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We study the classes of several loci in the projectivization of the k-th Hodge

bundle P
(
Ekg
)

over Mg and P
(
Ekg,n

)
over Mg,n. In particular we consider the class

of the closure in P
(
Ekg,n

)
of the codimension n locus where the n marked points are

zeros of the k-differential. When n = 1 this class was computed in [KSZ19, §4]. We

compute it when n = 2 and provide a recursive formula for it when n > 2. Moreover,

when n = 1 and k = 1, 2 we show its rigidity and extremality in the pseudoeffective

cone. We also compute the classes of the closures in P
(
Ekg
)

of the loci where the

k-differential has a zero at a Brill-Noether special point.
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1 Introduction

The k-th Hodge bundle Ekg over Mg has fiber over a point [C] ∈ Mg equal to the

space of stable k-differentials H0
(
C, ω⊗kC

)
. We denote the projectivization of the k-th

Hodge bundle by P
(
Ekg
)
. One can also consider the k-th Hodge bundle over Mg,n,

which we denote by Ekg,n with projectivization P
(
Ekg,n

)
.

For a partition m = (m1, . . . ,mn) of k(2g − 2), let Hk
g(m) be the stratum in

Ekg where m describes the multiplicities of the zeros of the k-differential. The strata

Hk

g(m) provide a natural stratification of the complement of the zero section of Ekg .

We denote by Hk

g(m) the projectivization of the induced strata in P
(
Ekg
)
.

We will also sometimes consider a stratum in P
(
Ekg,n

)
. In this case let m =

(m1, . . . ,mn) be a partition of some number N where n ≤ N ≤ k(2g − 2). We let

Hk

g,n(m) ⊂ P
(
Ekg,n

)
be the locus where the k-differential has a zero of multiplicity mi

at the ith marked point.

Incidence loci

Consider the incidence locus

Zn :=
{

[C, µ, P1, . . . , Pn] ∈ P
(
Ekg,n

)
|h0 (C,OC (µ− (P1 + · · ·+ Pn))) ≥ 1

}
.

This is a non-empty codimension n locus in P
(
Ekg,n

)
for 1 ≤ n ≤ k(2g−2). Note that

in our notation Zn is equivalent to the locus Hk

g,n(1n) ⊂ P
(
Ekg,n

)
. The incidence locus

Zk(2g−2) ⊂ P
(
Ekg,k(2g−2)

)
is precisely the incidence variety compactification of the

principal stratum described in [BCG+19]. The class of Z1 was computed in [KSZ19,

§4] to be Z1 = kω − η. In this thesis we compute the class of Z2 and provide a

recursive formula for Zn for n > 2.
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Our motivation for studying the incidence loci comes from their relation to the

strata. In [FP18] the authors provide a recursive formula for the strata inMg,n based

on a conjectural identification between the moduli space of twisted differentials and

a formula of Pixton in the tautological ring of Mg,n. In [Sch18] the author extends

the conjecture and recursion to the case k > 1. Finally, in [BHP+] the authors prove

the conjecture of the previous two papers and are therefore able to provide a closed

formula for the strata classes in Mg,n. The strata classes have also been studied in

the projectivized Hodge bundle directly. In [Sau19] the author provides a recursive

formula for the strata classes in PE1
g.

Solving the recursion provided in Theorem 1.2 would give a formula for strata with

simple zeros in PEkg,n, under the restrictions of k and n described there. It would also

indirectly provide a closed formula for strata with one zero of higher multiplicity, due

to the presence of the loci we call EI in the formula. Since the space PEkg,n admits

natural forgetful maps to both Mg,n and PEkg , such a closed formula could be used

to find the strata classes in these spaces as well.

Theorem 1.1. One has

Z2 ≡ (ω1 − η) (ω2 − η)− g

2

1ω−η
− g−1 1

2

1

µ1=0

−
bg/2c∑
i=1

i

2

1

g−i
∈ A2

(
P
(
E1
g,2

))

and

Z2 ≡ (k ω1 − η) (k ω2 − η)− g

2

1k ω−η
∈ A2

(
P
(
Ekg,2

))
, for k ≥ 2.

We will explain the graph notation in Section 3.

Let Mrt
g,n be the locus in Mg,n of curves with rational tails; let πn : P

(
Ekg,n

)
→

P
(
Ekg,n−1

)
be the map obtained by forgetting the last marked point; let ρn : P

(
Ekg,n

)
→
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P
(
Ekg,1

)
be the map obtained by remembering only the last marked point (and re-

labeling it as P1). Moreover, let P = {P1, . . . , Pn} and I ⊆ P \ Pn where I 6= ∅.

We denote by EI ⊂ P
(
Ekg,n

)
the locus of genus g curves with a rational tail where

the rational component contains the marked points specified by I along with Pn, the

k-differential on the genus g component is not the kth power of an abelian differential,

and it has a zero of order at least |I| at the node as well as zeros at all the marked

points on that component. More formally, consider the gluing map

P
(
Ekg,P−

)
×M0,I+ → P

(
Ekg,P

)
where P− := P \ (I ∪ {Pn}) ∪ {Q1}, I+ := I ∪ {Pn, Q2}, and the map is defined by

gluing points Q1 and Q2. The locus EI is the image of Hk

g,n−|I|(|I|, 1n−|I|−1)×M0,I+

under this map where the zero of order |I| is at Q1.

Theorem 1.2. One has

π∗n [Zn−1] · ρ∗n [Z1] = [Zn] +
∑
I

|I|[EI ]

in

i) An
(
P
(
Ekg,n

∣∣
Mrt

g,n

))
for

• all n when k = 1,

• n ≤ k(2g − 2)− 2 when k = 2,

• n ≤ k(2g − 2)− 1 when k ≥ 3; and

ii) An
(
P
(
Ekg,n

))
when n ≤ k.
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Effective divisors in P
(
Ek
g

)
Wk

g :=
{

(C, µ) ∈ P
(
Ekg
)
| zeros of µ include a Weierstrass point

}
⊂ P

(
Ekg
)
.

Theorem 1.3. For k ≥ 1, one has

[
Wk

g

]
= −g(g2−1)η+k(6g2+4g+2)λ−k

(
g + 1

2

)
δ0−

bg/2c∑
i=1

k(g+3)i(g−i)δi ∈ PicQ
(
P
(
Ekg
))

.

In the statement, η := OP(Ek
g)(−1), and λ, δ0, and δi denote the pullbacks of the

respective classes fromMg. Next, we generalize this and consider Brill-Noether type

divisors in P
(
Ekg
)
; that is, divisors obtained by requiring the support of the class of the

k-differential to contain a Brill-Noether special point. For a smooth algebraic curve

C, the variety Gr
d(C) parametrizes linear series of degree d and projective dimension

r. For ` = (L, V ) in Gr
d(C), the vanishing sequence of ` at a point P in C

a`(P ) : 0 ≤ a0 < · · · < ar ≤ d

is defined as the increasing sequence of vanishing orders of sections in V at P . Given

g, r, d, and a sequence a = (a0, . . . , ar) such that

ρ(g, r, d,a) = g − (r + 1)(g − d+ r)−
r∑
i=0

(ai − i) = −1,

define the locus Ha

g,d in P
(
Ekg
)

as

Ha

g,d :=
{

(C, µ) ∈ P
(
Ekg
) ∣∣a`(P ) ≥ a, for some ` ∈ Gr

d(C) and P ∈ supp(µ)
}
.

We show that the class of the divisorial component of Ha

g,d lies in the cone spanned

by the pullback of the Brill-Noether divisor class BN g fromMg and the divisor class

4



[
Wk

g

]
from Theorem 1.3. This is analogous to the result from [EH89] for pointed

Brill-Noether divisors in Mg,1.

Theorem 1.4. For k ≥ 1 and g ≥ 3, the divisorial class
[
Ha

g,d

]
is equal to

[
Ha

g,d

]
= 2k(g − 1)µBN g + ν

[
Wk

g

]
in PicQ

(
P
(
Ekg
))

.

where µ, ν ∈ Q≥0.

Explicit formulae for µ and ν were computed in [FT16] and we record them in

Section 4.1.

Rigidity and extremality results

An effective cycle class E in the numerical group Nd
(
P
(
Ekg,n

))
of codimension d

cycles on P
(
Ekg,n

)
is called extremal if E = E1 +E2 in Nd

(
P
(
Ekg,n

))
for two effective

cycle classes E1 and E2 implies that both E1 and E2 are proportional to E. An

effective cycle class E is called rigid if any effective cycle with class mE is supported

on the support of E.

We are able to establish some rigidity and extremality results.

Theorem 1.5. The divisor H1

g(2, 1
2g−4) ⊂ P

(
E1
g

)
is rigid and extremal in Eff

1 (P (E1
g

))
.

The divisor H2

g(2, 1
4g−6) ⊂ P

(
E2
g

)
is rigid and extremal in Eff

1 (P (E2
g

))
.

Theorem 1.6. The class of Z1 is rigid and extremal in Eff
1 (P (Ekg,1)), for k ∈ {1, 2}.

We prove the above theorems by making use of Teichmüller curves, which are only

defined when k = 1, 2. Using a recursive argument we can show that Zn for n > 2

are rigid and extremal in Effn
(
P
(
Ekg,n

))
conditioned on the rigidity and extremality

of Zn−1. This holds even for k > 2.
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Proposition 1.7. For n > 2, if [Zn−1] is rigid and extremal in Effn−1
(
P
(
Ekg,n−1

))
,

then [Zn] is rigid and extremal in Effn
(
P
(
Ekg,n

))
, provided that Zn is non-empty, i.e.,

n ≤ k(2g − 2).

2 Background

2.1 The Picard group of P
(
Ek
g

)
and P

(
Ek
g,n

)
We know that

Pic(P
(
Ekg
)
)⊗Q = 〈η, λ, δ0, . . . , δbg/2c〉

where η := OP(Ek
g)(−1) and the remaining classes are the pullbacks from Mg [KZ11,

Lemma 1]. Let π : Cg → Mg be the universal curve and ωπ the relative dualizing

sheaf. The kth Hodge bundle Ekg = π∗
(
ω⊗kπ

)
. The class λ := c1(E1

g), i.e., the first

Chern class of the Hodge bundle. The class δ0 is the class of the closure of the locus

of irreducible curves with a node and the class δi is the class of the closure of the

locus of one-nodal curves with a genus i component and a genus g− i component. We

may also replace λ in the above expression with the pullback of κ from Mg, where

κ = π∗c
2
1(ωπ). This is because κ = 12λ− δ, where δ is the total boundary class.

