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The State NAEP program only reports the mean achievement estimate of a subgroup 

within a given state if it samples at least 62 students who identify with the subgroup. Since some 

subgroups of students constitute small proportions of certain states’ general student populations, 

these low-incidence groups of students are seldom sufficiently sampled to meet this rule-of-62 

requirement. As a result, education researchers and policymakers are frequently left without a 

full understanding of how states are supporting the learning and achievement of different 

subgroups of students. 

Using grade 8 mathematics results in 2015, this dissertation addresses the problem by 

comparing the performance of three different techniques in predicting mean subgroup 

achievement on NAEP. The methodology involves simulating scenarios in which subgroup 

samples greater or equal to 62 are treated as not available for calculating mean achievement 

estimates. These techniques comprise an adaptation of Multivariate Imputation by Chained 

Equations (MICE), a common form of Small Area Estimation known as the Fay-Herriot model 

(FH), and a Cross-Survey analysis approach that emphasizes flexibility in model specification, 

referred to as Flexible Cross-Survey Analysis (FLEX CS) in this study. Data used for the 

prediction study include public-use state-level estimates of mean subgroup achievement on 

NAEP, restricted-use student-level achievement data on NAEP, public-use state-level 

administrative data from Education Week, the Common Core of Data, the U.S. Census Bureau, 



 
 

and public-use district-level achievement data in NAEP-referenced units from the Stanford 

Education Data Archive. 

To evaluate the accuracy of the techniques, a weighted measure of Mean Absolute Error 

and a coverage indicator quantify differences between predicted and target values. To evaluate 

whether a technique could be recommended for use in practice, accuracy measures for each 

technique are compared to benchmark values established as markers of successful prediction 

based on results from a simulation analysis with example NAEP data. 

Results indicate that both the FH and FLEX CS techniques may be suitable for use in 

practice and that the FH technique is particularly appealing. However, before definitive 

recommendations are made, the analyses from this dissertation should be conducted employing 

math achievement data from other years, as well as data from NAEP Reading. 
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Chapter 1: Introduction 

Overview 

State NAEP (National Assessment of Educational Progress) is an American assessment 

program that administers biennial achievement tests in reading and mathematics, in grades 4 and 

8, to representative samples of students from each of the 50 states, plus the District of Columbia 

and students in schools managed by the Department of Defense. The NAEP program has two 

major goals: to compare student achievement among states and other jurisdictions, and to track 

changes in achievement of fourth-, eight-, and twelfth-graders over time (U.S. Department of 

Education, 2015a).1 One of State NAEP’s greater affordances is its disaggregation of student test 

results by demographic subgroup, currently comprising eighteen different subgroups. This 

disaggregation allows policymakers and researchers to gain a sense of how states are supporting 

the learning of different subgroups, including underserved and underperforming groups of 

students.    

Unfortunately, State NAEP does not report on the achievement of all eighteen subgroups 

for each of the fifty states. As a policy, the program only reports subgroup results if it samples at 

least 62 students who identify with the subgroup within any given state (Elliott & Phillips, 2004; 

Chromy, Finker & Horvitz, 2004). Since some subgroups of students represent small proportions 

of certain states’ general student populations (e.g., Black students in Vermont), these low-

incidence groups of students within certain states are insufficiently sampled to meet the 

requirement. As a result, while the NAEP program publishes estimates of mean achievement and 

standard errors for subgroups of students that are more common within states (e.g., White 

students in Vermont, Hispanic students in California), blank spaces or symbols demarcating 

                                                           
1 Since 2003, State NAEP tests have been administered to fourth- and eighth-graders every two years (biennially), 
but to twelfth-graders every four years (U.S. Department of Education, 2017). 
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omitted results replace would-be achievement estimates for many minority populations within 

states in NAEP publications. 

This study addresses this limitation by comparing the performance of different techniques 

in predicting the mean math achievement of subgroups on State NAEP. Ultimately, it aims to 

answer whether it may be justifiable to apply one or more of the techniques under examination to 

the estimation of mean subgroup achievement on State NAEP when direct estimation is 

impermissible because of insufficient sample size.          

Background 

This research is motivated by a demand for estimates of subgroup achievement. Meeting 

such demand advances the twin goals of NAEP, to compare student achievement in states and 

other jurisdictions, and to track changes in achievement. Education officials and policymakers 

want to know how students from different backgrounds are performing and progressing 

academically (Musu-Gillette et al., 2016). Because NAEP is unable to produce estimates for all 

subgroups within each state, officials and policymakers receive an incomplete picture of the 

standing and progress of all groups of students across states.  

Another motivation for this research is the prospect of learning important information 

about the relative strengths and limitations of the techniques and data used for predicting mean 

subgroup achievement, including which kinds of extant administrative data are most helpful for 

predicting mean subgroup achievement.2 While the techniques applied in this dissertation are 

widely used across different fields of study, they have not been applied to the prediction of mean 

subgroup achievement on State NAEP.  

                                                           
2 Administrative data refer to data that are not originally collected for the purpose of estimating parameters of 
interest. In this study, these are data that are not collected by organizations charged with implementing the NAEP 
program, such as the U.S. Census Bureau, but may nonetheless be helpful for estimating NAEP achievement. 
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Overview of the Methods Used in this Study 

Three separate and progressively more complex analytic techniques are used to predict 

the mean math achievement of subgroups across states. The predicted values from each 

technique are then compared with NAEP-reported estimates, which play the role of target values, 

to gauge each technique’s predictive accuracy. Hence, comparisons are applied to cells from the 

test sample dataset (i.e., grade 8 mean math achievement across states and subgroups in 2015) 

where NAEP estimates are available. The measures of accuracy are summarized for each 

technique both across subgroups of interest, as well as by subgroup, which permits conclusions 

with respect to whether the relative predictive accuracy of the techniques vary systematically by 

subgroup. The subgroups of interest, for which predicted estimates of mean math achievement 

are compared to NAEP-reported estimates, are the subgroups from the test sample with 

incomplete reporting across states. 

The first technique is an adaptation of a Multiple Imputation (MI) method known as 

Multivariate Imputation by Chained Equations (MICE). The second is a Small Area Estimation 

(SAE) technique known as the Fay-Herriot (FH) model. The third technique is a more novel 

approach that emphasizes flexibility in model specification and combines features of the MI and 

SAE approaches, an approach referred to in this dissertation as Flexible Cross-Survey Analysis 

(FLEX CS). As depicted in Figure 1.1, the techniques become progressively more complex in 

terms of the sources of data that they require for prediction as well as the manner in which 

estimates (subestimates) are combined for predicting the mean math achievement of subgroups.3 

                                                           
3 It should be noted that the meaning of progressive complexity here to describe a succession of techniques differs 
from how it is often used in the research literature to describe regression models with successively larger sets of 
predictor variables. By contrast, the progressive complexity across techniques in this study is related more to 
additional sources of data that the techniques require, as well as the manner by which estimates are formed from 
subestimates across techniques. 
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Figure 1.1: Progressive complexity of prediction techniques 

 
 

Measuring Performance (Predictive Accuracy) 

To evaluate the accuracy of the three techniques in predicting subgroup achievement on 

State NAEP, estimates of mean math achievement produced from the techniques are compared to 

target values representing NAEP-reported estimates of mean math achievement. Measures of 

accuracy are based on two statistics. The first, weighted Mean Absolute Error (wMAE), is a 

weighted measure of the distance between estimates produced from the techniques under study 

and NAEP-reported estimates. The second, coverage, is the frequency with which estimates 

produced from the techniques under study are located within target intervals associated with 

NAEP-reported estimates.  

MICE

•Mean subgroup achievement is predicted with test sample data through a form of Multiple 
Imputation (MI). 

FH

•Mean subgroup achievement is predicted with test sample data, student-level restricted-use 
data from the National Center for Educational Statistics and state-level adminstrative data 
through a Small Area Estimation (SAE) method that combines two separate subestimates.

•Adminitrative data come from the U.S. Census Bureau, the Common Core of Data and 
Education Week.

FLEX CS

•Mean subgroup achievement is predicted with test sample data, student-level restricted-use 
data from the National Center for Educational Statistics, and state- and district-level 
administrative data through a flexible form of Cross-Survey Analysis (CSA) that combines 
up to four separate subestimates.

•Adminitrative data come from the U.S. Census Bureau, the Common Core of Data, 
Education Week, and the Stanford Education Data Archive.
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Techniques for Predicting Mean Math Achievement of Subgroups 

Multiple Imputation (MI) 

The first technique used for predicting mean subgroup achievement, an adaptation of 

Multivariate Imputation by Chained Equations (MICE), is a form of Multiple Imputation (MI).4 

MI is an example of a modern missing data analysis approach. Such approaches are preferred to 

traditional ones such as mean substitution as they more effectively preserve the relationships 

between variables from the original dataset (Dempster, Laird & Rubin, 1977; Schafer & Graham, 

2002). Unlike single-imputation techniques, MI techniques account for the uncertainty in 

imputations by creating multiple predictions for each missing value through a sequence of 

random draws from conditional distributions (Azur et al., 2011). As a result, while the imputed 

values represent plausible values for those that are missing, the imputed values are designed to 

differ across the imputed data sets. 

Multivariate Imputation by Chained Equations (MICE)  

The MICE technique represents a fully conditional specification (FCS) approach to 

imputation whereby the imputation model is specified on a variable-by-variable basis by a set of 

conditional densities, one for each incomplete variable. In this approach, variables with missing 

data are successively regressed on select predictor variables from the dataset, and the imputed 

values represent a series of random draws from the conditional distributions estimated by the 

predictor variables (van Buuren & Groothuis-Oudshoorn, 2011).  The data used for prediction 

with MICE in this study represent state-level estimates of mean math achievement for subgroups 

across states. 

                                                           
4 This technique is referred to as an adaptation because the mice technique is typically applied to actual missing data 
situations. By contrast, the technique is used to predict observed values in this study. More details on this procedure 
are provided in Chapter 3. 
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Small Area Estimation (SAE) 

 Small Area Estimation is a technique for estimating the parameters of subpopulations 

when the samples available for producing direct estimates (i.e., design-based estimates) of the 

subpopulation parameters are insufficiently large, which in turn does not permit the calculation 

of estimates with a desired level of precision. The term “small area” typically refers to smaller 

geographic areas or minority populations that form part of larger sampled areas and populations. 

While sampling designs usually result in sample sizes large enough for reasonably precise 

inference for larger areas and populations, they do not always result in sufficient sample sizes for 

all subpopulations of interest and, hence, the impetus for the SAE framework (Rao & Molina, 

2015; Pfefferman, 2002).  

 Estimation within the SAE framework is characterized by borrowing information from 

administrative data related to subpopulation parameters of interest to supplement direct 

estimates. SAE techniques principally differ from missing data techniques, including multiple 

imputation, as SAE approaches are not typically used to estimate data that are missing. Instead, 

SAE techniques are usually implemented to improve direct estimates that are calculated 

imprecisely (Rao & Molina, 2015; Pfefferman, 2002). Another important difference between 

imputation and SAE techniques is that the latter require use of administrative data supplemental 

to the original data sample collected for estimation (Rao & Molina, 2015), whereas imputation 

techniques use in-sample data to estimate missing values (Graham, 2009).  

The Fay-Herriot Model (FH) 

  In this study, an area-level model known as the Fay-Herriot model (FH) is used for 

prediction of mean subgroup achievement (Molina & Marhuenda, 2015; Pfefferman, 2002). The 

term “area-level” refers to the fact that the administrative data used to supplement direct 
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estimates are from the same unit level of inference. In the context of this study, state-level 

variables are used to calculate model-based estimates of mean subgroup achievement across 

states, which supplement direct estimates computed from student-level data.  In the FH 

technique, final estimates are referred to as Empirical Best Linear Unbiased Predictors 

(EBLUPs). The EBLUP calculated with the FH approach is a precision-weighted combination of 

a direct estimate of a parameter and a regression estimator (i.e., model-based estimate) of the 

parameter. The EBLUP is weighted toward the estimate calculated with greater estimated 

precision. For instance, the greater the uncertainty of the regression estimate relative to the 

uncertainty of the direct estimate, the more the EBLUP shrinks toward the direct estimate. 

Cross-Survey Analysis (CSA) 

Cross-Survey Analysis (CSA) refers to the combined analysis of data from different 

surveys (Magadin de Kramer, 2016). The principal distinction between CSA and SAE is the 

latter’s emphasis on updating a direct estimate; improving the efficiency of an estimate that is 

design-based. The emphasis of CSA, on the other hand, is on combining data from different 

sources (surveys) as a means of improving the accuracy of prediction. CSA can be conceived as 

an analog to Meta-Analysis, with an emphasis on combining observational data collected from 

different surveys.   

Flexible Cross-Survey Analysis (FLEX CS)  

The last technique used for estimating mean subgroup achievement, FLEX CS, is a more 

novel approach that combines features of the MICE and SAE techniques. FLEX CS permits the 

researcher to select only the variables from the original data file that are presumably most helpful 

for predicting values in outcome variables, while at the same time allowing the researcher to use 

administrative data external to the original data file that are useful for prediction. This approach 
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expands on the flexibility offered by MICE, in which select variables from the original data file 

are used to impute values on a variable-by-variable basis, while simultaneously borrowing useful 

predictive data from other surveys. 

 The technique is described as a form of CSA in this dissertation since the estimates of 

mean math achievement that are produced from this technique are the combinations of other 

estimates, or subestimates, which are computed from different survey data, judiciously selected 

by the researcher.  The subestimates that form the FLEX CS estimates are computed from up to 

four different techniques. Emphasis is placed on “up to,” as the final estimates of mean subgroup 

achievement within states are not required to be formed from the same subestimates. Instead, 

they are formed from subestimates that are more defensibly presumed to be accurate estimators 

of the mean math achievement of a particular state’s subgroup, given characteristics of the data 

from which the subestimates are formed. Final FLEX CS estimates, in this study, are precision-

weighted averages of the subestimates that meet certain criteria for contributing to FLEX CS 

estimates. In addition to state- and student-level data, district-level data from the Stanford 

Education Data Archive (Reardon et al., 2017) are used for computing subestimates of mean 

math achievement in the FLEX CS approach. 

Evaluating the Techniques 

The coverage statistic calculated in this study plays the important role of guiding the 

decision about whether a technique in this study could be recommended for use in practice—for 

instance, by researchers carrying out secondary analyses of NAEP data. Researchers should have 

confidence in a technique for which the vast majority of differences between predicted and target 

values of mean math achievement, both across and by subgroup of interest, are negligible in size. 



 

9 

In this study, a simulation analysis, described in greater detail in chapter 3, is conducted to 

establish coverage rate criteria to represent markers of successful prediction. 

The other measure, weighted Mean Absolute Error (wMAE), is better suited to help 

determine which techniques perform better and worse among the three techniques. In the event 

one or more techniques meet criteria to be considered suitable for use in practice, wMAE 

statistics help determine which of the techniques performs best in terms of its ability to 

accurately predict mean subgroup achievement compared to the other techniques.  

About Subgroup Reporting on State NAEP 

The passage of the No Child Left Behind Act (NCLB) in 2002 ushered in important 

changes to the NAEP program. In addition to requiring that all fifty states participate in NAEP 

testing in both reading and math at grades 4 and 8 (Bourque, 2004), NCLB required that 

reporting of test results be disaggregated by demographic subgroup. Currently, State NAEP 

disaggregates and reports results based on six separate demographic categories—including race 

and ethnicity, gender, eligibility for the federal free- and reduced-price school lunch 

program, highest level of parental education, learning disability status, and English learner status. 

Each category includes between two to six subgroups that together equal eighteen separate 

subgroups for which the NAEP program reports estimates of mean achievement (U.S. 

Department of Education, 2018).    

In many instances however, the NAEP program does not report results of all subgroups 

for each state. As previously stated, the program only reports subgroup results if it samples at 

least 62 students who identify with the subgroup. This policy was decided by the National Center 

for Education Statistics (NCES) after NCES researchers determined that 62 was the minimum 

sample size they would need to detect an effect size of 0.50, with power of 0.50, a 0.05 level of 
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significance, and a design effect of approximately 2.00 when drawing comparisons between 

different groups of students (Elliott & Phillips, 2004).   

In practice, this means that while the NAEP program has been able to sample enough 

students to report on subgroups nationally (e.g., estimate of mean math achievement of Black 

students across the United States), the program is frequently unable to report on mean 

achievement of subgroups for jurisdictions where subgroup members are uncommon (e.g., Black 

students in Vermont). To expand on this example, when NAEP randomly samples schools and 

students in Vermont to take a test, they seldom test at least 62 students who identify as Black 

because of the low-incidence of Black students in the state of Vermont.   

Research Purpose and Research Questions 

Research Purpose 

The purpose of this dissertation is to ascertain whether one or more of three techniques 

are suitable for estimating mean subgroup achievement on State NAEP. Ultimately, it aims to 

answer whether one or more of the techniques can justifiably be applied to estimates of mean 

subgroup achievement on State NAEP when direct estimation is impermissible because of 

insufficient sampling.  

Research Questions5  

This dissertation aims to answer the following questions: 

                                                           
5 It should be noted that research findings from this study cannot be used to make claims about the efficacy of 
applying the techniques to NAEP achievement data in general, as analysis is conducted on one of several possible 
test samples (in this study, grade 8 math in 2015). The findings can nonetheless serve as a set of initial evidence that 
informs follow-up and expanded research on this topic, which may ultimately lead to more substantiated claims 
about the generalizability of the techniques under evaluation.   
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 Is it reasonable, based on benchmarks established through a simulation analysis, to 

use any of the techniques examined in this study to estimate subgroup math 

achievement on State NAEP when sample sizes do not permit direct estimation? 

 How do the techniques compare with respect to maximizing accuracy, according to 

accuracy measures used in this study (weighted Mean Absolute Error and coverage)?   

 How do the techniques vary in their ability to predict achievement per subgroup?   

Research Design and Methods 

The comparison of estimation techniques in this study begins with an evaluation of the 

performance of Multivariate Imputation by Chained Equations (MICE), followed by the Fay-

Herriot model (FH), and then Flexible Cross-Survey Analysis (FLEX CS). Each technique is 

successively more complex in terms of the data entered into the models and the manner in which 

estimates are constructed, and it is presumed that the added complexity improves predictive 

accuracy. Evaluation of the techniques is based on predictive accuracy—in general, how close 

the predicted values produced from each of the three techniques come to values that are reported 

by the NAEP program. The set of data on which these analyses are conducted (i.e., the test 

sample) come from the National Center for Education Statistics and represent mean subgroup 

achievement by state on the grade 8 mathematics assessment in 2015. The dimensions of this 

dataset are 50 rows (i.e., observations) by 18 columns. The former corresponds to the 50 

American states and the latter corresponds to the 18 subgroups for which State NAEP 

disaggregates and attempts to report results. In this test sample, 124 of 900 mean achievement 

values are not reported. The subgroups include: 

 Two categories related to the national free or reduced lunch program: 

o Eligible (E), Ineligible (I) 
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 Four categories related to parental level of education: 

o Did not finish high school (NHS), Graduated high school (HS), Some education 

after high school (SBA), Graduated college (BA) 

 Six categories related to race and ethnicity:  

o White (W), Black (B), Hispanic (H), Asian/Pacific Islander (API), American 

Indian/Alaskan Native (AIAN), Two or More Races (TP) 

 Two categories related to English language proficiency:  

o English language learner (EL), Not English language learner (NEL)  

 Two categories related to learning disabilities: 

o Student with disability (SWD), Not student with disability (NSWD)  

 Gender: 

o Male (M), Female (F) 

Different sources of data and variables are used to support prediction with the three 

separate techniques.6 In the MICE procedure, variables from the test sample, with values 

representing mean subgroup achievement by state on the grade 8 Mathematics assessment in 

2015, are incorporated into a series of regression analyses as predictor variables. In the FH 

procedure, student-level achievement data from a restricted-use NCES database are used to 

calculate direct estimates, which are combined with synthetic-regression estimates predicted 

from state-level administrative data representing demographic and school-quality factors from 

the Common Core of Data (U.S. Department of Education, 2020a), American Community 

                                                           
6 In a sense, the performance of the prediction techniques under evaluation are not directly compared to one another, 
as they do not draw on the same exact sources of data or variables for prediction. The different data thus represent a 
potential confounding factor. Put differently, evaluation of the techniques does not include a deliberate effort to 
parse the utility of the data from the utility of the techniques. The techniques under evaluation, including the data 
they incorporate, are nonetheless used for the same objective and judgement concerning the predictive performance 
of these techniques is based on common criteria. 
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Survey (ACS; U.S. Census Bureau, 2018), and Education Week (Education Week Research 

Center, 2015). In the FLEX CS procedure, in addition to the administrative data used in the FH 

approach, district-level achievement data in NAEP-referenced units from the Stanford 

Educational Data Archive (Reardon et al., 2017) are used for prediction. 

Significance of the Study 

Results from NAEP can be incredibly useful to researchers and policymakers. The NAEP 

assessment, which was first administered nationally in 1969 and then to students from all fifty 

states beginning in 2003, offers the only common metric of achievement on which representative 

samples of students from all fifty states can be compared (Lapointe, 2004; Olkin, 2004). Results 

from State NAEP also afford researchers and policymakers the opportunity to gain a sense of 

how states are supporting the learning of different demographic subgroups, including historically 

underserved and underperforming groups of students such as low-income, Black, Hispanic, and 

American Indian students. As such, State NAEP results permit inference, albeit not causal, 

concerning which states and sets of policies might best support student learning—both for 

students, in general, as well as for particular demographic groups of students. 

Still, the picture painted by State NAEP regarding the learning and achievement of 

students across states is incomplete, particularly because the NAEP program seldom reports on 

the mean achievement of low incidence subgroups of students in certain states. This dissertation 

attempts to answer whether a more complete, yet accurate, picture can be provided through the 

application of one or more prediction techniques. Specifically, the dissertation seeks to answer 

whether it might be advisable to use one or more of three separate techniques to estimate mean 

subgroup achievement on State NAEP when direct estimation is impermissible because of 

insufficient sample sizes.  



 

14 

If the application of one or more of the techniques under study is justifiable, then a 

clearer picture of state and subgroup achievement can be provided. Although clearer State NAEP 

results still do not support causal inference, they offer the opportunity for more accurate 

inferences. Full reporting of subgroup achievement on State NAEP gives researchers and 

policymakers improved indications of which states and sets of policies best support the learning 

and achievement of students, including the learning and achievement of underserved and 

underperforming groups of students. Most importantly, improved indications foster opportunity 

for researchers and policymakers to draw important lessons from promising states and sets of 

policies.  

The idea that researchers and policymakers might use indirect estimates (e.g., model-

based estimates) of mean subgroup achievement computed from one or more of the techniques 

under study is conceivable. NCES has published “Full Population Estimates” (FPEs) since 2005, 

which are model-based estimates of mean achievement adjusted for variation in the degree to 

which jurisdictions have excluded students with learning disabilities and English learners from 

NAEP testing (U.S. Department of Education, 2020b). In addition, several federal agencies 

already use and report model-based parameter estimates when direct estimation is infeasible 

(Czajka, 2016).  

Another tangential benefit of this research is the opportunity to glean important 

information about the relative efficacy of the techniques under examination in their ability to 

predict mean subgroup achievement. This research, for instance, can provide insight into which 

types of administrative data are most helpful for predicting the mean achievement of different 

subgroups. Revealing information about the relationship between achievement and particular 

variables invites the opportunity for informed follow-up inquiry regarding factors associated 
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with learning and achievement, including the learning and achievement of particular subgroups 

of interest.  

Remainder of Dissertation 

 Chapter 2 details the rationale for this study, including rationale for the proposed research 

methods and data used for prediction. Chapter 3 describes the research design and methods in 

greater depth. Chapter 4 describes analysis results. Chapter 5 includes a review of the findings 

and a discussion of the dissertation’s limitations. Finally, the appendices includes a general 

description of the technical steps undertaken in R and Stata to calculate estimates of mean math 

achievement, tables demonstrating mean achievement estimates by state and technique, and a 

series of plots that support the interpretation of results. The statistical code used for each analysis 

described in the dissertation is provided on the author’s GitHub page.   

 
 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/DavidBamat/Dissertation-Code/projects/1
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Chapter 2: Review of the Literature 

The Case for Studying NAEP 

While researchers and policymakers garner a general understanding of the achievement 

of different groups of students through state-administered tests or college-entrance exams (e.g., 

the SATs), none of the results from these tests offer the same information as results from NAEP. 

The NAEP assessment offers the only common metric of achievement on which representative 

samples of students from all fifty states can be compared (Lapointe, 2004; Olkin, 2004). Unlike 

college entrance exams, NAEP provides achievement results from samples of students from each 

state that are demographically characteristic of the state. On the other hand, tests like the SATs 

or ACTs provide achievement results from self-selected groups of students, who tend to be 

socioeconomically advantaged relative to the general population in their states.7  

Further, SAT and ACT scores are questionable measures of the overall achievement of 

students or of the output of the education system (Selden, 2004). Much of the preparation that 

students undertake for college-entrance exams occurs outside of the purview of school systems. 

The content tested on NAEP, in contrast to college-entrance exams, is more aligned to the 

standards that undergird the curricula of school systems. The standards represented on NAEP 

tests are reached through discussion and the consensus of state chiefs and subject matter experts 

(Mullis, 2004). 

NAEP also offers the advantage of testing students in 4th and 8th grade, which are grades 

considered to be critical junctures in the educational trajectory of students (Scott & Ingels, 2007). 

For instance, 4th grade is when many students are expected to transition from “learning to read” 

to “reading to learn” (National School Board Association, 2015).  

                                                           
7 Some states require the SAT or ACT to be administered in high school as part of their accountability systems.  
However, most states do not. 
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For these reasons, results from State NAEP serve as a source of data from which 

researchers and policymakers can gather a sense of how school systems are supporting the 

learning and achievement of students in a more credible manner than results from college 

entrance exams. Although results from State NAEP still do not lend themselves to supporting 

causal inferences, they offer a more accurate representation of the outcomes of schooling and, 

correspondingly, better indications of the efficacy of schools systems in their ability to support 

learning and achievement than any other assessment program administered across states.     

The Case for Studying Subgroups 

The history of education in the United States is marked by wide and persistent gaps in 

achievement between different demographic groups of students. Students from families with 

higher social standing and/or better economic circumstances tend to perform at higher levels, a 

phenomenon largely ascribed to an accumulated history of uneven access between groups to 

economic, social, and cultural resources that are advantageous for succeeding at school (Braun & 

Kirsch, 2016). For this reason, the efforts of education reformers are often framed by the twin 

goals of reducing persistent achievement gaps and raising the overall achievement of students. 

 Part of the solution to reducing achievement gaps is to determine how to best support the 

learning of historically underperforming subgroups, including students who are low-income, 

Black, Hispanic, American Indian, learning English as a second language, or have a learning 

disability. If researchers and policymakers can develop a better sense of which jurisdictions (e.g., 

states) best support different kinds of students, including historically underserved and 

underperforming students, then they will be better equipped to recommend and implement 

policies that support the learning of those students. While NAEP results cannot, of course, 
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supply researchers and policymakers with a complete answer to this complex question—how to 

best support the learning of these groups of students—they can offer a partial and helpful answer.  

The Case for Full (Complete) Test Samples 

 For the test sample used in this dissertation, State NAEP results of subgroups on the 

grade 8 mathematics assessment in 2015, the NAEP program is only able to fully report on eight 

of eighteen subgroups. In other words, for ten separate reporting groups, the NAEP program was 

unable to sample a sufficient number of students from at least one state. For example, mean 

achievement estimates of Black students are available for only thirty-nine of fifty states.  

Hence, reporting by State NAEP on the learning and achievement of different students 

across states is incomplete. A more complete view of subgroup achievement across states would 

give researchers and policymakers a fuller understanding, albeit short of complete understanding, 

of the extent to which states are supporting the learning of different kinds of students, and, 

potentially, which sets of policies might best support students from different subgroups.8  

 In addition, if NAEP were able to estimate the mean achievement of each subgroup 

across states, researchers and policymakers would also be able to better discern which states best 

support student learning in general. Full reporting, for instance, would permit the application of 

Direct Standardization—a statistical technique in which group-specific rates of achievement of a 

study population are applied to the group-specific distribution of a standard population (Bains, 

2009). Applying subgroup-specific estimates of mean achievement to a standard population 

whose demographic distribution is standardized would provide a basis on which to more fairly 

                                                           
8 It would also be useful for researchers and policymakers to have a better understanding of the learning and 
achievement of intersections of subgroups (e.g., Black males). Estimating the achievement of more granular 
subgroups, however, is beyond the scope of this study. Should one or more of the prediction techniques under 
examination show promise in the ability to accurately predict mean subgroup achievement, then a logical next line 
of inquiry would be whether the technique or techniques can also accurately predict the mean achievement of 
intersections of subgroups.  



 

19 

compare the outputs of states’ educational systems, because variation in achievement is strongly 

associated with the demographic characteristics of students and the demographic distributions of 

students vary by state.9  

The implementation of direct standardization requires knowledge of each group-specific 

rate—in the context of this study, estimates of mean math achievement of subgroups in each 

state. Subgroup achievement as currently reported by the NAEP program, including the test 

sample, prevents the ability to conduct this kind of analysis because there are various subgroup 

estimates of mean math achievement (rates) that are unreported. A distinct value of direct 

standardization is that it facilitates the identification of “standout” units of analyses (e.g., states). 

In the context of State NAEP, it permits the researcher to ask— “Holding certain important 

demographic characteristics of students equal, in which of the 50 states do students have the 

highest achievement?” Although the answers to this question do not justify causal inferences 

about the effects of policies on learning, they serve as the basis for enacting potentially useful 

policy that is grounded in robust research. Alternatively, answers to this question may serve as 

the basis for conducting follow-up research that might further help clarify which sets of policies 

might best support student learning. 

An additional benefit of applying direct standardization to state NAEP results is that it 

could help address what can justifiably be perceived as an injustice in how State NAEP results 

are generally reported and received by the public. In particular, promoting the application of 

direct standardization to results from State NAEP could help temper the tendency of public 

                                                           
9 It is important to note that the application of direct standardization does not provide a completely fair analytic 
framework for comparing the outputs of states’ educational systems. For instance, in addition to the supports that 
students receive from their families and school systems, their learning and achievement is influenced to varying 
degrees by other kinds of resources provided by local and state government, including forms of financial and 
medical assistance, which vary in availability across states and municipalities. 
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officials to misinterpret and draw unsupported conclusions from state rankings. Presenting the 

mean achievement estimates of states as rankings (i.e., league tables), without regard to 

differences in the demographic composition of students across states, which is long-standing 

NAEP practice, lends itself to conflating high-achieving students with high-quality school 

systems. Consequently, the education systems of states like Massachusetts, with relatively large 

proportions of socially privileged students, are widely celebrated as model education systems. By 

contrast, this leaves education systems in states such as Alabama and Mississippi, with relatively 

low proportions of socially privileged students, perpetually cast as deficient.  

The Case for Measuring Overall Performance and Performance by Subgroup 

The performance of techniques in their ability to accurately predict mean subgroup 

achievement is evaluated both for states across subgroups as well as by subgroups of interest. In 

this dissertation, three techniques are evaluated both in terms of their general ability to predict 

subgroup achievement of states as well as by how well they predict the mean math achievement 

scores of states for a particular subgroup (e.g., states’ mean math achievement of Black 

students). This approach to measuring the performance (predictive accuracy) of techniques 

permits inquiry into whether accuracy of the techniques varies as a function of subgroup.  

The main reason for measuring both across and by subgroups is that the sets of findings 

serve to either corroborate or cast doubt on the efficacy of the techniques under examination. If a 

technique performs relatively well across subgroups, but performs poorly for one or more 

subgroups, then doubt should be cast on the technique’s ability to estimate subgroup 

achievement or be useful in practice. On the other hand, if a technique performs well in 

accurately predicting subgroup achievement both across and within subgroups, then there is 
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more evidence to suggest that the technique reliably predicts subgroup achievement with a 

certain desired level of accuracy. 

There is also precedence for suspecting that the measures of accuracy may vary by 

subgroup when comparing NAEP achievement estimates. Hedges and Bandeira de Mello (2013) 

conducted a study of the validity of NAEP Full Population Estimates (FPEs) by comparing mean 

achievement results from 2011 special inclusions studies, which involved sampling and testing 

English learners and students with learning disabilities normally excluded from operational 

NAEP, to FPEs.10 One of the study’s findings was that the degree of similarity between special 

inclusion results and FPE results varied by geographic region. Specifically, results were less 

similar for students from the West and Southeast regions of the United States. 

The Case for wMAE and Coverage as Measures of Accuracy 

wMAE 

The first measure of accuracy used for evaluating the predictive accuracy of techniques in 

this study, weighted Mean Absolute Error (wMAE), is a variant of the more commonly used 

statistic, Mean Absolute Error (MAE). MAE, along with measures such as Mean Squared 

Prediction Error (MSPE; MSE) and Root Mean Squared Error (RMSE), are commonly used to 

evaluate the performance of predictive models.  

Although RMSE and MSPE are more commonly used measures of predictive accuracy 

(Drakos, 2018), a variant of MAE is chosen for its clearer interpretation and the more 

proportional nature in which differences between values are factored into the summary statistic 

(MAE). Regarding clarity, MAE is simply the average absolute difference between values from 

                                                           
10 Full Population Estimates (FPEs) are estimates of mean achievement based on assumptions about how excluded 
students (English learners and students with learning disabilities) might have performed on NAEP testing. The 
National Center for Education Statistics (NCES) has calculated FPEs for states since 2005 and for districts since 
2007 (U.S. Department of Education, 2020b). 
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two variables. RMSE and MSPE, on the other hand, involve an additional arithmetic step, which 

yields a less intuitive interpretation (Willmott & Matsuura, 2005). Regarding proportionality in 

treatment of deviations between variables, consider how MSPE is calculated,11 

MSPE = ∑ (𝒚𝒊−𝒙𝒊)
𝟐𝒏

𝒊=𝟏

𝒏
, 

Whereas MAE is calculated by averaging absolute differences, MSPE is calculated by 

averaging squared differences. While the intent of these measures is similar, squaring differences 

results in the undesired effect of giving larger discrepancies disproportionate influence on the 

value of the statistic (in this case, MSPE), without regard to variability. MAE, on the other hand, 

preserves the actual magnitude of deviations between variables.   

The MAE statistic is expressed as follows,  

MAE = 
∑ |𝒚𝒊−𝒙𝒊|

𝒏
𝒊=𝟏

𝒏
; 

Where the statistic is equal to the sum of absolute differences over instances of interest 

between variables y and x, divided by the number of comparisons (instances of interest) n made 

between variables y and x. Put differently, MAE is simply the mean absolute difference between 

variables y and x over a set number of comparisons (n).  

The Case for Weighting MAE  

In this dissertation, a weighted Mean Absolute Error (wMAE) is used in place of MAE in 

order to diminish the relative contribution of absolute differences for which the estimated 

standard errors associated with the NAEP-reported estimates (𝑦
𝑖
) are relatively large. Calculation 

of wMAE in this study is expressed as, 

                                                           
11 In the formulas for MSPE and MAE presented on the following page, “y” represents a target value (in this study, a 
NAEP-reported value), “x” represents values produced from a prediction model (in this study, a technique-produced 
value) and “n” represents the number of instances in which values “x” are compared to values “y”. 
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wMAE = 
∑ (|𝒚𝒊−𝒙𝒊| ÷ 𝑺𝑬𝒚𝒊

)
𝒏
𝒊=𝟏

𝒏
; 

As illustrated with the formula, the weighted statistic is calculated in the same manner as MAE, 

but each absolute difference between values from variables y and x (indexed by i) is divided by 

the estimated standard error associated with 𝒚
𝒊.   

In this dissertation, variable y corresponds to NAEP-reported estimates of mean math 

achievement of states’ subgroups (i.e., target values) and their standard errors. By requiring that 

absolute differences be divided by these standard errors, NAEP-reported estimates of 

achievement that are calculated with less precision (larger standard errors) have less influence 

than NAEP estimates calculated with greater precision in determining the value of the accuracy 

statistic (wMAE). After all, the NAEP reported achievement values are themselves estimates and 

the estimates calculated with less precision are likely to be less accurate than those with greater 

precision. 

As an instructive example of how this weighting procedure operates, consider two 

absolute differences of equal magnitude—for example, 4.0, but where the standard error 

associated with one of the NAEP-reported estimates is twice as large as the other, 2.0 and 1.0. As 

intended, the deviation associated with the NAEP-reported estimate with a larger standard error 

will contribute less (2 points) compared to the estimate with a smaller standard error (4.0 points) 

to the aggregate measure of accuracy (wMAE).  

If NAEP-reported estimates of mean achievement were calculated without error, then the 

average discrepancies between NAEP-reported mean achievement values and technique-

produced estimates of mean achievement could be reported as the bias (e.g., through MAE). 

However, NAEP estimates of mean achievement are subject to both sampling and measurement 
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error (Reardon, Kalogrides & Ho, 2019). The wMAE in this study can be conceived as a form of 

measurement error-corrected accuracy statistic.  

It is not uncommon to assign more or less influence to particular distances (differences) 

when computing measures of accuracy (Cleger-Tamayo et al., 2012; Ponomarenko et al., 2010; 

Gomes et al., 2013). Further, weighting MAE in particular has been employed in previous 

research. Cleger-Tamayo and colleagues (2012), for instance, demonstrate the use of a weighted 

measure of MAE to assign more influence to more recent data in a study of recommender 

systems.  

One drawback to weighting MAE across subgroups as a function of NAEP-reported 

precision estimates, is that greater influence in the calculation of the aggregate measure across 

subgroups is systematically given to differences from demographic subgroups of students that 

are more prevalent in state populations. Consider for instance that both Hispanic and Asian 

Pacific Islander are subgroups of interest but that the former is a more populous subgroup across 

states. Since Hispanic students are more likely to be sampled, they are more likely to have mean 

math achievement estimates calculated with greater precision (i.e., smaller standard errors). 

Thus, on average, state-level deviations in the Hispanic subgroup will tend to have more 

influence (than those in the Asian Pacific Islander subgroup) in the calculation of overall 

wMAE. Nevertheless, this particular drawback is deemed less consequential than not inversely 

weighting MAE by NAEP-reported standard error estimates. In addition, this concern is 

somewhat mitigated since the performance of techniques is also compared within subgroups. 

Coverage 

The second measure of accuracy, coverage, is commonly used to calculate the proportion 

of time prediction intervals contain a true value of interest (Best et al., 2008). In other words, 
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coverage represents the relative frequency with which a population parameter is contained 

within the lower and upper bounds of an interval obtained by some statistical procedure. 

The coverage statistic used in this study represents a departure from coverage as 

traditionally calculated since the focal value of interest does not represent the actual parameter of 

interest but estimates (NAEP-reported estimates of mean math achievement) of the parameter of 

interest. Further, this measure of coverage reflects the rate at which technique-based estimates of 

achievement fall within intervals associated with the target value, instead of the rate with which 

an interval covers the true value of a parameter.  

To calculate coverage in this study, let C(x) be the number of instances in which 

technique-produced predicted values of mean math achievement {1,…n} fall within 0.2 standard 

deviations of the corresponding NAEP-reported estimates of mean math achievement. Then, the 

coverage statistic equals 

𝐶(𝑥)

𝑛
, 

the proportion of times that predicted values fall within 0.2 standard deviations of corresponding 

NAEP-reported estimates of mean achievement of interest (i.e., the estimands). While the 

implementation of coverage in this study deviates from how the statistic is most commonly 

calculated, it nonetheless provides a sense of the consistency with which predicted values come 

close to target values.  

 Target intervals defined by upper and lower bounds that are 0.2 standard deviations 

greater and less than target estimates of mean achievement are selected because differences of 

0.2 are considered small in size (effect) when standardized mean difference (SMD) is used to 

measure distances between two means (Cohen, 1988; Lipsey, 2001). In this study, technique-

produced estimates of mean achievement represent estimators and NAEP-reported estimates of 
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mean achievement represent estimands. When the distance between these corresponding values 

is less than 0.2 standard deviations, the difference between estimator and estimand is considered 

negligible and the estimator a successful approximation of the estimand.  

  In this dissertation, the standard deviations from which SMDs are calculated represent 

the median of the NAEP-reported state-level standard deviations for each subgroup of interest. 

As such 10 separate standard deviations are used for computing SMDs, one per subgroup of 

interest. Among commonly used measures of SMD in the research literature, the most similar to 

the SMD used in this study is Glass’s Delta (Glass et al., 1981),  

Glass’s Δ = |𝑀1−𝑀2|

𝑆𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 , 

 

which was formulated for measuring standardized effect size in the context of experiments, 

hence the denominator, 𝑆𝐷𝑐𝑜𝑛𝑡𝑟𝑜𝑙, the standard deviation of the control group. The numerator is 

the absolute difference between 𝑀1and 𝑀2, the sample means of treatment and control groups. 

By contrast, the denominator used for calculating SMDs in this study is a standard deviation 

associated with the estimand (in this study, the median of the NAEP-reported state-level standard 

deviations for each subgroup of interest), which yields a form of SMD distinct from Glass’s 

Delta, henceforth referred to as b, which in general terms is expressed as, 

𝑏 =
|𝑀𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑖𝑗−𝑀𝑒𝑠𝑡𝑖𝑚𝑎𝑛𝑑𝑖𝑗

|

𝑆𝐷𝑒𝑠𝑡𝑖𝑚𝑎𝑛𝑑𝐼

, 

where the difference between estimator and estimand for subgroup i in state j is divided by the 

standard deviation of subgroup I. An aggregate (i.e., the median) standard deviation associated 

with the estimand, 𝑀𝑒𝑠𝑡𝑖𝑚𝑎𝑛𝑑𝑖𝑗
, is used for the denominator, 𝑆𝐷𝑒𝑠𝑡𝑖𝑚𝑎𝑛𝑑𝐼

, since NAEP-reported 

standard deviation estimates for individual state-subgroup pairs are unstable. While the majority 

of these standard deviation estimates range between values of 30 and 35, some are greater than 

45 and at least one is as large as 51 (U.S. Department of Education, n.d.). Thus, using the 
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reported standard deviations of estimands 𝑆𝐷𝑒𝑠𝑡𝑖𝑚𝑎𝑛𝑑𝑖𝑗
 would unduly favor the performance of 

technique-based estimates for estimands with relatively large standard deviations. The target 

intervals would be inappropriately large.  

Other common forms of SMD, including Cohen’s d (Cohen, 1988) and Hedges’ g 

(Hedges & Olkin, 1985), use a denominator that represents a pooled standard deviation—a 

measure that represents a weighted average of the standard deviations of treatment and control 

samples. Using a pooled standard deviation to compute this study’s SMD (b) is unsuitable for 

numerous reasons. First, the technique-based estimates are calculated from multiple samples. 

Second, while variance estimates can be computed for technique-based estimates of mean math 

achievement during the analysis phase of this dissertation (chapter 4), standard deviations are 

required for a simulation study that must precede the analysis. Results from the simulation 

inquiry are used to determine the rate at which estimators can reasonably be expected to fall 

within target intervals, which informs an apriori specification of coverage-rate (i.e., hit-rate) 

criteria for determining whether a technique could be recommended for use in practice. 

The Case for Using Competing Approaches to Predict Mean Subgroup Achievement 

 Three analytic techniques are used and evaluated to predict mean subgroup achievement 

on State NAEP’s grade 8 mathematics assessment from 2015: MICE, FH and FLEX CS. The 

rationale for using multiple analytic methods for the same purpose reflects a belief that scientific 

research is a continual process of reasoning supported by an interplay of methods, theories and 

findings (Shavelson & Towne, 2002). In this inquiry, it is assumed that relative performance of 

each technique—in terms of its ability to accurately predict subgroup achievement—is a 

function, in part, of the type of variables and algorithms that underpin each analysis. Further, it is 

assumed that each set of findings resulting from the three techniques offer the opportunity to 
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glean important information that is potentially useful for follow-up research. It is conceivable, 

for instance, that none of the three techniques perform particularly well, but the sets of results 

reveal information that leads to another promising approach for predicting subgroup 

achievement. 

The Case for Imputation 

 Imputation refers to a family of statistical techniques for replacing missing data with 

substitute data values. While different rationales underpin the mechanisms by which different 

imputation techniques operate, all attempt to replace missing values with values that might 

reasonably have been expected. Imputation thus can be conceived as a type of prediction 

technique.  

