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The properties of electrified interfaces, such as surface structure of metal catalyst, lo-

cal pH, coverage of surface-adsorbed intermediates, interfacial electric field, and water

structure, influence the activity and selectivity of electrocatalytic reactions. Because these

interfacial properties often influence each other and undergo changes with applied poten-

tial, it is very challenging to identify the key characteristics of the interface that directly

modulate electrocatalytic reactions. In this thesis, we demonstrate in-situ probing of elec-

trochemical interfacial properties by employing surface-enhanced infrared (IR) absorption

spectroscopy (SEIRAS) in conjunction with surface-adsorbed CO (COads) as a molecu-

lar probe of the Cu/aqueous electrolyte interface. This interface shows potential for the

reduction of CO2 and CO to a wide variety of hydrocarbons. The CO and CO2 reduc-

tion reactions (CO/CO2RR) feature COads as an intermediate; therefore, this interface is

conveniently probed by COads. In the first part if this thesis, we focus on investigat-

ing the dynamics of the surface morphology of the electrode during electrocatalysis. We

found that the surface morphology of polycrystalline Cu undergoes reconstructions during

CO/CO2RR. We determined that these reconstructions can be induced by COads and the

local pH. As a result of the surface reconstructions, new specific surface sites form that

can effect catalytic activity. For example, we detected an electrochemically inert COads

population that appears as a result of reconstruction processes. Further, to form a rigor-

ous connection between the product formation and the atomic-level surface morphology of

rough polycrystalline Cu electrodes, we combined SEIRAS with differential electrochemi-

cal mass-spectrometry (DEMS). We established the potential-dependence of the line shape



of the C≡O stretch band as an indicator of the atomic-level surface morphology. The last

part of the thesis focuses on the determination of properties of the electrochemical double

layer. Specifically, we elucidated the effects of cation identity on the electrochemical dou-

ble layer. By evaluating the C≡O stretch frequency in the presence of alkali metal cations

(Li+, K+, and Cs+), we determined that the promotion of the CO reduction reaction is

associated with a cation-dependent interfacial field.
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Chapter 1

Introduction

1.1 Introduction

Electrocatlytic processes provide a sustainable strategy for the conversion of small molecu-

les such as CO2, H2O and N2 to value added fuels and commodity chemicals using re-

newable energy sources [1–5]. Further, electrocatalytic processes offer precise control

over redox processes that are not realizable or difficult to achieve by other means [1–5].

Electrocatalytic processes are utilized not only in converting small molecules, but also in

macro-molecular synthesis. Organic electrosynthesis presents greener and milder alter-

natives compared to conventional organic synthesis methods [6]. Accordingly, electro-

chemistry is used to perform technologically relevant chemical transformations, such as

biomass conversion [7, 8], CO2 reduction [9, 10], and water splitting [11, 12]. Neverthe-

less, electrochemical processes suffer from poor product selectivity, catalyst deactivation

and require higher overpotentials [3, 13–15]. For instance, even though the thermody-

namic potential for conversion of CO2 to methane is 0.17 V vs. the reversible hydrogen

electrode (RHE), during electrochemcial CO2 reduction, methane is observed at ≈ −1

V vs. RHE [10]. Also, evolution of unwanted side products, such as hydrogen gas, at

cathodic potentials decrease the selectivity towards the desired products [1, 16].

To overcome the challenges associated with electrocatalytic processes as noted above,
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a rigorous understanding of the electrode/electrolyte interface is essential. The complex

nature of the interface between electrode and electrolyte renders the understanding of in-

terfacial properties arduous. The surface morphology determines the ensemble of catalyt-

ically active surface sites, whose identities control the binding energy of surface-adsorbed

intermediates [17–20]. The arrangement of ions, molecular co-catalysts, and the water

structure on the electrolyte side of the interface can modulate interfacial pH, electric field,

proton donation, solvation environment and adsorption energy of surface-adsorbed inter-

mediates [21–29]. Moreover, the properties of the electrode and electrolyte sides interact

with each other and evolve during the catalytic reaction conditions [30–32], making it even

more challenging to understand the parameters that determine the activity and selectivity

of electrocatalytic processes.

In-situ probing of the properties of the electrode/electrolyte interface is challenging and

only a few techniques are available for this purpose, including X-ray techniques, atomic

force microscopy (AFM), scanning tunneling microscopy (STM), surface-enhanced Ra-

man scattering (SERS) and surface-enhanced infrared absorption spectroscopy (SEIRAS).

Among these techniques for in-situ probing of the electrochemical interface, SEIARS has

emerged as a convenient method [33–35]. When SEIRAS is coupled with a suitable molec-

ular probe, this technique provides atomic level information of the structure and dynamics

of double layer properties under reaction conditions. The C≡O stretch frequency of COads

depends on the coordination number of the metal atom on which CO is adsorbed and on

the double layer properties. Further, COads is an on-pathway intermediate of technologi-

cally significant reactions such as CO2 reduction and CO oxidation reactions [36–38]. In

addition, COads can be used as a spectator species of other reactions. For these reasons,

COads is an attractive probe of the electrocatalytic interface.

The C≡O stretch frequency however is affected by CO coverage (dynamical dipole

coupling, chemical effects), electric field, co-adsorbates, and interfacial water structure.
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Therefore, it is important to develop strategies for the interpretation of the C≡O stretch

band of COads. In this thesis we demonstrate how to unveil the in-situ properties of catalyst

morphology and electric double layer by employing COads as a molecular probe.

In the first part of this thesis, we focus on the influence of the electrode side on activ-

ity and selectivity of electrocatalytic processes. Activity and selectivity of electrocatalytic

reactions depend distinctly on the morphology of the catalyst [39–43]. For instance, it has

been suggested that Pt(111) terrace sites show the least activity towards CO oxidation in

0.1 M NaOH electrolyte, while step and kink sites of Pt(110) and (100) are more active

(oxidation potentials of 0.75 and 0.35 V vs. RHE, respectively) [40]. Similarly, the se-

lectivity for C2+ hydrocarbons from CO2 reduction reaction (CO2RR) is about six times

higher on oxide-derived copper electrodes compared to that on a polycrystalline copper

foil [43].

However, morphology of the catalyst can be greatly affected during catalysis [44–48].

It has been shown that polycrystalline copper undergoes reconstruction within tens of min-

utes to yield Cu(100) surface facets when it is exposed to −0.9 V vs. the standard hydrogen

electrode (SHE) in 0.1 M KOH electrolyte [46, 47]. Further, it has been demonstrated that

Au(100) undergoes reconstruction under cathodic applied potentials in 0.1 M HClO4 [48].

Eren et al. have shown that the Cu(111) surface forms CO-stabilized Cu clusters when

it is exposed to CO gas with pressures higher than 0.2 torr [45]. By employing ambient

pressure X-ray photoelectron spectroscopy (APXPS), they have further shown that this Cu

cluster formation activates the surface for water dissociation during the water-gas shift re-

action [45]. These examples emphasize that knowledge of the morphology of the catalyst,

especially under reaction conditions, is crucial in developing better catalysts.

In Chapter 3, we demonstrate that copper catalyst’s surface undergoes reversible re-

construction during CO2RR, by utilizing atop-bound CO (COatop) as an in-situ probe [30].

The proposed theory is based on the observation of two distinct frequencies for the C≡O
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stretch mode with SEIRAS and surface-enhanced Raman scattering (SERS): a low fre-

quency band (LFB) ≈ 2050 cm−1 at moderate cathodic potentials < −1 V vs. standard

hydrogen electrode (SHE), and a high frequency band (HFB) ≈ 2080 cm−1 at cathodic

potentials > −1 V vs. SHE. The LFB and HFB bands are assigned to COatop on terrace

and defect copper surface sites, respectively. HFB appears only when the LFB band area

reaches a significant value of ≈ 100 mOD cm−1, suggesting that adsorbed CO induces

surface reconstruction that forms undercoordinated copper surface sites. Further, the si-

multaneous enhancement of the intensity of Raman scattering related to the Cu-C bond

(≈ 345 cm−1) and the frustrated rotation of COatop (≈ 285 cm−1) with the appearance

of the HFB, support the surface reconstruction hypothesis. Observation of a similar trend

during cathodic and anodic scans demonstrates that this adsorbed CO induced surface re-

construction is reversible.

The preference for a particular adsorption configuration of adsorbed CO on metal cat-

alysts can be influenced by aspects such as electrolyte pH and catalyst morphology. The

sensitivity of the C≡O stretch frequency to the adsorption configuration qualifies it as a

powerful probe to study morphological changes of catalysts during electrochemical pro-

cesses. In Chapter 4, we show that IR spectra collected in CO saturated 0.05 M Li2CO3

exhibit two distinct bands in the frequency ranges of 1800− 1900 and 2000− 2100 cm−1,

which are due to bridge-bound CO (CObridge) and COatop configurations, respectively.

During a cathodic polarization experiment at −1.1 V vs. SHE, COatop converts into

CObridge below the saturation coverage of COads. This conversion of COatop to CObridge

is greater in long cathodic polarization experiments, but lesser in short cathodic polariza-

tion experiments (25 vs. 1 min cathodic polarization at −1.1 V vs. SHE). Increase of the

CObridge band area with time indicates that the CObridge configuration on copper is favored

in high pH conditions: The interfacial pH increases as hydroxide ions accumulate with

time due to the concurrent hydrogen evolution reaction. The origin of the promotion of
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CObridge over COatop in high pH is suggested to be the formation of Cu(100) and (111)

sites with pH-induced surface reconstruction of copper. This work demonstrates that the

different binding configurations manifested by different frequencies of the C≡O stretch

band can be utilized to track the dynamics of the catalyst under electrochemical reaction

conditions.

The C≡O stretch frequency of COads is influenced by the CO coverage through dy-

namical dipole coupling and chemical effects. Therefore, the C≡O stretch frequency at

high CO coverage does not reflect the true structure and morphology of the underlying

metal catalyst in a straightforward manner. Even at low CO coverage, the C≡O stretch

frequency cannot be used as a sole probe to distinguish each of the crystallographic facets:

The C≡O stretch frequency on Cu (111) and (100) show only 1 cm−1 difference. In

Chapter 5 we demonstrate that the relative amplitude of specific frequencies of the COatop

band with applied potential can reveal the crystallographic facets of two polycrystalline

copper catalysts, electrolessly deposited copper on a Si-ATR (attenuated total reflection)

prism (Cu-Si) and electrochemically deposited copper on a gold supported Si-ATR prism

(CuAu-Si). A distinct potential dependence of the C≡O stretch frequency is observed

on Cu-Si and CuAu-Si films in the low CO coverage regime at potentials < −1 V vs.

Ag/AgCl: On the Cu-Si film, the C≡O stretch band appears ≈ 2045 cm−1 followed by an

appearance of a second band ≈ 2080 cm−1 with increasing cathodic potentials. In con-

trast, on the CuAu-Si film, a single band ≈ 2080 cm−1 dominates at all potentials. This

difference in the potential dependence of the C≡O stretch band has led to the discovery

that these two films possess disparate exposed surface facets.

By employing cyclic voltammetric characterization, we show that the Cu-Si film mainly

possesses Cu(100) facets, whereas the CuAu-Si film possesses mostly Cu(111) facets. The

difference in the probability of the CO occupancy of Cu(100) vs. (111) terrace sites can

be observed as the difference in the potential-dependence of the lineshape of the C≡O
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stretch band on Cu-Si and CuAu-Si films: On Cu-Si, a distinct IR band at ≈ 2045 cm−1

is observed. This work demonstrates the unique sensitivity of the potential dependence of

the C≡O stretch band on the morphology of the underlying metal catalyst. The difference

in morphology of Cu-Si and CuAu-Si films is further reflected by the difference in onset

potentials for ethylene evolution, which is detected employing a combined SEIRAS and

differential electrochemical mass spectrometry (DEMS) setup. Further, isotopic dilution

experiments show that the relative CO coverage on the Cu-Si film is higher than that on

the CuAu-Si film, confirming our assignment of the predominant surface facets of these

two Cu thin films.

In Chapter 6 of this thesis, we illustrate an example for the utilization of COads as a

molecular probe to determine the properties of electrolyte side of the electrochemical in-

terface. Here, we reveal that the interfacial electric field increases when moving from Li+

to Cs+ containing electrolyte during CORR conditions. Recent theoretical studies have

shown that a greater interfacial electric field would enhance the activity of CO2RR either

by stabilizing the intermediates subsequent to CO or by decreasing the thermodynamic

overpotential leading to the CHO intermediate from COads [49, 50]. By employing in-situ

SEIRAS, direct experimental evidence to show that an increase in the interfacial electric

field enhances the reaction rate of CORR has been provided by experiments carried out

in 0.1 M MDCO3 (M=Li+, K+, Cs+) electrolyte saturated with CO. Inspection of the

integrated band area of COatop at a potential of −1.51 V vs. SHE revealed that the CO

reduction rate in Cs+-containing electrolyte is one order of magnitude faster than that in

Li+-containing electrolyte. Analysis of the frequency of COatop as a function of poten-

tial suggests that regardless of similar electrochemical Stark tuning rates of ≈ 30 cm−1

V−1 in the presence of all three cations, COatop frequencies in the K+ and Cs+-containing

electrolytes show a shift to lower wavenumbers with respect to the frequency in Li+ con-

taining electrolyte by about 1.4 and 3.7 cm−1, respectively. This observed decrease in the
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frequency of COatop for a given applied potential indicates an increase in the interfacial

electric field with increasing cation size, explaining the observed increment in the CO re-

duction rate with increasing alkali cation size. Further, this investigation provides insights

into the origin of the cation effects observed during CO2RR.

The work presented in this thesis illustrates that the C≡O stretch frequency of COads

observed with SEIRAS can reveal in-situ structural properties of electrode/electrolyte in-

terface. We expect this comprehensive knowledge would lead to the development of better

catalysts for important electrocatalytic processes that are mentioned in the above discus-

sion. In the final chapter of this thesis (Chapter 7), a future perspective of the field ex-

plaining possible improvements of the experimental setups, methodologies and analyses

are provided.
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Chapter 2

Theory

2.1 Surface-Enhanced Absorption Spectroscopy

In 1980, Hartstein et al. observed that the IR absorption of a thin organic film of 4−

nitrobenzoic acid is enhanced by a factor of ≈ 20 in the presence of a Ag overlayer or an

underlayer on/under the organic thin film [51]. With this discovery, it was understood that

the IR signal of molecules can be enhanced by a factor of 101-102 when the molecules are

adsorbed on a rough thin metal layer [52, 53]. This surface enhancement was observed in

a variety of metals such as Ag, Au, Cu, Pt, Pd, Pb, Rh, Ru and In [54–60]. Osawa and

coworkers have carried out extensive experiments to understand the mechanisms and the

properties of surface-enhanced infrared absorption spectroscopy (SEIRAS) [52, 54, 61,

62]. Using thin adlayers of p-nitrobenzoic acid on Ag island films deposited on CaF2,

Osawa et al. have found that the surface enhancement is influenced by the shape and the

size of metal islands [54]. Further, the IR signal of molecules adsorbed on metal islands

with the molecule’s axis perpendicular to the local surface of metal islands is selectively

enhanced. This enhancement is short range and is present within ∼ 5 nm from the metal

island surface [52]. Additionally, a greater enhancement is observed for chemisorbed

molecules compared to physisorbed molecules.

The enhancement mechanism of SEIRAS is similar to the mechanism of surface-
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Figure 2.1: AFM image of a thin Cu film deposited on Si-ATR prism using an electroless

deposition method. The scale bar is 200 nm. Image was acquired in a 1 × 1 µm2 area

with a Si cantilever (Nanosensors; Neuchatel, Switzerland; PPP-NCHR 10 M, 7 nm tip

radius, 330 kHz resonance frequency, and 42 Nm−1 spring constant) at a 0.5 Hz scan rate

in non-contact mode on a Park XE-100 AFM system (Park Americas; Santa Clara, CA).

Reproduced from Ref [64].

enhanced Raman scattering (SERS). Two different mechanisms, electromagenetic and

chemical mechanisms, have been suggested to be responsible for the surface enhancement.

Generally, the IR absorption (A) is expressed as [63]:

A ∝| ∂µ/∂Q · E |2=| ∂µ/∂Q |2| E |2 cos2θ (2.1)

where ∂µ/∂Q is the derivative of the vibrational dipole moment with respect to a normal

coordinate Q, i.e. the absorption coefficient, E is the electric field that excites the molecule,

and θ is the angle between the two aforementioned terms.

As mentioned above, the island structure of the metal film is important for the surface

enhancement. Figure 2.1 shows an AFM image of a thin Cu metal film deposited on a Si-

ATR prism. The Cu film consists of ∼ 40 nm metal islands. Surface enhancement of the IR

signal occurs when the average size of the metal islands is smaller than the wavelength of

the incident IR beam. The electromagnetic mechanism assumes an increase in |E|2 while

the chemical mechanism assumes an increase in the absorption coefficient, | ∂µ/∂Q|2.
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Figure 2.2: Schematic of electromagentic surface-enhancement mechanism. Incident IR

beam polarizes the metal islands through the surface plasmon excitation, which induces

a dipole moment (p) at the metal islands. The induced dipole moment creates a local

electric field stronger than the incident beam. The black solid lines represent the electric

field created around the metal islands. Reproduced from Ref [63].

2.1.1 Electromagnetic Mechanism

Metal islands are polarized in the presence of incident IR radiation through excitation of

their localized plasmon resonance. Due to this polarization of the metal islands, a dipole

moment is induced at the center of the metal islands. The magnitude of this induced dipole

moment (p) can be written as [52]:

p = αV E (2.2)

where α and V are polarizability and the volume of the metal islands and E is the amplitude

of the incident electric field. This induced dipole moment p, creates an electric field around

the metal islands that excites adsorbed molecules. This local electric field created by p is

larger than the incident electric field, thereby increasing the |E|2 term in Equation 2.1. The
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increase in |E|2 gives rise to the enhancement in IR absorption. Further, the local electric

field created by p can be expressed as [52]:

| Elocal |
2= 4p2/l6 (2.3)

where l is the distance from the center of the metal islands. This relationship between

| Elocal | and l explains the short range nature of the surface enhancement.

2.1.2 Chemical Mechanism

The chemical mechanism has been suggested to also contribute to the surface enhance-

ment of IR absorption on metal thin films. One chemical contribution is the orienta-

tion of the adsorbed molecules [54]. Chemisorption can preferentially orient the ad-

sorbed molecules such that the molecular axis is perpendicular to the local surface of

the metal islands, resulting in an enhancement of the IR signal. The preferentially oriented

chemisorbed molecules posses a better surface enhancement than randomly oriented ph-

ysisorbed molec- ules.

