# EUDIALYTE GEOCHRONOLOGY: INVESTIGATING THE TIMING OF REE MINERALIZATION IN THE GRENVILLE PROVINCE

Alexander Leich

A thesis

submitted to the Faculty of

the Department of Earth and Environmental Science

in partial fulfillment

of the requirements for the degree of

Master Science

Boston College

Morrissey College of Arts and Sciences Graduate School

December, 2020

© Copyright [2020] [Alexander Leich]

### EUDIALYTE GEOCHRONOLOGY: INVESTIGATING THE TIMING OF REE MINERALIZATION IN THE GRENVILLE PROVINCE

Alexander H Leich

Advisor: Ethan F. Baxter PhD.

The Proterozoic Kipawa Syenite Complex and Red Wine Intrusive Suite have both been explored as potential REE ore bodies and are a heretofore unexploited REE resource. This study improves upon the internal-isochron eudialyte geochronology method developed by Sjöqvist et al. (2020) through the addition of Electron Microprobe mapping prior to precise MicroMill sampling to build Sm/Nd internal mineral isochrons to directly date this potential rare earth element ore mineral. We show that Nb and Ta concentrations correlate well with Sm/Nd ratios in zoned eudialyte crystals, providing a qualitative map to guide microsampling. At the Kipawa Syenite Complex two internal eudialyte isochrons yield ages of 1066±56 Ma (MSWD=1.7) and 1109±53 Ma (MSWD=1.2) while a multi-sample eudialyte bulk isochron produces an age of 1092±53 Ma (MWSD= 1.5). The weighted average of the three isochrons is 1090±31 Ma, and gives the age of eudialyte formation across the Kipawa Syenite Complex. Nd model ages confirm derivation from older continental crust with  $T_{DM}$ =2.28. At the Red Wine Intrusive Suite single internal eudialyte isochron yields an age of 765±240 Ma (MSWD=3.7) while the high-Nb sector of this crystal yields an age of 704±120 Ma (MSWD=1.6). A multi-sample eudialyte and mosandrite bulk isochron produces an age of 989± 150 Ma (MSWD=15). The latter age reflects original Grenvillian crystallization of REE ore-minerals, while the age of the high-Nb zone reflects a younger, heretofore unrecognized recrystallization event. Nd model ages suggest derivation from the Proterozoic crust with T<sub>DM</sub>=1.80. Examination of Nd model ages and geochemical data from five agpaitic deposits (Red Wine, Kipawa, Ilímaussaq, Norra Kärr, Lovozero) reveals three distinct deposit types identified as the Lovozero type, the Grenville type, and the Kipawa type.

# **TABLE OF CONTENTS**

| TABLE (                           | OF CONTENTS                                                                                                                 | i                |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------|
| LIST OF                           | TABLES                                                                                                                      | iii              |
| LIST OF                           | FIGURES                                                                                                                     | iv               |
| ACKNOV                            | WLEDGMENTS                                                                                                                  | vii              |
| INTROD                            | UCTION                                                                                                                      | . viii           |
| 1.0 CH<br>1.1 H<br>1.2 H<br>1.3 C | IAPTER 1 BACKGROUND AND OBJECTIVES<br>KEY QUESTIONS AND HYPOTHESES<br>RESEARCH METHODS<br>GEOLOGY OF THE GRENVILLE PROVINCE | 1<br>1<br>2<br>3 |
| 2.0 CH                            | IAPTER 2: EUDIALYTE GEOCHRONOLOGY OF THE KIPAWA                                                                             |                  |
| SYENITI                           | E COMPLEX                                                                                                                   | 8                |
| <b>2.1</b> A                      | ABSTRACT                                                                                                                    | 8                |
| 2.2 I                             | NTRODUCTION                                                                                                                 | 9                |
| 2.2.1                             | Goals and Hypotheses                                                                                                        | 12               |
| 2.3                               | GEOLOGY AND GEOCHRONOLOGY                                                                                                   | 14               |
| 2.3.1                             | Kipawa Syenite Complex                                                                                                      | 15               |
| 2.3.2                             | Review of Existing Geochronology                                                                                            | 18               |
| 2.4 S                             | SAMPLES                                                                                                                     | 20               |
| 2.4.1                             | KP1                                                                                                                         | 21               |
| 2.4.2                             | КР2                                                                                                                         | 22               |
| 2.4.3                             | КР 9                                                                                                                        | 23               |
| 2.4.4                             | Eud122804                                                                                                                   | 24               |
| 2.5 N                             | AETHODS                                                                                                                     | 25               |
| 2.5.1                             | Scanning Electron Microscopy (SEM)                                                                                          | 26               |
| 2.5.2                             | Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS).                                                     | 26               |
| 2.5.3                             | Electron Microprobe Mapping (EMP)                                                                                           | 27               |
| 2.5.4                             | Micromill Sampling                                                                                                          | 28               |
| 2.5.5                             | Isotope Dilution Thermal Ionization Mass Spectrometry (ID-TIMS)                                                             | 29               |
| 2.6 F                             | RESULTS                                                                                                                     | 30               |
| 2.6.1                             | SEM                                                                                                                         | 30               |
| 2.6.2                             | LA-ICP-MS                                                                                                                   | 31               |
| 2.6.3                             | Electron Microprobe                                                                                                         | 33               |
| 2.6.4                             | ID-TIMS                                                                                                                     | 35               |

| 2.7  | DISCUSSION                                           | 7 |
|------|------------------------------------------------------|---|
| 2.8  | CONCLUSION 4                                         | 7 |
| 3.0  | CHAPTER 3: GEOCHRONOLOGY OF THE RED WINE INTRUSIVE   |   |
| SUIT |                                                      | 9 |
| 3.1  | ABSTRACT 4                                           | 9 |
| 3.2  | REGIONAL GEOLOGY5                                    | 0 |
| 3.   | .1 Red Wine Intrusive Suite                          | 0 |
| 3.3  | SAMPLES                                              | 4 |
| 3.   | .1 CBD 11-10-1                                       | 5 |
| 3.   | .2 CBD 11-10-2                                       | 6 |
| 3.   | .3 CB 02-12                                          | 6 |
| 3.4  | METHODS 5                                            | 7 |
| 3.5  | RESULTS                                              | 9 |
| 3.   | .1 SEM                                               | 9 |
| 3.   | .2 LA-ICP-MS                                         | 0 |
| 3.   | .3 Electron Microprobe 6                             | 3 |
| 3.   | .4 ID-TIMS                                           | 4 |
| 3.6  | DISCUSSION 6                                         | 6 |
| 3.7  | CONCLUSION                                           | 5 |
| 4.0  | REFERENCES7                                          | 7 |
| 5.0  | APPENDIX 1: DETAILED LABORATORY METHODS FOR EUDIALYT | E |
| GEO  | HRONOLOGY                                            | 6 |
| 6.0  | APPENDIX 2: SPIKE SUBTRACTION SHEETS 10              | 1 |
| 7.0  | APPENDIX 3: DATA TABLES16                            | 3 |
| 8.0  | APPENDIX 4: SAMPLE INVENTORY25                       | 3 |
| 9.0  | APPENDIX 5: SUPPLIMENTAL IMAGES                      | 4 |

# LIST OF TABLES

| Table 1. Formulae of HFSE minerals characteristic of agpaitic rocks                                       | 15  |
|-----------------------------------------------------------------------------------------------------------|-----|
| Table 2. Summary selected elements showing a relationship with <sup>147</sup> Sm/ <sup>144</sup> Nd ratio | 31  |
| Table 3. Kipawa Syenite Complex ID-TIMS data                                                              | 35  |
| Table 4. Summary selected elements showing a relationship with <sup>147</sup> Sm/ <sup>144</sup> Nd ratio | 60  |
| Table 5. Red Wine Intrusive Suite ID-TIMS data.                                                           | 65  |
| Table 6. Oxide masses, with elemental mass and potential isobaric interferences                           | 96  |
| Table 7. LA-ICP-MS elemental concentration data.                                                          | 163 |
| Table 8. Inventory of all samples acquired in the course of this study                                    | 253 |

# **LIST OF FIGURES**

# FIGURES FROM CHAPTER 1

| Figure 1. Location and broad scale structure of the Grenville Province             | 4 |
|------------------------------------------------------------------------------------|---|
| Figure 2. Location of Monocyclic and polycyclic metamorphic belts in the Grenville |   |
| province                                                                           | 6 |

# FIGURES FROM CHAPTER 2

| Figure 3. Location of Protoerzoic peralkaline complexes in relation to the Grenville Front                    |
|---------------------------------------------------------------------------------------------------------------|
| Tectonic Zone (GFTZ)11                                                                                        |
| Figure 4. Broad scale structure of the Grenville Province                                                     |
| Figure 5. Geology and structure of the Kipawa Syenite complex and surrounding units. 16                       |
| Figure 6. Generalized structural column of the Kipawa region along transect A-B (Figure                       |
| 5) and summary of previous geochronology                                                                      |
| Figure 7. Outcrop from which sample KP 1 was broken 20                                                        |
| Figure 8. Sample KP 1                                                                                         |
| Figure 9. Sample KP2                                                                                          |
| Figure 10. Sample KP 9                                                                                        |
| Figure 11. Sample EUD122804                                                                                   |
| Figure 12. Chondrite normalized rare earth element (REE) spider diagram from the                              |
| Kipawa Syenite Complex (KSC)                                                                                  |
| Figure 13. LA-ICP-MS elemental concentrations (ppm) plotted against <sup>147</sup> Sm/ <sup>144</sup> Nd from |
| three KSC eudialyte samples                                                                                   |
| Figure 14. Electron Microprobe (EMP) maps of selected elements in the large eudialyte                         |
| crystal from sample KP9 34                                                                                    |
| Figure 15. Isochrons plotted in the course of this study                                                      |
| Figure 16. Chondrite normalized rare earth element (REE) spider diagram for all                               |
| complexes measured in the course of this study                                                                |
| Figure 17. Electron Microprobe (EMP) map selected elements in several eudialyte                               |
| crystals from sample KP1                                                                                      |
| Figure 18. EMP map of Nb in a single large eudialyte crystal from sample KP9 41                               |
|                                                                                                               |

| Figure 19. Generalized structural column along transect A-B (Figure 5) and su | ımmary of |
|-------------------------------------------------------------------------------|-----------|
| relevant geochronology                                                        |           |
| Figure 20. Model for Nd isotopic evolution of KSC eudialyte                   | 44        |
| Figure 21. Model for Nd isotopic evolution of KSC and LV eudialyte            |           |

# FIGURES FROM CHAPTER 3

| Figure 22. Geologic provinces of Labrador.                                                                  | 50   |
|-------------------------------------------------------------------------------------------------------------|------|
| Figure 23. Geologic map of the Letitia Lake Area.                                                           | 51   |
| Figure 24. Geology and relevant geochronology of the Red Wine Intrusive Suite                               | 53   |
| Figure 25. Map of Search Minerals diamond borehole drill sampling sites                                     | 54   |
| Figure 26. True color scan of sample CBD 11-10-1                                                            | 55   |
| Figure 27. Sample CBD11-10-2.                                                                               | 56   |
| Figure 28. Sample CB 02-12.                                                                                 | 57   |
| Figure 29. SEM BSE image of sample CBD11-10-2 with overlaid with EDS based                                  |      |
| mineral identifications.                                                                                    | 58   |
| Figure 30. SEM BSE image of sample CBD11-10-2 with overlaid with EDS based                                  |      |
| mineral identifications.                                                                                    | 59   |
| Figure 31. Chondrite normalized rare earth element (REE) spider diagram from the R                          | ed   |
| Wine Intrusive Suite (RWIS)                                                                                 | 61   |
| Figure 32. LA-ICP-MS elemental concentrations (ppm) plotted against <sup>147</sup> Sm/ <sup>144</sup> Nd fi | rom  |
| two RWIS eudialyte samples                                                                                  | 62   |
| Figure 33. Electron Microprobe (EMP) maps of sample CBD 11-10-2                                             | 63   |
| Figure 34. EMP map of La in sample CBD 11-10-2.                                                             | 64   |
| Figure 35. EMP map of NB in sample CBD 11-10-2                                                              | 66   |
| Figure 36. Chondrite normalized rare earth element (REE) spider diagram for all                             |      |
| complexes measured in the course of this study                                                              | 67   |
| Figure 37. SEM BSE images and EDS maps of eudialyte from Ilímaussaq, Greenland                              | l 68 |
| Figure 38. Isochron diagrams from the RWIS                                                                  | 69   |
| Figure 39. Geology and relevant geochronology of the Red Wine Intrusive Suite                               | 71   |
| Figure 40. Model for Nd isotopic evolution of RWIS eudialyte.                                               | 73   |
| Figure 41. Model for Nd isotopic evolution of Grenvillian eudialyte                                         | 74   |
|                                                                                                             |      |

### ACKNOWLEDGMENTS

I would like to thank a variety of individuals and organizations for their contributions to this work, without whom this project would not have been possible. These include Mike Tappa, Paul Starr, and Stephanie Walker for their help working in the lab, and answering many questions. Search Minerals, Quebec Precious Metals, The Harvard Mineralogical Museum, and Matthew Crocker for providing the sample material used in the study. Support from Search Minerals this also included access to the Kipawa Rare Metal Deposit in Temiscaming, Quebec. This work also relied on several excellent collaborators; Axel Sjöqvist and Thomas Zack at the University of Gothenburg, as well as Michael Williams at the University of Massachusettes, Amherst. Finally, I would like to thank my advisor Ethan Baxter who served as an excellent guide through the entire process of beginning a project and bringing it to a conclusion despite the disruptions of 2020.

### **INTRODUCTION**

This thesis consists of three chapters detailing this study focused on two Proterozoic Peralkaline Complexes from the Grenville Province. The first chapter introduces the guiding questions and motivations for this study as well as detailing some of the geologic underpinnings of the study. The geologic setting focuses on the Grenville Province where both field sites are located, and examines the complex history of this geologic province. Chapter two focuses on Sm-Nd eudialyte geochronology as a tool to investigate the timing of eudialyte formation at the Kipawa Syenite Complex in Southwestern Quebec. Chapter three similarly explores the geochronology of the Red Wine Intrusive Suite, Labrador, Canada. Taken together Chapter two and three constitute a draft manuscript for eventual publication in an undetermined scientific journal. An integrated manuscript exploring both locations may allow for the examination of new and more expansive hypotheses than presented herein. A detailed description of the laboratory procedures and methods for eudialyte geochronology can be found in the appendix.

### 1.0 CHAPTER 1 BACKGROUND AND OBJECTIVES

### 1.1 KEY QUESTIONS AND HYPOTHESES

This study seeks to further develop and utilize eudialyte internal mineral geochronology to inform our knowledge of Proterozoic agpaitic deposits in the Grenville province. Using this method, with the addition of high precision electron microprobe mapping, we can ask several questions. Was there some broadly distributed process acting during the Grenville orogeny that resulted in the formation of several large agpaitic deposits along the trace of the GFTZ? To explore this expansive question, we should begin by asking smaller and more focused questions. First, what is the age of eudialyte mineralization in the Red Wine Intrusive Suite and Kipawa Syenite Complex? Do these ages correspond with the age of initial igneous emplacement, or do they more closely align with regional metamorphic events? Second, what do Nd isotopic data and model ages reveal about the magmatic evolution of agpaitic source material and crustal residence time? In order to address these research questions this study will test the following hypotheses:

• First, based on recent studies (Sjöqvist et al., 2020; Wu et al., 2016) we hypothesize that eudialyte Sm/Nd ages will correspond to Grenville age tectonometamorphism, thus suggesting syntectonic partial melting and enrichment of agpaitic ore, a process that has led to post magmatic REE enrichment at sites along the Grenville Front Tectonic Zone (GFTZ).

• Second, we hypothesize that Electron Microprobe (EMP) mapping of key elements such as Nb and Mn, will provide a better guide for micromill sampling for geochronology and will also illuminate evidence for potentially problematic open system behavior.

### **1.2 RESEARCH METHODS**

The Boston College Center for Isotope Geochemistry encompasses an ultra-clean (1,000 ppcf) lab with 11 100-ppcf fume hoods, and an Isotopx Phoenix Thermal Ionization Mass Spectrometer (TIMS). The Isotope Geochemistry working group has worked extensively to explore Sm/Nd in garnets from a variety of environments (Baxter et al., 2017; Walker et al., 2019), including sampling individual growth zones within garnet crystals using a Micromill (Dragovic et al., 2012; Farrell, 2019).

The theoretical basis for internal mineral isochrons begins with Rakovan et al. (1997) who selectively sampled crystal faces in a single apatite crystal to constrain the timing of crystallization. More recently, Sjöqvist et al. (2020) successfully constructed an internal isochron in eudialyte using micromill extraction and Thermal Ionization Mass Spectrometry (TIMS) isotopic analysis. The work of Sjöqvist et al. (2020) serves as the theoretical framework for this study.

Sm/Nd geochronology is based on the radioactive decay of <sup>147</sup>Sm to <sup>143</sup>Nd by alpha particle emission with a half-life of 106 billion years (DePaolo and Wasserburg, 1976). Sm/Nd fractionation mostly occurs in the silicate portion of the planets, making Sm/Nd ratios a useful tool for exploring magma differentiation and similar processes (DePaolo, 1988). Sm/Nd geochronology relies on the isochron method where both the radioactive parent (<sup>147</sup>Sm) and daughter (<sup>143</sup>Nd) are presented as ratios relatively to non-radiogenic <sup>144</sup>Nd. When <sup>147</sup>Sm and <sup>143</sup>Nd compositions are plotted relative to <sup>144</sup>Nd the straight line between points can be described by the line:  $m = e^{\lambda t} - 1$ , solving for t will yield the age of the mineral (DePaolo, 1988). Whereas sector zoned garnet geochronology relies on external mineral points to provide a low point, internal mineral geochronology relies solely on the internal variation within a single crystal.

### **1.3 GEOLOGY OF THE GRENVILLE PROVINCE**

The Grenville Province of Southeastern Canada is a complex amalgamation of predominantly Proterozoic amphibolite- and granulite-facies metamorphic rocks. K-Ar ages for metamorphic minerals are consistently reset to 1000-970 Ma across the province (Groulier et al., 2018). The Grenville Province extends along the southeastern Laurentian margin from Georgian Bay to the Labrador Sea in a northeasterly trending belt approximately 400 km across (Figure 1). Bounded to the northwest along much of its length by the Superior Province, the Grenville Province also borders the Makkovik, Southern Churchill, and Nain Provinces (Rivers, 1997) (Figure 1). The northern boundary of the Grenville Province is marked by the Grenville Front Tectonic Zone (GFTZ). This major southeasterly dipping crustal discontinuity is made up of multiple thrust faults and zones of mylonitization (Rivers et al., 1989) (Figure 1). The GFTZ marks where high-grade rocks of the Grenville Province were thrust onto the older and relatively low-grade rocks of the Canadian Shield, and is the northernmost boundary of K-Ar age resetting (Groulier

et al., 2018). Rivers et al. (1989) initially divided the Grenville Province into the Parautochthonous and Allocthonous Belts; two longitudinal belts (Figure 1) differentiated on the basis of age distribution and distinctive lithologies. The Parautochthonous Belt (PB) lies immediately to the south of the GFTZ and is characterized by lithologic continuity with the northern foreland (Rivers et al., 1997). Representing a section of northwesterly thrust Laurentian margin, the PB is composed of Archean and Paleoproterozoic age units (Dickin and Guo, 2001). The PB records the formation of Andean type arcs and backarcs



Figure 1. Location and broad scale structure of the Grenville Province. Image from Valentino et al. (2018).

and subsequent accretionary orogenesis from ~1.71 to 1.23 Ga (Gower and Krogh, 2002; Rivers et al., 1997). Much of the northwestern margin of the PB is characterized by shear zones and isoclinal folds with metamorphic grade generally increasing southeastward from the GFTZ (Rivers et al., 1989). The PB is bounded to the south by the Allochthon Boundary Thrust (ABT) marking where younger, distally-sourced rocks of the Allochthonous Belt (AB), lie structurally above the PB (Rivers et al., 1989) (Figure 1).

The Allochthon Boumdary Thrust (ABT) (Figure 1, Figure 2) served as a large-scale ramp, leading to the exposure of deep crustal constituents through repeated thrusting and normal faulting (Herrell et al., 2006). The ABT was first identified along much of the Grenville province on the basis of aeromagnetic evidence (Rivers, et al., 1989), and has since been supported by structural, and geochronological studies (Dickin and Guo, 2001). The exact locations of some portions of the ABT remain in question, especially in southwestern areas where numerous shear zones and high-grade metamorphism have obscured the boundary (Herrell et al., 2006). Dikes related to the Sudbury dike swarm can be traced across the GFTZ into the PB (Berthune and Davidson, 1997), but do not cross the ABT (McLelland et al, 2010).

The AB is made up of younger and more lithologically variable terranes that do not correlate directly with the Laurentian foreland (Rivers et al, 1997). The AB is further divided into mono- and polycyclic belts, based on the apparent variation in deformational history (Figure 2) (Rivers et al., 1997). The Monocyclic Belt Boundary Zone separates the two allochthonous belts, and is variably expressed by ductile thrusting or mylonitization and subsequent brittle faulting (McLelland et al., 2010). In the Allochthonous Polycyclic Belt plutonic and supra-crustal rocks record deformation from multiple orogonies in lithology characterized by high grade gneiss (Figure 2). The Allochthonous Monocyclic Belt is characterized by terrestrial rift and supracrustal rocks affected only by the younger Grenville Orogeny and has been interpreted as vestiges of an orogenic lid (Rivers et al., 1989) where rocks where thrust over the center of the orogenic belt and thus escaped high grade metamorphism (Figure 2).

Northeasterly thrusting accompanied the Shawinigan orogeny from 1190-1140 Ma. Intrusive suites from this interval are abundant in the Adirondack lowlands and the



Figure 2. Location of Monocyclic and polycyclic metamorphic belts in the Grenville province. Image from McLelland et al. (2010).

southwest portion of the province. The eastern portion of the province was intruded by anorthosite-mangerite-charnokite-granite (AMCG) suites between 1155-1140 Ma in an environment characterized by mild extension, perhaps driven by crustal delamination (Figure 2) (McLelland et al., 1990). Following AMCG emplacement the Laurentian margin experienced a period of relative quiescence from 1140-1090 Ma, which came to an end with the onset of the Grenville orogeny from 1090 to 980 Ma. Two phases of the Greenville orogeny are recognized, the Ottowan phase from 1090-1020 Ma and the Rigolet phase from 1010-980 Ma. Both phases consist of northwestward thrusting followed by extensional collapse ultimately resulting in the exhumation of high grade terranes (Figure 1) (McLelland et al., 1990).

# 2.0 CHAPTER 2: EUDIALYTE GEOCHRONOLOGY OF THE KIPAWA SYENITE COMPLEX

#### 2.1 ABSTRACT

The Proterozoic Kipawa Syenite complex has been explored as a potential REE ore body and is a heretofore unexploited REE resource. The petrogenesis of this and similar eudialyte ore bodies (i.e., Norra Kärr, Sweden) remains uncertain, including the role of metamorphic remobilization in ore formation. Accurate geochronology of eudialyte can help resolve whether the ore formed during Grenvillian metamorphism or earlier igneous emplacement. This study improves upon the internal-isochron eudialyte geochronology method developed by Sjöqvist et al. (2020) through the addition of Electron Microprobe mapping prior to precise MicroMill sampling to build Sm/Nd internal mineral isochrons to directly date this potential rare earth element ore mineral. We show that Nb and Ta concentrations correlate well with Sm/Nd ratios in zoned eudialyte crystals, providing a qualitative map to guide microsampling. Two internal eudialyte isochrons yield ages of 1066±56 Ma (MSWD=1.7) and 1109±53 Ma (MSWD=1.2) while a multi-sample eudialyte bulk isochron produces an age of 1092±53 Ma (MWSD= 1.5). The weighted average of the three isochrons is 1090±31 Ma, and gives the age of eudialyte formation across the Kipawa Syenite Complex. This age corresponds to the beginning of the Ottowan phase of the Grenville Orogeny. Nd model ages confirm derivation from older continental crust with T<sub>DM</sub>=2.28. HREE enrichment in Kipawa eudialyte is likely related to this derivation

from continental source. Metamorphic reworking of enriched continental crust is crucial to the formation of this HREE-enriched eudialyte ore at Kipawa.

### 2.2 INTRODUCTION

The Rare Earth Elements (REE's) comprise the 15 elements of the lanthanide series (Lanthanum - Lutetium) as well as Yttrium. Based on a variety of unique physical properties related to lanthanide contraction REE's have become crucial elements for the manufacture of many modern technologies such as fluorescent lighting, batteries, and strong magnets (Chakhmouradian and Wall, 2012). Despite being less rare than other valuable elements such as gold and silver, deposits with concentrations of REEs are exceptionally rare thus economically viable resources are uncommon. REE's only occur in economic concentrations in a small number of geologic environments. Global REE demand is expected to increase due to their use in a variety of sectors such as communications, power generation, and power storage (Chakhmouradain and Wall, 2012). Currently most of global rare earth oxides are produced by China (Chakhmouradain and Wall, 2012). Increased demand has focused attention on examining nontraditional REE resources; peralkaline agpaitic deposits are one such type. Eudialyte hosted agpaitic REE deposits constitute a potential new resource, and are particularly interesting for those seeking to secure REE resources within the NAFTA free trade area.

Peralkaline rocks are defined by molar (Na+K)/Al ratios > 1 and commonly contain high concentrations of incompatible elements such as large ion lithophile elements (LILEs), high field strength elements (HFSEs), rare earth elements (REEs) and halogens (Sørensen, 1992). Agpaitic rocks are distinguished from more common peralkaline compositions based on the presence of characteristic minerals like the REE-rich eudialyte instead of more common phases like zircon and titanite (Marks et al., 2011). The substitution of REE into the structure of eudialyte is poorly understood, by is thought to be most due to substitutions for Ca on the M1 site (Borst et al., 2020) Agpaitic rocks typically occur as minor silica-undersaturated constituents within larger units of silica-saturated peralkaline rocks, although not all agpaitic rocks are silica-undersaturated.

Eudialyte (Na<sub>15</sub>Ca<sub>6</sub>Fe<sub>3</sub>Zr<sub>3</sub>Si(Si<sub>25</sub>O<sub>73</sub>)(O,OH,H<sub>2</sub>O)<sub>3</sub>(Cl,OH)<sub>2</sub>) is named for a propensity to dissolve in acid making it an appealing target for both laboratory analysis and as an ore mineral (Chakraborty et al., 2011). Although processing at scale has proven difficult the prospect of a relatively easy and safe processing procedure remains on the horizon (Balinski et al., 2020). Unlike monazite and xenotime hosted deposits, eudialyte is mostly free of radioactive elements like uranium and thorium, although radioactive accessory minerals like thorite are found in some eudialyte-bearing deposits.

Understanding of agpaitic REE source materials, petrogenesis, and age relations are far from complete and warrant further inquiry. Here, we focus on the Proterozoic Kipawa Syenite Complex (KSC) located on the Southwestern portion of the Grenville Province of Southeastern Canada (Figure 3). Characteristic of agpaitic rocks, the KSC contains large amounts of eudialyte, which has been explored as a potential REE ore mineral and is a heretofore unexploited REE resource (Marks and Markl, 2017). The Kipawa deposit has been explored by Quebec Precious Metals through several proprietary drilling campaigns aimed at defining eudialyte mineralization; however, due to unstable prices and environmental concerns, the site has not seen production.



Figure 3. Location of Protoerzoic peralkaline complexes in relation to the Grenville Front Tectonic Zone (GFTZ) (dashed line) modified from Currie and van Breeman (1996). Several authors (Currie and van Breeman 1996; Allan, 1992) have observed that

five Proterozoic peralkaline complexes occur in close proximity to the Grenville Front Tectonic Zone (GFTZ) (Figure 3), Kipawa among them. The distribution of agpaitic rocks through time is not even, and the formation of agpaitic rocks appears to correlate negatively with the presence of supercontinents (Marks and Markl, 2017). The spatial and temporal association of these normally rare geologic formations along the GFTZ raises the prospect that some unique process was driving the formation of agpaitic rocks at this time. IlÍmaussaq, Greenland, is located near the GFTZ but is far enough north to have avoided extensive Grenvillian deformation (Sørrensen, 1992) (Figure 3) and serves as a useful model for what other locations may have looked like prior to Grenvillian deformation.

A variety of techniques have been employed to constrain the age of the KSC and surrounding formations and have yielded a range of ages spanning 400 million years. The variety of methods and variable results reflect the difficulty associated with directly dating metamorphic agpaitic systems. This difficulty can be largely attributed to the lack of zircon in silica-undersaturated agpaitic rocks and the preponderance of evidence for open system behavior. A direct chronometer of the dominant REE ore mineral, eudialyte, will allow for temporal constraints on possible open system behavior and ore mineralization. Sjöqvist et al., (2020) developed a new eudialyte geochronometer exploiting internal mineral Sm-Nd isochrons in sector zoned eudialyte crystals. LA-ICPMS characterization illuminate areas of higher and lower <sup>147</sup>Sm/<sup>144</sup>Nd that were targeted for micromill sampling. This new method was tested at the Nora Kärr agpaitic locale in Sweden, returning a eudialyte age of  $1144 \pm 53$  Ma. This age is significant because it is much younger than the well constrained primary igneous emplacement age of 1490 Ma, leading Sjöqvist et al., (2020) to conclude that ore mineralization was a metamorphic remobilization event.

### 2.2.1 Goals and Hypotheses

This study seeks to answer a fundamental question. What is the age of eudialyte mineralization in the Kipawa Syenite Complex? Do these ages correspond to older pre-Grenvillian initial igneous emplacement, or do they more closely align with regional Grenvillian metamorphic events? In an effort to better answer the above question we also seek to improve the novel microdrill internal-isochron methodology used to constrain the age of eudialyte mineralization, first attempted by Sjöqvist et al. (2020). Specifically, we explore whether Electron Microprobe (EMP) mapping of eudialyte crystals could provide a more efficient and effective pre-characterization tool prior to eudialyte geochronology. In order to address these research questions this study will test the following hypotheses:

• First, based on recent studies (Sjöqvist et al., 2020; Wu et al., 2016) we hypothesize that eudialyte Sm/Nd ages will correspond to Grenville age tectonometamorphism, thus suggesting syntectonic partial melting and enrichment of agpaitic ore, a process that has led to post magmatic REE enrichment at sites along the GFTZ.

• Second, we hypothesize that Electron Microprobe (EMP) mapping of key elements such as Nb and Mn, will provide a better guide for micromill sampling for geochronology and will also illuminate evidence for potentially problematic open system behavior.



Figure 4. Broad scale structure of the Grenville Province. Location of Kipawa Syenite Complex (KSC) indicated by black circle. Modified from Groulier et al. (2018).

### 2.3 GEOLOGY AND GEOCHRONOLOGY

Peralkaline rocks are defined by molar (Na+K)/Al ratios > 1 and commonly contain high concentrations of incompatible elements such as large ion lithophile elements (LILEs), high field strength elements (HFSEs), rare earth elements (REEs) and halogens (Sørensen, 1992). Peralkaline rocks are further divided into two compositional categories, miaskitic and agpaitic. Agpaitic varieties are distinguished from more common miaskitic compositions based on the presence of characteristic minerals like eudialyte in the place of phases like zircon and titanite (Marks et al., 2011). Agpaitic rocks typically occur as minor silica-undersaturated constituents within larger units of silica-saturated peralkaline rocks. This common field relationship suggests agpaitic rocks represent the most highly evolved, residual liquids of peralkaline systems.

In Southeastern Canada, the GFTZ marks where high-grade rocks of the Grenville Province were thrust onto the older rocks of the Canadian Shield (Groulier et al., 2018). Ilímaussaq, Greenland, is located near the GFTZ, but is far enough north to have avoided extensive Grenvillian deformation (Sørrensen, 1992) and serves as a useful model for what other locations may have looked like prior to Grenvillian deformation.

Eudialyte (Table 1) is named for a propensity to dissolve in acid making it an appealing target for both laboratory analysis and as an ore mineral. Although processing at scale has proven difficult the prospect of a relatively easy and safe processing procedure remains on the horizon. Unlike monazite and xenotime, eudialyte is mostly free of radioactive elements like Uranium and Thorium, although accessory minerals like thorite are common. Agpaitic rocks are rare, even compared to peralkaline rocks and by definition contain a variety of rare minerals (Table 1). This rarity and unusual composition suggests specific processes must be required for their formation. The distribution of agpaitic rocks through time is not even, and the formation of agpaitic rocks appears to correlate negatively with the presence of supercontinents (Marks and Markl, 2017). The spatial and temporal association of these normally rare geologic formations along the GFTZ raises the prospect that some unique processes were acting on these rocks during the Grenville Orogeny.

### 2.3.1 Kipawa Syenite Complex

The Kipawa Syenite Complex is located 35 km east of Temiscaming, Quebec the Kipawa Syenite Complex (KSC) is on the northwestern margin of the Grenville Province, roughly 35 km from the GFTZ (Figure 4, Figure 5) (Allan, 1992) where Archean fault slices derived from the Superior Province are the primary bedrock constituent (Currie and van Breemen, 1996). Nd isotopic mapping reveals the presence of bimodal Archean crust

| HFSE minerals typical of agpaitic rocks |                                                                                                            |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| Aenigmatite                             | $Na_2Fe_5TiSi_6O_{20}$                                                                                     |  |
| Agrellite                               | $NaCa_2Si_4O_{10}F$                                                                                        |  |
| Catapleiite                             | $Na_2Zr(Si_3O_9) \cdot 2H_2O$                                                                              |  |
| Eudialyte                               | $Na_{15}Ca_{6}Fe_{3}Zr_{3}Si(Si_{25}O_{73})(O,OH,H_{2}O)_{3}(CI,OH)_{2}$                                   |  |
| Rinkite                                 | (Ca,REE)Na(NaCa)Ti(Si <sub>2</sub> O <sub>7</sub> ) <sub>2</sub> (OF)F <sub>2</sub>                        |  |
| Wöhlerite                               | Na <sub>2</sub> Ca <sub>4</sub> Zr(Nb,Ti)(Si <sub>2</sub> O <sub>7</sub> ) <sub>2</sub> (O,F) <sub>4</sub> |  |

Table 1. Formulae of HFSE minerals characteristic of agpaitic rocks.

in this region where isotopically undisturbed Archean crust yields model ages of ~2.6 Ga while reworked Archean crust yield model ages from 1.8-2.6 Ga (Dickin and Guo, 2001).

The KSC is a unit of nepheline syenite, amphibole syenite, quartz syenite, and alkali granite. At most 300 m thick, the KSC is traceable as a sheet-like body for about 100 km around the Kipawa syncline-anticline pair (Figure 5) (Currie and Van Breeman, 1996). The



Figure 5. Geology and structure of the Kipawa Syenite complex and surrounding units. Modified from van Breeman and Currie (2004). K marks location of sampling site. Transect A-B indicates trace of generalized structural column.

composition of the KSC is roughly symmetrical with a core of amphibole-pyroxene syenite

and nepheline syenite, bounded by amphibole syenite, which is enclosed by quartz syenite and peralkaline granite (van Breeman and Currie, 2004). Contacts with other units show evidence of metasomatism, and no part of the syenite complex exhibits any recognizable primary igneous textures at the outcrop scale (van Breeman and Currie, 2004).

Silica-undersaturated rocks occur in lenses of varying size and extent, one particularly large lens (1300 m x 5 m) of amphibolite schist containing eudialyte, argellite (NaCa<sub>2</sub>Si<sub>4</sub>O<sub>10</sub>F) and other rare minerals constitutes the Kipawa rare metals deposit (Currie and van Breeman, 1996) from which the samples in the present study were collected.

### 2.3.2 Review of Existing Geochronology

Analyses of zircons from the Red Pine Chute orthogneiss yield a <sup>207</sup>Pb/<sup>206</sup>Pb age of 1389±8 Ma while small zircons from the Kipawa syenite complex margins yield an age of 1033.4±3 Ma (Figure 6) (van Breeman and Currie, 2004). The former age establishes a



Figure 6. Generalized structural column of the Kipawa region along transect A-B (Figure 5) and summary of previous geochronology. Abbreviations: Zrc: zircon; Eud: eudialyte; Avg: weighted average. Data from: Currie and van Breeman, 1996 (points 1,5); van Breeman and Currie, 2004 (points 2,3,4); Wu et al., 2010 (points 6,7). Age of 2717Ma for the Kikwissi Gneiss is from van Breeman and Currie, 2004. Structural column modified from Matamec, 2011.

maximum emplacement age based on the age of the intruded unit (1389 Ma), while the latter age was interpreted as the emplacement age for the KSC (1033 Ma) coinciding with late Ottowan metamorphism (van Breeman and Currie, 2004). Zircons from marginal agpaitic pegmatites yield a U-Pb age of  $994 \pm 2$  Ma (Currie, and van Breeman, 1996). These youngest ages were interpreted to represent the lower limit for metasomatic zircon growth on the margins of the syenite complex at the end of the Rigolet phase (van Breeman and Currie, 2004).

In addition, Wu et al. (2010) used LA-ICP-MS to examine the U-Pb, Sr, Nd, and Hf isotopic compositions of eudialyte from nine agpaitic localities including the KSC. As part of their study, they constructed multi-point isochrons from in situ laser analysis of eudialyte. They reported a  ${}^{206}$ Pb/ ${}^{238}$ U age of  $1012 \pm 16$  Ma and a  ${}^{147}$ Sm/ ${}^{144}$ Nd age of 965  $\pm$  75 for Kipawa eudialytes (Figure 6). The U-Pb data are dominated by common lead making the isochron age calculation particularly susceptible to common lead uncertainties, as noted by the authors. The Sm-Nd age is based on 20 laser spot analyses, 18 of which cluster around  ${}^{147}$ Sm/ ${}^{144}$ Nd= 0.2438 and  ${}^{143}$ Nd/ ${}^{144}$ Nd= 0.512403. Two other plotted data points appear to cluster around a single reported solution-ICP analysis from the same sample of  ${}^{147}$ Sm/ ${}^{144}$ Nd of 0.2079 and a  ${}^{143}$ Nd/ ${}^{144}$ Nd of 0.512205. No raw data for the 20 data points nor <sup>147</sup>Sm/<sup>144</sup>Nd uncertainties are reported, nor are any images of the zoned eudialytes to screen for open system disruption (e.g., as seen by Sjöqvist et al., 2020). While rigorous demonstration of the accuracy of <sup>143</sup>Nd/<sup>144</sup>Nd based on replicate analysis of a standard is reported, there is no such demonstration of the accuracy (nor precision) of their <sup>147</sup>Sm/<sup>144</sup>Nd data by LA-ICP. Furthermore, it is concerning that the solution ICP-MS analysis is completely different from the LA-ICP analyses.

# 2.4 SAMPLES

Kipawa hand samples were collected from a single quarry on the Kipawa Site at (46.80783, -78.50404) (Figure 5, ). Samples were selected based largely on crystal size and sample integrity. Thin sections for petrographic characterization were cut mostly from drill core samples, ultimately only one sample selected for isotopic analysis had an associated



Figure 7. Outcrop from which sample KP 1 was broken. Sampling location is indicated by K on Figure 5.

thin section. Below, the four samples selected for isotopic work in this project (KP1, KP2, KP9, Eud122804) are described. All other samples are listed in the appendix Table 8.

### 2.4.1 KP1

Sample KP1 was broken directly off of outcrop where quarrying and mineral collecting has clearly been ongoing after initial exploration (Figure 7). This sample is



Figure 8. Sample KP 1. A) True color image of sample KP1 chip drilled for ID-TIMS. Pink mineral is eudialyte, black mineral is amphibole (kataphorite?). This sample was drilled 9 times by MicroMill, pits are not visible at this scale. B) KP1 representative hand sample as broken off outcrop. C) True color image of KP1 chip analyzed by LA-ICP-MS and EMP.

primarily comprised of coarse subhedral-anhedral eudialyte and amphibole (kataphorite) within a light-colored matrix of nepheline and minor mosandrite (Figure 8).

### 2.4.2 KP2

Sample KP2 was acquired from quarry debris adjacent to outcrop. Similar to KP1 sample is primarily eudialyte and amphibole (kataphorite) with minor nepheline (Figure 9). Eudialyte is primarily equant with a granular appearance in hand sample. Subhedral amphibole is medium to fine grained, and deep black in color with nepheline as minor matrix. Microscopic examination reveals late-stage veins filled with britholite and fluorite.



Figure 9. Sample KP2. Hand sample from which eudialyte chips were broken off and analyzed.

Sample KP9 was collected from quarry debris adjacent to the outcrop. The sample is light grey-white with several coarse (5 cm) eudialyte crystals (Figure 10). The Schistose matrix appears weathered, and primarily composed of argillite (NaCa<sub>2</sub>Si<sub>4</sub>O<sub>10</sub>F) and quartz



Figure 10. Sample KP 9. A) cross-polarized thin section image; B) cross-polarized thin section image, large grey mass is eudialyte; C) true color scan of sample chip analyzed of sample; D) BSE image of large eudialyte crystal with point locations for X-ray spectra. Abbreviations: Eud: eudialyte; Agr: Agrellite; Bri: Britholite; Gal: Galena.

(Figure 10). Thin section selection was mostly focused on a single large eudialyte grain

and thus revealed little about surrounding matrix. The eudialyte crystal is visibly zoned

under crossed polarized light and includes small inclusions of britholite, galena, quartz,

and apatite (Figure 10).

### 2.4.4 Eud122804

Sample Eud122804 consists of a small 20 oz. eudialyte crystal provided by the Harvard Mineralogical and Geological Museum, Cambridge, Massachusetts. The exact provenance of the sample is unknown with only "Kipawa River" listed for collection site. The portion of the sample provided by Harvard is red-pink with no obvious inclusions (Figure 11). The sample appears to be granular like some other samples as opposed to a single cohesive crystal. No thin section was made of this sample, and the only processing or analysis conducted was for bulk ID-TIMS as exact sample provenance is unknown.



Figure 11. Sample EUD122804. A) Photo of full hand sample from Haravrd Mineralogical Mueum. B) Photo of loose material provided for this study.

### 2.5 METHODS

We use the method developed by Sjöqvist et al. (2020) to sample individual eudialyte crystals using a computer controlled microdrill for Sm/Nd isotopic analysis by Isotope Dilution Thermal Ionization Mass Spectrometry (ID-TIMS). Pairing the spatial control of microdrill sampling with the high precision of ID-TIMS provides the ability to construct robust internal mineral isochrons (e.g., Schoene & Baxter, 2017) to directly date eudialyte.

Sampling and analysis in this manner are time consuming and within any individual eudialyte crystal variation in <sup>147</sup>Sm/<sup>144</sup>Nd is relatively small. Thus, characterization by SEM and LA-ICP-MS prior to drilling and ID-TIMS proved critical in the examination of eudialyte crystals from Norra Kärr, Sweden by Sjöqvist et al. (2020). By identifying crystal zonations by SEM and then characterizing the Sm/Nd isotopic composition of each zone by LA-ICP-MS Sjöqvist et al. (2020) maximized the <sup>147</sup>Sm/<sup>144</sup>Nd spread among microdrilled pits in a large eudialyte crystal yielding an isochron age of 1144±53 Ma. Their SEM and LA-ICPMS pre-characterization also proved critical in rejecting a few points showing textural and chemical evidence for late stage open system remobilization. In our study, in an effort to explore other pre-characterization methods, Electron Microprope mapping (e.g., Regan et al., 2019) of selected elements in eudialyte crystals was also conducted after SEM and LA-ICP-MS characterization.
# 2.5.1 Scanning Electron Microscopy (SEM)

A Hitachi S-4300N Scanning electron microscope (SEM) with solid state Back Scatter Electron (BSE) detector was used to examine polished thick sections at the University of Gothenburg department of Earth Science. Samples were polished and set in epoxy to meet size constraints and to increase sample integrity. Contrast and brightness were manually tuned to reveal textures and crystal zonations within individual eudialyte crystals. Mineral identification was supported by qualitative X-ray spectrometry using oxford instruments X-MAX 20 mm<sup>2</sup> area silicon drift detector and INCA software.

# 2.5.2 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS)

After identifying zoned crystals with the SEM the isotopic composition of selected crystals were examined using Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) at the University of Gothenburg department of Earth Science. The instrument consisted of an ESL 213NWR laser ablation connected to Agilent 8800 ICP-QQQ in no-gas mode. Samples were ablated using pulsed laser beam with 20 µm diameter and 5Hz repetition rate at a fluence of 4.9 J/Cm<sup>2</sup>. Reference glasses analyzed alongside the samples were NIST SRM 610, NIST SRM 612, BHVO-2G, GSD\_1G, GSE\_1G, and BCR-2G. Matrix references run alongside samples were MAD, Th\_tnt, TH\_apa, Durango\_apt, and LREE. Eudialyte fragments of LVO1 (Wu et al, 2010) and NK (Sjöqvist et al., 2020) were ablated alongside samples to provide matrix samples. Elements

reported are: Na, Cl, Ca, Mn, Fe, Zr, Be, Mg, Si (fixed internal standard), Al, K, Ti, Ga, Rb, Sr, Y, Nb, Mo, Sn, Sb, Sb, Ba, La, Ce, Pr, 2Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, U, Th. Corresponding to the ionic species : <sup>23</sup>Na<sup>+</sup>, <sup>35</sup>Cl<sup>+</sup>, <sup>44</sup>Ca<sup>+</sup>, <sup>55</sup>Mn<sup>+</sup>, <sup>57</sup>Fe<sup>+</sup>, <sup>90</sup>Zr<sup>+</sup>, <sup>9</sup>Be<sup>+</sup>, <sup>24</sup>Mg<sup>+</sup>, <sup>29</sup>Si<sup>+</sup> (fixed internal standard), <sup>27</sup>Al<sup>+</sup>, <sup>39</sup>K<sup>+</sup>, <sup>49</sup>Ti<sup>+</sup>, <sup>85</sup>Rb<sup>+</sup>, <sup>88</sup>Sr<sup>+</sup>, <sup>89</sup>Y<sup>+</sup>, <sup>93</sup>Nb<sup>+</sup>, <sup>95</sup>Mo<sup>+</sup>, <sup>118</sup>Sn<sup>+</sup>, <sup>121</sup>Sb<sup>+</sup>, <sup>137</sup>Ba<sup>+</sup>, <sup>139</sup>La<sup>+</sup>, <sup>140</sup>Ce<sup>+</sup>, <sup>141</sup>Pr<sup>+</sup>, <sup>146</sup>Nd<sup>+</sup>, <sup>147</sup>Sm<sup>+</sup>, <sup>153</sup>Eu<sup>+</sup>, <sup>157</sup>Gd<sup>+</sup>, <sup>159</sup>Tb<sup>+</sup>, <sup>165</sup>Ho<sup>+</sup>, <sup>166</sup>Er<sup>+</sup>, <sup>169</sup>Tm<sup>+</sup>, <sup>172</sup>Yb<sup>+</sup>, <sup>175</sup>Lu<sup>+</sup>, <sup>178</sup>Hf<sup>+</sup>, <sup>181</sup>Ta<sup>+</sup>, <sup>182</sup>W<sup>+</sup>, <sup>208</sup>Pb<sup>+</sup>, <sup>232</sup>U<sup>+</sup>, <sup>238</sup>Th<sup>+</sup>. Ti was quantified from <sup>49</sup>Ti<sup>+</sup>, since <sup>47</sup>Ti<sup>+</sup> was subjected to isobaric overlap by abundant <sup>94</sup>Zr<sup>++</sup>during eudialyte analyses. Gallium was not reported due to <sup>71</sup>Ga<sup>+</sup> overlap with <sup>142</sup>Ce<sup>++</sup>, which is abundant in EGM, and <sup>69</sup>Ga<sup>+</sup> is overlapped by <sup>138</sup>Ba<sup>++</sup>.

Sm and Nd were estimated from measured concentrations, corrected for natural isotopic abundances of 14.99% <sup>147</sup>Sm and 23.8% <sup>144</sup>Nd (Rosman and Taylor, 1998). Measurements of Sm/Nd ratio of NIST SRM 610 glass during the two analytical sessions averaged  $1.034\pm0.52\%$  (1RSD, n=21) and  $1.034\pm0.60\%$  (1 RSD, n=25), respectively.

Elemental concentrations were plotted against <sup>147</sup>Sm/<sup>144</sup>Nd ratios for each sample in an effort to find strong correlations between elemental abundance and Sm/Nd ratio. An element with apparent zonation and a strong link to <sup>147</sup>Sm/<sup>144</sup>Nd could be a useful and more easily acquired proxy for mapping Sm/Nd ratio.

## 2.5.3 Electron Microprobe Mapping (EMP)

Full thick section compositional maps were made using Cameca SX-50 electron microprobe at the University of Massachusetts, Amherst, MA, USA. Scans were conducted with 15.0 KeV accelerating voltage and five spectrometers set to Mg, Mn, Nb, Ta, and Ti. These elements were chosen as they displayed the strongest correlations with Sm/Nd according to LA-ICPMS analysis (see results below). Beam size was 30 µm at 300 nA. Using a 25 ms dwell time the entire thin section was mapped.

High resolution grain maps were conducted on a Cameca SXFive-TACTIS electron microprobe at the University of Massachusetts, Amherst, MA, USA. Again, five spectrometers were set to Mg, Mn, Ti, Ta, and Nb, and background measurements were conducted at the first spot.

# 2.5.4 Micromill Sampling

Based on LA-ICP-MS isotopic data coupled with EMP and SEM imagery eudialyte crystals from samples KP2 and KP9 were selectively drilled using the method developed by Charlier et al. (2006) and Sjöqvist et al. (2020). Using an ESL MicroMill computer controlled micro drill and a Brasseler 2500-0033 carbide bit a series of 150 µm deep pits were drilled to yield spatially controlled samples. Drilling for each pit took place within a single drop of MQ H<sub>2</sub>O held in place by a parafilm with a single 4 mm hole. The MQ H<sub>2</sub>O serves to cool the drill bit as well as to capture the sample dust derived from the pit. After drilling the slurry was collected by pipette. Three more droplets of MQ H<sub>2</sub>O were placed over the pit, and again collected by pipette to collect any residual sample dust. The eudialyte samples would occasionally chip next to the drilled pits due to lateral pressure applied by the pipette tip while retrieving sample slurry.

Between drilling each pit, the parafilm dam was removed and the sample was rinsed thoroughly with MQ H<sub>2</sub>O and isopropanol. The drill bit was rinsed and ultrasonicated in MQ H<sub>2</sub>O, and rinsed with isopropanol between each sample pit. Several samples (KP1, KP2, and EUD122804) were also sampled by dissolving small chips rather than by drill. These larger samples were used in preliminary analysis before drilling, and to provide accurate concentrations to guide subsequent analysis, as very small drilled samples proved difficult to weigh.

#### 2.5.5 Isotope Dilution Thermal Ionization Mass Spectrometry (ID-TIMS)

The dissolution procedure detailed below is adapted from procedures developed for garnet (Harvey and Baxter, 2009; Pollington and Baxter, 2010). While eudialyte can be dissolved in concentrated HNO<sub>3</sub> alone (Chakraborty et al., 2011), HCL and HF were used to eliminate potential residues, namely potentially problematic silica gels that may not have been visible in very small samples.

Sample dissolution began in 100  $\mu$ L HF and 1000  $\mu$ L 16N HNO<sub>3</sub> fluxed overnight followed by 1000  $\mu$ L 16N HNO<sub>3</sub> and 1000  $\mu$ L 6N HCL. Samples were then dried down and brought up in 1000  $\mu$ l 16N HNO<sub>3</sub> and fluxed overnight to prevent the formation of secondary fluorides (Makishima, 2016). Finally, the sample was brought up in 4 mL 1.5N HCL and 0.5 mL 16N HNO<sub>3</sub> for spiking. Based on estimated Sm/Nd ratios samples were spiked with a well-calibrated <sup>147</sup>Sm-<sup>150</sup>Nd spike.

For TIMS analysis all other REE's must be removed to avoid deleterious isobaric interferences that would obscure measured ratios (Schoene and Baxter, 2017). Samples were refined through three stages of column chemistry following the procedure of Harvey and Baxter (2009). This procedure uses a short cation exchange column to remove Fe and most major elements, a Transuranic Specific (Tru-spec) column to isolate the REE, and a 2-methyllactic acid (MLA) column to separate cuts of Sm and Nd for analysis.

Isotope characterization was conducted using an Isotopx Phoenix Thermal Ionization Mass Spectrometer at the Boston College Center for Isotope Geochemistry. Nd was analyzed as an oxide (NdO+) on a Re filament. The samples were loaded in 2N HNO<sub>3</sub> along with Ta<sub>2</sub>O<sub>5</sub> activator slurry (Harvey and Baxter, 2009). Sm was analyzed as a metal using Ta filaments prepared with HCL. Samples were loaded in 2N HNO<sub>3</sub> and H<sub>3</sub>PO<sub>4</sub> was added after to aid ionization.

## 2.6 RESULTS

#### 2.6.1 SEM

The examination of eudialyte samples (KP1, KP9) by BSE revealed little apparent zonation or textural zones even when brightness and contrast were optimized to focus on small changes within single crystals. Sample KP9 showed clear growth zones (Figure 10) under cross polarized light. Even so, no zonation was observed using BSE. Close inspection of the large crystal in this sample did reveal small lines of galena inclusions, which may define optical zonations. When brightness and contrast are adjusted to examine REE rich eudialyte other minerals are easily distinguished. Amphiboles, nepheline, and other non-REE phases are dark and unremarkable in contrast to eudialyte. Other REE phases like mosandrite, and britholite contrast well with eudialyte and are commonly observed as inclusions in eudialyte or as fill along cross cutting fractures (Figure 10). While not revealing vivid zonation, BSE images make it easy to distinguish clean, inclusion free eudialyte. Accidentally drilling and incorporating a small amount of galena in later stages would not be problematic for eudialyte Sm/Nd analysis (whereas it could be quite detrimental to U-Pb efforts, i.e., Wu et a. 2010); however, even a small amount of britholite or mosandrite have the potential to significantly contaminate a drilled eudialyte sample due to its relatively high REE content.

## 2.6.2 LA-ICP-MS

Eudialyte from the KSC is known to have unusually high concentrations of HREE and constitutes a unique deposit in this sense (Wu et al., 2010). LA-ICP-MS analyses from three samples shows high concentrations of REE. Absent visible zonations, transects across crystals were analyzed in an effort to gain information across the crystal. Total rare earth elements (REE+Y) range from 3.42 to 5.16 wt.% along with 8.5 to 10.5 wt.% Zr, an essential component of eudialyte. Tab

|        | REE       | spider    | diagrams       | (Figure     | 12 |
|--------|-----------|-----------|----------------|-------------|----|
| highli | ght the l | nigh cono | centrations of | of REE in 1 | KS |

eudialyte and particularly the enrichment of HREE relative to chondrite. Kipawa samples display a clear Eu anomaly consistent with other Grenvillian eudialyte samples.

Several elements show variation in concentrations across transects corresponding to Sm/Nd ratio. These elements are Ta, La, Nb, Ti, Mn, Mg, Cl, Y, Zr listed in order of

| Element | Avg. R <sup>2</sup> |  |  |
|---------|---------------------|--|--|
| Та      | 0.668               |  |  |
| La      | 0.631               |  |  |
| Nb      | 0.603               |  |  |
| Ti      | 0.496               |  |  |
| Mn      | 0.480               |  |  |
| Mg      | 0.331               |  |  |
| Cl      | 0.294               |  |  |
| Y       | 0.268               |  |  |
| Zr      | 0.239               |  |  |

Table 2. Summary selected elements showing a relationship with <sup>147</sup>Sm/<sup>144</sup>Nd
2) ratio as measured by LA-ICP-MS, and the average R<sup>2</sup> value for each element C vs. the <sup>147</sup>Sm/<sup>144</sup>Nd ratio.

average R<sup>2</sup> value (Table 2). Ta shows strong negative relationship with <sup>147</sup>Sm/<sup>144</sup>Nd (Figure 13). Variation within single crystal is usually ~500 ppm. Ti shows some relationship with Sm/Nd, this relationship is inconsistent across crystals and variation in crystal can vary from 250 ppm to 1500 ppm (Figure 13). Both Nb and Mn show a negative relationship with <sup>147</sup>Sm/<sup>144</sup>Nd, variation in concentration is generally large (Figure 13). La shows strong negative relationship with <sup>147</sup>Sm/<sup>144</sup>Nd. Large variation in concentration within single crystals, ~1500 ppm variation (Figure 13). The other elements (Mg, Cl, Y, and Zr) are less consistent and effective proxies for <sup>147</sup>Sm/<sup>144</sup>Nd ratio and are not considered further.



Figure 12. Chondrite normalized rare earth element (REE) spider diagram from the Kipawa Syenite Complex (KSC). The grey field indicates the range of measured values. Colored lines are average values for individual eudialyte crystals measured in this study. Chondrite values from (Sun and McDonough (1989).



Figure 13. LA-ICP-MS elemental concentrations (ppm) plotted against <sup>147</sup>Sm/<sup>144</sup>Nd from three KSC eudialyte samples. A) All samples show a negative relationship between Sm/Nd ratio and Ta concentration. B) Two of three measured samples show a positive relationship between Sm/Nd ratio and Ti concentration. C) All samples show a negative relationship between Sm/Nd ratio and Nb concentration. D) All samples show a negative relationship between Sm/Nd ratio and Mn concentration.

# 2.6.3 Electron Microprobe

Two samples (KP1, KP9) were analyzed via EMP. Mapping reveals zonation in the distribution of certain elements mentioned above. Nb and Mn maps proved most useful for examining eudialyte due their relatively high concentrations and resulting easily distinguishable zoning contrast. Nb mapping of a single large eudialyte crystal from sample KP9 shows a complex pattern of zonation (Figure 14). This consists of clear growth zonations within a euhedral-subhedral crystal which is then surrounded by texturally overgrown eudialyte rim with a patchy and irregular Nb distribution. Mn mapping of the same crystal shows a similar pattern (Figure 14). Although growth zonation is more muted,



Figure 14. Electron Microprobe (EMP) maps of selected elements in the large eudialyte crystal from sample KP9. Mn and Nb mapping reveals two distinct crystal domains, a central core and a peripheral rim. The core displays faint oscillatory zoning. Bright orange to white indicates high concentrations.

the core and rim can be distinguished. Ta and Ti maps reveal little other than bright spots corresponding to small britholite inclusions.

# 2.6.4 **ID-TIMS**

Two samples (KP1, KP9) were microdrilled for TIMS analysis, both samples yielded 8 drill pits. Full results of ID-TIMS isotopic analyses are presented in Table 3. The spread in <sup>147</sup>Sm/<sup>144</sup>Nd is relatively small, from 0.1752 to 0.2236 across all samples, <sup>143</sup>Nd/<sup>144</sup>Nd values ranged from 0.511955 to 0.512376 from 0.512074 to 0.512248. This range of <sup>147</sup>Sm/<sup>144</sup>Nd data are roughly consistent with the solution-ICP data of Wu et al.

| Sample ID     | 147Sm/144Nd | ±2 S.E. | 143Nd/144Nd | ±2 S.E.  | €Nd    | <sup>150</sup> Nd/ <sup>144</sup> Nd | Notes     |
|---------------|-------------|---------|-------------|----------|--------|--------------------------------------|-----------|
| eud12280<br>4 | 0.223621    | 0.00007 | 0.512376    | 0.000014 | -5.12  | 0.8861                               | bulk chip |
| KP1-2.1-1     | 0.207030    | 0.00020 | 0.512248    | 0.000009 | -7.60  | 1.9201                               | drilled   |
| KP1-2.1-2     | 0.198791    | 0.00002 | 0.512203    | 0.000006 | -8.48  | 3.3025                               | drilled   |
| KP1-2.1-3     | 0.198987    | 0.00001 | 0.512191    | 0.000007 | -8.72  | 3.6233                               | drilled   |
| KP1-2.1-4     | 0.202541    | 0.00004 | 0.512230    | 0.000011 | -7.96  | 3.3200                               | drilled   |
| KP1-2.1-6     | 0.181609    | 0.00001 | 0.512074    | 0.000009 | -11.00 | 3.1678                               | drilled   |
| KP1-2.1-7     | 0.181656    | 0.00002 | 0.512084    | 0.000016 | -10.80 | 6.9439                               | drilled   |
| KP1-2.1-8     | 0.184082    | 0.00003 | 0.512086    | 0.000010 | -10.76 | 2.3260                               | drilled   |
| KP1-2.1-9     | 0.183603    | 0.00001 | 0.512093    | 0.000004 | -10.63 | 2.5420                               | drilled   |
| KP1-2.1-10    | 0.198806    | 0.00002 | 0.512198    | 0.000005 | -8.59  | 1.2808                               | bulk chip |
| KP2-1-2       | 0.196243    | 0.00003 | 0.512169    | 0.000004 | -9.14  | 1.1349                               | bulk chip |
| KP2-1-3       | 0.177599    | 0.00002 | 0.512045    | 0.000005 | -11.56 | 1.0989                               | bulk chip |
| KP9_1         | 0.175205    | 0.00006 | 0.512020    | 0.000029 | -12.06 | 15.6410                              | drilled   |
| KP9_2         | 0.214392    | 0.00004 | 0.512309    | 0.000017 | -6.43  | 8.3174                               | drilled   |
| KP9_3         | 0.206532    | 0.00004 | 0.512270    | 0.000012 | -7.18  | 12.3564                              | drilled   |
| KP9_4         | 0.207536    | 0.00002 | 0.512281    | 0.000015 | -6.97  | 8.8572                               | drilled   |
| KP9_5         | 0.212032    | 0.00002 | 0.512301    | 0.000013 | -6.58  | 4.1855                               | drilled   |
| KP9_6         | 0.182213    | 0.00003 | 0.512086    | 0.000005 | -10.76 | 1.1084                               | drilled   |
| KP9_7         | 0.194570    | 0.00003 | 0.512170    | 0.000014 | -9.13  | 2.9247                               | drilled   |
| KP9_8         | 0.184699    | 0.00002 | 0.512107    | 0.000004 | -10.36 | 1.0811                               | drilled   |

Table 3. Kipawa Syenite Complex ID-TIMS data.

(2010) ( $^{147}$ Sm/ $^{144}$ Nd=0.2079), but much lower than their LA-ICP data ( $^{147}$ Sm/ $^{144}$ Nd=0.2438).



Figure 15. Isochrons plotted in the course of this study. A) Bulk isochron based on 4 ID-TIMS analyses of eudialyte 'bulk chips' from samples KP1, KP2, and EUD122804. Black dot shows Wu et al. (2010) solution-ICP results, red dot shows Wu et al. (2010) LA-ICP-MS results. B) Internal mineral isochron from sample KP1. C) Internal mineral isochron from sample KP9. All eight analyses were sampled using the micromill sampling procedure. All isochrons created using Isoplot.

Repeated analyses of 4ng AMES Nd standard solution run over the course of the study yield a <sup>143</sup>Nd/<sup>144</sup>Nd value of 0.512152  $\pm$ 0.000010 (18.75 ppm, 2 $\sigma$ ; n=36). Analyses of 20 ppm Ames Sm standard solution yield a <sup>147</sup>Sm/<sup>144</sup>Nd reproducibility of 0.054%. External reproducibility was used for all age calculations except in instances where the internal reproducibility was worse. A procedural blank run alongside samples yielded a measured Nd value of 6.4 pg. Analyses of bulk chip samples where sample weights were accurately measured yield Sm and Nd concentrations consistent with LA-ICP-MS results.

Four isotope analyses by ID-TIMS of bulk chip aliquots from three KSC hand samples all plot on a line (MWSD= 1.5) corresponding to an age of  $1092\pm53$  Ma with an initial <sup>143</sup>Nd/<sup>144</sup>Nd of 0.510769±0.000069 for a 'bulk isochron' (Figure 15). Within a single crystal from sample KP1 an isochron based on 8 drilled aliquots yields an age of 1066±56 Ma (MSWD=1.7) and an initial <sup>143</sup>Nd/<sup>144</sup>Nd of 0.510805±0.000071 (Figure 15). Analysis of 8 drilled samples from sample KP 9 yield an age of 1109±53 Ma with an initial <sup>143</sup>Nd/<sup>144</sup>Nd of 0.510759±0.000069 (MSWD= 1.2) (Figure 15). The weighted average of these three isochron-based eudialyte ages is 1090±31 Ma.

## 2.7 DISCUSSION

Direct eudialyte geochronology has been attempted previously by Wu et al. (2010; Kipawa Syenite Complex and others), Crocker (2014; Red Wine Intrusive Suite), and Sjöqvist et al. (2020; Norra Kärr). Both Wu et al. (2010) and Crocker (2014) utilized the U-Pb system; the identification of galena (Figure 10) inclusions in eudialyte from the KSC should raise concerns regarding common Pb here and elsewhere for those attempting to date eudialyte by U-Pb. Indeed Wu et al. (2010) conclude common Pb is problematic for eudialyte U-Pb without measuring other common accessory minerals like apatite and titanite to assess common Pb. The Wu et al. (2010) U-Pb age of 1012±16 Ma is cast in doubt given the identification of galena in Kipawa samples in this study. The Sm-Nd age of Wu et al. (2010) is essentially a three point isochron based largely on laser ablation data that does not correspond well to solution data from the same sample. In addition, the isotope data from Wu et al (2010) do not align with the data collected in our study (Figure 15). We conclude that analytical issues likely impacted the accuracy of the Wu et al. (2010) data, and without raw data or <sup>147</sup>Sm/<sup>144</sup>Nd uncertainties reported in their paper, it is difficult to assess their results.

Eudialyte samples from the KSC are enriched in all the REE relative to chondrite (Sun and McDonough, 1989 C1 chondrite) by a factor of ~1200 (Eu) to ~11,500 (Yb).



Figure 16. Chondrite normalized rare earth element (REE) spider diagram for all complexes measured in the course of this study and one additional (Ilímaussaq) for comparison. Abbreviations: KP: Kipawa Syenite Complex, NK: Norra Kärr, LV: Lovozero, IL: Ilímaussaq complex, data from Wu et al. (2010). Chondrite values from Sun and McDonough (1989).

HREE enrichment increases consistently from Gd to Yb (Figure 16).Chondrite normalized REE spider diagrams reveal unusual enrichment in HREE in the KSC compared to other eudialyte ore bodies near the Grenville Front (Nora Kärr, Ilímaussaq, Red Wine), taken from Sjöqvist et al. (2020), Wu et al. (2010) and Chapter 3, respectively. These analyses also show a pronounced negative Eu anomaly despite high enrichment over chondrite.

Strong Eu anomalies suggest derivation from a source where plagioclase had been previously fractionated, consistent with partial melting of older continental crust with plagioclase in the restite. Compared to other analyses of eudialyte from Grenvillian peralkaline complexes the REE profile of Kipawa samples shows exceptional HREE enrichment (Figure 16). The REE profile of Nora Kärr eudialyte is the most similar to KSC samples with both a strong europium anomaly and significant HREE enrichment. Red



Figure 17. Electron Microprobe (EMP) map selected elements in several eudialyte crystals from sample KP1. Nb and Mn reveal faint concentric zonations similar to those revealed by Mn mapping.

Wine Intrusive Suite samples show a similar europium anomaly but less pronounced HREE enrichment, as do Ilímaussaq samples which share a geochemical affinity with Red Wine samples (Kerr, 2011). In contrast, samples from the much younger (370±7 Ma; Kramm and Kogarko, 1994)) Lovozero Alkaline Massif lack both a europium anomaly and HREE enrichment. Overall the REE profile from Lovozero Massif is consistent with that of rock produced through the partial melting of a mantle source and only a short period of crustal residence. Van Breeman and Currie (2004) attributed the exceptional HREE content in the KSC to metasomatism by a Fluorine-rich fluid. However, the broad similarity of REE profiles across the samples associated in space and time suggest broader differences between Grenvillian samples and other eudialyte localities (such as Lovozero).

LA-ICP-MS data revealed correlations between some elements (Nb, Ta, Ti, Mn, Mg, and La) and Sm/Nd ratio (Figure 13). Subsequent high precision Electron Microprobe mapping of individual eudialyte crystals illuminated complex zonations for several of these elements. Based on the correlative relationships between certain elements (Nb, Ta, Ti, Mn, Mg, and La) and Sm/Nd ratio it was hypothesized that EMP maps can be used as proxies for Sm/Nd in eudialyte. Nb and Mn mapping proved most informative for mapping eudialyte with both relatively large concentrations and large variation in concentration across crystals. Mapping of sample KP1 revealed rhythmic concentric zonations within several euhedral-subhedral eudialyte crystals (Figure 17). A map of sample KP9 revealed similar rhythmic euhedral zonation within the core of a single large eudialyte crystal (Figure 18). The margins of the crystal core are regular and surrounded by a less clearly zoned rim. This mapping clearly reflects a more complex growth history, with at least two texturally distinct phases of growth.

Selective drilling and ID-TIMS analysis of crystal sectors in sample KP9 support the relationship between Nb, Mn and <sup>147</sup>Sm/<sup>144</sup>Nd (Figure 18). This confirms that EMP mapping of Nb or Mn can be used to map <sup>147</sup>Sm/<sup>144</sup>Nd by proxy. This new procedure will simplify the characterization of eudialyte, providing greater speed, and a higher likelihood of maximizing <sup>147</sup>Sm/<sup>144</sup>Nd differences and thus analytical precision; indeed, the EMP guided microdrilling of KP9 yielded a broader spread of <sup>147</sup>Sm/<sup>144</sup>Nd than sample KP1 which was done 'blind'. The textures revealed by EMP mapping can also provide important context for the ages derived from drilling and ID-TIMS, such as open system remobilization of inclusion contamination.

Maps of a separate chip from sample KP1 produced after drilling reveal simple concentric zoning within eudialyte crystals consistent with a single growth generation (Figure 17). In contrast, the large crystal from KP9 appears shows a more complex,



Figure 18. EMP map of Nb in a single large eudialyte crystal from sample KP9. The image is annotated with the location of drillholes and the measured <sup>147</sup>Sm/<sup>144</sup>Nd ratio. Results corroborate the negative relationship between Nb and <sup>147</sup>Sm/<sup>144</sup>Nd ratio.

multiphase history. Pit locations in KP 9 were selected in an attempt to examine the age relations between core and rim, should they be resolvably different (Figure 18). The low MSWD of all 8 points in sample KP9 (MSWD=1.2) is robust statistical confirmation of a true linear isochron relationship (i.e., Wendt & Carl 1991), thus evidence for a single age of growth, at least at the present level of precision. Furthermore, age concordance across all analyzed samples and isochrons (KP1, KP2, KP9, and EUD122804) from both bulk chip and drilled samples suggests a single uniform age across KSC eudialyte samples. The weighted average of these three robust isochron-based ages is 1090±31 Ma, interpreted here as the crystallization age for eudialyte throughout the Kipawa Syenite Complex.

The weighted mean of  $1090\pm31$  Ma is the oldest date yet determined for any portion of the KSC, predating the interpreted emplacement date of Currie and van Breeman (2004) by 58 Ma (Figure 19). Along with new constraints on eudialyte formation, we propose that the zircon U-Pb ages of  $1033\pm3$  Ma (van Breeman and Currie, 2004) and 994±2 (Currie and van Breeman, 1996) represent the range of metasomatic zircon growth as part of a late alteration assemblage (Karup-Møller et al., 2010) caused by the introduction of outside, possibly F-rich fluids during the waning stages of the Rigolet phase of the orogeny. The 1090±31 Ma age of eudialyte formation falls at the onset of the Ottowan phase of the Grenville Orogeny suggesting a tectonic correlation with eudialyte ore mineralization. It is possible that this age corresponds to the initial igneous emplacement



Figure 19. Generalized structural column along transect A-B (Figure 5) and summary of relevant geochronology. Abbreviations: Zrc: zircon; Eud: eudialyte; Avg: weighted average. Data from: Currie and van Breeman, 1996 (points 1,5); van Breeman and Currie, 2004 (points 2,3,4); Wu et al., 2010 (points 6,7). Age of 2717 Ma for the Kikwissi Gneiss is from van Breeman and Currie, 2004. Structural column modified from Matamec, 2011. of the KPC within the surrounding rocks; however, there is no other igneous

geochronology to support this. Perhaps a more likely scenario is that this age represents a metamorphic remobilization, enrichment, and ore mineralization event driven by Ottowan crustal heating of an older peralkaline rock. In this scenario, the age of primary igneous emplacement could be closer to the zircon ages recorded in the surrounding Red Pine Chute orthogneiss ( $1389 \pm 8$  Ma) (Figure 19). Such a genetic model would be consistent with the interpretation of Sjöqvist et al. (2020) for Nora Karr where eudialyte mineralization

corresponded to low-T metamorphic melting and re-mobilization nearly 300 Myr after primary igneous emplacement. At Kipawa, the conditions of Ottowan metamorphism were much hotter, perhaps high enough to obliterate or obscure any geochronologic record of an earlier primary igneous crystallization.

To help test this idea, the Nd-model ages were examined. Epsilon Nd ( $\epsilon$ Nd) values from these samples are strongly negative (-5.12 to -12.06) and plot well away from the modeled depleted mantle (cf. DePaolo et al. 1991) (Figure 20). Such low  $\epsilon$ Nd data from these samples offer strong evidence for derivation from reworking of older preexisting continental crust. If eudialyte has been remobilized from older continetal crust rather than directly from the mantle an appropriate crustal evolution trend must be used to calculate



Figure 20. Model for Nd isotopic evolution of KSC eudialyte. Data points converge on an initial value of  $^{143}$ Nd/ $^{144}$ Nd= 0.510805 ( $\epsilon$ Nd=-8.9). The grey field shows range of possible TDM ages based on regional whole rock  $^{147}$ Sm/ $^{144}$ Nd values (Dickin). Dotted line indicated evolution modeled using method of DePaolo et al. (1991).

an accurate model age. Using the range of <sup>147</sup>Sm/<sup>144</sup>Nd whole rock values (0.08-0.13) reported in this region from Nd model age mapping (Dickin and Guo, 2001) yields TDM ages ranging from 2.0 to 2.4 Ga (Figure 20). These represent the range of possible ages depending on whole rock composition. Based on the method of DePaolo et al. (1991) we calculate a model age for eudialyte samples of 2.28 Ga, which falls in the middle of the aforementioned range. Considering the agreement of the two methods, we consider the model age from the DePaolo et al. (1991) method of 2.28 Ga to be representative of the likely crustal evolution. Use of this method also provides consistency with other works (Kay et al., 2017; Borg and DePaolo, 1994). In this region of the Grenville Province Dickin and Guo (2001) interpret similar model ages (1.9-2.6 Ga) as characteristic of remelted Archean crust. This result suggests that eudialyte (and rare elements) were sourced from the reworking of Archean crust of the Canadian Shield onto which the Grenville Province was thrust. Clearly, the eudialytes of Kipawa are not primary mantle derivatives.

The Nd isotopic evolution of the KSC is distinctly different from that of the Lovozero Alkaline Massif. Isotopic data from Sjöqvist et al. (2020) and a crystallization age of  $370 \pm 7$  Ma (Kramm and Kogarko, 1994) indicate direct derivation from the mantle with a  $\epsilon$ Nd value of 4.7 (Figure 21). Taken together isotopic and geochemical illustrate two distinct deposit types (Figure 21). The KSC is derived from the reworking of older continetal crust and shows unusual enrichment in HREE. The Lovozero Alkaline Massif, is mantle derived and lacks HREE enrichment or any trace of a europium anomaly (Figure 16).

