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Abstract

The growth of computer-based testing over the last two decades has motivated the

creation of innovative item formats. It is often argued that technology-enhanced items

(TEIs) provide better measurement of test-takers’ knowledge, skills, and abilities by

increasing the authenticity of tasks presented to test-takers (Sireci & Zenisky, 2006).

Despite the popularity of TEIs in operational assessments, there remains little

psychometric research on these innovative item formats. Claims regarding their potential

to provide better measurement are seldomly explored. This dissertation adds to this

limited body of research by developing theory and proposing a methodology to compare

TEIs to traditional item formats.

This study investigated how to judge the comparative measurement value (CMV)

of two drag-and-drop technology-enhanced formats (classification and rank-ordering)

relative to stem-equivalent multiple-choice items. Items were administered to a sample of

adults and results were calibrated using a 2-parameter logistic IRT model. Moreover, the

utility of the TEIs was evaluated according to the TEI Utility Framework (Russell, 2016).

Four indicators were identified as the most valuable characteristics to judge CMV

and then combined into a hierarchical decision protocol. When applied, this protocol

provides a CMV judgment and a recommendation of the preferred item format. Applying

the protocol to the items revealed that most TEIs examined in this study showed



decreased CMV, indicating that in a real-life scenario the multiple-choice format would be

favored for most of these item pairs. Recommendations for the use of the CMV protocol

and directions of future related research are discussed.
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Foreword

This dissertation was motivated by a strong belief that technology-enhanced items should

face more scrutiny regarding the contexts in which they should be used. All too often we,

as test developers and item writers, ask How can this item be more interactive? rather

than asking Would a technology-enhanced interaction allow assessing more accurately the

intended construct? Grounded in the Evidence Centered Design framework (Mislevy,

2003), accessing the targeted constructs should be a priority and test developers should

not be distracted by the attractive opportunities technological innovations provide. This

dissertation presents the Comparative Measurement Value Protocol which is intended as a

tool to inform decisions regarding when technology-enhanced items provide better

measurement compared to stem-equivalent multiple-choice items. This protocol provides

evidence-based rationales that will inform validity arguments of operational assessment

programs on the usage of common technology-enhanced formats.

The study described in this dissertation was conducted in the summer of 2020, at

the height of the COVID-19 pandemic. This study was planned and ready to be executed

in the spring of that same year in 8th-grade classrooms. However, as schools closed to

prevent the spread of the disease this study had to be re-designed. As described

throughout this work, relying on Amazon’s MTurk to gather data posed multiple

challenges. Despite these hurdles, this was the first dissertation in the Measurement,

Evaluation, Statistics, and Assessment department at Boston College to overcome the

limitations to data collection posed by the pandemic. Let this work be a testament of the

impact of this world-wide event on educational research.
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Chapter 1 - Introduction

The last two decades have seen a significant increase in the use of computer-based tests

(CBTs) as part of large-scale assessment programs. The growing prevalence of computer-

based testing has motivated the creation of innovative item formats to improve the way

tests assess examinees. It is often argued that technology-enhanced items (TEIs) provide a

better measurement of test-takers’ knowledge, skills, and abilities by increasing the

authenticity of tasks performed while responding to a test item (Sireci & Zenisky, 2006).

The goal of increasing authenticity has led to the development of several TEI formats and

response interaction spaces and the subsequent adoption of TEIs by several large-scale

assessment programs. However, despite the popularity of TEIs in operational assessments,

there remains little psychometric research on these innovative item formats; claims

regarding their potential to provide better measurement of student achievement have been

seldomly explored. Consequently, it is necessary to gather empirical data to evaluate these

claims.

This dissertation aims to add to the limited body of research that has examined

empirically the psychometric properties of TEIs and proposes a methodology to compare

TEIs to traditional item formats. The present chapter describes the background and

motivation behind this dissertation. This chapter begins with a review of the growth of

computer-based tests in the United States followed by a brief introduction to technology-

enhanced items. Next, the research objectives of this dissertation and an overview of the

methodology employed are presented. The chapter concludes with a discussion of the

significance of this study and a description of the content of future chapters.
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The Growth of Computer-Based Testing in the United States

The use of computers to deliver educational tests was pioneered by Educational Testing

Service (ETS) during the 1990s (Briel & Michel, 2014; Moncaleano & Russell, 2018). The

launch of the world wide web enabled efficient digital communication and transfer of data.

The testing industry capitalized on this efficiency to administer tests online at testing

centers and to distribute score reports to academic institutions (Clarke et al., 2000).

These benefits prompted ETS to transition the Graduate Record Exam (GRE) General

Test from a paper-based format to a computer-based format in 1992. In subsequent years,

ETS migrated several other tests to a digital format, including the Graduate Management

Admission Test (GMAT) and the SAT I (Bennett, 1998). By the end of the decade,

computer-based administration became the norm rather than the exception for tests

provided by ETS.

In the early 2000s, simultaneous changes at the federal and state levels in the

United States set the stage for the rise of computer-based testing in K-12 settings. At the

federal level, growing concern about the lack of competitiveness of the American

education system compared to other developed nations in the late 20th century led to the

introduction of the No Child Left Behind Act (NCLB) of 2001. President George W. Bush

highlighted the lack of growth in the National Assessment of Educational Progress

(NAEP) and how the United States performed below its industrialized competitors in the

Third International Mathematics and Science Study (TIMSS) to argue that increased

accountability, and consequently increased testing, were key to improving the U.S.

education system (Madaus et al., 2009). Among other elements, the NCLB law mandated

states to test students in mathematics and reading in grades 3 through 8 and once in high
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school (Klein, 2015). Concurrently, states began developing computer-based tests for

large-scale administrations. In 2002, Oregon and South Dakota became the first states to

implement computer-based tests while 10 additional states were piloting CBTs for future

administration (Borja, 2002). The nexus between the sudden increase in federal testing

requirements, the growing availability of computers, and the surge of interest in

applications of technology to educational settings led to the rapid proliferation of state-

wide computer-based tests throughout the United States in the following years. By 2003,

12 states had implemented digital tests (Edwards et al., 2003) and by 2006 the total had

reached 22 states (Swanson, 2006). By the end of the decade, approximately half of the

states (26) were using computers to deliver at least a portion of their annual state test

(Blazer, 2010; Thurlow et al., 2010).

In September 2010, the U.S. Department of Education allocated $350 million to

develop next-generation assessments through the Race to the Top Assessment (RTTA)

program (Race to the Top Fund Assessment Program, 2010). The program provided

funding for states to develop tests that “support and inform instruction, provide accurate

information about what students know and can do, and measure student achievement

against standards designed to ensure that all students gain the knowledge and skills

needed to succeed in college and the workplace” (U.S. Department of Education, 2010, p.

2). The RTTA program led to the formation of six federally funded assessment consortia.

The Partnership for Assessment of Readiness for College and Careers (PARCC) and the

SMARTER Balanced Assessment Consortium (SBAC) were awarded grants by the RTTA

program to develop digitally-delivered comprehensive Mathematics and English Language

Arts assessments for all students except those with significant disabilities. The RTTA
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program also funded two consortia to “develop next generation assessments for students

with the most significant cognitive disabilities” (Educational Testing Service [ETS], 2016,

p. 17): the Dynamic Learning Maps Alternate Assessment Consortium (DLM) and the

Multistate Alternate Assessment Consortium (MSAA; formerly known as the National

Center and State Collaborative, NCSC). In subsequent years, the RTTA program also

awarded grants to two consortia to develop English language proficiency assessments. The

WIDA collaborative was funded to develop the ACCESS for ELLs 2.0 assessment system

in 2011 while the English Language Proficiency Assessment for the 21st Century

(ELPA21) consortium was funded in 2012 (ETS, 2016). The funding provided by the

RTTA program spurred wide-spread development of computer-based tests and introduced

digital features that improved test accessibility for students with cognitive disabilities.

Several national and international assessment programs also transitioned or

launched efforts to transition to digital platforms during the past two decades. NAEP

began researching the possibility of transitioning its tests to computers in 2001 (Bennet et

al., 2008) and eventually conducted a large-scale pilot for computer- and tablet-based tests

in 2016 (National Assessment of Educational Progress, 2018). NAEP officially transitioned

its mathematics and reading tests to digitally-based assessments in 2017 (Jewsbury et al.,

2020). Internationally, the Programme for International Student Assessment (PISA)

began transitioning to a computer-based platform in 2006 (Organization for Economic Co-

operation and Development, 2010) and half the countries participating in TIMSS 2019

administered the assessment on computers or tablets (Fishbein et al., 2018; Martin et al.,

2017; TIMSS & PIRLS International Study Center, 2019). Although some testing
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programs remain dependent on paper-based administration, many local, state, national,

and international assessment programs are now administered in a digital format.

Technology-Enhanced Items

Two of the most frequently cited benefits of computer-based educational assessments are:

(a) efficient administration and scoring and (b) the use of innovative item formats to

improve construct representation and fidelity (Sireci & Zenisky, 2006). Large-scale

standardized paper-based tests often rely on selected-response (SR) items because their

constrained nature allows testing a broad range of topics in a short amount of time as well

as fast and efficient scoring. In turn, the administration of several SR items in a short

amount of time generally improves two important measurement properties of the test,

namely reliability and content representation (Haladyna & Rodriguez, 2013). Selected

response items (SRIs), however, are criticized for being too constrained to assess some

constructs at an appropriate level of depth and complexity (Madaus & O’Dwyer, 1999;

Scully, 2017). Although some tests include constructed-response (CR) items, use of these

items is generally limited because they require more time to answer compared to SRIs and

increase scoring costs (Wendler & Walker, 2006).

Computer platforms allow standardized tests to include new item formats that

capitalize on innovative response interactions to capture with more authenticity test-

takers’ understanding of assessed constructs (Russell, 2016). Items in digital environments

may be enhanced in three main ways: (a) by enhancing the prompt, (b) by enhancing the

way test-takers interact with the item to produce a response, or (c) by enhancing both the

prompt and the response interaction space. For example, the Test of English as a Foreign

Language (TOEFL), includes audio material to assess test-takers’ ability to comprehend

5



spoken English. Similarly, PISA and NAEP have developed science items that include

experiments and simulations controlled by the test-taker as part of the prompt. In both

cases, the item response interaction typically requires test-takers to select an answer from

a set of options. In contrast, PARCC and SBAC have focused on enhancing item response

interactions. In mathematics, for example, test-takers interact directly with coordinate

planes to plot points and lines. Items with response formats that deviate from common

selected-response and constructed-response are considered technology-enhanced items

(TEIs).

TEIs are often claimed to: (a) reduce construct irrelevant variance by improving

the authenticity of the contexts presented to test-takers and (b) improve construct

representation (Strain-Seymour et al., 2009). Digital innovations to the prompt and the

response interaction space allow TEIs to present contexts that are more authentic for

applying the assessed constructs. In this way, TEIs better represent real-life contexts in

which the construct is typically applied. In addition, TEIs have potential to assess

constructs that are not feasible to assess with selected-response items. As an example,

consider this high school Common Core standard: “Graph functions expressed

symbolically and show key features of the graph, by hand in simple cases and using

technology for more complicated cases” (CCSS.MATH.CONTENT.HSF.IF.C.7; National

Governors Association Center for Best Practices & Council of Chief State School Officers,

2010). A TEI assessing this standard would allow test-takers to draw a graph on a

coordinate plane and then identify important elements of their graph, such as vertices,

maximums, or minimums. Since their inception, both PARCC and SBAC have
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purposefully capitalized on the potential of TEIs to assess standards that have not been

assessed by selected-response items (Crabtree, 2016).

The appeal of item innovation spurred the development of a variety of technology-

enhanced item formats by several computer-based assessment programs. However, despite

their increased popularity and prevalence among testing programs, there is limited

empirical evidence regarding the benefits of using TEIs compared to those of selected-

response items (Bryant, 2017). Gathering evidence regarding whether and how TEIs

improve the measurement properties of a test beyond SR items will strengthen validity

claims for assessment programs that have adopted TEIs and will inform those that are

transitioning to digital platforms.

To date, only six studies have compared the psychometric properties of TEIs to

those of selected-response items. These studies include three peer-reviewed studies

published by Jodoin (2003), Wan and Henly (2012), and Qian et al. (2017) and three

dissertations authored by Gutierrez (2009), Eberhart (2015), and Crabtree (2016).

Although these six studies provide some insight into the benefits of TEIs, several

shortcomings limit the practical applications of their findings. Salient limitations of this

body of literature include: (a) grouping diverse innovative item formats under a single

“TEI” label, (b) comparing TEIs to SRIs that assessed different constructs, and (c) the

lack of a consistent definition of “technology-enhanced item” across studies. Bryant (2017)

warns against making blanket statements about the worth of TEIs as a class given the

diversity of TEI formats currently used in operational tests. Evidence indicates that some

types of TEIs provide better utility than others (Russell & Moncaleano, 2019) and that

the value of TEIs is dependent on the type of interaction required to produce a response
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and the construct intended to be measured. Therefore, studies about TEIs should focus

on specific TEI formats rather than “TEIs” as a whole. Moreover, when TEIs are

compared to selected-response items that assess different constructs, any differences on

item psychometric characteristics across item formats may be confounded with differences

in content. Finally, the results of several studies are often not directly comparable as

different authors adopt different definitions of TEIs, thus classifying a variety of item

formats under this label.

The study described in this dissertation adds to this limited body of work by

comparing TEIs to multiple-choice items while addressing some of the shortcomings of

this group of studies. In particular, this study relies on two forms of a data collection

instrument which have been constructed using pairs of TEIs and stem-equivalent multiple-

choice items (MCIs), thus ensuring the equivalence of the assessed content across items.

Additionally, all analyses were conducted separately for the two types of TEI response

formats used (drag-and-drop classification and drag-and-drop rank-ordering), thus

allowing results to be reported separately for each response interaction format. Finally,

this work adopts a clear definition of what kind of item constitutes a

“technology-enhanced item” and uses this definition consistently throughout.

Purpose of the Study

The primary purpose of this study is to develop a protocol to judge the comparative

measurement value of technology-enhanced items and stem-equivalent multiple-choice

(MC) items to inform item-type selection decisions. To do so the following research

questions are explored:
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1. How do the psychometric characteristics of commonly employed TEI drag-and-

drop formats (classification and rank-ordering) compare to stem-equivalent

multiple-choice items?

2. What is the relationship between the utility of TEI drag-and-drop formats

(classification and rank-ordering) and their psychometric item characteristics?

3. How can TEI psychometric properties and utility ratings be combined to develop

a standardized protocol to judge the comparative measurement value of TEIs

relative to stem-equivalent MC items?

A data collection instrument was developed and administered to a sample of

adults to investigate these research questions. This instrument assessed knowledge of

middle-school mathematics and science, as well as statistics concepts typically covered in

high-school and college-level introductory statistics courses. The instrument comprised

stem-equivalent pairs of TEIs and multiple-choice items split across two forms. Two TEI

formats were examined: drag-and-drop classification and drag-and-drop rank-ordering.

The drag-and-drop format was chosen as the focus of this study because Russell and

Moncaleano (2019) found it to be the most prevalent TEI response interaction in K-12

operational large-scale assessment programs worldwide. Item scores were analyzed

quantitatively using both classical test theory and item response theory methodologies.

To address research question 1 (RQ1), stem-equivalent items were compared

according to several psychometric characteristics, including item difficulty, item

discrimination, item information, and relative efficiency. Research question 2 (RQ2) was

investigated by asking a panel of educational measurement graduate students to rate the
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construct fidelity and usability of the TEIs employed according to the TEI Utility

Framework (Russell, 2016; Russell & Moncaleano, 2019). The resulting ratings were then

compared to the psychometric characteristics estimated for RQ1 to explore how TEI

construct fidelity and usability ratings were associated to the psychometric behavior of

these items. To explore research question 3 (RQ3), some item characteristics estimated to

address RQ1 and RQ2 were combined in a protocol designed to inform decisions regarding

which item format to use based on the comparative measurement value of technology-

enhanced items with respect to stem-equivalent multiple-choice counterparts. This

protocol relies on four indicators to provide a judgment of comparative measurement value

that informs when it is valuable to use a TEI instead of a MC format. The protocol was

applied to the TEIs developed for this study to examine comparative measurement value

of both TEI response interactions considered (i.e., classification and rank-ordering).

Significance of the Study

The educational assessment industry continues to develop new TEIs to improve

measurement. However, there is a lack of empirical evidence regarding the benefit of

replacing an SRI with a TEI. In other words, it is unclear when it is appropriate to use a

TEI format (and which) instead of a selected-response format. Although test developers

often make efforts to ensure that TEIs are properly aligned with the intended content and

reduce construct irrelevant variance, no research is available about whether these efforts

pay off by producing items that assess the intended constructs better than the SRIs that

they were designed to replace. In part, this lack of research can be explained by the lack

of tools to determine what “better” means when comparing TEIs to traditional item

formats. Although guidelines for evaluating multiple-choice and open-ended items based

10



on their psychometric properties have been available for several decades, there are no

comparable resources specific to evaluating the measurement value of TEIs compared to

SRI counterparts.

This dissertation proposes a methodology to examine the measurement value of

TEIs compared to that of multiple-choice items and provides rigorous evidence and

practical results regarding the benefits of two types of the common drag-and-drop TEI

format (classification and rank-ordering) compared to MC items. This is accomplished by

addressing some limitations of the relevant literature. In particular, by conducting

research on a single type of TEI format and employing stem-equivalent pairs of TEIs and

MCIs to ensure the content-equivalence of items across test forms and response interaction

spaces. Additionally, by addressing some of the methodological shortcomings of the

limited body of work that has examined the psychometric properties of TEIs, this study

aims to provide the field of educational measurement with a new standard to conduct

research on TEIs. Finally, the protocol proposed as a result of this study will provide a

clear indication of the tradeoffs involved whenever a TEI replaces an MCI.

The remainder of this dissertation is divided into four sections. Chapter 2 presents

a review of the literature that informed the study and its design. The major topics

reviewed include the growth of the testing industry over the last century, the introduction

of computers as delivery platforms, and the development of digital innovations to item

formats. In addition, this chapter includes a review of methods used to examine item

quality, in particular, how items have been compared based on their response format,

delivery mode, and interface. The chapter concludes with an overview of empirical studies

that have compared computer-based innovative and traditional item formats and a

11



discussion of how the methodologies employed in these studies informed this work.

Chapter 3 presents the design and analytic methods of this study. Specifically, this

chapter describes the instrument development process, the use of the TEI Utility

Framework to rate the construct fidelity and usability of the TEIs used, the instrument

administration procedures, and the quantitative methods used for item analysis. Chapter

4 describes the results of the study. The chapter begins with an examination of sample

characteristics and time spent by participants on the instrument. Then the chapter

presents comparisons of TEIs and their MC counterparts based on the psychometric

properties estimated, followed by findings regarding the construct fidelity and usability

ratings of the TEIs. Finally, Chapter 5 identifies the most valuable characteristics for

judging comparative measurement value and proposes a decision protocol that

standardizes comparisons between TEIs and traditional item formats. Chapter 5

concludes with a discussion about the implications of the study for the field of educational

measurement, the limitations of this study, and future steps on this line of research.

Throughout this dissertation, the term efficiency is used in several ways. The

glossary in page 174 details each way in which the term efficiency is used and other

common terms used in this work.
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Chapter 2 - Literature Review

The purpose of the study is to develop a protocol to estimate the comparative

measurement value of technology-enhanced items and inform item-type selection decisions.

To accomplish this, this study estimates the psychometric properties of selected

technology-enhanced item formats and examines the relationship between these properties

and utility. This study is informed by two bodies of literature which are both summarized

in this chapter: (a) the evolution of different item formats and (b) methods for examining

item characteristics and the factors that influence these characteristics. The first section

of the chapter is organized chronologically, showing the birth and subsequent growth of

the testing industry in the early 20th century, the development of different paper-based

traditional item formats, and the introduction of computers as delivery platforms.

Because the availability of computers fostered digital innovations to item formats, this

section of the chapter also presents efforts made to define and classify these innovations,

as well as a discussion of their potential benefits and limitations.

The second section of the chapter focuses on the methods used to examine item

quality. Informed by the decades of work on paper-based traditional items, item and test

characteristics valued by test developers are discussed. Methodological approaches

commonly used to compare items based on their response format, delivery mode, and

interface are also presented. A summary of efforts pursued to examine the quality of

innovative computer-based items is also included. The chapter concludes with a review of

empirical studies that have compared computer-based innovative and traditional item

formats and a discussion of how the limitations of these studies informed methodological

considerations of this work.
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Traditional Items

A Brief History of Testing and Traditional Item Formats

This section presents a brief history of educational testing primarily in the United States.

The section begins with school testing practices and early efforts to develop standardized

tests at the beginning of the 20th century. The growth and evolution of the testing

industry throughout the rest of the century is described up to the introduction of

computers as delivery platforms for educational assessments. This review focuses on the

introduction and evolution of multiple paper-based item formats. The most common

traditional item formats discussed in this section are described in detail in Appendix A.

Open-ended questions represent the “original” item format. Prior to the late

1800s, educational examinations took the form of oral recitations. These examinations

were evaluated by classroom teachers and typically took the form of a conversation rather

than a pre-determined set of questions common to all students (Russell, 2006). In the

mid-1800s, however, a new format of examination was introduced. Seeking to monitor the

quality of instruction by comparing schools’ and teachers’ performance, in 1845 Horace

Mann capitalized on the new mass production of paper to create and administer common

written examinations across Boston Public Schools (Gallagher, 2003; Odell, 1928; Russell,

2006). Not long afterwards, in Europe, Binet and Simon developed a measure of mental

ability to determine the extent to which children possessed knowledge and skills

corresponding to their chronological age (Binet & Simon, 1905; Gould, 1981). Binet and

Simon were particularly interested in identifying children with mental abilities below their

age that would benefit from specialized schooling; thus, their instrument became a tool to

inform school placement decisions (French & Hale, 1990). Although the Binet-Simon test
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was administered orally, it further promoted the idea of a standardized set of questions

across all examinees (Binet & Simon, 1905). Three years later, Henry Goddard introduced

the Binet-Simon instrument to America by implementing it at the Vineyard Training

School for Feeble-Minded Girls and Boys in New Jersey to identify students whose mental

development was below age level (Zenderland, 1998). The Binet-Simon scale was later

adapted to the American context by Louis Terman and became known as the Stanford-

Binet Intelligence Scale (Terman, 1916).

The use of “standard” test instruments containing open-response items expanded

rapidly in classroom settings during this period. Through his dissertation, Fredrick Kelly

realized that teachers were spending considerable amounts of time scoring written tests

and found there was a high level of subjectivity in how these tests were marked by

different teachers (Kelly, 1915). To address these shortcomings, Kelly published the

Kansas Silent Reading Test which introduced the 4-option multiple-choice item format.

Student responses to this test were quickly and objectively scored by scanning a test’s

page by eye (Kamenetz, 2015). Kelly’s multiple-choice item format was reproduced in

several contemporary intelligence scales. Most prominently, Arthur Otis, one of Terman’s

students, created a multiple-choice version of the Stanford-Binet instrument that could be

administered in a group setting (Clarke et al., 2000). The utility of the multiple-choice

item format was solidified in 1918 by its use in the Army Alpha, a battery of tests used to

efficiently classify approximately 2 million army recruits into appropriate military

positions during World War I (Carson, 1993; Monahan, 1998; Yerkes, 1921).

Following the success of the Army Alpha, the 1920s saw a rapid growth of

standardized examinations in educational contexts (Clarke et al., 2000). First, Terman
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adapted the Army Alpha for school settings as the National Intelligence Test. Later, Otis

published the Stanford Achievement Test and the College Entrance Examination Board

introduced the Scholastic Aptitude Test (SAT; Clarke et al., 2000). State-level tests also

became common during this period, such as the New York Regent’s exam and the Iowa

Test of Basic Skills (Moncaleano & Russell, 2018). The rapid expansion and growth of

these testing programs led to the creation of a variety of item formats (Odell, 1928). For

example, in contrast to the traditional longer essay format, variations to the open-ended

format included simple statement answers, single-answer or recall items, and sentence

completion questions. Similarly, several new selected-response item formats were

introduced such as true-false and matching items (see Appendix A for detailed

descriptions). The 4-option MC item format was also modified by expanding ways of

presenting answer options and introducing new ways for test-takers to mark their

responses (e.g., by underlining, by circling, or by writing the numeral of the answer in a

box or space; Douglass, 1926; Odell, 1928). The introduction of these alternative item

formats prompted extensive research that compared these alternate formats to

“traditional” open-ended questions (e.g., Kinder, 1925; Paterson, 1926; Ruch & Charles,

1928; Ruch & Stoddard, 1925 See also Kinney & Eurich, 1932, for a review of these early

studies).

More item formats and new variations to existing item formats were introduced in

the 1930s and 40s. Some new item formats included location and identification items,

rank-ordering items, and detection and correction of errors (see Appendix A for detailed

descriptions; Tiegs, 1939). Common item formats were also modified further. For

example, it became common for the multiple-choice item to have fewer than or more than
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four response options. The extended multiple-choice and extended true-false formats were

also introduced, where multiple questions were answered simultaneously based on a

common set of answer options (Hawkes et al., 1936). As the 1940s came to an end,

authors began classifying item formats according to whether they were objectively scored

(i.e., a single correct answer existed) or subjectively scored (i.e., multiple answers might

be considered correct or partial credit was awarded); a classification scheme that is still

used today (Haladyna & Rodriguez, 2013; Travers, 1950; Weitzman & McNamara, 1949).

The introduction of automatic scoring machines in the late 1930s and their

increased availability in subsequent decades led large-scale testing programs to prefer

objectively-scored selected-response item formats. As a result, no new item formats were

introduced in the 1950s and 1960s. Instead, some item formats lost favor because they

could not be scored automatically using technology available at the time (e.g., matching,

location/identification, rank-ordering, and short open-ended items). Despite these formats

being abandoned in large-scale testing, they continued to be used in classroom settings

(Ebel, 1965, 1972; Ebel & Frisbie, 1991; Hills, 1976; Hopkins & Antes, 1979).

In the early 1970s and through the 80s and 90s, computers were slowly introduced

as a platform for delivering tests. The first efforts to explore computer-based delivery were

made by psychologists and the Office of Naval Research, which supported extensive

research on adaptive testing delivered by computers (Moncaleano & Russell, 2018).

Ultimately, the launch of the World Wide Web in 1989 cemented the central role of

computers for the delivery of educational tests. The increased use of computers to deliver

tests led to a new wave of innovation in item types. Before discussing these new item

types, the use of traditional item types in digital assessment is discussed in detail.
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Traditional Items in Digital Assessments

Fueled by increased computer access and the availability of internet, several testing

programs have recently transitioned to computer-based delivery systems. Initial

transitions occurred by simply replicating traditional items used on paper-based tests in a

digital platform (Bennett, 1998; Parshall et al., 1996; Poggio & McJunkin, 2012). These

efforts sparked a body of research that examined the equivalence of digitally presented

traditional items and their paper counterparts (e.g., Bennett et al., 2008, Clariana &

Wallace, 2002; Goldberg & Pedulla, 2002; Horkay et al., 2006; Sandene et al., 2005 —see

also Kingston, 2009; Leeson, 2006; Wang et al., 2007, for reviews of the literature). These

studies often found mode effects; that is, differences in the performance of examinees

based on the mode of administration (Clariana & Wallace, 2002; Parshall, 2002). In

response to these differences, statistical adjustments were developed to ensure the

equivalence of test scores over time. Although mode effects presented challenges for test

developers, transitioning to computer-based administration also brought several

advantages, including improved efficiencies during item review, test distribution, and

scoring (Moncaleano & Russell, 2018). For selected-response items, digital platforms allow

automatic scoring of student responses through pre-programed scoring protocols. For

open-ended responses, digital platforms allow for efficient collection of responses and

distribution to scorers. Additionally, several large-scale testing programs have developed

automatic essay scoring software that mimics human scoring (O’Leary, 2018).

As large-scale assessments began to transition to digital delivery systems, Bennett

(1998) introduced a framework that described three generations of computer-based tests.

First-generation computer-based tests are “substantively the same as those administered
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on paper: they measure the same skills, use the same behavioral designs, and depend

primarily on the same types of tasks” (Bennett, 1998, p. 3). During the second-

generation, testing programs begin “delivering qualitatively different tests cost-effectively”

(Bennett, 1998, p. 5). In particular, Bennett focuses on the ability to incorporate

multimedia (sound and video) to measure traditional skills more comprehensively and

assess new constructs. Some response formats also change during this generation. For

example, substituting multiple-choice items for open-response items with a single correct

response (e.g., a numeric response to a simple arithmetic problem) that the software

scores automatically. Bennett also suggests computers will open the door to developing

items with more than one plausible answer that can be scored automatically, as the

system would be able to compare a student’s response with several acceptable answers or

evaluate whether an answer meets certain criteria. In other words, Bennett anticipates

innovations to item response formats (i.e., technology-enhanced items) as a defining

feature of second-generation CBTs.

During the third stage, which Bennett (1998) terms generation “R,” electronic

tests break from tradition and become embedded in the curriculum and the instructional

process. During this generation Bennett believes “the influence of cognitive science will be

strongly more evident driving course and test design” (Bennett, 1998, p. 12). This will

lead tests to be “theory-based” by capitalizing on fundamental conceptions of the nature

of each subject and the associated cognitive processes. This generation will include very

different tasks from previous generations, for instance, replacing multimedia with virtual

simulations or complex modeling environments.
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Since Bennett (1998) introduced his computer-based testing generations

framework, large-scale testing programs have evolved considerably. Bennet (2015) and

O’Leary et al. (2018) argue that the field has entered the second generation of computer-

based assessments and is beginning to move towards the third as evidenced by the use of

simulations, automatic essay scoring algorithms, and an increasing diversity of innovative

item formats. The following section focuses on these innovative items.

Technology-Enhanced Items

Computer-based test delivery provides test-developers an opportunity to create new

digitally-based item formats that may be scored automatically. The following section

presents an overview of definitions and classification schemes that have been proposed for

these new item formats and concludes with a discussion of the potential benefits and

limitations of these innovations.

Defining TEIs

Digital items that differ from traditional formats have been referred to by several terms

over the last three decades. These terms include new item types, innovative items,

technology-enabled items, computer-based items, sophisticated tasks, interactive items, and

technology-enhanced items (Bryant, 2017). While “new item type” was the most prevalent

label in the 1990s and “innovative item” in the 2000s, “technology-enhanced item”

became the preferred label during the most recent decade. Two main approaches have

been employed to characterize innovative item formats: (a) operational definitions and (b)

classification schemes. Operational definitions present criteria that allow one to classify an

item format as innovative or traditional. In contrast, classification schemes consider

innovation as a continuum where item types are classified according to the degree of
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innovation they provide based on multiple item characteristics. These two approaches are

described in detail.

In the broadest sense, the label “technology-enhanced item” (TEI) refers to any

computer-based item that differs from traditional selected-response and constructed-

response items (Bryant, 2017; Parshall & Guille, 2016). For example, Parshall et al. (2010)

define TEIs as items that “make use of features and functions of a computer to deliver

assessments that do things not easily done in traditional paper-and-pencil assessments”

(p. 215). A similar definition is used by Smarter Balanced in its Technology-Enhanced

Items Guidelines (Measured Progress & Educational Testing Service, 2012), where TEIs

are “computer-delivered items that include specialized interactions for response and/or

accompanying response data. These include interactions/responses that are not selected-

response or text-entry. TEIs may include digital media as the stimulus” (p. 9). Russell

(2016) makes a distinction between enhancements to the prompt and the answer space.

Technology-enhanced items fall into two broad categories. The first category

includes items that contain media that cannot be presented on paper. These items

utilize video, sound, 3D graphics, and animations as part of the stimulus and/or

response options. The second category includes items that require test takers to

demonstrate knowledge, skills, and abilities using response interactions that

provide methods for producing responses other than selecting from a set of options

or entering alphanumeric content. To distinguish the two categories, the term

technology-enabled refers to the first category and technology-enhanced labels the

second category. (p. 20)
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In contrast to operational definitions, classification schemes are another approach

used to describe computer-based innovations to item formats. Bennett (1993) proposed

six main categories to classify computer-based item formats: (a) multiple choice, (b)

selection/identification, (c) reordering/rearrangement, (d) completion, (e) construction,

and (f) presentation. This classification scheme focuses on the degree of constraint

imposed by the response interaction for a given item type. In a similar fashion Parshall et

al. (1996) argue that item innovations reside on a continuum that ranges from fully

constrained responses (e.g., multiple-choice) to highly open responses (e.g., an essay).

Koch (1993) organized innovative items according to how different they were from

traditional items using four hierarchical categories: (a) traditional items with minor

modifications, (b) items that make fuller use of graphics and graphic capabilities, (c)

“multidimensional” items (i.e., items that require test-takers to interact with content

presented in a matrix form), and (d) situated items (online items with a high degree of

real-world fidelity).

Based on some these early classification frameworks, Parshall et al. (2000) argued

there were five dimensions of item innovation in digital environments: (a) assessment

structure, (b) response action, (c) media inclusion, (d) level of interactivity, and (e)

scoring algorithm. The assessment structure is concerned with the level of constraint of an

item format. Item format constraint ranged from multiple-choice (most constrained) to

constructed responses (least constrained). The response interaction dimension refers to

the hardware used by test-takers to engage with the item (e.g., keyboard, mouse, touch

screen). Media inclusion focuses on the extent to which media was included as part of the

stem or the response space. The level of interactivity dimension focuses on the extent to
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which an item responds or reacts to the responses provided by a test-taker. The level of

interactivity ultimately refers to the immediate feedback test-takers see as they interact

with an item, for example, by seeing the height of the bar in a histogram change as they

move the cursor. Finally, the scoring algorithm dimension addresses how responses are

translated into quantitative scores.

In an updated version of the chapter, Parshall et al. (2010) included two more

dimensions: complexity and fidelity. Complexity relates to the “number and variety of

elements examinees need to interpret and use in order to respond to an item” (Parshall et

al. 2010, p. 216). Fidelity is associated with the extent to which the item provides

accurate and realistic representations of objects, situations or tasks in which the construct

being measured may be applied (Parshall et al., 2010). The authors further highlight that

each of these dimensions may be seen as a continuum, which ranges from less to more

“innovative.” The authors also warn that the “maximum level” of innovation within each

dimension is not always necessary or recommended; rather, test-developers should strive

for the optimal innovation level of each dimension in accordance to the purpose and

content of the assessment (Parshall et al., 2000; Parshall et al., 2010).