The use of imputation in this study strays from its more common application. In order to 

evaluate the predictive accuracy of the imputation technique used in this study, target values (i.e., 

NAEP-reported estimates) are successively withheld prior to each imputation to permit a 

comparison between imputed (predicted) values and the target values (NAEP-reported 

estimates). The target value is then returned to the dataset before withholding a different target 

value, and so on. This adaptation serves the evaluative nature of this study. The evaluation of 

predictive accuracy of techniques under examination is based on comparisons between predicted 

and observed (target) values. By contrast, imputation is not applied to a real world missing data 

problem in this study (more detail on this “withholding” process is offered in chapter 3). 

The Case for Multiple Imputation 

Among the myriad of imputation techniques for handling missing data, modern missing 

data analysis techniques are generally preferred over traditional techniques such as mean 

substitution since modern methods more effectively preserve the relationships between variables 
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from the original dataset (Schafer & Graham, 2002; Johnson & Young, 2011). Modern 

imputation techniques generally involve variants of Multiple Imputation (MI), although some 

researchers consider single-imputation with the Expectation Maximization (EM) algorithm to be 

a form of modern missing data analysis as well (Graham, 2009; Johnson & Young, 2011).  

MI techniques produce, by definition, multiple imputed datasets and account for the 

uncertainty introduced by the presence of missing values through a series of random draws from 

predictive distributions (Johnson & Young, 2011). Multiple draws permit the quantification of 

uncertainty due to missing data and, because of this treatment of uncertainty, many researchers 

consider MI to be the gold standard method for handling missing data in statistical research. 

Single-value imputation techniques, by contrast, offer only one substitute value per missing 

value and thus do not lend themselves to the quantification of uncertainty.  

 MI is particularly fitting for this study because it has been shown that the approach 

performs well in small samples (Graham, 2009), including samples smaller than 50 observations 

(Barnes, Lindborg & Seaman, 2006)—the number of observations in the test sample. Using 

simulated data, Barnes and colleagues (2006) demonstrate, for instance, that certain forms of MI 

produce relatively accurate estimates of missing data with sample sizes as small as 20.  

Previous research also indicates that MI performs well when there is as much as fifty 

percent missing data in variables to be imputed, with missing data presumed to be missing-at-

random (MAR) (Graham & Schafer, 1999). While most of the subgroups of interest in this 

study—which play role of variables to be imputed—do not exceed more than fifty percent 

missing data, half (5 of 10) have relatively high proportions of missing data (i.e., > 20%). These 

include variables representing estimates of mean math achievement of English learners as well as 

students who identify as Black, Asian or Pacific Islander, American Indian or Alaskan Native, 
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and multiracial. Further, research suggests that certain forms of MI produce accurate estimates, 

based on measures of coverage and standardized bias, when there is as much as forty percent 

missing data in the overall test sample (Barnes, Lindborg & Seaman, 2006).  

The test sample used in this study is represented by a fifty-by-eighteen data matrix, in 

which rows correspond to the fifty American states and columns to State NAEP’s reporting 

groups (subgroups). Overall, the test sample has about fourteen percent (13.8%) missing data.12 

Given MI’s robustness to high proportions of missing data, as well as its ability to produce 

accurate estimates with small samples, the technique is a safe and credible choice for prediction 

in this study.  

The Case for MICE 

 The form of MI used in this study is Multivariate Imputation by Chained Equations 

(MICE). This form of MI is referred to as a fully conditional specification (FCS) approach to 

imputation, and sometimes as sequential regression multiple imputation (Azur et al., 2011), since 

the imputation model is specified on a variable-by-variable basis by a set of conditional 

distributions produced from regressions, one for each incomplete variable. Once values for one 

variable are imputed, the algorithm governing the MICE procedure imputes the values of a new 

variable in a sequence, with predictor variables that are specified by the researcher at the outset 

of the procedure. Uncertainty is incorporated into each step of imputation through simple random 

draws from the conditional distributions. These steps are repeated a pre-determined number m 

                                                           
12 It should be noted that the missing data mechanism (MCAR vs MAR vs MNAR) in this study is well understood. 
Values are missing from the dataset because they represent students from subgroups across states that the NAEP 
program was unable to sufficiently sample. It is not assumed that the missing data mechanism introduces bias, as 
might be expected, for instance, if the values were missing from the dataset because they represent unusually low or 
high levels of achievement. 
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times and results in m separate imputed data sets (greater detail regarding this imputation process 

is offered in chapter 3). 

The variables used for prediction are referred to as auxiliary variables. These variables 

are not of primary interest but enter the imputation models as they are related to incomplete 

variables (the variables of interest in this study) and support accurate imputation (prediction) of 

missing values. MICE is chosen over other forms of MI, such as Multiple Imputation with the 

Expectation Maximization (MI EM) algorithm for MICE’s flexibility in model specification, 

which is a useful feature for reducing bias in missing value estimates (Graham, 2009; Johnson & 

Young, 2011; Collins, Schafer & Kam, 2001). MICE permits the researcher to select which 

variables from the original dataset will be used to guide imputation of data variables with 

missing values on a variable-by-variable basis. As such, the researcher is able to select only the 

variables from the original dataset that are most strongly associated with each variable with 

missing data to play the role of predictor variables.13  

The application of MICE is particularly useful for this study since, unlike other MI 

procedures, MICE facilitates separate model specification for each variable to be imputed and 

the variables to be imputed in this study are highly correlated with some variables from the test 

sample, but are unrelated with others. For instance, variables representing the mean math 

achievement of parental level of education subgroups are generally highly correlated with one 

another, as might be expected, and serve as promising predictors for one another. Meanwhile a 

pattern of strong correlations between these parental level of education variables and other 

variables does not appear. For instance, there are weak correlations between most parental level 

                                                           
13 As can be gleaned from the corresponding paragraph, separate imputation models are specified for each 
incomplete variable. Thus, there is no standard model used for imputing the incomplete variables (more detail on the 
specification of imputation models is provided in chapter 3. 
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of education and race/ethnicity subgroups, and hence less reason to believe they would serve as 

effective predictors for one another.   

The Case for Small Area Estimation (SAE) 

Small Area Estimation (SAE) is an analytic framework for estimating the parameters of 

subpopulations when the samples available for producing direct estimates (design-based 

estimates) of the subpopulation parameters are insufficiently large, which in turn does not permit 

for calculation of estimates with sufficient precision (Ghosh & Rao, 1994). Using an SAE 

technique represents a logical approach for dealing with the problem that this study addresses. 

The NAEP program does not always report the mean achievement of minority populations 

(“small areas”) since the program only reports subgroup results if it samples at least 62 students 

who identify with the subgroup (Elliott & Phillips, 2004; Chromy, Finker & Horvitz, 2004). This 

dissertation attempts to determine whether a statistical technique can justifiably be applied to 

subgroup achievement estimation on State NAEP when direct estimation is impermissible 

because of insufficient sampling.  

Estimation in SAE involves borrowing information from administrative data to improve 

direct estimates of interest. To improve direct estimates in the SAE framework typically means 

combining direct estimates with synthetic (model-based) estimates. Because the measures of 

accuracy in this study, by which the predictive performance of techniques are evaluated, require 

use of target values that are not estimated with insufficiently small samples, an adaptation of 

SAE is implemented whereby small random samples from larger samples of available data are 

used as direct estimates. Hence, this study simulates the experience of failing to obtain at least 62 

students from a subgroup (more detail on this adaptation is offered in chapter 3). 
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SAE is widely used by agencies within the U.S. federal government. As of 2016, at least 

eight separate U.S. agencies were implementing an SAE program—including the Census Bureau, 

Bureau of Labor Statistics, National Center for Health Statistics, Agency for Healthcare 

Research and Quality, National Cancer Institute, Bureau of Justice Statistics, Department of 

Agriculture, and National Center for Education Statistics (Czajka, 2016). An often-cited example 

of a successful application of SAE is the U.S. Census Bureau’s Small Area Income and Poverty 

Estimates (SAIPE) program (Beresovsky & Hsiao, 2014; National Research Council, 2000). The 

program provides income and poverty estimates for U.S. counties and fulfills a legislative 

mandate to produce yearly estimates of children living in poverty within local jurisdictions 

across the United States, which serves to guide the allocation of federal funds across local 

jurisdictions.  

A persistent challenge in SAE is the identification of high quality administrative data for 

computing model-based estimates (Czajka, 2016; Rao, 2012). Model-based estimates produced 

from administrative data primarily serve to render small area estimates more precise. However, 

administrative data that are not particularly highly correlated with the phenomenon of interest 

can introduce unwelcome bias in the resulting estimates. This dissertation draws on 

administrative data from various sources that are highly correlated with the data variable of 

interest, mathematics achievement (e.g., socioeconomic data from the U.S. Census Bureau). 

The Case for the Fay-Herriot (FH) Model 

SAE models are generally classified or described by the type of administrative data that 

are used to compute synthetic (i.e., model-based) estimates, which are then combined with direct 

estimates to form precision-weighted estimates of the area-level parameter of interest. Two 

broadly defined SAE models are the area-level and unit-level models. Area-level models involve 
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use of administrative data from the same level of aggregation as the small area parameter of 

interest to form synthetic estimates, while unit-level models involve using administrative data 

measured and collected from lower levels of aggregation.  

As an instructive example of an area-level model, consider how the U.S. Census Bureau 

estimates poverty rates of certain U.S. counties with small populations in its SAIPE program 

(Small Area Income and Poverty Estimates). Because the Census Bureau only directly samples a 

limited number of households in certain small counties (which results in imprecise estimates), 

the Bureau uses county-level data that are correlated with county-level poverty rates from the 

Internal Revenue Service (IRS) and the Supplemental Nutrition Assistance Program (SNAP) in a 

linear regression model to produce regression-synthetic (model-based) estimates of county 

poverty rates. These synthetic estimates are then combined with direct estimates to form 

precision-weighted parameter estimates for the “small areas.” On the other hand, if the Census 

Bureau were to use administrative data form the IRS and SNAP that are measured at lower levels 

of aggregations (e.g., municipalities, households) to produce synthetic estimates, they would be 

using a unit-level model. 

In this study, a commonly used area-level model known as the Fay-Herriot (FH) model 

(the same model used by the SAIPE program), sometimes referred to as “area level random 

effects model” (Pfefferman, 2002), is used to predict mean subgroup achievement on State 

NAEP. The parameter estimate produced by the FH model is referred to as an Empirical Best 

Linear Unbiased Predictor (EBLUP), which is a precision-weighted combination of the direct 

and synthetic estimates (Molina & Marhuenda, 2015). Calculation of the EBLUP can be 

expressed in the general form, 

�̂�𝑑

𝐸𝐵𝐿𝑈𝑃
 = �̂�

𝑑
�̂�𝑑

𝐷𝐼𝑅
 + (1−𝛾𝑑)𝑥𝑑

T�̂�, 
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Where �̂�𝑑

𝐷𝐼𝑅
 is the direct estimate of the subpopulation (small area) parameter of interest 

and 𝑥𝑑
T�̂� is a regression-based (model-based) estimate of the subpopulation parameter of interest, 

and �̂�
𝑑
 represents the proportion of total error variance attributable to the regression estimator 

(i.e., relative precision of the direct estimate). As such, the greater the uncertainty of the 

regression estimate relative to that of the direct estimate, the more the EBLUP is shifted toward 

the direct estimate. For this reason, the EBLUP is also known as a “shrinkage” estimator, as the 

regression estimate “shrinks” back toward the direct estimate to a degree commensurate with the 

precision with which the direct estimate is calculated relative to the calculated precision of the 

regression estimate (greater detail on the specific application of the FH model in this study is 

provided in chapter 3). 

Although comparative evaluations of competing SAE approaches are limited in the 

research literature (Czajka, 2016), at least two studies indicate better predictive accuracy of area-

level models compared to unit-level models (Gomez-Rubio et al., 2010; Best et. al, 2008). Using 

simulated data, Gomez-Rubio and colleagues (2010) compare the predictive accuracy of various 

area- and unit-level models with measures of Mean Absolute Relative Bias (MARB) and find 

that the area-level models consistently produce estimates with smaller MARB (less bias). 

Similarly, albeit with measures of Average Empirical Mean Square Error (AEMSE) and by 

randomly sampling from real data on household income in Sweden, Best and colleagues (2008) 

find that area-level models perform better in terms of predictive accuracy. As a possible reason 

for the greater predictive performance, Best and colleagues note that area-level models may be 

more robust to the presence of anomalous observations at the unit-level given area-level models 

fit aggregate data. In practice, the choice between using an area- or unit-level model is often 

dictated by the data that are available (Gomez-Rubio et al., 2010).  



 

36 

Besides research evidence to support the use of area-level over unit-level models for 

producing accurate parameter estimates, the use of FH, an area-level model, is suitable for this 

study as there are various rich sources of publicly-available administrative data measured at the 

area-level (state-level), which are highly related to measures of academic achievement. 

Examples of these sources of data include the American Community Survey (ACS) and the 

Common Core of Data (CCD). The availability of such data permits the construction of 

regression-models that should produce reasonably accurate estimates of mean subgroup 

achievement across states. These area-level data are combined with direct estimates of mean 

subgroup achievement, which are averaged from restricted-use student-level data from the 

National Center for Education Statistics (NCES). 

The Case for the Selected Administrative Data 

Accurate estimation of synthetic-based values is contingent on use of good administrative 

data (Rao, 2012). That is, sets of variables that can accurately predict true parameter values. For 

each subgroup of interest in this study, for which NAEP-reported mean estimates of subgroup 

achievement across states play the role of response variable in regression-based estimates, 

administrative data that have an empirical and theoretical relationship with measures of mean 

achievement are used as predictor variables.  

Predictors for Achievement of Parental Level of Education Subgroups 

To calculate synthetic-regression estimates of mean math achievement for the first four 

subgroups of interest, which represent students whose parents have different levels of 

educational attainment, state-level variables representing four separate factors are used as 

predictor variables: students’ race and ethnicity, the economic circumstances of students’ 

families, the English proficiency of students, and the quality of schooling that students 
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experience. Race and ethnicity are represented by a dichotomized variable operationalized as 

each state’s overall percent of grade 8 students who identify as Black, Hispanic, American 

Indian, or Alaskan Native (%B-H-AIAN),—historically marginalized and oppressed subgroups of 

students. The economic circumstances of students’ families is represented by a variable that 

reflects a composite measure of a state’s median household income and wealth (Family 

Economic Resources; FER). English proficiency is represented by a variable operationalized as 

each state’s percent of students identified as English learners (%EL). School quality is 

represented by a variable based on the scores, reported annually by Education Week (2015), 

related to each state’s effort to improve public education (SQI) – an indicator of school quality 

measured on a continuous scale ranging from 0 to 100. 

Figure 2.1: Regression models for computing state-level synthetic estimates of mean math 
achievement of students from different parental level of education subgroups  
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Race & Ethnicity Predictor (%B-H-AIAN) 
 
 Race and ethnicity in this study refers to social categories related to ancestral origin, to 

which residents of the United States self-identify. Using guidelines from the U.S. Department of 

Education (2007), ethnicity here is used to identify students as “Hispanic or Latino,” regardless 

students’ race.  Race, on the other hand, is used to categorize students into four separate groups: 

American Indian or Alaskan Native, Asian or Pacific Islander, Black or African American, and 

White. In addition, the U.S. Department of Education provides students the opportunity to 

identify with “two or more races.” Though the constructs of race and ethnicity are complicated, 
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for practical reasons in educational research, data variables that represent race and ethnicity are 

often used to capture whether students identify with a historically and/or contemporaneously 

higher- or lower-achieving racial or ethnic group. In the context of American schooling, because 

of uneven access to economic, social and cultural resources advantageous to academic success—

largely shaped by an enduring history of racial oppression—students who identify as Black, 

Hispanic and American Indian tend to underperform other racial and ethnic groups on most 

measures of academic achievement.  

To compute synthetic-regression estimates of mean math achievement for subgroups 

representing students whose parents attained different levels of education, a composite race and 

ethnicity predictor variable is used that represents multiple subgroups. This variable, %B-H-

AIAN, includes values that reflect the combined percent of students by state who identify as 

Black, Hispanic, American Indian, or Alaskan Native—groups of students that have historically 

underperformed on measures of academic achievement when compared to other subgroups.    

Rationale for %B-H-AIAN Predictor. Though differences in socioeconomic status 

(SES) accounts for substantial variation in achievement differences between students (Coleman 

et al., 1966; Reardon, 2011), research continues to document lagging performance of certain 

historically marginalized and oppressed racial and ethnic minority groups of students on 

measures of academic achievement, even after holding indicators of SES constant (U.S. 

Department of Education, 2001; Ogbu, 2003). Using NAEP mathematics data from 2011 and 

Common Core of Data from 2010-11, for instance, Bohrnstedt and colleagues (2015) find a 

nationwide within-school Black-White achievement gap after accounting for students’ SES, 

teacher characteristics, and school characteristics. In her 2006 presidential address to members of 

the American Educational Research Association, Gloria Ladson-Billings, drew attention to this 
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phenomenon, sharing that—“even when we compare African Americans and Latinos with 

incomes comparable to those of Whites, there is still an achievement gap as measured by 

standardized testing” (Gladson-Billings, 2006, p. 4).  

Several theories have been put forth to account for the phenomenon by which certain 

racial and ethnic minority students underperform compared to socioeconomically similar peers. 

Ogbu and Simmons (1998) make sense of the issue through cultural-ecological theory, or as they 

sometimes call it a cultural-ecological theory of academic disengagement. Ogbu (2003) argues 

that the legacy of racial discrimination in the United States has engendered in African-Americans 

a disaffection toward schooling and reluctance to believe the education system can offer them the 

opportunity to experience academic success and social mobility. While Ogbu’s research on 

academic disengagement has drawn criticism by other scholars, Ogbu’s work has nonetheless 

provoked helpful debate around why certain racial and ethnic minority students lag behind 

socioeconomic peers on measures of academic achievement (Foley, 2004).  

 Another theory put forth is that of “stereotype threat,” made popular by the work of 

Steele, Aronson and Spencer (Steele & Aronson, 1995; Steele, Spencer & Aronson, 2002). The 

researchers posit that even passing reminders that someone belongs to a certain social group, 

which is stereotyped as inferior, can hurt an individual’s test performance. Steele and Aronson 

(1995), for instance, using items from the Graduate Record Exam (GRE), found that making 

Black test takers aware of the stereotype that Black people are less academically capable had the 

effect of depressing their scores.  

 An additional body of research indicates that the behavior of educators adversely impacts 

the achievement of minority students (Carter, 2008; Warikoo et al., 2016). Carter (2008) argues 

that when students of color are made hyper-visible or ignored in the classroom because of their 
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race, they sometimes cope in ways that lead to academic disengagement. Others who underscore 

the behavior of educators as a contributing factor to underperformance of minority students, 

point to a social mismatch between students and educators. Gay (2002) explains that the greater 

difference there is between students’ cultural, racial, and ethnic characteristics, and the 

normative standards of schools, the greater are the chances their school achievement will be 

compromised by low or negative teacher expectations. Low teacher expectations are widely 

understood to negatively influence student achievement (McKown & Weinstein, 2008; 

Workman, 2012). Gay (2002) explains that the cultural experiences of students of color lead 

them to be less attuned to the normative standards of schools, which results in unfair teacher 

attitudes, expectations and actions toward racial and ethnic minority students.  

 It should be carefully noted that none of these theories suggest that differences in the 

achievement of racial and ethnic groups are related to differences in innate abilities across 

groups. Instead, the theories suggest that a legacy of oppression and discrimination have 

cultivated perceptions in teachers and students that have unfavorable influence on the academic 

outcomes of certain racial groups of students. Further, it should be noted that the %B-H-AIAN 

variable is used to predict achievement estimates in this study because membership in the B-H-

AIAN subgroups is associated with measures of academic achievement, not because membership 

causes or results in differences in academic achievement. This is an important last point, as 

social scientists have a penchant for carelessly using language that evokes the racist idea that 

race causes differences in academic achievement (Zuberi, 2000).  

Family Economic Resources (FER) 

Family Economic Resources (FER), in this study, is a measure meant to represent the 

combined income and wealth of parents or guardians of students who share the same primary 
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household or place of residence. Income includes salaries and wages, retirement income, 

government assistance, and investment gains. Family income is similar to the more oft cited 

statistic, “household income” though the two are different in that household income encompasses 

the income of all people sharing a common primary place of residence (not only parents or 

guardians). Family wealth, on the other hand, refers to net worth—the summed value of all of a 

family’s assets (e.g., home, savings in bank), minus liabilities that the family might owe (e.g., 

credit card debt). Family wealth is more difficult to measure than income, because of limited 

availability of data. Thus, family wealth, including its influence on student achievement, is less 

frequently used in models applied in social science research than family income. Nevertheless, 

research indicates that parents draw on both income and overall wealth to support the academic 

learning and achievement of their children.   

Rationale for FER Predictor. Often cited alongside parental level of education as a 

leading social factor accounting for differences in achievement of students is the economic 

circumstances of students’ families (Dahl & Lochner, 2012; Manna 2013). A large body of 

research points to a strong positive relationship between economic resources of students’ 

families and the academic achievement of students (Coleman et al., 1966; Bowles & Gintis, 

1976; Reardon, 2011; Braun, 2016).  

Affluent parents advantage their children by drawing from their financial resources in 

various manners. These parents, for instance, can ensure that their children attend well-funded 

schools with children from other affluent families by settling into homes within school districts 

where the price of homes render the prospect of settling into the same school district cost-

prohibitive for less affluent families. In addition, affluent families are better able to absorb the 

costs associated with sending their children to private schools (e.g., tuition) compared to less 
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affluent families. Meanwhile, affluent families can also bestow academic advantage upon their 

children by providing them private tutoring or academically enriching opportunities after-school 

or during breaks in the academic calendar (Bourdieu, 1986; Bowles & Gintis, 1976).    

 Besides these rather obvious ways by which affluent families can leverage financial 

resources to support their children’s academic success, money—or the lack thereof—influences 

the learning and achievement of students in several less obvious ways. Middle- to upper-income 

families generally provide healthy childhood environments, including a regular supply of 

nutritious food, housing stability and feelings of security, quick medical or dental attention when 

needed, high-quality childcare, and access to educational resources such as books and computers.  

In contrast to middle- and upper-income families, low income families’ residential options are 

more limited, often restricting them to live in neighborhoods with high concentrations of other 

low-income families, where economic opportunities and prospects of upward mobility are 

scarce. Children who grow up in concentrations of poverty are disproportionately vulnerable to a 

variety of health risks, including otitis media (ear infections), asthma, lead poisoning, and 

mercury poisoning, all of which weigh negatively on learning and achievement (Braun, 2016; 

Berliner, 2013). 

English Learner Predictor (%EL) 

English learners (ELs) are students who are unable to communicate fluently in English or 

learn effectively in English. ELs come from non-English speaking homes and typically receive 

specialized or modified instruction to accommodate their English language limitations. The 

predictor variable, %EL, represents the percent of students within states identified as English 

learners. 
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Rationale for %EL Predictor. On the 2015 grade 8 NAEP-mathematics assessment, the 

achievement of 8th graders (nationwide) who were not identified as English learners was 1.03 

standard deviations greater than the achievement of those who were identified as English 

learners. On the corresponding reading assessment, 8th graders that were not identified as English 

learners scored 1.29 standard deviations greater than those identifying as English learners.  

Besides the obvious language barrier that hinders the achievement of English learners, 

research points to different features of schooling that further undermine opportunities for English 

learners to achieve, including widespread lack of educator preparation or resources to support the 

learning needs of English learners (McGraner & Saenz, 2009; American Psychological 

Association, 2012). For instance, a growing body of literature highlights a lack of linguistically 

responsive pedagogy and dual language instruction in American schools—both of which are 

recommended instructional approaches to support the learning of English learners (Lucas, 

Villegas & Freedson-Gonzalez, 2008; American Psychological Association, 2012; Gandara & 

Rumberger, 2009). 

 Dual language instruction, sometimes referred to as bilingual education, is critical to the 

learning of language minority students. Conclusions from five separate meta-analyses confirm 

that children who receive instruction in their native language have higher rates of academic 

achievement, even when the markers of achievement are in English, compared to their peers who 

receive less instruction in their native language (American Psychological Association, 2012).  

One theory to account for the phenomenon by which dual language students outperform English-

immersion students holds that first bolstering literacy in one’s native language helps English 

learners more quickly grasp the syntax and rules of a second language.   
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School Quality Index (SQI) 

 While out-of-school factors account for a majority of variation in student achievement 

(Coleman et al., 1966; Egalite, 2016), differences in the quality of schooling that students 

experience also account for differences in achievement between students (O’Day & Smith, 

2016). In this study, in addition to sociodemographic measures, a measure of school quality 

based on ratings calculated and reported by Education Week (2015) is used to model the 

relationship between school quality across states and mean math achievement to calculate 

regression-synthetic estimates. The variable, SQI, is measured on a continuous scale with scores 

ranging 0.0 to 100.0, and reflects the average of states’ “Chance for Success” and “School 

Finance” ratings. The Chance for Success rating is meant to capture lifelong learning 

opportunities for students, beginning with early childhood, and progressing through K-12 

education into adulthood. The School Finance rating is based on school spending patterns as well 

as how education dollars are distributed across each state (Education Week Research Center, 

2015).14   

Rationale for SQI Predictor. While research makes clear that factors aside from the 

quality of schooling influence differences in NAEP scores across states, research also suggests 

that, after controlling for factors beyond the control of state systems, significant between-state 

variation in performance remains (Loveless, 2013; Carnoy, Garcia & Khavenson, 2015; Chingos, 

2015). While this remaining variation between states can be, in part, ascribed to differences in 

the quality of district- and school-level systems, there is also good reason to suspect differences 

in the quality of state-level systems contribute to difference in learning and achievement as well. 

                                                           
14 Hawaii is a single-district jurisdiction. As a result, it is not possible to calculate “financial equity,” a 
subcomponent of Education Week’s “school finance” measure, which is defined as the equitable distribution of 
funding across districts within a state. As a result, Hawaii’s “school finance” rating, one of the two ratings that are 
averaged to calculate each state’s School Quality Index (SQI) score is measured differently than other states. 
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States directly influence several important components of schooling, including components 

measured by the SQI predictor variable. The measures that form the SQI predictor variable 

represent efforts and systems that states put in place to support the learning and achievement of 

students, including decisions around learning standards and curriculum, certification and 

licensing requirements to teach, and how to generate and allocate a substantial amount of school 

funding.  

Predictors for Achievement of Black Students  

To calculate regression-based estimates of mean math achievement for the fifth subgroup 

of interest, students identifying as Black, two of the state-level variables used for predicting the 

parental level of education subgroups are again used. These are the data variables representing 

factors related to the economic circumstances of students’ families (FER variable) and quality of 

schooling (SQI variable). 

In addition, predictor variables representing factors related to parental level of education 

and Black ethnicity are used to predict the mean math achievement of students identifying as 

Black. Parental level of education is operationalized as the percent of adults by state that have 

earned a bachelor’s or more advanced degree (%BA). Black ethnicity is used to distinguish Black 

students who identify as African-American from Black students who do not identify as African 

American. The predictor variable for this factor is operationalized as the percent of the Black 

population by state who identify as African-American (%AA).  

Figure 2.2: Regression model for computing state-level synthetic estimates of mean math 
achievement of Black students 

 
�̂��̅�𝒎𝒂𝒕𝒉

 = �̂�𝒐 + �̂�𝟏(FER) + �̂�𝟐(SQI) + �̂�𝟑(%BA) + �̂�𝟒(%AA) 
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Parental Level of Education (%BA) 

Parental level of education is defined by the National Center for Education Statistics 

(U.S. Department of Education, 2016) as the highest level of education of either parent or 

guardian. Thus, this construct is typically measured in an ordinal manner, whereby variable 

values are discrete and hierarchical (e.g., high school degree vs. associate’s degree; bachelor’s 

degree vs. advanced degree). For the purpose of computing regression estimates in this study, 

however, parental level of education is represented by a dichotomized variable that reflects the 

percent of adults by state that have earned a bachelor’s or more advanced degree (%BA). 

 Rationale for %BA Predictor. Research on the relationship between social background 

factors and achievement frequently points to parental level of education as one of the factors 

with the strongest relationships to achievement (Coleman et al., 1966; Dubow, Boxer & 

Huesmann, 2009; Reardon, 2011; Manna, 2013, Egalite, 2016). As Hanushek and colleagues 

(2013) explain, many studies indicate that educational attainments of the mother and father are 

likely more influential in test performance and life outcomes than any other single variable, 

including the student’s race, household income, or family structure (one- or two-parent home). 

One of the more prominent explanations for the disparity in educational achievement 

between students of higher and lower levels of parental education attainment is Pierre Bourdieu’s 

theory of cultural and social reproduction (Bourdieu & Passeron, 1977; Bourdieu, 1986). The 

theory holds that social actors consciously and subconsciously shape and exploit institutional 

structures that permit them to preserve the prevailing stratified social order across generations 

(Edgerton, Peter & Roberts, 2014). Privileged parents, the theory follows, can use social 

connections (i.e., social capital) and cultural knowledge (i.e., cultural capital) to facilitate their 

children’s attainment of social advantages.  



 

47 

Educated parents confer academic advantage on their children by transmitting cultural 

values and forms of behavior, such as attitudes toward schooling and patterns of speech, that are 

favorable for succeeding in school (Bernstein, 2003; Lareau, 2002). Bernstein (2003), for 

instance, explains that schools are built on the middle- and upper-classes’ elaborated speech 

code, and that teachers judge students who do not use the middle and upper classes’ form of 

speech to be less intelligent, a judgement that is then both explicitly and implicitly 

communicated to students. Lareau (2002) argues that middle- to upper-class parents rear their 

children in a manner that she describes as concerted cultivation, which is characterized, in part, 

by consciously fostering the development of language favorable for navigating social 

institutions.   

 Integral to Bourdieu’s theory of social and cultural reproduction is the concept of 

habitus—an individual’s way of thinking, perceptions and dispositions, which are informed by 

present and past experiences. A child’s habitus, largely rooted in familial socialization, shapes 

the student’s outlook on the world, including perceptions of what is possible and preferable for 

someone from their social position and upbringing. The circumstances in which individuals 

undergo socialization impact the way they conceive of different roles, including the role of 

student (Pallas, 1993). Students whose parents and adult role models did not complete high 

school, for instance, are less likely than other students to view their role of student as one 

involving academic success. On the other hand, the children of college-educated parents are 

more likely to develop worldviews favorable for attending college themselves. 

Black Ethnicity (%AA) 

 Research on achievement differences between groups of Black students is uncommon. 

The limited amount of research is due, at least in part, to the manner by which students are asked 

to identify themselves, including on NAEP assessments. Black students do not typically have the 
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opportunity to provide more details about their identity. Some research, however, points to 

differences in academic outcomes between Black students whose ancestors were forced to the 

United States many generations ago as slaves compared to students who are immigrants or 

whose parents are immigrants (Anderson, 2015). The %AA variable in this study represents the 

percent of the Black population in each state who identify as African American, and it is used in 

an attempt to improve synthetic-regressions estimates of mean math achievement of Black 

students across states.    

Rationale for the %AA Predictor. A 2015 study from the Pew Research Center on the 

characteristics of Black immigrant populations in the United States points to substantial 

differences between Black immigrants and Black Americans on measures of academic and 

occupational achievement (Anderson, 2015). The study, for instance, finds that Black 

immigrants are three times more likely to hold a college degree. Considering that parental level 

of education is strongly associated with academic achievement, first-generation Black students 

presumably fare better on measures of academic achievement than the wider Black population, 

though a strong research base to support these quantitative differences in achievement between 

Black populations does not yet exist. 

 On the other hand, there is a strand of anthropological research that suggests there are 

systemic differences in the academic orientations and achievement of African American students 

and other Black students in the United States, differences shaped by distinct minority 

experiences (Ogbu & Simmons, 1998; Ogbu, 2003). Ogbu wrote of the distinct experiences and 

socialization of “involuntary” and “voluntary” minorities. The former generally refers to African 

Americans, Mexican Americans and American Indians, groups whose families have lived in the 

United States for many generations. The latter generally refers to children of immigrants, who 



 

49 

are racial and ethnic minorities in the United States, but whose families chose to come to the 

United States. For Ogbu, the American experience of voluntary minorities is characteristically 

one of assimilation and optimism regarding their ability to experience academic achievement and 

upward mobility. On the other hand, involuntary minorities, including African Americans, are 

generally encultured to believe that schooling will not help them experience upward mobility 

(Foley, 2004). “Involuntary” minorities are keenly aware of U.S. institutions’ enduring role in 

discriminating against members of their race or ethnicity and are more reluctant to believe 

schooling can serve as a vehicle for experiencing upward mobility.   

Predictors for Achievement of Hispanic Students  

To calculate regression-based estimates of mean math achievement for the sixth subgroup 

of interest, students identifying as Hispanic, state-level variables representing factors related to 

parental level of education (%BA), the economic circumstances of students’ families (FER), 

English language proficiency of students (%EL), and the quality of schooling (SQI) are again 

used as predictor variables. In addition, a predictor variable representing Hispanic origin is used. 

This last predictor variable is operationalized as the percent of the Hispanic population by state 

of Mexican descent (%MX). 

Figure 2.3: Regression model for computing state-level synthetic estimates of mean math  
achievement of Hispanic students 

 
�̂��̅�𝒎𝒂𝒕𝒉

 = �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) + �̂�𝟑(%EL) + �̂�𝟒(SQI) + �̂�𝟓(%MX) 
 

 

Hispanic Origin (%MX) 

 In broad terms, Hispanic (or “Latino”) in the United States refers to persons who descend 

from Spanish-speaking populations and cultures. The U.S. Census collects information on the 

ancestral countries and regions of Hispanics and designates six “origin types”—Mexican, Puerto 



 

50 

Rican, Cuban, Central American, South American, and Other Hispanic (U.S. Census Bureau, 

2016). The predictor variable (%MX), used to model the relationship between Hispanic origin 

and achievement, represents the percent of Hispanics by state whose descendants arrived in the 

United States from Mexico. This origin type alone accounts for about sixty percent of Hispanics 

residing in the United States (U.S. Census Bureau, 2016). 

Rationale for %MX Predictor. Despite their grouping as a single ethnicity, Hispanics 

residing in the United States are not a monolithic population. Groups of Hispanics arrived in the 

U.S. in several waves of migration, from different regions of Latin America, and for various 

reasons. While the majority of some Hispanic origin groups migrated to the U.S. within the past 

few generations, others have lived in what is today the Southwestern United States since the 

early 19th century. The Hispanic population that has long resided in the American Southwest 

mainly identifies as Mexican American.  

 Hispanics of Mexican descent, the largest group of Hispanics residing in the U.S., have 

lower average levels of academic attainment than the other five origin types designated by the 

Census. In 2016, about twelve percent of Hispanic adults in the U.S. identifying as Mexican held 

a bachelor’s or more advanced degree. By contrast, over twenty percent of Hispanics by origin 

type other than Mexican held a bachelor’s or more advanced degree.  

 In a sense, the difference in academic attainment of Hispanics of Mexican origin and 

other Hispanics supports Ogbu’s (2003) theory around the academic orientations of voluntary 

and involuntary minorities. The families of many Mexican American students have been in the 

U.S. for several generations. By contrast, the new immigrant experience is more characteristic of 

other Hispanic groups. From the theoretical perspective developed by Ogbu, these more recent 
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immigrants are more likely to harbor views of the education system as an institution that can be 

leveraged to experience achievement and upward mobility.  

Predictors for Achievement of Asian or Pacific Islander Students  

To calculate regression-based estimates of mean math achievement for the seventh 

subgroup of interest, students identifying as Asian or Pacific Islander, state-level variables 

representing factors related to parental level of education (%BA), the economic circumstances of 

students’ families (FER), English language proficiency of students (%EL), and the quality of 

schooling (SQI) are again used as predictor variables. In addition, a predictor variable 

representing Asian students is used. This last predictor variable is operationalized as the percent 

of grade 8 Asian or Pacific Islander students by state who identify as Asian, but not Pacific 

Islander (%A). 

Figure 2.4: Regression model for computing state-level synthetic estimates of mean math 
achievement of Asian / Pacific Islander students 

 
�̂�𝑨𝑷𝑰̅̅ ̅̅ ̅̅ 𝒎𝒂𝒕𝒉

 = �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) + �̂�𝟑(%EL) + �̂�𝟒(SQI) + �̂�𝟓(%A) 
 

 

Asian (%A) 

To disaggregate achievement results by subgroup, the NAEP program combines Asian 

students with Native Hawaiian and Pacific Islander students. Hence the term, Asian Pacific 

Islander (API). Native Hawaiian and Pacific Islander refers to persons who identify as Native 

Hawaiian, Samoan, Guamanian or Chamorro, Fijian, Tongan, or Marshallese and encompasses 

the people within the United States jurisdictions of Melanesia, Micronesia and Polynesia. The 

predictor variable, %A, is used to model the relationship between the percent of Asians that make 

up Asian Pacific Islander grade 8 populations within states and the mean math achievement of 
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Asian Pacific Islander 8th graders in each state (i.e., the NAEP-reported estimate for API students 

by state in the test sample).  

Rationale for %A Predictor. While Asian or Pacific Islander residents in the United 

States have the highest rate of adults with a bachelor’s or more advanced degree, when compared 

to other racial and ethnic groups, wide variability in educational attainment exists within the API 

subgroup by ancestral origin. Residents of the U.S. who identify as Asian generally attain higher 

levels of education compared to those who identify as Pacific Islanders. For instance, in 2015 the 

American Community Survey published statistics indicating that roughly half of residents who 

identified as Korean, Chinese or Japanese held a bachelor’s or more advanced degree. By 

contrast, around fifteen percent of residents identifying as Hawaiian, Samoan or Fijian held a 

bachelor’s or more advanced degree.  

 In a sense, Ogbu’s (2003) theory on the academic orientations of involuntary and 

voluntary minorities can also be extended to the phenomenon by which Asians out-achieve 

Pacific Islanders. U.S. residents who identify as Pacific Islander tend to be Americans whose 

families have inhabited regions of what is today the United States for thousands of years. While 

many U.S. residents who identify as Asian come from families who have lived in the U.S. for 

many generations, a much larger proportion of Asians residing in the US are immigrants or first- 

and second-generation American.      

 Other research (Nisbett, 2009) points to differences in cultural beliefs and orientations to 

make sense of gaps in achievement between Asians and other groups. Confucianism, which still 

influences cultural beliefs and attitudes in parts of East Asia, promoted the idea that intelligence 

is acquired through hard work and personal effort. Nisbett (2009) argues that to this day, Asians 
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believe that intellectual accomplishment is primarily a matter of work, while other racial groups 

are more likely to believe intellectual accomplishment is more a matter of innate ability. 

Predictors for Achievement of American Indian and Alaskan Native Students 
 

To calculate regression-synthetic estimates of mean math achievement for the eighth 

subgroup of interest, students identifying as American Indian or Alaskan Native (AIAN), state-

level variables representing factors related to parental level of education (%BA) and the 

economic circumstances of students’ families (FER) are used as predictor variables. Only two 

predictor variables are used to model variation in mean math achievement of AIAN students 

across states because there are relatively few states for which State NAEP reports estimates of 

mean math achievement for the AIAN subgroup, which play role of target values in this study 

and represent outcome variable values in the regression model. For the test sample (grade 8 math 

in 2015), NAEP reported the mean estimates of AIAN students in just thirteen states.  

The availability of mean math achievement estimates for AIAN students across states 

would be even fewer if not for an extra sampling effort undertaken by NAEP through a project 

known as NIES (National Indian Education Study). Every four years, the NAEP program 

conducts the NIES, which involves oversampling schools with relatively high proportions of 

AIAN students in select states to obtain more reliable and accurate estimates of AIAN 

achievement. Still, since AIAN students represent a small proportion of students nationally 

(about 1 percent), the NIES study is only able to obtain sufficiently large samples to meet 

reporting requirements for a relatively small number of states. 

Figure 2.5: Regression model for computing state-level synthetic estimates of mean math 
achievement of American Indian / Alaskan Native students 

 
�̂�𝑨𝑰𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅ 𝒎𝒂𝒕𝒉

 = �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) 
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Predictors for Achievement of Students of Two or More Races 

To calculate regression-synthetic estimates of mean achievement for the ninth subgroup 

of interest, students identifying as two or more races, four state-level predictor variables 

representing previously described factors are used. These factors include parental level of 

education (%BA), the economic circumstances of students’ families (FER), race and ethnicity of 

students (%BHAIAN), and school quality (SQI). 

Figure 2.6: Regression model for computing state-level synthetic estimates of mean math 
achievement of students identifying with two or more races 
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Predictors for Achievement of English Learners 

To calculate regression-synthetic estimates of mean math achievement for the tenth and 

final subgroup of interest, students identifying as English learners, state-level variables 

representing factors related to parental level of education (%BA variable), the economic 

circumstances of students’ families (FER variable), and school quality (SQI variable) are used as 

predictor variables. 

Figure 2.7: Regression model for computing state-level synthetic estimates of mean math 
achievement of English learner students 
 

 

�̂�𝑬𝑳̅̅̅̅ 𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) + �̂�𝟑(SQI) 

 

 
 

The Case for a Hybrid Approach: FLEX CS 

The third and final approach used for the estimation of states’ mean math achievement 

across subgroups combines features of these first two techniques (MICE and FH)—an approach 

referred to in this dissertation as Flexible Cross-Survey Analysis (FLEX CS). Cross-Survey 

Analysis (CSA) refers to the combined analysis of data from different surveys. Use of CSA is 
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meant to increase the accuracy of parameter estimates, since combining estimates from different 

surveys results in increasing effective sample size, which should lower bias and uncertainty in 

parameter estimation (Magadin de Kramer, 2016). CSA is adopted in this study because there are 

multiple surveys and sources of data that can concurrently be used to estimate mean subgroup 

achievement on State NAEP.   

The Case for Flexibility 

A distinctive and appealing feature of this FLEX CS approach is that the final estimates 

are not required to be formed from the same subestimates. For instance, the estimate of mean 

achievement for one state’s Hispanic students can be obtained through the combination of MICE 

and WPE subestimates, meanwhile the FLEX CS estimate for a different state’s Hispanic 

students can be obtained through the combination of FH and NNI subestimates. 

The appeal of this approach is that it involves combining only data from different sources 

that can reasonably be expected to improve prediction. Although combining estimates computed 

from different methods and from different sources is generally a helpful technique for improving 

accuracy, not all estimates should be expected to improve accuracy to the same degree. FLEX 

CS permits the researcher to select only those variables from the original data file (in this case, 

the test sample) that are most helpful for predicting missing values in dependent variables, while 

at the same time allowing the researcher to use helpful administrative data external to the 

original data file for prediction. This approach expands on the flexibility offered by MICE, in 

which select data variables from the original data file are used to impute values on a variable-by-

variable basis, while simultaneously borrowing useful predictive data from other surveys, which 

is a common feature of the SAE framework and Cross-Survey Analysis.  
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Chapter 3: Methodology 

 To appreciate the scale of the research problem at hand it is helpful to examine Table 3.1, 

which displays the extent to which estimates of mean achievement on the 2015 grade 8 

mathematics assessment are reported for subgroups across states. In the table, rows represent 

states and columns represent subgroups, and the presence of a dot (•) within a cell indicates that 

the mean math achievement estimate of the corresponding state subgroup is reported by NAEP. 

Conversely, empty cells indicate that the mean math achievement estimates for the 

corresponding subgroup and state are unreported. As an instructive example, for Alabama (AL), 

the state from the first row of Table 3.1, mean math achievement estimates are unreported for 

four separate subgroups, students who identify as Asian or Pacific Islander (API), American 

Indian or Alaskan Native (AIAN), mixed-race (TP), and as an English learner (EL).  

  The problem of missing achievement estimates is most acute for the race and ethnicity 

subgroups, especially the American Indian or Alaskan Native (AIAN) group. Estimates for 

students from this subgroup are only reported in 13 of the 50 states. Next, reporting is most 

sparse for students who identify as two or more races, followed by Asian Pacific Islander.  

Across states, the problem is most acute for Utah, which has missing estimates for 7 of 18 

subgroups, followed by Maine and Vermont, each of which are missing estimates for 6 of 18 

subgroups.  

 This dissertation attempts to determine whether it is justifiable to use any of three 

separate and progressively more complex methodological approaches to fill out matrices of 

estimates representing mean achievement on State NAEP, such as the one depicted in Table 3.1. 

In addition, this study tries to answer whether one of the three techniques generally outperforms 

the others and whether relative performance varies by subgroup.  
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Table 3.1: Unreported mean achievement estimates for grade 8 math 2015, State NAEP 

State FRL PARENTAL EDUCATION RACE & ETHNICITY ENGLISH 
PROF. 