Let S ⊆ {1, . . . , n}. We have that

Pic(Mg,n)⊗Q = 〈λ, ψ1, . . . , ψn, δ0, δi;S〉

where 0 ≤ i ≤ bg/2c. We denote by ψi the first Chern class of the cotangent bundle

onMg,n at the ith marked point. This means that on a family π : X → B, the divisor

ψi takes the value −π∗(S2
i ) where Si marks the ith section. We denote by δi;S the

class of the divisor whose general points parameterize one-nodal curves whose genus
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i component contains the markings labelled by the subset S. Note that if i = 0, then

|S| ≥ 2. Furthermore, if i = g/2, we force 1 ∈ S. For more details, see [AC87]. We

will also often make use of the classes ωi, 1 ≤ i ≤ n, defined as follows. If ωπ denotes

the relative dualizing sheaf of π : Cg →Mg and ρi : Mg,n →Mg,1 is the morphism

forgetting all but the ith marked point, we let ωi = ρ∗iωπ. When n = 1, ω1 = ψ1.

More generally, if πi : Mg,n →Mg,n−1 is the morphism forgetting the ith point, we

have the following theorem.

Theorem 2.1 ([Log03, Theorem 2.3]). One has

π∗nλ = λ

π∗nδ0 = δ0

π∗nωi = ωi

π∗nψi = ψi − δ0;{i,n}

π∗nδi;S = δi;S + δi;S∪{n}.

except that π∗1δg/2;∅ = δg/2,∅ for n = 1.

One important consequence of this is that

ψi = ωi +
∑

i∈S⊂{1,...,n}

δ0;S.

We note that by the above discussion,

Pic(P
(
Ekg,n

)
)⊗Q = 〈η, λ, ψ1, . . . , ψn, δ0, δi;S〉.

7



2.2 The incidence variety compactification of the strata

We will also regularly make use of the incidence variety compactification of the strata.

For a partition µ = (m1, . . . ,mn) of k(2g − 2), define

Pk(µ) :=
{

(C, ξ, z1, . . . , zn) ∈ P
(
Ekg,n

)
| div ξ =

n∑
i=1

mizi

}
.

The incidence variety compactification Pk(µ) is defined to be the closure of Pk(µ)

inside P
(
Ekg,n

)
. In [BCG+19] the authors give a full characterization of elements in the

boundary, building off work in [BCG+18] for the case k = 1. We refer the reader to

[BCG+19] for the details of this characterization. Note that we will use the notation

Pk(µ) for the incidence variety compactification of a stratum, whereas in [BCG+19]

it is denoted PΩkMinc

g,n(µ).

Finally, we record here a relation involving η. The reader can see [Che20] for more

details. Let π : X → B be a one-parameter family of pointed stable k-differentials

in Pk(µ) whose generic fiber is smooth. If X is singular we replace it by its minimal

resolution. Let S1, . . . , Sn be the distinct sections which mark the zeros and poles

of the k-differentials parameterized by this family and let ω be the relative dualizing

line bundle class of π. Moreover, let V be the union of the irreducible components

where the parameterized k-differentials are identically zero. Then, since the fiber of

π∗η over a pointed stable k-differential is the pointed stable k-differential itself, which

has zeros or poles along the Si with multiplicity mi and zeros along V , we have a

relation of divisor classes in X

π∗η = ω⊗k −
n∑
i=1

miSi − V.
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3 The class of the incidence locus Zn

As mentioned in the introduction, the class of Z1 was computed in [KSZ19]:

Lemma 3.1 ([KSZ19, §4]). One has Z1 ≡ k ω − η in Pic
(
P
(
Ekg,1

))
, for k ≥ 1.

3.1 The class Z2

To describe Z2, we need the following loci in P
(
Ekg,2

)
: let

g

2

1Z1

be the push-forward of Z1 ⊂ P
(
Ekg,1

)
via the map P

(
Ekg,1

)
→ P

(
Ekg,2

)
obtained by

attaching at the marked point of an element in P
(
Ekg,1

)
a rational tail R containing

the two marked points P1, P2. Namely, (C, µ,Q) 7→ (C ∪Q R, µ, P1, P2); the class of

stable k-differentials µ on the curve C gives rise to a class of stable k-differentials

(still denoted µ) on C ∪Q R whose aspect on the rational component is zero. The

class of this locus, denoted below as

g

2

1k ω−η
,

is the push-forward of the class [Z1] = k ω − η (Lemma 3.1) via the map P
(
Ekg,1

)
→

P
(
Ekg,2

)
given above.

Moreover, let

g−1 1

2

1

µ1=0

be the locus consisting of curves with an elliptic tail containing both marked points

together with a class of stable k-differentials whose aspect on the elliptic component

9



is zero. This locus in P
(
Ekg,2

)
has codimension two for k = 1, and codimension k + 1

for k ≥ 2. Also, we use below the maps πi : P
(
Ekg,2

)
→ P

(
Ekg,1

)
obtained by forgetting

the i-th marked point and relabeling the remaining marked point by P1, for i ∈ {1, 2}.

Using this notation, we have:

Proposition 3.2. (i) The intersection π−1
1 (Z1) ∩ π−1

2 (Z1) in P
(
Ekg,2

)
consists of

the loci:

Z2, g

2

1Z1

, g−1 1

2

1

µ1=0

, and

i

2

1

g−i
for i = 1, . . . , bg/2c

(3.1)

when k = 1, or

Z2 and g

2

1Z1

, when k ≥ 2. (3.2)

(ii) One has

π∗1 [Z1]·π∗2 [Z1] = [Z2]+ g

2

1ω−η
+ g−1 1

2

1

µ1=0

+

bg/2c∑
i=1

i

2

1

g−i
∈ A2

(
P
(
E1
g,2

))

and

π∗1 [Z1] · π∗2 [Z1] = [Z2] + g

2

1k ω−η
∈ A2

(
P
(
Ekg,2

))
, when k ≥ 2.

Proof. (i) It is clear that the two loci listed in (3.2) are in π−1
1 (Z1) ∩ π−1

2 (Z1) for

all k ≥ 1. To see that the same is true for the two remaining types of loci in (3.1)

when k = 1, it is useful to view Z1 ⊂ P
(
Ekg,1

)
and Z2 ⊂ P

(
Ekg,2

)
as images of

the incidence variety compactification of the principal stratum in P
(
Ekg,2g−2

)
under

the morphisms P
(
Ekg,k(2g−2)

)
→ P

(
Ekg,1

)
and P

(
Ekg,k(2g−2)

)
→ P

(
Ekg,2

)
obtained by

forgetting all but the first one or first two marked points, respectively. This provides

10



a description of the boundaries of Z1 and Z2. When k = 1, consider the third locus

listed in (3.1) and fix a general element in it, with elliptic tail denoted E. Since we

can always find a twisted abelian differential whose aspect on E has a pole of order

2 at the node and a zero at the marked point Pi, the image of the third locus under

πi is in Z1, for i ∈ {1, 2}. The aspect of such a twisted abelian differential on E

does not vanish generically at both marked points, hence such a locus is not in Z2.

However when k ≥ 2, such a locus has codimension k + 1 and is contained in Z2.

Indeed, one can always find a twisted k-differential with pole of order at least k + 1

at the node and vanishing at both marked points. For the remaining type of loci in

(3.1), consider the rational component of a general element. The aspects of a general

abelian differential on the two components of positive genus is regular and non-zero

at the nodes. Given j ∈ {1, 2}, the global residue condition is satisfied by a twisted

abelian differential whose aspect on the rational component has a simple zero at the

point Pj and at another smooth point, and poles of order 2 at both nodes. This

implies that the image of the last type of loci in (3.1) via πj is in Z1 when k = 1, for

each j ∈ {1, 2}. However when k ≥ 2, the aspects of a general stable k-differential on

the two components of positive genus have poles of order k at the nodes, hence the

aspect on the rational component cannot have any zeros. It follows that the last loci

in (3.1) do not lie in the intersection π−1
1 (Z1) ∩ π−1

2 (Z1) for k ≥ 2.

Next, we show that the loci in (3.1) and (3.2) are the only ones in π−1
1 (Z1) ∩

π−1
2 (Z1) for k = 1 and k ≥ 2, respectively. On the locus of smooth curves, by

definition Z2 is the only component in π−1
1 (Z1) ∩ π−1

2 (Z1) for all k ≥ 1. To detect

additional contributions on P
(
Ekg,2

)
, it is sufficient to analyze all possible components

whose general element (C, µ, P1, P2) satisfies: (a) C is one-nodal, or (b) C is two-nodal.

For the one-nodal case, we show that if (C, µ, P1, P2) is both in the inverse image of

a boundary divisor from Mg,2 and in π−1
1 (Z1) ∩ π−1

2 (Z1), then it is in one of the

11



first three loci in (3.1) when k = 1, or in one of the loci in (3.2) when k ≥ 2. In the

case of one non-disconnecting node, such an element (C, µ, P1, P2) will need to have

both marked points P1 and P2 in the support of µ. This means that (C, µ, P1, P2)

is in fact in Z2. In the case C is one-nodal with a rational tail containing the two

marked points, µ is necessarily the class of a stable k-differential vanishing at the

nodal point on the genus g component of C. This means that (C, µ, P1, P2) is in the

second locus listed in (3.1) or in (3.2). In the remaining cases of a disconnecting

node, if µ is the class of a stable k-differential whose aspects on the components of

C containing the two marked points are non-zero, then the two marked points are

necessarily in the support of µ, hence (C, µ, P1, P2) is in Z2. We are left with the case

when one or both marked points are on a component of C with zero k-differential.

When only one marked point is on a component of C with zero k-differential, we can

find a twisted k-differential whose aspect on that component has a zero at the marked

point and a pole of order at least k + 1 at the node. In order for such an element to

be in π−1
1 (Z1) ∩ π−1

2 (Z1), the other marked point must be in the support of µ. This

puts (C, µ, P1, P2) in Z2. Now consider the case when both marked points are on a

component of C with zero k-differential. If the underlying component is of genus 1

and when k = 1, we end up with the third locus listed in (3.1). If the underlying

component is of higher genus or if k ≥ 2, then (C, µ, P1, P2) is the general element

of a locus of codimension higher than two. The incidence variety compactification

informs us that such an element is in the boundary of Z2: indeed, it is possible to find

a twisted k-differential whose aspect on the component of C with zero k-differential

has a zero at the two marked points and a pole of order at least k + 1 at the node.