Scalise and Gifford (2006) expanded Bennet’s (1993) original constraint continuum

to seven levels: (a) multiple-choice, (b) selection/identification, (c) reordering/

rearrangement, (d) substitution/correction, (e) completion, (f) construction, and (g)

presentation/portfolio. In addition to expanding this continuum, the authors suggested

that items could vary according to their complexity within each of these constraint levels,

often in the form of higher-order interactions and the inclusion of multimedia. Based on
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this two-dimensional taxonomy, the authors reviewed 44 papers and book chapters and

classified 28 commonly used innovative items (see Figure 2.1).

Figure 2.1

Scalise and Gifford’s “intermediate constraint” taxonomy for e-learning assessment

questions and tasks

Note. From “Computer-based assessment in E-learning: A framework for constructing

“intermediate constraint” questions and tasks for technology platforms,” by Scalise, K.

and Gifford, B., 2006, The Journal of Technology, Learning, and Assessment, 4 (6), p. 9

(https://ejournals .bc.edu/index.php/jtla/article/view/1653). c©2006 The Journal of

Technology, Learning, and Assessment.
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The transition to computer-based tests produced a wide variety of digital platforms

and methods to code, store, transfer, and present computer-based items (Russell et al.,

2011). To standardize these schemes, the IMS Global Learning Consortium developed the

Question and Test Interoperability (QTI) Specification (IMS Global Learning Consortium

[IMS-GLC], 2020; Russell et al., 2011; Santos et al., 2012). Although the intent was not to

develop a formal classification scheme, the structure used to document the various item

types supported by QTI effectively serves as a classification scheme. The first version of

QTI was released in 2002 and included methods for coding common test item formats

such as 4- and 5-option multiple-choice as well as short- and extended-answer open

response. As tests have evolved and new item types have been developed, the current QTI

specification released in 2020 classifies 20 item-type interactions into four main categories:

(a) simple interactions, (b) text-based interactions, (c) graphical interactions, and (d)

miscellaneous interactions. Table 2.1 presents the list of interactions included in the QTI

specification (IMS-GLC, 2020). Like Scalise and Gifford’s classification system, the IMS

scheme includes both traditional and technology-enhanced items.

Table 2.1

Computer-based item interactions and their classification under the QTI Specification

Simple Text-Based Graphical Miscellaneous

Choice Inline Choice Hot Spot Slider
Order Text Entry Graphic Order Media
Association Extended Text Graphic Association Drawing
Matching Hot Text Graphic Gap Matching Upload
Gap Matching Select Point Portable Custom

Position Object Interaction (PCI)
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Among these approaches to defining item innovations in digital environments,

Russell’s definition is the most valuable for the study proposed here because it makes a

simple yet clear distinction between enhancements to the prompt and enhancements to

the response space. This dissertation focuses narrowly on enhancements to the response

space. Thus, henceforth Russell’s label of technology-enhanced item and its definition are

adopted, where the distinctive feature of a TEI is an innovative answer space that differs

from the traditional selected- or constructed-response interactions.

TEI Formats

Increased access to computers over the last decades enabled a variety of innovations to

item response spaces. In a recent survey of large-scale testing programs that use

technology-enhanced items Russell and Moncaleano (2019) found seven categories of

interaction types that were prevalent among computer-based tests, including: (a) drag-

and-drop, (b) plotting points, (c) selecting text, (d) creating frequency plots, (e) shading

areas, and (f) creating partitions. This review was limited to eight operational educational

testing programs in the United States and internationally that were administered in

English and had publicly available items. This study does not include other types of

interactions that are often seen as common among computer-delivered tests, such as hot

spot interactions, matching elements, and in-line drop-down menus. These nine TEI

formats are described in detail in Appendix A.

It is worth noting, however, that there is a parallel between these TEI interactions

and several of the traditional item formats discussed earlier. TEI interactions may be seen

as digital adaptations of traditional items that were discarded when selected-response

formats became the norm in paper-based tests due to automatic scoring. For example, the
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drag-and-drop and hot-spot interactions are akin to location/identification exercises while

the in-line choice and fill-in-the-blank interactions are digital versions of completion

exercises. Similarly, graphing and drawing exercises were common when teachers scored

tests. In this way, technology-enhanced item formats are not typically new response

formats, but digital adaptations of paper-based formats that are scored in an automated

manner.

Potential Benefits of TEIs

Traditional selected-response item formats have been criticized for their constrained

nature and their lack of authenticity (Boyle & Hutchison, 2009; Madaus & O’Dwyer,

1999). Common criticisms include the prevalence of guessing the correct answer and the

tendency of SR items to assess lower-order knowledge (i.e., simple recall and recognition;

Scully, 2017). Critics argue that SR items often target constructs at the lower end of

common cognitive taxonomies1. However, critics acknowledge that although SR items by

definition are not precluded from assessing higher-order skills, it is hard to write SR items

that do (Haladyna, 1997, 1999; Haladyna & Rodriguez, 2013; Martinez, 1999). Although

constructed-response formats have addressed some of these concerns their administration

comes with increased scoring costs and testing time (Poggio & McJunkin, 2012; Sireci &

Zenisky, 2006). Some benefits of technology-enhanced items stem from the nature of

computer-based testing itself and include time- and cost-efficient test delivery and

response scoring (Bryant, 2017; Dolan et al., 2011; Gifford, 2017). Beyond these benefits,

which are a product of any computer-based test, TEIs offer several opportunities for

1Cognitive taxonomies hierarchically organize the cognitive processes involved in curricular learning
objectives and the assessment of these objectives. Common taxonomies include Anderson and Krathwohl
(2001), Bloom et al. (1956), and Webb (1999).
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improved measurement. Among these improvements are (a) reducing construct irrelevant

variance by increasing the authenticity of the contexts presented to test-takers and (b)

increasing construct representation (Strain-Seymour et al., 2009).

TEIs are believed to reduce construct irrelevant variance (CIV) by providing more

authentic contexts for the demonstration of skills and knowledge (Association of Test

Publishers [ATP] & Institute for Credentialing Excellence [ICE], 2017; Boyle & Hutchison,

2009; Bryant, 2017, Harmes & Wise, 2016; Sireci & Zenisky, 2006; Strain-Seymour et al.,

2009). As the authenticity of the context of an item increases, the ability for a test-taker

to demonstrate their ability on the targeted construct is less threatened by non-targeted

constructs (Huff & Sireci, 2001). For example, consider the assessment of a student’s

ability to graph mathematical functions. SR items that target this construct often ask

students to select the correct graphical representation of a function from a list of options.

In contrast, a TEI version of this item requires students to create graphical

representations of functions themselves, a process that is similar to how they are assessed

in the classroom. TEIs have the potential of removing construct irrelevant processes

associated with selecting from among a set of response options (Drasgow & Mattern,

2006), in particular guessing the correct response, as they often provide a sufficiently large

number of possible responses that the probability of guessing correctly is minimal

(Gifford, 2017; Huff & Sireci, 2001; Parshall & Harmes, 2014; Strain-Seymour et al.,

2009). Finally, TEIs may also reduce CIV by increasing test-taker engagement (e.g.,

Dolan et al., 2011; Huff & Sireci, 2001; Strain-Seymour et al., 2009; Zenisky & Sireci,

2013). TEIs hold potential to create contexts with higher fidelity than those provided by

SR formats and thus be more engaging for students. Although approaches to estimate
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test-taker engagement have been developed for both SR items (Wise & Kong, 2009) and

TEIs (Harmes & Wise, 2016), their validity is not widely accepted.

TEIs also provide an opportunity to improve construct representation by

measuring constructs that have traditionally been unassessed due to the constraints of SR

and CR formats (ATP & ICE, 2017; Bryant, 2017; Dolan et al., 2011; Gierl et al., 2016;

Strain-Seymour et al., 2009). For example, if one believes that identifying a graph from a

set of options is a different construct than creating a graph of a given function (i.e.,

identification vs. construction), then graphing a mathematical function is a construct that

has remained unassessed by SR items. TEIs also improve construct representation as they

have the potential to assess higher-order cognitive processes (ATP & ICE, 2017;

Duke-Williams & King, 2001; Strain-Seymour et al., 2009; Wendt & Harmes, 2009).

Limitations of TEIs

Despite their potential benefits, TEIs have at least three challenges and limitations. These

include (a) introducing CIV associated with computer literacy, (b) increased development

costs, and (c) scoring challenges.

Although TEIs may reduce CIV related to the authenticity of the context, they

also may introduce CIV related to the test-takers’ familiarity with computers and the

actions required to produce a response (Boyle & Hutchison, 2009; Parshall & Harmes,

2014; Sireci & Zenisky, 2006). Moreover, “the use of TEIs is generally driven by the

functionalities offered by item authoring and test-delivery platforms, not by the constructs

identified by test developers” (Bryant, 2017, p.2). This happens when test developers first

choose a TEI interaction and then identify a construct to be assessed with that item

format (Parshall & Becker, 2008). Allowing technology to drive measurement may be an
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additional source of CIV. Parshall et al. (2010) warn that “it is important not to

undertake innovations simply because they appear to be glitzy or cutting-edge. Innovation

in and of itself does not ensure better measurement, nor is it equivalent to increasing

validity” (p. 228).

TEIs can also “be more expensive to develop and administer, since they depend

upon advanced authoring, delivery, and scoring technologies” (Bryant, 2017, p.2). A quote

from a Measured Progress report speaks to this cost: “Unfortunately, TEIs have been

expensive to develop and score. They have commonly been ‘one-off’ productions requiring

custom programming, and thus were created only for large-scale assessment, where the

high stakes justified the expense” (Measured Progress, 2014, as cited in Gifford, 2017, p.

6). Similarly, the PARCC Assessment Consortium estimates that developing TEIs may

cost as much as five times the cost of developing traditional multiple-choice items (Russell,

2016). Although research has explored how to streamline this process through task-models

and templates (Parshall & Harmes, 2007, 2014; Strain-Seymour et al., 2009), the load on

item writers and software developers is significantly higher for TEIs than for SR items

(Boyle & Hutchison, 2009; Parshall & Becker, 2008; Strain-Seymour et al., 2009).

Furthermore, there is a lack of empirical cost-benefit studies of TEIs because information

about costs and current capabilities of the standard item authoring platforms used by test

developers is limited (Parshall & Harmes, 2014).

Finally, the scoring of TEIs also presents challenges. TEIs can be scored

dichotomously (correct/incorrect) or, when they require test-taker decisions or offer

multiple responses, they can be scored polytomously (Parshall & Becker, 2008). TEIs also

offer the possibility of gathering process data, which is data that represents each action
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the examinee performs as they interact with an item (Behrens et al., 2019). Examples of

process data include time spent on the item, number and order of clicks employed, and

identifying the elements of the item an examinee interacted with. How to harness this

data for scoring purposes remains unclear. Additionally, the broad diversity of TEIs makes

it challenging to draw general conclusions about TEIs as a class of items. Different TEI

formats function differently and thus each format warrants independent research (Bryant,

2017). Collectively, these issues present a psychometric challenge for the use of TEIs.

Traditional Item Evaluation Procedures

The introduction of TEIs has sparked questions about whether and when to use a TEI

instead of a traditional item format. To inform this decision-making process, it is

informative to examine the factors that have historically influenced decisions to include an

item on a given a test. In general, there are two main factors that influence decisions

about the use of an item, namely technical characteristics and construct representation.

As the main purpose of this dissertation is to provide a quantitative methodology to

compare TEIs and traditional item formats, the following review focuses on the technical

characteristics that inform item selection in the test development process.

Examining Technical Characteristics

Several item characteristics are commonly evaluated when deciding whether or not to

include an item in an assessment. These characteristics include item difficulty, item

discrimination, distractor quality (for selected-response items; Livingston, 2006; Schmeiser

& Welch, 2006), test dimensionality, item and model fit, and item information (American

Educational Research Association et al., 2014). Each of these characteristics is described

in detail.
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Item Difficulty. Today, item difficulty has two technical definitions, each

associated with one of two primary test theory paradigms: classical test theory (CTT)

and item response theory (IRT). Under CTT, difficulty is defined as the proportion of

test-takers that have answered an item correctly (often known as the p-value). This

definition was introduced by Thorndike et al. in 1927. Although some authors have tried

to rename it as “easiness” or “facility” (Wilmut, 1975) or redefine it as the percentage of

test-takers failing to answer the item correctly (Lentz et al., 1932), none of these efforts

prevailed. Under the IRT framework, the probability a test-taker answers an item

correctly is modeled as a function of the examinee’s ability level (θ; i.e., test-takers with

high-ability have a higher probability of answering the item correctly while low-ability

test-takers have a lower probability of answering the item correctly). The item difficulty

parameter is estimated on the same scale as ability (θ) and takes the same value as θ

wherever an examinee at that level of ability has a 50/50 chance of answering the item

correctly (de Ayala, 2013; Fan, 1998). Hence, a test-taker whose ability level is higher

than the item difficulty has a high probability of answering the item correctly. The IRT

definition of difficulty was initially proposed by Rasch in the 1960s (Rasch, 1960, 1966)

and further developed in the work of Lord and Novick in 1968, and has since remained

stable (Berk, 1980).

An important difference between the two test theory paradigms is that IRT is

deemed to be sample-free, which means, that the estimation of item difficulty (and other

parameters) does not depend on the sample of test-takers used. In contrast, the difficulty

of an item under CTT may be different across different samples of test-takers (Haladyna

& Rodriguez, 2013). There is also a practical difference between both approaches. While
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IRT requires a significant number of test-takers to obtain a reliable estimate of the

difficulty parameter, the CTT approach is viable for smaller sample sizes.

The difficulty of an item has been used as a criterion for item selection since its

conception. Originally, Thorndike et al. (1927) argued that that an average of 50%

difficulty across a test provided the best differentiation between the abilities of a group.

Later, Thurstone (1932) suggested that item difficulties could range between .30 and .70

and several authors have agreed with this proposed range (Allen & Yen, 2002; Copperud,

1979). Some authors did not provide specific cutoffs for acceptable percentages but were

adamant that difficulties deviating notably from the midpoint were undesirable and thus

that difficulty should not be excessively large or small (Wilmut, 1975). For example, Ebel

(1972) argued that tests comprised of items that were too easy or too hard reduced the

variability of total scores and may waste examinees’ time by asking them to answer items

that were either too difficult or too easy for them. Although Thurstone’s range of values

was widely accepted, other authors proposed slight variations of this range. Lindeman and

Merenda (1979) suggested a narrower interval (.40 to .60). Crocker (1992) argued that

although the ideal range for difficulty is from .40 to .70, difficulties ranging between .20

and .90 were acceptable. Unlike the literature on CTT item difficulty, the literature on

IRT-based difficulty is absent any discussions about criteria for acceptable values for the

difficulty of an item. However, in practice, difficulty parameter values often range between

-3 and 3 (Baker, 2001).

A note on the relation between item difficulty and other item and test

characteristics. Test reliability is an estimate of the relationship between the observed

score produced by a test and the true score an examinee would receive if all measurement
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error was eliminated. Consequently, reliability has an inverse relationship with the

measurement error inherent in observed scores (Crocker & Algina, 1986). Under the CTT

framework, test-developers often strive to maximize reliability to ensure the most accurate

measure possible. For this reason, proposals of ideal ranges for item difficulties presented

above were guided by a desire to maximize test reliability.

Several authors (Cronbach & Warrington, 1952; Ebel, 1967, 1972; Lord, 1952;

Richardson, 1936b) have shown that as the variability of item difficulties in a test

increases the variability of total scores diminishes thus decreasing the reliability of the

test. Therefore, tests with a large number of very easy or very hard items will be less

reliable than tests containing items of moderate difficulties. Moreover, items with extreme

difficulties tend to discriminate poorly between high- and low-performers, thus reducing

the variance in total scores and, in turn, decreasing test reliability (Haladyna &

Rodriguez, 2013; see next section: Item Discrimination for further details). For these

reasons, most ranges described above were moderately narrow and centered around .50

because this provides a wider range of total scores (increased variance) and in turn

improves test reliability.

The appropriateness of an item’s difficulty also depends on the purpose of the test.

Items with extreme difficulties may be desirable when assessing groups of high-ability or

low-ability test-takers. For example, difficult items would be appropriate to assess student

achievement in a mathematics honors course.

Item Discrimination. In the simplest of terms, item discrimination is

understood as an item’s ability to differentiate between high- and low-scoring test-takers
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(Haladyna & Rodriguez, 2013). Despite this common understanding, the CTT and IRT

paradigms employ different approaches to estimate an item’s discrimination.

In the CTT paradigm, the total score is assumed to provide the best estimate of a

test-taker’s ability. Therefore, the ability of an item to differentiate between high- and

low-performing test-takers is estimated by examining the relationship between examinees

performance on the item and their performance on the test as whole. More specifically,

the product-moment correlation coefficient between test-takers’ item responses and total

test performance serves as an estimate of the item’s discrimination. Depending on how

the item is scored, different versions of the correlation coefficient are used. For example,

Pearson’s r is appropriate if scores are assumed to be continuous, while the point-biserial

or biserial correlation coefficients are used if scoring is dichotomous.

In the IRT paradigm, the probability distribution described earlier is modeled

through a logistic function centered at the estimated difficulty level of the item. The item

discrimination parameter is defined as the slope of this function at the point representing

a .50 probability of responding correctly to the item. In other words, if a group of

examinees whose ability is close to the difficulty of the item is considered, an item with a

very steep slope will differentiate between examinees whose difference in ability is

relatively small. In contrast, an item with a flatter slope (i.e., low discrimination) will

only differentiate between examinees whose difference in ability is large. Theoretically, the

discrimination parameter ranges between −∞ and +∞, but in practice, values often range

between -2.80 and +2.80 (Baker, 2001).

In general, the CTT and IRT estimates of item discrimination are interpreted

similarly: high-positive values indicate good discrimination, 0 indicates no discrimination
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and negative values are undesirable. Nevertheless, more nuanced criteria for interpretation

have been proposed. Under the CTT definition, Ebel suggested that the most desirable

items have discrimination index values larger than .30 (Ebel, 1954). Later he proposed

further divisions, indicating that items with indexes between .01 and .19 had low

discrimination, moderate if between .20 and .39, and high if above .40 (Ebel, 1972).

Wilmut (1975) indicates that during the 1970s, items that had discrimination index values

that exceeded .15 or .20 were considered appropriately discriminating. Meanwhile,

Copperud (1979) had a more stringent position, suggesting that items with difficulty levels

between .30 and .70 should have a high discrimination value (above .30). In contrast,

Haladyna defined items with satisfactory discrimination as those with values above .15

(Haladyna, 2004; Haladyna & Rodriguez, 2013). Within the IRT paradigm, common

criteria of minimally acceptable discrimination values include 0.50 (Baker, 2001) and 0.80

(de Ayala, 2013; McBride, 1979; Urry, 1974).

Item Distractor Quality. Another characteristic often used to evaluate the

quality of selected-response items focuses on the quality of the distractors included as

response options. “Ideally, each of the distractors should attract some pupils, particularly

those in the low group. If no one chooses a particular distractor, it may not be functioning

properly” (Lindeman & Merenda, 1979, p. 114). Hills (1976) recommended four guidelines

for evaluating item distractors: (a) each distractor should attract at least one examinee,

(b) the correct answer should attract a higher number of high-scoring examinees than low-

scoring examinees, (c) the distractors should attract a higher number of low-scoring

examinees than high-scoring examinees, and (d) more than half of the examinees should

choose the correct alternative. Additional statistical analyses have been proposed such as
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calculating a “distractor discrimination index” (e.g., the correlation between distractor

selection, i.e., chosen/not chosen, and total test score) and chi-square significance tests of

expected proportions of test-takers that choose each option (Gierl et al., 2016; Haladyna

& Rodriguez, 2013; Nitko & Hsu, 1984; Parshall & Becker, 2008). In the IRT framework,

it is common to plot trace curves (distractor characteristic curves) to examine the

probability of a test-taker selecting a distractor as a function of their ability level, thus

allowing examining the attractiveness of each distractor at different ability levels.

Test Dimensionality and Reliability. A common and important assumption

of measurement theory is that a set of items measure the same construct. In other words,

the items and resulting scale are unidimensional. When instruments are unidimensional

their scores and associated inferences make psychological and practical sense (Hattie,

1985). First identified as a desirable test property in the 1930s and 1940s,

unidimensionality was closely related to the idea of homogeneity and internal consistency

(e.g., Mosier, 1936; Richardson, 1936a; Zubin, 1934). For this reason, early dimensionality

measures were equivalent to or based on estimates of test reliability, specifically the KR20

formula and Cronbach’s Alpha. Under the CTT framework, maximizing reliability is a

paramount goal; therefore, test-developers select items that optimize these estimates

(often .70 is seen as the minimum acceptable level of reliability; Cortina, 1993). In

particular, items with low discrimination reduce total score variability which in turn

reduces reliability. Consequently items with low discrimination are often removed.

During the 1960s and 1970s principal components analysis and common factor

analysis were introduced as methods to examine unidimensionality based on

communalities and eigenvalues of the correlation matrix of item scores (e.g., Hase &
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Goldberg, 1967; Henrysson, 1962; Neill & Jackson, 1970). Principal components analysis

is a data-reduction method that seeks to account for the most variance among items

through the identification of principal components (Fabrigar & Wegener, 2011). The first

principal component explains the maximum variance; therefore, the variance associated

with this component was used as an index of unidimensionality (Hattie, 1985). It follows

that items that had relevant loadings on components other than the first were flagged for

removal. In contrast, common factor analysis seeks to understand the underlying structure

of the relationships between items. Factor analysis can be used in an exploratory way

(data-driven), where factors are allowed to arise from the data, or in a confirmatory way

(theory-driven) where a priori hypotheses on the number of factors that explain the

structure between items are tested. In factor analysis, a single factor that underlies the

behavior of the items under consideration is expected. Consequently, items that do not

support the hypothesis of a single factor are considered for removal. Although both of

these approaches often lead to the removal of similar items, theory and purpose should

drive the selection of one over the other. Both principal components and factor analysis

are often considered tools of the CTT framework to improve the quality of tests through

item exclusion.

Item and Model Fit. The IRT paradigm relies on statistical models to represent

test-takers’ observed response data. The choice of model is governed by philosophical,

practical, and theoretical considerations. First, it is important to decide whether the data

is expected to fit the statistical model or whether the model is expected to fit the data

(Boone et al., 2013). While the latter is the most common assumption of IRT models, the

former approach is the basis for the Rasch model. Second, the nature of the data (i.e., the
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scoring scheme) is also an important consideration. For educational achievement tests, the

most prevalent kind of data is dichotomous, but it is not uncommon to see polytomously

scored responses. To model dichotomous data, the Rasch and the 1-, 2- and 3-parameter

logistic (1-PL, 2-PL, 3-PL) models may be used, whereas the rating scale, partial credit,

and graded response models are appropriate for polytomous data. Finally, whenever the

main purpose of the use of an IRT model is to represent the data as accurately as

possible, it is necessary to consider the complexity of the model used (e.g., the number of

parameters in dichotomous models). Models with multiple parameters tend to fit the data

better than models with fewer parameters. Under the IRT paradigm item performance

and model accuracy are evaluated using goodness-of-fit statistics that compare predictions

from the estimated model to the observed set of responses (Orlando & Thissen, 2003).

These statistics are described in detail in this section. For simplicity, the present

discussion will focus on tools associated with models for dichotomous data. However, all

the discussed tools have been extended to polytomous models.

Item response theory estimates the probability of a test-taker answering an item

correctly as a function of their ability and a set of item parameters. The most

comprehensive model for dichotomous data is the 3-PL model for which three item

parameters are estimated: discrimination (a), difficulty (b), and the lower asymptote (c).

The estimated logistic function is centered at the difficulty parameter, the discrimination

parameter represents the slope of the tangent to the logistic curve at this point, and the

lower asymptote (or pseudo-guessing parameter) establishes a lower asymptotic limit for

the curve. This last parameter is of particular importance for multiple-choice items, as it

represents the probability of answering the item correctly by guessing (i.e., a test-taker
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has a 1/n chance of answering correctly a multiple-choice item with n options by

guessing). The 2-PL only estimates two parameters (a and b) while fixing c to 0. Finally,

the 1-PL model assumes all items discriminate equally and consequently only estimates

item difficulty. Choosing the model to use (i.e., how many parameters to estimate) is often

rooted on which model best represents the data.

The Rasch model is mathematically equivalent to a 1-PL model where all items

are assumed to possess discrimination of 1.0; however, it is a prescriptive model, which

means the data is expected to fit the model (and not the other way around). To identify

(and possibly remove) ill-fitting items, the INFIT (information-weighted fit) and OUTFIT

(outlier-sensitive fit) statistics compare observed responses to the responses that were

expected based on the estimated model. Both statistics are based on the squared

standardized residuals between the observed and expected responses. For the INFIT

statistic, these squared standardized residuals are information weighted (i.e., with a weight

of pj(1− pj); see next section for details) and then summed and averaged across persons.

Therefore, the INFIT mean-square statistic is a weighted fit statistic. In contrast, for the

OUTFIT mean-square statistic, the squared standardized residuals are not weighted when

averaged, thus making it an unweighted statistic (de Ayala, 2013). The range for INFIT

and OUTFIT values extends between 0 and infinity with an expected value of 1; therefore,

values close to 1 are desired. Large discrepancies between observed and expected

responses will cause these statistics to be larger than 1, indicating a lack of fit. Common

cutoffs for an acceptable range of values are 1± 2/
√
N and 1± 6/

√
N for INFIT and

OUTFIT respectively, where N represents the total sample size (Smith et al., 1998).

40



The INFIT and OUTFIT statistics are valid goodness-of-fit statistics for the Rasch

model (and the 1-PL) because the total number correct is a sufficient statistic to estimate

test-taker ability (as only one parameter is estimated), allowing a direct comparison

between the observed and expected responses. This is not true for the 2- and 3-PL models

as test-taker ability is defined as a latent variable where the predictions pertain to the

patterns of responses rather than the summed scores (Orlando & Thissen, 2003). Orlando

and Thissen (2000) introduced S-χ2, a Pearson χ2 statistic, and S-G2, a likelihood ratio

G2 statistic, to address this and other limitations of common item fit indices for the 2-

and 3-PL models at the time (Reise, 1990). These statistics rely on computing model-

predicted joint likelihood distributions for each summed score to then “calculate expected

frequencies correct and incorrect for each item for each summed score” (Orlando &

Thissen, 2003, p. 290). Under the hypothesis of perfect fit, S-χ2 is approximately

distributed as a chi-square distribution allowing the use of a significance test to evaluate

the fit of the model for each item (Cai et al., 2011). The null hypothesis is that there are

no differences between the expected and observed frequencies, thus, statistically significant

results indicate a lack of fit. As the models rarely fit perfectly, moderately significant

results are expected and considered acceptable. Another common item fit statistic used in

2- and 3-PL models is the LD-χ2 statistic introduced by Chen and Thissen (1997) to

evaluate the assumption that items are locally independent. This statistic is computed by

“comparing the observed and expected frequencies in each of the two-way cross-

tabulations between responses to each item and each of the other items and it becomes

large if a pair of items indicates local dependence” (Cai et al., 2011, p. 85). The authors

introduced guidelines to interpret this statistic where values less than three are considered

small, values greater than 10 are large, and values in between are inconclusive (Cai et al.,
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2011). Extensions of these statistics have been developed for polytomously scored items,

including the graded response, partial credit, and nominal response models.

Item Information. Item information is another IRT tool used to study item

behavior. The IRT paradigm attempts to estimate the location of a test-taker on the

ability continuum as accurately as possible. The amount of error associated with this

estimation is quantified through the standard error of estimate (SEE). “The SEE specifies

the accuracy of θ̂ [the estimate of test-taker ability] with respect to the person location

parameter, θ” (de Ayala, 2013, p. 27). Therefore, the larger the value of the SEE the less

confidence there is about the parameter’s value. The SEE may be used to build a

confidence interval around θ̂ where the true parameter value (θ) is expected to lie

(1− α)% of the time (where α represents the allotted Type I error rate; de Ayala, 2013).

The asymptotic variance error of the estimate for θ̂ is given by the following formula:

σ2
e(θ̂) =

1
L∑

j=1

[p
′
j ]2

pj(1−pj)

(1)

where pj is the probability of a person answering the item correctly, determined by the

IRT model of choice, p
′
j represents the first derivative of the model, and L represents the

number of items in the test (de Ayala, 2013).

The SEE is a measure of the uncertainty associated with the estimate of a person’s

location. Alternatively, its reciprocal may be used as an indication of the certainty of the

estimate. In other words, how much information is available about each test-taker’s

location on the ability continuum. Hence, test information reflects measurement precision

at each ability level and can be visualized as the reciprocal of the uncertainty of the
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estimate of a person’s location. Test information is calculated as follows:

I(θ) =
1

σ2
e(θ̂)

=
L∑

j=1

[p
′
j ]

2

pj(1− pj)
(2)

where all terms are defined as above. It is important to note that test information is a

function of ability level, therefore, a test provides different levels of information at

different points of the ability continuum.

The items that comprise the test are observations of test-taker behaviors; thus, the

total information of the test is equivalent to the sum of the information each item provides

over the ability continuum (as all of them are assumed independent). It follows that a

general formulation for the item information function is:

Ij(θ) =
[p

′
j ]

2

pj(1− pj)
. (3)

As detailed in Chapter 3, the study proposed here uses a 2-PL model, for which the first

derivative is:

p
′
j = ajpj(1− pj) (4)

where aj represents the discrimination parameter for item j. Substituting this derivative

in Equation 3 produces the item information formula for the 2-PL model

Ij(θ) = a2
jpj(1− pj) (5)

Note that item information is a function of the probability of a person answering the item

correctly (pj) and the item discrimination parameter (aj). This means that an item
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provides different levels of information at different ability levels. Item information reaches

its maximum value when pj = (1− pj), that is, when pj = 0.50. In other words, item

information is maximum at the location where a given test-taker has a .50 chance of

answering the item correctly. Therefore, an item provides maximum information (with

value of a20.25) at the location of its difficulty (bj) and is directly proportional to its

discriminating power. Consequently, item information functions are unimodal and

symmetric about bj (de Ayala, 2013).

Item information should be interpreted with respect to a specific location on the

ability continuum. For example, an item could provide an adequate amount of

information for an ability level that is of no consequence to the test-developer (e.g., at the

low end of the ability continuum). Alternatively, item information may be of importance

when accuracy around a specific location in the ability continuum is necessary (e.g., at the

pass/fail threshold for credentialing tests). In the latter case, information can become a

tool to flag items for removal if test-developers seek to maximize test information at

specific θ locations. Items that do not provide an acceptable amount of information at any

point of the ability continuum may also be flagged for removal. The concept of information

in the IRT paradigm is analogous to the concept of reliability in classical test theory. The

more information an item provides at an ability level the higher the reliability of the score.

TEI Quality

The previous section examined a variety of item and test characteristics that are employed

to inform the selection of items for a given test. The issues considered and criteria

established to guide item selection were developed with a focus on traditional item types.

Widespread adoption of computer-based test administration has led to the development of
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novel technology-enhanced item types. As an increasing number of testing programs adopt

TEIs, questions have arisen regarding the applicability of existing criteria for informing

decisions about whether or not to include a given technology-enhanced item on a test. To

this end, additional approaches have recently been developed to examine the utility of

technology-enhanced items. Most notable is the Technology-Enhanced Item Utility

Framework.

The TEI Utility Framework

Although several large-scale testing programs have begun using TEIs operationally, these

programs have raised concerns about the added cost required to author these items

(Measured Progress, 2014, as cited in Gifford, 2017). In turn, some test developers have

questioned whether the utility of TEIs is worth these added costs. This interest in utility

motivated the development of the Technology-Enhanced Item Utility Framework (Russell

2016). The TEI Utility Framework was designed to guide evaluation of “the extent to

which a technology-enhanced item is designed to provide evidence from the test taker to

support claims about the test takers development of the targeted construct” (Russell &

Moncaleano, 2019, p. 2). The framework is grounded by the concept of Evidence Centered

Design (Mislevy et al., 2003) and considers both measurement utility and content utility

(Davey & Pitoniak, 2006).

The TEI Utility Framework is based on three facets of utility: construct fidelity,

usability, and accessibility. Each of these facets is evaluated on a three-level scale: low,

moderate, or high. Russell (2016) provides a matrix that can be used to pool the

judgments made on each facet and arrive at a holistic evaluation of the utility of a TEI.
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Based on this matrix, the overall utility of an item is rated on a five-level scale: low,

moderate-to-low, moderate, moderate-to-high, and high.

Construct fidelity focuses on how closely the context created by an interaction

space resembles a context in which a test-taker applies the construct in an authentic or

“real-world” manner. The more authentic the context created by the interaction space,

the greater the fidelity, and hence the greater the utility. Construct fidelity is split in two

main components:

a) the extent to which the interaction space creates an authentic context in which

the construct is applied outside of a testing situation; and b) the extent to which

the methods used by the interaction space reflect the methods used to produce

products in an authentic context. (Russell, 2016, p. 25)

To evaluate a TEI’s construct fidelity one judges whether the context presented by the

item approximates the context in which the intended construct is applied and whether the

interactions required to answer are similar to those used in a real-life context.

The second facet, usability, is a concept borrowed from software development. The

usability of a digital tool or software is “a quality attribute that assesses how easy user

interfaces are to use” (Nielsen, 2012, “What - Definition of Usability” section). In the case

of TEIs and the Utility Framework, usability is defined as “the intuitive functionality of

an interaction space and the ease with which a novice user can produce and modify

responses with minimal mouse or finger actions and/or response control selections”

(Russell, 2016, p. 25). Therefore, usability focuses on the easiness of using the interaction

space to produce a response that is an accurate representation of the test-taker’s ability
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level. In this sense, usability is a judgment of how much construct irrelevant variance is

being introduced to an item by the design of the interaction space (Russell, 2016).

