forest. The score of a cluster (i.e. cluster
confidence score) is the average consensus index among all pairs of sequences within that consensus cluster (e.g. the score
of consensus cluster 1 is the average of the block outlined in green, which is 1 in this example). The score of a sequence (i.e.
item confidence score) is the average consensus index between this sequence, and all other sequences belonging to the
same consensus cluster (e.g. the score of sequence 5 is the average of the block outlined in yellow, which is 0.688)
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Figure 4.4: (A) Cluster augmentation method overview/schematic. The incoming sequences are either processed as-is, or
they can be reduced to a small set of representatives using a Boundary-Tree. The new sequences (or representatives) are
compared to the existing Boundary-Forest associated with the already clustered dataset. A close match in each tree, for each
input sequence is found (red nodes). The cluster assignments of these closest matches are retrieved, and a consensus cluster
assignment is computed using a nearest neighbor search. If representative selection is used, the consensus clusters assigned
to the new representatives are extended to the full input dataset. The cluster assignments of the new sequences, as well as
updated confidence scores for both the existing and new sequences are produced as the output. (B) Cluster augmentation is
faster than clustering de novo. Runtime of clustering sequences de novo (orange), or cluster augmentation onto an already
clustered set (blue). For augmentation, N genomes were clustered de novo, and the runtime for the augmentation 5 new
genomes ( 10,000 sequences) is reported. (B) Cluster augmentation uses less memory than clustering de novo.
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Figure 4.5: (A) Runtime in seconds of each method, as a function of dataset size (number of S. pneumoniae genomes).
(B) Memory usage of each method as a function of dataset size (C) Sensitivity to noise of each method. Relative error
against known clusters increases for all methods with increasing amount of mutations in the data. Mean ± standard error of
4 replicates are shown by the error bars. Roary and Panaroo appear as overlapping points, as do CD-HIT and Uclust.
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Figure 4.6: (A) Pan-genome size (total number of genes in the pan-genome) as a function of number of strains considered. (B)
Core genome size (total number of genes common across strains) as a function of strains considered.(C). Cluster overlap (see
methods) between different methods for each dataset. For (A) and (B) mean ± standard error of 10 replicates are shown by
the line and error bands.
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Figure 4.7: Cluster confidence scores for each cluster found using BFClust for 4 S. pneumoniae datasets, plotted against the
number of strains that share the cluster. In general, the clusters with lower scores appear in the accessory genomes, and are
not shared by many strains. There is one cluster within the core genome of each dataset with a low score (red clusters).
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Figure 4.8: (A) Core and pan-genome sizes as a function of number of strains considered. (B) Cluster overlap between each
pair of methods (C) Cluster confidence scores for each cluster found using BFClust show many low-confidence clusters.
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Method Runtime
(min)

Memory
(Gb)

Cluster
overlap

Reference Repre-
sentative
selec-
tion

Cluster
Aug-
menta-
tion

Confi-
dence
score

Network-
based
cluster-
ing

BFClust 2149 40.71 0.419 This
work

3 3 3 3

PanX 258 9.52 0.424 (19) 7a 7 7 3

Roary 45.2 1.86 0.100 (19) 3 7 7 3

PIRATE 80.7 0.84 0.425 (19) 3 7 7 3

Panaroo 28.3 1.20 0.100 (19) 3 3 7 3

CD-
HIT

0.94 0.31 0.042 (19) 3 3 7 7

UCLUST 0.11 0.35 0.045 (19) 3 7 7 7

Table 4.2: Comparison of software tools applied to pan-genome-wide orthologue clustering. Runtime: time it takes to run
each method on 250 genomes (in minutes). Memory: maximum memory usage on the same dataset (in megabytes). Cluster
overlap: fraction of clusters in the ground truth that are fully contained within a single cluster identified by the tool, on the
synthetic E. coli set with substitution rate = 10−10. Representative selection: whether the clustering strategy reduces
the input dataset to a small set of representatives before/during clustering. Cluster augmentation: whether the method
provides an automatic procedure for adding new sequences to an existing clustering partition. Confidence score: whether
the clustering algorithm returns a clustering consensus score as an output. Network-based clustering: whether the method
used network-based clustering strategies (MCL).
a PanX uses a divide-and-conquer strategy to process large datasets, where batches of 50 genomes are clustered at one
time. Representatives from each cluster are selected in each batch. Since representative selection is done after clustering
a relatively large set of sequences, we consider this strategy substantially different than other representative selection
strategies.
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5
Contribution of Population Structure to

Predictions of Gene Essentiality and

Adaptability *

5.1 Background

Widespread antibiotic use (and misuse) contributes to the emergence and spread of antibi-

otic resistance. Ways of combating the growing resistance crisis include the development

of personalized therapies, new antibiotics, and getting ahead of the curve by predicting

future evolutionary trajectories of bacteria likely to acquire resistance. The effectiveness of

an antibiotic and future emergence of resistance for a given drug can be predicted using

statistical models21,221,14,89. In this study, several models are trained for identifying potential

*Contributions: DS devised the study. FR performed the Tn-Seq experiments and gene essentiality de-
termination. KZ and JO performed the experimental evolution and whole genome sequencing experiments.
DS designed and led all computational analyses. DS, NG, JW and FR performed statistical and bioinformatic
analysis. TvO provided funding and supervision.
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narrow-spectrum drug targets or predicting which genes acquire adaptive mutations.

5.1.1 The role of population structure in making predictions

In this chapter, we use the term population structure to describe the genetic differences

across strains in the global pneumococcal population. Population structure potentially in-

cludes pertinent information for making predictions relevant to mitigating the antibiotic

resistance crisis. Predictions on a related context are possible using population structure

information. A recent neighbor typing approach can predict the antibiotic susceptibility

profile of an isolate based on the susceptibility phenotypes of its closest relatives, with the

assumption that genetically similar isolates will have similar antibiotic susceptibility pro-

files21. In this work, the predictive contribution of population structure is explored in the

context of gene essentiality and adaptability.