The second and well-studied chemical influence on SEIRAS is the increment of the

absorption coefficient, | ∂µ/∂Q|2 [52, 65]. It has been predicted that the absorption coef-

ficient is enhanced by intensity borrowing from charge oscillations that occur between the

molecular orbitals of the adsorbed molecules and the metal surface. Further, contribution

from the chemical mechanism to SEIRAS is determined to be less than the contribution

from the electromagnetic mechanism. However, it is emphasized that additional theoreti-

cal and experimental investigations are required to gather a comprehensive understanding

of the chemical mechanism on SEIRAS.
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Figure 2.3: Electrochemical cell setup for in-situ IR measurments in (A) IR reflection

absorption spectroscopy (IRAS) and (B) Kretschmann attenuated total reflection (ATR)

configurations [63].

2.2 Attenuated Total Reflection (ATR) IR Spectroscopy

Spectroelectrochemistry is a powerful tool to collect information on the dynamics of metal/

electrolyte interfaces and adsorbed molecular species under operando conditions. IR re-

flection absorption spectroscopy (IRAS) serves this purpose. Figure 2.3(A) shows the

IRAS configuration. The main drawbacks related with this configuration are: (1) Poor

mass transport due to the presence of a very thin electrolyte layer. (2) Higher solution re-

sistance which results in slower reaction kinetics [35]. The Kretschmann attenuated-total

reflection (ATR) configuration as shown in Figure 2.3(B) overcomes the above mentioned

drawbacks of the IRAS configuration. The working electrode of the ATR configuration

is a thin metal film (10-100 nm thick) deposited on an ATR prism using either sputter-

ing, e-beam evaporation or electroless deposition methods [30, 50, 66–69]. Fundamental

theories related to ATR-spectroscopy are described below.
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Figure 2.4: Reflection and refraction of incident light at an interface between medium

1 and medium 2. n1 and n2 are the refractive indices of the two media. Light incident

from (A) the rarer medium to the denser medium and (B) the denser medium to the rarer

medium.

2.2.1 Snell’s Law

When light travels through a medium with a refractive index of n1 and meets another

medium with a refractive index of n2, the incident light at the interface splits into two

components, reflected and refracted light as shown in Figure 2.4. The law of reflection,

which is the first equality of Equation 2.4 explains that the angle of incidence (θ) is equal

to the angle of reflection (θR) in the same medium [70]. The relationship between the

angle of incidence, angle of refraction, and refractive indices of two media, is given by

the law of refraction, also known as “Snell’s Law”. The second equality of Equation 2.4

shows this relationship [70].

n1sinθ = n1sinθR = n2sinϕ (2.4)
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2.2.2 Total Internal Reflection

When light is incident from a low refractive index medium, the angle of refraction (ϕ) is

smaller than the angle of incidence (θ) (Figure 2.4(A)). For this instance, the refractive

angle ϕ reaches its maximum value when the incident angle θ = 90◦. From Snell’s law,

the maximum refraction angle at θ = 90◦ is [70]:

sin(ϕmax) = n1/n2 . (2.5)

However, when light is incident form a higher refractive index medium as shown in

Figure 2.4(B), the refractive angle θ becomes larger than the incident angle ϕ. When the

incident angle reaches ϕmax, the refractive angle θ = 90◦. With further increase in the

incident angle ϕ, the refractive angle becomes > 90◦. In this situation the refractive light

beam vanishes and the incident light is totally reflected at the interface [70]. Therefore,

the phenomenon where the incident light beam is totally reflected at the interface is known

as “total internal reflection”. In this instance, the incident angle ϕmax is also referred to as

the critical angle (ϕc). Si and Ge are two frequently used materials as the denser medium

in spectro-electrochemical studies. The critical angle (ϕmax) for Si and Ge is in the range

of ≈ 20−30◦ [35]. Therefore, the incident angle should be higher than 30◦. The preferred

angle of incidence is usually in the range of 60− 80◦ [35].

The naming conventions “external” and “internal” refer to the medium that the light

enters: If light enters from a rarer medium to a denser medium, then the reflection is called

“external reflection”. If light enters from a denser medium to a rarer medium the reflection

is called “internal reflection”.
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Figure 2.5: Schematic of the exponential decay of the evanescent wave along the z-axis of

the interface at total internal reflection (The image is not to scale).

2.2.3 Evanescent Wave

During total internal reflection, incident and reflected waves are the only waves that are

present at the interface of the denser and the rarer media. The transmitted wave that is

propagating away from the surface is absent at the interface during total internal reflec-

tion [70, 71]. Boundary conditions explain the behaviour of the electromagnetic fields

at an interface between a vacuum and and a dielectric medium [72]. These conditions

are derived following applications of Maxwell’s equations and the Gauss and Stokes the-

orems [72]. Boundary conditions state that [70]: (1) The tangential component of the

electric field of the electromagenetic wave is continuous at the interface although the nor-

mal component has a jump at the interface. (2) Tangential and normal components of the

magnetic field are continuous at the interface. Accordingly, the presence of an electro-

magnetic wave at both sides of the interface is expected. The electromagentic wave that

is present at the rarer medium during total internal reflection is known as the “evanescent

wave”. Due to energy conservation, the evanescent wave does not propagate away from

the interface. This wave propagates parallel to the interface and exhibits an exponential

decay along the normal axis of the interface as shown in Figure 2.5.

“Penetration depth” is the distance from the interface, where 1/e of the maximum
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amplitude of the evanescent wave can be found. The relationship between the penetration

depth (dp) and the refractive indices of the media, incident angle and the wavelength of the

light (λ) is expressed as [70]:

dp =
λ

2π
√

n2
1sin

2θ − n2
2

. (2.6)

According to Equation 2.6, dp decreases with increasing incident angle. Typical dp for a

incident light with 1000 cm−1 wavelength is in the range of 1.4 − 5 µm for media with

n1 = 1.5 and n2 = 1 [70]. The incident angle for the above example varies from 45◦ to

90◦.

2.2.4 Attenuated Total Reflection

As for total internal reflection, the interface is made up of two non-absorbing media [70].

However, in practical scenarios usually the rarer medium is an IR absorbing medium such

as an aqueous or an organic solvent. When the rarer medium is an IR absorbing medium, a

part of the electromagnetic energy of the evanescent wave is absorbed in the rarer medium.

As a result, the evanescent wave is no longer parallel to the interface but has a slight angle

to it. Further, the diminished energy of the evanescent wave is continuously replenished by

leaking the incident electromagnetic energy through the interface. Therefore, the reflected

wave at an interface with an absorbing rarer medium does not carry the total energy of

the incident wave, but the energy is attenuated. This phenomenon is known as “attenuated

total reflection” (ATR) and has practical usage in the context of electrochemistry.
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2.3 Chemisorption of CO on Transition Metals

Understanding of CO chemisorption on metals is crucial for the investigation of surface

morphology and electrochemical interfacial properties using COads as a molecular probe.

The Blyholder model [73], which was proposed almost 60 years ago, explains that the

chemisorption of CO occurs through charge transfer from the filled CO 5σ orbital to empty

metal orbitals (σ bond) and from filled metal orbitals to the CO 2π∗ orbital (σ-donation/π-

backdonation). Using ab initio calculations, Hammer, Morikawa and Nørskov (HMN)

have developed a more sophisticated model to describe CO chemisorption on transition

metals in an atop-bound configuration (COatop) [74]. The HMN model for interaction

between the density of states (DOS) of CO molecular orbitals with the DOS of a transition

metal is illustrated in Figure 2.6.

According to the HMN model, when a CO molecule approaches a transition metal, CO

states are broadened and shifted to lower energy due to the interaction with the sp-bands of

the metal. Interaction between CO and the d-bands of the metal further results in splitting

of the CO states into bonding and anti-bonding levels. The HMN model demonstrates that

the hybridization between the d-bands of the transition metal and the CO 2π∗ state makes a

significant contribution to the total CO chemisorption energy. The degree of hybridization

between metal d-bands and CO 2π∗ depends largely on the energy of the center of the metal

d-bands (ǫd). Hammer et al. have shown that the hybridization between metal d-bands and

CO 2π∗ increases with increasing ǫd, resulting in an increase in the CO chemisorption

energy. ǫd depends on (1) the identity of the transition metal; ǫd increases from right to

left in a row of transition metals in periodic table and (2) the crystallographic facet; low-

index facets have a higher ǫd than high-index facets. Further, hybridization between metal

d-bands and CO 2π∗ increases with increasing coordination number of the CO molecule

to the metal: Bridge-bound CO (CObridge) has a higher chemisorption energy compared to
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Figure 2.6: Schematic illustration of the electronic density of states (DOS) of sp and

d-bands of a transition metal (left side) and the 5σ and 2π∗ orbitals of CO in a vacuum

(right side). The middle section shows the broadening and lowering of the energy of the

CO states due to the interaction with the metal sp-band when CO is approaching the metal.

These CO states further hybridize with the d-bands of the metal and split into bonding and

anti-bonding orbitals. EF : Fermi level energy, M: Transition metal. Reproduced form the

Ref [75].

that of COatop.

In the HMN model, ǫd represents the average DOS of all five d-orbitals for a given tran-

sition metal. Rappe and coworkers have modified the HMN model to identify the influence

of each d-orbital to the CO chemisorption energy separately [76, 77]. For instance, they

have shown that CO chemisorption energy for COatop can be calculated more accurately

by using only the DOS arising from the dxz and dyz (ǫxzyz) orbitals as these are the only

two d-orbitals that interact with the CO 2π∗ orbital when CO is bound in an atop configu-

ration. They have further demonstrated that the CO chemisorption energy does not linearly

scale with the energy of the collective d-bands center (ǫd). However, the CO chemisorp-
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tion energy scales linearly with the energy of the dxz and dyz (ǫxzyz) orbitals, illustrating

that orbital-specific analysis predicts the CO chemisorption energy more accurately than

the basic HMN model.

In addition to these theoretical models, experimental investigations have also been

carried out to understand the molecular orbitals involved in CO chemisorption on metals.

Going along with the notion put forward by the theoretical models described above, X-ray

emission spectroscopy (XES) studies have shown that both σ and π bonding between CO

and metal result from hybridization of orbitals of CO and metal [78, 79]. XES studies

have further suggested that the CO-metal σ-interaction involves 4σ and 5σ orbitals of

CO and the formation of CO-metal π-bond involves hybridization of both 1π and 2π∗

orbitals of CO with metal orbitals. For late transition metals, the π-bond was suggested

to strengthen the CO-metal bonding by acting as an attractive force, while σ-interaction

weakens the CO-metal bond by acting as a repulsive force. Fohlisch et al. have proposed

that the equilibrium between these attractive π and repulsive σ contributions between metal

and CO determines the CO chemisorption energy. XES studies carried out on nickel and

copper metals have shown that the hybridization between metal and CO orbitals increases

with increasing d-band energy [78]. Moreover, they have shown that the strength of π

bonding between CO and nickel increases with increasing coordination of CO molecule to

nickel [79].

2.4 Dependence of the C≡O Stretch Frequency on CO

Chemisorption Energy

The C≡O stretch frequency of CO chemisorbed on metal surfaces is directly affected by

the strength of the CO-metal bond. As noted in Section 2.3, for a given metal, the CO-

metal bond strength can be influenced by (1) the coordination number of CO molecule
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Figure 2.7: A schematic illustration of the dependence of the C≡O stretch frequency

(νC≡O) on (a) the coordination number of CO to the metal (νC≡O red shifts with increasing

coordination number of CO) and (b) the coordination number of the metal atom on which

CO is adsorbed. For Cu and Au, νC≡O blue shifts with decreasing coordination number of

the metal atom while νC≡O red shifts on Pt.

(e.g., atop, 2-fold, 3-fold) and (2) the crystallographic facet, i.e. the coordination num-

ber of the metal atom on which CO is adsorbed (Figure 2.7). Table 2.1 summarizes

experimentally observed C≡O stretch frequencies of COads with related binding energies

determined by either experimental or theoretical approaches at low CO coverage. Ac-

cording to the frequency data summarized in Table 2.1, COatop is generally observed in

≈ 2000− 2100 cm−1 and CObridge (use to denote either 2-fold or 3-fold bound CO) is ob-

served in ≈ 1800− 1900 cm−1 frequency ranges, respectively. This trend in the frequency

of COatop and CObridge follows the interpretation of the CO chemisorption on transition

metals put forward by the theoretical models mentioned in Section 2.3: With increasing

coordination number of CO molecule, hybridization between CO 2π∗ and metal d-band

increases. The increase in hybridization results in a weakening and correspondingly a red

shift of the C≡O stretch frequency.

The values in Table 2.1 show that the C≡O stretch frequency is sensitive to different

crystallographic facets as the CO chemisorption energy differs with coordination number

of the metal atom. Mainly, the C≡O stretch frequency enables the recognition of high-

index vs. low-index facets as C≡O stretch frequency exhibits an identifiable difference

when CO is adsorbed on high-index facets compared to that on low-index facets. For
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Table 2.1: C≡O Stretch Frequency as the CO Coverage Reaches Zero at Different Surface

Facets with Corresponding CO Binding Energy Data

Facet C≡O Stretch Frequency† CO Binding Energy‡ Ref

(cm−1) (eV) † ‡
Cu(111) 2078a∗ 0.49a∗ [80] [81]

Cu(100) 2079a∗ 0.53a∗ [80] [81]

Cu(110) 2088a∗ 0.56a∗ [80] [81]

Cu(211) 2110a∗ 0.61a∗ [80] [81]

Cu(poly) 2105a∗ 0.60a∗ [80] [81]

Au(111) 2065a∗ 0.16 ∼0.34a# [82] [83–86]

Au(100) 2073a∗ 0.38, 0.46a# [82] [84, 85]

Au(110) 2118a∗ 0.53a# [87] [84]

Au(211) 2122a∗ 0.54a# [88] [85]

Au(332) 2124a∗ 0.65a# [89] [90]

Pt(111) 2089a∗ - [91]

Pt(100) 2088a∗ - [80]

Pt(432) 2072a∗ - [80]

Pt(533) 2067a∗ - [80]

Pd(111) 1823b∗ 1.47b∗ [92] [93]

Pd(100) 1890c∗ 1.58c∗ [94] [93]

Pd(110) 1917c∗ 1.73c∗ [95] [93]

Pd(210) 1878c∗ 1.52c∗ [92] [93]
a atop-bound CO b 2-fold bound CO c 3-fold bound CO

∗ experimental data # computational data
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copper and gold, C≡O stretch frequency blue shifts with decreasing coordination num-

ber, therefore the frequency on defect/step sites is higher than the frequency on terrace

sites. However, on platinum the opposite is observed, i.e. a red shift in the frequency with

decreasing coordination number of the metal atom. The red shift of the C≡O stretch fre-

quency with decreasing coordination number agrees well with theoretical models of CO

chemisorption (Section 2.3).

Albeit the trend of C≡O stretch frequency observed on copper and gold, it is experi-

mentally well established that on copper the C≡O stretch frequency blue shifts with de-

creasing coordination number and increasing CO binding energy [96–98]. Even though,

the origin of this phenomenon is not well understood yet, early cluster model studies have

suggested that frequency shift of CO adsorbed on copper also depends on the “wall ef-

fect” [99, 100]: With increasing CO binding energy, the bond distance between metal and

CO decreases. With decreasing CO-metal bond length, C≡O bond oscillates at a higher

rate as it feels a higher degree of repulsion from the charge distributed on the metal surface

and this blue shifts the C≡O stretch frequency. The overall C≡O stretch frequency shift

depends on the balance between the hybridization between CO 2π∗ and metal d-bands and

the “wall effect”. Additional theoretical and experimental efforts will be useful to more

fully understand the blue shift of the C≡O stretch frequency with increasing CO binding

energy observed on copper and gold.

2.5 Dependence of the C≡O Stretch Frequency on CO

Coverage

In addition to the chemisorption energy, the C≡O stretch frequency is further influenced by

the coverage of CO on the metal catalyst. Indeed, the changes of C≡O stretch frequency

are a complex function of CO coverage and the distance between CO molecules. There
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are two main mechanisms that affect the C≡O stretch frequency at saturation coverage:

(1) Dynamical dipole coupling and (2) chemical interactions [80, 101]. The following

paragraphs provide a concise discussion about dynamical dipole coupling and chemical

interactions, which are of critical importance for the accurate interpretation of the C≡O

stretch frequency of adsorbed CO on metal catalysts.

2.5.1 Dynamical Dipole Coupling

Dynamical dipole coupling induces frequency shifts and intensity transfer in the spec-

trum. Dynamical dipole coupling among adsorbed CO molecules can be described by the

following Hamiltonian (in units of cm−1) [102]:

H =
n

∑

i=1

Hii +
n

∑

i<j

Vij (2.7)

where Hii are the frequencies of the CO molecules in the absence of coupling (singletons)

and Vij is a function of the dynamical dipoles of the CO molecules, µi, and the distance

between two CO molecules, rij; i.e. Vij = f(µi, µj, r
−3
ij ). The average distance between

CO molecules depends on their distribution among the available surface sites and on the

absolute CO surface coverage. Because of the interaction term Vij , the CO oscillators are

no longer isolated, but are coupled to each other.

Diagonalization of H yields the new normal modes of the coupled system which re-

sults in a higher and a lower frequency compared to the singleton frequency as shown in

Figure 2.8(A). The most intense modes of the coupled system are those in which the CO

molecules oscillate in-phase: The low frequency mode is IR inactive as this has anti-phase

oscillations (peaks in green dashed lines in Figure 2.8(A)), and the higher frequency mode

is IR active with in-phase oscillations (peaks in dark blue solid and light blue dashed lines

in Figure 2.8(A)). Due to these strong coupling effects, the integrated band area of CO
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Figure 2.8: Dipole coupling between two (A) identical 12C16O and (B) 12C16O and 13C16O

molecules (The model described in Ref [80] was used to get the normal modes and cor-

responding intensities). Singleton frequencies of 12C16O and 13C16O are 2100 and 2053

cm−1, respectively [80]. Green dashed lines show the amplitude and phase of the two new

normal modes at lower frequency. Dark blue solid and light blue dashed lines show the

amplitude and phase of the two new normal modes at higher frequency. The addition of the

amplitude and phase of each normal mode at corresponding frequencies gives rise to the

observed IR band due to dynamical dipole coupling (black solid line with shaded area). A

Gaussian distribution of the CO populations were simulated using an arbitrary line width.

24



adsorbed on metal catalysts does not follow Beer’s law and does not reflect the true con-

centration of adsorbed CO (e.g., Borguet et al. have shown that on a stepped Cu surface,

beyond 0.2 monolayer (ML), the integrated intensity deviates from Beer’s law [103]).

Isotopically different CO molecules are used to decrease the effect of dynamical dipole

coupling. Coupling between isotopically different CO molecules gives rise to two IR bands

with minimal frequency shifts compared to their singleton frequencies (Figure 2.8(B)).