Finally, accessibility is “the extent to which the interaction space allows test-takers

who are blind, have low vision, or have motor skills-related disabilities to produce a

response in an efficient manner” (Russell, 2016, p. 26). This component assumes that

tests and items are responsible for “accessing” the construct-related ability level of each

test-taker. Consequently, it is the item’s role to overcome any barriers test-takers may

have to produce a response that reflects their ability level.

The TEI Utility Framework is a useful tool for comparing TEIs to one another and

examining their utility. However, in this framework, utility is based solely on the

evaluation of the item prompt and interaction space. Moreover, the framework depends on

human judgment to evaluate each of the three components that comprise utility.

Therefore, despite the detailed rubrics employed for this purpose, the resulting judgment

is subjective. Finally, the TEI Utility Framework evaluates closely item design and

construct validity but does not consider item psychometric properties. Hence, it may be

said that Russell’s framework focuses on the design of TEIs (the “front-end”) without

considering item properties or item behavior (the “back-end”). Although utility is an

important part of the quality of a TEI, it is not the sole component. Consequently,

determining the quality of a TEI based on its measurement properties remains a topic

requiring additional research (Parshall & Becker, 2008).
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Item Type Comparison Efforts

Just as the introduction of selected-response formats sparked a debate about choosing the

best item format in the first half of the 20th century, the introduction of computer-based

testing has ignited a debate about the choice between TEIs and traditional item formats.

The study presented in this dissertation focuses on comparing the utility of technology-

enhanced and selected-response equivalent forms. To date, very little research has

examined this issue. However, a large body of research has examined similar topics. These

topics fall into three broad categories: (a) studies comparing traditional item formats, (b)

studies comparing the mode of test administration, and (c) studies comparing the interface

design for an item. Studies in these three categories employed a variety of methodological

approaches, but two main considerations stand out as relevant to this work: (a) the

research design used and (b) the statistical tools employed. In the sections that follow, an

overview of the issues examined in this body of work is provided highlighting key findings.

This overview is followed by a summary of the various methods used to examine these

issues. The section ends with a detailed review of the few studies that focus specifically on

comparing technology-enhanced and selected-response items. The limitations of these

studies will be noted as these limitations informed the design of the present study.

Comparisons between Traditional Item Formats

The body of work comparing selected-response and constructed-response items is

extensive. Reviews of the literature show that there was a heightened interest in

comparing these item formats in the decades immediately following the introduction of SR

formats (i.e., the 1920s and 1930s). Although this interest waned during the middle of the

century it re-emerged in the 1980s and continued through the 1990s (Hogan, 1981;
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Rodriguez, 2003). These studies focused on a variety of SR item formats (e.g., true-false,

matching, multiple-choice with varying number of options) and CR item formats (e.g.,

short-answer, completion exercises, essays). Famularo (2007) conducted an extensive

review of this body of research and found that the following issues were a primary focus

across multiple studies:

• reliability and validity,

• cognitive processing requirements of the two formats,

• effects of format on student-level variables such as anxiety and motivation,

• students’ attitudes toward and preferences for different formats,

• effects of format on knowledge retention,

• test preparation and test performance, and

• the effect of format on item characteristics such as difficulty and discrimination.

Across the many studies that have focused on each of these issues, the findings are mixed;

some studies show consistency and comparability between SR and CR items, while other

do not.

In addition to the issues Famularo (2007) identified, the construct equivalence

between item formats has been a focus of study. Rodriguez (2003) reviewed and

summarized 67 empirical studies that examined construct equivalence between SR and CR

formats. Rodriguez’s meta-analysis focused on the 56 correlations reported by studies that

evaluated test form equivalence. Rodriguez found that these correlations were highly

heterogeneous. However, Rodriguez identified a relationship between the magnitude of the
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correlations and characteristics of the test items used. In particular, he found that the

mean correlation between test forms was higher (approaching unity) when the two test

forms employed items with the same stem while the correlations were lower for studies

that did not employ stem-equivalent items across test forms (Rodriguez, 2003).

The absence of consistent results in comparability studies between SR and CR

items has led to the common understandings that no single item format is appropriate for

all assessment purposes (Martinez, 1999) and that the validity of the assessment should be

the primary concern when choosing an item format (Rodriguez, 2002). Haladyna (1999,

2004) argued that fidelity should be a primary consideration when choosing an item

format. Fidelity is understood as the “closeness of any test task to a criterion behavior in

the target domain” (Haladyna & Rodriguez, 2013, p. 43). To Haladyna and Rodriguez,

the target domain is defined by the various ways in which a given behavior (e.g.,

performing addition problems or reading to comprehend) might occur or be applied in the

real world. Thus, to be of high fidelity, the item format should elicit test-taker behavior

that strongly resembles one way in which the behavior is applied outside of a testing

environment. Given this goal, the choice to use an SR or a CR format should be driven by

the proposed inferences about the test-taker’s ability to apply the behavior in a context

outside of the test based on the test-takers performance on the item. Research has shown

that when SR items and CR items are written to be content equivalent (often through the

use of equivalent item stems), both item formats are equally viable to support the

intended inferences from an instrument (Rodriguez, 2002). When SR and CR are content-

equivalent, test-developers often yield to the SR format due to its lower production and

scoring costs. However, as the assessed constructs become more complex, the ability of SR
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items to approximate these constructs with high fidelity diminishes and CR formats are

preferred (Haladyna & Rodriguez, 2013).

Comparisons between Test Administration Mode

As computer-based test administration increased in the late 1980s and 1990s, concern

about the impact test mode might have on examinee performance escalated (Leeson,

2006). This concern inspired a series of studies on the equivalence of scores between

paper-based tests (PBTs) and computer-based tests (e.g., Bennett et al., 2008; Clariana &

Wallace, 2002; Goldberg & Pedulla, 2002; Horkay et al., 2006; Sandene et al., 2005). In

general, findings from mode-effect studies indicate that paper-based and computer-based

tests that contain the same items may not produce the same results (Clariana & Wallace,

2002; Wang et al., 2007). That is, PBT and CBT scores are not inherently equivalent

(Bugbee, 1996). Differences in examinee performance attributed to the mode of

administration are referred to as test mode effect.

Test mode effect is common but does not always occur, and when it is present,

there is no clear pattern favoring either administration mode (Mazzeo & Harvey, 1989). In

a review of 23 studies conducted by Bunderson et al. (1988), 11 showed no difference,

three showed scores that favored CBT, and nine showed PBT scores being higher.

Kingston (2009) reviewed 81 mode-effect studies in which effect sizes were reported. Of

these, 45% reported a negative effect when a test was administered in a CBT format while

55% indicated a negative effect for PBT administration. Although the majority of mode-

effects were generally small (i.e., non-significant or small effect sizes; Kingston, 2009;

Wang et al., 2007) the effect is not inconsequential. In particular, for high-stakes

assessments, a one-point difference can result in a higher or lower performance-level
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classification which, in turn, impacts decisions based on test performance (Clariana &

Wallace, 2002). Overall, the literature on mode effects is not conclusive and does not

allow one to predict when mode effects may occur (DePascale et al., 2016).

The test-mode effect literature is not limited to comparisons between PBTs and

CBTs. Some studies have evaluated tests administered on desktop or laptop computers

and concluded that student performance across these devices is relatively equivalent

(Horkay et al., 2006; Ling & Bridgeman, 2013; Powers & Potenza, 1996; Sandene et al.,

2005). The comparability of scores obtained from tablet-based assessments with PBT and

CBT scores has also been a focus of study in recent years. Tablets allow test-takers to

interact with item content using a touchscreen, an on-screen keyboard, and/or a writing

stylus. These alternate methods of interacting with item content are particularly relevant

when assessing reading comprehension and writing skills (Margolin et al., 2013).

Analogous to studies comparing PBT and CBT scores, studies comparing tablets to other

modes of administration have produced contradicting conclusions. While some authors

have found a mode effect on tablets (Chen et al., 2014) others have not (Davis et al., 2015;

Davis et al., 2017; Eberhart, 2015; Ling, 2016).

Comparisons between Different Item Interfaces

Several researchers have examined characteristics of the digital interface employed to

deliver a test in order to explain test-mode effects (Booth, 1998). Leeson’s (2006) review

of the mode effect literature classifies digital interface studies according to whether they

focused on (a) the presentation of digital content or (b) the interaction of the examinee

with the system. The former focuses on legibility (e.g., font type, font size, screen

resolution, etc.) and layout issues, while the latter examines issues specific to navigating
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the interface and recording responses. This section begins with a description of research

and findings associated with the legibility of digital content (which apply to all digital

content), followed by a discussion of item layout (i.e., individual items vs. clusters of

items). The second part of this section summarizes research that focused on the

navigation of extended reading passages (e.g., scrolling) and the input mechanisms that

examinees use to produce their responses (e.g., keyboards, touchscreens).

Presentation of Digital Content. Comparing the legibility of digital content to

printed content is an issue that is not unique to digital assessments. Although most of the

studies described below focus on the experiences of participants with digital content in

general (i.e., websites and online content), many of the lessons learned apply to digital

assessments. Generally speaking, these studies addressed the same question: how does

reading on paper differ from reading digital media? All the referenced studies used

reading comprehension tasks to evaluate the impact of different content presentation

conditions. In other words, these studies explored the mode effect of stimuli and content

presentation on participants’ reading comprehension. Issues that have been studied that

are specific to the legibility of digital content include:

• screen size and resolution (e.g., Bridgeman et al., 2003; Chen & Perie, 2018; Ziefle,

1998),

• font characteristics (e.g., Bernard, et al., 2002; Bernard et al., 2001; Bernard &

Mills, 2000; Tullis et al., 1995),

• line length and number of lines (e.g., Duchnicky & Kolers, 1983; Dyson &

Haselgrove, 2001; Dyson & Kipping, 1998; McMullin et al., 2002),
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• interline spacing (e.g., Chaparro et al., 2004; Kolers et al., 1981; Kruk & Muter,

1984; Lay et al., 2012),

• white space (e.g., Bernard et al., 2000; Chaparro et al., 2004; Chaparro et al., 2005;

McMullin et al., 2002), and

• ambient illuminance and screen brightness (e.g., Benedetto et al., 2014; Chang et

al., 2013).

Evidence gathered through these studies suggests that several long-standing

typographical standards (e.g., font characteristics, line length, white space) for printed

media do not necessarily apply to digital content (Dillon et al., 1990; Dyson, 2004;

Hartley, 1987). Leeson (2006) summarizes several key findings concerning legibility: (a)

larger screens and higher screen resolution will improve readability and may reduce

reading fatigue, (b) fonts of at least a 12pt. size (particularly Times New Roman, Arial,

and Tahoma) and a moderate to large white space surrounding the text will improve user

experience, (c) reading speed is optimized when line length falls between 74.8 and 100

characters per line, and (d) high ambient illuminance and moderate screen brightness

reduce visual fatigue. Evidence also suggests that typographical standards for print media

regarding interline spacing apply to digital content.

Digital assessments present particular challenges specific to the ways items and

their associated stimuli are presented. Limited by the amount of information that can be

included in a single screen while keeping information legible, test developers often alter

the content layout of paper-based tests when adapting them to digital platforms. One

alteration that is common to nearly all computer-based tests is the presentation of a single
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item per screen instead of presenting several items on a single page. In an attempt to

understand the effects of presenting items in groups in PBTs versus individually in CBTs,

Dimock and Cormier (1991) presented verbal reasoning items in index cards to mimic the

presentation of computer-based items and avoid confounding effects of computer

familiarity or anxiety. Results indicated that examinees scored significantly higher on the

clustered items format than on the index card format, suggesting that layout differences

between grouped items and individually presented items may be part of the mode effect

observed between paper-based and computer-based formats.

Interaction with Digital Content. When examining the interaction of

examinees with digital assessments, two main elements are of concern: (a) how examinees

navigate digital content associated with an item and (b) how examinees input their

responses. Although these two issues are relevant for digital assessments in general, they

are of special importance for language assessments that require test-takers to first read a

passage and then produce written responses. Printed reading assessments usually present

a passage and all related items on a single page; therefore, all content is simultaneously

available to examinees. In contrast, in digital interfaces, the screen is often divided

vertically such that the reading passage is presented on the left side of the screen and an

item associated with the passage is presented on the right (Pommerich, 2004). For longer

reading passages, the examinee must scroll through the text. Comparability studies in

which computer-based assessments have presented all information related to an item in a

single screen (e.g., a short passage and a single item) have shown small or insignificant

mode effects (Bergstrom, 1992; Bridgeman et al., 2003; Choi & Tinkler, 2002; Hetter et

al., 1997; Spray et al., 1989). Conversely, comparability studies in which computer-based
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assessments cannot present the totality of information in a single screen have often shown

larger mode effects (Bergstrom, 1992; Bridgeman et al., 2003; Choi & Tinkler, 2002;

Pommerich, 2004). Some authors attribute these differences to examinees establishing

visual memories of content location on printed formats. In contrast, scrolling in digital

formats weakens positional cues because the spatial frame of reference changes as one

scrolls through text (Kingston, 2009; Leeson, 2006; Lovelace & Southall, 1983). Overall,

these findings suggest that larger mode effects are observed in tests that require

navigation compared to those that do not (Pommerich, 2004).

In paper-based tests examinees mark their responses directly in the answer

booklets using a pen or a pencil, whereas in computer-based tests, examinees must

interact indirectly with the test through an input mechanism to provide a response. Input

mechanisms are often device-specific: while computers and laptops commonly utilize a

keyboard and a mouse (or a trackpad), tablets have introduced touchscreens (including

digital keyboards) and digital pens (styli). Several studies have compared traditional

keyboards to digital keyboards, revealing that touchscreen keyboards produce increased

musculoskeletal fatigue, user frustration, and decreased typing performance, often in the

form of shorter compositions (Chaparro et al., 2014; Davis et al., 2015; DePascale et al.,

2016). This effect may be minimized by the use of certain external keyboards for tablets.

Research indicates that keyboards that provide physical feedback (e.g., a “click” sound, or

a tactile feeling of pressing a button) improve writing performance when compared to

those that do not (e.g., digital keyboards, or flat keyboards embedded in tablet covers;

Chaparro et al., 2013; Chaparro et al., 2014).
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Given that examinees must use their fingertips to interact with content presented

on a tablet touchscreen, the small size of tablets may also compromise the precision of

examinee interactions (e.g., drag-and-drop) when objects are small or close to each other

(DePascale et al., 2016; Eberhart, 2015; Way et al., 2016). Although features like the two-

finger pinch-to-zoom2 capability (available in most tablets) have helped to mitigate some

of these concerns, these features add a level of complexity to the usability of the digital

interface, and in turn, to the interaction of the examinee with the assessment.

Additionally, the use of tablet styli has been introduced in an effort to emulate paper-and-

pencil tests, increase precision, allow examinees to provide calculations, and produce

extended written responses. Although promising, this approach is not easily implemented.

As an example, the Third International Mathematics and Science Study (TIMSS) recently

abandoned its efforts to use tablet-stylus items in eTIMSS 2019 after a pilot study

revealed that the use of a stylus increased testing time and heightened examinee stress

and frustration (Fishbein, 2018).

Methodological Approaches Employed

Studies that examined item format, mode, and interface effects have employed a diverse

array of methodological approaches. These approaches may be characterized according to

(a) the research design and (b) the statistical methods employed. Two main research

design characteristics that are of direct relevance to the proposed study are discussed,

namely: (a) the degree of content equivalence between items in different forms and (b) the

use of within-subject or between-subject designs. In this section, the term “test forms”

2“Pinch-to-zoom refers to the multi-touch gesture that zooms in or out of the displayed content on a device
with a touch screen. These devices include smartphones and tablets. To use pinch-to-zoom, touch two
fingers on the touch screen, and move them apart to zoom in, or together to zoom out” (Computer Hope,
2019).
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will be used to describe two forms of a test that differ with respect to the characteristic

under study. Depending on the focus of the study, the characteristic that differs between

forms may be the item type (e.g., selected-response vs. constructed-response) or mode of

administration (e.g., computer-based vs. paper-based). The reviews of the literature by

Rodriguez (2003)—focused on item format comparisons—and Mazzeo and Harvey (1998)

and Mead and Drasgow (1993)—focused on test mode effect—will be discussed in detail to

document the variety of research designs and statistical methods employed.

In his review of 67 studies, Rodriguez (2003) classified studies based on the degree

of construct equivalence between item counterparts. To this end, he classified items into

one of three categories: (a) stem-equivalent items, (b) content-equivalent items, and (c)

non-content equivalent items. Stem-equivalent items are item pairs that share identical

stems with occasional minor modifications that direct the examinee how to respond to the

item (e.g., select vs. explain). Content-equivalent items are pairs of items that do not

share the same stem but are designed to target the same construct, often at the same level

of cognitive demand. Finally, non-content equivalent items are items that do not share a

stem and do not target the same constructs (Rodriguez, 2002, 2003). Rodriguez found

that the design of test items is a significant moderator of the correlation between test-

forms when comparing selected-response and constructed-response formats. Of the 49

peer-reviewed articles in Rodriguez’s review, 22 used stem-equivalent pairs of items, six

employed content-equivalent items, and 21 non-content-equivalent items. In the test mode

effect literature, however, the majority of studies employ stem-equivalent items across

forms (Clariana & Wallace, 2002).
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Item comparison studies may also be classified according to whether the same or

different participants interacted with each test form, that is, whether studies employed a

within-subjects or a between-subjects design. Within-subjects experimental designs ensure

that the ability level of subjects answering a pair of items is identical because the same

participants are interacting with both test forms. A drawback of this approach is that

differences observed in examinee performance between test forms may be confounded by

testing practice and recall, in particular for studies that use stem-equivalent items and/or

which do not counter-balance the order in which forms are administered. While between-

subject designs eliminate these issues, they introduce additional challenges. Specifically,

between-subjects experimental designs may introduce differences between groups (e.g.,

prior ability or familiarity with computers) that confound efforts to isolate item-format or

mode effects. For this reason, between-subjects studies often control for the overall

equivalence of the groups through random assignment or stratified random assignment of

test-takers to the test form or condition (Mazzeo & Harvey, 1988). Mazzeo and Harvey’s

(1988) review examined 38 studies published between 1961 and 1982. Twenty-four studies

used within-subjects designs and the remaining 14 employed between-subjects

comparisons. The authors reported that 22 within-subjects studies controlled for the form

of the test (i.e., the same test was administered) and 20 of them controlled for the order in

which items were administered (i.e., counterbalancing the administration of both tests).

Meanwhile, 13 of the 14 between-subjects studies controlled for subject characteristics

either using random assignment or ability-matched pairs of examinees. Mead and

Drasgow (1993) reviewed a total of 28 studies. Five studies employed a between-subjects

design while the remaining 23 administered both test forms to the same examinees. Of the

peer-reviewed studies cited in Rodriguez’s review, 36 employed within-subjects designs,

59



and the remaining 13 relied on between-subjects designs. In sum, over all the studies

included in these three reviews, about three-quarters employed within-subjects designs.

There is a strong relationship between the content equivalence of the items

employed across test-forms and the research designed used. The use of stem-equivalent

items across test forms in within-subjects designs is a threat to the validity of the results

due to practice and recall effects. This threat is often mitigated by allowing some time to

pass between administrations. For example, among the studies reviewed by Rodriguez, the

time between test administrations ranged from 1 day to 5 weeks (e.g., Ackerman & Smith,

1988; Hurd, 1932; Hurlbut, 1954; Rowley, 1974). This suggests that within-subjects

designs may be divided further into two categories: studies that administered both forms

simultaneously and those that allowed some time to pass between form administrations

(repeated measures). Using non-stem equivalent items and/or non-content equivalent

items across forms are additional approaches that prevent recall and practice effects on

within-subjects designs.

Table 2.2 summarizes the relationship between item content equivalence and

research design for the 49 peer-reviewed studies included in Rodriguez’s (2003) review. As

seen in Table 2.2, stem-equivalent items are most often used in conjunction with between-

subjects designs and repeated measures within-subjects designs, while non-stem-equivalent

items were most commonly used in within-subjects studies in a single administration. A

detailed description of the designs of these studies is presented in Appendix B.
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Table 2.2

Relationship between item content equivalence and research design study among

peer-reviewed studies cited in Rodriguez (2003)

Study Design Item equivalence

Stem Content None

Within-Subjects
Repeated Administrations 7 1 3
Simultaneous Administration 3 5 17

Between Subjects
Simultaneous Administration 12 - 1

A final methodological component that is relevant to the study presented here

focuses on statistical techniques used to compare test forms. Across the studies included

in Rodriguez’s (2003) review the following analytic methods were employed to evaluate

the equivalence of CR and SR item formats:

• Correlations and Partial Correlations: Correlational studies used the correlation

between total test scores in both forms as a measure of the equivalence of the item

formats under scrutiny (e.g., Bennett at al., 1990; Davis & Fifer, 1959; Godshalk et

al., 1966; Traub & Fisher, 1977).

• t tests and Analysis of Variance (ANOVA): These studies tested the differences

between the means of total test scores and item scores. A null result supports the

equivalence of item formats (e.g., Carcelli et al., 1980; Coulson & Silberman, 1960;

Gay, 1980; Sax & Collet, 1968).

• Factor Analysis: This group of studies used factor analysis to evaluate whether the

factorial structure of the instrument remained invariant across test forms/item
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formats (e.g., Bennett et al., 1991; Bridgeman & Rock, 1993; Pollock, 1997;

Thissen et al., 1994).

• CTT and IRT : These studies estimated item parameters and compared them

across test forms. Invariant item parameters supported the hypothesis that item

formats were equivalent (e.g., Bridgeman, 1992; Lukhele et al., 1994; Martinez,

1991; Oosterhof & Coats, 1984).

In addition to the methods identified by Rodriguez, differential item functioning

(DIF) analysis is also used to examine mode effects. “DIF is the tendency of an item to

function differently in different groups of test-takers, groups defined by something other

than their proficiency in the subject of the test” (Livingston, 2006, p. 423). The main

premise underlying DIF analysis is that examinees that possess the same ability level but

belong to different subgroups should not perform differently in a given item. Subsamples

of examinees in each group of interest are matched according to ability level and statistical

analyses are performed to evaluate the significance of the observed differences to test this

assumption. DIF analysis is often associated with fairness and bias reviews, for example,

comparing performance based on examinees’ gender, race, or socioeconomic status but the

premise is applicable to test administration modes. As described above, most studies

employed within-subjects designs which provides ability-matched item scores.

Statistical tools used to examine DIF include logistic regression, the Mantel-

Haenszel (MH) chi-square statistic, ETS’ Delta, and item-parameter drift (de Ayala, 2013;

Zwick, 2012). DIF may be assessed using logistic regression by predicting item

performance (i.e., correct/incorrect) based on group membership. If group membership is

found to be a significant predictor, it is an indication that group membership has an
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impact on item performance. The MH test is a chi-square test of association that

evaluates the independence of group membership and item score conditioned for each total

score possible (i.e., conditioning for ability level). ETS’ Delta uses the MH statistic to

create an odds ratio that compares the odds of answering an item correctly based on

group membership. ETS developed what is known as the ETS Delta scale, which classifies

items in three categories depending on their level of DIF: A (negligible or nonsignificant

DIF), B (slight to moderate DIF), and C (moderate to large DIF). An item is classified as

type A if “the MH chi-square statistic is not significant at the 5% level or the delta is

smaller than 1 in absolute value” (Zwick, 2012, p. 3), in contrast, a C item is that for

which the delta is “significantly greater than 1 in absolute value at the 5% level and has

an absolute value of 1.5 or more” (Zwick, 2012, p. 4). Finally, item parameter drift may

be used to identify DIF by estimating IRT item parameters within each of the groups of

interest. If there is no DIF, item parameters are expected to be similar within a

reasonable margin of error. For further reading on DIF detection see Crocker and Algina

(1986), de Ayala (2013), De Beer (2004), Dorans and Holland (1992), Jodoin and Gierl

(2001), Monahan et al. (2007), Zieky (2003), and Zwick (2012).

Comparisons between Traditional Item Formats and Innovative Items

The final category of item comparison studies relevant to this study is those comparing

traditional item formats to innovative items. Although the validity of innovative item

formats was examined when they were introduced to large-scale assessments (e.g., Bennett,

Morley, & Quardt, 2000; Bennett, Morley, Quardt, & Rock, 2000; Bennett & Rock, 1995;

Davey et al., 1997; Enright et al., 1998), studies that explore their psychometric properties

in comparison to selected-response and other traditional formats are scant. In fact, to
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date only six studies have examined the psychometric properties of TEIs. These include

three studies by Jodoin (2003), Wan and Henly (2012), and Qian et al. (2017) and three

dissertations authored by Gutierrez (2009), Eberhart (2015), and Crabtree (2016). These

studies are described chronologically below. Before doing so, it is important to note that a

general limitation found in this body of research is that the definition of “innovative item”

varies between authors and in some cases does not coincide with the definition of

technology-enhanced item used here. Regardless of the terminology employed by the

authors, technology-enhanced will be used when appropriate and innovative otherwise.

Jodoin’s (2003) study relied on data gathered from two different tests of the

Microsoft Certified Systems Engineer (MCSE) Certification Program, which assess

knowledge of the implementation of Microsoft Windows software. These tests included

multiple-choice items and two TEI formats: drop-and-connect (DC) and create-a-tree

(CT). The DC format presents a problem statement, a universe of objects, and a pool of

possible connection links between the objects (Jodoin, 2003). Examinees were required to

create a diagram by using objects from the universe as nodes and identifying relationships

between them with the appropriate connection links. After identifying objects that belong

in the diagram, examinees select pairs that are connected to create a link. Examinees then

must label the link appropriately. These items were polytomously scored by awarding

points for every appropriate node and link. The CT format required examinees to build a

logic tree in response to a question. A tree may document the order of steps required to

complete a task or represent relationships that exist between specific entities. An

incomplete tree (e.g., showing high-order headlines only) is provided to the examinee on a

box to the left and a pool of objects to complete the tree are located in a box to the right.
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The examinee selects objects from the box to the right and moves them to their proper

position in the tree schematic on the left. CT items were polytomously scored by

evaluating the use of the correct objects in the pool and their correct positioning.

Appendix A includes illustrations of the items included in Jodoin’s article.

Jodoin (2003) fit three-parameter logistic (3-PL) IRT models to dichotomously

scored items (i.e., MCIs) and logistic graded response models (GRM) for polytomously

scored items (i.e., TEIs). Based on these models, Jodoin compared item difficulty and

discrimination parameters, item reliability based on item information estimates, and

relative efficiency across item formats. Although information functions provide an estimate

of measurement error, they are limited because they do not take the ability distribution of

the examinee sample into account (Jodoin, 2003). To overcome this limitation, Jodoin

(2003; following Donoghue, 1994) calculated expected information, which is a weighted

average of the information function that takes the ability of the pool of examinees at each

point into account (details of this calculation are presented at the end of this chapter).

The mean expected information provides a better measure of the information provided by

each item type (Donoghue, 1994; Jodoin, 2003). The computerized delivery system also

recorded the amount of time examinees spent on each item. As the distribution of item

response times is often positively skewed (van der Linden, 2006; Weeks et al., 2016), the

median was the preferred measure of central tendency. The ratio of expected information

to median response time spent per item then provides a measure of the efficiency of each

item. Relative efficiency was then defined as the ratio between the average efficiency of

both item types. Findings indicated that multiple-choice items were more discriminating

and less difficult on average than TEIs. However, TEIs showed higher information than
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SRIs across all ability levels. This was expected given that the TEIs were polytomously

scored while SRIs were dichotomously scored (Donoghue, 1994; Samejima, 1975; Thissen,

1976). Moreover, relative efficiency results revealed that SR items provided less expected

information than innovative items, but also took less time to complete. Consequently, SR

items provided more expected information per unit time than TEIs (Jodoin, 2003).

In her dissertation, Gutierrez (2009) compared innovative and traditional versions

of a situational judgment test. The Managerial Prioritization Skills test was developed by

a team of industrial/organizational psychologists at a pre-employment test development

firm as part of a battery of tests suitable to predict job performance in frontline managers.

Two 16-item forms of the test were developed, an innovative one and a traditional one. In

the innovative version of the test, “the interface of the assessment was designed to closely

mirror what frontline managers likely experience in the day-to-day jobs” (Gutierrez, 2009,

p. 70). Thus, 11 items included multimedia as part of the stimuli presented to the

examinee. Examinees interacted with information presented through email, voicemails,

and phone calls in order to respond to multiple-choice items. The non-innovative form of

the assessment included 11 stem-equivalent items to those in the first form but presented

the same information without using multimedia (for example, phone calls and voicemails

were presented as written transcripts). It is worth noting that Gutierrez’s definition of

innovative is analogous to what Russell (2016) labeled “technology-enabled” because the

innovations described occurred in the stimulus and surrounding scenario rather than in

the response interaction (i.e., examinees answered MC items in both test forms).

The test was administered to consumer members of the private test-development

firm who were randomly assigned to one of the two forms. As a situational judgment test,
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all options provided in each multiple-choice item were correct to some extent. Hence,

items were scored polytomously according to the degree of correctness of each of the

options as determined by a panel of subject matter experts (SMEs). After asserting the

unidimensionality of both forms of the test using exploratory factor analysis (EFA),

Gutierrez (2009) proceeded to fit graded response models to each of the items. Based on

these models, item parameters, and item and test information functions were reported and

compared. To measure the relative efficiency of innovative versus non-innovative items,

Gutierrez calculated the ratio of information (innovative to non-innovative) across the full

range of the ability level scale (θ) using the test-information functions. This provided a

new curve of efficiency as a function of theta. Using this relative efficiency curve,

Gutierrez calculated a weighted average by integrating across the ability range with

normally distributed weights. The resulting average was multiplied by the ratio of the

total average time it took for examinees to complete each test form (non-innovative to

innovative —note that it is the opposite of the information ratio). This final value was a

measure of the relative efficiency between both test forms per unit of time. Finally,

Gutierrez evaluated the face validity of the items using a post-assessment Likert-type

questionnaire. Results of her study indicated that innovative items provided more

information at the lower end of the ability level while traditional items provided more

information at higher levels of the ability level. Moreover, innovative items were shown to

provide greater measurement efficiency per unit of time. Finally, participants found

innovative items to provide greater on-the-job realism and be more engaging.

In their study, Wan and Henly (2012) compared multiple-choice items to two

innovative item formats (constructed-response and figural response items). Their analyses
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focused on reliability, efficiency, and construct validity. Figural response (FR) items

require the examinee to interact with figural material such as illustrations, diagrams, and

graphs. In these items, examinees produce their responses directly on the figure provided:

for example, by identifying and selecting specific areas of the illustration (hot spot

interaction), drawing elements onto the illustration (e.g., arrows), or dragging-and-

dropping elements to pre-determined positions (e.g., labels in a diagram). Data for their

study was obtained from a statewide science achievement test aligned with the state’s

content standards administered to fifth-grade, eighth-grade, and high school students.

Wan and Henly’s study builds directly on the methodology introduced by Jodoin (2003).

They compared item formats by first estimating item parameters and information

functions using an IRT 3-PL model. Next, they employed a ratio between a weighted item

information index (expected information) and mean response time to evaluate item format

efficiency. Additionally, the authors fit confirmatory factor analysis (CFA) models (one

factor and three factors) to assess construct equivalence.

Based on their findings, Wan and Henly (2012) reported that FR and MC items

were equally discriminating and showed higher discriminating power than CR items. They

also found that grade level moderated the relationship between item format and difficulty.

Moreover, the FR items provided similar information and efficiency to MC items, while

CR items provided noticeably more information than MC items but at a less efficient rate.

The authors also reported that MC items and the two other item formats assessed similar

constructs. Although Wan and Henly classified CR items as innovative, these items do not

subscribe to the definition of technology-enhanced items used in this study. Nonetheless,

their results can be interpreted as a comparison between FR items and traditional item
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formats (MC and CR). From this perspective, results do not provide evidence of a clear

advantage (or disadvantage) in using FR items compared to traditional item formats in

any of the analyzed criteria.

Eberhart (2015) sought to compare student performance on innovative and

multiple-choice items delivered through computers and tablets. Participants in her study

were seventh-grade students from a Midwestern state who took the annual summative

Mathematics and ELA assessments in digital platforms. Participants were randomly

assigned one of three content-equivalent test forms comprised of the same number of items,

sections, and parts. All test forms (three mathematics and three ELA) included both

innovative and multiple-choice items. The innovative item formats used included: drop-

down menus, drag-and-drop, graphing, matching, ordering, selecting text, and multiple

selected-response. Note that except for multiple selected-response, all of these items are

categorized as technology-enhanced item formats. Eberhart applied a two-way ANOVA to

evaluate the impact of different item types (multiple-choice and innovative) and delivery

systems (computers and tablets). Findings indicated that a significant interaction between

factors was present in four of the forms (three mathematics and one ELA). For these

forms, item type main effects were statistically significant with moderately large effect

sizes. For the two ELA forms that did not present significant interactions, the main effect

of item type was found to be statistically significant with large effect sizes. Moreover, in

line with the mode effect studies described previously, all device type main effects and

simple main effects were found to be statistically significant but with small effect sizes.

In her dissertation, Crabtree (2016) explored how the inclusion of innovative items

impacted the construct validity of the Iowa End-of-Course Algebra I (IEOC-A)
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assessment. Twelve test forms were randomly assigned to participating students for the

2012 administration of the IEOC-A. Each test form included five innovative items

appended to a common set of 30 MC items. Innovative formats used in the IEOC-A

included graphical modeling, drag-and-drop, matching, point-and-click, input text, and

input number. Note that only the first three are technology-enhanced formats. Crabtree

examined the constructs assessed by the test, the psychometric properties of the

innovative items and the influence of these item properties on test characteristics. The

author fit a 2-factor CFA model to test whether a single unidimensional construct was

being assessed by the technology-enhanced version of the IEOC-A. The results confirmed

a 2-factor structure with MC and innovative items loading on different factors, thus

suggesting that innovative items added a new dimension to the test. A 3-PL IRT model

was used to concurrently calibrate all items used in the assessment. Based on this

calibration, all MC and innovative items were reorganized into three test forms that

matched the content specifications of the original MC test and were equally difficult.