It remains to analyze the case of two-nodal curves. It suffices to show that for

the pullback of every codimension two boundary component from Mg,2, its general

element (C, µ, P1, P2) is not in π−1
1 (Z1) ∩ π−1

2 (Z1), with the exception of the loci

12



of the fourth type listed in (3.1) when k = 1. If C has only disconnecting nodes

and nonrational components, then the points P1 and P2 are generically away from

the support of µ, hence such an element is not in π−1
1 (Z1) ∩ π−1

2 (Z1). Likewise,

a general element of a locus of two-nodal curves with a twice marked rational tail

is not in π−1
1 (Z1) ∩ π−1

2 (Z1), since the node at the attaching point of the rational

tail is generically away from the support of µ. If C contains a rational bridge with

one marked point, then the other marked point is generically away from the support

of µ. If instead C has a twice marked rational bridge, then we have one of the loci

of the fourth type listed in (3.1), and as discussed above, such loci are in π−1
1 (Z1) ∩

π−1
2 (Z1) but not in Z2 only when k = 1. Similar arguments cover the case when C is

irreducible with two non-disconnecting nodes, as well as the case when C has both a

non-disconnecting node and a disconnecting node. We are left with the case when C

has two components meeting in two points. If both components of C are nonrational,

the aspects of µ on both components have generically poles of order k at both nodes,

and the marked points are generically not in the support of such k-differentials. If C

has a (marked) rational component, the k-differential on the genus g − 1 component

has generically poles of order k at the two nodes, forcing there to be no zeros of the

k-differential on the rational component. This shows that the loci in (3.1) and in

(3.2) are the only components in the intersection π−1
1 (Z1)∩π−1

2 (Z1) when k = 1 and

k ≥ 2, respectively.

13



(ii) Part (i) implies

π∗1 [Z1] · π∗2 [Z1] = [Z2] + a g

2

1ω−η
+ b g−1 1

2

1

µ1=0

+

bg/2c∑
i=1

ci

i

2

1

g−i
∈ A2

(
P
(
E1
g,2

))
,

and π∗1 [Z1] · π∗2 [Z1] = [Z2] + a g

2

1k ω−η
∈ A2

(
P
(
Ekg,2

))
, for k ≥ 2,

(3.3)

for some a, b, ci ∈ Q, with i = 1, . . . , bg/2c. To find the coefficient a, let π : P
(
Ekg,2

)
→

P
(
Ekg
)

be the forgetful map and consider π∗ of (3.3). Since

π∗ (π∗1 [Z1] · π∗2 [Z1]) = k2(2g − 2)2
[
P
(
Ekg
)]
,

π∗ (Z2) = k(2g − 2)(k(2g − 2)− 1)
[
P
(
Ekg
)]
, π∗

 g

2

1k ω−η
 = k(2g − 2)

[
P
(
Ekg
)]
,

for all k ≥ 1 and the push-forward of the other classes in (3.3) vanishes, one concludes

that a = 1. This concludes the proof of the statement for k ≥ 2. For k = 1, to find

the coefficient b, we restrict to a test surface S defined as follows: consider a pencil of

plane cubics along with a section of the Hodge bundle over M1,1, identify one of its

basepoints with a general point on a fixed general genus g − 1 curve with a general

abelian differential, vary the first marked point along the genus g − 1 component,

and let the second marked point be one of the other basepoints of the pencil of plane

cubics. The test surface S has the following intersection profile

S · π∗1 [Z1] · π∗2 [Z1] = 2(g− 1)− 1, S · Z2 = 2(g− 1)− 2, S · g−1 1

2

1

µ1=0

= 1,

and zero intersection with the remaining classes. The intersection with Z2 and π∗1 [Z1]·

π∗2 [Z1] can be computed using the description of the boundaries of these loci provided
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by the incidence variety compactification. The section of the Hodge bundle overM1,1

assigns the zero abelian differential to precisely one elliptic curve in the pencil of plane

cubics. The test surface S intersects Z2 transversely along the elements with such

an elliptic tail, and with the marked point on the genus g − 1 component coinciding

with one of the zeros of the differential. This is because we may always find a twisted

differential whose aspect on the elliptic tail has a zero at the marked point and a pole

of order 2 at the node. The intersection with π∗1 [Z1]·π∗2 [Z1] consists of the 2(g−1)−2

contributions just described, and one additional contribution given by the element of

S with the same elliptic tail with vanishing differential, obtained when the marked

point on the genus g − 1 component collides with the node. Such an element is

clearly in π−1
1 (Z1), because the second marked point is in the elliptic tail with a zero

differential, so that a suitable twisted differential can be found as above, and it is also

seen to be in π−1
2 (Z1) by taking a twisted differential whose aspect on the rational

bridge has poles of order 2 at both nodes and simple zeros at 2 smooth points. Such

a twisted differential satisfies the global residue condition of the incidence variety

compactification. (This element of S is not in Z2: since the aspect of the twisted

differential on the rational bridge has a pole of order 2 at the nodes, the aspect on

the elliptic tail is necessarily non-zero, hence does not vanish at the second marked

point.) Thus, we conclude that b = 1.

To find the coefficients ci, consider the test surface Si, for 1 ≤ i ≤ bg/2c, obtained

by taking a general element of the boundary divisor ∆i,{1} in P
(
E1
g,2

)
and varying

the two marked points on their corresponding components. This test surface has the

15



following intersection profile

Si · π∗1 [Z1] · π∗2 [Z1] = (2i− 1)(2(g − i)− 1), Si · Z2 = (2i− 1)(2(g − i)− 1)− 1,

Si ·
i

2

1

g−i
= 1,

and zero intersection with the remaining classes. The test surface intersects Z2 either

when both marked points coincide with zeros of the differentials, or when exactly one

of the marked points collides with the node and the other marked point is a zero of

the differential. This is because, as before, we can find a twisted differential on the

rational bridge that has a zero at the marked point, poles of order 2 at the nodes,

and satisfies the global residue condition. When both marked points collide with

the node, one can see that we obtain an additional contribution to the intersection

with π∗1 [Z1] · π∗2 [Z1], since there exists a twisted differential vanishing at one, or at

the other marked point. However, such an element is not in Z2, since there exist

no twisted differential vanishing at both marked points. Indeed, in order for both of

the marked points to be zeros of aspects η1 and η2 of a twisted differential on the

two rational bridges, η1 and η2 must each have a pole of order ≥ 1 at the node Q

where the two rational components meet. Since the sum of the order of the poles at

Q has to be equal to 2, one also has that η1 and η2 must each have a simple pole

at Q. The global residue condition requires that ResQ1 η1 = ResQ2 η2 = 0, where Q1

and Q2 denote the nodes where the rational components meet the genus i and g − i

components, respectively. By the residue theorem, this forces the residues at Q to

be zero, a contradiction. It follows that ci = 1, for all 1 ≤ i ≤ bg/2c, hence the

statement.

Combining Proposition 3.2 and Lemma 3.1 yields Theorem 1.1.
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3.2 A recursive formula for Zn

We will now prove the recursive formula for Zn, Theorem 1.2.

Proof of Theorem 1.2. Let π∗n [Zn−1] · ρ∗n [Z1] = [Zn] + En and denote by Ln and Rn

the left and right hand sides of this equation. We will use an inductive strategy

to determine En. As a base case, note that when n = 2, the proposition holds by

Theorem 1.1. For the inductive step, assume that

π∗n−1 [Zn−2] · ρ∗n−1 [Z1] = [Zn−1] +
∑
I

|I|[EI ] ∈ An−1
(
P
(
Ekg,n−1

))
where the sum in the above expression is taken over all I ⊆ {P1, . . . , Pn−2} and the

rational tail on EI above contains the points specified by I along with Pn−1.

Claim 1. We have

(πi)∗ [Ln] = [k(2g − 2)− (n− 2)]Ln−1

(πi)∗ [En] = [Zn−1] + [k(2g − 2)− (n− 2)]En−1.

Proof of Claim 1. First note that ρn = π1 ◦ · · · ◦πn−1. Since we may forget the points

in any order, we also have that ρn = π1 ◦ · · · ◦ πi−1 ◦ πi+1 ◦ · · · ◦ πn−1 ◦ πi, where πj

for i + 1 ≤ j ≤ n− 1 is the map which forgets the original jth marked point, before
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renumbering. One has

(πi)∗ [Ln] = (πi)∗ (π∗n [Zn−1] · ρ∗n [Z1])

= (πi)∗ (π∗n [Zn−1]) · (π∗n−2 ◦ · · · ◦ π∗1) [Z1]

= (πi)∗ (π∗n [Zn−1]) · (ρ∗n−1) [Z1]

= [k(2g − 2)− (n− 2)]
(
π∗n−1 [Zn−2] · ρ∗n−1 [Z1]

)
= [k(2g − 2)− (n− 2)]Ln−1

where the coefficient k(2g−2)− (n−2) comes from the number of potential locations

for the ith marked zero. Note also that in the second line we renumber the points

after applying (πi)∗ so that each Pj for j > i is relabelled Pj−1.

Now let a := k(2g − 2)− (n− 2) and note that (πi)∗ [Zn] = (a− 1) [Zn−1]. Then,

aLn−1 = (πi)∗ [Ln] = (πi)∗ (Zn + En) = (a− 1) [Zi] + (πi)∗ (En) .

Thus, by induction, we must have that (πi)∗(En) = [Zn−1] + aEn−1, where

En−1 =
∑
I

|I|[EI ] ∈ An−1
(
P
(
Ekg,n−1

))
.

4

Claim 2. The EI are in the support of En.

Proof of Claim 2. To see that [EI ] is in π∗n [Zn−1], we need to construct twisted

k-differentials on both components that satisfy the conditions of the incidence va-

riety compactification. The twisted differential on the genus g component will be

the nonzero stable k-differential on that curve, while the twisted differential on the
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rational component will have a pole of order −2k − |I| at the node and zeros at the

|I| marked points on that component. When the k-differential on the genus g compo-

nent is not the k-th power of an abelian differential, the global k-residue condition is

automatically satisfied. On the other hand, the locus inside EI consisting of elements

with kth powers of abelian differentials on the genus g component is of codimension

≥ 1, as a result of our definition of EI .

In order for [EI ] to be in ρ∗n [Z1] we need that the genus g component has a k-

differential which has a zero at the node; since we have a zero of order |I| at the node

this is satisfied. 4

Claim 3. Over Mrt
g,n, the support of En consists of only the EI .

