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Part I

Chapter 1: Semiparametric Sieve
Estimation of Dynamic Copula Models
with Filtered Nonstationarity

Abstract

This paper considers estimation of copula based dynamic semiparametric models coupled
with nonstationary filtration. A two-step sieve method is proposed and new theoretical results
are obtained regarding the effects of nonstationarity on limiting distributions. Simulation results
indicate that the tail dependence brings a finite sample bias in the two-step sieve estimator. For
this reason, a joint sieve estimator is proposed that is found to always be superior to all other
estimators in a variety of Monte Carlo simulation designs. An empirical estimation for cointe-
gration between weekly stock price and consensus target price highlights the theoretical finding.
The results are important for value-at-risk calculation and stock price prediction conditional on
consensus target price for potential improvement of stock price forecast accuracy.2

1 Introduction

Nonstationarity is an important empirical feature in economic and financial time series. Many ob-
served time series seem to display nonstaionary characteristics. In economics and finance, many
time series grow in a secular way over long periods of time, some appear to wander around as if they
have no fixed mean. Growth characteristics are especially evident in time series that represent aggre-
gate economic behavior like gross domestic product and industrial production. Random wandering
behavior is evident in many financial time series like interest rates and asset prices. In addition,
nonlinearity is another important characteristic for economic and financial empirical practice. In-
vestors respond to good and bad news in an asymmetric way, asymmetric dependence and other
types nonlinearity appear in a wide range of economic and financial series. For example, Granger
[2003] points out that the classical linear time series modeling based on Gaussian distribution as-
sumption clearly fails to explain the stylized facts observed in economic and financial data. The
above mentioned nonstationarity are usually modeled by deterministic trend and/or unit roots, and
a very important and popular tool to model nonlinear dynamics is to use copula, which provides a
parsimonious tool for capturing nonlinearity, asymmetry and tail dependence.

In this paper, we consider a time series modeled where Yt can be decomposed into a nonstationary
component and a stationary part:

Yt = X ′tβ0 + Vt

where X ′tβ0 is the nonstationary component and Vt is the stationary part that may display nonlinear
dynamics.

We use copula to capture nonlinear temporal dependence of Vt. If we assume that Vt is a
first-order Markov process, by the Sklar [1959] theorem, the joint distribution of Vt and Vt−1 can
be modeled using a parametric bivariate copula that is dependent on some unknown parameter
α0, and the marginal distribution of Vt, F0(·). Analysis of the above model entails estimation the
coefficients β0, the copula parameter α0, and the marginal distribution function of Vt, F0(·). In this
paper, we model F0(·), the marginal of Vt, nonparametrically for robustness reason, and consider
semiparametric estimation for the model. In particular, our focus is the copula parameter α0.

The parameters β0, α0, and F0 may be estimated sequentially or jointly. The first method is a
two-step estimation where nonstaionarity is filtered (thus β0 is estimated) first, followed by a second

2The author is deeply indebted to Zhijie Xiao for his guidance, inspiration and encouragement. He is grateful
to Arthur Lewbel, Shakeeb Khan for their endless encouragement and support. He benefited insightful comments
from the dissertation workshop in the Department of Economics at Boston College, and BU-BC joint workshop in
Econometrics. The usual disclaimer applies.
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stage estimation of the copula model, i.e. (α0, F0), based on the filtered data. The second method
is a joint estimation where β0, α0, and F0 are all estimated simultaneously.

This paper shows that the performance and relative effectiveness of these two methods depend on
the functional form of the copula and on marginal F0. For some copulas, like the Clayton or Gumbel
copula, the limiting distribution of α̂ is non-normal and depends on the time series properties of
Yt and Xt. For other copulas which are symmetric around (1/2, 1/2), like the Gaussian, Frank
and EFGM copula, if F0 is symmetric then the distribution of α̂ is normal and not affected by the
nonstationarity of Yt and Xt. In this latter case, the estimation of α0 is, in theory, equally efficient
whether β0 is estimated first or simultaneously. However, even in this case we find that simultaneous
estimation performs better in finite sample simulations. For comparison purpose, we also consider
two cases in simulation: the infeasible case when Vt is observed rather than estimated (thus no
filtration is needed) and the wrongly-specified parametric case when marginal F0(·) is endowed with
a false parametric structure and we estimate three terms jointly.

Chen and Fan [2006] considered a three-step copula based estimation for time series with filtered
nonstationarity. They estimates β through OLS to get fitted residuals V̂t first. Marginal distribution
F0 is estimated by the empirical distribution of V̂t. Copula parameter α0 is estimated via MLE during
last step. They show that limiting distribution of their three-step empirical estimator is not affected
by nonstationary structure of Xt. The proposed estimation is simple and convenient for application.
But their simulation results show that three-step empirical estimator is biased in finite sample for
tail dependence copula, such as Clayton and Gumbel copula.

Chen and Xiao [2016]’s theoretical results cannot be fully extended to our two-step sieve estima-
tor, where β is estimated through OLS at first step, then α0 and F0 are jointly estimated through
sieve MLE based on fitted residuals V̂t. Theoretical results and corresponding simulation demon-
strate that nonstationary structure of Xt will affect limiting distribution when copulas are Clayton
or Gumbel, even when marginal is ymmetric. And this effect is positively related with strength of
tail dependence.

We apply our methods to study the cointegration model between weekly stock price and consensus
target price, the relationship found in Brav and Lehavy [2003], to take into account the non-linear
structure in the unobserved residuals. We employ Gaussian copula (without tail dependence) on
in-sample estimation and find that our sieve method have better out-of-sample prediction power
than empirical method. Clayton copula (with lower tail dependence) is also applied to residuals and
our sieve method correctly reject the Clayton structure (no convergence), while empirical method
reaches an evidently higher tail dependence estimation. Results show that sieve method is robust
and sieve estimator of copula parameter is more convincing and meaningful than empirical method.
The estimation results for copula parameter, cointegration coefficient and marginal distribution are
attractive for value-at-risk calculation and stock price prediction conditional on consensus target
price.

Related literature. There are a growing number of papers using copulas to model the tem-
poral dependence of univariate nonlinear time series. Darsow et al. [1992], Victor et al. [2006] and
Ibragimov [2009] provide characterizations of a copula-based time series to be a Markov process. Joe
[1997] proposes a general structure with parametric stationary Markov models based on parametric
copulas and parametric marginal distributions. Sieve application in a semiparametric setting is con-
sidered in Chen and Shen [1998] and Ai and Chen [2003]. Chen et al. [2006] apply sieve method on
semiparametric copula model under i.i.d. setting. Most related literature to the model considered in
this paper are Chen and Fan [2006] and Chen et al. [2009]. Both of them analyze the ideal case where
Yt is directly observed. Chen and Fan [2006] used empirical function based method and Chen et al.
[2009] considers sieve approximation. Chen and Xiao [2016] research on same model as us. They
not only consider semiparametric problem based on empirical distribution function, as we mention
above, but also analyze the parametric marginal case.

Organization of the paper. The rest of this article is organized as follows. In Section 2
we introduce nonstationary structure, sieve spaces and several commonly used copulas. In Section
4 and Section 5, we derive consistency and limiting distribution of our sieve estimator, showing
whether nonstationary structure will not affect limiting distribution of the estimator. In Section
6 we summarize simulation results of the sieve MLE for various nonlinearity structure in Gaussian,
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Frank, Clayton, EFGM and Gumbel copulas. In Section 7, we apply our sieve copula method
on cointegration between stock price and consensus target price. Mathematical proof and detailed
simulation results are left in remaining sections.

2 Copula based model with nonstationary filtering

2.1 The Model

We assume that the observed time series {Yt}nt=1 can be modeled as:

Yt = X ′tβ0 + Vt

where X ′tβ0 is the non-stationary component and Vt is the stationary component with non-linearity.
In particular, we assume that Xt is a dX dimensional vector of dependent variables that may be
nonstationary. The second component, Vt, is a stationary process with non-linearity that can be
captured by a copula function. For simplicity and without loss of generality, we assume in this paper
that {Vt}nt=1 is a first-order strictly stationary Markov process. Higher order Markov process can be
investigated similarly.