These four forms (the original MC form and three that included innovative items) were

used for further analysis. Item and test information functions were estimated for each of

these four forms and compared, using the MC form as the reference point. Finally, relative

efficiency was calculated as the ratio of the information functions of the three innovative

forms to the MC form. Results indicated that innovative items provided more information

and measured the construct more efficiently at higher ability levels than MC items

(Crabtree, 2016).

Finally, Qian et al. (2017) addressed three research questions: “1) Are innovative

items more psychometrically sound? 2) Do test-takers take more time to answer innovative
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items? 3) Do innovative items assess higher-order thinking skills?” (Qian et al., 2017, p.

98). To answer these questions, the authors used data from an operational administration

of the National Council Licensure Examination for Registered Nurses (NCLEX-RN).

Seven types of items were included in this exam: simple text-based MC, MC with graphics

as options, MC with an exhibit, MC with audio, multiple-response, ordered-response, and

fill-in-the-blank calculation. The authors classified these items according to two of the

seven innovation dimensions included in Parshall et al.’s (2010) taxonomy: assessment

structure and fidelity. They identified four item formats under the assessment structure

dimension: (a) multiple-choice (MC), (b) multiple-response (MR), (c) ordered-response

(OR), and (d) fill-in-the-blank calculation (FC). They also categorized items in five groups

under the fidelity dimension: (a) text-based items, (b) items with audio, (c) items with

graphics, (d) items with an exhibit, and (e) items with graphics and an exhibit. To

address their first research question, the authors compared items according to difficulty,

discrimination, guessing parameters, and information functions estimated using a 3-PL

model. To examine the second question, authors relied on timing data obtained from a

pilot study of these items rather than their operational administration (a limitation to

their study). To answer their third question, a panel of SMEs coded the items according

to four cognitive levels: (a) knowledge, (b) comprehension, (c) application, or (d) analysis.

Similar to Wan and Henly’s study (2012), the definition of innovative item used by

Qian et al. (2017) does not correspond with the TEI definition used in this study. Of the

four item formats considered in Qian et al.’s study, only ordered-response items qualify as

TEIs. For these reasons, the present summary of their findings focuses on the results of

the assessment structure dimension, with a particular focus on the OR item format.
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Regarding research question 1, results indicated that OR items are significantly harder

than FC and MC items but significantly easier than MR items. The mean discrimination

parameter for OR items ranked second among the four item types considered and was not

found to be significantly different from any of the other three. Similarly, the mean

guessing parameter for the OR items ranked second. FC items were found to be

statistically significantly harder to guess compared to MC, MR, and OR items, while no

statistically significant differences were found between OR items and the remaining two

formats. Upon examining information functions, the authors found that for low-ability

examinees (θ < 1), FC items provide more information than all other items types, while

for high-ability examinees (θ > 1), MR items provided the most information. While their

ranking in the lower end of the ability continuum is indistinguishable, OR items ranked

second at the higher end of the continuum, indicating this format provides more

information than MC and FC items for high-ability examinees. Additionally, the authors

grouped all innovative items together and reported that they provide more information

than MC items at all levels of the ability continuum. Concerning research question 2,

authors found that OR items require significantly less time to complete compared to FC

items, but significantly more time than MR and MC items. Finally, regarding the third

research question, there was no evidence that OR, MR, or FC items assessed higher-order

cognitive skills more consistently than MC items.

Limitations of studies comparing traditional item formats and

innovative items. In addition to the obvious limitation that only six studies have

compared innovative items to traditional item formats shortcomings of these studies leave

several questions unanswered. In particular, cross-cutting limitations of these studies
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include: (a) the nature of the instruments used and the equivalence between forms, (b)

the definition of an innovative item, and (c) the practical applications of the results. To

aid this discussion, Table 2.3 provides a summary of the main characteristics of the six

studies described above. In addition to highlighting general limitations of this pool of

studies, this summary also provides an overview of methodological similarities between

these studies. This section ends with a discussion of how the limitations and

methodological similarities between these studies inform this dissertation.

All six studies were secondary data analyses performed on data collected from

operational administrations of large-scale assessments. In all studies except for Gutierrez’s

(2009), the innovative and multiple-choice items weren’t content-equivalent but rather

targeted different constructs of the tests’ target domains. The use of non-equivalent items

is a threat to the validity the studies’ findings because differences observed between item

formats are confounded with differences in the constructs assessed. Although items in

Gutierrez’s study were content-equivalent across forms the differential feature was the

inclusion of media in the stimulus rather than a different response interaction. In sum,

there are no studies that compare TEIs to stem-equivalent—and thus

content-equivalent—multiple-choice items.
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Table 2.3

Summary of studies that compared innovative items to traditional item formats

Study Content Level Item Content
Equivalence

Comparisons and Item Types Methodology Criteriaa

Jodoin
(2003)

Microsoft
Software

Adults None MC vs. TEIs (drop-and-connect∗,
create-a-tree∗)

IRT – 3-PL
IRT – GRM

Item Parameters
Item Information
Expected Information
Relative Efficiency

Gutierrez
(2009)

Managerial
Skills

Adults Stems Text-based stimulus vs. Multimedia
stimulus (all items were MC)

IRT – GRM Item Parameters
Item Information
Relative Efficiency
Face Validity Survey

Wan & Henly
(2012)

Science State
Test

K-12 None MC vs. Innovative (figural response∗,
constructed response)

IRT – 3-PL Item Parameters
Expected Information
Relative Efficiency

Eberhart
(2015)

Math and
ELA State

Test

K-12 None MC vs. Innovative (drop-down menus∗,
drag-and-drop∗, graphing∗, matching∗,
ordering∗, selecting text∗, and multiple-
selected response)

ANOVA Total Score Differences

Crabtree
(2016)

Algebra 1 K-12 None MC vs. Innovative (graphical
modeling∗, drag-and-drop∗, matching∗,
input text, input number, and point-
and-click)

IRT – 3-PL Item Difficulty
Item Information
Test Information
Relative Efficiency

Qian et al.
(2017)

Nursing
Licensure

Adults None MC vs. Innovative (ordered response∗,
fill-in-the-blank calculation, multiple
response)

Rasch
IRT – 3-PL
ANOVA

Item Parameters
Time
Cognitive Skill Coding

∗Item formats that fulfill the definition of technology-enhanced items used in this work. aJodoin (2003) and Wan and Henly (2012) share the same

definition of relative efficiency, Crabtree (2016) and Gutierrez (2019) use different definitions.



The second limitation of these studies is the varying definition of an innovative

item. For example, Gutierrez (2009) considered items with multimedia embedded in the

prompt as innovative despite all of the items relying on selected-response formats. In

contrast, Wan and Henly (2012) classified constructed response items (both short- and

extended-response) and figural response items as innovative, while Qian et al. (2017) used

this label to group ordered-response, fill-in-the-blank calculation, and selected multiple-

response items. The diversity of uses of the term “innovative” suggests authors tend to

use it to describe any item format that differs from a text-based multiple-choice item.

Given the lack of cohesive use of this term across the literature, it is not possible to draw

overall conclusions about how the use of innovative items compares to traditional items

types. It also demonstrates why a clear definition of technology-enhanced items is needed

and has been explicitly adopted for this dissertation.

Applying the definition of TEI adopted for this study to these six studies it is

evident that Gutierrez’s (2009) study did not employ TEIs at all, and the studies by Wan

and Henly (2012) and Qian et al. (2017) only included one TEI format each (the figural

response item and the ordered-response item respectively). Although Eberhart (2015) and

Crabtree (2016) use the label “technology-enhanced item” in their dissertations, their

work includes some item formats that do not subscribe to the definition of TEI adopted in

this dissertation (multiple selected-response items in the former and alphanumeric text

input and point-and-click items in the latter).

The third limitation of this group of studies is the lack of useful and actionable

results. Results from the cited studies have limited practical value because either (a) the

study examined item formats that are not common or (b) the study grouped multiple TEI
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formats for analytical and reporting purposes. The two TEI formats employed in Jodoin’s

study (2003), drop-and-connect and create-trees, are not commonly used in large-scale

testing programs, hence the conclusions have limited application to today’s educational

testing programs. The figural response item format discussed in Wan and Henly (2012) is

a category that encompasses multiple TEI response interactions simultaneously (e.g., hot

spot, drag-and-drop, plotting points). Similarly, Eberhart (2015) and Crabtree (2016)

studied instruments that used multiple TEIs that are common in large-scale assessments

but grouped all TEI formats together in their analyses. The grouping of different TEI

formats in these three studies precludes drawing practical conclusions for the development

and use of specific technology-enhanced item formats. Given the diversity of TEI formats,

Bryant (2017) advises against blanket statements about TEIs as a class, and instead

advocates for studies that focus on specific TEI formats. Only Qian et al.’s (2017) work

provides practical results about the benefits of a specific TEI format, namely ordered-

response items.

There are several methodological similarities between these studies. Five of the six

studies employed IRT models (3-PL for dichotomous data and GRM for polytomous data)

to estimate item parameters as well as item and test information functions. Eberhart’s

(2015) study was the exception, using an ANOVA to compare total scores based on item

format and delivery platform. All studies that used IRT models compared item

parameters of difficulty and discrimination across item formats. Although most of the

studies simply compared parameter values without performing any test to estimate the

significance of differences between the values, Qian et al. (2017) used ANOVAs to evaluate

the significance of the observed differences. Moreover, these five studies compared items

either using item information functions or test-information functions. Some studies
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reported average item information curves discriminated by item format (Qian et al., 2017;

Wan and Henly, 2012), while others grouped all “innovative” items together according to

their respective definitions (Crabtree, 2016; Gutierrez, 2009; Jodoin, 2003).

Finally, four of the five studies that employed IRT models also attempted to use a

measure of relative efficiency of the innovative item formats to multiple-choice items. The

definitions of relative efficiency were diverse. The simplest definition of relative efficiency,

introduced by Lord (1980), consists in calculating the ratio of the information functions

associated with two test scores at each point of the ability scale range. Therefore, the

relative efficiency of test score y with respect to test score x is characterized by the

following equation:

RE {y, x} =
I {θ, y}
I {θ, x}

. (6)

“Scores x and y may be scores on two different tests of the same ability θ, or x and y may

result from scoring the same test in two different ways” (Lord, 1980, p. 83). Plotting this

function produces an easily interpretable curve of relative efficiency as a function of

ability. Whenever the resulting curve is equal to 1, it suggests both formats are equally

efficient at that ability level. Crabtree (2016) compared innovative items to multiple-

choice items using Lord’s methodology by constructing three innovative item forms and a

fourth test form comprising multiple-choice items. Gutierrez’s (2009) approach used

Lord’s function to calculate a normally weighted average of relative efficiency of two test

forms. The product of this average and the ratio of the total average time for each form

provided a measure of relative efficiency proportional to time.

In contrast, Jodoin (2003) calculated relative efficiency between technology-

enhanced items and MC items as the ratio of average efficiency of both item formats
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following a five-step process. First, information functions were calculated for each item.

Second, information functions were summarized as point-estimates by calculating expected

information. Jodoin (2003; following Donoghue, 1994) argued that although information

functions provide an estimate of measurement error at all proficiency levels, they do not

provide a measure of the congruence with the ability distribution of the examinee pool.

For this reason, the author recommends using expected information which weighs

information at each point in the ability scale using the ability distribution of the sample:

E(Ij) =

Q∑
q=1

Ij(θq)wq (7)

where Ij(θq) is the information for item j at quadrature point q and wq is the weight of

the posterior ability distribution associated with the quadrature point3. Third, the

measurement efficiency of each item was calculated as the ratio of average expected

information to median response time. Fourth, for each item format (innovative and

multiple-choice) measurement efficiency was averaged across items. Finally, relative

efficiency was calculated as the ratio between the average measurement efficiency of each

item formats. Wan and Henly (2012) employed the same definition as Jodoin, but used

mean response time rather than median response time to calculate item efficiency.

Differences in definitions of relative efficiency prevents one from directly comparing results

from different studies based on this criterion. Additionally, given that all of these studies

grouped both TEIs and traditional items under an “innovative item” label, the

comparisons of their relative efficiency do not provide actionable results.

3Note that this formula is a numeric approximation of the weighted area under the item information curve
Ij(θ) with the ability distribution of targeted examinees f(θ) as a weight. E(Ij(θ)) =

∫
Ij(θ)f(θ)dθ.
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This dissertation builds on the methodological common ground of this body of

literature while addressing several of the limitations described above. In particular, in this

study, comparisons across TEIs and multiple-choice items are based on stem-equivalent

item pairs and results are separated by TEI format to provide clear and practical results

regarding each of the TEI response interactions used. Finally, this dissertation uses some

of the item characteristics discussed in this chapter to propose a protocol that compares

TEIs to MCIs in a consistent and replicable manner.

Summary of the Literature

The literature review presented in this chapter was organized in two parts. In the first

part of the chapter, the evolution of traditional and technology-enhanced items was

described in detail, including an overview of the transition to computer-based testing,

definitions of technology-enhanced items and a discussion about their potential benefits

and limitations. The second part of the chapter examined several efforts made to evaluate

the quality of TEIs. Methods and criteria that have been used to evaluate the quality of

traditional item include examination of: item difficulty and discrimination, item distractor

quality, test dimensionality, reliability, item and model fit, and item information.

Moreover, broad bodies of work that have compared items based on their format, delivery

mode, and interface were described to highlight methodological considerations relevant to

this work. However, the extensive literature available has relied mostly on traditional item

formats, begging the question of whether the criteria and methods employed are pertinent

to technology-enhanced items or whether new approaches are warranted. In the words of

Parshall and Harmes (2014) “the multiple-choice item, for example, was developed and
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refined over many years of use and a variety of exam programs. That deep broad level of

knowledge and understanding is not yet present for innovative items” (p.16).

Although Russell (2016) introduced the TEI Utility Framework as an instrument

to evaluate specifically the utility of TEIs based on their construct fidelity, usability, and

accessibility, this framework is based on human judgment and relies on the design and

delivery of TEIs without any regard to psychometric item properties. This limitation

compounds with a general gap in the literature regarding the psychometric properties of

TEIs (Bryant, 2017; Crabtree, 2016; Qian et al., 2017; Wan & Henly, 2012). Only six

studies have attempted to address this deficiency and several limitations of this body of

work prevent these studies from providing practical results for test and item development.

These limitations include variations in the definition of “innovative” and “technology-

enhanced” items, items in different formats assessing different constructs, and the overall

tendency to report results at the aggregate level.

This dissertation draws on the methodological similarities of this limited body of

work to compare common technology-enhanced item formats and selected-response items

based on characteristics that have been traditionally used to assess the quality of

traditional items. Moreover, the study design and the reporting of the results attempt to

address the limitations found in previous studies. Ultimately, this study informs the

proposal of a protocol to standardize comparisons between TEIs and traditional item

formats and inform item-type selection decisions.
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Chapter 3 - Methodology

The primary purpose of this study is to develop a protocol to evaluate the comparative

measurement value of technology-enhanced items and stem-equivalent multiple-choice

items. The intent of this judgment is to inform a decision as to whether to use the TEI or

multiple-choice item format. To accomplish this, the following research questions are

examined:

1. How do the psychometric characteristics of commonly employed TEI drag-and-

drop formats (classification and rank-ordering) compare to stem-equivalent

multiple-choice items? (RQ1)

2. What is the relationship between the utility of TEI drag-and-drop formats

(classification and rank-ordering) and their psychometric item characteristics?

(RQ2)

3. How can TEI psychometric properties and utility ratings be combined to develop

a standardized protocol to judge the comparative measurement value of TEIs

relative to stem-equivalent MC items? (RQ3)

This chapter describes the methodology employed to answer these research questions,

including: (a) the research design, (b) the instrument and item development process, (c)

the data collection procedures, and (d) the data analyses employed.

Overview

To investigate RQ1 and RQ2, stem-equivalent pairs of TEIs and multiple-choice items

(MCIs) were developed and split across two forms of a data collection instrument. This
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instrument was administered to a sample of adults and responses were analyzed using a 2-

parameter logistic item response theory model. RQ1 was addressed by comparing several

psychometric characteristics of TEIs to their MC counterparts. The TEI Utility

Framework was used to investigate RQ2 by gathering judgments of the construct fidelity

and usability of the TEIs employed from a panel of educational measurement graduate

students. Finally, research question 3 explores approaches that combine the psychometric

characteristics estimated to address RQ1 and the utility ratings used in RQ2 to develop a

protocol to judge comparative measurement value. This protocol was applied separately

to each TEI developed in this study and comparative measurement value judgments were

examined between response interactions (classification or rank-ordering) to evaluate

whether there was any clear pattern of comparative measurement value for these TEI

formats.

Research Design

Instrument Development

Two 18-item forms of a single data collection instrument were developed for the study.

Both forms comprised three item blocks each containing six items. The first item block for

both forms was identical to facilitate IRT calibration. Each form also contained one block

of technology-enhanced items and one block of multiple-choice items. Across forms the

items were stem-equivalent but the method for producing a response differed. For the MC

version of each item, test-takers were asked to select the best option. For the TEI version,

test-takers were asked to use a drag-and-drop interaction to produce a response. Further,

half of the TEIs asked test-takers to classify objects by dragging-and-dropping their

responses in labeled boxes. The second half of TEIs asked test-takers to drag-and-drop
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objects of a vertical list into the correct order. Table 3.1 shows the design for each form of

the instrument.

Table 3.1

Instrument form construction

Form A Form B

Block Item Item Block

Common

CL1 CL1

Common

CL2 CL2
RO1 RO1
RO2 RO2
MC1 MC1
MC2 MC2

TEI-1

CL3 MCCL3

MCI-1

CL4 MCCL4
CL5 MCCL5
RO3 MCRO3
RO4 MCRO4
RO5 MCRO5

MCI-2

MCCL6 CL6

TEI-2

MCCL7 CL7
MCCL8 CL8
MCRO6 RO6
MCRO7 RO7
MCRO8 RO8

Note. Items in block TEI-1 are stem-equivalent to items in block MCI-1 and items in block

TEI-2 are stem-equivalent to items in block MCI-2. For example, items CL3 and MCCL3

are stem-equivalent.

As seen in Table 3.1, the first six items (the common block) are identical across

the two forms and contain two drag-and-drop classification items (CL1-2), two drag-and-

drop rank-ordering items (RO1-2), and two multiple-choice items (MC1-2). The second

block for both forms comprised stem-equivalent items assessing the same constructs but

differing in response formats. While the second block in Form A included three

classification items (CL3-5) and three rank-ordering items (RO3-5), the second block in
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Form B included six stem-equivalent multiple-choice items (MCCL3-5 and MCRO3-5).

Finally, the third block in Form A included six multiple-choice items (MCCL6-8 and

MCRO6-8) and the stem-equivalent block in Form B included three classification items

(CL6-8) and three rank-ordering items (RO6-8). Ultimately, both forms had 18 items: 10

TEIs (four of them common to all participants) and eight MCIs (two of them common to

all participants). It was expected that participants would require 30 minutes or less to

complete all items that formed the instrument.

At the time of administration, the order of the TEI and MCI blocks for each form

was randomized to account for ordering effects. This process effectively produced four

forms of the instrument (see Figure 3.1), forms A1 and B2 presented TEIs before MCIs,

while forms A2 and B1 did the opposite. Additionally, forms A1 and B1 presented the

content in the same order, the same was true for forms A2 and B2.

Figure 3.1

Instrument form block order

Form A1 Form A2 Form B1 Form B2

Common Block

TEI-1 Block MCI-2 Block MCI-1 Block TEI-2 Block

MCI-2 Block TEI-1 Block TEI-2 Block MCI-1 Block

To populate the items for each form, a four-step process was followed. First, six

items (two MCIs, two drag-and-drop classification items, and two drag-and-drop rank-

ordering items) were developed and used to populate the common block. Second, 12 TEIs
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(six classification items and six rank-ordering items) were developed. Third, these 12

items were organized in two blocks (TEI-1 and TEI-2) with three classification items and

three rank-ordering items each. Finally, a stem-equivalent MCI was formed for each item

included in blocks TEI-1 and TEI-2 to populate blocks MCI-1 and MCI-2 respectively. All

multiple-choice items were written to have six options, a correct response, and five

distractors. Items addressed concepts of high-school and college-level statistics, including:

measures of central tendency, properties of frequency distributions, and interpretation of

graphical data displays. Some items were adapted based on released items from the 2019

10th grade Massachusetts Comprehensive Assessment System (MCAS; Massachusetts

Department of Elementary and Secondary Education [MA-DESE], n.d.-a, n.d.-b) and SAT

exam (College Board, n.d.), as well as the GRE (ETS, 2009) and associated released

preparation materials (ETS, 2017).

Prior to the construction of the instrument forms, two rounds of item quality

review were conducted by content experts. First, all items were examined individually to

ensure the prompts were clear and that how to produce a response was intuitive. Second,

TEI-MCI pairs were examined to confirm their content equivalence. Although stem-

equivalent items tend to be content equivalent (Rodriguez, 2003), this review ensured that

each TEI and its MC stem-equivalent counterpart addressed the same construct. Based on

these reviews, items were edited or, on occasion, removed from the item bank prompting

the development of new items.

Participants

The target population of the proposed study was adults. As will be described later in this

chapter, several psychometric item characteristics of interest were estimated using a 2-
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parameter logistic (2-PL) item response theory model. The reliable estimation of this

model based on participant responses was the primary concern that informed the target

sample size. In the literature there is a wide variety of recommendations regarding the

sample size required to fit a 2-PL model for instrument development purposes. For

example, Crocker and Algina (1986) suggest a minimum of 200 participants for an item

analysis study. Sahin and Anil (2017) suggest that in order to fit a 2-PL IRT model to a

20-item test, the ideal sample size is 500. Based on these recommendations, recruitment

efforts were made to achieve total sample of between 600 and 800 participants. This would

ensure that at least 300 responses were recorded per item.

Data Collection

Instrument Administration and Participant Recruitment

The instrument was delivered using the Qualtrics web-based survey-delivery platform.

This online platform was chosen because it supports both drag-and-drop formats

considered in this study (classification and rank-ordering), it allows easy test delivery to

participants, and it records the amount of time respondents spend on each item. Upon

completing the common item block, each participant was randomly assigned one of the

four possible TEI-MCI block combinations.

Participants were recruited through Amazon’s Mechanical Turk (MTurk), an

online marketplace which has gained traction in recent years as a medium for researchers

to gather large samples of participants for digital tasks (Barger et al., 2011; Berinsky,

2012; Cheung et al., 2017). In this platform, individuals (i.e., requesters) may post jobs in

which they require worker participation. Each job, or Human Intelligence Task (HIT),

represents a single assignment on which workers can work, submit a response, and receive
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compensation. Workers browse available HITs and participate in them for a monetary

reward set by the requester. MTurk was chosen as the best medium for instrument

distribution as research has shown that data collected through MTurk for empirical

studies is externally valid, reliable, and generalizable (Barger et al., 2011; Berinsky, 2012;

Buhrmester et al., 2011; Cheung et al., 2017; Paolacci & Chandler, 2014; Rouse, 2015).

Moreover, data gathered through MTurk has been shown to be of equal or better quality

than data gathered through convenience sampling designs. Quality of the data gathered

through MTurk may be ensured by refusing payment for low quality responses (e.g.,

random responses) or only allowing workers that have been rated highly within the system

as dependable to participate (Barger et al., 2011; Buhrmester et al., 2011).

Pilot

Two hundred participants were sought through MTurk for the pilot. To qualify to

participate in this study a worker had to: (a) have at least 50 HITs previously completed

and approved by requesters, (b) have a 95% or higher approval rating for previously

completed HITs, (c) have a high school degree, and (d) have acceptable level of English

language proficiency. The first three qualifying criteria were ensured by MTurk screening

procedures, while the remaining criterion was verified through a self-reporting

questionnaire included at the beginning of the instrument.

Each participant responded to 20 items. Two attention-control questions were

added to the 18 items developed for the study to identify careless responses. Both

attention control items were based on the same stimulus and required participants to

provide a simple open-ended response that did not require any calculations or critical

thinking. Pilot responses were screened for quality. Participant responses were removed
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for any of the following reasons: (a) participants answered incorrectly to at least one

attention control item, (b) participants spent less than 5 minutes on the task, (c)

participant provided incoherent answers to open-ended items, (d) responses appeared

automatic. At the end of the instrument an open-ended question was included asking

participants to share feedback on any of the questions, specifically whether there were any

items which were unclear.

Items were revised based on the results from the pilot. Revisions were inspired by

feedback provided by the participants and a simple review of classical test theory item

characteristics. In particular, excluding the attention-control items, items were flagged for

replacement if they were extremely easy (more than 83% correct responses) or extremely

difficult (less than 16% correct responses). These cut-offs were determined by the chance

of guessing a correct response in a 6-option multiple choice item. Items that showed a

percent of correct responses between 16% and 30% and between 70% and 83% were also

flagged for possible revision.

As will be described in Chapter 4, results of the pilot prompted the revision or

removal of multiple items. Consequently, the content of the data collection instrument was

broadened to include middle school mathematics and science items adapted from 2019

MCAS released items (MA-DESE, n.d.-a, n.d.-b). Additionally, a second pilot was

conducted to evaluate the performance of the new items.

Operational Administration

After the items were revised following the pilot, the instrument was finalized and prepared

for the final operational administration. For this stage, 800 participants were recruited

through MTurk. Qualifications to participate in this study were the same as the pilot,
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that is, a worker had to: (a) have at least 50 HITs previously completed and approved by

requesters, (b) have a 95% or higher approval rating for previously completed HITs, (c)

have a high school degree, and (d) have acceptable level of English language proficiency.

The first three qualifying criteria were checked based on statistics reported by MTurk,

while the remaining criterion were verified through a self-reporting questionnaire included

at the beginning of the instrument.

Each participant was presented with 20 items, 18 items were developed for the

study and two attention-control items intended to ensure participants were attentive while

working on the task. Participant responses were removed for any of the following reasons:

(a) participants answered incorrectly to at least one attention control item, (b)

participants spent less than 5 minutes on the task, (c) participant provided incoherent

answers to open-ended items, or (d) responses appeared automatic. Whenever

participants’ responses were removed, responses to all items were removed.

TEI Utility Ratings

TEIs were evaluated using Russell’s TEI Utility Framework (2016) to determine the

relationship between psychometric item characteristics of the TEIs included in the

assessment and their utility (RQ2). The TEI Utility Framework considers three facets of

utility: construct fidelity, usability, and accessibility. Construct fidelity focuses on how

closely the context presented to a test-taker in a TEI resembles a context in which the

construct may be applied in an authentic manner. Usability focuses on the intuitiveness

with which a novice user can produce and modify a response in the interaction space of a

TEI. Finally, accessibility is the extent to which the interaction space provided by a TEI

allows test-takers with limitations that impact their ability to produce a response in an
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efficient manner (e.g., test-takers who are blind, have low vision, or have motor skills-

related disabilities). Each of the utility facets is evaluated on a three-level scale: low,

moderate, or high.

While construct fidelity varies from item to item depending on the design of the

item and its response interaction space, usability and accessibility depend on the test

delivery system itself and how it implements the response interactions under

consideration. Because Qualtrics, the instrument delivery platform used in this study,

does not provide any accommodations for respondents that are blind, have low vision, or

have motor skills-related disabilities, rating the accessibility of the TEIs included in the

instrument was deemed uninformative. Hence, this study focuses solely on the construct

fidelity and usability components of the TEI Utility Framework. Guidelines to rate TEIs

on these two components are described next.

Construct fidelity considers both the context provided by the TEI and the actions

required of the test-taker to produce a response. A TEI is deemed to have high construct

fidelity when the “context created by the interaction space authentically reflects a

situation in which the construct might be applied in the real-world and the actions

required to produce a response are similar to those one might perform in the real-world”

(Russell & Moncaleano, 2019, p. 6). When a TEI presents an authentic context but

inauthentic interactions are used to produce a response, the TEI would be rated to have

moderate construct fidelity. Finally, the TEI Utility Framework considers that the

authenticity of the context supersedes the authenticity of the interactions, thus, whenever

the context is inauthentic, regardless of the authenticity of the actions required to produce

a response, the item is considered to have low construct fidelity (Russell, 2016). To inform
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construct fidelity ratings, Russell and Moncaleano (2019) developed the construct fidelity

coding guide shown in Appendix C which describes examples for each construct fidelity

rating.

Three main factors are considered when rating the usability of a TEI: intuitiveness,

layout, and functionality. Intuitiveness refers to the easiness with which a test-taker may

produce a response with minimal cognitive effort (assuming the test-taker has had some

training prior to exposure to the testing platform). Layout considers how the item is

designed to minimize the distance between objects in the response interaction space

required to produce a response. Finally, functionality refers to the extent to which the

TEI is designed in a way that minimizes the number of mouse/finger selections required to

produce a response (Russell, 2016). Panel members rating the usability of a TEI should

consider these three factors simultaneously to produce a holistic usability rating.

A panel of three graduate students in the Measurement, Evaluation, Statistics, and

Assessment (MESA) program at Boston College were trained on the use of the framework.

This training was executed in four steps. First, the researcher explained the framework to

the panelists, introducing the two components of construct fidelity and usability. Second,

the researcher presented three TEIs as examples, leading a discussion about how to rate

each component and the rationale behind the rating (high, moderate, or low). In this step,

the researcher introduced the panelists to the construct fidelity coding guide (shown in

Appendix C, Russell & Moncaleano, 2019). Third, the panelists worked independently to

rate the construct fidelity and usability of five practice TEIs (2019 MCAS released TEIs).

Finally, the researcher led a discussion among panelists to reach a consensus on the

ratings and discuss any remaining questions from the panelists.
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After training was completed, all panelists were asked to rate the construct fidelity

and usability of the TEIs developed for this study independently. First, panelists were

instructed to interact with each TEI and provide a construct fidelity rating (high,

moderate, or low) for each item. Next, panelists were asked to provide an overall rating of

usability (high, moderate, or low) for each TEI format (i.e., classification and rank-

ordering). Panelists rated the usability of the two TEI formats as a group (rather than on

an item-by-item basis) because usability ratings often depend on how test-delivery

platforms implement different TEI formats more than they do on the items themselves.

Once all panelists completed this process, they reconvened and discussed any discrepancies

in order to reach consensus. This process led to a consensus rating of the construct fidelity

of each TEI included in the instrument and the usability of both TEI formats employed.

Analytic Methods

One purpose of this dissertation is to develop a method to judge the measurement value of

technology-enhanced items compared to selected-response item counterparts. To this end,

all items were scored dichotomously and both classical test theory (CTT) and item

response theory (IRT) approaches were employed to examine: (a) CTT difficulty, (b) CTT

discrimination, (c) IRT difficulty, (d) IRT discrimination, (e) IRT item information, and

(f) relative efficiency. Each of these characteristics and their calculation are described in

detail. Most analyses were conducted in R using the following packages: ltm (Rizopoulos,

2018), cocor (Diedenhofen, 2016), catIrt (Nydick, 2015), and sirt (Robitzsch, 2020).

After estimating these characteristics for each item, TEIs and their MC

counterparts were compared to address RQ1. Subsequently, the relationship between the

psychometric characteristics of TEIs and their utility ratings was explored to answer RQ2.
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Finally, to address RQ3, psychometric characteristics and utility ratings were combined to

develop a protocol to judge comparative measurement value and apply it to the TEIs

developed for this study.

Classical Test Theory

Under the CTT framework, two characteristics were estimated for each item, namely

difficulty and discrimination. Difficulty was calculated as the proportion of participants

that answered an item correctly. Discrimination was estimated as the correlation between

item responses (correct/incorrect) and total test score absent of the item under

consideration. Additionally, for multiple-choice items the proportion of participants that

selected each option was examined. Finally, the reliability of the instrument was evaluated

using Cronbach’s Alpha given by

α̂ =
k

k − 1

(
1−

∑
σ̂2
i

σ̂2
x

)
(8)

“where k is the number of items on the test, σ̂2
i is the variance of item i, and σ̂2

x is the

total test variance” (Crocker & Algina, 1986, p. 138).

Item Response Theory

Two- and three-parameter logistic models are the most common psychometric models

used to calibrate dichotomously-scored items in large-scale assessment programs that

include TEIs. Given that guessing is not a pervasive issue for TEIs (Gifford, 2017; Huff &

Sireci, 2001; Parshall & Harmes, 2014), and considering that the same model will be used

to fit TEIs and MCIs in order to compare their properties, this study employed a 2-PL

dichotomous IRT model to analyze participant responses. This model, provides estimates
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for difficulty (b parameter), discrimination (a parameter), and information, thus allowing

relative efficiency to be calculated.

The 2-PL Model. The IRT paradigm relies on logistic functions that model the

probability of an item response as a function of examinees’ underlying ability and item

characteristics (e.g., difficulty, discrimination, guessing). In the 2-PL model the

conditional probability of a dichotomous response (i.e., correct or incorrect) is modeled as

a function of the difference between examinees’ ability level and the difficulty of the item,

weighted by the discrimination of the item. The 2-PL model takes the following statistical

form:

p(Xnj = 1|θn, aj , bj) =
exp[aj(θn − bj)]

1 + exp[aj(θn − bj)]
(9)

where Xnj represents the response of examinee n to item j (correct = 1, incorrect = 0), θn

represents the ability level of examinee n, aj represents the item’s discrimination, and bj

represents the item’s difficulty. High probabilities of a correct response correspond to large

positive differences between the person’s ability level θn and the item’s difficulty bj (e.g.,

easy items or high-ability examinees). Conversely, when the difference between examinee

ability θn and item difficulty bj is negative (e.g., hard items or low-ability examinees), the

probability of obtaining a correct response approaches zero. In the 2-PL model, item

discrimination (aj) acts as a weight of the difference between examinee ability and item

difficulty. For highly discriminating items, small differences result in a high probability of

producing a correct response. When an examinee’s ability matches the difficulty of an

item, the probability of obtaining a correct response is 50% (exp(0)/(1+exp(0))=0.50).
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IRT models rely on assumptions of unidimensionality and local independence

across items. Unidimensionality analyses were conducted using the Normal Ogive

Harmonic Analysis Robust Method (NOHARM; Fraser & McDonald, 1988, 2012). Two

main statistics were evaluated: the Root Mean Square (RMS) and Tanaka’s Goodness of

Fit Index (GFI), both of which rely on the residual matrix that results from fitting a

normal ogive model to the data based on an assumed number of dimensions (one in this

case). Small values of the RMS are indicative of good fit as this statistic summarizes the

differences between observed and predicted covariances. In particular, the RMS statistic is

often compared to a threshold equivalent to four times the reciprocal of the square root of

the sample size, i.e., the “typical” standard error of the residuals (de Ayala, 2013;

McDonald, 1997). Tanaka’s goodness of fit index has a maximum value of 1 which

indicates perfect fit, generally values above .90 are considered acceptable and values above

.95 indicate good fit (McDonald, 1999). The assumption of local independence was

checked by evaluating standardized LD chi-square statistics (Chen & Thissen, 1997)

obtained from IRTPRO (Vector Psychometric Group, 2020). The LD statistic is

concerning whenever its magnitude is larger than 10 (i.e., indicating significant

dependence between items), moderate when its magnitude is between 5 and 10, and small

or inconsequential when its magnitude is below 5.