Proof of Claim 3. By Claim 2, we know that En = [Bn]+
∑

I a
n
I [EI ] for some possibly

nonzero class [Bn]. Let B be an irreducible component in Bn in rational tails. First

assume that (πi)∗[B] is nonzero for some i (where we relabel the points by shifting

Pj+1 to Pj where j ≥ i). By induction, this means that (πi)∗[B] is either [Zn−1] or

some [EI ] at the (n − 1)th step. If the pushforward is [Zn−1], then B must be a

component where general elements have a rational tail with points {Pi, Pj} for some

j. However, since B must also be in π∗n [Zn−1] the only possibility is that B is EI

where I = {Pi}.

On the other hand, if the pushforward of B is some [EI ] at the (n − 1)th step,

we will show that the ith marked point must have been on the genus g component,

which implies that B itself is one of the EI at the nth step. We will enumerate the

possibilities otherwise and show that none can be true. If B is a one-nodal locus with

{Pi, Pn} on a rational tail, then (πi)∗[B] is [Zn−1] as previously discussed. If the ith

marked point is with ≥ 2 marked points on the rational tail, then the pushforward
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will vanish.

Now consider the case where a general element of B has two nodes. If B has more

than one node, we will show that such a locus will have codimension > n. Consider

the possible two-nodal loci where general elements have (a) two rational tails each

attached to the genus g component with the ith marked point on a rational tail with

only one other marked point, (b) the ith marked point alone on a rational bridge,

and (c) the ith marked point together with another point on a rational tail attached

to a rational bridge. We will show that the codimension of the first locus is n+ 1 and

leave to the reader the remaining cases for which a similar argument is valid. Such a

locus B as described in (a) has |I|+ 1 points on one rational tail, 2 marked points on

the other, and n− |I| − 3 marked points on the genus g component. Meanwhile, the

k-differential on the genus g component must have zeros of multiplicities |I| and 2

at the corresponding nodal points, respectively. These zero multiplicities ensure that

(πi)∗[B] is some [EI ] and that B is in π∗n[Zn−1]. Since this underlying two-nodal locus

has codimension two inMg,n, the codimension of such a B is (n−|I|−3)+|I|+2+2 =

n+ 1.

This exhausts the possibilities forB where (πi)∗[B] is some [EI ] and the ith marked

point in B is on a rational tail. Thus, the ith marked point must be on the genus g

component in B and if (πi)∗[B] = [EI ], then B = EI′ where if Pj ∈ I and j > i, then

Pj+1 ∈ I ′, as a result of point relabelling.

Now consider the case where all pushforwards (πi)∗[B] vanish. This means that

all marked points must be on rational components. Otherwise, if the the ith marked

point were on the genus g component, applying (πi)∗ would not kill B. One codimen-

sion n locus both in rational tails and in π∗n [Zn−1] · ρ∗n [Z1] satisfying this condition is

E{P1,...,Pn−1}. A locus satisfying these conditions must be one-nodal because any locus

with more nodes is a specialization of this one and will have higher codimension, by
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the argument above. Without any restrictions on n for k > 1, we may also have a

locus FI in which all marked points are on the rational tail and the k-differential on

the genus g component has a zero of order |I| = n− 1 at the node and is a kth power

of an abelian differential. Note that such a locus is in π∗n [Zn−1] · ρ∗n [Z1]. However,

when k = 2 we restrict to the case n ≤ k(2g−2)−2. This means that |I| ≤ 4g−7. No

stratum of the form H2

g(|I|, 14g−4−|I|) where |I| ≤ 4g − 7 has the same dimension as

a stratum having a component parametrizing kth powers of abelian differentials (see

Theorem 1.1 of [BCG+19]). In the case when |I| = 4g−6, the stratum H2

g(4g−6, 12)

has the same dimension as the stratum H2

g(4g − 6, 2), and when |I| = 4g − 5, the

stratum H2

g(4g − 5, 1) has the same dimension as H2

g(4g − 4). Similarly, when k ≥ 3,

only Hk

g(k(2g−2)−1, 1) has the same dimension as a stratum parametrizing k-powers

of abelian differentials Hk

g(k(2g − 2)). Thus, due to our restrictions in statement (i),

we will never see a component of the form [FI ] in π∗n [Zn−1] · ρ∗n [Z1]. 4

Claim 4. When n ≤ k, En consists of only loci of curves with rational tails.

Proof of Claim 4. By Claim 3, we know that in the expression En = [Bn]+
∑

I a
n
I [EI ],

Bn must be some locus outside of rational tails. We will consider possible loci B ⊆ Bn.

All loci B for which some (πi)∗[B] is nonzero are not inBn since by induction a nonzero

(πi)∗[B] must be either [Zn−1] or some [EI ], and for B outside of rational tails (πi)∗[B]

cannot be either. For each possible B we will argue in this way or by showing that

the codimension of the locus is > n.

Consider a locus B ⊂ P
(
Ekg,n

)
whose general element is a curve with one discon-

necting node, a genus i component, and a genus g − i component, where i ≥ 1. If

the general element has nonzero stable differentials on both components and the n

marked points are all zeros of these stable differentials, then this locus is of codimen-
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sion n + 1 and is entirely contained in Zn. Note that the locus where curves have

more than one node, all components have genera > 0, and all k-differentials on the

components are nonzero, is of strictly higher codimension and is also contained in Zn.

Now consider instead the case where the stable differential on the genus i compo-

nent is identically zero, while the differential on the genus g− i component has zeros

at all marked points on that component. Note that if a point Pi is on the component

with zero k-differential, then (πi)∗[B] is 0 and so this locus could potentially be in

Bn. The codimension of this locus is N := h0(K⊗kCi
(kq)) + 1 = k(2i−1)− i+ 2, where

Ci is the genus i component and q is the node. Imposing the condition n ≤ k gives

us that n < n(2i − 1) − i + 2 ≤ N . Thus, this locus has codimension higher than n

and therefore cannot appear in Bn. Moreover, the locus parametrizing curves with

more than one disconnecting node, and where a k-differential on a component with

genus > 0 is zero is of strictly larger codimension.

The case where the locus B ⊂ P
(
Ekg,n

)
has general elements having one non-

disconnecting node and zeros at all marked points is also of codimension n+ 1 and is

in Zn.

Next consider the locus parametrizing curves with two disconnecting nodes, a

genus i component, a genus g − i component, a rational tail with three or more

marked points, and nonzero k-differentials on the nonrational components. If a point

Pi is on the rational tail, then (πi)∗[B] is zero. If Pn is on the rational component, this

locus is a specialization of some EI and so it must have higher codimension. If Pn is

not on the rational component, this locus is also of higher codimension and entirely

contained in Zn. The locus where we instead have a rational bridge with two or more

marked points and nonzero k-differentials on the nonrational components is also of

higher codimension. If Pn is not on the rational bridge, then in order for this locus to

be in π∗n[Zn−1], we must have poles of order ≥ −k+1 at the nodes on the nonrational
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components. This condition allows the marked points on the rational bridge to be

zeros of the twisted differential on that component. For the case where the rational

component has two marked points Pi and Pj, we have

dimHk

i (−k+ 1, 1k(2i−2)+k−1) + dimHk

g−i(−k+ 1, 1k(2(g−i)−2)+k−1) = 2gk− 2k+ 2g− 6.

After accounting for one degree of freedom from the marked points on the rational

bridge and another degree of freedom from the relative scaling of the k-differentials

on the two components, one has that the dimension of this locus is 2gk− 2k+ 2g− 4,

which is codimension n+ 1. The case when Pn is on the rational bridge is, in fact, no

different; we must again have poles of order ≥ −k+1 at the nodes on the nonrational

components since a pole of order −k will put a component on the same level in the

level graph as the rational bridge and this would contradict the nonzero k-differential

on that component. Thus, this locus too, has codimension n+ 1.

Finally, consider the locus of curves with a genus g − 1 component attached at

two points to a rational component with two or more marked points. If Pi is on the

rational component, then (πi)∗[B] is 0. We can again consider two possible cases: Pn

is on the rational component or it is not, and follow the same strategy as detailed in

the previous paragraph to argue that this locus has higher codimension. 4

Claim 5. The classes [Zn] and the classes [EI ] for all I are independent.

Proof of Claim 5. When n = 2, there is only one EI and we can use the intersection

data in the proof of Proposition 3.2 to see that [Z2] and [EI ] are independent; since

[Z2] = (kω1 − η)(kω2 − η)− EI , we get that Z2 · S = k2(2g − 3) whereas EI · S = 0.

We will proceed by induction on n. Let n ≥ 3 and αn[Zn] +
∑

I βIEI = 0 and
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suppose that no relation exists for smaller n. If we apply (πi)∗ to this expression we

get (
(a− 1)αn + β{Pi}

)
[Zn] + a

∑
I

βIEI

where a = k(2g−2)−(n−2). Since there is no relation for lower n by assumption, we

must have that (a−1)αn+β{Pi} = 0 which implies αn = β{Pi}/(a−1). Similarly, all βI

for which Pi /∈ I must be 0 since (πi)∗[EI ] does not vanish and would otherwise yield

a nontrivial relation for n− 1 marked points. Applying (πi)∗ for 1 ≤ i ≤ n− 1 shows

that βI = 0 in all cases except possibly I = {P1, . . . , Pn−1}. Since αn = β{Pi}/(a−1),

we also get that αn = 0. Thus, we are left with β{P1,...,Pn−1}E{P1,...,Pn−1} = 0. From

the test locus computation in the last paragraph of the proof of Claim 6, we can see

that the locus E{P1,...,Pn−1} is not trivial and so β{P1,...,Pn−1} = 0 as well. 4

By the above claims, we know that Ln = zn [Zn] +
∑

I a
n
I [EI ] and all that is left

is to compute the coefficients zn and anI .

Claim 6. zn = 1 and anI = |I|.

Proof of Claim 6. Applying (πi)∗ to Ln = zn [Zn] +
∑

I a
n
I [EI ] gives

aLn−1 = zn(a− 1) [Zn−1] + an{Pi} [Zn−1] +
∑

I,Pi /∈I

aanI [EI ]

where I is obtained from I by shifting down by one all markings labelled > i. By

induction, the expression above is equal to

aRn−1 = a [Zn−1] +
∑
I

aan−1
I [EI ]

where the [EI ] here are precisely the [EI ] from the above summation; indeed, note
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that Pn−1 ∈ I. By Claim 5, we may determine zn and aI by simply comparing the

coefficients of the appropriate expressions. We have relations zn(a − 1) + an{Pi} = a

and anI = an−1

I
. Using induction and instead applying (πj)∗ to Ln where i 6= j, gives

that an{Pi} = 1. This implies zn = 1. Also by induction we have anI = |I|. Since for

all [EI ], except when |I| = n − 1, there exists some i for which (πi)∗[EI ] does not

vanish, we have found all coefficients with the exception of a{P1,...,Pn−1}.