Under the assumption that {Vt}nt=1 is a first-order stationary Markov process, its statistic prop-
erty is fully characterized by the true bivariate joint distribution of Yt−1 and Yt, say H0(yt−1, yt).
Further suppose that Yt is continuously distributed. Denote marginal distribution function of Yt be
F0(·). Then by Sklar’s theorem, there exists unique copula function C(·, ·) satisfying:

H0(a, b) = C(F0(a), F0(b))

which holds for all (a, b) ∈ R2.
Here the copula function C(·, ·) is a bivariate probability distribution function with uniform

marginals. Denote the corresponding copula density of C(u1, u2) by c(u1, u2), and the density of
the marginal distribution F0(·) by f0(·), then the true conditional density of Vt given Vt−1 is:

p(Vt|Vt−1) = f0(Vt)c(F0(Vt−1), F0(Vt))

Thus, given {Vt}nt=1, the log likelihood of the sample is:

1

n

n∑
t=1

log f0(Vt) +
1

n

n∑
t=2

log c(F0(Vt−1), F0(Vt))

For convenience of asymptotic analysis, we assume the following assumptions on the dynamics
of the process {Yt}.

Assumption 1. {Vt : t = 1, 2, · · · , n} is a sample of a stationary first-order Markov process gen-
erated from (F0(·), C(·, ·;α0)), where F0(·) is the true invariant distribution that is absolutely con-
tinuous with respect to Lebesgue measure on the real line; C(·, ·;α0) is the true parametric copula
for (Vt−1, Vt) up to unknown value α0, is absolutely continuous with respect to Lebesgue measure on
[0, 1]2.

Remark 1. Assumption of absolute continuity of the bi-variate copula C(·, ·;α0) rules out the Fréchet-
Hoeffding upper (C(u1, u2) = min{u1, u2}) and the the lower (C(u1, u2) = max{u1 + u2 − 1, 0})
bounds.

Remark 2. This assumption also implies the time series {Vt}nt=1 is strictly stationary ergodic, see
Chen and Fan [2006].

2.2 The Nonstationary Component and Filtration

Concerning on the nonstationary component and the related filtration, we make the following as-
sumptions to facilitate asymptotic analysis.
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Assumption 2. There exists a scaling matrix Gn such that G−1
n X[nr] ⇒ X(r), r ∈ [0, 1]. As

n→∞, there exists a random variable ξ such that
√
nGn(β̂n − β0)⇒ ξ.

Due to nonstationarity in Xt, we introduced appropriate re-standardization via the scaling matrix
Gn to facilitate asymptotic analysis. The limit of the standardized nonstationary component, X(r),
may be stochastic or deterministic or a mixture of stochastic and deterministic functions. The
limiting distribution, ξ, of the filtration parameter is a function of X(·) and may not be a normal
variate. Leading cases that are widely used in time series application include the following:

Example 1. Deterministic trend.
Xt is a vector of deterministic trend function and G−1

n X[nr] ⇒ X(r), where X(r) is a continuous

limiting trending function. Let the OLS estimator of β be β̂n,

Dn(β̂n − β0)⇒ ξ1

where in general ξ1 a normal variate.
Then the detrended data is given by V̂t = Yt −X ′tβ̂n. For example, if the observed time series

{Yt}nt=1 contains a linear trend:
Yt = β01 + β02 · t+ Vt

In practice, we estimate copula model based on:

V̂t = Yt − β̂01 − β̂02 · t

The corresponding standardization matrix is Gn = diag(1, n), Dn =
√
nGn = diag(n

1
2 , n

3
2 ),

Xt = (1, t)′ and X(r) = (1, r)′. Limiting distribution is:

ξ1 =

(
1 1

2
1
2

1
3

)−1

·
(

λW (1)

λ
∫ 1

0
sdW (s)

)
here W (s), s ∈ [0, 1] is the standard Brownian motion, ω2

V := EV 2
t + 2

∞∑
s=1

EVtVt+s is the long run

variance of Vt.

Example 2. Unit Root Time Series.
Xt = Yt−1 and β0 = 1. In this case,

Yt = β0Yt−1 + Vt

In finite sample, we cannot distinguish a unit root process with a near unit process. We estimate
Vt by V̂t = Xt − β̂nXt−1 for robustness. Thus, Xt (or, Yt) is a unit root process, Gn =

√
n, and

G−1
n X[nr] ⇒ X(r) = ωVW (r). Here W (s), s ∈ [0, 1] is the standard Brownian motion, ω2

V :=

EV 2
t + 2

∞∑
s=1

EVtVt+s is the long run variance of Vt.

The estimator β̂n in transformation converges at rate-n to a non-normal limit, n(β̂n − β0)⇒ ξ2,
where

ξ2 =
W 2(1)− EV 2

t /ω
2
V

2
∫ 1

0
W 2(r)dr

Example 3. Cointegration Time Series.
Xt is a vector of nonstationary unit root process independent of Vt, Xt = Xt−1 + εt, Gn =

√
n,

G−1
n X[nr] ⇒ X(r) = ωεW1(r). Here W1(s), s ∈ [0, 1] is a standard Brownian motion, ω2

ε :=

E ε2
t + 2

∞∑
s=1

E εtεt+s is the long run variance of εt.

Then the estimator β̂n is still rate-n converging n(β̂n − β0)⇒ ξ3, where

ξ3 =
ωV
∫ 1

0
W1(r)dW2(r)

ωε
∫ 1

0
W 2

1 (r)dr

here ω2
V := EV 2

t + 2
∞∑
s=1

EVtVt+s is the long run variance of Vt, W2(s), s ∈ [0, 1] is another standard

Brownian motion independent with W1(·).
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2.3 The Marginal and The Sieve space

If the marginal distribution of Vt, F0(·), were fully known, under Assumption 1, we could estimate
the copula model based on maximizing:

Qn(α) =
1

n

n∑
t=2

log c(F0(Ŷt−1), F0(Ŷt);α)

here V̂t = Yt −X ′tβ̂n is the residual process obtained from filtration to remove nonstationarity.
Denote the solution of this maximization problem by ᾰn, under some regularity conditions:

√
n(ᾰ− α0) = H−1

nαSnα + op(1)

where

Hnα = − 1

n

n∑
t=2

∂2 log c(F0(V̂t−1), F0(V̂t);α0)

∂α∂α′
p→ Hα

Snα =
1√
n

n∑
t=2

∂ log c(F0(V̂t−1), F0(V̂t);α0)

∂α

and

Hα = −E
∂2 log c(F0(Vt−1), F0(Vt);α0)

∂α∂α′

Snα will converge in distribution to a random variable and hence is Op(1). However, the limiting
distribution of Snα will be affected by non-stationarity filtration and usually non-normal.

In practice, true distribution function F0(·) and its density f(·) are unknown and need to be
modeled and estimated appropriately. In this article, we model the unknown symmetric marginal
density nonparametrically by approximate the true function with various parametric family of densi-
ties with increasing complexity. There exists many sieves for approximating a univariate symmetric
probability density function. We will focus on using linear sieves to directly approximate either a
square root density:

Fn =

f(y) =

[
Kn∑
k=1

akAk(y)

]2

,

∫
R1

f(y)dy = 1

 (1)

or a log density:

Fn =

{
f(y) = exp

[
Kn∑
k=1

akAk(y)

]
,

∫
R1

f(y)dy = 1

}
(2)

Remark 3. If we concentrate on symmetric marginal, Ak(·) could be selected to be symmetric, then
elements in Fn are automatically symmetric. We apply this technique in Section 6.3.