Item Information. IRT models estimate the examinees’ location on the ability

continuum (θ̂). Test information functions provide a measure of these ability estimates

across the ability continuum. That is, a test provides different levels of accuracy of the

estimate of examinees’ ability at different points on the ability continuum. As detailed in

Chapter 2, the test information function corresponds to a sum of the information provided
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by each item throughout the ability continuum. A general formulation for the item

information function is:

Ij(θ) =
[p

′
j ]

2

pj(1− pj)
(10)

where pj is the probability of a person answering item j correctly while p
′
j represents the

first derivative of the estimated model. For the 2-PL model described in Equation 9 the

first derivative corresponds to:

p
′
j = ajpj(1− pj) (11)

where aj represents the discrimination parameter for item j. Substituting this derivative

in Equation 10 produces the item information formula for the 2-PL model:

Ij(θ) = a2
jpj(1− pj). (12)

Note that item information is a function of the probability of a person answering the item

correctly (pj) and the item discrimination parameter (aj). The 2-PL information function

attains a maximum of a20.25 at the location where a test-taker has a 50% chance of

answering the item correctly (i.e., pj=0.50). In other words, an item provides the most

information at the location it discriminates the most (i.e., at bj ; de Ayala, 2013). Item

information estimates at each point on the ability continuum can be plotted in a

coordinate plane to produce item information curves. These curves are symmetric with

respect to bj and asymptotic (approaching zero as the magnitude of θ − bj increases).

Relative Efficiency. The information functions provided by the estimation of

the 2-PL model can be used to examine the relative efficiency of TEIs compared to

multiple-choice items. Based on the literature review, there are two common ways of
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estimating relative efficiency. The first method, introduced by Lord (1980) estimates a

relative efficiency function as a ratio of two information functions. The second method,

introduced by Jodoin (2003), calculates the ratio between the efficiency with which two

items gather information per unit of time. Both of these approaches were used in this

study and are described in detail next.

Lord’s (1980) method for calculating relative efficiency was originally developed to

compare either scores on two different tests of the same ability θ or scores resulting from

scoring the same test in two different ways. Lord’s method requires two steps. First, the

information function for two tests is estimated using an IRT model. Second, the relative

efficiency of scores from test A to scores of test B is calculated as the ratio of their

information functions. However, this approach may be extended to item-level information

curves:

RE {A,B} =
IA(θ)

IB(θ)
(13)

where IA(θ) and IB(θ) are the information functions for items A and B respectively.

Relative efficiency defined in this manner is not a point-estimate (i.e., a single value) but

rather a curve. Consequently, the relative efficiency of two scores varies according to

ability level. The relative efficiency curve is compared to a horizontal reference line equal

to 1. Regions where RE {A,B} is above 1, indicate item A is more efficient than item B

at that range of ability level. Conversely, regions where RE {A,B} is below 1, indicate

item B is more efficient than item A at that range of ability level. Lord’s relative efficiency

ratio is useful for comparing information curves rather than an item statistic itself.

In contrast to Lord’s (1980) method, Jodoin’s (2003) approach to relative

efficiency considers the time test-takers require to answer each item and yields a point-
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estimate rather than a curve. Jodoin calculated the relative efficiency of one item format

to another by averaging the measurement efficiency of all items that shared each format.

This methodology was modified in this study to calculate relative efficiency across two

items with differing response formats following four steps. First, information functions for

both items in a stem-equivalent pair were estimated. Second, the information provided by

each item was summarized by calculating expected information, a weighted average of

information. This was accomplished by averaging the item information function (Ij)

evaluated at test-takers’ ability estimates (θ̂)4 , i.e.,

E(Ij) =
1

N

N∑
i=1

Ij(θ̂i). (14)

Third, the ratio of average expected information to median time spent by test-takers on

the item was calculated to yield an estimate of measurement efficiency of each item

(expected information per minute). Finally, relative efficiency was estimated as the ratio

of TEI measurement efficiency to MCI measurement efficiency. Additionally, relative

efficiency was averaged across items that shared a TEI response interaction to obtain an

overall estimate of relative efficiency for that response type (i.e., classification or

rank-ordering).

4This formula is equivalent to Equation 7 and was used as ability estimates for all test-takers had been
estimated and it was assumed the sample represented the target population.
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RQ1: How do the psychometric characteristics of commonly employed TEI

drag-and-drop formats (classification and rank-ordering) compare to stem-

equivalent multiple-choice items?

Research question 1 examined seven psychometric properties estimated for all items: (a)

CTT difficulty, (b) CTT discrimination, (c) IRT difficulty, (d) IRT discrimination, (e) IRT

item information, (f) expected information, and (g) measurement efficiency. Each of these

properties were compared for each item pair.

CTT difficulty estimates were compared between stem-equivalent items by

conducting independent samples t tests and CTT discrimination indices were compared

using Fisher’s (1925) test for correlations. In both occasions, a Bonferroni correction to

the significance level for multiple comparisons was applied (Privitera, 2017).

Comparisons between IRT parameters were conducted by identifying item

parameter drift. IRT difficulty was compared using two graphical displays. The first

graphical display was an adaptation of the approach used by the TIMSS & PIRLS

International Study Center to identify item parameter drift of trend items between two

modes of administration or two consecutive administrations (Fishbein et al., 2020). This

graphical display was constructed by plotting the difference between TEI and MCI

difficulty parameters. Confidence intervals around these points were constructed according

to the following formulas:

Upper Limit = bTEI − bMCI + SE(bTEI − bMCI) · Zb

Lower Limit = bTEI − bMCI − SE(bTEI − bMCI) · Zb

(15)
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where bTEI and bMCI are the difficulty parameters for the TEI and the stem-equivalent

MCI version respectively, SE(bTEI − bMCI) is the standard error of the differences

between difficulty parameters of TEIs and MCIs, and Zb is the 95% critical value of the z

distribution corrected for multiple comparisons. Using this approach differences between

difficulty parameters larger than 2 logits are considered concerning.

The second graphical display used to compare difficulty parameters followed the

“3-sigma IRT” approach (Gaertner & Briggs, 2009). The TEI and MCI difficulty

parameters were plotted against each other and the standard deviation (SD) line was used

as the line of best fit. The SD line given by the following equation:

y =
sd(bTEI)

sd(bMCI)
x (16)

where sd(bTEI) and sd(bMCI) are the standard deviations of the difficulty parameters of

TEIs and MCIs respectively. A confidence interval was also constructed around the SD

line at a distance of 3 times the standard deviation of the perpendicular distances between

each point and the SD line. Under this approach, items beyond this confidence region are

interpreted as having concerning item parameter drift. On this graphical display the y = x

line was also drawn as a reference to compare difficulty parameters at face value (i.e.,

larger than, less than).

IRT discrimination parameters could not be compared using the first graphical

display given that discrimination parameters are not interpreted in a logits metric.

However, discrimination parameters were compared using the second graphical display

described above. The SD line and the confidence region were constructed following the
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same calculations shown in Equations 15 and 16 using discrimination parameters (i.e.,

aTEI and aMCI).

Item information curves for TEIs were compared to item information curves of

their multiple-choice counterparts using two approaches: (a) plotting them on the same

coordinate plane and inspecting visually the extent to which they overlap and (b)

applying Lord’s (1980) relative efficiency ratio method. Given the asymptotic nature of

item information curves, it is rare that an item provides more information than another

across the full ability continuum. In other words, item information functions often

intersect, indicating that while one item might provide more information than another in

a specific range, the opposite is true in a different interval. To characterize the

comparisons made in this study the ability continuum was divided in three easily

interpretable intervals informed by Qian et al.’s (2017) study: (a) θ < −1 or low-ability

examinees, (b) −1 ≤ θ ≤ 1 or average-ability examinees, and (c) 1 < θ or high-ability

examinees. For each item pair and for each of these intervals the amount of information

provided by TEIs and MCIs was compared visually. Additionally, Lord’s relative efficiency

ratio function was plotted in a coordinate plane and interpreted using the three ability

ranges described above for information curves. For each of these intervals, the item in a

pair that appeared to be more efficient was noted.

Expected information and measurement efficiency estimates were directly

comparable because they are point-estimates. Following Jodoin’s (2003) methodology,

ratios of expected information and measurement efficiency were calculated (referred to

henceforth as relative expected information and relative measurement efficiency

respectively). Values of these ratios larger than 1 indicated that the TEI version
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performed better than its MCI counterpart and values below 1 indicated the MCI

performed better. Additionally, in his analyses, Jodoin considered relative efficiency values

larger than 2 to be meaningful. This criterion was applied to both ratios calculated in this

study to identify meaningful differences in expected information and measurement

efficiency between stem-equivalent items.

RQ2: What is the relationship between the utility of TEI drag-and-drop formats

(classification and rank-ordering) and their psychometric item characteristics?

Research question 2 examined the relationship between the utility ratings of the TEIs

used in the instrument as determined by a panel of specialists and the psychometric

characteristics calculated for each item to address research question 1. To explore this

relationship, all TEIs were first classified according to their construct fidelity rating (high

fidelity, moderate fidelity, or no fidelity). Within each of these groups, the psychometric

properties of the items were analyzed in a holistic manner to identify any patterns.

Differences in patterns of the results of the comparisons of the psychometric properties

between construct fidelity rating categories were recorded. The identified patterns were

used to characterize each of the construct fidelity rating levels. Moreover, acknowledging

that the features of the platform chosen for the delivery of the instrument (Qualtrics) were

out of control from the researcher, the relationships between the ratings of usability and

item psychometric properties were analyzed independently.
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RQ3: How can TEI psychometric properties and utility ratings be combined to

develop a standardized protocol to judge the comparative measurement value of

TEIs relative to stem-equivalent MC items?

This dissertation aims to provide a standardized and replicable methodology to evaluate

whether a TEI provides “better” measurement of a construct compared to a stem-

equivalent multiple-choice counterpart. The intent of this judgment is to inform decisions

about the use of a TEI instead of a selected-response item format. To this end, this

dissertation estimated several psychometric properties of TEIs and their MC counterpart

(i.e., stem-equivalent) and proposes a protocol that examines these properties to evaluate

the comparative measurement value of a TEI. Comparative measurement value is an

overall judgment regarding the benefit of using one item format versus an alternate format

with respect to increasing construct fidelity and improving psychometric characteristics.

As detailed in chapter 2, multiple psychometric properties have been used to evaluate the

quality of traditional item formats based on standards and thresholds commonly accepted

in the field of educational measurement. The protocol proposed in this dissertation

extends the use of psychometric properties to judge the comparative measurement value of

technology-enhanced items.

As described in this chapter, nine item characteristics were estimated for each item

as part of research questions 1 and 2 (seven for RQ1 and two for RQ2). Research question

3 evaluated these characteristics to identify the best indicators to judge the comparative

measurement value (CMV) of TEIs relative to stem-equivalent multiple-choice items.

Once these indicators were chosen, they were examined to identify desirable and

undesirable outcomes and inform the order in which these indicators should be evaluated
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within the protocol. These indicators were then combined into a step-wise hierarchical

decision protocol that provides a judgment about the impact on comparative

measurement value judgment resulting from the use of the TEI format.

From a practical standpoint, the comparative measurement value protocol aims to

provide an answer to the following question: is there value in using a given TEI format

instead of a traditional MC version? Consequently, increased CMV is an indication that

the TEI format was superior according to at least one indicator in the protocol and thus it

is the recommended format. In contrast, decreased CMV indicates that an egregious

undesirable outcome was observed, thus recommending the MC format. Finally, if no

impact on CMV is evident the protocol recommends a multiple-choice format given that

no clear benefits of using a TEI format are observed. In this sense, the protocol provides a

clear representation of the tradeoffs between choosing a TEI or an MCI.

The resulting protocol was applied separately to each technology-enhanced item

developed in this study. First, each indicator was examined independently comparing the

characteristics of the TEI version to those of the MCI version. The results of these

comparisons were then pooled using the protocol to arrive at an overall judgment of

comparative measurement value. Moreover, once comparative measurement value

judgments were obtained for all items, TEIs that shared a common response interaction

(classification or rank-ordering) were examined to evaluate whether there was an

association between comparative measurement value and item response format.
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Chapter 4 - Results

This chapter presents results of the procedures described in Chapter 3. The chapter

begins by describing changes made to the data collection instrument based on two pilot

administrations. Subsequently, results of the operational administration are presented,

including characteristics of the sample and analyses of omitted responses and timing data.

Then this chapter presents comparisons across stem-equivalent TEIs and MCIs based on

classical test theory and item response theory item parameters, item information curves,

and efficiency. Results of TEI utility ratings are also presented in this chapter. This

chapter concludes with a summary of the results and how they inform the three main

research questions of this study.

Instrument Development

The primary purpose of this study is to develop a protocol to evaluate the comparative

measurement value of technology-enhanced items and stem-equivalent multiple-choice

items with the intent of informing decisions about the use of the former instead of the

latter. To accomplish this, two forms of an 18-item data collection instrument were

developed. The first six items of the instrument comprised a common block presented to

all participants in this study, the remaining 12 items, organized in two blocks, differed on

their response interactions across forms. Therefore, each instrument form included the

common block, a drag-and-drop block, and a multiple-choice block. Form A included

blocks TEI-1 and MCI-2 while Form B included blocks TEI-2 and MCI-1. Henceforth,

item blocks TEI-1 and MCI-1 are referred to as item set 1, as they contain

stem-equivalent items, and blocks TEI-2 and MCI-2 constitute item set 2.
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The use of stem-equivalent pairs of technology-enhanced and multiple-choice items

is the cornerstone of this study, as it prevents comparisons from being confounded with

differences in content across item formats (a common limitation of item format

comparison studies). The items in the data collection instrument were intended to have

moderate difficulties. Because the sample contained adults recruited through MTurk, it

was anticipated that extremely difficult items would demotivate participants while

extremely easy items would produce limited score variability. Two pilots were conducted

to evaluate item difficulty (percent correct) and flag items for review or replacement.

Results of both pilots are described in the following sections.

First Pilot

The first pilot began by developing 30 items. Six items were developed to build the

common block: two multiple-choice items, two classification drag-and-drop items, and two

drag-and-drop rank-ordering items. Twelve drag-and-drop TEIs (six classification items

and six rank-ordering items) and 12 multiple-choice items that were stem-equivalent to

each of the TEIs were developed to populate the remaining blocks. All items were

subjected to a content review. This initial set of 30 items assessed concepts covered in

high school statistics including: measures of central tendency, properties of frequency

distributions, and interpretation of graphical data displays.

A total of 121 participants were recruited through MTurk for the pilot. Upon

inspection of the attention control items, 62 responses were discarded for incorrect

answers, resulting in a 51% attrition rate due to inattentiveness. Based on the remaining

59 valid responses, the percent of correct responses for each item was calculated. Results

are shown in Table 4.1 organized by item block and instrument form (items are shown in
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the order within a block in which they were presented to participants). To scaffold the

decision process, items were flagged according to their difficulty level (below 16%, between

16% and 30%, between 70% and 83%, and above 83%).

Table 4.1

First pilot results

Item Difficulty Item Difficulty Decision

Common Block
MC1 40.7 Keep
CL1 66.1 Keep
RO1 75.0† Keep
MC2 40.7 Keep
CL2 13.6∗∗ Replace
RO2 20.3∗ Replace

Item Set 1
TEI-1 MCI-1

CL3 0∗∗ MCCL3 50.0 Replace
RO3 0∗∗ MCRO3 26.7∗ Replace
CL4 31.0 MCCL4 67.0 Keep
RO4 31.0 MCR04 16.7∗ Keep
CL5 44.8 MCCL5 40.0 Keep
RO5 24.1∗ MCRO5 30.0∗ Replace

Item Set 2
TEI-2 MCI-2

CL6 40.0 MCCL6 41.4 Keep
CL7 10.0∗∗ MCCL7 31.0 Replace
RO6 0∗∗ MCRO6 55.2 Replace
CL8 30.0 MCCL8 41.4 Keep
RO7 86.7†† MCRO7 68.8 Keep
RO8 20.0∗ MCRO8 13.8∗∗ Replace

Note. ∗∗Below 16%. ∗Between 16% and 30%. †Between 70% and 83%. ††Above 83%.

Six items were flagged for replacement due to their extreme difficulty (less than

16% correct responses): CL2, CL3, RO3, CL7, RO6, and MCRO8. One item was flagged

for being extremely easy (more than 83% correct responses): RO7. Seven items were

flagged for revision due to their minimally acceptable difficulty (between 16% and 30% or
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70% and 83% correct responses): RO1, RO2, MCRO3, MCRO4, RO5, MCRO5, and RO8.

Based on these results, the following decisions were made:

1. The instrument as a whole was deemed too difficult for the target population,

consequently items that were flagged for being too easy were retained (RO1 and

RO7).

2. Both flagged items in the common block were replaced (CL2 and RO2). Although,

item RO2 was acceptable, an item with a higher percent correct was desirable

given the use of the common block to develop a common scale.

3. All item pairs that included an item flagged for extreme difficulty (**) were

replaced. Item pairs where one item was flagged for review (*) and the other was

not, were retained. Finally, item pairs where both items were flagged for review

were replaced.

These decisions resulted in 14 items selected for replacement, two single items from the

common block and six item pairs.

Two main conclusions were drawn from the results of this pilot: (a) attrition due

to careless responses was high and (b) the data collection instrument was too difficult for

the target population. It was hypothesized that these two conclusions might be related,

the high difficulty of the instrument could explain a lack of motivation and thus careless

responses. For this reason, the content of the data collection instrument was broadened by

replacing some flagged items with adaptations of 5th-, 6th-, 7th-, and 8th-grade

mathematics and science MCAS 2019 released items (MA-DESE, n.d.-a, n.d.-b).

Additionally, item CL8 and its counterpart MCCL8 were replaced. This item pair
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presented test-takers with a set of three box plots and asked them to classify them

according to the skewness of the data they portrayed. Despite their acceptable percent

correct responses, these items were removed following the recommendation of a content

expert who suggested these items seemed to assess recall of vocabulary rather than

statistical understanding.

Second Pilot

Given the extensive revisions to the data collection instrument, a second pilot was

conducted. At this stage, the data collection instrument comprised 11 statistics items, five

science items, and two mathematics items. The statistics items covered all three sub-

domains included in the prior version: measures of central tendency, properties of

frequency distributions, and interpretation of graphical data displays. The science items

covered the following subdomains (as defined by the Massachusetts standards the adapted

items addressed): technological systems, earth’s systems, matter and its interactions, and

forces and interactions. The two adapted mathematics items addressed number properties

and geometry.

In addition to the changes to the instrument, the MTurk recruitment message, the

informed consent, and the instructions were edited to advise participants their task might

not be approved (and thus they might not be compensated) if their responses showed

evidence of carelessness. For this second pilot 157 participants were recruited. Sixty-five

responses were rejected due to carelessness (35 due to incorrect responses to attention

control items and completing the instrument in less than 5 minutes, 22 due to incorrect

responses to attention control items despite an acceptable instrument completion time,

and 18 due to incoherent open-ended responses) resulting in 92 valid responses.
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Consequently, this pilot showed a 41% attrition rate, marking an improvement from the

first pilot. The percent correct responses per item was once again calculated. Results are

shown in Table 4.2 organized by item block and instrument form (items are shown in the

order within a block in which they were presented to participants).

Table 4.2

Second pilot results

Item Difficulty Item Difficulty Decision

Common Block
MC1 32.6 Keep
CL1 51.1 Keep
RO1 55.4 Keep
MC2 27.2∗ Keep
CL2‡ 44.6 Keep
RO2‡ 10.7∗∗ Review

Item Set 1
TEI-1 MCI-1

CL3‡ 60.4 MCCL3‡ 52.3 Keep
RO3‡ 35.4 MCRO3‡ 34.1 Keep
CL4 20.8∗ MCCL4 56.8 Keep
RO4 29.2 MCRO4 22.7∗ Keep
CL5 27.1∗ MCCL5 45.5 Keep
RO5‡ 14.6∗∗ MCRO5‡ 18.2∗ Review

Item Set 2
TEI-2 MCI-2

CL6 29.6∗ MCCL6 31.9 Keep
CL7 40.9 MCCL7 47.9 Keep
RO6 65.9 MCRO6 54.2 Keep
RO7‡ 9.1∗∗ MCRO7‡ 29.2∗ Review
CL8‡ 72.7† MCCL8‡ 56.3 Keep
RO8‡ 59.1 MCRO8‡ 50.0 Keep

Note. ‡New item. ∗∗Below 16%. ∗Between 16% and 30%. †Between 70% and 83%. ††Above

83%.

Results of the second pilot flagged three items for extreme difficulties (RO2, RO5,

and RO7) and seven items for minimally acceptable difficulties. No items were replaced at
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this stage, but rather reviewed and edited as necessary. The following decisions were

made:

1. Items CL4, MCRO4, CL5, and CL6 were left intact.

2. Item RO2 was found to have a confusing prompt. The prompt was edited.

3. Items RO5 and MCRO5 required participants to calculate the density of three

objects based on provided mass and volume values. As this process required

remembering a formula it was revised to include a scaffold.

4. Item RO7 was found to be confusing because it shared the same graphical

stimulus as the preceding item (RO6) and both questions were worded similarly.

Analysis of the data showed participants often repeated their answer to

RO6/MCRO6 in item RO7/MCRO7. The prompts were modified and these items

were separated into two different blocks despite sharing the same stimulus.

The final data collection instrument comprised 11 statistics, five science, and two

mathematics items addressing the subdomains described earlier. Before engaging with the

data collection instrument, participants were asked to answer a brief background

questionnaire that inquired about their level of education. Additionally, after completing

the instrument, participants were shown a closing survey which included an open-ended

question asking participants about their previous experience with statistics (e.g.,

coursework) and a question about whether they took breaks during the task. The

background questionnaire, the final instrument, and the closing survey are presented in

Appendix D.
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Operational Administration and Sample Characteristics

After finalizing the data collection instrument based on findings from the two pilot

studies, the instrument was administered to 900 participants recruited through MTurk,

with the goal of obtaining at least 300 valid responses per item. Of the 901 responses

received 307 were removed for carelessness indicated by incorrect attention control items,

short response times, incoherent answers to open-ended response items, or answers that

appeared automatic. A total of 594 responses were deemed valid for further analyses,

corresponding to an attrition rate of 34%.

As described in Chapter 3, participants were randomly assigned to one of two

possible forms (A —Blocks TEI-1 and MCI-2 or B —Blocks TEI-2 and MCI-1) and one of

two possible block orders (1 —Common block first, TEI block second, MCI block third, or

2 —Common block first, MCI block second, TEI block third). Table 4.3 shows the

number of participants who answered each form.

Table 4.3

Number of participants who answered each form of data collection instrument

Order Form

A B
(TEI-1 and MCI-2) (TEI-2 and MCI-1)

1 (CB - TEI - MCI) 137 146
2 (CB - MCI - TEI) 146 165

Total 283 311

Table 4.4 displays a description of the sample based on responses to the

background questionnaire which participants answered prior to engaging with the data
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collection instrument. All participants indicated they understood English very well or

well. A small percentage of participants reported not having a higher-education degree

(16%) and participants who indicated having a higher-education degree were evenly split

between Mathematics or Statistics degrees and other degrees. The majority of

participants (54%) have enrolled in at least one higher-education statistics course in the

past, and a small percent (16%) reported having experience teaching statistics,

mathematics, or science at any academic level.

Table 4.4

Sample characteristics

Variable Percent

Understanding of English
Very well 97
Well 3
Not very well 0

Higher-Education Degree
Mathematics or Statistics 40
Other 44
No degree 16

Ever enrolled in higher-education statistics courses
Yes 54
No 46

Experience teaching statistics, mathematics or science at any academic level
Yes 16
No 84

Omitted Responses

Participants were allowed to skip items within the data collection instrument. A total of

106 participants (17.85%) skipped (or did not respond to) at least one item. Table 4.5

shows the distribution of participants who omitted items by the number of items omitted

113



and instrument form. Results indicate that the majority of participants who skipped

items only skipped a single item. Moreover, the percent of people who skipped at least

one item was similar across forms (17% for Form A and 18% for Form B).

Table 4.5

Number of participants who omitted responses per form

Items Omitted Form A Form B Total

1 42 41 83
2 3 12 15
3 1 1 2
4 1 1
5 2 3 5

Total 48 58 106

Table 4.6 shows the prevalence of omitted responses for each item and form of the

instrument. For each item, the proportion of omitted responses is reported based on the

total number of observations available for each item (i.e., the number of participants who

answered each form). In total, 61 omitted responses were observed in Form A and 87

occurred in Form B, corresponding to less than 2% of the data gathered per form. The

last item in the common block (RO2) was the item that showed the highest number of

omitted responses (56).

The pattern of missing responses suggests that participants were more likely to

skip technology-enhanced items than multiple-choice items. All TEIs showed at least one

case of an omitted response (1.46% missing responses on average) while only three MCIs

showed cases of omitted responses (0.05% missing responses on average). This may be

associated with the additional effort involved in interacting with a TEI compared to a

traditional multiple-choice item. To examine the extent to which missing data occurred
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randomly, Little’s MCAR test was performed in SPSS (Enders, 2010; Little, 1988). Chi-

square statistics were non-significant for both forms indicating that missing data occurred

at random—χ2
A(178, N = 283) = 164.88, p = .751 and χ2

B(241, N = 311) = 242.68,

p = .457. Therefore, despite the apparent relationship between omitted responses and

item type, omitted responses were considered random and scored as incorrect responses.

Table 4.6

Omitted responses for each item per form

Form A (N=283) Form B (N=311)

Item Omitted % Omitted Item Omitted % Omitted

Common Common
MC1 MC1 1 0.32
MC2 MC2
CL1 3 1.06 CL1 6 1.93
CL2 3 1.06 CL2 4 1.29
RO1 1 0.35 RO1 2 0.64
RO2 30 10.60 RO2 26 8.36

TEI-1 MCI-1
CL3 2 0.71 MCCL3
CL4 2 0.71 MCCL4 1 0.32
CL5 2 0.71 MCCL5
RO3 8 2.83 MCRO3
RO4 5 1.77 MCR04
RO5 4 1.41 MCRO5

MCI-2 TEI-2
MCCL6 CL6 4 1.29
MCCL7 CL7 3 0.96
MCCL8 CL8 3 0.96
MCRO6 1 0.35 RO6 17 5.47
MCRO7 RO7 14 4.50
MCRO8 RO8 6 1.93

Total 61 1.19a Total 87 1.55b

aForm A total observations = 5094. bForm B total observations = 5598.
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Timing Statistics

This section discusses (a) the total time taken to complete the full instrument, (b) the

total time taken to complete each block, and (c) the time taken to complete each item. To

characterize the distribution of timing data at each of these levels the mean, standard

deviation, minimum, and maximum times are reported. Considering test-taking timing

data is often positively skewed due to the presence of outliers (i.e., participants who

invested too much time; van der Linden, 2006; Weeks et al., 2016), the median time is also

reported as the preferred measure of central tendency. Results of statistical significance

tests comparing time spent on different item formats are presented following the

discussion of these descriptive statistics at each level. This section concludes with a

discussion of the impact of omitted responses on timing statistics.

Instrument-level Timing Statistics

Table 4.7 presents timing statistics at the instrument level. Results are also discriminated

by the form participants answered (A or B) as well as the block order participants

experienced (1 or 2). Results suggest that participants spent, on average, about 20

minutes answering all items in the instrument (not including the background

questionnaire or the closing survey). Results also indicate that participants who answered

Form A spent marginally more time than those answering Form B (about a minute

longer). The difference in time spent in Form A (M = 21.56, SD = 10.86) and Form B

(M = 20.63, SD = 10.17) was not significant, t(592) = 1.08, p = .281. Participants who

were assigned Form A2 took, on average, about 2 minutes longer to complete the

instrument. However, a one-way analysis of variance (ANOVA) conducted to determine

whether this difference was significant indicated that there were no significant differences
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across the mean times spent by participants in each of the four possible forms and order of

blocks, F (3, 590) = 0.71, p = .546.

Table 4.7

Overall instrument timing descriptive statistics

Variable N M SD Min Max Mdn

All participants 594 21.08 10.51 2.34 79.13 19.50

By instrument form
A 283 21.56 10.86 2.43 79.13 20.59
B 311 20.63 10.17 2.34 56.58 19.12

By form and block order
A1 137 20.94 11.20 2.43 79.13 19.29
A2 146 22.15 10.54 2.74 48.40 21.13
B1 146 20.74 10.56 2.34 56.58 19.11
B2 165 20.54 9.85 3.50 48.34 19.10

Note. All times are shown in minutes.

*p < .05.

A closer look at the distribution of the total time spent by participants revealed

that 22.2% finished in less than 15 minutes, 51.2% spent between 15 and 30 minutes,

20.2% spent between 30 and 45 minutes, 6.1% spent between 45 minutes and 1 hour, and

0.3% spent more than 1 hour. Overall, about 73% of participants spent less than 30

minutes which corresponds with the expected time required to complete the instrument.

Finally, the closing survey included a question asking participants whether they

took any breaks while working on the instrument. Results showed that 557 participants

did not take a break (93.8%) while 37 did take a break (6.2%). On average, participants

who did not take breaks took approximately a minute longer to answer the instrument

compared to participants who took breaks. This counter-intuitive difference may be

explained due to the disproportionate difference in sample sizes and by the fact that the
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only instances of participants taking more than one hour corresponded to people who did

not take breaks. However, the difference of time spent between participants who took

breaks (M = 20.15, SD = 11.65) and participants who did not (M = 21.13, SD = 10.44)

was not found to be statistically significant, t(592) = 0.55, p = .585.

Block-level Timing Statistics

Descriptive statistics for the total amount of time participants spent in each block are

shown in Table 4.8. Median times ranged from 5.27 to 6.36 minutes indicating that all

item blocks required approximately 6 minutes to complete. Both the means and the

medians suggest that participants spent marginally more time on the blocks corresponding

to item set 1 (TEI-1 and MCI-1) than on blocks of item set 2. Results of a one-way

ANOVA indicated that differences in mean time spent across blocks was statistically

significant, F (4, 1777) = 2.89, p = .021, however Scheffe’s post-hoc tests5 did not reveal

any statistically significant pair-wise differences.

Table 4.8

Block-level timing descriptive statistics

Block N M SD Min Max Mdn

Common 594 6.95 4.12 0.73 34.77 6.09
TEI-1 283 6.93 4.70 0.62 43.77 6.15
MCI-1 311 7.00 4.54 0.35 24.25 6.36
TEI-2 283 6.08 3.80 0.44 22.99 5.27
MCI-2 311 6.49 4.38 0.25 29.58 5.81

Note. All times are shown in minutes.

5Scheffe’s test is considered more conservative than other post-hoc tests such as Tukey’s Honestly
Significant Difference and Bonferroni’s procedure and more appropriate for groups with unequal sample
sizes (Privitera, 2017).
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Item-level Timing Statistics

Descriptive statistics for item-level timing data are presented in Table 4.9. Results show

that, on average, participants spent less than 2 minutes per item. Time spent on an item

ranged between 0 minutes (participant skipped the item without reading it) and 28.15

minutes. Although the minimum time spent per item is fairly consistent across items, the

maximum time spent varies considerably: four items showed a maximum time of 20

minutes or more, while 12 items showed a maximum time between 10 and 15 minutes.

Although not included in Table 4.9, median response times for attention control items

were 24 seconds for AC1 and 16 seconds for AC2, confirming that these items had a low

cognitive bearing and did not hinder participants on their progress through the

instrument.