However, coupling between isotopically different CO molecules is incorporated with a

significant spectral intensity transfer from the low to the high frequency band (a 24% of

intensity transfer from 13CO to the 12CO is reported with coupling between 13CO and

12CO [80] as manifested in Figure 2.8(B)). As a result of dynamical dipole coupling, in

the case of Cu or Au surfaces, it is expected that intensity transfers from CO adsorbed

on terrace sites to CO adsorbed on defect (step, kink, edges) sites. Borguet et al. have

shown that only 7% of the CO adsorbed on step sites dominates the C≡O stretch band

compared to the remaining 93% of CO adsorbed on terrace sites on copper due to dynami-

cal dipole coupling [103]. Additionally, the fact that CO adsorbed on step sites dominates

the spectra at saturation coverage was experimentally demonstrated in an electrochemical

context [98].

2.5.2 Chemical Effects

Chemical interactions (or chemical effects), which are the second factor related to the CO

coverage that influences the C≡O stretch frequency, occur through changes in electronic

distribution between metal and adsorbed CO molecules. These changes influence bond

strength between CO and metal with increasing coverage (a detailed description is given

in the Section 2.4). The direction of the C≡O stretch frequency shift, i.e., red shift or blue

shift, due to chemical effects depends on the type of the underlying metal catalyst: On

copper, chemical effects induce a red shift [101] on the C≡O stretch frequency while on
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palladium they blue shift the frequency [94].

Although the origin of the chemical effects is still under debate, there are attempts

to explain this through the adaptation of the degree of electron filling in σ or π bonding

between CO and metal with increasing CO coverage [101, 104].

Woodruff et al. [101] have proposed a model which follows the Blyholder and HMN

models. As illustrated in the HMN model (a description of the HMN model is given in the

Section 2.3), the CO 2π∗ orbital splits into bonding and anti-bonding molecular orbitals

due to the interaction with the d-band of the transition metal. With increasing coverage a

broadening of the the 2π∗ bonding orbital was suggested. Woodruff et al. have suggested

that the relative energy level of the CO 2π∗ bonding orbital with respect to the Fermi level

of the metal defines the degree of electron filling which determines the strength of the

C≡O bond. They proposed two scenarios are: (1) When the energy of the CO 2π∗ bonding

orbital is lower than that of the Fermi level, the degree of electron filling to the broaden

2π∗ bonding orbital decreases with increasing CO coverage, resulting in a weakening of

CO-metal bond and thus a blue shift in C≡O stretch frequency. (2) When the energy of the

CO 2π∗ bonding orbital is higher than that of the Fermi level, the degree of electron filling

to the broaden 2π∗ bonding orbital increases with increasing CO coverage, resulting in a

strengthening of CO-metal bond and thus a red shift in C≡O stretch frequency. In the case

of copper, it has been shown that the energy level of the 2π∗ bonding orbital is higher than

that of the Fermi level of the metal. Accordingly, on copper with increasing CO coverage,

C≡O stretch frequency red shifts due to chemical effects. Even though this theory can

explain the observed red shift in the C≡O stretch frequency of CO adsorbed on copper

with increasing coverage, further investigations should be carried out to prove or disprove

this model and to gain a better insight into the origin of the chemical effects.
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2.6 Electrochemical Double Layer

In the 19th century, with his studies about the charge distribution of conductors, Helmholtz

put forward the concept of the ”electrochemical double layer (EDL)” [105]. At the bound-

ary of two chemically distinct phases, such as a solid/liquid interface, equilibration of the

chemical potentials lead to a potential drop across the interface [106, 107]. Further during

electrocatalysis, applied potential, pH, chemical nature of the cations and anions in the

electrolyte, and the properties of the electrode influence the arrangement of the ions at

the electrolyte side of the interface [22, 106, 108]. In addition, interfacial water structure

and surface adsorbed intermediates can modulate the properties of electrochemical inter-

face [22, 29, 109–111]. As a result, electrode/electrolyte interfaces possess a complex

nature as depicted in Figure 2.9 [22, 29, 109–111].

Early theoretical models that describe the EDL include (1) Helmholtz [105, 106], (2)

Gouy-Chapmann (GC) [106], and (3) Gouy-Chapmann-Stern (GCS) models [106]. These

classical theories present a primitive description of the double layer. However, it is impor-

tant to have precise knowledge of these classical theories (Sections 2.6.1 and 2.6.2). Sub-

sequent experiments were carried out by Grahme [112], Bockris [113] and Delahay [114]

to further elucidate the structure and properties of the EDL. Recent explorations of the

EDL employing modern experimental tools such as X-ray techniques [115, 116], vibra-

tional Stark spectroscopy [29, 109, 117–119], scanning tunneling microscopy (STM) [120,

121] and theoretical calculations [122, 123] have further contributed to the understanding

of the complex double layer structure under various conditions.

2.6.1 Helmholtz Model

The Helmholtz model assumes that the amount of the excess negative charge on the metal

electrode is neutralized by the presence of an equal amount of positive charge at the elec-
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anions near the interface, or other adsorbed molecular species. These characteristics can

in turn can modulate the activity and selectivity of catalytic processes.
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trolyte side [106]. The excess ions in the electrolyte form a compact layer at the surface of

the metal as depicted in Figure 2.10(A). The closest distance from the metal surface where

electrostatically adsorbed, solvated cations can be found is known as the “outer Helmholtz

plane (OHP)”. A refined view of the Helmholtz model includes specifically adsorbed ions

that form the “inner Helmholtz plane (IHP)” [106]. As a result of the formation of this

compact layer of excess ions at the interface, the potential drops linearly across the inter-

face as shown in Figure 2.10(A). The electrostatic description of the double layer structure

in the Helmholtz model is the same as that of a parallel plate capacitor. Therefore, the

relationship between the voltage (V ) and the charge density (σ) can be expressed as [106]:

σ =
ǫǫ0
d
V (2.8)

where ǫ, ǫ0, and d are the dielectric constant of the medium, the permittivity of free space

and the distance from the metal surface to the OHP. The differential capacitance of the

double layer (Cdl) is [106]:

Cdl =
ǫǫ0
d

. (2.9)

This indicates that Cdl is constant and not a function of the applied potential. However,

experimental evidence suggests otherwise, i.e. Cdl, varies with applied potential as well as

with the concentration of the electrolyte [112]. Therefore, a more sophisticated model is

needed to explain the true structure of the EDL.

2.6.2 Gouy-Champann-Stern (GCS) Model

This model depicts the EDL as a combination of a compact and diffuse layer as illustrated

in Figure 2.10(B). The potential linearly drops over the compact layer and exhibits an

exponential decay over the diffuse layer. The characteristic width of the diffuse layer
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Figure 2.10: (A) Electrochemical double layer at a negatively charged metal/electrolyte

interface as described by the Helmholtz model. Solvated cations form a compact layer

near the surface of the metal electrode. The closest distance where solvated cations can be

found is known as the OHP. (B) Electrochemical double layer structure proposed by the

Gouy-Chapmann-Stern model, which consists of a OHP and a diffuse layer. The potential

drop across the diffuse layer (φ2) with respect to the potential at the bulk electrolyte is

known as the zeta potential (ζ).
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(Debye screening length) is given by 1/κ = 1/
√

2F 2z2c0/(ǫRT ) (Figure 2.10(B)) [106].

This indicates that the length of the diffuse layer decreases with increasing concentration

of the electrolyte. Further, the capacitance of the diffuse layer is expressed as [106]:

CGC = zF

√

Dc

2πRT
· cosh

(

zF

2RT
ζ

)

(2.10)

Here, z, F, D, c, R, T, and ζ represent the valency of ion, the Faraday constant, the dielec-

tric constant, the concentration of the electrolyte, the gas constant, the absolute tempera-

ture, and the zeta-potential, respectively. Accordingly, the capacitance of the diffuse layer

depends on both the concentration of the electrolyte and potential.

The combined capacitance of the compact and the diffuse layers defines the Cdl in the

GCS model [106].

1

Cdl

=
1

CH

+
1

CGC

(2.11)

where CH and CGC are the capacitances of the Helmholtz plane and the diffuse layer,

respectively. The Debye length decrease with increasing concentration as this depends on

1√
c0

. Therefore, at high concentration of electrolytes (> 0.5 M) the potential drop mainly

occurs over the Helmholtz plane. Further, for large charge densities (|φ2| ≥50/z mV)

the potential drop cannot be explained as an exponential decay. Thus, the potential drops

linearly over the compact part of the double layer.

2.6.3 Electric Field at an Electrochemical Interface

As a result of the potential drop across the EDL, an electric field is created at the interface.

The electric field strength at the Helmholtz plane (~E) can be expressed as:

~E = −
dV

dx2

(2.12)
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where dV and dx2 are the potential drop over the Helmholtz plane and the position of this

plane from the electrode surface, respectively. The strength of the electric field at the EDL

influences the activity and selectivity of electrocatalytic processes [124, 125]. For a given

applied potential, ~E can be modulated through variation of the width of the Helmholtz

plane. Indeed, experimental demonstrations show that ~E can be tuned with the use of

differently sized cations [29]. Li et al. have used quaternary alkyl ammonium cations with

increasing chain lengths (methyl4N+, ethyl4N+, propyl4N
+, butyl4N

+) to modulate the

electric field strength at the EDL during CO reduction reaction [29].

2.7 Stark Effect

The determination of the interfacial electric field during an electrocatalytic process can

provide useful insight in understanding the parameters that influence the catalysis. Spec-

troscopic probes can be used to directly measure the strength and spatial distribution of

the local electric field at the interface during a catalytic reaction. The vibrational Stark

effect has emerged as a powerful molecular probe of the strength of the interfacial electric

field [29, 109, 119, 126–128].

The vibrational Stark effect provides the dependence of the frequency shift of a vi-

brational mode associated with a dipole on the interfacial electric field [129]. Consider

surface-adsorbed CO (COads) as a molecular probe. When COads is used as a molecular

probe of an electrocatalytic interface, the vibrational Stark effect, i.e., the potential depen-

dence of the C≡O stretch frequency (ω(φ)) on the interfacial electric field (~ε(φ)) can be

expressed as [29]:

ω(φ) = ωPZC −∆~µ · ~ε(φ) (2.13)

where ωPZC is the C≡O stretch frequency at the potential of zero charge (i.e. in the ab-
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Figure 2.11: Anharmonic potential curve of CO molecule. Dipole moment of CO in the

first vibrational excited state ( ~µ1) is slightly larger than that in the ground state ( ~µ0) as

the length of the CO molecule is slightly larger in the excited vibrational state. Here q
represents the charge. The difference in the dipole moment (∆~µ) gives rise to a shift in

the vibrational frequency of CO (∆ν) in the presence of an externally applied electric field

(~ε(φ)) with the relationship ∆ν = -∆~µ · ~ε(φ). Adapted with permission from Ref [129].

Copyright 2015 American Chemical Society.
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sence of an interfacial electric field) and ∆~µ is the change in the dipole moment between

ground state and vibrationally excited state. ∆~µ is known as the vibrational Stark tuning

rate which is given in the units of cm−1/(V cm−1). Anharmonicity of the CO molecule

causes a change in the bond length of C≡O from ground state to vibrationally excited

state (Figure 2.11). This change in the C≡O bond length causes a change in the dipole

moment and thus results in the vibrational Stark tuning rate. The vibrational Stark tuning

rate for a particular molecule can be calculated using theoretical methods, and ∆~µ of CO

adsorbed on a copper surface in vacuum has been determined to be 1.3 × 10−6 cm−1/(V

cm−1). Therefore, interfacial electric field (~ε(φ)) during an electrocatalytic process can be

directly calculated with the knowledge of ωPZC using Equation 2.13.

2.8 Properties of the Electrochemical Double Layer Be-

yond the Electric Field

The electrochemical double layer has a complex structure during an electrochemical pro-

cess as depicted in Figure 2.9 [29, 110, 111]. The strength of the local electric field at the

interface can be further modulated by the adsorption of cations on the electrode. Indeed,

a promotion of the CO reduction reaction on copper electrode has been observed in the

presence of Cs+ cation compared to the presence of Li+ [49]. Gunathunge et al. have

attributed this promotion of CO reduction to an increase in the local electric field which

decreases the activation barrier for the reduction of CO [109]. The local pH is another

important parameter of the EDL that affects the electrocatalytic reactions. The local pH

can be altered by the adsorbed cations on the electrode [130], formation of organic thin

films [110], solutions species present near the surface such as HCO2−
3 , to name a few.

Further, the interfacial water structure plays a crucial role in determining the properties of

electrocatalytic processes as this exerts control over proton donation, promotion of cou-
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pling of surface adsorbed intermediates, and the solvation of ions present at the interface.

Often, these EDL properties evolve with the applied potential. Therefore, a comprehen-

sive understanding of EDL properties under operando conditions is essential to improve

the activity and selectivity of catalytic processes that are enabled through electrochemical

interfaces.
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Chapter 3

Spectroscopic Observation of Reversible

Surface Reconstruction of Copper

Electrodes under CO2 Reduction

3.1 Introduction

Electrochemical CO2 reduction to hydrocarbons holds high importance in mitigating global

warming and as an alternative sustainable route for fuel and commodity chemical synthe-

sis [41, 131–136]. Additionally, CO2 reduction stands out as an attractive solution for

the intermittancy problem of the renewable energy sources when it is powered by renew-

able energy [41, 131–136]. Copper is a prototypical catalyst for CO2 reduction, because

this is the only pure metal that can converts CO2 into hydrocarbons with a high current

density of ≈ 5 mA cm−2 [134, 137]. However, electrochemical reduction of CO2 on cop-

per catalyst suffers from poor product selectivity due to simultaneous hydrogen evolution

at negative potentials and also due to the production of an array of hydrocarbons (Khul

et al. have detected 15 hydrocarbon products during electrochemical CO2 reduction on

polycrystalline copper electrode [10]). Further, a higher overpotental, a larger potential

compared to the thermodynamic potential, is required to produce hydrocarbons [10, 138–

140]. Therefore, the development of a commercially viable catalyst for CO2 reduction re-

quires improvements in product selectivity and overpotential. An in-depth understanding
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of the molecular level picture of the electrochemical double layer under CO2 reduction

conditions is essential in achieving high selectivity towards hydrocarbons and in reduction

of the overpotential.

Morphology of the copper catalyst exerts a profound effect in determining the activity

and selectivity of CO2 reduction reaction (CO2RR) [41, 132, 141–144]. For instance,

Loiudice et al. have shown that the product selectivity towards ethylene formation in-

creases by 4 times when the size of the nano-cubes increases by 24 to 44 nm [145]. Since

copper has a weak cohesive energy compared to other metals such as platinum, copper can

easily undergo resconstruction during CO2RR [45–47, 96]. The surface-adsorbed inter-

mediates, local pH and applied potential can affect the surface reconstruction. Therefore,

it is important to understand the morphological changes of the copper catalyst especially

under reaction conditions, in order to understand the key factors that influence the activity

and selectivity of CO2RR.

Among many techniques, surface enhanced IR absorption spectroscopy in attenuated

total refection (ATR-SEIRAS) configuration show high potential as an in-situ probing

technique of the electrocatalyst. Since surface adsorbed CO (COads) is an on-pathway

intermediate during CO2RR this can be used as a molecular probe of the surface morphol-

ogy during electrocatalysis [36, 64, 146]. Indeed, COads is an ideal molecular probe of the

surface morphology as the frequency of C≡O stretch band depends on the coordination

number of the metal atom on which it is bound (Chapter 2, Section 2.4).

Herein, using ATR-SEIRAS we show that copper surface undergoes reversible sur-

face reconstruction under CO2/CO reduction reaction conditions. Surface reconstruction

of copper gives rise to, surface-adsorbed CO stabilized nano-scale copper clusters. For-

mation of new copper clusters manifests it self by the appearance of a new IR band at a

higher frequency. Our analysis further reveal that CO adsorbed more strongly on these

new surface sites than on the initial surface sites that are available before the surface re-
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construction.

3.2 Results

To probe the surface morphology of copper electrode during CO2RR, IR spectra of atop-

bound CO (COatop) was collected in 0.1 M KHCO3 electrolyte saturated with carbon

monoxide. Figure 3.1 shows the potential dependence of the C≡O stretch band of COatop.

At potentials more positive than −0.8 V vs. standard hydrogen electrode (SHE), a band

centered at ≈ 2050 cm−1 is observed. Unless noted otherwise, all the potentials in Chap-

ter 3 are referenced against SHE. A second band centered at ≈ 2080 cm−1 is observed at

potentials more cathodic than −0.8 V. These two bands can be modeled by two Gaussian

functions as exhibited in Figure 3.1 by blue and red color traces, respectively. We label

the IR bands appear at ≈ 2050 and ≈ 2080 cm−1 as the low frequency band (LFB) and the

high frequency band (HFB). Figure 3.2 shows the integrated band area of LFB and HFB

as a function of applied potential. Increment of the LFB band area occurs through a wider

potential range, while a steep increment is observed for the HFB band. As shown in the

gray color shaded area in Figure 3.2, the onset of the HFB band area occurs when the LFB

band area has reached a significant magnitude (≈ 100 mOD cm−1).

To investigate whether this trend observed in LFB and HFB is reversible, C≡O stretch

spectra were collected at decreasing cathodic potentials after reaching -1.10 V during the

first cathodic scan. Comparison of the spectra collected during cathodic and anodic scans

show that the trend observed in LFB and HFB is reversible (Figure 3.3(A)). The agreement

in the integrated band area of LFB and HFB during cathodic and andoic scans futher

confirms the potential dependence of LFB and HFB bands are reversible (Figure 3.3(B)).

When bicarbonate is used as the electrolyte during CO2RR/CORR, carbonate or bicar-

bonate anions in the solution desorb from the catalytic surface with increasing cathodic
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reduction in 0.1 M KHCO3 electrolyte. LFB and HFB traces show Gaussian fittings for
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LFB and HFB. Reproduced from Ref [30].
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potentials [147]. Desorption of these anions gives rise to a negative IR band ≈ 1540 cm−1

as shown in Figure 3.4(A). Figure 3.4(B) shows the integrated band area of carbonate

band. Interestingly, when overlap carbonate band area with the integrated band areas of

LFB and HFB, it follows the trend of LFB. However, carbonate band area does not reflect

the total COatop band area which is the summation of the band areas of LFB and HFB.