5.1.2 Predicting gene essentiality

It may be possible to identify promising antibiotic targets by studying and predicting the

essentiality of genes, as antibiotics often target essential processes in the bacterium. For

instance, broad-spectrum antibiotics target processes essential to a large number of species,

including Gram-positive and Gram-negative bacteria. An example is tetracycline, which

inhibits protein synthesis39. However, some genes’ essentiality can be context-specific,

changing based on the genetic background of a strain. These strain-specific essential genes

offer attractive targets for ultra-narrow-spectrum antibiotics i.e. those that can even target

different strains or lineages within a species. Therefore, in this work, predictors of gene

essentiality in a given genetic background are developed.
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5.1.3 Explaining gene essentiality

For strain-specific essential genes, whether a gene is essential in one given strain may de-

pend on the presence or absence of certain genetic elements. For instance, when a itrA is

absent in Acinetobacter baumannii, the wza-wzb-wzc operon becomes non-essential, whereas

this operon is essential in the presence of itrA11. The protein product of itrA is involved

in the earlier steps of capsule biosynthesis, where toxic intermediates are produced. wza-

wzb-wzc function in later steps, processing the intermediates and exporting them to the

surface. Thus, the strain-specific essentiality of the wza-wzb-wzc operon can be explained

by the accumulation of dead-end metabolites toxic to the bacterium when itrA is present11.

In this work, we attempt to identify new putative interactions of this nature. This is done

by training regression models that use gene presence/absence as explanatory variables, and

output essentiality for a given gene in different genetic contexts.

5.1.4 Predicting gene adaptability

It is likely that adaptive evolution is also a genetic-context-dependent process, as many ex-

periments have shown the replicability of the order in whichmutations are acquired193,115,82.

Thus, we hypothesized that a predictor of adaptive outcome can be improved using phylo-

genetic information. This may result in the a priori prediction of the antibiotic-adapted

strain’s genotype, and potentially predict cross-resistance/collateral sensitivity that may

arise in the future.

In this work, we address the possibility that population structure may contain relevant

information that could aid in the prediction of essential genes (EG) and adapted genes

(AG). Presented here are 3 approaches for gene essentiality and adaptation prediction. The
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potential contribution of population structure to both gene essentiality and adaptability

is evaluated, and it appears that population structure has a stronger contribution in the

prediction of EGs. The predictive models presented here will be a first step in developing

more personalized therapeutic approaches, and predicting the future adaptive trajectories

of clinical strains, based on genomic sequence information.

5.2 Materials and Methods

5.2.1 Streptococcus pneumoniae datasets

Two S. pneumoniae datasets were used in this study. PG350 is a collection of 350 isolates,

obtained at a single hospital in the Netherlands, from invasive pneumococcal disease pa-

tients45. PGall is a much broader dataset, with 208 genomic sequences coming from 7

distinct sources. The number of strains from each source is roughly the same, in order to

avoid any bias through over-representation of one sources. The full strain list and their

respective sources can be found here

5.2.2 Phylogenetic analysis

For either S. pneumoniae dataset, variant calling was performed using snippy (with default

parameters), using TIGR4 as the reference genome. A core genome alignment was gener-

ated with snippy-core164. A maximum likelihood tree was generated from this core genome

alignment using RAxML175, with GTRGAMMA as the nucleotide substitution model. The

core alignment was processed with gubbins47, in order to remove putative recombination

sites, yielding a maximum likelihood tree on the core genome SNPs. Alignments with and

117

https://github.com/dsurujon/PopulationStructure/blob/main/data/PGall_strains.csv.


without recombination were converted to pairwise distance matrices across strains using

snp-dists? .

5.2.3 Transposon-insertion sequencing and gene essentiality determination

Tn-seq experiments were performed by first constructing 6 independent transposon-insertion

libraries in each strain. The libraries were then grown in THY followed by DNA extrac-

tion and sequencing library preparation as described198. Raw reads were processed with

the MAGenTA133 pipeline followed by custom processing182 to generate wig files. These

resulting wig files were analyzed using TRANSIT50, using the Binomial method to quantify

statistical significance. The posterior probabilities for essentiality reported by TRANSIT

are thresholded to make the essentiality call.

5.2.4 Rule-based model predicting gene essentiality

For a given strain S and a given gene g whether g is essential in strain S was predicted as

follows. First, S†, the strain with the closest genetic distance to S, is found based on the

SNP distances. If the ortholog of g is absent in S†, it is assumed to be non-essential in S†

and g in S is predicted to be non-essential as well. Otherwise, g† is the ortholog of g in

the genome of S†. The essentiality of g in S is predicted to be the same as that of g† in

S†. As the model does not require parameter training, its performance was evaluated using

leave-one-out crossvalidation. Code for this predictor can be found here.
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5.2.5 Regression models that identify putative genetic interactions with strain-specific

essential genes

For each strain-specific essential gene, the posterior probabilities for essentiality across all

17 strains were obtained using TRANSIT50. For each of these genes, a separate model

was trained that predicts its posterior probability in a given strain. The input variables for

these models were the presence or absence of accessory genes. There is a high number of

accessory genes (>2500), which are potential input features for each model. In order to

limit the number of features and avoid overfitting, logistic regression models were trained

using lasso regularization221. The strength of regularization was determined using 5-fold

crossvalidation across the entire dataset for each model, as the point where average mini-

mum squared error on the crossvalidation set is minimized. Model training was done in R,

using glmnet v3.0-2. Code for regression models can be found here.