Twelve independent means t tests were conducted comparing the average time

spent by participants on each TEI and the corresponding multiple-choice counter parts

(e.g., CL3 vs. MCCL3). A Bonferroni correction for multiple comparisons was used to set

the significance threshold (α = 0.05/12 = 0.004) and achieve an experiment-wise alpha

level of 0.05. Results revealed only one statistically significant difference between items

CL7 (M = 0.57, SD = 0.41) and MCCL7 (M = 0.92, SD = 1.42),

t(592) = −4.05, p < .001. Participants answering item MCCL7 took on average 35 seconds

longer than participants answering item CL7. In addition to being statistically significant,

this difference is also meaningful as it constitutes over 50% of the mean and median time

participants spent on item CL7.
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Table 4.9

Item-level timing descriptive statistics

Item M SD Min Max Mdn

Common Block
MC1 1.72 2.11 0.05 28.15 1.29
MC2 0.91 1.15 0.04 14.68 0.66
CL1 1.68 1.27 0.13 11.22 1.41
CL2 0.89 0.93 0.04 18.07 0.72
RO1 0.79 0.60 0.04 9.23 0.66
RO2 0.97 0.73 0.05 6.57 0.81

Item Set 1
TEI-1

CL3 1.04 0.97 0.02 9.31 0.81
CL4 1.72 1.32 0.04 9.18 1.51
CL5 1.48 1.27 0.05 10.40 1.24
RO3 0.96 1.09 0.04 11.15 0.68
RO4 1.06 1.14 0.05 6.90 0.66
RO5 0.67 1.21 0.04 15.96 0.39

MCI-1
MCCL3 1.14 1.28 0.06 16.59 0.87
MCCL4 1.62 1.27 0.04 7.77 1.39
MCCL5 1.45 1.42 0.03 14.40 1.20
MCRO3 1.05 1.03 0.03 7.96 0.74
MCRO4 1.14 1.32 0.03 14.47 0.77
MCRO5 0.60 0.70 0.03 9.08 0.45

Item Set 2
TEI-2

CL6 1.50 1.32 0.06 12.33 1.26
CL7 0.57 0.41 0.06 4.80 0.48
CL8 0.86 0.59 0.06 5.14 0.73
RO6 1.14 1.25 0.05 10.84 0.81
RO7 0.86 1.70 0.04 20.00 0.52
RO8 1.14 1.10 0.03 8.94 0.91

MCI-2
MCCL6 1.70 2.11 0.02 24.05 1.33
MCCL7 0.92 1.42 0.00 18.68 0.68
MCCL8 0.88 0.66 0.01 4.18 0.72
MCRO6 1.25 1.88 0.03 23.73 0.87
MCRO7 0.63 0.58 0.04 4.28 0.46
MCRO8 1.12 1.07 0.02 6.80 0.82

Note. All times are shown in minutes.
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Item-level timing results do not show clear patterns regarding whether participants

spent more time working on a specific item format. Three independent mean t tests were

conducted on item-level mean times comparing (a) technology-enhanced items and stem-

equivalent multiple-choice items (TEIs vs. MCIs), (b) classification drag-and-drop items

and stem-equivalent multiple-choice items (CLs vs. MCCLs), and (c) rank-ordering drag-

and-drop items and stem-equivalent multiple-choice items (ROs vs. MCROs). Although

several observations (item-level mean times) were obtained from the same sample of

people (e.g., the same participants answered items CL3, CL4, and CL5) these mean times

were assumed independent as the instrument was not timed. In other words, as

participants could take as long as they wished in each item, there is no association

between the time spent on two different items. The results of these three t tests are shown

in Table 4.10. For all three tests, a correction for multiple comparisons was used to set the

significance threshold (α = 0.05/3 = 0.016). Overall, results indicated there were no

significant differences in time spent across item response formats.

Table 4.10

Results of independent means t tests on item-level mean times by response format

Comparison N M MD t df p 95% CI

TEI 12 1.08
MCI 12 1.13 -0.04 -0.29 22 0.777 [-0.33, 0.25]

CL 6 1.20
MCCL 6 1.28 -0.09 -0.39 10 0.708 [-0.61, 0.43]

RO 6 0.97
MCRO 6 0.97 0.01 0.06 10 0.953 [-0.30, 0.31]

Note. MD = Mean Difference. Common block items were not included in these t tests.

p < .016.
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Omitted Responses and Timing Statistics

All timing data results discussed so far included timing data corresponding to responses

that were omitted. It would be expected that participants who skipped items spent a

short amount of time reading the prompt before choosing not to respond and move on.

On average, participants who skipped an item spent 44 seconds on the screen

corresponding to the omitted response. Times associated with omitted responses ranged

approximately from 1.5 seconds to 2.5 minutes. The timing records associated with

omitted responses may lower average times spent per item. In particular, time estimates

for TEIs may be biased as omitted responses appeared to be more common among

technology-enhanced items than multiple-choice items.

Timing statistics were recalculated by removing times associated with omitted

responses and all analyses discussed in this section so far were repeated. All conclusions

presented above held equally for timing data when times associated with omitted

responses were removed. This is not surprising given the low prevalence of omitted

responses (less than 2% in each instrument form).

Comparison of Item Characteristics

This section presents estimates of the item characteristics of interest identified in Chapter

3. This section begins with a discussion of classical test theory statistics (difficulty,

discrimination, and multiple-choice response patterns) followed by the parameter

estimates of a two-parameter item response theory model (difficulty and discrimination).

Based on the latter, information analyses are conducted and item efficiency is examined.
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Throughout this section stem-equivalent technology-enhanced and multiple-choice items

are compared.

Classical Test Theory

This section presents descriptive statistics for each item including, difficulty, and

discrimination. Additionally, for multiple-choice items, response patterns are examined.

Items are organized by block and item response format. As described above, participants

were allowed to skip items and omitted responses were scored incorrect. This section

concludes with a discussion of the reliability and unidimensionality of the instrument.

Common Block. Table 4.11 shows descriptive statistics of common block items,

indicating their corresponding content area, difficulty (percent correct responses),

discrimination (correlation with total score absent the item), and, for multiple-choice

items, the percent of respondents who selected each of the six available options. Results

indicate that all items showed acceptable percent correct responses (between 16% and

83%). All items in the common block displayed acceptable discrimination statistics

ranging between 0.40 and 0.55. The distribution of responses for each option in the two

multiple-choice items revealed that the correct option was chosen by the majority of the

participants. Moreover, for both items, one distractor was highly attractive (option D in

both) while two other distractors were selected by less than 5% of the respondents

(options A and B for item MC1 and options E and F for item MC2).
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Table 4.11

Item descriptive statistics for the Common Block

Item Content Diff Disc A B C D E F

MC1 Statistics 46.5 .46 3.4 4.6 5.1 26.6 46.5 13.8
MC2 Statistics 40.6 .43 7.6 40.6 12.3 36.0 2.9 0.7
CL1 Statistics 68.5 .50
CL2 Science 64.1 .46
RO1 Statistics 70.5 .55
RO2 Science 29.5 .40

Note. For MC items, the correct answer is underlined and the most common response is in

bold.

Item Set 1. Descriptive statistics for item set 1 (Table 4.12) indicate that items

RO3 and RO4 were the most difficult items in block TEI-1. This patterns also holds for

their stem-equivalent counterparts in block MCI-1. There is no clear pattern regarding a

specific TEI response format being more or less difficult than the corresponding multiple-

choice pairs in this item set. The statistical significance of differences in difficulty between

stem-equivalent items was evaluated by conducting independent-samples t tests

(significance threshold adjusted for 12 multiple comparisons —six tests for each item set:

α = 0.004). Results indicated significant differences in difficulty between items in two

pairs, CL3-MCCL3 and CL4-MCCL4 (p < .004). Discrimination values revealed four

items with undesirable discrimination: RO3 and RO4 and their multiple-choice

counterparts MCRO3 and MCRO4. Fisher’s (1925) test for statistical significance between

correlations of independent samples was applied to discrimination indices of stem-

equivalent items (cocor package; Diedenhofen, 2016). No statistically significant results

were found. Table 4.12 also shows the percent of respondents that chose each option for

multiple-choice items in block MCI-1. For four of the six items the correct response was
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chosen by the majority of the participants. However, for items MCRO3 and MCRO4 an

incorrect option was selected by the highest percentage of participants (Option C in both).

Table 4.12

Item descriptive statistics for Item Set 1 (Blocks TEI-1 and MCI-1)

Item Content Diffa Disc A B C D E F

TEI-1
CL3 Science 68.2- .28-

CL4 Statistics 38.2+ .44+

CL5 Statistics 38.9+ .49-

RO3 Statistics 27.6+ -.17-

RO4 Statistics 25.1- < .001+

RO5 Science 66.1- .30-

MCI-1
MCCL3 Science 56.6∗ .35 56.6 5.5 6.4 27.7 3.2 0.6
MCCL4 Statistics 70.4∗ .36 13.9 3.6 8.4 70.7b 2.3 1.3
MCCL5 Statistics 48.2 .52 10.0 48.2 9.7 14.5 10.3 7.4
MCRO3 Statistics 29.3 -.05 6.8 29.3 41.8 13.5 5.8 2.9
MCRO4 Statistics 21.5 -.07 15.1 20.6 24.8 12.5 21.5 5.5
MCRO5 Science 55.3 .32 9.0 55.3 19.6 11.3 1.9 2.9

Note. For MC items, the correct answer is underlined and the most common response is in

bold.
a The magnitude of the difficulty estimate and its interpretation have an inverse relation-

ship. A smaller difficulty estimate indicates the TEI was more difficult than the MCI (+)

and a larger difficulty estimate indicates the TEI was easier than the MCI (-).
b Percent correct responses and percent of participants choosing the correct response differ

due to omitted responses.
+TEI statistic was higher than MCI. -TEI statistic was lower than MCI.

* p < .004.

Rank-ordering items RO3 and RO4, and their multiple-choice counterparts

(MCRO3 and MCRO4) showed undesirable item characteristics: extremely low or

negative discrimination and high difficulty. Moreover, for items MCRO3 and MCRO4 an

incorrect option was chosen more often than the correct response. A review of the wording

of the prompts and response options to these items did not reveal any issues that would
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explain these response patterns. However, a closer look at the responses provided by

participants to both of these item pairs revealed significant agreement across item

formats. For example, as shown in Table 4.12, the most common response to item

MCRO3 was option C and analyses showed that the order of objects conveyed in this

option was the most common order participants who answered the TEI version provided

as a response. In addition, the percentage of participants who chose the most common

(incorrect) order as their response were fairly similar across formats. Continuing the

example, about 42% participants chose option C in item MCRO3 while about 37% of

participants answering item RO3 provided the order of objects conveyed in this option as

a response. Overall, these patterns suggest that the undesirable item characteristics

observed were the product of misconceptions rather than issues with the item prompts.

Item Set 2. Descriptive statistics for item set 2 (Table 4.13) indicate that all six

technology-enhanced items had higher percentages of correct responses than their

multiple-choice counterparts. The hardest items in these blocks were consistent across

item response formats (CL6-MCCL6 and RO6-MCRO6). Independent means t tests

conducted across stem-equivalent items revealed statistically significant differences in

difficulties for two item pairs, CL8-MCCL8 and RO6-MCRO6 (p < .004), in both cases

indicating that the TEI version was significantly easier than the multiple-choice version.

Fisher’s (1925) independent samples tests for correlation coefficients were conducted

comparing discrimination statistics for each item pair, however, no statistically significant

differences were found. For all multiple-choice items, the correct option was chosen by the

majority of participants. For items MCCL7, MCRO6, and MCRO7, option B was the

most common incorrect response.
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Table 4.13

Item descriptive statistics for Item Set 2 (Blocks TEI-2 and MCI-2)

Item Content Diffa Disc A B C D E F

TEI-2
CL6 Statistics 40.5- .54+

CL7 Science 58.8- .53+

CL8 Statistics 74.9- .37-

RO6 Statistics 39.6- .38-

RO7 Math 52.4- .44+

RO8 Math 73.6- .36-

MCI-2
MCCL6 Statistics 39.9 .48 6.7 13.8 11.7 16.3 39.9 11.7
MCCL7 Science 54.8 .41 9.2 21.2 54.8 6.7 7.1 1.1
MCCL8 Statistics 59.0∗ .40 14.1 8.8 8.1 59.0 6.7 3.2
MCRO6 Statistics 28.3∗ .45 16.0 23.1 12.8 15.6 4.3 28.4b

MCRO7 Math 42.1 .43 9.5 33.6 42.1 9.2 3.9 1.8
MCRO8 Math 68.2 .44 2.1 9.2 15.2 68.2 3.2 2.1

Note. For MC items, the correct answer is underlined and the most common response is in

bold.
a The magnitude of the difficulty estimate and its interpretation have an inverse relation-

ship. A smaller difficulty estimate indicates the TEI was more difficult than the MCI (+)

and a larger difficulty estimate indicates the TEI was easier than the MCI (-).
b Percent correct responses and percent of participants choosing the correct response differ

due to omitted responses.
+TEI statistic was higher than MCI. -TEI statistic was lower than MCI.

* p < .004.

Reliability and Unidimensionality. In the context of this study, the reliability

of the instrument is not a statistic of primary interest because the data collection

instrument was not built to assess a single set of constructs (i.e., it is not a test) and it

was not intended to make claims about the ability of participants. Similarly, achieving

unidimensionality was not a goal of the instrument building process, however it is a

necessary assumption that must be met for the psychometric analyses that were
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conducted. Both reliability and dimensionality were examined separately for each form of

the test.

The reliability of the instrument was assessed by calculating Cronbach’s Alpha

(ltm package; Rizopoulos, 2018). Results showed Alpha = 0.787 for Form A and Alpha =

0.809 for Form B. Unidimensionality analyses were conducted using the NOHARM

method (Fraser & McDonald, 1988, 2012) available through the sirt package (Robitzsch,

2020). Three models were compared assuming one, two, and three dimensions. Table 4.14

reports results for each model and test form for the Root Mean Square (RSM) statistic

and Tanaka’s goodness of fit index (GFI). All values indicate appropriate fit, RSM values

were below the desirability threshold and GFI values were above 0.90.

Table 4.14

Dimensionality analysis

Statistic 1 Dimension 2 Dimensions 3 Dimensions

Form A
RSM .0107756 .0095305 .0083373
GFI .9986573 .9989497 .9991962

Form B
RSM .0099918 .0083851 .0074237
GFI .9991707 .9994160 .9995422

Note. RSM values are compared to a threshold given by 4 × 1√
n

(where n is the sample

size). This threshold had values of 0.2377 and 0.2268 for forms A and B respectively.

The 3-dimensional solution showed better RSM and GFI statistics for both forms

than the 2-dimensional solution, and this solution in turn shows a better fit compared to

the one-dimensional model. However, the values for both the RSM and GFI statistics are

similar across models and the one-dimensional solution shows values that are well within

acceptable values. Consequently, applying the principle of parsimony (Occam’s razor; de
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Ayala, 2013), these results do not support rejecting the one-dimensional model and

unidimensionality of the instrument is assumed6.

Item Response Theory

An item response theory 2-parameter logistic model was fit to estimate item parameters

for difficulty (b) and discrimination (a) using the ltm package (Rizopoulos, 2018). All

items were calibrated concurrently using all available observations. In addition to

assuming unidimensionality based on the results of the previous section, the assumption of

local independence across items was evaluated by calculating standardized LD-χ2 statistics

for all items (Chen & Thissen, 1997). Results indicated that the maximum value observed

for this statistic was 3.2 and that there were no major threats to the local independence

assumption (magnitudes larger than 10 are considered concerning; Cai et al., 2011).

The fit of the model was evaluated using the M2 goodness-of-fit statistic (Maydeu-

Olivares & Joe, 2005, 2006; Cai et al., 2006) and the Root Mean Square Error of

Approximation (RMSEA; Cai et al., 2011). The values of both statistics indicate a

significant lack of adequate fit (M2 = 31, 070.40, df = 405, p < .001 and RMSEA = 0.36).

A 3-parameter logistic model (including a guessing parameter, c) was also fit to the data

to evaluate relative model fit. Table 4.15 shows the log-likelihood estimate for both

models, as well as the Akaike Information Criterion (AIC; Akaike, 1974) and the Bayesian

Information Criterion (BIC; Schwarz, 1978). A log-likelihood ratio test comparing these

statistics was also conducted and the results are also shown in Table 4.15. Results suggest

that the 3-parameter model does not fit the data significantly better than the 2-parameter

6Unidimensionality was corroborated by conducting log-likelihood ratio tests and modified parallel
analyses, both conducted through methods available in the ltm package.
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model. As discussed in Chapter 3, the guessing parameter is not considered informative

when characterizing technology-enhanced items (Gifford, 2017; Huff & Sireci, 2011;

Parshall & Harmes, 2014) and considering the lack of fit for both models, the 2-parameter

model is preferred. The observed lack of fit can be attributed to the erratic behavior of

some items (as will be shown in future sections). However, this lack of fit was not

considered concerning because the purpose of this study is not to build a cohesive test for

a single construct.

Table 4.15

Log-likelihood ratio test

Model AIC BIC Log-likelihood LRT df p

2-parameter 12,245.40 12,508.61 -6,062.70
3-parameter 12,262.72 12,657.54 -6,041.36 42.67 30 .063

Note. LRT = Log-likelihood ratio test statistic.

IRT Item Difficulty and Discrimination

Item difficulty and discrimination estimates for all items (b and a respectively) based on

the two-parameter model are shown in Table 4.16.

Results of the common block showed that item difficulties ranged between -0.68

(CL1) and 0.91 (RO2) while discrimination estimates ranged between 1.24 (RO2) and 2.47

(RO1). RO1 was not only the most discriminating item in this block but also the item

with the largest discrimination parameter of all items in the instrument. Item

characteristic curves for items in the common block are shown in Figure 4.1. Overall,

items in the common block performed well, displaying moderate difficulties and

appropriate discrimination estimates.
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Table 4.16

2-PL IRT item parameter estimates

Item b a Item b a

Common Block
MC1 0.14 1.29
MC2 0.39 1.25
CL1 -0.68 1.80
CL2 -0.56 1.49
RO1 -0.68 2.47
RO2 0.91 1.24

Item Set 1
TEI-1 MCI-1

CL3 -1.06- 0.87- MCCL3 -0.32 0.88
CL4 0.41+ 1.40+ MCCL4 -1.00 1.03
CL5 0.35+ 1.62+ MCCL5 0.10 1.56
RO3 -2.24+ -0.46- MCRO3 -7.01 -0.13
RO4 -1,649.61- -0.001- MCRO4 -8.42 -0.15
RO5 -1.02- 0.78- MCRO5 -0.27 0.80

Item Set 2
TEI-2 MCI-2

CL6 0.37+ 1.83+ MCCL6 0.31 1.60
CL7 -0.28- 1.86+ MCCL7 -0.26 1.19
CL8 -1.13- 1.21+ MCCL8 -0.47 1.07
RO6 0.54- 1.05- MCRO6 0.80 1.54
RO7 -0.07- 1.23- MCRO7 0.27 1.30
RO8 -1.14- 1.08- MCRO8 -0.81 1.33

+TEI statistic was higher than MCI. -TEI statistic was lower than MCI.

Item parameters for item set 1 revealed item difficulties ranging from -1,649.61 to

0.41 for TEIs and from -8.42 to 0.10 for the multiple-choice counterparts. Meanwhile,

discrimination parameters ranged between -0.46 and 1.62 for TEIs and between -0.15 and

1.56 for MCIs. Four items showed a negative discrimination parameter: RO3 and RO4

and their multiple-choice counterparts MCRO3 and MCRO4. However, the discrimination

parameter for item RO4 is almost zero (-0.001). As it may be seen in the item

characteristic curves for item set 1 shown in Figure 4.2, the curve corresponding to item
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RO4 is almost flat. Moreover, item RO4 showed an extreme negative difficulty estimate (-

1,649.61). Although the discrimination parameter of corresponding multiple-choice item

(MCRO4) is also negative and fairly large in magnitude (-8.42) it is not as concerning as

the estimate for the TEI version. Overall, for four item pairs in this block (CL3-MCCL3,

CL4-MCCL4, CL5-MCCL5, and RO3-MCRO3) the TEI version showed a higher difficulty

than its counterpart; for the remaining two item pairs, the opposite was true. Among the

four item pairs with positive discrimination parameters, two showed a higher

discrimination for TEIs (CL4-MCCL4 and CL5-MCCL5) while the remaining two showed

higher discrimination for the multiple-choice versions.

Item parameters for the second item set showed similar patterns to those observed

in item set 1 absent negative discrimination parameters. For five of the six items pairs the

TEI version was more difficult than the MC counterpart with the exception of pair CL6-

MCCL6. Item difficulties for item set 2 ranged from -1.14 to 0.54 for TEIs and between

-0.81 and 0.80 for MCIs. Meanwhile, discrimination estimates ranged from 1.05 to 1.86 for

TEIs and from 1.07 to 1.60 for MCIs. Finally, four TEIs showed higher discrimination

than their corresponding multiple-choice versions (CL6, CL7, RO7, and CL8). Figure 4.3

shows the item characteristic curves for items in item set 2.
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Figure 4.1

Item characteristic curves for the Common Block

Figure 4.2

Item characteristic curves for Item Set 1
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Figure 4.3

Item characteristic curves for Item Set 2

To compare item parameters of stem-equivalent items two types of graphical

displays were used. Table 4.17 presents the difference between IRT parameters between

stem-equivalent items in a pair as well as the respective standard error of the difference

organized by response format. These differences were plotted in Figure 4.4 and a

confidence interval was constructed around these differences based on the standard error

of the difference and the 95% critical value of the z distribution for 0.004 (significance

level corrected for multiple comparisons). Items RO3 and RO4 are not shown due to the

magnitudes of their differences in difficulty. As described in Chapter 3, the TIMSS &

PIRLS International Study Center employs this approach to identify trend items that

present parameter drift across modes or between consecutive administrations, flagging

differences larger than 2 logits as concerning (Fishbein et al., 2020). Results show that
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only items RO3 and RO4 presented significant differences in their difficulty parameters

across item formats.

Table 4.17

Differences in item parameter estimates between stem-equivalent items

Item Pair Difficulty Discrimination

Difference Std. Error Difference Std. Error

Classification
CL3-MCCL3 -0.74 0.28 -0.01 0.25
CL4-MCCL4 1.41 0.23 0.37 0.29
CL5-MCCL5 0.25 0.15 0.06 0.35
CL6-MCCL6 0.06 0.15 0.23 0.37
CL7-MCCL7 -0.02 0.16 0.67 0.34
CL8-MCCL8 -0.66 0.23 0.13 0.29

Rank-Ordering
RO3-MCRO3 4.77 7.63 -0.33 0.21
RO4-MCRO4 -1,641.19 384,405.54 0.15 0.22
RO5-MCRO5 -0.75 0.30 -0.03 0.23
RO6-MCRO6 -0.26 0.20 -0.48 0.32
RO7-MCRO7 -0.34 0.17 -0.07 0.29
RO8-MCRO8 -0.33 0.25 -0.25 0.30

The graphical display shown in Figure 4.4 cannot be replicated for discrimination

parameters as these cannot be interpreted in the logits scale. Consequently, a second

graphical display was employed following Gaertner and Briggs’s (2009) “3-sigma IRT”

approach to identify item parameter drift. In this graphical display item parameters for

each pair of stem-equivalent items are plotted against each other (Figure 4.5). The

standard deviation line (SD line) is graphed as the line of best fit and a confidence region

is plotted around this line that represents three times the standard deviation of the

perpendicular distances between each point and the SD line. Points beyond this region are

considered to indicate significant differences in their item parameters. The diagonal line
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y = x was also plotted in this graphical display as a reference line. Points above this line

indicate that TEIs were easier than their MC counterparts, while points below this line

indicate TEIs were harder than the corresponding MCIs. Items RO3 and RO4 were not

included in Figure 4.5 nor were they included as part of the calculations due to their

extreme values. Results indicate that items CL4 and MCCL4 showed significant difference

in their difficulty parameter. This graphical display was replicated for discrimination

parameters and is shown in Figure 4.6. In this display, points above the y = x reference

line indicate the MCI discriminated better than the TEI counterpart, while points below

the line indicate the opposite. Results indicate that all items had similar discrimination

parameters with the exception of items RO6 and MCRO6.

Figure 4.4

Differences in difficulty parameters across stem-equivalent items

Note. Items RO3 and RO4 are not shown due to the magnitudes of their differences and their

confidence intervals: 4.77 [-15.4, 24.9] and -1,641.19 [-1,015,816, 1,012,533] respectively.
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Figure 4.5

Item difficulty parameters (b) of stem-equivalent items across formats

Note. Items RO3 and RO4 are not shown due to the magnitudes of their difficulty param-

eters and were not included in the calculation of the SD line or its confidence region.

Figure 4.6

Item discrimination parameters (a) of stem-equivalent items across formats
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IRT Information and Relative Efficiency

This section presents analyses based on item information estimates provided by the 2-

parameter model used. First, item information curves for all items are shown, followed by

relative efficiency curves (Lord, 1980), average expected information estimates, and

measurement efficiency statistics (Donoghue, 1994; Jodoin, 2003).

Item information curves for all items are presented in Figures 4.7, 4.8, and 4.9 for

the common block, item set 1, and item set 2 respectively (note that for clarity Figure 4.7,

and Figures 4.8 and 4.9 have different vertical scales). Most items achieve maximum

information between theta values of -2 and 2. Item RO1 shows the highest maximum

information value at about 1.5 among all items, a direct consequence of its high

discrimination. Items RO3 and RO4 and their multiple-choice counterparts provide little

to no information across the totality of the ability spectrum (flat curves) due to their

negative discrimination parameters.

Figures 4.8 and 4.9 showcase how TEIs may provide more information than their

multiple-choice stem-equivalent counterparts in certain regions of the ability continuum

while providing less information in other regions. In item set 1, some item pairs show

almost no difference between their information curves (e.g., CL3-MCCL3 and RO5-

MCRO5) while others show more visible differences (CL4-MCCL4 and CL5-MCCL5). The

difference between the information curves for CL4 and MCCL4 is the starkest difference

between two items observed among all 12 pairs (i.e., both item sets). While item CL4

attains maximum information of about 0.5 around 0.4 logits, item MCCL4 provides

maximum information of 0.3 at -1 logits. This indicates that CL4 provides more

information than MCCL4 for more than half of the ability continuum (θ > −0.5).
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For items in item set 2 item difficulty estimates were fairly similar across response

formats with differences ranging between -0.66 and 0.06 (Table 4.17). Consequently most

item information curves of stem-equivalent items in this item set were centered around

similar locations with the exception of item pair CL8-MCCL8, for which the TEI attained

its maximum at about -1 logits and the MCI attained its maximum closer to zero. Despite

being fairly well aligned, differences in the maximum information attained were observed.

Items CL6 and CL7 achieved a higher information maximum compared to their multiple-

choice counterparts (differences of 0.2 and 0.5 respectively). In contrast, the opposite was

observed for items RO6, RO7, and RO8.

Figure 4.7

Item information curves for the Common Block
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Figure 4.8

Item information curves for Item Set 1

Note. The curve for item MCRO3 overlaps with the curve for item MCRO4.

Figure 4.9

Item information curves for Item Set 2
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Comparing information curves visually is not straightforward because the

relationship between two curves changes at different regions of the ability continuum. An

alternative approach is to calculate a relative efficiency function (Lord, 1980). Relative

efficiency curves were calculated for each stem-equivalent item pair as a ratio of TEI

information to MCI information (RE{TEI,MCI}). Figures 4.10 and 4.11 show relative

efficiency curves for classification items (CL3-CL8) and rank-ordering items (RO3-RO8)

respectively. Relative efficiency curves are interpreted by comparing them to a horizontal

reference line equal to 1 (black dotted line). Regions where RE{TEI,MCI} is above 1,

indicate the TEI is more efficient than its multiple-choice counterpart in that range of

ability level (i.e., the TEI provides more information than the MCI in that region).

Conversely, regions where RE{TEI,MCI} is below 1, indicate the multiple-choice version

is more efficient than the TEI at that range of ability level.

The results shown in Figure 4.10 indicate that the relative efficiency of

classification items varied greatly. No classification TEI provided more information than

its multiple-choice counterpart throughout the whole range of ability; instead, TEIs were

more efficient in specific regions. While items CL3 and CL8 provided more information

than their MC counterparts for low-ability participants (θ < −1), items CL4 and CL5

provided more information for participants with average to high ability (θ > 0). Items

CL6 and CL7 provided more information than their corresponding MCIs for average

ability participants (−1 < θ < 2 and −2 < θ < 1 respectively).

Relative efficiency curves for rank-ordering items were more erratic than those of

classification items. Item RO3 appeared to be more efficient than MCRO3 while item

RO4 appeared to be less efficient than MCRO4 throughout the whole spectrum of ability.
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However, these two items had almost flat information curves due to their negative

discrimination, thus making these results inconclusive. The scale of the vertical axis in

Figure 4.11 impedes clear comparisons of relative efficiency among all other items.

Figure 4.12 provides a focused region of Figure 4.11. Items RO5 and RO7 were more

efficient than their MC counterparts for low-ability participants (θ < −1). Items RO6 and

RO8 were more efficient than their corresponding multiple-choice items in the extremes of

the ability continuum, while being less efficient at the middle of the ability continuum

(−1 < θ < 3 and −2 < θ < 2 respectively).

Figure 4.10

Relative efficiency curves of Classification TEIs vs. stem-equivalent MCIs
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Figure 4.11

Relative efficiency curves of Rank-ordering TEIs vs. stem-equivalent MCIs

Figure 4.12

Relative efficiency curves of Rank-ordering TEIs vs. stem-equivalent MCIs (region)
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In contrast to Lord’s (1980) relative efficiency curves, Jodoin’s (2003) approach

produces a point-estimate based on the ratio between the average expected information

for each item and the median time spent by participants on that item (measurement

efficiency). Average expected information was calculated as the average item information

evaluated at each participants’ ability level (catIrt package, Nydick, 2015).

Table 4.18 shows the estimate of the average expected information —E(Ij), the

median time, and the measurement efficiency (expected information per minute;

E(Ij)/min) for each item. As the purpose of this study is to compare stem-equivalent

items, this table only shows results for items in item sets 1 and 2 organized by item

format. For five of the item pairs the TEI version provided more expected information

than its multiple-choice version. In particular, this was true for four of the six

classification item pairs but only one rank-ordering item pair. These results vary slightly

when examining measurement efficiency. Three classification TEIs provided more

expected information per minute than their MC counterparts while this relationship was

observed for only one rank-ordering item (RO3). These results diverge slightly from

previous studies (Donoghue, 1994; Jodoin, 2003; Wainer & Thissen, 1993) in which

multiple-choice items often provided more information per minute. However, in contrast

with previous studies, the multiple-choice items employed in this study often required the

same or more time than the corresponding TEIs. Table 4.18 also shows the mean of the

average expected information and measurement efficiency for each item type. These

results indicate that drag-and-drop classification items provided more average expected

information and higher measurement efficiency than their multiple-choice counterparts.

However, this relationship did not hold for rank-ordering drag-and-drop items.
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Table 4.18

Item expected information and expected information per minute

Item E(Ij) Mdn Time E(Ij)/min Item E(Ij) Mdn Time E(Ij)/min

Classification
CL3 .143- 0.81- 0.177- MCCL3 .168 0.87 0.193
CL4 .352+ 1.51+ 0.233+ MCCL4 .189 1.39 0.136
CL5 .443+ 1.24+ 0.357- MCCL5 .429 1.20 0.358
CL6 .525+ 1.26- 0.417+ MCCL6 .438 1.33 0.330
CL7 .547+ 0.48- 1.140+ MCCL7 .278 0.68 0.410
CL8 .227- 0.73+ 0.310- MCCL8 .228 0.72 0.317

Means 0.373 0.439 0.288 0.290

Rank-Ordering
RO3 .040+ 0.68- 0.059+ MCRO3 .003 0.74 0.004
RO4 < .001- 0.66- < .001- MCRO4 .004 0.77 0.005
RO5 .121- 0.39- 0.309- MCRO5 .141 0.45 0.314
RO6 .219- 0.81- 0.271- MCRO6 .361 0.87 0.415
RO7 .299- 0.52+ 0.574- MCRO7 .320 0.46 0.695
RO8 .194- 0.91+ 0.213- MCRO8 .294 0.82 0.358

Means 0.145 0.238 0.187 0.299
+TEI statistic was higher than MCI. -TEI statistic was lower than MCI.

To simplify comparisons across items of a stem-equivalent pair, ratios of expected

information and expected information per minute were calculated for each item pair

(TEI:MCI) and results are shown in Table 4.19 grouped according to the response format

of the TEI (classification or rank-ordering). Results show that TEIs provided more

expected information than their multiple-choice counterparts for four of the six

classification item pairs, and greater measurement efficiency for three of these pairs. Item

CL7 provided over twice as much expected information per minute than its counterpart

MCCL7. In contrast, for rank-ordering items the opposite was observed. Disregarding the

statistics for item pairs RO3-MCRO3 and RO4-MCRO4 due to their erratic psychometric

behavior, it is reasonable to conclude that rank-ordering items provided less expected
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information and less measurement efficiency compared to their multiple-choice

counterparts.

Table 4.19

Relative expected information and relative measurement efficiency for each item pair

Item Pair Relative Expected Information Relative Measurement Efficiency
Ratio of E(Ij) Ratio of E(Ij)/min

Classification
CL3:MCCL3 0.854 0.917
CL4:MCCL4 1.860 1.712
CL5:MCCL5 1.031 0.998
CL6:MCCL6 1.198 1.264
CL7:MCCL7 1.965 2.783
CL8:MCCL8 0.993 0.979

Rank-ordering
RO3:MCRO3 12.355 13.446
RO4:MCRO4 < .001 < .001
RO5:MCRO5 0.853 0.985
RO6:MCRO6 0.607 0.652
RO7:MCRO7 0.934 0.826
RO8:MCRO8 0.659 0.593

TEI Utility Ratings

A panel of three graduate students in the Measurement, Evaluation, Statistics, and

Assessment (MESA) program at Boston College employed the TEI Utility Framework

(Russell, 2016; Russell & Moncaleano 2019) to evaluate the construct fidelity of each TEI

included in the instrument and the usability of each TEI response format (classification

and rank-ordering). A total of 16 TEIs were reviewed by the panelists, four items from the

common block and all items in blocks TEI-1 and TEI-2. Initial responses showed

agreement on the construct fidelity ratings for five items, while 11 items showed

disagreement. A summary of initial panelist ratings is shown in Table 4.20. In the five

instances of agreement, all panelists rated the construct fidelity to be moderate (i.e.,
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authentic context and inauthentic actions). The most common pattern of ratings occurred

when two panelists rated the TEI to have high construct fidelity (i.e., authentic context

and actions) while a third panelist rated the TEI to have moderate fidelity.

Table 4.20

Summary of initial TEI construct fidelity ratings

Panelist Ratings Number of items

Moderate — Moderate — Moderate 5
High — High — Moderate 7
High — Moderate — Moderate 2
High — Moderate — None 2

After the initial ratings were completed, the panelists reconvened to discuss their

ratings explaining to other panelists their reasoning with the aim to achieve a consensus.

After this round of discussions, all panelists agreed that all TEIs had moderate construct

fidelity. Panelists argued that all contexts presented in the items were authentic but that

the actions test-takers were required to take to produce a response were inauthentic as

they did not resemble how the assessed constructs are employed in the real world.

Panelists often felt most of these items would be better served with other response

formats, such as multiple-choice or open-ended prompts.

Panelists also rated the usability of each TEI response format as a class. Panelists’

initial ratings showed total agreement that both the classification drag-and-drop and rank-

ordering drag-and-drop response formats showed high usability. Usability was not rated

on an item-by-item basis because the instrument-delivery platform (Qualtrics) only

provides a single way of employing these response interactions.
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Summary

Based on the results described in this chapter, this section summarizes the results in

relation to the three research questions of the study.