LEARNING 
DISABILITY GENDER 

E I NHS HS SBA BA W B H API AIAN TP EL NEL SWD NSWD M F 
AL • • • • • • • • •     • • • • • 
AK • •     • • • • • • • • • • • • 
AZ • • • • • • • • • • •  • • • • • • 
AR • • • • • • • • •    • • • • • • 
CA • • • • • • • • • •  • • • • • • • 
CO • • • • • • • • • •  • • • • • • • 
CT • • • • • • • • • •   • • • • • • 
DE • • • • • • • • • •    • • • • • 
FL • • • • • • • • • •  • • • • • • • 
GA • • • • • • • • • •  • • • • • • • 
HI • • • • • • •  • •  • • • • • • • 
ID • • • • • • •  •     • • • • • 
IL • • • • • • • • • •   • • • • • • 
IN • • • • • • • • •   • • • • • • • 
IA • • • • • • • • • •  • • • • • • • 
KS • • • • • • • • • •  • • • • • • • 
KY • • • • • • • • • •  •  • • • • • 
LA • • • • • • • • •     • • • • • 
ME • • • • • • •       • • • • • 
MD • • • • • • • • • •  • • • • • • • 
MA • • • • • • • • • •   • • • • • • 
MI • • • • • • • • • •   • • • • • • 
MN • • • • • • • • • • • • • • • • • • 
MS • • • • • • • • •     • • • • • 
MO • • • • • • • • •     • • • • • 
MT • • • • • • •  •  • •  • • • • • 
NE • • • • • • • • •   •  • • • • • 
NV • • • • • • • • • •  • • • • • • • 
NH • • • • • • •  • •    • • • • • 
NJ • • • • • • • • • •    • • • • • 
NM • • • • • • •  •  •  • • • • • • 
NY • • • • • • • • • •   • • • • • • 
NC • • • • • • • • • • • • • • • • • • 
ND • • • • • • • • •  •   • • • • • 
OH • • • • • • • • • •  • • • • • • • 
OK • • • • • • • • •  • • • • • • • • 
OR • • • • • • •  • •  •  • • • • • 
PA • • • • • • • • • •  • • • • • • • 
RI • • • • • • • • • •  • • • • • • • 
SC • • • • • • • • •    • • • • • • 
SD • • • • • • •  •  •   • • • • • 
TN • • • • • • • • •     • • • • • 
TX • • • • • • • • • •  • • • • • • • 
UT • •     •  •  •  • • • • • • 
VT • • • • • • •       • • • • • 
VA • • • • • • • • • •  • • • • • • • 
WA • • • • • • • • • • • • • • • • • • 
WV • • • • • • • •      • • • • • 
WI • • • • • • • • • • •  • • • • • • 
WY • • • • • • •  •  •   • • • • • 

Missing 0 0 2 2 2 2 0 11 3 20 37 26 19 0 0 0 0 0 
FRL = National free or reduced lunch program (E = Eligible, I = Ineligible); NHS = Did not finish high 
school, HS = Graduated high school, SBA = Some education after high school, BA = Graduated college; 
W = White, B = Black, H = Hispanic, API = Asian/Pacific Islander; AIAN = American Indian/Alaskan 
Native, TP = Two or more races; English prof. = English proficiency (EL = English learner, NEL = 
Not an English learner); SWD = Student with learning disability (including those with 504 plans), 
NSWD = Not a student with learning disability; M = Male student, F = Female student; Missing = total 
number of students for which NAEP does not report achievement by subgroup. 
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Overall Research Design and Methods 

Evaluating the extent to which a technique performs well relative to other techniques is 

based on weighted Mean Absolute Error (wMAE)—a weighted measure of the distances 

between NAEP-reported estimates of mean achievement and estimates produced by the three 

techniques. This measure aggregates distances between mean estimates reported by NAEP and 

mean estimates produced through the techniques for cells where the NAEP estimate is available, 

by subgroup of interest. In addition to wMAE, accuracy is evaluated through a measure of 

coverage, which is calculated as a proportion and represents the frequency with which technique-

produced estimates of mean math achievement lie within target intervals associated with 

corresponding NAEP-reported estimates. Hence, the denominator used for computing this 

proportion is a number that represents cells with NAEP-reported estimates. 

It should be noted that use of the term accuracy instead of bias to refer to prediction error 

in this study is deliberate because the difference between technique-based estimates and 

achievement values reported by NAEP does not represent a pure measure of bias. The distinction 

stems from the fact that NAEP-reported achievement values are themselves estimates, and do not 

represent true population values (i.e., the actual mean math achievement of states’ subgroups), 

and calculating bias would require knowing the actual achievement means. 

Weighted Mean Absolute Error (wMAE) 

The wMAE measure is calculated for each technique by pooling weighted prediction 

errors over states. It is computed for each technique across subgroups, which provides an overall 

measure of accuracy, as well as per subgroup, which permits inference regarding whether the 

relative accuracy of the techniques vary by subgroup.  
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The overall measure of accuracy (i.e., wMAE across subgroups) is calculated as follows 

in this study, 

Overall wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟑𝟕𝟔
𝒊=𝟏 )

𝟑𝟕𝟔
, 

 

where wMAE of a technique t is equal to a sum of weighted absolute differences (i.e., prediction 

errors) between the estimates for state subgroups i generated by the technique under study 

(𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂ i) and the estimates for state subgroups i as reported by NAEP (𝑁𝐴𝐸�̂�𝑖), divided by 

the number of estimates made available by NAEP for subgroups of interest across states (376). 

Each absolute difference (|𝑁𝐴𝐸�̂�𝑖 − 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂
𝑖|) is weighted by the reciprocal of the standard 

error (i.e., estimated precision) associated with corresponding NAEP-reported estimates 

(𝑆𝐸𝑁𝐴𝐸�̂�𝑖
) before being summed.15  

This weighting step has the desired effect of diminishing the relative contribution to the 

wMAE measure of absolute differences when standard errors associated with the NAEP-reported 

estimates (𝑆𝐸𝑁𝐴𝐸�̂�𝑖
) are relatively large. This way NAEP estimates of achievement that are 

calculated with less precision have less influence than NAEP estimates calculated with greater 

precision on the evaluation of techniques with regard to their relative predictive accuracy.  

For the test sample used in this study, NAEP reports estimates for state subgroups in 776 

instances. However, to limit the scope of this study, comparisons are made between mean 

estimates of math achievement produced from the three techniques to estimates reported by 

NAEP for subgroups of particular interest—those for which the NAEP program is unable to 

report direct estimates of all 50 states. The subgroups of interest include the four parental level of 

                                                           
15 Estimates of standard error of technique-produced predictions of mean math achievement do not directly factor 
into calculation of wMAE, though these standard error estimates do have a central role in estimation with the FLEX 
CS technique. More detail on this topic is provided in the section of this chapter describing the FLEX CS procedure. 
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education subgroups, five race and ethnicity subgroups, and one English proficiency subgroup. 

These subgroups comprise a total of 376 NAEP-reported estimates across states and, hence, 376 

points for comparison (i.e., target values). Thus, the denominator from the formula for wMAEt 

across subgroups of interest is equal to 376 for each technique evaluated in this study.  

In addition to an evaluation of accuracy through wMAE across subgroups of interest, 

evaluation of accuracy through wMAE is conducted per subgroup of interest for each technique. 

This second set of comparisons helps address the third research question—how techniques vary 

in their ability to predict achievement by subgroup.  The formulas used per subgroup, as 

expressed following this paragraph, vary only by the upper limit of summation and denominator 

that are used—both of which are equal to the number of states for which NAEP reports estimates 

of mean math achievement for the corresponding subgroup. For instance, NAEP does not report 

on the mean math achievement of students whose parents did not finish high school (NHS) for 2 

of the 50 states and, thus, the upper limit of summation and denominator used for this subgroup 

is forty-eight (i.e., 50 − 2).     

NHS wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟒𝟖
𝒊=𝟏 )

𝟒𝟖
 

HS wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟒𝟖
𝒊=𝟏 )

𝟒𝟖
 

SBA wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟒𝟖
𝒊=𝟏 )

𝟒𝟖
 

BA wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟒𝟖
𝒊=𝟏 )

𝟒𝟖
 

B wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟑𝟗
𝒊=𝟏 )

𝟑𝟗
 

H wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟒𝟕
𝒊=𝟏 )

𝟒𝟕
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API wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟑𝟎
𝒊=𝟏 )

𝟑𝟎
 

AIAN wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟏𝟑
𝒊=𝟏 )

𝟏𝟑
 

TP wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟐𝟒
𝒊=𝟏 )

𝟐𝟒
 

EL wMAEt = 
∑ ((|𝑵𝑨𝑬�̂�𝒊− 𝑻𝒆𝒄𝒉𝒏𝒊𝒒𝒖𝒆̂

𝒊|) ÷ 𝑺𝑬𝑵𝑨𝑬�̂�𝒊

𝟑𝟏
𝒊=𝟏 )

𝟑𝟏
 

Coverage  

Similar to wMAE, coverage statistics are calculated across subgroups and per subgroup 

of interest. To calculate coverage across subgroups of interest, let C(x) be the number of 

instances in which the technique-produced predicted values, {𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂
1,… 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

376}, 

fall within target intervals associated with corresponding NAEP-reported estimates of mean math 

achievement. Then, the coverage statistic across subgroups equals,   

𝐶(𝑥)

376
 

Since the number of available target-values vary across subgroups of interest, so do the 

denominators in the previously expressed coverage formula, (𝐶(𝑥)

𝑛
), for calculating coverage 

statistics per subgroup of interest. For the parental level of education subgroups (NHS, HS, SBA, 

& BA), the denominator is equal to 48. For the Black (B), Hispanic (H), Asian Pacific Islander 

(API), American Indian/Alaskan Native (AIAN), two or more races (TP), and English learner 

(EL) subgroups the denominators equal 39, 47, 30, 13, 24, and 31, respectively. 

The target intervals are expressed as, 

(𝑁𝐴𝐸�̂�𝑖𝑗 ± 0.2*𝑁𝐴𝐸𝑃 𝑠𝑑̂
𝐼), 

where 𝑁𝐴𝐸�̂�𝑖𝑗  represents the NAEP-reported estimate of mean math achievement for subgroup i 

in state j and 𝑁𝐴𝐸𝑃 𝑠𝑑̂
𝐼 represents the median standard deviation estimate for subgroup I (i.e., 
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the median value of the NAEP-reported state-level standard deviations for subgroup I across 

states). Thus the technique-produced estimate of mean math achievement for subgroup i in state 

j, 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂
𝑖𝑗, falls within its corresponding target interval if the absolute mean standardized 

difference, b, between 𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂
𝑖𝑗  and 𝑁𝐴𝐸�̂�𝑖𝑗, is less than 0.2, where standard deviation is 

defined by 𝑁𝐴𝐸𝑃 𝑠𝑑̂
𝐼. The b statistic is expressed as,  

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝑖𝑗−𝑁𝐴𝐸�̂�𝑖𝑗|

𝑁𝐴𝐸𝑃 𝑠𝑑̂ 𝐼
, 

the absolute difference between technique-based and NAEP-reported estimates of mean math 

achievement for subgroup i in state j, divided by the median of the NAEP-reported state-level 

standard deviations for subgroup I. The denominator (𝑁𝐴𝐸𝑃 𝑠𝑑̂
𝐼) used for calculating the b 

statistic takes one of ten possible values in this study, one for each subgroup of interest, as 

follows, 

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝑁𝐻𝑆𝑗−𝑁𝐴𝐸�̂�𝑁𝐻𝑆𝑗|

31.5
, 

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝐻𝑆𝑗−𝑁𝐴𝐸�̂�𝐻𝑆𝑗|

32.6
, 

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝑆𝐵𝐴𝑗−𝑁𝐴𝐸�̂�𝑆𝐵𝐴𝑗|

30.6
, 

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝐵𝐴𝑗−𝑁𝐴𝐸�̂�𝐵𝐴𝑗|

34.4
, 

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝐵𝑗−𝑁𝐴𝐸�̂�𝐵𝑗|

33.4
, 

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝐻𝑗−𝑁𝐴𝐸�̂�𝐻𝑗|

34.0
, 

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝐴𝑃𝐼𝑗−𝑁𝐴𝐸�̂�𝐴𝑃𝐼𝑗|

38.1
, 

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝐴𝐼𝑁𝐴𝑗−𝑁𝐴𝐸�̂�𝐴𝐼𝑁𝐴𝑗|

35.4
, 
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𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝑇𝑃𝑗−𝑁𝐴𝐸�̂�𝑇𝑃𝑗|

35.2
, 

𝑏 =
|𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒̂

𝐸𝐿𝑗−𝑁𝐴𝐸�̂�𝐸𝐿𝑗|

33.3
, 

In these formulas the acronym used for a subgroup (e.g., NHS) replaces “I” from the general 

formula and the actual median value of NAEP-reported state-level standard deviations for 

subgroup I replaces “𝑁𝐴𝐸𝑃 𝑠𝑑̂
𝐼".16 

Reporting Results of Predictive Accuracy (wMAE & Coverage) 

The results from computing wMAE and coverage are presented in chapter 5 in a table 

similar to Table 3.2 (provided below as an example), which demonstrates the wMAE and 

coverage statistics by technique for each subgroup of interest and then aggregated for all 

subgroups of interest. 

 

 

 

 

 

 

 

 

 

 

                                                           
16 Denominator values are calculated from data gathered through the NAEP Data Explorer (NDE) tool hosted on the 
National Center for Educational Statistics (NCES) website-- https://www.nationsreportcard.gov/ndecore/landing. 
The R code used for calculating these values (median NAEP-reported state-level standard deviations per subgroup 
of interest) is provided on the author’s GitHub page. 
  

https://www.nationsreportcard.gov/ndecore/landing
https://github.com/DavidBamat/Dissertation-Code/projects/1
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Table 3.2: Subgroup and aggregate measures of wMAE and coverage by technique (template). 

 

In addition to Table 3.2, the values that factor into the calculation of accuracy statistics 

(i.e., technique-produced estimates of mean math achievement) are provided in a series of tables 

in Appendix B, similar to Table 3.3, presented on the following page as an example. 

 

 

 

 

 MICE FH FLEX CS 
Did not finish high school (n = 48)    

Weighted Mean Absolute Error (wMAE)  ##.##  ##.## ##.## 
Coverage  .## .## .## 

Graduated high school (n = 48)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage  .## .## .## 

Some education after high school (n = 48)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage  .## .## .## 

Graduated college (n = 48)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage  .## .## .## 

Black (n = 39)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage  .## .## .## 

Hispanic (n = 47)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage  .## .## .## 

Asian/Pacific Islander (n = 30)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage  .## .## .## 

American Indian/Alaskan Native (n = 13)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage  .## .## .## 

Two or more races (n = 24)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage  .## .## .## 

English learner (n = 31)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage  .## .## .## 

Total (n = 376)    
Weighted Mean Absolute Error (wMAE) ##.## ##.## ##.## 
Coverage .## .## .## 
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Table 3.3: Example table of estimates (here, for students whose parents did not finish high school) by 
state and technique, including NAEP-reported estimates. 

Did not finish high school (NHS) NAEP Reported MICE FH FLEX CS 
AL 254 (2.5)  ### ### ### 
AK -- -- -- -- 
AZ 269 (2.3)  ### ### ### 
AR 266 (2.4)  ### ### ### 
CA 261 (2.0)  ### ### ### 
CO 266 (2.6)  ### ### ### 
CT 254 (4.2)  ### ### ### 
DE 264 (2.8)  ### ### ### 
FL 264 (2.5)  ### ### ### 
GA 269 (2.4)  ### ### ### 
HI 270 (4.4)  ### ### ### 
ID 262 (2.6)  ### ### ### 
IL 270 (3.1)  ### ### ### 
IN 268 (3.1)  ### ### ### 
IA 261 (3.5)  ### ### ### 
KS 268 (4.1)  ### ### ### 
KY 260 (2.6)  ### ### ### 
LA 258 (2.5)  ### ### ### 
ME 267 (4.4)  ### ### ### 
MD 265 (3.4)  ### ### ### 
MA 267 (4.6)  ### ### ### 
MI 261 (3.7)  ### ### ### 
MN 275 (3.3)  ### ### ### 
MS 258 (3.0)  ### ### ### 
MO 257 (2.9)  ### ### ### 
MT 272 (3.7)  ### ### ### 
NE 262 (2.7)  ### ### ### 
NV 263 (2.0)  ### ### ### 
NH 269 (4.4)  ### ### ### 
NJ 267 (4.5)  ### ### ### 
NM 261 (2.2)  ### ### ### 
NY 267 (3.0)  ### ### ### 
NC 264 (2.5)  ### ### ### 
ND 266 (3.4)  ### ### ### 
OH 259 (4.6)  ### ### ### 
OK 263 (3.0)  ### ### ### 
OR 268 (2.4)  ### ### ### 
PA 261 (3.4)  ### ### ### 
RI 268 (2.5)  ### ### ### 
SC 271 (3.6)  ### ### ### 
SD 265 (4.1)  ### ### ### 
TN 265 (3.1)  ### ### ### 
TX 272 (1.9)  ### ### ### 
UT -- -- -- -- 
VT 266 (3.6)  ### ### ### 
VA 268 (3.2)  ### ### ### 
WA 266 (3.0)  ### ### ### 
WV 255 (2.9)  ### ### ### 
WI 263 (3.8)  ### ### ### 
WY 272 (2.8)  ### ### ### 

Note: This tables omits estimates for 2 states (AK, UT), for which NAEP estimates aren’t published for this 
particular subgroup. 
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Table 3.3 displays estimates of mean achievement and standard error from the test sample 

for one of the parental level of education subgroups (“Did not finish high school”; NHS) as 

reported by NAEP, as well as the estimates for each technique under study. Similar tables are 

provided in Appendix B for each subgroup of interest in this study. 

Criteria for Recommending a Technique 

Coverage 

The coverage statistic calculated in this study plays the important role of signaling 

whether a technique could be recommended for use in practice—for instance, by NAEP 

researchers. A technique passes muster for recommendation in this study if, across subgroups of 

interest, at least 95 percent of the technique’s predicted estimates of mean math achievement fall 

within corresponding target intervals, and per subgroup of interest, at least 80 percent fall within 

corresponding target intervals. 

These criteria are selected based on results of a simulation analysis conducted for this 

dissertation with example data from the EdSurvey package (Bailey et al., 2019) in R. The 

package includes an example NAEP dataset of 16,915 rows, each representing a fictitious 

student with demographic and achievement information. In broad terms, the steps undertaken to 

conduct the simulation analysis involved computing target estimates of mean achievement and 

standard deviations per available subgroup from a random sample of 2,500 students from the full 

set of 16,915, a sample typical in size to samples used for each state in actual NAEP testing (U.S. 

Department of Education, 2002).17 Then, repeatedly (1,000 times total) sampling from the 

remaining students in the example dataset, while setting the number of students from each 

                                                           
17 Students who identify with two or more races, the “TP” subgroup, are not included in the example dataset. Thus, 
the simulation analysis included 9 of the 10 subgroups of interest. 
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subgroup to be sampled equal to the number sampled from the original group of 2,500 students, 

and calculating the proportion of 1000 sample means per subgroup falling within their 

corresponding target intervals.18  

As demonstrated in Table 3.4, the overall coverage rate (i.e., across subgroups) was 0.97. 

By subgroup, 6 of 9 were greater than 0.90, while 8 of 9 had rates greater than 0.8. On the other 

hand, the coverage rate for one subgroup, representing American Indian and Alaskan Native 

(AIAN) students was much lower. Just about a third of sampled means for this subgroup were 

bound by their respective target interval.  

Based on these results, despite the anomalous rate associated with the AIAN subgroup, it 

is reasoned that an overall coverage rate equal to or greater than 0.95 and a rate of at least 0.80 

per subgroup represent markers of a successful technique in its ability to predict mean math 

achievement. The samples used for the simulation analysis are drawn from the same 

“population,” the example dataset from the EdSurvey package (Bailey et al., 2019), with size of 

subgroup samples similar to what can typically be expected in NAEP testing. The simulation 

results should thus theoretically offer insight into how often sound predictions of mean math 

achievement can be expected to come within 0.2 standard deviations of NAEP-reported 

estimates of mean math achievement (i.e., fall within associated target intervals).   

 

 

  

                                                           
18 The initial sample of 2,500 randomly drawn students to establish target intervals included at least 62 students per 
subgroup of interest, except for the AIAN subgroup. To resolve this issue, random sampling among AIAN students 
only was undertaken, which resulted in a target interval based on 70 AIAN students (see Table 3.4).  The set of R 
code used for the simulation analysis is provided on the author’s GitHub page. 

https://github.com/DavidBamat/Dissertation-Code/projects/1
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Table 3.4: Coverage rate results and additional statistics from simulation analysis 
Subgroup Estimand 

(target) mean Estimand SD n Coverage rate 

NHS 263 31.8 192 0.89 
HS 266 30.6 446 0.99 

SBA 278 33.0 445 1.00 
BA 289 35.6 1091 1.00 
B 255 32.6 491 0.99 
H 261 33.5 360 0.99 

API 293 36.8 110 0.80 
AIAN 273 32.2 70 0.33 

EL 241 34.7 143 0.96 
TOTAL    0.97 

Note: “n” statistics represent the number of sampled students per subgroup for calculating both 
estimand and estimator statistics. 
 
wMAE 

The other measure of accuracy, wMAE, is not used as criteria for making determinations 

in absolute terms—that, yes, a technique should be recommended for use, or that, no, it should 

not. On the other hand, it helps determine which techniques perform best in relative terms. If 

multiple techniques meet the criteria to be considered suitable for practical use, wMAE statistics 

help determine which performs best in terms of ability to accurately predict mean subgroup 

achievement. 

The Three Techniques Used for Estimation of Mean Math Achievement 

 The three techniques used in this study are Multivariate Imputation by Chained Equations 

(MICE), the Fay-Herriot model (FH), and a Flexible Cross-Survey model (FLEX CS). The first 

approach (MICE) is form of Multiple Imputation, the second (FH) is a form of Small Area 

Estimation, and the third is a form of Cross-Survey analysis that combines features of MICE and 

FH, and provides the researcher flexibility in choice of data and model specification.  

The approaches are progressively more complex in terms of the data that they require for 

prediction and the manner in which the predicted values are constructed. The MICE approach 

requires only test sample data, the NAEP-reported state-level estimates of mean math 
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achievement of 8th grade students in 2015. The FH technique requires restricted-use math 

achievement data of 8th grade students in 2015, as well as state-level administrative data. The 

FLEX CS technique draws on the data used for MICE and FH, as well as an additional set of 

district-level achievement data. The FH procedure involves combining two subestimates and 

FLEX CS involves combining up to four subestimates. It is presumed that additional layers of 

complexity enhance predictive performance. 

Prediction with the MICE Technique 
 

The MICE procedure is implemented with the mice package in R (van Buuren & 

Groothuis-Oudshoorn, 2011) and publicly available NCES data representing mean achievement 

of subgroups within states on grade 8 math in 2015 (i.e., the test sample).19 Multiple Imputation, 

including mice, is traditionally used to impute missing values of incomplete variables of interest 

from a dataset, a total m times, which results in m complete datasets.  For this study, however, 

the imputation procedure is separately administered for each target value within subgroups of 

interest. Hence, the MICE procedure is executed a total of 376 times, resulting in 376 × 𝑚 

complete datasets.  

 This adaptation serves the evaluative nature of this study. The evaluation of predictive 

accuracy of techniques is based on comparisons between predicted and observed (i.e., target) 

values. By contrast, the technique is not applied to impute values into cells with actual missing 

data in this study. For each set of m imputations generated through MICE, one of the target 

values is withheld from the dataset as if it were missing. The MICE procedure is then executed 

and the average of m imputed values for the withheld target value is treated as the predicted 

                                                           
19 The uppercase acronym notation of Multivariate Imputation by Chained Equations (“MICE”) is generally used to 
reference or describe the technique as implemented in this study (i.e., the adaptation of the technique). On the other 
hand, the lowercase and italicized acronym (“mice”), is used to describe the technique in general, including how the 
technique is implemented in practice. 
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mean math achievement of the corresponding state’s subgroup. This process repeats itself for 

each target value and, each time, a new target (observed) value of interest is withheld and the 

previously removed target value is returned to the dataset. To illustrate, Table 3.5 depicts this 

withholding process for the first and second administrations of the MICE technique in this 

study.20 Cells that are color-coded dark gray demonstrate the location of withheld values. 

Table 3.5: Depiction of “withholding” process (here, for the first and second administrations of 
MICE)  

 First 5 cases (sorted alphabetically) from test sample, no target values withheld 

State FRL PARENTAL EDUCATION RACE & ETHNICITY ENGLISH 
PROF. 

LEARNING 
DISABILITY GENDER 

E I NHS HS SBA BA W B H API AIAN TP EL NEL SWD NSWD M F 
AL • • • • • • • • •     • • • • • 
AK • •     • • • • • • • • • • • • 
AZ • • • • • • • • • • •  • • • • • • 
AR • • • • • • • • •    • • • • • • 
CA • • • • • • • • • •  • • • • • • • 
… … … … … … … … … … … … … … … … … … … 

First 5 cases from test sample for 1st administration of MICE. The NAEP-reported mean math achievement 
estimate of students from Alabama (AL) whose parents did not complete high school (NHS) is withheld. 

State FRL PARENTAL EDUCATION RACE & ETHNICITY ENGLISH 
PROF. 

LEARNING 
DISABILITY GENDER 

E I NHS HS SBA BA W B H API AIAN TP EL NEL SWD NSWD M F 
AL • •  • • • • • •     • • • • • 
AK • •     • • • • • • • • • • • • 
AZ • • • • • • • • • • •  • • • • • • 
AR • • • • • • • • •    • • • • • • 
CA • • • • • • • • • •  • • • • • • • 
… … … … … … … … … … … … … … … … … … … 

First 5 cases from test sample for 2nd administration of MICE. The NAEP-reported mean math 
achievement estimate of students from Arizona (AZ) whose parents did not complete high school (NHS) is 
withheld and the estimate of students from Alabama whose parents did not complete high school is returned. 

State FRL PARENTAL EDUCATION RACE & ETHNICITY ENGLISH 
PROF. 

LEARNING 
DISABILITY GENDER 

E I NHS HS SBA BA W B H API AIAN TP EL NEL SWD NSWD M F 
AL • • • • • • • • •      • • • • • 
AK • •     • • • • • • • • • • • • 
AZ • •  • • • • • • • •  • • • • • • 
AR • • • • • • • • •    • • • • • • 
CA • • • • • • • • • •  • • • • • • • 
… … … … … … … … … … … … … … … … … … … 

Note: For brevity, this table demonstrates just the first 5 of 50 cases from the test sample. 
 

                                                           
20 This design is similar to the leave-one-out scheme commonly used in cross-validation research (LOOCV), though 
there are important differences. For instance, in LOOCV, “training” cases used for estimating regression coefficients 
may be discarded during linear regression if they have missing values. The mice algorithm always involves 
assigning temporary values to cases used for prediction where values are missing (see detail on this point in “Step 
2”).  In addition, LOOCV involves successively withholding each case from a dataset one time. By contrast, the 
MICE procedure in this study involves withholding NAEP-reported estimate values for variables (subgroups) of 
interest in the test sample.   
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Implementation of MICE also departs from its traditional use in that the values of interest 

in this study are the missing values themselves. By contrast, values of interest calculated with the 

technique are typically sets of pooled parameter estimates (e.g., regression coefficients) that are 

generated from sets of m complete datasets. Consider Figure 3.1, an edited version of a visual 

provided by van Buuren & Groothuis-Oudshoorn (2011), which communicates the main steps in 

multiple imputation with the mice package.    

Figure 3.1: Stages in mice, emphasis on “imputed data” stage 
 

 
 

 

Figure 3.1 depicts a scenario in which a researcher starts from an incomplete dataset and 

specifies three sets of imputations (m = 3), which results in three separate complete data sets 

(“imputed data” stage). Next, the researcher analyzes each complete dataset separately and 

records parameter estimates of interest (“analysis results” stage). Finally, the estimates of interest 

are pooled in a manner that accounts for both the within- and between-imputation variance (van 

Buuren & Groothuis-Oudshoorn, 2011).21 Attention is drawn to the “imputed data” stage in 

Figure 3.1 since the values of interest in this study are the imputed values themselves, which are 

                                                           
21 Incorporating within- and between-imputation variance into the pooled variance estimate follows Rubin’s rules 
(1987). This process entails summing three sources of variance—the between, the within and an additional source of 
sampling variance. The between represents the variance of a set of parameter estimates across imputed datasets. The 
within represents the arithmetic mean of sampling variance from each imputed dataset. The additional source of 
sampling variance is computed by dividing the between-variance estimate by the number of imputed datasets. 
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generated in the “imputed data” step. The adaptation of the technique in this study does not 

involve the subsequent stages (“analysis results” and “pooled results”) depicted in Figure 3.1. 

Step-by-step Procedure for Calculating Mean Achievement Estimates of Subgroups across 
States with MICE in this Study (the “Imputed Data” Step) 

 
A total seven steps are outlined in subsequent paragraphs to describe how predicted values of 

mean subgroup achievement across states are computed with mice (van Buuren & Groothuis-

Oudshoorn, 2011). To describe how the MICE procedure is implemented in this study, 

paragraphs in bulleted format are inserted following general descriptions of the mice procedure. 

Before delving into the steps, notation, definitions and context are documented.  
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Table 3.6: Notation used to describe the MICE procedure 
X A dataset with n cases (rows) and 𝒑 variables (columns). 

 In this study, X corresponds to the test sample, a dataset with 50 rows (states) and 
18 columns (subgroups), where cell values represent mean math achievement 
estimates for subgroups across states. 

�⃗⃗�  A vector of variables 𝒑 from dataset X used for prediction. 
 In this study, �⃗⃗�  represents the various sets of predictor variables from the chained 

regression equations. There are 10 such sets of predictors since there are 10 
outcome variables to be imputed and hence 10 chained regression equations (more 
detail on these predictors is provided in Figure 3.2. 

𝒑𝑖𝑛𝑐 An incomplete variable from dataset X, which undergoes imputation.  
 In this study, 𝒑𝑖𝑛𝑐 represents any incomplete variable from the test sample. That is, 

any of the 10 subgroups of interest (the subgroups for which NAEP does not report 
an estimate of mean math achievement).  

𝒑 Variables (columns) in dataset X (𝒑 can be either complete or incomplete). 
 In this study, there are 18 𝒑 variables—10 are incomplete and 8 are complete (not 

missing data). 

𝒑𝒊𝒏𝒄
𝒐𝒃𝒔 

Observed values from an incomplete variable from dataset X undergoing imputation. 
These are the values from each 𝒑𝑖𝑛𝑐 that are regressed on corresponding �⃗⃗� . 

𝒑𝑖𝑛𝑐−𝟏
𝒐𝒃𝒔 An incomplete variable from dataset X, which undergoes imputation, with one target 

value withheld. 
 The withheld value serves as a target value to which the average of imputed values 

(for the corresponding cell) are compared. There are 376 such target values in the 
test sample (dataset X). 

𝒚𝒑𝒊𝒏𝒄
 Imputed (predicted) values for 𝒑𝑖𝑛𝑐. 

𝛽𝑜 The y-intercept term from a regression model. 
�⃗⃗�  A vector of regression coefficients. 

 In this study, there are 10 vectors of varying length (varying number of regression 
coefficients). For instance, the length of �⃗⃗�  for imputing achievement values for the 
API subgroup is 2 (2 predictor variables), while the length of �⃗⃗�  for imputing the 
BA subgroup is 9 (see Figure 3.2 for more detail). 

𝜷 ∗ 𝒑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   
A vector of regression coefficients multiplied by associated variables 𝒑 from dataset X 
used for prediction. 

𝜀 Residual (error) term from a regression model. 
𝜎2 Variance of residuals from a regression model. 
𝑛 Cases (rows) in dataset X. 
̇  

“Dot” placed above regression estimate or imputed value to indicate it is randomly 
sampled from a probability distribution. 

t Number of iterations (times the mice algorithm cycles across chained equations 
performing regressions and sampling estimates). 

m Number of complete datasets generated from the mice procedure. Therefore also the 
number of imputed values for each cell with missing data in X  
 In this study, m complete datasets are generated for 376 separate target values and 

the average of the imputed values for each (withheld) target value is the predicted 
value to which the target value is compared.   
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Context 

Each incomplete variable 𝒑𝑖𝑛𝑐 from a dataset X is to be regressed on select predictor 

variables �⃗⃗�  from dataset X. Variables �⃗⃗�  used to predict each 𝒑𝑖𝑛𝑐 can be both complete or 

incomplete themselves. Each 𝒑𝑖𝑛𝑐 is separately specified to be regressed on select �⃗⃗�  from X. 

This permits the regression method (e.g., logistic, linear) and predictor variables �⃗⃗�  used to 

impute each 𝒑𝑖𝑛𝑐 to differ from one another. 

 In this study, each 𝒑𝑖𝑛𝑐 is a continuous variable and imputations are created under the 

normal linear regression model, of the general form: 

 

𝑦𝑝𝑖𝑛𝑐
= 𝛽𝑜 + 𝜷 ∗ 𝒑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   + 𝜀, where  𝜀 ~ N(0, 𝜎2), 

 

where 𝒚 represents predicted values for 𝒑𝑖𝑛𝑐 and 𝜷 ∗ 𝒑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   represents a vector of regression 

coefficients �⃗⃗�  multiplied by values from variables �⃗⃗� . Following guidance from Graham 

(2009), only variables 𝒑 from X with moderate to high correlations with each 𝒑𝑖𝑛𝑐 are 

used as its predictors, �⃗⃗� . For this study, moderate to high correlations are considered 

those greater than 0.5.22 The dataset X (i.e., the test sample) is a 50-row (𝑛) by 18-column 

(𝒑) data matrix, where rows 𝑛 represent states and columns (i.e., variables) 𝒑 represent 

demographic subgroups. Values in X represent NAEP-reported estimates of mean math 

achievement of 8th grade students in 2015. The test sample includes 18 𝒑 total—10 𝒑𝑖𝑛𝑐 

and 8 variables without missing data. 

 

 

                                                           
22 The r > 0.5 criterion represents a rather arbitrary cut-point. Generally, Pearson product-moment correlations of 0.5 
are considered moderate in strength. A more rigorous (i.e., higher) cut-point is used for the MICE procedure in the 
FLEX CS approach. 
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Specifying the Imputation Models 

Step 1: Before the mice algorithm is executed, the order in which each 𝒑𝑖𝑛𝑐 is regressed on 

select �⃗⃗�  is specified. This order is known as the “visiting sequence” (van Buuren, 2018). 

Although specifying a visiting sequence is not a requirement for running mice in R, a user-

defined sequence can be helpful. Specifically, it can minimize the number of imputed values for 

each predictor 𝒑𝑖𝑛𝑐 that are randomly sampled from each 𝒑𝑖𝑛𝑐′𝑠 corresponding observed values 

(𝒑𝑖𝑛𝑐
𝑜𝑏𝑠) to begin the imputation procedure, which mice implements as default for initializing 

the algorithm.23 In the event a visiting sequence is not specified prior to execution of the 

algorithm, the default in mice software (van Buuren & Groothuis-Oudshoorn, 2011) is to impute 

each 𝒑𝑖𝑛𝑐 in left-to-right order as they appear in dataset X. 

 For this study, each 𝒑𝑖𝑛𝑐, a vector representing estimates of mean math achievement of 

subgroups across states, are regressed on at least two predictors in the order depicted in 

Table 3.7. Note that the outcome variables from the chain of regression equations 

displayed in Table 3.7 correspond to each 𝒑𝑖𝑛𝑐 from dataset X. 

 

 

 

 

 

 

 

 

                                                           
23 More detail on initializing is provided in step 2. 
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Table 3.7: Visiting sequence of chained equations for this study 
Order Outcome variable Predictor variable(s) 

1 *𝑨𝑷𝑰̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, 𝑰𝒎𝒂𝒕𝒉 
2 ∗ 𝑻𝑷̅̅ ̅̅

𝒎𝒂𝒕𝒉 �̅̅̅�𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 

3 𝑩𝑨̅̅ ̅̅
𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑰𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, �̅̅̅�𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉, 
𝑵𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 

4 𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑰𝒎𝒂𝒕𝒉, 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑩𝑨̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, 

𝑵𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 

5 𝑯𝑺̅̅ ̅̅
𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑰𝒎𝒂𝒕𝒉, 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, 𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑩𝑨̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, 

𝑵𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 

6 �̅�𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅

𝒎𝒂𝒕𝒉, �̅̅̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 

7 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑩𝑨̅̅ ̅̅

𝒎𝒂𝒕𝒉 �̅̅̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉,  �̅�𝒎𝒂𝒕𝒉, 
𝑨𝑰𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉,  𝑵𝑬𝑳̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 

8 �̅�𝒎𝒂𝒕𝒉 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, 𝑬𝑳̅̅ ̅̅

𝒎𝒂𝒕𝒉 
9 ∗ 𝑨𝑰𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉 𝑬𝑳̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑨𝑷𝑰̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉 
10 𝑬𝑳̅̅̅̅

𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑨𝑰𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 

 

Note: The use of an asterisk (*) adjacent to the regression model for predicting values of the subgroup 
variables representing estimates of mean math achievement of students who identify as Asian or Pacific 
Islander (API), Two or more races (TP) and American Indian or Alaskan Native (AIAN) is meant to bring 
attention to the fact these response variables are regressed on at least one predictor variable with which 
they do not have a correlation of .50 or greater. These represent exceptions to the rule of “r > .5” and are 
specified to be regressed as such because these response variables do not have correlations with two other 
variables of at least 0.5.  Instead, they are regressed on the two variables with which they have the highest 
correlations. 
 

While there is no hard rule specifying a minimum number of cases per variable in linear 

regression (to avoid overfitting), it’s common to ensure at least 8 to 10 cases be included per 

variable used for prediction (Tabachnik & Fidell, 2007; Altman, 1991). However, a more recent 

simulation study indicates that as little as two cases per predictor variable can be used in linear 

regression without inviting undue bias in parameter estimation (Austin & Steyerberg, 2015). For 

the MICE procedure used in this study, one predictor variable is permitted to enter a regression 

model for every 5 cases.  

As an instructive example, let’s consider the 𝑩𝑨̅̅ ̅̅
𝒎𝒂𝒕𝒉 variable—the third 𝒑𝑖𝑛𝑐 to be 

imputed from the chained equations in Table 3.7. There are a total 47 cases used for regression 

for this outcome variable, so a maximum 9 predictor variables can be used. To expand on this 

example, consider that 𝑩𝑨̅̅ ̅̅
𝒎𝒂𝒕𝒉 actually has a correlation of 0.5 or greater with 10 other variables 
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from the test sample (see Table 3.8). However, this outcome variable can only be regressed on 9 

predictors and so the variable of 10 with which 𝑩𝑨̅̅ ̅̅
𝒎𝒂𝒕𝒉 has the lowest correlation is removed. 

Thus, in this example, �⃗⃗�  is a vector of 9 instead of 10 predictor variables.  

Table 3.8: Pearson correlation matrix of NAEP-reported mean math scores from test sample  
Subgroup  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
1. E                   

2. I .68                  

3. NHS .67 .47                 

4. HS .90 .75 .59                

5. SBA .84 .79 .55 .83               

6. BA .78 .90 .48 .86 .83              

7. W .59 .87 .53 .70 .73 .88             

8. B .54 .44 .57 .54 .41 .45 .55            

9. H .38 .23 .59 .44 .27 .22 .27 .55           

10. API .12 .45* 
-

.05 
.11 .09 .39 .33 .22 

-

.08          

11. AIAN -

.28 
.14 

-

.55 

-

.07 
.04 

-

.05 

-

.01 

-

.89 
.19 .22*         

12. TP .23 .26 .38 .21 .19 .48 .65 .36 .34 .00 
-

.65 
       

13. EL .20 .12 .42 .26 .06 .03 .03 
-

.14 
.54 .20 .83 .33   

 
     

14. NEL .81 .88 .54 .89 .87 .98 .87 .46 .24 .22 
-

.10 
.49* .08      

15. SWD .68 .73 .39 .79 .66 .79 .67 .44 .32 .48* .07 .13 .18 .78     

16. 
NSWD 

.81 .87 .49 .88 .85 .95 .80 .41 .24 .36 
-

.04 
.29 .11 .97 .82    

17. M .82 .85 .49 .89 .84 .96 .80 .39 .24 .36 
-

.09 
.39 .17 .97 .81 .98   

18. F .81 .89 .53 .88 .88 .95 .83 .42 .27 .31 
-

.07 
.30 .12 .97 .83 .98 .96  

Note: Bolded subgroup labels indicate subgroups of interest from the test sample (i.e., variables 
with missing data and for which regression models are constructed); Highlighted correlations 
indicate values equal or greater than .50; the asterisk (*) adjacent to “.48” in row 15 column 10 
brings attention to the fact that the API subgroup variable does not have a correlation of .50 or 
greater with any other variable in the test sample. Instead it is regressed on the variable with 
which it has the highest correlation, which is the variable representing students with learning 
disabilities (r = .48).  Asterisks are likewise placed next to the correlations between AIAN & 
API, and NEL & TP. 
 

 In this study, once imputation models are specified, the test sample is manipulated just 

before executing the mice algorithm, a target value (i.e., NAEP-reported estimate of mean 
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math achievement) from the test sample is withheld. Thus, one of the ten separate 𝒑𝑖𝑛𝑐 

from the chain of equations, henceforth 𝒑𝑖𝑛𝑐−1
, is missing an additional value. 

Initializing the Mice Algorithm 

Step 2: The mice algorithm involves the imputation of initial values into cells with missing 

data for each 𝒑𝑖𝑛𝑐 in X by randomly sampling with replacement from observed values from the 

corresponding 𝒑𝑖𝑛𝑐 (𝒑
𝑖𝑛𝑐

𝑜𝑏𝑠), which results in an initial complete dataset with no missing 

values.24  

 In this study, for instance, consider the 𝒑𝑖𝑛𝑐 from test sample X representing the estimate 

of mean math achievement of students whose parents did not finish high school, 

𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉. This 𝒑𝑖𝑛𝑐 has 2 missing values and 48 observed values, meaning the two 

missing values are imputed with values drawn at random and with replacement from the 

48 observed values (when it is used as a predictor).  

 Since values are drawn with replacement, the two imputed values for this 𝒑𝑖𝑛𝑐 can be the 

same, though this situation is improbable. However, for a 𝒑𝑖𝑛𝑐 with a greater proportion 

of missing data, randomly sampled observed values are likely, if not ensured, to repeat. 

Consider, for instance, the 𝑨𝑰𝑨𝑵̅̅ ̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 variable, which represents estimates of mean math 

achievement of students across states who identify as American Indian or Alaskan 

Native. This 𝒑𝑖𝑛𝑐 only has 13 observed values and hence 37 missing values, which means 

randomly drawn values from the set of 13 observed values must repeat during this 

initialization step of the mice procedure. 

 
 
 
                                                           
24 Users of the mice package can also generate initial values through mean imputation, instead of randomly sampling 
(with replacement) observed values from the corresponding columns. The latter is the default approach in mice. 
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The Iterative Process  
 

Step 3: After initialization, the vector of observed values (i.e., originally non-missing) from 

the first 𝒑𝑖𝑛𝑐 (𝒑𝑖𝑛𝑐
𝑜𝑏𝑠) outlined in the visiting sequence is regressed on a pre-specified set of �⃗⃗� . 

Hence, cases which originally had missing values for this first 𝒑𝑖𝑛𝑐 are not used for regression.  

 In this study for instance, when target values from the API subgroup are withheld, 29 of 

50 cases (n) from X are used for this regression, since NAEP did not report the mean 

math achievement estimate of 20 states for 𝒀𝑨𝑷𝑰̅̅ ̅̅ ̅̅ 𝒎𝒂𝒕𝒉
, the first 𝒑𝑖𝑛𝑐 outlined in the visiting 

sequence. Thus, in this study, given a target value from the API subgroup is withheld, the 

vector of observed values (i.e., originally non-missing) minus the case associated with the 

withheld value (𝒑𝑖𝑛𝑐−𝟏
𝒐𝒃𝒔) is regressed on a pre-specified set of �⃗⃗� . 