Before presenting some concrete examples of known sieve basis functions {Ak(·) : k ≥ 1}, we
first recall a popular smoothness function class used in the non-parametric estimation literature
(see e.g. Stone [1982]; Robinson [1988]). Suppose that the support Y (of the true density f0(·))
is either a compact interval(say, [0, 1]) or the whole real line R1. A real-valued function h on Y
is said to be r-smooth if it is bounded continuously differentiable on Y up to order [r] (i.e. there
is a positive number K such that max

s=0,1,··· ,J
|Dsf(y)| ≤ K for all y ∈ Y)3 and its [r]th derivative

is Hölder continuous with exponent {r} ≡ r − [r] ∈ (0, 1] (i.e. there is a positive number K such
that |DJh(y1) −DJh(y2)| ≤ K|y1 − y2|{r} for all y1, y2 ∈ Y). We denote Λr(Y) as the class of all
real-valued functions on Y that are r-smooth. Define Hölder norm of order r to be:

‖h‖Λr := max
s=0,1,··· ,[r]

sup
y∈Y
|Dsf(y)|+ sup

y1,y2∈Y,y1 6=y2

|Drf(y1)−Drf(y2)|
|y1 − y2|r−[r]

3[r] is the largest integer strictly smaller than r. For example, [2.5] = 2, [2] = 1, [0.8] = 0.
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then we can define Hölder space as {h ∈ C [r](Y) : ‖h‖Λr < +∞}.
Let the true marginal density function f0 satisfy either

√
f0 ∈ Λr(Y) or log f0 ∈ Λr(Y). Then

any function in Λr(y) can be approximated by some appropriate sieve spaces. For example, if
Y is a bounded interval and r > 1

2 , it can be approximated by the spline sieve Spl(s,Kn) with
s > [r], the polynomial sieve , the trigonometric sieve, the cosine series and etc. When the support
of Y is unbounded, thin-tailed density can be approximated by Hermite polynomial sieve, while
polynomial fat-tailed density can be approximated by spline wavelet sieve. See Chen [2007] for
detailed descriptions of various sieve spaces Gn.

2.4 Copulas

Before analyzing large sample property of our two-step sieve estimator, we first introduce some
commonly used copulas and their properties.

Suppose (U
(1)
1 , U

(1)
2 ) and (U

(2)
1 , U

(2)
2 ) are two pairs bivariate uniformly distributed random vari-

ables, joint distribution following copula C(·, ·). Then the Kendall’s tau is defined as the probability
of concordance minus the probability of discordance, see Nelson [1999] chapter 5:

τ = P
[
(U

(1)
1 − U (2)

1 )(U
(1)
2 − U (2)

2 ) > 0
]
− P

[
(U

(1)
1 − U (2)

1 )(U
(1)
2 − U (2)

2 ) < 0
]

= 4

∫ 1

0

∫ 1

0

C(u1, u2)c(u1, u2)du1du2 − 1

Because Kendall’s tau is the difference of two probabilities, we have −1 ≤ τ ≤ 1. Positive τ
means positive dependence and negative τ means negative dependence.

Spearman’s rho is another commonly used measure of association based on concordance and

discordance. Suppose (U
(1)
1 , U

(1)
2 ), (U

(2)
1 , U

(2)
2 ) and (U

(3)
1 , U

(3)
2 ) are three pairs bivariate uniformly

distributed random variables, joint distribution following copula C(·, ·). Then the Spearman’s rho
is defined to be proportional to the probability of concordance minus the probability of discordance

for the two vectors (U
(1)
1 , U

(1)
2 ) and (U

(2)
1 , U

(3)
2 ), see Nelson [1999] chapter 5:

ρ = 3
(
P
[
(U

(1)
1 − U (2)

1 )(U
(1)
2 − U (3)

2 ) > 0
]
− P

[
(U

(1)
1 − U (2)

1 )(U
(1)
2 − U (3)

2 ) < 0
])

= 12

∫ 1

0

∫ 1

0

C(u1, u2)du1du2 − 3

Spearman’s rho is also ranged in [−1, 1], like Kendall’s tau. Positive ρ means positive dependence
and negative ρ means negative dependence.

Tail dependence measures the dependence between the variables in the upper right quadrant and
in the lower left quadrant of [0, 1]2. The lower and upper tail dependence coefficients λL and λU in
terms of copula are defined as:

λL = lim
u→0+

P(U2 ≤ u|U1 ≤ u) = lim
u→0+

C(u, u)

u

λU = lim
u→1−

P(U2 ≥ u|U1 ≥ u) = lim
u→1−

1 + C(u, u)− 2u

1− u
Tail dependence is a useful structure to model effect of extreme event in empirical research. See

Section 7 for detail.
We consider five copulas in this paper, each with four choices of copula parameter:

• Gaussian copula
C(u1, u2;α0) = Φα(Φ−1(u1),Φ−1(u2))

c(u1, u2;α0) =
φα(Φ−1(u1),Φ−1(u2))

φ(Φ−1(u1)) · φ(Φ−1(u2))
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here Φ(·) and φ(·) denote the CDF and PDF of standard normal distribution respectively.
Φα(·) and φα(·) denote the CDF and PDF of bivariate normal distribution with correlation α
respectively. Range for α is −1 ≤ α ≤ 1.
When α > 0, dependence is positive:
α = 0.9⇒ τ = 0.713, ρ = 0.891; α = 0.5⇒ τ = 0.333, ρ = 0.483
When α < 0, dependence is negative:
α = −0.9⇒ τ = −0.713, ρ = −0.891; α = −0.5⇒ τ = −0.333, ρ = −0.483
There is no tail dependence for Gaussian copula.

• Frank copula

C(u1, u2;α) = − 1

α
· log

(
1− (1− e−αu1)(1− e−αu2)

1− e−α

)

c(u1, u2;α) = α · e
−αu1e−αu2

1− e−α
·
(

1− (1− e−αu1)(1− e−αu2)

1− e−α

)−2

here α ∈ R1.
When α > 0, dependence is positive:
α = 15⇒ τ = 0.7626, ρ = 0.9294; α = 5⇒ τ = 0.4567, ρ = 0.6435.
When α < 0, dependence is negative:
α = −15⇒ τ = −0.7626, ρ = −0.9294; α = −5⇒ τ = −0.4567, ρ = −0.6435
There is no tail dependence for Frank copula.

• Clayton copula
C(u1, u2;α) = (u−α1 + u−α2 − 1)−

1
α

c(u1, u2;α) = (1 + α) · u−α−1
1 · u−α−1

2 · (u−α1 + u−α2 − 1)−
1
α−2

here α is positive.
Clayton copula has Kendall’s tau τ = α

2+α and lower tail dependence coefficient λL = 2−1/α

that is increasing in α, but no upper tail dependence.
When α = 2, τ = 0.5, ρ = 0.682, λL = 0.7071.
When α = 5, τ = 0.7143, ρ = 0.885, λL = 0.871.
When α = 10, τ = 0.833, ρ = 0.958, λL = 0.933.
When α = 12, τ = 0.857, ρ = 0.969, λL = 0.944.

• EFGM copula
C(u1, u2;α) = u1u2[1 + α(1− u1)(1− u2)]

c(u1, u2;α) = 1 + α(1− 2u1)(1− 2u2)

here range for α is −1 ≤ α ≤ 1.
When α > 0, dependence is positive:
α = 0.9⇒ τ = 0.2, ρ = 0.3; α = 0.5⇒ τ = 0.111, ρ = 0.167
When α < 0, dependence is negative:
α = −0.9⇒ τ = −0.2, ρ = −0.3; α = −0.5⇒ τ = −0.111, ρ = −0.167
There is no tail dependence for EFGM copula.

• Gumbel copula

C(u1, u2;α) = exp
[
− ((− log u1)α + (− log u2)α)

1
α

]
c(u1, u2;α) = exp

[
− ((− log u1)α + (− log u2)α)

1
α

]
· ((− log u1)α + (− log u2)α)

1
α−2

·(− log u1)α−1 · (− log u2)α−1 · 1

u1u2
·[

((− log u1)α + (− log u2)α)
1
α + (α− 1)

]
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here α needs to be larger than 1.
Gumbel copula has Kendall’s tau τ = 1− 1

α and upper tail dependence coefficient λU = 2−21/α

that is increasing in α, but no lower tail dependence.
When α = 2, τ = 0.5, ρ = 0.682, λU = 0.586.
When α = 3.5, τ = 0.7143, ρ = 0.887, λU = 0.781.
When α = 6, τ = 0.833, ρ = 0.96, λU = 0.8775.
When α = 7, τ = 0.857, ρ = 0.971, λU = 0.896.