RQ1: How do the psychometric characteristics of commonly employed TEI

drag-and-drop formats (classification and rank-ordering) compare to stem-

equivalent multiple-choice items?

Table 4.21 presents a summary of how the TEI version of an item compared to its stem-

equivalent multiple-choice version for each of the estimated item characteristics discussed

in this chapter: CTT difficulty and discrimination, IRT difficulty and discrimination,

information curves, and efficiency. For each item statistic, this table shows whether the

TEI version had a higher or lower statistic than its MC counterpart. Comparisons

between information curves were characterized in three regions: low-performing

participants (θ < −1), average-performing participants (−1 ≤ θ ≤ 1), and high-performing

participants (θ > 1). Lord’s relative efficiency ratio is not included in this table as it is

redundant with comparisons between information curves. Recall that comparing efficiency

statistics (E(Ij) and E(Ij)/min) within a stem-equivalent pair is equivalent to comparing

the corresponding ratios to 1 (e.g., E(Ij) for a TEI is higher than E(Ij) for its MCI

counterpart if and only if E(ITEI)/E(IMCI) > 1). Jodoin (2003) considered relative

efficiency values (ratios of expected information per minute) larger than 2 to be

meaningful, this criterion was extended to ratios of expected information. Items that

showed a magnitude larger than 2 in either of these ratios are flagged in 4.21.
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Table 4.21

Summary of comparisons between stem-equivalent TEIs and MCIs across item

characteristics

Item CTT IRT Information Efficiency

Diffa Disc b a θ < −1 −1 < θ < 1 1 < θ E(Ij) E(Ij)/min

Classification
CL3 -∗ - - - + - - - -
CL4 +∗ + +∗ + - + + + +
CL5 + - + + - ∼ + + -
CL6 - + + + - + ∼ + +
CL7 - + - + ∼ + - + +†

CL8 -∗ - - + + ∼ - - -

Rank-ordering
RO3 + - +∗ - + + + +† +†

RO4 - + -∗ + - - - -‡ -‡

RO5 - - - - + - - - -
RO6 -∗ - - -∗ + - ∼ - -
RO7 - + - - + ∼ - - -
RO8 - - - - ∼ - ∼ - -

a The magnitude of the CTT difficulty estimate and its interpretation have an inverse

relationship. For this statistic, + indicates the TEI is more difficult than the MCI, not that

the value of the estimate is larger. Similarly, - indicates the TEI is easier than the MCI,

not that the value of the estimate is smaller.

+ TEI statistic was higher than MCI. - TEI statistic was lower than MCI.∼ TEI information

curve appeared both higher and lower than the MCI curve within the specified region.
∗Difference between TEI and MCI statistic was considered statistically significant.
† Ratio across formats (TEI:MCI) was meaningfully large (i.e., > 2).
‡ Ratio across formats (TEI:MCI) was meaningfully small (i.e., < 0.5).

Classification items. CTT and IRT parameters showed a moderate degree of

agreement. Items CL3, CL7, and CL8 appeared to be easier than MCCL3, MCCL7, and

MCCL8 according to both the CTT p-value and the IRT difficulty parameter, while the

opposite was observed for items CL4 and CL5. Item CL6 appeared to be easier according

to the CTT p-value but harder based on the IRT parameter estimate. However, only for

item (CL4) was the difference in difficulty significant for both CTT and IRT parameters.
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Items CL4, CL6, and CL7 provided better discrimination according to both CTT and IRT

parameters while item CL3 had lower discrimination estimates. The remaining items

showed discrepancies between the CTT and IRT discrimination estimates. All item

information curve comparisons were different for each item; however it appears that

generally TEIs provided more information than their multiple-choice counterparts for

average-ability participants. Finally, four out of the six classification items provided more

expected information than their stem-equivalent pairs, and three of these items showed

higher measurement efficiency (expected information per minute). Item CL7 was the only

item to provide more than double the expected information per minute than its

multiple-choice counterpart.

Rank-ordering items. For these item pairs, there was almost perfect alignment

between CTT and IRT statistics (both difficulty and discrimination). Only item RO3

appeared to be more difficult than its counterpart while the remaining five items appeared

to be easier. Four of the six TEIs had lower CTT and IRT discrimination estimates, while

item RO4 had higher discrimination. Only for item (RO7) did the CTT and IRT

discrimination parameters diverge. Item RO3 provided more information than its

counterpart throughout all of the ability continuum, while the opposite was observed for

item RO4. However, keep in mind that both of these items presented negative

discrimination parameters, thus their information curves were flat. The comparisons

between information curves for the remaining four items showed that rank-ordering TEIs

appeared to provide more information for low-ability participants. Finally, five out of the

six rank-ordering TEIs provided less average expected information and measurement

efficiency than their stem-equivalent counterparts.
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In summary, few items showed significant differences in their item parameters. In

particular, only four items showed important differences in item parameters according to

IRT estimates (and two of these items had erratic psychometric behaviors —RO3 and

RO4) suggesting that keeping the stem equivalent across item formats helps to control for

these item characteristics. Although not significantly different, classification TEIs

appeared to be more discriminating compared to their MC pairs than rank-ordering TEIs

compared with their respective MC counterparts. Moreover, classification items also

appear to provide more expected information and expected information per minute than

their MC counterparts compared to rank-ordering item pairs.

RQ2: What is the relationship between the utility of TEI drag-and-drop formats

(classification and rank-ordering) and their psychometric item characteristics?

All technology-enhanced items used in this study were rated by the panel as having

moderate construct fidelity according to the TEI Utility Framework (Russell, 2016). This

indicates that the TEIs used in this study presented authentic contexts to participants to

demonstrate their knowledge, but the response interactions used were not authentic. In

other words, panelists believed that classification and rank-ordering drag-and-drop

interactions do not align with the way targeted constructs are observed outside a testing

environment. The panel also rated both drag-and-drop response formats (classification

and rank-ordering) of high usability. Unfortunately, the lack of variability of the TEI

utility ratings limit the capacity to identify relationships between them and psychometric

item characteristics.
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RQ3: How can TEI psychometric properties and utility ratings be combined to

develop a standardized protocol to judge the comparative measurement value of

TEIs relative to stem-equivalent MC items?

The results presented in this chapter showcase how TEIs and stem-equivalent multiple-

choice items compare to each other based on multiple psychometric properties. Moreover,

the construct fidelity and usability ratings obtained from the panel allow judging the

quality of the TEIs used. However, combining these psychometric properties and utility

ratings to develop a decision protocol (and answer this research question) is primarily a

judgment-based task that draws on the empirical evidence presented in this chapter.

Consequently, this research question is explored fully in the following chapter.
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Chapter 5 - Discussion

This dissertation aims to develop a protocol to guide test developers as they make

judgments about the measurement value of technology-enhanced items when compared to

stem-equivalent multiple-choice items. The protocol also applies this judgment regarding

comparative measurement to guide decisions about when to give preference to a TEI or

MCI format. To inform the development of the protocol, the following research questions

were explored:

1. How do the psychometric characteristics of commonly employed TEI drag-and-

drop formats (classification and rank-ordering) compare to stem-equivalent

multiple-choice items? (RQ1)

2. What is the relationship between the utility of TEI drag-and-drop formats

(classification and rank-ordering) and their psychometric item characteristics?

(RQ2)

3. How can TEI psychometric properties and utility ratings be combined to develop

a standardized protocol to judge the comparative measurement value of TEIs

relative to stem-equivalent MC items? (RQ3)

This chapter begins with a summary of the findings presented in Chapter 4 that

address the first two research questions. The third research question is then addressed by

presenting the comparative measurement value protocol and then demonstrating its

application using the items administered as part of this study. This chapter also discusses

implications of this study for the field of educational measurement, limitations of the

study and its results, and future steps for this line of research.
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Summary of Findings

The empirical evidence presented in Chapter 4 that addresses RQ1 indicates that CTT

and IRT item parameters were similar for each stem-equivalent pair of items. A larger

increase in discrimination parameters was observed for classification TEIs compared to

their multiple-choice counterparts than was observed for rank-ordering items. However,

these differences were not significant. Classification items also provided more expected

information and measurement efficiency (expected information per minute) than their MC

counterparts compared to rank-ordering item pairs.

Results of RQ2 were less informative because the panel of graduate students rated

all of the TEIs used for this study as having moderate construct fidelity. These ratings

indicate that all technology-enhanced items used provided an authentic context but the

response interactions were inauthentic in relation to contexts outside of testing. Although

moderate construct fidelity is acceptable, the lack of variability in the ratings resulting

from the panels work prevented further study of the relationships between construct

fidelity and psychometric properties. The panel also rated the two TEI drag-and-drop

formats (classification and rank-ordering) as having high usability. The third component

of TEI utility (accessibility) was not rated as the test-delivery platform (Qualtrics) used

for this study did not provide any accessibility accommodations.

Combining the psychometric properties and utility ratings to construct a decision

protocol (addressing RQ3) is primarily a judgment-based task that draws on the empirical

evidence presented in the previous chapter. This third research question is explored at

length in the following section.
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The Comparative Measurement Value Protocol

This section presents the development of the comparative measurement protocol, the

application of this protocol to the stem-equivalent item pairs used in this study, and

instructions for future use.

Selection of Indicators

As described in Chapters 3 and 4, nine characteristics were estimated for each item to

address research questions 1 and 2, namely, (a) CTT difficulty, (b) CTT discrimination,

(c) IRT difficulty, (d) IRT discrimination, (e) IRT item information, (f) expected

information, (g) expected information per unit of time, (h) TEI construct fidelity, and (i)

TEI usability. These characteristics were evaluated to identify the indicators that are

most informative for judging the measurement value of TEIs relative to stem-equivalent

multiple-choice items.

The summary presented in Table 4.21 indicates the results of comparisons between

stem-equivalent items showed agreement between CTT and IRT statistics about 80% of

the time (20/24 cells), indicating the information provided by CTT and IRT statistics was

redundant. Differences in difficulty estimates across stem-equivalent items are only

meaningful if these differences are significant. In other words, it is of no concern whether

the TEI version is more or less difficult than the multiple-choice version, but rather

whether the difference is large enough to be significant. Similarly, differences in

discrimination, although interpretable at face value, may be small and inconsequential

making it more valuable to focus again only on differences that are significant. CTT

statistics have the benefit of allowing t tests to determine the significance of the difference

between statistics across item formats. In contrast, comparing IRT parameters requires
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multi-step methods analogous to identifying parameter drift. Even though CTT estimates

allow for easier evaluation of statistical significance than IRT estimates, the latter are

sample-free and are often considered more reliable. Consequently, despite their added

complexity, IRT parameters are preferred as indicators for the comparative measurement

value protocol.

Comparing item information is challenging because the relationship between two

item information curves changes across the ability continuum. Even though Lord’s (1980)

relative efficiency ratio function may be used to simplify these comparisons, this curve and

its interpretation also vary across the ability continuum. In contrast, expected information

and measurement efficiency (expected information per minute) are point estimates that

allow unambiguous direct comparisons between stem-equivalent items. Recall that

expected information is used when estimating measurement efficiency and, according to

the results shown in Table 4.21, these two characteristics provide redundant information

about stem-equivalent items about 90% of the time. Although previous research indicates

that multiple-choice items often require less time to answer than TEIs, this study found

item pairs for which the opposite occurred, which highlights the importance of using

response time to evaluate comparative measurement value. Given that measurement

efficiency considers both expected information and response time and yields a point

estimate that does not require human judgment, measurement efficiency is included in the

decision protocol as an indicator.

Finally, TEI utility ratings provide useful information about the extent to which a

TEI improves construct representation. Although usability and accessibility are important

properties of TEIs, construct fidelity indicates whether a TEI provides a more authentic
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context to test-takers than traditional multiple-choice items. Therefore, ratings of

construct fidelity are deemed a vital indicator for the construction of this protocol.

In conclusion, IRT difficulty and discrimination item parameters, expected

information per minute (measurement efficiency), and construct fidelity were selected as

the most informative characteristics for judging the comparative measurement value of a

TEI in relation to a stem-equivalent multiple-choice item. A protocol that uses these four

characteristics to judge comparative measurement is described in the next section.

Development of the Comparative Measurement Value Protocol

Analyses presented in Chapter 4 and summarized above revealed that three quantitative

item characteristics, namely IRT difficulty, IRT discrimination, and measurement

efficiency, and one qualitative item characteristic, namely construct fidelity, were non-

redundant, informative indicators for comparing stem-equivalent pairs of multiple-choice

and technology-enhanced items. This section discusses how these characteristics are

combined to produce a judgment of comparative measurement value (CMV) and a

subsequent recommendation regarding the preferred item format. The resulting protocol

is shown in Figure 5.1 as a four-step decision tree.

The four selected indicators were organized into a hierarchical decision tree that

guides users through four steps: (a) evaluating construct fidelity, (b) evaluating difficulty,

(c) evaluating discrimination, and (d) evaluating efficiency. As is described in detail next,

at each step, the first consideration focuses on determining whether an egregious impact

on measurement value was produced by the TEI. If so, use of the multiple-choice format is

immediately recommended. If not, then additional criteria are considered to determine

whether the use of the TEI produced a positive or neutral impact on measurement value.
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Figure 5.1

The Comparative Measurement Value Protocol

Evaluate Fidelity

High Moderate Low

Evaluate Difficulty

Not significantly different Significantly d ifferent

Explained by
increased fidelity

Not explained by
increased fidelity

Evaluate Discrimination

Significantly
higher

Not
significantly different

Significantly
lower

Evaluate Efficiency

E(ITEI )/min
E(IMCI )/min

≥ 2 2 > E(ITEI )/min
E(IMCI )/min

> 0.5 0.5 ≤ E(ITEI )/min
E(IMCI )/min

Calculate CMV Rating
(Sum of Fidelity, Difficulty, Discrimination & Efficiency Scores)

Increased CMV
Recommendation: TEI

No impact on CMV
Recommendation: MCI

Decreased CMV
Recommendation: MCI

FidelityjScore: 1 0

DifficultyjScore: 0 1

DiscriminationjScore: 1 0

EfficiencyjScore: 1 0

4 3 2 1 0

Note. A significant difference in difficulty for a TEI judged to have high construct fidelity

is assumed to be construct-relevant (i.e., explained by increased fidelity).
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Step 1: Evaluating Construct Fidelity. Multiple-choice items are often

criticized for their limited ability to produce authentic contexts associated with the

constructs they target due to their inauthentic response format (Bryant, 2017; Gifford,

2017; Scully, 2017; Sireci & Zenisky, 2006). A TEI judged to have low construct fidelity

indicates that “the context in which responses are produced and/or the method used to

produce a response do not authentically reflect how the construct is typically applied

outside of a testing situation” (Russell, 2016, p. 25). Consequently, a low fidelity TEI

does not provide any gain (and perhaps even a loss) on construct representation compared

to an MCI counterpart. Considering that improved construct representation is a

cornerstone “promise” of TEIs, a lack of construct fidelity is unacceptable while moderate

or high fidelity are desirable. For this reason, when a TEI has low fidelity the protocol

recommends that one should immediately defer to the MC equivalent without considering

any other indicators.

Step 2: Evaluating Difficulty. Evaluating difficulty requires consideration of

both any change in difficulty and the role, if any, that construct representation seems to

play in that change. A difference in difficulty between a stem-equivalent TEI-MCI pair is

not inherently beneficial or detrimental. If a TEI is significantly more difficult than its

stem-equivalent multiple-choice counterpart it may be due to the TEI assessing the

targeted construct at a higher cognitive level (e.g., plotting a function instead of choosing

one from a set of options —construction vs. recognition) or decreasing test-taker guessing.

Similarly, a significantly easier TEI could be due to an authentic context that allows test-

takers to demonstrate their knowledge more clearly or to a reduction in cognitive load

(e.g., a classification drag-and-drop reduces reading load by removing repetition and
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complex comparisons across MC options). In both cases, however, it is also possible that

significant changes in difficulty are a result of unintended construct irrelevant variance.

Thus, the desirability or undesirability of a significant change in difficulty is dependent on

the context and purpose of the item.

If a significant difference in difficulty is observed, it is essential to consider whether

this difference is construct-relevant (i.e., explained by the increase on construct fidelity) or

not. The construct fidelity ratings evaluated in Step 1 provide useful context to make this

judgment. If an item has been found to have high construct fidelity it is an indication that

both the context and the interactions presented by the item are authentic and improve

construct representation. Consequently, if high construct fidelity is observed, significant

differences between difficulty parameters within an item pair are assumed to be construct-

relevant (i.e., high fidelity cannot lead to a construct-irrelevant change in difficulty). In

contrast, moderate fidelity indicates that while the context is authentic the interactions

used to provide a response are not. Thus, one should evaluate whether the inauthentic

interactions are associated with the difference in difficulty; if so, this difference is

considered construct-irrelevant.

In this step, a construct-irrelevant significant difference in difficulty is deemed a

detrimental outcome and the multiple-choice format is favored. Otherwise, if the change

in difficulty is not significant or significant and deemed to be associated with increased

construct fidelity (neutral and beneficial outcomes), then the protocol proceeds to consider

item discrimination.

Step 3: Evaluating Discrimination. For nearly all types of tests, an increase in

item discrimination is desirable. For this reason, any significant decrease in discrimination
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produced by the TEI produces a recommendation to use the MC version. If the TEI

significantly increases discrimination or if there is no impact on discrimination, one should

then consider the impact that the use of the TEI has on information and efficiency.

Step 4: Evaluating Efficiency. Measurement efficiency values (E(Ij)/min) are

also point estimates that are directly comparable. No statistical tests are available to

evaluate the statistical significance of differences in this indicator; thus it is compared at

face value. To aid this comparison, a ratio expressing the relative measurement efficiency

of the TEI to the MCI is calculated as

E(ITEI)/min

E(IMCI)/min
(17)

and compared to two criteria informed by Jodoin’s analyses: 2 and 0.5. Values larger than

2 indicate the TEI statistic was meaningfully larger and values less than 0.5 indicate the

MCI statistic was meaningfully larger (note that TEI:MCI ratios smaller than 0.5 are

analogous to MCI:TEI ratios larger than 2). A relative measurement efficiency value

below 0.5 is undesirable because it indicates that the TEI takes more time to respond

relative to its expected information compared to the MCI. Consequently the multiple-

choice version is recommended in this case. In contrast, values or relative measurement

efficiency larger than 2 are desirable. If the value of relative measurement efficiency falls

between 0.5 and 2 the difference between the measurement efficiency of both formats is

considered negligible (i.e., a neutral outcome).

In review, evaluating construct fidelity was chosen as the first step because a

judgment of low fidelity indicates no gain on the primary “promise” of TEIs, namely,
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better construct representation (Bryant, 2017; Sireci & Zenisky, 2006). Evaluating

difficulty was selected as the second step because the gains in fidelity observed in the first

step provide context to assess whether observed significant differences in difficulty

parameters are construct relevant or construct irrelevant, the latter being unacceptable.

The third step, evaluating discrimination, follows naturally because a large decrease in

discrimination may threaten properties of the test such as total information and reliability.

Finally, relative measurement efficiency across item formats is evaluated in the last step.

At each step in the comparative measurement value protocol there is an automatic

recommendation in favor of the multiple-choice format if an undesirable outcome is

observed: low construct fidelity, a construct-irrelevant significant difference in item

difficulty, significantly lower discrimination, or a meaningfully low value of relative

measurement efficiency. Otherwise, if desirable or neutral outcomes are observed an

ordinal score of 1 or 0 is assigned respectively. These scores are used to provide a final

CMV rating ranging between 0 and 4. These ratings provide an indication of the increase

in comparative measurement value a TEI provides in relation to its MCI counterpart.

Ratings larger than 0 correspond to an increase in comparative measurement value while a

rating of 0 indicates there was no impact on CMV.

CMV ratings correspond to the number of indicators in which a TEI shows a

beneficial outcome. Ratings larger than 0 result in a recommendation that favors the use

of the TEI due to the increase in comparative measurement value and the absence of

undesirable outcomes resulting from the use of the TEI format. In contrast, a CMV rating

of 0 represents a TEI that has moderate fidelity coupled with a net neutral outcome on

the remaining indicators. Given the lack of desirable changes in difficulty, discrimination,
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and efficiency, the marginal gain in construct fidelity is not sufficient for justifying the use

of TEI over an MC counterpart and thus the multiple-choice format is recommended.

Applying the CMV protocol

Table 5.1 presents a summary of the comparisons between TEIs and stem-equivalent MCIs

used in this study, the resulting judgments of the application of the CMV protocol, and

the recommendation for which item to use. Note that two items, RO3 and RO4, would

not be included in an operational test due to their erratic psychometric behavior (extreme

difficulties and negative discrimination).

Of the items to which the comparative measurement protocol was applied, seven

technology-enhanced items were judged to have no impact on CMV, one judged to have

increased CMV, and two judged to have decreased CMV. The significant difference in

difficulty parameters between items CL4 and MCCL4 was deemed construct-irrelevant

and thus CL4 received a judgment of decreased CMV.

All rank-ordering items were deemed to have no impact on or decreased

comparative measurement value. Classification items showed a similar pattern with the

exception of one item (CL7) which showed increased CMV. Based on these comparisons,

use of a multiple-choice format is recommended for all rank-ordering items and use of only

one classification TEI is recommended. These results are consistent with comments made

by the panelists who rated construct fidelity and who observed that several of the

constructs targeted by the TEIs would be better addressed through multiple-choice

questions.
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Table 5.1

Item response format recommendations for items in the data collection instrument based

on the CMV protocol

Item Construct IRT Measurement CMV CMV Recommended

fidelity b a efficiencya rating judgment format

Classification
CL3 Moderate - - 0.92 0 No impact MCI
CL4 Moderate +∗ + 1.71 Decreased MCI
CL5 Moderate + + 0.99 0 No impact MCI
CL6 Moderate + + 1.26 0 No impact MCI
CL7 Moderate - + 2.78† 1 Increased MCI
CL8 Moderate - + 0.98 0 No impact MCI

Rank-ordering
RO3 Moderate +∗ - 13.45†

RO4 Moderate -∗ + < .001‡

RO5 Moderate - - 0.99 0 No impact MCI
RO6 Moderate - -∗ 0.65 Decreased MCI
RO7 Moderate - - 0.83 0 No impact MCI
RO8 Moderate - - 0.59 0 No impact MCI

+ TEI statistic was higher than MCI. - TEI statistic was lower than MCI.
∗Difference between TEI and MCI statistic was considered statistically significant.
a Value of relative measurement efficiency i.e., E(ITEI)/min:E(IMCI)/min.
† Ratio across formats (TEI:MCI) was meaningfully large (i.e., > 2).
‡ Ratio across formats (TEI:MCI) was meaningfully small (i.e., < 0.5).

Usage of the CMV protocol

To use the comparative measurement value protocol to determine the best format for an

item nine steps are recommended:

1. Develop stem-equivalent pairs of technology-enhanced and multiple-choice items.

Have content experts review the items to ensure that both items target the same

construct despite the differences in response interactions.

2. Convene a panel of experts to rate the construct fidelity of technology-enhanced

items considered.
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3. Administer the items to a sample of test-takers and score responses.

4. Calibrate data using an item response model. This study employed a 2-parameter

logistic model; however, other models may be considered.

5. Estimate item difficulty and discrimination, expected information and

measurement efficiency (expected information / median item time).

6. Evaluate whether any item pairs should be discarded due to negative

discrimination parameters or other relevant considerations.

7. Determine whether there were significant item parameter differences between

stem-equivalent items. This may be accomplished through the “3-sigma IRT”

method used in this study to identify item parameter drift or other approaches

available in the literature.

8. Calculate the ratio of measurement efficiency across formats (i.e., relative

measurement efficiency).

9. Compare item characteristics within item pairs following the CMV protocol:

Step 1: Evaluate construct fidelity.

Step 2: Evaluate difference in difficulty (and if significant, whether it is

construct-relevant).

Step 3: Evaluate difference in discrimination.

Step 4: Evaluate relative measurement efficiency.

Appendix E presents a map of all possible paths that result from the CMV protocol as a

practical alternative to the decision tree presented in Figure 5.1.
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Implications

Over the last two decades the educational assessment industry has developed technology-

enhanced items with the intention of improving measurement of targeted constructs.

However, there is a lack of literature regarding what “better” means when comparing

TEIs to traditional item formats. The body of literature that examines comparison of TEI

and MC items has several shortcomings. Foremost among these shortcomings is the use of

items that target different content and constructs when comparing items with different

response formats. In addition, although a useful tool for evaluating select aspects of a

TEI, the TEI Utility Framework relies exclusively on subjective judgment and focuses on

the evaluation of the item prompt and interaction space (i.e., the design) absent any

consideration of psychometric properties.

This dissertation addressed some of the methodological shortcomings of the

relevant limited body of work by employing stem-equivalent pairs of TEIs and MCIs

which provided content-equivalence across items with different response interactions. This

study also estimated several psychometric properties of both the TEI and MC items in a

pair. Building on these analyses, this dissertation proposes a decision protocol that

extends the TEI Utility Framework by using quantitative characteristics to evaluate the

potential gains in measurement value that might occur when a multiple-choice item is

replaced by a technology-enhanced item.

Overall, this dissertation develops theory and proposes methodology that

supplements the growing literature about comparisons between innovative item types and

traditional item formats. Test developers and future literature examining differences
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between technology-enhanced items and traditional item formats may benefit from the

methodology outlined in this work to better understand how the psychometric properties

of TEIs may be used to inform when it is most appropriate to use these item formats. The

protocol proposed through this study provides a clear argument-based rationale to

understand situations in which test developers benefit from replacing a multiple-choice

item with a technology-enhanced item. This protocol lays out the trade-offs associated

with any decision (either favoring a TEI or MCI format) and may be utilized to inform an

operational assessment’s validity argument.

Testing programs may apply the methodology described in this dissertation by

embedding this research in a regular field-testing exercise so long as stem-equivalent item

pairs are developed. Doing so would mitigate the cost of recruiting participants that

would be needed otherwise to conduct an independent study.

The application of the CMV protocol to the items used in this study resulted in

most of the cases in a recommendation favoring the multiple-choice format over the TEI

version. Although informative, these results do not extend to drag-and-drop items used in

all operational testing programs for two main reasons: (a) the diversity of digital delivery

platforms available produce different drag-and-drop layouts than the ones employed in

this study and (b) construct relevance of the response interaction of a TEI is a central

aspect of the comparative measurement value protocol. Consequently, assessment

programs should rely on independent studies to draw conclusions about the comparative

measurement value of the drag-and-drop formats (and other TEI interactions) being used

considering their purpose and content framework as well as the capabilities of their digital

delivery platforms.
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Limitations

This study was limited by the characteristics of the participant sample. The reliability of

data obtained from participants recruited through Amazon’s MTurk has been studied in

the context of surveys for social science research. It is unclear, however, if the same results

hold for cognitive instruments such as the one employed for this study. MTurk’s workers

are compensated for the tasks they complete. Consequently, workers are motivated to

complete as many tasks as they can in as short a period of time possible. Because the

data collection instrument used may require more effort (and time) to complete than an

attitudinal survey, careless responses by participants trying to finish the instrument

quickly may have occurred more frequently than during a typical test administration.

Additionally, despite the extensive efforts conducted to ensure data quality (i.e., attention

control items, review of open-ended questions, and time spent), the possibility remains

that participant responses that appeared to be valid were not. Moreover, the motivation

of MTurk workers to complete more tasks in a short period of time may have been

heightened at the time of this research. Originally, this study was to be conducted in

classrooms in the state of Massachusetts with an instrument targeting mathematics and

science at the 8th-grade level. The COVID-19 pandemic forced local authorities to close

schools and this study was redesigned. Thus, despite the known limitations associated

with MTurk, it was deemed the best recourse to recruit adult participants to answer a

cognitive instrument. Nonetheless, this study was conducted in the summer of 2020, when

a large group of people lost or experienced reductions in their main sources of income due

to the COVID-19 pandemic. As a result, people who regularly used Amazons MTurk as a

source of supplemental income may have started relying on it as their main source of
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income and in turn may have been motivated to complete assignments with even greater

speed and less attention.

Some characteristics of the data collection instrument also are a source of

limitations for this study. First, because items addressed three different subjects

(statistics, science, and mathematics) the meaning of the total scores was unclear. This, in

turn limits the value of the discrimination item statistic (particularly in the CTT

paradigm). In other words the data collection instrument was not a test designed to

measure a clearly defined domain. Second, the expected time required to answer the

instrument (maximum 30 minutes) coupled with the use of a common block to calibrate

the IRT model, limited the number of item pairs (12) that informed the development of

the comparative measurement value protocol. This limitation was also increased by the

fact that two item pairs (RO3-MCCRO3 and RO4-MCCRO4) showed erratic

psychometric properties (extreme difficulty and negative discrimination).

This study was limited to only one class of TEI interactions (drag-and-drop) and

only two types of this interaction were employed (classification and rank-ordering). These

interactions do not encompass all possible drag-and-drop response spaces. For example

rank-ordering items presented participants with objects in a vertical list to organize.

However, in current operational assessments it is also common to see drag-and-drop

ordering items present the objects horizontally. Consequently, the generalizability of the

results of this study is limited, both to drag-and-drop items as a class and TEIs as a

whole. Similarly, all TEI stem-equivalent counterparts were 6-option multiple-choice items

which limit the generalizability to other traditional selected-response formats.
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The lack of variability in construct fidelity ratings resulting from the work of the

panel limited the capacity of this dissertation to fully explore research question 2.

Panelists commented that they did not have enough familiarity with the constructs

targeted by some of the items and how they were taught at their academic levels (in

particular the middle school science items). Moreover, the consensus discussion among

panelists revealed that panelists could have benefitted from better training on the use of

the construct fidelity coding guide (Russell & Moncaleano, 2019). Two main elements

could improve the training: (a) a greater focus on discussing what makes a TEI

interaction authentic; and (b) further practice with items of the content domain the raters

will interact with when making their ratings. In sum, the resulting lack of variability in

construct fidelity ratings could be explained by these two limitations of the panel’s work.

Directions for Future Work

The results of this study provide multiple avenues to explore further the comparative

measurement value of technology-enhanced items. The comparative measurement value

protocol may be expanded to consider other selected-response formats other than

multiple-choice questions. This effort may involve exploring how other psychometric

models may be used as part of the protocol, for example, the 3-parameter model for

dichotomous responses or models for polytomous scoring. Moreover, the application of the

comparative measurement value protocol in this dissertation assumed that all multiple-

choice items used had low or moderate construct fidelity (i.e., an inauthentic response

interaction). However, it would be informative to judge the authenticity of the contexts

presented by the MC items. The construct fidelity coding guide (Russell & Moncaleano,

2019) may be modified and applied to multiple-choice items to evaluate their construct
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fidelity. Then, the first step of the CMV protocol could be updated to judge the gain in

construct fidelity rather than the fidelity rating of the technology-enhanced item itself.

The protocol itself may be refined by exploring other indicators that would provide

more nuance to comparative measurement value judgments such as expected information

and cost of development. Expected information was not included in the protocol because

empirical evidence suggested it provided redundant information relative to measurement

efficiency. However, the relationship between these two item characteristics warrants

further investigation given the small sample of items studied. Moreover, the relationship

between discrimination and expected information could also be examined. According to

theory, an increase in discrimination will lead to an increase in information. However,

given that expected information is calculated as a weighted average of information (using

ability estimates as the weights) higher discrimination does not always produce higher

expected information (see item CL8 in Table 4.21).

An important difference between multiple-choice and technology-enhanced items is

the cost associated with their development. Generally, it is believed that multiple-choice

items are less expensive to develop than TEIs (Bryant, 2017; Gifford, 2017). However, it is

also often noted that the development cost of TEIs declines over time (i.e., through

repeated assessment cycles). Thus it would be valuable to include the cost of development

as an indicator in the CMV decision protocol. Cost of item development could provide

more nuance to the CMV protocol ratings. For example, if the cost of developing a TEI is

relatively higher than developing an MCI, a higher increase in CMV would be desirable

(e.g., CMV ratings of 3 or 4). Similarly, if the cost differential is low then a lower increase

in CMV would be acceptable (e.g., CMV ratings of 1 or 2). However, a significant increase
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in cost coupled with a low increase in CMV might not be acceptable. Cost of item

development was not included as an indicator in this work as this data is not publicly

available and development cost may be dependent on specific needs and resources of

different assessment programs.

Finally, as mentioned above, the generalizability of the results to drag-and-drop

items as a class and TEIs as a whole is limited. The CMV protocol may be applied to

more drag-and-drop item interactions so that broader conclusions can be made about this

class of TEI interactions and inform the use of this format in operational assessments.

Such effort would complement a recent wave of research studies focusing on the impact of

drag-and-drop interactions on student performance and response times (Arslan, 2020;

Ponce, Mayer & Loyola, 2020; Ponce, Mayer, Sitthiworachart & Lopez, 2020). Future

work could also employ the protocol described here to evaluate the comparative

measurement value of other TEI response interaction spaces.
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Conclusion

This dissertation was motivated by a strong belief that technology-enhanced items require

more scrutiny regarding the contexts in which they should be used. Consequently, this

work explored and developed an approach for judging the comparative measurement value

of technology-enhanced formats with respect to the multiple-choice format. This study

relied on stem-equivalent pairs of drag-and-drop and multiple-choice items administered to

a sample of participants and used a 2-parameter IRT model to calibrate the results. The

most valuable quantitative and qualitative characteristics to judge comparative

measurement value were then identified and used to inform the construction of a decision

protocol.

The resulting protocol was applied to the items used in this study and revealed

that all rank-ordering drag-and-drop items used showed decreased measurement value

while classification items showed a mixture of desirable and undesirable CMV judgments.

In turn, these results indicate that in a real-life scenario the multiple-choice format would

be favored for most of these item pairs. Although the generalizability of these results to

drag-and-drop items as a class is limited, they do suggest that drag-and-drop items should

be used sparingly given their lack of value compared to MC items. The proposed protocol

provides clear evidence-based rationales that will inform validity arguments of operational

assessment programs and the usage of common technology-enhanced formats. Finally, the

protocol may be refined in the future by adapting it to include other selected response

formats and psychometric models and including additional indicators such as item

development cost.
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Glossary of Terms

Comparative measurement value: A judgment regarding the benefit of using one item

format versus an alternate format with respect to increasing construct fidelity and

improving psychometric characteristics.