5.2.6 In vitro adaptive evolution and whole genome sequencing

T4 and 19F were used as parental strains in antibiotic evolution experiments. Four replicate

populations were grown in fresh CDM with an increasing concentration of ciprofloxacin,

cefepime, levofloxacin, kanamycin, penicillin, rifampicin, or vancomycin for antibiotic adap-

tation populations. Four additional replicate populations were serial passaged in SDMM

as controls to identify background adaptations in the lab culture conditions without antibi-

otics. From the adapted populations, a single colony was picked from each experiment and

checked for its adaptive phenotype by growth curve experiments.
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5.2.7 Data driven adapted gene predictor model

Our machine learning approach for AG prediction relies on supervised binary classification

methods. The objects to be classified are genes under specific stress conditions; in other

words, we classify each gene-condition pair. We used T4 Kanamycin, 19F Kanamycin,

T4 Levofloxacin, 19F Levofloxacin, T4 Rifampicin, 19F Rifampicin, T4 Daptomycin, T4

Cefepime, T4 Vancomycin, 19F Vancomycin, D39 Uracil and D39 Valine as the training

set (22582 data points); and the T4 Penicillin, T4 Ciprofloxacin and 19F Ciprofloxacin

experiments as an independent test set (5738 data points).

The features included are as follows: differential expression at an early (30min) and a

late (90-240 min) timepoint (drug/no drug comparison), fitness change (drug/no drug

comparison), whether the gene is essential, gene prevalence (number of strains that share

a homolog of the gene), gene sequence conservation (average pairwise distance between

amino acid sequences of this gene’s homologs), gene expression plasticity (variance of ex-

pression across diverse environment; as described in97), mechanism of action of stress, and

gene functional category. The categorical features (such as mechanism of action and gene

functional category) are one-hot encoded and all data is standardized such that all scalar

features have mean=0 and variance=1. Genes with missing data are omitted.

Six different models were trained on the training set using scikit-learn v0.20.2. Hyperpa-

rameter tuning was carried out using GridSearchCV, with 5-fold stratified crossvalidation.

The selected models are then evaluated on the test set.

The parameter grid searched and other training details for each model can be found in

the supplementary code.
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5.2.8 Consensus classification

A consensus classifier was used to enhance the performance of the AG classification. We

use a voting classifier, which weighs each of the six models above equally. This model

computes a probability of being in the positive class (AG) as the proportion of classifiers

that predict the gene to be in the positive class. This probability is then thresholded at 0.5

(i.e. a majority voting classifier). The consensus classifier’s performance is also reported

on the training and test sets.

5.3 Results

5.3.1 Population structure of S. pneumoniae

A collection of S. pneumoniae strains from 7 sources were assembled, with the aim of captur-

ing the global genomic diversity of this species. The sources include carriage isolates, and

isolates from invasive pneumococcal disease; samples from Europe, Asia, Africa, North

America; and samples collected over a span of decades. First, a phylogenetic tree was gen-

erated using the core genome SNPs of this diverse dataset (Figure 5.1A). The different

datasets were not entirely segregated on the phylogenies, with the exception of the isolates

from Malawi. The fact that all isolates from this population appear nearly clonal could po-

tentially be explained with the increased transmission rate in this region187. However, when

inferred recombination events are removed, the datasets appear to separate more (Figure

5.1B). It is possible that these individual datasets, collected mostly from restricted geogra-

phies, are mostly distinguished by their core genomes, and the diversity in their accessory

genomes (which is shaped in part by recombination events) is somewhat similar across the
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datasets.

There appear to be a few isolates that are separated from the rest of the isolates by a long

branch (Figure 5.1A). As these strains are part of the pre-1974 dataset, and considering how

this long branch disappears when recombination is removed (Figure 5.1B), it is possible that

there was a large recombination event separating these older isolates from the more recent

ones, collected mostly in the 2000s.

5.3.2 Essential Genes can be predicted using a simple rule-based model

The first goal of this work was to generate a predictor of gene essentiality using population-

level information. We hypothesized that strains that are genotypically more similar will also

have similar gene essentiality profiles (essentialomes). In order to test this, a group of 17

strains with Tn-Seq data were considered. Pairwise distances of strains were computed

either in terms of SNP distance, or in terms of essentialome distance. Essentialome dis-

tance is defined as the proportion of genes that have different essentialities between two

strains. There is a modest correlation between SNP distance and essentialome distance

(Figure 5.2A), suggesting that this relationship can potentially be used in predicting gene

essentiality.

The ground truth in the case of these predictions come from the posterior probabilities

computed by Transit, where essential genes have a normalized score near 1 and nonessential

genes have a score near 0. Ambiguous cases often have an intermediate score ear 0.5 and

are determined to be ”Uncertain”. Correct predictions in the rule-based for essential and

nonessential genes correspond to those with very high and very low scores (Figure 5.3),

and are fairly unambiguous. A majority of genes that are incorrectly predicted as essential
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do have high z-scores, but are called as uncertain by Transit. Similarly, incorrect predictions

of non-essential genes are mostly in the ”uncertain” category, but have low z-scores (Figure

5.2B, 5.3B). This suggests that these incorrect predictions for uncertain cases might in fact

be correct, however, the essentiality call by Transit was ambiguous due to experimental

variability or low Tn-Seq library saturation.

Presented here is a simple, rule-based predictor of gene essentiality. The potential prac-

tical use of this model is prediction of gene essentiality in previously unseen strains. This

predictor uses the assumption that a gene essential in one strain will be essential in a ge-

netically related strain. In order to predict whether a gene in a given strain is essential, a

second strain is selected such that is has the smallest SNP distance to the query strain. If

the ortholog of the query gene in this second strain is present, the predictor returns the

essentiality call of the ortholog. If the orthologue is absent, it returns “non-essential”. This

model has an overall accuracy of 92.3% (Defined as total number of correct predictions

divided by total number of predictions; confusion matrix shown in Figure 5.2B). As this

model is rule based, it does not require any parameter tuning, and operates as a “one size

fits all” solution to gene essentiality. However, it does not provide any mechanistic insights

as to why a gene becomes essential only in certain contexts.

5.3.3 Essential Gene classification with data driven models can reveal new hypotheses

It is possible to train more detailed models specific to single clusters of orthologous genes.