2.5 The Semiparametric Estimators

There are two alternative procedures in estimation of copula-based models based on filtering residues
using sieve methods: the two-step sieve estimation and the three-step sieve estimation procedures.
For three-step estimation procedure, we first get OLS residuals V̂t = Yt −X ′tβ̂. During second step,
marginal densities is estimated by sieve method. Copula parameter is estimated in last step through
MLE.

First step: get OLS residuals
V̂t = Yt −X ′tβ̂

Second step:get density estimator f̂ through

max
f∈Fn

1

n

n∑
t=1

log f(V̂t)

Second step: get copula estimator α̂ through

max
α∈A

1

n

n∑
t=2

log c

(∫ V̂t−1

−∞
f̂(y)dy,

∫ V̂t

−∞
f̂(y)dy;α

)

The two-step sieve method estimates the marginal and copula parameters simultaneously in the
second step. Get density estimator f̂ and copula estimator α̂ together through

max
α∈A,f∈Fn

1

n

n∑
t=1

log f(V̂t) +
1

n

n∑
t=2

log c

(∫ V̂t−1

−∞
f(y)dy,

∫ V̂t

−∞
f(y)dy;α

)

The two-step estimation procedure is usually more efficient as copula parameter and marginal
density are estimated at the same time, while the computation complexity is not increasing too much
comparing to three-step sieve estimator. For this reason, we focus our discussion on the two-step
estimation procedures in this paper.

All the above two estimators are based on filtered residuals. There is also other possible ways
not depending on linear filtering. For example, in finite sample simulation part we consider an
estimator where we do not use OLS regression to estimate β̂ at first step but optimize all estimators
all together4. See Section 6.2.1 for detail.

3 Summary of Main Results

We summarize in this section the main results of the paper.
By definition, the two-step sieve estimator (α̂, f̂) maximize the following criterion:

max
α∈A,f∈Fn

1

n

n∑
t=1

log f(V̂t) +
1

n

n∑
t=2

log c

(∫ V̂t−1

−∞
f(y)dy,

∫ V̂t

−∞
f(y)dy;α

)
4This estimator will be referred as joint sieve estimator in the following
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Under appropriate regularity conditions (see Section 4), we first establish the consistency result
by showing that(Theorem 1): as n→∞

‖α̂− α0‖2 + ‖f̂ − f0‖c
p→ 0

for some norm ‖ · ‖c on the functional space F . Here ‖ · ‖2 refers to Euclidean norm, ‖α‖2 := αTα.

Specifically, we will have consistency of the copula parameter: α̂
p→ α0.

Then we derive the limiting distribution of α̂ (see Section 5). It still has the usual root-n
convergence rate but its limiting distribution may be not normally distributed(Theorem 2):

√
n(α̂n − α0)⇒ −F (γ0, v

∗)×
∫ 1

0

X(r)dr × ξ +N(0, ‖v∗‖2)

X(r) is the limiting process of X[nr] and ξ is the limiting distribution. These two terms depend
on nonstationary structure.

v∗ is an abstract term determined by copula and marginal structure, which is defined in Section
5. As we cannot directly make derivative in a function space, like the usual performance in an
Euclidean space, a directional derivative based on v∗ is developed. The direction v∗ is set up in
Hilbert space following Riesz representation theorem and does not have analytical expression. The
second term is the normal limiting distribution Chen et al. [2009] reaches when Vt is directly observed
and there is no filtration.

Expression for F (γ0, v
∗) is complicate:

E
∂2l(γ0, Vt−1, Vt)

∂γ∂y1
[v∗] + E

∂2l(γ0, Vt−1, Vt)

∂γ∂y2
[v∗]

Notice F (γ0, v
∗) is a constant determined solely by copula and marginals and is not relevant with

the nonstationary structure. If F (γ0, v
∗) ≡ 0, nonstationary structure of Xt will not affect limiting

distribution of α̂, a general property holding by three-step empirical estimator proved by Chen and
Xiao [2016].

However, for two-step sieve estimator, we show that this property holds only when both copula
and marginal are symmetric. Gaussian, Frank and EFGM copulas satisfy the symmetry property.
See Corollary 1 for formal description.

When copula is asymmetric, such as Clayton copula (with lower tail dependence) and Gumbel
copula (with upper tail dependence), we show that |F (γ0, v

∗)| is nonzero and strictly increasing
with strength of tail dependence. These theoretical results are also corroborated by finite sample
simulation.

For finite sample simulation, two-step sieve estimator performs quite well, comparing to three-
step empirical method and mis-specified parametric method. However, for tail dependence copula,
especially when tail dependence is strong, both two-step sieve method and three-step empirical
method do not perform well. Hence joint sieve estimator is analyzed and its finite simulation
results are pretty good even under strong tail dependence. We find this phenomenon is due to the
bad estimation of first step estimation of filtration for residuals based methods under strong tail
dependence.

In empirical application, we analyze the model:

Yt = Xtβ0 + Vt

where Yt is weekly stock price and Xt is consensus target price. Residual term Vt is modeled as first-
order Markov process with parametric copula structure. Using Gaussian copula(no tail dependence),
our sieve methods have better out-of-sample predicting power than three-step empirical methods.
Using Clayton copula(lower tail dependence), three-step empirical method results in an evidently
higher tail dependence estimation.
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4 Consistency

In this section, we will establish consistency result for two-step sieve estimator.
In the following, we denote:

Qn(α, f) :=
1

n

n∑
t=1

log f(V̂t) +
1

n

n∑
t=2

log c

(∫ V̂t−1

−∞
f(y)dy,

∫ V̂t

−∞
f(y)dy;α

)

and

Q(α, f) := E log f(Vt) + E log c

(∫ Vt−1

−∞
f(y)dy,

∫ Vt

−∞
f(y)dy;α

)
here E is the expectation under the true parameter (α0, f0) (i.e. Assumption 1).

Denote γ = (α, f), γ0 = (α0, f0), γ̂ = (α̂, f̂), Γ = A×F , Γn = A×Fn. Let (α̂, f̂) be our two-step
sieve estimator that maximize the following criterion:

max
α∈A,f∈Fn

Qn(α, f) :=
1

n

n∑
t=1

log f(V̂t) +
1

n

n∑
t=2

log c

(∫ V̂t−1

−∞
f(y)dy,

∫ V̂t

−∞
f(y)dy;α

)
(3)

For function space F and Fn, define a norm ‖ · ‖c. We could either take sup norm ‖f‖∞ or a
lower order Hölder norm ‖f‖Λr′ for some 0 < r′ < r. See Chen et al. [2006]. Norm ‖ · ‖c on F can
induce a natural Cartesian extension on Γ and Γn, a new norm defined as: ‖γ‖c := ‖α‖2 + ‖f‖c.
Here ‖ · ‖2 is norm on Euclidean space, ‖α‖2 :=

√
α>α.

We make the following assumptions to establish consistency.

Assumption 3. α0 ∈ A, where A is a compact subset of R1 with nonempty interior, c(u1, u2;α) > 0
for all (u1, u2) ∈ (0, 1)× (0, 1), α ∈ A.

Assumption 4. f0 ∈ F , either F = {f > 0 on Y :
√
f ∈ Λr(Y),

∫
Y f(y)dy = 1} and Fn given in

equation (1), or F = {f > 0 on Y : log f ∈ Λr(Y),
∫
Y f(y)dy = 1} and Fn given in equation (2).

r > 1
2 .

Remark 4. When symmetry restriction is added to to the density, we can define the space F as either
either F = {f > 0 on Y :

√
f ∈ Λr(Y),

∫
Y f(y)dy = 1, f(y) = f(−y)} and Fn given in equation (1),

or F = {f > 0 on Y : log f ∈ Λr(Y),
∫
Y f(y)dy = 1, f(y) = f(−y)} and Fn given in equation (2).

And sieve basis An(·) in Fn are also selected to be symmetric.

Assumption 5. Q(α0, f0) > −∞, there exists a positive measurable function η(·) such that ∀ε > 0,
∀n ≥ 1,

Q(α0, f0)− sup
α∈A,f∈Fn

Q(α, f) ≥ η(ε) > 0

Assumption 6. For all n ≥ 1, the sieve space Fn is compact under norm ‖ · ‖c.