To find a{P1,...,Pn−1}, consider the n-dimensional test space S consisting of a general

genus g curve with a stable differential chosen from a general Pn−1, attached at a

general point to an (n − 1)-marked rational tail, and let the nth marked point vary

along the genus g component. This test locus has the following intersection data:

S · E{P1,...,Pn−1} = 1 S · EI = 0, |I| < n− 1

S · Zn = a− 1 S · Ln = k(2g − 2)

Note that the intersection S · Ln = (a − 1) + (n − 1) where the second term is

a result of the nth marked point meeting the node, where the differential on the

genus g component has a zero of multiplicity n− 1. This intersection data gives that

a{P1,...,Pn−1} = n− 1. 4

4 Divisors of k-differentials supported at one Brill-

Noether special point

After reviewing the required background on pointed Brill-Noether divisors in §4.1, we

prove Theorems 1.3 and 1.4 in §4.2.
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4.1 Background on pointed Brill-Noether divisors

For a smooth algebraic curve C, the variety Gr
d(C) parametrizes linear series of degree

d and projective dimension r. For ` = (L, V ) in Gr
d(C), the vanishing sequence of `

at a point P in C

a`(P ) : 0 ≤ a0 < · · · < ar ≤ d

is defined as the increasing sequence of vanishing orders of sections in V at P . Given

sequences ai = (ai0, . . . , a
i
r), for i = 1, . . . , n, the adjusted Brill-Noether number is

defined as

ρ
(
g, r, d,a1, . . . ,an

)
:= g − (r + 1)(g − d+ r)−

n∑
i=1

r∑
j=0

(
aij − j

)
.

The pointed version of the Brill-Noether Theorem [EH87] states that a general pointed

curve (C,P ) of genus g > 0 admits a linear series ` ∈ Gr
d(C) with vanishing sequence

a`(P ) = a if and only if

r∑
i=0

(ai − i+ g − d+ r)+ ≤ g,

where (n)+ := max{n, 0}, for n ∈ Z. This condition is stronger than ρ(g, r, d,a) ≥ 0.

When g ∈ {0, 1}, one has ρ(g, r, d,a`(P )) ≥ 0 for any ` ∈ Gr
d(C) and any P ∈ C.

However, when g ≥ 2 and for r, d,a such that ρ(g, r, d,a) = −1, the locus in Mg,1

consisting of pointed curves (C,P ) admitting a linear series ` ∈ Gr
d(C) such that

a`(P ) ≥ a is a proper subvariety with a divisorial component [EH89]. Thus, for

g ≥ 2 and a : 0 ≤ a0 < · · · < ar ≤ d such that ρ(g, r, d,a) = −1, one defines

the pointed Brill-Noether divisor Ma
g,d as the divisorial component of the locus in

Mg,1 consisting of pointed curves (C,P ) admitting a linear series ` ∈ Gr
d(C) with

a`(P ) ≥ a. For example, when d = 2g − 2, r = g − 1, and a = (0, 1, 2, . . . , g − 2, g),
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then Ma
g,d is the divisor of curves with a marked Weierstrass point.

The closure ofMa
g,d inMg,1 is denotedMa

g,d. These loci and their generalizations

in [Log03] have been very useful: they appear in Logan’s proof that Mg,n is of

general type for 4 ≤ g ≤ 23 for large enough values of n [Log03]; they were also used

to establish the non-varying property of Lyapunov exponents for certain low genus

strata of abelian and quadratic differentials [CM12, CM14].

After [EH89], the class of each Ma

g,d can be written as a linear combination

[
Ma

g,d

]
= µg,d,a BN g + νg,d,aWg ∈ Pic

(
Mg,1

)
, for some µg,d,a, νg,d,a ∈ Q≥0,

(4.1)

where Wg denotes the Weierstrass divisor class on Mg,1 equal to

Wg :=

(
g + 1

2

)
ψ − λ−

g−1∑
i=1

(
g − i+ 1

2

)
δi ∈ Pic

(
Mg,1

)
, (4.2)

and BNg is the pullback of the Brill-Noether divisor class from Mg which has class

formula

BN g := (g + 3)λ− g + 1

6
δ0 −

g−1∑
i=1

i(g − i)δi ∈ Pic
(
Mg,1

)
. (4.3)

Explicit formulae for µg,d,a and νg,d,a were computed in [FT16], and make an

appearance in our computation. These values are expressed in terms of the number

ng,d,a of pairs (P, `) ∈ C ×Gr
d(C) satisfying a`(P ) = a, where C is a general curve of

genus g ≥ 2 and ρ(g, r, d,a) = −1. Let δij be the Kronecker delta. After [FT16], one

has

ng,d,a = g!
∑

0≤j1<j2≤r

(
(aj2 − aj1)2 − 1

) ∏0≤i<k≤r
(
ak − δj1k − δ

j2
k − ai + δj1i + δj2i

)∏r
i=0

(
g − d+ r + ai − δj1i − δ

j2
i

)
!

(4.4)
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and

µg,d,a = − ng,d,a
2(g2 − 1)

+
1

4
(
g−1

2

) r∑
i=0

ng−1,d,(a0+1−δi0,...,ar+1−δir),

νg,d,a =
ng,d,a

g(g2 − 1)
.

(4.5)

4.2 Proof of Theorems 1.3 and 1.4

We now prove Theorems 1.3 and 1.4 on the class of the divisors Wk

g and Ha

g,d.

We proceed by considering the intersection of Z1 with the pullbacks of Wg and

more generally Ma

g,d to P
(
Ekg,1

)
, and then applying the push-forward via the map

π : P
(
Ekg,1

)
→ P

(
Ekg
)
. In particular, we will prove the following lemma.

Lemma 4.1. For any pointed Brill-Noether divisor Ma

g,d ⊂ P
(
Ekg,1

)
pulled back from

Mg,1, one has [
π∗
(
Z1 · M

a

g,d

)]
=
[
Ha

g,d

]
∈ Pic

(
P
(
Ekg
))
.

Before proving Lemma 4.1, we show how it implies Theorems 1.3 and 1.4.

Proof of Theorem 1.3. SinceWg =Ma

g,d in Pic
(
Mg,1

)
and Wk

g = Ha

g,d in Pic
(
P
(
Ekg
))

with d = 2g − 2, r = g − 1, and a = (0, 1, 2, . . . , g − 2, g), Lemma 4.1 implies

Wk

g = π∗ (Z1 · Wg). Consider the intersection

Z1 · Wg = (kψ1 − η)

((
g + 1

2

)
ψ1 − λ−

g−1∑
i=1

(
g − i+ 1

2

)
δi

)
∈ A2

(
P
(
Ekg,1

))
,

where we used Lemma 3.1 and (4.2). The push-forward via the map π : P
(
Ekg,1

)
→
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P
(
Ekg
)

is computed as

π∗ (Z1 · Wg) =− g(g2 − 1)η + k

(
g + 1

2

)
κ1 − k(2g − 2)λ

−
bg/2c∑
i=1

k

(
(2i− 1)

(
g − i+ 1

2

)
+ (2g − 2i− 1)

(
i+ 1

2

))
δi ∈ Pic

(
P
(
Ekg
))
.

Here we used

κ1 := π∗
(
ψ2

1

)
, π∗ (ψ1λ) = (2g − 2)λ, π∗ (ψ1η) = (2g − 2)η,

π∗ (ψ1δi) = (2i− 1)δi and π∗ (ψ1δg−i) = (2g − 2i− 1)δi, for 1 ≤ i ≤ bg/2c.

Mumford’s formula κ1 = 12λ−
∑bg/2c

i=0 δi and simplifying yield

π∗ (Z1 · Wg) = −g(g2− 1)η+ k(6g2 + 4g+ 2)λ− k
(
g + 1

2

)
δ0−

bg/2c∑
i=1

k(g+ 3)i(g− i)δi.

The statement follows.

Proof of Theorem 1.4. From (4.1), one has

π∗
(
Z1 · M

a

g,d

)
= π∗ (Z1 · (µd,g,a BN g + νd,g,aWg))

= π∗ ((kψ1 − η) (µd,g,a BN g + νd,g,aWg))

= k(2g − 2)µd,g,a BN g + νd,g,a [π∗ (Z1 · Wg)] .

The statement follows from Lemma 4.1.

Explicitly, the class of Ha

g,d is given by:
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Corollary 4.2. One has
[
Ha

g,d

]
= cηη + cλλ−

∑bg/2c
i=0 ciδi ∈ Pic

(
P
(
Ekg
))

, where

cη = −g(g2 − 1)νg,d,a, cλ = 2(g − 1)(g + 3)kµg,d,a + 2(3g2 + 2g + 1)kνg,d,a,

c0 =
g2 − 1

3
kµg,d,a +

g(g + 1)

2
kνg,d,a, ci = 2i(g − i)(g − 1)kµg,d,a + i(g − i)(g + 3)kνg,d,a, (i ≥ 1),

and µg,d,a and νg,d,a are given by (4.5).

It remains to prove Lemma 4.1. We will need the following additional lemma.

Lemma 4.3. Any nonzero effective divisor class of the form E :=
∑bg/2c

i=0 ciδi on Mg

or on P
(
Ekg
)

for g ≥ 3 and k ≥ 1 is rigid.

Proof. First, note that any such effective cycle class E necessarily has ci ≥ 0 for all

i. Moreover, after replacing E with a positive multiple, we may assume that the ci

are non-negative integers. Indeed, the rigidity of some positive multiple of E implies

the rigidity of E.

Suppose that there exists some effective cycle class D such that D ≡ mE, for

some m > 0, and that D is not supported on the support of E. First consider the

case when E is a cycle class on Mg. For all boundary divisors δi with i > 0 such

that ci > 0, we can construct a moving curve Xi in δi by attaching a general genus

i curve to a general genus g − i curve at a point which moves along the genus g − i

component. We have Xi · δi = 2 − 2(g − i) and X · δj = 0 for j 6= i. Thus since

D ·Xi < 0 and Xi is moving in δi, we know that D must be supported on δi. Indeed,

since (D− (mci − 1)δi) ·Xi < 0 and (D−mciδi) ·Xi = 0, we know that D−mciδi is

effective. We proceed in this manner for all i > 0. This shows that D−m
∑bg/2c

i=1 ciδi

is effective. Now consider the moving curve X0 in δ0 formed by taking a genus g − 1

curve and identifying a fixed point to a point which moves along the curve. We have

X0 · δ0 = 2 − 2g < 0, which shows that δ0 is rigid. Since D −m
∑bg/2c

i=1 ciδi ≡ mc0δ0
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and δ0 is rigid, we conclude that D must also be supported on δ0. This contradicts

our assumption that the support of D does not contain the support of E.