Step 4: After this first regression model is fit and regression parameters are estimated, two 

important tasks are undertaken that ensure the mice procedure incorporates all sources of 

variability and uncertainty for each imputed value, a method in mice described by van 

Buuren (2018) as “prediction + noise + parameter uncertainty.” This method takes two 

sources of uncertainty and variability into account for each imputed value. The first is 

uncertainty related to the estimated regression parameters— 

 𝛽�̂�, 𝜷�̂�
⃗⃗⃗⃗  ⃗,  and 𝜎2̂,  

where 𝛽𝑜 represents the y-intercept, 𝜷𝒑
⃗⃗⃗⃗  ⃗ represents a vector of regression coefficients 

associated with select �⃗⃗�  from X on which the 𝒑𝑖𝑛𝑐 to be imputed is regressed, and 𝜎2 represents 

residual variance about the regression plane calculated from the regression fit.  The second 

source is uncertainty about the regression planes, represented by the residual term “𝜀” from the 

regression formula— 

𝒚𝒑𝒊𝒏𝒄
= 𝛽𝑜 + 𝜷 ∗ 𝒑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   + 𝜀 , where  𝜺 ~ N(0, 𝜎2), 
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This error term represents the “noise” from the “prediction + noise + parameter 

uncertainty” moniker (van Buuren, 2018). Values 𝜀 represent the difference in observed and 

regression-generated (predicted) values, and are assumed to follow a normal distribution with a 

mean zero.   

To account for the first source of uncertainty, related to regression coefficients 

(“parameter uncertainty”), mice uses a Bayesian framework for estimation with standard non-

informative prior distributions. Following regression, the fitted coefficients for the 𝒑𝑖𝑛𝑐 criterion 

variable are replaced by random draws—𝛽�̇�, �̇�𝒑
⃗⃗⃗⃗  ⃗, 𝜎2̇— from their respective estimated posterior 

distributions (van Buuren, 2018). The placement of dots above notation for these regression 

estimates signify that they are randomly drawn from their respective posterior distributions 

following regression fit. These sampled estimates (𝛽�̇�, �̇�𝒑
⃗⃗⃗⃗  ⃗, 𝜎2̇) are used to generate conditional 

distributions for missing values in 𝒑𝑖𝑛𝑐. Establishing conditional distributions, which represent 

probability distributions about the regression planes and are assumed to approximate the normal 

distribution, permits the second source of uncertainty to be taken into account through random 

draws, �̇�, from these conditional distributions, which represent the values that are imputed. 

Hence, imputing values for 𝒑𝑖𝑛𝑐 involves: 

 

1. 𝒚𝒑𝒊𝒏𝒄
𝒐𝒃𝒔  = 𝛽𝑜 + 𝜷 ∗ 𝒑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝜺, regressing 𝒑𝒊𝒏𝒄

𝒐𝒃𝒔 on select �⃗⃗�  variables. 

2. 𝛽�̇�, �̇�𝒑
⃗⃗⃗⃗  ⃗, 𝜎2̇ ~ P(𝛽�̂�, 𝜷�̂�

⃗⃗⃗⃗  ⃗, �̂�2|𝒑𝒊𝒏𝒄
𝒐𝒃𝒔 , �⃗⃗� ), sampling regression estimates from the 

posterior distributions of estimates given regression fit of 𝒑𝒊𝒏𝒄
𝒐𝒃𝒔 on select �⃗⃗�  

variables. 

3. �̇� ~ P(𝜺|𝛽�̇�, �̇�𝒑
⃗⃗⃗⃗  ⃗, 𝜎2̇), sampling from a range of residual values about the 

regression plane conditioned on drawn regression estimates.  
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Hence the imputed value equals the value lying on the regression plane calculated from 

𝛽�̇� and �̇�𝒑
⃗⃗⃗⃗  ⃗, the predicted value, plus 𝜀̇, drawn from a range of values determined by the 

assumption of normality and 𝜎2̇. 

 In the context of this study, for instance, fitting the first regression model (i.e., imputing 

𝒀𝑨𝑷𝑰̅̅ ̅̅ ̅̅ 𝒎𝒂𝒕𝒉
) results in a vector of two separate regression coefficient estimates (𝜷�̂�

⃗⃗⃗⃗  ⃗) 

assumed to follow a multivariate normal distribution, including their corresponding 

posterior distributions, since this linear regression model involves regressing 𝒀𝑨𝑷𝑰̅̅ ̅̅ ̅̅ 𝒎𝒂𝒕𝒉
 on 

two variables from test sample X. This means that the regression coefficients are 

randomly drawn from two separate posterior distributions, as well as random draws for 

the intercept and residual variance terms from their respective posterior distributions. The 

sampled estimates are then combined to estimate conditional distributions from which 

imputed values are drawn. 

Step 5: After the 2-part imputation process (i.e., incorporating first “parameter 

uncertainty” and then “noise”) is finished for the first 𝒑𝑖𝑛𝑐 from the chain of equations, as 

outlined in Figure 3.2, the mice algorithm moves onto the next equation and repeats the 2-part 

process. This time, however, if the previously imputed 𝒑𝑖𝑛𝑐 is used as one of the �⃗⃗�  predictor 

variables, then the newly imputed values are used for performing regression instead of the values 

sampled during the initialization phase.  

 In this study, for instance, the sampled values drawn through the 2-part process for the 

third 𝒑𝑖𝑛𝑐 (𝒀𝑩𝑨̅̅ ̅̅ 𝒎𝒂𝒕𝒉
) are used in the regression for the fourth 𝒑𝑖𝑛𝑐 from the visiting 

sequence (𝒀𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉

) since the set of �⃗⃗�  on which 𝒀𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉

 is specified to be regressed 
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includes 𝒀𝑩𝑨̅̅ ̅̅ 𝒎𝒂𝒕𝒉
. For the remaining �⃗⃗�  used for imputing 𝒀𝑺𝑩𝑨̅̅ ̅̅ ̅̅ 𝒎𝒂𝒕𝒉

, the values drawn 

during initialization are used.   

Step 6: The 2-part imputation process subsequently continues for every other 𝒑𝑖𝑛𝑐 from the 

visiting sequence. The entire process of carrying out regressions across chained equations 

represents one of t iterations (or “cycles”) of the mice algorithm. For any imputed value, the mice 

algorithm iterates (i.e., repeats the cycle) t times, and the values that are actually imputed for 

missing values in each 𝒑𝑖𝑛𝑐 from X represent those drawn from conditional distributions during 

the final iteration (the 𝑡𝑡ℎ iteration).  

 Since there are 10 𝒑𝑖𝑛𝑐 (including 1 𝒑𝑖𝑛𝑐−1
for each administration of MICE),25  in X for 

this study and, hence, 10 chained equations, one iteration across the visiting sequence 

(following initialization) can be expressed as,  

𝛽𝑜1
̇ , 𝜷𝒑

⃗⃗⃗⃗  ⃗
𝟏

̇ , 𝜎2
1
̇  ~ P(𝛽𝑜1

̂ , 𝜷𝒑
⃗⃗⃗⃗  ⃗

𝟏

̂ , 𝜎2̂
1 |𝒑𝒊𝒏𝒄𝟏

𝒐𝒃𝒔, �⃗⃗� 𝟏) 

�̇�1
𝑡 ~ P(𝑦1|𝒑𝒊𝒏𝒄𝟏

𝒐𝒃𝒔, �⃗⃗� 1; 𝛽𝑜1
̇ , 𝜷𝒑

⃗⃗⃗⃗  ⃗
1

̇ , 𝜎2
1
̇ ) 

… 
… 

𝛽𝑜10
̇ , 𝜷𝒑

⃗⃗⃗⃗  ⃗
𝟏𝟎

̇ , 𝜎2
10
̇  ~ P(𝛽𝑜10

̂, 𝜷𝒑
⃗⃗⃗⃗  ⃗

𝟏𝟎

̂ , 𝜎2̂
10 |𝒑𝒊𝒏𝒄𝟏𝟎

𝒐𝒃𝒔, �⃗⃗� 𝟏𝟎) 

�̇�10
𝑡  ~ P(𝑦10|𝒑𝒊𝒏𝒄𝟏𝟎

𝒐𝒃𝒔, 𝑝 10; 𝛽𝑜10
̇ , 𝜷𝒑

⃗⃗⃗⃗  ⃗
𝟏𝟎

̇ , 𝜎2
10
̇ ) 

 
For this study, 𝛽𝑜1

̇ , 𝜷𝒑
⃗⃗⃗⃗  ⃗

1

̇ , 𝜎2
1
̇  represent regression estimates drawn from their respective 

posterior distributions for imputing 𝒀𝑨𝑷𝑰̅̅ ̅̅ ̅̅ 𝒎𝒂𝒕𝒉
 (the first 𝒑𝑖𝑛𝑐 outlined in the visiting 

sequence), given observed values from 𝒀𝑨𝑷𝑰̅̅ ̅̅ ̅̅ 𝒎𝒂𝒕𝒉
 (𝒑𝒊𝒏𝒄𝟏

𝒐𝒃𝒔)—which play the role of 

                                                           
25 In the first administration of MICE, as outlined in Table 3.5, the  𝒑𝑖𝑛𝑐−1

 is the subgroup representing students 
whose parents did not finish high school—the seventh of ten chained equations. Since one target value is removed 
from this subgroup of interest, the number of cases used for this regression is 47—one value less than the observed 
number of mean estimates of state achievement reported by NAEP for this subgroup. Note that for any 1 of 376 
administrations of MICE, there are 10 chained equations (regression models), and that just one of the ten outcome 
variables being regressed is 𝒑𝑖𝑛𝑐−𝟏

𝒐𝒃𝒔. The remaining nine are 𝒑𝑖𝑛𝑐
𝑜𝑏𝑠. 
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criterion values in regression and values from �⃗⃗� 𝟏, values from a set of predictor 

variables on which 𝑌𝐴𝑃𝐼̅̅ ̅̅ ̅𝑚𝑎𝑡ℎ
 is regressed. Similarly, 𝛽𝑜10

̇ , 𝜷𝒑
⃗⃗⃗⃗  ⃗

𝟏𝟎

̇ , 𝜎2
10
̇  are regression 

estimates drawn from their respective posterior distributions for imputing 𝒀𝑬𝑳̅̅̅̅ 𝒎𝒂𝒕𝒉
 (i.e., 

the tenth and last 𝒑𝑖𝑛𝑐 outlined in the visiting sequence). It should be noted that, save 

for observed values in X (including 𝒑𝑖𝑛𝑐
𝑜𝑏𝑠), values for the remaining terms in the 

outlined cycle will vary across t iterations, as these values are successively re-estimated 

across iterations. For instance, coefficient values from 𝜷𝒑
⃗⃗⃗⃗  ⃗

𝟏
will not be same at the 

second (t=2) iteration and third (t=3) iteration. Likewise values that are originally 

missing from X in �⃗⃗� 𝟏 will differ across iterations. To continue with this example, values 

at t=3 change as a function of those drawn at t=2, as well as the stochastic process 

incorporated at t=3.   

van Buuren and Groothuis-Oudshoorn (2011) indicate that 10 to 20 t iterations is sufficient to 

ensure imputations across t cycles converge around a similar value—meaning, values are 

imputed without too much bias. The default number of t iterations in mice software in R is set to 

5 (van Buuren & Groothuis-Oudshoorn, 2011). After the first of t iterations, the two-part 

imputation process restarts,26 once again beginning with the first regression from the visiting 

sequence. The sequence of values drawn across t iterations are referred to as “sampling streams” 

(van Buuren, 2018), hence the value that is actually imputed represents the value drawn at the 

end of the stream. 

 For my study, t is set to 15. This is a relatively conservative specification, which 

prioritizes convergence over computational efficiency.  

                                                           
26 Note that this “two-part procedure” refers to process by which two sources of uncertainty are taken into account 
(it does not refer to the seven separate steps used to communicate how the mice procedure works. 
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Note that the two-part procedure is executed during each of t iterations. This means 1) 

regression models are fit and parameters estimated, 2) regression parameters are sampled from 

the posterior distributions estimated from fitting the regressions, 3) the sampled parameters are 

used to generate conditional distributions, and 4) imputed values are drawn from conditional 

distributions. 

Repeating Sets of Iterations  
 

Step 7: Iterating through chained equations, as described in steps 3 to 6, results in one of m 

complete sets of data. Generally, at least 5 imputations per missing value are desired, meaning at 

least 5 sets of complete data are generated. Hence, steps 3 to 7 are typically repeated at least 5 

times in practice. Fittingly, the default number of imputations used with mice software in R is set 

to 5 (m = 5). The imputations across m datasets vary because of the stochastic “two-part” 

procedure described in steps 4 through 6, where parameter estimates and predicted values are 

iteratively sampled at random from corresponding probability distributions.  

Guidance around the appropriate m number of imputations to generate varies. Some 

research suggests m should be commensurate with the proportion of cases n with missing values 

in X (Von Hippel, 2009).  Graham and colleagues (2007) demonstrate that estimation becomes 

more accurate the larger the m. Though the maximum m imputations evaluated by Graham and 

colleagues is 100 in their study, they suggest that choosing a number of m imputations is largely 

a matter of the computing power available for analysis.  

 In this study m is set to 100, the largest specification of m evaluated by Graham and 

colleagues. While this number may appear excessive, the main reason for previously 

limiting m to a smaller number, limited computing power, is no longer a particularly 

compelling one. In addition, since the dataset (i.e., test sample) is relatively small (50 x 
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18 values), the number of m imputations can be conveniently increased beyond 

conventional sizes of m imputations without introducing too much computing burden.    

Example Application of the MICE Procedure in this Study 
 

 As an instructive example, consider the first target value of interest from the test sample, 

the NAEP-reported estimate of mean math achievement of students in Alabama whose parents 

did not finish high school (AL/NHS). For this particular subgroup in Alabama, NAEP reports a 

mean math achievement estimate of 254. To predict this particular value of mean math 

achievement with MICE, this reported value (i.e., target value) of 254 is removed (only this 

value) prior to executing the mice algorithm, as previously depicted in Table 3.5.  

The difference between the predicted value of achievement for this subgroup in Alabama, 

the average of m imputed values, and the NAEP-reported estimate of mean math achievement for 

this subgroup in Alabama (254) contributes to the calculation of wMAE. In more specific terms, 

the absolute difference divided by the standard error associated with the NAEP reported mean 

estimate of achievement (2.5) is summed together with similarly weighted absolute differences 

from other comparisons and divided by the number of comparisons.   

To calculate coverage, this instance (i.e., comparison) of subgroup achievement on State 

NAEP (AL/NHS) is counted in the numerator of the coverage formula if the technique-produced 

(i.e., MICE-produced) value for AL/NHS falls within its corresponding target interval. The 

denominator represents the number of comparisons for which coverage is evaluated, which 

changes depending on whether coverage is examined across subgroups or for one subgroup in 

particular. 
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Verifying Credibility of MICE-produced Predicted Values 

 A common check following execution of the mice algorithm is to verify that the final 

imputations are credible. In general, an imputed value is credible if it could have been observed 

had it not been missing (van Buuren & Groothuis-Oudshoorn, 2011).  In this study, to verify that 

MICE-based estimates of mean math achievement are credible, estimates of mean subgroup 

achievement predicted with MICE are compared to ranges of credible mean estimate values per 

subgroup. These ranges represent intervals of non-outlying values based on each subgroup of 

interest’s distribution of NAEP-reported estimates of mean math achievement and Tukey’s 

(1977) "1.5 × 𝐼𝑄𝑅" rule for detecting outlying observations. Tukey’s formula for calculating the 

lower and upper bounds of non-outlying observations are expressed as, 

𝑄1 − (1.5 × 𝐼𝑄𝑅) 
& 

𝑄3 + (1.5 × 𝐼𝑄𝑅), 
 
where 𝑄1 and 𝑄3 represent the first and third quartiles (25th and 75th percentiles) of a set of 

observations and IQR (Interquartile Range) is the difference (i.e., distance) between the third and 

first quartiles (𝑄3 and 𝑄1). Applying this formulation results in the reference ranges of credible 

mean achievement estimates presented in Table 3.9.27 

Table 3.9: Lower- and upper-bounds of credible mean estimates per subgroup of interest  
Subgroup of interest Lower-bound Upper-bound 

NHS 252 278 
HS 253 283 
SBA 272 294 
BA 276 310 
B 245 274 
H 257 282 
API 276 335 
AIAN 251 267 
TP 267 297 
EL 216 276 

Note: Values are rounded to their nearest integer. 

                                                           
27 The set of R Code used for computing ranges is documented on the author’s GitHub page. 

https://github.com/DavidBamat/Dissertation-Code/projects/1


 

87 

To aid in the identification of out-of-bound estimates of mean math achievement per 

subgroup of interest, the sets of predicted values produced from the MICE technique are graphed 

through dot plots with embedded lines that demarcate the lower and upper bounds of credible 

mean estimates for the respective subgroup. For the sake of illustration, consider the dot plot for 

the NHS subgroup from Figure 3.2. This plot displays the distribution of 48 values randomly 

drawn from a normal distribution with a mean of 265 and a standard deviation of 10. The red 

horizontal lines demarcate the lower and upper bounds of the proposed reference range for 

assessing the credibility of estimates of mean math achievement produced with MICE for the 

NHS subgroup. As can be observed, two values fall above the upper bound of 278 and two fall 

below the lower bound of 252.28  

Figure 3.2: Dot plot of 48 hypothetical predicted values produced from the MICE technique for 
the NHS subgroup 

 

 
 

NB: The red horizontal lines demarcate the lower and upper bounds, respectively 252 and 278, 
of the reference range used for assessing the plausibility of predicted values for the NHS 
subgroup. 

  

                                                           
28 The set of R code, including seed, used for drawing values and generating the image from Figure 3.2 is provided 
on the author’s GitHub page. 

https://github.com/DavidBamat/Dissertation-Code/projects/1
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 In the event actual MICE-based predicted values are out of range, such as the four out-of-

bound simulated values depicted in Figure 3.2, then the MICE algorithm is modified. 

Specifically, the incomplete variables from the test sample to which the out-of-bound predicted 

values belong, are imputed through Predictive Mean Matching (PMM), while the remaining 

incomplete variables are still imputed through the normal linear regression model. Using PMM 

resolves the “out-of-bound” problem as this method restricts imputed values to draws from a set 

of observed values (Little, 1988). Implementation of PMM with the mice package in R involves 

forming a set of five candidate donors representing observed values from the corresponding 

column (variable) that are closest to the predicted value for the missing entry. Then, one of the 

five candidate donors is randomly drawn and used as the imputed value (van Buuren & 

Groothuis-Oudshoorn, 2011).  

 As an instructive example, imagine that one of the predicted values produced through 

MICE for a state from the AIAN subgroup is less than the lower bound of the proposed reference 

range (i.e., less than 251 for the AIAN subgroup). Then, the statistical code drafted for running 

the mice algorithm is amended so that the imputed values for the AIAN subgroup are based on 

PMM. This specification will no longer yield imputed values that fall below 251. Instead, this 

entry will be imputed by drawing, at random, from the five lowest observed values from the 

AIAN subgroup.  

Prediction with the FH Technique 

Estimating mean math achievement of subgroups across states with the Fay-Herriot (FH) 

model, a common technique from Small Area Estimation (SAE), involves borrowing information 

from area-level administrative data to improve direct estimates of area-level statistics of interest. 

To “improve” a direct estimate with a model-based estimate in the SAE framework generally 
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means to render an estimate more efficient.  In this study, “area” corresponds to states. Hence, 

state-level administrative data are used to improve direct estimates of mean math achievement of 

demographic subgroups aggregated to the state level. Implementation of the FH model in this 

study can be expressed as follows, 

𝛿𝑖𝑗
𝐸𝐵𝐿𝑈𝑃 = 𝛾𝑖𝑗𝛿𝑖𝑗

𝐷𝐼𝑅 + (1−𝛾𝑖𝑗)𝑥𝑖𝑗
T �̂�, 

Where the mean math achievement estimate of subgroup i in state j is an Empirical Best 

Linear Unbiased Predictor (�̂�𝑖𝑗

𝐸𝐵𝐿𝑈𝑃
), a precision-weighted combination of the direct estimate of 

mean math achievement of subgroup i in state j (i.e., the design-based estimate) and a regression 

estimator (i.e., a model-based estimate) of mean math achievement of subgroup i in state j (𝑥𝑖𝑗
T �̂�), 

sometimes referred to as the “indirect” or “synthetic” estimate.  

The use of the term BLUP, instead of BLUE, indicates that the statistical model used for 

approximating the parameter value of interest is a mixed-effects model (Galwey, 2014). By 

contrast, the term BLUE is more frequently used in statistics to describe estimates from fixed-

effects models, such as the Ordinary Least Squares (OLS) regression model. The term Empirical 

relates to Empirical Bayes (EB) methods, a set of statistical procedures similar to full Bayesian 

methods, but where prior distributions are estimated from the observed (empirical) sample of 

data. Precision-weighted combinations of estimates, such as the EBLUPs produced with the FH 

technique, are characteristic of estimates computed with EB methods (Braun & Jones, 1984).  

Computing Direct Estimates 

The direct estimates (�̂�𝑖𝑗

𝐷𝐼𝑅
) are computed from small random samples of students from 

subgroups of interest within states for which NAEP is able to report estimates of mean 

achievement. Put differently, the random samples are drawn from cases representing students 

identified with subgroups of interest in states for which NAEP was able to sample at least 62 
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students.29 The random samples are drawn from restricted-use data from the National Center for 

Education Statistics, with sample size varying by subgroup. The size of the samples drawn is set 

to the median sample size of students available from the restricted-use data for the respective 

subgroup of interest in states that do not meet the rule-of-62. The steps involved in computing 

direct estimates are provided in finer detail in the next several paragraphs.   

Step 1: Set target values equal to State NAEP-reported estimates of mean math 

achievement for subgroups of interest. These are the subgroups for which reporting is 

incomplete. In the test sample, there are 376 such target values (see table 3.1). 

Step 2: For each of the 376 target values, each of which correspond to a different state 

subgroup, draw a random sample of students of size n from a subset of the restricted-use NAEP 

dataset for grade 8 math results in 2015. The subset is restricted to students used by NAEP for 

computing and reporting estimates of mean math achievement for the corresponding state 

subgroup. Since State NAEP results are based on public school students (i.e., non-charter and 

charter), this step involves removing private school students in addition to students that do not 

form part of the state and subgroup pair of interest. 

The size of the random sample for each state subgroup, as described, varies by subgroup 

and is set to the median number of students sampled by NAEP from subgroups in states that are 

not reported by NAEP. This decision permits the simulation of scenarios in which researchers 

have relatively small samples of students (e.g., n < 62) from which to compute direct estimates 

of mean math achievement. Setting n to the median sample size of students from unreported 

subgroups is deliberate as this sample size represents a typical number of students that 

                                                           
29 While it would be more purposeful in practice to use SAE to estimate the mean math achievement of subgroups 
that NAEP does not report, this approach is impractical for the focus of this study. The measures of accuracy on 
which the techniques examined in this dissertation are evaluated requires the use of target values to which predicted 
values can be compared. 
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researchers can expect to have available in practice when attempting to compute estimates for 

low-incidence populations (e.g., Black students in Vermont).30 

As an instructive example, consider the race and ethnicity subgroup representing 

Hispanic students, for which the NAEP program does not report estimates of mean math 

achievement for three states (Maine, Vermont & West Virginia) in the test sample. The sample 

size used for computing the direct estimate (𝛿𝑖𝑗
𝐷𝐼𝑅) for this subgroup across states is equal to the 

median number of Hispanic students available across these three states. Hypothetically, if the 

number of Hispanic students in the test sample in Maine, Vermont, and West Virginia are 20, 40, 

and 10, then the sample size used for computing the direct estimate for this subgroup is 20.   

Step 3: With each randomly drawn sample, each corresponding to one of the 376 state-

subgroup pairs, compute a direct estimate of mean math achievement and standard error that 

accounts for NAEP’s complex sampling design. This includes making appropriate use of 

sampling weights associated with each student, which are calculated based on students’ sampling 

stratum (i.e., state) and cluster (i.e., school), as well as use of all plausible values drawn from 

estimated posterior distributions for each sampled student’s grade 8 math ability. 

Student-level NAEP data are nested. As such, analysis of these data require the 

researcher to model the dependency that exist among data from the same cluster. The failure to 

account for the nested nature of these data risks calculating standard errors of mean achievement 

that are downwardly biased (O’Dwyer & Parker, 2014). Appropriate use of plausible values 

involves calculating the statistic of interest (i.e., mean subgroup achievement in this study) 

separately for each set of plausible values and then pooling results. By contrast, it is 

                                                           
30 This ‘median sample size’ specification presents a limitation to the inferences that can be made about the FH 
approach’s general utility. In practice, researchers will have access to samples that do not meet the rule-of-62 that 
are at times smaller than the proposed median sample and at other times greater than the proposed median sample.   
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inappropriate to first average all plausible values for each individual student and then calculate 

the statistic of interest. Similar to the failure to account for clustered data, the latter approach to 

handling plausible values produces mean variance estimates that are unduly small (von Davier, 

Gonzalez & Mislevy, 2009). 

Computing Regression-Synthetic (Model-Based) Estimates 

The synthetic estimates of mean subgroup achievement across states (𝑥𝑖𝑗
T �̂�) are computed 

with sets of 10 separate regression models, one per subgroup of interest, using Ordinary Least 

Squares (OLS) estimation. The number of regression models per subgroup set varies with the 

number of target values available per subgroup. For instance, there are 48 regression models 

used for the first subgroup of interest from Figure 3.3 (NHS), since there are 48 NAEP-reported 

estimates of mean math achievement for this subgroup.31 In total, there are 376 regression 

models used for computing regression-synthetic estimates—one per state-and-subgroup pair of 

interest.   

The reason for so many separate regression models is that, for any subgroup set of 

regressions, the values from the criterion variable are made up of the corresponding NAEP-

reported estimates of mean achievement, as well as a unique direct estimate computed from one 

of the small (n < 62) samples randomly drawn from restricted-use data. The latter estimate 

replaces its corresponding NAEP-reported estimates in the criterion variable. 

                                                           
31 Note that unlike the MICE procedure, regressions in the FH approach include the cases associated with the target 
value being predicted. Hence, for instance, 48 cases are used for regressing the NHS outcome variable on select 
predictors in the FH approach, but 47 cases are used for this outcome variable in the MICE procedure. To help make 
sense of this difference, consider that MICE deals with a missing data problem, whereas the FH technique involves 
improving a direct estimate that is calculated from a small sample. More detail on the specification and 
implementation of the regression models used in the FH approach is offered in “The EBLUP” section that follows, 
as well as Appendix A. 
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In other words, for each of the 376 regression models, the values from the criterion 

variable consist of one of the direct estimates computed from the small random samples and the 

remaining are NAEP-reported estimates of mean math achievement. For instance, in the first of 

376 regressions, the small sample mean estimate computed through direct estimation, as outlined 

in the previous section, for the subgroup representing students whose parents did not finish high 

school (𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉) in Alabama is the value from the outcome variable  �̂�𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉
 for Alabama 

from Figure 3.3, and the remaining values for �̂�𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉

in Figure 3.3 are those published by State 

NAEP. Together, these values are regressed on state-level variables representing percent of 

students identified as Black, Hispanic or American Indian/Alaskan Native (%B-H-AIAN), a 

measure of median family income and wealth (FER), percent of students identified as English 

learners (%EL), and a measure of school quality (SQI). 

Figure 3.3: Regression equations for computing regression-synthetic (model-based) estimators 
 

�̂�𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏(%B-H-AIAN) + �̂�𝟐(FER) + �̂�𝟑(%EL) + �̂�𝟒(SQI) 

�̂�𝑯𝑺̅̅ ̅̅ 𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏 (%B-H-AIAN) + �̂�𝟐(FER) + �̂�𝟑(%EL) + �̂�𝟒(SQI) 

�̂�𝑺𝑩𝑨𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏(%B-H-AIAN) + �̂�𝟐(FER) + �̂�𝟑(%EL) + �̂�𝟒(SQI) 

�̂�𝑩𝑨̅̅ ̅̅ 𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏 (%B-H-AIAN) + �̂�𝟐(FER) + �̂�𝟑(%EL) + �̂�𝟒(SQI) 

�̂��̅�𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) + �̂�𝟑(%AA) + �̂�𝟒(SQI) 

�̂��̅�𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) + �̂�𝟑(%MX) + �̂�𝟒(%EL) + �̂�𝟓(SQI) 

�̂�𝑨𝑷𝑰𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) + �̂�𝟑(%A) + �̂�𝟒(%EL) + �̂�𝟓(SQI) 

�̂�𝑨𝑰𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅ 𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) 

�̂�𝟐+̅̅ ̅̅ 𝒎𝒂𝒕𝒉
= �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) + �̂�𝟑(%B-H-AIAN) + �̂�𝟒(SQI) 

�̂�𝑬𝑳̅̅̅̅ 𝒎𝒂𝒕𝒉
 = �̂�𝒐 + �̂�𝟏(%BA) + �̂�𝟐(FER) + �̂�𝟑(SQI) 

 
 

Covariate labels: %B-H-AIAN = state percent of students identified as Black, Hispanic or 
American Indian/Alaskan Native; FER = composite measure of states’ median family income 
and wealth;  %EL = state percent of students identified as English learners; SQI = measure of 
school quality in the state; %BA = state percent of adults with at least a bachelor’s degree; %AA 
= state percent of Black population identified as African American; %MX = state percent of 
Hispanic population of Mexican descent; %A = state percent of grade 8 Asian and Pacific 
Islander students identified as Asian. 
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While it may appear more useful to set all values from the outcome variables equal to 

NAEP-reported estimates of mean math achievement, as opposed to sequentially replacing target 

values of interest with small sample direct estimates, this design does suit the evaluative nature 

of this study. The proposed design imitates a scenario in which NAEP researchers are confronted 

with the task of computing estimates of mean achievement with small samples (n < 62). In 

addition, the NAEP-reported values play the role of target values in this study and thus also 

using these NAEP-reported estimates as the direct estimates from the FH models would result in 

FH-produced estimates of mean math achievement that are unduly close to the target values. 

That is, setting all of the direct estimates of state-subgroup pairs of interest in the FH models to 

NAEP-reported estimates would unfairly favor the predictive performance of the FH technique, 

relative to the other predictive techniques under evaluation.   

It could also appear more useful to set the values from criterion variables all equal to the 

direct estimates computed from the small samples drawn from restricted-use data. However, this 

sort of specification would fail to leverage the strength of the NAEP-reported estimates. The 

direct estimates from small random samples would be less accurate than the NAEP-reported 

estimates, which would result in more biased estimation of the relationships between criterion 

and predictor variables. Ultimately, this specification raises the chances of computing less 

accurate regression-synthetic estimates of mean math achievement.   

In brief, the process by which each synthetic-regression estimate is calculated can be 

described in the following few steps: 

1. A criterion variable representing NAEP-reported estimates of mean math 

achievement is set to be regressed on a group of predictor variables, as specified in 

Figure 3.3. 
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2. Prior to fitting the regression model, one of the criterion values is replaced with its 

corresponding estimate of mean math achievement computed from a small sample 

(i.e., n < 62) randomly drawn from restricted-use data.   

3. The value predicted from the regression fit for the case (state) associated with the 

replacement estimate is the regression-synthetic estimate for the corresponding state.   

These steps are repeated for each target value from the test sample, a total 376 times. 

Each time a different NAEP-reported estimate of mean math achievement from the criterion 

variable is replaced with its corresponding small sample direct estimate of mean achievement.   

The EBLUP  

 The FH-produced estimate of mean math achievement (the EBLUP) is a precision-

weighted combination of the direct and synthetic regression estimates. As an instructive 

example, consider a state whose direct estimate of mean math achievement (𝛿𝑖𝑗
𝐷𝐼𝑅) equals 260.0 

with variance of 10.0 and whose synthetic estimate of mean math achievement (𝑥𝑖𝑗
T �̂�) equals 

265.0 with variance of 5.0. The former variance is obtained by calculating the variance estimate 

of the sample used for direct estimation. The latter variance is equal to the mean squared error 

(MSE) statistic computed from fitting the regression, which reflects the variance of residuals 

(error terms about the regression plane).  In this example, total variance is equal to 15.0 and thus 

the proportion of total variance attributable to the regression estimator (𝛾𝑖𝑗) is one-third (i.e., 

5.0/15.0) and the proportion attributable to the direct estimator (1-𝛾𝑖𝑗) is two-thirds (10.0/15.0). 

Plugging these numbers into the right side of Formula A results in Equation A and an EBLUP of 

about 263.3.   
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Formula A 

𝛿𝑖𝑗
𝐸𝐵𝐿𝑈𝑃 = 𝛾𝑖𝑗𝛿𝑖𝑗

𝐷𝐼𝑅 + (1−𝛾𝑖𝑗)𝑥𝑖𝑗
T �̂�  

Equation A 

𝛿𝑖𝑗
𝐸𝐵𝐿𝑈𝑃 = 1/3(260.0) + 2/3(265.0) 

 Intuitively this result (𝛿𝑖𝑗
𝐸𝐵𝐿𝑈𝑃= 263.3) makes sense, given the regression estimate is 

calculated with greater precision compared to the direct estimate. The variance of the regression 

estimate (5.0) is smaller than the variance of the direct estimate (10.0). As a result, the EBLUP 

(263.3) comes closer to the regression estimate of mean math achievement (265.0) than the direct 

estimate of mean math achievement (260.0).  

 Calculation of the EBLUPs is implemented with the sae package in R (Molina & 

Marhuenda, 2015), which provides a variety of functions for Small Area Estimation, including 

the FH method. The calculation of direct estimates from restricted-use student-level data is 

implemented through Stata v16.1 and the svy package (2019).32 The svy package includes 

functionality to analyze complex survey data, such as achievement data from State NAEP, and 

permits users to incorporate each student’s sampling weight (ORIGWT), jackknife replicate 

weights for their cluster (SRWT’s), and plausible values of grade 8 math achievement 

(MRPCM’s).33 The direct estimates computed with Stata are incorporated in the calculation of 

EBLUPs with the sae package in the manner described in the previous section on calculating 

regression-synthetic estimates, whereby direct estimates from small random samples, computed 

                                                           
32 Using the EdSurvey package (Bailey et al., 2019) in R was first proposed to compute direct estimates. The 
EdSurvey package includes functionality to analyze complex survey data and was intentionally designed for the 
analysis of education data from the National Center for Education Statistics (NCES), including data from State 
NAEP. Complications related to COVID-19 compelled the use of a software environment incompatible with the 
EdSurvey package. 
33 The capitalized and italicized text in parentheses reflect the naming of the variables as they appear in the NCES 
restricted-use data set. Example code used for computing the direct estimates is provided in Appendix A. The full 
set of code used for computing direct estimates is provided on the author’s GitHub page. 

https://github.com/DavidBamat/Dissertation-Code/projects/1
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with restricted-use data, sequentially replace values from criterion variables from regression 

models.  

Prediction with the FLEX CS Technique 

The third and final technique used for estimating mean subgroup achievement, Flexible 

Cross-Survey Analysis(FLEX CS), draws on features of the first (MICE) and second (FH) 

techniques. Similar to the MICE technique, FLEX CS uses in-sample data as predictor variables 

to support estimation of values of interest. Similar to the FH approach, FLEX CS combines 

estimates (subestimates) from different sources of data to calculate final estimates. FLEX CS is 

described as a cross-survey approach for the technique’s emphasis on combining data from 

different sources for parameter estimation. 

The subestimates that form the FLEX CS estimates are computed from four different 

techniques—1) MICE , 2) FH, 3) a Weighted Poststratified Estimator (WPE) calculated with 

district-level estimates of achievement from the Stanford Education Data Archive (Reardon et 

al., 2017), and 4) Nearest-Neighbor Imputation (NNI).   

A distinct feature of this FLEX CS approach is that the final estimates are not required to 

be formed from the same subestimates. For instance, the estimate of mean math achievement for 

one state’s Hispanic students may be computed as the combination of FH and WPE 

subestimates, meanwhile the FLEX CS estimate for a different state’s Hispanic students may be 

computed as the combination of FH and NNI subestimates.  

This flexibility is built into the approach to permit only the combining of subestimates 

that are justifiably presumed to be accurate estimators of a particular state’s subgroup. In other 

words, subestimates from the four separate techniques (MICE, FH, WPE, NNI) are only used or 

combined if there exists evidence to suggest that the information used in the approach could 
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support accurate prediction. As an instructive example, NNI might be used to estimate the 

achievement of a state’s subgroup if an estimate for the same subgroup is available in a very 

similar state (e.g., South Dakota & North Dakota). On the other hand, if a state’s nearest 

neighbor is not particularly similar, then NNI would not be used to predict mean math 

achievement for a subgroup within that state. The prevailing principle that guides model 

specification in FLEX CS estimation is that predictor variables that are presumably unhelpful for 

predicting values of variables of interest should not influence estimates of mean achievement. 

While the flexibility in selection of subestimates to be combined is presumed to support 

accurate estimation of values of interest, it should be noted that a drawback to this flexibility is 

an inability to express FLEX CS as a standard model. Put differently, the FLEX CS technique 

cannot be expressed as the combination of a specific set of estimates. This aspect of the approach 

makes it challenging, for instance, to apply FLEX CS as presented in this study to other research 

problems.    

Criteria for Using a Subestimate in the FLEX CS Technique 

1. MICE Subestimate.  

The MICE procedure is used for estimating mean math achievement of subgroups of 

interest if at least two auxiliary variables, which serve as predictor variables in the MICE 

equations, have a correlation with the response variable of at least .80. Research suggests that 

using auxiliary variables more highly correlated with variables to be imputed is generally 

associated with greater reduction in bias (Graham, 2009; Johnson & Young, 2011) and a 

correlation of .80 or higher is considered to represent a strong relationship between variables 

(Taylor, 1990). Using this criterion results in the removal of several predictor variables from the 

specification of MICE described earlier, as demonstrated across Tables 3.10 and 3.11. 
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Table 3.10: Visiting sequence from first implementation of MICE procedure with predictor 
variables struckthrough that do not have a correlation of at least 0.80 with the response variable 
Order Outcome variable Predictor variable(s) 

1 *𝑨𝑷𝑰̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, 𝑰𝒎𝒂𝒕𝒉, 
2 *𝟐 +̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉 �̅̅̅�𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 

3 𝑩𝑨̅̅ ̅̅
𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑰𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, �̅̅̅�𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉, 

𝑵𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 

4 𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑰𝒎𝒂𝒕𝒉, 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑩𝑨̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑵𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, 
�̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 

5 𝑯𝑺̅̅ ̅̅
𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑰𝒎𝒂𝒕𝒉, 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, 𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑩𝑨̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, 

𝑵𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 

6 �̅�𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅

𝒎𝒂𝒕𝒉, �̅̅̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 

7 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑩𝑨̅̅ ̅̅

𝒎𝒂𝒕𝒉 �̅̅̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉,  �̅�𝒎𝒂𝒕𝒉, 
𝑨𝑰𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉,  𝑵𝑬𝑳̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 

8 �̅�𝒎𝒂𝒕𝒉 𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, 𝑬𝑳̅̅ ̅̅

𝒎𝒂𝒕𝒉 
9 ∗ 𝑨𝑰𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉 𝑬𝑳̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑨𝑷𝑰̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉 
10 𝑬𝑳̅̅ ̅̅

𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑨𝑰𝑵𝑨̅̅ ̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉 

 

The winnowing of predictor variables that do not meet the criterion set for use of MICE 

in the FLEX CS approach results in estimation of mean math achievement of three of the original 

ten subgroups, as demonstrated in Table 3.11. For subgroups of interest that drop out of the 

chained equations model, a MICE subestimate does not factor into a corresponding FLEX CS 

estimate.  

Table 3.11: Visiting sequence for computing MICE subestimates in FLEX CS approach 
Order Outcome variable Predictor variable(s) 

1 𝑩𝑨̅̅ ̅̅
𝒎𝒂𝒕𝒉 𝑰𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑺𝑩𝑨̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, �̅̅̅�𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉, 
𝑵𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 
2 𝑺𝑩𝑨̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑯𝑺̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑩𝑨̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑵𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉 

3 𝑯𝑺̅̅ ̅̅
𝒎𝒂𝒕𝒉 �̅�𝒎𝒂𝒕𝒉, 𝑺𝑩𝑨̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑩𝑨̅̅ ̅̅
𝒎𝒂𝒕𝒉, 𝑵𝑬𝑳̅̅ ̅̅ ̅̅

𝒎𝒂𝒕𝒉, 𝑵𝑺𝑾𝑫̅̅ ̅̅ ̅̅ ̅̅ ̅
𝒎𝒂𝒕𝒉, �̅�𝒎𝒂𝒕𝒉, 

�̅�𝒎𝒂𝒕𝒉 
 
2. FH Subestimate  

An FH subestimate always factors into a corresponding FLEX CS estimate. However, 

calculation of the synthetic-regression estimate differs than previously described.  Instead of 

using the full sets of predictor variables as previously described for computing estimates of mean 

math achievement with the FH technique, the subset of predictor variables that maximize 
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adjusted r-squared (𝑅2
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑) statistics are used for computing the regression-based estimates 

that contribute to the EBLUPs. Consider, for instance, the regression model previously proposed 

for predicting the mean math achievement of students whose parents did finish high school 

demonstrated in Figure 3.4.  

Figure 3.4: Regression model for calculating synthetic estimates of mean math achievement for 
students of parents who did not finish high school (NHS subgroup)  

 
�̂�𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅𝒎𝒂𝒕𝒉

 = �̂�𝒐 + �̂�𝟏(%B-H-AIAN) + �̂�𝟐(FER) + �̂�𝟑(%EL) + �̂�𝟒(SQI) 
 

 
After fitting the outcome variable (𝑵𝑯𝑺̅̅ ̅̅ ̅̅ ̅

𝒎𝒂𝒕𝒉) on all possible combinations of predictor 

variables from Figure 3.7, the combination that maximizes 𝑅2
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 is the model used for 

calculating the regression-based component of the FH subestimate. 

3. WPE Subestimate  

The Weighted Poststratified Estimator (WPE) is a weighted average of district-level 

estimates of mean math achievement of subgroups within states. The strata here refer to school 

districts within a state and the contribution of each district (i.e., stratum) to the estimate of mean 

math achievement of a subgroup statewide (i.e., the weighted average) is a function of the 

proportion of a state’s subgroup population within the district. A WPE factors into a FLEX CS 

estimate for a particular state’s subgroup if district-level estimates of mean math achievement for 

the state’s subgroup are reported in the Stanford Education Data Archive (SEDA),34 which 

includes district-level data on achievement in NAEP-referenced units (Reardon et al., 2017). 

The SEDA project involves linking achievement data from mandatory standardized state 

assessments to the NAEP scale. NAEP-scaled estimates of achievement are available by year, 

                                                           
34 For the test sample (i.e., mean math achievement of 8th graders in 2015), district-level estimates from SEDA are 
available in 34 of 50 states. 
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test subject, grade, and subgroup. However, in some instances, and for different reasons, SEDA 

researchers were unable to link scores for different years-subjects-grades-subgroups 

combinations. For this reason, WPE subestimates contribute to the FLEX CS estimate only when 

they are available. Calculation of the WPE for a given state’s subgroup is performed through the 

following formula— 

𝑊𝑃𝐸 = ∑
𝑁𝑑

𝑁
(�̂�𝑑)

𝐷

𝑑=1

, 

 

where D is the number of districts for which SEDA reports estimates of mean math achievement 

within a state, Nd/N is the proportion of a state’s subgroup population within district d, and �̂�𝑑 is 

a NAEP-scaled estimate of mean math achievement for district d per estimation by Reardon and 

colleagues (2017), reported in SEDA.35 

4. NNI Subestimate  

Nearest Neighbor Imputation (NNI) is a “donor-based” method, where an imputed value 

for a particular cell in a dataset comes from a value recorded for a separate but similar case in the 

dataset (Eskleson et al., 2009). In this study, subestimates of mean math achievement based on 

NNI contribute to a FLEX CS estimate if the state’s nearest neighbor (i.e., most similar state) is 

similar enough to be considered what this study names a sibling state. A sibling state is defined 

by this study as a nearest neighbor whose Euclidean distance, a common measure of similarity, is 

within .40 standard deviations, where Euclidean distance is based on normalized state-level 

                                                           
35 For the test sample, there are only 3 subgroups of interest (B, H, API) for which SEDA reports mean achievement 
by district. Further, as mentioned in the previous footnote, district achievement estimates are only available for 34 
states. 
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measures related to academic achievement.36 The importance of limiting use of this technique to 

states with siblings is that while all states have a nearest neighbor, not all pairs of neighbors are 

particularly similar.  

Similarity of course is inherently a function of the characteristics used to draw the 

comparison. A pair of states may be similar in some regards but different in others. In this study, 

similarity can be conceived as educational similarity, as the characteristics used for computing a 

proximity matrix and determining distance between nearest neighbors represent factors known to 

be associated with academic achievement—including the socioeconomic and racial make-up of a 

state, as well as the quality of its schools (Braun & Kirsch, 2016).  

The data variables used for generating Euclidean distances represent state-level measures 

of parental level of education, family economic resources, race and ethnicity, and school quality. 