Assumption 7. For all n ≥ 1, there exists Πnf0 ∈ Fn such that Q(α0,Πnf0)−Q(α0, f0) = o(1).

Remark 5. Assumption 3 is a standard regularity condition. Assumption (4) ensures that the true
density functional space could be well approximated by its sieve counterpart. Assumption 5 is the
standard identification condition. Assumption 6 ensures the feasibility of optimization on compact
spaces. Assumption 7 ensures smoothness around true density f0 and its sieve approximation
Πnf0, see Chen et al. [2009] assumptions 3.1.

Uniform law of large numbers is crucial for proof of consistency, which ensures us to replace Qn(·)
with Q(·) and then apply properties of Q(·). Rather than expression in terms of filtering residuals

V̂t = Vt + X ′t(β0 − β̂n), it is often easier to verify the statement in terms of transformed variables,
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directly in stationary process Vt, without explicitly reference of nonstationarity structure of Xt. Let:

Ln(γ, b) :=
1

n

n∑
t=1

log f(Vt +
bt√
n

) +
1

n

n∑
t=2

log c

∫ Vt−1+
bt−1√
n

−∞
f(y)dy,

∫ Vt+
bt√
n

−∞
f(y)dy;α

 (4)

Define ‖ · ‖1 be sup norm on Euclidean space. For b = (b1, b2, · · · , bn)> ∈ Rn, ‖b‖1 := max
1≤t≤n

|bt|.

Assumption 8. For all B > 0, sup
b∈Rn,‖b‖1≤B

γ∈Γn

|Ln(γ, b)−Q(β, f)| = op(1).

Lemma 1. Under Assumption 2 and Assumption 8, we can derive uniform law of large numbers: sup
α∈A,f∈Fn

|Qn(α, f)−

Q(α, f)| = op(1).

Remark 6. Verification of Assumption 8 needs two steps. Notice:

sup
b∈Rn,‖b‖1≤B

γ∈Γn

|Ln(γ, b)−Q(α, f)| ≤ sup
b∈Rn,‖b‖1≤B

γ∈Γn

|Ln(γ, b)− Ln(γ, 0)|+ sup
γ∈Γn

|Ln(γ, 0)−Q(α, f)|

The first term sup
b∈Rn,‖b‖1≤B

γ∈Γn

|Ln(γ, b)−Ln(γ, 0)| is op(1) if log f and log c are continuous uniformly

over γ ∈ Γn, which is a mild condition. For the second term sup
γ∈Γn

|Ln(γ, 0) − Q(α, f)| to be op(1),

strictly stationary ergodicity derived from Assumption 1 implies that Glivenko Cantelli theorem
for stationary ergodic processes is applicable, see Chen et al. [2009] proof of proposition 3.1.

Theorem 1. Under Assumption 1-8, ‖γ̂n − γ0‖c = op(1). In praticular, we have consistency of

copula parameter α̂n
p→ α0.

5 Limiting distribution

In this section, we first establish root-n convergence rate for sieve copula estimator α̂n.

Assumption 9. α0 ∈ int(A)

Assumption 10. There exists a neighborhood N0 of γ0 = (α0, f0) such that the following second-

order partial derivatives are all well-defined and continuous in N0: ∂2 log c(u1,u2;α)
∂α∂α′ , ∂2 log c(u1,u2;α)

∂uj∂α
,

∂2 log c(u1,u2;α)
∂uj∂uk

for j, k = 1, 2.

Let l(γ, y1, y2) = log f(y2) + log c(
∫ y1
−∞ f(y)dy,

∫ y2
−∞ f(y)dy;α). Denote V as the linear span of

Γ − {γ0}. Under Assumption 10, for any v = (vα, vf )′ ∈ V, we have that l(γ0 + ηv, y1, y2) is
continuously differential in η ∈ [0, 1]. For any γ ∈ N0, define the first-order directional derivative of
l(γ, y1, y2) at the direction v ∈ V as:

∂l(γ, y1, y2)

∂γ′
[v] :=

dl(γ + ηv, y1, y2)

dη

∣∣∣∣
η=0

(5)

and the second-order directional derivative as:

∂2l(γ, y1, y2)

∂γ∂γ′
[v, ṽ] :=

d

dη̃

{
∂l(γ + η̃ṽ, y1, y2)

∂γ′
[v]

}∣∣∣∣
η̃=0

=
d2l(γ + ηv + η̃ṽ, y1, y2)

dη̃dη

∣∣∣∣∣
η=0

∣∣∣∣∣
η̃=0
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We also define cross second-order directional derivative as:

∂2l(γ, y1, y2)

∂γ∂y1
[v] :=

d

dy1

{
∂l(γ, y1, y2)

∂γ′
[v]

}
∂2l(γ, y1, y2)

∂γ∂y2
[v] :=

d

dy2

{
∂l(γ, y1, y2)

∂γ′
[v]

}
Assumption 11. 0 < E[(∂l(γ0,Vt−1,Vt)

∂γ′ [v])2] <∞ for all v 6= 0, v ∈ V

Assumption 12.
∫

sup
η∈Sv

∣∣∣dh(y|Vt−1;γ0+ηv)
dη

∣∣∣dy < ∞ and
∫

sup
η∈Sv

∣∣∣d2h(y|Vt−1;γ0+ηv)
dη2

∣∣∣dy < ∞ almost

surely, for Sv := {η ∈ [0, 1] : γ0 + ηv ∈ N0}, v 6= 0, v ∈ V.

Here h(·|yt−1; γ) is the density of Vt conditional on Vt−1.

Remark 7. Following Chen et al. [2009], Assumption 9, 10, 11 and 12 are sufficient to establish
the Fisher inner product on the space V as:

< v, ṽ >:= E
[(

∂l(γ0, Vt−1, Vt)

∂γ′
[v]

)(
∂l(γ0, Vt−1, Vt)

∂γ′
[ṽ]

)]
and the Fisher norm for v ∈ V as ‖v‖2 :=< v, v >. Let V be the closed span of V under the Fisher
norm. Then (V, ‖ · ‖) is a Hilbert space.

Define functional ρ : Γ → R1 as ρ(γ) := λTα. We want to analyze the limiting distribution of√
n (ρ(γ̂n)− ρ(γ0)) =

√
n
(
λT α̂n − λTα0

)
.

Remark 8. For simplicity of expression, we mainly consider one dimensional parameter α0 ∈ R1.
Hence λ = 1 and ρ(γ) := α, natural projection for γ = (α, f) to its first component α. For copula
parameter α0 of multiple dimension, the analysis is similar. All five copulas we consider in this
paper (see Section 2.4) belong to one parameter families copula.

Assumption 13.
∫ +∞
−∞

∂c(u1,u2;α)
∂u1

du2 = ∂
∂u1

∫ +∞
−∞ c(u1, u2;α0)du2 = 0 and∫ +∞

−∞
∂c(u1,u2;α)

∂u2
du1 = ∂

∂u2

∫ +∞
−∞ c(u1, u2;α)du1 = 0.

Assumption 14. E
(
∂ log c(Ut−1,Ut;α0)

∂β · ∂ log c(Ut−1,Ut;α0)
∂β′

)
is finite and positive definite.

Here Ut−1 = F0(Vt−1) =
∫ Vt−1

−∞ f0(y)dy, Ut = F0(Vt) =
∫ Vt
−∞ f0(y)dy.

Assumption 15.
∫ +∞
−∞

∂2c(u1,u2;α0)
∂u1∂α

du2 = ∂2

∂u1∂α

∫ +∞
−∞ c(u1, u2;α0)du2 = 0 and∫ +∞

−∞
∂2c(u1,u2;α0)

∂u2∂α
du1 = ∂2

∂u2∂α

∫ +∞
−∞ c(u1, u2;α0)du1 = 0.