These can potentially be more informative on genetic interactions that influence essential-

ity. In this section, regression models are trained on accessory gene presence/absence data,

in order to classify the essentiality of a different gene. A separate model is trained for each
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strain-specific gene. The purpose here is not necessarily to find the best predictive model,

but rather potential interactions that explain what causes a gene to be essential in different

contexts. Regression models are favored for their interpretability; each explanatory variable

(in this case genes) has a coefficient that represents its importance in the classifier. Genes

with higher magnitude coefficients have more influence in the classification, and therefore

are more likely to have a biologically meaningful relationship with the gene whose essen-

tiality is being predicted. A positive coefficient for a gene indicates that the presence of this

gene predicts essentialiy, whereas a negative coefficient indicates the presence is associated

with non-essentiality of the strain-specific essential gene. A total of 9 models that had high

goodness-of-fit (defined as minimum squared error < 0.1) are included in Table 5.1.

Among this list of gene pairs that potentially include novel interactions, there are 3 pos-

sible explanations as to how the explanatory feature results in the essentiality of the strain-

specific essential gene. 1. glnA essentiality is associated with 2 transposases. This suggests

that a transposable element, when present is rendering the glnA gene essential. It may be

that the transposable element has been inserted within a gene with redundant function to

glnA. 2. Competence system regulator encoding genes comX1 and comX2 are associated

with multiple strain-specific essential genes; glnA, rplV, rpsO. 2 of these strain-specific es-

sential genes are ribosomal proteins. The competence system has been shown to activate

the production of chaperone proteins and proteases in response to various stresses. It is

possible that when the competence associated regulators are absent, misfolded proteins

cannot be effectively cleared. Thus, accurate translation by the ribosome becomes essen-

tial. 3. RNAse HIII becomes essential when arginosuccinate synthase is absent. The link

between the two could be the stalling of ribosomes when arginine synthesis is impaired due
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to the absence of arginosuccinate synthase. RNAse H proteins are responsible for degrad-

ing RNA that is hybridized to DNA, especially the RNA primers that establish Okazaki

fragments during lagging strand replication. When a ribosome stalls, and RNA polymerase

continues transcription, the exposed mRNA fragment in between the two has a chance to

hybridize with its template DNA strand, and RNAse HIII might be involved in the removal

of such hybridizations.

5.3.4 Population structure does not overlap with resistance phenotype

Prior to using population structure data in predictions of adapted genes, the antibiotic resis-

tance phenotypes of isolates coming from the Nijmegen dataset were overlaid on the phylo-

genetic tree of the same isolates (Figure 5.4). If population structure had a direct influence

on how likely a strain is to acquire resistance, resistant strains would be grouped within

specific lineages. However, the acquisition of resistance does not appear to be strictly

lineage-dependent. Although there are some small clusters where resistance is enriched,

overall, resistant strains appear roughly evenly dispersed across the tree. There are also

multiple groups of nearly clonal isolates that differ in their antibiotic susceptibility profile

(Figure 5.4), suggesting that the emergence of resistance might be governed by other fac-

tors such as a single SNP. Therefore, alternative approaches were prioritized over using

population structure in the prediction of adapted genes.

5.3.5 Adapted Gene prediction is possible with omics data

Mutations from in-vitro adapted populations were identified through whole genome se-

quencing of 67 adapted populations (55 experimental and 12 control populations) that
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were carried out in 3 S. pneumoniae strains, under various antibiotic and nutrient conditions

(adapted strains included are the same as in221). Adaptive mutations in this dataset are

defined as those that reach a >50% frequency in a population evolving in a specific en-

vironment and are absent or at <10% frequency in the control condition. Most adaptive

mutations appear in coding sequences (referred to as adapted genes, or AGs) as single

nucleotide polymorphisms (SNPs) (Figure 5.5A) and are often functionally related to the

action of the stress (Supplemental Table 1). For example, adaptive evolution in rifampicin

leads to a single AG (rpoB) which is the target of this antibiotic. Additionally, strain-specific

adaptive patterns emerge during evolution, such as that TIGR4 has more AGs than 19F,

and AGs in TIGR4 belong to a more diverse set of functional categories often including

capsule metabolism (Figure 5.5B).

Predicting which genes will acquire adaptive mutations is not a trivial task. Pan-genome

wide association studies can identify which mutations are linked to resistance phenotype,

by considering existing strains. However, they cannot predict AGs. In order to make such

predictions, it is important to identify a characteristic of AGs that separate them from non-

AGs. We initially hypothesized that the phylogenetic tree constructed from the sequence

of a single adapted gene would have a distinctive feature, namely, the susceptible and re-

sistant strains would be separated on the tree. This hypothesis is based on the observation

of known resistance-associated alleles of certain genes e.g. S81Y in DNA gyrase62. The

trees constructed from AGs did not overlap with resistance phenotypes, failing to support

this initial hypothesis (Supplementary Dataset 1). This is possibly due to genetic variability

within the AG other than the adaptive mutation. The only exception was pbp2X (Sup-

plementary Dataset 1), where resistant isolates were those with clearly divergent gene se-
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quences. Since resistance phenotype could not be readily explained from the full sequence

of the adapted genes, other types of features were considered next.

In order to train a model that predicts whether a given gene, under a given condition

will acquire adaptive mutations, a dataset of 41 features is assembled that either pertain to

the stress response of the ancestral strain (e.g. RNA-Seq, Tn-Seq), the evolvability of the

genome (e.g. sequence conservation) or stress-type (e.g. antibiotic MOA) (Figure 5.5C).

Importantly, these features do not immediately reveal any easily recognizable patterns that

distinguish AG from non-AGs; and the large amount of data available makes it challeng-

ing for a human to pick out such patterns (Figure 5.5C). Therefore, 6 different types of

supervised machine learning models were trained. In order to improve performance, all 6

models are combined using a majority voting scheme (consensus model)52. All models but

logistic regression performed extremely well on the training set (Figure 5.5D). The consen-

sus model correctly identifies 5 out of 16 AGs in the previously unseen test set, with only

4 false positives (non-AGs that are predicted as AGs) and 10 false negatives (AGs that are

predicted as non-AGs).