Parental level of education is operationalized as the percent of states’ adults 25 years or older 

with at least a bachelor’s degree, data for which come from the American Community Survey 

(ACS; U.S. Census Bureau, 2018). Family economic resources is represented by a composite 

variable of states’ median family income and net worth, data for which also come from the ACS. 

The race and ethnicity factor is operationalized as states’ percent of the grade 8 population that 

identify as Black, Hispanic, American Indian, or Alaskan Native, for which data come from the 

Common Core of Data (CCD). School Quality is an index from Quality Counts, Education 

Week’s annual report of states’ efforts to improve public education (Education Week Research 

Center, 2015).  Euclidean distances are commonly used to measure similarity between research 

                                                           
36 A criterion value of 0.20 standard deviations was initially proposed, since this distance represents a commonly 
used benchmark for characterizing a difference as small when using standardized mean difference (SMD)  to 
measure distances between values (Cohen, 1988; Lipsey, 2001). However, this value was doubled after observing 
that the minimum SMD value between pairs of states was greater than .20. See Table 4.4 for details. 
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subjects, especially when comparisons are based on multiple continuous variables (Hair et al., 

2009), and thus the metric lends itself to comparing states for this study. 

The Euclidean distance between observations (i.e., states) is calculated from differences 

in values of observations on a set of variables.  The Euclidean distance (𝑑) between any pair of 

observations across a set of variables is given by the general formula, 

𝑑𝑤𝑣 = √(𝑥𝑤1 − 𝑥𝑣1)2 + (𝑥𝑤2 − 𝑥𝑣2)2 + ⋯+ (𝑥𝑤𝑝 − 𝑥𝑣𝑝)2 

Where the distance between state w and state v (𝑑𝑤𝑣) is equal to the square root of the 

sum of squared differences between observations w and v, across p variables 𝑥1,  𝑥2, …, 𝑥𝑝. In 

the application of NNI for this dissertation, points (𝑤, 𝑣) represent states and the Euclidean 

distance between states is calculated with the following formula,   

√(%𝐵𝐴𝑤 − %𝐵𝐴𝑣)2 + (𝐹𝐸𝑅𝑤 − 𝐹𝐸𝑅𝑣)2 + (%𝐵𝐻𝐴𝐼𝑁𝐴𝑤 − %𝐵𝐻𝐴𝐼𝑁𝐴𝑣)2 + (𝑆𝑄𝐼𝑤 − 𝑆𝑄𝐼𝑣)2, 

Such that the Euclidean distance between states is equal to the square root of the sum of 

squared differences between states’ values on measures of parental level of education (%BA), 

family economic resources (FER), race and ethnicity (%BHAIAN,) and school quality (SQI). To 

limit the undue influence of the scale on which the variables’ values are measured, each of the 

data variables are standardized with a mean of 0 and a standard deviation of 1 so that the 

distribution of values for each variable are on the same scale.  

Computing Final FLEX CS Estimates 

Final FLEX CS estimates are precision-weighted averages of the subestimates that meet 

the criteria for contributing to FLEX CS estimates, much like the EBLUPs computed in the FH 

approach. The weights associated with subestimates are calculated in a manner that assigns 

greater importance to more precise subestimates. While the criteria set for using a subestimate is 

rather stringent, at least one of the four different types of subestimates, the FH subestimate, 
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always factors into each FLEX CS estimate. This subestimate only requires that a set of predictor 

variables that maximizes adjusted r-squared be used for computing the synthetic-regression 

component of the FH estimate.  

For calculating each i of 376 FLEX CS estimates, which represent precision-weighted 

averages, the following general formula is used in this study— 

 𝐹𝐿𝐸𝑋 𝐶𝑆 = 
∑ (

�̂�𝑠𝑖

𝜎𝑠𝑖̂ 2)
𝑠
1

∑ (
1

𝜎𝑠𝑖̂ 2)
𝑠
1

, 

where the numerator equals the sum of subestimates (�̂�𝑠) of i divided by their corresponding 

variance estimates 𝜎�̂�
2 of i and the denominator equals the sum of 1 divided by variance 

estimates 𝜎�̂�
2 of i. Notation i indexes each mean subgroup achievement value estimated with the 

FLEX CS technique and 𝑠𝑖 represents the number of subestimates that contribute to each i FLEX 

CS estimate, which may vary from one to four separate subestimates. 

Variance of Subestimators 

 Computing FLEX CS estimates requires estimation of the variance of each subestimate 

that meets criteria for factoring into a FLEX CS estimate. For the MICE subestimate, the 

variance estimate is equal to the variance of the 𝑚 = 100 imputed values computed for predicting 

the mean math achievement of subgroups of interest. Thus, variance of MICE subestimates are 

equal to,  

∑ (𝑥𝑖 − �̅�)2100
𝑖=1

100 − 1
 

Where �̅� is the MICE estimate for a target value of interest and 𝑥𝑖, {𝑥1, …, 𝑥100}, represent the 

𝑚 imputations that are averaged in the MICE procedure for estimating the mean math 

achievement of a subgroup of interest. 
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 The variance of FH subestimates (i.e., variance of EBLUPs) is a mean square error 

(MSE) estimator provided in the sae package in R through the mseFH command (Molina & 

Marhuenda, 2015). The command returns two lists. The first contains point estimates of small 

area means (EBLUPs), based on the Fay-Herriot model. The second contains mean square error 

estimates associated with each EBLUP. 

The variance used for the WPE subestimate is a pooled variance, calculated as follows— 

∑ (𝑛𝑖 − 1)𝑑
𝑖=1 �̂�𝑖

2

∑ (𝑛𝑖
𝑑
𝑖=1 − 1)

 

Where 𝑑 is equal to the number of districts (strata) used for estimating the WPE, 𝑛𝑖 is equal to 

the number of subgroup members in district (stratum) 𝑖, and �̂�𝑖
2 is equal to the SEDA-reported 

mean math achievement variance for district 𝑖.  

For the NNI subestimate, the variance is equal to the variance estimate of the donor. Put 

differently, it is the sibling state’s NAEP-reported mean variance for the corresponding 

subgroup. Consider, for instance, that North Dakota is the “sibling” state to South Dakota, and 

that AIAN students from South Dakota are a subgroup of interest. If NAEP reports an estimate 

of mean math achievement and variance for AIAN students in North Dakota, then the NNI 

subestimate factoring into the FLEX CS estimate of mean math achievement and variance for 

AIAN students in South Dakota is equal to the NAEP-reported estimate of mean math 

achievement and variance for AIAN students in North Dakota. 

Application of the MICE and FH Techniques in Practice 

MICE 

It should be noted that the application of the MICE and FH techniques described in this 

chapter differ in important ways from how they would be used in practice. In this study, the 

MICE technique involves successively removing the target values of interest from the test 
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sample prior to executing the MICE procedure. By contrast, removing values from an incomplete 

dataset is not a feature of MICE, or any imputation procedure, in practice. Removing values 

would only serve to reduce the effectiveness of the imputation process since observed values 

serve to inform which values should be imputed.  

In addition, just the first of three general stages of the mice procedure are used for 

evaluating the MICE technique in this study. In practice, mice involves an “imputed data” stage, 

an “analysis results” stage, and finally a “pooled results” stage (van Buuren & Groothuis-

Oudshoorn, 2011). In the first, m separate datasets are imputed, which results in m separate 

complete datasets.  The second involves performing analyses with the m sets of data and the third 

involves pooling estimates (e.g., regression coefficients) computed across the m analyses. 

 It should also be noted that diagnostic checks in mice for examining the plausibility of 

imputed values frequently involves more than just checks for out-of-range imputations proposed 

in this study. Additional checks, for instance, may include superimposing density plots of 

imputed values over observed values (such as the plots depicted in Figure 3.5) to compare their 

distributions. In Figure 3.5, copied from van Buuren & Groothuis-Oudshoorn (2011), the density 

plots for five sets of imputed values, outlined in red, for variables “bmi” and “hc” are 

superimposed on the density plot of observed values, outlined in blue. 

Figure 3.5: Example density plots for comparing distribution of imputed and observed values 
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Another common check is to examine the “sampling streams,” which depict the various 

draws across iterations of the mice algorithm per m sets of imputed values. This check permits 

confirmation of whether imputations tend to converge around similar values by examining series 

of line plots, such as those depicted in Figure 3.6, copied from van Buuren & Groothuis-

Oudshoorn (2011). In these example line plots, the mean of drawn values for variables “wgt” and 

“bmi” are plotted across iterations (t=20) for five separate sets of imputations (m=5). As can be 

gleaned from Figure 3.6, the mean of imputations for the “bmi” variable appear to converge 

around a similar value across sets of imputations, but the same degree of convergence does not 

occur for the “wgt” variable.  

Figure 3.6: Example sampling streams for examining convergence of imputations 
 

 
 

FH 

 Applying an SAE technique such as the Fay-Herriot (FH) model in practice would not 

involve randomly sampling from a larger previously drawn sample to compute direct estimates. 

The modified version of the technique described in this chapter is intended to simulate a scenario 

in which NAEP researchers are not able to sample enough students from a subpopulation by 

taking small random samples of students from state subgroups that are not actually deficient in 
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sample size. The approach permits a comparison between FH-generated mean subgroup 

estimates, based, in part, on randomly drawn samples, and mean math achievement estimates 

reported by NAEP (i.e., the target values). Such a design supports the evaluative nature of this 

study.  

By contrast, in practice NAEP researchers would use all of the sampled students available 

to them for computing the direct estimate of any state subgroup that does not meet the rule-of-62. 

Thus they would use samples ranging between 0 and 61 in size, however many students are 

sampled who are members of the subgroup in the state. In the event no subjects are sampled for 

direct estimation, it is practice in Small Area Estimation to use only the synthetic (i.e., 

regression-based), indirect estimator (Rao, 2013).   

In practice, computing direct estimates from small samples should also involve special 

consideration on how to protect the privacy of students. In accordance with the Federal 

Education Rights and Privacy Act (FERPA), education agencies are legally bound to protect 

students’ personally identifiable information (20 U.S.C. § 1232g; 34 CFR Part 99) and 

publishing direct estimates from small samples risks revealing personally identifiable 

information. For this reason, if a form of SAE, including FH, is used in practice for estimating 

mean subgroup achievement, it is recommended that researchers either conceal the sample size 

used or abandon efforts to compute direct estimates if the available sample is too small. While 

FERPA requires states themselves define minimum sample size requirements for publishing 

achievement results, most states require that a sample represent at least 10 students (U.S. 

Department of Education, 2010).  

Finally it should be noted that the using the FH technique in practice would not involve 

fitting nearly as many regression models for computing indirect (i.e., regression-synthetic) 
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estimates as proposed in this study. Unlike this study, which involves fitting a regression model 

for each target value of interest, 376 total, applying the FH model in practice would only require 

fitting a regression model per subgroup that includes direct estimates computed from 

insufficiently large samples. For the test sample (i.e., mean math achievement of 8th graders in 

2015), this would involve fitting 10 regression models, one per incomplete subgroup. In each of 

these 10 models, the outcome variable would represent a different incomplete variable from the 

test sample and the cells corresponding to state-subgroup pairs that are unreported (i.e., empty 

cells) would be filled with direct estimates computed from small samples of less than 62 

students.   
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Chapter 4: Results 
 

The goal of this study is to determine whether one or more of three prediction techniques 

are suitable for estimating subgroup performance on State NAEP. This chapter describes the 

results of the statistical analyses conducted to evaluate the predictive accuracy of these three 

techniques. It begins with a comprehensive description of the data used for each technique. 

Second, it describes the estimates of mean math achievement computed by each technique and 

contrasts these estimates with the corresponding NAEP-reported estimates (target values).  

Third, it presents the accuracy measures—weighted Mean Absolute Error (wMAE) and 

coverage—calculated for each technique. Finally, it directly addresses the dissertation’s three 

research questions. 

Description of Data Used for the MICE Technique 
 
 The data used for the MICE technique are NAEP-reported state-level estimates of mean 

subgroup achievement from the grade 8 NAEP math assessment in 2015 (i.e., test sample data). 

These data are obtained from the National Center for Education Statistics (NCES) website 

through the NAEP Data Explorer (NDE), a web-based system that provides users with tables of 

detailed results from NAEP assessments (U.S. Department of Education, 2008). These data 

include 18 variables with values representing mean math achievement estimates for different 

NAEP reporting groups (i.e., subgroups) across states. These subgroups include the 10 subgroups 

of interest for which the NAEP program was unable to report estimates of mean math 

achievement for at least one of the 50 states, and 8 subgroups for which reporting is complete 

(see Table 4.1). 
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Table 4.1: Outline of variables from the test sample used for the MICE technique 

Variable (student subgroup) Complete/Incomplete Number of missing 
values 

Eligible for the national free or reduced lunch 
program (E) Complete N/A 

Ineligible for the national free or reduced lunch 
program (I) Complete N/A 

Parents did not finish high school (NHS) Incomplete 2 
Parents graduated from high school (HS) Incomplete 2 
Parents had some education after high school 
(SBA) Incomplete 2 

Parents graduated from college (BA) Incomplete 2 
White (W) Complete N/A 
Black (B) Incomplete 11 
Hispanic (H) Incomplete 3 
Asian/Pacific Islander (API) Incomplete 20 
American Indian/Alaskan Native (AIAN) Incomplete 37 
Two or more races (TP) Incomplete 26 
English language learner (EL) Incomplete 19 
Not an English language learner (NEL) Complete N/A 
Student with disability (SWD) Complete N/A 
Not a student with a disability (NSWD) Complete N/A 
Male (M) Complete N/A 
Female (F) Complete N/A 

 

Description of Data Used for the FH Technique 
 

The data used for computing estimates of mean math achievement with the FH technique 

come from restricted-use student-level data from the National Center for Education Statistics 

(U.S. Department of Education, 2020c) and public-use state-level data from the Common Core 

of Data (2020a), Education Week (Education Week Research Center, 2015) and the U.S. Census 

Bureau (2018). The student data from NCES are the plausible values of grade 8 math 

achievement from NAEP testing in 2015. The administrative data represent state-level factors 

(characteristics) related to academic achievement. The student-level data are used to calculate 

direct estimates of mean math achievement for each state-subgroup pair of interest.37 In the FH 

                                                           
37 Direct estimates are computed that account for NAEP’s complex sampling design. As demonstrated in Appendix 
A in the section titled “Computing Direct Estimates,” the utilized code calls commands that instruct the software 
program (STATA) to use each student’s sampling weight (ORIGWT), jackknife replicate weights for their cluster 
(SRWT’s), and plausible values of grade 8 math achievement (MRPCM’s). 
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technique, direct estimates are combined, by subgroup of interest, with regression-based 

estimates of mean math achievement calculated by fitting direct estimates on predictor variables 

created from administrative data.38 An overview of these predictor variables, constructed from 

administrative data sets, are presented in Table 4.2. This overview includes the predictor 

variables’ names, the factors they are intended to represent, their operational definition, the 

subgroups whose mean math achievement they predict, and their source of data.   

Table 4.2: Outline of predictor variables used for the FH technique 

Name & Factor Operational definition 
Subgroup(s) whose 

mean achievement is 
predicted 

Data 
source 

%B-H-AIAN, Race/Ethnicity 
of students 

State percent of grade 8 students 
who identify as Black, Hispanic, 

American Indian, or Alaskan 
Native 

NHS, HS, SBA, BA, 
TP, EL 

NCES 
(CCD) 

FER, Economic 
circumstances of students’ 
families 

The mean of a state’s median 
household income and wealth in 

dollars 

NHS, HS, SBA, BA, 
B, H, API, AIAN, 

TP, EL 

U.S. 
Census  

%EL, English proficiency of 
students 

State percent of students 
identified as English learners 

NHS, HS, SBA, BA, 
H, API 

NCES 
(CCD) 

SQI, School Quality 

An indicator of school quality in 
each state measured on a 

continuous scale ranging from 0 
to 100 

NHS, HS, SBA, BA, 
B, H, API, TP, EL 

Education 
Week 

%BA, Parental level of 
education 

State percent of adults 25 years 
or older that have earned a 

bachelor’s or more advanced 
degree 

B, H, API, AIAN, TP U.S. 
Census  

%AA, Black ethnicity State percent of Black 
population born in the US B U.S. 

Census  

%MX, Hispanic origin State percent of Hispanic 
population of Mexican descent. H U.S. 

Census  

%A, Asian background 
State percent of grade 8 students 
who identify as Asian, but not 

Pacific Islander 
API NCES 

(CCD) 

                                                           
38 The response variable values all represent direct estimates of some form. For each regression model fit for the FH 
approach (376 total), one value from the response variable is a direct estimate based on a small sample (n < 62) 
randomly drawn from the restricted-use data and the rest of the response variable values are NAEP-reported direct 
estimates. This iterative maneuver, by which NAEP-reported direct estimates are successively replaced with small 
sample direct estimates, is used to simulate the sort of sample and estimate reliability researchers would have in 
practice. 
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It should be noted that most of the administrative data used for constructing predictor 

variables for the FH technique are indirect measures (i.e., proxy measures) of the state-level 

factors they are meant to represent. The data of interest in this study represent the achievement of 

grade 8 students in 2015 in public schools. However, the sources from which various 

administrative data are collected do not provide data on this group of students specifically.39 The 

discrepancies between the predictor variables and the factors they are intended to represent are 

discussed in the following paragraphs. 

Although the %B_H_AIAN variable represents the proportion of grade 8 Black, Hispanic 

and American Indian or Alaskan Native students across states in 2015, it reflects both public and 

private school students. The source of these data, The Common Core of Data (CCD), does not 

separate public and private school students at the subgroup level across states.  

There are two notable limitations with the FER variable. First, available administrative 

data on household income and wealth are not disaggregated by households with children of 

different ages (e.g., grade 8 age students), nor are they disaggregated by whether there are 

children living in a household. Consequently, the FER variable is a measure of economic 

resources of all types of households across states. Second, the data used to represent state-to-state 

variation in families’ wealth reflect 2013 median household estimates, which are available 

through a special study conducted by the U.S. Census Bureau (Cheneverth et al., 2017). 

                                                           
39 While it is possible to calculate some of these predictor variables used in this analysis directly from restricted-use 
data, this particular strategy is not pursued for reliability concerns. There are at least a couple of issues that would 
negatively impact the reliability of predictor variables computed from restricted-use data. The main issue is related 
to small samples— estimates for certain states would be based on very small samples or they would be impossible to 
compute because they do not exist in the restricted-use data. Consider, for instance, the manner by which the %A 
variable is constructed – proportion of API that identifies as “A” (Asian, not Pacific Islander). There may not be any 
PI students sampled by NAEP in certain states. Another issue, which threatens to contribute further measurement 
error to estimates, relates to self-reporting with children. There is some research evidence indicating that students 
often misreport their parents’ level of education (Kreuter et al., 2010). 
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Unfortunately, these special studies are not conducted biannually, and a similar study was not 

conducted for 2015.  

The %EL variable does represent the percent of English learners across states in a 

specific grade. Although the Common Core of Data includes data on English learners 

disaggregated by grade level nationally, disaggregation by grade level is not available for 

individual states. Therefore, the %EL variable is a measure of the percent of English learners by 

states in grades K-12. 

The %AA variable does not measure the proportion of Black students across states who 

identify as African-American. This level of detail is not available in U.S. Census data. Instead, 

this variable represents state-level estimates of the proportion of the Black population that is born 

in the United States. Similarly, the %MX variable does not represent the proportion of Hispanic 

students of Mexican origin across states. Again, this level of disaggregation by grade or age does 

not exist in U.S. Census data. Instead, this variable represents an estimate of the proportion of the 

Hispanic population of Mexican origin of all ages in each state. 

Description of Data Used for the FLEX CS Technique 
 

The data used in the FLEX CS technique include the data used in the MICE and FH 

techniques. In addition, data from the Stanford Education Data Archive (SEDA, Reardon et al., 

2017) are used to compute weighted poststratified estimators (WPEs). It should be noted, 

however, that the opportunity to use the WPEs in the calculation of FLEX CS estimates is 

limited inasmuch as the SEDA data available for the test sample (i.e., grade 8 Math in 2015) 

include NAEP-referenced achievement data for just 3 subgroups of interest and 34 states. Table 
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4.3 displays the subgroups and corresponding states for which NAEP-referenced achievement 

data from SEDA are available for the test sample. 

Table 4.3: Subgroups and states for which NAEP-referenced achievement data are available in 
SEDA for grade 8 math in 2015 
Subgroup States 

Black (B) AL, AK, AZ, CA, CT, GA, HI, ID, IN, IA, KS, KY, LA, MD, MA, MI,  
MN, MS, NE, NM, NC, OK, PA, SC, SD, TN, UT, WV, WY (30) 

Hispanic (H) AL, AK, AZ, CA, CT, DE, FL, GA, HI, ID, IN, IA, KS, KY, LA, MD, MI, 
MN, MS, NE, NM, NC, OK, OR, PA, SC, SD, TN, UT, WV, WI, WY (33) 

Asian Pacific 
Islander (API) 

AL, AK, AZ, CA, CT, DE, FL, GA, HI, ID, IL, IN, IA, KS, KY, LA, MD, 
MA, MI,  MN, MS, NE, NM, NC, OK, OR, PA, SC, SD, UT, WV, WI (32) 

 
 An additional type of subestimate used for calculating FLEX CS estimates of mean math 

achievement is a Nearest Neighbor Imputation (NNI) subestimate. The NNI subestimate is a 

donor-based estimate, where the estimate of mean math achievement for one state takes on the 

observed value (i.e., NAEP-reported estimate of mean math achievement) of its “nearest 

neighbor,” meaning the state with which it is most similar based on a select set of characteristics. 

The data used for the NNI subestimate include data used in the FH technique. Specifically, 

variables representing parental level of education (%BA), family economic resources (FER), race 

and ethnicity (%B-H-AIAN), and school quality (SQI). The %BA and FER variables are 

constructed from American Community Survey data, the %B-H-AIAN variable is constructed 

from National Center for Educational Statistics data and the SQI variable is a measure created by 

Education Week. 

 The criterion established for determining whether an NNI subestimate contributes to a 

FLEX CS estimate depended on whether pairs of states were similar enough to be considered 

sibling states—originally defined as states whose Euclidean distance (based on the %BA, FER, 

%B-H-AIAN, and SQI variables) was less than 0.20. This criterion resulted too stringent, as not a 

single pair of states shared a distance of less than 0.20. To accommodate use of NNI 
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subestimates, a less stringent criterion of 0.40 was used (double the proposed distance). 

Redefining sibling states as pairs of states whose Euclidean distance was less than 0.40 resulted 

in using NNI subestimates in the calculation of FLEX CS estimates of mean math achievement 

for 12 states (6 pairs), presented in Table 4.4.  

Table 4.4: “Sibling states,” pairs of states whose Euclidean distance is less than 0.40  
State pairs Euclidean distance  
Alabama (AL) & Oklahoma (OK) 0.25 
Connecticut (CT) & New Jersey (NJ) 0.36 
Iowa (IA) & North Dakota (ND) 0.39 
Kansas (KS) & Nebraska (NE) 0.36 
Michigan (MI) & Missouri (MO) 0.28 
Pennsylvania (PA) & Wisconsin (WI) 0.25 

 

Note: Euclidean distance is calculated with continuous variables representing four separate state-
level factors related to parental level of education, families’ economic circumstances, race & 
ethnicity, and quality of schools. 
 
Estimates of Mean Math Achievement with the MICE technique 
 

This section begins with a discussion of results from diagnostic checks performed, by 

subgroup of interest, on preliminary sets of MICE-produced estimates of mean math 

achievement. These initial results determined whether final sets of MICE-produced estimates 

would be calculated through the normal linear regression model or through Predictive Mean 

Matching (PMM). Then, per subgroup of interest, this section discusses and contrasts the 

distribution of estimates produced with the MICE technique against corresponding NAEP-

reported estimates—the target values. Boxplots and histograms of the distributions are presented 

to support the comparison of estimates. Finally, a summary table with descriptive statistics of 

MICE-produced and NAEP-reported estimates is presented with remarks summarizing the extent 

to which the MICE technique appears to predict NAEP-reported estimates of mean math 

achievement.   
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Results from Diagnostics of Averaged Imputations 
 
 As proposed in chapter 3, diagnostic checks were conducted to evaluate the plausibility 

of preliminary sets of predicted values with the MICE technique per subgroup of interest. The 

intention was to assess whether the predicted values fell within a reasonable range of expected 

values by subgroup. If these values fell outside subgroup-specific intervals deemed to span a 

range of credible values, then predicted values for the subgroup were recalculated with 

Predictive Mean Matching (PMM), rather than the normal linear regression model with the mice 

algorithm. The range of credible values were calculated per subgroup using Tukey’s (1977) 

"1.5 × 𝐼𝑄𝑅" (inter-quartile range) rule for detecting outlying observations with NAEP-reported 

estimates of mean math achievement. Outlying observations, per Tukey’s rule, were deemed to 

fall outside of a range of credible values.   

Results from these checks indicated that for three of the ten subgroups of interest, initial 

estimates of mean math achievement fell outside of their pre-specified ranges of credible values 

when calculated through the normal linear regression model. These results, illustrated in Figure 

C.1.1 in Appendix C, demonstrate out-of-bound mean math achievement estimates for two 

parental level of education subgroups, students whose parents experienced some college (SBA) 

and students whose parents earned at least a bachelor’s degree (BA), and for one race and 

ethnicity subgroup, students identifying as American Indian or Alaskan Native (AIAN).  

For each of these three subgroups, one predicted value of mean math achievement was 

greater than its pre-specified upper bound of credible values and one value was less than its 

lower bound. For the parental level of education subgroups (SBA and BA), the mean 

achievement estimate of students from Massachusetts was the higher out-of-bound estimate and 

the mean achievement estimate of students from Alabama was the lower out-of-bound estimate. 



 

118 

For the AIAN subgroup, the mean achievement estimate for students from Minnesota was the 

higher out-of-bound estimate and the estimate for students from Arizona was the lower out-of-

bound estimate. Accordingly, MICE-produced estimates of mean math achievement for the SBA, 

BA, and AIAN subgroups were recalculated with Predictive Mean Matching (PMM). 

Diagnostics conducted on these newly computed estimates (see Figure C.1.2 in Appendix C), 

demonstrate that these PMM-based estimates fell within their corresponding ranges of credible 

values.  

Description of MICE Estimates by Subgroup 
 

The mean and median values of NAEP-reported and MICE-produced estimates of mean 

math achievement are similar across subgroups. Rounded to the nearest integer,40 the mean 

values of NAEP and MICE estimates are equal for 9 of 10 subgroups. For the subgroup 

representing American Indian and Alaskan Native (AIAN) students, the mean of MICE estimates 

is one point greater (NAEP mean = 259, MICE mean = 260).  

The median values of NAEP and MICE estimates are equal for 7 of 10 subgroups. These 

median values are one point apart for the NHS (NAEP median = 266, MICE median = 265) and 

HS (NAEP median = 268, MICE median = 269) subgroups. For the subgroup representing Black 

students (B), the median values are two points apart (NAEP median = 258, MICE median = 

260).  

For all subgroups of interest, NAEP-reported estimates of mean math achievement are 

more variable than MICE-produced estimates, a trend that can be observed through the series of 

boxplots and histograms in Figure 4.1.1. In other words, the standard deviations of NAEP 

estimates are larger than corresponding standard deviations of MICE estimates. These 

                                                           
40 All estimates of mean achievement, per NAEP reporting convention, are rounded to their nearest integer. 
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discrepancies in variance are especially pronounced for the subgroups representing Asian Pacific 

Islander (API) and American Indian and Alaskan Native (AIAN) students. For the API subgroup, 

for instance, NAEP-reported estimates of mean achievement range from 275 to 331 (56 points), 

while MICE-produced estimates for this subgroup range from 292 to 323 (31 points). For the 

AIAN subgroup, NAEP estimates range from 240 to 274 (34 points), while MICE estimates 

range from 256 to 263 (7 points). 

It should also be noted that, among the parental level of education subgroups, the sets of 

MICE estimates calculated with Predictive Mean Matching (PMM) are far less variable than 

corresponding NAEP estimates, compared to sets of MICE estimates calculated through normal 

linear regression. For the SBA and BA subgroups, for which MICE estimates were produced 

through PMM, the difference in the range of NAEP and MICE estimates are 10 and 9 points, 

respectively. For the NHS and HS subgroups, for which NAEP estimates were produced through 

normal linear regression, the range in sets of values is equal for the former subgroup and 

different by one point in the latter. A full account of descriptive statistics of NAEP-reported vs. 

MICE-produced estimates of mean math achievement by subgroup is presented in Table 4.1.5.  
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Figure 4.1.1: Boxplots and histograms of NAEP-reported vs MICE-produced estimates of mean 
math achievement by subgroup 
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For two subgroups, NHS and HS, the MICE technique successfully produces estimates of 

mean math achievement that approximate target values (i.e., NAEP estimates) lying at the lower 

tail of their respective distributions. For the HS subgroup, for example, the minimum NAEP-

reported estimate is an outlying value equal to 252, for students in Alabama, which is seven 
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points lower than the second lowest NAEP estimate. However, the MICE-produced estimate of 

mean achievement for Alabama is only two points greater (254), a similarity best appreciated by 

reviewing the boxplot for the NHS subgroup in Figure 4.1.1. 

For other subgroups, the MICE technique is unable to produce estimates of mean math 

achievement that approximate target values lying along the tails of their respective distributions. 

A comparison of MICE and NAEP estimates for the TP and EL subgroups serve as helpful 

examples. The minimum NAEP estimate for the TP subgroup, for students in Kentucky, equals 

266. Meanwhile the next lowest-achieving state, per NAEP, for this subgroup is Oklahoma with 

a mean achievement estimate equal to 273. The minimum MICE estimate for this TP subgroup 

equals 273. For the EL subgroup, the maximum NAEP-reported estimate of mean math 

achievement equals 266, for students in both Kentucky and South Carolina. The maximum 

MICE estimate of mean math achievement for this subgroup, for students in Alaska, equals 

256—a full 10 points less. 

Summary Remarks on Descriptive Statistics of MICE Estimates  

 The MICE technique tends to produce sets of estimates that cluster around the center of 

corresponding distributions of target values. The MICE estimates therefore appear to be 

generally biased toward the state averages of mean achievement across subgroups. This 

truncating effect is particularly problematic when predicted values are calculated with Predictive 

Mean Matching (PMM). This last point should not be too surprising considering imputed values 

with PMM are by definition constrained to equal an observed value selected at random. 

Accordingly, it is not possible for an imputed value (i.e., predicted value, in this case) to be 

greater or less than maximum or minimum observed values, even when an estimand’s true value 

is less or greater than any of the observed values.  
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Table 4.1.1: Descriptive statistics of NAEP-reported vs. MICE-produced estimates of mean math 
achievement by subgroup of interest 

 Mean  SD Min Median Max Range 
 NAEP MICE NAEP MICE NAEP MICE NAEP MICE NAEP MICE NAEP MICE 

NHS 265 265 5 4 254 252 266 265 275 273 21 21 
HS  268 268 6 5 252 254 268 269 278 281 26 27 
SBA  283 283 5 4 270 276 283 283 293 289 23 13 
BA  293 293 7 6 276 280 294 294 308 303 32 23 
B  259 259 5 4 248 248 258 260 269 266 24 21 
H  270 270 4 3 260 263 270 270 279 276 19 13 
API 305 305 12 7 275 292 305 305 331 323 56 31 
AIAN 259 260 8 2 240 256 260 260 274 263 34 7 
TP 282 282 7 4 266 273 282 282 293 293 27 20 
EL 246 246 10 6 226 229 246 246 266 256 40 27 

Note: Values are rounded to their nearest integer to align with NAEP-reporting convention. 
 
 The marked discrepancy in the variability of NAEP-reported and MICE-produced 

estimates of mean math achievement provides an early indication that the MICE technique may 

not be particularly effective at predicting the mean math achievement of relatively low- and 

high-performing states across subgroups (i.e., states whose mean achievement are near the lower 

and upper tails of their respective distributions). This discrepancy in the spread of NAEP and 

MICE estimates is particularly acute for the API and AIAN subgroups, which have relatively 

variable NAEP-reported estimates of mean math achievement.      

Accuracy Statistics for the MICE Technique 
 
 The overall weighted Mean Absolute Error (wMAE) across subgroups of interest for the 

MICE technique is 1.30. The wMAE statistic is smallest (most accurate) for students whose 

parents’ highest level of education is high school (HS; wMAE = 0.85) and largest (least accurate) 

for Asian Pacific Islander students (API; wMAE = 2.73). It should also be noted that the target 

values (NAEP-reported estimates) for the API subgroup are the most variable. The standard 

deviation of NAEP-reported estimates of mean math achievement for the API subgroup is 12. By 

contrast, the standard deviations of the target values for the other subgroups range from 4 to 10. 
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Table 4.1.2 presents the accuracy statistics for the MICE technique by subgroup, as well as 

across subgroups. 

Table 4.1.2: Accuracy statistics for the MICE technique by subgroup 
Subgroups weighted Mean Absolute Error (wMAE) Coverage 
Did not finish high school; NHS (n = 48) 1.01 .92 
Graduated high school; HS (n = 48) .85 1.00 
Some education after high school; SBA (n = 48)*  1.05 .98 
Graduated from college; BA (n = 48)*  1.16 1.00 
Black; B (n = 39)  1.35 .90 
Hispanic; H (n = 47)  1.23 .98 
Asian/Pacific Islander; API (n = 30) 2.73 .57 
American Indian/Alaskan Native; AIAN (n = 13)* 1.41 .69 
Two or more races; TP (n = 24) 1.09 .67 
English learner; EL (n = 31) 1.85 .65 
   

Overall (n = 376) 1.30 .88 
Note: *Estimates of mean achievement computed with Predictive Mean Matching (PMM). 
 

The overall coverage statistic across subgroups of interest for the MICE technique is 

0.88, meaning 88 percent of MICE estimates of mean math achievement fall within their 

respective target intervals. The coverage statistics are particularly high for the parental level of 

education subgroups, ranging from .92 to 1.00. These statistics, however, are much lower for the 

race and ethnicity subgroups. The coverage statistics for the API, AIAN and TP subgroups are 

.57, .69 and .67, respectively. The statistic is also relatively low for the English learner (EL) 

subgroup, .65. For visual representations of the MICE-produced estimates of mean math 

achievement that “hit” and “miss” their corresponding target intervals by subgroup, see 
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Appendix C. For the sake of demonstration, this graph for the API subgroup, for which MICE is 

least accurate, is presented below. 

Figure 4.1.2: MICE-produced estimates and target intervals for API subgroup by state 

 
Note: This figure reappears as Figure C.1.9 in Appendix C. 
 
 As is evident in Figure 4.1.2, the MICE technique does not accurately predict the mean 

achievement of API students from lower- and higher-performing states. The MICE estimates of 

mean math achievement, represented by the dots, cluster near the center of the range of NAEP-

reported estimates of mean math achievement. Note that the MICE predictions miss the target 

intervals of the four lowest-performing states for this subgroup: Alaska, Hawaii, Iowa, and 

Minnesota. The target intervals for these states, whose lower and upper bounds are defined as 
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values 0.20 standard deviations below and above their NAEP-reported estimates, cover ranges 

that are markedly lower than the MICE-produced estimates (i.e., predictions) for these states. 

Estimates of Mean Math Achievement with the FH technique 
 

This section begins with a brief discussion regarding the size of samples used for 

computing direct estimates, which are combined with regression estimates in the FH technique to 

form precision-weighted estimates of mean math achievement (i.e., EBLUPs). As discussed in 

the previous chapter, direct estimates are calculated with randomly drawn samples varying in 

size by subgroup of interest. Specifically, the sample sizes are equal to the median sample size of 

students available from the restricted-use data for the respective subgroup of interest in states 

that do not meet the rule-of-62. This permits the simulation of scenarios in which researchers 

have small samples of students (n < 62) from which to compute direct estimates of mean math 

achievement.41 

 Table 4.2.1 demonstrates the sample sizes used for computing direct estimates in the FH 

approach by subgroup, rounded here to nearest 10 to comply with National Center for Education 

Statistics reporting policies (U.S. Department of Education, 2020c).42 The sample sizes range 

from about 10, for the subgroup representing American Indian and Alaskan Native students 

(AIAN) to about 50 students for six of the ten separate subgroups.43   

 
                                                           
41 The Stata code used for determining sample can be found on the author’s GitHub page within the section titled 
“Determining Sample Sizes to Draw.” 
42 NCES requires sample counts from analysis with restricted-used data (RUD) to be reported to the nearest 10 to 
protect the privacy of students. Rounding sample sizes in this manner makes it more difficult for “data snoopers” to 
use these counts along with other publications based on the RUD to disclose the identity of sample respondents 
(U.S. Department of Education, 2020c). 
43 For grade 8 math in 2015 (the test sample), the two states—Alaska (AK) and Utah (UT)—that did not meet the 
rule-of-62 for the parental level of education subgroups—NHS, HS, SBA, and BA—did not report the parental level 
of education of any tested student. Thus, there was no median sample size to draw for these subgroups. Instead, for 
these parental level of education subgroups, samples equal in size to the largest sample used for computing direct 
estimates were used (about 50, which are the sample sizes used for computing direct estimates for the Black (B) and 
English learner (EL) subgroups. The decision to use a relatively large sample (about 50 students) is reasonable since 
the NAEP program is typically able to report the mean achievement estimates for these subgroups for all 50 states. 

https://github.com/DavidBamat/Dissertation-Code/projects/1
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Table 4.2.1: Samples sizes used for computing direct estimates 
Subgroup Sample size (rounded to nearest 10)  
NHS 50 
HS 50 
SBA 50 
BA 50 
B 50 
H 40 
API 40 
AIAN 10 
TP 30 
EL 50 

 

 
Description of FH Estimates by Subgroup 
 

The mean and median values of NAEP-reported and FH-produced estimates of mean 

math achievement are even more similar across subgroups compared to NAEP and MICE 

estimates. The mean values of NAEP and FH estimates are equal for each subgroup. By contrast, 

mean estimates were equal for 9 of 10 subgroups with the MICE technique. As for sets of NAEP 

and MICE estimates, the median values of NAEP and FH estimates are equal for 7 of 10 

subgroups. For these remaining 3 subgroups, NAEP and FH estimates are just one point apart. 

By contrast, the median of NAEP and MICE estimates were two points apart for the subgroup 

representing Black students (B). The subgroups for which the median value of NAEP and FH 

estimates differ by one point include the NHS (NAEP median = 266, FH median = 265), B 

(NAEP median = 258, FH median = 259) and AIAN (NAEP median = 259, FH median = 260) 

subgroups. 

For most of the subgroups of interest, NAEP-reported estimates of mean math 

achievement are more variable than FH-produced estimates (see Figure 4.2.1). For one subgroup, 

representing students whose parents graduated from college (BA), the standard deviation of 

NAEP and FH estimate values are equal. The difference in the variance of estimate values is 

greatest for the AIAN subgroup, though this discrepancy is considerably less extreme than the 
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difference in the variances of NAEP and MICE estimate values for this subgroup. NAEP 

estimates for the AIAN subgroup range from 240 to 274 (34 points), while FH estimates range 

from 255 to 268 (13 points). By contrast, the MICE-produced estimates for this subgroup ranged 

just 7 points. A more complete account of the similarities and differences between sets of NAEP 

and FH estimates is provided in Table 4.2.2. 
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Figure 4.2.1: Boxplots and histograms of NAEP-reported vs FH-produced estimates of mean 
math achievement by subgroup 
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The similarity in the variance of NAEP and FH estimates for the API subgroup is 

noteworthy considering the range of NAEP estimates for the API subgroup is much greater than 

the range of estimates of any other subgroup. NAEP estimates for the API subgroup range from 

275 to 331 (56 points). By comparison, the second largest range of NAEP-reported estimates for 

any other subgroup is 40, for the EL subgroup. The FH estimates for the API subgroup span 54 

points, from 275 to 329, which is two points less than the range of NAEP estimates. By contrast, 

the difference in range between NAEP-reported and MICE-produced estimates of mean 

achievement for the API subgroup was 25 points. 

For a handful of other subgroups, the FH technique is less successful at producing 

estimate values covering the range of their corresponding target values. For three subgroups—

including HS, AIAN and TP—the NAEP-reported estimates include outlier values that are not 

well approximated by FH estimates (see Figure 4.2.1). 

Summary Remarks on Descriptive Statistics of FH Estimates  

Despite the greater variance in NAEP estimates for most subgroups, the variances of the 

FH estimates are typically more similar to the variances of the NAEP-reported estimates than the 

variances of the estimates produced by the MICE technique. For example, the range of NAEP-
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reported estimates for the API value is 56 points and 54 points for FH-produced estimates, but 

only 31 points for MICE-produced estimates. Although, the distributions of FH estimates, in 

general, are relatively similar to NAEP estimates by subgroup, the distribution of FH estimates 

for the AIAN subgroup in particular is problematic. The range of NAEP estimates for the AIAN 

subgroup is 34 points while the range of FH estimates for this subgroup is just 13 points.  

Table 4.2.2: Descriptive statistics of NAEP-reported vs. FH-produced estimates of mean math 
achievement by subgroup of interest 

 Mean  SD Min Median Max Range 
 NAEP FH NAEP FH NAEP FH NAEP FH NAEP FH NAEP FH 

NHS 265 265 5 3 254 258 266 265 275 272 21 14 
HS  268 268 6 5 252 259 268 268 278 277 26 18 
SBA  283 283 5 4 270 271 283 283 293 291 23 20 
BA  293 293 7 7 276 276 294 294 308 308 32 32 
B  259 259 5 4 245 252 258 259 269 267 24 15 
H  270 270 4 3 260 264 270 270 279 277 19 13 
API 305 305 12 11 275 275 305 307 331 329 56 54 
AIAN 259 260 8 3 240 255 260 260 274 268 34 13 
TP 282 282 7 5 266 272 282 282 293 291 27 19 
EL 246 246 10 8 226 231 246 246 266 263 40 32 

Note: Values are rounded to their nearest integer.  
 
Accuracy Statistics for the FH Technique 
 
 The overall weighted Mean Absolute Error (wMAE) across subgroups of interest for the 

FH technique is .49, a dramatic improvement over the MICE technique (1.30).  The FH 

technique’s wMAE statistic is smallest (most accurate) for students whose parents’ graduated 

from college (BA; wMAE = 0.20) and largest (least accurate) for Hispanic students (H; wMAE = 

.91). It should be noted, however, that the FH prediction of mean math achievement for Hispanic 

students is not inaccurate—at least not in relative terms. Consider, for instance, that the FH 

technique’s wMAE statistic for Hispanic students (0.91) is similar to the most accurate (lowest) 
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wMAE statistic from the MICE technique (0.85, for the HS subgroup). Table 4.2.3 presents the 

accuracy statistics for the FH technique by subgroup, as well as across subgroups. 

Table 4.2.3: Accuracy statistics for the FH technique by subgroup 
Subgroups  weighted Mean Absolute Error (wMAE) Coverage 
Did not finish high school; NHS (n = 48) .47 .98 
Graduated high school; HS (n = 48) .37 .98 
Some education after high school; SBA (n = 48)  .39 1.00 
Graduated from college; BA (n = 48)  .20 1.00 
Black; B (n = 39)  .76 .97 
Hispanic; H (n = 47)  .91 .94 
Asian/Pacific Islander; API (n = 30) .29 1.00 
American Indian/Alaskan Native; AIAN (n = 13) .58 .85 
Two or more races; TP (n = 24) .67 .96 
English learner; EL (n = 31) .34 .97 
   
Overall (n = 376) .49 .97 

 
The overall coverage statistic across subgroups for the FH technique is .97. Put 

differently, about 97 percent of the FH-produced estimates of mean math achievement fall within 

their corresponding target intervals. By contrast, the coverage statistic from the MICE technique 

was 9 percent lower (.88). The FH coverage statistics are perfect for three of ten subgroups 

(SBA, BA and API), meaning the FH-produced estimates of mean math achievement for these 

subgroups all fall within their corresponding target intervals. The lowest coverage statistic, by 

about 9 percentage points, is for the subgroup representing American Indian and Alaskan Native 

students (.85). For visual representations of the FH-produced estimates of mean math 

achievement that “hit” and “miss” their corresponding target intervals by subgroup, see 

Appendix C. 