Kinetics of the LFB and HFB were explored by time resolved ATR-SEIRAS spec-

troscopy. IR spectra of C≡O stretch band were collected during a potential step experi-

ment from −0.70 to −1.10 V and holding the potential at −1.10 V. Figure 3.5(A) shows

the time dependence of the C≡O stretch spectra. At time < 0.4 s, LFB is observed ≈ 2050

cm−1 and HFB is observed with increasing time. Figure 3.5(B) shows the integrated band

area of LFB and HFB observed in Figrure 3.5(A) as a function of time. Area of the LFB

can be fitted by a double exponential function with time constants (τ ) 0.3 and 1.3 s. In

contrast, the HFB band can be fitted by a single exponential function with τ = 1.3 s. This

shows that both LFB and HFB has similar kinetics (τ = 1.3 s) after HFB apperas at ≈ 0.4

s. Further, this indicates that LFB and HFB are linearly related by:

AHFB = m(E, θ)× ALFB − b (3.1)

where AHFB and ALFB are the integrated band areas of LFB and HFB, respectively. Factor

m(E, θ) depends on the applied potential (E) and CO coverage (θ) while b is a constant.

The inset of the Figure 3.5(B) shows ALFB with b = 100 mOD cm−1 and m = 1.4.

3.3 Discussion

It is very well established that COatop adsorbed on copper electrodes give an IR band in the

range of ≈ 2000−2100 cm −1 [141, 146, 148, 149]. Further, COatop on highly-coordinated

terrace sites of copper exhibits ≈ 30 cm−1 lower frequency compared to the COatop on
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Reproduced from Ref [30].
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under-coordinated defect sites (A detailed description is given in Chapter 2, Section 2.3

and 2.4). For an instance, Hori et al. have shown that during electrochemical CO reduction,

CO adsorbed on Cu(100) terrace sites show an IR band within 2040 − 2056 cm−1 [97].

Koga et al. have investigated the IR spectroscopy of COatop during electrochemical CO

reduction on stepped single crystal electrodes. With this study, Koga et al. have shown

that COatop IR band appears ≈ 2080 ± 8 cm−1. With that knowledge we assign the LFB

and HFB bands (Figure 3.1) to COatop adsorbed on highly-coordinated terrace and under-

coordinated defect copper sites, respectively.

The observed trends in the integrated band areas of LFB, HFB, and carbonate band and

also the linear dependence of the integrated band areas of LFB and HFB can be explained

by the following hypothesis of “Surface Reconstruction”. Following the literature prece-

dence [45, 96], we propose that copper surface undergoes surface reconstruction during

CO reduction reaction once the COatop has reached a threshold coverage. This recon-

struction of the copper surface includes the formation of CO-stabilized under-coordinated

43



copper clusters. COatop adsorbed on these newly formed copper clusters gives rise to an

IR band ≈ 2080 cm−1.

Surface reconstruction hypothesis is validated by the following observations. First, as

shown in Figure 3.2, HFB band only appears once LFB area has reached 100 mOD cm−1

area. This is further confirmed by the time resolved IR data shown in Figure 3.5(B). In

addition, linear dependence of the integrated band areas of LFB and HFB given by Equa-

tion 3.1 is now apparent. When the potential is stepped to a −1.10 V, CO coverage increase

with time. Once the CO coverage of LFB has reached the threshold coverage, which is

b = 100 mOD cm−1, surface reconstruction takes place. After the surface reconstruction,

HFB area increases as a function of potential and CO coverage (m(E, θ)). The factor

m(E, θ) describe the degree of surface reconstruction. Most importantly the data shown

in Figure 3.3 demonstrated that this surface reconstruction is reversible.

Second, the linear decrease in the carbonate band does not follow the sudden substan-

tial increase of the total COatop band area with the appearance of the HFB. This is because,

HFB is a result of CO adsorbing on newly formed under-coordinated copper cluster with

surface reconstruction. The absence of these newly formed surface sites before surface

reconstruction, does not give a chance for carbonate to adsorb on these sites. Therefore,

carbonate band area does not reflect the COatop band area increment with the appearance

of HFB.

Third, observation of the broad LFB and a narrow HFB (Figure 3.1) further supports

our hypothesis. On a polycrystalline copper surface there can be a combination of different

terrace sites which gives away a broad width for the LFB. However, surface reconstruction

can form sites with a particular coordination number. CO adsorbed on these newly formed

sites with a particular coordination number, has a narrower band width representing the

homogeneity of the surface sites.

Fourth, and the most powerful evidence comes from the surface-enhanced Raman scat-
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tering (SERA) data collected on copper during CO reduction. Two bands at ≈ 360 and

280 cm−1 are simultaneously observed with the COatop band. These bands are assigned

to Cu-CO stretch and frustrated rotation of COatop, respectively [150, 151]. A signifi-

cant enhancement of these two bands are observed with the appearance of the HFB band.

Further, the integrated band area of ≈ 360 and 280 cm−1 bands follows the trend of the

integrated band area of HFB (Figures 6 and 7 of Ref [30]). These observations confirm the

formation of nano-scale clusters with surface reconstruction that would enhance the SERS

effect [152].

It is noteworthy to mention that the integrated band areas of LFB and HFB can be

influenced by the dynamical dipole coupling between surface adsorbed CO (Chapter 2,

Section 2.5). The effect of CO coverage on LFB and HFB are discussed in length in

Chapter 5. Even though, dynamical dipole coupling exerts an effect on the integrated band

areas of LFB and HFB, it fails to explain the SERS observation of intensity enhancement

of ≈ 360 and 280 cm−1 bands. Surface reconstruction hypothesis, as described in the

preceding paragraphs is the only effect that can explain the bulk of the observations.

3.4 Conclusions

By investigating the COatop IR band during CO reduction on copper, we show that copper

catalyst undergoes reversible surface reconstruction during electrocatalysis. The surface

reconstruction forms under-coordinated copper clusters within nano-meter scale. The ad-

sorption energy of CO bound to these under-coordinated copper clusters are different from

that of CO bound to highly-coordinated copper sites as exhibited by the different IR fre-

quencies. We emphasize that this difference in binding energy of CO can be within 10 s

of meV (Chapter 2, Table 2.1) which can give rise to a significant difference in the prod-

uct selectivity and activity. Therefore, reversible surface reconstruction should be given a
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higher attention in future CO2RR/CORR studies.

3.5 Materials and Methods

Materials. NH4F (40 wt.% in H2O) and HF (48 wt.%) were purchased from Fisher

Scientific. CuSO4·5H2O (99.999%; trace metals basis), Na2EDTA (99.0−101.0%; ACS

Reagent), 2,2-bipyridine (≥ 99%; ReagentPlus), HCHO (35 wt.%; 10% methanol as stabi-

lizer), NaOH (99.99%; trace metals basis), and KHCO3 (99.95%; trace metal basis) were

acquired from Sigma Aldrich. Polycrystalline diamond pastes and alumina slurries were

procured from South Bay Technologies (San Clemente, CA) or Electron Microscopy Sci-

ences (Hatfield, PA). High purity water (18.2 MΩ cm) derived from a Barnstead Nanopure

Diamond system (APS Water Services; Lake Balboa, CA) was used for all experiments.

He (Ultra High Purity), CO (99.999%) were purchased from Air Gas.

Cu Thin Film Preparation. Reflecting plane of a 60◦ Si prism was polished succes-

sively with 6, 1, 0.5 µm diamond pastes for 5-10 min each. The polished surface was

then rinsed under a constant stream of Nanopure water for ∼ 10 min with a wet Kim-

wipe. Next, the Si prism was sonicated in water, acetone and water for 10, 5, and 5 min in

each, respectively. Subsequently, The Si surface was etched by immersing the surface in

an aqueous solution of 40 wt.% NH4F (25◦ C) for 30 s. Prism was rinsed with Nanopure

water before immersing it in a seeding bath for 1.5 min prepared with 750 µM CuSO4 and

5 wt. % HF. Cu seeded Si surface was rinsed with Nanopure water. Then, this surface was

immersed in a deposition bath of 0.25 M HCHO, 0.02 M CuSO4, 20 mM Na2EDTA, and

0.3 mM 2,2-bipyridine (pH∼ 12, T= 54 − 55◦C) for 3.5 min. The resistance across the

Cu film deposited on the Si prism was measured (10-30 Ω). Si prism with the Cu film was

assembled into the cell and it was blanketed with 4 mL of 0.1 M KHCO3 electrolyte. The

Cu film was cleaned using voltammetric cycles from −0.035 to −0.605 V vs. Ag/AgCl at

46



16

14

12

10

8

6

|j a
-j c

| (
µ

A
/c

m
2 )

10080604020

Scan Rate (mV/s)

-15

-10

-5

0

5

10

 C
ur

re
nt

 (
µ

A
/c

m
2 )

-0.48 -0.46 -0.44 -0.42 -0.40

Potential (V) vs. SHE

(A) (B)
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of the plot (B) by a factor of 2 and the double layer capacitance of a smooth Cu foil which

is 28 µF cm−2 [153].

a scan rate of 50 mV/s in He saturated electrolyte. Roughness of the Cu film was measured

by cycling the potential between −0.6 and −0.7 V vs. Ag/AgCl at scan rates of 20, 40,

60, 80, and 100 mV/s as shown in Figure 3.6. Measured roughness for Cu films is about

10-12 times higher than that of a smooth polycrystalline Cu foil.

ATR-SEIRAS Measurements. ATR-SEIRAS measurements were collected in the

Krerschman configuration with a nitrogen-purged Bruker Vertex 70 FTIR spectrometer

(Billerica, MA) equipped with an MCT detector (FTIR-16; Infrared Asscociates; Stu-

artm FL). The FTIR instrument was interfaced with an ATR accessory (VeeMax III; Pike

Technologies; Madison, WI) equipped with a customized electrochemical cell machined

from plolyetheretherketone (PEEK). Steady-state measurements were collected at 4 cm−1

spectral resolution and 40 kHz scanner velocity. The reference spectrum was recorded

at −0.505 V vs. Ag/AgCl. The sample potential was reached by scanning the potential

from reference potential at 10 mV/s scan rate. To ensure that the steady-state has reached,

each potential was held for 60 s before collecting the spectrum. The change in the optical
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density was calculated using the equation, ∆mOD = -103 ·log(SBS/SBR), where SBS and

SBR are sample single beam and reference single beam spectra, respectively.

Time-resolved FTIR measurements were carried out with a 16 cm−1 spectral resolution

and a 160 kHz scanner velocity. The time resolution was ≈ 0.53 s. Reference potential

was applied for 60 s before stepping the potential to the sample potential which is triggered

by the forward motion of the interferometer mirror. The first spectrum collected at the

reference potential was used as the reference.

Electrochemical Methods for ATR-SEIRAS Measurements. Experiments were car-

ried out in a single compartment cell. Figure 3.7 shows a schematic of the electrochemical

cell with Pt wire counter electrode (99.95%; BASi Inc.; West Lafayette, IN), and leak-

less Ag/AgCl reference electrode (ET072-1; eDAQ, Colorado Spring, CO). The Ag/AgCl

electrode was calibrated against saturated calomel electrode (CHI 150; CH Instruments

Inc.; Austin, TX) prior to each experiment. Electrochemical cell was cleaned in an aque-

ous acid solution (30 wt.% H2SO4, 30 wt.% HNO3) for one hour followed with sonication

in Nanopure water for another one hour, prior to each experiment. Potential was applied

using a VersaStat3 potentiostat and VersaStudio software (AMETEK; Berwyn, PA). Mea-

sured solution resistance was negligible for all the experiments.
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Chapter 4

Existence of an Electrochemically Inert

CO Population on Cu Electrodes in

Alkaline pH

4.1 Introduction

Chapter 3 demonstrates the utilization of surface-adsorbed CO (COads) as a molecular

probe of the dynamics of the copper catalyst under CO2/CO reduction reaction (CO2RR/CORR)

conditions. Theoretical and experimental studies have shown that reduction of COads is

the potential limiting step in the CO2 reduction reaction [133, 138, 154, 155]. Therefore,

it is crucial to understand the electrochemical reactivity and surface diffusion of COads on

copper catalyst. CO can bind to catalyst surface in different configurations, such as atop-

bound CO, 2-fold, 3-fold, 4-fold bridge-bound and hollow CO. These different binding

configurations exhibits distinct C≡O stretch frequencies as they are related with different

CO binding energies (Chapter 2, Section 2.3, 2.4).

Density functional theory (DFT) calculations have shown these different binding con-

figurations of CO on copper catalyst [42, 156, 157], although spectroscopic investigations

have extensively studied atop-bound CO (COatop) [30, 146]. Therefore, it is often difficult

to build up a correlation between the spectroscopic studies and theoretical studies to make

inferences about the reactivity of COatop in different binding configurations. This calls
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for the need of thorough experimental and DFT investigations of differently bound CO

species.

In spectroscopy, C≡O stretch of the COatop on copper is observed in the frequency

range of 2000 − 2100 cm−1 [30, 146, 158]. Several spectroscopic studies have also re-

ported an IR band in the frequency range of 1800 − 1900 cm−1 which is attributed to the

C≡O stretch frequency of bridge-bound CO (CObridge) [109, 146, 159, 160]. Neverthe-

less, a systematic investigation of the electrochemical reactivity and potential dependence

of the CObridge has not being carried out. The presence of CObridge in spectroscopic studies

is detected in alkaline pH. Interestingly, recent experimental studies have shown that the

selectivity towards C2+ hydrocarbons is promoted in alkaline pH [161–165]. These obser-

vations bring about the following questions: (1) Is CObridge an on-pathway intermediate

that produces C2+ hydrocarbons in alkaline pH? (2) Does CObridge modulate or effect the

adsorption energies of COatop and/or hydrogen?

By employing surface-enhanced infrared absorption spectroscopy in attenuated-total

reflection (ATR-SEIRAS) configuration and DFT calculations of copper/electrolyte inter-

face in alkaline pH, we provide a comprehensive and systematic investigation of electro-

chemical reactivity and dynamics of CObridge. We show that, (1) COatop converts into

CObridge below saturation covergae of CO. (2) Unlike COatop, CObridge is an irreversibly

adsorbed species which can only be removed by the oxidation of copper catalyst. (3)

CObridge does not affect the COatop coverage. This study highlights that the common

notion of COads is an on-pathway intermediate during CO2 reduction reaction demands

further investigation.

4.2 Results and Discussion

Potential Dependence of COads and Assignment of CO Vibrational Bands.
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Figure 4.1: Representative IR spectra of the C≡O stretch mode of (A) COatop and (B)

CObridge collected during a cyclic voltammetric scan in 0.05 M Li2CO3 (pH 11.4) at a scan

rate of 10 mV/s. Cathodic forward and anoidc reverse scans area shown in left and right

panels, respectively. Reproduced from Ref [64].
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To explore the potential dependence of the COads on copper electrode surface-enhanced

IR spectroscopy (SEIRAS) data were collected on a thin rough copper film deposited on

a Si ATR prism using an electroless deposition method. Experiments were carried out in

CO saturated 0.05 M Li2CO3 electrolyte by scanning the potential from 0.11 to −1.1 V

vs. standard hydrogen electrode (SHE) at a scan rate of 10 mV/s. All the potentials in this

Chapter are referenced against SHE, unless otherwise noted. Figure 4.1 shows the IR spec-

tra collected during the cathodic forward scan and anoidc reverse scan. C≡O stretch mode

observed in the frequency range 2000 − 2100 cm−1 (Figure 4.1(A)) is due to atop-bound

CO (COatop). Integrated band area of COatop is shown in Figure 4.2(A) in left ordinate.

Agreeing well with the previous publications, COatop band area exhibits an onset potential

≈ −0.6 V and a good reversibility during forward and reverse scans [30, 146].

A second IR band is observed in the frequency range ≈ 1800− 1900 cm−1 and this is

attributed to bridge-bound CO (CObridge). To unambiguously assign this IR band we have

employed density functional theory (DFT) calculations. DFT revealed that the IR band

in frequency regime ≈ 1800 − 1900 cm−1 can be due to 3-fold bridge CO on Cu(111)

and/or 2-fold bridge CO on Cu(100). Corresponding integrated band area is shown in

Figure 4.2(A) in right ordinate. CObridge shows a similar onset potential of −0.6 V as

COatop. But unlike COatop, band area of CObridge persist during the reverse scan until the

copper surface is oxidized at −0.1 V.

Time and pH Dependencies of CO Populations.

To further investigate the dynamics and reactivity of COatop and CObridge bands, po-

tential polarization experiments were carried out. Electrolyte was saturated with CO while

holding the Cu film at a potential of −0.5 V for 20 min. The potential was then jumped

and held at −1.1 V for 25 min, which gives a saturation CO coverage [30, 109]. Inte-

grated band areas of COatop and CObridge during this time are shown in Figure 4.3(A) in

gray color shaded area. COatop band area increases within few seconds and then stays
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CObridge (right ordinate, red color circles) bands shown in Figure 4.1 as a function of
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of the Cu electrode is ≈ 1.9 cm2). CV peaks are assigned according to the published

data [42, 166]. Arrows indicate the direction of potential scan. Reproduced from Ref [64].
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Figure 4.3: Integrated band areas of COatop (blue squares) and CObridge (red circles) as

a function of time during potential polarization experiments. Region1: −1.1 V potential

with CO purging at 5 sccm rate. Region2: −1.1 V potential with Ar purging at 5 sccm rate.

Region3: The potential was jumped and held at −1.75 V with Ar purging at 5 sccm rate.

(A) and (B) Experiments were carried out in 0.05 M Li2CO3 (pH 11.4) with polarization

times of 25 and 1 min in Region1, respectively. (C) Experiment was carried out in 0.1 M

LiOH (pH 12.4) with a 1 min polrization time in Region1. Reproduced from Ref [64].
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relatively constant during this period. CObridge band area exhibits a minute increase up to

≈ 45 mOD cm−1.

After initial 25 min, while holding the potential at −1.1 V, Ar gas was purged at 5

sccm rate (Figure 4.3(A) Region2). The amount of dissolved CO in the electrolyte de-

creases with Ar purging. Since, COatop is in dynamic equilibrium with the CO in the

solution [36, 146, 159], COatop band area decreases with Ar purging. Yet, a gradual in-

crease in the CObridge is observed during this period. When the potential is jumped to

−1.75 V (Figure 4.3(A) Region3), COatop band area goes to zero coverage while CObridge

band area remains relatively constant. These observations show that: (1) Below satura-

tion coverage COatop converts into CObridge species and (2) CObridge is electrochemically

inactive unlike COatop.

In order to acquire further information about the time dependence of COatop and

CObridge bands, the same experiment was carried out but with a decreased initial polar-

ization time in Region1 from 25 to 1 min (Figure 4.3(B), gray color shaded area). The

decrease in the initial polarization time has a great influence in the CObridge band area as

this only increases up to ≈ 25 mOD cm−1 at the end of the Region2. This indicates that the

conversion of COatop to CObridge is driven by the changes of the inteface that occur in tens

of minutes scale. Hydrogen evolution can increases the interfacial pH during a cathodic

polarization [167, 168]. In addition, spectroscopic studies of COads on Ni, Co, and Pt have

shown that CObridge is favoured in alkaine pH [169–172].