The 5 true positive AGs in the test set are also present as AGs in the training set. One

explanation for this overlap could be that the classifier simply picks the same AGs for any

experiment with a given MOA. However, if this were the case, all genes observed in the

CWSI and DSI experiments in the training set would have been predicted as AG, which

would have introduced 15 additional false positives. The consensus model therefore does

not simply memorize which genes have appeared as an AG before. To determine which

features are most relevant to the consensus model, each feature was omitted one by one

from the training and test data, and performance of the consensus model as measured by
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Cohen’s kappa score (quantifying the performance compared to a random guess that takes

into account the prevalence of each class) was re-evaluated. While the “strain” feature

information appears to slightly hinder the performance (its omission improves predictions

with a decrease in false positives in the test set) (Figure 5.5F), features “MOA” and “gene

category” are the most critical, as their omission results in the loss of 3 and 5 true positives

respectively. However, simply picking genes of a certain category depending on the MOA

would still result in many false positives (as many as there are genes in the relevant category

e.g. replication would be the relevant category for DSI).

While our consensus model performs fairly well on making true positive predictions, it

is equally important that a model can minimize false positive predictions. By combining

the six individual classifiers, the number of false positives is reduced from several hundred

(e.g. in logistic regression, decision tree and support vector machine) to 4, suggesting a

significant improvement in prediction performance. To determine whether the consensus

model suffers from high bias or high variance, a learning curve was computed, tracking

performance (Cohen’s kappa score) with increasing number of data points (Figure 5.5G).

Since the training performance is near perfect regardless of the number of samples used,

it is unlikely that the consensus model is suffering from high bias. The cross-validation

set performance does improve with increasing the number of data points used to train the

model, which is a characteristic of overfit models. Therefore, inclusion of more data points

for model training is likely to result in improved performance.
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5.4 Discussion

Our initial analysis of the global population structure of S. pneumoniae indicated that when

recombination events are considered, i.e. when the accessory genome has more influence,

isolates collected from different geographies and contexts are more mixed. In contrast,

when recombination events are inferred and removed, isolates from different contexts are

better separated on the phylogenetic tree (Figure 5.1B). This is in line with the finding that

the accessory genomes across different datasets share similarities, which are maintained by

negative frequency dependent selection43.

As population structure has been used to make antibiotic susceptibility predictions, we

hypothesized that it could be used to make other types of predictions, such as gene essen-

tiality and adaptability. Population structure appears to contain predictive information for

gene essentiality (Figure 5.2), but we were unable to utilize population structure in AG pre-

dictions. This is possibly due to the adaptation dataset used here being much more limited

in the number of background strains used (3 strains) compared to the essentialome dataset,

which had 17 strains. Perhaps future adaptation experiments on more strain backgrounds

will reveal whether and how population structure plays a role in predictions of AGs.

For EG predictions, two approaches are presented. The first is similar to the neighbor

typing approach used for resistance phenotype predictions21. While this approach gen-

erated a single model that applies to all genes, which did not require model training, it

sacrifices interpretability for practicality. In contrast, though the regression models are not

as practical (a model is trained for each strain-specific essential gene, and with few strains

it is difficult to evaluate performance), they can point in the right direction when it comes
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to discovering new interactions.

Feature selection using lasso regression results in interpretable models with few fea-

tures. However, the interpretation of these explanatory features requires care, as discussed

for similar regression models in Chapter 3. These features are not necessarily the cause of

the essentiality/non-essentiality of the query gene; the true explanatory relationship might

include another gene whose presence/absence correlates with the selected feature. Dur-

ing regularization, if two genes have the same presence/absence pattern across strains due

to synteny or random chance, they have an equal chance at getting selected in the regu-

larized model. Nevertheless, it is straightforward to identify correlating genes, therefore

the selected features provide a starting point for looking for relevant interactions between

genes.

Similar to the regression models for EG prediction, AG prediction was also done using

gene-centric models. This made it possible to readily use Tn-Seq, RNA-Seq, gene essen-

tiality and conservation data. However, this coarse approach does not address multiple

mutations that can emerge in a single gene, or mutations in intergenic regions. A future

improvement can be making more granular predictions on each codon or nucleotide. This

would also increase the number of data points used in the training and test sets, as there

are orders of magnitude more codons/nucleotides than there are genes in a given genome.

The learning curve in Figure 5.5G suggests that the final consensus model is overfit, which

can be addressed with more datapoints, or by using simpler models.

Overall, this work introduces different approaches for EG and AG predictions, utilizing

population structure information when possible and appropriate. By showing that it can

possibly be used to make EG predictions, we expand the utility of population structure data
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beyond making antibiotic susceptibility predictions21. As discussed above, there are multi-

ple ways these approaches can be improved and built upon. This work presents a starting

point for improved predictive approaches relevant for infection control, and suggests that

population structure data offers predictive power in different contexts not explored here.
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Model Strain Specific
Essential Gene