Now assume E is a cycle class on P
(
Ekg
)
. For all 0 ≤ i ≤ bg/2c, we construct

a moving curve in δi ⊂ P
(
Ekg
)

from the previously defined Xi. Let f : P
(
Ekg
)
→

Mg and consider the intersection of 2k(g − 1) − g − 1 + δ1
k general hyperplanes

in f−1(Xi). When the intersecting hyperplanes are general, the resulting curve X ′i is

irreducible by Bertini’s theorem. Moreover, by choosing general hyperplanes we avoid

the possibility that f contracts X ′i to a point, so X ′i must in fact cover Xi. Varying the

intersecting hyperplanes does not change the numerical class of the resulting curve, so

this construction produces a moving curve in δi ⊂ P
(
Ekg
)
. Since f ∗δi ·X ′i = δi ·f∗X ′i <

0, the proof of the rigidity of E follows as in the previous paragraph.

Proof of Lemma 4.1 when g ≥ 3. By definition the classes π∗(Z1 · M
a

g,d) and Ha

g,d

agree on the interior of the moduli space P
(
Ekg
)
. Indeed, one may verify the co-

efficients cη and cλ (as well as c0) directly by using the first three test curves provided

in §4.3. Note that here we deal exclusively with the case g ≥ 3 and leave the g = 2

case for the following section.

We now want to rule out the possibility that π∗(Z1 · M
a

g,d) = Ha

g,d + E, where E

is an effective cycle class of the form E =
∑bg/2c

i=0 ciδi. Such an E is rigid by Lemma

4.3 and so must be supported on boundary divisors δ0, . . . , δbg/2c. Thus, it is enough

to argue that the preimage under π of a general element of δi, for 0 ≤ i ≤ bg/2c,

is disjoint from Z1 ∩M
a

g,d. First consider the case i > 0. A general element of δi

consists of a pair (X,µ), where the nodal curve X is obtained by identifying the

marked points of two general pointed curves (C1, Q1) and (C2, Q2) of genus i and

genus g − i, respectively, and µ is a general stable k-differential on X. Since there

are finitely many points on X which are limits of a Brill-Noether special point P on a

nearby smooth curve C such that a`(P ) ≥ a for some ` ∈ Gr
d(C), the zeros of µ must
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avoid these Brill-Noether special points. Indeed, a general stable k-differential on

X consists of non-zero sections of H0(ωkC1
(kQ1)) and H0(ωkC2

(kQ2)) satisfying the k-

residue condition. Moreover, general stable k-differentials avoid the finite collection of

hyperplanes in PH0(ωkC1
(kQ1)) and PH0(ωkC2

(kQ2)) that parametrize k-differentials

containing the Brill-Noether special points. The resulting hypersurface cut out by

the residue condition in H0(ωkC1
(kQ1)) × H0(ωkC2

(kQ2)) does not contain any of the

Brill-Noether hyperplanes since for every Brill-Noether special point, one may find

differentials on the two components such that one has a zero at the Brill-Noether

special point but does not have a nodal k-residue compatible with the other. The

case i = 0 is similar. A general element of δ0 ⊂ P
(
Ekg
)

has its stable k-differential

having poles of order k at the two nodal points in the normalized genus g − 1 curve.

The zeros of such a k-differential avoid the Brill-Noether special points by the same

argument as before.

We must also verify that curves with a marked rational bridge above δi in P
(
Ekg,1

)
are not contained in Z1 ∩M

a

g,d. However, since the adjusted Brill-Noether number

ρ(R,P,Q1, Q2) on a rational component R meeting the genus i and genus g − i

components at points Q1 and Q2, respectively, and having marked point P , is always

nonnegative, we must have an adjusted Brill-Noether number equal to −1 on one of

the other components. But this will not be true for a general element in δi. Two-nodal

curves lying above a general element of δ0 having a once-marked rational component

will have aspects on both components that have poles of order −k at the nodes. Since

the twisted differential on the rational component has no zeros, such a curve will not

lie in Z1.
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4.3 Test families

In order to extend the proof of Lemma 4.1 to the case g = 2, we will use a few test

curves. For fixed g, r, d and a vanishing sequence a : 0 ≤ a0 < · · · < ar ≤ d such that

ρ(g, r, d,a) = −1, write

[
Ha

g,d

]
= cη η + cλ λ−

bg/2c∑
i=0

ci δi ∈ PicQ
(
P
(
Ekg
))
, for some cη, cλ, ci ∈ Q.

4.3.1 The coefficient cη

Let C be a general genus g curve k-canonically embedded in PN , where N = g − 1

for k = 1, and N = (g − 1)(2k − 1) − 1 for k ≥ 2. Let Λ ∼= PN−3 be a fixed general

subspace and consider the one-dimensional family A of hyperplanes in PN containing

Λ. Then A·η = −1, while A·λ = 0 and A·δi = 0 for all i. Moreover, A·
[
Ha

g,d

]
= ng,d,a

where ng,d,a is the number in (4.4) of pairs (P, `) ∈ C ×Gr
d(C) such that a`(P ) = a

[FT16]. Combining with (4.5), this gives

cη = −g(g2 − 1)νg,d,a.

4.3.2 Curves on K3 surfaces

We consider here a Lefschetz pencil of curves of genus g ≥ 3 lying on a general K3

surface S of degree 2g− 2 in Pg. Let X be the blow-up of S at the 2g− 2 base points

of the pencil, and let p : X → P1 be the corresponding family of curves. Fix general

genus g curves C1, . . . , Ck in S. The cycle [C1] + · · ·+ [Ck] restricts to a k-canonical

divisor on each fiber of p, hence this gives rise to a pencil τ : P1 → P
(
Ekg
)

in the

projectivized k-Hodge bundle. The intersections with the generators are

τ ∗η = k, τ ∗λ = g + 1, τ ∗δ0 = 6g + 18, τ ∗δi = 0, for i > 0.
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The intersections with λ and the δi are classical [CU93, FP05]. The degree of η can

be computed by intersecting the relation ωkX/P1 = p∗η ⊗ OX (C1 + · · · + Ck) valid on

X with the class of one of the 2g − 2 exceptional divisors (see [Ghe21, Ex. 3.2] for

more details).

To compute the intersection of the pencil τ with the class of a Brill-Noether divisor

Ha

g,d, we start from the locus of corresponding Brill-Noether special points in X . The

pull-back of the divisor class
[
Ma

g,d

]
from (4.1) via the moduli map X →Mg,1 is

[
X a
g,d

]
:= νg,d,a

g(g + 1)

2
c1

(
ωX/P1

)
+(µg,d,a(g+3)−νg,d,a) p∗λ−µg,d,a

g + 1

6
p∗δ0. (4.6)

The intersection of the pencil τ : P1 → P
(
Ekg
)

with a Brill-Noether divisor class[
Ha

g,d

]
on P

(
Ekg
)

equals the intersection of
[
X a
g,d

]
with p∗ ([C1] + · · ·+ [Ck]) = k

(
f +∑2g−2

i=1 Ei

)
. Here f is the class of a fiber of p, and Ei are the classes of the exceptional

divisors. This gives

τ ∗
[
Ha

g,d

]
=
[
X a
g,d

]
· k

(
f +

2g−2∑
i=1

Ei

)
= 2k(g + 1)(g − 1)2 νg,d,a.

Here we used that the nonzero intersections are given by c1

(
ωX/P1

)
· f = 2g − 2,

c1

(
ωX/P1

)
· Ei = 1, (τp)∗λ · Ei = τ ∗λ = g + 1, and (τp)∗δ0 · Ei = τ ∗δ0 = 6g + 18,

for each i = 1, . . . , 2g − 2. Note how the intersection is independent of µg,d,a, as the

pencil has zero intersection with the Brill-Noether class BN g [Laz86]. It follows that

the coefficients of the class
[
Ha

g,d

]
satisfy

2k(g + 1)(g − 1)2 νg,d,a = kcη + (g + 1)cλ − (6g + 18)c0.
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4.3.3 A pencil of hyperelliptic curves

We consider here a pencil of hyperelliptic curves, following [Fab90, pg. 361-363]. Let

S → P2 be a double cover branched over a general smooth curve of degree 2g + 2 in

P2. This gives a two-dimensional family of hyperelliptic curves of genus g. Consider a

general pencil of hyperelliptic curves in S. Such a pencil has two base points [Fab90,

pg. 361-363]. Let p : X → P1 be the corresponding family of curves obtained by

blowing up the two base points. A choice of k(g − 1) lines in P2 gives a k-canonical

divisor on each curve in the family after pulling back to X . One has

deg η = k, deg λ =
g(g + 1)

2
, deg δ0 = 2(g+1)(2g+1), deg δi = 0, for i ≥ 1.

The intersection with λ and δi is computed as in [Fab90, pg. 361-363], and the inter-

section with η can be computed as in §4.3.2.

Furthermore, let Ci, for i = 1, . . . , k(g− 1), be the pullbacks to X of the k(g− 1)

lines marking the k-canonical divisors, let f be the class of a fiber of p, and E1, E2 the

classes of the two exceptional divisors. Recall the pointed Brill-Noether class
[
X a
g,d

]
on X from (4.6). As in §4.3.2, the intersection with the divisor Ha

g,d equals

[
X a
g,d

]
·

k(g−1)∑
i=1

Ci

 =
[
X a
g,d

]
· k(g − 1)(f + E1 + E2)

= kg(g + 1)(g − 1)2νg,d,a −
1

3
k(g + 1)(g − 1)2(g − 2)µg,d,a.

Here we used that the nonzero intersections are given by c1

(
ωX/P1

)
· f = 2g − 2,

c1

(
ωX/P1

)
·Ei = 1, p∗λ ·Ei = g(g+1)

2
, and p∗δ0 ·Ei = 2(g+ 1)(2g+ 1), for each i = 1, 2.
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It follows that the coefficients of the class
[
Ha

g,d

]
satisfy

kg(g+1)(g−1)2νg,d,a−
1

3
k(g+1)(g−1)2(g−2)µg,d,a = kcη+

g(g + 1)

2
cλ−2(g+1)(2g+1)c0.