Assumption 16. There exists a positive constant K such that

max
j=1,2

sup
0<uj<1

E

[(
uj(1− uj)

∂ log c(U1, U2;α0)

∂uj

)2
∣∣∣∣∣Uj = uj

]
≤ K

Following Chen et al. [2009], from Assumption 13, 14, 15 and 16, we can apply Riesz represen-
tation theorem on operator ρ: there exists a v∗ ∈ V such that

∂ρ(γ0)

∂γ′
[v] = vα =< v∗, v >, ∀v = (vα, vf ) ∈ V

‖v∗‖2 =

∥∥∥∥∂ρ(γ0)

∂γ′

∥∥∥∥2

= sup
v∈V:‖v‖>0

∣∣∣∂ρ(γ0)
∂γ′ [v]

∣∣∣2
‖v‖2

= sup
v∈V:‖v‖>0

vα
2

‖v‖2
< +∞

Assumption 17. ‖γ̂n− γ0‖ = Op(δn) for a decreasing sequence δn satisfying δn → 0 when n→∞.
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Assumption 18. There exists Πnv
∗ ∈ Γn − {γ0} such that δn × ‖Πnv

∗ − v∗‖ = o(1/
√
n)

Condition 1. For all γ̃n ∈ N0 ∩ Γn with ‖γ̃n − γ0‖ = O(δn) and all vn = (vα, vf ) ∈ V with
‖vn‖ = O(δn), we have:

E
(
∂2l(γ̃, Vt−1, Vt)

∂γ∂γ′
[v, v]− ∂2l(γ0, Vt−1, Vt)

∂γ∂γ′
[v, v]

)
= o(1/n)

Condition 2.
{
∂l(γ0,Vt−1,Vt)

∂γ′ [Πnv
∗] : γ ∈ N0, ‖γ − γ0‖ = O(δn)

}
is a Donsker class.

Assumption 17, 18, together with Condition 1 and 2, are conditions assumed in Chen et al.
[2009] for root-n convergence rate of copula parameter when there is no filtering process. To deal
with the non-linear filtering, we need stronger versions of Condition 1 and Condition 2.

Assumption 19. There exists a positive sequence ε̃n = o(1) such that, for all sequence γ̃n with
γ̃n ∈ N0 ∩ Γn, ‖γ̃n − γ0‖ = O(δn) and all vn = (vα, vf ) ∈ V with ‖vn‖ = O(δn), we have:

E
(
∂2l(γ̃n, Vt−1, Vt)

∂γ∂γ′
[v, v]− ∂2l(γ0, Vt−1, Vt)

∂γ∂γ′
[v, v]

)
= ε̃n · o(n−1)

Remark 9. Assumption 19 is stronger than Assumption 1. We introduce ε̃n here to serve as a gap
between this term and op(n

−1), which will be used as a directional step size for proof of convergence
rate of copula estimator, see Section (9.3).

Assumption 20.

sup
‖b‖=O(1/

√
n)

sup
‖γ−γ0‖=O(δn)

µn

[
1

n

n∑
t=2

∂l(γ, Vt−1 + bt−1, Vt + bt)

∂γ′
[Πnv

∗]

]

− µn
[
∂l(γ0, Vt−1, Vt)

∂γ′
[Πnv

∗]

]
= op(1/

√
n)

Remark 10. Assumption 20 is stronger than Condition 2. Setting b to be the zero vector,
Assumption 20 is simplified to the stochastic equicontinuity property implied by Donsker class
in Condition 2. We allow Vt to move around in an order 1√

n
neighborhood. Here µn denote the

corresponding empirical process. The expectation is based on randomness of Vt−1 and Vt. For
example:

µn

[
1

n

n∑
t=2

∂l(γ, Vt−1 + bt−1, Vt + bt)

∂γ′
[Πnv

∗]

]
=

1

n

n∑
t=2

∂l(γ, Vt−1 + bt−1, Vt + bt)

∂γ′
[Πnv

∗]

− 1

n

n∑
t=2

E
∂l(γ, Vt−1 + bt−1, Vt + bt)

∂γ′
[Πnv

∗]

µn

[
1

n

n∑
t=2

∂l(γ, Vt−1, Vt)

∂γ′
[Πnv

∗]

]
=

1

n

n∑
t=2

∂l(γ, Vt−1, Vt)

∂γ′
[Πnv

∗]

− 1

n

n∑
t=2

E
∂l(γ, Vt−1, Vt)

∂γ′
[Πnv

∗]

Assumption 21. For all sequence γ̃n with γ̃n ∈ N0 ∩ Γn, ‖γ̃n − γ0‖ = O(δn) and all b ∈ Rn,
‖b‖1 = O(1/

√
n), we have∣∣∣∣E(∂2l(γ, Vt−1 + bt−1, Vt + bt)

∂γ′∂y1
[Πnv

∗]− ∂2l(γ, Vt−1, Vt)

∂γ′∂y1
[Πnv

∗]

)∣∣∣∣ = o(1)

∣∣∣∣E(∂2l(γ, Vt−1 + bt−1, Vt + bt)

∂γ′∂y2
[Πnv

∗]− ∂2l(γ, Vt−1, Vt)

∂γ′∂y2
[Πnv

∗]

)∣∣∣∣ = o(1)
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Remark 11. Assumption 21 is analogous to Condition 1. We need assumption to demonstrate
continuity for second order derivative. Notice we only need order o(1) here, unlike o(n−1) in Con-
dition 1.

Theorem 2. Under Assumption 1-21, we have asymptotic distribution for α̂n:

√
n(α̂n − α0)⇒ −F (γ0, v

∗)×
∫ 1

0

X(r)dr × ξ +N(0, ‖v∗‖2)

here X(r) and ξ are limiting distribution of G−1
n X[nr] and

√
nGn(β̂n − β0), respectively. See As-

sumption 2.

F (γ0, v
∗) is E∂2l(γ0,Vt−1,Vt)

∂γ∂y1
[v∗] + E∂2l(γ0,Vt−1,Vt)

∂γ∂y2
[v∗]. The detailed expression refers to proof in

Section 9.3.

Remark 12. Theorem 2 shows that our copula estimator achieves root-n convergence rate. We
can split the limiting distribution into two parts. The second normal distribution term N(0, ‖v∗‖2)
is the limiting distribution when there is no filtering. The first term is due to nonlinear filtering.∫ 1

0
X(r)dr and ξ compress all information from the nonstationarity. F (γ0, v

∗) is a constant irrelevant
with filtering process, fully characterized by the structure of Markov process Vt.

Unless F (γ0, v
∗) is exactly zero, the limiting distribution will be generally non-normal due to

non-normality of
∫ 1

0
X(r)dr× ξ. We will simulate constant F (γ0, v

∗) and asymptotic variance ‖v∗‖2
in Section (6.3). In the following derivation, we will show that F (γ0, v

∗) is exactly zero for Gaussian,
Frank and EFGM copula.

We call a copula being symmetric if it is symmetric around (1/2, 1/2):

c(u1, u2;α) ≡ c(1− u1, 1− u2;α)

Notice if a copula only has lower tail dependence or only has upper tail dependence(e.g. Clayton
or Gumbel), then it is not symmetric around (1/2, 1/2) as symmetric copula must have the same
tail dependence on both sides:

λL = lim
u→0+

P(U2 ≤ u|U1 ≤ u)

= lim
u→0+

P(1− U2 ≥ 1− u|1− U1 ≥ 1− u)

= lim
u→1−

P(U2 ≥ u|U1 ≥ u) = λU

However, for Gaussian, Frank and EFGM copula, where λL = λU = 0, symmetric property is
satisfied.