Cluster

Strain Specific
Essential TIGR4

homolog

Strain Specific
Essential
Functional
Annotation

Explanatory
Feature Gene
Cluster

Explanatory
Feature TIGR4
homolog

Explanatory
Feature
Functional
Annotation

Explanatory
Feature

Coefficient

1 1189 SP_0502 glutamine
synthetase glnA

1489 NA IS5 family
transposase

0.027411

1 1189 SP_0502 glutamine
synthetase glnA

1711 SP_0055 phosphoribosyl-
aminoimidazole
carboxylase

-0.3728

1 1189 SP_0502 glutamine
synthetase glnA

2219 SP_0695 ThiF family
adenylyltrans-

ferase

0.023791

1 1189 SP_0502 glutamine
synthetase glnA

286 NA IS30-like
element ISSpn8

family
transposase

0.372227

1 1189 SP_0502 glutamine
synthetase glnA

289 NA hypothetical
protein

-0.01797

1 1189 SP_0502 glutamine
synthetase glnA

2893 NA ABC transporter
ATP-binding
protein

-0.02226

1 1189 SP_0502 glutamine
synthetase glnA

65 SP_2006 sigma-70 family
RNA

polymerase
sigma factor
ComX2

-0.02442

2 1629 SP_1298 pApA phospho-
diesterase

1011 SP_1251 McrB family
protein

-0.06041

2 1629 SP_1298 pApA phospho-
diesterase

360 NA alpha-
glycosidase

0.375144

3 2315 SP_2009 Ribosomal
protein rpmG1

1711 SP_0055 phosphoribosyl-
aminoimidazole
carboxylase

-0.03012

3 2315 SP_2009 Ribosomal
protein rpmG1

1973 NA hypothetical
protein

0.027878

3 2315 SP_2009 Ribosomal
protein rpmG1

329 SP_0109 lactococcin 972
family

bacteriocin

-0.05042

4 2343 SP_1178 Glutaredoxin-
like protein
nrdH

1073 NA phospho-sugar
mutase

-0.02165

4 2343 SP_1178 Glutaredoxin-
like protein
nrdH

1305 SP_0260 nucleotidyltransferase
family protein

0.05492

4 2343 SP_1178 Glutaredoxin-
like protein
nrdH

908 SP_0312 glycoside
hydrolase family
31 protein

0.05894

5 290 SP_0214 Ribosomal
protein rplV

65 SP_0014 sigma-70 family
RNA

polymerase
sigma factor
comX1

0.175285

6 483 SP_1999 Catabolite
control protein

ccpA

226 SP_1042 CopG family
transcriptional
regulator

0.30479

567 SP_0403 ribonuclease
HIII

1008 NA circular
bacteriocin,
circularin

A/uberolysin
family

0.024461

7 567 SP_0403 ribonuclease
HIII

2386 SP_0113 argininosuccinate
synthase

-0.43278

8 643 SP_2107 4-alpha-
glucanotransferase

malQ

1044 SP_1560 YbbR-like
domain-
containing
protein

-0.1449

9 904 SP_1626 Ribosomal
protein rpsO

219 NA hypothetical
protein

-0.11322

9 904 SP_1626 Ribosomal
protein rpsO

65 SP_0014 sigma-70 family
RNA

polymerase
sigma factor
ComX1

0.021872

Table 5.1: 9 high performing regression models for strain specific essentiality. For both the strain-specific essential genes,
and their explanatory features, their ortholog gene cluster, locus tag of the TIGR4 ortholog (when available), and functional
annotation is listed. Coefficient can be interpreted as the relative importance of the explanatory gene in the regression model.
Only explanatory features with |coefficient|>0.01 are included for brevity.
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Figure 5.1: Phylogenetic trees with (A) and without (B) recombination were generated based on SNP data and show the global
population with multiple sources. The strains are colored by their source, and all sources but Malawi have strains distributed
evenly across the tree.
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Figure 5.2: (A) Genomic distance (as measured by number of SNPs) and Essentialome distance (defined as proportion of
genes with different essentiality calls) have a positive correlation. (B) Confusion matrix of the leave-one-out validation of the
general EG predictor. The true label for whether a gene is essential comes from the Transit analysis of Tn-Seq data. Most
misclassification errors are made for the “Uncertain” group.
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Figure 5.3: Histograms for correct (A) and incorrect (B) predictions show the distribution of the z-score value computed by
Transit on experimental data. Histograms are split according to predicted class (essential, non-essential, uncertain). Correctly
predicted essential and nonessential genes have high and low values respectively (A). Genes incorrectly predicted as
essential often come genes with high z-scores, and genes incorrectly predicted as non-essential often have low z-scores.
This is consistent with their predicted label, despite their true label (as reported by Transit) being mostly uncertain (Figure 5.2).
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Figure 5.4: Phylogenetic trees of 350 strains from IPD patients in the Netherlands (A) with or (B) without recombination. Each
ring around the phylogenetic tree represents the susceptibility of isolates to a different antibiotic.
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Figure 5.5: (A) Most observed adaptive mutations are single nucleotide polymorphisms in coding sequences (SNP). Each
bar indicates a replicate population. INS: insertion, DEL: deletion in coding sequences. (B) Category distribution of adapted
genes (AGs) in each experimental evolution experiment. (C) Data types included in the AG prediction are overlaid on the S.
pneumoniae TIGR4 chromosome for the VNC experiment. From innermost to outermost tracks: Green bar plots: differential
expression of each gene in the parental (inner 5 plots, increasing time points going from innermost to outermost plot) and
adapted (outer 5 plots) strains. Orange dot plot: sequence conservation. Orange line plot: sequence prevalence. Red arrows:
essential genes. Red bars: fitness change. Purple arrows and black wedges: AGs. Blue dots: frequency of mutation (different
shades indicate different replicate populations). (D-E)Receiver-operator characteristic curve for all models evaluated on
the training set (D) and test set (E) Selected models are marked with solid dots (E). Inset in (E) shows a zoomed-in region
corresponding to the false positive rate of 0-0.01, where the consensus model outperforms all models but random forest. (F)
MOA and Category are critical for AG prediction. The consensus model performance is re-evaluated in the absence of each
feature in the training and test sets. NoDropout: performance when all features are included. Kappa: Cohen’s Kappa score.
Horizontal line: performance in NoDropout. (G) Learning curve for the consensus model. Cohen’s Kappa score of the model is
plotted with increasing number of data points for the training (red) and cross validation (green) sets. Lines and bands indicate
mean and standard deviation of accuracy of 10 random splits of the data respectively.
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6
Conclusion

This thesis addresses the three challenges outlined in the introduction chapter by taking a

systems-biology approach, leveraging the increased availability of multi-omics data (Figure