4.3.4 Branched covers in g = 2.

Consider fixed sections Γ1, . . . ,Γ5 ∼ (1, 0) and Γ6 ∼ (1, 1) on P1 × P1. Let bl : S →

P1× P1 be the blow-up at the five points where Γ6 meets one of the other Γi, and let

π : X → S be the (admissible) double cover of S branched along the proper transform

Γ̃i of Γi, for i = 1, . . . , 6. In this way, we obtain a family p : X → P1 whose fibers are

genus 2 curves branched along the five fixed points indicated by Γi, for 1 ≤ i ≤ 5,

and also along the moving point indicated by Γ6. Finally, we pick k-differentials on

the fibers of p by considering the pull-back of additional k distinct, fixed sections

S1, . . . , Sk ∼ (1, 0) on P1 × P1. We have

deg η =
k

2
, deg λ = 1, deg δ0 = 10.

One can compute the degree of δ0 by noting that the family intersects δ0 five times

above the intersection of Γ6 with the other sections Γi, each time with multiplicity two

(a result of the construction of these g = 2 curves as an admissible cover). We can find

the degree of λ by using the relation λ = 1
10
δ0 + 1

5
δ1 valid for g = 2 and the fact that

deg δ1 = 0. Finally, deg η is computed using the relation η = ω⊗k −
∑k

i=1(Si,a + Si,b),

where Si,a +Si,b is the preimage in X of the proper transform of Si in S. Intersecting

the above relation with the section Q corresponding to the ramification point above

Γ̃1 yields

deg η = Q · ω⊗k = −k Q2 = −k
2

(
Γ̃1

)2

=
k

2
.
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Since degWk

2 = k, with the intersections lying above the k points where Γ6 meets the

sections Si, this test curve gives the relation k = k
2
cη + cλ − 10c0 for g = 2.

4.4 The case g = 2

Here we extend the proof of Lemma 4.1 to the case g = 2.

Proof of Lemma 4.1 when g = 2. When g = 2 the only pointed Brill-Noether divisor

is the Weierstrass divisor [EH89, Lemma 3.3]. Using the test curves described in

§§4.3.1, 4.3.3, and 4.3.4, we compute Wk

2 = −6η + 9kλ− 1
2
kδ0. Using λ = 1

10
δ0 + 1

5
δ1

when g = 2, one can see that this is equivalent to π∗(Z1 · W2).

4.5 Strata for g = 2

The divisors W1

2 and W2

2 are precisely the divisorial strata H1

2(2) and H2

2(2, 1, 1),

respectively. After [KSZ19, Def. 1.3, Thm 1.12], one has

[
H2

2(2, 1, 1)
]

+ 2
[
H2

2(2, 2)
]

= 72λ− 10η − 6δ0 − 6δ1.

The computation of the class of H2

2(2, 1, 1) from Theorem 1.3 implies the following:

Corollary 4.4. The stratum H2

2(2, 2) parametrizing quadratic differentials which are

squares of holomorphic differentials has class

[
H2

2(2, 2)
]

= −2η + 12λ− δ0 ∈ Pic
(
P
(
E2

2

))
.

For k ≥ 3, the divisor Wk

2 no longer coincides with the divisorial stratum Hk

2(2, 1, . . . , 1),

since the double zero of a k-differential need not be a Weierstrass point when k ≥ 3.
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5 Rigidity and extremality results

Lemma 5.1 ([Che13, Lemma 4.1]). Let D be an irreducible effective divisor in a

projective variety X, and let S be a set of irreducible effective curves contained in D

such that
⋃
C∈S C is Zariski dense in D. If for every curve C in S one has

C · (D +B) ≤ 0, for a fixed big divisor class B on X,

then D is extremal in Eff
1
(X).

Recall that a divisor class is big if it lies in the interior of the pseudo-effective cone.

We emphasize that in Lemma 5.1, the curves in S are not required to be moving in

D. For convenience we will recall here the proof from [Che13].

Proof of Lemma 5.1 from [Che13]. Suppose that D is not extremal in Eff
1
(X), so

that D = D1 + D2 where D1, D2 are pseudoeffective and not proportional to D. We

may assume that D1 and D2 are on the boundary of Eff
1
(X) since otherwise we

may replace D1 and D2 with the divisor classes in the intersection of the linear span

〈D1, D2〉 and the boundary of Eff
1
(X). Note that this means Di − sD for i = 1, 2 is

not pseudoeffective for any s > 0.

Since B is big, B = A + E with A ample and E effective with E = bD + F for

some b ≥ 0. Thus,

C · (D +B) = C · ((b+ 1)D + A+ F )

=⇒ C · ((b+ 1)D + F ) < 0

since A is ample and so C · A > 0. If C · F < 0, then C ⊂ F . Such C must

form a non-dense subset of S, since F has no D components and S is dense in D.
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Thus, we may assume that no C in S is contained in F . This assumption guarantees

that C · D < 0. With this assumption, since C · (D1 + D2) = C · D < 0, we may

further assume, without loss of generality, that for some dense subset S1 ⊆ S, we

have C ·D1 ≤ 1
2
· (C ·D) for C ∈ S1.

Let Fn = nD1 +B for n sufficiently large. This divisor is in the interior of Eff
1
(X)

since it is the sum of a pseudo-effective and a big divisor. Note that when k < n
2
− 1,

we have C · (Fn − kD) < 0 for all C ∈ S1. Moreover, since these curves C ∈ S1 are

dense in D, the multiplicity of D in the base locus of Fn is ≥ n
2
− 1 and the class

En = Fn −
(
n
2
− 1
)
D is pseudo-effective. When n → ∞, 1

n
En → D1 − 1

2
D, and so

D1 − 1
2
D is pseudoeffective

We apply below Lemma 5.1 to deduce the extremality of the divisors H1

g(2, 1
2g−4),

H2

g(2, 1
4g−6), and Z1 using the set S of Teichmüller curves in these divisors. While

such Teichmüller curves are not moving, their union is dense in these divisors.

Proof of Theorem 1.5. From [KZ11] we have that

H1

g(2, 1
2g−4) = 24λ− (6g − 6)η − 2δ0 − 3

bg/2c∑
i=1

δi.

Let C be the closure of a Teichmüller curve generated by some (C, ω) ∈ H1

g(2, 1
2g−4).

Let χ = 2− 2g(C)− |∆| = −2C · η [M0̈6], where |∆| is the number of cusps in C, and

L the sum of its first g Lyapunov exponents. Here χ is the Euler characteristic of C

(we note that a different sign convention is used for χ in [CM12]). We are concerned

with the partition µ = (m1, . . . ,mn) = (2, 12g−4). Using [CM12, Proposition 4.8] we
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have that

C · λ = −χ
2
L

C · δ0 = −χ
2

(12L− 12κµ)

where κµ = 1
12

∑n
j=1

mj(mj+2)

mj+1
. Since Teichmüller curves do not intersect higher bound-

ary divisors (see [CM12, Corollary 3.2]),

C · δi = 0 for i > 0.

So,

C ·H1

g(2, 1
2g−4) =

χ

3
.

Moreover, by [CM12, Proposition 4.8]

C · ψi =
C · λ− (C · δ)/12

(mi + 1)κµ
= − χ

2(mi + 1)
.

Since ψi has positive degree on nonconstant families [HM98, Chapter 6] χ < 0. Now

let A be an ample divisor in P
(
E1
g

)
. We write

A = aλ+ bη +

bg/2c∑
i=0

ciδi.

We must now choose a sufficiently small value d such that C · (H1

g(2, 1
2g−4) + dA) ≤ 0

for all Teichmüller curves in H1

g(2, 1
2g−4). Let

d = inf
Teichmüller curves

in H1
g(2,12g−4)

{
2

3(b− 12c0κµ + (a+ 12c0)L)

}
.
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The expression in the brackets comes from solving for d in C · (H1

g(2, 1
2g−4) + dA) = 0

using the intersection information given above. Since C · A > 0 (A is ample) and

C · H1

g(2, 1
2g−4) < 0 for all Teichmüller curves C, the expression in the brackets will

always be positive and will only depend on L. Moreover, the infimum may never be

zero since the sum of Lyapunov exponents L has a uniform upper bound g. Since

Teichmüller curves in any stratum are Zariski dense, we have shown that H1

g(2, 1
2g−4)

is extremal by Lemma 5.1.

The divisor class of H2

g(2, 1
4g−6), computed in [KZ13], is

H2

g(2, 1
4g−6) = 72λ− 10(g − 1)η − 6

bg/2c∑
i=0

δi

for g ≥ 3. Here we denote the partition (d1, . . . , dn) = (2, 14g−6). Let C be a Te-

ichmüller curve generated by a half translation surface (C, q) ∈ H2

g(2, 1
4g−6). Let L+

be the sum of the involution invariant Lyapunov exponents (see [EKZ14] and [CM14,

Section 2.2] for background material) and let χ = 2 − 2g(C) − |∆| = −C · η [M0̈6].

From [EKZ14] we can write

L+ = carea + κd, where κd =
1

24

n∑
j=1

dj(dj + 4)

dj + 2

and carea is the area Siegel-Veech constant of (C, q). By [CM14, Proposition 4.2]

C · λ = −χ
2

(carea + κd)

C · δ = −6χ · carea.

Hence,

C ·H2

g(2, 1
4g−6) =

χ

2
.
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When g = k = 2, we have H2

2(2, 12) = 18λ − 6η − δ0 = 28λ − 6η − 2δ0 − 2δ1

where the second equality comes from the g = 2 relation λ = 1
10
δ0 + 1

5
δ1. Performing

the same intersections as above gives us that C · H2

2(2, 12) = −χ(2carea − 83
36

). By

[EKZ14, Corollary 3] we know that the sum of the involution anti-invariant Lyapunov

exponents L− = 4/3. By Theorem 2 of the same paper, we know that L−−L+ = 1/6

which implies L+ = 7/6. Since L+ = carea + κd, and κd = 19/72, we get that

carea = 65/72. Thus, C ·H2

2(2, 12) = −χ(2carea − 83
36

) = χ/2 as well.

If aλ+ bη +
∑bg/2c

i=0 ciδi is an ample divisor, we can ensure that all coefficients for

the boundary divisors are the same by adding on an appropriate effective divisor of

boundary divisors. This gives us a big divisor

A = aλ+ bη + cδ

where c = maxi{ci}. Note that when C · A ≤ 0 and B = dA any d > 0 satisfies the

condition in Lemma 5.1. So assuming C · A > 0, we set

d = inf
Teichmüller curves

in H2
g(2,14g−6) with C·A>0

{
1

2b+ 12careac+ aL+

}
.

The expression in the brackets comes from solving for d in the expression

C · (H2

g(2, 1
4g−6) + dA) = 0.

Since carea is bounded from above and L+ = carea +κd, d is positive and so H2

g(2, 1
4g−6)

is extremal by Lemma 5.1.