For Gaussian copula:

c(1− u1, 1− u2;α)

=
φα(Φ−1(1− u1),Φ−1(1− u2))

φ(Φ−1(1− u1)) · φ(Φ−1(1− u2))

=
φα(−Φ−1(u1),−Φ−1(u2))

φ(−Φ−1(u1)) · φ(−Φ−1(u2))

=
φα(Φ−1(u1),Φ−1(u2))

φ(Φ−1(u1)) · φ(Φ−1(u2))

= c(u1, u2;α)
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For Frank copula:

c(1− u1, 1− u2;α)

= α · e
αu1eαu2 · e−2α

1− e−α
·
(

1− (1− e−α · eαu1)(1− e−α · eαu2)

1− e−α

)−2

= α · e
−αu1e−αu2

1− e−α
·
(
e−α · eαu1 + e−α · eαu2 − e−α − e−2αeαu1eαu2

1− e−α

)−2

· (e−αu1e−αu2 · eα)−2

= α · e
−αu1e−αu2

1− e−α
·
(
e−αu2 + e−αu1 − e−αu1e−αu2 − e−α

1− eα

)−2

= α · e
−αu1e−αu2

1− e−α
·
(

1− (1− e−αu1)(1− e−αu2)

1− e−α

)−2

= c(u1, u2;α)

For EFGM copula:

c(1− u1, 1− u2;α)

= 1 + α(2u1 − 1)(2u2 − 1)

= 1 + α(1− 2u1)(1− 2u2)

= c(u1, u2;α)

Thus we also have:
c1(u1, u2;α) = −c1(1− u1, 1− u2;α)

c1α(u1, u2;α) = −c1α(1− u1, 1− u2;α)

c2(u1, u2;α) = −c2(1− u1, 1− u2;α)

c2α(u1, u2;α) = −c2α(1− u1, 1− u2;α)

c11(u1, u2;α) = c11(1− u1, 1− u2;α)

c22(u1, u2;α) = c22(1− u1, 1− u2;α)

c12(u1, u2;α) = c12(1− u1, 1− u2;α)

When the marginal distribution is symmetric around zero, like student t distribution, symmetry
restriction on sieve space F and Fn could be applied, see Remark 4. Hence we have f0(y) ≡ f0(−y)
and v∗f (y) ≡ v∗f (−y).

Refer to expression in Section 9.3. The first term is:

E
v̇∗f (Vt) · f0(Vt)− ḟ0(Vt) · v∗f (Vt)

[f0(Vt)]2

As both f0 and v∗f are symmetric around zero, this expectation is zero.
The second term is:.

Ec11(F0(Vt−1), F0(Vt);α0) · v∗F (Vt−1) · f0(Vt−1)
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As v∗f (y) ≡ v∗f (−y), we have v∗F (y) = −v∗F (y). Following symmetric property of c, c11 and c1,
this item will equal to zero:

Ec11(F0(Vt−1), F0(Vt);α0) · v∗F (Vt−1) · f0(Vt−1)

=

∫ +∞

−∞

∫ +∞

−∞
c11(F0(y1), F0(y2);α0) · v∗F (y1) · c(F0(y1), F0(y2);α0) · [f0(y1)]

2 · f0(y2)dy1dy2

=

∫ +∞

−∞

∫ +∞

−∞
c11(F0(−y1), F0(−y2);α0) · v∗F (−y1) · c(F0(−y1), F0(−y2);α0) ·

[f0(−y1)]
2 · f0(−y2)dy1dy2

=

∫ +∞

−∞

∫ +∞

−∞
c11(1− F0(y1), 1− F0(y2);α0) · [−v∗F (y1)] · c(1− F0(y1), 1− F0(y2);α0) ·

[f0(y1)]
2 · f0(y2)dy1dy2

= −
∫ +∞

−∞

∫ +∞

−∞
c11(F0(y1), F0(y2);α0) · v∗F (y1) · c(F0(y1), F0(y2);α0) · [f0(y1)]

2 · f0(y2)dy1dy2

= −Ec11(F0(Vt−1), F0(Vt);α0) · v∗F (Vt−1) · f0(Vt−1)

Based on similar logic, we have the remaining terms all being zeros. Hence F (γ0, v
∗) = 0.

Corollary 1. For Gaussian, Frank and EFGM copula, nonstationary structure will not affect lim-
iting distribution for two-step sieve estimator of these three copulas, when marginal is symmetric.

Notice c(u1, u2;α) = c(1−u1, 1−u2;α) is not satisfied for Clayton and Gumbel copula, F (γ0, v
∗)

is not zero in general for these two copulas, we need to simulate v∗ to get F (γ0, v
∗) in Section 6.3

for further analysis.

Remark 13. Chen et al. [2009] demonstrates that ideal sieve estimator is semiparametric efficient
when Vt is directly observed and there is no linear filtering. We find that two-step sieve estimator has
the same limiting distribution, as if there is no nonstationary filtering, thus also being semiparametric
efficient, when both marginal and copula are symmetric. Also, when F (γ0, v

∗) is exactly zero, our
limiting distribution will be normally distributed same as ideal estimator in Chen et al. [2009]. Hence
procedures for estimation of variance and corresponding inference could be applied as proposition
4.2 in Chen et al. [2009] and theorem 5.1 in Ai and Chen [2003].

Remark 14. All the above derivation focus on OLS regression β̂n. However, the only information
we utilize for proof is the convergence rate and the limiting distribution. If we consider another
estimator of nonstationary filtering coefficient with the assumption that it is of the usual root-n
convergence rate after our Gn standardization, then the limiting distribution of estimator for copula
parameter will follow the same pattern:

−F (γ0, v
∗)×

∫ 1

0

X(r)dr × ξ̃ +N(0, ‖v∗‖2)

constant term F (γ0, v
∗) and nonstationarlity term

∫ 1

0
X(r)dr remain the same. The only difference

is ξ̃, limiting distribution of
√
nGn(β̃n − β0). When both marginal and copula are symmetric, then

F (γ0, v
∗) is still zero and thus the new estimator α̂ is also semiparametric efficient following results

of Chen et al. [2009]. See Section 6.2.6 for analysis of joint sieve estimator.

6 Simulation

6.1 Copula and marginal choice

We consider five copulas, each with four choices of copula parameter introduced in Section 2.4.
Marginal distribution we experiment are student t distribution with degree of freedom 3 and 5.
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If (V1, V2) ∼ C(F0(·), F0(·)) and we know V1 in advance, we can apply the conditional approach
described in Nelson [1999] and Chen and Fan [2006] to generate uniform distributed time series
satisfying the specific copula, then apply inverse distribution function F−1

0 (·) to get V2:

1. Let U1 = F0(V1).

2. Generate a uniformly distributed random variable ε. Solve U2 by C1(U1, U2) = ε.
Here C1 := ∂C

∂u1
is the conditional distribution of U2 given U1.

3. V2 = F−1
0 (U2), here F0(·) is true marginal distribution function of V1 and V2.

To generate a first order Markov process specified by a copula C(·, ·) and a marginal F0(·), we can
repeat this algorithm sequentially.

For five copulas we consider in Section 2.4, expressions of conditional distribution C1 are:

• Gaussian copula

C1(u1, u2, α) =
1

2π
√

1− α2
· 1

φ(Φ−1(u1))
·∫ Φ−1(u2)

−∞
exp

[
− [Φ−1(u1)]2 + x2 − 2αx · Φ−1(u1)

2(1− α2)

]
dx (6)

• Frank copula

C1(u1, u2;α) =

(
1− (1− e−αu1)(1− e−αu2)

1− e−α

)−1

· 1− e−αu2

1− e−α
· e−αu1

• Clayton copula
C1(u1, u2;α) = (u−α1 + u−α2 − 1)−

1
α−1 · u−α−1

1

• EFGM copula
C1(u1, u2;α) = u2[1 + α(1− u2)(1− 2u1)]

• Gumbel copula

C1(u1, u2;α) = exp
[
− ((− log u1)α + (− log u2)α)

1
α

]
·

((− log u1)α + (− log u2)α)
1
α−1 · (− log u1)α−1 · 1

u1

6.2 Finite sample performance

6.2.1 Estimator

In this section we address the finite sample performance of sieve estimator β̂S by comparing it to
the empirical estimator proposed in Chen and Xiao [2016] and the infeasible (or ideal) estimator
proposed in Chen et al. [2009] where we observe Vt directly and there is no filtering. In all simulation,
sample size is T = 500, number of repetition is N = 2000.