Estimates of Mean Math Achievement with the FLEX CS Technique 
 

The estimates of mean math achievement produced in the FLEX CS technique are 

formed from combinations of subestimates that vary by subgroup. The estimates for each 
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subgroup are formed from two or three subestimates (see Table 4.3.1). The Fay-Herriot (FH) and 

Nearest Neighbor Imputation (NNI) subestimates are used for estimation with all subgroups, 

while the Multivariate Imputations by Chained Equations (MICE) and Weighted Poststratified 

Estimator (WPE) subestimates each contribute to FLEX CS estimates for three separate 

subgroups. The MICE subestimates are used for just three subgroups in the FLEX CS approach, 

when predictor variables in MICE equations, have a Pearson correlation with the response 

variable (i.e., observed values from subgroup of interest) of at least .80. The WPE subestimates 

only factor into the FLEX CS estimates of select states for three subgroups as the source of data 

used for creating WPE subestimates, the Stanford Educational Data Archive (SEDA; Reardon et 

al., 2017), includes disaggregated achievement data for only three subgroups of interest in this 

study. In addition, SEDA only reports achievement data for between thirty to thirty-three states 

for these three groups (see Table 4.3). 

Table 4.3.1: Subestimates used in calculation of FLEX CS estimates by subgroup 
Subgroup Subestimates 
NHS FH, NNI 
HS MICE, FH, NNI 
SBA MICE, FH, NNI 
BA MICE, FH, NNI 
B FH, WPE, NNI 
H FH, WPE, NNI 
API FH, WPE, NNI 
AIAN FH, NNI 
TP FH, NNI 
EL FH, NNI 

 

Note: In the “Subestimates” column: FH is a Fay-Heriot subestimate, NNI is a Nearest-Neighbor 
Imputation subestimate, MICE is a Multivariate Imputation by Chained Equations subestimate, 
and WPE is Weighed Poststratified Estimator subestimate. 
 
Description of FLEX CS Estimates by Subgroup 
 

Compared to the estimates produced through the first two techniques, the mean and 

median values of FLEX CS-produced estimates of mean math achievement are less similar to 

NAEP-reported estimates across subgroups. The mean values of NAEP and FLEX CS estimates 
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are equal for 7 of 10 subgroups. For the API, AIAN and EL subgroups, the mean FLEX CS 

estimates are one point greater than NAEP estimates. By contrast, the mean values of NAEP and 

MICE estimates were equal for 9 of 10 subgroups and the mean values of NAEP and FH 

estimates were equal for all subgroups.  

The median values of NAEP and FLEX CS estimates are equal for just 4 of 10 

subgroups. For the NHS and API subgroups, the median values are two points apart. For the 

other 4 subgroups (HS, SBA, B, and EL), the median values of NAEP and FLEX CS estimates 

are one point apart. For the previous two techniques, median estimate values were equal to the 

median of NAEP estimate values for 7 of 10 subgroups. 

As for the estimates produced through the FH technique, the NAEP-reported estimates of 

mean math achievement are more dispersed than FLEX CS-produced estimates for all subgroups 

except the subgroup representing students whose parents graduated from college (BA). The 

standard deviation of estimates produced through the FLEX CS technique is equal to the 

standard deviation of NAEP-reported estimates for this subgroup (SD = 7, for both NAEP and 

FLEX CS estimates). Relative to the variance of estimates of mean math achievement produced 

by the MICE technique, the variance of FLEX CS estimates are generally closer to the variance 

of NAEP estimates across subgroups. The variances of estimates produced by the FH and FLEX 

CS techniques are very similar. For each subgroup, as demonstrated in Tables 4.2.2 and 4.3.2, 

the standard deviation of FH and FLEX CS estimate are equal, rounded to the nearest integer. 
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Figure 4.3.1: Boxplots and histograms of NAEP-reported vs FLEX CS-produced estimates of 
mean math achievement by subgroup 
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As with the FH technique, the NAEP-reported estimates of mean math achievement for 

the HS, AIAN and TP subgroups include outliers that are not well approximated by estimates 

produced by the FLEX CS technique. In addition, the FLEX CS technique does not produce 

estimates that come particularly close to outlying NAEP-reported estimates for the SBA 

subgroup (see boxplot for the SBA subgroup in Figure 4.3.1). 

Summary Remarks on Descriptive Statistics of FLEX CS Estimates  

The mean and median values of FLEX CS-produced estimates of mean math 

achievement are less similar to NAEP-reported estimates across subgroups, compared to mean 

and median values of MICE- and FH-produced estimates. However, compared to MICE-

produced estimates, the range in values of FLEX CS-produced estimates are generally more 

similar to the range in values of NAEP-reported estimates across subgroups. On the other hand, 

the range in values of FH and FLEX CS estimates are generally similar across subgroups. One 

exception is the difference in the range of estimates produced for the Asian Pacific Islander 

(API) subgroup. The ranges of estimates for the FH and FLEX CS techniques equal 54 and 47, 

respectively, for the API subgroup, while the range of NAEP estimates for this subgroup is 56. 

 



 

142 

Table 4.3.2: Descriptive statistics of NAEP-reported vs. FLEX CS-produced estimates of mean 
math achievement by subgroup of interest 

 Mean SD Min Median Max Range 

 NAEP 
FLEX 

CS NAEP 
FLEX 

CS NAEP 
FLEX 

CS NAEP 
FLEX 

CS NAEP 
FLEX 

CS NAEP 
FLEX 

CS 
NHS 265 265 5 3 254 258 266 264 275 272 21 14 
HS  268 268 6 5 252 259 268 269 278 278 26 19 
SBA  283 283 5 4 270 273 283 284 293 293 23 20 
BA  293 293 7 7 276 278 294 294 308 308 32 30 
B  259 259 5 4 245 253 258 259 269 269 24 16 
H  270 270 4 3 260 263 270 270 279 276 19 13 
API 305 306 12 11 275 276 305 307 331 323 56 47 
AIAN 259 260 8 3 240 255 260 260 274 268 34 13 
TP 282 282 7 5 266 272 282 282 293 291 27 19 
EL 246 246 10 8 226 230 246 247 266 263 40 33 

Note: Values are rounded to their nearest integer. 
 
Accuracy Statistics for the FLEX CS Technique 
 

The overall weighted Mean Absolute Error (wMAE) across subgroups of interest for the 

FLEX CS technique is .70, which represents considerably greater accuracy than the MICE 

technique’s wMAE (1.30), but lower than the FH technique’s wMAE (.49). The FLEX CS 

technique’s wMAE statistic is smallest (most accurate) for students who are English learners 

(.45) and greatest for Black students (.98). On the other hand, while the overall wMAE statistic 

for the FH technique is smaller (more accurate) than the wMAE for the FLEX CS technique (.49 

vs .70), the FLEX CS estimates were more accurate for Hispanic students (H subgroup) and 

nearly identical to the FH technique’s wMAE statistic for students identifying with two or more 

races (TP subgroup). The FLEX CS technique’s wMAE statistic for the H subgroup equals .85, 

while the FH wMAE statistic equals .91. The FLEX CS technique’s wMAE statistic for the TP 

subgroup equals .67, while the FH wMAE statistic for TP students equals .68. Table 4.3.3 

presents the accuracy statistics for the FLEX CS technique by subgroup, as well as across 

subgroups.       
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Table 4.3.3: Accuracy statistics for the FLEX CS technique by subgroup 
Subgroup weighted Mean Absolute Error (wMAE) Coverage 
Did not finish high school; NHS (n = 48) .61 .96 
Graduated high school; HS (n = 48) .69 .98 
Some education after high school; SBA (n = 48)  .74 .96 
Graduated from college; BA (n = 48)  .64 1.00 
Black; B (n = 39)  .98 .90 
Hispanic; H (n = 47)  .85 .98 
Asian/Pacific Islander; API (n = 30) .69 .90 
American Indian/Alaskan Native; AIAN (n = 13) .62 .85 
Two or more races; TP (n = 24) .68 .96 
English learner; EL (n = 31) .45 .90 
   
Overall (n = 376) .70 .95 

 
 The overall coverage statistic across subgroups of interest for the FLEX CS technique is 

.95. This means that about ninety-five percent of the FLEX CS-produced estimates of mean math 

achievement fall within their corresponding target intervals. In comparison, the coverage statistic 

from the MICE technique was seven percent lower (.88) and the coverage statistic from the FH 

technique was two percent higher (.97). FLEX CS coverage by subgroup is perfect (1.00) for just 

one subgroup, for students whose parents graduated from college (BA). By contrast, the MICE 

and FH techniques had coverage statistics of 1.00 for two and three subgroups, respectively. It 

should be noted that all three techniques have coverage statistics of 1.00 for the BA subgroup. 

The FLEX CS coverage statistic is smallest for the AIAN subgroup (.85). The AIAN subgroup 

was also associated with the smallest coverage statistic for the FH technique. Illustrations of 

FLEX CS-produced estimates of mean math achievement that “hit” and “miss” their 

corresponding target intervals by subgroup are provided in Appendix C. 

Research Question Analyses 
 

This section revisits the research questions put forth at the outset of analyses, the 

rationale behind each question, and the criteria proposed to answer them. Three separate but 
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related research questions shaped the analyses. The first is a general question that asks, in 

absolute terms, whether any of the techniques under evaluation could defensibly be used by 

NAEP researchers to estimate the mean math achievement of subgroups that are unreported by 

the NAEP program. Specifically, is it reasonable to use any of the techniques examined in this 

study, based on benchmarks established through a simulation analysis, to estimate subgroup 

math achievement on State NAEP when sample sizes do not permit direct estimation? The second 

asks how accurately, in relative terms, the techniques predict mean achievement. Specifically, 

how do the techniques compare with respect to maximizing accuracy, according to accuracy 

measures used in this study (weighted Mean Absolute Error and coverage)? The third asks about 

the predictive accuracy of techniques by subgroup. Specifically, how do the techniques vary in 

their ability to predict achievement per subgroup? 

Research Question 1 - Is it reasonable, based on benchmarks established through a 
simulation analysis, to use any of the techniques examined in this study to estimate 
subgroup math achievement on State NAEP when sample sizes do not permit direct 
estimation? 
 

The central question of this study is whether one or more of the techniques can 

reasonably be applied to the estimation of mean math achievement of subgroups on State NAEP 

when direct sampling does not yield samples of at least 62 students. This question is addressed 

through an analysis of coverage statistics. A technique is considered reasonable to use if, across 

subgroups of interest, at least 95 percent of the technique’s predicted estimates of mean math 

achievement fall within corresponding target intervals, and per subgroup of interest, at least 80 

percent fall within corresponding target intervals. These rates, considered markers of successful 
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prediction, were established based on results from a simulation analysis of example NAEP data 

from the EdSurvey package (Bailey et al., 2019) in R.44  

 The answer to this central question is yes: two of the three evaluated techniques could 

reasonably be applied to the estimation of mean subgroup achievement on State NAEP when 

direct sampling does not yield at least 62 students identifying with the subgroup (according to 

the criteria established in this study). While the coverage statistics from the MICE technique do 

not meet the criteria that would render the technique reasonable to use, the coverage statistics 

from the FH and FLEX CS techniques do meet the criteria. The overall coverage statistics from 

the FH and FLEX CS techniques equal .97 and .95, respectively, both of which are greater than 

or equal to the benchmark value of 0.95. Meanwhile, the smallest coverage statistic values by 

subgroup from the FH and FLEX CS techniques are both .85 (both for the AIAN subgroup), 

which is greater than the benchmark value of .80.  

 It should be carefully noted, however, that the FH and FLEX CS techniques must be 

applied to NAEP achievement data from other years and for the NAEP Reading assessment 

before definitive recommendations can be made for their use in practice. That is, judgements 

regarding their general promise and utility cannot be cast without first evaluating the predictive 

accuracy of these technique with achievement data from different years and NAEP Reading.  

Research Question 2 - How do the techniques compare with respect to maximizing 
accuracy, according to accuracy measures used in this study (weighted Mean Absolute 
Error and coverage)? 
 

Addressing the second research question permits a conclusion to be drawn regarding 

which techniques perform best in relative terms. In other words, it asks which technique 

performs best in terms of its ability to accurately predict mean subgroup achievement. The 

                                                           
44 The simulation analysis and results are described at length in Chapter 3. The statistical code can be found on the 
author’s GitHub page. 

https://github.com/DavidBamat/Dissertation-Code/projects/1
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answer to this question has heightened importance since it was determined that two techniques 

(i.e., FH & FLEX CS) meet the criteria to be considered adequate for use.  This question is 

answered through an analysis of weighted Mean Absolute Error (wMAE) statistics—a weighted 

measure of mean absolute differences between predicted values (i.e., technique-produced values) 

and target values (i.e., NAEP-reported values). 

The simple and straightforward answer is that the FH technique is more accurate than the 

FLEX CS technique. The overall wMAE statistics (across subgroups) from the FH and FLEX CS 

techniques are .49 and .70, respectively. For the FH technique, measures of wMAE range from 

.20 to .91 across subgroups, while FLEX CS measures of wMAE range from .45 to .98. The 

more nuanced answer to this second research question is that the FH techniques tends to be more 

accurate than the FLEX CS technique—a point treated in greater detail by the answer to the third 

research question. 

Research Question 3 - How do the techniques vary in their ability to predict achievement 
per subgroup? 
  

The third research question prompts an examination into whether prediction accuracy for 

each technique varies as a function of the subgroup. The importance of this question is twofold. 

First, the answer helps to ascertain whether a technique that is generally successful in predicting 

mean subgroup achievement overall can also accurately predict mean achievement for each 

subgroup. A technique that cannot successfully predict mean achievement for each subgroup 

does not have the same practical appeal to practitioners and researchers, nor does it have firm 

standing as a defensible prediction technique. It raises the suspicion that the technique’s 

predictive success occurs by chance, at least to some extent. Second, the answer to this research 

question offers an opportunity to learn about the relative usefulness of the different inputs (e.g., 

predictor variables) used to estimate mean math achievement from the different techniques.  
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For all but one subgroup, the FH technique most accurately predicts mean math 

achievement. In more specific terms, the wMAE statistics associated with the FH technique are 

smallest for nine subgroups. On the other hand, the wMAE statistic associated with the FLEX 

CS technique is smallest for the subgroup representing Hispanic students (H). This finding, 

however, does not mean that the FH technique inadequately predicts the mean math achievement 

of Hispanic students. The coverage statistic associated with the FH technique for Hispanic 

students is .94, which is well above the benchmark of .80 deemed to represent an acceptable 

coverage rate for any given subgroup. This last finding does however suggest that the WPE 

subestimate for Hispanic students constructed from SEDA (Reardon et al., 2017), which forms 

part of the FLEX CS mean estimates for Hispanic students, contributes to accurate prediction, 

while the WPE subestimates for other subgroups are less helpful. In addition, the greater general 

accuracy of the FH technique over FLEX CS suggests that the NNI subestimates, which were 

used in the latter technique, are not particularly helpful. 

Applying the FH technique to Unreported Achievement Data  
 

To examine whether using the FH technique in practice yields reasonable results, the 

technique was applied to the subgroup representing Black students (B). This subgroup was 

chosen for a number of reasons. The legacy of slavery and discrimination against Black people in 

American history has long hampered the educational opportunities and advancement of Black 

students, and that has led to special interest in supporting Black students’ learning and 

achievement. In addition, NAEP does not report an estimate of mean math achievement for this 

subgroup in 11 of 50 states from the test sample,45 providing an opportunity to evaluate whether 

                                                           
45 The 11 states are: Hawaii (HI), Idaho (ID), Maine (ME), Montana (MT), New Hampshire (NH), New Mexico 
(NM), Oregon (OR), South Dakota (SD), Utah (UT), Vermont (VT), and Wyoming (WY). 
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the FH technique produces reasonable estimates of mean math achievement for 11 states instead 

of just two or three.  

The mean estimates (EBLUPs) for the 11 states calculated with the FH technique appear 

reasonable. For example, the range of these 11 imputed values is contained within the range of 

the 39 observed values (i.e., NAEP-reported estimates). Further, the average of the 11 FH-

produced mean estimates and 39 NAEP-reported mean estimates are similar—262 and 259, 

respectively. Figure 4.4 is a scatter plot that displays the differences between each state’s 

estimate of mean math achievement of Black students and the average mean math achievement 

estimate of Black students across all 50 states. The 11 imputed FH estimates, represented by red 

dots, are located within the distribution of NAEP estimates, represented by blue dots, and they do 

not cluster in any particular region of the overall distribution of estimates.  
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Figure 4.4. Scatter plot of the differences between each state’s estimate of mean math 
achievement of Black students and the nationwide average of estimates of mean math 
achievement of Black students 

 

 

  

The values of mean variance estimates for the 11 states calculated with the FH technique 

are also acceptable. The standard errors associated with the 11 EBLUPs range in value from 3.3 

to 4.4, with a mean of 3.7 and median of 3.6. By contrast, the standard errors associated with the 

39 NAEP-reported estimates of mean math achievement range from 1.3 to 4.2 with a mean of 2.6 

and median of 2.5.46 Figure 4.5 displays the 95-percent confidence intervals of mean estimates 

for all 50 states, with intervals representing FH estimates color-coded red.  

                                                           
46 Mean estimates and standard errors of all 50 states for the B subgroup are provided in Table B.11 in Appendix B. 
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Figure 4.5: 95-percent confidence intervals of FH (red) and NAEP (blue) estimates of mean 
math achievement for Black subgroup 

 
 

 
 

Although it is clear that FH estimates are generally calculated less precisely, in 

comparison to NAEP-reported estimates, the size of the 11 standard errors are within the range 

of standard error values that the NAEP program is accustomed to reporting. Consider, for 

instance, that the maximum values of the 11 FH and 39 NAEP-reported standard errors are 

similar, 4.4 and 4.2, respectively. In practice, we can expect some FH-produced estimates, 

relative to design-based estimates, to be calculated imprecisely. It is unavoidable that, in some 

cases, only a few students will be sampled and available for the computation of the direct-

estimate component of the EBLUP. 
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As an additional step to evaluate the credibility of the 11 imputed estimates of mean 

achievement produced through the FH technique, a test was undertaken to examine whether any 

of the 11 imputed values would be considered outlying values according to Tukey’s (1977) 

"1.5 × 𝐼𝑄𝑅" rule. Figure 4.6 presents juxtaposed dot plots of FH and NAEP-reported estimates 

of mean math achievement. The region bounded by the horizontal lines represents a range of 

non-outlying values, according to the"1.5 × 𝐼𝑄𝑅” rule, based on the interquartile range of 

NAEP-reported estimates. Results indicate that the values of FH estimates are non-outlying, 

which serves as additional evidence that the imputed estimates of mean math achievement 

calculated through the FH technique are plausible. 

Figure 4.6. Dotplot of estimates of mean achievement by estimation method, with horizontal 
lines demarcating boundaries of non-outlying values per Tukey’s (1977) “1.5 x IQR” rule. 

 

 
Note: The black horizontal lines demarcate the lower and upper bounds, respectively 245 and 
274, of the reference range used for assessing the plausibility of predicted values for the B 
subgroup. 
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An additional step to ensure the 11 FH estimates represent credible values of mean math 

achievement for the B subgroup, overall mean math achievement estimates were compared to 

mean math achievement estimates of Black students for all 50 states. Figure 4.7 illustrates the 

gaps (i.e., differences) in mean achievement estimates between all students and Black students 

by state. The differences calculated by subtracting estimates of mean math achievement of Black 

students produced through FH from the estimates of mean math achievement of all students, as 

reported by NAEP, are color-coded red. These results lend additional credibility to the 11 

estimates calculated through the FH technique since the observed gaps between the achievement 

estimates of Black students, calculated through FH, and estimates of all students would be 

expected to be similar, in direction and magnitude, to the gaps observed between Black students 

and all students in the 39 remaining states.47  

                                                           
47 Although Figures 4.4 and 4.7 appear similar, they present different comparisons. Figure 4.4 displays the 
differences between the mean achievement estimates of Black students in individual states and the mean 
achievement of Black students nationwide (i.e., the vertical line). Figure 4.7 displays differences between mean 
achievement estimates of Black students and all students (i.e., all subgroups) within each state. 
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Figure 4.7: Differences between estimates of mean math achievement of Black students and 
overall (i.e., all subgroups) estimates of mean math achievement by state 
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Chapter 5: Discussion 

 
The purpose of this study was to ascertain whether one or more of three techniques were 

appropriate choices for estimating subgroup performance on State NAEP. Whether a technique 

was considered appropriate was determined by a set of rules that reflected how close predicted 

values produced by the techniques were to values reported by the NAEP program. The three 

techniques were progressively more complex with respect to the data entered and the manner in 

which estimates were constructed. The first technique was as an adaptation of a form of multiple 

imputation, Multivariate Imputation by Chained Equations (MICE). The second was a Small 

Area Estimation technique, the Fay-Herriot model (FH). The third was a form of cross-survey 

analysis, a technique referred to in this study as Flexible Cross-Survey Analysis (FLEX CS). 

This chapter revisits the findings, discusses limitations, and offers recommendations for future 

research. 

Review of the Findings 
 

A technique is considered reasonably accurate in predicting mean subgroup achievement 

and potentially suitable for actual implementation if both its aggregate coverage statistic is 0.95 

or higher and by-subgroup coverage statistics are 0.80 or higher. Two of the three techniques 

evaluated in this study, FH and FLEX CS, appear suitable for use in practice. The MICE 

technique does not.  

The aggregate coverage statistic associated with MICE is 0.88, which is lower than the 

aggregate benchmark value of 0.95. In addition, the coverage statistics associated with MICE for 
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four separate subgroups (i.e., API, AIAN, TP, and EL) are less than the benchmark value of 0.80 

set for individual subgroups.  

Table 5.1: Subgroup and aggregate measures of wMAE and coverage by technique 

 
Comparing the FH and FLEX CS techniques, the former appears more promising. In this 

study, aggregate measures of weighted Mean Absolute Error (wMAE) and coverage both 

indicate that the FH estimates of mean math achievement are more accurate than the FLEX CS 

estimates. Although the aggregate coverage statistic is only marginally greater for the FH 

technique (0.97 vs. 0.95), the aggregate wMAE statistic indicates the FH technique is 

substantially more accurate. The aggregate wMAE statistics for the FH and FLEX CS techniques 

 MICE FH FLEX CS 
Did not finish high school (n = 48)    

Weighted Mean Absolute Error (wMAE)  1.01  .47 .61 
Coverage  .92 .98 .96 

Graduated high school (n = 48)    
Weighted Mean Absolute Error (wMAE) 0.85 .37 .69 
Coverage  1.00 .98 .98 

Some education after high school (n = 48)    
Weighted Mean Absolute Error (wMAE) 1.05 .39 .74 
Coverage  .98 1.00 .96 

Graduated college (n = 48)    
Weighted Mean Absolute Error (wMAE) 1.16 .20 .64 
Coverage  1.00 1.00 1.00 

Black (n = 39)    
Weighted Mean Absolute Error (wMAE) 1.35 .76 .98 
Coverage  .90 .97 .90 

Hispanic (n = 47)    
Weighted Mean Absolute Error (wMAE) 1.23 .91 .85 
Coverage  .98 .94 .98 

Asian/Pacific Islander (n = 30)    
Weighted Mean Absolute Error (wMAE) 2.73 .29 .69 
Coverage  .57 1.00 .90 

American Indian/Alaskan Native (n = 13)    
Weighted Mean Absolute Error (wMAE) 1.41 .58 .62 
Coverage  .69 .85 .85 

Two or more races (n = 24)    
Weighted Mean Absolute Error (wMAE) 1.09 .67 .68 
Coverage  .67 .96 .96 

English learner (n = 31)    
Weighted Mean Absolute Error (wMAE) 1.85 .34 .45 
Coverage  .65 .97 .90 

Total (n = 376)    
Weighted Mean Absolute Error (wMAE) 1.30 .49 .70 
Coverage .88 .97 .95 
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equal 0.49 and 0.70, respectively. That is, on average, the weighted difference between FH 

estimates of mean math achievement and NAEP-reported estimates across all subgroups equals 

0.49 points, while the average weighted difference between FLEX CS and NAEP estimates 

equals 0.70, corresponding to a 43 percent increase in the wMAE measure.48 On the NAEP scale, 

the overall MAE (i.e., unweighted) statistics for FH and FLEX CS equal about 1.5 points and 2.1 

points, respectively. For reference, overall estimates of mean math achievement across states in 

the test sample have a standard deviation of about 6.7 points and a range of 30 points, from 267, 

in Alabama, to 297, in Massachusetts (U.S. Department of Education, 2021).  

By subgroup, the FH technique also generally outperforms FLEX CS. The wMAE and 

coverage statistics associated with the FLEX CS technique indicate greater accuracy for only one 

of ten subgroups—the subgroup representing Hispanic students. Still, the accuracy statistics for 

the Hispanic subgroup are marginally more favorable for the FLEX CS technique compared to 

FH. The wMAE statistics for the FH and FLEX CS techniques equal 0.91 and 0.85, while their 

coverage statistics equal 0.94 and 0.98, respectively.   

Since the FH technique is the best performing technique, it is proposed that follow-up 

research on the estimation of mean subgroup achievement on NAEP be focused on the 

implementation of the FH technique. Further, the analysis discussed at the end of the previous 

chapter makes clear that the FH technique can yield reasonable results when applied to actual 

missing achievement data. When applied to the Black subgroup, the FH technique produced 

estimates of mean math achievement for the 11 states unreported by NAEP that are comparable 

                                                           
48 The weighting step in the calculation of wMAE produces aggregate differences that are smaller in magnitude than 
actual average differences between predicted and target values on the NAEP scale. This occurs because absolute 
differences between predicted and target values are divided by the standard error associated with the target value 
(i.e., the NAEP-reported estimate). 
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to estimates that would have been reasonably expected given the NAEP program had sampled at 

least 62 Black students from the 11 states. 

Evaluation of the MICE Technique 
 

The MICE technique adequately predicts the mean math achievement of the parental 

level of education subgroups. However, the technique inadequately predicts mean math 

achievement estimates of race and ethnicity subgroups. The coverage statistics from MICE for 

this second set of subgroups range from .57 to .98, though these ranges belie the fact that, for 

four of these five subgroups, the coverage statistic is equal to a value below the .80 benchmark. 

The MICE technique also fails to adequately predict the mean math achievement estimates for 

the English learners subgroup (.65).  

Overall, the MICE technique meets neither the coverage statistic benchmark of .95 across 

subgroups, nor the benchmark of .80 per subgroup. It should be noted, however, that the MICE 

technique’s general ability to accurately predict mean achievement was likely inadvertently 

hamstrung by the decision to use the Predictive Mean Matching (PMM) approach instead of 

normal linear regression for some subgroups. The PMM approach was used for estimation with 

the SBA, BA and AIAN subgroups and exacerbated the MICE technique’s tendency to produce 

estimates that are biased toward the state averages of mean achievement across subgroups.  

Regardless of PMM’s role in the prediction of mean achievement, the MICE technique 

would have proved inadequate. Consider, for instance, that the MICE technique is especially 

inaccurate in its prediction of mean achievement for the API subgroup, for which PMM was not 

used. In summary, the MICE technique cannot be recommended for use in practice.  
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Evaluation of the FH Technique 
 

The FH technique, like the MICE technique, adequately predicts the mean math 

achievement of parental level of education subgroups. The coverage statistics from the FH 

technique for these subgroups equal .98 for the NHS and HS subgroups, and 1.00 for the SBA 

and BA subgroups. This means FH-produced estimates of mean math achievement only miss 

their associated target intervals on two occasions across the four parental level of education 

subgroups. For the NHS subgroup, the FH-produced estimate for Connecticut is about 1 point 

greater than the upper bound of its corresponding target interval (see Table C.2.1, Appendix C). 

For the HS subgroup, the FH-produced estimate for Alabama is slightly greater than the upper 

bound of its corresponding target interval (see Table C.2.2, Appendix C).  

The FH technique also adequately predicts the mean math achievement of race and 

ethnicity subgroups, although not as well as it predicts the parental level of education subgroups. 

The coverage statistics from FH for this second set of subgroups range from .85, for the AIAN 

subgroup, to 1.00, for the API subgroup. For the English learners subgroup (EL), the FH 

coverage statistic equals .97. Notwithstanding the less than desirable prediction accuracy for the 

AIAN subgroup, the FH technique could be recommended for use in practice. 

It should be noted, however, that while the coverage statistic of .85 is comfortably greater 

than the benchmark value of .80 per subgroup for a technique to be considered acceptable, this 

coverage statistic of .85 is notably lower than the coverage statistics for the remaining race and 

ethnicity subgroups, which otherwise range from .94 to 1.00. The FH-produced estimates for the 

AIAN subgroup miss their target intervals for Utah and Wisconsin, the lowest- and highest-

achieving states according to NAEP’s estimates. The NAEP-reported estimates of mean 

achievement in Utah and Wisconsin are 240 and 274, while the corresponding FH estimates 
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equal 256 and 262, respectively. It should be noted, however, that the NAEP-reported mean 

achievement values for Utah and Wisconsin are estimated imprecisely relative to other states. 

The standard errors reported by NAEP for Utah and Wisconsin are 9.0 and 7.0 points, which 

represent the largest standard errors reported by NAEP for the AIAN subgroup. It is conceivable 

that the true parameter values for these states are closer to their FH estimates. There is 

substantial overlap in the confidence intervals of the NAEP and FH estimates for these two 

states. For Utah, the 95-percent confidence intervals range from 222 to 258 and 247 to 265. For 

Wisconsin, these intervals range from 260 to 288 and 254 to 270.  

Evaluation of the FLEX CS Technique 

The FLEX CS technique, like the MICE and FH techniques, adequately predicts mean 

math achievement for the parental level of education subgroups. The coverage statistics from 

FLEX CS for these subgroups equal .96 for the NHS and SBA subgroups, .98 for the NHS 

subgroup, and 1.00 for the BA subgroup. While these coverage rates are relatively high, and well 

above the benchmark of .80, they are not quite as high as the corresponding rates from the FH 

technique. This small difference between FH and FLEX CS coverage statistics for parental level 

of education subgroups indicates that the MICE and NNI subestimates that factor into FLEX CS 

estimates for these subgroups, in addition to FH subestimates, do not provide improved accuracy. 

Analysis of wMAE statistics from FH and FLEX CS techniques for the parental level of 

education subgroups corroborate this last point. The FH technique’s wMAE statistics, compared 

to the FLEX CS technique’s, are notably smaller for these four subgroups.  

The FLEX CS technique, like the FH technique, also satisfactorily predicts mean math 

achievement for the race and ethnicity subgroups. The coverage statistics from FLEX CS for the 

race and ethnicity subgroups range from .85, for the AIAN subgroup, to .98, for the H subgroup. 
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For the English learners subgroup (EL), the FH coverage statistic equals .96. For one subgroup, 

representing Hispanic students, FLEX CS estimates are more accurate than FH estimates. FLEX 

CS estimates, however, are not more accurate for the other race and ethnicity subgroups. The 

FLEX CS technique, while not generally as accurate as the FH technique, could also be 

recommend for use in practice. 

Two additional points about FLEX CS results bear mentioning. First, like the FH 

technique, the subgroup for which FLEX CS is least effective in predicting mean math 

achievement is the one representing American Indian and Alaskan Native students (AIAN). This 

finding could signal that estimates for this particular subgroup are generally the most difficult to 

predict. A logical explanation is that the samples used for computing direct estimates for this 

subgroup are much smaller, relative to the samples available for the other subgroups. In this 

study, the sample size, rounded to the nearest 10, used for computing direct estimates for the 

AIAN subgroup equal 10. The sample sizes used for the other subgroups range from 30 to 50.  

Second, with the exception of one subgroup (H), combining estimates produced with the 

FH technique with estimates produced with the other estimation methods (i.e., MICE, WPE, 

NNI), does not appear to be a useful strategy. It is worth unpacking the limited utility of WPE 

and NNI subestimates, in particular, since the use of these types of estimates is unique to 

estimation with FLEX CS.  

Regarding WPE subestimates, it is helpful to remember that these subestimates are used 

for only three subgroups of interest (i.e., B, H & API) and subsets of states because of limited 

availability of achievement data in the Stanford Educational Data Archive (SEDA). Nonetheless, 

a number of interesting findings regarding WPE subestimates emerge from scrutinizing FLEX 

CS estimates across these three subgroups. First, the improvement (i.e., decrease) in wMAE for 
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the FLEX CS technique, relative to FH, for the Hispanic subgroup is largely driven by estimates 

for California and Florida. Interestingly, these states have relatively large Hispanic populations. 

The target value (i.e., NAEP-reported estimate) for Hispanic students in California equals 263, 

and the corresponding FH and FLEX CS estimates equal 271 and 265, respectively. The target 

value for Hispanic students in Florida equals 272, and the corresponding FH and FLEX CS 

estimates equal 267 and 271, respectively. The coverage statistic for the Hispanic subgroup is 

greater for the FLEX CS technique, compared to FH, because the FLEX CS estimate for 

Hispanic students in California is located within its target interval, but the FH estimate for 

Hispanic students in California is not (as illustrated in Figures C.2.6 and C.3.6 in Appendix C).  

The only other instance in which a FLEX CS estimate, constructed in part with a WPE 

subestimate, is substantially more accurate than an FH estimate is for the Black subgroup in 

Georgia. The target value for Black students in Georgia equals 264, and its corresponding FH 

and FLEX CS estimates equal 258 and 262, respectively. Interestingly, Georgia is among the 

states with the largest proportions of Blacks students. This finding, paired with the finding 

regarding the greater accuracy of FLEX CS estimates for Hispanic students in California and 

Florida, provides some indication, albeit limited, that using SEDA data could be helpful for 

estimation in states where minority subgroups represent a relatively large proportion of the 

general state population.   

Regarding estimation with Nearest Neighbor Imputation (NNI), it should similarly be 

noted that the potential for NNI subestimates to contribute to FLEX CS estimates of mean math 

achievement was limited in this study. First, there are only 12 states (i.e., 6 pairs) considered 

similar enough to warrant NNI subestimation in the calculation of their FLEX CS estimates. 

These are the pairs of states described as sibling states. Second, for some subgroups of interest, 
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certain estimates of sibling states cannot be used as NNI subestimates because they are 

unreported in NAEP publications, meaning they cannot be used since they do not exist. To 

understand this point, consider that certain pairs of sibling states are, in relative terms, 

demographically homogenous (e.g., Iowa-North Dakota, Kansas-Nebraska) and that the NAEP 

program would have experienced difficulty in sufficiently sampling students from certain 

subgroups (e.g., API, AIAN, EL) in these pairs of states.  

In addition to limits on their applicability, the NNI subestimates are relatively inaccurate. 

As can be deduced by examining tables in Appendix B, NNI subestimates are seldom more 

accurate (i.e., closer to the target value) than corresponding MICE and FH estimates. For two 

pairs of sibling states, NAEP-reported estimates of mean math achievement are especially 

dissimilar across subgroups. NAEP estimates of mean math achievement for Oklahoma and New 

Jersey respectively tend to be considerably greater than estimates for Alabama and Connecticut. 

Limitations of the Study 
 

 Several study limitations deserve mention and are discussed below. 

Indirect Comparisons of Techniques 
 
 In a sense, the predictive performance of the three techniques evaluated in this study are 

not directly compared since they do not draw on the same sources of data for prediction. It can 

instead be argued that three separate analytic approaches are directly compared. This perspective 

asserts that separate techniques are not compared since they use different data for prediction and 

these data represent a potential confounding factor in the evaluation of each technique’s relative 

predictive accuracy. It is conceivable that the relative accuracy of these techniques is not so 
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much influenced by the algorithms or processes governing the techniques but the data that they 

incorporate for prediction. Results from this study could have been different with different data.  

Estimating the Mean Achievement of Intersections of Subgroups 

This study does not attempt to estimate the mean achievement of intersections of NAEP 

subgroups (e.g., Black male students, Asian students with limited English proficiency). While 

estimating the mean achievement of intersections of subgroups is beyond the scope of this 

current study, estimating the mean achievement of more narrowly defined groups of students is a 

worthy endeavor. Many students belong to multiple historically underserved and 

underperforming groups of students (e.g., American Indian students living in poverty, racial 

minorities with limited English proficiency) and the social factors that place these students at an 

academic disadvantage are multifaceted.  

Consider, for instance, that recent reform efforts in the United States have been designed 

to specifically support the academic success of Black males, who, in the aggregate, experience 

far less favorable outcomes than other groups of students—including higher dropout, suspension 

and expulsion rates (Chen, 2020; Lynch, 2017). It is crucially important that researchers and 

policymakers have a better understanding of the learning and achievement of particular 

intersections of subgroups, especially those that are chronically underserved and 

underperforming. While NAEP’s public-use Data Explorer computes mean achievement 

estimates of intersections of subgroups across states, the availability of these estimates is greatly 

limited by NAEP’s minimum sample size policy (i.e., rule-of-62) for reporting.  

Predicting Mean Achievement with Proxy Data with the FH Technique 

 Most of the administrative data used to construct predictor variables for the regression 

models in the FH approach are indirect measures (i.e., proxy variables) of the factors they are 
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intended to represent. Ideally, the predictor variables would specifically represent state-level 

characteristics of grade 8 students in 2015 in public schools, the target population for the desired 

inference. However, the administrative data available for constructing these predictor variables 

are imperfect matches, primarily because the available data are not disaggregated by grade level. 

Limited SEDA Data  

 Using SEDA data (Reardon et al., 2017), which provides NAEP-referenced mean scale 

scores for subgroups by district to estimate mean subgroup achievement at the state-level, would 

seem to provide a promising solution to the research problem that this dissertation addresses. 

Unfortunately, these district-level data are only available through SEDA for three of ten 

subgroups of interest in this study (B, H & API). Further, the district-level data for these three 

subgroups are only available for a limited number of the 50 states. For the test sample (i.e., mean 

math achievement of 8th graders in 2015), district-level estimates from SEDA are available for 

34 of the 50 states. In practice, where the research aim would be to estimate the mean 

achievement of state-subgroup pairs that are not reported by NAEP, using SEDA data might 

have even more limited use, as the states for which these district-level estimates are missing in 

SEDA also tend to be the states for which mean subgroup achievement are not reported by 

NAEP. 

Recommendations for Future Research 

An obvious next step is to evaluate the predictive accuracy of the Fay-Herriot (FH) 

technique with math achievement data from other years and a parallel set of analyses for the 

NAEP Reading data, using the same criteria from this study to determine whether the accuracy 

observed with other test samples are reasonably successful. Further, improving the prediction of 

mean achievement when sampling does not permit direct estimation should be treated an as 
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ongoing effort. The prediction techniques explored and data used in this study are not exhaustive. 

Different techniques and sources of data can be identified that may improve prediction. An 

intriguing method to explore is the Spatio-Temporal Fay-Herriot (STFH) model, an extension of 

the common Fay-Herriot model, which also makes use of area-level data from different time 

periods for estimation (Molina & Marhuenda, 2015). In the context of this research, applying the 

STFH model would involve borrowing mean achievement data from preceding and subsequent 

NAEP testing years, as available, to strengthen prediction.  

 The set of estimates in greatest need of improvement in this study are those for the 

American Indian or Alaskan Native (AIAN) subgroup. Efforts to improve the accuracy of these 

estimates should involve evaluating estimates of mean achievement produced from different 

combinations of predictor variables for this subgroup. In this study, since there are only 13 target 

values (i.e., NAEP-reported estimates) for this subgroup, just two predictor variables are used to 

calculate regression-estimates, FER and %BA, representing the economic circumstances of 

students’ families and parental level of education, respectively. Considering that aggregate 

measures of these factors (e.g., state-level variables) tend to be highly correlated, it is 

conceivable that prediction for this subgroup could be improved by combining FER and %BA 

into a composite variable, which then offers an opportunity for another variable to enter the 

model without the risk of overfitting. A promising predictor, for instance, would be one that 

measures states’ proportions of AIAN students who attend Bureau of Indian Education (BIE) 

schools or schools with relatively high concentrations of AIAN students, “high density public 

schools” in NAEP terminology.49 Previous research (Milne, 2016; Ninneman, Deaton & Francis-

                                                           
49 The NAEP program defines high density public schools as schools with AIAN enrollment of at least 25% percent. 
Note, these do not include schools run by the Bureau Indian Education (BIE). 
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Begay, 2017) demonstrates that AIAN students in BIE and high-density schools tend to be lower 

achieving.   

For all subgroups, it is worth examining the changes in the accuracy of FH estimates after 

substituting predictors used in this study for the FH approach with predictors used in the 

regression models from the MICE approach. More specifically, it may prove helpful to use 

NAEP-reported estimates of mean achievement from one subgroup to produce the regression 

estimators of another subgroup through the FH technique. For instance, it could be helpful to 

replace one of the predictor variables currently used to predict the mean achievement of a 

parental level of education subgroup with a variable representing NAEP-reported estimates of 

mean achievement from a separate parental level of education subgroup. 

In instances in which the mean achievement estimate of just one subgroup from a 

category of subgroups is missing (unreported), it is reasonable to estimate the missing mean 

achievement value through algebraic steps, given the number of students in each subgroup, as a 

proportion of students from all subgroups that form the demographic category, are known. Data 

that permit a researcher to reasonably approximate the distribution of students across a category 

of subgroups by year, grade-level and state may be available in databases such as the Common 

Core of Data.  

Finally, it is worth exploring whether applying techniques from the ever-expanding field 

of machine learning would improve prediction. Exploring the utility of machine learning to 

address this study’s research problem is a logical next step since machine learning techniques are 

squarely focused on prediction problems. Among the multitude of machine learning algorithms 

that exist, the Random Forests algorithm should be among the first to be evaluated since it is one 

of the most widely used and popular algorithms, and represents an extension of regression 
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trees—which are commonly used for predicting continuous outcome measures (Hastie, 

Tibshirani & Friedman, 2009; Irizarry, 2020).  

Final Conclusions 

Results indicate that two of the three techniques studied in this dissertation would be 

suitable for use in practice and that the Fay-Herriot (FH) technique is particularly appealing. The 

practical significance of these findings is that they provide initial evidence to support the idea 

that it could be defensible and appropriate to use a prediction model to calculate estimates of 

mean achievement when the NAEP program is unable to sample enough students from a 

particular state and subgroup to calculate direct estimates.  The benefit of implementing such a 

policy is that it would provide a more complete understanding of how states support the learning 

and achievement of different subgroups of students, including underserved and underperforming 

subgroups of students, whose mean achievement is frequently unreported because these 

subgroups often represent small proportions of states’ general populations.  

Results from estimating the mean math achievement of Black students in states 

unreported by NAEP through the FH technique serve as an example of the potential benefits of 

using a prediction model when direct estimation is impermissible. The results, for instance, 

provide some evidence to suggest that the achievement gap between Black students and all 

students by state is smallest in Hawaii, a state for which NAEP did not report the mean math 

achievement of 8th grade Black students in 2015. This kind of finding is significant as it has the 

potential to inspire follow-up research regarding the reasons a relatively small achievement gap 

is observed in Hawaii.  Although the political appetite may never exist to publish model-based 

estimates of mean achievement alongside direct estimates in traditional NAEP reports, 

precedence exists to provide full reporting of state subgroup achievement through supplemental 
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materials, much in the same way “Full Population Estimates” have been published since 2005 

(U.S. Department of Education, 2020b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

169 

 
References 

 
Altman, D. G. (1991). Practical Statistics for Medical Research. London, UK: Chapman & Hall. 
 
Anderson, M. (2015, April). Chapter 1: Statistical Portrait of the U.S. Black Immigrant 

Population. Pew Research Center. Retrieved from 

https://www.pewsocialtrends.org/2015/04/09/chapter-1-statistical-portrait-of-the-u-s-

black-immigrant-population/ 

Austin, P. C. & Steyerberg, E. W. (2015). The number of subjects per variable required in linear 

regression analyses. Journal of Clinical Epidemiology, 68(6), 627-636. 

Azur, M., Stuart, E., Frangakis, C., & Leaf, P. (2011). Multiple Imputation by Chained 

Equations: What is it and how does it work? International Journal of Methods in 

Psychiatric Research, 20(1), 40-49. 