In what follows we will use the shorthand Hk

g(2) for the closure of the locus of

k-differentials with a double zero. The argument for the rigidity of Hk

g(2) is the same

for the cases k ∈ {1, 2}. Suppose that there exists an effective divisor D such that
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D ≡ mHk

g(2), for some m > 0. We may assume that D does not contain Hk

g(2), since

otherwise we could simply consider the divisor D \ Hk

g(2) and reduce the coefficient

m. For all Teichmüller curves C in Hk

g(2), we have that C · Hk

g(2) < 0, and thus

C · D < 0. This means that D contains the entire collection S of such Teichmüller

curves. Since S is dense in Hk

g(2), we deduce that D contains Hk

g(2), which contradicts

the assumption.

For completeness we include the following proposition.

Proposition 1. The boundary divisors δi, 0 ≤ i ≤ bg/2c, span extremal rays in

Eff
1
(P
(
Ekg
)
).

We will use the following well-known condition to check the extremality of the

boundary divisors. An irreducible curve C in a projective variety X is called a

moving curve if it is a member of an algebraic family covering an open dense subset

of X.

Lemma 5.2 ([CC14, Lemma 4.1]). Suppose that C is a moving curve in an irreducible

effective divisor D of a projective variety X. Suppose that C satisfies C ·D < 0. Then

D is extremal.

Proof of Proposition 4.2. Let f : P
(
Ekg
)
→ Mg. We will use the following strategy.

We will find moving curves in each of the irreducible boundary divisors ofMg which

satisfy the condition of Lemma 5.2. Then let C be such a moving curve and let D be

an irreducible boundary divisor inMg. Given a point in f−1(C), we can find a curve

C ′ through it by taking the intersection of g − 1 hyperplane classes H1, . . . , Hg−1 in

f−1(C). When the choice of these hyperplane classes is general, C ′ is irreducible by

Bertini’s theorem and moreover C ′ covers C. To see the latter statement, note that

as a result of the irreducibility of C ′ we just need to show that the image of C ′ under
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f is not a single point p ∈ C. Note that f−1(p) is a divisor in f−1(C) and so it must

intersect ∩g−1
i=1Hi positively. Thus C ′ covers C. Finally, since varying the hyperplane

classes used to construct C ′ will not change the numerical equivalence class of C ′, we

know that it is indeed a moving curve. Thus, f ∗D · C ′ = D · f∗C ′ < 0 and we can

conclude by Lemma 5.2 that f ∗D is extremal. All that remains is to find appropriate

moving curves in each of the boundary divisors of Mg.

Let X be the following curve in δ0 ⊂Mg: take a genus g−1 curve C and identify

a fixed point p of C to a varying point q of C. This is a moving curve in δ0 and

X · δ = deg(N∆̃/S ⊗NC̃×p/S) = ∆2 − 1 = 3− 2g

where S is the blow up of C × C at (p, p) and ∆̃ and C̃ × p denote the proper

transforms. Since X · δ1 = 1, we also have X · δ0 = 2− 2g < 0.

Now assume that g ≥ 3 and let X be the moving curve in δi ⊂ Mg given by

attaching a general genus i curve C1 to a general genus g − i curve C2 and varying

the point of attachment in C2. In the computation for test curve C in the proof of

Theorem 1.1 we explained that X · δi = 2 − 2(g − i) < 0. When g = 2, we can

choose our moving curve X in δ1 to be the family given by attaching a pencil of plane

cubics to a general genus 1 curve. In the computation for test curve B in the proof

of Theorem 1.1, we explained that X · δ1 = −1. Thus, we have found all necessary

moving curves.

To prove Theorem 1.6 we again make use of a dense family of Teichmüller curves.

Proof of Theorem 1.6. We first deal with the k = 1 case. Let C be the closure of

a Teichmüller curve generated by some element (C, µ, P ) in Z1 ∩ H1
g,1 (12g−2). This

is the lift of the closure of a Teichmüller curve in H1

g (12g−2) obtained by marking a

point in the support of the canonical divisor. The collection S of such Teichmüller

44



curves C is dense in Z1∩H
1

g,1 (12g−2), hence it is dense in Z1. As before, from [CM12,

§4], one has

C · λ = −χ
2
L, C · δ0 = −χ

2
(12L− 3g + 3), C · ω = 2

C · λ− C · δ0/12

g − 1
= −χ

4
,

(5.1)

and C · δi = 0, for i ≥ 1. From [CM12], one has C · η = −χ
2
. Combining this with

Lemma 3.1, we have that

C · Z1 = C · (ω − η) =
χ

4
.

Since ω is ample on any nonconstant family not all of whose elements are singular

[HM98, Thm 6.33], one has C · ω > 0. We deduce χ < 0 and thus C · Z1 < 0. In the

following we show that we can apply Lemma 5.1 with a certain big divisor class B.

Let

A := cη η + cλ λ+ cω ω +

g−1∑
i=0

ci δi

be an ample divisor class on P
(
E1
g,1

)
, and define B := dA for a sufficiently small value

d so that C · (Z1 +B) ≤ 0 for all C ∈ S. Namely, let

d := inf
C∈S

{
1

2cη + cω − 6(g − 1)c0 + 2L(cλ + 12c0)

}
.

The expression in the brackets comes from solving for d in C ·(Z1 +dA) = 0 for a given

Teichmüller curve, and it is positive since C · Z1 < 0 and C ·A > 0. Furthermore, the

value in the brackets depends only on the sum of Lyapunov exponents L. Since L ≤ g

(see [Zor06]), the infimum here will indeed be positive, and thus the class B = dA is

big. The extremality of Z1 follows by applying Lemma 5.1 with such a B.
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We now consider the case k = 2. The proof proceeds as in the previous case. Let

C be the closure of a Teichmüller curve generated by some marked half-translation

surface (C, µ, P ) in Z1 ∩ H2
g,1(14g−4) obtained by marking a point in the support of

the quadratic differential as in [CM14, §4.1]. The collection S of such Teichmüller

curves C is dense in Z1 ∩ H2

g,1 (14g−4) [Che11], hence it is dense in Z1. Again from

[CM14, Prop. 4.2], one has

C · λ = − χ

36

(
18carea + 5(g − 1)

)
, C · δ = −6χ carea, C · ω = −χ

3
, (5.2)

and from [M0̈6] one also has C · η = −χ. From Lemma 3.1, we have that

C · Z1 = C · (2ω − η) =
χ

3
.

Using the same argument as before shows that C · Z1 < 0. Now take some ample

divisor class

cηη + cλλ+ cωω +

g−1∑
i=0

ciδi on H2

g,1 (14g−4),

and let cδ := maxi ci. Consider the big divisor class A = cηη + cλλ + cωω + cδδ. We

define B := dA for some sufficiently small value d so that C · (Z1 + B) ≤ 0 for all

C ∈ S. For this, let

d := inf
C∈S

{
12

36cη + 12cω + 5(g − 1)cλ + carea(18cλ + 216cδ)

}
.

Since the constant carea is bounded from above, d is positive, and thus B is big. From

Lemma 5.1, Z1 is extremal when k = 2 as well.

The argument for the rigidity of Z1 is the same for the cases k ∈ {1, 2}. Suppose

that there exists an effective divisor D such that D ≡ mZ1, for some m > 0. We
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may assume that D does not contain Z1, since otherwise we could simply consider

the divisor D \ Z1 and reduce the coefficient m. For all Teichmüller curves C in

Hk

g,1

(
1k(2g−2)

)
, we have that C · Z1 < 0, and thus C · D < 0. This means that D

contains the entire collection S of such Teichmüller curves. Since S is dense in Z1,

we deduce that D contains Z1, which contradicts the assumption.

5.1 Rigidity and extremality for n > 2

After Theorem 1.6, [Z1] is rigid and extremal in Eff
1 (P (Ekg,1)) for k ∈ {1, 2}. For the

following statement, it is enough to assume the weaker condition that [Zn−1] is rigid

and extremal in Effn−1
(
P
(
Ekg,n−1

))
. Moreover, the statement is valid for arbitrary k:

Proposition 5.3. For n > 2, if [Zn−1] is rigid and extremal in Effn−1
(
P
(
Ekg,n−1

))
,

then [Zn] is rigid and extremal in Effn
(
P
(
Ekg,n

))
, provided that Zn is non-empty, i.e.,

n ≤ k(2g − 2).

Proof. For the extremality, assume the class of Zn can be expressed as

[Zn] =
∑
α

cα [Eα] ∈ Effn
(
P
(
Ekg,n

))
, (5.3)

where cα > 0 and Eα is an irreducible locus of codimension n in P
(
Ekg,n

)
, for each

α. After rearranging and rescaling, we can assume that none of the classes [Eα] is

proportional to [Zn]. Since π∗ [Zn] 6= 0, where π : P
(
Ekg,n

)
→ P

(
Ekg
)

is the forgetful

map, there exists at least one class on the right-hand side, say [E0], such that π∗ [E0] 6=

0. In particular, one has (πi)∗ [E0] 6= 0, where πi : P
(
Ekg,n

)
→ P

(
Ekg
)

forgets the i-th

marked point, for each i = 1, . . . , n.
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Applying (πi)∗ to both sides of (5.3), one has

(k(2g − 2)− (n− 1)) [Zn−1] =
∑
α

cα (πi)∗ [Eα] ∈ Effn−1
(
P
(
Ekg,n−1

))
.

Since [Zn−1] is assumed to be extremal in Effn−1
(
P
(
Ekg,n−1

))
, the non-zero class

(πi)∗ [E0] is necessarily proportional to [Zn−1]. Since [Zn−1] is also assumed to be

rigid, it follows that (πi)∗ [E0] is supported on Zn−1, hence E0 ⊂ π−1
i Zn−1, for each

i. We conclude that E0 ⊂
⋂n
i=1 π

−1
i Zn−1. This implies that for a general element

(C, µ, P1, . . . , Pn) in E0, each subset of size n−1 of the set of marked points P1, . . . , Pn

consists of distinct points in the support of µ. Since n > 2, this implies that the n

marked points are assigned to distinct points in the support of µ, hence E0 coincides

with Zn, a contradiction.

For the rigidity, suppose that there is some other effective class E such that

E ∼ mZn. We can assume that E is not supported on Zn, otherwise we could reduce

the coefficient m. Since (πi)∗(E) ∼ (k(2g − 2)− (n− 1))Zn−1 for i ∈ {1, . . . , n} and

Zn−1 is rigid, we know that (πi)∗(E) must be supported on Zn−1. This means that

E ⊂
⋂n
i=1 π

−1
i Zn−1 and thus must be Zn. Thus we arrive at a contradiction.
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