Construct fidelity: One of the three facets of the TEI Utility Framework (Russell, 2016).

Encompasses two main components: the authenticity of the context presented by

an item relative to real-world contexts and the authenticity of the interaction used

to produce a response reflect methods to apply the targeted construct outside of a

testing situation.

Efficiency: Label used in this work to refer to the fourth and last step of the Comparative

Measurement Value protocol which evaluates relative measurement efficiency (see

definition below).

Expected information: Average of the information function of an item evaluated at

test-takers’ ability estimates: E(Ij) = 1
N

∑N
i=1 Ij(θ̂i).

Measurement efficiency: The ratio of expected information of an item to the median time

spent by test-takers in that item, i.e., E(Ij)/min (Jodoin, 2003).

Relative efficiency: The definition of this term varies by author, two main definitions

exist, one introduced by Lord (1980) and a second one introduced by Jodoin

(2003). Both approaches to calculate relative efficiency are used in this work and

are referred to, for clarity, as the relative efficiency ratio and relative measurement

efficiency respectively (see definitions below).
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Relative efficiency ratio: The ratio of two information curves. Introduced by Lord (1980)

as relative efficiency. The result of this ratio is a second function which may be

plotted and interpreted by comparing it to a reference line equal to 1. Used in the

works of Crabtree (2016) and Gutierrez (2009).

Relative expected information: The ratio of the expected information for two items

differing response format. In this work, it was calculated comparing

technology-enhanced items to multiple-choice items as E(ITEI)
E(IMCI) .

Relative measurement efficiency: The ratio of measurement efficiency for two items

differing response format. In this work, it was calculated comparing technology-

enhanced items to multiple-choice items as E(ITEI)/min
E(IMCI)/min . Referred to as “relative

efficiency” in Jodoin (2003).

Technology-enhanced item: An item that requires test-takers to “demonstrate knowledge,

skills, and abilities using response interactions that provide methods for producing

responses other than selecting from a set of options or entering alphanumeric

content” (Russell, 2016, p. 20).

Usability: One of the three facets of the TEI Utility Framework (Russell, 2016). Russell

defines it as “the intuitive functionality of an interactive space and the easy with

which a novice user can produce and modify responses with minimal mouse or

finger and/or response control selections” (Russell, 2016, p. 25).
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Appendix A - Common Traditional and Technology-Enhanced Item Formats

This appendix is divided in three sections. In the first section, common traditional item

formats are described, including: (a) multiple-choice, (b) alternate option, (c) matching,

(d) rank-ordering, (e) fill-in-the-blank, (f) location/identification, (g) detection and

correction of errors, (h) problem or short answer, and (i) extended response. Afterwards

common technology-enhanced item formats are described, including: (a) drag-and-drop,

(b) plot points, (c) select text, (d) create frequency plots, (e) shade area, (f) create

partition, (g) hot spot, (h) matching, and (i) in-line choice. This appendix concludes with

figures showcasing the innovative items discussed in Jodoin’s (2003) study.

Traditional Item formats

The following section describes the most common traditional item formats that have been

prevalent in both large-scale and classroom tests throughout the 20th century. Item

formats that can be objectively scored are presented first (both selected response and

constructed response) followed by subjectively scored item formats. Examples of the

earliest uses of these item formats may be found in “Traditional Examinations and New-

type Tests” (Odell, 1928) and “Tests and Measurement in the Improvement of Learning”

(Tiegs, 1939).

Multiple-Choice

A multiple-choice (MC) item is a prompt (or stem) followed by several possible response

options, one of which is correct and the others are not (usually referred to as distractors).

The stem can be worded as a direct question or an incomplete sentence that is completed

by the option selected by the test-taker. The quintessential multiple-choice item presents
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four options to the test-taker, but it is also common to present three options or more than

four (two options are considered a different category of item format). Variations of the

MC item include situations in which all the options are correct responses to some extent

but one option is clearly better (best-answer format), items that allow test-takers to select

more than one option as a response (multiple-response format), or multiple-choice items

organized into sets that use one list of options for all items in the set; these item sets

include a theme, an option list, a lead-in statement and multiple item stems (extended

multiple-choice format; Al-Rukban, 2006).

Alternate Option

Also called the 2-option MC item format, this item format presents the test-taker with a

stem that is answered with one of two possible options. This item format was introduced

as the True/False item format, where a test-taker evaluated statements on whether they

were true or false. A variation of the True/False format added a third option, “Neither,”

for when the statement was neither true or false. A further variation added a fourth

option to capture statements that required more information to be evaluated accurately.

This item format was later relabeled the “alternate option” item format when further

variations included other sets of options beyond True/False, such as Yes/No and

Correct/Incorrect. Like with MC items, the extended alternate option item format

became common, where multiple of statements were presented simultaneously requiring

the tests-taker to judge all of them under the same criteria (e.g., true/false).

Matching

Matching items present two lists to the test-takers and require them to match elements of

one list to the other according to some criterion or instruction explained in the item
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prompt. A matching item typically includes two lists, one of which is numbered and the

other which is preceded by a blank space in which the examinee records a response. In

each of these spaces, test-takers write down the numeral that corresponds to the element

of the numerated list they wish to match. Originally, matching items presented lists of

equal length where each element of a list had a pair, but variations introduced lists of

unequal-length with the intention of reducing the ability of test-takers to determine the

response to the final item using the process of elimination. Further variations of this item

format included items with more than two lists and allowing test-takers to respond by

connecting elements between lists with lines.

Rank-ordering

The rank order item format asks the test-taker to order several statements. The ordering

of the statements can follow any criteria such as chronological or logical order. These

items present a blank space either at the beginning or the end of each statement where

test-takers are expected to write numerals to indicate their ordering of the statements.

Variations of this item format may replace statements for other stimuli, such as diagrams

or drawings.

Fill-in-the-Blank

This item format presents students with a sentence or a paragraph with one or more

embedded blank spaces corresponding to a single word each. Test-takers are required to

fill in these blanks with appropriate words. This item format can be constrained by

offering test-takers options from which to select to complete the text. For example, some

tests present two words that could fill in the blank in a parenthesis following the blank

(e.g., two conjugations of the same verb). Other tests provide something closer to a

203



multiple-choice item, where the student is asked to select a word from a list (e.g., which

word best completes the sentence). Finally, in situations where there are multiple blanks

in a paragraph, some tests provide a list of possible words that could fill all blanks in the

paragraph (the number of words in this list does not necessarily match the number of

blanks in the text). Usually there is only one correct answer per blank (especially in the

constrained scenarios), but on occasion, scorers may be provided with a list of acceptable

answers per blank.

Location/Identification

These items present students with a visual prompt (e.g., figure, drawing, diagram, graph)

in which they are expected to either identify or locate a particular element. For example,

an item could provide a map with certain locations marked A through E and a list of five

natural resources available in that area; the test-taker is asked to identify which resource

is available at a given location. As another example, the item presents test-takers with an

empty diagram of an animal’s body along with a list of body parts and ask them to locate

each body part in the diagram. This item format can become unconstrained (i.e.,

subjectively-scored) if no options are provided, hence requiring test-takers to recall the

terminology required to label the diagram correctly.

Detection and Correction of Errors

These items present the test-taker with a written stimulus (statements, sentences, or

paragraphs) which are incorrect according to certain criteria (e.g., veracity or grammar

appropriateness) but can be made correct by changing, inserting, or removing one or more

words. Sometimes test-takers are only asked to identify the error. More typically,

however, they are also required to provide a correction. These items were common in
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language arts tests in which test-takers were asked to identify spelling and grammatical

errors. Other uses involved judging the veracity of the statements provided and suggesting

corrections to correct inaccurate statements.

Problem or Short Answer

This item format provides test-takers with a context and a question to which examinees

respond with a short answer. Depending on the content of the test, this item format could

require test-takers to answer using one or two sentences or show the steps in a

mathematical calculation. This item format is objectively scored when a single correct

answer exists or subjectively scored when multiple correct answers exist.

Extended Response

Also referred to as the essay item format, these items require students to write an essay or

a response of certain length and complexity. This item type is subjectively scored and

often assesses multiple components simultaneously and thus relies on the use of rubrics.

This item format has existed since Horace Mann introduced written tests and remains a

staple of testing programs.

Technology-enhanced item formats

This section describes the most common technology-enhanced item formats used by large-

scale testing programs, namely (a) drag-and-drop, (b) plotting points, (c) selecting text,

(d) creating frequency plots, (e) shading areas, (f) creating partitions, (g) hot-spot

interactions, (h) matching elements, and (i) in-line drop-down menus. This list was

informed by a recent survey of large-scale testing programs that use TEIs conducted by

Russell and Moncaleano (2019) and other relevant literature.
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Drag-and-Drop

A drag-and-drop item requires the test-taker to select an element presented in the

response space, drag it and then drop it in a specific location to produce a response. This

interaction is commonly used when the item requires test-takers to classify, order, create,

or modify objects. To classify elements, test-takers drag objects provided in the answer

space into labeled boxes (e.g., classify a list of animals into vertebrates and invertebrates).

Ordering drag-and-drop items ask the test-taker to drag objects into their respective

positions in a prescribed order (e.g., ordering the events of a story according to a passage).

The drag-and-drop interaction can assist in creating an object, for example, test-takers

may create a pictograph by dragging symbols in their respective quantities into an empty

set of axes. Finally, this interaction may also be used to modify an object in the answer

space, for example, dragging labels into their proper positions in a diagram (e.g., labeling

countries in an empty map). The drag-and-drop interaction is not specific to any

particular content area.

Plot Points

The plotting points interaction is specific to mathematics and consists of plotting points

either in a one-dimensional response space (i.e., a number line) or a two-dimensional

response space (i.e., a coordinate grid or blank canvas). The different ways of using this

interaction are closely related to the response that is ultimately scored. For some items,

the scored response is the position of the points themselves. This occurs, for example,

when test-takers are asked to plot a point in a number line or a coordinate grid, where the

specific position of the point is the scored response (e.g., identifying the position of a

rational number). For other items, the response interaction is used to create a secondary
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object, such as a line. In these items, a test-taker may be asked to plot two points that

will then be automatically connected to produce a line and the resulting line is the scored

response (e.g., plotting a line with a specific slope, the position of the points used may be

irrelevant to scoring). Finally, other items require the test-taker to plot multiple points to

produce a more complex figure (e.g., graphing a parabola by plotting the vertex and the

roots). Some authors often refer to this interaction as “graphing”; however, “plotting

points” is a more accurate categorical label as there are items that require plotting points

without assessing constructs related to graphing. For example, test-takers may be asked

to draw a symmetry line in a figure or create a figure with certain properties (e.g.,

five-sided convex polygon), neither of which relies on a coordinate grid.

Select Text

The select text interaction is most commonly used in language-related assessments. Items

that use this interaction ask test-takers to select a sub-set of text from a larger text. The

selection required from a test-taker can vary from single words to sentences or full

paragraphs. There is a wide variety of ways in which test-takers may produce a response

when engaging with this interaction depending on the delivery system employed.

Sometimes test-takers are given a highlighter tool and are allowed to highlight any part of

the text. In other cases, the text block is divided into pre-determined clickable sections

(e.g., sentences) and the section(s) the test-takers selects constitute their response.

Finally, in some cases only a subset of the text is available for selection (e.g., some words

throughout the text). The select text interaction is also often referred to as “Hot Text”

(Measured Progress, 2016).
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Create Frequency Plots

According to Russell & Moncaleano (2019), creating frequency plots is an interaction that

requires test-takers to produce histograms, pictograms, or bar graphs. In most cases, this

interaction is implemented on a two-dimensional answer space framed by two axes that

may be empty or include predefined labels. For histograms and bar graphs, a response

may be produced by indicating the height of each bar in the answer space with a mouse

click or dragging an existing bar to the desired height. On other occasions, response

spaces include “plus” and “minus” buttons below the axis that the test-taker uses to

modify the height of the corresponding bar. This latter approach is often used for the

production of pictographs, where the buttons are used to add or subtract symbols in the

graph. As described earlier, if a delivery system requires test-takers to drag-and-drop

symbols to create a pictograph, the item is considered a drag-and-drop interaction item.

Shade Area

This interaction is once again specific to mathematics and involves selecting one or more

sections of a figure or area that has been partitioned into a predetermined number of

regions. A section of the figure becomes shaded when the user selects it and it is unshaded

by clicking on it again. The most common use for this interaction is to produce a visual

representation of a fraction. Other uses include selecting the solution region for an

inequality in a number line or a system of inequalities in a coordinate grid.

Create Partition

Items that use the create partition interaction require test-takers to divide a region or

figure into multiple sections or partitions, often of equal size. To this end, the item

provides the test-taker “plus” and “minus” buttons that divide the figure into sections.
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The figure is updated automatically as the number of partitions is modified by the test-

taker producing equally sized sections (e.g., the first partition of a square would divide it

into halves). Items that use this interaction typically require a second action produced

through another type of TEI interaction. The most common coupling is with shading

area, where test-takers first divide a figure in a desired set of partitions and then shade

the sections that will correspond to their response. Another interaction often paired with

creating partitions is plotting points, as a test-taker might first be asked to divide a

number line (e.g., the segment between 0 and 1) and then plot a point at a specific

location (e.g., represent the position of the fraction 2/5).

Hot Spot

This interaction provides a stimulus (an image or a figure) as part of the response space

on which test-takers must place a pin or marker to produce a response. The pin can be

placed anywhere in the response space by clicking on the desired location. This

interaction is used in items that require the test-taker to identify a particular location or

element within the stimulus. For example, test-takers might be asked to identify a country

in a map or the location of a city within a country’s map. Boundaries of regions relevant

to the question may or may not be shown for this type of question. Consider the examples

mentioned above. In the case of identifying a country, examinees see the boundaries of all

countries in the map and may place the pin anywhere within the boundaries of the

country they wish to indicate as their response. In contrast, when identifying the location

of a city within a country, there is no indication of a region where examinees should place

the pin. If region boundaries are not visible to the test-taker, scoring algorithms consider

a radius of acceptable answers around the ideal response (usually referred to as tolerance).
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Responses within this radius are considered correct. There might also be multiple

concentric radii of tolerable responses depending on the purpose of the assessment.

Matching

Items that use the matching interaction present the test-taker with two or more arrays of

elements. The test-taker responds by matching elements between these arrays according

to criteria included in the prompt. To do so, test-takers first click on an element of one

array and then click on an element of a different array. The system then displays a line

matching the two clicked elements. Variations to this item format may present arrays of

different lengths or include elements in an array that do not have a matching element in

another array.

In-Line Choice

Items that employ this interaction present a text (a paragraph or a sentence) where one or

more elements (words or phrases) have been replaced by a drop-down menu. Each drop-

down menu presents test-takers with multiple options that could complete the text,

test-takers are tasked with choosing the most appropriate option. The most appropriate

answer may be based on an additional stimulus included in the prompt of the question,

such as a reading passage or a diagram. Although some people may not consider this

interaction a TEI given the presentation of a constrained set of options, this item format

is not replicable in paper-based formats. Moreover, if two or more drop-down menus are

presented in the text, the number of possible combinations decreases the chances of

guessing the correct answer. TEIs that employ this interaction are also commonly referred

to as drop-down menu items.
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Other Digitally Enhanced Item Types

There are other item formats that have been digitally enhanced and are worth noting

given their prevalence in the TEI literature despite not fitting the TEI definition adopted

in this work. In some language assessments, the test-takers are allowed to interact with

the text in ways that differ from the select text or in-line choice interactions described

above. For example, tests may embed blank boxes within a text where test-takers type

missing content (fill-in-the-blank items). Other tests provide students with a set of words

in a particular place within a text from which the test-taker selects the word that best fits

(e.g., conjugations of a verb). For this work, these interactions are considered analogous to

traditional items, as they are variations of selected-response or alpha-numeric text-entry

interactions.
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Innovative item types studied in Jodoin (2003)

Figure A.1

Drop-and-connect (DC) item format

Note. From “Measurement efficiency of innovative item formats in computer-based

testing,” by Jodoin, M. G., 2003, Journal of Educational Measurement, 40 (1), p. 4

(https://www.jstor.org/stable/1435051). c©2003 National Council on Measurement in

Education.
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Figure A.2

Create-a-tree (CT) item format

Note. From “Measurement efficiency of innovative item formats in computer-based

testing,” by Jodoin, M. G., 2003, Journal of Educational Measurement, 40 (1), p. 5

(https://www.jstor.org/stable/1435051). c©2003 National Council on Measurement in

Education.
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Appendix B - Research design and analyses employed in peer-reviewed studies in Rodriguez (2003)

Article Analysisa Item Equivalence Research Design Repeated Measures

Stem Content None Within Between No Yes

Ackerman & Smith (1992) Correlation X X 2 weeks

Barnett-Foster & Nagy (1996) Overall X X

Bennett et al. (1990) Correlation X X X

Bennett et al. (1991) Factor Analysis X X X

Berg & Smith (1994) Overall X X

Birenbaum & Tatsuoka (1987) Overall X X

Birenbaum et al. (1992) Overall X X X

Bratch & Hopkins (1970) Correlation X X X

Breland et al. (1994) Overall X X X

Breland & Gaynor (1979) Correlation X X X

Bridgeman (1992) IRT X X

Bridgeman & Lewis (1994) Overall X X X

Bridgeman & Rock (1993) Factor Analysis X X X

Cirn (1986) Overall X X X

Coffman (1966) Correlation X X

Coulson & Silberman (1960) ANOVA X X X

Davis & Fifer (1959) Correlation X X X

Eurich (1931) Correlation X X X
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Article Analysisa Item Equivalence Research Design Repeated Measures

Stem Content None Within Between No Yes

Frisbie & Cantor (1995) Correlation X X

Gay (1980) ANOVA X X X

Godshalk et al. (1966) Correlation X X X

Halpin et al. (1981) ANOVA X X

Hancock (1992) Correlation X X X

Harke et al. (1972) Correlation X X X

Heim & Watts (1967) Correlation X X X

Hogan & Mishler (1980) Correlation X X X

Horn (1966) Correlation X X X

Hurd (1932) Correlation X X 1 day

Hurlbut (1954) Correlation X X 1 week

Loyd & Steele (1986) Correlation X X X

Lukhele et al. (1994) IRT X X X

Magill (1934) Correlation X X X

Martinez (1991) CTT X X

Millman & Setijadi (1966) Overall X X

Moss et al. (1982) Correlation X X 1 week

Oosterhof & Coats (1984) CTT X X

Paterson (1926) Correlation X X

Quelmalz et al. (1982) Factor Analysis X X X

Rowley (1974) Correlation X X 5 weeks
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Article Analysisa Item Equivalence Research Design Repeated Measures

Stem Content None Within Between No Yes

Ruch & Charles(1928) CTT X X 1 day

Ruch & Stoddard (1925) Correlation X X 1 day

Sax & Collet (1968) ANOVA X X

Thissen et al. (1994) Factor Analysis X X X

Traub & Fisher (1977) Correlation X X 2 weeks

van den Bergh (1990) SEM X X

Vernon (1962) Correlation X X 1-2 weeks

Ward (1982) Correlation X X X

Ward et al. (1980) Factor Analysis X X X

Wilson & Wang (1995) IRT X X X

Note. SEM = Structural Equation Modeling. ANOVA = Analysis of Variance Models. CTT = Evaluation of test and item CTT

statistics. IRT = Evaluation of IRT statistics. Overall = Evaluation of overall performance.



Appendix C - Construct fidelity coding guide (Russell & Moncaleano, 2019)

Fidelity Context Actions Examples

High
(2)

Authentic
(1)

Authentic
(1)

Construct: Creating graphical representation of a function.
Example: The interaction presents a coordinate plane on
which a student must produce a line that represents the
given function. The test taker produces a line by clicking
a starting point and dragging the cursor to a second point.
The line may be modified by clicking on and moving any
point on the line.
Rationale: Producing a graphical representation of a linear
function is a real-world activity. The actions required to
produce the line are similar to how lines are produced in
Excel, PowerPoint, Word and other applications commonly
encountered in the real-world.

Construct: Apply understanding of fractions.
Example: The interaction presents the student with tiles
of different sizes and requires the student to drag tiles into
a response space to create a graphical model of the given
fraction.
Rationale: Creating representations of fractions using tiles
is a common classroom activity. The actions required to
reposition tiles is similar with how this activity would be
done in a digital format during a learning activity.

Construct: Understanding of positive and negative num-
bers.
Example: Student is presented with a number line and
asked to shade the section of the number line that satisfies
−3 < x < 5.
Rationale: Identifying areas on a number line that satisfy a
given condition is a common classroom activity. The actions
required to highlight a section of the line are similar to those
used by real-world software to highlight content.

Construct: Identifying text to support a claim.
Example: A statement is presented and the student is
asked to highlight/select text in a passage that supports
the statement. The student may select any sentence in the
passage by clicking on it or by using a highlighter tool.
Rationale: Citing text to support a statement, position,
or argument is a real-world activity. The actions required
to highlight text that supports a statement are similar to
how people perform this function using real-world software
or when interacting with web-based text.
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Fidelity Context Actions Examples

Moderate
(1)

Authentic
(1)

Inauthentic
(0)

Construct: Creating graphical representation of a function.
Example: The interaction presents a coordinate plane and
a line with a slope of +1. The student must click and drag
the line onto the graph and then rotate the line by clicking
on a rotation tool that is located at the top and bottom
of the lines to produce a response that reflects the given
function.
Rationale: Producing a graphical representation of a linear
function is a real-world activity. The actions required to
produce and manipulate the line, however, are not similar to
how lines are created or manipulated in software commonly
used in the real-world or in a learning environment.

Construct: Creating functions that represent relationships
among variables.
Example: The student is presented with a table depict-
ing a linear relationship between two variables. The student
is presented with “boxes” that represent the elements of a
function and a set of numbers and arithmetic symbols. The
student is asked to drag the appropriate numbers and sym-
bols into the appropriate boxes to produce a function that
represents the relationship between the variables.
Rationale: When learning to create functions, a common
instructional activity involves presenting the structure of the
function which the student then completes with numbers are
arithmetic symbols; thus this item creates a context similar
to one students might experience in the classroom. The act
of dragging and dropping numbers and symbols into contain-
ers, however, is not similar to the actions students typically
take when performing this learning activity.

Construct: Identifying text to support a claim.
Example: A statement is presented and the student is
asked to select sentences in a passage that supports the
statement. A sub-set of sentences is pre-highlighted and
only sentences within that sub-set are selectable.
Rationale: Citing text to support a statement, position,
or argument is a real-world activity. In the real-world, how-
ever, sentences in a block of text are not pre-highlighted and
clicked on to select. For this reason, the actions required to
produce a response are not authentic.
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Fidelity Context Actions Examples

Low
(0)

Inauthentic
(0)

Inauthentic
(0)

Construct: Knowledge of historical events.
Example: The interaction requires the student to create
one or more lines within a defined space that contains a list
of historical events on the left side and a list of dates on the
right side.
Rationale: While matching events to dates is a common
assessment activity, it is not typically encountered when
learning about history and is not an activity in which people
engage in the real-world.

Construct: Ability to list details presented in a block of
text.
Example: The interaction space presents students with a
block of text and a separate list of details. Students are
required to select those details they believe are related to
animals described in the passage and then drag-and-drop
those details into a chart labeled “Details to Describe the
Animals”.
Rationale: While students are commonly asked to cite de-
tails from text, the details are not presented independent of
the text. In this example, a list of details is presented from
which the student selects details that were contained in a
block of text making this an inauthentic task.

Note. From “Examining the Use and Construct Fidelity of Technology-Enhanced

Items Employed by K-12 testing Programs,” by Russell, M. and Moncaleano, S., 2019,

Educational Assessment, 24 (4), p. 292 (https://doi.org/10.1080/10627197.2019.1670055).

c©2019 Taylor & Francis Group, LLC.
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Appendix D - Data Gathering Instruments

This appendix presents the background questionnaire, the data collection instrument, and

the closing survey.

Background Questionnaire

Please answer the short survey below before answering the test.

1. How well do you understand English?

(a) Very well

(b) Well

(c) Not very well

2. Have you earned a high school degree?

(a) Yes

(b) No

3. Have you earned or are you pursuing higher education a degree related to
Mathematics or Statistics?

(a) Yes

(b) No, Other (please specify)

(c) No, I do not have a higher-education degree

4. Have you ever been enrolled in a statistics course at the bachelors or graduate
degree level?

(a) Yes

(b) No

5. Have you ever taught statistics, mathematics, or science at any academic level
before?

(a) Yes (please specify what subject)

(b) No
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Data Collection Instrument

Five blocks, each with six items, were organized into two forms of the data collection

instrument. Both forms presented participants with the common block first followed by

blocks TEI-1 and MCI-2 in Form A and blocks MCI-1 and TEI-2 in Form B. Items across

blocks TEI-1 and MCI-1 or blocks TEI-2 and MCI-2 were stem-equivalent differing only

on the interaction used to produce a response (i.e., drag-and-drop or multiple-choice).

Table D.1 shows the order in which items were presented to participants within each

block. This section presents blocks and items in the order shown in this table.

Table D.1

Item order within block

Common TEI-1 MCI-1 TEI-2 MCI-2

MC1 CL3 MCCL3 CL6 MCCL6
CL1 RO3 MCRO3 RO6 MCRO6
RO1 CL4 MCCL4 CL7 MCCL7
MC2 RO4 MCRO4 RO7 MCRO7
CL2 CL5 MCCL5 CL8 MCCL8
RO2 RO5 MCRO5 RO8 MCRO8
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Common Block
CB - MC1

Note. Adapted from MCAS Released Items - Mathematics, 2019, Grade 10, Question 14

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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CB - CL1

Note. Adapted from MCAS Released Items - Mathematics, 2019, Grade 10, Question 14

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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CB - RO1

Note. Adapted from MCAS Released Items - Mathematics, 2019, Grade 10, Question 14

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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CB - MC2
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CB - CL2

Note. Adapted from MCAS Practice Tests - Mathematics, Grade 8, Question 14

(Retrieved from http://mcas.pearsonsupport.com/student/). c©1998 - 2018 Pearson

Education, Inc.
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CB - RO2

Note. Adapted from MCAS Practice Tests - Science, Grade 8, Question 17 (Retrieved

from http://mcas.pearsonsupport.com/student/). c©1998 - 2018 Pearson Education, Inc.
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TEI Block 1

TEI-1 - CL3

Note. Adapted from MCAS Released Items - Science, 2019, Grade 5, Question 18

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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TEI-1 - RO3
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TEI-1 - RO4
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TEI-1 - CL5

Note. Adapted from MCAS Released Items - Mathematics, 2019, Grade 10, Question 10

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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TEI-1 - RO5
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MCI Block 1

MCI-1 - MCCL3

Note. Adapted from MCAS Released Items - Science, Grade 5, Question 18 (Retrieved

from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018 Pearson

Education, Inc.
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MCI-1 - MCRO3
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MCI-1 - MCRO4
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MCI-1 - MCCL5

Note. Adapted from MCAS Released Items - Mathematics, 2019, Grade 10, Question 10

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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MCI-1 - MCRO5
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TEI Block 2

TEI-2 - RO6

Note. Adapted from MCAS Released Items - Science, 2019, Grade 8, Question 10

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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TEI-2 - CL7

Note. Adapted from MCAS Released Items - Science, 2019, Grade 8, Question 12

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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TEI-2 - RO7
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TEI-2 - CL8

Note. Adapted from MCAS Released Items - Mathematics, 2019, Grade 6, Question 18

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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TEI-2 - RO8

Note. Adapted from MCAS Released Items - Mathematics, 2019, Grade 6, Question 3

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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MCI Block 2

MCI-2 - MCRO6

Note. Adapted from MCAS Released Items - Science, 2019, Grade 8, Question 10

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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MCI-2 - MCCL7

Note. Adapted from MCAS Released Items - Science, 2019, Grade 8, Question 12

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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MCI-2 - MCRO7
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MCI-2 - MCCL8

Note. Adapted from MCAS Released Items - Mathematics, 2019, Grade 6, Question 18

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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MCI-2 - MCRO8

Note. Adapted from MCAS Released Items - Mathematics, 2019, Grade 6, Question 3

(Retrieved from http://mcas.pearsonsupport.com/released-items/). c©1998 - 2018

Pearson Education, Inc.
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Closing Survey

1. Please describe your experience with statistics. For example, have you taken any

statistics courses? if so, at what level? (High school, college, graduate school). Do

you work with statistics as part of your job?

2. Did you take any breaks or were interrupted while taking the test?

(a) Yes

(b) No

3. How much time do you estimate you spent working on the test?

(a) Less than 15 minutes

(b) Between 15 minutes and 30 minutes

(c) Between 30 minutes and 45 minutes

(d) Between 45 minutes and 1 hour

(e) More than 1 hour
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Appendix E - Path mapping of the CMV Protocol

Fidelity Difficulty Discrimination Efficiency
CMV
Rating

CMV
Judgment

Recommended
Format

High Significant
(Assumed
construct-
relevant)

Non
significant

Significantly
Higher

Non
significant

Significantly
Lower

Significantly
Higher

Non
significant

Significantly
Lower

≥ 2

0.5 − 2

≤ 0.5

4 Increased TEI

3 Increased TEI

Decreased MCI

≥ 2

0.5 − 2

≤ 0.5

3 Increased TEI

2 Increased TEI

Decreased MCI

Decreased MCI

≥ 2

0.5 − 2

≤ 0.5

3 Increased TEI

2 Increased TEI

Decreased MCI

≥ 2

0.5 − 2

≤ 0.5

2 Increased TEI

1 Increased TEI

Decreased MCI

Decreased MCI

Moderate Significant
&

Construct-
relevant

Non
significant

Significant
&

Construct-
irrelevant

Significantly
Higher

Non
significant

Significantly
Lower

Significantly
Higher

Non
significant

Significantly
Lower

≥ 2

0.5 − 2

≤ 0.5

3

2

Decreased MCI

≥ 2

0.5 − 2

≤ 0.5

2

1

Decreased MCI

Decreased MCI

≥ 2

0.5 − 2

≤ 0.5

2

1

Decreased MCI

≥ 2

0.5 − 2

≤ 0.5

1

0

Decreased MCI

Decreased MCI

TEIIncreased

TEIIncreased

TEIIncreased

TEIIncreased

Increased

Increased

Increased

No Impact

TEI

TEI

TEI

MCI

Decreased

Decreased

MCI

MCILow

249


	FRONT MATTER
	CHAPTER 1 - INTRODUCTION
	The Growth of Computer-Based Testing in the United States
	Technology-Enhanced Items
	Purpose of the Study
	Significance of the Study 

	CHAPTER 2 - LITERATURE REVIEW
	Traditional Items
	A Brief History of Testing and Traditional Item Formats
	Traditional Items in Digital Assessments

	Technology-Enhanced Items
	Defining TEIs
	TEI Formats
	Potential Benefits of TEIs
	Limitations of TEIs

	Traditional Item Evaluation Procedures 
	Examining Technical Characteristics
	Item Difficulty
	Item Discrimination
	Item Distractor Quality
	Test Dimensionality and Reliability
	Item and Model Fit
	Item Information


	TEI Quality
	The TEI Utility Framework

	Item Type Comparison Efforts
	Comparisons between Traditional Item Formats
	Comparisons between Test Administration Mode
	Comparisons between Different Item Interfaces 
	Presentation of Digital Content
	Interaction with Digital Content

	Methodological Approaches Employed
	Comparisons between Traditional Item Formats and Innovative Items
	Limitations of studies comparing traditional item formats and innovative items


	Summary of the Literature

	CHAPTER 3 - METHODOLOGY
	Overview
	Research Design 
	Instrument Development
	Participants

	Data Collection
	Instrument Administration and Participant Recruitment
	Pilot
	Operational Administration
	TEI Utility Ratings

	Analytic Methods
	Classical Test Theory
	Item Response Theory 
	The 2-PL Model
	Item Information
	Relative Efficiency

	RQ1: How do the psychometric characteristics of commonly employed TEI drag-and-drop formats (classification and rank-ordering) compare to stem-equivalent multiple-choice items?
	RQ2: What is the relationship between the utility of TEI drag-and-drop formats (classification and rank-ordering) and their psychometric item characteristics?
	RQ3: How can TEI psychometric properties and utility ratings be combined to develop a standardized protocol to judge the comparative measurement value of TEIs relative to stem-equivalent MC items?


	CHAPTER 4 - RESULTS
	Instrument Development
	First Pilot
	Second Pilot

	Operational Administration and Sample Characteristics
	Omitted Responses
	Timing Statistics
	Instrument-level Timing Statistics
	Block-level Timing Statistics
	Item-level Timing Statistics
	Omitted Responses and Timing Statistics

	Comparison of Item Characteristics
	Classical Test Theory
	Common Block
	Item Set 1
	Item Set 2
	Reliability and Unidimensionality

	Item Response Theory
	IRT Item Difficulty and Discrimination
	IRT Information and Relative Efficiency

	TEI Utility Ratings
	Summary
	RQ1: How do the psychometric characteristics of commonly employed TEI drag-and-drop formats (classification and rank-ordering) compare to stem-equivalent multiple-choice items?
	Classification items
	Rank-ordering items

	RQ2: What is the relationship between the utility of TEI drag-and-drop formats (classification and rank-ordering) and their psychometric item characteristics?
	RQ3: How can TEI psychometric properties and utility ratings be combined to develop a standardized protocol to judge the comparative measurement value of TEIs relative to stem-equivalent MC items?


	CHAPTER 5 - DISCUSSION
	Summary of Findings
	The Comparative Measurement Value Protocol
	Selection of Indicators
	Development of the Comparative Measurement Value Protocol
	Step 1: Evaluating Construct Fidelity
	Step 2: Evaluating Difficulty
	Step 3: Evaluating Discrimination
	Step 4: Evaluating Efficiency

	Applying the CMV protocol
	Usage of the CMV protocol

	Implications
	Limitations
	Directions for Future Work

	CONCLUSION
	GLOSSARY OF TERMS
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E