Bailey, P., C'deBaca, R., Emad, A., Huo, H., Lee, M., Liao, Y., Lishinski, A., Nguyen, T., Xie, 

Q., Yu, J., & Zhang, T. (2019). EdSurvey: Analysis of NCES Education Survey and 

Assessment Data. R package version 2.3.2. 

https://CRAN.Rproject.org/package=EdSurvey 

Bains, N. (2009). Standardization of Rates. Association of Public Health Epidemiologists in 

Ontario (APHEO). Retrieved from 

http://core.apheo.ca/resources/indicators/Standardization%20report_NamBains_FINALM

arch16.pdf 

Barnes, S., Lindborg, S., & Seaman, J. (2006). Multiple imputation techniques in small sample 

clinical trials. Statistics in Medicine, 25, 233-245.  

https://www.pewsocialtrends.org/2015/04/09/chapter-1-statistical-portrait-of-the-u-s-black-immigrant-population/
https://www.pewsocialtrends.org/2015/04/09/chapter-1-statistical-portrait-of-the-u-s-black-immigrant-population/
https://cran.rproject.org/package=EdSurvey
http://core.apheo.ca/resources/indicators/Standardization%20report_NamBains_FINALMarch16.pdf
http://core.apheo.ca/resources/indicators/Standardization%20report_NamBains_FINALMarch16.pdf


 

170 

Bengtsson, H. (2018). matrixStats: Functions that Apply to Rows and Colums of Matrices (and 

to Vectors). R package version 0.54.0. https://CRAN.R-project.org/package=matrixStats 

Beresovsky, V. & Hsiao, J. (2014). Methodological aspects of small area estimation from the 

National Electronic Health Records Survey (NEHRS). National Center for Education 

Statistics. Retrieved from https://nces.ed.gov/FCSM/pdf/A2_Beresovsky_2013FCSM.pdf 

Berliner, D. (2006). Our impoverished view of education reform. Teachers College Record, 

108(6).   

Berliner, D. (2013). Effects of Inequality and Poverty vs. Teachers and Schooling on America’s 

Youth. Teachers College Record, 115(12). 

Best, N., Richardson, S., Clarke, P., & Gomez-Rubio, V. (2008). A Comparison of Model-based 

Methods for Small Area Estimation. National Centre for Research Methods. Retrieved 

from https://www.researchgate.net/publication/268059411_A_Comparison_of_model-

based_methods_for_Small_Area_Estimation 

Bohrnstedt, G., Kitmitto, S., Ogut, B., Sherman, D., and Chan, D. (2015). School Composition 

and the Black–White Achievement Gap (NCES 2015-018). U.S. Department of 

Education, Washington, DC: National Center for Education Statistics. Retrieved [date] 

from http://nces.ed.gov/pubsearch.  

Bourque, M. L. (2004). A History of the National Assessment Governing Board. Pp. 201-231 in 

Jones, L.V. & Olkin, I. (Eds.). (2004). The Nation’s Report Card: Evolution and 

Perspectives. Bloomington, IN: Phi Delta Kappa Educational Foundation. 

https://cran.r-project.org/package=matrixStats
https://nces.ed.gov/FCSM/pdf/A2_Beresovsky_2013FCSM.pdf
https://www.researchgate.net/publication/268059411_A_Comparison_of_model-based_methods_for_Small_Area_Estimation
https://www.researchgate.net/publication/268059411_A_Comparison_of_model-based_methods_for_Small_Area_Estimation


 

171 

Braun, H. & Jones, D. (1984). Use Empirical Bayes Methods in the Study of the Validity of 

Academic Predictors of Graduate School Performance. ETS Research Report Series, 2, i-

83. 

Braun, H. & Kirsch, I. (2016). Introduction: Opportunity in America—Setting the Stage. In 

Kirsh, I. & Braun, H. (eds.), The Dynamics of Opportunity in America. Princeton, NJ: 

Educational Testing Service.     

Braun, H. (2016). The Dynamics of Opportunity in America: A Working Framework. In Kirsh, I. 

& Braun, H. (eds.), The Dynamics of Opportunity in America. Princeton, NJ: Educational 

Testing Service.     

Carter, D. J. (2008). On spotlighting and ignoring racial group members in the classroom. In 

Mica Pollock (Ed). Everyday anti-racism: Getting real about race in the classroom. New 

York: The New Press, pp. 230-234. 

Chen, F. (2020, July). ‘My Brother’s Keeper’ Seeks to Give African-American Boys a Boost. 

Public School Review. Retrieved from https://www.publicschoolreview.com/blog/my-

brothers-keeper-seeks-to-give-african-american-boys-a-boost 

Chenevert, R., Gottschalck, A., Klee, M., & Zhang, X. (2017). Where the Wealth Is: The 

Geographic Distribution of Wealth in the United States. U.S. Census Bureau: Social, 

Economic and Housing Statistics Division. Retrieved from 

https://www.census.gov/content/dam/Census/library/working-papers/2017/demo/FY2016-

129.pdf 

Chingos, M. (2015). Breaking the curve: Promises and pitfalls of using NAEP data to assess the 

state role in student achievement. Urban Institute. Retrieved from 

https://www.publicschoolreview.com/blog/my-brothers-keeper-seeks-to-give-african-american-boys-a-boost
https://www.publicschoolreview.com/blog/my-brothers-keeper-seeks-to-give-african-american-boys-a-boost
https://www.census.gov/content/dam/Census/library/working-papers/2017/demo/FY2016-129.pdf
https://www.census.gov/content/dam/Census/library/working-papers/2017/demo/FY2016-129.pdf


 

172 

http://gateway.proquest.com/openurl?url_ver=Z39.88-

2004&res_dat=xri:policyfile&rft_dat=xri:policyfile:article:00181689 

Chromy, J. R., Finker, A. L., & Horvitz, D. G. (2004). Survey Design Issues. Pp. 383-425 in 

Jones, L.V. & Olkin, I. (Eds.). (2004). The Nation’s Report Card: Evolution and 

Perspectives. Bloomington, IN: Phi Delta Kappa Educational Foundation.  

Cleger-Tamayo, S., Fernandez-Luna, J. M., & Huete, J. F. (2012). On the use of Weighted Mean 

Absolute Error in Recommender Systems. Workshop on Recommendation Utility 

Evaluation: Beyond RMSE (RUE 2012), held in conjunction with ACM RecSys 2012. 

September 9, 2012, Dublin, Ireland. Paper retrieved from http://ceur-ws.org/Vol-

910/paper5.pdf 

Code of Federal Regulations, Title 34—Education, Part 99. Family Educational and Privacy 

Rights, (34CFR99). Washington, DC: GPO Access e-CFR. Retrieved from 

https://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title34/34cfr99_main_02.tpl 

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY: 

Routledge Academic 

Collins, L., Schafer, J., & Chi-Ming, K. (2001). A comparison of inclusive and restrictive 

strategies in modern missing data procedures. Psychological Methods, 6(4), 330-351. 

Czajka, J. (2016). Small Area Estimates Produced by the U.S. Federal Government: Methods and 

Issues. Paper presented at the “Small Area Estimation Conference,” August 17-19, 2016, 

Maastricht, the Netherlands. Retrieved from https://www.mathematica-mpr.com/our-

http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:policyfile&rft_dat=xri:policyfile:article:00181689
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:policyfile&rft_dat=xri:policyfile:article:00181689
http://ceur-ws.org/Vol-910/paper5.pdf
http://ceur-ws.org/Vol-910/paper5.pdf
https://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title34/34cfr99_main_02.tpl
https://www.mathematica-mpr.com/our-publications-and-findings/publications/small-area-estimates-produced-by-the-us-federal-government-methods-and-issues


 

173 

publications-and-findings/publications/small-area-estimates-produced-by-the-us-federal-

government-methods-and-issues 

Dahl, G. B. & Lochner, L. (2012).  The Impact of Family Income on Child Achievement: 

Evidence from the Earned Income Tax Credit. American Economic Review, American 

Economic Association, 102(5), 1927-56  

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum Likelihood from Incomplete Data via 

the EM Algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1-38. 

Retrieved from https://www.jstor.org/stable/2984875?seq=1#page_scan_tab_contents 

Drakos, G. (2018, August). How to Select The Right Evaluation Metric for Machine Learning 

Models: Part 1 Regression Metrics. Retrieved from https://towardsdatascience.com/how-

to-select-the-right-evaluation-metric-for-machine-learning-models-part-1-regrression-

metrics-3606e25beae0 

Education Week Research Center. (2015). Quality Counts 2015: State Report Cards Map. 

Retrieved from https://www.edweek.org/ew/qc/2015/2015-state-report-cards-

map.html?intc=EW-QC15-LFTNAV 

Elliot, E. & Phillips, G. (2004). A View from NCES. Pp. 233-249 in Jones, L.V. & Olkin, I. 

(Eds.). (2004). The Nation’s Report Card: Evolution and Perspectives. Bloomington, IN: 

Phi Delta Kappa Educational Foundation.  

Eskelson, B., Temesgen, H., Lemay, V., Barrett, T., Crookston, T., & Hudak, A. (2009). The 

roles of nearest neighbor methods in imputing missing data in forest inventory and 

monitoring databases. USDA Forest Service. University Of Nebraska-Lincoln Faculty 

https://www.mathematica-mpr.com/our-publications-and-findings/publications/small-area-estimates-produced-by-the-us-federal-government-methods-and-issues
https://www.mathematica-mpr.com/our-publications-and-findings/publications/small-area-estimates-produced-by-the-us-federal-government-methods-and-issues
https://www.jstor.org/stable/2984875?seq=1#page_scan_tab_contents
https://towardsdatascience.com/how-to-select-the-right-evaluation-metric-for-machine-learning-models-part-1-regrression-metrics-3606e25beae0
https://towardsdatascience.com/how-to-select-the-right-evaluation-metric-for-machine-learning-models-part-1-regrression-metrics-3606e25beae0
https://towardsdatascience.com/how-to-select-the-right-evaluation-metric-for-machine-learning-models-part-1-regrression-metrics-3606e25beae0
https://www.edweek.org/ew/qc/2015/2015-state-report-cards-map.html?intc=EW-QC15-LFTNAV
https://www.edweek.org/ew/qc/2015/2015-state-report-cards-map.html?intc=EW-QC15-LFTNAV


 

174 

Publications. Retrieved from 

https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1216&context=usdafsfacpub 

Foley, D. (2004). Ogbu’s theory of academic disengagement: its evolution and its critics. 

Intercultural Education, 15(4), 385-397. 

Galwey, N. K. (2014). Introduction to Mixed Modelling: Beyond Regression and Analysis of 

Variance. John Wiley & Sons: Chichester, UK. 

Gay, G. (2002). Culturally responsive teaching in special education for ethnically diverse 

students: Setting the stage. International Journal of Qualitative Studies in Education, 

15(6), 613-629. 

Ghosh, M. & Rao, J.N.K. (1994). Small Area Estimation: An Appraisal. Statistical Science, 9(1), 

55-76. 

Glass G. V., McGaw B., Smith M. L. (1981). Meta-Analysis in Social Research. Beverly Hills, 

CA: Sage 

Gomes, J. H. F., Paiva, A. P., Costa, S. C., Balestrassi, P.P., & Paiva, E. J. (2013). Weighted 

Multivariate Mean Square Error for processes optimization: A case study on flux-cored 

arc welding for stainless steel claddings. European Journal of Operational Research, 226 

(3), 522-535. 

Gomez-Rubio, V., Best, N., Richardson, S., Clarke, P., & Li, G. (2010). Bayesian Statistics for 

Small Area Estimation. Retrieved from https://www.semanticscholar.org/paper/Bayesian-

Statistics-Small-Area-Estimation-G%C3%B3mez-Rubio-

Best/6fcdc61e715bf81c1849a5d0b523d026d41f4894 

https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1216&context=usdafsfacpub
https://www.semanticscholar.org/paper/Bayesian-Statistics-Small-Area-Estimation-G%C3%B3mez-Rubio-Best/6fcdc61e715bf81c1849a5d0b523d026d41f4894
https://www.semanticscholar.org/paper/Bayesian-Statistics-Small-Area-Estimation-G%C3%B3mez-Rubio-Best/6fcdc61e715bf81c1849a5d0b523d026d41f4894
https://www.semanticscholar.org/paper/Bayesian-Statistics-Small-Area-Estimation-G%C3%B3mez-Rubio-Best/6fcdc61e715bf81c1849a5d0b523d026d41f4894


 

175 

Graham, J. W. & Schafer, J.L. (1999). On the performance of multiple imputation for 

multivariate data with small sample size. In Statisitical Strategies for Small Sample 

Research, ed. R Hoyle, 1:1-29. Thousand Oaks, CA: Sage. 

Graham, J. W., Olchowski, A. E., & Gilreath, T. D. (2007). How Many Imputations are Really 

Needed? Some Practical Clarifications of Multiple Imputation Theory. Prevention 

Science, 8, 206-213. 

Graham, J. W. (2009). Missing Data Analysis: Making It Work in the Real World. Annual 

Review of Psychology, 60, 549-576. 

Hair, Joseph F., Jr; Black, William C.; Babin, Barry J.; and Anderson, Rolph E. (2009) 

Multivariate Data Analysis (7th Ed.). Upper Saddle River, NJ: Prentice Hall. 

Hanushek, E., Peterson, P., & Woesmman, L. (2013). Endangering Prosperity: A Global View of 

the American School. Washington, DC: Brookings Press. 

Hedges, L. V. & Bandeira de Mello, V. (2013). NAEP Validity Studies: A Validity Study of the 

NAEP Full Population Estimates. Washington, DC: American Institutes for Research. 

https://www.air.org/sites/default/files/downloads/report/A_Validity_Study_of_Full_Popu

lation_Estimates_NAEP_0.pdf 

Hedges L. V., Olkin I. (1985). Statistical methods for meta-analysis. San Diego, CA: Academic 

Press. 

Hastie T., Tibshirani R., Friedman J. (2009). The Elements of Statistical Learning. Springer 

Series in Statistics. Springer, New York, NY. 

Irizarry, R. (2020). Introduction to Data Science: Data Analysis and Prediction Algorithms with 

R. Retrieved from https://rafalab.github.io/dsbook/ 

https://www.air.org/sites/default/files/downloads/report/A_Validity_Study_of_Full_Population_Estimates_NAEP_0.pdf
https://www.air.org/sites/default/files/downloads/report/A_Validity_Study_of_Full_Population_Estimates_NAEP_0.pdf
https://rafalab.github.io/dsbook/


 

176 

Johnson, D. R. & Young, R. (2011). Toward Best Practices in Analyzing Datasets with Missing 

Data: Comparisons and Recommendations. Journal of Marriage and Family, 73, 926-

945. 

Kreuter, F., Eckman, S. Maaz, K., & Watermann, R. (2010). Children’s Reports of Parents’ 

Education Level: Does it Matter Whom You Ask and What You Ask About? Survey 

Research Methods, 4(3), 127-138. 

Ladson-Billings, G. (2006). From the achievement gap to the education debt: Understanding 

achievement in U.S. schools. Address to American Education Research Association. 

Lapoint, A. (2004). A New Design for a New Era. Pp. 185-199 in Jones, L.V. & Olkin, I. (Eds.). 

(2004). The Nation’s Report Card: Evolution and Perspectives. Bloomington, IN: Phi 

Delta Kappa Educational Foundation.  

Lipsey, M. W. (2001). Practical meta-analysis. London, UK: SAGE 

Little, R. (1988) Missing-Data Adjustments in Large Surveys, Journal of Business & Economic 

Statistics, 6(3), 287-296. 

Longford, N.T. (2005). Missing Data and Small-Area Estimation: Modern Analytical Equipment 

for the Survey Statistician. New York, NY: Springer. 

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software, 9(1), 1-

19. 

Lynch, M. (2017, April). A Guide to Ending the Crisis Among Young Black Males. The 

Edvocate. Retrieved from https://www.theedadvocate.org/guide-ending-crisis-among-

young-black-males/ 

https://www.theedadvocate.org/guide-ending-crisis-among-young-black-males/
https://www.theedadvocate.org/guide-ending-crisis-among-young-black-males/


 

177 

Magadin de Kramer, R. (2016). Evaluation of Cross-Survey Research Methods for the 

Estimation of Low-Incidence Populations. Retrieved from ProQuest LLC. (ProQuest 

Number: 10247646) 

Manna, P. (2013). Centralized governance and student outcomes: Excellence, equity, and 

academic achievement in the U.S. states. Policy Studies Journal 41(4): 682-705. 

McKown, C. & Weinstein, R. (2008). Teacher expectations, classroom context, and the 

achievement gap. Journal of School Psychology, 46(3), 235-261. Retrieved from 

https://www.sciencedirect.com/science/article/pii/S0022440507000416 

Milne, D. (2016). Exploring the American Indian/Alaska Native 8th Grade Patterns 

inMathematics Achievement in Arizona and South Dakota. Dissertation retrieved from 

https://core.ac.uk/download/pdf/151481749.pdf 

Molina, I. & Marhuenda, Y. (2015). sae: an R package for Small Area Estimation. The R 

Journal, 7(1).   

Mullis, I. (2004). Assessing Writing and Mathematics. Pp. 361 – 380 in Jones, L.V. & Olkin, I. 

(Eds.). (2004). The Nation’s Report Card: Evolution and Perspectives. Bloomington, IN: 

Phi Delta Kappa Educational Foundation. 

Musu-Gillette, L., Robinson, J., McFarland, J., Kewal-Ramani, A., Zhang, A., and Wilkinson-

Flicker, S. (2016). Status and Trends in the Education of Racial and Ethnic Groups 2016 

(NCES 2016-007). U.S. Department of Education, National Center for Education 

Statistics. Washington, DC. Retrieved from https://nces.ed.gov/pubs2016/2016007.pdf 

National Research Council. (2000). Small Area Income and Poverty Estimates: Priorities for 

2000 and Beyond. Washington, DC: The National Academies Press. 

National School Board Association. (2015, May). Learning to Read, Reading to Learn. Learning 

First Alliance. Retrieved from https://learningfirst.org/learning-read-reading-learn 

https://www.sciencedirect.com/science/article/pii/S0022440507000416
https://core.ac.uk/download/pdf/151481749.pdf
https://nces.ed.gov/pubs2016/2016007.pdf
https://learningfirst.org/learning-read-reading-learn


 

178 

Ninneman, A.M., Deaton, J., and Francis-Begay, K. (2017). National Indian Education Study 

2015 (NCES 2017-161). Institute of Education Sciences, U.S. Department of Education, 

Washington, DC. Retrieved from 

https://nces.ed.gov/nationsreportcard/subject/publications/studies/pdf/2017161.pdf 

O’Dwyer, L. M., and Parker, C. E. (2014). A primer for analyzing nested data: 

multilevel modeling in SPSS using an example from a REL study (REL 2015–046). 

Washington, DC: U.S. Department of Education, Institute of Education Sciences, 

National Center for Education Evaluation and Regional Assistance, Regional Educational 

Laboratory Northeast & Islands. Retrieved from http://ies.ed.gov/ncee/edlabs. 

Ogbu, J. & Simons, H. (1998). Voluntary and involuntary minorities: a cultural-ecological theory 

of school performance with some implications for education, Anthropology and 

Education Quarterly, 29(2), 155–188. 

Ogbu, J. (2003). Black American students in an affluent suburb: A study of academic 

disengagement. New Jersey: Lawrence Erlbaum. 

Olkin, I. (2004). Interviews. Pp. 251-289 in Jones, L.V. & Olkin, I. (Eds.). (2004). The Nation’s 

Report Card: Evolution and Perspectives. Bloomington, IN: Phi Delta Kappa Educational 

Foundation.  

Pfefferman, D. (2002). Small Area Estimation – New Developments and Directions. 

International Statistical Review, 70(1), 125-143. 

Ponomarenko, N.N., Krivenko, S. S., Egiazarian, K., & Lukin, V. V. (2010). Weighted mean 

square error for estimation of visual quality of image denoising methods. Paper presented 

at Workshop on Video Processing and Quality Metrics for Consumer Electronics. Paper 

retrieved from  

https://nces.ed.gov/nationsreportcard/subject/publications/studies/pdf/2017161.pdf


 

179 

https://www.researchgate.net/publication/273444562_Weighted_mean_square_error_for_

estimation_of_visual_quality_of_image_denoising_methods 

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ 

Rao, J. N. K. (2012). Small Area Estimation: Methods and Applications. Paper presented at the 

Seminar “Applications of Small Area Estimation Techniques in the Social Sciences,” 

October 3-5, 2012, Iberoamerican University, Mexico City. Retrieved from 

https://www.inegi.org.mx/eventos/2012/Ciencias_sociales/doc/Rao_Mexico_City_slides.

pdf 

Rao, J. N. K. (2013). Small Area Estimation: Methods, Applications and New Developments. 

Paper presented at the NTTS 2013 Conference, Brussels, March 2013. Retrieved from 

https://ec.europa.eu/eurostat/cros/system/files/9A01_Keynote_Rao-v2_0.pdf 

Rao, J. N. K. & Molina, I. (2015). Small Area Estimation (2nd Edition). Hoboken, NJ: Wiley. 

Reardon, S., Ho. A., Shear, B., Fahle, E., Kalogrides, D., & DiSalvo, R. (2017). Stanford 

Education Data Archive (Version 2.0). http://purl.stanford.edu/db586ns4974. 

Reardon, S., Kalogrides, D. & Ho, A. (2019). Validation Methods for Aggregate-Level Test 

Scale Linking: A Case Study Mapping School District Test Score Distributions to a 

Common Scale. Journal of Educational and Behavioral Statistics, #(#). 

Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. New York, NY: John 

Wiley and Sons. 

Scott, L.A., and Ingels, S.J. (2007). Interpreting 12th-Graders’ NAEP-Scaled Mathematics 

Performance Using High School Predictors and Postsecondary Outcomes From the 

National Education Longitudinal Study of 1988 (NELS:88) (NCES 2007-328). National 

https://www.researchgate.net/publication/273444562_Weighted_mean_square_error_for_estimation_of_visual_quality_of_image_denoising_methods
https://www.researchgate.net/publication/273444562_Weighted_mean_square_error_for_estimation_of_visual_quality_of_image_denoising_methods
https://www.inegi.org.mx/eventos/2012/Ciencias_sociales/doc/Rao_Mexico_City_slides.pdf
https://www.inegi.org.mx/eventos/2012/Ciencias_sociales/doc/Rao_Mexico_City_slides.pdf
http://purl.stanford.edu/db586ns4974


 

180 

Center for Education Statistics, Institute of Education Sciences, U.S. Department of 

Education. 

Schafer, J. L. & Graham, J. W. (2002). Missing Data: Our View of the State of the Art. 

Psychological Methods, 7(2), 147-177. 

Selden, R. (2004). Making NAEP State-by-State. Pp. 195-199 in Jones, L.V. & Olkin, I. (Eds.). 

(2004). The Nation’s Report Card: Evolution and Perspectives. Bloomington, IN: Phi 

Delta Kappa Educational Foundation. 

Shavelson, R., & Towne, L. (2002).  Features of education and education research. Scientific 

research in education. Washington, DC:  National Academy Press. 

StataCorp. (2019). Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC. 

Steele, C. & Aronson, J. (1995). Stereotype threat and the intellectual test performance of 

African-Americans. Journal of Personality and Social Psychology, 69, 797-811.  

Steele, C., Spencer, S., & Aronson, J. (2002). Contending with group image: The psychology of 

stereotype and social identity threat. Advances in experimental social psychology, 34, 

379-440. 

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston, MA: 

Allyn & Bacon/Pearson Education. 

Taylor, R. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of 

Diagnostic Medical Sonography, 6, 35-39. 

Tukey, J. W. (1977). Exploratory data analysis. Reading, PA: Addison-Wesley. 

U.S. Department of Education. (2001). Education achievement and Black-White Inequality. 

Washington, DC: Department of Education. Washington, DC: Institute of Education 



 

181 

Sciences, National Center for Education Statistics. Retrieved from 

https://nces.ed.gov/pubs2001/2001061.PDF 

U.S. Department of Education. (2002, November). How States Join. Washington, DC: Institute 

of Education Sciences, National Center for Education Statistics.  Retrieved from 

https://nces.ed.gov/nationsreportcard/about/statejoin.aspx 

U.S. Department of Education. (2008, December). NAEP Technical Documentation: NAEP Data 

Explorer. Washington, DC: Institute of Education Sciences, National Center for 

Education Statistics. Retrieved from 

https://nces.ed.gov/nationsreportcard/tdw/database/data_tool.asp 

U.S. Department of Education. (2010). Statistical Methods for Protecting Personally Identifiable 

Information in Aggregate Reporting. SLDS Technical Brief: Guidance for Statewide 

Longitudinal Data Systems (SLDS). Washington, DC: Institute of Education Sciences, 

National Center for Education Statistics. Retrieved from 

https://nces.ed.gov/pubs2011/2011603.pdf 

U.S. Department of Education. (2015a, December). NAEP Frequently Asked Questions (FAQs). 

Washington, DC: Institute of Education Sciences, National Center for Education 

Statistics.  Retrieved from 

https://osse.dc.gov/sites/default/files/dc/sites/osse/page_content/attachments/NAEP%20F

AQs.pdf 

U.S. Department of Education. (2015b, November). NAEP Sample Design, Weights, Variance 

Estimation, IRT Scaling, and Plausible Values. Washington, DC: Institute of Education 

https://nces.ed.gov/pubs2001/2001061.PDF
https://nces.ed.gov/nationsreportcard/about/statejoin.aspx
https://nces.ed.gov/nationsreportcard/tdw/database/data_tool.asp
https://nces.ed.gov/pubs2011/2011603.pdf
https://osse.dc.gov/sites/default/files/dc/sites/osse/page_content/attachments/NAEP%20FAQs.pdf
https://osse.dc.gov/sites/default/files/dc/sites/osse/page_content/attachments/NAEP%20FAQs.pdf


 

182 

Sciences, National Center for Education Statistics.  Retrieved from 

https://nces.ed.gov/training/datauser/NAEP_04/assets/NAEP_04_Slides.pdf 

U.S. Department of Education. (2017, July). Timeline for National Assessment of Educational 

Progress (NAEP) Assessments from 1969 to 2024. Washington, DC: Institute of 

Education Sciences, National Center for Education Statistics.  Retrieved from 

https://nces.ed.gov/nationsreportcard/about/assessmentsched.aspx 

U.S. Department of Education. (2018, April). NAEP Reporting Groups. Washington, DC: 

Institute of Education Sciences, National Center for Education Statistics.  Retrieved from 

https://nces.ed.gov/nationsreportcard/reading/interpret_results.aspx#repgroups 

U.S. Department of Education. (2020a, September). ELSi: Elementary/Secondary Information 

System. Washington, DC: Institute of Education Sciences, National Center for Education 

Statistics. Retrieved from https://nces.ed.gov/ccd/elsi/ 

U.S. Department of Education. (2020b, February). Full Population Estimates. Washington, DC: 

Institute of Education Sciences, National Center for Education Statistics. Retrieved from 

https://nces.ed.gov/nationsreportcard/about/fpe.aspx 

U.S. Department of Education. (2020c, December). Statistical Standards Program: Publication of 

products using restricted-use data. Washington, DC: Institute of Education Sciences, 

National Center for Education Statistics. Retrieved from 

https://nces.ed.gov/statprog/instruct_access_faq.asp#a5 

U.S. Department of Education. (2021). NAEP Data Explorer. Washington, DC: Institute of 

Education Sciences, National Center for Education Statistics. Retrieved February 2021 

from https://www.nationsreportcard.gov/ndecore/xplore/nde 

https://nces.ed.gov/training/datauser/NAEP_04/assets/NAEP_04_Slides.pdf
https://nces.ed.gov/nationsreportcard/about/assessmentsched.aspx
https://nces.ed.gov/nationsreportcard/reading/interpret_results.aspx#repgroups
https://nces.ed.gov/ccd/elsi/
https://nces.ed.gov/nationsreportcard/about/fpe.aspx
https://nces.ed.gov/statprog/instruct_access_faq.asp#a5
https://www.nationsreportcard.gov/ndecore/xplore/nde


 

183 

United States Census Bureau. (2016). The Hispanic Population in the United States: 2016. 

Current Population Survey. Retrieved from 

https://www.census.gov/data/tables/2016/demo/hispanic-origin/2016-cps.html 

United States Census Bureau. (2018, October). American Community Survey (ACS): American 

Community Survey Data. Retrieved from https://www.census.gov/programs-

surveys/acs/data.html 

United States Department of Treasury. (2019, May). SOI Tax Stats: IRS Data Book. Retrieved 

from https://www.irs.gov/statistics/soi-tax-stats-irs-data-book 

van Buuren, S. & Groothuis-Oudshoorn, K. (2011). Mice: Multivariate Imputation by Chained 

Equations. Journal of Statistical Software, 45(3), 1-67. Retrieved from 

https://www.jstatstoft.org/v45/i03/. 

van Buuren, S. (2018). Flexible Imputation of Missing Data (2nd ed.). Boca Raton, FL: CRC 

Press. https://stefvanbuuren.name/fimd/sec-algoptions.html 

von Davier, M., Gonzalez, E & Mislevy, R.J. (2009). What are plausible values and why are they 

useful. IERI monograph series, 2, 9-36. Retrieved from 

http://www.ierinstitute.org/fileadmin/Documents/IERI_Monograph/IERI_Monograph_V

olume_02_Chapter_01.pdf 

Warikoo, N., Sinclair, S., Fei, J., & Jacoby-Senghor, D. (2016). Examining Racial Bias in 

Education: A New Approach. Educational Researcher, 45(9), 508-514. 

White, I. R.. Royston, P., & Wood, A. M. (2009). Multiple imputation using chained equations: 

Issues and guidance for practice. Statistics in Medicine, 30, 377–399 

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York: 

NY. 

https://www.census.gov/data/tables/2016/demo/hispanic-origin/2016-cps.html
https://www.census.gov/programs-surveys/acs/data.html
https://www.census.gov/programs-surveys/acs/data.html
https://www.irs.gov/statistics/soi-tax-stats-irs-data-book
https://www.jstatstoft.org/v45/i03/
https://stefvanbuuren.name/fimd/sec-algoptions.html
http://www.ierinstitute.org/fileadmin/Documents/IERI_Monograph/IERI_Monograph_Volume_02_Chapter_01.pdf
http://www.ierinstitute.org/fileadmin/Documents/IERI_Monograph/IERI_Monograph_Volume_02_Chapter_01.pdf


 

184 

Wickham, H., François, R., Henry, L., & Müller, K. (2019). dplyr: A Grammar of Data 

Manipulation. R package version 0.8.0.1. https://CRAN.R-project.org/package=dplyr 

Willmott, C. & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root 

mean square error (RMSE) in assessing average model performance. Climate Research, 

30(1), 79-82.   

Workman, E. (2012). Teacher Expectations of Students. The Progress of Education Reform, 

13(6). Retrieved from https://www.ecs.org/clearinghouse/01/05/51/10551.pdf 

Zuberi, T. (2000). Deracializing Social Statistics: Problems in the Quantification of Race. The 

Annals of the American Academy of Political and Social Science, 568, 172-185. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://cran.r-project.org/package=dplyr
https://www.ecs.org/clearinghouse/01/05/51/10551.pdf


 

185 

 
Appendix A: Implementation of Prediction Techniques in R and Stata 

 
 This appendix provides a high-level description of the steps involved in calculating the 

estimates of mean math achievement for the three techniques: MICE, FH and FLEX CS. The 

level of detail is intended to provide the reader with a general understanding of the computations 

involved; however, these descriptions do not provide the information required to reproduce 

results from this study. To reproduce the results or learn about the statistical computing 

procedures used for analyses not covered in this appendix, the reader must access the full sets of 

statistical code provided on author’s GitHub page.   

Implementation of MICE in R 

This section provides a general overview of the programming steps followed to implement 

the MICE technique in R with the mice package (van Buuren & Groothuis-Oudshoorn, 2011). 

The example state subgroup referenced in the steps, “AL/NHS,” represents achievement data for 

Alabama students whose parents did not finish high school. 

1. Import the test sample data and remove the first target value (AL/NHS) with 

functionality from R’s base package (R Core Team, 2017).  

2. Create an object “vis,” a vector of length 10 that defines the visiting sequence (this 

object is called in later steps during execution of the mice function). 

vis <- c("API", "TP", "BA", "SBA", "HS", "B", "NHS", "H", "AIAN", "EL") 

The order is specified in a manner that minimizes the number of initialized values 

used for predictor variables to begin the iterative process. 

3. Using the mice function from the mice package, create an object “pred_matrix”— a 

data matrix with 0s along the diagonal and 1s in each off-diagonal cell. 

for_pred_matrix <- mice([data], maxit = 0, print=F) 

https://github.com/DavidBamat/Dissertation-Code/projects/1
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pred_matrix <- for_pred_matrix$pred 

4. Using data management functionality with R’s base package, recode off-diagonal 

values of 1 to 0 for columns (representing subgroup variables) that should not be used 

to predict rows. The resulting predictor matrix takes the following form— 

 E I NHS HS SBA BA W B H API AIAN TP EL NEL SWD NSWD M F 
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
NHS 1 0 0 1 1 1 1 1 1 0 1 0 0 1 0 0 0 0 
HS 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 
SBA 1 1 1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 
BA 1 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1 1 1 
W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
B 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 
H 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 
API 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
AIAN 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 
TP 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
EL 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 
NEL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SWD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
NSWD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

5. Store results from running the mice command in an object called “imp1.” Set the 

number of imputations m to 100, iterations to 15, call visiting sequence order with 

visitSequence option, method to “norm” (Bayesian linear regression), and a 

seed value to “2019” for reproducibility. 

imp1 <- mice([data], m = 100, maxit = 15, visitSequence = vis, 

method = "norm", pred = pred_matrix, seed = 2019) 

6. Store m imputation values for the first target value of interest (AL/NHS) in an object 

(vector) called AL_NHS by using the “$imp” command from the mice package and 

subsetting functionality from R’s base package.    
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AL_NHS <- as.vector(imp1$imp$NHS[1, ]) 

7. Record the mean and standard deviation of m imputed values, respectively, in objects 

called “AL_NHS_mean” and “AL_NHS_SE” with the rowMeans function from R’s 

base package and the rowSds function from the matrixStats package (Bengtsson, 

2018).  

AL_NHS_mean <- rowMeans(AL_NHS) 

AL_NHS_SE <- rowSds(as.matrix(AL_NHS)) 

The value stored in “AL_NHS_mean” represents the predicted value of mean 

math achievement for this particular subgroup (Alabama students whose parents did 

not finish high school). It is this value that is compared to the corresponding observed 

(target) value—a comparison which is employed in the calculations of the weighted 

Mean Absolute Error (wMAE) and coverage statistics for evaluating the performance 

of MICE technique.   

The value stored in “AL_NHS_SE” represents the standard error of the mean 

math achievement estimate for this particular subgroup (AL/NHS). It is the standard 

deviation of m estimates of mean math achievement. These standard errors play an 

important role in calculating mean math achievement estimates for FLEX CS, the 

third prediction technique evaluated in this study. The standard errors serve as 

weights used for calculating precision-weighted estimates of mean math achievement 

in the FLEX CS approach.    

For the remaining target values, repeat steps 1-7, each time withholding a new target 

value (observed value) from the test sample and returning the previously withheld value. 

Functionality with the apply family of functions from the dplyr package (Wickham et al., 2019) 

in R is used to automate the repetition of the seven-step cycle. 
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Implementation of FH in Stata and R 

Direct Estimates 

The calculation of direct estimates from restricted-use student-level data is implemented 

through Stata v16.1 and the svy package (2019). In the first step, restricted-use data are imported 

into the software environment and rows are filtered on students in public schools and the 

subgroup of interest. In the following line of code, PARED == 1 filters on students whose 

parents did not finish high school.  

keep if PUBPRIV == 1 & PARED == 1 

 In the next step, a seed is set to 2019 (the year when dissertation writing began) and a 

random sample of students equal in size to the median number of students sampled by NAEP in 

states that are not reported by NAEP, for the corresponding subgroup.50 

set seed 2019 

sort FIPS15 

by FIPS15: sample [censored], count 

 

The following line of code sets up analysis of complex survey data. It identifies the 

location of each student’s sampling weight, jackknife replicate weights, and instructs the 

software to use the jackknife method to calculate standard errors.  

svyset [pweight = ORIGWT] , jkrweight(SRWT*) vce(jackknife) mse 

 

The next lines of code represent a for loop, as well as commands that save output 

generated from executing the for loop. The code instructs the software program to compute the 

mean achievement and standard error for each set of plausible values (20 total) for students from 

a particular state (Alabama; FIPS15==1, in the example code). In addition, the code instructs the 

program to save the 20 sets of mean and standard error values in a Stata data file (i.e., .dta file). 

                                                           
50 The sample size is deliberately censored to comply with National Center for Education Statistics reporting policy.  
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An additional line of code generates mean variance estimates, which are subsequently required to 

compute pooled variances estimates of the direct estimates of mean achievement.  

postfile buffer mean_ach stderr using "[pathfile]/results.dta", replace 

forvalues i=1(1)20 { 

  svy: mean MRPCM`i' if FIPS15 == 1 

  mat results = r(table) 

  local mean_ach = results[1,1] 

  local stderr = results[2,1] 

  post buffer (`mean_ach') (`stderr') 

} 

postclose buffer 

 

clear 

 

use "[pathfile]/results.dta" 

 

gen mean_var = stderr^2 

 

drop stderr 

 

save "[pathfile]/NHS-AL.dta", replace 

 

Then, each data file is imported into the R statistical environment and Rubin’s rules 

(1987) are applied to the sets of mean and variance values to calculate pooled estimates for each 

subgroup. The following sets of code represents user-defined functions written in R that 

implement Rubin’s rules.51 

#write function that pools variance and then takes the sqrt (the se) 

pooled_se <- function(x){ 

    within_var <- mean(x) 

    between_var <- var(x) 

    sampling_var <- between_var/20 

    sqrt(sum(within_var, between_var, sampling_var)) 

} 

 

#write function that reads .dta file with mean plausible values and  

# associated mean variance estimates, and returns a mean and se. 

 

mean_and_se <- function(x) { 

    mean_de <- apply(x[,1], 2, mean) 

    se_de <- apply(x[,2], 2, pooled_se) 

    print(c("x", mean_de, se_de)) 

} 

 

                                                           
51 Full documentation of the code used for computing direct estimates is provided on the author’s GitHub page. 

https://github.com/DavidBamat/Dissertation-Code/projects/1
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Calculating the EBLUP 

Combining direct and synthetic estimates to calculate EBLUPs is implemented with the 

sae package in R (Molina & Marhuenda, 2015). To calculate the EBLUPs, OLS regression 

models are successively specified with direct estimates of a subgroup set as values of the 

response variables. The response variable values all represent direct estimates of some form—for 

each regression model fit (376 total), one value from the response variable is a direct estimate 

based on a small sample (n < 62) randomly drawn from the restricted-use data and the rest of the 

response variable values are public-use NAEP-reported direct estimates. 

 Variables representing factors related to the direct estimates of the subgroup are set as 

predictor variables. In addition, a vector of values representing the variance estimates associated 

with the direct estimates are adjoined to the data frame containing the response and predictor 

variables. The value predicted from the regression fit for the case (state) associated with the 

replacement estimate is the regression-synthetic estimate for the corresponding state.  The 

mseFH function from the sae package returns EBLUPs— precision-weighted combination of the 

direct and synthetic estimates of mean math achievement. The function also returns variance 

estimates for each EBLUP. The following is a sample of the R code used to compute the 

EBLUPs of students whose parents did not finish high school. 

FH_procedure <- function(x){ 

 FH_df1 <- FH_df 

 FH_df1[x, 30] <- FH_df1[x, 2] #30 corresponds with the NR_NHS_Mean column, 2 

with the NHS_direct_est column 

 FH_df1[x, 31] <- FH_df1[x, 3] #31 corresponds with the NR_NHS_SE column, 3 with 

the NHS_se column 

 FH_df1 <- filter(FH_df1, NR_NHS_Mean != "NA") #drops non target value rows 

 attach(FH_df1) 

 mseFH(NR_NHS_Mean ~ B_H_AINA + FER + p_EL + SQI, NR_NHS_SE^2) #line changes per 

subgroup 

} 

 

NHS_FH_results <- lapply(1:length(FH_df$NR_NHS_Mean), FH_procedure) 
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In the first part of the code, a user-defined function named “FH_procedure” performs the 

following tasks: takes a row “x”, copies the data set with the predictor and response variables 

required for the analysis, replaces the NAEP-reported estimates of mean achievement and 

standard errors of row x (representing a state) with the mean and standard error computed from a 

randomly drawn small sample, removes cases with missing outcome values, and then applies the 

mseFH function from the sae package. The code that follows the mseFH command represents 

the regression equation for the NHS subgroup. The last term from the command 

(“NR_NHS_SE^2”) represents the mean variance estimates associated with the values from the 

response variable. In the last part of the set of code, the lapply function is used to iterate the 

procedure over all rows (i.e., states). The results are saved in an object named 

“NHS_FH_results” and additional data wrangling tasks (code provided on GitHub) are 

undertaken to extract the EBLUPs and standard errors associated with the EBLUPs. 

Implementation of FLEX CS in R 

 This section is limited to an explanation of how WPE and NNI subestimates are 

calculated. The other subestimates that factor into FLEX CS estimates are MICE and FH 

subestimates. The minor differences in how MICE and FH subestimates are calculated compared 

to MICE and FH estimates used in the previous two technique are demonstrated on GitHub. 

WPE Subestimate Calculation 

Calculation of WPE means and variances in R is performed with the assistance of the dplyr 

package (Wickham et al., 2019), in addition to R’s base package (R Core Team, 2019), 

following these general steps:52 

                                                           
52 The full set of R code used for implementing WPE is provided on the author’s GitHub page. 

https://github.com/DavidBamat/Dissertation-Code/projects/1
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1. Downloading and importing the “SEDA_geodist_long_NAEP_v21.csv” data file from the 

SEDA website.  

a. This file contains several variables, including estimates of mean math achievement 

and standard errors in NAEP-referenced units by grade, year and subject for select 

subgroups across “geographic districts,” which in broad terms represent school 

districts. The file also includes variables representing counts of students by grade, 

year and subject for subgroups across districts, which permits the calculation of 

weights and pooled variance estimates for the WPEs. 

2. Sub-setting the file for students in grades 8 in 2015 taking NAEP math, using dplyr’s piping 

functionality and filter function.  

3. Computing sums of students by state across subgroups. 

4. Creating variables with dplyr’s mutate function whose values represent weights by 

dividing district counts by sums representing total number of students within subgroups by 

state. 

5. By subgroup and state, sum the product of districts’ weights and districts’ estimates of mean 

math achievement (as reported in SEDA file) to compute WPE estimates of mean math 

achievement.  

6. By subgroup and state, divide the sum of the products of districts’ variances estimates and 

their counts minus one by the sum of districts’ counts minus one to compute WPE variance 

estimates. 

NNI Subestimate Calculation 

To begin implementation of the NNI subestimate approach in R, variables are 

standardized using the scale function from R’s base package (R Core Team, 2019). 
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Euclidean distances are then computed using the dist function from R’s stats package (R 

Core Team, 2019), which generates an n-by-n distance matrix, where n corresponds to the 

number of cases (observations) from the data frame used for analysis. Each element (cell) of 

the matrix is a Euclidean distance indicating the degree of dissimilarity between 

corresponding cases, where larger distance values indicate less similarity.  

In this dissertation, cases correspond to states and thus implementation of the dist 

function results in a 50-by-50 distance matrix, with cell values that indicate the degree to 

which corresponding states are similar (dissimilar) based on their values on the four separate 

data variables. A state has a sibling, and thus a donor, if its nearest neighbor (i.e., most 

similar state) has a Euclidean distance of less than 0.4 standard deviations (< 0.4 SD).  