To examine whether the increase in local pH has an effect on the formation of CObridge,

we have carried out the experiment shown in Figure 4.3(B), now in 0.1 M LiOH which has

a higher local pH of 12.4. Figure 4.3(C) shows the integrated band areas collected in 0.1

M LiOH electrolyte. 0.1 M concentration of LiOH is used in order keep the concentration

of the cation the same with 0.05 M Li2CO3. Confirming our hypothesis that CObridge

population increases with increasing pH, CObridge band area is 25 times higher in 0.1 M
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LiOH compared to that in 0.05 M Li2CO3 at the end of the Region2.

Possible Origins of Observed CO Surface Dynamics.

We consider three possible origins to explain the conversion of COatop to CObridge

below saturation coverage of CO under cathodic polarization conditions. First scenario

is an increase in the charge density of the electrode that favors the binding of CObridge

over COatop. It is shown that on Ni, Co, Pt, and Rh with increasing cathodic potential the

preference towards CObridge increases. This is because, with increasing cathodic potential

back donation of electron from metal to 2π∗ orbital of CO increases [170–173]. Since

CObridge has a higher back donation compared to COatop, the preference towards the bridge

over atop is expected.

Increment in pH affects the potential of zero charge of the metal in SHE scale as;

Ez,SHE = Ez,pH=0 − 0.059 × pH [174]. Therefore, on the reversible hydrogen electrode

(RHE) scale, potential of zero charge is invariant (Ez,RHE = Ez,SHE + 0.059 × pH =

constant). This dependence of the Ez,SHE is due to the adsorption of hydroxide groups

with increasing pH [174]. But, in the presence of CO, COads replace adsorbed hydroxide

and as a result Ez,SHE is invariant with pH but Ez,RHE shifts to more positive poten-

tials with increasing pH [170–173]. Consequently, for a given applied RHE potential, the

charge density at the electrode σ = ERHE − Ez,RHE increases with increasing pH. As

described above, an increase in the charge density would prefer CObridge over COatop.

This electrostatic description can not explain the surface dynamics that we observed in

this study. First, same SHE potential is applied in all cases and if the preceding explanation

is accurate, potential of zero charge should be constant. Accordingly, the surface charge

density would not change for the same SHE potential. Second, under the assumption that

Ez,SHE follows the theoretical pH dependence, the charge density of the electrode would

decrease with increasing pH.

The observed surface dynamics can also arise from a reconstruction of the Cu surface
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(B) −1.1 V. The black spectrum in (A) is collected at open circuit potential. Two major

peaks at 517 and 610 cm−1 are assigned to Cu2O. Reproduced from Ref [64].

under cathodic polarization. The slow reduction of surface adsorbed copper oxides can

induces a reconstruction of the surface which can favor the binding of CObridge. To inves-

tigate the presence of surface adsorbed copper oxides, we have collected surface-enhanced

Raman scattering (SERS) data on copper electrode in Ar-saturated 0.05 M Li2CO3 (Fig-

ure 4.4). SERS data show that after 2 min at −1.1 V copper oxides are absent on the

surface. Therefore, reconstruction of copper with slow reduction of copper oxides can not

be the reason that would give rise to the observed surface dynamics of COads species.

Kim et al. have employed in-situ scanning tunneling microscopy to image the copper

surface under cathodic polarization [46, 47]. They have observed that in alkaline pH with

tens of minutes scale polycrystalline copper reconstruct to Cu(111) and then to Cu(100).

Our data show that an increase in the local pH favors the binding of CO in bridge con-

figuration. Taken together the most probable explanation for the observed CO population
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represent the band area at −1.1 and 0.11 V, respectively. Reproduced from Ref [64].

dynamics is the pH induced surface reconstruction of copper. Cu(100) and Cu(111) sites

formed during surface reconstruction can irreversibly bind CO in 2-fold or 3-fold bridge

configurations.

Insensitivity of COatop Coverage to CObridge Population.

Accumulation of irreversibly adsorbed CObridge on the copper surface can influence the

binding of COatop and hydrogen [50, 157]. To investigate this prospect, we have carried

out consecutive CVs between 0.11 and −0.11 at a scan rate of 10 mV/s in CO-saturated

0.05 M Li2CO3. Figure 4.5 shows the integrated band areas of COatop and CObridge at turn-

ing potentials of the CVs. With increasing cycle number the CObridge band area increases

while the COatop band area persists. This observation demonstrates that the CObridge pop-

ulation does not affect the binding energy or block the sites of COatop. This further man-

ifests that the CO coverage on copper is much more less than an one monolayer coverage

at this potential, as also shown by theoretical studies [50]. Further, COatop and CObridge

can adosrb on different surface sites. However, the narrowing of the CObridge band with

the removal of COatop (Figure 4.1) hints that these two species interact.

Origin of the Electrochemical Inertness of CObridge.
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To examine the origin of the electrochemical inertness of the CObridge, we employed

DFT calculations. Here, Cu(111) and (100) surface factes were used as model copper

surfaces. Figure 4.6 shows the formation energy of COatop and CObridge as a function of

applied electric field. When the electric field is increased from −0.25 to 1 V/A◦ the for-

mation energy of COatop stays approximately constant, while this becomes more negative

for CObridge. This shows that the CObridge becomes more stable with increasing cathodic

potential.

Further, we calculated the activation barrier for the water-assisted hydrogenation of

COatop and CObridge to CHO (Figure 4.7). The calculated formation energy for the 2-

fold or 4-fold CHO is invariant with applied electric filed. Taken together, as shown in

Figure 4.7, activation barrier for the formation of CHO from COatop does not depend on

the applied electric field. In contrast, since the formation energy of CObridge decreases with

increasing electric field, the activation barrier for the production of CHO from CObridge

increases with increasing electric field/cathodic potential. Accordingly, the stabilization
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of CObridge with increasing cathodic potential can be the origin of the electrochemical

inertness of CObridge on copper electrode.

4.3 Conclusions

Herein, we show that a bridge-bound CO population is observed on copper in alkaline pH

under cathodic polarization that can be due to 3-fold bridge CO on Cu(111) and/or 2-fold

bridge CO on Cu(100). pH induced surface reconstruction of copper electrode that occurs

over a time scale of tens of minutes forms Cu(111) and (100) sites that preferentially and

irreversibly bind CO in bridging configuration. In contrary to the shared understanding that

the surface-adsorbed CO is an on-pathway intermediate during CO2 reduction reaction, we

show that CObridge is an electrochemically inactive species. The electrochemical inertness

could arise from the stabilization of CObridge with increasing cathodic potential as shown

by the DFT calculations. Even though, CObridge does not affect the COatop population,

further experimental efforts are required to assess CObridge’s effect on product selectivity
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during CO2 reduction reaction.

4.4 Materials and Methods

Materials. NH4F (40 wt% in H2O), HF (48 wt%), and Li2CO3 (99.999%; trace met-

als basis) were purchased from Fisher Scientific. CuSO4·5H2O (99.999%; trace metals

basis), Na2EDTA (99.0-101.0%; ACS Reagent), 2,2-bipyridine (≤99%; ReagentPlus),

HCHO (35 wt%; 10% methanol as stabilizer), NaOH (99.99%; trace metals basis), and

LiOH·H2O (99.95%; trace metals basis) were procured from Sigma-Aldrich. Polycrys-

talline diamond pastes were purchased from South Bay Technologies (San Clemente, CA)

or Electron Microscopy Sciences (Hatfield, PA). Ar (Ultra High Purity) and CO (99.999%)

were acquired from Air Gas. For all experiments, high purity water (18.2 MΩ cm) derived

from a Barnstead Nanopure Diamond system (APS Water Services; Lake Balboa, CA)

was used.

Cu Thin Film Deposition. Cu thin films were chemically deposited on a 60◦ Si ATR

prism (Pike Technologies; Madison, WI) following a similar method described in Chap-

ter 3. After the Cu film deposition, it was assembled to an electrochemical cell and blan-

keted with 4 mL of either 0.05 M Li2CO3 or 0.1 M LiOH. The electrolyte was then purged

with Ar gas at 5 sccm for 20 min. Next, the Cu electrode was cleaned by cycling the po-

tential between −0.13 to −0.6 V vs. Ag/AgCl at 50 mV/s scan rate. Following this, CVs

were collected from −0.6 to −0.7 V at 20, 40, 60, 80, and 100 mV/s scan rates to deter-

mine the roughness factor of the Cu film (Details of the roughness factor determination of

Cu thin films are given with the Figure 3.6).

Electrochemical methods for ATR-SEIRAS Measurements. Experiments were car-

ried out in a single-compartment polyetheretherketone (PEEK) cell (Figure 3.7). The elec-

trochemical cell was cleaned in an acid bath (30 wt% HNO3 + 30 wt% H2SO4) for 1 hour
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followed with sonication in Nanopure water for another 1 hour. A Au wire (99.999%, 0.5

mm thick, Alfa Aesar) and a Ag/AgCl (RE-5B, 3 M NaCl, BASi Inc,; West Lafayette, IN)

were used as counter and reference electrodes respectively. Potential was applied using

a VersaStat3 potentiostat (AMETEK; Berwyn, PA). 85% of the solution resistance was

compensated in-situ.

ATR-SEIRAS Measurements. ATR-SEIRAS measurments were collected with a

nitrogen-purged Bruker Vertex 70 FTIR spectrometer (Billerica, MA) equipped with a

liquid nitrogen-cooled MCT detector (FTIR-16; Infrared Associates; Stuart, FL). Spectra

were collected with 4 cm−1 spectra resolution and 40 kHz scanner velocity. The change in

the optical absorbance was calculated using the relationship; ∆mOD = −103log(S/R),

where S and R represent the sample and reference single beam spectra, respectively.

SERS Measurements. SERS data were collected in a Horiba Scientific Xplora Raman

microscope using a water immersion objective (NA = 1.0, WD = 2.0 mm; LUMPLFLN-

60X/W; Olympus Inc.; Waltham, MA) wrapped in a 0.006 mm thick Teflon sheet with

a drop of water interfacing the objective and the sheet. Excitation source was a 638 nm

laser. Data were collected with 600 lines/mi as the grating, 300 µm hole, 100 µm slit, and

an acquisition time of 25 s. Raman spectroscope was calibrated with a Si as the standard

prior to each experiment.

SERS were collected on a Cu film chemically deposited on a Si wafer. The Cu film was

assembled in to a home-built Teflon cell. The cell was cleaned prior to each experiment

following the cleaning procedure of the PEEK cell explained above. Then, a 50 mL of

0.05 M Li2CO3 was purged with Ar for ∼ 30 min before the experiment. Cu film was

electrochemically cleaned using the CV method described above. This was followed by

the CV data collection for roughness factor determination. The Cu film was kept at open

circuit potential for ∼ 2 min before applying −0.5 V vs. SHE. The Raman spectra were

collected at every 2 min while holding the potential at −0.5 V vs. SHE for 20 min. Then
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the potential was jumped to −1.1 V vs. SHE and held at this potential for 50 min while

collecting Raman spectra at every 2 min.
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Chapter 5

Revealing the Predominant Surface

Facets of Rough Cu Electrodes under

Electrochemical Conditions

5.1 Introduction

Rough metal electrodes exhibit high catalytic activity and selectivity towards hydrocarbon

formation, especially towards C2+ hydrocarbons, during electrocatalytic CO2/CO reduc-

tion reaction (CO2RR/CORR) [175–178]. For an instance, Hoang et al. have shown that

Faradaic efficiency (FE) for ethylene formation is 40% on a rough copper nanowire cata-

lyst at −0.5 V vs. reversible hydrogen electrode (RHE), while FE for ethylene formation

is only 1% on a smooth ploycrystalline copper catalyst at the same applied potential [177].

Electrodeposition [177, 179–181], reduction of copper oxide phases [43, 162, 178, 182–

185], deposition of nanoparticels [145, 175, 186–188], usage of a porous support [189,

190], and halide induced surface reconstruction [163, 176, 191–194] are some of the tech-

niques that are employed to prepare rough metal electrodes.

It is challenging to identify atomic level characteristics of rough metal electrodes that

give rise to the observed high catalytic activity and selectivity under operating condi-

tions. In-situ probing of the catalyst morphology can be achieved by employing powerful

techniques such as electrochemical scanning tunneling microscopy (ESTM), in-situ X-
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ray absorption spectroscopy (XAS), surface-interrogation scanning tunneling microscopy

(SI-SEM), in-situ atomic force microscopy (AFM), surface-ehnanced infrared absorption

spectroscopy (SEIRAS) and, surface-enhanced Raman scattering (SERS). However, all the

above mentioned techniques can not be used as routine procedures to probe atomic level

morphology of rough metal electrodes. Yet, SEIRAS is an uncomplicated technique that

has demonstrated it self as a powerful approach for the investigation of atomic level mor-

phology when coupled with a suitable molecular probe, such as surfac-adsorbed CO [36,

64, 146]. As elaborated in Chapter 3 and 4, C≡O stretch frequency of atop-bound CO

(COatop) is an ideal probe of the atomic level morphology of rough metal electrodes as this

frequency is influenced by the coordination number of the metal atom on which COatop is

bound. Although, acute attention must be paid when interpreting the data observed during

SEIRAS due to following factors.

Due to experimental constraints, such as stability of thin film metal catalysts, SEIRAS

or SERS data were collected in short time scales (few minutes) compared to product detec-

tion electrolysis experiments (tens of minutes). Reconstruction of catalyst surface during

pro-longed electrolysis [30, 46, 47] hinders the direct correlation of atomic morphology

data collected using spectroscopic techniques to electrolysis data. Further, with increasing

CO coverage the C≡O stretch frequency is influenced by the CO coverage effects, dynam-

ical dipole coupling and chemical effects (Chapter 2, Section 2.5). Therefore, C≡O stretch

frequency no longer reports on the atomic morphology of the catalyst with increasing CO

coverage. But, the C≡O stretch frequency can be used as a probe of the atomic level

morphology of the catalyst in the limit of low CO coverage. Even at low CO coverage,

Cu(100) and Cu(111) give rise to a similar C≡O stretch frequencies albeit their different

binding energies (Chapter 2, Table 2.1). Yet, Cu(100) exhibits good catalytic activity and

selectivity towards ethylene, while Cu(111) shows a poor CO2 reduction catalytic activity

and selectivity [132, 195].
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Herein, to overcome the above mentioned problems, we combine SEIRAS with dif-

ferential electrochemical mass spectrometry (DEMS). Simultaneous observation of C≡O

stretch frequency of COatop and onset potentials of products formed during the CORR,

allows the formation of a rigorous connection between structure property and catalytic

activity. We show that the potential dependence of the C≡O stretch frequency at low

CO coverage limit is a powerful indicator of the atomic level morphology of rough metal

catalysts.

5.2 Results and Discussion

Copper Thin-Film Electrodes.

Here, we investigate two distinctly prepared rough copper thin films that are frequently

employed in SEIRAS studies. First film is a thin rough copper film deposited on a Si

attenuated-total reflection (ATR) prism using an electroless deposition method (Cu-Si) [30,

146, 196]. Second film is a thin rough copper film electrochemically deposited on a gold

underlayer on a Si ATR prism (CuAu-Si) [196–198]. Thickness of the copper film is ≈ 80

nm for Cu-Si measured using atomic force microscopy (AFM) images, and is ≈ 8 nm

for CuAu-Si film measured by monitoring the charge passed during the electrocehmical

deposition of Cu on Au overlayer [198]. AFM images of Cu-Si (Figure 2.1) and CuAu-Si

(Figure 5.1) films show that these films are made up of interconnected metal islands with

≈ 80 and ≈ 40 nm particle sizes, respectively. The roughness of the films measured using

electrochemical capacitance measurements are ∼ 10 and ∼ 5 for Cu-Si and CuAu-Si

films, respectively, compared to the roughness of a smooth polycrystalline Cu foil [153].

Even though, Cu-Si and CuAu-Si films are frequently used in SEIRAS studies, direct

product detection of these two films were not carried out as these thin films tend to peel

off with pro-longed electrolysis. Therefore, without any scientific basis, it is assumed that

68



6 0  n m

0

1 0

2 0

3 0

4 0

5 0

Figure 5.1: An AFM image of a CuAu-Si film. The scale bar is 200 nm. Image was

acquired in a 1 × 1 µm2 area with a Si cantilever (Nanosensors; Neuchatel, Switzerland;

PPP-NCHR 10 M, 7 nm tip radius, 330 kHz resonance frequency, and 42 Nm−1 spring

constant) at a 0.5 Hz scan rate in non-contact mode on a Park XE-100 AFMsystem (Park

Americas; Santa Clara, CA). Reproduced from Ref [158].

these films posses similar activity and selectivity towards hydrocarbon production during

CO2RR/CORR as cooper foils which are more frequently used in electrolysis studies.

Herein, we carried out product analysis on Cu-Si and CuAu-Si films by combining DEMS

and SEIRAS.

Onset Potentials for CO Reduction Products on Cu-Si and CuAu-Si.

Figure 5.2 shows the combined DEMS and SEIRAS cell setup. Experiments were

carried out in CO-saturated 0.1 M potassium phosphate at pH ≈ 7. Before collecting

DEMS and SEIRAS data, Cu thin films were subjected to three cyclic voltammograms

(CVs) between −0.6 and −1.2 V vs. Ag/AgCl at 10 mV/s scan rate. Unless otherwise

noted all the potentials in Chapter 5 are referenced against Ag/AgCl. This CVs were

carried out to ensure the removal of copper oxides present on Cu thin films. The DEMS

and SEIRAS data collection was carried out in CO-saturated electrolyte while scaning the

potential form −0.6 to −1.8 V at 1 mV/s scan rate.

Figure 5.3 shows the partial current densities and the onset potentials for hydrogen,
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abling the fine adjustment of the tip-electrode distance. Reproduced from Ref [158].
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are divided by the roughness factor of the respective film. Reproduced from Ref [158].
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methane, and ethylene evolved during CORR. The onset potential for hydrogen (∼ −1.2

V) and methane (∼ −1.7 V) are similar on both Cu-Si and CuAu-Si films. In contrast,

the onset potential of ethylene exhibits a ∼ 200 ± 65 mV cathodic shift on CuAu-Si film

compared to that on Cu-Si film: On Cu-Si the onset potential is ∼ −1.4 V and on CuAu-Si

this is ∼ −1.6 V. Here, the onset potential is defined as the potential at which 10% of the

partial pressure at −1.8 V is observed. The disparate onset potential could arise from a

dissimilar surface properties of Cu-Si and CuAu-Si films.

A difference in catalytic activity can also arise due to different local pH values at Cu-

Si and CuAu-Si catalysts [199–201]. To explore this possibility, the same experiments

were carried out in 0.1 M KOH electrolyte at a pH 12.85. At this pH, a significant drift in

local pH due to hydrogen evolution is not expected [147, 202]. Observation of the same

trend in the onset potential of ethylene formation in 0.1 M KOH electrolyte as in 0.1 M

potassium phosphate, excludes the possibility of different local pH giving rise to difference

in catalytic activity on Cu-Si and CuAu-Si films.