It is also instructive to compare the Kipawa eudialytes to other Proterozoic eudialyte deposits at Ilímaussaq, and Nora Kärr which share a roughly similar geochemical pattern, age, and tectonic history. It is reasonable to infer that characteristic HREE enrichment noted at these sites is related to unique conditions or processes present at this time of orogensis, likely the repeated cycles of compression and extension along the



Figure 21. Model for Nd isotopic evolution of KSC and LV eudialyte. LV evolution is based on a crystallization age of 370 Ma. and isotopic ratios measured by Sjöqvist et al. (2020):<sup>143</sup>Nd/<sup>144</sup>Nd=0.512693, <sup>147</sup>Sm/<sup>144</sup>Nd=0.119804.

Grenville Front resulting in the large-scale reworking of older continental crust. Furthermore, the magnitude of HREE enrichment seems be higher at Kipawa and Nora Karr (which experienced metamorphic reworking) as opposed to Ilímaussaq (which is a primary igneous body that escaped Grenville metamorphism). This would support the idea that both Nora Karr and Kipawa acquired their higher HREE enrichment because of metamorphic remobilization. Ottowan metamorphism was deeper and hotter than at Nora Kärr perhaps leading to the even greater HREE enrichment in eudialytes observed.

## 2.8 CONCLUSION

The examination of KSC eudialyte by ID-TIMS yields two important results. First, eudialyte mineralization at the KSC is robustly constrained by both internal mineral isochrons and a bulk isochron. The weighted mean of these ages is the oldest age yet recorded from the KSC at 1090± 31 Ma and represents the age of eudialyte ore mineralization. The lack of firm geochronological constraints on the primary emplacement age for the Kipawa syenite complex as a whole precludes a definitive conclusion regarding eudialyte remobilization through metamorphic partial melting such as those from Nora Kärr (Sjöqvist et al., 2020), although surrounding rocks do indicate older igneous ages of 1250-1450 Ma. However, Nd isotopic data suggest derivation from the reworking of older continental crust, and the extreme HREE enrichment of Kipawa eudialytes is consistent with the idea that Kipawa did experience a metamorphic remobilization from a preexisting peralkaline igneous rock. The age and Nd isotopic signature of KSC eudialyte are consistent with an origin in Archean continental crust most recently reworked in the early stages of the Ottowan phase of the Grenville Orogeny. We propose that this genetic model of metamorphic remobilization and ore mineralization following primary igneous emplacement is unique to agpaitic rocks along the Grenville Front that acquire the highest, and most economically favorable, HREE eudialytes.

Second, we demonstrate the utility of EMP elemental mapping of eudialyte for characterization of eudialyte prior to micromill sampling for ID-TIMS internal mineral geochronology. Strong negative correlations between elements such as Nb or Mn and <sup>147</sup>Sm/<sup>144</sup>Nd identified by LA-ICP-MS are vividly reflected in paired EMP mapping and MicroMill drilling. Crystal domains shown to have high concentrations of Nb have the lowest <sup>147</sup>Sm/<sup>144</sup>Nd values, and the areas with the lowest Nb concentrations have the highest <sup>147</sup>Sm/<sup>144</sup>Nd values. This method provides an effective and easily mapped proxy for Sm/Nd in eudialyte. EMP maps of Nb or Mn can be used to maximize <sup>147</sup>Sm/<sup>144</sup>Nd spread and age precision in future studies utilizing eudialyte internal mineral geochronology.

Future study could seek to establish a more concrete constraint on the timing of igneous emplacement for the KSC in order to test our genetic model hypothesis for the high HREE eudialytes at Kipawa. Furthermore, the examination of a larger suite of eudialyte samples, especially samples from late-stage agpaitic pegmatites described by van Breeman and Currie (2004), would add to our knowledge of age relationships and test our assertion of a single generation of eudialyte growth.

# 3.1 ABSTRACT

The Proterozoic Red Wine Intrusive Suite has been explored as a potential REE ore body and is a heretofore unexploited REE resource. The petrogenesis of this and similar eudialyte ore bodies (i.e., Norra Kärr, Sweden) remains uncertain, including the role of metamorphic remobilization in ore formation. Accurate geochronology of eudialyte can help resolve whether the ore formed during Grenvillian metamorphism or earlier igneous emplacement. This study improves upon the internal-isochron eudialyte geochronology method developed by Sjöqvist et al. (2020) through the addition of Electron Microprobe mapping prior to precise MicroMill sampling to build Sm/Nd internal mineral isochrons to directly date this potential rare earth element ore mineral. We show that Nb and Mn concentrations correlate with Sm/Nd ratios in zoned eudialyte crystals, providing a qualitative map to guide microsampling. A single internal eudialyte isochron yields an ages of 765±240 Ma (MSWD=3.7) while the high-Nb sector of this crystal yields and age of 704±120 Ma (MSWD=1.6). A multi-sample eudialyte and mosandrite bulk isochron produces an age of 989± 150 Ma (MSWD=15). The latter age reflects Grenvillian crystallization, while the age of the high-Nb zone reflects a younger recrystallization event. This young age emphasizes the sensitivity of eudialyte considering the relative quiescence of the region since the Grenville orogeny. Nd model ages suggest derivation from the mantle T<sub>DM</sub>=1.80. Based on this model age and additional data three distinct deposit types are identified.

# 3.2 REGIONAL GEOLOGY

## 3.2.1 Red Wine Intrusive Suite

The Red Wine Intrusive Suite (RWIS) is located in Central Labrador ~100 km east of the three-way junction between the Grenville, Nain, and Southeastern Churchill provinces (Figure 22). In This portion of the Grenville Province most basement rocks are of Paleoproterozoic age and experienced extensive intrusion and deformation during the Mesoproterozoic (Gower and Krogh, 2002) (Figure 1). Located in close proximity to the GFTZ, many units in this area can be traced into adjacent provinces (Wardle et al., 1986).



Figure 22. Geologic provinces of Labrador. Red Wine Intrusive Suite (RWIS) indicated by red circle, note proximity to province boundary. Illustration by Duleepa Wijayawardhana.

Several authors (Thomas, 1981; Miller, 1988; Kerr, 2011) have reported on the Letitia Lake Area (Figure 23) which hosts several zones of REE mineralization including the Red Wine Intrusive Suite all within the Parautochthonous Belt (Figure 4). Early mineral exploration in this area focused on radiometric anomalies to the north. Recent investigations have emphasized the intense nature of deformation in the area around Letitia



Figure 23. Geologic map of the Letitia Lake Area. A) regional map showing both the North and South Red Wine Plutons, breakout images are indicated by dashed lines. B) Geology of the North Red Wine Pluton. Samples examined in this study are from the Cabernet deposit. C) Geology of the South Red Wine Pluton. Modified from Kerr (2011).

Lake (Kerr, 2011), in contrast with earlier studies which fail to emphasize the intensity of deformation (Currie and Curtis, 1981; Thomas, 1981).

The Letitia Lake Group and Red Wine Intrusive Suite are the primary focus of local mineral exploration. The LLG contains areas of Zr, Nb, and Be mineralization within shear Red Wine Intrusive Suite hosts eudialyte and britholite the zones and ((Ce,Ca,Th,LA,Nd)<sub>5</sub>(SiO<sub>4</sub>, PO<sub>4</sub>)<sub>3</sub>(OH,F)) mineralization in agpaitic units (Figure 23). Based on spatial proximity, geochemical similarities, and geochronological data, a cogenetic link between the LLG and the RWIS has been previously proposed (Gandhi et al., 1988). Such a model suggests that isolated syenitic bodies within the LLG are higher level constituents of the Red Wine Intrusive Suite (Kerr, 2011). The chondrite normalized REE profile of the Letitia Lake Group shows pronounced LREE enrichment, similar to what would be expected as a residual of partial melting (Kerr, 2011). By contrast the Red Wine Intrusive Suite shows a flat chondrite-normalized profile, reflecting relative HREE enrichment. These contrasting REE patterns have been cited, along with geochronological data, to suggest that the Red Wine Intrusive Suite was derived from the same source material as the Lake Letitia Group (Curtis and Currie, 1981). By invoking partial melting of a shared source LREE enrichment and HREE enrichment in the two units can be reconciled.

As many as eight zones of significant mineralization have been identified in the North Pluton, and similar occurrences have been discovered recently in the South Pluton (Kerr, 2011) (Figure 23). Two modes of mineralization are recognized. The first of which is as a disseminated constituent or discrete, concordant, layers of large crystals in syenite. Layers can be up to 50% eudialyte, and eudialyte crystals show signs of rotation within the matrix (Kerr, 2011). Large crystals have been interpreted as phenocrysts or porphyroblasts present prior to deformation. Where multiple eudialyte-rich layers are present in a single locality disseminated eudialyte is usually present within the intervening syenite (Kerr, 2011).

The RWIS occurs as a large unit of peralkaline quartzofeldspathic gneiss containing isolated lenses of agpaitic gneiss (Figure 23) (Curtis and Currie, 1981). The primary occurrences of agpaitic gneiss form two plutonic centers uncreatively named North Red Wine Pluton and South Red Wine Pluton. Both plutonic centers become increasingly silicaundersaturated towards their centers where silica-undersaturated rocks are predominantly nepheline syenite (Currie and Curtis, 1981).

The surrounding peralkaline gneiss has been constrained by a U-Pb zircon date of 1337 +10/-7 Ma (Gandhi et al., 1988) while the nepheline syenites are dated only by a poorly constrained 11-point Rb-Sr isochron at 1345±75 Ma (Curtis and Currie, 1981) (Figure 24). Eudialyte occurs in syenite as a disseminated constituent or in discrete,



Figure 24. Geology and relevant geochronology of the Red Wine Intrusive Suite. Abbreviations: W.R.: Whole rock (multi-mineral isochron); Zrc: zircon; Bri: britholite; Eud: eudialyte. Data from: Thomas, 1981 (1,6); Hill and Thomas (2,5), 1983; Romer et al., 1995 (3); Curtis and Currie, 1981 (4,10); Blaxland and Curtis, 1977 (7); Gandhi et al., 1988 (8); Singh, 1972 (9); Crocker, 2014 (11,12). Map modified from Kerr (2011)

concordant layers of large crystals (Kerr, 2011). Significant mineralization also occurs in cross cutting leucocratic pegmatites, usually composed of albite, arfvedsonite, and eudialyte.

## 3.3 SAMPLES

Matthew Crocker formerly of Memorial University of Newfoundland provided several quarter cut drill core samples analyzed in his 2014 master's thesis, which was conducted in coordination with Search Minerals Inc. Materials from M. Crocker (including sample CB 02-12) were sourced from the Cabernet and Pinot Rose deposits (Figure 23 B). Search Minerals also provided half cut drill core samples from the Cabernet Deposit (Figure 23 B), the drill core CBD-11-10 was acquired as part of the 2011 drilling campaign.



Figure 25. Map of Search Minerals diamond borehole drill sampling sites. Core CBD 11-10 circled in red. Inset shows generalized geology of the North Red Wine Pluton. Black polygon shows outline of Search Minerals prospect, yellow outline indicates location of area indicated. The outline of the inset is the same as Figure 23B. Modified from Crocker (2014).

RWIS samples for LA-ICP-MS and other analysis were selected from the larger half cut drill core samples based largely on sample size and quality, both from the Cabernet Deposit (CBD). Samples were cut to size at Boston College, samples CBD 11-10-1 and CBD 11-10-2 were polished for analysis at the University of Gothenburg. Sample CB 02-12 was thin sectioned by Wagner Petrographic.

## 3.3.1 CBD 11-10-1

Sample CB 11-10-1 was acquired directly from Search Minerals and is dark greenblack with some lighter matrix components (Figure 26). Eudialyte grains are relatively small, equant, and disbursed. Minerals identified using SEM EDS include aenigmatite (Table 1), microcline, albite, arfvedsonite, aegerine, pyrite, nepheline, and eudialyte.



Figure 26. True color scan of sample CBD 11-10-1. Note dispersed pink eudialyte grains.

## 3.3.2 CBD 11-10-2

Sample CB 11-10-2 was acquired directly from Search Minerals. The sample is primarily dark green and pink (Figure 27). The pink color is due to a large eudialyte vein with white feldspars, and several large arfvedsonite crystals. The surrounding rock is comprised primarily of arfvedsonite, nepheline, and some minor constituents (Figure 27).



Figure 27. Sample CBD11-10-2. A) Photo of sample and surrounding drill core prior to cutting. Photo provided by Search Minerals. B) True color scan of sample billet. Note large eudialyte grains with associated amphibole.

## 3.3.3 CB 02-12

This sample was acquired from M. Crocker from materials he used for his Master's thesis. Sample is primarily green and white with clumps of pink eudialyte and black amphibole (Figure 28 B). White is nepheline and albite/microcline, green color is due to small grains of arfvedsonite. Sample is clearly deformed with a gneissic texture. Eudialyte grains are roughly equant and the clots of eudialyte and amphibole are reminiscent of garnets from more common gneisses. Thin section shows albite, microcline, arfvedsonite (Na<sub>3</sub>(Mg,Fe)<sub>4</sub>AlSi<sub>8</sub>O<sub>22</sub>(OH,F)<sub>2</sub>), eudialyte, nepheline, clinopyroxene, and aenigmatite (Na<sub>2</sub>Fe<sub>5</sub>TiSi<sub>6</sub>O<sub>20</sub>) (Figure 28 A).



Figure 28. Sample CB 02-12.A) Thin section under cross polarized light. B) Photograph of sample chip, pink blots are eudialyte. Abbreviations: Aen: aenigmatite; Eud: eudialyte; Mcl: Microcline.

# 3.4 METHODS

See Chapter 2 for procedural details regarding laboratory methods. Sample were selected for examination primarily based on eudialyte crystal size. Sample CB 02-12 was received in the spring of 2019 and was cut and thin sectioned. After thin sectioning the chip was

sampled by hand for bulk TIMS analysis. Samples CBD 11-10-1 and CBD 11-10-2 were received in the fall of 2019 and slabbed for SEM, LA-ICP-MS, and EMP analysis based on large sample and crystal size. Following SEM an LA-ICP-MS analysis sample CBD 11-10-2 was selected for drilling and ID-TIMS. Six pits were drilled without the benefit of EMP mapping in February of 2020, based on zonation identified in LA-ICP-MS transects across individual eudialyte crystals. The remaining pits were drilled after EMP analysis in November 2020, drill sites were selected using combined LA-ICP-MS and EMP data.



Figure 29. SEM BSE image of sample CBD11-10-2 with overlaid with EDS based mineral identifications. Abbreviations: Ab: albite; Nep: nepheline; Cpx: clinopyroxene (aegerine); Mcl: microcline; Py: pyrite; Eud: eudialyte.

# 3.5 **RESULTS**

## 3.5.1 SEM

The examination of eudialyte samples (CBD 11-10-1, CBD 11-10-2) by BSE revealed little apparent zonation or textural zones even when brightness and contrast were optimized to focus on small changes within single crystals (Figure 29). While not revealing vivid zonation, BSE images make it easy to distinguish clean, inclusion free eudialyte. Accidentally drilling a small amount of aenigmatite or pyrite in later stages would not be



Figure 30. SEM BSE image of sample CBD11-10-2 with overlaid with EDS based mineral identifications. Abbreviations: Ab: albite; Nep: nepheline; Cpx: clinopyroxene (aegerine); Mcl: microcline; Py: pyrite; Eud: eudialyte.

problematic for eudialyte Sm/Nd analysis, however even a small amount of mosandrite have the potential to significantly contaminate a drilled eudialyte sample due to its relatively high REE content.

Through the use of EDS and INCA analytical software, several constituents were positively identified, consistent with findings from the CB 02-12 thin section (Figure 28). These minerals include microcline albite, nepheline, clinopyroxene, and pyrite. EDS analysis also informed the identification of natrolite (Na<sub>2</sub>Al<sub>2</sub>Si<sub>3</sub>O<sub>10</sub>·2H<sub>2</sub>O) and catapleiite (Na<sub>2</sub>ZrSi<sub>3</sub>O<sub>9</sub>·H<sub>2</sub>O) (Figure 29, Figure 30).

## **3.5.2 LA-ICP-MS**

LA-ICP-MS analyses from samples CBD 11-10-1 and CBD-11-10-2 show high concentrations of REE in eudialyte. Absent visible zonations transects across eudialyte crystals were analyzed in an effort to gain information across the crystal. Total rare earth elements (REE+Y) range from 1.53 wt.% to 1.97 wt.% along with 8.59 to 10.42 wt.% Zr, an essential component of eudialyte. REE spider diagrams (Figure 31) highlight the high concentrations of REE in RW eudialyte and the moderate enrichment of HREE relative to chondrite.

The concentrations of most elements show a relatively poor correlation with <sup>147</sup>Sm/<sup>144</sup>Nd. Na, Nb, La, Mn, and Al all show a mix of weak positive and negative

| Element | Avg. R <sup>2</sup> |  |  |
|---------|---------------------|--|--|
| Y       | 0.208               |  |  |
| Mg      | 0.145               |  |  |
| La      | 0.118               |  |  |
| Al      | 0.098               |  |  |
| Nb      | 0.094               |  |  |
| Mn      | 0.083               |  |  |
| Та      | 0.064               |  |  |
| Na      | 0.027               |  |  |
| Zr      | 0.023               |  |  |
| Cl      | 0.011               |  |  |

Table 4. Summary selected elements showing a relationship with <sup>147</sup>Sm/<sup>144</sup>Nd ratio as measured by LA-ICP-MS, and the average R<sup>2</sup> value for each element vs. the <sup>147</sup>Sm/<sup>144</sup>Nd ratio relationships with <sup>147</sup>Sm/<sup>144</sup>Nd (Table 4, Figure 32). CB 11-10-1 shows a broader range of <sup>147</sup>Sm/<sup>144</sup>Nd values (0.1590 to 0.1996) but <sup>147</sup>Sm/<sup>144</sup>Nd does not correlate well with the concentration of most elements (Figure 32). By contrast, CBD 11-10-2 shows stronger correlations, but lower range of <sup>147</sup>Sm/<sup>144</sup>Nd ratios (0.1751 to 0.1923) (Figure 32). The five elements showing the best correlation with <sup>147</sup>Sm/<sup>144</sup>Nd (Na, Mn, Al, Nb, La (Table 4) were selected for EMP mapping.



Figure 31. Chondrite normalized rare earth element (REE) spider diagram from the Red Wine Intrusive Suite (RWIS). The grey field indicates range of measured values. Colored lines are average values for individual eudialyte crystals in samples CBD 11-10-1 and CBD 11-10-2. Chondrite values from Sun and McDonough (1989).


Figure 32. LA-ICP-MS elemental concentrations (ppm) plotted against <sup>147</sup>Sm/<sup>144</sup>Nd from two RWIS eudialyte samples. Sample CBD11-10-1 shown in orange, sample CBD11-10-2 shown in blue. Note stronger correlations in sample CBD11-10-2. A) Na. B) Al. C) La. D) Mn. E) Nb.

# 3.5.3 Electron Microprobe

Electron microprobe mapping of sample CBD 11-10-2 reveals zonation in the distribution of certain elements discussed above. Nb, Mn, and La maps proved most useful for examining eudialyte. Nb mapping of sample CBD11-10-2 revealed mild zonation in several eudialyte grains and clear zoning in one large crystal (Figure 33). Mn and La mapping reflect the same patterns but the zonation is less clearly defined. La mapping



Figure 33. Electron Microprobe (EMP) maps of sample CBD 11-10-2. Element mapped indicated in upper left corner. White outline indicates outline of Figure 32. Note gradient in EMP color from top to bottom; this is likely an artifact of focusing on non-uniform thickness of the slab.

allows for the quick identification of mosandrite, a potentially problematic contaminant for Sm/Nd isotopic analyses (Figure 33).

## 3.5.4 **ID-TIMS**

Full results of ID-TIMS isotopic analyses are presented in Table 5. The spread in <sup>147</sup>Sm/<sup>144</sup>Nd is relatively small, from 0.1483 to 0.1812 across all samples (Figure 34, Figure 35), <sup>143</sup>Nd/<sup>144</sup>Nd values ranged from 0.510302 to 0.512574. A single mosandrite analysis provides a lower <sup>147</sup>Sm/<sup>144</sup>Nd of 0.115079 and <sup>143</sup>Nd/<sup>144</sup>Nd of 0.512012 (Figure 34).



Figure 34. EMP map of La in sample CBD 11-10-2. Circles indicate drilled sample sites, and <sup>147</sup>Sm/<sup>144</sup>Nd ratios are displayed for successful analyses. Note poor zonation in sampled eudialyte crystal.

Repeated analyses of 4ng AMES Nd standard solution run over the course of the study yield a  $^{143}$ Nd/ $^{144}$ Nd value of 0.512152 ±0.000010 (18.75 ppm, 2\sigma; n=36). Analyses

of 20ppm Ames Sm standard solution yield a <sup>147</sup>Sm/<sup>144</sup>Nd reproducibility of 0.054%.

External reproducibility was used for all age calculations except in instances where the

internal reproducibility was worse. A procedural blank run alongside samples yielded a measured Nd value of 6.4 pg. Analysis of a bulk chip sample from CB 02-12 where sample weights can be accurately measured yield Sm and Nd concentrations consistent with LA-ICP-MS results.

| Sample ID        | <sup>147</sup> Sm/ <sup>144</sup> Nd | ±2 S.E. | <sup>143</sup> Nd/ <sup>144</sup> Nd | ±2 S.E.  | €Nd    | <sup>150</sup> Nd/ <sup>144</sup> Nd raw | Nd ppm | Sm ppm | Mineral    | Sample Type |
|------------------|--------------------------------------|---------|--------------------------------------|----------|--------|------------------------------------------|--------|--------|------------|-------------|
| CBD11-10-2-1     | 0.181217                             | 0.00003 | 0.512409                             | 0.000038 | -4.46  | 7.82                                     | N/A    | N/A    | Eudialyte  | Drill       |
| CBD11-10-2-2     | 0.165659                             | 0.00016 | 0.512382                             | 0.000008 | -4.99  | 9.10                                     | N/A    | N/A    | Eudialyte  | Drill       |
| CB-02-12         | 0.148292                             | 0.00002 | 0.512201                             | 0.00008  | -8.53  | 0.89                                     | 2978   | 730    | Eudialyte  | Bulk Chip   |
| CBD11-10-2-6     | 0.115079                             | 0.00021 | 0.512012                             | 0.000014 | -12.21 | 10.48                                    | N/A    | N/A    | Mosandrite | Drill       |
| CBD11-10-2-eud-1 | 0.173085                             | 0.00002 | 0.512351                             | 0.000019 | -5.60  | 2.83                                     | N/A    | N/A    | Eudialyte  | Drill       |
| CBD11-10-2-eud-2 | 0.176071                             | 0.00002 | 0.512409                             | 0.000011 | -4.48  | 2.02                                     | N/A    | N/A    | Eudialyte  | Drill       |
| CBD11-10-2-eud-3 | 0.164252                             | 0.00002 | 0.512334                             | 0.000008 | -5.92  | 1.84                                     | N/A    | N/A    | Eudialyte  | Drill       |
| CBD11-10-2-eud-4 | 0.180841                             | 0.00005 | 0.512408                             | 0.000057 | -4.48  | 2.76                                     | N/A    | N/A    | Eudialyte  | Drill       |
| CBD11-10-2-eud-5 | 0.162094                             | 0.00003 | 0.512322                             | 0.00008  | -6.16  | 1.52                                     | N/A    | N/A    | Eudialyte  | Drill       |
| CBD11-10-2-eud-6 | 0.165508                             | 0.00003 | 0.512354                             | 0.000016 | -5.53  | 1.97                                     | N/A    | N/A    | Eudialyte  | Drill       |
| CBD11-10-2-eud-7 | 0.167126                             | 0.00002 | 0.512341                             | 0.000008 | -5.78  | 1.83                                     | N/A    | N/A    | Eudialyte  | Drill       |
| CBD11-10-2-eud-8 | 0.178451                             | 0.00007 | 0.512399                             | 0.000010 | -4.65  | 2.17                                     | N/A    | N/A    | Eudialyte  | Drill       |

Table 5. Red Wine Intrusive Suite ID-TIMS data.



Figure 35. EMP map of NB in sample CBD 11-10-2. Circles indicate drilled sample sites and corresponding <sup>147</sup>Sm/<sup>144</sup>Nd values. Point 3 straddles dark and light, but based on <sup>147</sup>Sm/<sup>144</sup>Nd ratio it is likely the light color, High-Nb zone was sampled. Inset shows schematic zonation.

## 3.6 **DISCUSSION**

SEM analysis shows little zonation in BSE imagery and reveals relatively little about the samples (Figure 30). This is a stark contrast to eudialyte from Norra Kärr described by Sjöqvist et al. (2020) where a large eudialyte crystal was clearly zoned in BSE. The general mineralogy first assessed in hand sample and thin section is confirmed in addition to the identification of the accessory minerals natrolite and catapleiite (Figure 30).

LA-ICP-MS analyses of both samples analyzed reveal only weak relationships between <sup>147</sup>Sm/<sup>144</sup>Nd and elemental concentrations. Variation in <sup>147</sup>Sm/<sup>144</sup>Nd is small but present; however, it does not appear to clearly and consistently correlate with any of the elements measured (Figure 32). This is a stark contrast with Kipawa samples discussed in Chapter 2 that showed strong, clear, and consistent relationships between elemental (Ta, Ti, Nb, Mn) concentrations and <sup>147</sup>Sm/<sup>144</sup>Nd (Figure 13).



Figure 36. Chondrite normalized rare earth element (REE) spider diagram for all complexes measured in the course of this study. Abbreviations: KP: Kipawa Syenite Complex, NK: Norra Kärr, RW: Red Wine Intrusive Suite, LV: Lovozero Alkaline Massif. Chondrite values from Sun and McDonough (1989).

Eudialyte samples from the RWIS are enriched in all REE relative to chondrite (Sun and McDonough, 1989; C1 chondrite) by a factor of 1,050 (Eu) to 11,300 (La) (Figure 31). REE enrichment decreases from La to Lu. Chondrite normalized REE spider diagrams reveal enrichment in HREE in the RWIS compared to other localities (Lovozero, Ilímaussaq), but show markedly less HRRE enrichment than Norra Kärr or Kipawa (Figure 36). These analyses also show a pronounced Eu anomaly despite high enrichment over chondrite consistent with other Grenvillian samples. The broad similarity of REE profiles across the Grenvillian samples and other eudialyte localities, such as Lovozero. Strong Eu anomalies suggest derivation from a source where plagioclase had been previously fractionated, consistent with plagioclase fractionation at some stage of magmatic evolution. In contrast, samples from the much younger (370±7 Ma (Kramm and Kogarko, 1994)) Lovozero Alkaline Massif lack both a europium anomaly and HREE enrichment. Overall



Figure 37. SEM BSE images and EDS maps of eudialyte from Ilímaussaq, Greenland. Note cleat sector zoning similar to sample CBD 11-10-2. Modified from Borst et al. (2018).

the REE profile from Lovozero Massif is consistent with that of rock produced through the partial melting of a mantle source (Figure 36).



Figure 38. Isochron diagrams from the RWIS. A) Isochron based on all available analyses. B) Isochron based all eudialyte analyses, C) Internal mineral isochron from a single crystal in sample CBD 11-10-2. D) Isochron based solely on high-Nb crystal eudialyte (Figure 33). All plots made using Isoplot.

EMP mapping of sample CBD11-10-2 supports the general homogeneity within eudialyte crystals. However, there is some zoning, particularly in large (6mm), roughly equant crystals (Figure 33). The observed zonation bears a striking similarity to sector zoning in eudialyte from Ilímaussaq (Borst et al., 2018) (Figure 37). Even absent strong relationships between Mn, La, or Nb and <sup>147</sup>Sm/<sup>144</sup>Nd across all Red Wine samples, the sector zoning in eudialyte revealed by EMP mapping could prove fruitful in guiding microdrilling. Rakovan et al. (1997) and Sjöqvist et al. (2020) have previously demonstrated spread in <sup>147</sup>Sm/<sup>144</sup>Nd related to sector zonation in apatite and eudialyte. The

presence of sector zoning not revealed in the course of SEM examination underscores the utility of EMP characterization in eudialyte. Because <sup>147</sup>Sm/<sup>144</sup>Nd spread is a critical factor contributing to analytical precision in Sm/Nd geochronology, EMP mapping should be considered as a good first step for finding strongly zoned crystals where some zonation in <sup>147</sup>Sm/<sup>144</sup>Nd may be expected. Even if the zonation isn't true sector zoning, it may reveal different generations of crystal growth or re-precipitation that may each represent different ages and events; this may be the case at Red Wine.

ID-TIMS isotopic data provide new insight into the formation history of Red Wine eudialyte in several isochron plots. A 12-point isochron based on all available Red Wine analyses yield an isochron age of 989±150 Ma (MSWD=15) and an initial <sup>143</sup>Nd/<sup>144</sup>Nd of 0.51126±0.00017 (Figure 38) this age is probably most appropriate for establishing the time of primary REE ore mineral formation at Red Wine. Removing the mosandrite analysis from the isochron yields a similar age of 999±280 Ma (MSWD=17) and an initial <sup>143</sup>Nd/<sup>144</sup>Nd of 0.51125±0.00031 (Figure 38 A). Within a single crystal from sample CBD 11\_10\_2 an isochron based on 8 drilled aliquots yields an age of 765±240 Ma (MSWD=3.7) and an initial <sup>143</sup>Nd/<sup>144</sup>Nd of 0.51151±0.00027 (Figure 38 C). This age, while imprecise, is markedly younger. The high MSWD of these three isochrons (15, 17, and 3.7) suggests we may have sampled multiple age domains. To explore this idea, a five point isochron based solely on drill points from the high-Nb portions of the crystal yields a true isochron age of 704±120 Ma (MSWD=1.6) and an initial <sup>143</sup>Nd/<sup>144</sup>Nd of 0.51158±0.00013 (Figure 38 D).

ID-TIMS analyses have failed to produce a single precise age constraint for the age of eudialyte crystallization in the Red Wine Intrusive Suite (for example, in comparison to the results from Kipawa or Nora Kärr). However, some conclusions can still be drawn from the isotopic data. If all samples are considered together the isochron age is consistent with Grenvillian formation, but the precision of the age preclude any stronger conclusions regarding the particular phase of deformation involved (Figure 39). This isochron includes a mosandrite analysis which may violate the basic requirement of isotopic equilibrium. When mosandrite is removed the age is largely unchanged, but there is a deleterious effect on the age precision. With or without mosandrite the isotopic bare a distinctly Grenvillian



Figure 39. Geology and relevant geochronology of the Red Wine Intrusive Suite. Abbreviations: W.R.: Whole rock (multi-mineral isochron); Zrc: zircon; Bri: britholite; Eud: eudialyte. Data from: Thomas, 1981 (1,6); Hill and Thomas (2,5), 1983; Romer et al., 1995 (3); Curtis and Currie, 1981 (4,10); Blaxland and Curtis, 1977 (7); Gandhi et al., 1988 (8); Singh, 1972 (9); Crocker, 2014 (11,12).

age signal.

However when the large, zoned crystal, is examined alone a different signature becomes apparent. This age (765 $\pm$ 240 Ma) is younger and does not appear to correlate well with any recognized events in this region. The MSWD associated with this regression (3.7) still indicates significant geological scatter. The most robust age constraint produced here of 704 $\pm$ 120 Ma (MSWD=1.6) is based on the high-Nb zone alone (samples 3,5,6,7,8)

(Figure 35). Prior to isotopic analysis the observed zonation was thought to reflect sector zoning reminiscent of that observed elsewhere (Figure 37), but the isotopic data instead suggest two distinct eudialyte age populations. These data suggest that instead of sector zoning, the observed zonations correspond to relict cores of Grenvillian age enveloped by a younger generation of recrystallized eudialyte characterized by high Nb concentrations.

The results show the very real disturbance of the <sup>147</sup>Sm/<sup>144</sup>Nd system by late-stage partial recrystallization, such that drilled samples do not meet the critical criteria of isotopic equilibrium. The isotopic scatter observed in the RWIS samples is striking in comparison to KSC samples where nearly all samples clearly fell on a line when <sup>143</sup>Nd/<sup>144</sup>Nd and <sup>147</sup>Sm/<sup>144</sup>Nd were plotted, indicating broad equilibrium in the <sup>147</sup>Sm/<sup>144</sup>Nd system and a single consistent mineralization age..

The uncertainties associated with the RWIS ages produced in this work are large. Such large uncertainties preclude any firm statements on the origin (primary igneous or tectonically remobilized) of the Grenvillian age eudialyte. However, the age derived from the high-Nb zone clearly records a post-Grenvillian event of some variety. Labrador is generally considered to have been tectonically stable since the end of Grenvillian deformation and the age described here does not correlate well with any previously described events. The properties of eudialyte may allow partial recrystallization due to the passage of low temperature acidic fluids around 700 Ma that may have escaped previous geochronologic observation.

Nd-model ages were examined to explore the source and crustal residence time recorded by Nd isotopes. Epsilon Nd ( $\epsilon$ Nd) values from these samples are negative (average= -6.07) and plot away from the modeled depleted mantle (cf. DePaolo et al., 1991)

72

(Figure 40). Absent a representative whole-rock sample the method of DePaolo et al. (1991) we calculate a model age for eudialyte samples of  $1.80 \pm 0.1$  Ga.

Comparison to other nearby Proterozoic peralkaline localities further informs the interpretation of Nd model ages. The Ilímaussaq Alkaline Complex was emplaced around  $1156\pm 53$  Ma (Borst et al., 2019), and combined with weakly negative  $\varepsilon$ Nd values has a similar model age to that of RWIS calculated here (Figure 41). The Norra Kärr Alkaline Complex has a more complex evolutionary history, including significant metamorphic reworking (Sjöqvist et al., 2020), but has a similar model age at 1.69 Ma (Figure 41). These three Grenville localities all share a similar model age around 1.7 Ga. This suggests a similar crustal source, prior to remobilizing process that remelted the primary source and produced the rocks observed today. The RWIS, Norra Kärr, and Ilímaussaq show pronounced Eu anomalies (Figure 36) a notable difference from the less evolved Lovozero



Figure 40. Model for Nd isotopic evolution of RWIS eudialyte. The grey field shows range of possible TDM ages based on range of measured values. Dotted line indicated evolution modeled using average measured composition and method of DePaolo et al. (1991).

Massif. The Kipawa Syenite Complex shows more strongly negative  $\varepsilon$ Nd values and has a much older model age, ultimately resulting in a more HREE enrichment. It is worth noting that the Kipawa model age is very similar to the emplacement age of the much older (2.18 Ga) Nechalacho Layered Suite, Northwest Territories, Canada. When the isotopic composition of Nechalacho I plotted alongside data from Kipawa a similarity is clearly apparent, thus Nechalacho may serves as a useful model for the igneous precursor to the KSC in future studies.

Some drilling of eudialyte and mosandrite from sample CBD 11-10-2 took place prior to EMP mapping. Subsequent Mn and La maps show that the small eudialyte crystal sampled was mostly free of zonation (Figure 34). However, the second batch of drilled



Figure 41. Model for Nd isotopic evolution of Grenvillian eudialyte. Colored fields indicate values from each location. Dotted lines indicate evolution modeled using average measured composition and method of DePaolo et al. (1991). Lovozero and Nechalacho added for context. Ilímaussaq data from Borst et al. (2018), Nechalacho data from Möller and Williams-Jones. (2016).

samples were selected with the benefit of EMP maps. ID-TIMS results do show that as expected <sup>147</sup>Sm/<sup>144</sup>Nd does correlate negatively with Nb (Figure 35) in this single zoned crystal. This qualitative assessment appears to confirm that Nb in single eudialyte crystals can serve as a useful proxy for <sup>147</sup>Sm/<sup>144</sup>Nd in eudialyte here similar to results from the Kipawa Syenite Complex (see chapter 2). The crystal sampled from sample CBD-11-10-2, is small compared to that examined from Kipawa and is anhedral. Future work should focus on finding and examining euhedral-subhedral eudialyte from the RWIS, especially for a better constraint on the age of Grenvillian crystallization.

#### 3.7 CONCLUSION

This study aimed to examine the timing of eudialyte mineralization in the Red Wine Intrusive Suite of central Labrador using EMP guided internal mineral Sm-Nd geochronology. EMP has again shown to be an effective means of identifying strongly zoned eudialyte crystals even when zonation is not apparent in other imagery. Furthermore, based on correlative relationships between select elements and <sup>147</sup>Sm/<sup>144</sup>Nd EMP mapping of Nb and Mn can be used as a proxy map for <sup>147</sup>Sm/<sup>144</sup>Nd in eudialyte. A bulk isochron using all available data yields and age of 989±150 Ma (MSWD= 15) which is interpreted as a Grenvillian age signal. When drilled, a zoned crystal shows a small range of <sup>147</sup>Sm/<sup>144</sup>Nd and significant geologic scatter. Within this crystal two distinct age population can be recognized with an older core surrounded by younger high-Nb eudialyte (704±120 (MSWD= 1.6)). Overall, these results suggest a generally Grenvillian age for the formation of most Red Wine eudialyte with a later remobilization event effecting some crystals.

Nd model ages also facilitate the identification of three distinct deposit types. The Lovozero type, with a young model age similar to crystallization age and lacking both Eu anomaly and HREE enrichment, is indicative of mantle derivation and a short period of evolution. The Grenville, type, with a model age of ~1.7 Ga and much younger ore growth. This type shows an Eu anomaly and moderate HREE enrichment. The Kipawa type, with and old (2.3 Ga) model age and long crustal residence. This type is characterized by an Eu anomaly and high HREE enrichment.

## 4.0 **REFERENCES**

Allan, J.F., 1992, Geology and Mineralization of the Kipawa Yttrium-Zirconium Prospect, Quebec: Exploration Mining Geology, v. 1, p. 283-295.

Balinski, A., Wiche, O., Kelly, N., Reuter, M.A., and Scharf, C., 2020, Separation of rare earth elements from contaminants and valuable components by in-situ precipitation during the hydrometallurgical processing of eudialyte concentrate: Hydrometallurgy, v. 194, p. 105345.

Baragar, W.R.A., 1981, Tectonic and regional relationships of the Seal Lake and Bruce River magmatic provinces: Geological Survey of Canada; Hull, Qué.: Available from Canadian Government.

Baxter, E.F., Caddick, M.J., and Dragovic, B., 2017, Garnet: A Rock-Forming Mineral Petrochronometer: Reviews in.Mineralogy and Geochemistry, v. 83, p. 469-533.

Bethune, K.M., and Davidson, A., 1997, Grenvillian metamorphism of the Sudbury diabase dyke-swarm; from protolith to two-pyroxene--garnet coronite: The Canadian Mineralogist, v. 35, p. 1191-1220.

Borg, S.G., and DePaolo, D.J., 1994, Laurentia, Australia, and Antarctica as a Late Proterozoic supercontinent: Constraints from isotopic mapping: Geology, v. 22, p. 307-310.

Borst, A.M., Finch, A.A., Friis, H., Horsburgh, N.J., Gamaletsos, P.N., Goettlicher, J., Steininger, R., and Geraki, K., 2020, Structural state of rare earth elements in eudialytegroup minerals: Mineralogical Magazine, v. 84, p. 19-34.

Borst, A.M., Friis, H., Nielsen, T.F.D., and Waight, T.E., 2018, Bulk and Mush Melt Evolution in Agpaitic Intrusions: Insights from Compositional Zoning in Eudialyte, Ilímaussaq Complex, South Greenland: Journal of Petrology, v. 59, p. 589-612.

Borst, A.M., Waight, T.E., Finch, A.A., Storey, M., and Roux, P.J.L., 2019, Dating agpaitic rocks: A multi-system (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) isotopic study of layered nepheline syenites from the Ilímaussaq complex, Greenland: Lithos, v. 324-325, p. 74-88.

Bowring, J.F., McLean, N.M., and Bowring, S.A., 2011, Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb\_Redux: Geochemistry, Geophysics, Geosystems, v. 12, .

Chakhmouradian, A., and Wall, F., 2012, Rare Earth Elements: Minerals, Mines, Magnets (and More): Elements, v. 8, p. 333-340.

Chakrabarty, A., Pruseth, K.L., and Sen, A.K., 2011, First report of eudialyte occurrence from the Sushina hill region, Purulia district, West Bengal: Journal of the Geological Society of India, v. 77, p. 12-16.

Chakhmouradian, A., and Wall, F., 2012, Rare Earth Elements: Minerals, Mines, Magnets (and More): Elements, v. 8, p. 333-340, doi: 10.2113/gselements.8.5.333.

Charlier, B.L.A., Ginibre, C., Morgan, D., Nowell, G.M., Pearson, D.G., Davidson, J.P., and Ottley, C.J., 2006, Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications: Chemical Geology, v. 232, p. 114-133.

Crocker, M.G., 2014, A petrographic, geochemical, and geochronological study of rare earth element mineralization in the red wine intrusive suite, Labrador, Canada.[Ph.D. thesis]: Memorial University of Newfoundland, p. 766.

Currie, K.L., Curtis, L.W., and Gittins, J., 1975, Petrology of the Red Wine alkaline complexes, Central Labrador and a comparison with the Ilímaussaq Complex, South West Greenland: Geological Survey of Canada Paper, v. 75, p. 271-280.

Currie, K.L., and Gittins, J., 1993, Preliminary report on peralkaline silica-undersaturated rocks in the Kipawa syenite gneiss complex, western Quebec: Papers-Geological Survey of Canada, p. 197.

Currie, K., and Vanbreemen, O., 1996, The origin of rare minerals in the Kipawa Syenite Complex, western Quebec: Canadian Mineralogist, v. 34, p. 435-451.

Curtis, L.W., and Gittins, J., 1979, Aluminous and titaniferous clinopyroxenes from regionally metamorphosed agpaitic rocks in central Labrador: Journal of Petrology, v. 20, p. 165-186.

Curtis, L.W., and Currie, K.L., 1981, Geology and Petrology of The Red Wine Alkaline Complex, Central Labrador: Geological Survey of Canada, p. 61.

DePaolo, D.J., and Wasserburg, G.J., 1976, Nd isotopic variations and petrogenetic models: Geophysical Research Letters, v. 3, p. 249-252.

DePaolo, D.J., 1988, Neodymium isotope geochemistry: an introduction: Berlin; New York, Springer-Verlag.

Dickin, A.P., and Guo, A., 2001, The location of the Allochthon Boundary Thrust and the Archean–Proterozoic suture in the Mattawa area of the Grenville Province: Nd isotope evidence: Precambrian Research, v. 107, p. 31-43.

Dickin, A.P., 2004, Nd model ages and U-Pb zircon ages: dating crustal formation in the grenville province.

Dickin, A.P., 2005, Radiogenic isotope geology: Cambridge, UK; New York, Cambridge University Press.

Dragovic, B., Samanta, L.M., Baxter, E.F., and Selverstone, J., 2012, Using garnet to constrain the duration and rate of water-releasing metamorphic reactions during subduction: An example from Sifnos, Greece: Chemical Geology, v. 314, p. 9-22.

Easton, R.M., 1992, 1992 Friends of the Grenville Workshop: Geoscience Canada.

Farrell, T.P., 2019, Investigating the Tectonic Significance of Spiral Garnets from the Betic-Rif Arc of Southern Spain and Northern Morocco Using Sm-Nd Garnet Geochronology [Ph.D. thesis]: United States -- Massachusetts, Boston College.

Faure, G., Mensing, T.M., and Faure, G., 2005, Isotopes : principles and applications: Hoboken, N.J., Wiley.

Ferguson, J., 1970, On the schistose structure of some lujavrites: Bulletin of the Geological Society of Denmark, v. 20, p. 67-68.

Gandhi, S.S., 1971, Regional Geology of the Seal Lake area: Labrador',(Unpublished 1: 250,000 Scale Map, Prepared for Brinex Corp.

Gandhi, S.S., Krogh, T.E., and Corfu, F., 1988, U-Pb zircon and titanite dates on two granitic intrusions in the Makkovik Province and a perakaline granite of the Red Wine Intrusive Complex, central Labrador. GAC-MAC Meeting, Program with Abstracts, p. A42.

Gower, C.F., Ryan, A.B., and Rivers, T., 1990, Mid-Proterozoic Laurentia–Baltica: an overview of its geological evolution and a summary of the contributions made by this volume: Mid-Proterozoic Laurentia-Baltica, v. 38, p. 1-20.

Gower, C.F., and Krogh, T.E., 2002, AU–Pb geochronological review of the Proterozoic history of the eastern Grenville Province: Canadian Journal of Earth Sciences, v. 39, p. 795-829.

Groulier, P., Indares, A., Dunning, G., Moukhsil, A., and Jenner, G., 2018, Syn-orogenic magmatism over 100 m.y. in high crustal levels of the central Grenville Province: Characteristics, age and tectonic significance: Lithos, v. 312-313, p. 128-152.

Guo, A., and Dickin, A.P., 1994, Determination of the southern limit of Archean crust in the Grenville Province of western Quebec by Nd model age mapping: Geol. Assoc. Canada. Prog. with Abs, v. 19, p. A44.

Harvey, J., and Baxter, E.F., 2009, An improved method for TIMS high precision neodymium isotope analysis of very small aliquots (1–10 ng): Chemical Geology, v. 258, p. 251-257.

Hatch, G.P., 2012, Dynamics in the global market for rare earths: Elements, v. 8, p. 341-346.

Herrell, M.K., Dickin, A.P., and Morris, W.A., 2006, A test of detailed Nd isotope mapping in the Grenville Province: delineating a duplex thrust sheet in the Kipawa Mattawa region: Canadian Journal of Earth Sciences, v. 43, p. 421-432.

Hill, J.D., Miller, R.R., Gower, C.F., Rivers, T., and Ryan, A.B., 1990, A review of Middle Proterozoic epigenic felsic magmatism in Labrador: Mid-Proterozoic Laurentia– Baltica.Edited by CF Gower, T.Rivers, and AB Ryan.Geological Association of Canada, Special Paper, v. 38, p. 417-431.

Hill, J.,D., and Thomas, A., 1983, Correlation of two Helikian peralkaline granite – volcanic centres in central Labrador: Canadian Journal of Earth.Sciences, v. 20, p. 753-763.

Horwitz, E.P., Chiarizia, R., Dietz, M.L., Diamond, H., and Nelson, D.M., 1993, Separation and preconcentration of actinides from acidic media by extraction chromatography: Analytica Chimica Acta, v. 281, p. 361-372.

Karup-Møller, S., Rose-Hansen, J., and Sørensen, H., 2010, Eudialyte decomposition minerals with new hitherto undescribed phases from the Ilímaussaq complex, South Greenland: Bulletin of the Geological Society of Denmark, v. 58, p. 75-88.

Kay, A., Hepburn, J.C., Kuiper, Y.D., and Baxter, E.F., 2017, Geochemical evidence for a Ganderian arc/back-arc remnant in the Nashoba Terrane, SE New England, USA: American Journal of Science, v. 317, p. 413-448.

Kerr, A., 2011, Rare-Earth-Element (REE) Mineralization in Labrador: A review of Known Environments and the Geological Context of Current Exploration Activity : , 109-143 p.

Kish, L., and Tremblay-Clark, P., 1978, Le district radioactif de Kipawa (Comté de Témiscamingue): Ministère Des Richesses Naturelles, DP-579.

Kramm, U., and Kogarko, L.N., 1994, Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline Province, Russia: Lithos, v. 32, p. 225-242.

Krogh, T.E., Corfu, F., Davis, D.W., Dunning, G.R., Heaman, L.M., Kamo, S.L., Machado, N., Greenough, J.D., and Nakamura, E., 1987, Precise U–Pb isotopic ages of diabase dykes and mafic to ultramafic rocks using trace amounts of baddeleyite and zircon: Mafic Dyke Swarms.Edited by HC Halls and WF Fahrig.Geological Association of Canada, Special Paper, v. 34, p. 147-152.

Lorenz, M., Altenberger, U., Trumbull, R.B., Lira, R., López de Luchi, M., Günter, C., and Eidner, S., 2019, Chemical and textural relations of britholite-and apatite-group minerals from hydrothermal REE mineralization at the Rodeo de los Molles deposit, Central Argentina: American Mineralogist: Journal of Earth and Planetary Materials, v. 104, p. 1840-1850.

Ludwig, K., 2008, Manual for isoplot 3.7: Berkeley Geochronology Center Special Publication, v. 4, p. 77.

Lumbers, S.B., Heaman, L.M., Vertolli, V.M., Wu, T.W., Gower, C.F., Rivers, T., and Ryan, A.B., 1990, Nature and timing of Middle Proterozoic magmatism in the Central Metasedimentary Belt, Grenville Province, Ontario: Mid-Proterozoic Laurentia–Baltica.Edited by CF Gower, T.Rivers, and AB Ryan.Geological Association of Canada, Special Paper, v. 38, p. 243-276.

Macdonald, R., and Upton, B.G., 1993, The Proterozoic Gardar rift zone, South Greenland: comparisons with the East African rift system: Geological Society, London, Special Publications, v. 76, p. 427-442.

Makishima, A., 2016, Thermal ionization mass spectrometry (TIMS): silicate digestion, separation, and measurement: Wiley-VCH.

Marks, M.A.W., and Markl, G., 2017, A global review on agpaitic rocks: Earth-Science Reviews, v. 173, p. 229-258.

Marks, M.A., W., Hettmann, K., Schilling, J., Frost, B., Ronald, and Markl, G., 2011, The Mineralogical Diversity of Alkaline Igneous Rocks: Critical Factors for the Transition from Miaskitic to Agpaitic Phase Assemblages: Journal of Petrology, v. 52, p. 439-455.

McLelland, J.M., Selleck, B.W., Bickford, M.E., Tollo, R.P., Bartholomew, M.J., Hibbard, J.P., and Karabinos, P.M., 2010, Review of the Proterozoic evolution of the Grenville Province, its Adirondack outlier, and the Mesoproterozoic inliers of the Appalachians: From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: Geological Society of America Memoir, v. 206, p. 21-49.

Miller, R.R., 1988, Yttrium (Y) and other rare metals (Be, Nb, REE, Ta, Zr) in Labrador: Current Research.Government of Newfoundland and Labrador, Department of Mines, Mineral Development Division, Report, v. 88, p. 229-245.

Möller, V., and Williams-Jones, A.E., 2016, Stable and radiogenic isotope constraints on the magmatic and hydrothermal evolution of the Nechalacho Layered Suite, northwest Canada: Chemical Geology, v. 440, p. 248-274,

Pin, C., and Joannon, S., 2002, Combined cation-exchange and extraction chromatography for the concomitant separation of Zr, Hf, Th, and the Lanthanides from geological materials: Talanta, v. 57, p. 393-403.

Pin, C., and Zalduegui, J.S., 1997, Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks: Analytica Chimica Acta, v. 339, p. 79-89.

Pollington, A.D., and Baxter, E.F., 2010, High resolution Sm–Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes: Earth and Planetary Science Letters, v. 293, p. 63-71.

Pollington, A.D., and Baxter, E.F., 2011, High precision microsampling and preparation of zoned garnet porphyroblasts for Sm–Nd geochronology: Chemical Geology, v. 281, p. 270-282.

Potts, P.J., 2012, A handbook of silicate rock analysis: Springer Science & Business Media,

Rakovan, J., McDaniel, D.K., and Reeder, R.J., 1997, Use of surface-controlled REE sectoral zoning in apatite from Llallagua, Bolivia, to determine a single-crystal SmNd age: Earth and Planetary Science Letters, v. 146, p. 329-336.

Regan, S.P., Walsh, G.J., Williams, M.L., Chiarenzelli, J.R., Toft, M., and McAleer, R., 2019, Syn-collisional exhumation of hot middle crust in the Adirondack Mountains (New York, USA): Implications for extensional orogenesis in the southern Grenville province: Geosphere, v. 15, p. 1240-1261.

Rivers, T., Martignole, J., Gower, C.F., and Davidson, A., 1989, New tectonic divisions of the Grenville Province, Southeast Canadian Shield: Tectonics., v. 8, p. 63-84.

Rivers, T., 1997, Lithotectonic elements of the Grenville Province: review and tectonic implications: Precambrian Research, v. 86, p. 117-154.

Rosman, K., and Taylor, P., 1998, Isotopic compositions of the elements 1997 (Technical Report): Pure and Applied Chemistry, v. 70, p. 217-235.

Schoene, B., and Baxter, E.,F., 2017, Petrochronology and TIMS: Reviews in Mineralogy and Geochemistry, v. 83, p. 231-260.

Sjöqvist, A.S., Zack, T., Honn, D.K., and Baxter, E.F., 2020, Modification of a rare-earth element deposit by low-temperature partial melting during metamorphic overprinting: Norra Kärr alkaline complex, southern Sweden: Chemical Geology, p. 119640.

Sørrensen, H., 1992, Agpaitic nepheline syenites: a potential source of rare elements: Applied Geochemistry, v. 7, p. 417-427.

Sun, S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313-345.

Thomas, A., 1981, Geology along the southwestern margin of the Central Mineral Belt: St. John's: Mineral Development Division, Government of Newfoundland and Labrador.

Thomas, A., and Hibbs, D., 1980, Geology of the southwestern margin of the central mineral belt: Newfoundland Geologic Survey; Current Research, p. 166-176. van Breemen, O., and Currie, K., 2004, Geology and U-Pb geochronology of the Kipawa Syenite Complex - a thrust related alkaline pluton - and adjacent rocks in the Grenville Province of western Quebec: Canadian Journal of Earth Sciences, v. 41, p. 431-455.

Valentino, D.W., Chiarenzelli, J.R., and Regan, S.P., 2019, Spatial and temporal links between shawinigan accretionary orogenesis and massif anorthosite intrusion, southern grenville province, New York, U.S.A. Journal of Geodynamics, v. 129, p. 80-97. Van Gosen, B.S., Verplanck, P.L., Seal II, R.R., Long, K.R., and Gambogi, J., 2017, Rareearth elements: , 44 p.

Walker, S., Baxter, E., BIRD, A., and Ague, J.J., 2019, Barrovian, Not So Fast: Insights Into the Timing and Rate of Metamorphism in NE Scotland Using Garnet Sm-Nd Geochronology: Agufm, v. 2019, p. V43F-0152.

Wardle, R.J., Rivers, T., Gower, C.F., Nunn, G., and Thomas, A., 1986, The northeastern Grenville Province: new insights: The Grenville Province.Edited by JM Moore, A.Davidson, and AJ Baer.Geological Association of Canada, Special Paper, v. 31, p. 13-29.

Wasserburg, G.J., Jacobsen, S.B., DePaolo, D.J., McCulloch, M.T., and Wen, T., 1981, Precise determination of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions: Geochimica Et Cosmochimica Acta, v. 45, p. 2311-2323.

Wu, F., Yang, Y., Marks, M.A.W., Liu, Z., Zhou, Q., Ge, W., Yang, J., Zhao, Z., Mitchell, R.H., and Markl, G., 2010, In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS: Chemical Geology, v. 273, p. 8-34.

# 5.0 APPENDIX 1: DETAILED LABORATORY METHODS FOR EUDIALYTE GEOCHRONOLOGY

This section describes the laboratory and analytical methods used in this study in order to construct internal mineral isochrons with eudialyte samples. Much of the laboratory procedure is adapted from use in other minerals, most notably garnet (Harvey and Baxter, 2009; Pollington and Baxter, 2010). However, preparations for eudialyte are somewhat different than those used for garnet and other common minerals, the procedure and crucial differences from other minerals are detailed below.

Samples used in this study were acquired through several channels. The Harvard Museum furnished a small sample of eudialyte from the Kipawa Syenite Complex from their research collection. This sample allowed us to test lab and analytical techniques generally adapted from procedures established for garnet. Previous work by Wu et al. (2010) characterized the Sm/Nd content of eudialyte from the Kipawa Syenite Complex using LA-ICP-MS, and provided a good working estimate for initial work. Additional Kipawa samples were collect in June 2019 with the help of Quebec Precious Metals (QPM), and consist of drill cores and larger hand samples. Core samples from the Red Wine Intrusive Suite were furnished by Search Minerals and Matthew Crocker.

# 5.1 MICROMILL SAMPLING

One advantage of studies utilizing LA-ICP-MS is the ability to sample materials *in-situ*, commonly facilitating the analysis of individual zonations within a single crystal. However, due to isobaric interferences precision can be insufficient for measuring very small variations in isotopic ratios. TIMS analysis provides superior precision, especially with small samples, but *in-situ* analysis is impossible. Charlier et al. (2006) developed a method using a computer controlled milling machine to facilitate spatially controlled isotopic studies using TIMS instrumentation. This method involves drilling tiny (~150 nm) pits in a sample billet within a single droplet of MQ H<sub>2</sub>O (Fig. 3). The water serves to cool the bit and contain the sample dust derived from the pit. After drilling the slurry is collected by pipette and prepared for analysis.

Charlier et al. (2006) originally demonstrated the utility of this approach by examining Rb-Sr in feldspars. Micromill sampling has also been used to selectively sample zoned garnets (Pollington and Baxter, 2011; Dragovic et al., 2012). More recently Sjöqvist



Figure 42. Photos showing the micromill drilling process. A- fine-tipped drill bit above the 4mm hole in Parafilm where drilling will occur. B- Drill in MQ H20 water droplet, water is held in place by 4mm hole in Parafilm shown in A. (Sjöqvist et al., 2020) I don't think this mentioned in text

et al. (2020) applied a similar technique to eudialyte. In the case of eudialyte, with exceptionally high Sm and Nd concentrations tiny pits ( $\sim$ 150 µm) yield sufficient amounts of Sm and Nd ( $\sim$ 19 ng) for analysis (Sjöqvist et al., 2020).

The Micromill drilling unit is designed primarily as a miniature CNC machine in which a preprogramed track is cut by a high-speed drill bit. Using preprogramed tracks discrete growth zones in garnet and other minerals can be separated for subsequent analysis. The procedure for eudialyte drilling is far simpler and require less preparation but does require some adaptation. For accurate sampling the drill and microscope lens must be calibrated, this is most easily done by first pressing a pinprick hole in the parafilm around the drill site (Figure 42). The crosshairs of the microscope are then moved to intersect this small hole. Once calibrated the microscope can be used to select the drill site visually or based on supplemental images from SEM, LA-ICP-MS or EMP. Once the drill site is selected water should be added. The programmable motor steps in the z axis are too large for the desired bit size so the stage must be moved manually to ensure smooth drilling without cracking samples. The drill should be turned on before driving down into the water droplet to minimize the risk of water spray (Figure 42). Slowly driving bit down with a slow rotational speed has shown the best results in eudialyte.

With very high concentrations of Sm and Nd in eudialyte relative to garnet, 700 ppm Sm and 2400 ppm Nd vs. 3 ppm Sm and 4 ppm Nd (Farrell, 2020), contamination of other samples and clean spaces must be carefully considered. A typical drilled sample used in this study weighs between 0.03 mg and 0.06 mg after drying. This amount of material yields roughly 20 ng Sm and 70 ng Nd of material for sample analysis prior to aliquoting. Bulk samples derived from more traditional picking weight around 4.0 mg and yield 2.7

 $\mu$ g Sm and 8.2  $\mu$ g Nd. Thus, micromill sampling conducted outside of the clean lab not only provides spatial control but also limits the amount of eudialyte that enters the lab to something similar in absolute terms to that of garnet limiting potential for contamination.

Similar to samples collected by more traditional methods of cutting, pulverizing, and picking, samples collected using the micromill must be accurately weighed prior to analysis in order to yield accurate determinations of Sm and Nd concentrations. The weight of the sample is important in the process of isotope dilution and spike subtraction after TIMS analysis to yield accurate concentration measurements (Faure and Mensing, 2005). The volume of sample furnished by the drilling procedure is very small, typically between 0.003 and 0.006 mg approaching the precision of the balance used in laboratory. This introduces some uncertainty into the sample mass, and thus into calculations of spike-subtracted concentrations. While not critical accurate determinations of Sm and Nd concentrations from other minerals like britholite and mosandrite. Consistent and accurate weighing for small samples remains a possible area of improvement for this method.

## 5.2 **DISSOLUTION**

The dissolution procedure detailed below is partially adapted from procedures developed for garnet (Harvey and Baxter, 2009; Pollington and Baxter, 2010). It should be noted that eudialyte derives its name from a propensity to readily dissolve in acid (eu: well; dialytos: dissolved), and can be dissolved in concentrated HNO<sub>3</sub> alone (Chakraborty et al., 2011).

Sample dissolution begins in 100  $\mu$ L of concentrated HF and 1000  $\mu$ L of 16N HNO<sub>3</sub> placed on a hotplate set at 120-140<sup>oc</sup> overnight. Clear-white sample residual is common is bulk samples where material is visible. The sample is then dried down and brought up in 16N HNO<sub>3</sub> and 6N HCL and fluxed overnight. Finally, to prevent the formation of secondary fluorides (Makishima, 2016).

For spiking and aliquoting the sample is once again dried and brought up in 1.5N HCL and 16N HNO<sub>3</sub>, which serves as the standard laboratory storage solution. As eudialyte has exceptionally high concentrations of Sm and Nd (900 ppm, 2400 ppm respectively) only a small aliquot (~0.03  $\mu$ L or ~0.03 mg rock equivalent) in bulks samples, drilled samples are considerably smaller and all of the sample is typically used.

#### 5.3 SPIKING

Absolute isotope concentrations are difficult to determine by mass spectrometry, however, isotopic ratios can be analyzed with very high precision (Potts, 2004). In what is known as isotope dilution, a spike artificially enriched in a particular isotope is added to the sample of natural composition to be analyzed. By measuring the isotopic composition of the spiked sample and subsequently 'subtracting out' the known composition and volume of the spike it possible to calculate elemental concentration as well as a very precise measurement of isotopic ratios (Dickin, 2004). Unlike in-situ techniques analyzing spike and sample concentrations together minimizes concerns of differential fractionation, and thus the precision accuracy of a derived date is tied to the known composition of the spike (Schoene and Baxter, 2017). Adding too much or too little spike can undermine the

precision of a measurement relying on isotope dilution by significantly increasing error magnification (Dickin, 2004). Accurately spiking a sample depends on an accurate estimate of Sm and Nd concentrations in a sample. Spike is added to sample aliquots in acid and must be accurately weighed to allow for precise spike subtraction following TIMS analysis. After spiking and weighing samples are dried down in preparation of cation exchange columns.

# 5.4 CATION EXCHANGE COLUMNS

After spiking the sample is ready to be refined for TIMS analysis. In the case of Sm/Nd, all other REE's must be removed to avoid deleterious isobaric interferences that would obscure measured ratios (Schoene and Baxter, 2017). The three stages of column chemistry required to reduce the sample to cuts of Sm and Nd are detailed below. Column chemistry procedures for eudialyte are identical to garnet and other minerals, after aliquoting a similar material to a garnet sample will need to be refined.

Iron and titanium are two metals commonly encountered in geologic materials. Fe<sup>3+</sup> and Ti can interfere with TRU-Spec columns (discussed below) as these metals elute under the same conditions as the LREE's (Pin and Joannon, 2002). To facilitate better purification the first step of column chemistry is an iron clean up column. For iron columns our laboratory utilizes 13 cm columns of made from disposable plastic pipettes filled with AG50w-X4 resin. After washing the resin with 6N HCL and conditioning with 1.5 N HCL the sample is rinsed in with 1.5N HCL to remove iron and titanium. After 1.5N HCL rinse the REE's are eluted in 6N HCL for the next stage of purification (Harvey and Baxter, 2009). When elution is completed the samples are dried and brought up in 2N HNO<sub>3</sub> in preparation for TRU-Spec columns.

While Fe<sup>3+</sup> has been shown to have the most detrimental effects on LREE yields, other cations must be removed after pretreatment for iron. TRU- Spec (transuranicelement **sp**ecific) resin consists of octyl(phenyl)-N,N-diisobutyl-carbamoylmethyl phosphine oxide (CMPO) in tri-n-butyl phosphate (TBP) sorbed on a polymeric substrate known as Amberchrom (Horowitz et al., 1993). The substrate is fine grained (50-100 um), yielding narrower elution bands than previously available, coarser substrates (Pin and Santo Zalduegui, 1997). Lanthanides, Hf, Zr, and Th have the highest affinity for cation exchange resin with nitric acid. Other common cations (Ca, Na) are poorly retained (Pin and Joannon, 2002) and can be rinsed out of the sample. The cations retained by the TRU spec resin can then be selectively removed based on differential retention. Most importantly for Sm-Nd analysis LREE can be stripped by using very dilute HNO<sub>3</sub> (Horowitz et al., 1993; Pin and Santo Zalduegui, 1997).

Following the procedure of Harvey and Baxter (2009) the next stage of purification uses Eichrom TRU-spec in Teflon microcolumns with a 4ml reservoir over .2 ml of resin. After a thorough rinse with MQ H<sub>2</sub>O the resin is cleaned with 0.05N HNO<sub>3</sub> and conditioned with 2N HNO<sub>3</sub> before sample is loaded in 2N HNO<sub>3</sub>. The sample is then washed with an additional 3.8 mL 2N HNO<sub>3</sub> before the lanthanide portion is eluted from the column with 0.05N HNO<sub>3</sub>. Samples are dried down to a single small droplet, and brought up in 0.75N HCL. Complete dry down is avoided to ensure the samples stays in solution in the weak HCL used for subsequent columns. This process of drying down and diluting the sample in 0.75N HCL is repeated once or more to remove any residual HNO<sub>3</sub>. Ultimately the sample is brought up in 0.75N HCL to be loaded into the next column.

Before TIMS analysis it is essential to remove all LREE's, and isolate Sm and Nd into separate cuts. This stage of purification uses a 294 mm column of AG50W-x4 in Teflon column with 10 mL reservoir (Harvey and Baxter, 2009). The resin used here is the same as the earlier iron cleanup columns, but follows a different, more complex, cleaning procedure prior to resin use. For these columns  $\alpha$ -hydroxyiso-butyric acid (HIBA; 2methyl-lactic acid or MLA) is used to remove Sm and Nd from the other REE's, this process requires accurate calibration of MLA pH and temperature for consistent results (Schoene and Baxter, 2017). The MLA is purified by recrystallization in Teflon containers prior to dissolution in MQ H<sub>2</sub>O and buffered to the desired pH. The Boston College Isotope Geochemistry lab uses 0.2 M MLA buffered to pH of 4.6±0.02 with NH4OH.

The AG50W-x4 resin is conditioned with 0.2M MLA prior to sample loading in 0.75 M HCL. The sample is then washed into the column with an additional 100  $\mu$ L of 0.75N HCL and 200  $\mu$ L of 0.2N MLA before rinsing the sample with 0.2N MLA. Sm is eluted 0.2 MLA, and Nd is eluted in 0.2N H after a 2 mL rinse of 0.2N MLA. Yields are usually high, the calibration for the bottle of MLA used for this study produced a Sm yield of 87.50% and a Nd yield of 87.15%. The separate cuts of Sm and Nd are dried overnight before a 2-3 hour period of fluxing in 7N HNO<sub>3</sub> and 6N HCL. The samples are then dried and brought up in concentrated HNO<sub>3</sub> in an effort to remove any residual MLA, and again dried prior to loading for the TIMS.

#### 5.5 LOADING

The Boston College TIMS facility analyzes Nd as the oxide NdO<sup>+</sup>, and Sm as a metal. At this stage in the preparation for TIMS analysis the procedures for the two elements diverge. Filaments are loaded under varying levels of stable current, allowing for the carful drying of samples onto the thin (0.7 mm x 0.04 mm) filaments. For both Sm and Nd analysis two small dams of Parafilm are melted onto the filament at 1.0 A. The Parafilm dams help to confine droplets of sample and activator to the middle third of the Re filament. Dry Nd cuts are dissolved in 1 µL 2N HNO<sub>3</sub>, and loaded onto the filament at 0.6 A. The sample is allowed to dry until close to dry, before 2 µL of activator (50 mg Ta<sub>2</sub>O<sub>5</sub> powder in 3 mL 5% H<sub>3</sub>PO<sub>4</sub>) is added at 0.6 A (Harvey and Baxter, 2009). The Ta<sub>2</sub>O<sub>5</sub> slurry provides a stable source of oxygen during analysis, and facilitates more precise measurements than the traditional gas bleed method. This procedural improvement is especially advantageous for small samples (Harvey and Baxter, 2009). After loading the activator, the current on the filament is increased to 1.0 A and the sample is dried for 10 minutes. Following the drying period the current is slowly increased until the middle portion of the filament glows red for ~5 seconds before current is shut off.

Sm is analyzed as a metal and analysis is conducted using a Ta filament. Similar to Nd loading, Parafilm dams are melted to the filament to help contain the sample and other solutions to the center of the thin Ta ribbon. 2N HCL is loaded and dried to a small droplet to which the sample, dissolved in 2N HNO<sub>3</sub>, is added at 0.6 A. Before final heating of filament H<sub>3</sub>PO<sub>4</sub> is added to the sample. Current on the filament is slowly ramped up until the filament briefly glows, usually around 2.5 A.

#### 5.6 TIMS ANALYSIS

Once the samples have been loaded onto filaments, they are securely fastened to the barrel of the TIMS. The Boston College Facility uses an Isotopx Phoenix instrument which is controlled using Isotopx Ion Vantage software. With the barrel installed into the source the instrument is allowed to pump to high vacuum, usually overnight. The line of sight is not opened until the vacuum is below 5e<sup>-8</sup>. Sm and Nd are run in two different manners, Sm is analyzed as a metal while Nd is analyzed as the oxide NdO<sup>+</sup>. Sm analyses are run static, and the mass collected in each faraday cup is kept constant through the duration of the run. NdO<sup>+</sup> is analyzed using a multi-dynamic method where the magnetic field fluctuates to switch the mass collected in each faraday cup for the three sequences of the multi-dynamic analysis are shown in (Figure 43). By analyzing masses in different cups it is possible to monitor mass fractionation and correct for amplifier bias (Dickin, 2005).

#### 5.7 DATA CORRECTION

A variety of corrections are made by the Isotopx Ion Vantage software to account for oxygen isotopes, isobaric interferences, and mass fractionation within the instrument. While the data output from Ion Vantage includes raw ratios for review, these corrections are entirely automated. Such corrections are described briefly below. Mass fractionation occurs in the TIMS instrument as ionization requires the breaking of bonds, which is a mass dependent process. Lighter isotopes are preferentially ionized, as result there is a trend towards heavier isotopes through the course of an analytical run. While this process follows a Rayleigh fractionation law fractionation can result in errors up to 1% measured ratios (Dickin, 2005). For elements with at least two non-radiogenic isotopes a mass fractionation correction can be applied (Potts, 2004). For example, <sup>143</sup>Nd/<sup>144</sup>Nd ratios are corrected for mass fractionation by using an exponential law to normalize to <sup>146</sup>Nd/<sup>144</sup>Nd =0.7219 (Wasserburg et al., 1981). Sm is similarly normalized to <sup>149</sup>Sm/<sup>152</sup>Sm =0.51686. The corrections used assume that fractionation is independent of absolute mass and is controlled by relative mass difference alone. (Dickin,

| Oxide mass                      | 157       | 158       | 159       | 160        | 162       | 164        | 166        | 168        | 170       |
|---------------------------------|-----------|-----------|-----------|------------|-----------|------------|------------|------------|-----------|
| Element mass                    | 141       | 142       | 143       | 144        | 146       | 148        | 150        | 152        | 154       |
| Isotope required                | 141Pr16O+ | 142Nd16O+ | 143Nd16O* | 144Nd16O+  | 146Nd16O+ | 148Nd16O+  | 150Nd 16O+ | 152Sm16O+  | 154Sm16O+ |
| Possible isobaric interferences | 140Ce17O+ | 141Pr17O+ | 141Pr18O* | 144Sm16O*  | 144Sm18O+ | 146Nd 180+ | 148Nd18O*  | 150Nd 18O+ | 152Sm18O+ |
|                                 | 139La18O* | 140Ce18O+ | 142Ce17O+ | 142Ce18O+  | 144Nd18O+ | 147Sm17O*  | 148Sm18O+  | 150Sm18O*  |           |
|                                 | 138Ba19F* | 142Ce16O+ | 142Nd17O+ | 143Nd17O+  | 145Nd17O+ | 148Sm16O+  | 149Sm17O+  |            |           |
|                                 |           |           |           | 142Nd 18O+ |           |            | 150Sm16O*  |            |           |

Table 6. Oxide masses, with elemental mass and potential isobaric interferences. Note recurring Nd masses with varying O mass. (Harvey and Baxter, 2009) 2005)

This facility analyzes Nd as the oxide NdO<sup>+</sup> instead of as a metal which allows for analysis of significantly smaller sample volumes at lower temperatures. However, when analyzed as an oxide both the isotopic composition of Nd and O must be considered (Table 6). While <sup>16</sup>O is the dominant isotope of oxygen (99.76%), the heavier isotopes <sup>17</sup>O and <sup>18</sup>O occur in sufficient quantities (0.04% and 0.20% respectively) to necessitate an oxygen correction to remove the influence of isobaric interferences caused by variable oxygen mass. For example, a collector set for <sup>146</sup>Nd<sup>16</sup>O<sup>+</sup> would also collect <sup>144</sup>Nd<sup>18</sup>O<sup>+</sup> and <sup>145</sup>Nd<sup>17</sup>O<sup>+</sup>, more masses and potential interferences are presented in Table 1. Corrections rely on the measured ratios of <sup>17</sup>O/<sup>16</sup>O and <sup>18</sup>O/<sup>16</sup>O which can vary significantly between laboratories (Harvey and Baxter, 2009). The particular value of <sup>17</sup>O/<sup>16</sup>O and <sup>18</sup>O/<sup>16</sup>O for the BC TIMS is embedded in the spreadsheet used for mass based corrections. These values were calculated by two primary methods after Harvey and Baxter (2009). First, a purified Pr solution was analyzed as oxide with collectors set for masses of 157,158, and 159. Since Pr is monoisotopic these masses correspond to <sup>141</sup>Pr<sup>16</sup>O<sup>+</sup>, <sup>141</sup>Pr<sup>17</sup>O<sup>+</sup>, and <sup>141</sup>Pr<sup>16</sup>O<sup>+</sup>. Second, <sup>150</sup>NdO<sup>+</sup> was analyzed to similarly mass fractionation and simultaneously dispel concerns regarding about ionization efficiency in PrO<sup>+</sup>.

It is also important to be able to correct for isobaric interferences caused by other elements such as <sup>140</sup>Ce<sup>16</sup>O<sup>+</sup> and <sup>141</sup>Pr<sup>16</sup>O<sup>+</sup> in NdO<sup>+</sup> analysis, and <sup>152</sup>Gd in Sm analysis. While cation exchange columns should remove the majority of this material, some fraction of other LREE often remains. Masses not associated with Sm or Nd isotopes are thus monitored to allow for isobaric interference corrections, in particular mass 156 (<sup>140</sup>Ce<sup>16</sup>O<sup>+</sup>) NdO Dynamic

| L5        | L4  | L3  | L2  | AX  | H1  | H2  | H3  | H4  |  |  |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|--|--|
| 156       | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 |  |  |
| 157       | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 |  |  |
| 158       | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 |  |  |
| Sm Static |     |     |     |     |     |     |     |     |  |  |
| L5        | L4  | L3  | L2  | AX  | H1  | H2  | H3  | H4  |  |  |
| 144       | 146 | 147 | 148 | 149 | 150 | 152 | 154 | 155 |  |  |

Figure 43. Summary of mass analyzed during analysis, red highlights for emphasis of important masses. NdO<sup>+</sup> multi-dynamic analysis (top) cycles through 3 configurations to 'scan' oxide masses 156-166. Sm static analysis utilizes a single configuration to measure masses 144-155.
and 157 (<sup>141</sup>Pr<sup>16</sup>O<sup>+</sup>) are used in Nd analysis to monitor for Ce and Pr oxides while <sup>155</sup>Gd is used to correct for <sup>152</sup>Gd interferences on <sup>152</sup>Sm (Potts, 2012). In a manner, similar to the oxygen correction mentioned above, isobaric interferences can be corrected by combining the monitoring signals and natural isotopic abundances and subtracted from measured ratios.