6.1). In Chapter 2, ShinyOmics is presented as a software solution for the management,

rapid exploration and easy sharing of multi-omics datasets. This tool makes it much eas-

ier to make comparisons across strains, conditions, and even different omics-screens, and

facilitates hypothesis generation. In Chapter 4 I present BFClust, a pan-genome ortholog

clustering tool that is unique in reporting confidence scores on its output. Thus, these

two chapters and associated software tools enable data pre-processing and exploration that

is necessary for addressing the three antibiotic resistance challenges, and form the basis

on which the rest of the work presented here rests. A lack of rapid testing is addressed

by developing a predictor of bacterial fitness under antibiotic stress, based on transcrip-

tomic entropy in Chapter 3. This approach is unique in its generality, and can be applied

to many species, antibiotics, and even non-antibiotic conditions. I address treatment fail-

ure, which can be a consequence of antibiotic therapy without testing for susceptibility
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and strain-specific resistance, by developing a model that predicts gene essentiality in a

strain-specific manner in Chapter 5. When identified, strain-specific essential genes can be

used as antimicrobial targets for novel, ultra-narrow-spectrum antibiotics. Development

of such antibiotics would allow for more options for treatment, as well as personalized

treatment in infectious disease. In this same chapter, I also present an ensemble model

that predicts the genotypic changes that are likely to be acquired during evolution towards

antibiotic resistance. This type of genotypic predictor can be applied in predictions of the

cross-resistance or collateral-sensitivity phenotypes of strains that have yet to arise through

antibiotic selection.

6.1 Lack of rapid testing

Existing predictors of antibiotic susceptibility phenotype are often specific to a pathogen-

antibiotic pair. More general predictors are preferred if data collection for a new species-

antibiotic pair is not feasible. Transcriptomic entropy, as described in Chapter 3, is one such

general predictor221, that relies on the intuitive idea that when an organism is experiencing

stress it cannot overcome (e. g. a susceptible pathogen challenged with an antibiotic), its

gene expression patterns overall will be more chaotic. Entropy has been demonstrated to

work for previously unseen species and antibiotics, and has the potential to extend well be-

yond antibiotic stress221. Moreover, its demonstrated generality makes the entropy-based

predictor less likely to be confounded by factors such as population structure and limi-

tations in dataset size and diversity206. An alternative way to address this problem is to

use population structure as the central feature to predict resistance phenotype. Břinda et

al. have developed a method that can infer phylogenetic lineage based on genomic kmer
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content, and makes a prediction on the phenotype based on the phenotype of other mem-

bers of that lineage21. While it can achieve high performance, this is contingent on having

a comprehensive reference database of genomic information, since the predictions on a

given isolate rely on finding genotypically similar isolates and lineages.

It is possible to apply entropy-based fitness predictors in the context of and active infec-

tion, where there is stress imposed on the pathogen by the host immune system (Figure 6.1).

Conversely, during an active infection, the host can also experience stress from inflamma-

tion. Thus, entropy has the potential to be applied to the pathogen and host simultaneously

in order to monitor an active infection. Moreover, both entropy and marker-based predic-

tors that are condition-specific, have the potential to be applied to any other kind of omics

data.

There are also possibilities for alternatives for current AST that do not rely on making

predictions. The main drawbacks of existing AST methods is the time, labor, and cost of

the assays. These culture-based assays can be miniaturized to be performed in microflu-

idics devices, reducing the amount of reagents necessary by orders of magnitude, as well

as reducing the time to acquiring the result, as growth can be closely monitored under a

microscope (Figure 6.1)

6.2 Treatment failure

One way of combating treatment failure is to incorporate personalized medicine in infec-

tious disease treatment. This can be accomplished through the use of antibiotics that are

narrow-spectrum, targeting specific strains instead of affecting the entire microbiota with

broad-spectrum antibiotics that may or may not be effective against the infection caus-

141



ing agent. In Chapter 5, targeting strain-specific essential genes is proposed as a starting

point for developing ultra narrow-spectrum antibiotics. While predicting and targeting

strain-specific essential genes is a potential avenue for developing personalized treatments,

treatment failure can be addressed through multiple avenues, which can take promising

future directions.

The effectiveness of single drugs is reduced as resistance becomes more widespread.

However, the combination of multiple drugs can be more than the sum of its parts. The

vast number of potential combinations is narrowed down by computational predictions

of successful combinations, which are later validated. This approach is in its infancy in

microbiology, with lots of room for new development. Specifically, there is a body of

cancer literature that focus on data-driven models for predicting synergistic combination

treatments196, which can be applied to microbiology.

While addressing treatment failure with the use of multi-drug combinations is an op-

tion, it poses an increased risk due to exposing a patient’s microbiota to more antibiotics.

An advantage of computational screens that help identify drug synergy is that they can

screen any combination of antibiotic and non-antibiotic stress. Instead of multiple drug

combinations, predictions of antimicrobial efficacy can be made on drug-metabolic stress

combinations177. Finding effective antimicrobial combinations of non-antibiotic stresses

would reduce the overall use of antibiotics. With reduced exposure, the likelihood of adap-

tive evolution towards drug resistance is also lowered.

Treatment failure is caused not only by mixed populations of resistant and susceptible

strains, but also persisters12. Persistence can be detected through biphasic kill curves, but

it may be possible to train data-driven models that can predict persistence. For example,
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the hipA gene in Escherichia coli is associated with a high persistence phenotype107, which

can be used as a genetic feature in a rule-based model for persistence prediction. There

may well be transcriptomic or metabolomic signatures as well that can be utilized similarly.

Lastly, the unique interactions between the host and the pathogen can provide infor-

mation that is specific for each infection case (Figure 6.1). It may soon be possible to

compute entropy on the host and pathogen simultaneously during an active infection. We

can hypothesize that an infection that is being cleared (e.g. after antibiotic treatment), the

pathogen’s entropy rises, and the host - whose stress is alleviated through the clearing of

the pathogen - demonstrates a decrease in entropy. Whereas when an antibiotic treatment

is not successful, the host is under sustained stress and demonstrates high entropy, while

the pathogen has high fitness and thus low entropy. One can imagine testing these hy-

potheses by performing dual-RNA-Seq on the host and pathogen at several timepoints

post treatment.