Another rationale for the observed difference in the ethylene onset potential is the

exposure of gold or the formation of cooper/gold alloys on CuAu-Si film [203, 204]. The

C≡O stretch frequency is sensitive to the identity of the metal catalyst. Therefore, we

utilized the C≡O stretch frequency of COatop to test if the gold is exposed on CuAu-

Si film. The collected SEIRAS data do not show any evidence for the exposed gold on

surface.

Additionally, DEMS data collected with Ar saturated electrolyte do not show any sig-

nal for hydrocarbon products. These control experiments suggest that the most probable

explanation for the observed difference in ethylene onset potential on Cu-Si and CuAu-Si

films, is the disparate properties of catalyst’s morphology.

C≡O Stretch Spectra of COatop on Cu-Si and CuAu-Si.

Highest coverage of CO on both Cu-Si and CuAu-Si films are observed at ≈ −1.3 V.
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Figure 5.4: Normalized absorbance of COatop band on Cu-Si and CuAu-Si films at satu-

ration coverage at −1.3 V. The spectra were concurrently collected with the DEMS data

shown in Figure 5.3. Reproduced from Ref [158].

Inspection of C≡O stretch spectra of COatop at this potential, as shown in Figure 5.4, tells

that it only exhibits a minute difference on two Cu films disregard the large difference in

catalytic activity. At large CO coverage, the C≡O stretch frequency can be convoluted

with dynamical dipole coupling and chemical effects (Chapter 2, Section 2.5). There-

fore, we explored the C≡O stretch frequency at low coverage limit, i.e. at low cathodic

potentials on Cu-Si and CuAu-Si thin films.

As shown in Figure 5.5, the potential dependence of the C≡O stretch band at low

cathodic regime display significant differences on two Cu thin films. On Cu-Si bellow

≈ −0.95 V, a band at ≈ 2045 cm−1 is observed. Appearance of a second band ≈ 2080

cm−1 can be observed at potentials above ≈ −0.95 V. By careful analysis Gunathunge

et al. have attributed these low frequency band (LFB) at ≈ 2045 cm−1 and high frequency

band (HFB) at ≈ 2080 cm−1, to COatop adsorbed on highly-coordinated terrace sites and

under-coordinated defect sites (Chapter 3) [30]. Interestingly, an IR band at ≈ 2080 cm−1

dominates at all potentials on CuAu-Si film. This observation undoubtedly suggests that

Cu-Si and CuAu-Si films possess disparate morphological proprieties.
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were collected concurrently with the DEMS data shown in Figure 5.3. Reproduced from

Ref [158].
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Figure 5.6: Cyclic voltammetry (CV) collected on (A) Cu(100) and (B) Cu(111) single

crystals. CV collected on (C) Cu-Si and (D) CuAu-Si thin films. All the CVs were col-

lected in Ar-saturated 0.1 M KOH at a scan rate of 50 mV/s. Geometric current density is

shown in the pannels. Reproduced from Ref [158].

Cyclic Voltammetric Characterization of Surface Facets of Cu-Si and CuAu-Si.

To further characterize the Cu-Si and CuAu-Si films, a cyclic voltammetric (CV) char-

acterization was employed. CVs collected on copper single crystal electrodes in alkaline

electrolyte show characteristic hydroxide adsorption/desorption waves [205–208]. The

peak potentials of these waves are unique for a given single crystal surface facet. Fig-

ure 5.6 (A) and (B) show the CVs collected on Cu(100) and Cu(111) single crystals,

respectively, in Ar saturated 0.1 M KOH at a scan rate of 50 mV/s. For the purpose
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of comparison of CV data collected in this study with published data, potential in here

is reported against reversible hydrogen electrode (RHE). Cu(100) exhibits two waves at

−0.17 V due to hydroxide adsorption and desorption. The nature and the peak potential of

hydroxide adsorption/desoprtion waves of Cu(111) are distinct from that of Cu(100) and

appears between −0.2 and 0.2 V. At potentials more positive than 0.3 V, copper surface

is oxidized to Cu2O. The oxidation/reduction current density in this more anodic potential

regime is higher in Cu(100) compared to that in Cu(111). Our data agrees well with the

published data on Cu(100) and Cu(111) [205–208].

The same CVs were then collected on Cu-Si and CuAu-Si films (Figure 5.6 (C) and

(D)). On Cu-Si, a wave at −0.17 V (marked with an asterisk) is observed during the ca-

thodic scan, where hydroxide desorption wave is observed on Cu(100). On CuAu-Si, a

wave (*) at the potential range where the hydroxide adsorption is detected on Cu(111), is

observed. In addition, comparison of the current density at more anodic potentials than

0.3 V indicates that Cu-Si bears a resemblance to that of Cu(100) and CuAu-Si display

a similarity to that of Cu(111). The absence of the peaks during respective reverse scans

on Cu-Si and CuAu-Si films can be due to small amplitudes of these peaks and sloping

baseline of the CVs. The CV characterization data therefore indicate that Cu-Si surface

possesses (100) surface facets while the predominant surface facet on CuAu-Si is Cu(111).

Indeed, it has being shown that polycrystalline copper shows a similar catalytic activ-

ity to that of Cu(100) single crystal [141]. Further, ESTM studies have shown that poly-

crystalline copper surface undergoes reconstruction during electrolysis and forms Cu(100)

surface facets [46]. These observations can validate the presence of Cu(100) surface facets

on Cu-Si film. Contradicting to these observations, CV characterization suggests the pres-

ence of Cu(111) facets on CuAu-Si film. CVs taken on the Au underlayer of CuAu-Si film

(Figure 5.7) indicate the presence of Au(111), which is also shown in published data [209].

Hence, the presence of (111) facets on CuAu-Si can be due to the semi-epitaxial growth
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Figure 5.7: A CV collected on electroless deposited Au underlayer of CuAu-Si film in

Ar-saturated 0.1 M H2SO4 at 50 mV/s scan rate. Geometric current density is shown in

the figure. Reproduced from Ref [158].

of ≈ 8 nm thick Cu layer on Au(111) underlayer [210].

Effect of Dynamical Dipole Coupling on the C≡O Stretching Band of COatop.

Figure 5.4 suggests that C≡O stretch band at saturation coverage is governed by dy-

namical dipole coupling. To minimize the dynamical dipole coupling and to estimate the

true coverage of COatop on Cu-Si and CuAu-Si films, IR data were collected in an isotopic

mixture of CO (A detailed description of dynamical dipole coupling and isotopic dilution

to minimize this effect is given in Chapter 2, Section 2.5). Figure 5.8 shows the normalized

absorbance of COatop band at −1.3 V in a mixture of 10% 12C16O + 90% 13C18O and in an

isotopically pure 12C16O on both Cu thin films. LFBHI and HFBHI indicate the LFB and

HFB of the heavy isotope, 13C18O. Asterisk denote the LFB of the 12C16O in the isotopic

mixture. The absence of the HFB band of 12C16O in isotopic mixture thoroughly confirms

that the spectra at saturation coverage is influenced by the dynamical dipole coupling.

Dynamical dipole coupling among isotopically different molecules does not show a

frequency shift, although manifest it self as an intensity borrowing from the lower fre-

quency band to the higher frequency band (Chapter 2, Section 2.5). Therefore, compari-

son of the intensity of the HFBHI and (*) bands (indicated by arrows in the Figure 5.8) on

77



1.6

1.2

0.8

0.4

0.0

N
or

m
al

iz
ed

 A
bs

or
ba

nc
e

22002100200019001800

Frequency (cm
-1

)

 10% 
12

C
16

O + 90% 
13

C
18

O

 100% 
12

C
16

O
 

LFBHI

HFBHI

*

1.6

1.2

0.8

0.4

0.0

22002100200019001800

Frequency (cm
-1

)

 10% 
12

C
16

O + 90% 
13

C
18

O

 100% 
12

C
16

O

*

(A) Cu-Si (B) CuAu-Si

Figure 5.8: Normalized absorbance of COatop collected in an isotopic mixture of 10%
12C16O + 90% 13C18O (solid line) and in isotopically pure 12C16O (dashed line) on (A)

Cu-Si and (B) CuAu-Si films at -1.3 V. Reproduced from Ref [158].

Cu-Si and CuAu-Si can provide an estimate of the relative coverage of CO on these thin

films. Data show that the amplitude of the (*) band, which is the LFB of 12C16O, is ∼ 30%

relative to that of HFBHI on Cu-Si, while this is only ∼ 10% on CuAu-Si films. This ob-

servation demonstrates that dynamical dipole coupling is higher on Cu-Si film compared

to that on CuAu-Si film. A higher dynamical dipole coupling could arise from a higher

CO coverage, therefore suggesting that the relative CO coverage on Cu-Si is higher than

the CO coverage on CuAu-Si film.

Interpretation of the Potential Dependence of the C≡O Stretch Spectra of COatop on

Cu-Si and CuAu-Si.

CV characterization data demonstrate that the predominant surface facet on Cu-Si is

Cu(100) and that on CuAu-Si is Cu(111). Here, by employing a simple Boltzmann re-

lationship we interpret the disparate potential dependence of the C≡O stretch spectra on

Cu-Si and CuAu-Si films. Even though polycrystalline copper have a variety of surface
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sites such as terrace, kink, step edges, defects, the model only considers two distinct type

of surface facets, terrace and defect sites. This can be rationalize by successful modeling

of the C≡O stretch band with two Gaussian functions (Figure 3.1).

Relative occupancy of COatop on terrace and defect sites is governed by Boltzmann

relationship [158]:

Ndefect

Nterrace

=
gdefect
gterrace

exp

(

+
∆E

kT

)

(5.1)

where gdefect and gterrace are the degeneracies of the two surface sites, k is the Boltzmann

constant, and T is the absolute temperature. ∆E = Edefect − Eterrace is the difference

between the binding energies of COatop on defect and terrace sites and the binding energies

are defined as positive quantities in here.

According to the Equation 5.1, the distribution of COatop on terrace and defect sites

are influenced by two factors. The first one is the degeneracies of terrace and defect sites.

On CuAu-Si the higher C≡O stretch frequency of ≈ 2080 cm−1 at potentials < −1.0

V can arise form the presence of a larger defect site density. If this is true, then the

COatop coverage on CuAu-Si should be higher than that on Cu-Si film, since the adsorption

energy of CO on defect sites is larger than on terrace sites [81]. However, isotope dilution

experiments suggest otherwise. Therefore, the disparate potential dependence of C≡O

stretch data may not arise due to differences in the first factor related to gdefect and gterrace.

The second factor that influences the distribution of COatop is the difference in CO

binding energies on defect and terrace sites. ∆E on CuAu-Si which possesses Cu(111)

and defect sites is 0.11 eV [81] and ∆E on Cu-Si which has Cu(100) and defect site is 0.07

eV [81]. The calculated probability distribution using these ∆E values show that Cu-Si

has five times higher probability to occupy a terrace site compared to that of CuAu-Si.

Higher probability to find COatop on terrace sites on Cu-Si is manifested as an appearance
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Figure 5.9: Schematic summarizing the key findings. (Left) Cu-Si film that possesses

(100) and defect sites has a higher probability of finding COatop on terrace sites, therefore

giving a separate IR peak at ≈ 2045 cm−1. (Right) CuAu-Si film that possesses (111) and

defect sites has a lower coverage of COatop on terrace sites. Thus, a separate IR peak is

not observed for COatop adsorbed on Cu(111) terrace sites. Reproduced from Ref [158].

of a separate IR band at ≈ 2045 cm−1. However, the low coverage of COatop on (111)

terrace sites on CuAu-Si film is not sufficient to develop a separate band for terrace sites.

This conclusion is summarized in Figure 5.9.

Interpretation of the Onset Potential Difference in Ethylene on Cu-Si and CuAu-Si.

Previous publications have shown that the onset potential of ethylene formation is more

cathodic in copper catalysts with predominant Cu(111) facets compared to that on copper

catalysts with (100) as the predominant facet [132, 142, 199]. Further, Hori et al. have

shown that the FE for ethylene formation during CO2RR in 0.1 M KHCO3 on Cu(111)

electrode is five times lower than that on Cu(100) [195]. These evidence further confirm

our assignment of predominant surface facets on Cu-Si and CuAu-Si films: the predom-

inant surface facet on Cu-Si is (100) while Cu(111) is the ubiquitous surface facet on

CuAu-Si film.
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5.3 Conclusions

With concurrent product and structure analysis performed using a combined DEMS-SEIRAS

setup, we show that two frequently employed rough thin copper films in SEIRAS inves-

tigations exhibit distinct catalytic activities during CORR. Onset potential of ethylene on

CuAu-Si film is ∼ 200± 65 mV more cathodic than that on Cu-Si film. SEIRAS data col-

lected with an isotopic mixture of CO revealed that the C≡O stretch spectra of COatop at

saturation coverage is dominated by the dynamical dipole coupling. In addition, these data

suggest that Cu-Si has a relatively higher COatop coverage compared to that of CuAu-Si

which is disclosed by the presence of a higher dynamical dipole coupling on Cu-Si film.

A distinct potential dependence of the C≡O stretch band of COatop is observed on Cu-

Si and CuAu-Si at low CO coverage limits (< −1.0 V). This distinct potential dependence

indicates the presence of two different predominant surface facets on the two copper thin

films with different CO binding energies. With a Boltzmann relationship we show that the

difference in the potential dependence of the C≡O stretch band can be due to the presence

of a terrace site with a higher CO binding energy on Cu-Si, and a lower CO binding energy

terrace site on CuAu-Si.

The CV characterization enclosed that Cu-Si has (100) and CuAu-Si has (111) as the

predominant surface facets together with defect sites. Our study highlights that the poten-

tial dependence of the C≡O stretch band of COatop at low CO coverage can be used as

an indicator of the atomic level morphology of rough metal catalysts under operating con-

ditions. Further, this study emphasizes the complexity associated with interpreting C≡O

stretch spectra.
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5.4 Materials and Methods

Materials. Chemicals for Cu or Au thin film deposition on Si: NH4F (40 wt.% in H2O),

HF (48 wt.%), NaAuCl4 · 2H2O (99.99%; metals basis), Na2SO3 (98.5%; for analysis,

anhydrous), Na2S2O3 · 2H2O (99.999%; trace metal basis), and NH4Cl (99.999%; metal

basis) were purchased from Fisher Scientific (Waltham, MA). CuSO4 · 5H2O (99.999%;

trace metal basis), EDTA-Na2 (99.0 − 101.0%; ACS Reagent), 2,2-bipyridine (≥ 99%;

ReagentPlus), HCHO (35 wt.%; 10% methanol as stabilizer), and NaOH (99.99%; trace

metals basis) were acquired from Sigma Aldrich (St. Louis, MO). Polycrystalline dia-

mond pastes and alumina slurry were procured from Ted Pella (Redding, CA) or Electron

Microscopy Sciences (Hartfield, PA).

Chemicals for electrochemical measurements: KH2PO3, ≥ 99.995%, TraceSELECT,

metals basis; K2HPO3, ≥ 99.999%, TraceSELECT, metals basis; KOH, 99.99%, trace

metals basis, Sigma Aldrich. High-purity water for electrolyte preparation was derived

from a Barnstead Nanopure Diamond system.

Ar (ultra high purity), N2 (ultra high purity), and CO (99.999%) were obtained from

Air Gas (Radnor, PA). Doubly labeled 13C18O (99 atom % 13C, 95 atom % 18O) was

purchased from Sigma Aldrich.

Cu(100) and Cu(111) single crystals (5 × 5 × 1 mm) were purchased from MTI Cor-

poration (Richmond, CA).

Cu-Si Film Preparation. Cu-Si film was deposited on a 60◦ Si ATR prism following

a similar method described in Chapter 3, Methods and Materials.

CuAu-Si Film Preparation. The total reflecting surface of a 60◦ Si ATR prism was

polished with 6 and 1 µm diamond pastes for 5 min each. Then, this was polished with

1 µm alumina slurry for another 5 min. The polished Si surface was rinsed under running

Nanopure water stream while wiping it with a wet Kim-wipe for ∼ 1 min. The Si prism
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was then sonicated in water and in acetone alternatively for 5 time for 5 min in each.

Subsequently, the Si prism was etched by immersing the surface in a 40% NH4F solution

for 90 s. The deposition of the Au layer was carried out by immersing the etched surface

in a mixture of 2 : 1 plating solution and 2% HF solution at 60◦C for 120 s. The plating

solution contained 15 mM NaAuCl4·2H2O, 150 mM Na2SO3, 50 mM Na2S2O3·2H2O, and

50 mM NH4Cl. Then, the Au film was washed away by adding few drops of an aqua regia

on to the Au film. After rinsing the surface well with Nanopure water, it was immersed

again in the 2 : 1 mixture of plating solution and 2% HF solution for another 120 s. This

was carried out to increase the adhesion of the Au film to the Si prism. Usually this step

was repeated for 2 times to get a homogeneous and stable Au film. After the deposition

the resistance across the film was measured and the measured resistance is 8− 10 Ω.

Au film was then assembeled into a single compartment electrochemical cell with a

Au wire as the counter electrode, Ag/AgCl as the reference electrode, and blanketed with

4 mL of 0.1 M H2SO4. Five CVs were collected from 0 to 1.5 V at 50 mV/s scan rate in Ar

saturated H2SO4. Subsequently, the Cu deposition was carried out by adding 5.75 mM of

Cu2SO4 to the electrolyte. The film was held at −0.2 V until the desired amount of charge

passed (≈ 40 mC). The electrolyte was stirred at ∼ 400 rpm during the deposition.

Pre-Treatment of Cu-Si and CuAu-Si Films Prior to DEMS and FTIR Experi-

ments. Cu-Si and CuAu-Si were pre-treated before the collection of DEMS-FTIR data

to remove copper oxides. First, the electrolyte was purged with Ar gas at 5 sccm rate for

20 min at open circuit potential (OCP). Then, 5 CV cycles were collected form −0.17 to

−0.6 V at 50 mV/s scan rate. Following this, CVs were collected from −0.6 to −0.7 V at

20, 40, 60, 80, and 100 mV/s scan rates to determine the roughness factor of the film (De-

tails of the roughness factor determination of Cu thin films are given with the Figure 3.6).

Next, 3 CVs were collected from −0.6 to −1.2 V at 10 mV/s scan rate. The film was never

exposed to oxidative potentials or subjected to OCP after these CVs. Then, the film was
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held at −0.6 V for pH 7 electrolyte and at −0.8 V for pH 12.85 electrolyte for 20 min

while purging CO at 5 sccm rate.

DEMS-SEIRAS Experiments. DEMS-SEIRAS experiments were carried out in a

single compartment cell as shown in Figure 5.2. The porous Teflon tip was placed at ∼

100µm distance from the working electrode. DEMS setup is described in elsewhere [29].