## 5.8 DATA REDUCTION AND SPIKE SUBTRACTION

The data derived from the TIMS analysis in many cases needs to be further reduced to remove data shown to have run poorly or deviated significantly from ideal running conditions. The Isotopx Ion Vantage software used to control the TIMS run will remove individual measurements that fall outside 2 sigma standard deviation. For more intensive data reduction other software must be used. Tripoli was designed as a data visualization and data reduction interface by Charleston College and MIT. The software was first developed for use in U-Pb analyses but can be easily configured for Sm-Nd analyses. Tripoli includes interactive time series graphs of measured ratios, which allow the user to identify and exclude data points in real time (Bowring et al., 2011). In most cases data is removed when ratios begin to scatter near the end of analysis, which if included in the final data can unnecessarily decrease analytical precision. For example, data displaying anomalous fractionation trends can also be easily identified and removed in the Tripoli interface. As selections are made Tripoli recalculates isotopic ratios which are then used in the following steps to build an isochron. While the corrections for isobaric interferences and fractionation trends described above are conducted automatically by modern instrumentation a correction for the spike solution or 'spike subtraction' must also be performed. This correction is performed in an excel spreadsheet, beginning with sample and spike weight and corrected ratios the known spike value are subtracted yielding concentrations (Dickin, 2005). However, because the spike solution added to the sample effects the ratios used for mass fractionation corrections (<sup>146</sup>Nd/<sup>144</sup>Nd=0.7219; <sup>149</sup>Sm/<sup>152</sup>Sm=0.51686) spike subtraction must be conducted iteratively. After the initial subtraction, the ratios must be renormalized, before again accounting for the spike solution.

## 5.9 ISOPLOT

The corrected and reduced data from are condensed into a single spreadsheet with the goal of finally creating an isochron. A two point isochron consists of a straight line between two points and is relatively easy to plot. The slope of the resulting line *m* is defined as  $m = e^{\lambda t} - 1$ , subsequently solving for *t* yields the age of the material analyzed (Faure and Mensing, 2005). However, most geochronological studies rely on more robust multipoint isochrons. In this case a more complex procedure for plotting a line of best fits required. Isoplot is an add-in for Microsoft Excel developed by the Berkley Geochronology Center designed to perform a wide variety of geochronology-specific functions. Importantly, Isoplot can quickly and accurately construct a multipoint isochron and calculate descriptive statistics important for critical data assessment like mean square weighted deviation (MSWD) and error associated with the calculated age (Ludwig, 2008). For the calculation of age uncertainties, the poorer of internal and external reproducibility is used.

## 6.0 APPENDIX 2: SPIKE SUBTRACTION SHEETS



















| 1                    | Full Sa                                                                                                                                                                        | mple Name:                                                                                                                                                                                                                 | KP_2_1_3                                                                                                                                                              | Nd                                                                                                                                                                 |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 1                    | Date of TI                                                                                                                                                                     | MS analysis                                                                                                                                                                                                                | 8/7/2019                                                                                                                                                              |                                                                                                                                                                    | Position #.                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                               |
|                      | Dute of H                                                                                                                                                                      |                                                                                                                                                                                                                            | 25                                                                                                                                                                    |                                                                                                                                                                    | 1 0011011                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     | 1                                                             |
|                      | estimated                                                                                                                                                                      | Nd load (ng):                                                                                                                                                                                                              | 25                                                                                                                                                                    |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                | Rsnike Va                                                                                                                                                                                                                  | lues Nd (Sr                                                                                                                                                           | nNd 0.15 A s                                                                                                                                                       | nike, 6-12-0                                                                                                                                                    | )8 calib}                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                     |                                                               |
|                      | 142/144                                                                                                                                                                        | 142/144                                                                                                                                                                                                                    | 145/144                                                                                                                                                               | 146/144                                                                                                                                                            | 149/144                                                                                                                                                         | 150/144                                                                                                                                                                                                                                                                                                                                                                                                                       | DI 11501                                                                                                                                            |                                                               |
|                      | 142/144                                                                                                                                                                        | 143/144                                                                                                                                                                                                                    | 145/144                                                                                                                                                               | 146/144                                                                                                                                                            | 148/144                                                                                                                                                         | 150/144                                                                                                                                                                                                                                                                                                                                                                                                                       | [Nd150]                                                                                                                                             |                                                               |
|                      | 0.830433                                                                                                                                                                       | 0.494001                                                                                                                                                                                                                   | 0.436936                                                                                                                                                              | 0.885201                                                                                                                                                           | 0.740574                                                                                                                                                        | 198.371260                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.125778                                                                                                                                            |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               | nm/ø                                                                                                                                                |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
| v                    | Vt Sample (g)=                                                                                                                                                                 | 2.36E-05                                                                                                                                                                                                                   | g                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      | Wt Spike (g)=                                                                                                                                                                  | 0.59851                                                                                                                                                                                                                    | g                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      | r (g)                                                                                                                                                                          |                                                                                                                                                                                                                            | 0                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     | I                                                             |
| Mass Spect           | rometer Informatic                                                                                                                                                             | n:                                                                                                                                                                                                                         |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      | 1                                                                                                                                                                              | Number of cvc                                                                                                                                                                                                              | les measured:                                                                                                                                                         | 180                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            | c 1 1                                                                                                                                                                 | 152                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                | Number o                                                                                                                                                                                                                   | f cycles used:                                                                                                                                                        | 155                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
| 1                    |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    | average                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       | start                                                                                                                                                              | (from sheet)                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      | 1                                                                                                                                                                              | alament Curre                                                                                                                                                                                                              | nt range: from                                                                                                                                                        | 3.61                                                                                                                                                               | 3.64                                                                                                                                                            | Amps                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     |                                                               |
|                      | 1                                                                                                                                                                              | Beamintensity                                                                                                                                                                                                              | range: from                                                                                                                                                           | 1.1830612                                                                                                                                                          | 0.8649258                                                                                                                                                       | Volts 144Nd.16                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                   |                                                               |
|                      |                                                                                                                                                                                | Temperature                                                                                                                                                                                                                | range: from                                                                                                                                                           | 1480                                                                                                                                                               | 1562                                                                                                                                                            | °C                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                               |
| E. I.B. C.           | Dite                                                                                                                                                                           | . engerature                                                                                                                                                                                                               |                                                                                                                                                                       | 1.00                                                                                                                                                               |                                                                                                                                                                 | . ~                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     |                                                               |
| rinal Ratio          | Data:                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      | Interference Va                                                                                                                                                                | alues (oxide                                                                                                                                                                                                               | corrected; in                                                                                                                                                         | formational or                                                                                                                                                     | nly not use                                                                                                                                                     | d in this sheet)                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                     |                                                               |
|                      | Ce140/Nd144                                                                                                                                                                    | 0.00010                                                                                                                                                                                                                    | ,                                                                                                                                                                     |                                                                                                                                                                    | -                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      | D 141 01 11 44                                                                                                                                                                 | 0.00019                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      | Pr141/Nd144                                                                                                                                                                    | 0.00252                                                                                                                                                                                                                    |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      | Sm149/Nd144                                                                                                                                                                    | 2E-05                                                                                                                                                                                                                      |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            | I                                                                                                                                                                     |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
| 1                    |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      |                                                                                                                                                                                |                                                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                                    |                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |                                                               |
|                      | for Ratios & %                                                                                                                                                                 | 61SE: use g                                                                                                                                                                                                                | rand mean o                                                                                                                                                           | oxvgen corr.                                                                                                                                                       | interference                                                                                                                                                    | corr. exp nor                                                                                                                                                                                                                                                                                                                                                                                                                 | malized valı                                                                                                                                        | 105                                                           |
|                      | for Ratios & 9                                                                                                                                                                 | 61SE: use g                                                                                                                                                                                                                | rand mean of                                                                                                                                                          | oxygen corr,                                                                                                                                                       | interference                                                                                                                                                    | corr, exp nor                                                                                                                                                                                                                                                                                                                                                                                                                 | malized valu                                                                                                                                        | ies                                                           |
|                      | for Ratios & 9                                                                                                                                                                 | <mark>61SE: use g</mark><br>142/144                                                                                                                                                                                        | <i>rand mean o</i><br>143/144                                                                                                                                         | oxygen corr,<br>145/144                                                                                                                                            | <i>interference</i><br>146/144                                                                                                                                  | <i>corr, exp nor</i><br>148/144                                                                                                                                                                                                                                                                                                                                                                                               | malized valu<br>150/144                                                                                                                             | ies                                                           |
|                      | for Ratios & 9<br>Ratios                                                                                                                                                       | 61SE: use g<br>142/144<br>1.141553                                                                                                                                                                                         | rand mean of 143/144                                                                                                                                                  | oxygen corr,<br>145/144<br><b>0.3486218</b>                                                                                                                        | <i>interference</i><br>146/144<br><b>0.7219</b>                                                                                                                 | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b>                                                                                                                                                                                                                                                                                                                                                                          | malized valı<br>150/144<br><mark>1.0989104</mark>                                                                                                   | ies                                                           |
|                      | for Ratios & 9<br>Ratios<br>%StdFrr                                                                                                                                            | 61SE: use g<br>142/144<br>1.141553<br>0.0009                                                                                                                                                                               | rand mean of 143/144<br>0.512222<br>0.000467                                                                                                                          | 0xygen corr,<br>145/144<br>0.3486218<br>0.0005293                                                                                                                  | <i>interference</i><br>146/144<br><b>0.7219</b><br>0                                                                                                            | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b>                                                                                                                                                                                                                                                                                                                                                     | <i>malized valı</i><br>150/144<br><b>1.0989104</b><br><b>0.0013552</b>                                                                              | ies                                                           |
| for comm             | for Ratios & 9<br>Ratios<br>%StdErr<br>wison or by                                                                                                                             | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144                                                                                                                                                                    | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144                                                                                                            | 0xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144                                                                                                       | interference<br>146/144<br>0.7219<br>0<br>146/144                                                                                                               | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144                                                                                                                                                                                                                                                                                                                                          | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144                                                                                        | <i>ies</i>                                                    |
| for compo            | for Ratios & 9<br>Ratios<br>%StdErr<br>arison only                                                                                                                             | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144                                                                                                                                                                    | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144                                                                                                            | 0.0005293<br>145/144<br>0.3486218<br>0.0005293<br>145/144                                                                                                          | interference<br>146/144<br>0.7219<br>0<br>146/144                                                                                                               | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144                                                                                                                                                                                                                                                                                                                                          | malized valı<br>150/144<br>1.0989104<br>0.0013552<br>150/144                                                                                        | ies                                                           |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, h. B':                                                                                                         | 61SE: use g.<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854                                                                                                                                                       | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na                                                                                                      | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416                                                                                            | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882                                                                                                   | <pre>corr, exp nor<br/>148/144<br/>0.24326883<br/>0.00078444<br/>148/144<br/>0.241572</pre>                                                                                                                                                                                                                                                                                                                                   | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na                                                                                  | ies                                                           |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, ln. B':                                                                                                        | 61SE: use g,<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854                                                                                                                                                       | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na                                                                                                      | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416                                                                                            | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882                                                                                                   | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br><b>148/144</b><br>0.241572                                                                                                                                                                                                                                                                                                                       | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na                                                                                  | <u>ies</u>                                                    |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, h. B':<br>EINAL DAT                                                                                            | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854                                                                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na                                                                                                      | 0.3486218<br>0.3486218<br>0.0005293<br>145/144<br>0.348416                                                                                                         | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882                                                                                                   | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br><b>148/144</b><br>0.241572                                                                                                                                                                                                                                                                                                                       | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na                                                                                  | tes                                                           |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, h. B':<br>FINAL DAT/                                                                                           | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO                                                                                                                                           | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:                                                                                              | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416                                                                                            | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882                                                                                                   | corr, exp nor           148/144           0.24326883           0.00078444           148/144           0.241572           146/144 set 1           148/144                                                                                                                                                                                                                                                                      | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219                                                                      |                                                               |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, ln. B':<br>FINAL DAT/                                                                                          | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144                                                                                                                                | rand mean o<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>RT:<br>143/144                                                                                     | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144                                                                                 | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144                                                                                        | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br><b>148/144</b><br><b>0.241572</b><br><b>146/144 set t</b><br><b>148/144</b>                                                                                                                                                                                                                                                                      | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144                                                           | ues<br>150t/144s                                              |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>wison only<br>88, p. 14, ln. B':<br>FINAL DAT/<br>Ratios                                                                                | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771                                                                                                                    | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045                                                                       | 2000 2000 2000 2000 2000 2000 2000 200                                                                                                                             | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900                                                                            | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br><b>148/144</b><br><b>0.241572</b><br><b>146/144 set t</b><br><b>148/144</b><br><b>0.241566</b>                                                                                                                                                                                                                                                   | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478                                               | tes<br>150t/144s<br>1.148783                                  |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, h. B':<br>FINAL DATA<br>Ratios<br>± 2 S.E.                                                                     | 61SE: use g,<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021                                                                                                       | rand mean o<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                            | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004                                                         | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000                                                                | corr, exp nor           148/144           0.24326883           0.00078444           148/144           0.241572           146/144 set 1           148/144           0.241566           0.000004                                                                                                                                                                                                                                | malized vah<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>0.07219<br>150/144<br>0.236478<br>0.000006                                           | tes<br>150t/144s<br>1.148783<br>0.000031                      |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>trison only<br>88, p.14, h. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.                                                                     | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004                                                         | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000                                                                | Corr, exp nor           148/144           0.24326883           0.00078444           148/144           0.241572           146/144 set 1           148/144           0.241566           0.000004                                                                                                                                                                                                                                | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006                                   | tes<br>150t/144s<br>1.148783<br>0.000031                      |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>wison only<br>88, p.14, ln. B':<br>FINAL DATA<br>Ratios<br>± 2 S.E.                                                                     | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004                                                         | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000                                                                | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144<br>0.241572<br><b>146/144 set f</b><br>148/144<br><b>0.241566</b><br><b>0.000004</b>                                                                                                                                                                                                                                                     | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006                                   | tes<br>150t/144s<br>1.148783<br>0.000031                      |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>vrison only<br>88, p. 14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.                                                                   | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | 2000 2000 2000 2000 2000 2000 2000 200                                                                                                                             | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56                                                      | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144<br>0.241572<br><b>146/144 set 1</b><br>148/144<br>0.241566<br>0.000004<br>using (143                                                                                                                                                                                                                                                     | malized vali<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0.0.7219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=                    | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638          |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, h. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.                                                                     | 61SE: use g,<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021                                                                                                       | rand mean o<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                            | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                     | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09                                              | Corr, exp nor           148/144           0.24326883           0.00078444           148/144           0.241572           146/144 set 1           148/144           0.241566           0.000004           using (14:<br>(Han                                                                                                                                                                                                   | malized vah<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nilton et al. 1  | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.                                                                    | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                     | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09                                              | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144<br>0.241572<br><b>146/144 set f</b><br>148/144<br><b>0.241566</b><br><b>0.000004</b><br>using (143<br>(Han                                                                                                                                                                                                                               | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0.07219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nilton et al. 1  | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>[983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p. 14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.                                                                   | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | 2xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                    | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09                                              | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144<br>0.241572<br><b>146/144 set t</b><br>148/144<br>0.241566<br>0.000004<br>using (143<br>(Han                                                                                                                                                                                                                                             | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>0.07219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nilton et al. 1        | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>vrison only<br>88, p. 14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.                                                                   | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>PRT:<br>143/144<br>0.512045<br>0.000005                                                           | 2000 2007 2007 2007 2007 2007 2007 2007                                                                                                                            | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09                                              | Corr, exp nor<br>148/144<br>0.24326883<br>0.00078444<br>148/144<br>0.241572<br>146/144 set (<br>148/144<br>0.241566<br>0.000004<br>using (143<br>(Han                                                                                                                                                                                                                                                                         | malized valı<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>8/144)chur=<br>nilton et al. 1 | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>trison only<br>88, p.14, h. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.                                                                     | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | 2xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                    | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09                                              | Corr. exp nor<br>148/144<br>0.24326883<br>0.00078444<br>148/144<br>0.241572<br>146/144 set t<br>148/144<br>0.241566<br>0.000004<br>using (143<br>(Han                                                                                                                                                                                                                                                                         | malized vah<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nilton et al. 1  | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Si<br>[Sm147]=                                      | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | 2xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                    | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=                                  | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144<br>0.241572<br><b>146/144 set (</b><br>148/144<br><b>0.241566</b><br><b>0.000004</b><br>using (14:<br>(Han                                                                                                                                                                                                                               | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0.0.7219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nilton et al. 1 | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p. 14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Si<br>[Sm147]=                                     | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>###################################                                                      | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | 145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                                    | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=                                  | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144<br>0.241572<br><b>146/144 set 1</b><br>148/144<br>0.241566<br>0.000004<br>using (143<br>(Han<br>36671.22275                                                                                                                                                                                                                              | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g                                         | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>trison only<br>88, p.14, h. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Si<br>[Sm147]=<br>±                                  | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>#########<br>0.076030                                                                    | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>PRT:<br>143/144<br>0.512045<br>0.000005                                                           | 145/144<br>0.3486218<br>0.005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                                     | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±                             | corr, exp nor           148/144           0.24326883           0.00078444           148/144           0.241572           146/144 set f           148/144           0.241566           0.000004           using (143<br>(Han           3671.22275           0.14887                                                                                                                                                            | malized vah<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>8/144)chur=<br>nm/g             | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>trison only<br>88, p.14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Str<br>[Sm147]=<br>±<br>[Sm147]=                    | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | 2xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                    | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=                    | Corr, exp nor<br>148/144<br>0.24326883<br>0.00078444<br>148/144<br>0.241572<br>146/144 set t<br>148/144<br>0.241566<br>0.000004<br>using (142<br>(Han<br>3671.22275<br>0.14887<br>2226.50360                                                                                                                                                                                                                                  | malized vah<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm      | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>vrison only<br>88, p.14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Sr<br>[Sm147]=<br>±<br>[Sm147]=<br>±                | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021                                                                                                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | 145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                                    | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>+               | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144<br>0.241572<br><b>146/144 set t</b><br>148/144<br>0.241566<br>0.000004<br>using (14:<br>(Han<br>3671.22275<br>0.14887<br>2226.50360<br>0,00029                                                                                                                                                                                           | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm                                  | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>trison only<br>88, p.14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Sr<br>[Sm147]=<br>±<br>[Sm147]=                     | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>##########<br>0.076030<br>###################################                            | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | 145/144<br>0.3486218<br>0.005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                                     | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±               | corr, exp nor           148/144           0.24326883           0.00078444           148/144           0.241572           146/144 set 1           148/144           0.241572           146/144 set 1           148/144           0.241572           148/144           0.241566           0.000004           using (143<br>(Han           3671.22275           0.14887           2226.50360           0.09029           0.09027 | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm     | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>trison only<br>88, p.14, h. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Sr<br>[Sm147]=<br>±<br>[Sm147]=<br>±<br>TOT ng Sm=   | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>#########<br>0.076030<br>#########<br>0.076228<br>15.39879                               | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005                                                           | 2xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±                                    | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±<br>OT ng Nd=  | corr, exp nor           148/144           0.24326883           0.00078444           148/144           0.241572           146/144 set 1           148/144           0.241566           0.000004           using (143<br>(Han           3671.22275           0.14887           2226.50360           0.09029           52.4477414                                                                                                | malized vah<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm      | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, In. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Sr<br>[Sm147]=<br>±<br>[Sm147]=<br>±<br>TOT ng Sm=  | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>##########<br>0.076030<br>##########<br>0.076228<br>15.39879<br>Sm1                      | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.0000005<br>1<br>nm/g<br>ppm<br>47/Nd144=                         | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±<br>T<br>0.177599                    | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±<br>OT ng Nd=  | <i>corr, exp nor</i><br>148/144<br><b>0.24326883</b><br><b>0.00078444</b><br>148/144<br>0.241572<br><b>146/144 set (</b><br>148/144<br><b>0.241566</b><br><b>0.000004</b><br>using (14:<br>(Han<br>3671.22275<br><b>0.14887</b><br><b>2226.50360</b><br><b>0.09029</b><br><b>52.4477414</b>                                                                                                                                   | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm     | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>vrison only<br>88, p. 14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Si<br>[Sm147]=<br>±<br>[Sm]=<br>±<br>TOT ng Sm=    | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>TO REPC<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>#########<br>0.076030<br>###################################                               | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005<br>1<br>nm/g<br>ppm<br>47/Nd144=<br>± 2 S F               | 2xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±<br>10.177599<br>0.000022           | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±<br>OT ng Nd=  | corr, exp nor           148/144           0.24326883           0.00078444           148/144           0.241572           146/144 set t           148/144           0.241576           148/144           0.241566           0.000004           using (14:           (Han           36671.22275           0.14887           2226.50360           0.09029           52.4477414                                                   | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm                                  | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>trison only<br>88, p.14, h. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Si<br>[Sm147]=<br>±<br>[Sm]=<br>±<br>TOT ng Sm=      | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>#########<br>0.076030<br>#########<br>0.076228<br>15.39879<br>Sm1                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005<br>1<br>1<br>nm/g<br>ppm<br>47/Nd144=<br>± 2 S.E.         | 2xygen corr,<br>145/144<br>0.3486218<br>0.005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±<br>1<br>0.177599<br>0.000022<br>00' | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.0000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±<br>OT ng Nd= | corr, exp nor           148/144           0.24326883           0.00078444           148/144           0.241572           146/144 set 1           148/144           0.241566           0.000004           using (143<br>(Han           3671.22275           0.14887           2226.50360           0.09029           52.4477414                                                                                                | malized vah<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>8/144)chur=<br>nm/g<br>ppm      | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>urison only<br>88, p.14, In. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Sir<br>[Sm147]=<br>±<br>[Sm147]=<br>±<br>TOT ng Sm= | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>#########<br>0.076030<br>#########<br>0.076228<br>15.39879<br>Sm1                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.0000005<br>1<br>nm/g<br>ppm<br>47/Nd144=<br>± 2 S.E.<br>± 2RSE % | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±<br>10.177599<br>0.000022<br>0%      | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±<br>OT ng Nd=  | Corr, exp nor<br>148/144<br>0.24326883<br>0.00078444<br>148/144<br>0.241572<br>146/144 set f<br>148/144<br>0.241566<br>0.000004<br>using (14:<br>(Han<br>3671.22275<br>0.14887<br>2226.50360<br>0.09029<br>52.4477414                                                                                                                                                                                                         | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>0.07219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm            | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>vrison only<br>88, p.14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Si<br>[Sm147]=<br>±<br>[Sm147]=<br>±<br>TOT ng Sm=  | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>###################################                                                      | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005<br>1<br>nm/g<br>ppm<br>47/Nd144=<br>± 2 S.E.<br>± 2RSE %  | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±<br>10.177599<br>0.000022<br>0%      | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±<br>OT ng Nd=  | Corr, exp nor<br>148/144<br>0.24326883<br>0.00078444<br>148/144<br>0.241572<br>146/144 set t<br>148/144<br>0.241566<br>0.000004<br>using (14:<br>(Han<br>3671.22275<br>0.14887<br>2226.50360<br>0.09029<br>52.4477414                                                                                                                                                                                                         | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm                                  | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>trison only<br>88, p.14, h. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Sr<br>[Sm147]=<br>±<br>TOT ng Sm=                    | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPC<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>#########<br>0.076030<br>#########<br>0.076228<br>15.39879<br>Sm1                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005<br>1<br>nm/g<br>ppm<br>47/Nd144=<br>± 2 S.E.<br>± 2RSE %  | 2xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±<br>1<br>0.177599<br>0.000022<br>0% | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.0000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±<br>OT ng Nd= | Corr, exp nor<br>148/144<br>0.24326883<br>0.00078444<br>148/144<br>0.241572<br>146/144 set 1<br>148/144<br>0.241566<br>0.000004<br>using (14:<br>(Han<br>3671.22275<br>0.14887<br>2226.50360<br>0.09029<br>52.4477414                                                                                                                                                                                                         | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm                                  | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compe<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>trison only<br>88, p.14, h. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from St<br>[Sm147]=<br>±<br>[Sm]=<br>±<br>TOT ng Sm=      | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>#########<br>0.076030<br>#########<br>0.076228<br>15.39879<br>Sm1                        | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005<br>1<br>nm/g<br>ppm<br>47/Nd144=<br>± 2 S.E.<br>± 2RSE %  | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±<br>1<br>0.177599<br>0.000022<br>0%  | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±<br>OT ng Nd=  | Corr, exp nor<br>148/144<br>0.24326883<br>0.00078444<br>148/144<br>0.241572<br>146/144 set t<br>148/144<br>0.241566<br>0.000004<br>using (142<br>(Han<br>3671.22275<br>0.14887<br>2226.50360<br>0.09029<br>52.4477414                                                                                                                                                                                                         | malized vah<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>na<br>0 0.7219<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm      | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |
| for compo<br>DePaolo | for Ratios & 9<br>Ratios<br>%StdErr<br>vrison only<br>88, p.14, ln. B':<br>FINAL DAT/<br>Ratios<br>± 2 S.E.<br>linked from Sr<br>[Sm147]=<br>±<br>TOT ng Sm=                   | 61SE: use g<br>142/144<br>1.141553<br>0.0009<br>142/144<br>1.141854<br>A TO REPO<br>142/144<br>1.141771<br>0.000021<br>n sheet<br>##########<br>0.076030<br>###########<br>0.076030<br>################################### | rand mean of<br>143/144<br>0.512222<br>0.000467<br>143/144<br>na<br>DRT:<br>143/144<br>0.512045<br>0.000005<br>1<br>nm/g<br>ppm<br>47/Nd144=<br>± 2 S.E.<br>± 2RSE %  | xygen corr,<br>145/144<br>0.3486218<br>0.0005293<br>145/144<br>0.348416<br>145/144<br>0.348408<br>0.000004<br>Epsilon143=<br>±<br>10.177599<br>0.000022<br>0%      | interference<br>146/144<br>0.7219<br>0<br>146/144<br>0.721882<br>146/144<br>0.721900<br>0.000000<br>-11.56<br>0.09<br>[Nd144]=<br>±<br>[Nd]=<br>±<br>OT ng Nd=  | Corr, exp nor<br>148/144<br>0.24326883<br>0.00078444<br>148/144<br>0.241572<br>146/144 set t<br>148/144<br>0.241566<br>0.000004<br>using (14:<br>(Han<br>3671.22275<br>0.14887<br>2226.50360<br>0.09029<br>52.4477414                                                                                                                                                                                                         | malized valu<br>150/144<br>1.0989104<br>0.0013552<br>150/144<br>0.236478<br>0.000006<br>3/144)chur=<br>nm/g<br>ppm                                  | tes<br>150t/144s<br>1.148783<br>0.000031<br>0.512638<br>1983) |

















|               | Full Sa                             | ample Name:                       | CBD_11_1                        | 0_2_eud1_r              | nd                                   |                                 | 1                       |           |  |  |
|---------------|-------------------------------------|-----------------------------------|---------------------------------|-------------------------|--------------------------------------|---------------------------------|-------------------------|-----------|--|--|
|               | Date of TI<br>estimated             | MS analysis:<br>I Nd load (ng):   | 8/11/2020<br>20                 |                         | Position #:                          | 13                              | l                       | 1         |  |  |
|               |                                     |                                   |                                 |                         |                                      |                                 |                         |           |  |  |
|               | 142/144                             | Rspike Va                         |                                 | nNd 0.15 A s            | <b>pike</b> , 6-12-0                 | <b>150/144</b>                  | DI 11501                |           |  |  |
|               | 0.830433                            | 0.494001                          | 0.436936                        | 0.885201                | 0.740574                             | 198.371260                      | 0.125778                |           |  |  |
|               |                                     |                                   |                                 |                         |                                      |                                 | nm/g                    |           |  |  |
|               |                                     |                                   | jues Nd {Sr                     | nNd 0.15 A s            | spike, 6-12-0                        | )8 calib}                       |                         |           |  |  |
| ň             | t Sample (g)<br>142/144             |                                   | <sup>g</sup> 145/144            | 146/144                 | 148/144                              | 150/144                         | [Nd150]                 |           |  |  |
|               | 0.830433                            | 0.494001                          | 60.436936                       | 0.885201                | 0.740574                             | 198.371260                      | 0.125778                |           |  |  |
| Mass Spect    | Mass Spectrometer Information: nm/g |                                   |                                 |                         |                                      |                                 |                         |           |  |  |
| v             | Vt Sample (g)=                      | 0,00003                           | g<br>sc mascurad                | 18                      | 1                                    |                                 |                         |           |  |  |
|               | Wt Spike (g)=                       | 0.76643<br>Number o               | g<br>cycles used:               | 16                      |                                      |                                 |                         |           |  |  |
| Mass Spect    | rometer Informatio                  | n.                                |                                 |                         |                                      | r                               |                         |           |  |  |
|               |                                     |                                   |                                 | start                   | (from sheet)                         |                                 |                         |           |  |  |
|               |                                     | Number of cyc<br>Filament Curre   | les measured:<br>nt range: from | <enter!></enter!>       | <enter!></enter!>                    | Amps                            |                         |           |  |  |
|               |                                     | Number o<br>Beam intensity        | f cycles used:<br>range: from   | 0.1563075               | 0.1717706                            | Volts 144Nd.16                  | ю                       |           |  |  |
|               |                                     | Temperature                       | range: from                     | <enter!></enter!>       | <pre><enter!> average</enter!></pre> | °C                              |                         |           |  |  |
| Final Ratio I | Data:                               |                                   |                                 | start                   | (from sheet)                         |                                 |                         |           |  |  |
|               | Interference V                      | Filament Curren<br>alues (oxide o | nt range: from<br>corrected; in | 3.51<br>formational or  | <b>3.51</b>                          | d in this sheet)                |                         |           |  |  |
|               | Ce140/Nd144                         | 0.004279                          | range: from                     | 1560                    | 1614                                 | voits 144Nd.16<br>° C           | iU .                    |           |  |  |
| Final Ratio I | Pr141/Nd144<br>Data:                | 0.011067                          | nange: nom                      | 1000                    | 1011                                 | 0                               |                         |           |  |  |
|               | 511149/INU144                       | 0.000124                          |                                 |                         |                                      |                                 |                         |           |  |  |
|               | Interference V                      | alues (oxide o                    | corrected; in                   | formational o           | nly not use                          | d in this sheet)                |                         |           |  |  |
|               |                                     | 0.0055                            | 1                               |                         |                                      |                                 | 1. 1 1                  |           |  |  |
|               | Jor Ratios & 9                      | %1SE: use g                       | 143/144                         | oxygen corr,<br>145/144 | <i>interference</i><br>146/144       | <i>corr, exp nor</i><br>148/144 | malized vali<br>150/144 | ies       |  |  |
|               | Ratios                              | 1.139686                          | 0.513976                        | 0.3503479               | 0.7219                               | 0.25659213                      | 7.8170158               |           |  |  |
|               | %StdErr                             | 0.005283                          | 0.003715                        | 0.0021773               | 0                                    | 0.00660622                      | 0.0075732               |           |  |  |
| for compa     | urison only                         | 142/144                           | 143/144                         | 145/144                 | 146/144                              | 148/144                         | 150/144                 | ies       |  |  |
| Der auto      | <u>oo, p. 14, II. D</u> .           | 1.141034                          | 114                             | 0.546410                | 0.721002                             | 0.241372                        | 114                     | ;         |  |  |
|               | FINAL DAT                           | A TO REPC                         | ORT:                            |                         |                                      | 146/144 set t                   | o 0.7219                |           |  |  |
|               | р.                                  | 142/144                           | 143/144                         | 145/144                 | 146/144                              | 148/144                         | 150/144                 | 150t/144s |  |  |
|               | + 2 S F                             | 1.141745                          | 0.512409                        | 0.348430                | 0.721900                             | 0.241528                        | 0.236476                | 0.123207  |  |  |
|               | ± 2 5.E.                            | 0.000121                          | 0.000030                        | 0.000015                | 0.000000                             | 0.000052                        | 0.000020                | 0.000017  |  |  |
|               |                                     |                                   | 1                               | Epsilon143=             | -4.46                                | using (143                      | 8/144)chur=             | 0.512638  |  |  |
|               |                                     |                                   |                                 | ±                       | 0.74                                 | (Han                            | nilton et al. 1         | 983)      |  |  |
|               |                                     |                                   |                                 |                         |                                      |                                 |                         |           |  |  |
|               | linked from S                       | m sheet                           |                                 |                         |                                      |                                 |                         |           |  |  |
|               | [Sm147]=                            | 71.658894                         | nm/g                            |                         | [Nd144]=                             | 395.43061                       | nm/g                    |           |  |  |
|               | ±                                   | 0.004492                          |                                 | 1                       | ±                                    | 0.05991                         |                         |           |  |  |
|               | [Sm]=<br>+                          | 0.004504                          | ppm                             | I                       | [Nd]=<br>+                           | 0.03633                         | ppm                     |           |  |  |
|               | TOT ng Sm=                          | 1.436915                          |                                 | Т                       | OT ng Nd=                            | 4.796373                        |                         |           |  |  |
|               |                                     | Sm1                               | 47/Nd144=                       | 0.181217                |                                      |                                 |                         |           |  |  |
|               |                                     |                                   | ± 2 S.E.                        | 0.000030                |                                      |                                 |                         |           |  |  |
|               |                                     |                                   | ± 2KSE %                        | 0%                      |                                      |                                 |                         |           |  |  |
|               |                                     |                                   |                                 |                         |                                      |                                 |                         |           |  |  |
|               |                                     |                                   |                                 |                         |                                      |                                 |                         |           |  |  |
|               | 1                                   |                                   | ± 2K3E 70                       | 0 /0                    |                                      |                                 |                         | 1         |  |  |
|               |                                     |                                   |                                 |                         |                                      |                                 |                         |           |  |  |
|               |                                     |                                   |                                 |                         |                                      |                                 |                         |           |  |  |
|               | 1                                   |                                   |                                 |                         |                                      |                                 |                         | ŧ         |  |  |













|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fu <b>l</b> Sa     | mple Name:         | CBD11 10        | 2 eud 4        |                |                  |                 |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-----------------|----------------|----------------|------------------|-----------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date of TI         | MS analysis:       | 11/24/2020      |                | Position #:    | б                |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | estimated          | -<br>Nd load (ng): |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Rsnike Va          | hies Nd {Sir    | Nd 0.15 A s    | nike, 6-12-0   | 8 calib}         |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 142/144            | 143/144            | 145/144         | 146/144        | 148/144        | 150/144          | [Nd150]         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.830433           | 0.494001           | 0.436936        | 0.885201       | 0 740574       | 198 371260       | 0.125778        |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.050155           | 0.191001           | 0.150550        | 0.005201       | 0.710371       | 170.371200       | nm/a            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  | 1111 5          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74 C 1- (-)        | 0.00001            | -               |                |                |                  |                 |           |
| , v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Vi Sampie (g)-     | 0.00001            | s<br>a          |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wtspike (g)=       | 0.24/41            | S               |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
| Mass Spect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rometer Informatio | )fl                |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 | 110            |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Number of cy       | des measured:   | 119            |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Number of          | of cycles used: | 108            |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                | 1                |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                | average        |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 | start          | (from sheet)   |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Filament Curre     | ent range: from | 3.3            | 3.3            | Amps             |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Beam intensity     | yrange: from    | 0.0739757      | 0.0496204      | Volts 144Nd 16   | 50              |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Temperatur         | e range: from   | 1560           | 1617           | °C               |                 |           |
| Final Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Data:              |                    |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Interference Va    | alues (oxide (     | corrected; inf  | formational or | ly not used    | l in this sheet) |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ce140/Nd144        | 0.046651           |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pr141/Nd144        | 0.006335           |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sm149/Nd144        | 0.000156           |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    | I               |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for Ratios & 9     | 61SE: use g        | rand mean a     | xvgen corr.    | interference   | com. exp nom     | malized valu    | es        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u></u>            | 142/144            | 143/144         | 145/144        | 146/144        | 148/144          | 150/144         |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ratios             | 1 141471           | 0.5120231       | 0 3480085      | 0 7210         | 0.2464662        | 2 7627622       |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %StdFrr            | 0.00952            | 0.0055463       | 0.0060140      | 0.7212         | 0.01195402       | 0.0135976       |           |
| for comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rison only         | 142/144            | 142/144         | 145/144        | 146/144        | 149/144          | 150/144         |           |
| DePeolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22 n 1 / In P'     | 1 1/1 1/25/        | 145/144         | 0.349416       | 0.721992       | 0.241572         | 150/144         |           |
| Der auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | оо, р.14, ш. Б.    | 1.1410.4           | 114             | 0.340410       | 0.721002       | 0.241372         | 114             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EINAL DAT          | TOPEPO             | DR T.           |                |                | 146/144 act 4    | 0 7210          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TINAL DAIA         |                    | 142/244         | 145/144        | 146/144        | 140/144 Set 1    | 150/144         | 1504/144  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>D</b>           | 142/144            | 143/144         | 145/144        | 140/144        | 148/144          | 150/144         | 1500/144s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ratios             | 1.142125           | 0.512408        | 0.348368       | 0.721900       | 0.241470         | 0.236478        | 0.386623  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ± 2 S.E.           | 0.000195           | 0.000057        | 0.000042       | 0.000000       | 0.000057         | 0.000064        | 0.000105  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    | 1               | Epsilon143=    | -4.48          | using (143       | 3/144)chur=     | 0.512638  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 | ±              | 1.11           | (Han             | uilton et al. ] | .983)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | linked from Si     | n sheet            |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [Sm147]=           | #########          | nm/g            |                | [Nd144]=       | 1203.12321       | nm/g            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ±                  | 0.029063           | -               |                | . ,<br>±       | 0.32718          |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [Sm]=              | #########          | ppm             |                | [Nd]=          | 729.66375        | ppm             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [~m]               | 0.029139           | 11              |                |                | 0 108/2          |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOT ra Sr          | 2 181/15           |                 |                | T<br>DT ng Nd- | 7 20662752       |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101 ng sm=         | 2.101415           | 47.0127.44      | 0.100047       | <br>           | 7.29003/52       |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    | Sml                | 147/Nd144=      | 0.180841       |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    | ± 2 S.E.        | 0.000055       |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    | ± 2RSE %        | 0%             |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                    |                 |                |                |                  |                 |           |
| CONTRACTOR     CONTRACTON     CONTRACTON     CONTRACTON     CONTRACTON     CONTRACTON |                    |                    |                 |                |                |                  |                 |           |

|             | Euff Ca                       |                                                     | CTDD 11 10                                 |                                 |                          |                                     |                |            |
|-------------|-------------------------------|-----------------------------------------------------|--------------------------------------------|---------------------------------|--------------------------|-------------------------------------|----------------|------------|
|             | ruisa                         | inple Name.                                         | Свр_11_10                                  | 2 eau 5                         |                          | _                                   |                |            |
|             | Date of Th                    | MS analysis:                                        | 11/25/2020                                 |                                 | Position #:              | 7                                   |                |            |
|             | estimated                     | Nd load (ng):                                       |                                            |                                 |                          |                                     |                |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             |                               | Rspike Val                                          | lues Nd {SmN                               | Nd 0.15 A spil                  | ke, 6-12-08 (            | calib}                              |                |            |
|             | 142/144                       | 143/144                                             | 145/144                                    | 146/144                         | 148/144                  | 150/144                             | [Nd150]        |            |
|             | 0.830433                      | 0 494001                                            | 0.436936                                   | 0.885201                        | 0 740574                 | 198 371260                          | 0.125778       |            |
|             | 0.050155                      | 0.191001                                            | 0.150550                                   | 0.005201                        | 0.710571                 | 170.371200                          | nm/a           |            |
|             |                               |                                                     |                                            |                                 |                          |                                     | nn g           |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
| v           | Vt Sample (g)=                | 0.00001                                             | g                                          |                                 |                          |                                     |                |            |
|             | Wt Spike (g)=                 | 0.24779                                             | g                                          |                                 |                          |                                     |                |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
| Mass Spect  | rometer Informatio            | n                                                   |                                            |                                 |                          |                                     |                |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             |                               | Number of c                                         | vcles measured:                            | <enter!></enter!>               |                          |                                     |                |            |
|             |                               | Number                                              | -<br>of cycles used:                       | <enter!></enter!>               |                          |                                     |                |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             |                               |                                                     |                                            |                                 | average                  | 1                                   |                |            |
|             |                               |                                                     |                                            | start                           | (from sheet)             |                                     |                |            |
|             |                               |                                                     |                                            | 31                              |                          | 1000                                |                |            |
|             |                               | Filament Cur                                        | rent range: from                           | 5.1                             | 5.10                     | Autps                               |                |            |
|             |                               | Beamintens                                          | ity range: from                            | 0.18368248                      | 0.2958935                | Volts 144Nd.16                      | iO             |            |
|             |                               | Temperatu                                           | ire range: from                            | 1547                            | 1583                     | °C                                  |                |            |
| Final Ratio | Data:                         |                                                     |                                            |                                 |                          |                                     |                |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             | Interference Va               | ilues (oxide o                                      | corrected; info                            | rmational only.                 | not used in              | this sheet)                         |                |            |
|             | Ce140/Nd144                   | 0.010206                                            |                                            |                                 |                          |                                     |                |            |
|             | Pr141/Nd144                   | 0.003847                                            |                                            |                                 |                          |                                     |                |            |
|             | Sm149/Nd144                   | 5 OF 05                                             |                                            |                                 |                          |                                     |                |            |
|             | 511147/10144                  | 3.9E-03                                             |                                            |                                 |                          |                                     |                |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             | for Ratios & %                | 61SE: use g                                         | rand mean ox                               | ygen corr, int                  | erference co             | rr, exp norm a                      | lized values   |            |
|             |                               | 142/144                                             | 143/144                                    | 145/144                         | 146/144                  | 148/144                             | 150/144        |            |
|             | Ratios                        | 1.141574                                            | 0.51258293                                 | 0.34872381                      | 0.7219                   | 0.24408901                          | 1.5185964      |            |
|             | %StdErr                       | 0.001308                                            | 0.00075285                                 | 0.00073924                      | 0                        | 0.00191457                          | 0.0021033      |            |
| for compo   | arison onlv                   | 142/144                                             | 143/144                                    | 145/144                         | 146/144                  | 148/144                             | 150/144        |            |
| DePaolo     | 88 n 14 ln B'                 | 1 141854                                            | 110/111                                    | 0 348416                        | 0.721882                 | 0.241572                            | 1207111        |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             | EINAL DATA                    | TOPEDO                                              | рт.                                        |                                 |                          | 146/144 pot 4                       | ~ 0 7210       |            |
|             | FINAL DATE                    |                                                     |                                            | 145/144                         | 146744                   | 140/144 Set 1                       | 150/144        | 1.50/17.44 |
|             |                               | 142/144                                             | 143/144                                    | 145/144                         | 140/144                  | 148/144                             | 150/144        | 150t/144s  |
|             | Ratios                        | 1.141901                                            | 0.512322                                   | 0.348405                        | 0.721900                 | 0.241557                            | 0.236478       | 0.769984   |
|             | ± 2 S.E.                      | 0.000030                                            | 0.000008                                   | 0.000005                        | 0.000000                 | 0.000009                            | 0.000010       | 0.000032   |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             |                               |                                                     |                                            | Epsilon143=                     | -6.16                    | using (143                          | 3/144)chur=    | 0.512638   |
|             |                               |                                                     |                                            | -<br>±                          | 0.15                     | (Han                                | ulton et al. 1 | 983)       |
|             |                               |                                                     |                                            |                                 |                          | ,                                   |                |            |
|             |                               |                                                     |                                            |                                 |                          |                                     |                |            |
|             | linked from C                 | . choot                                             |                                            |                                 |                          |                                     |                |            |
|             | unkea from Sh                 | i sneet                                             | ,                                          |                                 |                          |                                     | ,              |            |
|             | [Sm147]=                      | #########                                           | nm/g                                       |                                 | [Nd144]=                 | 2399.77529                          | nm/g           |            |
|             |                               | 0 0 0 0 1 0                                         |                                            | _                               | ±                        | 0.11208                             |                |            |
|             | ±                             | 0.060312                                            |                                            |                                 |                          |                                     |                |            |
|             | ± [Sm]=                       | 0.060312<br>#########                               | ppm                                        |                                 | [Nd]=                    | 1455.40293                          | ppm            |            |
|             | ± [Sm]= ±                     | 0.060312<br>#########<br>0.060470                   | ppm                                        |                                 | [Nd]=<br>±               | 1455.40293<br>0.06797               | ppm            |            |
|             | ± [Sm]= ± TOT pg Sm=          | 0.060312<br>#########<br>0.060470<br>3.900037       | ppm                                        | Т                               | [Nd]=<br>±<br>OT ng Nd=  | 1455.40293<br>0.06797<br>14.5540293 | ppm            |            |
|             | ± [Sm]= ± TOT ng Sm=          | 0.060312<br>#########<br>0.060470<br>3.900037       | ppm                                        | 1<br>0 162004                   | [Nd]=<br>±<br>OT ng Nd=  | 1455.40293<br>0.06797<br>14.5540293 | ppm            |            |
|             | ±<br>[Sm]=<br>±<br>TOT ng Sm= | 0.060312<br>#########<br>0.060470<br>3.900037<br>Sn | ppm<br>147/Nd144=<br>+ 25 F                | 1<br>0.162094                   | [Nd]=<br>±<br>OTngNd=    | 1455.40293<br>0.06797<br>14.5540293 | ppm            |            |
|             | ±<br>[Sm]=<br>±<br>TOT ng Sm= | 0.060312<br>#########<br>0.060470<br>3.900037<br>Sn | ppm<br>147/Nd144=<br>± 2 S.E.              | T<br>0.162094<br>0.000026       | [Nd]=<br>±<br>℃OT ng Nd= | 1455.40293<br>0.06797<br>14.5540293 | ppm            |            |
|             | ±<br>[Sm]=<br>±<br>TOT ng Sm= | 0.060312<br>########<br>0.060470<br>3.900037<br>Sn  | ppm<br>1147/Nd144=<br>± 2 S.E.<br>± 2RSE % | T<br>0.162094<br>0.000026<br>0% | [Nd]=<br>±<br>OT ng Nd=  | 1455.40293<br>0.06797<br>14.5540293 | ppm            |            |
|             | ±<br>[Sm]=<br>±<br>TOT ng Sm= | 0.060312<br>#########<br>0.060470<br>3.900037<br>Sn | ppm<br>1147/Nd144=<br>± 2 S.E.<br>± 2RSE % | T<br>0.162094<br>0.000026<br>0% | [Nd]=<br>±<br>OTngNd=    | 1455.40293<br>0.06797<br>14.5540293 | ppm            |            |
|             | ±<br>[Sm]=<br>±<br>TOT ng Sm= | 0.060312<br>#########<br>0.060470<br>3.900037<br>Sn | ppm<br>n147/Nd144=<br>± 2 S.E.<br>± 2RSE % | T<br>0.162094<br>0.000026<br>0% | [Nd]=<br>±<br>°OTngNd=   | 1455.40293<br>0.06797<br>14.5540293 | ppm            |            |

|               | FullSa                    | mple Name:             | CBD11 10         | 2 eud 6        |                |                |                 |           |
|---------------|---------------------------|------------------------|------------------|----------------|----------------|----------------|-----------------|-----------|
|               | Date of TI                | MS analysis:           | 11/25/2020       |                | Position #:    | 8              |                 |           |
|               | estimated                 | Nd load (ng):          |                  |                |                |                | I               |           |
|               |                           |                        |                  | 1              |                |                |                 |           |
|               |                           | Rsnike Val             | lues Nd (Sml     | Nd 0.15 A sn   | ike, 6-12-08   | calib}         |                 |           |
|               | 142/144                   | 143/144                | 145/144          | 146/144        | 148/144        | 150/144        | [Nd150]         |           |
|               | 0.830433                  | 0.494001               | 0.436936         | 0.885201       | 0 740574       | 198 371260     | 0.125778        |           |
|               | 0.0000000                 |                        | 0.150750         | 0.000201       | 0.7.102.7.1    | 170371200      | nm/σ            |           |
|               |                           |                        |                  |                |                |                |                 |           |
|               | it Sample (g)-            | 0.00001                | a                |                |                |                |                 |           |
|               | Vt Sample (g)-            | 0.00001                | 5                |                |                |                |                 |           |
|               | wit spike (g)-            | 0.247                  | 8                |                |                |                |                 |           |
|               |                           |                        |                  |                |                |                |                 |           |
| Mass Spect    | rometer informatio        | n:                     |                  |                |                |                |                 |           |
|               |                           |                        |                  | 222            |                |                |                 |           |
|               |                           | Number of cy           | vcies measured:  | 235            |                |                |                 |           |
|               |                           | Number                 | of cycles used:  | 214            |                |                |                 |           |
|               |                           |                        |                  |                | overoge        | 1              |                 |           |
|               |                           |                        |                  | start          | (from sheet)   |                |                 |           |
|               |                           | Element C              |                  | 3.45           | (1 0111 SHEEL) | Amos           |                 |           |
|               |                           | rilament Curi          | rent range: from | 3.45           | 3.54           | Amps           |                 |           |
|               |                           | Beamintensi            | tyrange: from    | 0.0538764      | 0.1102072      | Volts 144Nd.10 | 50              |           |
|               |                           | Temperatu              | re range: from   | 1553           | 1602           | °C             |                 |           |
| Final Ratio I | Data:                     |                        |                  |                |                |                |                 |           |
|               |                           |                        |                  |                |                |                |                 |           |
|               | Interference Va           | alues (oxide o         | corrected; info  | rmational only | y not used     | in this sheet) |                 |           |
|               | Ce140/Nd144               | 0.015701               |                  |                |                |                |                 |           |
|               | Pr141/Nd144               | 0.003772               |                  |                |                |                |                 |           |
|               | Sm149/Nd144               | 9.52E-05               |                  |                |                |                |                 |           |
|               |                           |                        |                  |                |                |                |                 |           |
|               |                           |                        |                  |                |                |                |                 |           |
|               |                           |                        |                  |                |                |                |                 |           |
|               | for Ratios & %            | 61SE: use g            | rand mean ox     | ygen corr, ir  | nterference c  | orr, exp norm  | alized value    | 5         |
|               |                           | 142/144                | 143/144          | 145/144        | 146/144        | 148/144        | 150/144         |           |
|               | Ratios                    | 1.141442               | 0.5127074        | 0.3488502      | 0.7219         | 0.24495823     | 1.9700473       |           |
|               | %StdErr                   | 0.001972               | 0.0015569        | 0.0013124      | 0              | 0.00341742     | 0.0035503       |           |
| for compa     | arison only               | 142/144                | 143/144          | 145/144        | 146/144        | 148/144        | 150/144         |           |
| DePaolo       | 88, p.14, <b>i</b> n. B': | 1.141854               | na               | 0.348416       | 0.721882       | 0.241572       | na              |           |
|               |                           |                        |                  |                |                |                |                 |           |
|               | FINAL DATA                | TO REPO                | RT:              |                |                | 146/144 set t  | to 0.7219       |           |
|               |                           | 142/144                | 143/144          | 145/144        | 146/144        | 148/144        | 150/144         | 150t/144s |
|               | Ratios                    | 1.141885               | 0.512354         | 0.348419       | 0.721900       | 0.241533       | 0.236478        | 0.567272  |
|               | ± 2 S.E.                  | 0.000045               | 0.000016         | 0.000009       | 0.000000       | 0.000017       | 0.000017        | 0.000040  |
|               |                           |                        |                  |                |                |                |                 |           |
|               |                           |                        | 1                | Epsilon143=    | -5.53          | using (14)     | 3/144)chur=     | 0.512638  |
|               |                           |                        |                  | ±              | 0.31           | (Han           | nilton et al. 1 | 1983)     |
|               |                           |                        |                  |                |                | (              |                 | ,         |
|               |                           |                        |                  |                |                |                |                 |           |
|               | linked from S             | n shaat                |                  |                |                |                |                 |           |
|               | IS 1471                   | " sneet<br>"########## | nm/a             |                | IN 41 4 40-    | 1762 25500     | nm/a            |           |
|               | [51114/]-                 | 0.042142               | lilling          |                | [[N0144]-      | 0.12700        | iiii/g          |           |
|               | ±                         | 0.0 <del>4</del> 2145  | 0000             |                | ±              | 0.12/90        | 0000            |           |
|               | [Sm]=                     | ******                 | ppm              |                | [Nd]=          | 1008.82372     | ppm             |           |
|               | ±                         | 0.042253               |                  |                | ±              | 0.07757        |                 |           |
|               | TOT ng Sm=                | 2.924445               |                  | T              | OT ng Nd=      | 10.6882372     |                 |           |
|               |                           | Sm                     | 147/Nd144=       | 0.165508       |                |                |                 |           |
|               |                           |                        | ± 2 S.E.         | 0.000027       |                |                |                 |           |
|               |                           |                        | ± 2RSE %         | 0%             |                |                |                 |           |
|               |                           |                        |                  |                |                |                |                 |           |
|               |                           |                        |                  |                |                |                |                 |           |
|               |                           |                        |                  |                |                |                |                 |           |



Sm Reduction Sheets

This appendix contains the Sm reduction sheets for every sample used in the above study. Sheets appear in the same order as presented in data tables.

| Full Sample Name:<br>Date of TIMS analysis:<br>estimated Sm load (ng): | KP1_2.1_1 Sm<br>42397<br>10           | I                                                           | Position #: | 2      |   |
|------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|-------------|--------|---|
| Rspike Values Sm {5<br>147/152<br>477.2255                             | SmNd 0.15 A s<br>149/152<br>1.7429473 | pike, 6/12/08 calib}<br>[Concentration]<br>0.018992<br>nm/g | ]           |        |   |
| Normalize                                                              | d to 149/152=                         | 0.51686                                                     |             |        |   |
| Wt Sample=                                                             | 2 /107F_05                            | σ                                                           |             |        |   |
| Wt. Spike=                                                             | 0.536385                              | g                                                           |             |        |   |
|                                                                        |                                       |                                                             |             |        |   |
|                                                                        |                                       |                                                             |             |        |   |
|                                                                        |                                       |                                                             |             |        |   |
| For Sm/Sm, et                                                          | nter Normalized                       | l data                                                      |             |        |   |
| <mark>Sm147/Sm152</mark>                                               | Sm149/Sm152                           | Sm154/Sm152                                                 | Gd155/Sm152 |        |   |
| Ratios 1.2517148                                                       | 0.51686                               | 0.85178532                                                  | 0.22364378  |        |   |
| %StdErr 0.04823102                                                     | 0.00000                               | 0.037614439                                                 | 0.85773097  |        |   |
| (ppm)                                                                  |                                       |                                                             |             |        |   |
| Spills subtracted around mass                                          | n notice                              |                                                             |             |        |   |
| Spike subtracted grand mea                                             |                                       |                                                             |             |        | - |
| 147/152                                                                | 149/152                               | 152s/147t                                                   | 1           |        |   |
| Ratios 0 560865                                                        | 0.516860                              | 1.428564                                                    | 1           |        |   |
| 2 S.E. 0.00054102                                                      | 0.010000                              | 0.001378022                                                 |             |        |   |
| 2 5.1. 0.0000 1102                                                     | Ū                                     | 0.001370022                                                 |             |        |   |
| [Sm147]=                                                               | 338.55964                             | nm/g                                                        |             |        |   |
| ±                                                                      | 0.32736                               | 8                                                           |             |        |   |
|                                                                        |                                       |                                                             |             |        |   |
| [Sm]=                                                                  | 339.44239                             | ppm                                                         |             |        |   |
| ±                                                                      | 0.32821                               |                                                             |             |        |   |
|                                                                        |                                       |                                                             |             |        |   |
| ]                                                                      | Discrimination=                       | 0.6667                                                      | to          | 0.6667 |   |
|                                                                        |                                       | w/Average of                                                | 0.6667      |        |   |

| Full         | Sample Name:               | KP1 2.1 2 Sm     | <br>l                |             |            |  |
|--------------|----------------------------|------------------|----------------------|-------------|------------|--|
| Date of      | TIMS analysis:             | 1/29/2020        |                      | Position #: | 3          |  |
| estimat      | ted Sm load (ng):          | 10               |                      |             |            |  |
|              |                            |                  |                      |             |            |  |
|              |                            |                  |                      |             |            |  |
| Rspik        | e Values Sm {S             | mNd 0.15 A s     | pike, 6/12/08 calib} |             |            |  |
|              | 147/152                    | 149/152          | [Concentration]      |             |            |  |
|              | 477.2255                   | 1.7429473        | 0.018992             |             |            |  |
|              |                            |                  | nm/g                 |             |            |  |
|              |                            | 1 4 4 9 /4 5 9   |                      |             |            |  |
|              | Normalized                 | 1 to $149/152 =$ | 0.51686              |             |            |  |
|              | Wt Sample=                 | 2.4095E-05       | σ                    |             |            |  |
|              | Wt. Snike=                 | 0.53577          | 5<br>0               |             |            |  |
|              |                            |                  | 8                    |             |            |  |
|              |                            |                  |                      |             |            |  |
|              |                            |                  |                      |             |            |  |
|              |                            |                  |                      |             |            |  |
|              |                            |                  |                      | _           |            |  |
|              | For Sm/Sm, er              | nter Normalized  | l data               |             |            |  |
|              | <mark>Sm147/Sm152</mark> S | Sm149/Sm152      | Sm154/Sm152          | Gd155/Sm152 |            |  |
| Ratios       | 1.8780165                  | 0.51686          | 0.85390139           | 0.00182225  |            |  |
| %StdErr      | 0.00422892                 | 0.00000          | 0.003604582          | 0.83434952  |            |  |
| (ppm)        |                            |                  |                      |             |            |  |
|              |                            |                  |                      |             |            |  |
| Spike subtra | cted grand mea             | n ratios         |                      |             |            |  |
|              |                            |                  |                      | 1           |            |  |
| _            | 147/152                    | 149/152          | 152s/147t            | J           |            |  |
| Ratios       | 0.560865                   | 0.516860         | 0.744306             |             |            |  |
| 2 S.E.       | 4.7437E-05                 | 0                | 6.29522E-05          |             |            |  |
|              | IC . 1 471                 | 186 00068        | 1.                   |             |            |  |
|              | [Sm147]=                   | 1/0.28365        | nm/g                 |             |            |  |
|              | ±                          | 0.01013          |                      |             |            |  |
|              | [Sm]=                      | 176 74328        | nnm                  |             | 4 25862941 |  |
|              |                            | 0.01617          | Рып                  |             | 7.23002771 |  |
|              |                            | 0.01017          |                      | 1           |            |  |
|              | I                          | Discrimination=  | 0.6667               | to          | 0.6667     |  |
|              | -                          |                  | w/Average of         | 0.6667      |            |  |

| Full         | Sample Name:                                  | <mark>KP1_2.1_3 Sm</mark> | <br>l                |             |        |  |
|--------------|-----------------------------------------------|---------------------------|----------------------|-------------|--------|--|
| Date of      | TIMS analysis:                                | 1/29/2020                 |                      | Position #: | 4      |  |
| estimat      | ed Sm load (ng):                              | 10                        |                      |             |        |  |
|              |                                               |                           |                      |             |        |  |
|              |                                               |                           |                      |             |        |  |
| Rspik        | e Values Sm {S                                | SmNd 0.15 A s             | pike, 6/12/08 calib} |             |        |  |
|              | 147/152                                       | 149/152                   | [Concentration]      |             |        |  |
|              | 477.2255                                      | 1.7429473                 | 0.018992             |             |        |  |
|              |                                               |                           | nm/g                 |             |        |  |
|              |                                               |                           |                      |             |        |  |
|              | Normalized                                    | d to $149/152 =$          | 0.51686              |             |        |  |
|              |                                               |                           |                      |             |        |  |
|              | Wt. Sample=                                   | 2.4059E-05                | g                    |             |        |  |
|              | Wt. Spike=                                    | 0.535635                  | g                    |             |        |  |
|              |                                               |                           |                      |             |        |  |
|              |                                               |                           |                      |             |        |  |
|              |                                               |                           |                      |             |        |  |
|              |                                               |                           |                      |             |        |  |
|              | For Sm/Sm. er                                 | nter Normalized           | l data               | 1           |        |  |
|              | $\frac{101211211}{\text{Sm}147/\text{Sm}152}$ | Sm149/Sm152               | Sm154/Sm152          | Gd155/Sm152 |        |  |
| Ratios       | 2.01626801                                    | 0.51686                   | 0.854174433          | 0.01830308  |        |  |
| %StdErr      | 0.00189475                                    | 0.00000                   | 0.001425631          | 1.99169704  |        |  |
| (ppm)        |                                               |                           |                      |             |        |  |
|              |                                               |                           |                      |             |        |  |
| Spike subtra | cted grand mea                                | n ratios                  |                      |             |        |  |
|              | U                                             |                           |                      |             |        |  |
|              | 147/152                                       | 149/152                   | 152s/147t            | ]           |        |  |
| Ratios       | 0.560865                                      | 0.516860                  | 0.672607             | -           |        |  |
| 2 S.E.       | 2.1254E-05                                    | 0                         | 2.54885E-05          |             |        |  |
|              |                                               |                           |                      |             |        |  |
|              | [Sm147]=                                      | 159.49973                 | nm/g                 |             |        |  |
|              | ±                                             | 0.00787                   |                      |             |        |  |
|              |                                               |                           |                      | •           |        |  |
|              | [Sm]=                                         | 159.91561                 | ppm                  |             |        |  |
|              | ±                                             | 0.00789                   |                      | l           |        |  |
|              |                                               |                           |                      |             |        |  |
|              | Ι                                             | Discrimination=           | 0.6667               | to          | 0.6667 |  |
|              |                                               |                           | w/Average of         | 0.6667      |        |  |
| Full Sample Name:         | <mark>KP1_2.1_4_Sn</mark> | n                    |             |       |  |
|---------------------------|---------------------------|----------------------|-------------|-------|--|
| Date of TIMS analysis:    | 1/29/2020                 |                      | Position #: | 5     |  |
| estimated Sm load (ng):   | 20                        |                      |             |       |  |
|                           |                           |                      |             |       |  |
|                           |                           |                      |             |       |  |
| Rspike Values Sm {        | SmNd 0.15 A s             | pike, 6/12/08 calib} |             |       |  |
| 147/152                   | 149/152                   | [Concentration]      |             |       |  |
| 477.2255                  | 1.7429473                 | 0.018992             |             |       |  |
|                           |                           | nm/g                 |             |       |  |
|                           |                           |                      |             |       |  |
| Normalize                 | ed to $149/152 =$         | 0.51686              |             |       |  |
|                           |                           |                      |             |       |  |
| Wt. Sample=               | 2.403E-05                 | g                    |             |       |  |
| Wt. Spike=                | 0.53473                   | g                    |             |       |  |
|                           |                           |                      |             |       |  |
|                           |                           |                      |             |       |  |
|                           |                           |                      |             |       |  |
|                           |                           |                      |             |       |  |
| For Sm/Sm e               | nter Normalized           | l data               |             |       |  |
| Sm147/Sm152               | Sm149/Sm152               | Sm154/Sm152          | Gd155/Sm152 |       |  |
| Ratios <b>1.8614001</b>   | 0.51686                   | 0.85406379           | 0.02669139  |       |  |
| %StdErr 0.01046927        | 0.00000                   | 0.007313807          | 0.72827473  |       |  |
| (ppm)                     | •                         |                      |             |       |  |
| · · · · ·                 |                           |                      |             |       |  |
| Spike subtracted grand me | an ratios                 |                      |             |       |  |
|                           |                           |                      | _           |       |  |
| 147/152                   | 149/152                   | 152s/147t            | ]           |       |  |
| Ratios 0.560865           | 0.516860                  | 0.753950             |             |       |  |
| 2 S.E. 0.00011744         | 0                         | 0.000157866          |             |       |  |
|                           |                           |                      |             |       |  |
| [Sm147]=                  | 178.70238                 | nm/g                 |             |       |  |
| ±                         | 0.03795                   |                      |             |       |  |
|                           |                           |                      | 1           |       |  |
| [Sm]=                     | 179.16833                 | ppm                  |             |       |  |
| +                         | 0 03905                   |                      |             |       |  |
|                           | 0.03003                   |                      | 1           |       |  |
|                           | 0.03803                   | 0.667                | 1           | 0.000 |  |

| Full         | Sample Name:             | <mark>KP1_2.1_5 Sm</mark> | 1                    |             |        |  |
|--------------|--------------------------|---------------------------|----------------------|-------------|--------|--|
| Date of      | TIMS analysis:           | 7/21/2020                 |                      | Position #: | 11     |  |
| estimat      | ed Sm load (ng):         | 20                        |                      |             |        |  |
|              |                          |                           |                      |             |        |  |
|              |                          |                           |                      |             |        |  |
| Rspik        | e Values Sm {S           | 5mNd 0.15 A s             | pike, 6/12/08 calib} | -           |        |  |
|              | 147/152                  | 149/152                   | [Concentration]      |             |        |  |
|              | 477.2255                 | 1.7429473                 | 0.018992             |             |        |  |
|              |                          |                           | nm/g                 |             |        |  |
|              |                          | 1 1 1 1 1 1 5 0           |                      |             |        |  |
|              | Normalized               | d to $149/152 =$          | 0.51686              |             |        |  |
|              | Wt Sampla-               | 2 0742F 05                | a                    |             |        |  |
|              | Wt Snike=                | 0 75668                   | Š<br>σ               |             |        |  |
|              | Wt. Spike-               | 0.75000                   | 5                    |             |        |  |
|              |                          |                           |                      |             |        |  |
|              |                          |                           |                      |             |        |  |
|              |                          |                           |                      |             |        |  |
|              |                          |                           |                      | _           |        |  |
|              | For Sm/Sm, er            | nter Normalized           | l data               |             |        |  |
|              | <mark>Sm147/Sm152</mark> | Sm149/Sm152               | Sm154/Sm152          | Gd155/Sm152 |        |  |
| Ratios       | 2.876334                 | 0.51686                   | 0.85523706           | 0.00694022  |        |  |
| %StdErr      | 0.00438135               | 0.00000                   | 0.003694891          | 0.81122819  |        |  |
| (ppm)        |                          |                           |                      |             |        |  |
|              |                          |                           |                      |             |        |  |
| Spike subtra | cted grand mea           | in ratios                 |                      |             |        |  |
|              |                          | 1 10/1 70                 |                      | 1           |        |  |
| D.           | 147/152                  | 149/152                   | 152s/14//t           |             |        |  |
| Ratios       | 0.560865                 | 0.516860                  | 0.418871             |             |        |  |
| 2 S.E.       | 4.9147E-05               | 0                         | 3.6/044E-05          |             |        |  |
|              | [9147]                   | 112 50001                 |                      |             |        |  |
|              | [Sm14/]=                 | 0.01020                   | nm/g                 |             |        |  |
|              | ±                        | 0.01020                   |                      |             |        |  |
|              | [Sm]=                    | 113 80497                 | nnm                  | 1           |        |  |
|              | [5m] <sup>_</sup>        | 0.01023                   | PPm                  |             |        |  |
|              | -                        |                           |                      | 1           |        |  |
|              | I                        | Discrimination=           | 0.6667               | to          | 0.6667 |  |
|              | -                        |                           | w/Average of         | 0.6667      |        |  |

|                                 | Sample Name:                                                                                | CP1 2.1 7 Sr                                                                                                                          | n                                                             |             |        |
|---------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|--------|
| Date of 7                       | LIMS analysis:                                                                              | 8/11/2020                                                                                                                             |                                                               | Position #: | 11     |
| estimate                        | ed Sm load (ng):                                                                            | 20                                                                                                                                    |                                                               | _           |        |
|                                 |                                                                                             |                                                                                                                                       | <u>•</u>                                                      |             |        |
|                                 |                                                                                             |                                                                                                                                       |                                                               |             |        |
| Rspike                          | e Values Sm {S                                                                              | SmNd 0.15 A s                                                                                                                         | spike, 6/12/08 calib}                                         |             |        |
|                                 | 147/152                                                                                     | 149/152                                                                                                                               | [Concentration]                                               |             |        |
|                                 | 477.2255                                                                                    | 1.7429473                                                                                                                             | 0.018992                                                      |             |        |
|                                 |                                                                                             |                                                                                                                                       | nm/g                                                          |             |        |
|                                 |                                                                                             |                                                                                                                                       |                                                               |             |        |
|                                 | Normalized                                                                                  | d to 149/152=                                                                                                                         | 0.51686                                                       |             |        |
|                                 | W/4 Same-las                                                                                | <b>2</b> 4107E 05                                                                                                                     | -                                                             |             |        |
|                                 | Wt Spilzo-                                                                                  | 2.410/E-05                                                                                                                            | S a                                                           |             |        |
|                                 | wi. spike=                                                                                  | 0.73037                                                                                                                               | le<br>I                                                       |             |        |
|                                 |                                                                                             |                                                                                                                                       |                                                               |             |        |
|                                 |                                                                                             |                                                                                                                                       |                                                               |             |        |
|                                 |                                                                                             |                                                                                                                                       |                                                               |             |        |
|                                 |                                                                                             |                                                                                                                                       |                                                               |             |        |
|                                 | For Sm/Sm, er                                                                               | nter Normalize                                                                                                                        | d data                                                        |             |        |
|                                 | <mark>Sm147/Sm152</mark> S                                                                  | Sm149/Sm152                                                                                                                           | Sm154/Sm152                                                   | Gd155/Sm152 |        |
| Ratios                          | 3.7517943                                                                                   | 0.51686                                                                                                                               | 0.85835619                                                    | 0.03225917  |        |
| %StdErr                         | 0.0047649                                                                                   | 0.00000                                                                                                                               | 0.003528572                                                   | 1.2379704   |        |
| (ppm)                           |                                                                                             |                                                                                                                                       |                                                               |             |        |
|                                 |                                                                                             |                                                                                                                                       |                                                               |             |        |
|                                 |                                                                                             |                                                                                                                                       |                                                               |             |        |
| oike subtra                     | cted grand mea                                                                              | n ratios                                                                                                                              |                                                               |             |        |
| pike subtra                     | cted grand mea                                                                              | n ratios                                                                                                                              | 150~/147+                                                     | 1           |        |
| pike subtra                     | cted grand mea                                                                              | n ratios 149/152 0.516860                                                                                                             | 152s/147t                                                     | ]           |        |
| vike subtra                     | cted grand mea           147/152           0.560865           5.3440E                       | n ratios<br>149/152<br>0.516860                                                                                                       | 152s/147t<br>0.301062<br>2 86907E 05                          | ]           |        |
| pike subtra<br>Ratios<br>2 S.E. | cted grand mea<br>147/152<br>0.560865<br>5.3449E-05                                         | n ratios<br>149/152<br>0.516860<br>0                                                                                                  | 152s/147t<br>0.301062<br>2.86907E-05                          | ]           |        |
| pike subtra<br>Ratios<br>2 S.E. | <u>cted grand mea</u><br><u>147/152</u><br>0.560865<br>5.3449E-05<br>[ <b>Sm147</b> ]=      | n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>100.90456</b>                                                                       | 152s/147t<br>0.301062<br>2.86907E-05                          | ]           |        |
| Ratios<br>2 S.E.                | <u>tted grand mea</u><br><u>147/152</u><br>0.560865<br>5.3449E-05<br>[ <b>Sm147]</b> =<br>± | n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>100.90456</b><br><b>0.00973</b>                                                     | 152s/147t<br>0.301062<br>2.86907E-05<br>nm/g                  | ]           |        |
| pike subtra<br>Ratios<br>2 S.E. | $\frac{147/152}{0.560865}$ 5.3449E-05 [Sm147]= ±                                            | n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>100.90456</b><br><b>0.00973</b>                                                     | 152s/147t<br>0.301062<br>2.86907E-05<br>nm/g                  | ]           |        |
| pike subtra<br>Ratios<br>2 S.E. | cted grand mea<br>147/152<br>0.560865<br>5.3449E-05<br>[Sm147]=<br>±                        | n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>100.90456</b><br><b>0.00973</b><br><b>101.16765</b>                                 | 152s/147t<br>0.301062<br>2.86907E-05<br>nm/g                  | ]           |        |
| Ratios<br>2 S.E.                | $\frac{\text{cted grand mea}}{147/152}$ 0.560865 5.3449E-05 [Sm147]= ± [Sm]= ±              | n ratios<br>149/152<br>0.516860<br>0<br>100.90456<br>0.00973<br>101.16765<br>0.00975                                                  | 152s/147t<br>0.301062<br>2.86907E-05<br>nm/g                  | ]           |        |
| natios<br>2 S.E.                | $\frac{147/152}{0.560865}$ 5.3449E-05 [Sm147]= ± [Sm]= ±                                    | n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>100.90456</b><br><b>0.00973</b><br><b>101.16765</b><br><b>0.00975</b>               | 152s/147t<br>0.301062<br>2.86907E-05<br>nm/g                  | ]           |        |
| pike subtra<br>Ratios<br>2 S.E. | $\frac{\text{cted grand mea}}{147/152}$ 0.560865 5.3449E-05 [Sm147]= ± [Sm]= ±              | n ratios           149/152           0.516860           0           100.90456           0.00973           101.16765           0.00975 | 152s/147t<br>0.301062<br>2.86907E-05<br>nm/g<br>ppm<br>0.6667 | ]<br>to     | 0.6667 |