6.3 Evolution of antibiotic resistance

In Chapter 5, I present an ensemble model that predicts whether a gene acquires adaptive

mutations in a given adaptation experiment. While there are relatively few similar studies

that focus on predicting the genotype of an adapted, antibiotic resistant strain, I antici-

pate these types of predictions becoming continually improved as new omics and adaptive

evolution data are collected. The existing approaches focus on de novo mutations, however

horizontal gene transfer (HGT) also plays an important role in the acquisition of resis-

tance. Predictive models in the future that take HGT into account would therefore be

more comprehensive, and potentially have improved performance.
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Another factor that plays an important role in adaptive evolution is epistasis, i.e. interac-

tions between genetic elements. Epistasis has been known to constrain evolution23,77,4,156.

It is also possible to use epistatic interactions and fitness landscapes to predict which

evolutionary trajectories are most likely208, and use this information to predict collateral

sensitivity/cross-resistance142; or even to control/steer evolutionary trajectories141,94. Epistatic

interactions between genetic elements form a network, which can be incorporated into the

ensemble model presented in Chapter 5, possibly improving performance (Figure 6.1).

6.4 The path forward

Improving technology, both experimentally and computationally, is paving the way to new

diagnostic, prognostic and predictive approaches. The implementation of the ongoing re-

search in clinical settings will allow for the determination of the most effective antibiotic

treatment, reducing the misuse of antibiotics. Predictive models on resistance and novel

antimicrobial design enables addressing resistance that might emerge in the future, in ad-

dition to expanding the molecular armory against pathogens. By addressing the antibiotic

resistance crisis through multiple angles, antibiotic stewardship practices can be improved

and novel therapeutic strategies can be developed simultaneously. The contents of this

thesis, as well as the works cited, demonstrate the explosion in the amount of data, and

how it can quickly be turned into valuable knowledge. While the prevalence of antibiotic

resistance is increasing, there are also significant advancements in infectious disease diag-

nostics, epidemiology and evolutionary biology, partially due to the current COVID-19

pandemic. Through interdisciplinary work bringing together high-throughput screen de-

velopment, systems biology, statistics and bioinformatics, it is very much possible that the
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antibiotic resistance crisis can be mitigated.
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Figure 6.1: The focus of this thesis is the development of software and statistical models that predict several outcomes that
pertain to antibiotic resistance. ShinyOmics and BFClust (Chapters 2 and 4 respectively) provide the link between data
generation and predictive model development. These two tools provide data pre-processing, management, and quality control
steps that are crucial for developing high-performing predictive models. The three main types of predictive models developed
in this thesis are fitness prediction using entropy (Chapter 3), essential gene prediction using population structure (Chapter
5), and the prediction of adapted genes (Chapter 5). These models each address a different antibiotic resistance challenge.
It is also possible to expand beyond the models in this thesis, and address the same challenges through improved and/or
alternative techniques such as microfluidics assay development, examining the host-pathogen interactions, and studying
genetic interaction networks.
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A
Supplementary Information for

Boundary-Forest Clustering: Large-Scale

Consensus Clustering of Biological

Sequences

A.1 Glossary of Terms

Cluster augmentation addition of new sequences to an already clustered set of sequences.

New sequences are assigned a cluster based on their similarity to existing clusters. The ex-

isting clusters are not altered.

Direct-threshold methods clustering methods that rely on a single sequence similarity

threshold that directly impact the clustering (e.g. CD-HIT, UCLUST). Sequences that are

more similar than the threshold value are allowed to be in the same cluster, whereas a pair
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of sequences that are more dissimilar than the threshold cannot be in the same cluster.

These methods do have other parameters that can be refined, but the software authors do

provide default and recommended values for those other parameters. We use these default

values in all of our experiments.

Representative selection A step performed before or during clustering, that reduces re-

dundancy in the full dataset. Sequences that are extremely similar to each other are grouped

and only one sequence (the representative) from each group is used in clustering.

Representative (sequence)A sequence that is selected during the representative selection

step.

Clustering ensemble a collection of clustering results for the same input data. For in-

stance, in our method, the clustering done on the representatives of each Boundary-Tree

result in a collection of 10 clustering outputs.

Consensus clustering a means to combine a clustering ensemble and output a single clus-

tering result

Cluster confidence score a value assigned to each cluster in the consensus clustering out-

put that is between 0 and 1, and that represents the relative agreement between clustering

outputs across an ensemble.

Item confidence score a value assigned to each item (i.e. sequence) in the consensus clus-

tering output that is between 0 and 1, and that represents the relative agreement between

clustering outputs across an ensemble.

Random sampling A representative selection strategy where representatives are selected

at random.

Naïve sampling A representative selection strategy where the set of representatives is
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built by sequentially reading the input dataset, and adding to the representatives any new

sequence that is sufficiently dissimilar (defined by a threshold) to the currently selected

representatives.

Consensus index The consensus index of a pair of sequences i and j (belonging to the

same consensus cluster) is the number of times that they appear together in the same cluster

associated to one of n Boundary-Tree, divided by the number n of Boundary-Trees used.

Cluster extension Extrapolating the cluster assignments of the representatives to the full

dataset.
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A.2 Boundary Forest Pseudocode

Data: seqs (the set of sequences, N = number of sequences)

t (sequence similarity threshold)

maxChild (maximum number of children allowed on each node)

Result: bt (Boundary-Tree)

shuffle seqs;

add seqs[1] as the root node of bt;

add seqs[2] to the bt as the child of the root node;

for query in seqs[3: N] do

while True do

currentNode← root node of bt;

if dist(query, currentNode) < t then

query’s representative← currentNode;

break;

else

children← children of currentNode;

closestChild← argminv∈childrendist(query, v);

smallestDist← minv∈childrendist(query, v);

if dist(query, currentNode) < smallestDist && size(children) < maxChild

then

add query as a child to currentNode;

else

currentNode← closestChild;

end

end

end

end

Where dist(x,y) calculates the Smith-Waterman distance between sequences x and y
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