Prior to each experiment the cell was cleaned by immersing it in a mixture of 30 wt%

H2SO4 and 30 wt% HNO3 for 1 hour followed by sonication in Nanopure water for another

1 hour. Then the cell was assembled with a Pt foil as the counter electrode and a Ag/AgCl

as the reference electrode. 6 mL of freshly prepared 0.1 M potassium phosphate or 0.1

M KOH was used as the electrolyte. Concurrent DEMS and SEIRAS data were collected

while scanning the potential from −0.6 to −1.8 V at 1 mV/s scan rate in 0.1 M potassium

phosphate or from −0.8 to −1.8 V in 0.1 M KOH. ATR-FTIR parameters were described

in elsewhere [30].

Isotope Dilution Experiments. Isotope dilution experiments were carried out in a

home-built two-compartment SEIRAS cell which is shown in Figure 5.10. The cell was

subjected to a cleaning prior to each experiment as described in the previous section. Iso-

topic mixture of 90% 13C18O + 10% 12C16O was achieved by purging 13C18O at 4.5 sccm

and 12C16O at 0.5 sccm. Potential was scanned form −0.6 to −1.4 V at 2 mV/s rate while

collecting spectral data.

CV Characterization Experiments. Epoxy was used to cover the back side of the

Cu(100) and Cu(111) single crystals. Then, the surface of the single crystals were cleaned

electrochemically in an acid solution of H3PO4:H2SO4:H2O = 10 : 5 : 2. A potential of

2.3 V vs. Cu was applied for 2 s followed by 30 s at open circuit potential and another 2

s at 2.3 V. The electrodes were then thoroughly rinsed with high-purity water before they

were immersed in an Ar-saturated 0.1 M KOH solution. CVs of Cu(100) and Cu(111)

were collected in a single compartment cell while the electrolyte was purged with Ar gas
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Figure 5.10: Schematic of the home-build two-compartment polyetheretherketone

(PEEK) SEIRAS electrochemical cell. Reproduced from Ref [158].

at a rate of 5 sccm. The electrolyte was stirred. Ten CV cycles were collected from −0.3

to 0.45 V vs. RHE at a 50 mV/s scan rate and the 10th cycle is shown in Figure 5.6. CVs

of the Cu-Si and CuAu-Si films were collected in Ar-saturated 0.1 M KOH in the cell

shown in Figure 5.10 under stirring of the electrolyte. The Cu-Si and CuAu-Si films were

pre-treated by applying five CVs with turning potentials of −0.13 and −0.7 V at a scan

rate of 50 mV/s. Then, 10 CVs were collected from −0.3 to 0.45 V vs. RHE at a 50 mV/s

scan rate while Ar was purged at a rate of 5 sccm. The 10th cycle is shown in Figure 5.6.
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Chapter 6

Probing Promoting Effects of Alkali

Cations on the Reduction of CO at the

Aqueous Electrolyte/Copper Interface

6.1 Introduction

Electrochemical interfacial properties often evolves under electrocatalytic conditions. This

dynamic nature of the interfacial properties influence the activity and selectivity of elec-

trocatytic processes in a multitude of ways. Chapter 3-5 demonstrate the utilization of

surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with surface-adsorbed

CO (COads) as a molecular probe to infer the atomic level morphology and catalyst struc-

ture under operating condition. Herein, we focus on the examination of the properties of

the electrolyte side during CO reduction reaction at a copper/electrolyte interface.

Indeed there are experimental evidence that show cations residing in an electrochemi-

cal interface exerts a great influence on determining the activity and selectivity of electro-

catalytic processes [9, 49, 211–213]. For instance, Singh et al. have shown that the Fradaic

efficiency (FE) for desired hydrocarbon products increases from ∼ 10% to ∼ 70% when

the cation is switched from Li+ to Cs+, during CO2 redcution on copper electrode at −1

V vs. reversible hydrogen electrode (RHE) [130]. Interestingly, the ethylene to methane

product ratio also increase by a factor of 3 when cation is switched from Li+ to Cs+ [130].
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Even though, cation effects on CO2 reduction have been demonstrated, the origin of these

effects is still unclear. A better usage of cation effects to modify the activity and selectiv-

ity of electrocataltytic processes requires a thorough understanding of the origin of these

effects.

Frumkin’s theory is a frequently used explanation of the observed cation effects [211].

Frumkin’s theory states that the adsorption of inert cations (such as Li+ and Cs+) shifts

the zeta-potential (ζ) to a more positive potential. ζ potential is the potential drop across

the diffuse layer measured at the outer Helmholt’z plane with respect to the bulk potential

of the electrolyte (Figure 2.10). Consequently the activation barrier for the charge transfer

decreases with increasing ζ potential. As a result the theory predicts an acceleration of

CO2 reduction reaction with increasing tendency for cations to absorb on the catalyst.

This theory however does not predict the influence of cation adsorption on the coverage

of COads, which is a crucial on-pathway intermediate during CO2 reduction that leads to

the potential-limiting step of the reaction [41, 133, 135, 136, 156]. COads coverage can

impact the adsorption energies of intermediates and activation barrier of the elementary

steps through interaction with the electric field created at the interface via adsorption of

cations [49, 50, 125]. This is due to CO’s significant dipole moment and polarizibility.

Therefore, it is crucial to understand the cation effects on COads coverage as this directly

influence the catalytic activity and selectivity of CO2 reduction reaction.

Herein, using surface-enhanced IR absorption spectroscopy in attenuated-total reflec-

tion configuration (ATR-SEIRAS) we investigate the effect of alkali cations (Li+, K+, and

Cs+) on atop-bound CO (COatop) on copper electrode during CO reduction reaction. We

show that the COatop reduction is ≈ 10 times faster in Cs+ cation than in Li+ cation con-

taining electrolyte. We demonstrate that this increase in the reduction rate is due to an

increment in the interfacial electric field in the presence of larger cations which decreases

the activation barrier for hydrogenation of COatop. The increase in the COatop reduction
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rate leads to a mass transport limitation and thus a faster decrease in the COatop coverage

at potentials ≈ −1 V vs. RHE in two large cations, Cs+ and K+, compared to that in

Li+. Additionally, we show that Cs+ and K+ specifically adsorb on copper and leads to a

significant surface reconstruction.

6.2 Results and Discussion

Dependence of IR Spectra of COatop on Cation Identity.

To investigate the cation effect on COatop coverage during CO reduction reaction, we

collected IR spectra during a cyclic voltammetric (CV) scan from −0.38 to −1.48 V

vs. standard hydrogen electrode (SHE) in CO-saturated 0.1 M bicarbonate solutions of

Li+, K+, and Cs+. All the potentials in this Chapter are referenced against SHE unless

otherwise noted. Figure 6.1 shows the C≡O stretch mode in the frequency range from

2000 − 2100 cm−1 where C≡O stretch mode for COatop is observed [97, 98, 141, 148,

149, 196]. A prominent IR band for COatop is observed in the presence of all 3 cations

during both cathodic forward scan and anodic reverse scan. Note here, D2O was used as

the electrolyte to observe IR bands in a wide window of frequencies and the pH∗ of the

electrolytes before the experiments were 8.7± 0.1.

Dependence of CO Coverage on Cation Identity.

Figure 6.2 shows the normalized integrated band are of COatop band observed during

CV scans shown in Figure 6.1. During forward scan, in Li+ containing electrolyte, COatop

band area increases with increasing cathodic potential from ≈ −0.6 to −1.0 V, then stay

approximately constant within −1.0 to −1.3 V. A slight decrease of the COatop area is

observed when the potential is scanned to more cathodic potentials. In contrary to this

observation, normalized COatop band area in K+ and Cs+ containing electrolytes, exhibits

a maximum at −1.1 V and then a drastic decrease of the band area almost up to zero at
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Figure 6.1: Representative IR spectra of the C≡O stretch mode of COatop collected in

CO-saturated 0.1 MDCO3 (M = Li+, K+, Cs+) during a cyclic voltammetric scan from

−0.38 to −1.48 V vs. SHE at 2 mV/s scan rate. IR spectra collected during cathodic

forward scan (left panels) and anodic reverse scan (right panels) are shown. Reproduced

from Ref [109].
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direction of the potential scan. Reproduced from Ref [109].

more cathodic potentials. Normalized COatop band areas during forward and reverse scans

show a little hysteresis in Li+ containing electrolyte while a substantially larger hysteresis

is observed in K+ and Cs+ containing electrolytes.

The observed substantial decline of the COatop band area at large cathodic potentials

during the forward scan in the presence of K+ and Cs+ can be due to: (1) An increase in

the CO reduction rate. (2) A reconstruction of the copper surface in the presence of larger

cations. (3) Desorption of CO from the surface. (4) A combination of the factors 1− 3.

Promotion of CO Reduction Kinetics by Cs+.

Investigation of the kinetics of CO reduction in the presence of Li+ and Cs+ cations

was carried out by stepping the potential from a saturation coverage of CO at −1.04 V

to a reaction potential at −1.51 V. Figure 6.3 shows the time dependence of the COatop
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Figure 6.3: Time dependence of the normalized band area of COatop following a poten-

tial step from saturation coverage of CO at −1.04 V to a reaction potential of −1.51 V

vs. SHE. Data were collected in CO-saturated 0.1 M bicarbonate solutions as indicated.

Reproduced from Ref [109].

band area following this potential step. This data indicate that COatop reduction kinetics

are ≈ 10 times faster in the presence of Cs+ containing electrolyte compared to that of

Li+ containing electrolyte.

The bulk pH∗ of 0.1 M LiDCO3 and CsDCO3 immediately before the experiment

was 9.0 ± 0.1. To assess whether the local pH changes in these two cations containing

electrolytes give rise to the observed cation effects, we carried out the same experiment

but with ±20 mV differences in reaction potential. Observation of the similar kinetic trend

as shown in Figure 6.3 confirms that the observed promotion of the CO reduction rate in

Cs+ is not due to local pH changes but due to cation effects.

Dependence of Interfacial Electric Field Strength on Cation Identity.

We hypothesize that the promotion of CO reduction in the presence of Cs+ cation can

be due to an increase in the interfacial electric field that reduces the kinetic barrier for

further reduction of surface-adsorbed CO.

Our hypothesis is based on recent theoretical studies that has demonstrated: (1) Lo-
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Figure 6.4: C≡O stretch frequencies as a function of potential collected in CO-saturated

0.1 M bicarbonates of Li+, K+, and C+ containing electrolytes. The error bars show ±2
standard deviation calculated form 3 independent experiments. Solid lines are linear fits

to the experimental data. Reproduced from Ref [109].

calized electric fields generated by surface-adsorbed cations decrease the kinetic barrier

for the conversion of COads to CHO [50]. (2) Surface-adsorbed CO dimer experiences a

large ion-induced stabilization, suggesting a reduction of thermodynamic overpotential for

reaction that leads to C2+ products [49].

Frequency of COatop was used as a probe of the interfacial electric field. The vibra-

tional frequency of C≡O stretch mode is sensitive to the double layer properties and specif-

ically depends on the electric field at the interface according to the Stark effect (Chapter 2,

Section 2.7) [169, 214, 215]. COatop IR band shown in Figure 6.1 is composed of two

IR bands due to CO adsorbed on highly-coordinated terrace sites (low frequency band,

≈ 2050 cm−1) and due to CO adsorbed on under-coordinated defect sites (high frequency

band, ≈ 2080 cm−1) [30]. The frequency of the high frequency band of COatop can be

read unambiguously and are shown in Figure 6.4 as a function of applied potential. Fig-

ure 6.4 shows the frequency of COatop at potentials where a clear high frequency band is

observed.
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In the given potential range in Figure 6.4, CO coverage in Li+ decreases by ≈ 10%

while CO coverage in K+ and Cs+ decreases by ≈ 70%. However, the slope of the Fig-

ure 6.4, which is the electrochemical Stark tuning rate, is ≈ 30 cm−1V−1 in the presence

of all 3 cations. This indicates that the frequency of COatop is not affected by the coverage

effects such as dynamical dipole coupling, but is influenced by the local electric field at

the interface.

Even though, all 3 cations possess similar electrochemical Stark tuning rate, the slope

is shifted to lower frequencies by 1.4 and 3.7 cm−1 when moving from Li+ to K+ and

Cs+ containg electrolytes, respectively. The decrease in the frequency with increasing

cation size suggests that surface-adsorbed CO molecules experience a greater electric field

that shift their C≡O stretch frequency to lower energy. C≡O stretch frequency data and

CO reduction kinetic data together show that the CO reduction promotion in larger cation

arises due to a greater interfacial electric filed created with adsorption of these cations.

Specific Adsorption of Cations.

Inspection of the normalized integrated band area in Figure 6.2 shows that the hys-

teresis in band area between forward and reverse scans increases with increasing size of

the cation. Cations can adsorb on the catalyst’s surface through specific adsorption [50,

125, 211, 216], where the cation chemisorb on the surface or through electrostatic ad-

sorption [49], where the solvated cations resides close to the surface. Further, it has been

shown that the tendency of alkali cations to reside in the electrochemical double layer in-

creases with increasing size of the cation [49, 211, 216]. Taken together our data suggest

that the hysteresis of the band areas between forward and reverse scans, could arise from

the specific adsorption of K+ and Cs+ cations on the copper electrode. Since adsorption

of ionic species can induce surface reconstruction [217–220], the specific adsorption of

larger cations may induce a surface reconstruction giving rise to the observed hysteresis

of the COatop band area with K+ and Cs+ cations.
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Figure 6.5: Normalized integrated band area of COatop in 0.1 M Li+ and Cs+ bicar-

bonate (pH∗ 8.7) and 0.05 M Li+ and Cs+ carbonate (pH∗ 11.4 and 10.6, respectively.)

Reproduced from Ref [109].

This irreversible surface reconstruction however do not affect the CO reduction rate as

we have observed a significant COatop band area during the reverse scan and as well as

in consecutive CV scans. Further, repeated kinetic experiments did not show a reduction

of the COatop band area, suggesting that surface reconstruction through cation adsorption

does not occur at the time scale of kinetic experiments.

pH-Dependence of CO Coverage.

The local pH at the electrochemical interface can be influenced by the cation iden-

tity [130, 211, 221]. To investigate whether this change in the local pH with cation identity

exerts an effect on the CO reduction rate, we carried out additional experiments in 0.05 M

Li2CO3 and Cs2CO3. The bulk pH∗ of these two electrolytes were 11.4 and 10.6, respec-

tively. Figure 6.5 shows the normalized integrated band areas of COatop in bicarbonate

and carbonate solutions Li+ and Cs+ cations as indicated.

Local pH at the electrochemical interface during cation adsorption is affected by the

ζ-potential [211]. According to Frumkin’s theory, a rise in ζ-potential results an increase

in the local pH according to the following relationship [211]:
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∆pHlocal =
∆ζF

2.303RT
(6.1)

where F , R, and T are Faraday constant, ideal gas constant, and the absolute temperature,

respectively. It is shown that an increase in the ζ potential less than 60 mV, results an

increase in the local pH less than 1 pH unit [211]. The difference in the bulk pH∗ of the

Li+ bicarbonate and carbonate electrolytes is 2.7. By making the reasonable assumption

that the local pH for a given cation follows it’s bulk pH, comparison of the COatop band

area (red and black dotted lines) at large cathodic potentials show that there is only a

minute difference. Therefore, even large local pH changes only exhibit a minute effect on

COatop coverage.

However, comparison of the COatop band area at the same pH (8.7) but in different

cations (red dotted line and red solid line) present that the switching cation from Li+ to

Cs+ shifts the decline in the COatop band area by ≈ 200 mV to more positive potentials.

Taken together, the data demonstrate that even though local pH change can has a small

effect on the CO coverage, it is not the dominant mechanism that give rise to the promotion

of CO reduction in Cs+ containing electrolyte.

A recent theoretical and experimental studies have shown that, hydrated Cs+ cation

acts as a better buffer compared to hydrated Li+ cation [130, 221]. Hence, the local pH

in the presence of Cs+ is lower than in the presence of Li+ cation. Comparison of the

normalized band area of COatop in Figure 6.5 for the same cation (red and black traces)

indicate that CO coverage declines with increasing pH. Following this observation, given

that hydrated Cs+ is a good buffer, we would expect a higher CO coverage in the presence

of Cs+. However, the opposite is observed suggesting that in our case local pH change is

not the major factor that effect the CO coverage.

Effect of Cations on Surface-Bound CO Electrogenerated by the Reduction of CO2.
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Figure 6.6: Normalized integrated band area of COatop electrogenerated from reduction

of CO2. Experiments were carried out in CO2-saturated 0.1 M alkali metal bicarbonate

solutions (pH∗ 6.8± 0.1) as indicated. Reproduced from Ref [109].
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All the experiments discussed up to now were carried out in CO-saturated bicarbonate

or carbonate electrolytes with slightly alkaline pH∗. To examine whether the same trend is

observed in neutral pH with electrogenerated CO form CO2 reduction, we compared the

integrated band area of CO collected in CO2 saturated alkali metal bicarbonate solutions

at pH∗ 6.8. Figure 6.6 shows that normalized integrated band area of COatop follow the

same trend as observed in Figure 6.2. But, the decrease in the COatop band area at high

cathodic potentials is less pronounced, as the bulk concentration of CO2 is ≈ 30 higher

than that of CO.

6.3 Conclusions

In this study we show that CO coverage on copper electrode during CO2/CO reduction

reaction is greatly influenced by the identity of the alkali metal cation. The CO coverage

is greatly declined at cathodic potential ≈ −1.4 V vs. SHE, in the presence of K+ and

Cs+ cations while this is relatively stable in the presence of Li+. By employing time-

resolved surface sensitive IR spectroscopy, we show that CO reduction kinetics are ≈ 10

times faster in Cs+ cation compared to that in Li+ cation. The shift in the frequency to

lower values with increasing cation size suggests that the promotion of CO reduction rate

can arise from an increase in the local electric field in the presence of larger cations. We

further show that K+ and Cs+ cations can specifically adsorb on the catalyst and induce a

surface reconstruction.

6.4 Materials and Methods

Materials. NH4F (40 wt.% in H2O), HF (48 wt.%), Cs2CO3 (99.995%; trace metals ba-

sis), Li2CO3 (99.999%; trace metals basis), and Cu foil (99.8%; metals basis, 0.025 mm
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thick) were purchased from Fisher Scientific. CuSO4·5H2O (99.999%; trace metals basis),

Na2EDTA (99.0-101.0%; ACS Reagent), 2,2-bipyridine (≥99%; ReagentPlus), HCHO

(35 wt.%; 10% methanol as stabilizer), NaOH (99.99%; trace metals basis), KHCO3

(99.95%; trace metal basis), and D2O (99.9 atom %D) were purchased from Sigma Aldrich.