|                                                                      | Sample Name:                                                                                                                                   | P_1_2.1_9_S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |        |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------|
| Date of 7                                                            | FIMS analysis:                                                                                                                                 | 8/6/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Position #:                            | 12     |
| estimat                                                              | ed Sm load (ng):                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                      |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |        |
| Rspik                                                                | e Values Sm {S                                                                                                                                 | SmNd 0.15 A s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | spike, 6/12/08 calib}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                      |        |
|                                                                      | 147/152                                                                                                                                        | 149/152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                      |        |
|                                                                      | 4/7.2255                                                                                                                                       | 1.7429473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.018992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nm/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |        |
|                                                                      | Normalized                                                                                                                                     | d to 149/152=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 51686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |        |
|                                                                      |                                                                                                                                                | a to 119/102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |        |
|                                                                      | Wt. Sample=                                                                                                                                    | 0.00003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |        |
|                                                                      | Wt. Spike=                                                                                                                                     | 0.76352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |        |
|                                                                      | <b>E</b>                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1-4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                      |        |
|                                                                      | For Sm/Sm, er                                                                                                                                  | nier Normanze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |        |
|                                                                      | Sm1/17/Sm152                                                                                                                                   | $\frac{1}{2} \frac{1}{2} \frac{1}$ | $\frac{1}{2} \frac{1}{2} \frac{1}$ | Gd155/Sm152                            |        |
| Ratios                                                               | Sm147/Sm152                                                                                                                                    | Sm149/Sm152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sm154/Sm152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gd155/Sm152                            |        |
| Ratios<br>%StdErr                                                    | Sm147/Sm152<br>1.629007<br>0.00200376                                                                                                          | Sm149/Sm152<br>0.51686<br>0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sm154/Sm152<br>0.85329728<br>0.00160834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)                                           | Sm147/Sm152<br>1.629007<br>0.00200376                                                                                                          | Sm149/Sm152<br>0.51686<br>0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sm154/Sm152<br>0.85329728<br>0.00160834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)                                           | Sm147/Sm152<br>1.629007<br>0.00200376                                                                                                          | <u>Sm149/Sm152</u><br>0.51686<br>0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sm154/Sm152<br>0.85329728<br>0.00160834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra                            | Sm147/Sm152<br><b>1.629007</b><br><b>0.00200376</b><br>cted grand mea                                                                          | Sm149/Sm152<br>0.51686<br>0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sml 54/Sml 52<br>0.85329728<br>0.00160834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra                            | Sm147/Sm152<br><b>1.629007</b><br><b>0.00200376</b><br>cted grand mea                                                                          | Sm149/Sm152<br>0.51686<br>0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sm154/Sm152<br>0.85329728<br>0.00160834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra                            | Sm147/Sm152<br>1.629007<br>0.00200376<br>cted grand mea<br>147/152                                                                             | Sm149/Sm152<br>0.51686<br>0.00000<br>un ratios<br>149/152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios                  | Sm147/Sm152<br>1.629007<br>0.00200376<br>cted grand mea<br>147/152<br>0.560865                                                                 | Sm149/Sm152<br>0.51686<br>0.00000<br>m ratios<br>149/152<br>0.516860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t<br>0.920264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | Sm147/Sm152           1.629007           0.00200376           cted grand mea           147/152           0.560865           2.2477E-05         | Sm149/Sm152<br>0.51686<br>0.00000<br>an ratios<br><u>149/152</u><br>0.516860<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t<br>0.920264<br>3.68799E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>pike subtra</u><br>Ratios<br>2 S.E. | Sm147/Sm152<br>1.629007<br>0.00200376<br>cted grand mea<br>147/152<br>0.560865<br>2.2477E-05                                                   | Sm149/Sm152<br>0.51686<br>0.00000<br>m ratios<br>149/152<br>0.516860<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t<br>0.920264<br>3.68799E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>pike subtra</u><br>Ratios<br>2 S.E. | Sm147/Sm152<br>1.629007<br>0.00200376<br>cted grand mea<br>147/152<br>0.560865<br>2.2477E-05<br>[Sm147]=                                       | Sm149/Sm152<br>0.51686<br>0.00000<br>m ratios<br><u>149/152</u><br>0.516860<br>0<br>249.47148<br>0.01467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t<br>0.920264<br>3.68799E-05<br>nm/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | $\frac{\text{Sm147/Sm152}}{1.629007}$ $0.00200376$ $\frac{147/152}{0.560865}$ $2.2477E-05$ $[\text{Sm147}]=$ $\pm$                             | Sm149/Sm152<br>0.51686<br>0.00000<br>m ratios<br><u>149/152</u><br>0.516860<br>0<br><b>249.47148</b><br><b>0.01467</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t<br>0.920264<br>3.68799E-05<br>nm/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | $\frac{\text{Sm147/Sm152}}{1.629007}$ $0.00200376$ $\frac{147}{152}$ $0.560865$ $2.2477E-05$ $[\text{Sm147}]= \pm$                             | Sm149/Sm152<br>0.51686<br>0.00000<br>m ratios<br>149/152<br>0.516860<br>0<br>249.47148<br>0.01467<br>250.12195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t<br>0.920264<br>3.68799E-05<br>nm/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>oike subtra</u><br>Ratios<br>2 S.E. | $\frac{\text{Sm147/Sm152}}{1.629007}$ $0.00200376$ $\frac{\text{cted grand mea}}{147/152}$ $0.560865$ $2.2477E-05$ $[\text{Sm147}]= \pm$ $\pm$ | Sm149/Sm152<br>0.51686<br>0.00000<br>m ratios<br><u>149/152</u><br>0.516860<br>0<br><b>249.47148</b><br><b>0.01467</b><br><b>250.12195</b><br><b>0.01471</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t<br>0.920264<br>3.68799E-05<br>nm/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>pike subtra</u><br>Ratios<br>2 S.E. | $\frac{\text{Sm147/Sm152}}{1.629007}$ $0.00200376$ $\frac{\text{cted grand mea}}{147/152}$ $0.560865$ $2.2477E-05$ $[\text{Sm147]}= \pm$ $\pm$ | Sm149/Sm152<br>0.51686<br>0.00000<br>m ratios<br>149/152<br>0.516860<br>0<br>249.47148<br>0.01467<br>250.12195<br>0.01471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t<br>0.920264<br>3.68799E-05<br>nm/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gd155/Sm152<br>0.06606277<br>0.9191732 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | $\frac{\text{Sm147/Sm152}}{1.629007}$ $0.00200376$ $\frac{\text{cted grand mea}}{147/152}$ $0.560865$ $2.2477E-05$ $[\text{Sm147]}= \pm$ $\pm$ | Sm149/Sm152<br>0.51686<br>0.00000<br>m ratios<br>149/152<br>0.516860<br>0<br>249.47148<br>0.01467<br>250.12195<br>0.01471<br>Discrimination=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sm154/Sm152<br>0.85329728<br>0.00160834<br>152s/147t<br>0.920264<br>3.68799E-05<br>nm/g<br>ppm<br>0.6667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gd155/Sm152<br>0.06606277<br>0.9191732 | 0.6667 |

|                                                                      | Sample Name:                                                                                                                                                                                                        | <b>P1 2.1 10 S</b> i                                                                                                                                         | m                                                                                                                                                       |                                         |        |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| Date of                                                              | TIMS analysis:                                                                                                                                                                                                      | 7/21/2020                                                                                                                                                    |                                                                                                                                                         | Position #:                             | 12     |
| estimat                                                              | ted Sm load (ng):                                                                                                                                                                                                   | 20                                                                                                                                                           |                                                                                                                                                         |                                         |        |
|                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                              | •                                                                                                                                                       |                                         |        |
|                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                         |                                         |        |
| Rspik                                                                | e Values Sm {S                                                                                                                                                                                                      | SmNd 0.15 A s                                                                                                                                                | spike, 6/12/08 calib}                                                                                                                                   |                                         |        |
|                                                                      | 147/152                                                                                                                                                                                                             | 149/152                                                                                                                                                      | [Concentration]                                                                                                                                         | ]                                       |        |
|                                                                      | 477.2255                                                                                                                                                                                                            | 1.7429473                                                                                                                                                    | 0.018992                                                                                                                                                |                                         |        |
|                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                              | nm/g                                                                                                                                                    |                                         |        |
|                                                                      | <b>NT</b> 1'                                                                                                                                                                                                        | 1 . 1 40/1 50                                                                                                                                                | 0.51.000                                                                                                                                                |                                         |        |
|                                                                      | Normalized                                                                                                                                                                                                          | d to $149/152 =$                                                                                                                                             | 0.51686                                                                                                                                                 |                                         |        |
|                                                                      | W4 Somela-                                                                                                                                                                                                          | 2 20001 05                                                                                                                                                   | a                                                                                                                                                       |                                         |        |
|                                                                      | Wt Spilzo-                                                                                                                                                                                                          | 0.87115                                                                                                                                                      | S a                                                                                                                                                     |                                         |        |
|                                                                      | wi. spike-                                                                                                                                                                                                          | 0.0/113                                                                                                                                                      | g                                                                                                                                                       |                                         |        |
|                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                         |                                         |        |
|                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                         |                                         |        |
|                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                         |                                         |        |
|                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                         |                                         |        |
|                                                                      | For Sm/Sm, en                                                                                                                                                                                                       | nter Normalize                                                                                                                                               | d data                                                                                                                                                  |                                         |        |
|                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                         |                                         |        |
|                                                                      | $\frac{\text{Sml4}}{\text{Sml52}}$                                                                                                                                                                                  | Sm149/Sm152                                                                                                                                                  | Sm154/Sm152                                                                                                                                             | Gd155/Sm152                             |        |
| Ratios                                                               | 1.005856                                                                                                                                                                                                            | <u>5m149/Sm152</u><br>0.51686                                                                                                                                | Sm154/Sm152<br>0.85127003                                                                                                                               | Gd155/Sm152<br>0.00394829               |        |
| Ratios<br>%StdErr                                                    | Sm14 //Sm152           1.005856           0.00140102                                                                                                                                                                | <u>5m149/Sm152</u><br>0.51686<br>0.00000                                                                                                                     | Sm154/Sm152<br>0.85127003<br>0.001310737                                                                                                                | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)                                           | Sm14//Sm154<br>1.005856<br>0.00140102                                                                                                                                                                               | <u>5ml49/Sml52</u><br>0.51686<br>0.00000                                                                                                                     | Sml 54/Sml 52<br>0.85127003<br>0.001310737                                                                                                              | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)                                           | Sm14//Sm152<br>1.005856<br>0.00140102                                                                                                                                                                               | <u>Sm149/Sm152</u><br>0.51686<br>0.00000                                                                                                                     | Sm154/Sm152<br>0.85127003<br>0.001310737                                                                                                                | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br>bike subtra                            | Sm14//Sm154<br>1.005856<br>0.00140102                                                                                                                                                                               | Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios                                                                                                                | Sm154/Sm152<br>0.85127003<br>0.001310737                                                                                                                | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra                            | Sml 4 //Sml 54<br>1.005856<br>0.00140102<br>acted grand mea                                                                                                                                                         | Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios                                                                                                                | Sm154/Sm152<br>0.85127003<br>0.001310737                                                                                                                | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra                            | Sm14//Sm154<br>1.005856<br>0.00140102<br>acted grand mea<br>147/152<br>0.560865                                                                                                                                     | Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860                                                                                         | Sm154/Sm152<br>0.85127003<br>0.001310737<br>152s/147t                                                                                                   | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>pike subtra</u><br>Ratios           | Sm14//Sm154<br>1.005856<br>0.00140102<br>icted grand mea<br>147/152<br>0.560865<br>1.5716E 05                                                                                                                       | Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860                                                                                         | Sm154/Sm152<br>0.85127003<br>0.001310737<br>152s/147t<br>2.223630<br>6.22071E 05                                                                        | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | Sm14//Sm154<br>1.005856<br>0.00140102<br>acted grand mea<br>147/152<br>0.560865<br>1.5716E-05                                                                                                                       | <u>Sml 49/Sml 52</u><br>0.51686<br>0.00000<br><u>n ratios</u><br><u>149/152</u><br>0.516860<br>0                                                             | Sm154/Sm152<br>0.85127003<br>0.001310737<br>152s/147t<br>2.223630<br>6.23071E-05                                                                        | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | Sm14//Sm154<br>1.005856<br>0.00140102<br>acted grand mea<br>147/152<br>0.560865<br>1.5716E-05<br>[Sm147]=                                                                                                           | <u>Sml 49/Sml 52</u><br>0.51686<br>0.00000<br><u>n ratios</u><br><u>149/152</u><br>0.516860<br>0<br>623 57690                                                | Sm154/Sm152<br>0.85127003<br>0.001310737<br>152s/147t<br>2.223630<br>6.23071E-05                                                                        | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>pike subtra</u><br>Ratios<br>2 S.E. | Sm14//Sm154<br>1.005856<br>0.00140102<br>acted grand mea<br>147/152<br>0.560865<br>1.5716E-05<br>[Sm147]=<br>+                                                                                                      | <u>Sml 49/Sml 52</u><br>0.51686<br>0.00000<br><u>n ratios</u><br><u>149/152</u><br>0.516860<br>0<br><b>623.57690</b><br>0.06678                              | Sm154/Sm152<br>0.85127003<br>0.001310737<br>152s/147t<br>2.223630<br>6.23071E-05<br>nm/g                                                                | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | $\frac{\text{Sm14//Sm134}}{1.005856}$ $0.00140102$ acted grand mea $147/152$ $0.560865$ $1.5716E-05$ $[\text{Sm147}]= \pm$                                                                                          | Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>623.57690</b><br>0.06678                                              | Sm154/Sm152<br>0.85127003<br>0.001310737<br>152s/147t<br>2.223630<br>6.23071E-05<br>nm/g                                                                | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | $\frac{\text{Sm14//Sm154}}{1.005856}$ $\frac{1.005856}{0.00140102}$ $\frac{147/152}{0.560865}$ $1.5716E-05$ $[\text{Sm147}]= \pm$                                                                                   | Sml 49/Sml 52<br>0.51686<br>0.00000<br>n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>623.57690</b><br>0.06678<br>625.20281                               | Sm154/Sm152<br>0.85127003<br>0.001310737<br>152s/147t<br>2.223630<br>6.23071E-05<br>nm/g                                                                | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>oike subtra</u><br>Ratios<br>2 S.E. | $\frac{\text{Sm14 //Sm154}}{1.005856}$ $\frac{1.005856}{0.00140102}$ $\frac{1.005856}{0.00140102}$ $\frac{1.005856}{0.00140102}$ $\frac{1.00560865}{0.560865}$ $\frac{1.5716E-05}{[\text{Sm147}]=} \pm \frac{1}{2}$ | Sml 49/Sml 52<br>0.51686<br>0.00000<br>n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>623.57690</b><br>0.06678<br>625.20281<br>0.06696                    | Sm154/Sm152<br>0.85127003<br>0.001310737<br>152s/147t<br>2.223630<br>6.23071E-05<br>nm/g                                                                | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>pike subtra</u><br>Ratios<br>2 S.E. | $\frac{\text{Sm14//Sm154}}{1.005856}$ $0.00140102$ $147/152$ $0.560865$ $1.5716E-05$ $[\text{Sm147}]= \pm$ $\pm$                                                                                                    | Sml 49/Sml 52<br>0.51686<br>0.00000<br>n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>623.57690</b><br>0.06678<br><b>625.20281</b><br>0.06696             | Sm154/Sm152<br>0.85127003<br>0.001310737<br>152s/147t<br>2.223630<br>6.23071E-05<br>nm/g                                                                | Gd155/Sm152<br>0.00394829<br>0.94173502 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>pike subtra</u><br>Ratios<br>2 S.E. | $\frac{\text{Sm}14 //\text{Sm}154}{1.005856}$ $\frac{1.005856}{0.00140102}$ $\frac{147 / 152}{0.560865}$ $1.5716E-05$ $[\text{Sm}147] = \pm$ $\frac{1}{100}$                                                        | Sml 49/Sml 52<br>0.51686<br>0.00000<br>n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>623.57690</b><br>0.06678<br>625.20281<br>0.06696<br>Discrimination= | Sm154/Sm152<br>0.85127003<br>0.001310737<br>0.001310737          152s/147t         2.223630         6.23071E-05         nm/g         ppm         0.6667 | Gd155/Sm152<br>0.00394829<br>0.94173502 | 0.6667 |

|              | Full Sample Name:                | eud_122804         |                       |                                         | 2      |
|--------------|----------------------------------|--------------------|-----------------------|-----------------------------------------|--------|
|              | Date of TIVIS analysis:          | 4/10/2019          |                       | Position #:                             | 2      |
|              | estimated Sm load (ng):          | 20                 |                       |                                         |        |
|              |                                  |                    |                       |                                         |        |
|              | Rspike Values Sm {               | SmNd 0.15 A s      | spike, 6/12/08 calib} |                                         |        |
|              | 147/152                          | 149/152            | [Concentration]       | ]                                       |        |
|              | 477.2255                         | 1.7429473          | 0.018992              |                                         |        |
|              |                                  |                    | nm/g                  |                                         |        |
|              |                                  |                    | C                     |                                         |        |
|              | Normaliza                        | ed to 149/152=     | 0.51686               |                                         |        |
|              |                                  |                    | 1                     |                                         |        |
|              | Wt. Sample=                      | 2.6468E-05         | g                     |                                         |        |
|              | Wt. Spike=                       | 0.56175            | g                     |                                         |        |
|              |                                  |                    |                       |                                         |        |
|              |                                  |                    |                       |                                         |        |
|              |                                  |                    |                       |                                         |        |
|              |                                  |                    |                       |                                         |        |
|              | For Sm/Sm, enter Normalized data |                    |                       | ]                                       |        |
|              | Sml 47/Sml 52                    | Sm149/Sm152        | Sm154/Sm152           | Gd155/Sm152                             |        |
| Ratios       | 0.80664954                       | 0.51686            | 0.851564385           | 0.092915418                             |        |
| %StdErr      | 0.011536363                      | 0.00000            | 0.009520048           | 0.601246711                             |        |
| (ppm)        |                                  |                    |                       | , , , , , , , , , , , , , , , , , , , , |        |
|              |                                  |                    |                       |                                         |        |
| Spike subtra | cted grand mean ratios           |                    |                       |                                         |        |
|              |                                  |                    |                       | 1                                       |        |
|              | 147/152                          | 149/152            | 152s/147t             | ļ                                       |        |
| Ratios       | 0.560865                         | 0.516860           | 4.034339              |                                         |        |
| 2 S.E.       | 0.000129407                      | 0                  | 0.000930832           |                                         |        |
|              |                                  |                    |                       |                                         |        |
|              | [Sm147]=                         | 912.01803          | nm/g                  |                                         |        |
|              | ±                                | 0.27095            |                       |                                         |        |
|              | ~~                               | 014 00 000         |                       | 1                                       |        |
|              | [Sm]=                            | 914.39600          | ppm                   |                                         |        |
|              | ±                                | 0.27166            |                       | I                                       |        |
|              |                                  | Dia animativa di a | 0.6667                | 4.5                                     | 0 6677 |
|              |                                  | Discrimination=    | U.000 /               | ω<br>0.6667                             | 0.000/ |
|              |                                  |                    | W/Average of          | 0.000/                                  |        |

| Full S<br>Date of 7<br>estimat | Sample Name:<br>TIMS analysis:<br>ed Smload (ng): | KP 2_1_2<br>8/13/2019<br>20            |                                                             | Position #:  | 18     |  |
|--------------------------------|---------------------------------------------------|----------------------------------------|-------------------------------------------------------------|--------------|--------|--|
| Rspik                          | e Values Sm {S<br>147/152<br>477.2255             | 5mNd 0.15 A s<br>149/152<br>1.7429473  | pike, 6/12/08 calib}<br>[Concentration]<br>0.018992<br>nm/g | ]            |        |  |
|                                | Normalized<br>Wt. Sample=<br>Wt. Spike=           | d to 149/152=<br>2.0551E-05<br>0.52225 | 0.51686<br>g<br>g                                           |              |        |  |
|                                |                                                   |                                        |                                                             |              |        |  |
|                                | For Sm/Sm, en                                     | nter Normalized                        | d data                                                      |              |        |  |
|                                | <mark>Sm147/Sm152</mark>                          | Sm149/Sm152                            | Sm154/Sm152                                                 | Gd155/Sm152  |        |  |
| Ratios                         | 0.94843129                                        | 0.51686                                | 0.851657464                                                 | 0.00385304   |        |  |
| %StdErr                        | 0.00233739                                        | 0.00000                                | 0.001891702                                                 | 0.75775676   |        |  |
| (ppm)                          |                                                   |                                        |                                                             |              |        |  |
| Spike subtra                   | cted grand mea                                    | n ratios                               |                                                             |              |        |  |
|                                | 147/150                                           | 140/150                                | 1.50 /1.47                                                  | 1            |        |  |
| Datias                         | 0.560865                                          | 149/152                                | 152s/14/t                                                   | J            |        |  |
| 2 S F                          | 0.300803<br>2.6219E-05                            | 0.310800                               | 2.334649                                                    |              |        |  |
| 2 <b>3</b> .E.                 | [Sm147]=<br>±                                     | 691.49666<br>0.08820                   | nm/g                                                        |              |        |  |
|                                | [Sm]=                                             | 693.29966                              | ppm                                                         |              |        |  |
|                                | ±                                                 | 0.08843                                |                                                             |              |        |  |
|                                | I                                                 | Discrimination=                        | 0.6667<br>w/Average of                                      | to<br>0.6667 | 0.6667 |  |

| Full Sample Name: KP 2 1 3 Sm                                                                                                                                                                                                                                                                                          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Date of TIMS analysis: 8/13/2019 Position #: 19                                                                                                                                                                                                                                                                        |  |
| estimated Sm load (ng): 20                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                        |  |
| Rspike Values Sm {SmNd 0.15 A spike, 6/12/08 calib}                                                                                                                                                                                                                                                                    |  |
| 147/152 149/152 [Concentration]                                                                                                                                                                                                                                                                                        |  |
| 477.2255 1.7429473 0.018992                                                                                                                                                                                                                                                                                            |  |
| nm/g                                                                                                                                                                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                        |  |
| Normalized to $149/152 = 0.51686$                                                                                                                                                                                                                                                                                      |  |
|                                                                                                                                                                                                                                                                                                                        |  |
| Wt. Sample= $2.3556E-05$ g                                                                                                                                                                                                                                                                                             |  |
| Wt. $Spike = 0.59851$ g                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                        |  |
| For Sm/Sm, enter Normalized data                                                                                                                                                                                                                                                                                       |  |
| Sm147/Sm152Sm149/Sm152Sm154/Sm152Gd155/Sm152                                                                                                                                                                                                                                                                           |  |
| Ratios 0.97172623 0.51686 0.851727063 0.00182225                                                                                                                                                                                                                                                                       |  |
| %StdErr 0.00163136 0.00000 0.001357129 0.83434952                                                                                                                                                                                                                                                                      |  |
| (ppm)                                                                                                                                                                                                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                        |  |
| pike subtracted grand mean ratios                                                                                                                                                                                                                                                                                      |  |
| Spike subtracted grand mean ratios                                                                                                                                                                                                                                                                                     |  |
| Spike subtracted grand mean ratios           147/152         149/152         152s/147t                                                                                                                                                                                                                                 |  |
| Image: Spike subtracted grand mean ratios           147/152         149/152         152s/147t           Ratios         0.560865         0.516860         2.409213                                                                                                                                                      |  |
| Spike subtracted grand mean ratios           147/152         149/152         152s/147t           Ratios         0.560865         0.516860         2.409213           2 S.E.         1.8299E-05         0         7.86057E-05                                                                                           |  |
| Spike subtracted grand mean ratios         147/152       149/152       152s/147t         Ratios       0.560865       0.516860       2.409213         2 S.E.       1.8299E-05       0       7.86057E-05                                                                                                                 |  |
| pike subtracted grand mean ratios $147/152$ $152s/147t$ Ratios $0.560865$ $0.516860$ $2.409213$ 2 S.E. $1.8299E-05$ $0$ $7.86057E-05$ [Sm147]= 652.00717 nm/g                                                                                                                                                          |  |
| Spike subtracted grand mean ratios         147/152       149/152       152s/147t         Ratios       0.560865       0.516860       2.409213         2 S.E.       1.8299E-05       0       7.86057E-05         [Sm147]=       652.00717       nm/g $\pm$ 0.07603                                                       |  |
| Spike subtracted grand mean ratios $147/152$ $152s/147t$ Ratios $0.560865$ $0.516860$ $2.409213$ 2 S.E. $1.8299E-05$ $0$ $7.86057E-05$ [Sm147]= $652.00717$ nm/g $\pm$ $0.07603$                                                                                                                                       |  |
| Spike subtracted grand mean ratios $147/152$ $149/152$ $152s/147t$ Ratios $0.560865$ $0.516860$ $2.409213$ 2 S.E. $1.8299E-05$ $0$ $7.86057E-05$ [Sm147]=       652.00717 nm/g $\pm$ $0.07603$                                                                                                                         |  |
| Spike subtracted grand mean ratios         147/152       149/152       152s/147t         Ratios       0.560865       0.516860       2.409213         2 S.E.       1.8299E-05       0       7.86057E-05         [Sm147]=       652.00717       nm/g $\pm$ 0.07603         [Sm]=       653.70720       ppm $\pm$ 0.07623 |  |
| Spike subtracted grand mean ratios         I 47/152       152s/147t         Ratios       0.560865       0.516860       2.409213         2 S.E.       1.8299E-05       0       7.86057E-05         [Sm147]=       652.00717       nm/g $\pm$ 0.07603         Discrimination=       0.6667       to       0.6667         |  |

| Full Sample Name:<br>Date of TIMS analysis:<br>estimated Sm load (ng): | KP9_eud_1<br>14-Oct<br>8 |                      | Position #:    | 3  |
|------------------------------------------------------------------------|--------------------------|----------------------|----------------|----|
| Rspike Values Sm {                                                     | SmNd 0.15 A s            | pike, 6/12/08 calib} |                |    |
| 14//152                                                                | 149/152                  |                      |                |    |
| 477.2255                                                               | 1./4294/3                | 0.018992<br>nm/g     |                |    |
| Normalize                                                              | d to 149/152=            | 0.51686              |                |    |
| Wt. Sample=<br>Wt. Spike=                                              | 1.1417E-05<br>0.32998    | g                    | TER on ND shee | et |

|         | For Sm/Sm, e              |             |             |             |
|---------|---------------------------|-------------|-------------|-------------|
| :       | <mark>Sm147/Sm15</mark> 2 | Sm149/Sm152 | Sm154/Sm152 | Gd155/Sm152 |
| Ratios  | 8.3852044                 | 0.51686     | 0.87109809  | 1.3365445   |
| %StdErr | 0.01406031                | 0.00000     | 0.011083394 | 1.4334258   |
| (ppm)   |                           |             |             |             |

Spike subtracted grand mean ratios

| _      |            |                 |              |
|--------|------------|-----------------|--------------|
|        | 147/152    | 149/152         | 152s/147t    |
| Ratios | 0.560865   | 0.516860        | 0.116495     |
| 2 S.E. | 0.00015772 | 0               | 3.2759E-05   |
|        |            |                 |              |
|        | [Sm147]=   | 35.86489        | nm/g         |
|        | ±          | 0.01009         |              |
| -      |            |                 |              |
|        | [Sm]=      | 35.95841        | ppm          |
|        | ±          | 0.01011         |              |
|        |            |                 |              |
|        | Ι          | Discrimination= | = 0.6667     |
|        |            |                 | w/Average of |

| Full Sample Name:<br>Date of TIMS analysis:<br>estimated Sm load (ng): | KP9_eud_2<br>14-Oct<br>8              |                                                              | Position #:     | 4 |
|------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------|-----------------|---|
| Rspike Values Sm {5<br>147/152<br>477.2255                             | SmNd 0.15 A s<br>149/152<br>1.7429473 | spike, 6/12/08 calib}<br>[Concentration]<br>0.018992<br>nm/g | ]               |   |
| Normalize                                                              | d to 149/152=                         | 0.51686                                                      |                 |   |
| Wt. Sample=<br>Wt. Spike=                                              | 1.1442E-05<br>0.33061                 | g                                                            | TER on ND sheet |   |

|         | For Sm/Sm, enter Normalized data |         |             |            |  |
|---------|----------------------------------|---------|-------------|------------|--|
| 1       | Gd155/Sm152                      |         |             |            |  |
| Ratios  | 3.8552616                        | 0.51686 | 0.85878747  | 0.17797404 |  |
| %StdErr | 0.0079374                        | 0.00000 | 0.007298071 | 1.5753481  |  |
| (ppm)   |                                  |         |             |            |  |

Spike subtracted grand mean ratios

| -      |               |                     |                          | _            |        |
|--------|---------------|---------------------|--------------------------|--------------|--------|
|        | 147/152       | 149/152             | 152s/147t                |              |        |
| Ratios | 0.560865      | 0.516860            | 0.291276                 | _            |        |
| 2 S.E. | 8.9036E-05    | 0                   | 4.62395E-05              |              |        |
|        | [Sm147]=<br>± | 89.64921<br>0.01429 | nm/g                     |              |        |
|        | [Sm]=         | 89.88296            | ррт                      | 1            |        |
| l      | Ξ             | 0.01452             |                          | 1            |        |
|        | Ι             | Discrimination=     | = 0.6667<br>w/Average of | to<br>0.6667 | 0.6667 |

| Full Sample Name:       KP9_eud_3         Date of TIMS analysis:       14-Oct         estimated Sm load (ng):       8 |                                                             | Position #:   | 5   |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------|-----|
| Rspike Values Sm {SmNd 0.15 A spike           147/152         149/152           477.2255         1.7429473            | pike, 6/12/08 calib}<br>[Concentration]<br>0.018992<br>nm/g |               |     |
| Normalized to 149/152=                                                                                                | 0.51686                                                     |               |     |
| Wt. Sample= <u>1.1446E-05</u><br>Wt. Spike= <u>0.3144</u>                                                             | g                                                           | TER on ND she | eet |

|         | For Sm/Sm, enter Normalized data |         |             |            |  |
|---------|----------------------------------|---------|-------------|------------|--|
| :       | Gd155/Sm152                      |         |             |            |  |
| Ratios  | 5.7740006                        | 0.51686 | 0.86333353  | 0.22508447 |  |
| %StdErr | 0.00969664                       | 0.00000 | 0.006190726 | 1.7587097  |  |
| (ppm)   |                                  |         |             |            |  |

Spike subtracted grand mean ratios

|        |               |                     |                          | _            |        |
|--------|---------------|---------------------|--------------------------|--------------|--------|
|        | 147/152       | 149/152             | 152s/147t                | ]            |        |
| Ratios | 0.560865      | 0.516860            | 0.180178                 | -            |        |
| 2 S.E. | 0.00010877    | 0                   | 3.49424E-05              |              |        |
|        | [Sm147]=<br>± | 52.71750<br>0.01023 | nm/g                     |              |        |
|        | [Sm]=<br>±    | 52.85495<br>0.01026 | ррт                      |              |        |
|        | I             | Discrimination=     | = 0.6667<br>w/Average of | to<br>0.6667 | 0.6667 |

| Full Sample Name:<br>Date of TIMS analysis:<br>estimated Sm load (ng): | KP9_eud_4<br>10/15/2020<br>8          |                                                              | Position #:     | 6 |
|------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------|-----------------|---|
| Rspike Values Sm {<br>147/152<br>477.2255                              | SmNd 0.15 A s<br>149/152<br>1.7429473 | spike, 6/12/08 calib}<br>[Concentration]<br>0.018992<br>nm/g |                 |   |
| Normalize                                                              | d to 149/152=                         | 0.51686                                                      |                 |   |
| Wt. Sample=<br>Wt. Spike=                                              | 0.00001139<br>0.30829                 | g                                                            | TER on ND sheet | t |

| :       | Gd155/Sm152 |         |            |            |
|---------|-------------|---------|------------|------------|
| Ratios  | 4.1957704   | 0.51686 | 0.85962025 | 0.14390081 |
| %StdErr | 0.00404699  | 0.00000 | 0.00348308 | 2.2787963  |
| (ppm)   |             |         |            |            |

Spike subtracted grand mean ratios

|        | 147/152    | 149/152         | 152s/147t    |  |
|--------|------------|-----------------|--------------|--|
| Ratios | 0.560865   | 0.516860        | 0.263002     |  |
| 2 S.E. | 4.5396E-05 | 0               | 2.12873E-05  |  |
|        |            |                 |              |  |
|        | [Sm147]=   | 75.82342        | nm/g         |  |
|        | ±          | 0.00621         |              |  |
|        |            |                 |              |  |
|        | [Sm]=      | 76.02112        | ppm          |  |
|        | ±          | 0.00623         |              |  |
|        |            |                 |              |  |
|        | Ι          | Discrimination= | 0.6667       |  |
|        |            |                 | w/Average of |  |

| Full Sample Name:                                   | KP9_eud_5         |  |             |   |
|-----------------------------------------------------|-------------------|--|-------------|---|
| Date of TIMS analysis:                              | 10/15/2020        |  | Position #: | 7 |
| estimated Sm load (ng):                             | <enter!></enter!> |  |             |   |
|                                                     |                   |  |             |   |
|                                                     |                   |  |             |   |
| Rspike Values Sm {SmNd 0.15 A spike, 6/12/08 calib} |                   |  |             |   |

|   | (           |                | 1 / /           |
|---|-------------|----------------|-----------------|
|   | 147/152     | 149/152        | [Concentration] |
|   | 477.2255    | 1.7429473      | 0.018992        |
|   |             |                | nm/g            |
|   | Normalize   | ed to 149/152= | 0.51686         |
|   |             |                |                 |
| 1 | Wt. Sample= | 0.00001        | g               |
|   | Wt. Spike=  | 0.27245        | g               |

Spike subtracted grand mean ratios

| [      | 147/152   | 149/152         | 152s/147t    | ]      |
|--------|-----------|-----------------|--------------|--------|
| Ratios | 0.560865  | 0.516860        | 0.611658     | -      |
| 2 S.E. | 2.818E-05 | 0               | 3.0732E-05   |        |
|        |           |                 |              |        |
|        | [Sm147]=  | 177.50248       | nm/g         |        |
|        | ±         | 0.01028         |              |        |
|        |           |                 |              | 1      |
|        | [Sm]=     | 177.96530       | ppm          |        |
|        | ±         | 0.01030         |              |        |
|        |           |                 |              |        |
|        | ]         | Discrimination= | 0.6667       | to     |
|        |           |                 | w/Average of | 0.6667 |

| Full Sample Name:       | KP9_eud_6         |                       |                 |   |
|-------------------------|-------------------|-----------------------|-----------------|---|
| Date of TIMS analysis:  | 10/15/2020        |                       | Position #:     | 8 |
| estimated Sm load (ng): | <enter!></enter!> |                       |                 |   |
|                         |                   |                       |                 |   |
|                         |                   |                       |                 |   |
| Rspike Values Sm {      | SmNd 0.15 A s     | spike, 6/12/08 calib} |                 |   |
| 147/152                 | 149/152           | [Concentration]       |                 |   |
| 477.2255                | 1.7429473         | 0.018992              |                 |   |
|                         |                   | nm/g                  |                 |   |
|                         |                   |                       |                 |   |
| Normalize               | d to 149/152=     | 0.51686               |                 |   |
|                         |                   |                       |                 |   |
| Wt. Sample=             | 0.00001           | g                     | TER on ND sheet | t |

|         | For Sm/Sm, e |             |             |            |
|---------|--------------|-------------|-------------|------------|
| :       | Sm147/Sm152  | Gd155/Sm152 |             |            |
| Ratios  | 0.96576551   | 0.51686     | 0.85162048  | 0.02770532 |
| %StdErr | 0.0035237    | 0.00000     | 0.002884068 | 0.519644   |
| (ppm)   |              |             |             |            |

g

0.27418

Spike subtracted grand mean ratios

Wt. Spike=

|        | 147/152            | 149/152              | 152s/147t                | 1            |        |
|--------|--------------------|----------------------|--------------------------|--------------|--------|
| Ratios | 0.560865           | 0.516860             | 0.838839                 | _            |        |
| 2 S.E. | <b>3.9986</b> E-05 | 0                    | 0.00938E205              |              |        |
|        | [Sm147]=<br>±      | 243.09858<br>0.02348 | nm/g                     |              |        |
|        | [Sm]=<br>±         | 715.85523<br>0.09570 | ppm                      |              |        |
|        | ]                  | Discrimination-      | = 0.6667<br>w/Average of | to<br>0.6667 | 0.666′ |

| Full Sample Name:       | KP9_eud-7         |                       |             |   |
|-------------------------|-------------------|-----------------------|-------------|---|
| Date of TIMS analysis:  | 10/15/2020        |                       | Position #: | 9 |
| estimated Sm load (ng): | <enter!></enter!> |                       |             |   |
|                         |                   |                       |             |   |
|                         |                   |                       |             |   |
| Rspike Values Sm {S     | SmNd 0.15 A s     | spike, 6/12/08 calib} |             |   |
| 147/152                 | 149/152           | [Concentration]       |             |   |
| 477.2255                | 1.7429473         | 0.018992              |             |   |
|                         |                   | nm/g                  |             |   |
|                         |                   |                       |             |   |
| Normalize               | d to 149/152=     | 0.51686               |             |   |

| Wt. Sample= | 0.00001 | g |
|-------------|---------|---|
| Wt. Spike=  | 0.27258 | g |

TER on ND sheet

|         | For Sm/Sm, e              |             |             |            |
|---------|---------------------------|-------------|-------------|------------|
| :       | <mark>Sm147/Sm15</mark> 2 | Gd155/Sm152 |             |            |
| Ratios  | 1.7386366                 | 0.51686     | 0.85417701  | 0.05633245 |
| %StdErr | 0.00409911                | 0.00000     | 0.008712509 | 0.45920331 |
| (ppm)   |                           |             |             |            |

Spike subtracted grand mean ratios

|        |            |                 |              | _ |
|--------|------------|-----------------|--------------|---|
|        | 147/152    | 149/152         | 152s/147t    |   |
| Ratios | 0.560865   | 0.516860        | 0.833629     |   |
| 2 S.E. | 4.5981E-05 | 0               | 6.83427E-05  |   |
|        |            |                 |              |   |
|        | [Sm147]=   | 242.03371       | nm/g         |   |
|        | ±          | 0.02198         |              |   |
|        |            |                 |              |   |
|        | [Sm]=      | 242.66478       | ppm          |   |
|        | ±          | 0.02204         |              |   |
| -      |            |                 |              |   |
|        | ]          | Discrimination= | = 0.6667     |   |
|        |            |                 | w/Average of |   |

| Full Sample Name:       | KP9_eud_8         |                      |             |    |
|-------------------------|-------------------|----------------------|-------------|----|
| Date of TIMS analysis:  | 10/16/2020        |                      | Position #: | 10 |
| estimated Sm load (ng): | <enter!></enter!> |                      |             |    |
|                         |                   |                      |             |    |
|                         |                   |                      |             |    |
| Rspike Values Sm {      | SmNd 0.15 A s     | pike, 6/12/08 calib} |             |    |
| 147/152                 | 149/152           | [Concentration]      |             |    |
| 477.2255                | 1.7429473         | 0.018992             |             |    |
|                         |                   | nm/g                 |             |    |
|                         |                   |                      |             |    |
| Normalize               | d to $149/152 =$  | 0.51686              |             |    |

| Wt. Sample= | 0.00001 | g |
|-------------|---------|---|
| Wt. Spike=  | 0.27285 | g |

TER on ND sheet

|         | For Sm/Sm, e |             |             |            |
|---------|--------------|-------------|-------------|------------|
| :       | Sm147/Sm152  | Gd155/Sm152 |             |            |
| Ratios  | 0.94779723   | 0.51686     | 0.85164181  | 0.02572892 |
| %StdErr | 0.0018085    | 0.00000     | 0.001822589 | 1.7592161  |
| (ppm)   |              |             |             |            |

Spike subtracted grand mean ratios

|        | 147/152    | 149/152         | 152s/147t    |  |
|--------|------------|-----------------|--------------|--|
| Ratios | 0.560865   | 0.516860        | 2.558853     |  |
| 2 S.E. | 2.0287E-05 | 0               | 9.25538E-05  |  |
|        |            |                 |              |  |
|        | [Sm147]=   | 743.66669       | nm/g         |  |
|        | ±          | 0.09241         |              |  |
|        |            |                 |              |  |
|        | [Sm]=      | 745.60571       | ppm          |  |
|        | ±          | 0.09265         |              |  |
| -      |            |                 |              |  |
|        | Ι          | Discrimination= | = 0.6667     |  |
|        |            |                 | w/Average of |  |

|                                                  | Sample Name:                                                                                     | 11 10 2 eud                                                                                           | l1 Sm                                                         |             |      |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|------|
| Date of                                          | FIMS analysis:                                                                                   | 8/7/2020                                                                                              | -                                                             | Position #: | 13   |
| estimat                                          | ed Sm load (ng):                                                                                 | 10                                                                                                    |                                                               |             |      |
|                                                  |                                                                                                  |                                                                                                       | •                                                             |             |      |
|                                                  |                                                                                                  |                                                                                                       |                                                               |             |      |
| Rspik                                            | e Values Sm {S                                                                                   | mNd 0.15 A s                                                                                          | spike, 6/12/08 calib}                                         |             |      |
|                                                  | 147/152                                                                                          | 149/152                                                                                               | [Concentration]                                               |             |      |
|                                                  | 477.2255                                                                                         | 1.7429473                                                                                             | 0.018992                                                      |             |      |
|                                                  |                                                                                                  |                                                                                                       | nm/g                                                          |             |      |
|                                                  | <b>NT 11</b>                                                                                     | 1 . 1 40 /1 50                                                                                        | 0 =1 <0 <                                                     |             |      |
|                                                  | Normalized                                                                                       | 1 to $149/152 =$                                                                                      | 0.51686                                                       |             |      |
|                                                  | Wt Samula-                                                                                       | 0.00002                                                                                               | ام                                                            |             |      |
|                                                  | Wt Spilze-                                                                                       | 0.00002                                                                                               | g                                                             |             |      |
|                                                  | wi shike-                                                                                        | 0.31034                                                                                               | ]Ĕ                                                            |             |      |
|                                                  |                                                                                                  |                                                                                                       |                                                               |             |      |
|                                                  |                                                                                                  |                                                                                                       |                                                               |             |      |
|                                                  |                                                                                                  |                                                                                                       |                                                               |             |      |
|                                                  |                                                                                                  |                                                                                                       |                                                               | _           |      |
|                                                  | For Sm/Sm, en                                                                                    | ıter Normalize                                                                                        | d data                                                        |             |      |
|                                                  | <mark>Sm147/Sm152</mark> S                                                                       | Sm149/Sm152                                                                                           | Sm154/Sm152                                                   | Gd155/Sm152 |      |
| Ratios                                           | 4.1871475                                                                                        | 0.51686                                                                                               | 0.8594772                                                     | 0.05969264  |      |
| %StdErr                                          | 0.00306958                                                                                       | 0.00000                                                                                               | 0.002684929                                                   | 0.34264929  |      |
|                                                  |                                                                                                  |                                                                                                       |                                                               |             |      |
| (ppm)                                            |                                                                                                  |                                                                                                       |                                                               |             |      |
| (ppm)                                            |                                                                                                  |                                                                                                       |                                                               |             |      |
| (ppm)<br>Spike subtra                            | cted grand mean                                                                                  | n ratios                                                                                              |                                                               |             |      |
| (ppm)<br>Spike subtra                            | cted grand mean                                                                                  | n ratios                                                                                              | 152~/1474                                                     | 1           |      |
| (ppm)<br>Spike subtra                            | cted grand mean $147/152$                                                                        | n ratios<br>149/152                                                                                   | 152s/147t                                                     | ]           |      |
| (ppm)<br>Spike subtra<br>Ratios                  | cted grand mean<br>147/152<br>0.560865<br>3.4432E 05                                             | n ratios<br>149/152<br>0.516860                                                                       | 152s/147t<br>0.263652<br>1.61861E 05                          | ]           |      |
| (ppm)<br><u>Spike subtra</u><br>Ratios<br>2 S.E. | cted grand mean<br>147/152<br>0.560865<br>3.4432E-05                                             | n ratios<br>149/152<br>0.516860<br>0                                                                  | 152s/147t<br>0.263652<br>1.61861E-05                          | ]           |      |
| (ppm)<br><u>Spike subtra</u><br>Ratios<br>2 S.E. | <u>cted grand mean</u><br><u>147/152</u><br>0.560865<br>3.4432E-05<br>[ <b>Sm147</b> ]=          | n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>71.65889</b>                                        | 152s/147t<br>0.263652<br>1.61861E-05                          | ]           |      |
| (ppm)<br><u>Spike subtra</u><br>Ratios<br>2 S.E. | cted grand mean<br>147/152<br>0.560865<br>3.4432E-05<br>[Sm147]=<br>±                            | n ratios<br>149/152<br>0.516860<br>0<br>71.65889<br>0.00449                                           | 152s/147t<br>0.263652<br>1.61861E-05<br>nm/g                  | ]           |      |
| (ppm)<br><u>Spike subtra</u><br>Ratios<br>2 S.E. | <u>cted grand mean</u><br><u>147/152</u><br>0.560865<br>3.4432E-05<br>[Sm147]=<br>±              | n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>71.65889</b><br><b>0.00449</b>                      | 152s/147t<br>0.263652<br>1.61861E-05<br>nm/g                  | ]           |      |
| (ppm)<br><u>Spike subtra</u><br>Ratios<br>2 S.E. | cted grand mean<br><u>147/152</u><br>0.560865<br>3.4432E-05<br>[Sm147]=<br>±                     | n ratios<br><u>149/152</u><br>0.516860<br>0<br><b>71.65889</b><br><b>0.00449</b><br><b>71.84574</b>   | 152s/147t<br>0.263652<br>1.61861E-05<br>nm/g                  | ]           |      |
| (ppm)<br><u>Spike subtra</u><br>Ratios<br>2 S.E. | $\frac{\text{cted grand mean}}{147/152}$ 0.560865 3.4432E-05 [Sm147]= ± [Sm]= ±                  | n ratios<br>149/152<br>0.516860<br>0<br>71.65889<br>0.00449<br>71.84574<br>0.00450                    | 152s/147t<br>0.263652<br>1.61861E-05<br>nm/g                  | ]           |      |
| (ppm)<br><u>Spike subtra</u><br>Ratios<br>2 S.E. | cted grand mean<br>147/152<br>0.560865<br>3.4432E-05<br>$[Sm147] = \pm$<br>$\pm$<br>$[Sm] = \pm$ | n ratios<br>149/152<br>0.516860<br>0<br>71.65889<br>0.00449<br>71.84574<br>0.00450                    | 152s/147t<br>0.263652<br>1.61861E-05<br>nm/g                  | ]           |      |
| (ppm)<br><u>Spike subtra</u><br>Ratios<br>2 S.E. | $\frac{\text{cted grand mean}}{147/152}$ 0.560865 3.4432E-05 [Sm147]= ± [Sm]= ±                  | n ratios<br>149/152<br>0.516860<br>0<br>71.65889<br>0.00449<br>71.84574<br>0.00450<br>Discrimination= | 152s/147t<br>0.263652<br>1.61861E-05<br>nm/g<br>ppm<br>0.6667 | ]<br>to 0.  | 6667 |

| Full         | Full Sample Name: CBD 11 10 2 EUD2 Sm |                  |                       |             |        |  |  |  |
|--------------|---------------------------------------|------------------|-----------------------|-------------|--------|--|--|--|
| Date of      | TIMS analysis:                        | 8/7/2020         | _                     | Position #: | 14     |  |  |  |
| estimat      | ed Sm load (ng):                      | 20               |                       |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
| Rspik        | e Values Sm {S                        | 5mNd 0.15 A s    | spike, 6/12/08 calib} |             |        |  |  |  |
| -            | 147/152                               | 149/152          | [Concentration]       | ]           |        |  |  |  |
|              | 477.2255                              | 1.7429473        | 0.018992              |             |        |  |  |  |
|              |                                       |                  | nm/g                  |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
|              | Normalized                            | d to $149/152 =$ | 0.51686               |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
|              | Wt. Sample=                           | 0.00003          | g                     |             |        |  |  |  |
|              | Wt. Spike=                            | 0.76643          | g                     |             |        |  |  |  |
|              |                                       |                  | -                     |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
|              | For Sm/Sm, er                         | nter Normalized  | d data                |             |        |  |  |  |
|              | <mark>Sm147/Sm152</mark> S            | Sm149/Sm152      | Sm154/Sm152           | Gd155/Sm152 |        |  |  |  |
| Ratios       | 5.201059                              | 0.51686          | 0.86186997            | 0.04638127  |        |  |  |  |
| %StdErr      | 0.00238809                            | 0.00000          | 0.001847613           | 1.4602183   |        |  |  |  |
| (ppm)        |                                       |                  |                       |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
| Spike subtra | cted grand mea                        | n ratios         |                       |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
|              | 147/152                               | 149/152          | 152s/147t             |             |        |  |  |  |
| Ratios       | 0.560865                              | 0.516860         | 0.203733              |             |        |  |  |  |
| 2 S.E.       | 2.6788E-05                            | 0                | 9.73068E-06           |             |        |  |  |  |
|              |                                       |                  |                       |             |        |  |  |  |
|              | [Sm147]=                              | 55.43988         | nm/g                  |             |        |  |  |  |
|              | ±                                     | 0.00270          |                       |             |        |  |  |  |
|              |                                       |                  |                       | _           |        |  |  |  |
|              | [Sm]=                                 | 55.58443         | ppm                   |             |        |  |  |  |
|              | ±                                     | 0.00271          |                       |             |        |  |  |  |
|              |                                       |                  |                       | -           |        |  |  |  |
|              | Ι                                     | Discrimination=  | 0.6667                | to          | 0.6667 |  |  |  |
|              |                                       |                  | w/Average of          | 0.6667      |        |  |  |  |

| Full S       | Sample Name:               | 11 10 2 et                     | ud 3                 |             |        |  |
|--------------|----------------------------|--------------------------------|----------------------|-------------|--------|--|
| Date of 7    | FIMS analysis:             | 7/22/2020                      | _                    | Position #: | 14     |  |
| estimat      | ed Sm load (ng):           | 20                             |                      |             |        |  |
|              |                            |                                | I                    |             |        |  |
|              |                            |                                |                      |             |        |  |
| Rsnik        | e Values Sm {S             | mNd 0 15 A                     | snike 6/12/08 calib} |             |        |  |
| төри         | 147/152                    | 149/152                        | [Concentration]      | 1           |        |  |
|              | 477 2255                   | 1 7/20/73                      |                      | 1           |        |  |
|              | 477.2233                   | 1./42/4/3                      | 0.010 <i>)</i> )2    |             |        |  |
|              |                            |                                | ming                 |             |        |  |
|              | Normaliza                  | $\frac{1}{10} \frac{1}{152} =$ | 0 51686              |             |        |  |
|              | Nomaized                   | 1 10 149/132-                  | 0.51080              |             |        |  |
|              | W4 Samula-                 | 2 126AE 05                     | a                    |             |        |  |
|              | wt. Sample=                | 5.1304E-05                     | 9<br>-               |             |        |  |
|              | wt. Spike=                 | 0.80425                        | g                    |             |        |  |
|              |                            |                                |                      |             |        |  |
|              |                            |                                |                      |             |        |  |
|              |                            |                                |                      |             |        |  |
|              |                            |                                |                      |             |        |  |
|              |                            |                                |                      | -           |        |  |
|              | For Sm/Sm, er              | nter Normalize                 | d data               |             |        |  |
|              | <mark>Sm147/Sm152</mark> S | Sm149/Sm152                    | Sm154/Sm152          | Gd155/Sm152 |        |  |
| Ratios       | 21.0878379                 | 0.51686                        | 0.907180689          | 0.93036874  |        |  |
| %StdErr      | 0.07116749                 | 0.00000                        | 0.063514396          | 3.86454263  |        |  |
| (ppm)        |                            |                                |                      |             |        |  |
|              |                            |                                |                      |             |        |  |
| Spike subtra | cted grand mea             | n ratios                       |                      |             |        |  |
|              |                            |                                |                      |             |        |  |
|              | 147/152                    | 149/152                        | 152s/147t            | ]           |        |  |
| Ratios       | 0.560865                   | 0.516860                       | 0.037635             | -           |        |  |
| 2 S.E.       | 0.00079831                 | 0                              | 5.35682E-05          |             |        |  |
|              |                            |                                |                      |             |        |  |
|              | [Sm147]=                   | 10.27918                       | nm/g                 |             |        |  |
|              | [~+                        | 0.01463                        | <b>*</b> 8           |             |        |  |
|              | ±                          | VIVITU                         |                      |             |        |  |
|              | [Sm]-                      | 10 30508                       | nnm                  | 1           |        |  |
|              | [511]-                     | 0.01467                        | hhu                  |             |        |  |
|              | ± ±                        | 0.0140/                        |                      | J           |        |  |
|              | -                          | <b>~</b> · · · /·              | 0.000                |             | 0.0007 |  |
|              | 1                          | Jiscrimination=                | 0.6667               | to          | 0.6667 |  |
|              |                            |                                |                      |             |        |  |

| Full 3                                                               | Sample Name:                                                                                                                                   | 11 10 2 br                                                                                                                                                    | ith 1                                                                                                                   |                                         |        |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------|
| Date of 7                                                            | FIMS analysis:                                                                                                                                 | 7/22/2020                                                                                                                                                     | _                                                                                                                       | Position #:                             | 13     |
| estimat                                                              | ed Sm load (ng):                                                                                                                               | 20                                                                                                                                                            |                                                                                                                         |                                         |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                               | •                                                                                                                       |                                         |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                               |                                                                                                                         |                                         |        |
| Rspik                                                                | e Values Sm {S                                                                                                                                 | mNd 0.15 A s                                                                                                                                                  | spike, 6/12/08 calib}                                                                                                   |                                         |        |
|                                                                      | 147/152                                                                                                                                        | 149/152                                                                                                                                                       | [Concentration]                                                                                                         | ]                                       |        |
|                                                                      | 477.2255                                                                                                                                       | 1.7429473                                                                                                                                                     | 0.018992                                                                                                                |                                         |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                               | nm/g                                                                                                                    |                                         |        |
|                                                                      |                                                                                                                                                | 1 4 1 40 /1 50                                                                                                                                                | 0.51(0)                                                                                                                 |                                         |        |
|                                                                      | Normalized                                                                                                                                     | 1  to  149/152 =                                                                                                                                              | 0.51686                                                                                                                 |                                         |        |
|                                                                      | Wt Sampla-                                                                                                                                     | 3 117F 05                                                                                                                                                     | a                                                                                                                       |                                         |        |
|                                                                      | Wt Snilze=                                                                                                                                     | 0 79861                                                                                                                                                       | 5<br>0                                                                                                                  |                                         |        |
|                                                                      | me Shire-                                                                                                                                      | 0.79001                                                                                                                                                       | 18                                                                                                                      |                                         |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                               |                                                                                                                         |                                         |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                               |                                                                                                                         |                                         |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                               |                                                                                                                         |                                         |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                               |                                                                                                                         |                                         |        |
|                                                                      |                                                                                                                                                |                                                                                                                                                               |                                                                                                                         | _                                       |        |
|                                                                      | For Sm/Sm, er                                                                                                                                  | nter Normalize                                                                                                                                                | d data                                                                                                                  |                                         |        |
| ;                                                                    | For Sm/Sm, er<br>Sm147/Sm152                                                                                                                   | n <mark>ter Normalize</mark><br>Sm149/Sm152                                                                                                                   | d data<br>Sml 54/Sml 52                                                                                                 | Gd155/Sm152                             |        |
| Ratios                                                               | For Sm/Sm, er<br>Sm147/Sm152<br><b>8.12134361</b>                                                                                              | nter Normalized<br>Sm149/Sm152<br>0.51686                                                                                                                     | d data<br>Sml 54/Sml 52<br><b>0.871484499</b>                                                                           | Gd155/Sm152<br>0.08912726               |        |
| Ratios<br>%StdErr                                                    | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899                                                                                       | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000                                                                                                          | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134                                                                   | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)                                           | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899                                                                                       | nter Normalized<br>5m149/Sm152<br>0.51686<br>0.00000                                                                                                          | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134                                                                   | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)                                           | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899                                                                                       | nter Normalize<br>5m149/Sm152<br>0.51686<br>0.00000                                                                                                           | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134                                                                   | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra                            | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea                                                                     | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios                                                                                              | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134                                                                   | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra                            | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea                                                                     | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios                                                                                              | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134                                                                   | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra                            | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152                                                          | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860                                                                       | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933                                          | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S F         | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152<br>0.560865<br>0 00100427                                | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860<br>0                                                                  | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933<br>0.000216541                           | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>Spike subtra<br>Ratios<br>2 S.E.       | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152<br>0.560865<br>0.00100427                                | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860<br>0                                                                  | d data<br>Sm154/Sm152<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933<br>0.000216541                             | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152<br>0.560865<br>0.00100427<br>[Sm147]=                    | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860<br>0<br>33.00271                                                      | d data<br>Sm154/Sm152<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933<br>0.000216541<br>nm/g                     | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br><u>pike subtra</u><br>Ratios<br>2 S.E. | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152<br>0.560865<br>0.00100427<br>[Sm147]=<br>±               | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860<br>0<br>33.00271<br>0.05909                                           | d data<br>Sm154/Sm152<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933<br>0.000216541<br>nm/g                     | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152<br>0.560865<br>0.00100427<br>[Sm147]=<br>±               | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860<br>0<br>33.00271<br>0.05909                                           | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933<br>0.000216541<br>nm/g                   | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152<br>0.560865<br>0.00100427<br>[Sm147]=<br>±               | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860<br>0<br>33.00271<br>0.05909<br>33.08876                               | d data<br>Sm154/Sm152<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933<br>0.000216541<br>nm/g<br>ppm              | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152<br>0.560865<br>0.00100427<br>[Sm147]=<br>±<br>[Sm]=<br>± | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860<br>0<br>33.00271<br>0.05909<br>33.08876<br>0.05925                    | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933<br>0.000216541<br>nm/g<br>ppm            | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152<br>0.560865<br>0.00100427<br>[Sm147]=<br>±<br>[Sm]=<br>± | nter Normalized<br>Sml 49/Sml 52<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860<br>0<br>33.00271<br>0.05909<br>33.08876<br>0.05925                  | d data<br>Sm154/Sm152<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933<br>0.000216541<br>nm/g<br>ppm              | Gd155/Sm152<br>0.08912726<br>0.03679161 |        |
| Ratios<br>%StdErr<br>(ppm)<br>pike subtra<br>Ratios<br>2 S.E.        | For Sm/Sm, er<br>Sm147/Sm152<br>8.12134361<br>0.08952899<br>cted grand mea<br>147/152<br>0.560865<br>0.00100427<br>[Sm147]=<br>±<br>[Sm]=<br>± | nter Normalized<br>Sm149/Sm152<br>0.51686<br>0.00000<br>n ratios<br>149/152<br>0.516860<br>0<br>33.00271<br>0.05909<br>33.08876<br>0.05925<br>Discrimination= | d data<br>Sml 54/Sml 52<br>0.871484499<br>0.130529134<br>152s/147t<br>0.120933<br>0.000216541<br>nm/g<br>ppm<br>0.66667 | Gd155/Sm152<br>0.08912726<br>0.03679161 | 0.6667 |

| Full Sam<br>Date of TIM<br>estimated Si | ple Name:<br>S analysis:<br>mload (ng): | CB_02_12_Sm<br>7/30/2020<br>10 | 1               | Position #: | 15     |  |
|-----------------------------------------|-----------------------------------------|--------------------------------|-----------------|-------------|--------|--|
| Rspike Va                               | alues Sm {S<br>47/152                   | SmNd 0.15 A s<br>149/152       | [Concentration] |             |        |  |
|                                         | 477.2255                                | 1.7429473                      | 0.018992        |             |        |  |
|                                         |                                         |                                | nm/g            |             |        |  |
|                                         | Normalized                              | d to 149/152=                  | 0.51686         |             |        |  |
| Wt.                                     | Sample=                                 | 3.3433E-05                     | g               |             |        |  |
| W                                       | 't. Spike=                              | 0.85762                        | g               |             |        |  |
|                                         |                                         |                                |                 |             |        |  |
|                                         |                                         |                                |                 |             |        |  |
|                                         |                                         |                                |                 |             |        |  |
|                                         |                                         |                                |                 | -           |        |  |
| <mark>For</mark>                        | Sm/Sm, er                               | nter Normalized                | l data          |             |        |  |
| Sm1                                     | <mark>.47/Sm152</mark> S                | Sm149/Sm152                    | Sm154/Sm152     | Gd155/Sm152 |        |  |
| Ratios 0.9                              | 3243935                                 | 0.51686                        | 0.85162639      | 0.00622707  |        |  |
| %StdErr 0.0                             | 0186341                                 | 0.00000                        | 0.001667226     | 1.9080804   |        |  |
| (ppm)                                   |                                         |                                |                 |             |        |  |
| Spike subtracted                        | orand mea                               | n ratios                       |                 |             |        |  |
| Spike subtracted                        | grand mea                               | 1114105                        |                 |             |        |  |
|                                         | 47/152                                  | 149/152                        | 152s/147t       | ]           |        |  |
| Ratios 0.                               | .560865                                 | 0.516860                       | 2.665047        | J           |        |  |
| 2 S.E. 2.0                              | 902E-05                                 | 0                              | 9.93216E-05     |             |        |  |
|                                         |                                         |                                |                 |             |        |  |
|                                         | [Sm147]=                                | 728.16385                      | nm/g            |             |        |  |
|                                         | ±                                       | 0.09414                        |                 |             |        |  |
|                                         |                                         |                                |                 | 1           |        |  |
|                                         | [Sm]=                                   | 730.06245                      | ppm             |             |        |  |
|                                         | ±                                       | 0.09438                        |                 | I           |        |  |
|                                         | Т                                       | Discrimination=                | 0 6667          | to          | 0 6667 |  |
|                                         | 1                                       |                                | w/Average of    | 0.6667      | 0.0007 |  |

| Fulls             | Sample Name:     | CBD11_10_2            | eud 1                                         |                  |        |
|-------------------|------------------|-----------------------|-----------------------------------------------|------------------|--------|
| Date of 7         | TIMS analysis:   | 11/27/2020            |                                               | Position #:      | 13     |
| estimat           | ed Sm load (ng): | <enter!></enter!>     |                                               |                  |        |
|                   | -                |                       |                                               |                  |        |
|                   |                  |                       |                                               |                  |        |
| Rspik             | e Values Sm {S   | mNd 0.15 A s          | pike, 6/12/08 calib}                          |                  |        |
|                   | 147/152          | 149/152               | [Concentration]                               | ]                |        |
|                   | 477.2255         | 1.7429473             | 0.018992                                      |                  |        |
|                   |                  |                       | nm/g                                          |                  |        |
|                   |                  |                       |                                               |                  |        |
|                   | Normalized       | d to $149/152 =$      | 0.51686                                       |                  |        |
|                   | _                |                       |                                               |                  |        |
|                   | Wt. Sample=      | 0.00001               | g                                             | TER on ND she    | eet    |
|                   | Wt. Spike=       | 0.24632               | g                                             |                  |        |
|                   |                  |                       |                                               |                  |        |
|                   |                  |                       |                                               |                  |        |
|                   |                  |                       |                                               |                  |        |
|                   |                  |                       |                                               |                  |        |
|                   |                  |                       | 1 1 .                                         | 7                |        |
|                   | For $Sm/Sm$ , ef | $\frac{140}{5} = 140$ | $\frac{1 \text{ data}}{54/5 \text{ m}^{152}}$ | $C_{1155/2m152}$ |        |
| Dation            | 1 9260742        | 0.51686               | 0 95375342                                    | 0.0670827        |        |
| Nauos<br>0/StdErr | 1.8309/42        | 0.01080               | 0.003777442                                   | 3 5661936        |        |
| 70510111<br>(ppm) | 0.00400307       | 0.00000               | 0.003///442                                   | 3.3001030        |        |
| (ppm)             |                  |                       |                                               |                  |        |
| Spike subtra      | cted orand mea   | n ratios              |                                               |                  |        |
| Spike subua       | etea grana mea   | in rados              |                                               |                  |        |
|                   | 147/152          | 149/152               | 152s/147t                                     | 1                |        |
| Ratios            | 0.560865         | 0.516860              | 0.768581                                      | L                |        |
| 2 S.E.            | 5.455E-05        | 0                     | 7.47533E-05                                   |                  |        |
|                   |                  | -                     |                                               |                  |        |
|                   | [Sm147]=         | 201.65021             | nm/g                                          |                  |        |
|                   | . ,<br>±         | 0.02092               | 8                                             |                  |        |
|                   |                  |                       |                                               |                  |        |
|                   | [Sm]=            | 202.17599             | ppm                                           | 1                |        |
|                   | ±                | 0.02097               |                                               |                  |        |
|                   |                  |                       |                                               | -                |        |
|                   | Ι                | Discrimination=       | 0.6667                                        | to               | 0.6667 |
|                   |                  |                       | w/Average of                                  | 0.6667           |        |

| Fulls        | Sample Name:              | D11_10_2 eu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d 2                                              |                |        |
|--------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|--------|
| Date of T    | FIMS analysis:            | 11/2//2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                  | Position #:    | 14     |
| estimat      | ed Sm load (ng):          | <enter!></enter!>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | _              |        |
| Rspik        | e Values Sm {S            | mNd 0.15 A s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | spike, 6/12/08 calib}                            |                |        |
|              | 147/152                   | 149/152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [Concentration]                                  |                |        |
|              | 477.2255                  | 1.7429473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.018992                                         |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nm/g                                             |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              | Normalized                | d to $149/152 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.51686                                          |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              | Wt. Sample=               | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g                                                | TER on ND shee | et     |
|              | Wt. Spike=                | 0.25251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | g                                                |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              | Ear Sm/Sm. or             | ntor Normaliza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d data                                           | 7              |        |
|              | $\frac{101311}{511}$ , ef | $\frac{1101}{5} \frac{110}{5} 1$ | $\frac{\text{Sm}154/\text{Sm}152}{\text{Sm}154}$ | Gd155/Sm152    |        |
| Datios       | 1 <b>/210606</b>          | 0.51686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.85205387                                       |                |        |
| %StdErr      | 0.00326832                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002255507                                      | 1 5849907      |        |
| (npm)        | 0.00520052                | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.002037222                                      | 1.3049907      |        |
| (ppm)        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
| Spike subtra | cted orand mea            | n ratios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                |        |
| spine sucur  | eren grano mea            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              | 147/152                   | 149/152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 152s/147t                                        | ]              |        |
| Ratios       | 0.560865                  | 0.516860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.145252                                         | 1              |        |
| 2 S.E.       | 3.6662E-05                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.48609E-05                                      |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              | [Sm147]=                  | 308.02688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nm/g                                             |                |        |
|              | ±                         | 0.02601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                |        |
|              | [Sm]=                     | 308.83002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ppm                                              | 1              |        |
|              | ±                         | 0.02608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                |        |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | -              |        |
|              | Ι                         | Discrimination=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6667                                           | to             | 0.6667 |
|              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | w/Average of                                     | 0.6667         |        |

| Full         | Sample Name:               | D11 10 2 eu       | d 3                  |                |        |
|--------------|----------------------------|-------------------|----------------------|----------------|--------|
| Date of 7    | TIMS analysis:             | 11/27/2020        |                      | Position #:    | 15     |
| estimat      | ed Sm load (ng):           | <enter!></enter!> |                      |                |        |
|              |                            |                   |                      |                |        |
|              |                            |                   |                      |                |        |
| Rspik        | e Values Sm {S             | mNd 0.15 A s      | pike, 6/12/08 calib} |                |        |
| -            | 147/152                    | 149/152           | [Concentration]      | 1              |        |
|              | 477.2255                   | 1.7429473         | 0.018992             |                |        |
|              |                            |                   | nm/g                 |                |        |
|              |                            |                   |                      |                |        |
|              | Normalized                 | d to 149/152=     | 0.51686              |                |        |
|              |                            |                   |                      |                |        |
|              | Wt. Sample=                | 0.00001           | g                    | TER on ND shee | t      |
|              | Wt. Spike=                 | 0.24873           | g                    |                |        |
|              | _                          |                   |                      |                |        |
|              |                            |                   |                      |                |        |
|              |                            |                   |                      |                |        |
|              |                            |                   |                      |                |        |
|              |                            |                   |                      | _              |        |
|              | For Sm/Sm, er              | nter Normalized   | d data               |                |        |
|              | <mark>8m147/8m152</mark> 8 | Sm149/Sm152       | Sm154/Sm152          | Gd155/Sm152    |        |
| Ratios       | 1.3866424                  | 0.51686           | 0.85276922           | 0.03820581     |        |
| %StdErr      | 0.00373227                 | 0.00000           | 0.003235288          | 1.2189067      |        |
| (ppm)        |                            |                   |                      |                |        |
|              |                            | _                 |                      |                |        |
| Spike subtra | cted grand mea             | in ratios         |                      |                |        |
|              |                            |                   |                      | 7              |        |
|              | 147/152                    | 149/152           | 152s/147t            |                |        |
| Ratios       | 0.560865                   | 0.516860          | 1.193434             |                |        |
| 2 S.E.       | 4.1866E-05                 | 0                 | 8.90845E-05          |                |        |
|              |                            |                   | ,                    |                |        |
|              | [Sm147]=                   | 316.18105         | nm/g                 |                |        |
|              | ±                          | 0.02945           |                      |                |        |
|              |                            |                   |                      | 1              |        |
|              | [Sm]=                      | 317.00545         | ppm                  |                |        |
|              | ±                          | 0.02952           |                      | J              |        |
|              | -                          | <u>.</u> ,.       | 0.000                |                | 0.(((7 |
|              | 1                          | Discrimination=   | 0.6667               | to             | 0.6667 |
|              |                            |                   | w/Average of         | 0.6667         |        |

| Fulls        | Sample Name:     | D11 10 2 eu       | d 4                  |                   |        |
|--------------|------------------|-------------------|----------------------|-------------------|--------|
| Date of T    | TIMS analysis:   | 11/27/2020        |                      | Position #:       | 16     |
| estimat      | ed Sm load (ng): | <enter!></enter!> |                      |                   |        |
|              |                  |                   |                      |                   |        |
|              |                  |                   |                      |                   |        |
| Rspik        | e Values Sm {S   | mNd 0.15 A s      | pike, 6/12/08 calib} |                   |        |
| -            | 147/152          | 149/152           | [Concentration]      | 1                 |        |
|              | 477.2255         | 1.7429473         | 0.018992             |                   |        |
|              |                  |                   | nm/g                 |                   |        |
|              |                  |                   |                      |                   |        |
|              | Normalized       | d to $149/152 =$  | 0.51686              |                   |        |
|              | _                |                   |                      |                   |        |
|              | Wt. Sample=      | 0.00001           | g                    | TER on ND shee    | t      |
|              | Wt. Spike=       | 0.24741           | g                    |                   |        |
|              |                  |                   |                      |                   |        |
|              |                  |                   |                      |                   |        |
|              |                  |                   |                      |                   |        |
|              |                  |                   |                      |                   |        |
|              |                  |                   |                      | 7                 |        |
|              | For Sm/Sm, ei    | nter Normalized   | d data               |                   |        |
|              | Sm147/Sm152      | Sm149/Sm152       | Sm154/Sm152          | Gd155/Sm152       |        |
| Ratios       | 1.74991595       | 0.51686           | 0.853904353          | <enter!></enter!> |        |
| %StdErr      | 0.00639265       | 0.00000           | 0.007054912          | <enter!></enter!> |        |
| (ppm)        |                  |                   |                      |                   |        |
| <b>a 1</b> 1 |                  |                   |                      |                   |        |
| Spike subtra | cted grand mea   | n ratios          |                      |                   |        |
|              | 147/150          | 140/152           | 150-/1474            | ٦                 |        |
| Det          | 14//152          | 149/152           | 152s/14/t            | J                 |        |
| Ratios       | 0.560865         | 0.516860          | 0.825622             |                   |        |
| 2 S.E.       | 7.1708E-05       | U                 | 0.000105558          |                   |        |
|              | [S1 47]          | 217 57 422        |                      |                   |        |
|              | [5m14/]=         | 21/.3/423         | nm/g                 |                   |        |
|              | ±                | 0.02906           |                      |                   |        |
|              | IC1—             | 210 14152         |                      |                   |        |
|              | [Sm]=            | 218.14153         | ppm                  |                   |        |
|              | ±                | 0.02914           |                      | _                 |        |
|              | т                | Die animieration- | 06667                | to                | 0.6667 |
|              | 1                | JECTIMATION=      | 0.000 /              | 0 6667            | 0.000/ |
|              |                  |                   | w/Average of         | 0.000/            |        |

| Fulls             | Sample Name:                                    | D 11 10 2 ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lu 5                                             |                 |        |
|-------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------|--------|
| Date of 7         | TIMS analysis:                                  | 11/28/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  | Position #:     | 17     |
| estimat           | ed Sm load (ng):                                | <enter!></enter!>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |                 |        |
| • • • • • • •     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                 |        |
|                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                 |        |
| Rsnik             | e Values Sm {S                                  | mNd 0 15 A s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nike 6/12/08 calib}                              |                 |        |
| Topic             | 147/152                                         | 149/152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [Concentration]                                  |                 |        |
|                   | 477 2255                                        | 1 7/29/73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.018002                                         |                 |        |
|                   | 477.2233                                        | 1.7427475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.010992                                         |                 |        |
|                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iiii/g                                           |                 |        |
|                   | Normalized                                      | $\frac{1}{10} \frac{1}{49} \frac{1}{152} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 51686                                          |                 |        |
|                   | Normalized                                      | 10149/152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.51000                                          |                 |        |
|                   | Wt Sample-                                      | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a                                                | TEP on ND shoo  | +      |
|                   | Wt Spilzo-                                      | 0.00001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g                                                | TER OILIND SHEE | ι      |
|                   | wt. spike-                                      | 0.24779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g                                                |                 |        |
|                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                 |        |
|                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                 |        |
|                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                 |        |
|                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                 |        |
|                   | For Sm/Sm. or                                   | ntar Normaliza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 data                                           | 7               |        |
|                   | $\frac{101500500}{5000000000000000000000000000$ | $\frac{101}{5}$ $\frac{100}{5}$ $10$ | $\frac{\text{Sm}154/\text{Sm}152}{\text{Sm}154}$ | Gd155/Sm152     |        |
| Datios            | 1 2306502                                       | 0.51686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.85231500                                       | 0.04667560      |        |
| 0/StdEm           | 0.00605061                                      | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.004669435                                      | 1 5743044       |        |
| 70510111<br>(ppm) | 0.00093001                                      | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.004000433                                      | 1.5/45044       |        |
| (hhm)             |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                  |                 |        |
| Spiles aubtro     | atad grand mag                                  | n ratios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                 |        |
| spike subua       | cted grand mea                                  | mados                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                 |        |
|                   | 147/152                                         | 140/152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 152 c / 1.47 t                                   | 1               |        |
| Dation            | 0.560965                                        | 0 516860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 /72800                                         | J               |        |
|                   | 77067E 05                                       | 0.510800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.4/3022                                         |                 |        |
| 2 S.E.            | 1.190/E-03                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0002048/9                                      |                 |        |
|                   | [Sm147]_                                        | 300 000 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                 |        |
|                   | [5m14/]=                                        | 300.98941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ımı/g                                            |                 |        |
|                   | ±                                               | 0.00031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                 |        |
|                   | 10 1                                            | 200.00277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | •               |        |
|                   | [Sm]=                                           | 390.00366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ppm                                              |                 |        |
|                   | ±                                               | 0.06047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |                 |        |
|                   | -                                               | <u>.</u> ,.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6667                                           |                 | 0.(((7 |
|                   | I                                               | Discrimination=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6667                                           | to              | 0.6667 |
|                   |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w/Average of                                     | 0.6667          |        |

| Fulls        | Sample Name              | D11 10 2 eu                  | d 6                                            |                 |        |
|--------------|--------------------------|------------------------------|------------------------------------------------|-----------------|--------|
| Date of      | TIMS analysis            | 11/28/2020                   |                                                | Position #      | 18     |
| estimat      | ed Sm load (ng):         | <pre><enter!></enter!></pre> |                                                | r oshion ".     |        |
| estimat      | eu sin load (irg).       | Senter.>                     |                                                |                 |        |
|              |                          |                              |                                                |                 |        |
| Denile       | - Values Car (C          | WNIO 15 A a                  | (12/09 - 11)                                   |                 |        |
| Rspik        | $e$ values $S m \{S$     | $\frac{140}{152}$            | $\frac{\text{pike, } 6/12/08 \text{ call}}{6}$ |                 |        |
|              | 14//152                  | 149/152                      | [Concentration]                                |                 |        |
|              | 477.2255                 | 1.7429473                    | 0.018992                                       |                 |        |
|              |                          |                              | nm/g                                           |                 |        |
|              |                          | _                            |                                                |                 |        |
|              | Normalized               | d to $149/152 =$             | 0.51686                                        |                 |        |
|              |                          |                              |                                                |                 |        |
|              | Wt. Sample=              | 0.00001                      | g                                              | TER on ND sheet |        |
|              | Wt. Spike=               | 0.247                        | g                                              |                 |        |
|              | _                        |                              |                                                |                 |        |
|              |                          |                              |                                                |                 |        |
|              |                          |                              |                                                |                 |        |
|              |                          |                              |                                                |                 |        |
|              |                          |                              |                                                |                 |        |
|              | For Sm/Sm, er            | nter Normalized              | l data                                         |                 |        |
|              | <mark>Sm147/Sm152</mark> | Sm149/Sm152                  | Sm154/Sm152                                    | Gd155/Sm152     |        |
| Ratios       | 1.4491788                | 0.51686                      | 0.85291252                                     | 0.05393064      |        |
| %StdErr      | 0.00674427               | 0.00000                      | 0.004772217                                    | 1.4305155       |        |
| (mag)        |                          |                              |                                                |                 |        |
| 41 /         |                          |                              |                                                |                 |        |
| Spike subtra | cted grand mea           | n ratios                     |                                                |                 |        |
| -r socau     |                          |                              |                                                |                 |        |
|              | 147/152                  | 149/152                      | 152s/147t                                      | 1               |        |
| Ratios       | 0.560865                 | 0.516860                     | 1 108681                                       | L               |        |
| 1 Callos     | 7 5652E 05               | 0.510000                     | 0.000140545                                    |                 |        |
| 2 S.E.       | 7.3032E-03               | 0                            | 0.000149343                                    |                 |        |
|              | [C                       | 301 (0300                    |                                                |                 |        |
|              | [Sm147]=                 | 291.68398                    | nm/g                                           |                 |        |
|              | ±                        | 0.04214                      |                                                |                 |        |
|              |                          |                              |                                                |                 |        |
|              | [Sm]=                    | 292.44451                    | ppm                                            |                 |        |
|              | ±                        | 0.04225                      |                                                |                 |        |
|              |                          |                              |                                                |                 |        |
|              | Ι                        | Discrimination=              | 0.6667                                         | to              | 0.6667 |
|              |                          |                              | w/Average of                                   | 0.6667          |        |

| Fulls        | Sample Name:               | D11_10_2 eu       | d 7                  |                |        |
|--------------|----------------------------|-------------------|----------------------|----------------|--------|
| Date of 7    | TIMS analysis:             | 11/28/2020        |                      | Position #:    | 19     |
| estimat      | ed Sm load (ng):           | <enter!></enter!> |                      |                |        |
|              |                            |                   |                      |                |        |
|              |                            |                   |                      | _              |        |
| Rspik        | e Values Sm {S             | mNd 0.15 A s      | pike, 6/12/08 calib} |                |        |
|              | 147/152                    | 149/152           | [Concentration]      |                |        |
|              | 477.2255                   | 1.7429473         | 0.018992             |                |        |
|              |                            |                   | nm/g                 |                |        |
|              |                            | 1. 1. 10 /1 50    |                      |                |        |
|              | Normalized                 | 1  to  149/152 =  | 0.51686              |                |        |
|              | W4 6                       | 0.00001           | L_                   | TED ND -h      | 4      |
|              | Wt. Sample=                | 0.00001           | g                    | TER on ND snee | t      |
|              | wt. spike=                 | 0.2482            | g                    |                |        |
|              |                            |                   |                      |                |        |
|              |                            |                   |                      |                |        |
|              |                            |                   |                      |                |        |
|              |                            |                   |                      |                |        |
|              | For Sm/Sm, er              | nter Normalized   | d data               |                |        |
|              | <mark>8m147/8m152</mark> 9 | Sm149/Sm152       | Sm154/Sm152          | Gd155/Sm152    |        |
| Ratios       | 1.3687491                  | 0.51686           | 0.85297575           | 0.06731696     |        |
| %StdErr      | 0.0053865                  | 0.00000           | 0.004624163          | 1.3222343      |        |
| (ppm)        |                            |                   |                      |                |        |
|              |                            |                   |                      |                |        |
| Spike subtra | cted grand mea             | n ratios          |                      |                |        |
|              | · · · · · · · · · ·        | 1.10/2-2-1        |                      | г              |        |
| D            | 147/152                    | 149/152           | 152s/147t            | J              |        |
| Ratios       | 0.560865                   | 0.516860          | 1.220099             |                |        |
| 2 S.E.       | 6.0422E-05                 | 0                 | 0.000131441          |                |        |
|              | [Sw1 47]                   | 200 55/50         |                      |                |        |
|              | [Sm14/]=                   | 0.03030           | mm/g                 |                |        |
|              | ±                          | 0.03930           |                      |                |        |
|              | [Sm]=                      | 323 30761         | nnm                  | 1              |        |
|              | -[nu]<br>+                 | 0.03941           | Phur .               |                |        |
|              | -                          | 0.00/11           |                      | 1              |        |
|              | T                          | Discrimination=   | 0.6667               | to             | 0.6667 |
|              | -                          |                   | w/Average of         | 0.6667         |        |

| Fulls        | Sample Name                | D11 10 2 eu                                                                                                                                             | 8 h                    |                 |        |
|--------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|--------|
| Date of      | TIMS analysis              | 11/29/2020                                                                                                                                              |                        | Position #.     | 20     |
| Date of      | ad Sm load (ng):           | <pre>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</pre> |                        |                 | 20     |
| estimat      | ed Sill load (lig).        | Senter.>                                                                                                                                                |                        |                 |        |
|              |                            |                                                                                                                                                         |                        |                 |        |
| D 1          | <b>V</b> 1 C (0            | NT1015A                                                                                                                                                 | 1 (12/00 11)           |                 |        |
| Rspik        | e values $Sm \{S$          | 5mNd 0.15 A s                                                                                                                                           | pike, $6/12/08$ callb} | 1               |        |
|              | 147/152                    | 149/152                                                                                                                                                 | [Concentration]        |                 |        |
|              | 477.2255                   | 1.7429473                                                                                                                                               | 0.018992               |                 |        |
|              |                            |                                                                                                                                                         | nm/g                   |                 |        |
|              |                            |                                                                                                                                                         |                        |                 |        |
|              | Normalized                 | d to $149/152 =$                                                                                                                                        | 0.51686                |                 |        |
|              | -                          |                                                                                                                                                         |                        |                 |        |
|              | Wt. Sample=                | 0.00001                                                                                                                                                 | g                      | TER on ND sheet |        |
|              | Wt. Spike=                 | 0.24829                                                                                                                                                 | g                      |                 |        |
|              | _                          |                                                                                                                                                         |                        |                 |        |
|              |                            |                                                                                                                                                         |                        |                 |        |
|              |                            |                                                                                                                                                         |                        |                 |        |
|              |                            |                                                                                                                                                         |                        |                 |        |
|              |                            |                                                                                                                                                         |                        |                 |        |
|              | For Sm/Sm, er              | nter Normalized                                                                                                                                         | l data                 |                 |        |
|              | <mark>Sm147/Sm152</mark> S | Sm149/Sm152                                                                                                                                             | Sm154/Sm152            | Gd155/Sm152     |        |
| Ratios       | 1.4821257                  | 0.51686                                                                                                                                                 | 0.85308126             | 0.04919407      |        |
| %StdErr      | 0.01887947                 | 0.00000                                                                                                                                                 | 0.01366086             | 1.1187333       |        |
| (ppm)        |                            |                                                                                                                                                         |                        |                 |        |
| · · · ·      |                            |                                                                                                                                                         |                        |                 |        |
| Spike subtra | cted grand mea             | n ratios                                                                                                                                                |                        |                 |        |
| 1            | <i>G</i>                   |                                                                                                                                                         |                        |                 |        |
|              | 147/152                    | 149/152                                                                                                                                                 | 152s/147t              | 1               |        |
| Ratios       | 0.560865                   | 0.516860                                                                                                                                                | 1.068657               |                 |        |
| 2 S F        | 0.00021178                 | 0                                                                                                                                                       | 0 000403514            |                 |        |
| 2 U.L.       | 0.00021170                 | ~                                                                                                                                                       | 0.000-000014           |                 |        |
|              | [Sm147]-                   | 282 62230                                                                                                                                               | nm/a                   |                 |        |
|              | [3114/]=                   | 202.02239                                                                                                                                               | uu/g                   |                 |        |
|              | ±                          | 0.10/04                                                                                                                                                 |                        |                 |        |
|              | 10 1                       | 002.25020                                                                                                                                               |                        | 1               |        |
|              | [Sm]=                      | 283.35929                                                                                                                                               | ppm                    |                 |        |
|              | ±                          | 0.10792                                                                                                                                                 |                        | J               |        |
|              |                            |                                                                                                                                                         |                        |                 |        |
|              | I                          | Discrimination=                                                                                                                                         | 0.6667                 | to              | 0.6667 |
|              |                            |                                                                                                                                                         | w/Average of           | 0.6667          |        |

## 7.0 APPENDIX 3: DATA TABLES

Table 7. LA-ICP-MS elemental concentration data.