 The standard deviation is computed by taking the square root of the variance of all 

dissimilarity values between states—that is, the standard deviation of 1225 values 

representing the Euclidean distance between pairs of states. Hence, the distance criterion 

used for establishing whether states are siblings represents a relative distance as opposed to 

an absolute distance.     
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Appendix B: Subgroup Tables of Technique-produced Estimates of Mean Math Achievement 
 

Table B.1. Estimates for students whose parents did not finish high school by state and 
technique, including NAEP-reported estimates 

Did not finish high school (NHS) NAEP Reported MICE FH FLEX CS 
AL 254 (2.5)  252 (4.2) 259 (3.3) 261 (4.0) 
AK -- -- -- -- 
AZ 269 (2.3)  270 (4.3) 267 (2.0) 267 (2.0) 
AR 266 (2.4)  263 (3.5) 265 (2.1) 265 (2.1) 
CA 261 (2.0)  259 (3.7) 263 (1.9) 263 (1.9) 
CO 266 (2.6)  265 (3.4) 267 (2.2) 267 (2.2) 
CT 254 (4.2)  260 (4.3) 261 (3.0) 263 (5.2) 
DE 264 (2.8)  264 (3.9) 265 (2.3) 265 (2.2) 
FL 264 (2.5)  264 (3.6) 264 (2.2) 264 (2.2) 
GA 269 (2.4)  266 (3.4) 267 (2.1) 267 (2.1) 
HI 270 (4.4)  265 (3.7) 270 (3.2) 269 (3.0) 
ID 262 (2.6)  264 (3.7) 262 (2.3) 262 (2.2) 
IL 270 (3.1)  266 (3.3) 268 (2.5) 268 (2.5) 
IN 268 (3.1)  268 (3.7) 266 (2.5) 266 (2.4) 
IA 261 (3.5)  264 (3.7) 263 (2.7) 264 (4.0) 
KS 268 (4.1)  268 (3.7) 267 (3.0) 264 (3.9) 
KY 260 (2.6)  263 (3.6) 261 (2.2) 261 (2.2) 
LA 258 (2.5)  262 (4.0) 259 (2.2) 260 (2.1) 
ME 267 (4.4)  264 (4.1) 266 (3.0) 266 (2.9) 
MD 265 (3.4)  265 (3.7) 266 (2.8) 267 (2.7) 
MA 267 (4.6)  273 (3.5) 268 (3.2) 268 (3.1) 
MI 261 (3.7)  260 (4.0) 263 (2.7) 260 (4.8) 
MN 275 (3.3)  268 (3.7) 272 (2.6) 272 (2.6) 
MS 258 (3.0)  267 (4.0) 259 (2.5) 259 (2.4) 
MO 257 (2.9)  262 (3.8) 259 (2.4) 260 (3.4) 
MT 272 (3.7)  271 (3.6) 268 (2.8) 268 (2.7) 
NE 262 (2.7)  265 (3.9) 263 (2.3) 264 (4.7) 
NV 263 (2.0)  261 (3.5) 264 (1.9) 264 (1.9) 
NH 269 (4.4)  266 (3.8) 268 (3.2) 267 (3.1) 
NJ 267 (4.5)  267 (4.3) 267 (3.2) 262 (10.1) 
NM 261 (2.2)  263 (3.5) 262 (2.0) 262 (2.0) 
NY 267 (3.0)  266 (3.7) 267 (2.5) 267 (2.4) 
NC 264 (2.5)  266 (3.5) 264 (2.1) 264 (2.1) 
ND 266 (3.4)  268 (3.5) 265 (2.7) 264 (4.5) 
OH 259 (4.6)  263 (3.9) 262 (3.1) 262 (3.0) 
OK 263 (3.0)  259 (3.8) 263 (2.4) 259 (6.6) 
OR 268 (2.4)  263 (4.0) 267 (2.1) 267 (2.1) 
PA 261 (3.4)  259 (3.9) 262 (2.6) 263 (3.2) 
RI 268 (2.5)  260 (3.7) 267 (2.2) 267 (2.1) 
SC 271 (3.6)  264 (3.3) 267 (2.7) 267 (2.7) 
SD 265 (4.1)  267 (3.5) 264 (2.9) 264 (2.8) 
TN 265 (3.1)  260 (4.0) 264 (2.5) 264 (2.5) 
TX 272 (1.9)  272 (4.3) 271 (1.7) 271 (1.7) 
UT -- -- -- -- 
VT 266 (3.6)  269 (4.9) 266 (2.7) 266 (2.6) 
VA 268 (3.2)  269 (4.1) 267 (2.6) 267 (2.5) 
WA 266 (3.0)  266 (3.5) 266 (2.4) 266 (2.4) 
WV 255 (2.9)  260 (3.8) 258 (2.5) 258 (2.4) 
WI 263 (3.8)  266 (4.4) 264 (2.8) 263 (3.7) 
WY 272 (2.8)  267 (3.4) 270 (2.4) 269 (2.3) 
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Table B.2. Estimates for students whose parents graduated from high school by state and 
technique, including NAEP-reported estimates 

Graduated high school (HS) NAEP Reported MICE FH FLEX CS 
AL 252 (2.3) 254 (2.5) 259 (3.3) 261 (6.2) 
AK -- -- -- -- 
AZ 271 (2.7) 271 (2.3) 268 (2.3) 270 (2.6) 
AR 262 (2.4) 264 (2.2) 263 (2.1) 264 (2.4) 
CA 263 (2.3) 264 (2.5) 265 (2.1) 263 (2.3) 
CO 270 (2.3) 271 (2.5) 270 (2.0) 270 (2.3) 
CT 265 (2.1) 266 (2.8) 266 (1.9) 268 (4.7) 
DE 267 (2.0) 266 (2.3) 267 (1.8) 267 (2.3) 
FL 266 (2.1) 264 (2.1) 265 (1.9) 265 (2.3) 
GA 264 (1.9) 266 (2.5) 263 (1.7) 265 (2.5) 
HI 264 (1.7) 269 (2.3) 266 (1.6) 266 (2.9) 
ID 267 (2.5) 272 (2.2) 267 (2.2) 269 (3.2) 
IL 268 (2.0) 269 (2.2) 268 (1.8) 268 (2.0) 
IN 274 (1.7) 273 (2.2) 273 (1.6) 273 (1.9) 
IA 272 (2.4) 272 (2.3) 272 (2.1) 272 (2.6) 
KS 272 (2.4) 271 (2.3) 272 (2.1) 270 (3.2) 
KY 268 (1.6) 265 (2.2) 268 (1.5) 267 (2.8) 
LA 259 (2.2) 258 (2.3) 260 (2.0) 259 (2.8) 
ME 272 (1.9) 272 (2.5) 272 (1.8) 272 (2.0) 
MD 263 (1.9) 267 (2.2) 264 (1.7) 265 (2.2) 
MA 277 (2.7) 281 (2.8) 276 (2.3) 278 (4.1) 
MI 263 (2.1) 265 (2.3) 264 (1.9) 266 (3.1) 
MN 278 (2.9) 277 (2.4) 276 (2.4) 276 (2.3) 
MS 259 (2.0) 259 (2.7) 259 (1.9) 260 (2.1) 
MO 268 (2.0) 266 (2.4) 268 (1.8) 266 (3.3) 
MT 270 (2.3) 276 (2.2) 270 (2.1) 273 (4.6) 
NE 267 (2.1) 271 (2.2) 268 (1.9) 270 (3.2) 
NV 266 (1.5) 263 (2.5) 266 (1.4) 265 (2.4) 
NH 278 (1.9) 277 (2.4) 277 (1.8) 277 (2.1) 
NJ 273 (2.2) 273 (2.5) 272 (2.0) 270 (5.1) 
NM 260 (1.6) 263 (2.4) 260 (1.5) 261 (3.2) 
NY 269 (2.5) 269 (2.2) 269 (2.2) 269 (2.2) 
NC 267 (2.1) 267 (2.3) 267 (1.9) 267 (2.1) 
ND 274 (2.3) 272 (2.3) 273 (2.0) 272 (2.3) 
OH 272 (2.1) 270 (2.2) 271 (1.9) 270 (2.2) 
OK 265 (1.8) 264 (2.3) 265 (1.7) 261 (7.2) 
OR 271 (1.9) 270 (2.2) 271 (1.7) 270 (2.2) 
PA 265 (3.3) 268 (2.2) 266 (2.6) 268 (3.5) 
RI 269 (1.8) 266 (2.1) 269 (1.7) 268 (2.9) 
SC 263 (2.3) 263 (2.2) 263 (2.1) 263 (2.1) 
SD 269 (1.9) 271 (2.3) 269 (1.7) 270 (2.1) 
TN 266 (2.0) 265 (2.2) 266 (1.8) 265 (2.2) 
TX 275 (1.8) 272 (2.2) 273 (1.7) 273 (2.3) 
UT -- -- -- -- 
VT 277 (2.0) 277 (2.6) 276 (1.8) 276 (2.2) 
VA 272 (2.0) 271 (2.4) 271 (1.8) 271 (1.9) 
WA 272 (2.6) 272 (2.3) 272 (2.2) 272 (2.2) 
WV 261 (1.6) 262 (2.3) 263 (1.5) 262 (1.9) 
WI 271 (2.4) 270 (2.2) 271 (2.1) 270 (4.3) 
WY 272 (1.7) 273 (2.4) 272 (1.6) 272 (1.9) 
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Table B.3. Estimates for students whose parents have some education after high school by state 
and technique, including NAEP-reported estimates 

Some education after high school (SBA) NAEP Reported MICE FH FLEX CS 
AL 271 (1.9) 276 (3.1) 274 (3.0) 275 (4.6) 
AK -- -- -- -- 
AZ 285 (1.9) 283 (1.4) 284 (1.7) 284 (2.3) 
AR 280 (1.9) 280 (2.5) 280 (1.7) 280 (2.2) 
CA 278 (2.2) 281 (2.8) 279 (2.0) 280 (2.5) 
CO 284 (2.3) 284 (2.0) 284 (2.0) 284 (2.3) 
CT 275 (2.4) 283 (1.9) 278 (2.1) 284 (7.0) 
DE 280 (1.8) 280 (2.9) 280 (1.6) 280 (2.1) 
FL 280 (2.0) 280 (2.3) 280 (1.8) 280 (2.3) 
GA 281 (2.0) 282 (3.0) 280 (1.8) 280 (2.2) 
HI 284 (1.6) 284 (2.8) 285 (1.5) 285 (2.3) 
ID 286 (1.9) 285 (2.6) 285 (1.7) 285 (2.2) 
IL 282 (1.7) 283 (1.7) 282 (1.6) 282 (2.2) 
IN 288 (2.0) 287 (2.0) 287 (1.8) 287 (2.2) 
IA 283 (2.0) 285 (2.2) 283 (1.8) 285 (2.4) 
KS 282 (1.8) 285 (2.4) 283 (1.7) 285 (3.5) 
KY 281 (1.6) 281 (2.5) 281 (1.5) 281 (2.2) 
LA 270 (1.9) 276 (1.9) 271 (1.7) 273 (3.0) 
ME 283 (1.8) 285 (2.3) 284 (1.7) 284 (2.6) 
MD 282 (2.0) 282 (2.4) 282 (1.8) 282 (2.2) 
MA 293 (2.2) 289 (1.9) 291 (2.0) 293 (4.0) 
MI 275 (2.2) 279 (2.5) 277 (1.9) 280 (4.6) 
MN 290 (1.8) 289 (2.0) 289 (1.6) 290 (2.7) 
MS 279 (2.5) 277 (2.2) 278 (2.2) 277 (2.8) 
MO 285 (2.0) 279 (2.2) 284 (1.8) 280 (5.1) 
MT 286 (1.8) 288 (2.0) 286 (1.7) 286 (3.0) 
NE 288 (2.3) 285 (2.3) 287 (2.0) 284 (3.1) 
NV 283 (1.7) 278 (2.0) 282 (1.6) 281 (3.4) 
NH 290 (1.7) 288 (1.9) 290 (1.6) 290 (2.2) 
NJ 291 (2.1) 287 (1.8) 289 (1.9) 284 (7.8) 
NM 277 (1.9) 278 (2.8) 277 (1.8) 277 (2.3) 
NY 283 (1.9) 283 (1.6) 283 (1.8) 283 (2.2) 
NC 281 (1.8) 283 (1.4) 281 (1.6) 282 (2.3) 
ND 286 (1.6) 286 (2.6) 286 (1.5) 285 (2.8) 
OH 284 (2.0) 285 (2.4) 284 (1.8) 284 (2.2) 
OK 277 (2.1) 277 (2.7) 278 (1.8) 275 (4.6) 
OR 283 (2.1) 284 (2.0) 283 (1.9) 284 (2.5) 
PA 284 (2.3) 283 (1.0) 284 (2.0) 285 (4.0) 
RI 285 (2.0) 282 (2.0) 285 (1.8) 284 (3.0) 
SC 278 (2.2) 279 (2.7) 278 (1.9) 279 (2.2) 
SD 287 (1.9) 285 (2.5) 286 (1.7) 286 (2.1) 
TN 281 (2.0) 279 (2.8) 281 (1.8) 280 (2.5) 
TX 284 (2.0) 286 (2.6) 283 (1.8) 284 (3.3) 
UT -- -- -- -- 
VT 288 (2.5) 288 (2.4) 288 (2.1) 288 (2.5) 
VA 281 (1.9) 285 (2.2) 282 (1.7) 283 (2.9) 
WA 288 (1.8) 286 (2.7) 288 (1.6) 287 (2.6) 
WV 275 (1.8) 277 (2.5) 276 (1.6) 276 (2.1) 
WI 289 (2.1) 286 (2.4) 288 (1.9) 286 (2.7) 
WY 285 (1.8) 287 (2.4) 285 (1.7) 286 (2.6) 
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Table B.4. Estimates for students whose parents graduated from college by state and technique, 
including NAEP-reported estimates 

Graduated from college (BA) NAEP Reported MICE FH FLEX CS 
AL 276 (1.4) 280 (2.9) 276 (3.7) 281 (5.6) 
AK -- -- -- -- 
AZ 297 (2.0) 294 (1.5) 295 (1.9) 294 (2.2) 
AR 283 (1.6) 285 (1.6) 284 (1.5) 285 (1.9) 
CA 293 (1.7) 289 (1.6) 293 (1.6) 292 (3.0) 
CO 299 (1.6) 299 (1.9) 299 (1.6) 299 (1.9) 
CT 297 (1.4) 296 (1.4) 297 (1.3) 299 (4.4) 
DE 290 (1.1) 290 (1.7) 291 (1.1) 290 (1.8) 
FL 285 (1.6) 285 (2.3) 286 (1.5) 286 (1.7) 
GA 289 (1.5) 291 (1.8) 289 (1.5) 289 (2.2) 
HI 289 (1.2) 290 (2.0) 290 (1.2) 290 (1.5) 
ID 294 (1.2) 293 (1.7) 294 (1.1) 294 (1.6) 
IL 293 (1.8) 294 (1.4) 293 (1.7) 293 (1.7) 
IN 297 (1.4) 297 (1.0) 297 (1.4) 297 (1.7) 
IA 296 (1.3) 297 (0.8) 296 (1.3) 296 (1.5) 
KS 293 (1.3) 296 (1.4) 293 (1.2) 296 (2.7) 
KY 288 (1.1) 285 (1.5) 288 (1.1) 287 (1.8) 
LA 277 (1.6) 280 (3.5) 278 (1.5) 278 (1.7) 
ME 295 (1.0) 296 (1.7) 295 (1.0) 295 (1.4) 
MD 295 (1.6) 294 (1.8) 295 (1.6) 295 (2.2) 
MA 308 (1.4) 302 (1.9) 308 (1.3) 308 (2.1) 
MI 288 (1.5) 289 (1.7) 288 (1.5) 289 (2.1) 
MN 304 (1.2) 303 (3.2) 303 (1.2) 304 (2.8) 
MS 277 (1.5) 282 (2.9) 277 (1.5) 279 (3.4) 
MO 291 (1.4) 290 (1.6) 291 (1.4) 290 (2.2) 
MT 296 (1.0) 297 (1.2) 296 (1.0) 296 (1.8) 
NE 298 (1.0) 296 (0.9) 298 (1.0) 296 (2.8) 
NV 288 (1.3) 288 (2.4) 288 (1.3) 288 (1.6) 
NH 304 (1.0) 302 (2.8) 304 (1.0) 304 (1.4) 
NJ 303 (1.6) 303 (2.9) 303 (1.5) 301 (4.2) 
NM 283 (1.4) 285 (1.8) 284 (1.4) 284 (1.8) 
NY 290 (1.6) 292 (2.0) 290 (1.6) 291 (1.7) 
NC 294 (2.0) 294 (1.8) 294 (1.9) 293 (1.8) 
ND 296 (0.9) 297 (1.0) 296 (0.8) 296 (1.8) 
OH 296 (1.4) 296 (1.4) 295 (1.4) 295 (1.6) 
OK 284 (1.7) 285 (1.7) 285 (1.6) 281 (5.3) 
OR 295 (1.6) 293 (1.4) 295 (1.5) 294 (2.1) 
PA 297 (1.6) 294 (1.7) 297 (1.5) 297 (2.8) 
RI 293 (1.0) 293 (1.7) 293 (1.0) 293 (1.4) 
SC 284 (1.3) 286 (2.0) 284 (1.2) 285 (1.8) 
SD 292 (1.1) 295 (1.4) 292 (1.1) 293 (1.9) 
TN 291 (2.2) 288 (1.6) 290 (2.0) 289 (2.6) 
TX 296 (1.6) 295 (1.6) 296 (1.5) 296 (1.8) 
UT -- -- -- -- 
VT 301 (1.1) 299 (1.5) 301 (1.1) 301 (1.9) 
VA 298 (1.6) 298 (1.5) 298 (1.5) 299 (1.7) 
WA 300 (1.4) 298 (1.6) 299 (1.4) 299 (1.5) 
WV 280 (1.4) 279 (3.6) 281 (1.4) 280 (2.0) 
WI 299 (1.2) 299 (1.5) 298 (1.2) 298 (1.9) 
WY 297 (1.0) 296 (1.4) 297 (1.0) 297 (1.8) 
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Table B.5. Estimates for Black students by state and technique, including NAEP-reported 
estimates 

Black (B) NAEP Reported MICE FH FLEX CS 
AL 248 (1.8) 249 (4.8) 254 (2.7) 256 (6.4) 
AK 269 (4.5) 264 (4.5) 263 (3.7) 261 (3.8) 
AZ 269 (4.1) 263 (4.7) 263 (3.5) 264 (5.5) 
AR 255 (2.2) 258 (4.7) 254 (3.2) 254 (3.2) 
CA 260 (3.3) 255 (4.5) 263 (4.2) 259 (7.5) 
CO 260 (4.9) 261 (4.4) 265 (3.8) 265 (3.8) 
CT 256 (2.9) 252 (5.4) 261 (3.5) 263 (7.3) 
DE 263 (1.3) 259 (4.2) 260 (3.4) 259 (3.2) 
FL 258 (2.2) 259 (2.3) 260 (4.0) 260 (4.0) 
GA 264 (1.5) 260 (4.6) 258 (3.5) 262 (3.6) 
HI -- -- -- -- 
ID -- -- -- -- 
IL 261 (2.4) 262 (4.9) 260 (2.1) 260 (2.1) 
IN 257 (3.2) 263 (4.9) 257 (2.5) 258 (6.1) 
IA 254 (3.0) 259 (4.8) 255 (2.5) 256 (8.5) 
KS 263 (3.8) 262 (5.0) 261 (2.9) 260 (6.4) 
KY 257 (2.3) 258 (5.4) 257 (2.0) 256 (2.5) 
LA 255 (1.4) 256 (4.9) 255 (1.3) 255 (2.3) 
ME -- -- -- -- 
MD 263 (1.3) 260 (5.7) 263 (1.3) 264 (3.3) 
MA 268 (3.6) 264 (5.7) 267 (2.9) 269 (6.5) 
MI 251 (2.2) 257 (5.0) 252 (1.9) 254 (5.6) 
MN 262 (2.7) 265 (5.9) 262 (2.4) 263 (3.9) 
MS 257 (1.7) 257 (5.2) 257 (1.6) 257 (2.7) 
MO 258 (2.7) 256 (5.5) 258 (2.2) 254 (5.7) 
MT -- -- -- -- 
NE 254 (3.6) 262 (4.9) 256 (2.7) 257 (5.8) 
NV 256 (2.5) 257 (4.6) 257 (2.2) 257 (2.2) 
NH -- -- -- -- 
NJ 269 (3.0) 261 (4.6) 266 (2.5) 262 (7.3) 
NM -- -- -- -- 
NY 264 (2.9) 260 (4.5) 263 (2.5) 263 (2.4) 
NC 263 (2.0) 262 (4.3) 262 (1.8) 262 (2.4) 
ND 263 (4.7) 263 (4.6) 261 (3.5) 257 (6.1) 
OH 259 (3.1) 257 (4.6) 258 (2.5) 258 (2.5) 
OK 260 (2.7) 254 (4.5) 259 (2.3) 253 (6.7) 
OR -- -- -- -- 
PA 253 (2.3) 256 (5.2) 254 (2.0) 254 (5.2) 
RI 258 (3.1) 255 (5.2) 259 (2.6) 259 (2.6) 
SC 256 (1.9) 261 (5.0) 257 (1.7) 257 (2.7) 
SD -- -- -- -- 
TN 253 (3.0) 260 (4.0) 255 (2.4) 258 (4.9) 
TX 267 (2.9) 266 (4.3) 265 (2.4) 264 (2.4) 
UT -- -- -- -- 
VT -- -- -- -- 
VA 265 (1.8) 264 (5.2) 265 (1.7) 265 (1.7) 
WA 257 (3.4) 260 (4.8) 260 (2.6) 260 (2.6) 
WV 256 (3.1) 248 (5.6) 254 (2.7) 254 (5.2) 
WI 249 (4.2) 261 (4.0) 253 (3.0) 253 (2.6) 
WY -- -- -- -- 
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Table B.6. Estimates for Hispanic students by state and technique, including NAEP-reported 
estimates 

Hispanic (H) NAEP Reported MICE FH FLEX CS 
AL 260 (3.2) 263 (4.4) 265 (3.4) 264 (6.1) 
AK 279 (2.9) 270 (3.6) 272 (4.0) 273 (4.2) 
AZ 273 (1.2) 272 (3.7) 268 (3.6) 271 (4.2) 
AR 269 (2.8) 270 (3.8) 270 (3.7) 269 (3.4) 
CA 263 (1.5) 268 (3.7) 271 (4.5) 265 (5.5) 
CO 269 (1.6) 271 (3.7) 267 (3.9) 268 (3.5) 
CT 261 (2.3) 265 (4.3) 270 (3.9) 270 (7.4) 
DE 270 (2.2) 271 (4.3) 271 (3.5) 273 (6.8) 
FL 272 (1.4) 268 (3.6) 267 (4.4) 271 (4.9) 
GA 270 (2.1) 272 (3.6) 271 (3.7) 272 (3.4) 
HI 271 (2.9) 270 (4.1) 271 (4.6) 273 (3.7) 
ID 264 (2.2) 269 (4.2) 268 (3.8) 267 (5.0) 
IL 273 (1.4) 271 (3.6) 271 (4.2) 271 (3.9) 
IN 271 (3.1) 272 (3.8) 271 (3.9) 272 (5.5) 
IA 269 (2.1) 267 (3.8) 272 (3.8) 272 (6.4) 
KS 274 (2.8) 275 (4.1) 269 (3.9) 267 (3.6) 
KY 274 (2.9) 267 (4.1) 270 (4.1) 268 (4.7) 
LA 271 (3.7) 266 (4.6) 269 (4.0) 266 (5.4) 
ME -- --  -- -- 
MD 273 (2.4) 271 (3.2) 272 (2.2) 271 (3.4) 
MA 271 (3.1) 274 (3.3) 270 (2.6) 271 (2.5) 
MI 269 (4.0) 268 (3.5) 270 (2.9) 269 (4.8) 
MN 272 (3.2) 274 (3.4) 271 (2.6) 271 (3.8) 
MS 269 (4.9) 267 (4.1) 269 (3.3) 271 (7.7) 
MO 270 (3.5) 266 (4.1) 270 (2.7) 270 (3.4) 
MT 275 (4.9) 272 (4.6) 272 (3.3) 272 (3.1) 
NE 266 (2.1) 266 (4.2) 267 (1.9) 269 (4.4) 
NV 266 (1.1) 268 (3.1) 266 (1.1) 266 (1.1) 
NH 270 (4.3) 272 (4.9) 270 (3.2) 270 (3.0) 
NJ 272 (2.0) 274 (4.4) 272 (1.8) 268 (7.6) 
NM 266 (1.1) 267 (3.5) 267 (1.0) 266 (4.3) 
NY 268 (1.7) 271 (3.2) 269 (1.6) 269 (1.6) 
NC 273 (2.5) 271 (3.2) 272 (2.2) 272 (2.7) 
ND 276 (3.3) 271 (3.6) 274 (2.7) 272 (4.5) 
OH 266 (8.8) 267 (3.2) 269 (3.8) 269 (3.6) 
OK 266 (2.9) 269 (3.1) 267 (2.4) 265 (4.6) 
OR 266 (1.7) 271 (4.4) 267 (1.6) 267 (3.0) 
PA 261 (3.7) 265 (3.2) 265 (2.9) 266 (8.1) 
RI 265 (1.1) 268 (3.2) 265 (1.1) 265 (1.1) 
SC 272 (4.3) 274 (3.6) 270 (3.0) 270 (3.6) 
SD 272 (4.5) 270 (3.9) 270 (3.1) 270 (4.2) 
TN 273 (4.0) 267 (3.9) 271 (2.9) 271 (3.3) 
TX 277 (1.4) 276 (3.4) 276 (1.3) 276 (1.3) 
UT 262 (2.6) 267 (3.9) 264 (2.2) 263 (3.2) 
VT -- -- -- -- 
VA 279 (2.4) 274 (3.6) 277 (2.1) 276 (2.0) 
WA 269 (2.5) 269 (3.8) 269 (2.2) 270 (2.2) 
WV -- -- -- -- 
WI 271 (2.6) 267 (4.0) 271 (2.3) 269 (6.5) 
WY 273 (1.9) 271 (4.5) 273 (1.8) 273 (3.2) 
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Table B.7. Estimates for Asian Pacific Islander students by state and technique, including NAEP-reported 
estimates 

Asian / Pacific Islander (API) NAEP Reported MICE FH FLEX CS 
AL -- -- -- -- 
AK 275 (1.9) 303 (9.9) 275 (1.9) 276 (4.6) 
AZ 305 (5.1) 304 (11.2) 307 (4.7) 311 (8.3) 
AR -- -- -- -- 
CA 303 (3.6) 293 (11.8) 303 (3.5) 305 (5.3) 
CO 303 (5.5) 306 (10.6) 307 (5.0) 307 (5.0) 
CT 310 (5.5) 305 (10.5) 311 (4.9) 323 (12.7) 
DE 317 (4.0) 296 (11.0) 315 (3.7) 314 (6.0) 
FL 297 (3.4) 302 (11.0) 298 (3.3) 301 (6.1) 
GA 317 (6.2) 303 (10.6) 314 (5.3) 314 (4.4) 
HI 279 (1.0) 295 (11.5) 278 (1.0) 278 (1.1) 
ID -- --  -- -- 
IL 309 (4.9) 298 (10.6) 308 (4.4) 313 (9.2) 
IN -- -- -- -- 
IA 291 (5.0) 306 (12.7) 293 (4.5) 294 (6.7) 
KS 301 (5.4) 305 (13.0) 302 (4.8) 305 (6.2) 
KY 304 (4.7) 303 (13.3) 303 (4.3) 303 (5.2) 
LA -- -- -- -- 
ME -- -- -- -- 
MD 314 (3.6) 306 (11.5) 314 (3.4) 316 (4.0) 
MA 324 (4.2) 323 (13.5) 322 (3.9) 323 (14.3) 
MI 313 (4.6) 298 (11.6) 311 (4.2) 314 (10.4) 
MN 293 (4.0) 317 (11.3) 296 (3.8) 297 (4.4) 
MS -- -- -- -- 
MO -- -- -- -- 
MT -- -- -- -- 
NE -- -- -- -- 
NV 294 (3.4) 292 (12.1) 294 (3.3) 294 (3.3) 
NH 312 (6.9) 317 (11.5) 314 (5.9) 314 (5.7) 
NJ 331 (3.6) 314 (10.9) 329 (3.4) 323 (14.1) 
NM -- -- -- -- 
NY 298 (3.6) 307 (12.5) 299 (3.5) 299 (3.4) 
NC 309 (6.2) 306 (13.0) 310 (5.3) 314 (7.5) 
ND -- -- -- -- 
OH 305 (24.9) 310 (12.0) 306 (8.2) 306 (8.1) 
OK -- -- -- -- 
OR 304 (5.5) 305 (11.8) 305 (4.9) 307 (5.4) 
PA 316 (6.0) 306 (11.7) 313 (5.1) 306 (11.8) 
RI 299 (3.9) 303 (11.8) 300 (3.6) 300 (3.6) 
SC -- -- -- -- 
SD -- -- -- -- 
TN -- -- -- -- 
TX 312 (3.2) 307 (11.0) 310 (3.1) 310 (3.1) 
UT -- -- -- -- 
VT -- -- -- -- 
VA 317 (4.1) 312 (10.1) 316 (3.8) 316 (3.8) 
WA 309 (3.4) 302 (13.5) 308 (3.2) 308 (3.2) 
WV -- -- -- -- 
WI 295 (4.7) 311 (10.2) 297 (4.3) 302 (12.6) 
WY -- -- -- -- 
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Table B.8. Estimates for American Indian/Alaskan Native students by state and technique, including 
NAEP-reported estimates 

American Indian / Alaskan Native (AIAN) NAEP Reported MICE FH FLEX CS 
AL -- -- -- -- 
AK 257 (2.6) 260 (8.4) 257 (2.6) 257 (2.6) 
AZ 260 (4.4) 256 (7.3) 262 (3.8) 262 (3.6) 
AR -- -- -- -- 
CA -- -- -- -- 
CO -- -- -- -- 
CT -- -- -- -- 
DE -- -- -- -- 
FL -- -- -- -- 
GA -- -- -- -- 
HI -- -- -- -- 
ID -- -- -- -- 
IL -- -- -- -- 
IN -- -- -- -- 
IA -- -- -- -- 
KS -- -- -- -- 
KY -- -- -- -- 
LA -- -- -- -- 
ME -- -- -- -- 
MD -- -- -- -- 
MA -- -- -- -- 
MI -- -- -- -- 
MN 261 (5.8) 263 (7.1) 257 (4.8) 257 (4.2) 
MS -- -- -- -- 
MO -- -- -- -- 
MT 256 (2.9) 262 (6.3) 257 (2.7) 258 (2.6) 
NE -- -- -- -- 
NV -- -- -- -- 
NH -- -- -- -- 
NJ -- -- -- -- 
NM 259 (2.8) 260 (5.8) 260 (2.7) 260 (2.7) 
NY -- -- -- -- 
NC 261 (4.7) 261 (5.3) 261 (3.6) 261 (3.4) 
ND 260 (3.1) 262 (6.2) 260 (2.8) 260 (2.7) 
OH -- -- -- -- 
OK 269 (1.8) 259 (5.0) 268 (1.8) 268 (1.8) 
OR -- -- -- -- 
PA -- -- -- -- 
RI -- -- -- -- 
SC -- -- -- -- 
SD 260 (2.9) 260 (7.5) 260 (2.6) 260 (2.6) 
TN -- -- -- -- 
TX -- -- -- -- 
UT 240 (9.0) 260 (5.5) 256 (4.4) 256 (3.8) 
VT -- -- -- -- 
VA -- -- -- -- 
WA 264 (7.0) 259 (5.0) 259 (4.7) 260 (3.7) 
WV -- -- -- -- 
WI 274 (7.0) 261 (4.8) 262 (3.9) 262 (3.7) 
WY 251 (4.0) 261 (6.1) 255 (3.6) 255 (3.2) 
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Table B.9. Estimates for students who identify as more than one race by state and technique, 
including NAEP-reported estimates 

More than once race (TP) NAEP Reported MICE FH FLEX CS 
AL -- -- -- -- 
AK 285 (2.6) 285 (6.0) 284 (2.5) 284 (2.5) 
AZ -- -- -- -- 
AR -- -- -- -- 
CA 289 (9.7) 282 (5.5) 288 (3.5) 288 (3.5) 
CO 290 (4.8) 287 (6.1) 291 (3.3) 291 (3.3) 
CT -- -- -- -- 
DE -- -- -- -- 
FL 282 (3.5) 277 (6.0) 282 (2.7) 282 (2.7) 
GA 277 (5.3) 285 (6.3) 281 (2.9) 281 (2.9) 
HI 285 (2.6) 277 (5.4) 286 (2.7) 286 (2.7) 
ID -- -- -- -- 
IL -- -- -- -- 
IN 281 (4.6) 284 (5.5) 277 (2.8) 277 (2.8) 
IA 283 (5.6) 280 (5.7) 278 (2.8) 278 (2.8) 
KS 278 (3.1) 280 (5.6) 279 (2.7) 280 (5.7) 
KY 266 (5.9) 275 (6.3) 272 (3.2) 272 (3.2) 
LA -- -- -- -- 
ME -- -- -- -- 
MD 290 (3.9) 286 (5.9) 290 (3.3) 290 (3.3) 
MA -- -- -- -- 
MI -- -- -- -- 
MN 284 (5.0) 293 (6.2) 285 (2.7) 285 (2.7) 
MS -- -- -- -- 
MO -- -- -- -- 
MT 287 (4.1) 281 (5.8) 283 (2.8) 283 (2.8) 
NE 285 (5.3) 284 (5.9) 279 (2.7) 279 (3.0) 
NV 281 (3.3) 279 (5.9) 280 (2.9) 280 (2.9) 
NH -- -- -- -- 
NJ -- -- -- -- 
NM -- -- -- -- 
NY -- -- -- -- 
NC 274 (4.4) 285 (5.8) 281 (2.7) 281 (2.7) 
ND -- -- -- -- 
OH 280 (3.6) 281 (5.3) 278 (2.8) 278 (2.8) 
OK 273 (3.8) 273 (5.9) 277 (2.7) 277 (2.7) 
OR 281 (4.2) 279 (5.3) 283 (2.9) 283 (2.7) 
PA 274 (4.9) 283 (5.2) 278 (3.0) 278 (3.0) 
RI 274 (3.3) 281 (5.2) 280 (2.9) 280 (2.9) 
SC -- -- -- -- 
SD -- -- -- -- 
TN -- -- -- -- 
TX 293 (6.1) 286 (7.4) 284 (3.2) 284 (3.2) 
UT -- -- -- -- 
VT -- -- -- -- 
VA 293 (3.3) 284 (5.5) 290 (2.7) 290 (2.7) 
WA 285 (3.7) 283 (5.9) 285 (2.7) 285 (2.7) 
WV -- -- -- -- 
WI -- -- -- -- 
WY -- -- -- -- 
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Table B.10. Estimates for English learners by state and technique, including NAEP-reported 
estimates 

English learners (EL) NAEP Reported MICE FH FLEX CS 
AL -- -- -- -- 
AK 236 (2.8) 256 (9.6) 237 (2.7) 237 (2.7) 
AZ 234 (4.8) 248 (7.7) 237 (4.3) 237 (4.3) 
AR 255 (3.2) 243 (10.3) 254 (3.0) 254 (3.0) 
CA 238 (1.9) 236 (10.9) 238 (1.9) 239 (1.9) 
CO 250 (3.1) 243 (9.6) 250 (2.9) 250 (2.9) 
CT 233 (4.3) 236 (11.1) 235 (4.0) 235 (4.0) 
DE -- -- -- -- 
FL 240 (3.2) 249 (9.2) 241 (3.1) 241 (3.1) 
GA 242 (5.2) 245 (9.8) 244 (4.6) 244 (4.6) 
HI 239 (2.7) 251 (10.8) 239 (2.7) 239 (2.7) 
ID -- -- -- -- 
IL 247 (3.4) 250 (10.0) 247 (3.2) 247 (3.2) 
IN 260 (5.3) 246 (8.9) 258 (4.7) 257 (4.7) 
IA 246 (4.8) 246 (10.6) 247 (4.3) 247 (4.3) 
KS 266 (4.0) 249 (8.6) 263 (3.7) 263 (3.7) 
KY -- -- -- -- 
LA -- -- -- -- 
ME -- -- -- -- 
MD 247 (4.2) 249 (9.7) 246 (3.9) 247 (3.9) 
MA 251 (3.8) 245 (9.7) 250 (3.6) 250 (3.6) 
MI 258 (4.8) 244 (9.9) 256 (4.3) 256 (4.3) 
MN 252 (3.8) 247 (6.8) 251 (3.5) 251 (3.5) 
MS -- -- -- -- 
MO -- -- -- -- 
MT -- -- -- -- 
NE -- -- -- -- 
NV 246 (1.7) 242 (9.9) 246 (1.7) 246 (1.7) 
NH -- -- -- -- 
NJ -- -- -- -- 
NM 240 (1.8) 243 (7.8) 240 (1.8) 240 (1.8) 
NY 242 (3.8) 245 (9.9) 243 (3.6) 244 (3.6) 
NC 247 (4.6) 249 (8.1) 247 (4.1) 247 (4.1) 
ND -- -- -- -- 
OH 235 (16.8) 242 (10.0) 248 (8.5) 247 (8.2) 
OK 245 (4.2) 249 (8.5) 246 (3.9) 245 (3.8) 
OR -- -- -- -- 
PA 234 (5.7) 237 (10.2) 239 (5.0) 248 (13.5) 
RI 233 (3.9) 243 (10.5) 236 (3.7) 236 (3.7) 
SC 266 (5.2) 249 (9.9) 261 (4.6) 261 (4.6) 
SD -- -- -- -- 
TN -- -- -- -- 
TX 256 (2.3) 252 (10.9) 255 (2.3) 255 (2.3) 
UT 226 (4.8) 229 (9.9) 231 (4.4) 230 (4.3) 
VT -- -- -- -- 
VA 259 (3.2) 253 (10.5) 257 (3.1) 257 (3.1) 
WA 244 (3.3) 247 (7.5) 244 (3.2) 244 (3.1) 
WV -- -- -- -- 
WI 256 (4.9) 253 (7.1) 255 (4.4) 247 (15.5) 
WY -- -- -- -- 
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Table B.11. Supplemental table—estimates for Black students by state and technique, including 
NAEP-reported estimates, with unreported NAEP estimates calculated through the FH technique 

Black (B) NAEP Reported MICE FH FLEX CS 
AL 248 (1.8) 249 (4.8) 254 (2.7) 256 (6.4) 
AK 269 (4.5) 264 (4.5) 263 (3.7) 261 (3.8) 
AZ 269 (4.1) 263 (4.7) 263 (3.5) 264 (5.5) 
AR 255 (2.2) 258 (4.7) 254 (3.2) 254 (3.2) 
CA 260 (3.3) 255 (4.5) 263 (4.2) 259 (7.5) 
CO 260 (4.9) 261 (4.4) 265 (3.8) 265 (3.8) 
CT 256 (2.9) 252 (5.4) 261 (3.5) 263 (7.3) 
DE 263 (1.3) 259 (4.2) 260 (3.4) 259 (3.2) 
FL 258 (2.2) 259 (2.3) 260 (4.0) 260 (4.0) 
GA 264 (1.5) 260 (4.6) 258 (3.5) 262 (3.6) 
HI -- -- 269 (3.3) -- 
ID -- -- 261 (4.4) -- 
IL 261 (2.4) 262 (4.9) 260 (2.1) 260 (2.1) 
IN 257 (3.2) 263 (4.9) 257 (2.5) 258 (6.1) 
IA 254 (3.0) 259 (4.8) 255 (2.5) 256 (8.5) 
KS 263 (3.8) 262 (5.0) 261 (2.9) 260 (6.4) 
KY 257 (2.3) 258 (5.4) 257 (2.0) 256 (2.5) 
LA 255 (1.4) 256 (4.9) 255 (1.3) 255 (2.3) 
ME -- -- 257 (3.6) -- 
MD 263 (1.3) 260 (5.7) 263 (1.3) 264 (3.3) 
MA 268 (3.6) 264 (5.7) 267 (2.9) 269 (6.5) 
MI 251 (2.2) 257 (5.0) 252 (1.9) 254 (5.6) 
MN 262 (2.7) 265 (5.9) 262 (2.4) 263 (3.9) 
MS 257 (1.7) 257 (5.2) 257 (1.6) 257 (2.7) 
MO 258 (2.7) 256 (5.5) 258 (2.2) 254 (5.7) 
MT -- -- 261 (3.7) -- 
NE 254 (3.6) 262 (4.9) 256 (2.7) 257 (5.8) 
NV 256 (2.5) 257 (4.6) 257 (2.2) 257 (2.2) 
NH -- -- 267 (3.3) -- 
NJ 269 (3.0) 261 (4.6) 266 (2.5) 262 (7.3) 
NM -- -- 259 (3.3) -- 
NY 264 (2.9) 260 (4.5) 263 (2.5) 263 (2.4) 
NC 263 (2.0) 262 (4.3) 262 (1.8) 262 (2.4) 
ND 263 (4.7) 263 (4.6) 261 (3.5) 257 (6.1) 
OH 259 (3.1) 257 (4.6) 258 (2.5) 258 (2.5) 
OK 260 (2.7) 254 (4.5) 259 (2.3) 253 (6.7) 
OR -- -- 261 (3.8) -- 
PA 253 (2.3) 256 (5.2) 254 (2.0) 254 (5.2) 
RI 258 (3.1) 255 (5.2) 259 (2.6) 259 (2.6) 
SC 256 (1.9) 261 (5.0) 257 (1.7) 257 (2.7) 
SD -- -- 260 (3.7) -- 
TN 253 (3.0) 260 (4.0) 255 (2.4) 258 (4.9) 
TX 267 (2.9) 266 (4.3) 265 (2.4) 264 (2.4) 
UT -- -- 262 (4.1) -- 
VT -- -- 263 (3.6) -- 
VA 265 (1.8) 264 (5.2) 265 (1.7) 265 (1.7) 
WA 257 (3.4) 260 (4.8) 260 (2.6) 260 (2.6) 
WV 256 (3.1) 248 (5.6) 254 (2.7) 254 (5.2) 
WI 249 (4.2) 261 (4.0) 253 (3.0) 253 (2.6) 
WY -- -- 258 (4.0) -- 
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Appendix C: Supplemental Plots 
 

Plots for Evaluating Plausibility of Preliminary Sets of Mice Imputations  
 
Figure C.1.1. Plots for evaluating plausibility of preliminary sets of mice imputations (MICE-
produced predictions) using the normal linear regression method 
NHS HS 
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TP  EL 

  
 

Two predicted values are out of bounds for the SBA subgroup, AL is lower and MA is 

higher. Two predicted values are also out of bounds for the BA subgroup. Again, AL is lower 

and MA is higher. Two predicted values are out of bounds for the AIAN subgroup. AZ is lower 

and MN is higher. The procedure is re-run for these subgroups, but with PMM instead of normal 

linear regression. 

Figure C.1.2. Plots for evaluating plausibility of preliminary sets of mice imputations (MICE-
based predictions) using the predictive mean matching (PMM) method 
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Coverage Plots: Target Intervals and Technique-produced Estimates by State 
 
MICE 
 
Figure C.1.3. MICE-produced estimates and target intervals for NHS subgroup by state 

 
 
Figure C.1.4. MICE-produced estimates and target intervals for HS subgroup by state 
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Figure C.1.5. MICE-produced estimates and target intervals for SBA subgroup by state 
 

 
 

 
Figure C.1.6. MICE-produced estimates and target intervals for BA subgroup by state 
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Figure C.1.7. MICE-produced estimates and target intervals for B subgroup by state 

 

 
 

 
Figure C.1.8. MICE-produced estimates and target intervals for H subgroup by state 
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Figure C.1.9. MICE-produced estimates and target intervals for API subgroup by state 
 

 
 

 
Figure C.1.10. MICE-produced estimates and target intervals for AIAN subgroup by state 
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Figure C.1.11. MICE-produced estimates and target intervals for TP subgroup by state 
 

 
 

 
Figure C.1.12. MICE-produced estimates and target intervals for EL subgroup by state 
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FH 
 
Figure C.2.1. FH-produced estimates and target intervals for NHS subgroup by state 

 
 
Figure C.2.2. FH-produced estimates and target intervals for HS subgroup by state 
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Figure C.2.3. FH-produced estimates and target intervals for SBA subgroup by state 

 
 
Figure C.2.4. FH-produced estimates and target intervals for BA subgroup by state 
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Figure C.2.5. FH-produced estimates and target intervals for B subgroup by state 

 
 
Figure C.2.6. FH-produced estimates and target intervals for H subgroup by state 
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Figure C.2.7. FH-produced estimates and target intervals for API subgroup by state 

 
 
Figure C.2.8. FH-produced estimates and target intervals for AIAN subgroup by state 
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Figure C.2.9. FH-produced estimates and target intervals for TP subgroup by state 

 
 
Figure C.2.10. FH-produced estimates and target intervals for EL subgroup by state 
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FLEX CS 
 
Figure C.3.1. FLEX CS-produced estimates and target intervals for NHS subgroup by state 

 
 
Figure C.3.2. FLEX CS-produced estimates and target intervals for HS subgroup by state 
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Figure C.3.3. FLEX CS-produced estimates and target intervals for SBA subgroup by state 

 
 
Figure C.3.4. FLEX CS-produced estimates and target intervals for BA subgroup by state 
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Figure C.3.5. FLEX CS-produced estimates and target intervals for B subgroup by state 

 
 
Figure C.3.6. FLEX CS-produced estimates and target intervals for H subgroup by state 
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Figure C.3.7. FLEX CS-produced estimates and target intervals for API subgroup by state 

 
 
Figure C.3.8. FLEX CS-produced estimates and target intervals for AIAN subgroup by state 
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Figure C.3.9. FLEX CS-produced estimates and target intervals for TP subgroup by state 

 
 
Figure C.3.10. FLEX CS-produced estimates and target intervals for EL subgroup by state 

 
 

 
 