Polycrystalline diamond pastes were purchased from South Bay Technologies (San Clemente,

CA) or Electron Microscopy Sciences (Hatfield, PA). Ar (Ultra High Purity), CO (99.999%),

CO2 (5.0 research grade) were purchased from Air Gas. For all experiments, high purity

water (18.2 M cm) derived from Barnstead Nanopure Diamond system (APS Water Ser-

vices; Lake Balboa, CA) was used.

Cu Thin Film Deposition. A thin Cu film was deposited on a 60◦ Si prism using an

electroless deposition techniques described in Chapter 3. After the Cu film deposition,

it was assembled with a single compartment electrochemical cell and blanketed with 4

mL of either of 0.1 M MDCO3 (M = Li+, K+, Cs+) or 0.05 M M2CO3 (M = Li+, Cs+).

Then, the electrolyte was purged with Ar gas for 20 min at 5 sccm rate. Cu film was

electrochemically cleaned afterwards by cycling the potential between −0.13 and −0.6 V

vs. Ag/AgCl at 50 mV/s scan rate. Immediately following this, electrochemical double

layer capacitance measurements were collected by cycling the potential between −0.6 and

−0.7 V vs. Ag/AgCl at 20, 40, 60, 80, and 100 mV/s scan rates, to determine the roughness

factor of the Cu film (Details of the roughness factor determination of Cu thin films are

given with the Figure 3.6). The resistance of the Cu film after deposition is 2 − 10 Ω and

the roughness factor is ≈ 10.

Electrochemical Measurements. Electrochemical measurements were carried out us-

ing a VersaStat3 potentiostat (AMETEK; Berwyn, PA). The single compartment cell was

assembeled using a Ag/AgCl (RE-5B 3 M NaCl; BASi Inc.; West Lafayette, IN) and a

Au wire (99.999%, Alfa Aesar) as the reference and counter electrodes, respectively. The

Ag/AgCl reference electrode was calibrated against a saturated calomel electrode (CHI
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150; CH Instruments Inc.; Austin, TX) prior to each experiment. The PEEK electrochem-

ical cell was cleaned by immersing this in an acid solution (30 wt.% H2SO4 and 30 wt.%

HNO3) for 1 hour followed by sonication in Nanopure water for another 1 hour.

0.1 M bicarbonate solutions of Li+ and Cs+ cations were prepared by bubbling CO2

at 10 sccm rate for 1 hour through 0.05 M Li2CO3 and Cs2CO3 solutions. 0.1 M KDCO3

was prepared by hydrogen-deuterium exchange through dissolving KHCO3 in water and

subsequently evaporating the water.

ATR-SEIRAS Measurements.

The PEEK electrochemical cell was mounted on a commercial ATR accessory (VeeMax

III; Pike Technologies; Madison,WI). Spectra were recorded with a nitrogen-purged Bruker

Vertex 70 FTIR spectrometer (Billerica, MA) equipped with a liquid nitrogen-cooled MCT

detector (FTIR-16; Infrared Associates; Stuart, FL). The change in optical density was cal-

culated according to ∆mOD = −103log(S/R), with S and R referring to the single beam

sample spectrum and single beam reference spectrum, respectively. The spectral resolu-

tion and the scanner velocity were 4 cm−1 and 40 kHz, respectively, for CV experiments.

During kinetic experiments, the spectral resolution and the scanner velocity were 16 cm−1

and 160 kHz, respectively.
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Chapter 7

Summary and Future Perspective

In this thesis, we demonstrate that the properties of electrochemical interfaces evolve under

applied potential and these dynamic interfacial properties govern the activity and selectiv-

ity of electrocatalytic processes. We overcome the challenge of in-situ probing of the in-

terfacial properties by employing surface-enhanced IR absorption spectroscopy (SEIRAS)

with surface-adsorbed CO (COatop) as a molecular probe. We illustrate strategies for the

interpretation of the IR frequency data on the basis of the theories of CO chemisorption on

transition metals, dynamical dipole coupling, chemical interactions between COads, and

the vibrational Stark effect. This approach enables the employment of the C≡O stretch

frequency as a powerful in-situ molecular probe of catalytic interfaces during catalytic

operation. Improving catalysts for electrochemical processes is at the heart of achieving

commercially viable catalysts for crucial reactions such as CO2 reduction, CO oxidation,

and biomass conversion. Understanding the interfacial properties under reaction condi-

tions is key towards achieving this goal.

The studies presented in this thesis demonstrate that IR spectroscopy of COads provides

molecular-level insights into complex electrocatalytic interfaces. We showed that careful

analysis of the lineshape of the broad COatop IR band enables the recognition of COatop

adsorbed on surface sites with different coordination numbers (low frequency band, LFB

≈ 2050 cm−1 and high frequency band, HFB ≈ 2080 cm−1). Prudent investigation of
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spectral properties such as peak frequency, lineshape, and integrated band areas of LFB

and HFB, enables the identification of in-situ dynamics of the catalyst and double layer

properties. We further demonstrated that the exploration of the potential dependence of

the frequency, integrated band area, and lineshape of COatop and CObridge during both

cathodic and anodic potential scans reveals the origin of observed differences in activity

and selectivity during CO2RR at distinct reaction conditions, the knowledge which assist

to forward the development of catalysts. In addition, a thorough inspection of the spectral

bands such as bands arising from interfacial water or bicarbonate, together with the COads

band, gives rise to a comprehensive view of the electrochemical double layer.

As viewed throughout this thesis, advancements in ATR-SEIRAS have progressively

contributed to comprehend electrocatalytic reactions within the past decade. Here we pro-

pose particular directions of possible improvements to the ATR-SEIRAS field, to strengthen

the utilization of this technique in practical electrocatalysis.

• The majority of ATR-SEIRAS studies in electrocatalysis have been carried out on

pure metal catalysts namely copper, platinum, palladium, rhodium, ruthenium, nickel,

and silver thin films deposited on ATR prisms [197, 222–224]. Moving onward,

the field can explore metal alloys or bimetallic catalysts as these catalysts have

shown improved catalytic activity and selectivity in electrocatalytic processes [180,

225, 226]. There are handful of ATR-SEIRAS studies on metal alloy catalysts:

Pt0.27Fe0.73 [227] and Pt0.5Ru0.5 [228] deposited on Si-ATR prisms using sputtering

techniques and Pd0.8Au nanowires [229] and Pd@Pd3Au7 nanocubes [230] drop-

casted on chemically deposited Au thin film on Si-ATR prisms. Exploration and

development of the sputtering or chemical deposition techniques to acquire rough

metal alloy thin films could open up a new avenue in usage of ATR-SEIRAS in

electrocatalysis.
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• Further amplifying the enhancement effect of ATR-SEIRAS to achieve increased

sensitivity and time resolution is beneficial to its application in electrochemical

investigations. Higher order of enhancement enables the detection of interfacial

species with small absorption cross-section or lower population during catalytic op-

eration. Moreover, with a better signal-to-noise ratio in fewer average scans, a faster

time resolution can be achieved for capturing short-lived intermediates. It has been

demonstrated that nanostructures, e.g. nanoantennas, varying in shapes, patterns,

and materials, generate nanometer scale electromagnetic fields [231]. The resulting

resonant SEIRAS can reach an enhancement factor of 105, maximizing the sensi-

tivity of this technique. One limitation of coupling this technique to electrochem-

ical studies is the disperse nature of such nanostructures. To surmount this chal-

lenge, one could plant these discontinued nanostructures on graphene coated ATR

element, [232] or employ inverse nanostructures, including nanoapertures/nanoslits

decorated continuous metallic substrate for ATR-SEIRAS investigations [233, 234].

• An enhanced sensitivity and time resolution for ATR-SEIRAS with the aforemen-

tioned strategies open up novel research directions. Detection of adsorption site spe-

cific information from ATR-SEIRAS is impractical as the IR beam samples a wide

area of the metal catalysts. Here we propose that, with higher ATR-SEIRAS sen-

sitivity, combination of scanning electrochemical cell microscopy (SECCM) with

ATR-SEIRAS as a feasible method to reach this goal. Further, single-atom cata-

lysts (SACs) have emerged as a promising means of increasing the atom efficiency

and activity of electrocatalytic reactions [235, 236]. With high sensitivity achieved,

elucidation of reaction mechanisms on single-atom catalysts using ATR-SEIRAS is

attainable.

• We further elaborate that combined SEIRAS and DEMS studies bring in new av-
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enues in examining structure-reactivity properties in electrochemical reactions on

thin electrodes used in SEIRAS techniques. As manifested in Chapter 5, the thin

film catalysts used in SEIRAS studies do not always posses similar activity and

product selectivity as their polycrystalline foils which are readily in-cooperated in

reactivity studies. Nevertheless, further improvements to the cell described by Gu-

nathunge et al. [158] are required to enhance its potential for structure-reactivity

relationship investigations such as in-cooperation of thin flow cell configuration

combining SEIRAS and DEMS to improve mass transport limitation and sampling

efficiency of the DEMS system.

In Chapter 6, we highlight an approach for inferring electrochemical double layer prop-

erties using SEIRAS as a direct technique, especially with the C≡O stretch frequency of

COads as a molecular probe of the interface. The C≡O stretch frequency is highly depen-

dent on the CO coverage as this is influenced by dynamical dipole coupling and chemical

effects. Therefore, a relatively constant coverage of COads should be maintained to ac-

quire the potential dependence of the C≡O stretch frequency due to the vibrational Stark

effect. Locating a constant CO coverage on copper electrodes is arduous due to the fact

that adsorbed CO is an on pathway intermediate of important electrochemical reactions

such as CO2 reduction and CO oxidation. Other electrochemical inert molecules, whose

coverage is relatively constant in a wide potential regime, could also be used as a probe

of the interfacial electric field. For example, CObridge has been proved to be electrochemi-

cally inactive on copper electrode under cathodic potential relevant for CO/CO2 reduction

and therefore can be utilized as a molecular probe to investigate interfacial electric field at

cathodic potentials where CO2 reduction occurs.
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81. Vollmer, S., Witte, G. & Wöll, C. Determination of Site Specific Adsorption Ener-

gies of CO on Copper. Catal. Lett. 77, 97–101 (2001).

82. Nakamura, I, Takahashi, A & Fujitani, T. Selective Dissociation of O3 and Ad-

sorption of CO on Various Au Single Crystal Surfaces. Catal. Lett. 129, 400–403

(2009).

83. Piccolo, L., Loffreda, D., Cadete Santos Aires, F. J., Deranlot, C., Jugnet, Y., Sautet,

P. & Bertolini, J. C. The Adsorption of CO on Au (111) at Elevated Pressures Stud-

ied by STM, RAIRS and DFT Calculations. Surf. Sci. 566, 995–1000 (2004).
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172. Couto, A., Rincón, A., Pérez, M. & Gutiérrez, C. Adsorption and Electrooxidation

of Carbon Monoxide on Polycrystalline Platinum at pH 0.3-13. Electrochim. Acta

46, 1285–1296 (2001).

173. Yau, S. L., Gao, X., Chang, S. C., Schardt, B. C. & Weaver, M. J. Atomic-Resolution

Scanning Tunneling Microscopy and Infrared Spectroscopy as Combined In Situ

Probes of Electrochemical Adlayer Structure: Carbon Monoxide on Rhodium (111).

J. Am. Chem. Soc. 113, 6049–6056 (1991).

174. Gileadi, E., Argade, S. D. & Bockris, J. O. The Potential of Zero Charge of Platinum

and Its pH Dependence. J. Phys. Chem. 70, 2044–2046 (1966).

175. Manthiram, K., Beberwyck, B. J. & Alivisatos, A. P. Enhanced Electrochemical

Methanation of Carbon Dioxide with a Dispersible Nanoscale Copper Catalyst. J.

Am. Chem. Soc. 136, 13319–13325 (2014).

176. Roberts, F. S., Kuhl, K. P. & Nilsson, A. High Selectivity for Ethylene from Carbon

Dioxide Reduction over Copper Nanocube Electrocatalysts. Angew. Chem. Int. Ed.

54, 5179–5182 (2015).

177. Hoang, T. T. H., Ma, S., Gold, J. I., Kenis, P. J. A. & Gewirth, A. A. Nanoporous

Copper Films by Additive-Controlled Electrodeposition: CO2 Reduction Catalysis.

ACS Catal. 7, 3313–3321 (2017).

126



178. Wang, L., Nitopi, S., Wong, A. B., Snider, J. L., Nielander, A. C., Morales-Guio,

C. G., Orazov, M., Higgins, D. C., Hahn, C. & Jaramillo, T. F. Electrochemically

Converting Carbon Monoxide to Liquid Fuels by Directing Selectivity with Elec-

trode Surface Area. Nat. Catal. 2, 702–708 (2019).

179. Liu, M., Pang, Y., Zhang, B., De Luna, P., Voznyy, O., Xu, J., Zheng, X., Dinh, C. T.,

Fan, F., Cao, C., et al. Enhanced Electrocatalytic CO2 Reduction via Field-Induced

Reagent Concentration. Nature 537, 382–386 (2016).

180. Chen, X., Henckel, D. A., Nwabara, U. O., Li, Y., Frenkel, A. I., Fister, T. T., Kenis,

P. J. A. & Gewirth, A. A. Controlling Speciation during CO2 Reduction on Cu-

Alloy Electrodes. ACS Catal. 10, 672–682 (2020).

181. De Luna, P., Quintero-Bermudez, R., Dinh, C.-T., Ross, M. B., Bushuyev, O. S.,
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Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct

Electrochemical Carbon Dioxide Reduction Reaction (CO2RR). Adv. Mater. 31,

1805617 (2019).

205. Jović, V. & Jović, B. EIS and Differential Capacitance Measurements onto Single

Crystal Faces in Different Solutions: Part II: Cu(111) and Cu(100) in 0.1 M NaOH.

J. Electroanal. Chem. 541, 13–21 (2003).

206. Schouten, K. J. P., Gallent, E. P. & Koper, M. T. The Electrochemical Characteriza-

tion of Copper Single-Crystal Electrodes in Alkaline Media. J. Electroana. Chem.

699, 6–9 (2013).

207. Le Duff, C. S., Lawrence, M. J. & Rodriguez, P. Role of the Adsorbed Oxygen

Species in the Selective Electrochemical Reduction of CO2 to Alcohols and Car-

bonyls on Copper Electrodes. Angew. Chem. Int. Ed. 56, 12919–12924 (2017).

130



208. Bagger, A., Arán-Ais, R. M., Halldin Stenlid, J., Campos dos Santos, E., Arnarson,

L., Degn Jensen, K., Escudero-Escribano, M., Cuenya, B. R. & Rossmeisl, J. Ab

Initio Cyclic Voltammetry on Cu (111), Cu (100) and Cu (110) in Acidic, Neutral

and Alkaline Solutions. ChemPhysChem 20, 3096–3105 (2019).

209. Yaguchi, M., Uchida, T., Motobayashi, K. & Osawa, M. Speciation of Adsorbed

Phosphate at Gold Electrodes: a Combined Surface-Enhanced Infrared Absorption

Spectroscopy and DFT Study. J. Phys. Chem. Lett. 7, 3097–3102 (2016).

210. Tsuji, M., Yamaguchi, D., Matsunaga, M. & Alam, M. J. Epitaxial Growth of

Au@Cu Core- Shell Nanocrystals Prepared Using the PVP-Assisted Polyol Re-

duction Method. Cryst. Growth Des. 10, 5129–5135 (2010).

211. Frumkin, A. N. Influence of Cation Adsorption on the Kinetics of Electrode Pro-

cesses. Trans. Faraday Soc. 55, 156–167 (0 1959).

212. Paik, W., Andersen, T. & Eyring, H. Kinetic Studies of the Electrolytic Reduction

of Carbon Dioxide on the Mercury Electrode. Electrochim. Acta 14, 1217–1232

(1969).

213. Thorson, M. R., Siil, K. I. & Kenis, P. J. A. Effect of Cations on the Electrochemical

Conversion of CO2 to CO. J. Electrochem. Soc. 160, F69–F74 (2012).

214. Anderson, M. R. & Huang, J. The Influence of Cation Size Upon the Infrared Spec-

trum of Carbon Monoxide Adsorbed on Platinum Electrodes. J. Electroanal. Chem.

318, 335–347 (1991).

215. Jiang, X. & Weaver, M. J. The Role of Interfacial Potential in Adsorbate Bond-

ing: Electrode Potential-Dependent Infrared Spectra for Saturated CO Adlayers on

Pt(110) and Related Electrochemical Surfaces in Varying Solvent Environments.

Surf. Sci. 275, 237–252 (1992).

131



216. Mills, J. N., McCrum, I. T. & Janik, M. J. Alkali Cation Specific Adsorption onto

fcc(111) Transition Metal Electrodes. Phys. Chem. Chem. Phys. 16, 13699–13707

(27 2014).

217. Kolb, D. & Schneider, J. Surface Reconstruction in Electrochemistry: Au(100-

(5×20), Au(111)-(1×23) and Au(110)-(1×2). Electrochim. Acta 31, 929–936 (1986).

218. Wang, J., Davenport, A. J., Isaacs, H. S. & Ocko, B. M. Surface Charge-Induced

Ordering of the Au(111) Surface. Science 255, 1416–1418 (1992).

219. Broekmann, P., Wilms, M., Spaenig, A. & Wandelt, K. Morphological Aspects of

Sulfate-Induced Reconstruction of Cu(111) in Sulfuric Acid Solution: In Situ STM

Study. Prog. Surf. Sci. 67, 59–77 (2001).

220. Goletti, C., Bussetti, G., Violante, A., Bonanni, B., Di Giovannantonio, M., Serrano,

G., Breuer, S., Gentz, K. & Wandelt, K. Cu(110) Surface in Hydrochloric Acid

Solution: Potential Dependent Chloride Adsorption and Surface Restructuring. J.

Phys. Chem. C 119, 1782–1790 (2015).

221. Ayemoba, O. & Cuesta, A. Spectroscopic Evidence of Size-Dependent Buffering

of Interfacial pH by Cation Hydrolysis during CO2 Electroreduction. ACS Appl.

Mater. Interfaces 9, 27377–27382 (2017).

222. Yan, Y.-G., Li, Q.-X., Huo, S.-J., Ma, M., Cai, W.-B. & Osawa, M. Ubiquitous Strat-

egy for Probing ATR Surface-Enhanced Infrared Absorption at Platinum Group

Metal-Electrolyte Interfaces. J. Phys. Chem. B 109, 7900–7906 (2005).

223. Wang, H.-F., Yan, Y.-G., Huo, S.-J., Cai, W.-B., Xu, Q.-J. & Osawa, M. Seeded

Growth Fabrication of Cu-on-Si Electrodes for in situ ATR-SEIRAS Applications.

Electrochim. Acta 52, 5950–5957 (2007).

132
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