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na          | Cl          | Ca          | Mn          | Fe          | Zr          | Be         | Mg         |
|-------------|--------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|
|             |                                      | <u>Wt %</u> | <u>ppm</u> | <u>ppm</u> |
| Eud_LV01_1  | 0.12379                              | 12.17       | 0.88        | 8.31        | 1.65        | 3.07        | 9.52        | 2.06       | 366        |
| Eud_LV01_2  | 0.12454                              | 12.13       | 0.90        | 8.07        | 1.59        | 3.06        | 9.35        | 1.24       | 374        |
| Eud_LV01_3  | 0.12499                              | 12.90       | 1.01        | 8.74        | 1.65        | 3.17        | 10.00       | 1.26       | 397        |
| Eud_LV01_4  | 0.12462                              | 12.72       | 1.02        | 8.54        | 1.62        | 3.10        | 9.81        | 1.07       | 398        |
| Eud_LV01_5  | 0.12373                              | 12.02       | 1.04        | 7.91        | 1.71        | 3.22        | 8.97        | 2.8        | 297        |
| Eud_LV01_6  | 0.1246                               | 12.52       | 1.13        | 8.18        | 1.59        | 2.92        | 9.21        | 1.22       | 350        |
| Eud_LV01_7  | 0.12255                              | 13.42       | 1.30        | 9.21        | 1.82        | 3.36        | 9.92        | 1.21       | 486        |
| Eud_LV01_8  | 0.12129                              | 13.27       | 1.27        | 9.21        | 1.86        | 3.27        | 9.40        | 0.52       | 523        |
| Eud_LV01_9  | 0.12462                              | 12.65       | 1.13        | 8.49        | 1.64        | 3.57        | 9.76        | 1.47       | 380        |
| Eud_LV01_10 | 0.12386                              | 12.62       | 1.16        | 8.36        | 1.73        | 3.63        | 9.80        | 1.3        | 313        |

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na    | Cl   | Ca   | Mn   | Fe   | Zr    | Be   | Mg    |
|-------------|--------------------------------------|-------|------|------|------|------|-------|------|-------|
| Eud_LV01_11 | 0.12481                              | 11.60 | 1.04 | 8.72 | 1.69 | 3.47 | 9.78  | 1.52 | 370   |
| Eud_LV01_12 | 0.12536                              | 12.12 | 0.97 | 8.49 | 1.61 | 3.49 | 10.01 | 1.21 | 416   |
| Eud_LV01_13 | 0.12145                              | 13.17 | 0.93 | 9.02 | 1.84 | 3.25 | 9.85  | 0.62 | 545   |
| Eud_LV01_14 | 0.12271                              | 13.03 | 0.92 | 9.00 | 1.84 | 3.23 | 9.70  |      | 548   |
| Eud_LV01_15 | 0.12502                              | 12.96 | 0.88 | 8.73 | 1.67 | 3.24 | 10.24 |      | 435   |
| Eud_LV01_16 | 0.12509                              | 12.52 | 0.86 | 8.76 | 1.70 | 3.04 | 10.00 | 0.06 | 452   |
| Eud_LV01_17 | 0.12413                              | 11.31 | 1.20 | 9.06 | 1.70 | 3.32 | 9.86  | 1.34 | 348   |
| Eud_LV01_18 | 0.12495                              | 12.89 | 1.17 | 9.01 | 1.63 | 3.42 | 9.87  |      | 442   |
| Eud_NK_1    | 0.18978                              | 10.23 | 0.22 | 5.73 | 1.82 | 2.25 | 10.25 | 1.66 | 151.7 |
| Eud_NK_2    | 0.1892                               | 10.04 | 0.22 | 6.20 | 1.87 | 2.31 | 10.22 | 3.9  | 147.7 |
| Eud_NK_3    | 0.18921                              | 10.68 | 0.30 | 6.02 | 1.91 | 2.42 | 10.60 | 1.82 | 148.9 |
| Eud_NK_4    | 0.18969                              | 10.40 | 0.28 | 5.97 | 1.93 | 2.34 | 10.66 | 3    | 156.3 |
| Eud_NK_5    | 0.1892                               | 10.51 | 0.30 | 5.45 | 1.80 | 2.25 | 9.64  | 1.84 | 139   |
| Eud_NK_6    | 0.1896                               | 10.41 | 0.29 | 5.55 | 1.79 | 2.24 | 9.63  | 2.32 | 134.7 |
| Eud_NK_7    | 0.18979                              | 10.51 | 0.31 | 6.08 | 1.86 | 2.49 | 9.91  | 2.94 | 149.4 |
| Eud_NK_8    | 0.18906                              | 10.68 | 0.31 | 5.87 | 1.86 | 2.49 | 9.99  | 2.86 | 150.2 |
| Eud_NK_9    | 0.18885                              | 10.34 | 0.30 | 5.76 | 1.85 | 2.66 | 10.00 | 2.15 | 145.5 |
| Eud_NK_10   | 0.18911                              | 10.57 | 0.25 | 5.73 | 1.85 | 2.62 | 10.03 | 1.28 | 150.2 |
| Eud_NK_11   | 0.18884                              | 10.53 | 0.23 | 5.80 | 1.83 | 2.62 | 10.18 | 1.84 | 147   |
| Eud_NK_12   | 0.1885                               | 10.73 | 0.25 | 5.85 | 1.84 | 2.60 | 10.13 |      | 145.3 |
| Eud_NK_13   | 0.18872                              | 10.47 | 0.20 | 5.63 | 1.81 | 2.47 | 10.12 | 1.14 | 151.1 |
| Eud_NK_14   | 0.18938                              | 10.56 | 0.23 | 5.67 | 1.89 | 2.53 | 10.43 | 2.35 | 138.7 |
| Eud_NK_15   | 0.18892                              | 10.54 | 0.21 | 5.87 | 1.91 | 2.36 | 10.40 | 1.83 | 157.5 |
| Eud_NK_16   | 0.18913                              | 10.39 | 0.21 | 5.77 | 1.88 | 2.32 | 10.20 | 2.3  | 140.2 |
| Eud_NK_17   | 0.1888                               | 10.70 | 0.33 | 6.17 | 1.83 | 2.52 | 10.42 | 1.93 | 153   |
| Eud_NK_18   | 0.1888                               | 10.30 | 0.36 | 5.87 | 1.82 | 2.51 | 10.33 | 1.61 | 145.6 |

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na    | Cl   | Ca   | Mn   | Fe   | Zr   | Be   | Mg   |
|-------------|--------------------------------------|-------|------|------|------|------|------|------|------|
| CBD11_02_1  | 0.1879                               | 10.43 | 0.86 | 8.23 | 0.36 | 4.90 | 9.89 | 1.07 |      |
| CBD11_02_2  | 0.1872                               | 11.02 | 0.82 | 8.16 | 0.38 | 4.83 | 9.84 | 2.38 | 12.7 |
| CBD11_02_3  | 0.1896                               | 11.08 | 0.92 | 7.94 | 0.35 | 4.78 | 9.49 | 0.88 | 10.2 |
| CBD11_02_4  | 0.1874                               | 11.72 | 0.94 | 7.85 | 0.35 | 4.89 | 9.55 | 1.11 |      |
| CBD11_02_5  | 0.1835                               | 11.71 | 0.88 | 8.12 | 0.38 | 4.87 | 9.61 | 1.34 | 10.2 |
| CBD11_02_6  | 0.185                                | 11.57 | 0.90 | 7.92 | 0.36 | 4.87 | 9.41 | 1.14 | 9.5  |
| CBD11_02_7  | 0.1919                               | 11.53 | 0.95 | 7.81 | 0.34 | 4.67 | 9.25 |      |      |
| CBD11_02_8  | 0.1846                               | 11.58 | 0.94 | 7.92 | 0.36 | 4.70 | 9.46 | 0.95 | 11.5 |
| CBD11_02_9  | 0.1841                               | 11.51 | 0.87 | 7.89 | 0.38 | 4.90 | 9.36 | 1.2  |      |
| CBD11_02_10 | 0.1887                               | 11.23 | 0.92 | 7.58 | 0.34 | 4.64 | 9.09 | 0.82 | 11   |
|             |                                      |       |      |      |      |      |      |      |      |
| CBD11_02_11 | 0.1844                               | 10.25 | 0.89 | 7.57 | 0.34 | 4.63 | 8.90 | 1.02 |      |
| CBD11_02_12 | 0.1892                               | 10.45 | 1.01 | 7.60 | 0.32 | 4.82 | 8.99 |      |      |
| CBD11_02_13 | 0.19099                              | 10.72 | 0.97 | 7.20 | 0.32 | 4.54 | 8.59 | 1.12 | 7.9  |
|             |                                      |       |      |      |      |      |      |      |      |
| CBD11_02_16 | 0.18565                              | 11.38 | 1.01 | 7.89 | 0.36 | 4.78 | 9.12 | 0.74 | 8    |
| CBD11_02_17 | 0.1878                               | 11.35 | 0.97 | 7.62 | 0.37 | 4.85 | 8.95 | 1.13 | 12   |
| CBD11_02_18 | 0.1858                               | 11.71 | 1.05 | 8.39 | 0.37 | 4.96 | 9.79 | 1.43 | 11.5 |
| CBD11_02_19 | 0.1797                               | 11.44 | 0.97 | 7.54 | 0.36 | 4.78 | 9.01 |      | 7.9  |
| CBD11_02_20 | 0.1751                               | 11.33 | 0.99 | 7.60 | 0.36 | 4.82 | 9.04 | 1.44 | 7.3  |
|             |                                      |       |      |      |      |      |      |      |      |
| CBD11_02_21 | 0.1829                               | 11.19 | 0.95 | 8.09 | 0.38 | 5.35 | 9.62 | 1.04 |      |
| CBD11_02_22 | 0.1905                               | 11.26 | 0.97 | 7.88 | 0.36 | 5.30 | 9.66 | 0.65 | 7.3  |
| CBD11_02_23 | 0.1923                               | 11.44 | 1.11 | 7.57 | 0.34 | 5.19 | 9.29 | 0.96 | 8.4  |
| CBD11_02_24 | 0.1857                               | 11.78 | 1.05 | 7.70 | 0.34 | 5.31 | 9.31 | 1.18 |      |
| CBD11_02_25 | 0.1837                               | 11.11 | 0.95 | 7.41 | 0.34 | 5.25 | 9.09 | 1.13 | 11.9 |
| CBD11_02_26 | 0.188                                | 10.85 | 1.08 | 7.55 | 0.32 | 5.13 | 8.99 |      | 14.6 |
| CBD11_02_27 | 0.1882                               | 11.68 | 0.91 | 7.52 | 0.34 | 5.38 | 9.26 | 1.5  | 6.5  |

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na    | Cl   | Ca    | Mn   | Fe   | Zr    | Be   | Mg   |
|-------------|--------------------------------------|-------|------|-------|------|------|-------|------|------|
| CBD11_02_28 | 0.1874                               | 11.11 | 0.88 | 7.47  | 0.34 | 5.69 | 8.96  | 1.69 | 7.9  |
| CBD11_02_29 | 0.1851                               | 11.51 | 0.93 | 7.61  | 0.34 | 5.24 | 9.07  | 0.76 | 11.3 |
| CBD11_02_30 | 0.1881                               | 11.20 | 0.88 | 7.38  | 0.32 | 5.19 | 8.90  | 1.15 |      |
| KP8 1 3 1   | 0.2358                               | 9.56  | 0.86 | 11.62 | 1.23 | 1.36 | 9.82  | 3.8  | 728  |
| KP8 1 3 2   | 0.2338                               | 9.34  | 0.80 | 11.06 | 1.21 | 1.32 | 9.44  | 4.5  | 733  |
| KP8 1 3 3   | 0.2391                               | 9.43  | 0.74 | 11.18 | 1.14 | 1.33 | 9.51  | 6.1  | 697  |
| KP8_1_3_4   | 0.2388                               | 9.29  | 0.73 | 11.87 | 1.15 | 1.31 | 9.62  | 5.7  | 715  |
| KP8_1_3_5   | 0.2463                               | 9.79  | 0.68 | 11.16 | 1.13 | 1.33 | 9.79  | 4.7  | 710  |
| KP8_1_3_6   | 0.2446                               | 9.25  | 0.66 | 11.08 | 1.11 | 1.29 | 9.17  | 4.7  | 689  |
| KP8_1_3_7   | 0.2357                               | 9.01  | 0.57 | 10.22 | 1.10 | 1.25 | 8.88  | 4.3  | 674  |
| KP8_1_3_8   | 0.2353                               | 9.74  | 0.71 | 11.00 | 1.18 | 1.34 | 9.30  | 5.1  | 733  |
| KP8_1_3_11  | 0.2119                               | 9.10  | 0.74 | 11.38 | 1.31 | 1.38 | 9.75  | 6.2  | 748  |
| KP8 1 3 18  | 0.2224                               | 9.65  | 0.66 | 10.17 | 1.22 | 1.31 | 8.96  | 4.6  | 759  |
| KP8 1 3 19  | 0.2127                               | 9.67  | 0.61 | 10.06 | 1.30 | 1.31 | 8.67  | 4.7  | 759  |
| KP8_1_3_20  | 0.2091                               | 9.20  | 0.56 | 10.05 | 1.29 | 1.30 | 8.57  | 4.2  | 770  |
| KP9 2 2 1   | 0.1951                               | 9.55  | 0.55 | 10.71 | 1.39 | 1.90 | 10.11 | 3.9  | 388  |
| KP9 2 2 2   | 0.1965                               | 9.34  | 0.55 | 10.62 | 1.39 | 1.86 | 9.88  | 3.6  | 473  |
| KP9 2 2 3   | 0.1982                               | 9.27  | 0.56 | 10.22 | 1.37 | 1.85 | 9.86  | 3.18 | 514  |
| KP9 2 2 4   | 0.1966                               | 9.75  | 0.58 | 10.48 | 1.39 | 1.90 | 9.83  | 3.2  | 580  |
| KP9_2_2_5   | 0.1986                               | 9.45  | 0.53 | 10.48 | 1.36 | 1.81 | 9.86  | 2.03 | 544  |
| KP9_2_2_6   | 0.2005                               | 9.72  | 0.52 | 10.46 | 1.31 | 1.77 | 9.85  | 1.95 | 551  |
| KP9_2_2_7   | 0.2011                               | 9.46  | 0.49 | 10.33 | 1.27 | 1.73 | 9.65  | 2.52 | 539  |
| KP9_2_2_8   | 0.2013                               | 9.50  | 0.52 | 10.59 | 1.29 | 1.74 | 9.82  | 1.53 | 543  |
| KP9_2_2_9   | 0.2024                               | 9.71  | 0.50 | 10.46 | 1.27 | 1.66 | 9.84  | 2.36 | 546  |
| KP9_2_2_10  | 0.2037                               | 9.62  | 0.51 | 10.32 | 1.28 | 1.65 | 9.74  | 2.7  | 547  |

| Sample     | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na    | Cl   | Ca    | Mn   | Fe   | Zr    | Be   | Mg  |
|------------|--------------------------------------|-------|------|-------|------|------|-------|------|-----|
| KP9 2 2 11 | 0.1944                               | 9.19  | 0.53 | 11.28 | 1.47 | 1.70 | 10.45 | 3.3  | 529 |
| KP9 2 2 12 | 0.196                                | 8.89  | 0.62 | 11.13 | 1.34 | 1.55 | 9.77  | 3.9  | 535 |
| KP9 2 2 13 | 0.1947                               | 9.55  | 0.68 | 10.13 | 1.42 | 1.55 | 9.79  | 2.7  | 608 |
| KP9 2 2 14 | 0.1984                               | 9.44  | 0.66 | 10.64 | 1.43 | 1.60 | 9.73  | 2.9  | 612 |
| KP9 2 2 15 | 0.2039                               | 9.82  | 0.70 | 10.17 | 1.32 | 1.55 | 9.32  | 3.1  | 598 |
| KP9 2 2 16 | 0.204                                | 9.99  | 0.72 | 10.07 | 1.36 | 1.57 | 9.44  | 2.29 | 598 |
| KP9_2_2_17 | 0.2084                               | 9.87  | 0.69 | 10.10 | 1.35 | 1.53 | 9.54  | 2.33 | 590 |
| KP9_2_2_18 | 0.2078                               | 9.48  | 0.74 | 10.25 | 1.37 | 1.57 | 9.55  | 2.64 | 575 |
| KP9_2_2_19 | 0.2065                               | 9.65  | 0.70 | 10.29 | 1.41 | 1.58 | 9.55  | 2.6  | 593 |
| KP9_2_2_20 | 0.2032                               | 9.68  | 0.70 | 10.24 | 1.47 | 1.56 | 9.56  | 2.61 | 634 |
| KP9_2_2_21 | 0.211                                | 9.47  | 0.69 | 10.20 | 1.33 | 1.56 | 9.61  | 3.1  | 636 |
| KP9_2_2_22 | 0.2113                               | 10.01 | 0.70 | 10.30 | 1.34 | 1.56 | 9.44  | 2.18 | 578 |
| KP9_2_2_23 | 0.2112                               | 9.62  | 0.69 | 10.41 | 1.36 | 1.56 | 9.57  | 2.74 | 605 |
| KP9_2_2_24 | 0.213                                | 9.73  | 0.73 | 10.03 | 1.33 | 1.55 | 9.46  | 2.84 | 589 |
| KP9_2_2_25 | 0.2111                               | 9.02  | 0.66 | 10.90 | 1.29 | 1.71 | 9.21  | 5.4  | 685 |
| KP9_2_2_26 | 0.2139                               | 10.16 | 0.72 | 10.48 | 1.35 | 1.60 | 9.53  | 3    | 607 |
| KP9_2_2_27 | 0.2163                               | 9.94  | 0.74 | 10.23 | 1.31 | 1.58 | 9.41  | 2.6  | 604 |
| KP9_2_2_28 | 0.2182                               | 10.12 | 0.75 | 10.52 | 1.35 | 1.57 | 9.59  | 1.83 | 594 |
| KP9_2_2_29 | 0.2182                               | 9.73  | 0.70 | 10.01 | 1.28 | 1.53 | 9.41  | 2.91 | 596 |
| KP9_2_2_30 | 0.2229                               | 9.62  | 0.70 | 10.15 | 1.25 | 1.56 | 9.49  | 2.41 | 590 |
| KP9_2_2_31 | 0.221                                | 9.85  | 0.73 | 10.34 | 1.23 | 1.52 | 9.36  | 2.29 | 571 |
| KP9_2_2_32 | 0.2164                               | 9.39  | 0.72 | 9.93  | 1.25 | 1.54 | 9.24  | 2.66 | 576 |
| KP9_2_2_33 | 0.2157                               | 9.78  | 0.74 | 10.22 | 1.33 | 1.56 | 9.56  | 1.32 | 595 |
| KP9_2_2_34 | 0.214                                | 9.89  | 0.70 | 10.29 | 1.31 | 1.55 | 9.27  | 3.5  | 584 |
| KP9_2_2_35 | 0.2247                               | 9.54  | 0.76 | 9.81  | 1.18 | 1.47 | 8.96  | 2.78 | 534 |
| KP9_2_2_36 | 0.2219                               | 9.45  | 0.69 | 9.96  | 1.15 | 1.46 | 9.07  | 2.32 | 528 |
| KP9_2_2_37 | 0.2228                               | 9.38  | 0.70 | 10.04 | 1.21 | 1.50 | 9.29  | 1.57 | 551 |

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na    | Cl   | Ca    | Mn   | Fe   | Zr    | Be   | Mg    |
|-------------|--------------------------------------|-------|------|-------|------|------|-------|------|-------|
| KP9_2_2_38  | 0.1982                               | 9.51  | 0.69 | 10.09 | 1.47 | 1.49 | 9.27  | 3.3  | 606   |
| KP9_2_2_39  | 0.2139                               | 9.58  | 0.71 | 9.96  | 1.26 | 1.46 | 9.23  | 3.7  | 556   |
| KP9_2_2_40  | 0.2006                               | 9.33  | 0.63 | 10.02 | 1.37 | 1.42 | 9.03  | 1.69 | 584   |
| KP9_2_2_41  | 0.1924                               | 9.27  | 0.64 | 9.68  | 1.41 | 1.41 | 9.12  | 1.9  | 586   |
| KP9_2_2_42  | 0.1943                               | 9.17  | 0.57 | 9.85  | 1.31 | 1.46 | 9.10  | 2.3  | 469   |
| Eud_LV01_1  | 0.1212                               | 12.87 | 1.01 | 9.71  | 1.88 | 2.90 | 10.64 | 3.9  | 500   |
| Eud_LV01_2  | 0.12103                              | 12.61 | 1.03 | 9.65  | 1.85 | 2.92 | 10.74 | 1.33 | 523   |
| Eud_LV01_3  | 0.12452                              | 12.28 | 0.91 | 8.44  | 1.62 | 3.16 | 9.84  | 0.75 | 402   |
| Eud_LV01_4  | 0.12478                              | 12.22 | 0.92 | 8.36  | 1.61 | 3.00 | 9.46  | 0.77 | 386   |
| Eud_LV01_5  | 0.12217                              | 13.23 | 1.06 | 9.42  | 1.85 | 3.43 | 10.02 | 2.43 | 452   |
| Eud_LV01_6  | 0.12129                              | 13.10 | 1.08 | 9.32  | 1.96 | 3.33 | 9.86  | 1.31 | 506   |
| Eud_LV01_7  | 0.12132                              | 13.24 | 1.12 | 9.35  | 1.93 | 3.34 | 10.01 | 4.1  | 498   |
| Eud_LV01_8  | 0.12421                              | 13.05 | 1.11 | 8.80  | 1.69 | 3.52 | 10.06 | 2.47 | 422   |
| Eud_LV01_9  | 0.12447                              | 12.90 | 1.18 | 8.88  | 1.70 | 3.48 | 10.28 | 0.64 | 444   |
| Eud_LV01_10 | 0.12428                              | 13.22 | 1.25 | 8.83  | 1.72 | 3.54 | 9.97  |      | 428   |
| Eud_LV01_11 | 0.12471                              | 12.55 | 1.32 | 9.01  | 1.68 | 3.36 | 10.09 | 0.97 | 454   |
| Eud_LV01_12 | 0.12394                              | 12.71 | 1.22 | 8.97  | 1.69 | 3.41 | 9.97  | 3.5  | 433   |
| Eud_LV01_13 | 0.12172                              | 13.15 | 1.40 | 9.21  | 1.89 | 3.03 | 10.01 | 2.5  | 491   |
| Eud_LV01_14 | 0.12129                              | 12.85 | 1.36 | 9.32  | 1.93 | 3.02 | 9.97  | 3.42 | 475   |
| Eud_LV01_15 | 0.12063                              | 13.31 | 1.54 | 9.50  | 1.92 | 3.04 | 10.07 | 0.99 | 540   |
| Eud_LV01_16 | 0.12149                              | 13.37 | 1.57 | 9.66  | 1.93 | 2.97 | 9.85  | 2.34 | 519   |
| Eud_LV01_17 | 0.12081                              | 13.27 | 1.60 | 9.75  | 1.93 | 2.97 | 10.22 |      | 534   |
| Eud_LV01_18 | 0.12068                              | 13.09 | 1.73 | 9.63  | 1.90 | 3.08 | 10.04 | 1.98 | 521   |
| Eud_NK_1    | 0.19107                              | 10.52 | 0.27 | 6.02  | 1.97 | 2.45 | 10.36 | 2.51 | 143.3 |
| Eud_NK_2    | 0.18994                              | 10.91 | 0.28 | 5.93  | 1.93 | 2.50 | 10.30 | 1.02 | 147.9 |
| Eud_NK_3    | 0.1894                               | 11.07 | 0.26 | 5.96  | 1.98 | 2.45 | 10.32 | 1.9  | 137.1 |

| Sample    | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na    | Cl   | Ca    | Mn   | Fe   | Zr    | Be   | Mg    |
|-----------|--------------------------------------|-------|------|-------|------|------|-------|------|-------|
| Eud_NK_4  | 0.191                                | 10.71 | 0.28 | 6.24  | 1.94 | 2.50 | 10.50 | 1.77 | 152.7 |
| Eud_NK_5  | 0.1914                               | 11.13 | 0.30 | 6.21  | 1.97 | 2.59 | 10.82 | 1.42 | 146.5 |
| Eud_NK_6  | 0.1902                               | 11.04 | 0.28 | 6.21  | 1.97 | 2.52 | 10.77 | 1.48 | 149.5 |
| Eud_NK_7  | 0.18936                              | 10.61 | 0.29 | 6.06  | 1.92 | 2.47 | 10.64 | 1.65 | 152   |
| Eud_NK_8  | 0.18895                              | 11.02 | 0.32 | 6.01  | 1.92 | 2.43 | 10.64 | 1.88 | 148.2 |
| Eud_NK_9  | 0.18969                              | 10.42 | 0.32 | 5.92  | 1.89 | 2.33 | 10.39 | 1.47 | 143.3 |
| Eud_NK_10 | 0.18915                              | 10.52 | 0.35 | 6.02  | 1.91 | 2.42 | 10.65 | 1.23 | 147.9 |
| Eud_NK_11 | 0.19019                              | 10.81 | 0.36 | 6.04  | 1.90 | 2.41 | 10.68 | 2.32 | 151.5 |
| Eud_NK_12 | 0.1895                               | 10.77 | 0.35 | 6.00  | 1.91 | 2.39 | 10.66 |      | 154   |
| Eud_NK_13 | 0.1904                               | 11.43 | 0.43 | 6.27  | 2.06 | 2.49 | 11.17 | 1.86 | 154.9 |
| Eud_NK_14 | 0.1896                               | 10.98 | 0.37 | 6.13  | 1.94 | 2.41 | 10.73 | 1.8  | 156.1 |
| Eud_NK_15 | 0.1892                               | 10.86 | 0.44 | 6.12  | 1.92 | 2.43 | 10.79 | 0.89 | 151.4 |
| Eud_NK_16 | 0.18881                              | 10.95 | 0.39 | 6.22  | 1.90 | 2.36 | 10.83 | 1.91 | 156.5 |
|           |                                      |       |      |       |      |      |       |      |       |
| KP1_2_1   | 0.20313                              | 9.66  | 0.90 | 10.70 | 1.08 | 2.19 | 10.43 | 3.04 | 404   |
| KP1_2_2   | 0.19086                              | 9.81  | 0.82 | 10.54 | 1.18 | 1.93 | 9.79  | 4.5  | 463   |
| KP1_2_3   | 0.1902                               | 9.82  | 0.75 | 10.14 | 1.25 | 1.89 | 9.74  | 3.5  | 509   |
| KP1_2_4   | 0.198                                | 9.91  | 0.78 | 10.16 | 1.13 | 1.74 | 9.38  | 3.6  | 464   |
| KP1_2_5   | 0.19013                              | 10.14 | 0.73 | 10.22 | 1.23 | 1.80 | 9.47  | 5.5  | 506   |
| KP1_2_6   | 0.1916                               | 10.02 | 0.75 | 10.01 | 1.19 | 1.80 | 9.37  | 4.8  | 492   |
| KP1_2_7   | 0.19355                              | 9.96  | 0.77 | 10.13 | 1.24 | 1.90 | 9.59  | 5.3  | 500   |
| KP1_2_8   | 0.20088                              | 10.07 | 0.74 | 10.50 | 1.11 | 1.82 | 9.49  | 4.4  | 457   |
| KP1_2_9   | 0.1901                               | 9.87  | 0.79 | 9.96  | 1.21 | 1.82 | 9.29  | 4.6  | 466   |
| KP1_2_10  | 0.1931                               | 10.03 | 0.77 | 10.24 | 1.16 | 1.80 | 9.50  | 4.5  | 445   |
| KP1_2_11  | 0.1908                               | 9.78  | 0.80 | 8.98  | 1.05 | 1.96 | 9.01  |      | 389   |
| KP1_2_12  | 0.1886                               | 10.30 | 0.81 | 9.59  | 1.17 | 1.91 | 9.31  | 1.56 | 471   |
| KP1_2_13  | 0.1861                               | 9.81  | 0.71 | 9.28  | 1.20 | 1.84 | 8.98  | 3.09 | 496   |
| KP1_2_14  | 0.1878                               | 9.70  | 0.73 | 9.13  | 1.15 | 1.77 | 8.79  | 5.1  | 479   |
| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na    | Cl   | Ca    | Mn   | Fe   | Zr    | Be   | Mg   |
|-------------|--------------------------------------|-------|------|-------|------|------|-------|------|------|
| KP1_2_15    | 0.1914                               | 9.52  | 0.74 | 9.40  | 1.14 | 1.73 | 8.93  | 2.44 | 478  |
| KP1_2_16    | 0.1922                               | 9.68  | 0.78 | 9.47  | 1.12 | 1.77 | 9.15  | 3.2  | 490  |
| KP1_2_17    | 0.1877                               | 9.34  | 0.73 | 8.80  | 1.11 | 1.74 | 8.69  | 3.2  | 479  |
| KP1_2_18    | 0.1917                               | 9.37  | 0.75 | 8.24  | 0.86 | 1.64 | 8.65  | 3.1  | 378  |
| KP1_2_19    | 0.1922                               | 10.22 | 0.88 | 8.86  | 0.99 | 2.16 | 9.18  | 2.9  | 387  |
| KP1_2_20    | 0.1954                               | 10.12 | 0.85 | 9.00  | 0.97 | 2.02 | 9.12  | 2.22 | 370  |
| KP1_2_21    | 0.2                                  | 9.58  | 0.86 | 8.92  | 0.94 | 1.88 | 8.76  | 1.73 | 354  |
| KP1_2_22    | 0.2001                               | 9.92  | 1.02 | 10.33 | 1.12 | 2.17 | 10.09 | 1.5  | 410  |
| KP1_2_23    | 0.1893                               | 10.20 | 0.89 | 10.61 | 1.24 | 1.90 | 10.11 | 2.53 | 513  |
| KP1_2_24    | 0.1886                               | 9.98  | 0.86 | 10.16 | 1.18 | 1.86 | 9.73  | 1.97 | 496  |
| KP1_2_25    | 0.1931                               | 9.87  | 0.93 | 9.95  | 1.11 | 1.84 | 9.70  | 2.68 | 485  |
| KP1_2_26    | 0.1921                               | 10.10 | 0.90 | 9.84  | 1.19 | 1.84 | 9.42  | 2.55 | 513  |
| KP1_2_27    | 0.1907                               | 10.12 | 0.90 | 10.10 | 1.21 | 1.81 | 9.40  | 2.18 | 511  |
| KP1_2_28    | 0.1896                               | 10.14 | 0.90 | 9.93  | 1.14 | 1.80 | 9.50  | 2.77 | 483  |
| KP1_2_29    | 0.1877                               | 10.26 | 0.92 | 9.94  | 1.13 | 1.89 | 9.48  | 2.16 | 464  |
| KP1_2_30    | 0.1874                               | 9.87  | 0.90 | 9.48  | 1.02 | 1.91 | 9.16  | 2.9  | 397  |
| CBD11_10_1  | 0.188                                | 10.39 | 0.93 | 8.64  | 0.54 | 5.16 | 10.42 |      | 10.4 |
| CBD11_10_2  | 0.1749                               | 10.55 | 1.10 | 7.74  | 0.47 | 4.87 | 9.74  | 1.19 |      |
| CBD11_10_3  | 0.1867                               | 10.50 | 0.85 | 8.00  | 0.50 | 4.87 | 9.69  | 1.01 | 9.6  |
| CBD11_10_4  | 0.1715                               | 10.77 | 0.94 | 7.73  | 0.42 | 4.61 | 9.35  | 0.87 |      |
| CBD11_10_5  | 0.182                                | 10.09 | 0.80 | 7.75  | 0.46 | 4.74 | 9.53  | 1.19 | 11.6 |
| CBD11_10_6  | 0.1768                               | 10.79 | 0.88 | 7.76  | 0.45 | 4.79 | 9.30  |      | 7.8  |
| CBD11_10_7  | 0.1728                               | 11.77 | 0.95 | 8.14  | 0.45 | 4.93 | 10.01 | 1.12 | 8.4  |
| CBD11_10_8  | 0.1839                               | 11.15 | 0.83 | 7.95  | 0.46 | 4.87 | 9.51  |      | 8.5  |
| CBD11_10_9  | 0.159                                | 10.78 | 1.00 | 7.50  | 0.43 | 4.62 | 9.20  | 1.45 |      |
| CBD11_10_10 | 0.195                                | 10.98 | 0.76 | 7.61  | 0.43 | 4.64 | 9.21  | 0.99 |      |

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na    | Cl   | Ca   | Mn   | Fe   | Zr   | Be   | Mg   |
|-------------|--------------------------------------|-------|------|------|------|------|------|------|------|
| CBD11 10 11 | 0 2067                               | 10.68 | 0.92 | 8 22 | 0.46 | 5 24 | 9 73 | 14   | 23   |
| CBD11_10_12 | 0.1978                               | 11.09 | 1.08 | 8.08 | 0.43 | 4.83 | 9.90 | 1.62 | 25   |
| CBD11_10_13 | 0.1996                               | 10.34 | 1.00 | 7.83 | 0.43 | 4.66 | 9.55 | 1.09 | 11.9 |
| CBD11_10_14 | 0.1886                               | 10.85 | 0.96 | 7.85 | 0.44 | 4.74 | 9.50 |      | 8.5  |
| CBD11_10_15 | 0.1967                               | 10.90 | 0.97 | 7.94 | 0.43 | 4.76 | 9.44 | 1.4  | 9.7  |
| p           |                                      |       |      |      |      |      |      |      |      |

| Sample      | Al         | K          | Ti         | Ga         | Rb         | Sr         | Y          | Nb         | Mo         | Sn         |  |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--|
|             | <u>ppm</u> |  |
| Eud_LV01_1  | 748        | 3348       | 3240       | 71.7       | 6.82       | 9520       | 2416       | 3893       | 7.03       | 54.3       |  |
| Eud_LV01_2  | 752        | 3306       | 3230       | 68.5       | 7.3        | 9120       | 2348       | 3682       | 6.1        | 49.8       |  |
| Eud_LV01_3  | 832        | 3469       | 3350       | 67.9       | 7.07       | 9550       | 2520       | 3875       | 6.9        | 49.3       |  |
| Eud_LV01_4  | 810        | 3438       | 3270       | 70.3       | 6.72       | 9450       | 2491       | 3872       | 7.47       | 53         |  |
| Eud_LV01_5  | 1410       | 2210       | 2740       | 64.8       | 6.99       | 8800       | 2452       | 4530       | 6.5        | 58.4       |  |
| Eud_LV01_6  | 740        | 3315       | 3000       | 64         | 6.55       | 8820       | 2333       | 3603       | 6.11       | 39.7       |  |
| Eud_LV01_7  | 741        | 3860       | 3294       | 82.9       | 8.28       | 12230      | 2754       | 5550       | 10.9       | 56.9       |  |
| Eud_LV01_8  | 754        | 3929       | 3350       | 84.5       | 9.25       | 13130      | 2765       | 6310       | 12         | 58.4       |  |
| Eud_LV01_9  | 805        | 3499       | 3120       | 65         | 7.09       | 9450       | 2458       | 3947       | 6.51       | 49.3       |  |
| Eud_LV01_10 | 831        | 3380       | 3220       | 66.2       | 7.25       | 9470       | 2507       | 3922       | 8.2        | 43.2       |  |
| Eud_LV01_11 | 806        | 3550       | 3190       | 67.7       | 7.23       | 9760       | 2564       | 3869       | 7.5        | 50.5       |  |
| Eud_LV01_12 | 846        | 3520       | 3280       | 65.6       | 7          | 9690       | 2556       | 3890       | 7.8        | 50.6       |  |
| Eud_LV01_13 | 711        | 3690       | 3450       | 84.2       | 7.88       | 12750      | 2763       | 6350       | 11.8       | 53.9       |  |
| Eud LV01 14 | 716        | 3688       | 3590       | 81.3       | 8.72       | 12470      | 2827       | 6050       | 12.4       | 52.6       |  |
| Eud LV01 15 | 864        | 3614       | 3280       | 67.7       | 6.84       | 9890       | 2650       | 3910       | 6.94       | 53.3       |  |
| Eud LV01 16 | 858        | 3550       | 3300       | 67.4       | 6.48       | 9900       | 2626       | 3850       | 6.65       | 52.4       |  |
| Eud LV01 17 | 850        | 3588       | 3110       | 70.3       | 7.36       | 9860       | 2566       | 3930       | 7          | 47.2       |  |
| Eud_LV01_18 | 839        | 3620       | 3110       | 66.5       | 7.19       | 9740       | 2591       | 3888       | 6.48       | 52.6       |  |
| Eud NK 1    | 1938       | 4090       | 557        | 80.3       | 40.4       | 719        | 16840      | 3964       | 1.77       | 133.4      |  |
| Eud_NK_2    | 2015       | 5080       | 552        | 81.1       | 38.4       | 761        | 17070      | 4100       | 2.16       | 139.3      |  |
| Eud_NK_3    | 1976       | 4500       | 575        | 82.3       | 42         | 744        | 17210      | 4107       | 2.2        | 140.7      |  |
| Eud_NK_4    | 2016       | 4690       | 582        | 77.9       | 39.6       | 747        | 17120      | 4080       | 2.04       | 145.3      |  |
| Eud NK 5    | 1832       | 4080       | 508        | 75         | 40.8       | 698        | 16000      | 3769       | 1.59       | 129.4      |  |
| Eud_NK_6    | 1810       | 4130       | 533        | 72.7       | 41         | 694        | 15980      | 3800       | 1.16       | 125.6      |  |
| Eud_NK_7    | 2035       | 4940       | 534        | 75.4       | 41.4       | 743        | 16980      | 4025       | 1.7        | 135.5      |  |
| Eud NK 8    | 2038       | 4720       | 495        | 76.8       | 41.1       | 735        | 17080      | 3980       | 1.32       | 129.2      |  |

| Sample                                                                  | Al                              | K                                    | Ti                              | Ga                                        | Rb                                       | Sr                                    | Y                                    | Nb                                   | Mo                                  | Sn                                    |
|-------------------------------------------------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------------------------|------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---------------------------------------|
| Eud_NK_9                                                                | 1942                            | 4580                                 | 507                             | 77.9                                      | 40.9                                     | 739                                   | 16690                                | 4067                                 | 1.95                                | 129.5                                 |
| Eud_NK_10                                                               | 1864                            | 4280                                 | 526                             | 75.4                                      | 41.1                                     | 715                                   | 16560                                | 4020                                 | 1.55                                | 129                                   |
| Eud_NK_11                                                               | 1898                            | 4150                                 | 537                             | 76.9                                      | 41.9                                     | 722                                   | 16660                                | 4052                                 | 1.76                                | 133.3                                 |
| Eud_NK_12                                                               | 1897                            | 4350                                 | 522                             | 77.8                                      | 42.3                                     | 731                                   | 16590                                | 4032                                 | 1.78                                | 130.8                                 |
| Eud_NK_13                                                               | 1878                            | 4280                                 | 540                             | 76.8                                      | 39.6                                     | 710                                   | 16470                                | 3936                                 | 1.64                                | 130.4                                 |
| Eud_NK_14                                                               | 1915                            | 4240                                 | 523                             | 79.1                                      | 43.2                                     | 724                                   | 16660                                | 4061                                 | 1.8                                 | 132.3                                 |
| Eud_NK_15                                                               | 1961                            | 4450                                 | 532                             | 79.1                                      | 42.4                                     | 736                                   | 17250                                | 4120                                 | 1.73                                | 135.6                                 |
| Eud_NK_16                                                               | 1882                            | 4370                                 | 495                             | 76.9                                      | 43.3                                     | 713                                   | 16580                                | 3891                                 | 2.13                                | 131.2                                 |
| Eud_NK_17                                                               | 1935                            | 5240                                 | 516                             | 80.6                                      | 43.2                                     | 738                                   | 17110                                | 4090                                 | 1.7                                 | 136.7                                 |
| Eud_NK_18                                                               | 1873                            | 5280                                 | 502                             | 80.3                                      | 41.8                                     | 725                                   | 16770                                | 4070                                 | 1.49                                | 134.6                                 |
| CBD11_02_1                                                              | 819                             | 3770                                 | 867                             | 1154                                      | 11 74                                    | 295.6                                 | 5740                                 | 770                                  | 4 32                                | 204 5                                 |
| CBD11_02_1<br>CBD11_02_2                                                | 3240                            | 1860                                 | 763                             | 113.4                                     | 10.97                                    | 320.7                                 | 5730                                 | 1229                                 | 4.32                                | 204.5                                 |
| CBD11_02_2                                                              | 851                             | 3890                                 | 593                             | 117.4                                     | 11.37                                    | 294 5                                 | 5840                                 | 969                                  | 3.87                                | 243.7                                 |
| CBD11_02_4                                                              | 843                             | 3840                                 | 661                             | 1153                                      | 11.37                                    | 29 1.3                                | 5560                                 | 785                                  | 3.47                                | 175.1                                 |
| CBD11_02_1                                                              | 807                             | 4510                                 | 622                             | 112.6                                     | 14.3                                     | 355                                   | 5830                                 | 1595                                 | 2.58                                | 179.1                                 |
| CBD11_02_6                                                              | 824                             | 4060                                 | 702                             | 112.0                                     | 12.13                                    | 318                                   | 5570                                 | 1107                                 | 4.6                                 | 148.7                                 |
| CBD11_02_7                                                              | 838                             | 3930                                 | 554                             | 114.2                                     | 9.95                                     | 281.2                                 | 5620                                 | 773                                  | 3.92                                | 291.3                                 |
| CBD11_02_8                                                              | 811                             | 4220                                 | 666                             | 112.9                                     | 10.77                                    | 318.7                                 | 5570                                 | 1135                                 | 4.15                                | 156.2                                 |
| CBD11_02_9                                                              | 803                             | 4100                                 | 667                             | 110.6                                     | 11.51                                    | 332                                   | 5640                                 | 1381                                 | 1.96                                | 155.3                                 |
| CBD11_02_10                                                             | 799                             | 3530                                 | 636                             | 111.4                                     | 10.95                                    | 286.8                                 | 5510                                 | 924                                  | 4.19                                | 223.9                                 |
|                                                                         |                                 |                                      |                                 |                                           |                                          |                                       |                                      |                                      |                                     |                                       |
| CBD11_02_11                                                             | 702                             | 3010                                 | 642                             | 116.5                                     | 12.47                                    | 381                                   | 5240                                 | 1683                                 | 0.94                                | 137.3                                 |
| CBD11_02_12                                                             | 835                             | 3695                                 | 363                             | 119.2                                     | 13.04                                    | 357.8                                 | 5730                                 | 1497                                 | 5.81                                | 70.4                                  |
| CBD11_02_13                                                             | 860                             | 3423                                 | 276                             | 121.4                                     | 11.72                                    | 359.3                                 | 5860                                 | 1427                                 | 5.09                                | 82.8                                  |
| CBD11 02 16                                                             | 808                             | 2300                                 | 443                             | 126.3                                     | 12 55                                    | 404 5                                 | 5820                                 | 2054                                 | 6 53                                | 95.4                                  |
| CBD11_02_10                                                             | 819                             | 2630                                 | 357                             | 115.6                                     | 9.37                                     | 385                                   | 5740                                 | 1933                                 | 6.2                                 | 74.8                                  |
| CBD11_02_11<br>CBD11_02_12<br>CBD11_02_13<br>CBD11_02_16<br>CBD11_02_17 | 702<br>835<br>860<br>808<br>819 | 3010<br>3695<br>3423<br>2300<br>2630 | 642<br>363<br>276<br>443<br>357 | 116.5<br>119.2<br>121.4<br>126.3<br>115.6 | 12.47<br>13.04<br>11.72<br>12.55<br>9.37 | 381<br>357.8<br>359.3<br>404.5<br>385 | 5240<br>5730<br>5860<br>5820<br>5740 | 1683<br>1497<br>1427<br>2054<br>1933 | 0.94<br>5.81<br>5.09<br>6.53<br>6.2 | 137.3<br>70.4<br>82.8<br>95.4<br>74.8 |

| Sample      | Al   | K    | Ti  | Ga    | Rb    | Sr    | Y     | Nb   | Mo   | Sn    |
|-------------|------|------|-----|-------|-------|-------|-------|------|------|-------|
| CBD11_02_18 | 1001 | 1896 | 293 | 138   | 7.27  | 414   | 6500  | 2080 | 6.8  | 59.7  |
| CBD11_02_19 | 900  | 3900 | 279 | 120.4 | 11.67 | 375   | 6010  | 1883 | 6.94 | 57.7  |
| CBD11_02_20 | 882  | 3177 | 300 | 117.7 | 11.51 | 371   | 5970  | 1825 | 6.34 | 52.3  |
| CBD11_02_21 | 781  | 4350 | 510 | 117.7 | 15.57 | 385   | 5970  | 1958 | 0.86 | 111.3 |
| CBD11_02_22 | 823  | 4170 | 425 | 117.7 | 14.71 | 371   | 6110  | 1677 | 5.32 | 70    |
| CBD11_02_23 | 988  | 3760 | 236 | 133.3 | 13.68 | 360.2 | 6340  | 1520 | 5.04 | 111.6 |
| CBD11_02_24 | 992  | 3830 | 257 | 128.6 | 13.4  | 335.1 | 6360  | 1182 | 5.76 | 92.1  |
| CBD11_02_25 | 845  | 1609 | 430 | 111.5 | 11.75 | 325   | 5910  | 1183 | 5.18 | 76.7  |
| CBD11_02_26 | 2810 | 1690 | 294 | 120.4 | 8.57  | 329   | 6140  | 1160 | 5.19 | 98.4  |
| CBD11_02_27 | 809  | 4110 | 470 | 111.6 | 14.12 | 344.5 | 5940  | 1366 | 4.98 | 79.6  |
| CBD11_02_28 | 956  | 2090 | 613 | 109.4 | 8.39  | 330.2 | 5770  | 1332 | 4.68 | 74.4  |
| CBD11_02_29 | 843  | 4160 | 446 | 115.3 | 14.44 | 359.7 | 5820  | 1542 | 5.04 | 92.7  |
| CBD11_02_30 | 872  | 3873 | 329 | 120.9 | 13.99 | 356   | 5900  | 1496 | 4.29 | 52.9  |
| KP8_1_3_1   | 1615 | 3024 | 663 | 124.6 | 63.7  | 1032  | 20970 | 3730 | 11.1 | 133.8 |
| KP8_1_3_2   | 1600 | 5050 | 679 | 115   | 69.8  | 1018  | 21140 | 3902 | 13.7 | 141.5 |
| KP8_1_3_3   | 1551 | 4580 | 751 | 117   | 67.4  | 968   | 19800 | 3049 | 4.59 | 144.4 |
| KP8_1_3_4   | 1539 | 4730 | 779 | 116.5 | 71.6  | 1012  | 20150 | 3171 | 6.2  | 165.5 |
| KP8_1_3_5   | 1502 | 5100 | 823 | 120   | 70.7  | 957   | 19710 | 2751 | 5.34 | 181.8 |
| KP8_1_3_6   | 1408 | 5050 | 771 | 111.8 | 68.4  | 931   | 19270 | 2816 | 6.36 | 179.9 |
| KP8_1_3_7   | 1339 | 4870 | 699 | 103.9 | 66.2  | 926   | 18240 | 3095 | 4.13 | 174.3 |
| KP8_1_3_8   | 1423 | 5280 | 726 | 112.3 | 70.4  | 956   | 19340 | 3438 | 6.4  | 170.6 |
| KP8_1_3_11  | 1657 | 3730 | 665 | 120.5 | 73.2  | 1102  | 23290 | 4480 | 13   | 164.8 |
| KP8_1_3_18  | 1437 | 4870 | 579 | 112.7 | 63.6  | 1001  | 19000 | 4350 | 10.4 | 145.9 |
| KP8_1_3_19  | 1272 | 5090 | 519 | 107.4 | 62.1  | 1016  | 17330 | 5270 | 8.6  | 136.5 |
| KP8_1_3_20  | 1175 | 4800 | 561 | 104.8 | 63.9  | 1017  | 16980 | 5490 | 7.2  | 133.8 |

| Sample     | Al  | K    | Ti   | Ga    | Rb   | Sr  | Y     | Nb   | Мо   | Sn    |
|------------|-----|------|------|-------|------|-----|-------|------|------|-------|
| KP9 2 2 1  | 373 | 3208 | 1012 | 114.6 | 60.2 | 886 | 22560 | 4480 | 7.7  | 264.2 |
| KP9 2 2 2  | 379 | 6170 | 1062 | 109.6 | 60.2 | 871 | 21760 | 4370 | 8.6  | 233   |
| KP9 2 2 3  | 392 | 6560 | 1044 | 107.1 | 56.9 | 854 | 21590 | 4240 | 8.9  | 265   |
| KP9 2 2 4  | 451 | 4380 | 1020 | 106.4 | 57.9 | 863 | 21390 | 4260 | 12   | 182.7 |
| KP9_2_2_5  | 517 | 6310 | 948  | 104   | 58   | 845 | 21600 | 3829 | 11.4 | 178.6 |
| KP9 2 2 6  | 597 | 4130 | 912  | 105.3 | 55.8 | 834 | 21620 | 3628 | 10.8 | 178.7 |
| KP9_2_2_7  | 662 | 5940 | 955  | 103   | 55.2 | 813 | 21750 | 3413 | 9.58 | 173.9 |
| KP9_2_2_8  | 728 | 5390 | 981  | 102.3 | 57.5 | 813 | 21970 | 3335 | 7.7  | 161.1 |
| KP9_2_2_9  | 756 | 5280 | 1026 | 105.9 | 55.1 | 817 | 22610 | 3310 | 6.02 | 185.3 |
| KP9_2_2_10 | 801 | 5080 | 1065 | 104.8 | 53.8 | 812 | 22270 | 3296 | 5.76 | 185.5 |
|            |     |      |      |       |      |     |       |      |      |       |
| KP9_2_2_11 | 718 | 6200 | 1037 | 119.9 | 53.2 | 971 | 23000 | 5140 | 5.1  | 271.4 |
| KP9_2_2_12 | 840 | 6390 | 1499 | 113   | 56.7 | 899 | 23550 | 3645 | 2.08 | 282.9 |
| KP9_2_2_13 | 753 | 5600 | 1477 | 112.5 | 46.4 | 922 | 23720 | 4440 | 1.56 | 250.4 |
| KP9_2_2_14 | 684 | 5620 | 1614 | 110.5 | 46.6 | 928 | 24430 | 4330 | 1.98 | 253   |
| KP9_2_2_15 | 649 | 5500 | 1646 | 108.9 | 44.8 | 869 | 24110 | 3863 | 2.3  | 242.4 |
| KP9_2_2_16 | 565 | 5630 | 1806 | 112.5 | 45.2 | 893 | 25050 | 4079 | 1.76 | 259.7 |
| KP9_2_2_17 | 498 | 5650 | 1905 | 110.4 | 44.6 | 870 | 24920 | 3850 | 2.28 | 252.3 |
| KP9_2_2_18 | 446 | 5780 | 2019 | 111.9 | 44.7 | 907 | 25390 | 4300 | 2.54 | 248   |
| KP9_2_2_19 | 392 | 5650 | 2044 | 114.4 | 47.2 | 921 | 25250 | 4559 | 1.98 | 253.4 |
| KP9_2_2_20 | 413 | 5850 | 2068 | 110.2 | 47.7 | 941 | 25110 | 5150 | 2.31 | 270   |
| KP9_2_2_21 | 452 | 5580 | 2289 | 111.7 | 48   | 889 | 26020 | 3705 | 2.18 | 266.1 |
| KP9_2_2_22 | 399 | 2901 | 2279 | 110.1 | 42.9 | 882 | 25340 | 3781 | 2    | 251.8 |
| KP9_2_2_23 | 407 | 5830 | 2166 | 111.6 | 49.3 | 895 | 25530 | 3958 | 1.92 | 242.1 |
| KP9_2_2_24 | 397 | 5770 | 2175 | 109.2 | 47.9 | 866 | 25060 | 3813 | 1.81 | 240   |
| KP9_2_2_25 | 533 | 2370 | 2280 | 109.3 | 20.8 | 948 | 24900 | 3820 | 2.05 | 245   |
| KP9_2_2_26 | 405 | 3145 | 2204 | 111.4 | 49   | 909 | 26340 | 3751 | 2.07 | 261.3 |

| Sample        | Al  | K    | Ti   | Ga    | Rb   | Sr    | Y     | Nb   | Mo   | Sn    |
|---------------|-----|------|------|-------|------|-------|-------|------|------|-------|
| KP9_2_2_27    | 414 | 5720 | 2206 | 110.7 | 49.1 | 865   | 25460 | 3594 | 1.49 | 268.6 |
| KP9_2_2_28    | 413 | 4300 | 2199 | 109.9 | 49.5 | 879   | 26180 | 3534 | 1.39 | 272   |
| KP9_2_2_29    | 416 | 5020 | 2150 | 113.8 | 48.2 | 858   | 25440 | 3321 | 1.21 | 259.8 |
| KP9_2_2_30    | 460 | 5890 | 2309 | 112.7 | 48.2 | 847   | 25750 | 2830 | 1.59 | 270.3 |
| KP9_2_2_31    | 461 | 5820 | 2190 | 113.1 | 45.1 | 825   | 25380 | 2913 | 1.77 | 264.8 |
| KP9_2_2_32    | 441 | 5740 | 2167 | 108.6 | 47   | 835   | 24710 | 3300 | 2.01 | 269.8 |
| KP9_2_2_33    | 484 | 5840 | 2350 | 113.1 | 48   | 868   | 25870 | 3546 | 2.04 | 283.5 |
| KP9_2_2_34    | 490 | 5930 | 2370 | 113.3 | 47   | 881   | 25500 | 3584 | 2.6  | 291   |
| KP9_2_2_35    | 537 | 5720 | 2417 | 107.8 | 46.2 | 789   | 24340 | 2509 | 1.67 | 272.5 |
| KP9_2_2_36    | 557 | 5550 | 2360 | 112.5 | 45.8 | 803   | 25100 | 2450 | 1.7  | 275.5 |
| KP9_2_2_37    | 629 | 5620 | 2450 | 103   | 46.1 | 794   | 24860 | 2553 | 2.08 | 266.2 |
| KP9_2_2_38    | 590 | 5670 | 2010 | 108.9 | 47.5 | 934   | 23890 | 5760 | 2.65 | 257.6 |
| KP9_2_2_39    | 754 | 5650 | 1915 | 108.2 | 46.3 | 841   | 23720 | 3465 | 2.62 | 213.2 |
| KP9_2_2_40    | 762 | 5610 | 1600 | 106.1 | 46.5 | 895   | 23170 | 4580 | 2.53 | 185.5 |
| KP9_2_2_41    | 657 | 5850 | 1099 | 104.7 | 48.2 | 906   | 22200 | 5360 | 4.1  | 160.9 |
| KP9_2_2_42    | 487 | 5160 | 753  | 105   | 53.2 | 868   | 21880 | 5000 | 9.6  | 175.8 |
| Fud I V01 1   | 814 | 3930 | 3710 | 923   | 8 99 | 13640 | 2939  | 6690 | 13   | 57 5  |
| Eud_ $LV01_1$ | 800 | 3963 | 3780 | 88.3  | 89   | 13480 | 2881  | 6450 | 11 1 | 57.7  |
| Eud LV01 3    | 808 | 3233 | 3170 | 62.6  | 6.68 | 9400  | 2454  | 3838 | 6.7  | 42    |
| Eud LV01 4    | 807 | 3241 | 3120 | 64.1  | 6.65 | 9470  | 2443  | 3819 | 5.93 | 43.4  |
| Eud LV01 5    | 735 | 3646 | 3440 | 78.7  | 8.31 | 12060 | 2811  | 5700 | 11.1 | 57.7  |
| Eud LV01 6    | 737 | 3740 | 3560 | 84.5  | 9.15 | 13160 | 2909  | 6370 | 12.8 | 55.9  |
| Eud LV01 7    | 748 | 3760 | 3340 | 81.4  | 8.3  | 12810 | 2866  | 6210 | 12.1 | 60.2  |
| Eud LV01 8    | 774 | 3417 | 3120 | 66    | 7.13 | 9910  | 2565  | 4207 | 7.17 | 45.1  |
| Eud LV01 9    | 800 | 3484 | 3220 | 64.9  | 7.25 | 9800  | 2576  | 3983 | 8.4  | 46.4  |
| Eud LV01 10   | 804 | 3484 | 3200 | 65.7  | 7.08 | 9920  | 2544  | 4061 | 7.3  | 49.6  |
| Eud_LV01_11   | 792 | 3551 | 3160 | 67.4  | 7.13 | 10220 | 2576  | 4283 | 7.9  | 50    |

| Sample      | Al   | K    | Ti   | Ga    | Rb   | Sr    | Y     | Nb   | Mo   | Sn    |
|-------------|------|------|------|-------|------|-------|-------|------|------|-------|
| Eud_LV01_12 | 878  | 3580 | 3160 | 66.3  | 7.45 | 9930  | 2602  | 4370 | 8.7  | 48.3  |
| Eud_LV01_13 | 726  | 3881 | 3370 | 86.8  | 8.8  | 13020 | 2866  | 6430 | 12.9 | 56.8  |
| Eud_LV01_14 | 745  | 3830 | 3400 | 86.3  | 8.93 | 13040 | 2855  | 6440 | 11.9 | 52.7  |
| Eud_LV01_15 | 765  | 3910 | 3540 | 85.4  | 8.44 | 13680 | 2899  | 6530 | 11.6 | 56.7  |
| Eud_LV01_16 | 744  | 3864 | 3490 | 88.7  | 8.28 | 13180 | 2931  | 6420 | 10.9 | 56.5  |
| Eud_LV01_17 | 767  | 4050 | 3630 | 90.2  | 8.58 | 13550 | 2955  | 6570 | 13.5 | 54    |
| Eud_LV01_18 | 746  | 4070 | 3550 | 87.7  | 8.43 | 13620 | 2922  | 6580 | 12.7 | 58.8  |
| Eud_NK_1    | 1939 | 6990 | 536  | 77    | 42.1 | 765   | 18010 | 4370 | 1.72 | 130.1 |
| Eud_NK_2    | 1950 | 6070 | 511  | 78    | 44.5 | 749   | 17840 | 4300 | 1.78 | 134.6 |
| Eud_NK_3    | 1951 | 5940 | 546  | 79.3  | 45.2 | 751   | 17940 | 4290 | 2.01 | 134.5 |
| Eud_NK_4    | 1944 | 4960 | 516  | 80.3  | 43.3 | 763   | 18180 | 4360 | 1.74 | 140.3 |
| Eud_NK_5    | 2004 | 5480 | 558  | 81.7  | 44.2 | 774   | 18760 | 4460 | 1.91 | 137.8 |
| Eud_NK_6    | 1989 | 5630 | 530  | 80.4  | 44.8 | 786   | 18630 | 4450 | 1.84 | 135.4 |
| Eud_NK_7    | 1933 | 7490 | 515  | 80.6  | 43.8 | 759   | 17930 | 4360 | 1.95 | 136.3 |
| Eud_NK_8    | 1948 | 5250 | 563  | 79.1  | 43.2 | 754   | 18040 | 4400 | 1.84 | 137.8 |
| Eud_NK_9    | 1913 | 7350 | 503  | 79.1  | 42.6 | 751   | 17990 | 4350 | 1.69 | 128.3 |
| Eud_NK_10   | 1997 | 9150 | 564  | 81.6  | 43.5 | 765   | 17950 | 4380 | 1.96 | 127.5 |
| Eud_NK_11   | 1963 | 6280 | 537  | 79.6  | 42.4 | 752   | 17980 | 4372 | 1.89 | 133.5 |
| Eud_NK_12   | 1968 | 6410 | 528  | 79.5  | 44   | 768   | 18240 | 4370 | 1.91 | 131.7 |
| Eud_NK_13   | 2156 | 4910 | 575  | 81.7  | 45.1 | 799   | 19130 | 4580 | 2.23 | 140.9 |
| Eud_NK_14   | 2024 | 5290 | 541  | 77.6  | 43.8 | 779   | 18310 | 4470 | 1.52 | 131.2 |
| Eud_NK_15   | 2059 | 5770 | 527  | 79.9  | 43.5 | 774   | 18170 | 4360 | 1.72 | 129.1 |
| Eud_NK_16   | 2035 | 5200 | 559  | 79.4  | 43.4 | 784   | 18530 | 4390 | 2.18 | 140   |
| KP1_2_1     | 306  | 6240 | 1113 | 247.5 | 48.1 | 1374  | 21300 | 3184 | 12.6 | 182.5 |
| KP1_2_2     | 455  | 5970 | 1561 | 227.8 | 49.5 | 1500  | 20090 | 4500 | 7.36 | 72.6  |
| KP1_2_3     | 494  | 5740 | 1745 | 225.8 | 48.3 | 1559  | 20080 | 4870 | 5    | 60.4  |

| Sample   | Al  | K    | Ti   | Ga    | Rb   | Sr   | Y     | Nb   | Mo   | Sn    |
|----------|-----|------|------|-------|------|------|-------|------|------|-------|
| KP1_2_4  | 545 | 5620 | 1988 | 224.2 | 45.7 | 1461 | 19720 | 3586 | 2.91 | 51.8  |
| KP1_2_5  | 519 | 5730 | 1926 | 222.9 | 47.5 | 1603 | 19490 | 4645 | 3.01 | 53.3  |
| KP1_2_6  | 528 | 5620 | 1926 | 215.2 | 47   | 1520 | 19230 | 4315 | 3.05 | 59.5  |
| KP1_2_7  | 504 | 5570 | 1917 | 214.9 | 46.6 | 1540 | 19490 | 4530 | 4.18 | 63.6  |
| KP1_2_8  | 573 | 5620 | 2059 | 224.6 | 44.8 | 1408 | 19740 | 3562 | 5.25 | 74.4  |
| KP1_2_9  | 513 | 5420 | 1763 | 215.1 | 45.9 | 1519 | 19220 | 4495 | 3.05 | 60.2  |
| KP1_2_10 | 558 | 4950 | 1910 | 217.2 | 45.1 | 1470 | 19650 | 4110 | 3.14 | 73    |
| KP1_2_11 | 267 | 5450 | 791  | 215.9 | 41.8 | 1325 | 18380 | 3640 | 10.1 | 54.1  |
| KP1_2_12 | 406 | 5730 | 1530 | 204.4 | 43.3 | 1402 | 18910 | 4300 | 5.48 | 51.4  |
| KP1_2_13 | 476 | 5500 | 1644 | 197.7 | 44.2 | 1474 | 18420 | 4920 | 4.1  | 72    |
| KP1_2_14 | 461 | 5360 | 1660 | 199.8 | 41.5 | 1414 | 18160 | 4500 | 3.99 | 76.9  |
| KP1_2_15 | 478 | 5280 | 1770 | 196.3 | 41.6 | 1422 | 18170 | 4430 | 3.97 | 66.9  |
| KP1_2_16 | 441 | 5340 | 1887 | 201.3 | 43.2 | 1417 | 18300 | 4170 | 4.67 | 58.2  |
| KP1_2_17 | 348 | 5230 | 1679 | 192.5 | 40.4 | 1365 | 17270 | 4050 | 4.4  | 37    |
| KP1_2_18 | 344 | 4900 | 1048 | 186.2 | 41.4 | 1103 | 17580 | 2000 | 9.3  | 17.3  |
| KP1_2_19 | 302 | 3731 | 708  | 211   | 44.6 | 1271 | 18390 | 3216 | 8.6  | 35.3  |
| KP1_2_20 | 302 | 4350 | 875  | 219.6 | 43.7 | 1286 | 18830 | 3368 | 8.7  | 150.3 |
| KP1_2_21 | 282 | 5190 | 812  | 204.8 | 42.9 | 1203 | 18060 | 2738 | 8.7  | 90.7  |
| KP1_2_22 | 284 | 5520 | 1000 | 230.9 | 46   | 1368 | 20430 | 3760 | 13.2 | 170.8 |
| KP1_2_23 | 459 | 6020 | 1785 | 221.3 | 47.4 | 1558 | 19830 | 5010 | 5.45 | 75.8  |
| KP1_2_24 | 417 | 5820 | 1475 | 217.4 | 46   | 1481 | 19290 | 4708 | 7.08 | 80.6  |
| KP1_2_25 | 450 | 5780 | 1790 | 208.1 | 43.8 | 1450 | 19150 | 3960 | 4.78 | 53.2  |
| KP1_2_26 | 494 | 5830 | 1746 | 213.4 | 44.5 | 1502 | 18800 | 4710 | 3.78 | 65.3  |
| KP1_2_27 | 474 | 5740 | 1704 | 211.1 | 44.2 | 1520 | 19200 | 4730 | 4.84 | 62.7  |
| KP1_2_28 | 470 | 5830 | 1538 | 215   | 43.3 | 1446 | 19270 | 4470 | 6.3  | 90.7  |
| KP1_2_29 | 408 | 5830 | 1289 | 219.3 | 45.5 | 1413 | 19210 | 4320 | 9.8  | 100.5 |
| KP1_2_30 | 345 | 5800 | 843  | 219.1 | 42.7 | 1303 | 18940 | 3628 | 10.9 | 148.1 |

| Sample      | Al   | K    | Ti   | Ga    | Rb    | Sr    | Y    | Nb   | Mo   | Sn    |
|-------------|------|------|------|-------|-------|-------|------|------|------|-------|
| CBD11 10 1  | 895  | 2703 | 746  | 121.9 | 13.09 | 460   | 6860 | 2701 | 0.82 | 152.2 |
| CBD11 10 2  | 2050 | 5970 | 311  | 107.3 | 19.5  | 366.2 | 6190 | 2059 | 7.5  | 48.3  |
| CBD11 10 3  | 725  | 5340 | 678  | 109.8 | 18.3  | 432   | 6280 | 2744 | 0.89 | 129.5 |
| CBD11 10 4  | 829  | 5550 | 279  | 99.1  | 18.1  | 285.7 | 6000 | 1145 | 8.6  | 77.9  |
| CBD11 10 5  | 766  | 2760 | 613  | 93.4  | 19.9  | 360.7 | 6040 | 2057 | 2.27 | 91.3  |
| CBD11_10_6  | 759  | 5160 | 477  | 95.6  | 19    | 326.4 | 5440 | 1650 | 6.6  | 58.4  |
| CBD11_10_7  | 832  | 5610 | 439  | 101.5 | 20.02 | 312   | 5430 | 1287 | 6.5  | 76.6  |
| CBD11_10_8  | 787  | 6340 | 559  | 98.3  | 19.7  | 348.2 | 6160 | 1921 | 6.43 | 69.3  |
| CBD11_10_9  | 824  | 5390 | 299  | 97.5  | 17.29 | 290.5 | 5150 | 1271 | 4.66 | 54.8  |
| CBD11_10_10 | 775  | 5420 | 577  | 90.3  | 20.9  | 301.9 | 5620 | 1289 | 5.01 | 101.6 |
| CBD11 10 11 | 3200 | 4170 | 1100 | 109.3 | 14.8  | 389   | 6140 | 1930 | 0.66 | 151.7 |
| CBD11 10 12 | 829  | 4630 | 324  | 105.5 | 14.6  | 318   | 6610 | 1155 | 7.7  | 98.4  |
| CBD11 10 13 | 6110 | 2448 | 325  | 99.3  | 11.58 | 318   | 6610 | 1474 | 7.5  | 47.6  |
| CBD11_10_14 | 815  | 5280 | 400  | 96.7  | 18.7  | 357   | 6570 | 1841 | 6.7  | 37.4  |
| CBD11_10_15 | 820  | 4820 | 398  | 94.5  | 17.03 | 336   | 6580 | 1643 | 7.4  | 43.6  |
| CBD11 10 21 | 671  | 5300 | 543  | 578   | 17.9  | 1080  | 8400 | 4110 | 11.3 | 53.7  |
| CBD11 10 22 | 687  | 5210 | 539  | 461   | 18.3  | 753   | 7850 | 2526 | 9    | 68.3  |
| CBD11 10 23 | 686  | 5390 | 455  | 504   | 17.1  | 814   | 7860 | 2640 | 8.6  | 42.1  |
| CBD11 10 25 | 640  | 4460 | 188  | 518   | 16    | 906   | 7660 | 3480 | 9.9  | 41.8  |
| CBD11 10 26 | 682  | 3400 | 480  | 512   | 15.7  | 864   | 7440 | 2990 | 8.1  | 36    |
| CBD11 10 29 | 600  | 4760 | 461  | 391   | 15.8  | 651   | 6680 | 2130 | 5.7  | 72.8  |
| CBD11_10_31 | 620  | 5560 | 140  | 356   | 17.7  | 668   | 6470 | 2500 | 2.5  | 96    |

| Sample      | Sb         | Ba         | La         | Ce         | Pr         | Nd         | Sm         | Eu         | Gd         | Tb         |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|             | <u>ppm</u> |
| Eud_LV01_1  |            | 531        | 3139       | 6080       | 615        | 2323       | 458.2      | 137.6      | 424        | 71.5       |
| Eud_LV01_2  | 0.79       | 516        | 3023       | 5920       | 592        | 2266       | 448.8      | 133.2      | 418        | 71.1       |
| Eud_LV01_3  |            | 525        | 3185       | 6230       | 622        | 2361       | 473        | 143.1      | 439        | 74.8       |
| Eud_LV01_4  | 0.86       | 532        | 3156       | 6150       | 620        | 2346       | 468        | 141.1      | 429        | 75.2       |
| Eud_LV01_5  | 2.44       | 469        | 3273       | 5950       | 602        | 2286       | 456        | 127.8      | 408        | 69.5       |
| Eud_LV01_6  |            | 498        | 2938       | 5610       | 574        | 2181       | 441        | 133.9      | 407        | 67.5       |
| Eud_LV01_7  | 0.49       | 642        | 3760       | 7000       | 691        | 2584       | 509.6      | 154.9      | 457        | 81.3       |
| Eud_LV01_8  |            | 650        | 3978       | 7230       | 702        | 2645       | 516        | 155.6      | 463        | 81.1       |
| Eud_LV01_9  | 1.59       | 505        | 3127       | 6060       | 605        | 2325       | 465.4      | 140.2      | 418        | 74.4       |
| Eud_LV01_10 | 3.3        | 506        | 3262       | 6240       | 624        | 2386       | 475        | 145        | 426        | 75.3       |
| Eud_LV01_11 |            | 516        | 3202       | 6150       | 614        | 2348       | 473        | 143.5      | 430        | 74.3       |
| Eud_LV01_12 | 0.57       | 516        | 3169       | 6050       | 618        | 2339       | 472.5      | 143.3      | 429        | 75.6       |
| Eud_LV01_13 | 0.63       | 663        | 4040       | 7290       | 715        | 2657       | 517        | 155.7      | 471        | 82         |
| Eud_LV01_14 |            | 630        | 3940       | 7120       | 714        | 2642       | 519        | 153.4      | 473        | 80         |
| Eud_LV01_15 | 0.7        | 520        | 3225       | 6190       | 630        | 2426       | 487        | 150.9      | 445        | 77         |
| Eud_LV01_16 |            | 512        | 3195       | 6070       | 620        | 2399       | 482        | 146.4      | 428        | 77.9       |
| Eud_LV01_17 | 0.99       | 525        | 3296       | 6250       | 623        | 2371       | 471        | 145        | 427        | 73.8       |
| Eud_LV01_18 | 0.71       | 511        | 3216       | 6090       | 627        | 2363       | 474        | 139.9      | 410        | 74         |
| Eud NK 1    | 0.71       | 590        | 3778       | 7670       | 893        | 3886       | 1180       | 157.1      | 1557       | 338.1      |
| Eud NK 2    | 0.98       | 600        | 3867       | 7840       | 909        | 3971       | 1197       | 158.1      | 1580       | 337.2      |
| Eud NK 3    | 0.63       | 611        | 3958       | 7990       | 926        | 4034       | 1228       | 165.3      | 1576       | 351.1      |
| Eud NK 4    | 0.64       | 602        | 3900       | 7910       | 928        | 4020       | 1226       | 159.3      | 1590       | 340.1      |
| Eud NK 5    |            | 550        | 3555       | 7230       | 830        | 3696       | 1130       | 150        | 1461       | 311.1      |
| Eud NK 6    | 0.72       | 556        | 3570       | 7090       | 831        | 3654       | 1124       | 147.9      | 1437       | 312.5      |
| Eud NK 7    |            | 579        | 3727       | 7570       | 876        | 3877       | 1183       | 153.2      | 1519       | 336.3      |
| Eud_NK_8    |            | 598        | 3700       | 7530       | 869        | 3855       | 1179       | 156.9      | 1500       | 334.6      |

| Sample      | Sb   | Ba  | La   | Ce   | Pr    | Nd   | Sm   | Eu    | Gd   | Tb    |
|-------------|------|-----|------|------|-------|------|------|-------|------|-------|
| Eud_NK_9    |      | 576 | 3710 | 7510 | 859   | 3818 | 1159 | 153.2 | 1509 | 325.8 |
| Eud_NK_10   | 0.9  | 595 | 3750 | 7520 | 869   | 3834 | 1161 | 154.7 | 1515 | 328   |
| Eud_NK_11   | 0.46 | 583 | 3728 | 7550 | 869   | 3830 | 1163 | 154.3 | 1510 | 322.9 |
| Eud_NK_12   | 0.57 | 588 | 3763 | 7580 | 874   | 3846 | 1165 | 153.2 | 1501 | 330.9 |
| Eud_NK_13   |      | 586 | 3662 | 7430 | 852   | 3774 | 1141 | 152.4 | 1497 | 323.3 |
| Eud_NK_14   | 0.66 | 586 | 3746 | 7560 | 866   | 3838 | 1165 | 152   | 1516 | 323.9 |
| Eud_NK_15   | 0.76 | 613 | 3840 | 7560 | 889   | 3941 | 1196 | 161.7 | 1553 | 335.4 |
| Eud_NK_16   |      | 591 | 3642 | 7380 | 865   | 3810 | 1157 | 151.4 | 1485 | 320.3 |
| Eud_NK_17   | 0.56 | 599 | 3870 | 7700 | 888   | 3918 | 1184 | 156.2 | 1530 | 332.2 |
| Eud_NK_18   | 0.48 | 582 | 3755 | 7530 | 879   | 3875 | 1171 | 153.9 | 1531 | 332.5 |
| CBD11 02 1  |      | 877 | 1193 | 3014 | 362   | 1730 | 521  | 74.9  | 664  | 136.2 |
| CBD11 02 2  |      | 862 | 1388 | 3210 | 385.9 | 1807 | 542  | 79.4  | 705  | 139.7 |
| CBD11 02 3  |      | 873 | 1283 | 3070 | 375.9 | 1737 | 528  | 73.6  | 700  | 142.4 |
| CBD11 02 4  |      | 908 | 1177 | 2930 | 362   | 1699 | 514  | 70.2  | 672  | 137.5 |
| CBD11 02 5  |      | 861 | 1689 | 3550 | 405   | 1810 | 538  | 77.2  | 688  | 140.1 |
| CBD11 02 6  |      | 849 | 1425 | 3225 | 378   | 1741 | 517  | 71.8  | 666  | 140.2 |
| CBD11_02_7  |      | 883 | 1152 | 2934 | 365.8 | 1717 | 532  | 73.9  | 706  | 141.5 |
| CBD11_02_8  |      | 892 | 1398 | 3160 | 374   | 1719 | 507  | 72.6  | 646  | 132.3 |
| CBD11_02_9  |      | 875 | 1536 | 3310 | 385   | 1720 | 515  | 72.9  | 668  | 135.7 |
| CBD11_02_10 |      | 872 | 1240 | 2973 | 359   | 1664 | 505  | 70.8  | 674  | 134.3 |
| CBD11 02 11 |      | 911 | 1581 | 3155 | 346.9 | 1553 | 462  | 66.1  | 587  | 123.4 |
| CBD11 02 12 |      | 917 | 1514 | 3222 | 367   | 1706 | 522  | 70.9  | 649  | 137.8 |
| CBD11_02_13 |      | 941 | 1448 | 3235 | 365.6 | 1730 | 536  | 71.4  | 686  | 141   |
| CBD11 02 16 |      | 966 | 1811 | 3647 | 404   | 1857 | 556  | 78    | 702  | 144.1 |
| CBD11_02_17 |      | 923 | 1757 | 3650 | 410   | 1933 | 587  | 77.7  | 710  | 141.9 |

| Sample      | Sb   | Ba   | La   | Ce   | Pr    | Nd   | Sm  | Eu    | Gd   | Tb    |
|-------------|------|------|------|------|-------|------|-----|-------|------|-------|
| CBD11_02_18 |      | 1043 | 1946 | 3980 | 460   | 2217 | 665 | 90.6  | 794  | 157.3 |
| CBD11_02_19 |      | 928  | 1713 | 3746 | 431   | 2011 | 582 | 81.6  | 723  | 147.3 |
| CBD11_02_20 |      | 913  | 1699 | 3797 | 445   | 2098 | 596 | 82.6  | 722  | 145.3 |
| CBD11_02_21 |      | 907  | 1796 | 3670 | 406   | 1847 | 543 | 78.1  | 678  | 144.7 |
| CBD11_02_22 |      | 927  | 1651 | 3660 | 408   | 1928 | 589 | 80.8  | 735  | 155.3 |
| CBD11_02_23 |      | 1005 | 1561 | 3790 | 457   | 2230 | 691 | 91.6  | 835  | 166.5 |
| CBD11_02_24 |      | 1002 | 1432 | 3692 | 466   | 2302 | 684 | 90.1  | 815  | 160.4 |
| CBD11_02_25 |      | 859  | 1473 | 3570 | 429   | 2126 | 632 | 83.6  | 756  | 147.8 |
| CBD11_02_26 |      | 936  | 1433 | 3504 | 434   | 2194 | 664 | 87.5  | 803  | 156.7 |
| CBD11_02_27 |      | 862  | 1513 | 3373 | 394   | 1812 | 548 | 79.2  | 700  | 142.7 |
| CBD11_02_28 | 1.64 | 843  | 1407 | 3252 | 383.5 | 1800 | 540 | 76    | 666  | 140.3 |
| CBD11_02_29 |      | 915  | 1579 | 3649 | 432   | 2126 | 632 | 81.5  | 749  | 148.5 |
| CBD11_02_30 |      | 932  | 1495 | 3343 | 386   | 1842 | 556 | 79.3  | 712  | 146.2 |
| KP8_1_3_1   | 0.48 | 964  | 2313 | 3308 | 319.3 | 1331 | 503 | 89    | 938  | 274.1 |
| KP8_1_3_2   |      | 914  | 2380 | 3436 | 317   | 1328 | 500 | 84.1  | 909  | 269   |
| KP8_1_3_3   |      | 905  | 1929 | 2933 | 296.2 | 1238 | 475 | 83.5  | 870  | 254.5 |
| KP8_1_3_4   |      | 947  | 2001 | 3060 | 302   | 1294 | 496 | 85.8  | 883  | 257.8 |
| KP8_1_3_5   | 0.89 | 899  | 1746 | 2710 | 281.4 | 1243 | 494 | 82.7  | 905  | 259.5 |
| KP8_1_3_6   | 0.79 | 871  | 1744 | 2699 | 279   | 1214 | 476 | 82.7  | 859  | 248.6 |
| KP8_1_3_7   | 0.95 | 831  | 1839 | 2756 | 286.5 | 1197 | 452 | 75.9  | 835  | 238.3 |
| KP8_1_3_8   | 0.98 | 884  | 1997 | 2981 | 299.1 | 1252 | 475 | 79.1  | 866  | 249   |
| KP8_1_3_11  | 0.67 | 898  | 3610 | 6460 | 469   | 1828 | 621 | 102.4 | 1088 | 313.6 |
| KP8_1_3_18  | 0.77 | 877  | 2432 | 3330 | 315   | 1243 | 443 | 75.1  | 824  | 238.7 |
| KP8_1_3_19  |      | 829  | 2530 | 3420 | 325   | 1240 | 426 | 72.3  | 774  | 223   |
| KP8_1_3_20  |      | 788  | 2612 | 3540 | 326   | 1251 | 419 | 67.3  | 755  | 215.3 |

| Sample     | Sb   | Ba  | La   | Ce   | Pr  | Nd   | Sm  | Eu    | Gd   | Tb    |
|------------|------|-----|------|------|-----|------|-----|-------|------|-------|
| KP9 2 2 1  |      | 872 | 4250 | 6750 | 674 | 2749 | 863 | 129.8 | 1329 | 348   |
| KP9 2 2 2  |      | 850 | 4075 | 6460 | 648 | 2657 | 838 | 122.6 | 1277 | 330.2 |
| KP9 2 2 3  |      | 840 | 3870 | 6130 | 622 | 2539 | 812 | 120.9 | 1234 | 320   |
| KP9 2 2 4  |      | 812 | 3850 | 6120 | 609 | 2520 | 794 | 121   | 1229 | 312.5 |
| KP9_2_2_5  |      | 824 | 3611 | 5820 | 588 | 2457 | 787 | 118   | 1209 | 316.7 |
| KP9_2_2_6  | 0.63 | 822 | 3508 | 5680 | 584 | 2420 | 782 | 121.4 | 1195 | 316.4 |
| KP9_2_2_7  |      | 809 | 3365 | 5480 | 573 | 2393 | 772 | 117.6 | 1172 | 311.4 |
| KP9_2_2_8  |      | 800 | 3326 | 5450 | 573 | 2393 | 777 | 118.4 | 1200 | 317.3 |
| KP9_2_2_9  |      | 809 | 3357 | 5550 | 577 | 2418 | 786 | 119.8 | 1205 | 324.9 |
| KP9_2_2_10 |      | 816 | 3332 | 5410 | 576 | 2393 | 783 | 120.4 | 1211 | 324.1 |
|            |      |     |      |      |     |      |     |       |      |       |
| KP9_2_2_11 |      | 937 | 4290 | 6670 | 669 | 2723 | 850 | 129.4 | 1250 | 331.1 |
| KP9_2_2_12 | 0.56 | 851 | 3603 | 5800 | 599 | 2489 | 783 | 122.1 | 1174 | 321.4 |
| KP9_2_2_13 |      | 854 | 3612 | 5780 | 588 | 2406 | 756 | 118   | 1158 | 326.5 |
| KP9_2_2_14 | 0.61 | 847 | 3477 | 5620 | 578 | 2346 | 751 | 119.3 | 1182 | 330   |
| KP9_2_2_15 |      | 847 | 3092 | 5130 | 536 | 2207 | 721 | 115.4 | 1164 | 328   |
| KP9_2_2_16 |      | 867 | 3119 | 5235 | 535 | 2232 | 731 | 116.1 | 1201 | 347.6 |
| KP9_2_2_17 |      | 855 | 2972 | 5000 | 519 | 2161 | 723 | 112.8 | 1194 | 343.2 |
| KP9_2_2_18 |      | 882 | 3090 | 5170 | 524 | 2191 | 731 | 111.4 | 1221 | 354.2 |
| KP9_2_2_19 | 0.61 | 860 | 3110 | 5150 | 536 | 2205 | 731 | 113.7 | 1228 | 365   |
| KP9_2_2_20 |      | 848 | 3317 | 5420 | 553 | 2241 | 731 | 112.1 | 1272 | 367.7 |
| KP9_2_2_21 | 0.78 | 873 | 2965 | 4990 | 526 | 2178 | 741 | 117.5 | 1285 | 373   |
| KP9_2_2_22 |      | 857 | 2980 | 4910 | 511 | 2164 | 734 | 111   | 1297 | 377   |
| KP9_2_2_23 |      | 855 | 2986 | 5050 | 520 | 2157 | 734 | 116.8 | 1279 | 378.7 |
| KP9_2_2_24 | 0.51 | 847 | 2928 | 4890 | 505 | 2129 | 731 | 112.8 | 1293 | 375   |
| KP9_2_2_25 | 0.93 | 847 | 3021 | 5000 | 529 | 2239 | 762 | 115.7 | 1322 | 376   |
| KP9_2_2_26 | 0.56 | 878 | 3060 | 5020 | 531 | 2248 | 771 | 117.1 | 1355 | 392   |

| Sample      | Sb   | Ba  | La   | Ce   | Pr    | Nd   | Sm    | Eu    | Gd   | Tb    |
|-------------|------|-----|------|------|-------|------|-------|-------|------|-------|
| KP9_2_2_27  |      | 873 | 2866 | 4870 | 504   | 2137 | 742   | 113.7 | 1343 | 384.9 |
| KP9_2_2_28  | 0.56 | 850 | 2901 | 4910 | 506.6 | 2153 | 756   | 116.1 | 1342 | 389   |
| KP9_2_2_29  | 0.65 | 852 | 2768 | 4710 | 497   | 2122 | 743   | 111.2 | 1320 | 384   |
| KP9_2_2_30  | 0.64 | 886 | 2548 | 4490 | 489   | 2099 | 750   | 113.3 | 1331 | 388   |
| KP9_2_2_31  |      | 841 | 2547 | 4480 | 475   | 2058 | 731   | 110.7 | 1311 | 375.8 |
| KP9_2_2_32  |      | 847 | 2705 | 4620 | 490   | 2078 | 723   | 111.2 | 1283 | 366   |
| KP9_2_2_33  | 0.7  | 875 | 2851 | 4880 | 516   | 2196 | 760   | 113.6 | 1336 | 384   |
| KP9_2_2_34  |      | 864 | 2770 | 4910 | 516   | 2164 | 745   | 115.8 | 1311 | 376.9 |
| KP9_2_2_35  |      | 833 | 2286 | 4230 | 453   | 2012 | 725   | 109.1 | 1273 | 366   |
| KP9_2_2_36  |      | 826 | 2296 | 4280 | 465   | 2004 | 720   | 112.8 | 1261 | 365   |
| KP9_2_2_37  | 0.87 | 777 | 2374 | 4320 | 467   | 2026 | 727   | 112.9 | 1275 | 369   |
| KP9_2_2_38  |      | 854 | 3410 | 5570 | 553   | 2246 | 717   | 113.7 | 1190 | 346.4 |
| KP9_2_2_39  |      | 828 | 2699 | 4680 | 495   | 2077 | 719   | 113.4 | 1181 | 343.9 |
| KP9_2_2_40  |      | 819 | 3245 | 5360 | 541   | 2210 | 714   | 111.8 | 1131 | 329.1 |
| KP9_2_2_41  |      | 788 | 3610 | 5740 | 569   | 2269 | 701   | 106.1 | 1111 | 307   |
| KP9_2_2_42  |      | 797 | 3459 | 5640 | 561   | 2294 | 716   | 111.7 | 1104 | 311.7 |
| Eud LV01 1  | 0.72 | 710 | 4313 | 7960 | 756   | 2880 | 548   | 169.6 | 507  | 86.9  |
| Eud LV01 2  |      | 692 | 4186 | 7810 | 746   | 2855 | 540   | 168.4 | 517  | 87    |
| Eud_LV01_3  | 0.9  | 504 | 3088 | 6040 | 614   | 2344 | 466.7 | 143.4 | 432  | 73.3  |
| Eud_LV01_4  | 0.34 | 505 | 3035 | 5960 | 614   | 2317 | 463   | 136.7 | 418  | 73.2  |
| Eud_LV01_5  | 2.6  | 583 | 3823 | 7150 | 722   | 2668 | 524.9 | 154.5 | 458  | 82    |
| Eud_LV01_6  |      | 651 | 4000 | 7470 | 741   | 2733 | 536   | 160.9 | 480  | 84.3  |
| Eud_LV01_7  | 0.73 | 651 | 4010 | 7400 | 726   | 2723 | 530   | 158.3 | 486  | 86.1  |
| Eud_LV01_8  | 0.57 | 504 | 3238 | 6210 | 633   | 2406 | 481   | 144.5 | 430  | 74.3  |
| Eud_LV01_9  | 0.35 | 506 | 3204 | 6340 | 627   | 2436 | 483   | 145   | 447  | 76.8  |
| Eud_LV01_10 |      | 508 | 3245 | 6160 | 626   | 2417 | 478.5 | 145.5 | 429  | 75.3  |
| Eud_LV01_11 |      | 522 | 3325 | 6350 | 654   | 2461 | 490   | 145.6 | 447  | 76.1  |

| Sample      | Sb   | Ba   | La   | Ce   | Pr   | Nd   | Sm   | Eu    | Gd   | Tb    |
|-------------|------|------|------|------|------|------|------|-------|------|-------|
| Eud_LV01_12 | 2.28 | 520  | 3328 | 6290 | 649  | 2463 | 488  | 144   | 442  | 76.8  |
| Eud_LV01_13 | 0.45 | 694  | 4029 | 7330 | 724  | 2726 | 532  | 159.2 | 479  | 85.1  |
| Eud_LV01_14 | 0.49 | 699  | 4090 | 7360 | 723  | 2710 | 527  | 158   | 479  | 83.2  |
| Eud_LV01_15 |      | 689  | 4200 | 7570 | 753  | 2783 | 543  | 163.5 | 492  | 85.1  |
| Eud_LV01_16 | 0.43 | 697  | 4112 | 7550 | 749  | 2775 | 547  | 161.2 | 494  | 86.2  |
| Eud_LV01_17 | 0.38 | 704  | 4300 | 7900 | 756  | 2833 | 552  | 164.2 | 511  | 88.5  |
| Eud_LV01_18 | 0.5  | 696  | 4230 | 7640 | 746  | 2773 | 542  | 162.3 | 509  | 84.2  |
| Eud_NK_1    | 0.58 | 589  | 3843 | 7830 | 929  | 4067 | 1258 | 167.2 | 1619 | 359   |
| Eud_NK_2    | 0.73 | 593  | 3893 | 7810 | 919  | 4048 | 1244 | 160.6 | 1630 | 348.9 |
| Eud_NK_3    | 0.77 | 598  | 3850 | 7930 | 934  | 4098 | 1251 | 162.3 | 1635 | 356.8 |
| Eud_NK_4    | 0.77 | 617  | 3950 | 8070 | 941  | 4157 | 1268 | 162.6 | 1653 | 359   |
| Eud_NK_5    | 0.65 | 608  | 4060 | 8200 | 938  | 4239 | 1295 | 168.4 | 1685 | 371   |
| Eud_NK_6    |      | 621  | 4050 | 8190 | 947  | 4230 | 1284 | 166.2 | 1675 | 360   |
| Eud_NK_7    | 0.41 | 614  | 3960 | 7980 | 923  | 4153 | 1253 | 163.7 | 1667 | 357.3 |
| Eud_NK_8    | 0.8  | 599  | 4012 | 8100 | 919  | 4153 | 1250 | 166.6 | 1632 | 361.2 |
| Eud_NK_9    |      | 582  | 3960 | 7950 | 925  | 4109 | 1245 | 162.2 | 1610 | 356.5 |
| Eud_NK_10   | 0.69 | 605  | 3990 | 8240 | 939  | 4200 | 1268 | 165.7 | 1679 | 363   |
| Eud_NK_11   | 0.71 | 596  | 4015 | 8050 | 929  | 4121 | 1255 | 165.5 | 1621 | 355.5 |
| Eud_NK_12   | 0.4  | 591  | 3980 | 8120 | 938  | 4150 | 1260 | 168.3 | 1635 | 356   |
| Eud_NK_13   | 0.51 | 637  | 4240 | 8560 | 1001 | 4310 | 1325 | 174.2 | 1724 | 373   |
| Eud_NK_14   | 0.51 | 620  | 4040 | 8250 | 945  | 4193 | 1285 | 171.5 | 1689 | 361.8 |
| Eud_NK_15   | 0.38 | 617  | 4110 | 8270 | 950  | 4180 | 1277 | 165.5 | 1696 | 359   |
| Eud_NK_16   | 0.44 | 622  | 4140 | 8320 | 953  | 4182 | 1273 | 169.5 | 1671 | 362   |
| KP1_2_1     | 0.92 | 1963 | 3528 | 5560 | 571  | 2299 | 763  | 116.7 | 1142 | 308.4 |
| KP1_2_2     | 1.14 | 1833 | 4230 | 6260 | 603  | 2317 | 720  | 115.5 | 1065 | 287.6 |
| KP1_2_3     | 1.13 | 1776 | 4380 | 6350 | 612  | 2300 | 713  | 109.8 | 1056 | 286.4 |

| Sample   | Sb   | Ba   | La   | Ce   | Pr  | Nd   | Sm  | Eu    | Gd   | Tb    |
|----------|------|------|------|------|-----|------|-----|-------|------|-------|
| KP1_2_4  | 1.2  | 1773 | 3657 | 5560 | 561 | 2191 | 707 | 111.6 | 1053 | 284.2 |
| KP1_2_5  | 0.79 | 1752 | 4238 | 6200 | 601 | 2283 | 704 | 109.6 | 1024 | 278.7 |
| KP1_2_6  | 1.36 | 1696 | 3956 | 5730 | 558 | 2206 | 685 | 107.4 | 1020 | 270.7 |
| KP1_2_7  | 1.34 | 1718 | 4004 | 5880 | 574 | 2233 | 700 | 110.7 | 1023 | 275.7 |
| KP1_2_8  | 1.03 | 1748 | 3447 | 5240 | 539 | 2164 | 707 | 113.9 | 1032 | 284   |
| KP1_2_9  | 1.18 | 1692 | 4120 | 6030 | 579 | 2230 | 686 | 105   | 1020 | 277.5 |
| KP1_2_10 | 1.07 | 1698 | 3930 | 5860 | 569 | 2209 | 689 | 114.4 | 1033 | 276.7 |
| KP1_2_11 |      | 1694 | 3630 | 5500 | 544 | 2153 | 659 | 104.1 | 973  | 264.5 |
| KP1_2_12 | 1    | 1636 | 4020 | 5900 | 560 | 2219 | 674 | 106.5 | 987  | 267.2 |
| KP1_2_13 | 1.03 | 1572 | 4370 | 6230 | 585 | 2211 | 660 | 103.2 | 996  | 266.2 |
| KP1_2_14 | 1.16 | 1532 | 4010 | 5880 | 559 | 2152 | 651 | 103.3 | 983  | 266.7 |
| KP1_2_15 | 0.75 | 1545 | 3980 | 5860 | 546 | 2128 | 657 | 99    | 984  | 265.6 |
| KP1_2_16 | 0.95 | 1596 | 3950 | 5720 | 540 | 2115 | 658 | 102.9 | 964  | 265.3 |
| KP1_2_17 |      | 1506 | 3810 | 5680 | 535 | 2059 | 618 | 100.8 | 922  | 250.1 |
| KP1_2_18 |      | 1490 | 2898 | 4720 | 483 | 1991 | 611 | 96.6  | 919  | 251.2 |
| KP1_2_19 |      | 1682 | 3420 | 5340 | 528 | 2151 | 665 | 102.5 | 974  | 265.7 |
| KP1_2_20 | 0.65 | 1717 | 3429 | 5340 | 528 | 2169 | 679 | 105   | 1011 | 271.1 |
| KP1_2_21 |      | 1646 | 2920 | 4720 | 477 | 1975 | 631 | 99.4  | 955  | 259.2 |
| KP1 2 22 | 0.66 | 1826 | 3460 | 5400 | 541 | 2213 | 705 | 109.2 | 1093 | 291   |
| KP1 2 23 | 1.4  | 1748 | 4460 | 6520 | 595 | 2360 | 710 | 112.4 | 1077 | 291   |
| KP1_2_24 | 1.09 | 1677 | 4340 | 6390 | 585 | 2287 | 692 | 109.1 | 1016 | 282.5 |
| KP1_2_25 | 1.1  | 1679 | 3891 | 5740 | 543 | 2174 | 668 | 106   | 1032 | 272.8 |
| KP1_2_26 | 0.92 | 1666 | 4110 | 6020 | 566 | 2217 | 682 | 107.4 | 1012 | 275.1 |
| KP1_2_27 | 0.95 | 1656 | 4146 | 6070 | 563 | 2226 | 682 | 109.4 | 1041 | 274   |
| KP1_2_28 | 0.69 | 1701 | 4120 | 6100 | 566 | 2260 | 686 | 107.9 | 1034 | 273.1 |
| KP1_2_29 | 0.87 | 1733 | 4160 | 6180 | 577 | 2285 | 682 | 109.2 | 1033 | 279.7 |
| KP1_2_30 | 0.73 | 1713 | 3860 | 5800 | 564 | 2291 | 683 | 109.6 | 1015 | 268.7 |

| Sample      | Sb   | Ba   | La   | Ce   | Pr    | Nd   | Sm    | Eu    | Gd   | Tb    |
|-------------|------|------|------|------|-------|------|-------|-------|------|-------|
| CBD11 10 1  |      | 928  | 2048 | 3844 | 411.3 | 1809 | 542   | 83.2  | 718  | 155.5 |
| CBD11_10_2  |      | 836  | 1833 | 4160 | 493   | 2352 | 657   | 92 3  | 794  | 149.6 |
| CBD11_10_3  |      | 869  | 1982 | 3577 | 372   | 1628 | 485   | 74 7  | 635  | 142.1 |
| CBD11_10_5  |      | 770  | 1439 | 3800 | 479   | 2291 | 627   | 90.8  | 767  | 151.9 |
| CBD11 10 5  | 0.26 | 722  | 1787 | 3728 | 419   | 1903 | 555   | 81.5  | 696  | 142.1 |
| CBD11 10 6  |      | 740  | 1585 | 3621 | 422.8 | 1989 | 563   | 82    | 656  | 131.7 |
| CBD11 10 7  |      | 816  | 1395 | 3590 | 450   | 2188 | 604   | 90.6  | 696  | 131   |
| CBD11 10 8  |      | 757  | 1609 | 3595 | 425.8 | 1966 | 577   | 85.8  | 707  | 141.1 |
| CBD11 10 9  |      | 757  | 1552 | 3942 | 495   | 2263 | 573   | 90.1  | 650  | 126.3 |
| CBD11_10_10 |      | 723  | 1271 | 2694 | 324.9 | 1525 | 473.5 | 70.3  | 629  | 131   |
|             |      |      |      |      |       |      |       |       |      |       |
| CBD11_10_11 |      | 836  | 1525 | 2860 | 305   | 1325 | 443   | 63.8  | 645  | 138.2 |
| CBD11_10_12 |      | 815  | 1240 | 3229 | 422   | 2166 | 685   | 95    | 830  | 168.7 |
| CBD11_10_13 |      | 785  | 1354 | 3170 | 390   | 1925 | 611   | 86.4  | 790  | 158.1 |
| CBD11_10_14 |      | 741  | 1695 | 3769 | 449   | 2153 | 652   | 92.9  | 820  | 160   |
| CBD11_10_15 |      | 745  | 1529 | 3430 | 406   | 1953 | 617   | 84.6  | 807  | 163   |
|             |      |      |      |      |       |      |       |       |      |       |
| CBD11_10_21 |      | 4700 | 5070 | 9540 | 1010  | 4240 | 991   | 125.8 | 1097 | 210   |
| CBD11_10_22 | 0.33 | 3640 | 3650 | 7590 | 828   | 3450 | 817   | 110.6 | 920  | 184.8 |
| CBD11_10_23 |      | 3950 | 3890 | 7680 | 799   | 3300 | 777   | 103.6 | 896  | 184.9 |
| CBD11_10_25 | 0.37 | 4100 | 4360 | 8260 | 864   | 3490 | 797   | 106.4 | 923  | 170.4 |
| CBD11_10_26 |      | 4030 | 4030 | 7470 | 798   | 3210 | 735   | 98    | 810  | 169   |
| CBD11_10_29 |      | 3070 | 3180 | 6680 | 731   | 3010 | 697   | 89    | 760  | 150   |
| CBD11_10_31 |      | 2790 | 3310 | 6360 | 660   | 2740 | 643   | 81.6  | 719  | 142   |

| Sample      | Dy         | Ho         | Er         | Tm         | Yb         | Lu         | Hf         | Ta         | W          | Pb         |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|             | <u>ppm</u> |
| Eud_LV01_1  | 451        | 94.6       | 258.9      | 37.4       | 251.2      | 31.9       | 2011       | 450        | 132.1      | 12.08      |
| Eud_LV01_2  | 445        | 93.8       | 254.2      | 37.2       | 246.2      | 31.6       | 1953       | 408.2      | 119.7      | 11.9       |
| Eud_LV01_3  | 478        | 98.8       | 273.9      | 38.6       | 268.5      | 33.9       | 2052       | 424        | 126.5      | 13.84      |
| Eud_LV01_4  | 468        | 97.8       | 272.8      | 38.6       | 264.8      | 32.4       | 2031       | 427.3      | 124.7      | 14.2       |
| Eud_LV01_5  | 435        | 94.1       | 251.4      | 36.9       | 238.1      | 31.3       | 1833       | 409        | 167.9      | 29         |
| Eud_LV01_6  | 431        | 89.7       | 250.2      | 36.7       | 236        | 32.3       | 1881       | 405        | 115        | 12         |
| Eud_LV01_7  | 494        | 104.8      | 294.8      | 42.5       | 265.7      | 36.5       | 1930       | 528        | 195        | 21.1       |
| Eud_LV01_8  | 496        | 106.4      | 295.8      | 42.9       | 267.8      | 36.2       | 1886       | 574        | 228.7      | 25         |
| Eud_LV01_9  | 460        | 93.9       | 259.9      | 36.3       | 248.4      | 32.5       | 1938       | 425        | 120.3      | 13.3       |
| Eud_LV01_10 | 464        | 96.3       | 268.1      | 38.8       | 250.2      | 33.7       | 1988       | 424        | 124.2      | 14.3       |
| Eud_LV01_11 | 470        | 98.2       | 271.8      | 39.9       | 258.1      | 34.9       | 1975       | 422        | 128.5      | 27.5       |
| Eud_LV01_12 | 475        | 99         | 273.7      | 40.5       | 260.1      | 34.2       | 2013       | 413        | 123.2      | 27.1       |
| Eud_LV01_13 | 512        | 105.6      | 291.7      | 42.8       | 277.4      | 36.3       | 1936       | 580        | 230        | 24         |
| Eud_LV01_14 | 506        | 107.8      | 298.8      | 42.4       | 282.4      | 37.7       | 1905       | 534        | 212.4      | 23.5       |
| Eud_LV01_15 | 491        | 99.7       | 281.4      | 42         | 257.9      | 35.4       | 2024       | 417        | 124        | 14.2       |
| Eud_LV01_16 | 482        | 98.4       | 275.5      | 40.3       | 265        | 35.2       | 1986       | 415        | 121.6      | 12.4       |
| Eud_LV01_17 | 466        | 95.8       | 275.9      | 39.9       | 261.5      | 34.1       | 2026       | 420        | 130.2      | 31.6       |
| Eud_LV01_18 | 477        | 98.2       | 278.4      | 39.8       | 259        | 34.1       | 2030       | 419        | 122.5      | 15.4       |
| Eud_NK_1    | 2484       | 589        | 1765       | 269.9      | 1919       | 252.4      | 2214       | 201        | 24.4       | 249        |
| Eud_NK_2    | 2531       | 595        | 1777       | 276.7      | 1960       | 255.7      | 2247       | 201        | 24.4       | 284        |
| Eud_NK_3    | 2555       | 608        | 1798       | 281.9      | 1994       | 262.7      | 2327       | 207        | 25.8       | 192        |
| Eud_NK_4    | 2546       | 597        | 1801       | 286.6      | 1975       | 261.3      | 2275       | 205.5      | 26.5       | 192        |
| Eud_NK_5    | 2290       | 553        | 1697       | 265.3      | 1773       | 239.1      | 2059       | 190.7      | 21.3       | 169.5      |
| Eud_NK_6    | 2263       | 549        | 1665       | 257.9      | 1764       | 239.7      | 2048       | 187.5      | 22.4       | 189.4      |
| Eud_NK_7    | 2432       | 565        | 1771       | 273.5      | 1812       | 247.5      | 2147       | 197.8      | 23.5       | 213        |
| Eud_NK_8    | 2390       | 570        | 1780       | 273.8      | 1803       | 249        | 2123       | 195.4      | 22.5       | 134.1      |

| Sample      | Dy   | Ho    | Er   | Tm    | Yb   | Lu    | Hf   | Ta    | W    | Pb    |
|-------------|------|-------|------|-------|------|-------|------|-------|------|-------|
| Eud_NK_9    | 2353 | 565   | 1730 | 268.5 | 1822 | 245.7 | 2150 | 193.2 | 22.7 | 199.5 |
| Eud_NK_10   | 2415 | 572   | 1708 | 266.6 | 1814 | 245.6 | 2120 | 194.5 | 23.6 | 189.5 |
| Eud_NK_11   | 2416 | 563   | 1696 | 266.6 | 1831 | 245.8 | 2161 | 190.9 | 21.7 | 187.6 |
| Eud_NK_12   | 2412 | 561   | 1747 | 271.6 | 1843 | 246.8 | 2172 | 196.9 | 25.1 | 193.4 |
| Eud_NK_13   | 2396 | 552   | 1699 | 261.2 | 1793 | 239   | 2150 | 189.7 | 21.8 | 188.9 |
| Eud_NK_14   | 2454 | 567   | 1725 | 269.5 | 1856 | 242.4 | 2165 | 194.3 | 24.6 | 195.3 |
| Eud_NK_15   | 2473 | 565   | 1757 | 273.3 | 1866 | 250.5 | 2184 | 198.4 | 23.8 | 501   |
| Eud_NK_16   | 2404 | 555   | 1691 | 268.2 | 1797 | 238.2 | 2129 | 191.5 | 23.4 | 184.4 |
| Eud_NK_17   | 2434 | 576   | 1787 | 276.9 | 1893 | 254.5 | 2265 | 202.9 | 25.1 | 203.3 |
| Eud_NK_18   | 2448 | 561   | 1752 | 277.1 | 1863 | 251.7 | 2228 | 201.6 | 23.9 | 199.3 |
| CBD11 02 1  | 977  | 230.6 | 662  | 96.4  | 614  | 76.5  | 1851 | 109.5 | 22.7 | 2.66  |
| CBD11 02 2  | 982  | 230.9 | 656  | 95.3  | 601  | 76.2  | 1921 | 155.1 | 36.4 | 3.32  |
| CBD11 02 3  | 996  | 230.4 | 640  | 88.7  | 570  | 69    | 1745 | 106.9 | 23.4 | 3.39  |
| CBD11 02 4  | 966  | 223.2 | 627  | 89.4  | 572  | 69.8  | 1808 | 86.4  | 20.9 | 2.93  |
| CBD11 02 5  | 993  | 230.4 | 667  | 96.8  | 611  | 76.1  | 1921 | 160.5 | 54.2 | 4.77  |
| CBD11 02 6  | 978  | 221.7 | 628  | 87.6  | 557  | 68.8  | 1830 | 110.4 | 31.7 | 2.89  |
| CBD11_02_7  | 1001 | 221.2 | 607  | 85.4  | 535  | 64    | 1805 | 90    | 21.2 | 2.89  |
| CBD11_02_8  | 943  | 218.6 | 640  | 93.1  | 590  | 72.4  | 1830 | 136.4 | 33.2 | 3.47  |
| CBD11_02_9  | 954  | 226.4 | 636  | 93.7  | 598  | 72    | 1849 | 133.6 | 44.1 | 3.96  |
| CBD11_02_10 | 955  | 213.2 | 603  | 87.9  | 537  | 67.3  | 1667 | 102.8 | 22.5 | 3.74  |
| CBD11 02 11 | 859  | 202.2 | 613  | 88.7  | 540  | 70    | 1809 | 143.5 | 65.5 | 4.57  |
| CBD11 02 12 | 951  | 220.5 | 649  | 93.7  | 552  | 72.7  | 1807 | 142.3 | 60.3 | 3.09  |
| CBD11_02_13 | 969  | 230.5 | 674  | 96.1  | 563  | 74.9  | 1804 | 158.7 | 65.1 | 4.02  |
| CBD11 02 16 | 991  | 225.4 | 658  | 93.9  | 569  | 72.9  | 2092 | 236.3 | 98.1 | 6.57  |
| CBD11_02_17 | 963  | 224   | 646  | 93.9  | 551  | 72    | 2011 | 206.9 | 92.2 | 2.38  |

| Sample      | Dy   | Ho    | Er   | Tm    | Yb   | Lu   | Hf   | Ta    | W    | Pb   |
|-------------|------|-------|------|-------|------|------|------|-------|------|------|
| CBD11_02_18 | 1101 | 251   | 741  | 105.3 | 621  | 81.9 | 2195 | 227   | 90.9 | 4.87 |
| CBD11_02_19 | 1006 | 231.7 | 699  | 97.3  | 585  | 77.5 | 1951 | 194.5 | 88.1 | 6.35 |
| CBD11_02_20 | 985  | 228.2 | 688  | 97.6  | 577  | 75.2 | 1959 | 195.4 | 86.8 | 6.37 |
| CBD11_02_21 | 990  | 231.4 | 682  | 97.8  | 594  | 77.7 | 1837 | 177.7 | 67.6 | 7.09 |
| CBD11_02_22 | 1042 | 240.6 | 680  | 96.3  | 574  | 73.1 | 1978 | 169   | 64.6 | 6.65 |
| CBD11_02_23 | 1102 | 250.6 | 707  | 99.1  | 601  | 75.6 | 1908 | 154.3 | 60.5 | 7.6  |
| CBD11_02_24 | 1084 | 248.7 | 693  | 99.4  | 608  | 76.9 | 1922 | 105.8 | 42.3 | 4.18 |
| CBD11_02_25 | 1029 | 229.8 | 665  | 94    | 568  | 73.5 | 1892 | 112.3 | 42.5 | 5.39 |
| CBD11_02_26 | 1064 | 242.5 | 684  | 97.8  | 591  | 72.2 | 1854 | 108   | 41.8 | 4.56 |
| CBD11_02_27 | 1010 | 234.8 | 665  | 96.9  | 589  | 73   | 1840 | 129.5 | 53.1 | 4.8  |
| CBD11_02_28 | 974  | 225.7 | 652  | 94.6  | 557  | 70.8 | 1784 | 111   | 49.9 | 3.73 |
| CBD11_02_29 | 1010 | 231   | 662  | 95.1  | 562  | 70.8 | 1912 | 155.2 | 66   | 3.4  |
| CBD11_02_30 | 998  | 232.8 | 666  | 95.5  | 568  | 72.6 | 1908 | 154.8 | 58   | 4.16 |
| KP8_1_3_1   | 2531 | 736   | 2667 | 471   | 3239 | 395  | 1856 | 554   | 597  | 92.3 |
| KP8_1_3_2   | 2540 | 729   | 2670 | 471   | 3220 | 395  | 1829 | 531   | 734  | 77   |
| KP8_1_3_3   | 2375 | 675   | 2498 | 444   | 3062 | 378  | 1757 | 306.1 | 1056 | 95.5 |
| KP8_1_3_4   | 2404 | 693   | 2532 | 450   | 3060 | 390  | 1762 | 500   | 921  | 99.3 |
| KP8_1_3_5   | 2353 | 688   | 2484 | 450   | 3090 | 389  | 1805 | 310   | 1126 | 85.7 |
| KP8_1_3_6   | 2283 | 656   | 2438 | 432   | 2987 | 369  | 1726 | 275.5 | 1068 | 89.8 |
| KP8_1_3_7   | 2191 | 616   | 2258 | 408   | 2791 | 352  | 1624 | 506   | 1036 | 82.4 |
| KP8_1_3_8   | 2313 | 664   | 2453 | 433   | 3034 | 374  | 1782 | 450   | 811  | 89.6 |
| KP8_1_3_11  | 2903 | 819   | 2910 | 507   | 3430 | 423  | 1788 | 681   | 839  | 224  |
| KP8_1_3_18  | 2258 | 655   | 2428 | 410   | 2880 | 347  | 1772 | 813   | 327  | 81.2 |
| KP8_1_3_19  | 2103 | 595   | 2220 | 381   | 2680 | 328  | 1707 | 795   | 244  | 84.7 |
| KP8_1_3_20  | 2011 | 572   | 2126 | 368   | 2633 | 319  | 1676 | 797   | 240  | 86.9 |

| Sample     | Dy   | Ho  | Er   | Tm  | Yb   | Lu    | Hf   | Та   | W     | Pb    |
|------------|------|-----|------|-----|------|-------|------|------|-------|-------|
| KP9 2 2 1  | 3032 | 823 | 2919 | 492 | 3401 | 419   | 1966 | 874  | 296   | 68.2  |
| KP9 2 2 2  | 2910 | 799 | 2851 | 489 | 3400 | 421   | 1970 | 860  | 323   | 67.5  |
| KP9 2 2 3  | 2848 | 776 | 2807 | 491 | 3370 | 426   | 1960 | 845  | 279   | 65    |
| KP9_2_2_4  | 2817 | 784 | 2801 | 489 | 3388 | 430   | 1976 | 858  | 287.1 | 66.5  |
| KP9_2_2_5  | 2846 | 790 | 2853 | 512 | 3448 | 437   | 1995 | 843  | 285.7 | 63.5  |
| KP9_2_2_6  | 2869 | 789 | 2891 | 508 | 3519 | 443   | 1956 | 855  | 310   | 70.7  |
| KP9_2_2_7  | 2841 | 784 | 2880 | 510 | 3552 | 442   | 1918 | 830  | 323   | 64.9  |
| KP9_2_2_8  | 2898 | 804 | 2936 | 521 | 3552 | 442   | 1957 | 851  | 345   | 66.8  |
| KP9_2_2_9  | 2932 | 820 | 2959 | 525 | 3658 | 451   | 1971 | 841  | 299.1 | 68.8  |
| KP9_2_2_10 | 2901 | 810 | 2944 | 522 | 3565 | 442   | 1950 | 821  | 280.2 | 71.3  |
| KP9 2 2 11 | 2974 | 825 | 3092 | 552 | 3780 | 478   | 2027 | 927  | 300   | 71.6  |
| KP9_2_2_12 | 2945 | 836 | 3030 | 545 | 3706 | 476   | 2060 | 950  | 445   | 101.8 |
| KP9_2_2_13 | 3033 | 847 | 3124 | 553 | 3680 | 464   | 2045 | 1087 | 550   | 62.6  |
| KP9_2_2_14 | 3077 | 875 | 3194 | 555 | 3670 | 452   | 2096 | 1101 | 635   | 79.1  |
| KP9_2_2_15 | 3030 | 871 | 3138 | 541 | 3502 | 438   | 1937 | 796  | 277.1 | 69.2  |
| KP9_2_2_16 | 3154 | 901 | 3198 | 546 | 3474 | 435.3 | 1993 | 807  | 211.6 | 60.7  |
| KP9_2_2_17 | 3201 | 916 | 3187 | 526 | 3413 | 421   | 1893 | 718  | 146.9 | 31.7  |
| KP9_2_2_18 | 3290 | 915 | 3161 | 530 | 3340 | 412   | 1913 | 739  | 161.1 | 16.5  |
| KP9_2_2_19 | 3264 | 926 | 3158 | 522 | 3255 | 404   | 1924 | 790  | 184.2 | 23.7  |
| KP9_2_2_20 | 3355 | 928 | 3152 | 508 | 3253 | 397   | 1861 | 748  | 126.5 | 29.1  |
| KP9_2_2_21 | 3418 | 933 | 3230 | 513 | 3259 | 398   | 1768 | 566  | 71.9  | 532   |
| KP9_2_2_22 | 3437 | 927 | 3147 | 508 | 3215 | 388   | 1762 | 540  | 69.2  | 19.7  |
| KP9_2_2_23 | 3422 | 931 | 3133 | 498 | 3179 | 387.8 | 1775 | 591  | 79.8  | 21.1  |
| KP9_2_2_24 | 3378 | 916 | 3124 | 490 | 3135 | 376.6 | 1751 | 556  | 80.8  | 26.9  |
| KP9_2_2_25 | 3330 | 911 | 3017 | 488 | 3052 | 366.5 | 1710 | 555  | 82.3  | 1390  |
| KP9_2_2_26 | 3508 | 947 | 3204 | 511 | 3192 | 388   | 1817 | 592  | 82.5  | 157   |

| Sample      | Dy   | Ho    | Er    | Tm   | Yb    | Lu    | Hf   | Ta    | W     | Pb   |
|-------------|------|-------|-------|------|-------|-------|------|-------|-------|------|
| KP9_2_2_27  | 3461 | 928   | 3135  | 500  | 3105  | 375.6 | 1783 | 605   | 85    | 34.8 |
| KP9_2_2_28  | 3479 | 946   | 3196  | 513  | 3183  | 383   | 1793 | 581   | 78    | 37.3 |
| KP9_2_2_29  | 3480 | 933   | 3128  | 504  | 3155  | 389   | 1759 | 556   | 60.2  | 32.2 |
| KP9_2_2_30  | 3460 | 943   | 3209  | 507  | 3179  | 394   | 1769 | 475   | 38.8  | 33.9 |
| KP9_2_2_31  | 3407 | 910   | 3100  | 506  | 3157  | 383.2 | 1718 | 447   | 37.4  | 36.4 |
| KP9_2_2_32  | 3302 | 892   | 3071  | 482  | 3117  | 378   | 1678 | 535   | 51.5  | 31.7 |
| KP9_2_2_33  | 3459 | 934   | 3182  | 518  | 3269  | 396   | 1786 | 554   | 52.3  | 700  |
| KP9_2_2_34  | 3404 | 922   | 3156  | 513  | 3253  | 397   | 1778 | 483   | 56.2  | 39.8 |
| KP9_2_2_35  | 3277 | 900   | 3122  | 494  | 3178  | 380   | 1712 | 383   | 31.3  | 33.5 |
| KP9_2_2_36  | 3306 | 891   | 3097  | 503  | 3170  | 390   | 1733 | 378.1 | 35.9  | 175  |
| KP9_2_2_37  | 3274 | 900   | 3150  | 513  | 3292  | 393   | 1755 | 384   | 36.9  | 18.1 |
| KP9_2_2_38  | 3098 | 863   | 2999  | 498  | 3206  | 394.1 | 1765 | 797   | 138.8 | 50.3 |
| KP9_2_2_39  | 3114 | 848   | 3061  | 512  | 3375  | 416   | 1714 | 585   | 112.4 | 58.4 |
| KP9_2_2_40  | 2985 | 811   | 3016  | 504  | 3380  | 423   | 1906 | 959   | 329   | 70.1 |
| KP9_2_2_41  | 2818 | 783   | 2851  | 487  | 3310  | 417   | 2012 | 1088  | 776   | 74.1 |
| KP9_2_2_42  | 2762 | 779   | 2840  | 487  | 3365  | 424   | 1782 | 848   | 273.3 | 74.7 |
| Eud LV01 1  | 553  | 116.1 | 317.1 | 47.3 | 302   | 40    | 2121 | 601   | 251.8 | 26.3 |
| Eud LV01 2  | 559  | 116.9 | 319.9 | 47.2 | 303   | 40.2  | 2082 | 582   | 236.2 | 27.4 |
| Eud LV01 3  | 473  | 97.1  | 269.1 | 38.5 | 256.6 | 33.8  | 2032 | 418   | 121.3 | 18.9 |
| Eud LV01 4  | 461  | 94.6  | 264.7 | 37.3 | 247.9 | 33.7  | 2028 | 429   | 123.4 | 16.2 |
| Eud LV01 5  | 511  | 106   | 300   | 42.3 | 278   | 36.8  | 1994 | 520   | 194   | 22.5 |
| Eud LV01 6  | 523  | 108.7 | 309   | 43.9 | 287   | 38.6  | 2030 | 588   | 231   | 23.4 |
| Eud LV01 7  | 518  | 108.1 | 308.7 | 44.4 | 286.3 | 37.8  | 2022 | 572   | 219.4 | 22.7 |
| Eud LV01 8  | 468  | 98.4  | 274.2 | 39.3 | 256   | 34.2  | 2050 | 424   | 123.9 | 17.2 |
| Eud LV01 9  | 465  | 99.9  | 276.1 | 39.7 | 258.9 | 34.8  | 2070 | 434.6 | 126.7 | 17.7 |
| Eud_LV01_10 | 471  | 97.7  | 273.7 | 39.2 | 259.8 | 34.2  | 2058 | 446   | 129.7 | 19.3 |
|             | 464  | 98.6  | 278.6 | 39.4 | 260.5 | 35.6  | 2069 | 431   | 136.1 | 17.7 |

| Sample      | Dy   | Ho    | Er    | Tm    | Yb    | Lu    | Hf   | Та    | W     | Pb    |
|-------------|------|-------|-------|-------|-------|-------|------|-------|-------|-------|
| Eud_LV01_12 | 473  | 100.3 | 274.8 | 39.5  | 260.2 | 35.8  | 2054 | 428   | 132.6 | 18.7  |
| Eud_LV01_13 | 525  | 109.9 | 308.1 | 44.8  | 276.4 | 39.4  | 1966 | 569   | 220   | 23.2  |
| Eud_LV01_14 | 516  | 109.1 | 298.4 | 43.4  | 283   | 38.3  | 1962 | 584   | 225.4 | 21.4  |
| Eud_LV01_15 | 521  | 109.9 | 307   | 44.3  | 283.2 | 39.6  | 2017 | 594   | 233.8 | 22.2  |
| Eud_LV01_16 | 542  | 111.6 | 309.8 | 44    | 293.6 | 39.1  | 2002 | 582   | 227.4 | 21.9  |
| Eud_LV01_17 | 550  | 113.8 | 313   | 45.2  | 302   | 40.6  | 2031 | 610   | 241.5 | 21.8  |
| Eud_LV01_18 | 533  | 110.4 | 303   | 45.4  | 291   | 38.1  | 2000 | 590   | 229.3 | 23.3  |
| Eud_NK_1    | 2606 | 606   | 1930  | 297.8 | 1966  | 272.5 | 2281 | 236.2 | 23.9  | 213.4 |
| Eud_NK_2    | 2606 | 601   | 1898  | 289.7 | 1950  | 269.3 | 2273 | 234.9 | 23    | 217.2 |
| Eud_NK_3    | 2574 | 608   | 1888  | 289.7 | 1960  | 268.4 | 2274 | 236.6 | 26.2  | 221.7 |
| Eud_NK_4    | 2639 | 611   | 1923  | 295.2 | 2011  | 274.2 | 2306 | 231.7 | 26.1  | 211.6 |
| Eud_NK_5    | 2680 | 637   | 1955  | 308.7 | 2017  | 277.9 | 2359 | 236.1 | 23.6  | 216.9 |
| Eud_NK_6    | 2651 | 621   | 1970  | 302   | 2041  | 278.9 | 2323 | 228   | 25.9  | 218.8 |
| Eud_NK_7    | 2586 | 613   | 1894  | 298.2 | 2002  | 272.6 | 2291 | 232.9 | 25.5  | 213.3 |
| Eud_NK_8    | 2604 | 616   | 1921  | 298.7 | 2004  | 273.3 | 2314 | 233.6 | 25.5  | 4400  |
| Eud_NK_9    | 2584 | 608   | 1881  | 289.6 | 1962  | 266   | 2287 | 230   | 25.4  | 216.9 |
| Eud_NK_10   | 2639 | 632   | 1936  | 294.7 | 2016  | 273.9 | 2314 | 237.5 | 24.9  | 210.1 |
| Eud_NK_11   | 2560 | 615   | 1877  | 290.1 | 1958  | 274.5 | 2281 | 231.7 | 23.7  | 219.3 |
| Eud_NK_12   | 2611 | 616   | 1903  | 295.8 | 2009  | 273.3 | 2320 | 239.7 | 25.6  | 214.2 |
| Eud_NK_13   | 2725 | 643   | 1977  | 304.6 | 2030  | 283.5 | 2390 | 251.2 | 24.5  | 212.9 |
| Eud_NK_14   | 2687 | 620   | 1914  | 299.9 | 1984  | 272.6 | 2314 | 244.1 | 24.7  | 219.1 |
| Eud_NK_15   | 2633 | 636   | 1932  | 296.5 | 2007  | 274.4 | 2275 | 236.1 | 24.4  | 211.8 |
| Eud_NK_16   | 2666 | 626   | 1901  | 300   | 2005  | 273.2 | 2308 | 241.9 | 26    | 200.6 |
| KP1_2_1     | 2671 | 743   | 2722  | 476   | 3275  | 411   | 1833 | 390   | 369   | 103.3 |
| KP1_2_2     | 2480 | 696   | 2558  | 446   | 3069  | 388.2 | 1753 | 494   | 187.8 | 106.4 |
| KP1_2_3     | 2434 | 691   | 2506  | 445   | 3052  | 387   | 1839 | 704   | 230.7 | 103   |

| Sample   | Dy   | Ho  | Er   | Tm    | Yb   | Lu    | Hf   | Ta    | W     | Pb    |
|----------|------|-----|------|-------|------|-------|------|-------|-------|-------|
| KP1_2_4  | 2404 | 685 | 2532 | 443   | 2998 | 380.9 | 1811 | 535   | 440   | 104   |
| KP1_2_5  | 2405 | 677 | 2481 | 439   | 3011 | 381.3 | 1908 | 753   | 332.4 | 117   |
| KP1_2_6  | 2345 | 659 | 2455 | 428   | 2915 | 370.6 | 1855 | 725   | 378   | 99.2  |
| KP1_2_7  | 2414 | 671 | 2507 | 440   | 3004 | 378   | 1803 | 387   | 1145  | 100.5 |
| KP1_2_8  | 2403 | 680 | 2543 | 449   | 3110 | 387.1 | 1706 | 306   | 664   | 94.2  |
| KP1_2_9  | 2355 | 669 | 2467 | 432   | 2961 | 371.8 | 1846 | 751   | 846   | 127.1 |
| KP1_2_10 | 2382 | 668 | 2500 | 434   | 2977 | 374   | 1812 | 581   | 377   | 107   |
| KP1_2_11 | 2285 | 637 | 2342 | 405   | 2770 | 349   | 1553 | 448   | 670   | 86    |
| KP1_2_12 | 2323 | 659 | 2434 | 426   | 2882 | 366   | 1655 | 483   | 181.2 | 85.4  |
| KP1_2_13 | 2290 | 649 | 2397 | 419   | 2837 | 363   | 1753 | 707   | 192.2 | 94    |
| KP1_2_14 | 2248 | 641 | 2355 | 415   | 2812 | 366.2 | 1734 | 613   | 206.7 | 97    |
| KP1_2_15 | 2264 | 642 | 2347 | 409.5 | 2862 | 362   | 1741 | 632   | 203   | 96.5  |
| KP1_2_16 | 2257 | 643 | 2381 | 419   | 2916 | 368   | 1631 | 555   | 227.8 | 94.5  |
| KP1_2_17 | 2147 | 607 | 2215 | 395   | 2748 | 349   | 1587 | 525   | 225   | 90.4  |
| KP1_2_18 | 2138 | 616 | 2265 | 387   | 2703 | 336   | 1385 | 216.7 | 321   | 78    |
| KP1_2_19 | 2267 | 633 | 2352 | 407   | 2787 | 359   | 1563 | 356.6 | 265   | 81.4  |
| KP1_2_20 | 2304 | 654 | 2416 | 414   | 2855 | 356   | 1468 | 351   | 260   | 93.1  |
| KP1_2_21 | 2205 | 622 | 2275 | 408   | 2792 | 346   | 1504 | 328   | 281   | 88.3  |
| KP1 2 22 | 2539 | 713 | 2567 | 458   | 3120 | 397   | 1744 | 421   | 557   | 94.8  |
| KP1 2 23 | 2505 | 697 | 2612 | 460   | 3158 | 392   | 1931 | 689   | 225.4 | 108   |
| KP1 2 24 | 2409 | 678 | 2517 | 439   | 3007 | 381.2 | 1873 | 668   | 220.6 | 102.3 |
| KP1 2 25 | 2393 | 675 | 2464 | 437   | 2982 | 378.7 | 1727 | 391   | 450   | 100.5 |
| KP1 2 26 | 2414 | 672 | 2465 | 434   | 3029 | 376   | 1833 | 627   | 228.5 | 104.5 |
| KP1 2 27 | 2359 | 668 | 2474 | 435   | 2992 | 375   | 1849 | 672   | 231.7 | 102.7 |
| KP1 2 28 | 2398 | 675 | 2473 | 434   | 2947 | 377   | 1712 | 582   | 393   | 101.8 |
| KP1_2_29 | 2426 | 675 | 2478 | 439   | 2946 | 377.4 | 1682 | 622   | 236.1 | 99.6  |
| KP1_2_30 | 2389 | 664 | 2430 | 427   | 2925 | 368   | 1660 | 536   | 284.6 | 88.7  |

| Sample                     | Dy   | Но    | Er  | Tm    | Yb         | Lu    | Hf   | Та    | W     | Pb   |
|----------------------------|------|-------|-----|-------|------------|-------|------|-------|-------|------|
| CBD11 10 1                 | 1123 | 269.4 | 826 | 122.3 | 762        | 99.7  | 2033 | 214.9 | 61.3  | 6.94 |
| CBD11 10 2                 | 1073 | 238.7 | 702 | 98.3  | 598        | 76.4  | 2238 | 219.6 | 85    | 6.42 |
| CBD11 10 3                 | 1011 | 239.2 | 730 | 109.2 | 663        | 89.5  | 1853 | 210.9 | 64.6  | 7.36 |
| CBD11 10 4                 | 1051 | 237.1 | 681 | 94.3  | 581        | 74.7  | 1815 | 111.4 | 37    | 4.4  |
| CBD11 10 5                 | 992  | 231.8 | 682 | 99    | 621        | 79    | 2080 | 187   | 66.2  | 5.42 |
| CBD11_10_6                 | 889  | 204.8 | 587 | 84.8  | 521        | 66.6  | 2024 | 183.5 | 70.5  | 5.43 |
| CBD11_10_7                 | 889  | 208.9 | 610 | 87.2  | 544        | 72.1  | 2181 | 140.6 | 62.1  | 4.54 |
| CBD11_10_8                 | 1003 | 231.6 | 680 | 99.4  | 610        | 81.4  | 2057 | 237.5 | 102.9 | 5.6  |
| CBD11_10_9                 | 878  | 203.1 | 585 | 83.5  | 502        | 65.8  | 1898 | 110.8 | 29    | 5    |
| CBD11_10_10                | 920  | 213.7 | 656 | 94.7  | 573        | 75    | 1786 | 142.6 | 42.3  | 4.9  |
|                            |      |       |     |       |            |       |      |       |       |      |
| CBD11_10_11                | 992  | 234   | 705 | 101.9 | 632        | 85.9  | 1980 | 155.3 | 38.1  | 6.81 |
| CBD11_10_12                | 1113 | 251.3 | 725 | 99.5  | 580        | 73.2  | 1989 | 89.4  | 34    | 5.84 |
| CBD11_10_13                | 1075 | 252.3 | 707 | 100.4 | 602        | 77.1  | 2106 | 114.1 | 49.9  | 3.25 |
| CBD11_10_14                | 1118 | 251.3 | 718 | 97.3  | 593        | 74.2  | 2104 | 193.7 | 68.1  | 8.4  |
| CBD11_10_15                | 1100 | 262.4 | 725 | 100.3 | 601        | 72.3  | 1979 | 170.9 | 58.4  | 6    |
| CBD11 10 21                | 1/3/ | 377   | 030 | 1/116 | 851        | 114.6 | 2790 | 430   | 213   | 11 1 |
| CBD11_10_21<br>CBD11_10_22 | 1765 | 305   | 880 | 131.0 | 813        | 106.6 | 2770 |       | 135   | 6.01 |
| CBD11_10_22                | 1203 | 201   | 860 | 131.1 | 813<br>810 | 100.0 | 2240 | 275   | 120.2 | 6.01 |
| CBD11_10_25                | 1272 | 207   | 009 | 127.5 | 010<br>750 | 104.2 | 2350 | 295   | 202   | 0.2  |
| CBD11_10_25                | 1228 | 287   | 850 | 122.2 | /39        | 101.4 | 2400 | 308   | 202   | 9.3  |
| CBD11_10_26                | 1189 | 284   | 866 | 126.5 | 808        | 101.5 | 2340 | 340   | 178   | 4.99 |
| CBD11_10_29                | 1015 | 239   | 711 | 104.3 | 649        | 86    | 1960 | 229   | 115   | 5.7  |
| CBD11_10_31                | 1009 | 238   | 707 | 100   | 625        | 82.5  | 1800 | 262   | 132   | 7.9  |

| Sample      | Th         | U          |  |
|-------------|------------|------------|--|
|             |            |            |  |
|             | <u>ppm</u> | <u>ppm</u> |  |
| Eud_LV01_1  | 21.1       | 48.5       |  |
| Eud_LV01_2  | 22.9       | 50.2       |  |
| Eud_LV01_3  | 23.4       | 51.2       |  |
| Eud_LV01_4  | 22.4       | 49.6       |  |
| Eud_LV01_5  | 219        | 85.5       |  |
| Eud_LV01_6  | 20.9       | 47.1       |  |
| Eud_LV01_7  | 24.6       | 48         |  |
| Eud_LV01_8  | 25.9       | 46.1       |  |
| Eud_LV01_9  | 29.3       | 49.1       |  |
| Eud_LV01_10 | 29.4       | 49.5       |  |
| Eud_LV01_11 | 25.8       | 49.6       |  |
| Eud_LV01_12 | 23.64      | 51.3       |  |
| Eud_LV01_13 | 26.5       | 46.8       |  |
| Eud_LV01_14 | 27.6       | 50.6       |  |
| Eud_LV01_15 | 23.8       | 51.5       |  |
| Eud_LV01_16 | 23.8       | 50.4       |  |
| Eud_LV01_17 | 24.5       | 50         |  |
| Eud_LV01_18 | 24.8       | 51.2       |  |
|             |            |            |  |
| Eud_NK_1    | 15.89      | 32.5       |  |
| Eud_NK_2    | 15.38      | 33.7       |  |
| Eud_NK_3    | 16.6       | 33.7       |  |
| Eud_NK_4    | 16.15      | 33.5       |  |
| Eud_NK_5    | 14.6       | 30.6       |  |
| Eud_NK_6    | 14.39      | 30.9       |  |
| Eud_NK_7    | 16         | 30.4       |  |

| Sample      | Th    | U    |
|-------------|-------|------|
| Eud_NK_8    | 15.95 | 31.5 |
| Eud_NK_9    | 15.14 | 31.3 |
| Eud_NK_10   | 14.71 | 30.3 |
| Eud_NK_11   | 14.6  | 31.8 |
| Eud_NK_12   | 15.9  | 32.8 |
| Eud_NK_13   | 15.5  | 31.2 |
| Eud_NK_14   | 15.1  | 32.7 |
| Eud_NK_15   | 15.1  | 32.4 |
| Eud_NK_16   | 16.3  | 31.2 |
| Eud_NK_17   | 16    | 33.4 |
| Eud_NK_18   | 16.08 | 33   |
|             |       |      |
| CBD11_02_1  | 8.61  | 56.8 |
| CBD11_02_2  | 17.2  | 37.4 |
| CBD11_02_3  | 13.15 | 72.6 |
| CBD11_02_4  | 8.81  | 56.9 |
| CBD11_02_5  | 8.16  | 32.2 |
| CBD11_02_6  | 7.68  | 33.7 |
| CBD11_02_7  | 12.35 | 65.8 |
| CBD11_02_8  | 7.87  | 43.5 |
| CBD11_02_9  | 6.93  | 29.2 |
| CBD11_02_10 | 10.55 | 63.6 |
|             |       |      |
| CBD11_02_11 | 5.98  | 27.9 |
| CBD11_02_12 | 6.18  | 23.5 |
| CBD11_02_13 | 6.3   | 24.5 |
|             |       |      |
| CBD11_02_16 | 6.55  | 21.9 |

| Sample      | Th    | U     |
|-------------|-------|-------|
| CBD11_02_17 | 6.48  | 16.2  |
| CBD11_02_18 | 9.2   | 17.7  |
| CBD11_02_19 | 6.18  | 16.76 |
| CBD11_02_20 | 5.96  | 13.26 |
|             |       |       |
| CBD11_02_21 | 6.67  | 20.4  |
| CBD11_02_22 | 5.54  | 21.8  |
| CBD11_02_23 | 9.05  | 28.6  |
| CBD11_02_24 | 8.3   | 25.8  |
| CBD11_02_25 | 6.2   | 17.73 |
| CBD11_02_26 | 7.73  | 26.9  |
| CBD11_02_27 | 5.42  | 18.2  |
| CBD11_02_28 | 5.17  | 15.32 |
| CBD11_02_29 | 7.27  | 23.1  |
| CBD11_02_30 | 5.51  | 16.7  |
|             |       |       |
| KP8_1_3_1   | 9.68  | 14.96 |
| KP8_1_3_2   | 10.77 | 12.72 |
| KP8_1_3_3   | 10.74 | 21.1  |
| KP8_1_3_4   | 13.9  | 27.9  |
| KP8_1_3_5   | 13.69 | 33.2  |
| KP8_1_3_6   | 13.66 | 35.3  |
| KP8_1_3_7   | 14.3  | 32.9  |
| KP8_1_3_8   | 15.2  | 32.7  |
| KP8_1_3_11  | 15.7  | 20.8  |
|             |       |       |
| KP8_1_3_18  | 8.8   | 13.3  |
| KP8_1_3_19  | 11.35 | 16.9  |

| Sample     | Th    | U    |
|------------|-------|------|
| KP8_1_3_20 | 12.21 | 18.5 |
|            |       |      |
| KP9_2_2_1  | 13.72 | 38.2 |
| KP9_2_2_2  | 17.6  | 50.1 |
| KP9_2_2_3  | 20.4  | 51   |
| KP9_2_2_4  | 21.1  | 41.8 |
| KP9_2_2_5  | 22    | 43   |
| KP9_2_2_6  | 22.3  | 43.4 |
| KP9_2_2_7  | 23    | 45.1 |
| KP9_2_2_8  | 24    | 45.3 |
| KP9_2_2_9  | 23.1  | 48   |
| KP9_2_2_10 | 24.2  | 46.7 |
|            |       |      |
| KP9_2_2_11 | 28.3  | 58.8 |
| KP9_2_2_12 | 28.6  | 59.9 |
| KP9_2_2_13 | 32.7  | 56.2 |
| KP9_2_2_14 | 33.8  | 51.5 |
| KP9_2_2_15 | 32    | 45.8 |
| KP9_2_2_16 | 32.4  | 42.1 |
| KP9_2_2_17 | 29.7  | 40.4 |
| KP9_2_2_18 | 30.7  | 36.6 |
| KP9_2_2_19 | 29.3  | 37.5 |
| KP9_2_2_20 | 29.6  | 40.3 |
| KP9_2_2_21 | 26.6  | 46.6 |
| KP9_2_2_22 | 23.8  | 38.5 |
| KP9_2_2_23 | 24    | 36.2 |
| KP9_2_2_24 | 21.8  | 36.9 |
| KP9 2 2 25 | 31.6  | 53.1 |

| Sample      | Th   | U    |
|-------------|------|------|
| KP9_2_2_26  | 22.2 | 39.6 |
| KP9_2_2_27  | 21.2 | 38.7 |
| KP9_2_2_28  | 21.6 | 40.3 |
| KP9_2_2_29  | 20.5 | 38.5 |
| KP9_2_2_30  | 20.3 | 42.3 |
| KP9_2_2_31  | 21.8 | 41.6 |
| KP9_2_2_32  | 22   | 39.5 |
| KP9_2_2_33  | 23.9 | 44.7 |
| KP9_2_2_34  | 25.9 | 45.7 |
| KP9_2_2_35  | 23.8 | 45.1 |
| KP9_2_2_36  | 26.5 | 45.9 |
| KP9_2_2_37  | 27.3 | 49.3 |
| KP9_2_2_38  | 32.2 | 49.7 |
| KP9_2_2_39  | 27.9 | 48   |
| KP9_2_2_40  | 30   | 46.7 |
| KP9_2_2_41  | 29.8 | 43.7 |
| KP9_2_2_42  | 26.8 | 45.3 |
| Eud LV01 1  | 30   | 51.1 |
| Eud LV01 2  | 29.4 | 51.8 |
| Eud LV01 3  | 24   | 51.7 |
| Eud LV01 4  | 21.6 | 50.6 |
| Eud_LV01_5  | 41.2 | 45.6 |
| Eud_LV01_6  | 27.8 | 50.1 |
| Eud_LV01_7  | 27.3 | 49.8 |
| Eud_LV01_8  | 22.9 | 50.5 |
| Eud_LV01_9  | 23.2 | 51.5 |
| Eud_LV01_10 | 22.6 | 50   |

| Th    | U                                                                                                                                                                                                                                          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22.8  | 51.2                                                                                                                                                                                                                                       |
| 42.9  | 52                                                                                                                                                                                                                                         |
| 27.4  | 49.3                                                                                                                                                                                                                                       |
| 26.1  | 48.1                                                                                                                                                                                                                                       |
| 27.8  | 48                                                                                                                                                                                                                                         |
| 28.4  | 49.4                                                                                                                                                                                                                                       |
| 29.1  | 50.1                                                                                                                                                                                                                                       |
| 27.2  | 50.7                                                                                                                                                                                                                                       |
| 15 92 | 31.6                                                                                                                                                                                                                                       |
| 15.92 | 29.3                                                                                                                                                                                                                                       |
| 16.7  | 30.1                                                                                                                                                                                                                                       |
| 15.6  | 31.9                                                                                                                                                                                                                                       |
| 16.68 | 32.7                                                                                                                                                                                                                                       |
| 16.62 | 31                                                                                                                                                                                                                                         |
| 15.6  | 29.7                                                                                                                                                                                                                                       |
| 16.4  | 30.2                                                                                                                                                                                                                                       |
| 16.1  | 31.2                                                                                                                                                                                                                                       |
| 16.08 | 33                                                                                                                                                                                                                                         |
| 16.72 | 32.1                                                                                                                                                                                                                                       |
| 16.6  | 30.2                                                                                                                                                                                                                                       |
| 16.5  | 33.5                                                                                                                                                                                                                                       |
| 16.4  | 32                                                                                                                                                                                                                                         |
| 16.56 | 30.9                                                                                                                                                                                                                                       |
| 17.11 | 31.7                                                                                                                                                                                                                                       |
| 6.48  | 64.4                                                                                                                                                                                                                                       |
| 12.19 | 49.3                                                                                                                                                                                                                                       |
|       | Th<br>22.8<br>42.9<br>27.4<br>26.1<br>27.8<br>28.4<br>29.1<br>27.2<br>15.92<br>15.8<br>16.7<br>15.6<br>16.68<br>16.62<br>15.6<br>16.4<br>16.1<br>16.08<br>16.72<br>16.6<br>16.7<br>16.6<br>16.5<br>16.4<br>16.56<br>17.11<br>6.48<br>12.19 |

| Sample   | Th    | U    |
|----------|-------|------|
| KP1_2_3  | 16.6  | 47.4 |
| KP1_2_4  | 17.7  | 47.5 |
| KP1_2_5  | 19.8  | 46.3 |
| KP1_2_6  | 21.3  | 50.1 |
| KP1_2_7  | 20.8  | 51   |
| KP1_2_8  | 21.1  | 57.4 |
| KP1_2_9  | 19.7  | 50.4 |
| KP1_2_10 | 18.8  | 51   |
| KP1_2_11 | 5.58  | 31.4 |
| KP1_2_12 | 10.03 | 39.6 |
| KP1_2_13 | 14.14 | 51.2 |
| KP1_2_14 | 14.62 | 51.9 |
| KP1_2_15 | 15.9  | 49.8 |
| KP1_2_16 | 14.2  | 49.9 |
| KP1_2_17 | 11.3  | 38.6 |
| KP1_2_18 | 4.64  | 16.1 |
| KP1_2_19 | 5.07  | 20.9 |
| KP1_2_20 | 5.75  | 54.3 |
| KP1_2_21 | 4.85  | 41.9 |
| KP1_2_22 | 7     | 66   |
| KP1_2_23 | 17.9  | 55.6 |
| KP1_2_24 | 15.99 | 54.4 |
| KP1_2_25 | 12.97 | 45   |
| KP1_2_26 | 16.84 | 50.3 |
| KP1_2_27 | 16.9  | 51.4 |
| KP1_2_28 | 13.74 | 57.2 |
| KP1_2_29 | 10.17 | 53.7 |

| Sample      | Th   | U     |
|-------------|------|-------|
| KP1_2_30    | 7.2  | 60.1  |
|             |      |       |
| CBD11_10_1  | 6.81 | 37.9  |
| CBD11_10_2  | 4.37 | 19.6  |
| CBD11_10_3  | 5.58 | 30.4  |
| CBD11_10_4  | 4.65 | 31.5  |
| CBD11_10_5  | 6.4  | 26.8  |
| CBD11_10_6  | 3.27 | 22.2  |
| CBD11_10_7  | 3.99 | 29.3  |
| CBD11_10_8  | 3.9  | 25.3  |
| CBD11_10_9  | 4.27 | 18    |
| CBD11_10_10 | 4.96 | 21.8  |
|             |      |       |
| CBD11_10_11 | 5.61 | 45.4  |
| CBD11_10_12 | 4.91 | 34.6  |
| CBD11_10_13 | 3.27 | 23    |
| CBD11_10_14 | 3.4  | 16.4  |
| CBD11_10_15 | 3.47 | 19.09 |
|             |      |       |
| CBD11_10_21 | 30.1 | 27.9  |
| CBD11_10_22 | 23.5 | 26.5  |
| CBD11_10_23 | 29.4 | 20.4  |
| CBD11_10_25 | 30.4 | 22.3  |
| CBD11_10_26 | 30.3 | 20.7  |
| CBD11_10_29 | 23   | 27.6  |
| CBD11_10_31 | 24.3 | 33.3  |

Table 2: Analytical Uncertainty

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na         | Cl         | Ca         | Mn         | Fe         | Zr         | Be         |
|-------------|--------------------------------------|------------|------------|------------|------------|------------|------------|------------|
|             |                                      | <u>ppm</u> |
| Eud LV01 1  | 0.12379                              | 3000       | 490        | 3500       | 490        | 800        | 2400       | 0.81       |
| Eud_LV01_2  | 0.12454                              | 3200       | 460        | 4300       | 390        | 820        | 2000       | 0.56       |
| Eud_LV01_3  | 0.12499                              | 3200       | 510        | 3300       | 440        | 810        | 2800       | 0.53       |
| Eud_LV01_4  | 0.12462                              | 3000       | 490        | 4000       | 410        | 770        | 2700       | 0.53       |
| Eud_LV01_5  | 0.12373                              | 3200       | 540        | 3900       | 480        | 2300       | 2600       | 1          |
| Eud_LV01_6  | 0.1246                               | 4100       | 550        | 3800       | 390        | 900        | 2600       | 0.57       |
| Eud_LV01_7  | 0.12255                              | 3300       | 590        | 3200       | 390        | 770        | 2300       | 0.55       |
| Eud_LV01_8  | 0.12129                              | 2800       | 540        | 3300       | 510        | 850        | 2400       | 0.42       |
| Eud_LV01_9  | 0.12462                              | 3000       | 550        | 3300       | 430        | 850        | 2300       | 0.62       |
| Eud_LV01_10 | 0.12386                              | 3000       | 590        | 4100       | 540        | 1100       | 2400       | 0.62       |
| Eud_LV01_11 | 0.12481                              | 3500       | 530        | 4400       | 480        | 940        | 2800       | 0.69       |
| Eud_LV01_12 | 0.12536                              | 4000       | 550        | 3800       | 400        | 1000       | 3000       | 0.59       |
| Eud_LV01_13 | 0.12145                              | 2900       | 550        | 4500       | 530        | 820        | 2700       | 0.47       |
| Eud_LV01_14 | 0.12271                              | 3300       | 460        | 4800       | 510        | 940        | 3100       |            |
| Eud_LV01_15 | 0.12502                              | 3500       | 430        | 3700       | 390        | 920        | 3100       |            |
| Eud_LV01_16 | 0.12509                              | 3500       | 480        | 3700       | 480        | 870        | 3100       | 0.12       |
| Eud_LV01_17 | 0.12413                              | 3600       | 730        | 4000       | 440        | 940        | 2900       | 0.6        |
| Eud_LV01_18 | 0.12495                              | 3300       | 630        | 3600       | 450        | 880        | 2700       |            |
|             |                                      |            |            |            |            |            |            |            |
| Eud_NK_1    | 0.18978                              | 2600       | 360        | 2800       | 410        | 700        | 2400       | 0.69       |
| Eud_NK_2    | 0.1892                               | 2900       | 290        | 2600       | 520        | 670        | 3000       | 1.1        |
| Eud_NK_3    | 0.18921                              | 2400       | 480        | 2100       | 470        | 660        | 2700       | 0.74       |
| Eud_NK_4    | 0.18969                              | 3000       | 370        | 3100       | 560        | 920        | 3300       | 1          |
| Eud_NK_5    | 0.1892                               | 2500       | 310        | 3000       | 470        | 600        | 2800       | 0.68       |
| Eud_NK_6    | 0.1896                               | 2800       | 430        | 2800       | 500        | 790        | 3100       | 0.96       |

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na   | Cl  | Ca   | Mn  | Fe   | Zr   | Be   |
|-------------|--------------------------------------|------|-----|------|-----|------|------|------|
| Eud_NK_7    | 0.18979                              | 2800 | 460 | 3100 | 450 | 720  | 2500 | 0.92 |
| Eud_NK_8    | 0.18906                              | 2600 | 530 | 2800 | 520 | 620  | 2800 | 0.84 |
| Eud_NK_9    | 0.18885                              | 2500 | 460 | 2900 | 490 | 750  | 2400 | 0.91 |
| Eud_NK_10   | 0.18911                              | 2600 | 430 | 2500 | 560 | 730  | 3000 | 0.58 |
| Eud_NK_11   | 0.18884                              | 3000 | 330 | 2700 | 480 | 960  | 3500 | 0.74 |
| Eud_NK_12   | 0.1885                               | 2500 | 410 | 2700 | 470 | 710  | 3000 |      |
| Eud_NK_13   | 0.18872                              | 2400 | 310 | 3000 | 500 | 790  | 3300 | 0.56 |
| Eud_NK_14   | 0.18938                              | 3300 | 250 | 2700 | 550 | 760  | 3100 | 0.92 |
| Eud_NK_15   | 0.18892                              | 3500 | 290 | 3200 | 530 | 790  | 3100 | 0.68 |
| Eud_NK_16   | 0.18913                              | 2400 | 300 | 2900 | 470 | 510  | 2800 | 1    |
| Eud_NK_17   | 0.1888                               | 2800 | 450 | 2700 | 450 | 820  | 3100 | 0.85 |
| Eud_NK_18   | 0.1888                               | 3000 | 480 | 3700 | 520 | 810  | 3600 | 0.85 |
|             |                                      |      |     |      |     |      |      |      |
| CBD11_02_1  | 0.1879                               | 2900 | 550 | 3300 | 110 | 1500 | 3100 | 0.51 |
| CBD11_02_2  | 0.1872                               | 3400 | 500 | 3600 | 120 | 1600 | 2900 | 0.93 |
| CBD11_02_3  | 0.1896                               | 3300 | 660 | 3400 | 100 | 1300 | 2800 | 0.46 |
| CBD11_02_4  | 0.1874                               | 3800 | 770 | 3700 | 100 | 1500 | 2900 | 0.58 |
| CBD11_02_5  | 0.1835                               | 3600 | 670 | 3600 | 120 | 1800 | 3000 | 0.73 |
| CBD11_02_6  | 0.185                                | 3500 | 600 | 3800 | 110 | 2000 | 2900 | 0.62 |
| CBD11_02_7  | 0.1919                               | 3500 | 670 | 3400 | 110 | 1400 | 2400 |      |
| CBD11_02_8  | 0.1846                               | 4400 | 650 | 3600 | 100 | 1600 | 3000 | 0.54 |
| CBD11_02_9  | 0.1841                               | 3800 | 640 | 4200 | 110 | 1300 | 2800 | 0.65 |
| CBD11_02_10 | 0.1887                               | 3200 | 560 | 3600 | 100 | 1400 | 2700 | 0.56 |
| CBD11 02 11 | 0.1844                               | 2900 | 460 | 3100 | 81  | 1300 | 2100 | 0.51 |
| CBD11_02_12 | 0.1892                               | 2500 | 640 | 3900 | 80  | 1400 | 2500 | 0.01 |
| CBD11_02_12 | 0.19099                              | 3000 | 640 | 2800 | 85  | 850  | 2200 | 0.57 |
| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na   | Cl  | Ca   | Mn  | Fe   | Zr   | Be   |
|-------------|--------------------------------------|------|-----|------|-----|------|------|------|
| CBD11_02_16 | 0.18565                              | 3100 | 500 | 2800 | 84  | 1100 | 2400 | 0.41 |
| CBD11_02_17 | 0.1878                               | 2900 | 590 | 3000 | 100 | 1300 | 2400 | 0.52 |
| CBD11_02_18 | 0.1858                               | 5000 | 590 | 5800 | 170 | 2100 | 3300 | 0.96 |
| CBD11_02_19 | 0.1797                               | 3000 | 590 | 3300 | 110 | 1200 | 2400 |      |
| CBD11_02_20 | 0.1751                               | 3600 | 580 | 3500 | 110 | 1400 | 2800 | 0.63 |
| CBD11_02_21 | 0.1829                               | 2700 | 500 | 4000 | 100 | 1300 | 3100 | 0.54 |
| CBD11_02_22 | 0.1905                               | 3100 | 530 | 3200 | 96  | 1400 | 2800 | 0.36 |
| CBD11_02_23 | 0.1923                               | 2700 | 640 | 3800 | 100 | 1600 | 2800 | 0.53 |
| CBD11_02_24 | 0.1857                               | 3200 | 610 | 3200 | 93  | 1400 | 2500 | 0.53 |
| CBD11_02_25 | 0.1837                               | 3600 | 570 | 3200 | 120 | 1900 | 3000 | 0.57 |
| CBD11_02_26 | 0.188                                | 3200 | 580 | 3800 | 83  | 1400 | 2700 |      |
| CBD11_02_27 | 0.1882                               | 2900 | 540 | 3000 | 75  | 1300 | 2700 | 0.75 |
| CBD11_02_28 | 0.1874                               | 3100 | 640 | 4000 | 88  | 1600 | 2500 | 0.72 |
| CBD11_02_29 | 0.1851                               | 2900 | 540 | 3200 | 83  | 1400 | 2300 | 0.47 |
| CBD11_02_30 | 0.1881                               | 3200 | 530 | 3100 | 78  | 1500 | 2500 | 0.58 |
| KP1_2_1     | 0.2358                               | 3300 | 490 | 4600 | 370 | 500  | 2700 | 1.1  |
| KP1_2_2     | 0.2338                               | 2100 | 480 | 4300 | 250 | 470  | 2900 | 1.3  |
| KP1_2_3     | 0.2391                               | 2600 | 530 | 5200 | 330 | 420  | 3300 | 1.6  |
| KP1_2_4     | 0.2388                               | 4100 | 720 | 5200 | 390 | 520  | 3500 | 1.6  |
| KP1_2_5     | 0.2463                               | 3200 | 570 | 4700 | 400 | 460  | 3200 | 1.2  |
| KP1_2_6     | 0.2446                               | 2700 | 650 | 5000 | 330 | 440  | 2500 | 1.1  |
| KP1_2_7     | 0.2357                               | 2900 | 590 | 4900 | 340 | 500  | 2900 | 1.2  |
| KP1_2_8     | 0.2353                               | 2800 | 450 | 4200 | 350 | 500  | 2400 | 1.2  |
| KP1_2_11    | 0.2119                               | 2800 | 470 | 5300 | 520 | 490  | 3600 | 1.4  |
| KP1_2_18    | 0.2224                               | 3100 | 510 | 5400 | 440 | 520  | 3200 | 1.4  |

| Sample     | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na   | Cl  | Ca   | Mn  | Fe  | Zr   | Be   |
|------------|--------------------------------------|------|-----|------|-----|-----|------|------|
| KP1_2_19   | 0.2127                               | 3400 | 530 | 6400 | 520 | 600 | 2900 | 1.7  |
| KP1_2_20   | 0.2091                               | 3200 | 430 | 5500 | 410 | 510 | 3200 | 1.4  |
| KP9_2_2_1  | 0.1951                               | 2700 | 360 | 4200 | 340 | 530 | 2600 | 1.1  |
| KP9_2_2_2  | 0.1965                               | 2500 | 340 | 4300 | 350 | 510 | 2800 | 1    |
| KP9_2_2_3  | 0.1982                               | 2300 | 290 | 3900 | 380 | 610 | 3400 | 0.93 |
| KP9_2_2_4  | 0.1966                               | 2800 | 370 | 4000 | 420 | 540 | 3000 | 1.1  |
| KP9_2_2_5  | 0.1986                               | 3000 | 410 | 4100 | 350 | 550 | 3300 | 0.72 |
| KP9_2_2_6  | 0.2005                               | 2800 | 320 | 3800 | 440 | 620 | 3100 | 0.71 |
| KP9_2_2_7  | 0.2011                               | 2900 | 310 | 3700 | 290 | 500 | 2600 | 0.88 |
| KP9_2_2_8  | 0.2013                               | 2300 | 380 | 3300 | 330 | 540 | 2900 | 0.65 |
| KP9_2_2_9  | 0.2024                               | 2400 | 400 | 4500 | 350 | 510 | 2800 | 0.84 |
| KP9_2_2_10 | 0.2037                               | 2400 | 320 | 3500 | 280 | 460 | 2900 | 0.72 |
| KP9_2_2_11 | 0.1944                               | 2500 | 430 | 4000 | 380 | 590 | 3000 | 1.1  |
| KP9_2_2_12 | 0.196                                | 2600 | 420 | 4000 | 340 | 490 | 2300 | 1.2  |
| KP9_2_2_13 | 0.1947                               | 2500 | 430 | 4100 | 370 | 400 | 2500 | 1    |
| KP9_2_2_14 | 0.1984                               | 2400 | 440 | 3900 | 430 | 500 | 3300 | 1    |
| KP9_2_2_15 | 0.2039                               | 2600 | 400 | 4700 | 320 | 440 | 2600 | 1.1  |
| KP9_2_2_16 | 0.204                                | 2600 | 430 | 3000 | 300 | 460 | 2400 | 0.97 |
| KP9_2_2_17 | 0.2084                               | 2300 | 430 | 3700 | 360 | 490 | 3100 | 0.96 |
| KP9_2_2_18 | 0.2078                               | 2500 | 420 | 3800 | 380 | 530 | 3100 | 0.95 |
| KP9_2_2_19 | 0.2065                               | 2500 | 390 | 5200 | 400 | 470 | 2800 | 1    |
| KP9_2_2_20 | 0.2032                               | 2700 | 460 | 3500 | 420 | 460 | 2600 | 0.97 |
| KP9_2_2_21 | 0.211                                | 2500 | 400 | 3700 | 360 | 500 | 3300 | 1    |
| KP9_2_2_22 | 0.2113                               | 2800 | 440 | 4300 | 320 | 490 | 2400 | 0.77 |
| KP9_2_2_23 | 0.2112                               | 2600 | 400 | 3500 | 320 | 450 | 2500 | 0.84 |
| KP9_2_2_24 | 0.213                                | 3000 | 480 | 3200 | 350 | 530 | 2600 | 0.97 |

| Sample     | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na   | Cl  | Ca   | Mn  | Fe   | Zr   | Be   |
|------------|--------------------------------------|------|-----|------|-----|------|------|------|
| KP9_2_2_25 | 0.2111                               | 2300 | 350 | 5100 | 340 | 880  | 3000 | 1.3  |
| KP9_2_2_26 | 0.2139                               | 2800 | 340 | 3600 | 380 | 510  | 3200 | 1.1  |
| KP9_2_2_27 | 0.2163                               | 2000 | 410 | 3100 | 360 | 470  | 2500 | 0.86 |
| KP9_2_2_28 | 0.2182                               | 2400 | 440 | 4300 | 260 | 400  | 2400 | 0.63 |
| KP9_2_2_29 | 0.2182                               | 2100 | 390 | 3400 | 310 | 520  | 2700 | 0.84 |
| KP9_2_2_30 | 0.2229                               | 3000 | 450 | 3800 | 330 | 480  | 2600 | 0.84 |
| KP9_2_2_31 | 0.221                                | 2600 | 530 | 3900 | 320 | 470  | 2200 | 0.98 |
| KP9_2_2_32 | 0.2164                               | 2100 | 560 | 4300 | 310 | 410  | 2100 | 0.84 |
| KP9_2_2_33 | 0.2157                               | 3100 | 480 | 4300 | 340 | 550  | 2700 | 0.66 |
| KP9_2_2_34 | 0.214                                | 2300 | 480 | 4000 | 330 | 500  | 2400 | 1.1  |
| KP9_2_2_35 | 0.2247                               | 2600 | 550 | 3500 | 320 | 500  | 2500 | 0.96 |
| KP9_2_2_36 | 0.2219                               | 2500 | 680 | 3800 | 260 | 500  | 2900 | 0.9  |
| KP9_2_2_37 | 0.2228                               | 2600 | 660 | 4400 | 350 | 390  | 2700 | 0.77 |
| KP9_2_2_38 | 0.1982                               | 2600 | 470 | 4300 | 410 | 400  | 2600 | 1.2  |
| KP9_2_2_39 | 0.2139                               | 2600 | 580 | 4000 | 360 | 550  | 2900 | 1.3  |
| KP9_2_2_40 | 0.2006                               | 2800 | 470 | 5200 | 420 | 540  | 2900 | 0.85 |
| KP9_2_2_41 | 0.1924                               | 2900 | 460 | 4900 | 440 | 500  | 2600 | 1    |
| KP9_2_2_42 | 0.1943                               | 2400 | 520 | 5000 | 310 | 510  | 2500 | 1.1  |
| Eud LV01 1 | 0.1212                               | 2900 | 390 | 3300 | 500 | 790  | 2200 | 1    |
| Eud LV01 2 | 0.12103                              | 3100 | 520 | 3500 | 460 | 800  | 3300 | 0.67 |
| Eud LV01 3 | 0.12452                              | 3300 | 390 | 3300 | 370 | 790  | 2300 | 0.51 |
| Eud LV01 4 | 0.12478                              | 3100 | 450 | 3800 | 430 | 850  | 2700 | 0.42 |
| Eud LV01 5 | 0.12217                              | 3700 | 490 | 3800 | 480 | 990  | 2900 | 0.89 |
| Eud_LV01_6 | 0.12129                              | 3500 | 570 | 4300 | 530 | 1000 | 2500 | 0.62 |
| Eud_LV01_7 | 0.12132                              | 3600 | 550 | 4400 | 510 | 950  | 3200 | 1    |
| Eud_LV01_8 | 0.12421                              | 3600 | 600 | 4100 | 380 | 880  | 2600 | 0.85 |
| Eud_LV01_9 | 0.12447                              | 3200 | 700 | 4100 | 420 | 1000 | 2900 | 0.42 |

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na   | Cl  | Ca   | Mn  | Fe   | Zr   | Be   |
|-------------|--------------------------------------|------|-----|------|-----|------|------|------|
| Eud_LV01_10 | 0.12428                              | 3200 | 660 | 3100 | 540 | 1000 | 2300 |      |
| Eud_LV01_11 | 0.12471                              | 3200 | 570 | 3300 | 410 | 990  | 2500 | 0.55 |
| Eud_LV01_12 | 0.12394                              | 4000 | 730 | 5000 | 440 | 970  | 2600 | 1.1  |
| Eud_LV01_13 | 0.12172                              | 3300 | 720 | 4400 | 460 | 1000 | 2900 | 1    |
| Eud_LV01_14 | 0.12129                              | 3400 | 780 | 4400 | 520 | 910  | 3100 | 0.96 |
| Eud_LV01_15 | 0.12063                              | 4100 | 710 | 4800 | 600 | 980  | 3100 | 0.55 |
| Eud_LV01_16 | 0.12149                              | 3300 | 760 | 4200 | 480 | 940  | 2600 | 0.88 |
| Eud_LV01_17 | 0.12081                              | 4400 | 980 | 5100 | 540 | 1000 | 2900 |      |
| Eud_LV01_18 | 0.12068                              | 3400 | 720 | 4200 | 520 | 900  | 2900 | 0.78 |
| Eud_NK_1    | 0.19107                              | 2600 | 400 | 2500 | 510 | 650  | 2200 | 0.99 |
| Eud_NK_2    | 0.18994                              | 3100 | 380 | 2700 | 490 | 790  | 3000 | 0.58 |
| Eud_NK_3    | 0.1894                               | 2800 | 340 | 2800 | 570 | 710  | 2900 | 0.83 |
| Eud_NK_4    | 0.191                                | 3400 | 390 | 3100 | 580 | 800  | 2800 | 0.68 |
| Eud_NK_5    | 0.1914                               | 2800 | 400 | 2300 | 600 | 710  | 3600 | 0.59 |
| Eud_NK_6    | 0.1902                               | 3400 | 440 | 3700 | 580 | 880  | 3000 | 0.65 |
| Eud_NK_7    | 0.18936                              | 2600 | 430 | 3300 | 540 | 810  | 3100 | 0.66 |
| Eud_NK_8    | 0.18895                              | 3300 | 350 | 2800 | 400 | 690  | 3100 | 0.82 |
| Eud_NK_9    | 0.18969                              | 3100 | 400 | 3400 | 570 | 680  | 3100 | 0.75 |
| Eud_NK_10   | 0.18915                              | 3300 | 470 | 3500 | 580 | 740  | 3400 | 0.61 |
| Eud_NK_11   | 0.19019                              | 2800 | 350 | 2900 | 450 | 730  | 3000 | 0.92 |
| Eud_NK_12   | 0.1895                               | 2700 | 490 | 3400 | 560 | 850  | 3000 |      |
| Eud_NK_13   | 0.1904                               | 3200 | 620 | 3000 | 640 | 780  | 3500 | 0.76 |
| Eud_NK_14   | 0.1896                               | 3300 | 440 | 3100 | 520 | 750  | 3200 | 0.81 |
| Eud_NK_15   | 0.1892                               | 3300 | 500 | 3300 | 560 | 1000 | 3400 | 0.5  |
| Eud_NK_16   | 0.18881                              | 3200 | 520 | 3500 | 570 | 750  | 2700 | 0.74 |
| KP1_2_1     | 0.20313                              | 2600 | 450 | 3500 | 230 | 570  | 2700 | 0.93 |

| Sample   | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na   | Cl  | Ca   | Mn  | Fe  | Zr   | Be   |
|----------|--------------------------------------|------|-----|------|-----|-----|------|------|
| KP1_2_2  | 0.19086                              | 2300 | 400 | 3900 | 280 | 610 | 2300 | 1.3  |
| KP1_2_3  | 0.1902                               | 2300 | 410 | 3500 | 370 | 630 | 3000 | 1.2  |
| KP1_2_4  | 0.198                                | 2200 | 440 | 3700 | 260 | 510 | 2500 | 1.1  |
| KP1_2_5  | 0.19013                              | 2300 | 480 | 3400 | 260 | 440 | 2600 | 1.3  |
| KP1_2_6  | 0.1916                               | 2700 | 420 | 3600 | 250 | 540 | 2300 | 1.1  |
| KP1_2_7  | 0.19355                              | 2400 | 360 | 4500 | 350 | 620 | 2800 | 1.3  |
| KP1_2_8  | 0.20088                              | 2200 | 400 | 3800 | 240 | 420 | 2200 | 1.3  |
| KP1_2_9  | 0.1901                               | 2200 | 430 | 4000 | 300 | 480 | 2400 | 1.2  |
| KP1_2_10 | 0.1931                               | 2500 | 550 | 3800 | 310 | 530 | 2700 | 1.1  |
| KP1_2_11 | 0.1908                               | 2800 | 540 | 4700 | 300 | 760 | 3000 |      |
| KP1_2_12 | 0.1886                               | 3300 | 460 | 3400 | 330 | 640 | 3100 | 0.89 |
| KP1_2_13 | 0.1861                               | 2800 | 480 | 3900 | 320 | 540 | 2400 | 0.95 |
| KP1_2_14 | 0.1878                               | 2700 | 560 | 3500 | 370 | 610 | 3300 | 1.5  |
| KP1_2_15 | 0.1914                               | 2600 | 740 | 4500 | 330 | 560 | 2700 | 0.96 |
| KP1_2_16 | 0.1922                               | 2400 | 500 | 4400 | 310 | 600 | 3300 | 1    |
| KP1_2_17 | 0.1877                               | 2600 | 640 | 5100 | 350 | 700 | 2800 | 1.2  |
| KP1_2_18 | 0.1917                               | 1900 | 580 | 5100 | 250 | 650 | 2700 | 1.3  |
| KP1_2_19 | 0.1922                               | 2800 | 730 | 3800 | 330 | 720 | 3400 | 1.3  |
| KP1_2_20 | 0.1954                               | 2700 | 600 | 4200 | 240 | 750 | 2800 | 0.98 |
| KP1_2_21 | 0.2                                  | 3000 | 720 | 4400 | 360 | 750 | 3600 | 0.83 |
| KP1_2_22 | 0.2001                               | 3400 | 620 | 5200 | 420 | 970 | 3500 | 0.74 |
| KP1_2_23 | 0.1893                               | 3100 | 530 | 4200 | 330 | 570 | 3500 | 0.87 |
| KP1_2_24 | 0.1886                               | 2600 | 610 | 4500 | 290 | 510 | 2800 | 0.74 |
| KP1_2_25 | 0.1931                               | 2700 | 530 | 4100 | 270 | 590 | 2500 | 0.91 |
| KP1_2_26 | 0.1921                               | 3500 | 540 | 4500 | 350 | 720 | 3100 | 0.88 |
| KP1_2_27 | 0.1907                               | 2300 | 570 | 4000 | 370 | 520 | 2800 | 0.91 |
| KP1_2_28 | 0.1896                               | 2500 | 640 | 4100 | 290 | 590 | 3300 | 0.97 |

| Sample      | <sup>147</sup> Sm/ <sup>144</sup> Nd | Na   | Cl   | Ca   | Mn  | Fe   | Zr   | Be   |
|-------------|--------------------------------------|------|------|------|-----|------|------|------|
| KP1_2_29    | 0.1877                               | 3000 | 550  | 4300 | 330 | 620  | 2600 | 0.85 |
| KP1_2_30    | 0.1874                               | 2700 | 520  | 4200 | 240 | 590  | 2600 | 1    |
| CBD11 10 1  | 0.188                                | 2400 | 600  | 3700 | 130 | 1400 | 2500 |      |
| CBD11 10 2  | 0.1749                               | 2500 | 560  | 3500 | 140 | 1400 | 2600 | 0.66 |
| CBD11 10 3  | 0.1867                               | 2600 | 570  | 3900 | 140 | 1300 | 3100 | 0.5  |
| CBD11 10 4  | 0.1715                               | 2500 | 710  | 3600 | 95  | 1500 | 2700 | 0.6  |
| CBD11_105   | 0.182                                | 2600 | 470  | 3300 | 130 | 1300 | 2600 | 0.65 |
| CBD11_106   | 0.1768                               | 3000 | 630  | 3200 | 130 | 1200 | 2500 |      |
| CBD11_107   | 0.1728                               | 2700 | 550  | 3500 | 130 | 1300 | 3000 | 0.65 |
| CBD11_108   | 0.1839                               | 3100 | 430  | 3700 | 120 | 1600 | 2400 |      |
| CBD11_109   | 0.159                                | 3000 | 750  | 3400 | 120 | 1300 | 2500 | 0.76 |
| CBD11_1010  | 0.195                                | 3200 | 630  | 3900 | 110 | 1400 | 2600 | 0.56 |
| CBD11 10 11 | 0.2067                               | 3400 | 730  | 5100 | 220 | 1300 | 5400 | 0.7  |
| CBD11 10 12 | 0.1978                               | 2500 | 660  | 3100 | 120 | 1300 | 3000 | 0.81 |
| CBD11 10 13 | 0.1996                               | 2800 | 730  | 2900 | 130 | 1300 | 2500 | 0.54 |
| CBD11 10 14 | 0.1886                               | 2800 | 700  | 2600 | 130 | 1600 | 3100 |      |
| CBD11_1015  | 0.1967                               | 2900 | 670  | 3700 | 120 | 1600 | 2900 | 0.73 |
| CBD11 10 21 | 0.1455                               | 5900 | 1300 | 8400 | 370 | 2000 | 4900 | 1.3  |
| CBD11_1022  | 0.1465                               | 4900 | 840  | 4200 | 210 | 1600 | 3200 |      |
| CBD11 10 23 | 0.146                                | 5600 | 780  | 5700 | 260 | 1600 | 4300 | 0.54 |
| CBD11 10 25 | 0.1415                               | 5100 | 910  | 6400 | 290 | 2900 | 4300 | 0.9  |
| CBD11 10 26 | 0.1421                               | 4900 | 1300 | 8000 | 360 | 2800 | 7200 | 0.49 |
| CBD11 10 29 | 0.1432                               | 7700 | 1300 | 8000 | 320 | 2800 | 6200 | 1.4  |
| CBD11 10 31 | 0.145                                | 6600 | 2000 | 9200 | 330 | 3200 | 5500 | 0.79 |

| Sample      | Mg         | Al         | K          | Ti         | Ga         | Rb         | Sr         | Y          |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
|             | <u>ppm</u> |
|             |            | • •        |            | 100        | • (        |            | • • • •    |            |
| Eud_LV01_1  | 15         | 28         | 91         | 120        | 2.6        | 0.48       | 200        | 59         |
| Eud_LV01_2  | 15         | 26         | 90         | 98         | 2.6        | 0.56       | 200        | 48         |
| Eud_LV01_3  | 16         | 30         | 93         | 94         | 2.1        | 0.58       | 230        | 60         |
| Eud_LV01_4  | 16         | 27         | 90         | 95         | 2.5        | 0.56       | 240        | 60         |
| Eud_LV01_5  | 22         | 340        | 150        | 110        | 2.2        | 0.53       | 250        | 69         |
| Eud_LV01_6  | 15         | 25         | 89         | 140        | 2.2        | 0.49       | 240        | 66         |
| Eud_LV01_7  | 17         | 23         | 100        | 120        | 2.8        | 0.62       | 350        | 52         |
| Eud_LV01_8  | 22         | 28         | 98         | 120        | 2.9        | 0.7        | 310        | 69         |
| Eud_LV01_9  | 13         | 22         | 81         | 87         | 2.6        | 0.52       | 230        | 49         |
| Eud_LV01_10 | 16         | 23         | 110        | 110        | 2.4        | 0.58       | 230        | 60         |
| Eud_LV01_11 | 15         | 27         | 87         | 110        | 2.3        | 0.61       | 220        | 64         |
| Eud_LV01_12 | 17         | 29         | 74         | 120        | 2.2        | 0.55       | 220        | 52         |
| Eud_LV01_13 | 20         | 22         | 100        | 140        | 2.7        | 0.45       | 300        | 61         |
| Eud_LV01_14 | 18         | 24         | 88         | 120        | 3.3        | 0.69       | 340        | 73         |
| Eud_LV01_15 | 17         | 26         | 91         | 140        | 2.3        | 0.62       | 260        | 71         |
| Eud_LV01_16 | 18         | 33         | 120        | 130        | 3.1        | 0.47       | 300        | 75         |
| Eud_LV01_17 | 14         | 32         | 87         | 130        | 3.1        | 0.47       | 230        | 72         |
| Eud_LV01_18 | 17         | 30         | 110        | 130        | 2.6        | 0.64       | 230        | 61         |
|             |            |            |            |            |            |            |            |            |
| Eud_NK_1    | 8.4        | 51         | 110        | 38         | 2.6        | 1.5        | 15         | 370        |
| Eud_NK_2    | 8.2        | 58         | 190        | 41         | 3.2        | 1.5        | 22         | 460        |
| Eud_NK_3    | 8.6        | 46         | 150        | 35         | 2.5        | 1.5        | 17         | 340        |
| Eud_NK_4    | 9.7        | 79         | 180        | 41         | 3          | 1.6        | 22         | 440        |
| Eud_NK_5    | 8.3        | 47         | 110        | 42         | 2.3        | 1.8        | 18         | 380        |
| Eud_NK_6    | 8.9        | 64         | 120        | 36         | 2.5        | 1.5        | 22         | 510        |

| Sample      | Mg  | Al  | K   | Ti | Ga  | Rb   | Sr  | Y   |
|-------------|-----|-----|-----|----|-----|------|-----|-----|
| Eud_NK_7    | 9.7 | 73  | 170 | 42 | 2.6 | 1.7  | 21  | 410 |
| Eud_NK_8    | 9.5 | 70  | 140 | 39 | 2.5 | 1.7  | 21  | 400 |
| Eud_NK_9    | 9   | 60  | 120 | 42 | 2.6 | 1.7  | 18  | 410 |
| Eud_NK_10   | 8.7 | 63  | 130 | 34 | 2.9 | 1.8  | 16  | 420 |
| Eud_NK_11   | 10  | 56  | 110 | 42 | 2.7 | 1.5  | 19  | 410 |
| Eud_NK_12   | 8.9 | 47  | 99  | 46 | 2.4 | 1.8  | 15  | 320 |
| Eud_NK_13   | 9.6 | 56  | 120 | 37 | 2.7 | 1.7  | 19  | 370 |
| Eud_NK_14   | 9.5 | 58  | 100 | 44 | 3.2 | 1.8  | 20  | 430 |
| Eud_NK_15   | 9.5 | 57  | 130 | 39 | 3.2 | 1.4  | 22  | 460 |
| Eud_NK_16   | 7.8 | 50  | 110 | 43 | 2.2 | 1.4  | 17  | 360 |
| Eud_NK_17   | 10  | 61  | 130 | 46 | 3.2 | 1.8  | 17  | 450 |
| Eud_NK_18   | 9.9 | 63  | 160 | 43 | 3.2 | 1.5  | 22  | 530 |
| CDD11 02 1  |     | 21  | 120 | 10 | 15  | 0.75 | 0.1 | 150 |
| CBD11_02_1  | 4 5 | 31  | 120 | 48 | 4.5 | 0.75 | 9.1 | 150 |
| CBD11_02_2  | 4.5 | 190 | 110 | 49 | 3.7 | 0.82 | 9   | 150 |
| CBD11_02_3  | 3.5 | 28  | 110 | 36 | 4   | 0.64 | 1.1 | 160 |
| CBD11_02_4  |     | 35  | 110 | 45 | 4.3 | 0.79 | 8.5 | 130 |
| CBD11_02_5  | 4   | 35  | 160 | 56 | 4   | 1    | 13  | 180 |
| CBD11_02_6  | 3.6 | 38  | 140 | 51 | 4.1 | 0.92 | 11  | 160 |
| CBD11_02_7  |     | 37  | 150 | 43 | 3.2 | 0.83 | 8.2 | 160 |
| CBD11_02_8  | 4.3 | 34  | 140 | 52 | 3.4 | 0.74 | 8.8 | 150 |
| CBD11_02_9  |     | 31  | 120 | 45 | 4.3 | 0.95 | 12  | 160 |
| CBD11_02_10 | 3.9 | 34  | 140 | 48 | 3.6 | 0.75 | 8.7 | 130 |
| CBD11 02 11 |     | 23  | 240 | 43 | 3.5 | 0.78 | 9.8 | 110 |
| CBD11_02_12 |     | 20  | 98  | 32 | 3.4 | 0.73 | 9.9 | 160 |
| CBD11_02_12 | 3.5 | 30  | 90  | 31 | 3.8 | 0.76 | 9.6 | 120 |

| Sample      | Mg  | Al  | K   | Ti | Ga  | Rb   | Sr  | Y   |
|-------------|-----|-----|-----|----|-----|------|-----|-----|
| CBD11_02_16 | 3.2 | 31  | 150 | 39 | 3.6 | 0.83 | 9.4 | 120 |
| CBD11_02_17 | 3.4 | 28  | 120 | 39 | 3.5 | 0.57 | 10  | 140 |
| CBD11_02_18 | 4.5 | 55  | 83  | 42 | 6.3 | 0.75 | 13  | 220 |
| CBD11_02_19 | 3   | 33  | 100 | 38 | 4.4 | 0.63 | 10  | 160 |
| CBD11_02_20 | 2.7 | 30  | 82  | 35 | 3.8 | 0.75 | 10  | 150 |
| CBD11_02_21 |     | 26  | 110 | 38 | 3.8 | 0.87 | 11  | 160 |
| CBD11_02_22 | 3.3 | 23  | 120 | 31 | 3.3 | 0.74 | 10  | 180 |
| CBD11_02_23 | 3.2 | 38  | 100 | 32 | 5   | 0.67 | 9.9 | 170 |
| CBD11_02_24 |     | 28  | 110 | 30 | 3.4 | 0.7  | 7.8 | 150 |
| CBD11_02_25 | 3.4 | 28  | 50  | 40 | 3.9 | 0.78 | 11  | 150 |
| CBD11_02_26 | 3.2 | 200 | 63  | 27 | 4.3 | 0.68 | 10  | 180 |
| CBD11_02_27 | 3   | 30  | 120 | 31 | 3.3 | 0.8  | 9.2 | 150 |
| CBD11_02_28 | 2.4 | 48  | 140 | 52 | 3.4 | 0.67 | 9.5 | 140 |
| CBD11_02_29 | 3.3 | 29  | 110 | 38 | 3.7 | 0.85 | 8.7 | 140 |
| CBD11_02_30 |     | 36  | 98  | 29 | 3.8 | 0.77 | 8.9 | 140 |
| KP1_2_1     | 27  | 53  | 81  | 47 | 3.4 | 2.2  | 28  | 490 |
| KP1_2_2     | 29  | 51  | 150 | 42 | 3.7 | 2.4  | 28  | 510 |
| KP1_2_3     | 33  | 53  | 140 | 48 | 4.2 | 2.6  | 29  | 500 |
| KP1_2_4     | 35  | 69  | 190 | 71 | 4.5 | 3.2  | 43  | 650 |
| KP1_2_5     | 30  | 57  | 140 | 45 | 4.9 | 2.4  | 28  | 590 |
| KP1_2_6     | 29  | 45  | 150 | 55 | 4.1 | 2.1  | 27  | 570 |
| KP1_2_7     | 28  | 50  | 150 | 57 | 3.6 | 2.6  | 26  | 530 |
| KP1_2_8     | 31  | 49  | 150 | 44 | 3.9 | 2.4  | 25  | 480 |
| KP1_2_11    | 29  | 75  | 110 | 59 | 6.3 | 3.1  | 35  | 740 |
| KP1_2_18    | 42  | 57  | 160 | 45 | 5   | 2.5  | 38  | 680 |

| Sample           | Mg | Al | K   | Ti | Ga  | Rb  | Sr | Y   |
|------------------|----|----|-----|----|-----|-----|----|-----|
| KP1_2_19         | 36 | 66 | 190 | 49 | 5   | 2.6 | 40 | 700 |
| KP1_2_20         | 30 | 47 | 150 | 37 | 4.6 | 2.4 | 32 | 590 |
| КР9 2 2 1        | 15 | 15 | 79  | 58 | 34  | 19  | 23 | 560 |
| $KP_{2_{2_{1}}}$ | 16 | 19 | 160 | 60 | 3 3 | 2.2 | 23 | 570 |
| KP9 2 2 3        | 20 | 16 | 180 | 65 | 3.5 | 2.2 | 25 | 650 |
| KP9 2 2 4        | 20 | 19 | 140 | 50 | 3.5 | 1.9 | 28 | 600 |
| KP9 2 2 5        | 20 | 22 | 200 | 52 | 3.4 | 2.3 | 23 | 610 |
| KP9 2 2 6        | 18 | 24 | 130 | 53 | 3.9 | 2.2 | 23 | 580 |
| KP9 2 2 7        | 21 | 23 | 150 | 45 | 3.8 | 1.9 | 21 | 510 |
| KP9 2 2 8        | 19 | 24 | 140 | 66 | 2.6 | 1.9 | 21 | 490 |
| KP9 2 2 9        | 19 | 26 | 150 | 57 | 3.1 | 1.7 | 21 | 560 |
| KP9_2_2_10       | 21 | 25 | 110 | 61 | 2.8 | 1.9 | 21 | 480 |
|                  |    |    |     |    |     |     |    |     |
| KP9_2_2_11       | 21 | 27 | 160 | 53 | 4.9 | 2.1 | 24 | 570 |
| KP9_2_2_12       | 22 | 29 | 170 | 60 | 3.6 | 2.1 | 22 | 540 |
| KP9_2_2_13       | 24 | 26 | 170 | 62 | 4.1 | 1.6 | 24 | 540 |
| KP9_2_2_14       | 24 | 28 | 140 | 71 | 3.2 | 2.1 | 24 | 670 |
| KP9_2_2_15       | 24 | 22 | 140 | 81 | 4   | 1.4 | 23 | 630 |
| KP9_2_2_16       | 17 | 20 | 140 | 71 | 3.3 | 1.9 | 17 | 440 |
| KP9_2_2_17       | 24 | 19 | 140 | 85 | 3.4 | 1.8 | 23 | 620 |
| KP9_2_2_18       | 23 | 20 | 190 | 94 | 4   | 1.5 | 24 | 670 |
| KP9_2_2_19       | 23 | 18 | 130 | 76 | 3.4 | 1.9 | 24 | 590 |
| KP9_2_2_20       | 24 | 20 | 160 | 89 | 4.1 | 1.6 | 24 | 640 |
| KP9_2_2_21       | 30 | 22 | 150 | 84 | 3.9 | 1.6 | 24 | 690 |
| KP9_2_2_22       | 18 | 17 | 75  | 82 | 3.4 | 2   | 21 | 570 |
| KP9_2_2_23       | 23 | 18 | 150 | 91 | 3.3 | 1.5 | 21 | 660 |
| KP9_2_2_24       | 20 | 15 | 160 | 87 | 3.9 | 1.6 | 20 | 560 |

| Sample     | Mg | Al | Κ   | Ti  | Ga  | Rb   | Sr  | Y   |
|------------|----|----|-----|-----|-----|------|-----|-----|
| KP9_2_2_25 | 42 | 30 | 66  | 84  | 2.9 | 1.9  | 35  | 640 |
| KP9_2_2_26 | 23 | 13 | 85  | 95  | 4.2 | 1.9  | 22  | 690 |
| KP9_2_2_27 | 22 | 15 | 140 | 88  | 3.9 | 2.1  | 20  | 540 |
| KP9_2_2_28 | 22 | 17 | 130 | 89  | 2.8 | 1.6  | 21  | 600 |
| KP9_2_2_29 | 19 | 18 | 120 | 79  | 3.2 | 1.6  | 22  | 630 |
| KP9_2_2_30 | 25 | 17 | 170 | 100 | 3.7 | 1.9  | 22  | 600 |
| KP9_2_2_31 | 22 | 18 | 160 | 91  | 3.5 | 1.9  | 19  | 650 |
| KP9_2_2_32 | 20 | 18 | 130 | 91  | 3.6 | 1.9  | 18  | 560 |
| KP9_2_2_33 | 24 | 21 | 170 | 110 | 4.1 | 2    | 22  | 660 |
| KP9_2_2_34 | 21 | 21 | 150 | 110 | 3.7 | 1.6  | 21  | 560 |
| KP9_2_2_35 | 19 | 23 | 150 | 110 | 3.9 | 1.8  | 22  | 600 |
| KP9_2_2_36 | 21 | 24 | 150 | 110 | 3.7 | 2.1  | 24  | 740 |
| KP9_2_2_37 | 28 | 26 | 170 | 110 | 3.6 | 1.6  | 21  | 690 |
| KP9_2_2_38 | 22 | 23 | 120 | 87  | 3.3 | 2    | 22  | 530 |
| KP9_2_2_39 | 22 | 35 | 150 | 87  | 3.4 | 1.8  | 25  | 650 |
| KP9_2_2_40 | 20 | 32 | 170 | 84  | 4.3 | 2.3  | 25  | 590 |
| KP9_2_2_41 | 25 | 28 | 170 | 65  | 3.9 | 2.2  | 25  | 650 |
| KP9_2_2_42 | 20 | 24 | 160 | 53  | 3.8 | 2.1  | 21  | 500 |
| Eud LV01 1 | 16 | 26 | 110 | 130 | 2.5 | 0.56 | 280 | 65  |
| Eud LV01 2 | 21 | 24 | 85  | 120 | 2.8 | 0.76 | 280 | 67  |
| Eud LV01 3 | 16 | 26 | 89  | 110 | 2.4 | 0.4  | 210 | 54  |
| Eud LV01 4 | 16 | 28 | 95  | 130 | 2.1 | 0.55 | 220 | 64  |
| Eud LV01 5 | 18 | 26 | 95  | 120 | 2.3 | 0.71 | 300 | 61  |
| Eud LV01 6 | 16 | 29 | 96  | 170 | 2.6 | 0.66 | 330 | 79  |
| Eud_LV01_7 | 19 | 26 | 110 | 96  | 2.9 | 0.66 | 270 | 64  |
| Eud_LV01_8 | 15 | 22 | 88  | 110 | 2.1 | 0.5  | 230 | 56  |
| Eud_LV01_9 | 16 | 25 | 95  | 97  | 2.4 | 0.48 | 250 | 64  |

| Sample      | Mg  | Al | K   | Ti  | Ga  | Rb   | Sr  | Y   |
|-------------|-----|----|-----|-----|-----|------|-----|-----|
| Eud_LV01_10 | 16  | 24 | 75  | 130 | 2.2 | 0.57 | 220 | 55  |
| Eud_LV01_11 | 15  | 30 | 87  | 110 | 2.1 | 0.63 | 250 | 65  |
| Eud_LV01_12 | 19  | 56 | 100 | 120 | 2.5 | 0.62 | 290 | 64  |
| Eud_LV01_13 | 21  | 26 | 93  | 120 | 2.8 | 0.66 | 310 | 70  |
| Eud_LV01_14 | 21  | 27 | 100 | 140 | 3.1 | 0.72 | 310 | 71  |
| Eud_LV01_15 | 22  | 30 | 110 | 140 | 3.6 | 0.59 | 400 | 82  |
| Eud_LV01_16 | 20  | 28 | 89  | 140 | 3.1 | 0.62 | 270 | 69  |
| Eud_LV01_17 | 17  | 23 | 100 | 150 | 3.2 | 0.59 | 380 | 78  |
| Eud_LV01_18 | 19  | 28 | 120 | 130 | 3.4 | 0.69 | 380 | 72  |
| Eud_NK_1    | 8.5 | 50 | 200 | 41  | 2.9 | 1.7  | 19  | 430 |
| Eud_NK_2    | 8.7 | 62 | 170 | 50  | 2.6 | 1.7  | 20  | 460 |
| Eud_NK_3    | 8.2 | 56 | 160 | 42  | 2.7 | 1.7  | 21  | 500 |
| Eud_NK_4    | 7.9 | 56 | 150 | 43  | 2.4 | 1.4  | 18  | 440 |
| Eud_NK_5    | 9   | 50 | 120 | 46  | 2.9 | 1.7  | 19  | 470 |
| Eud_NK_6    | 9.4 | 61 | 170 | 43  | 2.9 | 1.4  | 25  | 510 |
| Eud_NK_7    | 6.7 | 65 | 220 | 43  | 3.1 | 1.8  | 18  | 470 |
| Eud_NK_8    | 9.2 | 58 | 120 | 54  | 2.4 | 1.6  | 17  | 390 |
| Eud_NK_9    | 9.4 | 53 | 200 | 42  | 3.2 | 1.6  | 21  | 490 |
| Eud_NK_10   | 9   | 74 | 350 | 46  | 3.1 | 2.1  | 25  | 510 |
| Eud_NK_11   | 9.2 | 55 | 170 | 40  | 2.2 | 1.8  | 18  | 450 |
| Eud_NK_12   | 11  | 58 | 210 | 43  | 2.7 | 2.1  | 24  | 480 |
| Eud_NK_13   | 9.8 | 84 | 160 | 43  | 2.7 | 1.8  | 22  | 560 |
| Eud_NK_14   | 9.9 | 72 | 140 | 43  | 2.4 | 1.6  | 22  | 490 |
| Eud_NK_15   | 8.9 | 75 | 220 | 40  | 3.4 | 1.9  | 24  | 470 |
| Eud_NK_16   | 8.6 | 61 | 160 | 40  | 2.7 | 1.7  | 22  | 500 |
| KP1_2_1     | 19  | 15 | 190 | 52  | 6.4 | 1.8  | 30  | 420 |

| Sample   | Mg | Al | K   | Ti  | Ga  | Rb  | Sr | Y   |
|----------|----|----|-----|-----|-----|-----|----|-----|
| KP1_2_2  | 14 | 20 | 130 | 72  | 5.4 | 1.4 | 40 | 430 |
| KP1_2_3  | 20 | 24 | 150 | 72  | 7.3 | 1.7 | 42 | 640 |
| KP1_2_4  | 17 | 18 | 140 | 86  | 6.7 | 1.8 | 35 | 460 |
| KP1_2_5  | 18 | 18 | 100 | 80  | 5.6 | 1.7 | 36 | 400 |
| KP1_2_6  | 18 | 19 | 130 | 78  | 5.8 | 1.6 | 35 | 410 |
| KP1_2_7  | 20 | 22 | 150 | 86  | 5.5 | 1.5 | 41 | 510 |
| KP1_2_8  | 14 | 19 | 140 | 92  | 6   | 1.5 | 30 | 470 |
| KP1_2_9  | 18 | 19 | 130 | 78  | 5.9 | 1.5 | 37 | 450 |
| KP1_2_10 | 18 | 22 | 120 | 92  | 6.1 | 1.7 | 35 | 470 |
| KP1_2_11 | 18 | 18 | 190 | 58  | 6.9 | 2   | 38 | 560 |
| KP1_2_12 | 19 | 16 | 160 | 78  | 5.7 | 1.5 | 37 | 520 |
| KP1_2_13 | 17 | 19 | 150 | 92  | 6   | 1.7 | 39 | 470 |
| KP1_2_14 | 21 | 26 | 160 | 73  | 7.6 | 1.9 | 33 | 500 |
| KP1_2_15 | 23 | 23 | 160 | 93  | 6.7 | 1.8 | 37 | 550 |
| KP1_2_16 | 19 | 23 | 150 | 87  | 6   | 1.8 | 39 | 530 |
| KP1_2_17 | 25 | 22 | 190 | 110 | 5.9 | 2.1 | 42 | 530 |
| KP1_2_18 | 19 | 21 | 150 | 84  | 6.4 | 2   | 33 | 560 |
| KP1_2_19 | 21 | 21 | 99  | 55  | 6.8 | 2   | 42 | 600 |
| KP1_2_20 | 17 | 17 | 130 | 58  | 6.5 | 1.9 | 34 | 510 |
| KP1_2_21 | 16 | 23 | 250 | 55  | 6.8 | 2.1 | 35 | 490 |
| KP1_2_22 | 19 | 18 | 170 | 69  | 8.1 | 2.2 | 47 | 730 |
| KP1_2_23 | 20 | 21 | 160 | 69  | 6.2 | 1.8 | 39 | 550 |
| KP1_2_24 | 17 | 20 | 160 | 70  | 6.8 | 1.8 | 39 | 530 |
| KP1_2_25 | 19 | 21 | 160 | 79  | 5.9 | 1.6 | 37 | 450 |
| KP1_2_26 | 21 | 22 | 150 | 94  | 6.3 | 1.6 | 41 | 500 |
| KP1_2_27 | 17 | 17 | 170 | 90  | 5.8 | 1.6 | 37 | 490 |
| KP1_2_28 | 18 | 20 | 160 | 73  | 5.6 | 1.8 | 37 | 530 |

| Sample      | Mg  | Al   | K   | Ti  | Ga  | Rb   | Sr  | Y   |
|-------------|-----|------|-----|-----|-----|------|-----|-----|
| KP1_2_29    | 19  | 17   | 170 | 62  | 6.3 | 1.8  | 35  | 550 |
| KP1_2_30    | 14  | 13   | 150 | 55  | 6.7 | 1.7  | 36  | 540 |
|             |     |      |     |     |     |      |     |     |
| CBD11_101   | 4   | 45   | 84  | 58  | 3.8 | 0.89 | 12  | 160 |
| CBD11_102   |     | 290  | 150 | 38  | 3.5 | 1.1  | 9.2 | 180 |
| CBD11_103   | 4.4 | 28   | 150 | 52  | 3   | 1.1  | 10  | 160 |
| CBD11_104   |     | 29   | 190 | 32  | 3   | 1.1  | 8.1 | 170 |
| CBD11_105   | 2.8 | 26   | 110 | 41  | 3   | 1.2  | 9   | 120 |
| CBD11_106   | 3.4 | 24   | 110 | 32  | 2.8 | 1.1  | 8.8 | 120 |
| CBD11_107   | 3.7 | 30   | 150 | 36  | 3.5 | 0.96 | 12  | 140 |
| CBD11_108   | 3.3 | 30   | 200 | 43  | 3.4 | 1    | 8.8 | 150 |
| CBD11_109   |     | 30   | 160 | 42  | 3.1 | 0.99 | 8.2 | 130 |
| CBD11_1010  |     | 27   | 130 | 39  | 3   | 1.1  | 7.5 | 120 |
|             |     |      |     |     |     |      |     |     |
| CBD11_1011  | 15  | 1700 | 260 | 100 | 3.7 | 1.1  | 23  | 370 |
| CBD11_1012  |     | 29   | 140 | 41  | 3.4 | 0.86 | 8.4 | 180 |
| CBD11_1013  | 3.4 | 350  | 81  | 37  | 3.3 | 0.86 | 10  | 160 |
| CBD11_1014  | 4.2 | 31   | 170 | 42  | 3.2 | 1    | 10  | 190 |
| CBD11_1015  | 3.4 | 35   | 150 | 32  | 3.5 | 0.77 | 10  | 180 |
|             |     |      |     |     |     |      |     |     |
| CBD11_1021  |     | 34   | 350 | 76  | 24  | 1.7  | 55  | 340 |
| CBD11_1022  | 4.5 | 34   | 200 | 63  | 22  | 1    | 28  | 280 |
| CBD11_1023  | 6.5 | 41   | 260 | 51  | 20  | 1.5  | 37  | 250 |
| CBD11_1025  | 7   | 34   | 170 | 77  | 15  | 1.2  | 27  | 190 |
| CBD11 10 26 | 4.4 | 47   | 170 | 73  | 23  | 1.5  | 47  | 340 |
| CBD11 10 29 | 8.7 | 61   | 230 | 98  | 25  | 2.2  | 46  | 510 |
| CBD11_1031  | 11  | 110  | 330 | 92  | 28  | 1.8  | 46  | 440 |

| Sample      | Nb         | Mo         | Sn         | Sb         | Ba         | La         | Ce         | Pr         |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
|             | <u>ppm</u> |
|             |            |            |            |            |            |            |            |            |
| Eud_LV01_1  | 91         | 0.89       | 2.7        |            | 15         | 75         | 140        | 17         |
| Eud_LV01_2  | 71         | 1          | 2.1        | 0.41       | 18         | 62         | 110        | 11         |
| Eud_LV01_3  | 85         | 1.1        | 2.5        |            | 17         | 76         | 150        | 16         |
| Eud_LV01_4  | 90         | 0.99       | 2.7        | 0.3        | 16         | 83         | 170        | 17         |
| Eud_LV01_5  | 140        | 1.1        | 4.1        | 0.53       | 16         | 92         | 170        | 19         |
| Eud_LV01_6  | 91         | 0.91       | 2          |            | 17         | 86         | 130        | 17         |
| Eud_LV01_7  | 230        | 1.2        | 2.8        | 0.26       | 24         | 110        | 160        | 16         |
| Eud_LV01_8  | 140        | 1.5        | 3          |            | 20         | 98         | 160        | 14         |
| Eud_LV01_9  | 86         | 0.82       | 2.5        | 0.44       | 17         | 72         | 140        | 15         |
| Eud_LV01_10 | 95         | 1.2        | 2          | 0.5        | 18         | 89         | 160        | 15         |
| Eud_LV01_11 | 85         | 1.3        | 2.8        |            | 18         | 77         | 140        | 14         |
| Eud_LV01_12 | 84         | 1.1        | 2.2        | 0.33       | 15         | 61         | 130        | 13         |
| Eud_LV01_13 | 170        | 1.3        | 2.6        | 0.29       | 24         | 120        | 220        | 17         |
| Eud_LV01_14 | 150        | 1.3        | 2.8        |            | 24         | 110        | 200        | 19         |
| Eud_LV01_15 | 110        | 0.92       | 2.5        | 0.26       | 15         | 89         | 170        | 16         |
| Eud_LV01_16 | 100        | 0.97       | 2.4        |            | 18         | 98         | 190        | 16         |
| Eud LV01 17 | 110        | 1          | 2.5        | 0.32       | 18         | 84         | 180        | 17         |
| Eud LV01 18 | 91         | 0.98       | 2.7        | 0.28       | 18         | 85         | 150        | 16         |
|             |            |            |            |            |            |            |            |            |
| Eud_NK_1    | 86         | 0.35       | 5.2        | 0.37       | 18         | 88         | 140        | 21         |
| Eud NK 2    | 100        | 0.59       | 4          | 0.38       | 20         | 98         | 210        | 24         |
| Eud NK 3    | 83         | 0.59       | 5          | 0.38       | 21         | 87         | 190        | 22         |
| Eud NK 4    | 110        | 0.46       | 5.7        | 0.35       | 20         | 110        | 220        | 28         |
| Eud NK 5    | 97         | 0.38       | 4.4        |            | 20         | 90         | 160        | 19         |
| Eud_NK_6    | 110        | 0.38       | 5          | 0.35       | 23         | 110        | 200        | 23         |

| Sample      | Nb  | Мо   | Sn  | Sb   | Ba | La  | Ce  | Pr  |
|-------------|-----|------|-----|------|----|-----|-----|-----|
| Eud_NK_7    | 88  | 0.46 | 4.3 |      | 20 | 90  | 160 | 19  |
| Eud_NK_8    | 100 | 0.41 | 4.6 |      | 21 | 95  | 180 | 22  |
| Eud_NK_9    | 93  | 0.47 | 4.9 |      | 17 | 92  | 200 | 22  |
| Eud_NK_10   | 110 | 0.47 | 5   | 0.4  | 21 | 100 | 190 | 23  |
| Eud_NK_11   | 91  | 0.43 | 5.6 | 0.28 | 20 | 93  | 200 | 22  |
| Eud_NK_12   | 86  | 0.48 | 4.7 | 0.32 | 21 | 82  | 170 | 19  |
| Eud_NK_13   | 91  | 0.51 | 4.8 |      | 17 | 92  | 180 | 18  |
| Eud_NK_14   | 95  | 0.46 | 5.1 | 0.35 | 20 | 84  | 200 | 20  |
| Eud_NK_15   | 110 | 0.43 | 5.7 | 0.31 | 21 | 110 | 210 | 26  |
| Eud_NK_16   | 82  | 0.58 | 5   |      | 19 | 90  | 160 | 17  |
| Eud_NK_17   | 100 | 0.52 | 5.1 | 0.27 | 19 | 100 | 200 | 24  |
| Eud_NK_18   | 110 | 0.5  | 5.1 | 0.24 | 22 | 99  | 220 | 26  |
|             |     |      |     |      |    |     |     |     |
| CBD11_02_1  | 21  | 0.84 | 7.8 |      | 26 | 36  | 96  | 11  |
| CBD11_02_2  | 32  | 0.92 | 9.2 |      | 29 | 33  | 100 | 9.5 |
| CBD11_02_3  | 24  | 0.81 | 12  |      | 27 | 31  | 81  | 8.6 |
| CBD11_02_4  | 22  | 0.64 | 6.9 |      | 29 | 34  | 83  | 11  |
| CBD11_02_5  | 80  | 0.66 | 7.3 |      | 34 | 61  | 130 | 15  |
| CBD11_02_6  | 28  | 1.3  | 7.2 |      | 26 | 40  | 91  | 11  |
| CBD11_02_7  | 21  | 0.86 | 9.6 |      | 24 | 35  | 85  | 8.6 |
| CBD11_02_8  | 32  | 0.81 | 6.2 |      | 31 | 47  | 100 | 12  |
| CBD11_02_9  | 95  | 0.63 | 6.5 |      | 28 | 73  | 120 | 13  |
| CBD11_02_10 | 20  | 0.8  | 8.1 |      | 28 | 30  | 74  | 10  |
|             |     |      |     |      |    |     |     |     |
| CBD11_02_11 | 40  | 0.33 | 4.7 |      | 22 | 39  | 78  | 8.5 |
| CBD11_02_12 | 36  | 0.79 | 3.1 |      | 33 | 41  | 89  | 11  |
| CBD11_02_13 | 30  | 0.93 | 4   |      | 29 | 36  | 75  | 9.1 |

| Sample      | Nb  | Мо   | Sn  | Sb   | Ba | La  | Ce  | Pr  |
|-------------|-----|------|-----|------|----|-----|-----|-----|
| CBD11_02_16 | 45  | 0.86 | 5.3 |      | 28 | 45  | 84  | 10  |
| CBD11_02_17 | 40  | 1    | 4.9 |      | 32 | 42  | 95  | 10  |
| CBD11_02_18 | 74  | 1.5  | 4.3 |      | 43 | 84  | 170 | 17  |
| CBD11_02_19 | 45  | 0.82 | 2.7 |      | 31 | 49  | 89  | 11  |
| CBD11_02_20 | 49  | 0.91 | 2.8 |      | 25 | 48  | 92  | 12  |
| CBD11_02_21 | 49  | 0.32 | 5.5 |      | 28 | 52  | 100 | 11  |
| CBD11_02_22 | 40  | 0.88 | 2.6 |      | 29 | 42  | 98  | 11  |
| CBD11_02_23 | 52  | 0.72 | 4.8 |      | 36 | 43  | 110 | 13  |
| CBD11_02_24 | 29  | 0.87 | 3.8 |      | 26 | 30  | 77  | 11  |
| CBD11_02_25 | 28  | 0.89 | 3.6 |      | 24 | 42  | 100 | 11  |
| CBD11_02_26 | 31  | 0.88 | 5.5 |      | 35 | 34  | 99  | 14  |
| CBD11_02_27 | 33  | 0.78 | 3.3 |      | 30 | 34  | 71  | 10  |
| CBD11_02_28 | 28  | 0.74 | 3.4 | 0.62 | 27 | 35  | 80  | 8.4 |
| CBD11_02_29 | 38  | 0.78 | 4.4 |      | 23 | 39  | 91  | 12  |
| CBD11_02_30 | 40  | 0.68 | 2.6 |      | 30 | 37  | 86  | 10  |
| KP1_2_1     | 100 | 1.3  | 4.5 | 0.26 | 36 | 64  | 81  | 7.9 |
| KP1_2_2     | 94  | 1.5  | 5.3 |      | 27 | 66  | 76  | 7.7 |
| KP1_2_3     | 81  | 0.86 | 5.2 |      | 29 | 64  | 83  | 7.9 |
| KP1_2_4     | 94  | 1    | 7.5 |      | 33 | 76  | 110 | 11  |
| KP1_2_5     | 77  | 0.96 | 6.1 | 0.39 | 33 | 57  | 100 | 9.2 |
| KP1_2_6     | 75  | 0.94 | 5.9 | 0.41 | 26 | 50  | 77  | 7.8 |
| KP1_2_7     | 80  | 0.81 | 5.7 | 0.44 | 28 | 52  | 82  | 8.4 |
| KP1_2_8     | 86  | 1.3  | 5.5 | 0.42 | 30 | 57  | 85  | 9.2 |
| KP1_2_11    | 140 | 1.7  | 6.8 | 0.35 | 32 | 110 | 370 | 19  |
| KP1_2_18    | 150 | 1.5  | 5.6 | 0.34 | 36 | 93  | 120 | 12  |

| Sample     | Nb  | Мо   | Sn  | Sb   | Ba | La  | Ce  | Pr |
|------------|-----|------|-----|------|----|-----|-----|----|
| KP1_2_19   | 210 | 1.3  | 6.9 |      | 32 | 110 | 150 | 15 |
| KP1_2_20   | 170 | 1.2  | 5.4 |      | 27 | 97  | 130 | 12 |
|            |     |      |     |      |    |     |     |    |
| KP9_2_2_1  | 110 | 1    | 9.6 |      | 27 | 110 | 170 | 19 |
| KP9_2_2_2  | 110 | 1.1  | 18  |      | 27 | 96  | 170 | 15 |
| KP9_2_2_3  | 120 | 1    | 13  |      | 30 | 110 | 170 | 19 |
| KP9_2_2_4  | 120 | 1.1  | 4.9 |      | 29 | 110 | 170 | 15 |
| KP9_2_2_5  | 92  | 1.2  | 6   |      | 26 | 97  | 150 | 17 |
| KP9_2_2_6  | 82  | 1.3  | 5.7 | 0.33 | 27 | 88  | 160 | 16 |
| KP9_2_2_7  | 79  | 0.97 | 5.3 |      | 22 | 82  | 120 | 13 |
| KP9_2_2_8  | 89  | 1    | 4.4 |      | 22 | 80  | 130 | 15 |
| KP9_2_2_9  | 70  | 0.98 | 6.4 |      | 26 | 84  | 140 | 15 |
| KP9_2_2_10 | 75  | 0.88 | 6   |      | 23 | 75  | 130 | 12 |
|            |     |      |     |      |    |     |     |    |
| KP9_2_2_11 | 120 | 1    | 8.5 |      | 28 | 110 | 170 | 19 |
| KP9_2_2_12 | 81  | 0.57 | 8.2 | 0.31 | 27 | 73  | 150 | 14 |
| KP9_2_2_13 | 100 | 0.47 | 7.1 |      | 27 | 94  | 140 | 15 |
| KP9_2_2_14 | 100 | 0.55 | 8.3 | 0.25 | 28 | 92  | 140 | 17 |
| KP9_2_2_15 | 83  | 0.62 | 6.3 |      | 22 | 80  | 130 | 13 |
| KP9_2_2_16 | 88  | 0.42 | 6.9 |      | 23 | 53  | 92  | 13 |
| KP9_2_2_17 | 90  | 0.56 | 8.2 |      | 22 | 76  | 120 | 14 |
| KP9_2_2_18 | 120 | 0.66 | 7.3 |      | 26 | 84  | 140 | 14 |
| KP9_2_2_19 | 99  | 0.57 | 7.2 | 0.26 | 24 | 80  | 130 | 14 |
| KP9_2_2_20 | 110 | 0.61 | 7.8 |      | 30 | 81  | 140 | 14 |
| KP9_2_2_21 | 91  | 0.51 | 7.9 | 0.31 | 28 | 79  | 130 | 16 |
| KP9_2_2_22 | 78  | 0.55 | 7.2 |      | 25 | 67  | 120 | 11 |
| KP9_2_2_23 | 91  | 0.56 | 6.2 |      | 24 | 76  | 120 | 11 |
| KP9_2_2_24 | 95  | 0.44 | 5.8 | 0.25 | 25 | 82  | 140 | 12 |

| Sample     | Nb  | Мо   | Sn  | Sb   | Ba | La  | Ce  | Pr  |
|------------|-----|------|-----|------|----|-----|-----|-----|
| KP9_2_2_25 | 110 | 0.47 | 8.7 | 0.27 | 30 | 98  | 130 | 20  |
| KP9_2_2_26 | 98  | 0.53 | 7.3 | 0.27 | 24 | 72  | 150 | 16  |
| KP9_2_2_27 | 78  | 0.44 | 7.9 |      | 24 | 72  | 110 | 12  |
| KP9_2_2_28 | 69  | 0.39 | 7.8 | 0.27 | 21 | 73  | 110 | 9.5 |
| KP9_2_2_29 | 74  | 0.38 | 7.1 | 0.28 | 23 | 68  | 110 | 14  |
| KP9_2_2_30 | 72  | 0.57 | 9.4 | 0.31 | 31 | 83  | 110 | 12  |
| KP9_2_2_31 | 68  | 0.48 | 8.2 |      | 22 | 72  | 100 | 11  |
| KP9_2_2_32 | 68  | 0.62 | 7.5 |      | 24 | 78  | 84  | 11  |
| KP9_2_2_33 | 98  | 0.61 | 8.4 | 0.35 | 27 | 84  | 120 | 14  |
| KP9_2_2_34 | 71  | 0.64 | 8   |      | 22 | 67  | 100 | 12  |
| KP9_2_2_35 | 71  | 0.53 | 9.5 |      | 28 | 65  | 110 | 13  |
| KP9_2_2_36 | 56  | 0.51 | 8.6 |      | 28 | 67  | 120 | 12  |
| KP9_2_2_37 | 67  | 0.66 | 7.7 | 0.33 | 30 | 68  | 110 | 14  |
| KP9_2_2_38 | 120 | 0.6  | 8.4 |      | 25 | 96  | 120 | 13  |
| KP9_2_2_39 | 80  | 0.77 | 6.7 |      | 29 | 80  | 120 | 16  |
| KP9_2_2_40 | 120 | 0.65 | 7.9 |      | 33 | 99  | 150 | 16  |
| KP9_2_2_41 | 150 | 1.1  | 4.5 |      | 31 | 130 | 170 | 19  |
| KP9_2_2_42 | 120 | 1.3  | 6.4 |      | 24 | 93  | 120 | 14  |
| Eud_LV01_1 | 150 | 1.4  | 3.1 | 0.27 | 18 | 90  | 160 | 17  |
| Eud_LV01_2 | 140 | 1.3  | 2.6 |      | 21 | 92  | 170 | 16  |
| Eud_LV01_3 | 79  | 1    | 2.4 | 0.28 | 16 | 81  | 140 | 16  |
| Eud_LV01_4 | 92  | 0.87 | 2.4 | 0.21 | 16 | 77  | 160 | 16  |
| Eud_LV01_5 | 190 | 1.3  | 2.7 | 0.49 | 16 | 91  | 160 | 16  |
| Eud_LV01_6 | 150 | 1.4  | 2.8 |      | 21 | 110 | 210 | 22  |
| Eud_LV01_7 | 180 | 1.3  | 2.8 | 0.3  | 21 | 110 | 160 | 18  |
| Eud_LV01_8 | 96  | 0.96 | 2.5 | 0.26 | 18 | 80  | 140 | 14  |
| Eud_LV01_9 | 83  | 1.2  | 2.3 | 0.22 | 18 | 90  | 150 | 15  |

| Sample               | Nb  | Мо   | Sn  | Sb   | Ba | La         | Ce  | Pr |
|----------------------|-----|------|-----|------|----|------------|-----|----|
| Eud_LV01_10          | 83  | 1    | 2.2 |      | 18 | 66         | 140 | 16 |
| Eud_LV01_11          | 91  | 1    | 2   |      | 17 | 82         | 160 | 13 |
| Eud_LV01_12          | 130 | 1.1  | 2.7 | 0.4  | 19 | 84         | 160 | 17 |
| Eud_LV01_13          | 160 | 1.5  | 2.8 | 0.21 | 24 | 99         | 210 | 17 |
| Eud_LV01_14          | 160 | 1.5  | 2.3 | 0.21 | 23 | 100        | 190 | 19 |
| Eud_LV01_15          | 180 | 1.3  | 2.8 |      | 22 | 120        | 220 | 21 |
| Eud_LV01_16          | 160 | 1.1  | 2.6 | 0.22 | 22 | 88         | 170 | 20 |
| Eud_LV01_17          | 170 | 1.6  | 2.9 | 0.18 | 21 | 110        | 230 | 21 |
| Eud_LV01_18          | 160 | 1.6  | 2.8 | 0.21 | 23 | 110        | 210 | 18 |
| Fud NK 1             | 02  | 0.45 | 18  | 0.26 | 10 | <b>Q</b> 1 | 180 | 20 |
| Eud_NK_1<br>Eud_NK_2 | 92  | 0.43 | 4.0 | 0.20 | 19 | 81<br>80   | 160 | 20 |
| Eud_NK_2             | 100 | 0.41 | 4.8 | 0.3  | 19 | 89<br>100  | 170 | 20 |
| Eud_NK_3             | 100 | 0.54 | 4.9 | 0.34 | 19 | 100        | 230 | 23 |
| Eud_NK_4             | 110 | 0.48 | 5   | 0.28 | 22 | 110        | 240 | 25 |
| Eud_NK_5             | 110 | 0.62 | 5.6 | 0.29 | 16 | 120        | 220 | 21 |
| Eud_NK_6             | 120 | 0.48 | 5.2 |      | 21 | 110        | 230 | 28 |
| Eud_NK_7             | 110 | 0.47 | 5.6 | 0.2  | 22 | 110        | 190 | 22 |
| Eud_NK_8             | 99  | 0.43 | 4.8 | 0.33 | 17 | 77         | 170 | 20 |
| Eud_NK_9             | 120 | 0.49 | 5   |      | 19 | 100        | 190 | 25 |
| Eud_NK_10            | 120 | 0.44 | 4.2 | 0.25 | 23 | 120        | 260 | 27 |
| Eud_NK_11            | 97  | 0.59 | 4.9 | 0.23 | 20 | 93         | 180 | 23 |
| Eud_NK_12            | 120 | 0.54 | 4.5 | 0.23 | 18 | 110        | 220 | 26 |
| Eud_NK_13            | 110 | 0.55 | 6   | 0.22 | 20 | 120        | 240 | 28 |
| Eud_NK_14            | 120 | 0.44 | 5.3 | 0.22 | 23 | 120        | 230 | 26 |
| Eud_NK_15            | 140 | 0.51 | 4.7 | 0.19 | 23 | 130        | 240 | 31 |
| Eud_NK_16            | 110 | 0.56 | 4   | 0.21 | 20 | 120        | 170 | 24 |
| KP1_2_1              | 59  | 1.2  | 7.7 | 0.28 | 50 | 79         | 130 | 13 |

| Sample   | Nb  | Mo   | Sn  | Sb   | Ba | La  | Ce  | Pr |
|----------|-----|------|-----|------|----|-----|-----|----|
| KP1_2_2  | 100 | 0.87 | 3.6 | 0.28 | 44 | 100 | 160 | 14 |
| KP1_2_3  | 120 | 0.92 | 2.6 | 0.34 | 56 | 110 | 170 | 18 |
| KP1_2_4  | 88  | 0.61 | 2.3 | 0.35 | 48 | 84  | 130 | 13 |
| KP1_2_5  | 91  | 0.83 | 2.5 | 0.28 | 42 | 87  | 110 | 13 |
| KP1_2_6  | 95  | 0.71 | 2.9 | 0.31 | 45 | 97  | 120 | 12 |
| KP1_2_7  | 110 | 0.74 | 2.9 | 0.33 | 51 | 95  | 140 | 18 |
| KP1_2_8  | 75  | 0.91 | 3.1 | 0.31 | 40 | 71  | 120 | 12 |
| KP1_2_9  | 95  | 0.64 | 2.4 | 0.31 | 45 | 100 | 160 | 15 |
| KP1_2_10 | 110 | 0.67 | 3   | 0.29 | 44 | 100 | 130 | 15 |
| KP1_2_11 | 110 | 1.4  | 3.2 |      | 56 | 110 | 140 | 15 |
| KP1_2_12 | 110 | 0.97 | 2.8 | 0.29 | 48 | 100 | 150 | 14 |
| KP1_2_13 | 120 | 0.69 | 2.9 | 0.31 | 48 | 130 | 150 | 15 |
| KP1_2_14 | 130 | 0.9  | 3.9 | 0.44 | 46 | 110 | 130 | 16 |
| KP1_2_15 | 100 | 0.93 | 3.5 | 0.34 | 37 | 110 | 170 | 15 |
| KP1_2_16 | 120 | 0.86 | 3.2 | 0.35 | 53 | 120 | 160 | 14 |
| KP1_2_17 | 120 | 1.1  | 2.5 |      | 50 | 120 | 180 | 15 |
| KP1_2_18 | 59  | 1.6  | 1.9 |      | 50 | 81  | 110 | 13 |
| KP1_2_19 | 98  | 1    | 2.3 |      | 57 | 130 | 150 | 17 |
| KP1_2_20 | 86  | 1.3  | 7.1 | 0.34 | 52 | 89  | 160 | 14 |
| KP1_2_21 | 88  | 1.3  | 4.8 |      | 58 | 100 | 160 | 16 |
| KP1_2_22 | 110 | 1.5  | 7.9 | 0.28 | 65 | 120 | 180 | 20 |
| KP1_2_23 | 130 | 0.82 | 3.3 | 0.37 | 53 | 130 | 180 | 14 |
| KP1_2_24 | 95  | 0.97 | 2.7 | 0.31 | 51 | 120 | 170 | 13 |
| KP1_2_25 | 100 | 0.88 | 2.8 | 0.38 | 41 | 96  | 130 | 13 |
| KP1_2_26 | 130 | 0.8  | 3.5 | 0.32 | 50 | 120 | 170 | 18 |
| KP1_2_27 | 110 | 0.83 | 3.3 | 0.28 | 44 | 92  | 140 | 15 |
| KP1 2 28 | 120 | 1.1  | 3.8 | 0.31 | 51 | 110 | 140 | 15 |

| Sample     | Nb  | Мо   | Sn  | Sb   | Ba  | La  | Ce  | Pr  |
|------------|-----|------|-----|------|-----|-----|-----|-----|
| KP1_2_29   | 100 | 1.1  | 4.7 | 0.33 | 48  | 100 | 160 | 16  |
| KP1_2_30   | 91  | 1.4  | 5.7 | 0.27 | 52  | 100 | 150 | 14  |
|            |     |      |     |      |     |     |     |     |
| CBD11_101  | 58  | 0.31 | 5.6 |      | 32  | 48  | 90  | 7.9 |
| CBD11_102  | 54  | 1.2  | 2.9 |      | 27  | 44  | 100 | 13  |
| CBD11_103  | 70  | 0.37 | 4   |      | 26  | 49  | 86  | 12  |
| CBD11_104  | 29  | 2.1  | 3.3 |      | 24  | 38  | 100 | 12  |
| CBD11_105  | 54  | 0.49 | 4.5 | 0.2  | 21  | 40  | 79  | 11  |
| CBD11_106  | 45  | 1    | 2.5 |      | 20  | 36  | 75  | 8.8 |
| CBD11_107  | 71  | 1.1  | 3.3 |      | 25  | 61  | 110 | 13  |
| CBD11_108  | 60  | 0.92 | 3.1 |      | 24  | 45  | 95  | 9.2 |
| CBD11_109  | 31  | 0.85 | 2.3 |      | 26  | 38  | 90  | 13  |
| CBD11_1010 | 30  | 0.96 | 3   |      | 21  | 26  | 66  | 8.4 |
|            |     |      |     |      |     |     |     |     |
| CBD11_1011 | 110 | 0.3  | 6.5 |      | 47  | 82  | 160 | 17  |
| CBD11_1012 | 24  | 1.3  | 4.6 |      | 26  | 31  | 77  | 11  |
| CBD11_1013 | 45  | 1.1  | 2.2 |      | 25  | 43  | 100 | 11  |
| CBD11_1014 | 50  | 1.2  | 2.6 |      | 24  | 46  | 96  | 12  |
| CBD11_1015 | 51  | 1.1  | 2.3 |      | 24  | 44  | 110 | 10  |
|            |     |      |     |      |     |     |     |     |
| CBD11_1021 | 180 | 2.5  | 2.6 |      | 280 | 240 | 410 | 36  |
| CBD11_1022 | 64  | 3.1  | 6.9 | 0.3  | 150 | 140 | 290 | 32  |
| CBD11_1023 | 92  | 1.6  | 3.1 |      | 140 | 170 | 310 | 27  |
| CBD11_1025 | 120 | 1.8  | 3   | 0.33 | 190 | 160 | 310 | 31  |
| CBD11_1026 | 130 | 1.7  | 4.6 |      | 180 | 230 | 330 | 44  |
| CBD11_1029 | 170 | 1.8  | 4.3 |      | 230 | 230 | 510 | 56  |
| CBD11_1031 | 170 | 1.2  | 14  |      | 200 | 260 | 520 | 50  |

| Sample       | Nd         | Sm         | Eu         | Gd         | Tb         | Dy         | Ho         | Er         |
|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
|              | <u>ppm</u> |
| End LV01 1   | 40         | 0.7        | 2.0        | 12         | 2.4        | 17         | 2          | 0          |
| $Eud_LV01_I$ | 49         | 9.7        | 3.9        | 12         | 2.4        | 17         | 3          | 9<br>7 9   |
| $Eud_LV01_2$ | 40         | 9.1        | 3.8        | 12         | 2.2        | 12         | 2.2        | 1.8        |
| $Eud_LV01_3$ | 52         | 10         | 3.8        | 13         | 2.5        | 13         | 2.9        | 0.0        |
| Eud_LV01_4   | 51         | 10         | 4.8        | 14         | 2          | 12         | 3.2        | 8.3        |
| Eud_LV01_5   | 61         | 13         | 5.4        | 16         | 2.7        | 14         | 2.9        | 8.8        |
| Eud_LV01_6   | 54         | 11         | 5.2        | 13         | 2.4        | 12         | 2.8        | 7.6        |
| Eud_LV01_7   | 46         | 8.6        | 4.4        | 15         | 2.6        | 13         | 2.7        | 7.6        |
| Eud_LV01_8   | 53         | 11         | 3.8        | 14         | 2.3        | 15         | 3.5        | 8.3        |
| Eud_LV01_9   | 48         | 9.6        | 4.2        | 11         | 2.4        | 12         | 3.1        | 7.1        |
| Eud_LV01_10  | 55         | 11         | 4.5        | 15         | 2.3        | 16         | 2.6        | 8.2        |
| Eud_LV01_11  | 52         | 10         | 4.2        | 13         | 2.6        | 14         | 3.4        | 8.3        |
| Eud_LV01_12  | 44         | 9          | 4.1        | 14         | 2.3        | 15         | 3          | 7.7        |
| Eud_LV01_13  | 57         | 11         | 4.3        | 15         | 2.6        | 15         | 3.5        | 8.8        |
| Eud_LV01_14  | 61         | 12         | 4          | 13         | 2.2        | 15         | 3.3        | 9.5        |
| Eud_LV01_15  | 54         | 11         | 4.7        | 17         | 2.2        | 13         | 3.4        | 8.5        |
| Eud LV01 16  | 59         | 12         | 5.3        | 15         | 2.9        | 20         | 3          | 9.4        |
| Eud LV01 17  | 55         | 11         | 4.4        | 14         | 2.4        | 14         | 2.9        | 8.3        |
| Eud LV01 18  | 51         | 10         | 5.6        | 11         | 2.7        | 13         | 2.9        | 8.9        |
|              |            |            |            |            |            |            |            |            |
| Eud_NK_1     | 78         | 24         | 4.3        | 39         | 8.1        | 58         | 15         | 44         |
| Eud_NK_2     | 93         | 31         | 5.5        | 43         | 9.9        | 67         | 17         | 51         |
| Eud_NK_3     | 83         | 23         | 4.1        | 43         | 9.3        | 57         | 15         | 39         |
| Eud_NK_4     | 110        | 33         | 5.3        | 41         | 8.7        | 70         | 17         | 54         |
| Eud NK 5     | 69         | 22         | 4.2        | 35         | 7.2        | 52         | 14         | 43         |
| Eud_NK_6     | 99         | 30         | 5.7        | 49         | 9.1        | 75         | 17         | 43         |

| Sample      | Nd | Sm | Eu  | Gd | Tb  | Dy | Ho  | Er |
|-------------|----|----|-----|----|-----|----|-----|----|
| Eud_NK_7    | 82 | 24 | 4.4 | 38 | 8.3 | 57 | 13  | 48 |
| Eud_NK_8    | 88 | 26 | 5.8 | 42 | 8.8 | 72 | 14  | 44 |
| Eud_NK_9    | 83 | 25 | 4.8 | 40 | 7.7 | 64 | 14  | 43 |
| Eud_NK_10   | 87 | 27 | 5.1 | 41 | 10  | 66 | 16  | 43 |
| Eud_NK_11   | 83 | 26 | 4.9 | 45 | 8.5 | 56 | 17  | 53 |
| Eud_NK_12   | 66 | 22 | 4.3 | 35 | 7.8 | 57 | 13  | 39 |
| Eud_NK_13   | 80 | 25 | 4.8 | 40 | 8.5 | 60 | 15  | 50 |
| Eud_NK_14   | 79 | 25 | 5.3 | 40 | 8.1 | 59 | 13  | 43 |
| Eud_NK_15   | 98 | 31 | 5.2 | 50 | 8.8 | 69 | 15  | 51 |
| Eud_NK_16   | 70 | 22 | 5.5 | 35 | 8.4 | 59 | 15  | 40 |
| Eud_NK_17   | 86 | 27 | 5   | 42 | 8.4 | 65 | 14  | 42 |
| Eud_NK_18   | 96 | 30 | 5.2 | 44 | 9.2 | 64 | 16  | 54 |
|             |    |    |     |    |     |    |     |    |
| CBD11_02_1  | 41 | 12 | 3.3 | 22 | 4.4 | 26 | 7.1 | 19 |
| CBD11_02_2  | 45 | 15 | 3.2 | 22 | 5.1 | 31 | 7.5 | 20 |
| CBD11_02_3  | 39 | 13 | 2.4 | 22 | 4.6 | 32 | 5.6 | 20 |
| CBD11_02_4  | 46 | 14 | 2.6 | 29 | 5.3 | 33 | 8   | 25 |
| CBD11_02_5  | 52 | 15 | 3   | 26 | 4.2 | 37 | 9   | 22 |
| CBD11_02_6  | 47 | 15 | 3.2 | 24 | 5.4 | 35 | 7.9 | 22 |
| CBD11_02_7  | 39 | 14 | 2.8 | 21 | 4.7 | 31 | 8.3 | 20 |
| CBD11_02_8  | 46 | 13 | 2.9 | 24 | 4.6 | 32 | 7.7 | 22 |
| CBD11_02_9  | 41 | 12 | 3.4 | 22 | 4.5 | 30 | 6.4 | 17 |
| CBD11_02_10 | 35 | 12 | 3.3 | 26 | 4.5 | 26 | 7.3 | 16 |
|             |    |    |     |    |     |    |     |    |
| CBD11_02_11 | 31 | 10 | 2.4 | 16 | 2.9 | 20 | 5.2 | 18 |
| CBD11_02_12 | 40 | 13 | 2.8 | 21 | 4.2 | 28 | 6.3 | 17 |
| CBD11_02_13 | 38 | 11 | 2.9 | 21 | 4.9 | 28 | 6   | 21 |

| Sample      | Nd | Sm | Eu  | Gd | Tb  | Dy | Но  | Er  |
|-------------|----|----|-----|----|-----|----|-----|-----|
| CBD11_02_16 | 39 | 13 | 2.7 | 17 | 4.3 | 27 | 6.6 | 16  |
| CBD11_02_17 | 43 | 12 | 2.7 | 22 | 3.7 | 25 | 5.7 | 18  |
| CBD11_02_18 | 69 | 21 | 5.1 | 34 | 6.4 | 44 | 8.7 | 35  |
| CBD11_02_19 | 50 | 16 | 3.1 | 26 | 4.6 | 29 | 7.7 | 21  |
| CBD11_02_20 | 50 | 14 | 3.3 | 22 | 3.3 | 29 | 8   | 19  |
| CBD11_02_21 | 46 | 14 | 2.6 | 22 | 4.8 | 32 | 7.1 | 22  |
| CBD11_02_22 | 43 | 14 | 2.8 | 24 | 4.6 | 26 | 7.6 | 18  |
| CBD11_02_23 | 65 | 19 | 3.4 | 26 | 6.1 | 33 | 7.3 | 22  |
| CBD11_02_24 | 43 | 13 | 3.5 | 27 | 4.8 | 30 | 6.2 | 16  |
| CBD11_02_25 | 55 | 14 | 3.1 | 18 | 5.3 | 34 | 6.7 | 17  |
| CBD11_02_26 | 61 | 18 | 3.4 | 29 | 4.9 | 34 | 7.7 | 22  |
| CBD11_02_27 | 35 | 10 | 2.9 | 19 | 4.6 | 28 | 5.5 | 16  |
| CBD11_02_28 | 42 | 13 | 2.8 | 17 | 4.4 | 29 | 7.2 | 20  |
| CBD11_02_29 | 48 | 13 | 2.8 | 24 | 4.9 | 28 | 5.9 | 18  |
| CBD11_02_30 | 43 | 12 | 2.8 | 21 | 4.1 | 31 | 6.1 | 19  |
| KP1_2_1     | 31 | 12 | 3.4 | 26 | 8   | 79 | 18  | 73  |
| KP1_2_2     | 33 | 12 | 3.3 | 26 | 8.4 | 73 | 20  | 66  |
| KP1_2_3     | 33 | 14 | 3.3 | 30 | 9.2 | 71 | 21  | 66  |
| KP1_2_4     | 38 | 15 | 3.9 | 34 | 8.5 | 85 | 25  | 87  |
| KP1_2_5     | 33 | 13 | 3.6 | 29 | 7.1 | 69 | 19  | 81  |
| KP1_2_6     | 30 | 13 | 3.4 | 27 | 8.5 | 67 | 20  | 81  |
| KP1_2_7     | 34 | 13 | 3.2 | 28 | 7.4 | 68 | 20  | 75  |
| KP1_2_8     | 29 | 11 | 3.3 | 28 | 7.8 | 61 | 18  | 65  |
| KP1_2_11    | 67 | 20 | 4.5 | 32 | 9.9 | 98 | 28  | 100 |
| KP1_2_18    | 42 | 15 | 3.2 | 34 | 8.4 | 97 | 25  | 84  |

| Sample     | Nd | Sm | Eu  | Gd | Tb  | Dy  | Ho | Er  |
|------------|----|----|-----|----|-----|-----|----|-----|
| KP1_2_19   | 46 | 16 | 3.5 | 32 | 10  | 85  | 24 | 91  |
| KP1_2_20   | 34 | 11 | 3.3 | 27 | 7.7 | 59  | 20 | 76  |
| KP9 2 2 1  | 68 | 20 | 4.5 | 35 | 10  | 83  | 21 | 81  |
| KP9 2 2 2  | 55 | 17 | 4   | 35 | 8.6 | 77  | 21 | 72  |
| KP9_2_2_3  | 70 | 22 | 3.4 | 41 | 10  | 81  | 24 | 86  |
| KP9_2_2_4  | 61 | 20 | 3.9 | 37 | 9.5 | 92  | 22 | 96  |
| KP9_2_2_5  | 64 | 19 | 3.6 | 36 | 9.9 | 86  | 24 | 80  |
| KP9_2_2_6  | 62 | 19 | 3.8 | 34 | 7.9 | 92  | 21 | 85  |
| KP9_2_2_7  | 49 | 16 | 3.5 | 33 | 8.9 | 68  | 20 | 67  |
| KP9_2_2_8  | 55 | 18 | 4.2 | 36 | 8.4 | 80  | 25 | 85  |
| KP9_2_2_9  | 50 | 18 | 3.8 | 34 | 8.4 | 71  | 22 | 76  |
| KP9_2_2_10 | 47 | 16 | 4.1 | 31 | 9   | 67  | 17 | 72  |
| KP9_2_2_11 | 64 | 20 | 4   | 44 | 9.7 | 84  | 22 | 73  |
| KP9_2_2_12 | 47 | 15 | 3.3 | 25 | 7.3 | 69  | 20 | 75  |
| KP9_2_2_13 | 57 | 18 | 4.5 | 27 | 9.8 | 82  | 23 | 85  |
| KP9_2_2_14 | 62 | 19 | 5.1 | 36 | 10  | 92  | 29 | 86  |
| KP9_2_2_15 | 52 | 19 | 4.8 | 41 | 10  | 84  | 23 | 90  |
| KP9_2_2_16 | 38 | 14 | 3.5 | 31 | 9.1 | 70  | 22 | 73  |
| KP9_2_2_17 | 44 | 15 | 3.3 | 33 | 7.6 | 84  | 24 | 80  |
| KP9_2_2_18 | 52 | 19 | 4.1 | 37 | 9.5 | 100 | 25 | 86  |
| KP9_2_2_19 | 47 | 16 | 3.7 | 32 | 10  | 74  | 24 | 84  |
| KP9_2_2_20 | 47 | 15 | 4.4 | 32 | 8   | 89  | 28 | 88  |
| KP9_2_2_21 | 54 | 18 | 3.9 | 37 | 11  | 99  | 23 | 100 |
| KP9_2_2_22 | 44 | 16 | 3.3 | 36 | 9.8 | 92  | 24 | 83  |
| KP9_2_2_23 | 43 | 15 | 4.6 | 30 | 9.3 | 87  | 24 | 74  |
| KP9 2 2 24 | 51 | 17 | 4.2 | 37 | 11  | 92  | 24 | 83  |

| Sample     | Nd | Sm  | Eu  | Gd | Tb  | Dy  | Но  | Er  |
|------------|----|-----|-----|----|-----|-----|-----|-----|
| KP9_2_2_25 | 77 | 23  | 4.6 | 50 | 10  | 100 | 29  | 89  |
| KP9_2_2_26 | 59 | 20  | 3.6 | 39 | 11  | 95  | 21  | 89  |
| KP9_2_2_27 | 37 | 14  | 3.7 | 33 | 8.3 | 88  | 20  | 71  |
| KP9_2_2_28 | 42 | 15  | 3.6 | 30 | 8.7 | 88  | 24  | 78  |
| KP9_2_2_29 | 47 | 18  | 4.1 | 42 | 11  | 100 | 25  | 85  |
| KP9_2_2_30 | 50 | 18  | 3.8 | 41 | 10  | 89  | 27  | 89  |
| KP9_2_2_31 | 44 | 15  | 4.3 | 40 | 9.4 | 81  | 24  | 70  |
| KP9_2_2_32 | 38 | 15  | 3.7 | 34 | 11  | 84  | 24  | 72  |
| KP9_2_2_33 | 47 | 16  | 4.2 | 33 | 11  | 94  | 22  | 75  |
| KP9_2_2_34 | 43 | 15  | 3.9 | 43 | 8.9 | 84  | 23  | 73  |
| KP9_2_2_35 | 47 | 18  | 4.8 | 38 | 9.7 | 97  | 25  | 87  |
| KP9_2_2_36 | 47 | 17  | 5.3 | 43 | 11  | 94  | 25  | 87  |
| KP9_2_2_37 | 50 | 19  | 4.3 | 46 | 11  | 92  | 25  | 91  |
| KP9_2_2_38 | 47 | 14  | 3.6 | 38 | 9.9 | 70  | 20  | 81  |
| KP9_2_2_39 | 48 | 17  | 4.3 | 40 | 9.9 | 85  | 23  | 77  |
| KP9_2_2_40 | 57 | 18  | 4.1 | 35 | 9.8 | 81  | 22  | 92  |
| KP9_2_2_41 | 54 | 19  | 4.7 | 36 | 11  | 79  | 25  | 73  |
| KP9_2_2_42 | 48 | 17  | 3.8 | 38 | 8.7 | 82  | 19  | 78  |
| Eud LV01 1 | 58 | 11  | 4.9 | 15 | 2.4 | 16  | 3   | 8.4 |
| Eud LV01 2 | 61 | 13  | 4.2 | 14 | 2.7 | 14  | 3.2 | 8.9 |
| Eud LV01 3 | 44 | 9.1 | 4.3 | 11 | 2.1 | 14  | 3.1 | 8.1 |
| Eud LV01 4 | 51 | 10  | 4.8 | 13 | 2.4 | 13  | 2.8 | 8   |
| Eud LV01 5 | 47 | 9.5 | 5.3 | 13 | 2.7 | 15  | 3.2 | 8.7 |
| Eud LV01 6 | 67 | 13  | 5.9 | 16 | 2.6 | 18  | 3.3 | 11  |
| Eud_LV01_7 | 51 | 12  | 5.1 | 15 | 2.4 | 14  | 3.2 | 8.8 |
| Eud_LV01_8 | 49 | 11  | 4.8 | 14 | 2.2 | 13  | 3.3 | 8.6 |
| Eud LV01 9 | 51 | 10  | 4.7 | 16 | 2.6 | 13  | 3.2 | 7   |

| Sample      | Nd  | Sm  | Eu  | Gd | Tb  | Dy | Ho  | Er  |
|-------------|-----|-----|-----|----|-----|----|-----|-----|
| Eud_LV01_10 | 47  | 9.3 | 4.2 | 14 | 2.3 | 14 | 2.8 | 8.4 |
| Eud_LV01_11 | 48  | 9.3 | 4.1 | 13 | 2.1 | 13 | 3   | 9   |
| Eud_LV01_12 | 51  | 11  | 5   | 15 | 2.1 | 12 | 2.9 | 8.3 |
| Eud_LV01_13 | 58  | 12  | 5.1 | 16 | 2.7 | 16 | 3   | 8.8 |
| Eud_LV01_14 | 60  | 11  | 5.9 | 17 | 2.6 | 15 | 3.7 | 9   |
| Eud_LV01_15 | 69  | 14  | 5.7 | 17 | 2.7 | 14 | 3.6 | 10  |
| Eud_LV01_16 | 55  | 13  | 4.6 | 17 | 2.3 | 15 | 2.9 | 9.5 |
| Eud_LV01_17 | 68  | 14  | 5.7 | 18 | 3   | 20 | 3.2 | 12  |
| Eud_LV01_18 | 68  | 14  | 5.4 | 20 | 3   | 16 | 4.2 | 11  |
| Eud_NK_1    | 84  | 25  | 4.9 | 46 | 8.3 | 63 | 16  | 48  |
| Eud_NK_2    | 90  | 24  | 5   | 41 | 9.7 | 68 | 14  | 50  |
| Eud_NK_3    | 97  | 32  | 6.3 | 53 | 9.6 | 76 | 15  | 49  |
| Eud_NK_4    | 98  | 30  | 5.1 | 45 | 10  | 73 | 17  | 63  |
| Eud_NK_5    | 92  | 30  | 6.7 | 44 | 11  | 67 | 18  | 49  |
| Eud_NK_6    | 110 | 33  | 5.6 | 46 | 11  | 66 | 18  | 54  |
| Eud_NK_7    | 96  | 30  | 4.7 | 53 | 9.4 | 71 | 16  | 56  |
| Eud_NK_8    | 71  | 23  | 4.7 | 43 | 8.5 | 64 | 15  | 46  |
| Eud_NK_9    | 91  | 29  | 4.8 | 45 | 9.5 | 68 | 17  | 48  |
| Eud_NK_10   | 110 | 34  | 5.5 | 51 | 11  | 75 | 17  | 63  |
| Eud_NK_11   | 77  | 24  | 4.6 | 44 | 9   | 55 | 14  | 48  |
| Eud_NK_12   | 100 | 31  | 5.1 | 54 | 11  | 76 | 17  | 51  |
| Eud_NK_13   | 110 | 37  | 5.7 | 50 | 10  | 81 | 19  | 65  |
| Eud_NK_14   | 98  | 31  | 5.9 | 49 | 9.9 | 73 | 16  | 49  |
| Eud_NK_15   | 110 | 37  | 6.2 | 50 | 12  | 86 | 21  | 65  |
| Eud_NK_16   | 88  | 28  | 5.8 | 39 | 10  | 69 | 18  | 50  |
| KP1_2_1     | 45  | 14  | 3.9 | 30 | 7.2 | 64 | 16  | 56  |

| Sample   | Nd | Sm | Eu  | Gd | Tb  | Dy | Ho | Er |
|----------|----|----|-----|----|-----|----|----|----|
| KP1_2_2  | 53 | 15 | 4.6 | 30 | 7.4 | 62 | 16 | 58 |
| KP1_2_3  | 63 | 19 | 4.2 | 32 | 8.8 | 70 | 19 | 73 |
| KP1_2_4  | 45 | 15 | 3.9 | 29 | 7.5 | 54 | 17 | 58 |
| KP1_2_5  | 40 | 13 | 3.1 | 26 | 6.9 | 55 | 17 | 54 |
| KP1_2_6  | 45 | 15 | 3.3 | 29 | 7.3 | 59 | 15 | 55 |
| KP1_2_7  | 50 | 17 | 4   | 29 | 7.9 | 69 | 19 | 72 |
| KP1_2_8  | 40 | 15 | 3.6 | 26 | 6.9 | 56 | 14 | 60 |
| KP1_2_9  | 46 | 14 | 4   | 29 | 7.7 | 62 | 17 | 65 |
| KP1_2_10 | 50 | 17 | 3.8 | 28 | 7.6 | 66 | 16 | 66 |
| KP1_2_11 | 59 | 19 | 4.1 | 41 | 8.4 | 76 | 24 | 76 |
| KP1_2_12 | 52 | 15 | 3.9 | 24 | 6.7 | 61 | 18 | 72 |
| KP1_2_13 | 47 | 15 | 3.8 | 29 | 7.4 | 60 | 16 | 68 |
| KP1_2_14 | 50 | 16 | 4.4 | 35 | 6.7 | 62 | 18 | 66 |
| KP1_2_15 | 50 | 15 | 4.1 | 27 | 8.1 | 56 | 18 | 59 |
| KP1_2_16 | 55 | 18 | 3.9 | 36 | 8.9 | 64 | 20 | 66 |
| KP1_2_17 | 52 | 16 | 4.2 | 35 | 7.5 | 71 | 18 | 74 |
| KP1_2_18 | 52 | 17 | 4.1 | 35 | 8   | 69 | 20 | 84 |
| KP1_2_19 | 58 | 17 | 3.9 | 35 | 8.6 | 67 | 22 | 69 |
| KP1_2_20 | 48 | 16 | 3.3 | 31 | 8.1 | 62 | 19 | 67 |
| KP1_2_21 | 55 | 19 | 3.6 | 33 | 9.5 | 75 | 20 | 71 |
| KP1_2_22 | 70 | 23 | 3.9 | 42 | 12  | 89 | 24 | 91 |
| KP1_2_23 | 61 | 19 | 4.6 | 36 | 11  | 86 | 18 | 75 |
| KP1_2_24 | 56 | 17 | 3.7 | 26 | 8.6 | 68 | 17 | 66 |
| KP1_2_25 | 50 | 16 | 3.7 | 27 | 6.7 | 60 | 18 | 71 |
| KP1_2_26 | 61 | 18 | 3.9 | 35 | 9.1 | 72 | 18 | 77 |
| KP1_2_27 | 48 | 15 | 4.1 | 30 | 7   | 58 | 18 | 63 |
| KP1_2_28 | 56 | 16 | 3.9 | 33 | 7.8 | 66 | 18 | 62 |

| Sample      | Nd  | Sm | Eu  | Gd | Tb  | Dy | Ho  | Er |
|-------------|-----|----|-----|----|-----|----|-----|----|
| KP1_2_29    | 55  | 18 | 3.9 | 29 | 7.9 | 65 | 18  | 69 |
| KP1_2_30    | 53  | 15 | 3.6 | 26 | 7.6 | 73 | 17  | 71 |
|             |     |    |     |    |     |    |     |    |
| CBD11_101   | 33  | 10 | 3   | 19 | 4.2 | 30 | 6.2 | 20 |
| CBD11_102   | 51  | 15 | 3.5 | 23 | 4.5 | 32 | 6.7 | 19 |
| CBD11_103   | 32  | 11 | 3.5 | 17 | 3.8 | 24 | 6.9 | 19 |
| CBD11_104   | 53  | 15 | 3.5 | 26 | 4.3 | 31 | 7.3 | 19 |
| CBD11_105   | 39  | 11 | 2.6 | 21 | 4.2 | 28 | 6.1 | 18 |
| CBD11_106   | 37  | 11 | 3.6 | 21 | 3.4 | 20 | 4.9 | 13 |
| CBD11_107   | 52  | 15 | 3.3 | 20 | 3.9 | 27 | 5.7 | 17 |
| CBD11_108   | 44  | 13 | 2.9 | 21 | 4.1 | 32 | 7   | 17 |
| CBD11_109   | 50  | 14 | 3   | 22 | 3.5 | 25 | 7.5 | 15 |
| CBD11_1010  | 27  | 9  | 2.7 | 20 | 3.8 | 23 | 6.3 | 19 |
|             |     |    |     |    |     |    |     |    |
| CBD11_1011  | 75  | 24 | 4.2 | 41 | 9   | 62 | 15  | 40 |
| CBD11_1012  | 43  | 14 | 3.2 | 27 | 4.6 | 27 | 7.6 | 18 |
| CBD11_1013  | 48  | 16 | 3.3 | 25 | 5.6 | 30 | 7.8 | 19 |
| CBD11_1014  | 50  | 15 | 3   | 28 | 4.7 | 35 | 7   | 19 |
| CBD11_1015  | 50  | 15 | 3.6 | 26 | 4.7 | 34 | 9   | 21 |
|             |     |    |     |    |     |    |     |    |
| CBD11_1021  | 160 | 40 | 7   | 60 | 11  | 69 | 15  | 44 |
| CBD11_1022  | 130 | 35 | 6.8 | 42 | 8.7 | 61 | 18  | 48 |
| CBD11_1023  | 110 | 31 | 4.7 | 39 | 8.6 | 70 | 12  | 40 |
| CBD11_1025  | 130 | 37 | 8.3 | 48 | 9   | 71 | 16  | 45 |
| CBD11_1026  | 150 | 35 | 6.1 | 46 | 8.8 | 56 | 17  | 58 |
| CBD11_1029  | 220 | 54 | 10  | 64 | 11  | 93 | 21  | 55 |
| CBD11 10 31 | 190 | 52 | 9.7 | 77 | 14  | 91 | 22  | 63 |

| Sample      | Tm         | Yb         | Lu         | Hf         | Та         | W          | Pb         | Th         |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|
|             | <u>ppm</u> |
|             | 1.4        | 0          | 1.2        | 50         | 10         | ( )        | 0.00       | 1 1        |
| Eud_LV01_1  | 1.4        | 8          | 1.3        | 50         | 12         | 6.2        | 0.99       | 1.1        |
| Eud_LV01_2  | 1.5        | 7.5        | 1.3        | 45         | 8.7        | 4.7        | 1.3        | 1.3        |
| Eud_LV01_3  | 1.5        | 8.7        | 1.4        | 49         | 11         | 5          | 0.95       | 1.2        |
| Eud_LV01_4  | 1.3        | 8.5        | 1.2        | 53         | 9.2        | 6          | 1          | 1.3        |
| Eud_LV01_5  | 1.6        | 8.8        | 1.4        | 51         | 11         | 8.1        | 13         | 13         |
| Eud_LV01_6  | 1.5        | 10         | 1.3        | 51         | 10         | 4.8        | 1.1        | 1.1        |
| Eud_LV01_7  | 1.5        | 8.4        | 1.7        | 40         | 17         | 12         | 1.3        | 1.3        |
| Eud_LV01_8  | 1.4        | 8.7        | 1.6        | 40         | 12         | 7.1        | 1.5        | 1.3        |
| Eud_LV01_9  | 1.4        | 7.2        | 1.1        | 48         | 12         | 5.3        | 1.1        | 1.6        |
| Eud_LV01_10 | 1.7        | 7.2        | 1.5        | 53         | 11         | 5.3        | 2.7        | 2.3        |
| Eud_LV01_11 | 1.3        | 8.5        | 1.5        | 52         | 11         | 4.2        | 2          | 1.2        |
| Eud_LV01_12 | 1.5        | 7.9        | 1.4        | 51         | 8.8        | 4.7        | 4.4        | 0.8        |
| Eud_LV01_13 | 1.4        | 9.4        | 1.4        | 52         | 20         | 8.9        | 2.1        | 1.2        |
| Eud_LV01_14 | 1.5        | 8.9        | 1.6        | 52         | 16         | 8.8        | 1.9        | 1.4        |
| Eud_LV01_15 | 1.7        | 9.4        | 1.3        | 58         | 12         | 5.1        | 1.4        | 1.3        |
| Eud_LV01_16 | 1.5        | 11         | 1.5        | 58         | 12         | 5.4        | 1.3        | 1.2        |
| Eud_LV01_17 | 1.4        | 8.5        | 1.5        | 56         | 11         | 4.4        | 4.3        | 1.4        |
| Eud_LV01_18 | 1.6        | 8.7        | 1.6        | 49         | 11         | 4.9        | 1.2        | 1.2        |
|             |            |            |            |            |            |            |            |            |
| Eud_NK_1    | 5.6        | 48         | 6.3        | 58         | 5          | 1.7        | 67         | 0.85       |
| Eud_NK_2    | 8          | 53         | 8.1        | 58         | 5.2        | 2.2        | 48         | 0.98       |
| Eud_NK_3    | 6.1        | 48         | 6.7        | 57         | 6          | 1.9        | 15         | 1          |
| Eud_NK_4    | 9.1        | 55         | 7.8        | 80         | 6.4        | 2.3        | 22         | 0.92       |
| Eud_NK_5    | 7.2        | 45         | 5.8        | 45         | 4.8        | 1.8        | 8          | 1          |
| Eud_NK_6    | 8.5        | 55         | 6.5        | 61         | 5.4        | 1.7        | 6.6        | 0.96       |

| Sample      | Tm  | Yb | Lu  | Hf | Та  | $\mathbf{W}$ | Pb   | Th   |
|-------------|-----|----|-----|----|-----|--------------|------|------|
| Eud_NK_7    | 6.5 | 44 | 7.1 | 54 | 5.1 | 2.1          | 32   | 1    |
| Eud_NK_8    | 6   | 51 | 6.6 | 58 | 5.5 | 2.1          | 9    | 0.87 |
| Eud_NK_9    | 6.7 | 44 | 6.3 | 56 | 4.6 | 1.7          | 6.3  | 0.88 |
| Eud_NK_10   | 8.1 | 52 | 6.2 | 61 | 5.4 | 2.1          | 6.1  | 0.99 |
| Eud_NK_11   | 7.1 | 48 | 6.4 | 53 | 6.1 | 2            | 6    | 1.1  |
| Eud_NK_12   | 6.8 | 40 | 6.4 | 58 | 4.6 | 1.4          | 5.9  | 1.1  |
| Eud_NK_13   | 7.1 | 50 | 6.2 | 52 | 4.9 | 2.1          | 6.4  | 1.2  |
| Eud_NK_14   | 7.2 | 48 | 6.4 | 51 | 4.7 | 2.3          | 7.1  | 1    |
| Eud_NK_15   | 8.7 | 56 | 8   | 68 | 6.4 | 1.8          | 84   | 1.1  |
| Eud_NK_16   | 7.3 | 43 | 5.9 | 52 | 4.9 | 1.8          | 5.6  | 1.1  |
| Eud_NK_17   | 7.5 | 54 | 6.3 | 55 | 6.2 | 1.7          | 6.9  | 1    |
| Eud_NK_18   | 8.7 | 61 | 7.7 | 63 | 6   | 2.3          | 6.6  | 0.94 |
|             |     |    |     |    |     |              |      |      |
| CBD11_02_1  | 3.3 | 21 | 2.4 | 54 | 3.9 | 1.7          | 0.55 | 0.66 |
| CBD11_02_2  | 3.3 | 22 | 2.9 | 48 | 4.8 | 2.9          | 0.64 | 1.3  |
| CBD11_02_3  | 3   | 19 | 2.1 | 47 | 3.3 | 2            | 0.56 | 0.93 |
| CBD11_02_4  | 3.2 | 19 | 2.9 | 50 | 3   | 1.9          | 0.54 | 0.88 |
| CBD11_02_5  | 3.4 | 23 | 2.7 | 57 | 5.1 | 3.8          | 0.8  | 0.78 |
| CBD11_02_6  | 3.3 | 20 | 3   | 58 | 3.7 | 2.4          | 0.62 | 0.73 |
| CBD11_02_7  | 3.1 | 18 | 2.3 | 49 | 3.1 | 2.2          | 0.63 | 0.78 |
| CBD11_02_8  | 3.4 | 19 | 2.6 | 62 | 4.9 | 2.5          | 0.67 | 0.79 |
| CBD11_02_9  | 3.6 | 16 | 2.2 | 56 | 6.3 | 4.4          | 0.75 | 0.71 |
| CBD11_02_10 | 3   | 20 | 2.4 | 44 | 3.2 | 1.9          | 0.71 | 0.66 |
|             |     |    |     |    |     |              |      |      |
| CBD11_02_11 | 2.8 | 16 | 2.4 | 49 | 4.1 | 2.9          | 0.69 | 0.49 |
| CBD11_02_12 | 3   | 17 | 2.9 | 47 | 4.2 | 3.2          | 0.54 | 0.49 |
| CBD11_02_13 | 2.7 | 18 | 2.4 | 47 | 4.6 | 3.3          | 0.57 | 0.53 |

| Sample      | Tm  | Yb  | Lu  | Hf | Ta  | W   | Pb   | Th   |
|-------------|-----|-----|-----|----|-----|-----|------|------|
| CBD11_02_16 | 2.9 | 20  | 2.2 | 50 | 7.1 | 3.9 | 0.8  | 0.56 |
| CBD11_02_17 | 2.7 | 15  | 2.3 | 46 | 5.5 | 3.7 | 0.48 | 0.62 |
| CBD11_02_18 | 4.9 | 29  | 2.9 | 86 | 8.7 | 5.3 | 0.75 | 1    |
| CBD11_02_19 | 3.1 | 19  | 2.8 | 50 | 5.6 | 4.1 | 0.77 | 0.49 |
| CBD11_02_20 | 2.7 | 18  | 2.3 | 59 | 6.4 | 3.2 | 0.64 | 0.49 |
| CBD11_02_21 | 4.1 | 20  | 2.9 | 55 | 4.9 | 3.2 | 0.83 | 0.59 |
| CBD11_02_22 | 2.8 | 19  | 2.4 | 51 | 3.8 | 3.1 | 0.74 | 0.48 |
| CBD11_02_23 | 3.6 | 23  | 2.9 | 55 | 5.5 | 3.3 | 1.1  | 0.75 |
| CBD11_02_24 | 2.8 | 17  | 2.2 | 46 | 2.9 | 3   | 0.67 | 0.63 |
| CBD11_02_25 | 2.8 | 20  | 3.2 | 48 | 3.4 | 2.4 | 0.68 | 0.43 |
| CBD11_02_26 | 3.6 | 23  | 2.4 | 59 | 3.9 | 2.8 | 0.61 | 0.61 |
| CBD11_02_27 | 3.2 | 15  | 2.4 | 40 | 3.6 | 2.5 | 0.71 | 0.54 |
| CBD11_02_28 | 3.5 | 17  | 2.1 | 54 | 2.8 | 3   | 0.71 | 0.44 |
| CBD11_02_29 | 3.1 | 16  | 2.4 | 51 | 4.1 | 3.3 | 0.65 | 0.63 |
| CBD11_02_30 | 2.7 | 16  | 2.3 | 54 | 5.4 | 3.5 | 0.59 | 0.49 |
| KP1_2_1     | 12  | 82  | 11  | 55 | 17  | 17  | 5    | 0.86 |
| KP1_2_2     | 13  | 99  | 12  | 56 | 12  | 17  | 3.9  | 0.81 |
| KP1_2_3     | 13  | 90  | 11  | 51 | 9.7 | 33  | 5.4  | 0.83 |
| KP1_2_4     | 16  | 100 | 13  | 72 | 18  | 27  | 6.2  | 1    |
| KP1_2_5     | 14  | 94  | 12  | 53 | 12  | 33  | 4.4  | 0.94 |
| KP1_2_6     | 13  | 82  | 12  | 46 | 7.3 | 30  | 4.8  | 0.76 |
| KP1_2_7     | 15  | 94  | 11  | 49 | 15  | 27  | 3.9  | 1.1  |
| KP1_2_8     | 13  | 99  | 10  | 52 | 12  | 27  | 4.4  | 1    |
| KP1_2_11    | 18  | 130 | 16  | 65 | 23  | 30  | 14   | 1.1  |
| KP1_2_18    | 15  | 110 | 15  | 61 | 25  | 12  | 3.9  | 0.66 |

| Sample     | Tm | Yb  | Lu  | Hf | Та | W   | Pb  | Th   |
|------------|----|-----|-----|----|----|-----|-----|------|
| KP1_2_19   | 16 | 100 | 15  | 72 | 29 | 11  | 5.1 | 0.85 |
| KP1_2_20   | 12 | 85  | 12  | 57 | 24 | 11  | 4.2 | 0.87 |
| KP9_2_2_1  | 14 | 93  | 12  | 62 | 24 | 11  | 3.1 | 0.84 |
| KP9_2_2_2  | 13 | 93  | 11  | 50 | 21 | 11  | 3   | 0.98 |
| KP9_2_2_3  | 15 | 110 | 13  | 61 | 25 | 11  | 3.4 | 1.3  |
| KP9_2_2_4  | 12 | 88  | 12  | 58 | 24 | 9.1 | 3.5 | 1.3  |
| KP9_2_2_5  | 15 | 98  | 13  | 56 | 24 | 9.4 | 3.1 | 1.2  |
| KP9_2_2_6  | 13 | 91  | 12  | 54 | 24 | 11  | 3.6 | 1.4  |
| KP9_2_2_7  | 12 | 82  | 12  | 49 | 19 | 10  | 3.5 | 1.1  |
| KP9_2_2_8  | 15 | 93  | 12  | 51 | 20 | 11  | 2.7 | 1.2  |
| KP9_2_2_9  | 13 | 96  | 12  | 47 | 21 | 8.1 | 3.1 | 1    |
| KP9_2_2_10 | 14 | 88  | 11  | 54 | 21 | 8.7 | 3.2 | 1    |
| KP9 2 2 11 | 15 | 100 | 14  | 62 | 25 | 11  | 3.8 | 1.5  |
| KP9_2_2_12 | 13 | 88  | 11  | 43 | 22 | 13  | 4.4 | 1.2  |
| KP9_2_2_13 | 14 | 100 | 12  | 59 | 28 | 15  | 3.3 | 2    |
| KP9_2_2_14 | 14 | 110 | 13  | 64 | 30 | 20  | 3.9 | 1.4  |
| KP9_2_2_15 | 16 | 98  | 12  | 48 | 20 | 8.1 | 3.4 | 1.5  |
| KP9_2_2_16 | 14 | 70  | 9.3 | 49 | 19 | 8.1 | 2.9 | 1.7  |
| KP9_2_2_17 | 13 | 87  | 12  | 46 | 19 | 5.5 | 1.8 | 1.5  |
| KP9_2_2_18 | 15 | 100 | 12  | 48 | 22 | 7.6 | 1.3 | 1.4  |
| KP9_2_2_19 | 14 | 87  | 12  | 52 | 22 | 6.3 | 1.7 | 1.3  |
| KP9_2_2_20 | 11 | 86  | 10  | 46 | 17 | 5.4 | 1.8 | 1.3  |
| KP9_2_2_21 | 15 | 87  | 14  | 56 | 18 | 3.9 | 72  | 1.5  |
| KP9_2_2_22 | 12 | 74  | 11  | 47 | 14 | 3.2 | 1.6 | 1.4  |
| KP9_2_2_23 | 11 | 82  | 8.9 | 42 | 13 | 4.1 | 1.5 | 1.1  |
| KP9_2_2_24 | 12 | 90  | 9.7 | 44 | 14 | 3.9 | 2.2 | 1.3  |

| Sample     | Tm  | Yb  | Lu  | Hf | Ta  | W   | Pb  | Th  |
|------------|-----|-----|-----|----|-----|-----|-----|-----|
| KP9_2_2_25 | 13  | 84  | 9.9 | 52 | 15  | 4.2 | 160 | 2.3 |
| KP9_2_2_26 | 13  | 79  | 10  | 50 | 16  | 4.6 | 33  | 1.4 |
| KP9_2_2_27 | 11  | 81  | 9.4 | 40 | 15  | 4.1 | 1.8 | 1.2 |
| KP9_2_2_28 | 13  | 74  | 10  | 41 | 13  | 4   | 2.5 | 1.2 |
| KP9_2_2_29 | 14  | 90  | 12  | 45 | 15  | 3.7 | 1.8 | 1.1 |
| KP9_2_2_30 | 13  | 83  | 12  | 48 | 11  | 2.3 | 1.7 | 1.3 |
| KP9_2_2_31 | 13  | 88  | 8.6 | 50 | 13  | 2.7 | 1.9 | 1.5 |
| KP9_2_2_32 | 13  | 76  | 11  | 39 | 14  | 3.1 | 2.1 | 1.1 |
| KP9_2_2_33 | 14  | 78  | 10  | 48 | 13  | 3.2 | 130 | 1.5 |
| KP9_2_2_34 | 13  | 83  | 10  | 46 | 12  | 3.2 | 2.7 | 1.3 |
| KP9_2_2_35 | 15  | 91  | 11  | 47 | 12  | 2.2 | 3   | 1.3 |
| KP9_2_2_36 | 14  | 86  | 10  | 51 | 9.2 | 2.8 | 20  | 1.7 |
| KP9_2_2_37 | 13  | 94  | 12  | 51 | 10  | 2.6 | 1.7 | 1.5 |
| KP9_2_2_38 | 12  | 68  | 9.7 | 42 | 19  | 5.9 | 3   | 1.7 |
| KP9_2_2_39 | 15  | 94  | 11  | 43 | 15  | 6.5 | 3.5 | 1.6 |
| KP9_2_2_40 | 16  | 100 | 13  | 58 | 29  | 13  | 4   | 1.9 |
| KP9_2_2_41 | 14  | 110 | 13  | 58 | 29  | 24  | 3.9 | 1.8 |
| KP9_2_2_42 | 14  | 87  | 11  | 46 | 20  | 9.9 | 4.3 | 1.5 |
| Eud_LV01_1 | 1.8 | 11  | 1.3 | 59 | 15  | 8.9 | 1.8 | 1.2 |
| Eud_LV01_2 | 1.5 | 10  | 1.7 | 54 | 11  | 6.7 | 1.7 | 1.4 |
| Eud_LV01_3 | 1.6 | 8.1 | 1.1 | 48 | 9.8 | 4.4 | 1.7 | 1.3 |
| Eud_LV01_4 | 1.4 | 8.8 | 1.1 | 52 | 11  | 5.5 | 1.5 | 1.1 |
| Eud_LV01_5 | 1.4 | 9   | 1.3 | 51 | 14  | 11  | 1.5 | 2   |
| Eud_LV01_6 | 1.6 | 11  | 1.5 | 56 | 14  | 7.2 | 1.8 | 1.2 |
| Eud_LV01_7 | 1.5 | 9.9 | 1.3 | 49 | 16  | 9.5 | 1.7 | 1.4 |
| Eud_LV01_8 | 1.6 | 9.2 | 1.6 | 52 | 10  | 5.2 | 1.2 | 1.2 |
| Eud_LV01_9 | 1.6 | 8.3 | 1.2 | 51 | 9.9 | 5.2 | 1.4 | 1.2 |

| Sample      | Tm  | Yb  | Lu  | Hf | Ta  | $\mathbf{W}$ | Pb   | Th   |
|-------------|-----|-----|-----|----|-----|--------------|------|------|
| Eud_LV01_10 | 1.5 | 7.7 | 1.3 | 47 | 10  | 5.2          | 1.5  | 1.2  |
| Eud_LV01_11 | 1.4 | 7.9 | 1.5 | 49 | 11  | 3.8          | 1.5  | 1.1  |
| Eud_LV01_12 | 1.3 | 8.6 | 1.3 | 57 | 12  | 6.4          | 3    | 7.2  |
| Eud_LV01_13 | 1.6 | 9.3 | 1.6 | 53 | 14  | 6.8          | 1.7  | 1.4  |
| Eud_LV01_14 | 1.5 | 9   | 1.4 | 52 | 14  | 8.4          | 1.6  | 1.4  |
| Eud_LV01_15 | 1.7 | 9.6 | 1.6 | 57 | 18  | 9.4          | 1.6  | 1.4  |
| Eud_LV01_16 | 1.5 | 9.1 | 1.6 | 53 | 16  | 5.5          | 1.7  | 1.2  |
| Eud_LV01_17 | 2.1 | 11  | 1.8 | 56 | 17  | 9            | 1.9  | 1.4  |
| Eud_LV01_18 | 1.9 | 11  | 1.7 | 54 | 15  | 7.6          | 1.8  | 1.3  |
| Eud NK 1    | 7.2 | 54  | 7   | 60 | 5.8 | 2            | 6.1  | 0.93 |
| Eud NK 2    | 7.8 | 52  | 8.1 | 60 | 6   | 2            | 6.6  | 1.1  |
| Eud NK 3    | 7.5 | 51  | 7.2 | 61 | 6.5 | 2.3          | 8.3  | 1.1  |
| Eud NK 4    | 8.7 | 60  | 7.4 | 71 | 6.2 | 2.1          | 7.2  | 1    |
| Eud NK 5    | 7.9 | 58  | 7.4 | 60 | 7.5 | 1.9          | 7.6  | 0.86 |
| Eud_NK_6    | 9.2 | 62  | 8.8 | 70 | 6.4 | 2.1          | 7.3  | 0.95 |
| Eud_NK_7    | 9.1 | 56  | 8.1 | 58 | 6.4 | 2.1          | 7.6  | 1    |
| Eud_NK_8    | 8   | 46  | 6.9 | 60 | 5.6 | 1.9          | 4300 | 1.1  |
| Eud_NK_9    | 8.3 | 52  | 7.1 | 59 | 6.3 | 1.9          | 7.6  | 1    |
| Eud_NK_10   | 9.8 | 63  | 8.7 | 67 | 7.1 | 1.9          | 7.5  | 0.8  |
| Eud_NK_11   | 7.1 | 44  | 7.3 | 53 | 5.7 | 2.1          | 5.7  | 0.87 |
| Eud_NK_12   | 8.7 | 61  | 8.5 | 64 | 6.7 | 1.9          | 6.6  | 1.1  |
| Eud_NK_13   | 8.7 | 64  | 8.4 | 75 | 7.2 | 2            | 8    | 1.1  |
| Eud_NK_14   | 7.7 | 53  | 8.2 | 72 | 8   | 2.2          | 7.8  | 1    |
| Eud_NK_15   | 9.8 | 65  | 9.1 | 72 | 8   | 2            | 8.5  | 0.93 |
| Eud_NK_16   | 8.2 | 51  | 7.5 | 59 | 6.8 | 1.7          | 6.9  | 0.98 |
| KP1_2_1     | 12  | 68  | 10  | 48 | 10  | 13           | 4.9  | 0.62 |
| Sample   | Tm  | Yb  | Lu  | Hf | Та  | W   | Pb  | Th   |
|----------|-----|-----|-----|----|-----|-----|-----|------|
| KP1_2_2  | 13  | 79  | 9.7 | 41 | 11  | 7.6 | 4.1 | 0.88 |
| KP1_2_3  | 12  | 96  | 13  | 53 | 21  | 9.3 | 4.7 | 1.1  |
| KP1_2_4  | 10  | 73  | 8.9 | 48 | 12  | 12  | 4.8 | 1.1  |
| KP1_2_5  | 11  | 69  | 9.3 | 47 | 16  | 9.2 | 11  | 1.2  |
| KP1_2_6  | 11  | 71  | 9.9 | 43 | 18  | 11  | 4.2 | 1.3  |
| KP1_2_7  | 11  | 80  | 10  | 44 | 11  | 29  | 4.6 | 1    |
| KP1_2_8  | 11  | 77  | 9.1 | 43 | 6.5 | 21  | 4.9 | 1.3  |
| KP1_2_9  | 11  | 78  | 9.8 | 48 | 20  | 46  | 8.2 | 1.1  |
| KP1_2_10 | 13  | 76  | 11  | 43 | 16  | 10  | 4.8 | 1.1  |
| KP1_2_11 | 13  | 110 | 11  | 49 | 16  | 21  | 4.4 | 0.58 |
| KP1_2_12 | 13  | 68  | 10  | 46 | 12  | 6.4 | 4.1 | 0.79 |
| KP1_2_13 | 11  | 82  | 10  | 43 | 17  | 8   | 4.2 | 0.84 |
| KP1_2_14 | 12  | 80  | 9   | 55 | 17  | 8.2 | 4.7 | 0.94 |
| KP1_2_15 | 9.7 | 75  | 13  | 45 | 17  | 6.8 | 5   | 1.1  |
| KP1_2_16 | 13  | 85  | 12  | 48 | 16  | 7.8 | 3.7 | 0.84 |
| KP1_2_17 | 13  | 90  | 12  | 42 | 16  | 11  | 3.8 | 1.1  |
| KP1_2_18 | 13  | 86  | 12  | 42 | 9.5 | 16  | 4.1 | 0.54 |
| KP1_2_19 | 12  | 82  | 11  | 46 | 9.2 | 10  | 4.4 | 0.54 |
| KP1_2_20 | 11  | 84  | 10  | 48 | 10  | 9.9 | 4.3 | 0.53 |
| KP1_2_21 | 15  | 86  | 12  | 62 | 13  | 12  | 4.4 | 0.57 |
| KP1_2_22 | 17  | 110 | 14  | 63 | 21  | 27  | 5.1 | 0.73 |
| KP1_2_23 | 15  | 90  | 11  | 55 | 21  | 8.7 | 4.3 | 1.2  |
| KP1_2_24 | 12  | 83  | 8.8 | 51 | 17  | 6.3 | 4.4 | 0.96 |
| KP1_2_25 | 11  | 77  | 9.1 | 47 | 13  | 24  | 3.8 | 0.81 |
| KP1_2_26 | 12  | 94  | 10  | 52 | 17  | 8.6 | 4.4 | 0.98 |
| KP1_2_27 | 11  | 92  | 10  | 52 | 18  | 8.1 | 4.3 | 1.1  |
| KP1_2_28 | 13  | 86  | 12  | 47 | 18  | 13  | 3.8 | 0.86 |

| Sample      | Tm  | Yb | Lu  | Hf  | Ta  | W   | Pb   | Th   |
|-------------|-----|----|-----|-----|-----|-----|------|------|
| KP1_2_29    | 12  | 81 | 9.6 | 40  | 17  | 7.1 | 4.3  | 0.72 |
| KP1_2_30    | 11  | 76 | 12  | 41  | 17  | 9.3 | 3.9  | 0.59 |
|             |     |    |     |     |     |     |      |      |
| CBD11_101   | 3.1 | 21 | 2.9 | 50  | 5.5 | 3.5 | 0.82 | 0.66 |
| CBD11_102   | 3.5 | 18 | 2.5 | 56  | 6.8 | 4.4 | 0.83 | 0.43 |
| CBD11_103   | 3.3 | 18 | 2.8 | 58  | 5.8 | 4   | 0.92 | 0.51 |
| CBD11_104   | 3.5 | 20 | 2.7 | 56  | 3.7 | 2.6 | 0.66 | 0.52 |
| CBD11_105   | 2.7 | 19 | 2.7 | 49  | 6   | 3.8 | 0.96 | 0.8  |
| CBD11_106   | 2.1 | 14 | 2.1 | 49  | 4.5 | 3.7 | 0.71 | 0.45 |
| CBD11_107   | 2.4 | 16 | 2.5 | 61  | 9.8 | 5.2 | 0.65 | 0.46 |
| CBD11_108   | 3.3 | 17 | 2.8 | 55  | 6.1 | 3.8 | 0.94 | 0.5  |
| CBD11 10 9  | 3   | 16 | 2.1 | 49  | 2.5 | 2   | 0.81 | 0.51 |
| CBD11_1010  | 3.2 | 15 | 2.8 | 50  | 4   | 2.9 | 0.74 | 0.59 |
|             |     |    |     |     |     |     |      |      |
| CBD11_1011  | 6.4 | 40 | 4.9 | 110 | 9.5 | 3.5 | 0.93 | 0.66 |
| CBD11_1012  | 3.4 | 18 | 2.4 | 49  | 2.6 | 2.4 | 0.76 | 0.48 |
| CBD11_1013  | 3.6 | 18 | 3   | 56  | 3.5 | 3   | 0.92 | 0.42 |
| CBD11_1014  | 3.1 | 20 | 2.7 | 58  | 5.6 | 4.5 | 1    | 0.43 |
| CBD11_1015  | 2.9 | 21 | 2.6 | 59  | 4.8 | 3.7 | 0.78 | 0.43 |
|             |     |    |     |     |     |     |      |      |
| CBD11_1021  | 6.1 | 33 | 8.7 | 130 | 23  | 14  | 2.2  | 2.7  |
| CBD11_1022  | 5.5 | 34 | 5.7 | 110 | 15  | 7   | 0.97 | 1.7  |
| CBD11_1023  | 5.8 | 47 | 6   | 110 | 14  | 9.4 | 1.1  | 2    |
| CBD11_1025  | 6.9 | 47 | 7   | 140 | 22  | 14  | 1.7  | 2.4  |
| CBD11_1026  | 6.9 | 51 | 7.3 | 120 | 19  | 14  | 0.84 | 2.6  |
| CBD11_1029  | 8.8 | 69 | 11  | 200 | 26  | 11  | 1.3  | 2.9  |
| CBD11 10 31 | 10  | 60 | 8.2 | 170 | 26  | 14  | 2    | 3.4  |

| Sample      | U          |
|-------------|------------|
|             | <u>ppm</u> |
| Eud_LV01_1  | 2.1        |
| Eud_LV01_2  | 2          |
| Eud_LV01_3  | 2.1        |
| Eud_LV01_4  | 1.6        |
| Eud_LV01_5  | 4.5        |
| Eud_LV01_6  | 1.8        |
| Eud_LV01_7  | 1.7        |
| Eud_LV01_8  | 1.6        |
| Eud_LV01_9  | 1.6        |
| Eud_LV01_10 | 1.9        |
| Eud_LV01_11 | 1.8        |
| Eud_LV01_12 | 1.6        |
| Eud_LV01_13 | 1.8        |
| Eud_LV01_14 | 1.5        |
| Eud_LV01_15 | 2.2        |
| Eud_LV01_16 | 2.1        |
| Eud_LV01_17 | 1.9        |
| Eud_LV01_18 | 2.1        |
|             |            |
| Eud_NK_1    | 1.7        |
| Eud_NK_2    | 1.4        |
| Eud_NK_3    | 1.6        |
| Eud_NK_4    | 1.4        |
| Eud_NK_5    | 1.4        |

| Sample      | U   |
|-------------|-----|
| Eud_NK_6    | 1.7 |
| Eud_NK_7    | 1.2 |
| Eud_NK_8    | 1.5 |
| Eud_NK_9    | 1.5 |
| Eud_NK_10   | 1.6 |
| Eud_NK_11   | 1.4 |
| Eud_NK_12   | 1.4 |
| Eud_NK_13   | 1.5 |
| Eud_NK_14   | 1.7 |
| Eud_NK_15   | 1.6 |
| Eud_NK_16   | 1.3 |
| Eud_NK_17   | 1.5 |
| Eud_NK_18   | 1.7 |
|             |     |
| CBD11_02_1  | 3.5 |
| CBD11_02_2  | 1.7 |
| CBD11_02_3  | 2.8 |
| CBD11_02_4  | 2.8 |
| CBD11_02_5  | 1.7 |
| CBD11_02_6  | 1.9 |
| CBD11_02_7  | 2.5 |
| CBD11_02_8  | 2.8 |
| CBD11_02_9  | 1.2 |
| CBD11_02_10 | 2.9 |
|             |     |
| CBD11_02_11 | 1.3 |
| CBD11_02_12 | 1.4 |
| CBD11_02_13 | 1.3 |

| Sample      | U    |
|-------------|------|
| CBD11_02_16 | 1.8  |
| CBD11_02_17 | 1.1  |
| CBD11_02_18 | 1.3  |
| CBD11_02_19 | 0.95 |
| CBD11_02_20 | 0.74 |
| CBD11_02_21 | 1.2  |
| CBD11_02_22 | 1    |
| CBD11_02_23 | 1.3  |
| CBD11_02_24 | 1.4  |
| CBD11_02_25 | 0.89 |
| CBD11_02_26 | 1.6  |
| CBD11_02_27 | 1.1  |
| CBD11_02_28 | 0.98 |
| CBD11_02_29 | 1.4  |
| CBD11_02_30 | 1.1  |
| KP1_2_1     | 0.97 |
| KP1_2_2     | 0.91 |
| KP1_2_3     | 1.2  |
| KP1_2_4     | 1.5  |
| KP1_2_5     | 1.6  |
| KP1_2_6     | 1.7  |
| KP1_2_7     | 1.5  |
| KP1_2_8     | 1.5  |
| KP1_2_11    | 1.6  |

| Sample     | U   |
|------------|-----|
| KP1_2_18   | 1   |
| KP1_2_19   | 1.3 |
| KP1_2_20   | 1.3 |
|            |     |
| KP9_2_2_1  | 1.9 |
| KP9_2_2_2  | 3.4 |
| KP9_2_2_3  | 2.8 |
| KP9_2_2_4  | 1.5 |
| KP9_2_2_5  | 1.9 |
| KP9_2_2_6  | 1.8 |
| KP9_2_2_7  | 1.5 |
| KP9_2_2_8  | 1.9 |
| KP9_2_2_9  | 1.6 |
| KP9_2_2_10 | 1.7 |
|            |     |
| KP9_2_2_11 | 2.5 |
| KP9_2_2_12 | 2.1 |
| KP9_2_2_13 | 2   |
| KP9_2_2_14 | 2.2 |
| KP9_2_2_15 | 1.9 |
| KP9_2_2_16 | 1.7 |
| KP9_2_2_17 | 1.7 |
| KP9_2_2_18 | 1.7 |
| KP9_2_2_19 | 1.9 |
| KP9_2_2_20 | 1.5 |
| KP9_2_2_21 | 2.9 |
| KP9_2_222  | 1.5 |
| KP9_2_223  | 1.6 |

| Sample     | U   |
|------------|-----|
| KP9_2_2_24 | 1.7 |
| KP9_2_2_25 | 3   |
| KP9_2_2_26 | 1.6 |
| KP9_2_2_27 | 1.4 |
| KP9_2_2_28 | 1.9 |
| KP9_2_2_29 | 1.7 |
| KP9_2_2_30 | 1.5 |
| KP9_2_2_31 | 1.6 |
| KP9_2_2_32 | 1.6 |
| KP9_2_2_33 | 2.1 |
| KP9_2_2_34 | 1.9 |
| KP9_2_2_35 | 2.2 |
| KP9_2_2_36 | 1.6 |
| KP9_2_2_37 | 2.4 |
| KP9_2_2_38 | 2.1 |
| KP9_2_2_39 | 2.3 |
| KP9_2_2_40 | 2.3 |
| KP9_2_2_41 | 1.9 |
| KP9_2_2_42 | 2   |
| Eud LV01 1 | 1.8 |
| Eud LV01 2 | 1.8 |
| Eud LV01 3 | 1.9 |
| Eud LV01 4 | 1.5 |
| Eud LV01 5 | 1.5 |
| Eud LV01 6 | 2   |
| Eud LV01 7 | 2   |
| Eud LV01 8 | 1.9 |
|            |     |

| Sample      | U   |
|-------------|-----|
| Eud_LV01_9  | 1.8 |
| Eud_LV01_10 | 1.8 |
| Eud_LV01_11 | 1.8 |
| Eud_LV01_12 | 1.9 |
| Eud_LV01_13 | 2   |
| Eud_LV01_14 | 2   |
| Eud_LV01_15 | 1.9 |
| Eud_LV01_16 | 1.8 |
| Eud_LV01_17 | 2.3 |
| Eud_LV01_18 | 2   |
|             |     |
| Eud_NK_1    | 1.4 |
| Eud_NK_2    | 1.6 |
| Eud_NK_3    | 1.1 |
| Eud_NK_4    | 1.4 |
| Eud_NK_5    | 1.5 |
| Eud_NK_6    | 1.1 |
| Eud_NK_7    | 1.5 |
| Eud_NK_8    | 1.8 |
| Eud_NK_9    | 1.6 |
| Eud_NK_10   | 1.4 |
| Eud_NK_11   | 1.3 |
| Eud_NK_12   | 1.6 |
| Eud_NK_13   | 1.7 |
| Eud_NK_14   | 1.8 |
| Eud_NK_15   | 1.7 |
| Eud NK 16   | 1.5 |

| Sample   | U   |
|----------|-----|
| KP1_2_1  | 2.4 |
| KP1_2_2  | 2.3 |
| KP1_2_3  | 2.1 |
| KP1_2_4  | 2.1 |
| KP1_2_5  | 1.6 |
| KP1_2_6  | 1.7 |
| KP1_2_7  | 2   |
| KP1_2_8  | 1.9 |
| KP1_2_9  | 1.9 |
| KP1_2_10 | 1.9 |
| KP1_2_11 | 1.5 |
| KP1_2_12 | 1.6 |
| KP1_2_13 | 1.9 |
| KP1_2_14 | 2.5 |
| KP1_2_15 | 2.3 |
| KP1_2_16 | 2.1 |
| KP1_2_17 | 2.3 |
| KP1_2_18 | 1.1 |
| KP1_2_19 | 1.7 |
| KP1_2_20 | 2.9 |
| KP1_2_21 | 2.3 |
|          |     |
| KP1_2_22 | 2.6 |
| KP1_2_23 | 2.2 |
| KP1_2_24 | 2   |
| KP1_2_25 | 2   |
| KP1_2_26 | 2.3 |
| KP1_2_27 | 2.1 |

| Sample     | U    |
|------------|------|
| KP1_2_28   | 2.1  |
| KP1_2_29   | 1.9  |
| KP1_2_30   | 1.8  |
|            |      |
| CBD11_101  | 2.1  |
| CBD11_102  | 1.2  |
| CBD11_103  | 1.9  |
| CBD11_104  | 1.3  |
| CBD11_105  | 1.4  |
| CBD11_106  | 1.3  |
| CBD11_107  | 1.2  |
| CBD11_108  | 1.3  |
| CBD11_109  | 1    |
| CBD11_1010 | 1.1  |
|            |      |
| CBD11_1011 | 3.8  |
| CBD11_1012 | 1.7  |
| CBD11_1013 | 1.3  |
| CBD11_1014 | 0.83 |
| CBD11_1015 | 0.93 |
|            |      |
| CBD11_1021 | 2.2  |
| CBD11_1022 | 1.9  |
| CBD11_1023 | 1.6  |
| CBD11_1025 | 2    |
| CBD11_1026 | 2.4  |
| CBD11_1029 | 3.5  |
| CBD11_1031 | 5.3  |

## 8.0 APPENDIX 4: SAMPLE INVENTORY

| Sample ID   | Locality             | Coordinates         | Sample Type                             |
|-------------|----------------------|---------------------|-----------------------------------------|
| KP 1        | Kipawa               | 46.80783, -78.50404 | Hand sample, polished chip              |
| KP 2        | Kipawa               | 46.80783, -78.50405 | Hand sample                             |
| KP 3        | Kipawa               | 46.80783, -78.50406 | Hand sample                             |
| KP 4        | Kipawa               | 46.80783, -78.50407 | Hand sample                             |
| KP 5        | Kipawa               | 46.80783, -78.50408 | Hand sample                             |
| KP 6        | Kipawa               | 46.80783, -78.50409 | Hand sample                             |
| KP 7        | Kipawa               | 46.80783, -78.50410 | Hand sample                             |
| KP 8        | Kipawa               | 46.80783, -78.50411 | Hand sample, polished chip              |
| KP 9        | Kipawa               | 46.80783, -78.50412 | Hand sample, polished chip, thin        |
|             |                      |                     | section                                 |
| KP 10       | Kipawa               | 46.80783, -78.50413 | Hand sample                             |
| KP 11       | Kipawa               | 46.80783, -78.50414 | Hand sample                             |
| KP 12       | Kipawa               | 46.80783, -78.50415 | Hand sample, thin section               |
| KP 13       | Kipawa               | 46.80783, -78.50416 | Hand sample, thin section               |
| KP 14       | Kipawa               | 46.80783, -78.50417 | Hand sample                             |
| KP 15       | Kipawa               | 46.80783, -78.50418 | Hand sample                             |
| KP 16       | Kipawa               | 46.80783, -78.50419 | Hand sample                             |
| KM 134      | Kipawa               | 46.807, -78.504     | Drill core, polished chip, thin section |
| CB 02-2     | Red Wine- Cabernet   |                     | Drill core, polished chip, thin section |
| PR 03       | Red Wine- Pinot Rose |                     | Drill core, polished chip, thin section |
| CBD 11-10-1 | Red Wine- Cabernet   |                     | Drill core, polished chip               |
| CBD 11-10-2 | Red Wine- Cabernet   |                     | Drill core, polished chip               |

Table 8. Inventory of all samples acquired in the course of this study.

## 9.0 APPENDIX 5: SUPPLIMENTAL IMAGES

## Figure from Appendix 5

| Figure 44. Sample KP 3                                                                   | 255 |
|------------------------------------------------------------------------------------------|-----|
| Figure 45. Sample KP 4                                                                   | 256 |
| Figure 46. Sample KP 5                                                                   | 257 |
| Figure 47. Sample KP 6                                                                   | 258 |
| Figure 48. Sample KP 7                                                                   | 259 |
| Figure 49. Sample KP 8                                                                   | 260 |
| Figure 50. Sample KP 9                                                                   | 261 |
| Figure 51. Sample KP 10                                                                  | 262 |
| Figure 52. Sample KP 11                                                                  | 263 |
| Figure 53. Sample KP 12                                                                  | 264 |
| Figure 54. Sample KP 13                                                                  | 265 |
| Figure 55. Sample KP 13.1                                                                | 266 |
| Figure 56. Sample KP 14                                                                  | 267 |
| Figure 57. Sample KP 15                                                                  | 268 |
| Figure 58. Sample KP 16                                                                  | 269 |
| Figure 59. BSE image and overlaid EDS identifications of eudialyte in sample KP 9        | 270 |
| Figure 60. BSE image and overlaid EDS identifications of eudialyte in sample KP 9        | 271 |
| Figure 61. BSE image of sample KP 8                                                      | 272 |
| Figure 62. BSE image and overlaid EDS identifications of eudialyte in sample KP 8        | 273 |
| Figure 63. Galena (white) in sample KP 8                                                 | 274 |
| Figure 64. True color image of KM 134                                                    | 275 |
| Figure 65. BSE image and overlaid EDS identifications of eudialyte in sample KM 134      | 276 |
| Figure 66. BSE image and overlaid EDS identifications of eudialyte in sample KM 134      | 277 |
| Figure 67. BSE image and overlaid EDS identifications of eudialyte in sample KM 134      | 278 |
| Figure 68. BSE image and overlaid EDS identifications of eudialyte in sample KM 134      | 279 |
| Figure 69. BSE image and overlaid EDS identifications of eudialyte in sample KM 134      | 280 |
| Figure 70 BSE image and overlaid EDS identifications of eudialyte in sample KM 134       | 281 |
| Figure 71. BSE image and overlaid EDS identifications of eudialyte in sample CBD 11-10-2 | 282 |
| Figure 72. BSE image and overlaid EDS identifications of eudialyte in sample CBD 11-10-2 | 283 |
| Figure 73. BSE image and overlaid EDS identifications of eudialyte in sample CBD 11-10-2 | 283 |
| Figure 74. BSE image and overlaid EDS identifications of eudialyte in sample CBD 11-10-2 | 283 |
| Figure 75. BSE image and overlaid EDS identifications of eudialyte in sample PR 03-11    | 283 |
| Figure 76. BSE image and overlaid EDS identifications of eudialyte in sample PR 03-11    | 283 |
| Figure 77.BSE image and overlaid EDS identifications of eudialyte in sample PR 03-11     | 283 |



Figure 44. Sample KP 3



Figure 45. Sample KP 4



Figure 46. Sample KP 5



Figure 47. Sample KP 6



Figure 48. Sample KP 7



Figure 49. Sample KP 8



Figure 50. Sample KP 9



Figure 51. Sample KP 10



Figure 52. Sample KP 11



Figure 53. Sample KP 12



Figure 54. Sample KP 13



Figure 55. Sample KP 13.1



Figure 56. Sample KP 14



Figure 57. Sample KP 15



Figure 58. Sample KP 16.



Figure 59. BSE image and overlaid EDS identifications of eudialyte in sample KP 9



 1mm
 Electron Image 1

 Figure 60. BSE image and overlaid EDS identifications of eudialyte in sample KP 9



Figure 61. BSE image of sample KP 8



Figure 62. BSE image and overlaid EDS identifications of eudialyte in sample KP 8



Figure 63. Galena (white) in sample KP 8



Figure 64. True color image of KM 134



Figure 65. BSE image and overlaid EDS identifications of eudialyte in sample KM 134



Figure 66. BSE image and overlaid EDS identifications of eudialyte in sample KM 134


100µm

Electron Image 1

Figure 67. BSE image and overlaid EDS identifications of eudialyte in sample KM 134



Figure 68. BSE image and overlaid EDS identifications of eudialyte in sample KM 134



Figure 69. BSE image and overlaid EDS identifications of eudialyte in sample KM 134



Figure 70 BSE image and overlaid EDS identifications of eudialyte in sample KM 134



Figure 71. BSE image and overlaid EDS identifications of eudialyte in sample CBD 11-10-2



Figure 72. BSE image and overlaid EDS identifications of eudialyte in sample CBD 11-10-2



Figure 73. BSE image and overlaid EDS identifications of eudialyte in sample CBD 11-10-2



Figure 74. BSE image and overlaid EDS identifications of eudialyte in sample CBD 11-10-2



Figure 75. BSE image and overlaid EDS identifications of eudialyte in sample PR 03-11



Figure 76. BSE image and overlaid EDS identifications of eudialyte in sample PR 03-11



Figure 77.BSE image and overlaid EDS identifications of eudialyte in sample PR 03-11