For empirical approach, it is in fact a three step method. During the first step, we do OLS to get
V̂t = Yt −X ′tβ̂n. In second step, we compute empirical distribution according to V̂t to approximate
the true distribution function F (Vt):

F0(Vt)→ F̂n(V̂t) :=
1

n+ 1

n∑
i=1

I(V̂t ≤ V̂i)

On the last step, we do optimization to get α̂ based on F̂n(Ŷt):

max
α∈A

n∑
t=2

log c(F̂n(V̂t−1), F̂n(V̂t);α)
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For infeasible estimator α̂, assume there is no filtering and Yt is already observed. We do
optimization based on OLS residuals Ŷt and true distribution function F0 to get α̂:

max
α∈A,f∈Fn

n∑
t=1

log f(Vt) +

n∑
t=2

log c

(∫ Vt−1

−∞
f(y)dy,

∫ Vt

−∞
f(y)dy;α

)
Later our finite sample simulation results will show that both two-step sieve estimator and three-

step empirical estimator perform relatively bad when tail dependence of copula is relatively strong.
To solve this problem, we also consider joint estimator, which is not based on filtering residuals, a
natural extension when we optimize filtering coefficient β, copula parameter α and marginal f all
together:

max
α∈A,β∈B,f∈Fn

n∑
t=1

log f(Yt −X ′tβ) +

n∑
t=2

log c

(∫ Yt−1−X′t−1β

−∞
f(y)dy,

∫ Yt−X′tβ

−∞
f(y)dy;α

)
To illustrate robustness of nonparametric method, we also simulate the joint parametric estimator

where marginal parametric structure is mis-specified. Here we use normal distribution N(0, σ2) with
unknown variance to approximate student t distribution with degree 3 or 5. We optimize filtering
coefficient β, copula parameter α and normal distribution variance σ all together:

max
α∈A,β∈B,σ>0

n∑
t=1

log

[
1

σ
φ

(
Yt −X ′tβ

σ

)]
+

n∑
t=2

log c

(
Φ

(
Yt−1 −X ′t−1β

σ

)
,Φ

(
Yt −X ′tβ

σ

)
;α

)
here φ(·) and Φ(·) are density and distribution function for standard normal distribution, respec-
tively.

6.2.2 Non-stationarity structure of Xt

We consider several choices of nonstationarity structure of Xt:

• Xt is deterministic trend
Xt = t, Yt = Xtβ0 + Vt, β0 = 1

• Unit root process
Yt = Xtβ0 + Vt, β0 = 1, Xt = Yt−1

• Cointegration process
Xt = Xt−1 + ηt, ηt ∼ N(0, 1) independent of {Vt}. Yt = Xtβ0 + Vt, β0 = 1

6.2.3 Sieve choice

We use Laguerre polynomial sieve to approximate student t distribution with degree of freedom 3
and 5:

Fn =

f(y) =

[
Kn∑
k=0

ak ·
Lk(|y|)√

2
· e− x2

]2

,

∫ +∞

−∞
f(y)dy = 1

 (7)

The first several Laguerre polynomials to order 5 are:

L0(x) = 1

L1(x) = 1− x

L2(x) =
1

2

(
x2 − 4x+ 2

)
L3(x) =

1

6

(
−x3 + 9x2 − 18x+ 6

)
L4(x) =

1

24

(
x4 − 16x3 + 72x2 − 96x+ 24

)
L5(x) =

1

120

(
−x5 + 25x4 − 200x3 + 600x2 − 600x+ 120

)
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Laguerre polynomials are orthogonal based on kernel e−x:∫ +∞

0

Li(y)Lj(y)e−xdy =

{
0 if i 6= j

1 if i = j

Because we consider symmetric marginal t(3) and t(5) defined in whole real line, we extend

Laguerre polynomial Lk(y) to R1 as Lk(|y|)√
2

by dividing
√

2 in equation (7) to keep orthogonality.

For the finite sample simulation reports in this paper, we select Kn = 5. For real application, the
selection of number of sieve terms K̂n could be based on small sample AIC of Burnham and Anderson
[2003]: K̂n = arg max

K
{Ln(γ̂n(K))− K

n−K−1}, where γ̂n(K) is the sieve MLE of γ0 = (α0, f0) using

K as the sieve number of terms. We apply this criterion for sieve selection in empirical application,
see Section 7. Other criterion is also available like out-of-sample validation.

We can further simplify the constraint
∫
R1 f(y)dy = 1 in Fn. Notice orthogonality:∫ +∞

−∞

Li(|y|)√
2
· Lj(|y|)√

2
dy =

{
0 if i 6= j

1 if i = j

hence condition
∫
R1 f(y)dy = 1 can be simplified as:

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1

through which we can solve a0 analytically as:

a0 =

√√√√1−
5∑
k=1

a2
k

and then we can solve the gradient of both objective and constraint analytically rather than numer-
ically centered finite difference. Finite sample simulation shows that passing analytical gradient will
save us half computation time.

Comparing to power series log sieve applied in Chen et al. [2009], Laguerre polynomial square
root sieve does not need numerical integration and there is only one tuning parameter Kn (for log
sieve method, grid length is also need to predetermined). We can also write out analytical expression
of gradient for acceleration of optimization, whereas analytical gradient is nearly impossible for log
sieve. Furthermore, we utilize the prior information that the marginal distribution is symmetric so
we can extend Laguerre polynomial from [0,+∞) to R1.5

6.2.4 Discussion of Results

Selective tables for Clayton copula are presented in Section 116. S1 stands for joint sieve estimator,
S2 stands for two-step sieve estimator, S stands for ideal sieve estimator when Vt is directly observed,
E stands for three-step empirical estimator, P stands for joint parametric estimator but with mis-
specified parametric structure. See Section 6.2.1 for detail description of these estimators.

We concentrate on comparison between performance of copula parameter. At the same time,
we also list simulation results for linear filtering coefficient β bases on joint sieve method, joint
parametric(wrong) method and ordinary least square.

For Gaussian copula and Frank copula, joint sieve estimator, two-step sieve estimator and three-
step empirical estimator behave roughly the same. When positive dependence is strong(α0 = 0.9 for
Gaussian, α0 = 15 for Frank), three-step empirical estimator is a bit worse for all three nonstationary
structure(time trend, unit root and cointegration).

5Chen et al. [2009] also incorporate this prior knowledge, they use sieve basis {1, |y|3/2, y2, y4} for t(5) and
{1, |y|5/4, |y|3/2, y2, y4} for t(3), all are symmetric. We use these two sieves for robustness test for Clayton cop-
ula with α0 = 10, 12 in Section 6.2.5.

6For full simulation results: please click link here.
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Two step estimator behave quite well for Gaussian copula and Frank copula. Exceptions are unit
root case with strong negative dependence(α0 = −0.9 for Gaussian, α0 = −15 for Frank).

Simulation results below show that poor performance of OLS estimation of linear filtering β leads
to catastrophic estimation of copula coefficient α. Whereas joint sieve method achieves an accurate
estimator of β, hence α.

Table 1: Gaussian copula, α0 = −0.9; Xt unit root, t(3)

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve -1.999171 4.538162 24.591603 0.986184 1.003092
OLS -75.277011 84.950852 12883.275687 0.706989 0.995729

Table 2: Gaussian copula, α0 = −0.9; Xt unit root, t(5)

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve -2.990440 5.728011 41.752843 0.981622 1.003138
OLS -88.074103 90.051871 15866.387154 0.667253 0.994240

Table 3: Frank copula, α0 = −15; Xt unit root, t(3)

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve -0.956898 2.909754 9.382321 0.991497 1.002767
OLS -11.429428 15.176432 360.955899 0.946577 1.001403

Table 4: Frank copula, α0 = −15; Xt unit root, t(5)

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve -0.804994 2.633968 7.585801 0.992068 1.002814
OLS -42.106453 48.386098 4114.167866 0.821676 0.998329

Remark 15. We consider a simplified model to show why OLS estimator performs so bad for unit
root model when dependence is strong negative.

Let xt be a unit root process, xt = xt−1β0 + εt, β0 = 1, εt is an AR(1) process with strong
negative dependence (ρ is negative and closer to −1): εt = ρεt−1 + ηt, the residual term ηt is i.i.d

mean zero Eηt = 0 and finite variance Eη2
t < +∞. Then the variance for εt is σ2

ε := Eε2
t =

Eη2t
1−ρ2 ,

the long run variance for εt is ω2
ε := Eε2

t + 2
∞∑
k=1

Eεtεt+k = 1+ρ
1−ρσ

2
ε . Notice the limiting distribution

of OLS estimator β̂n is:

n(β̂n − 1)
d→ W 2(1)− σ2

ε/ω
2
ε

2
∫ 1

0
W 2(r)dr

=
W 2(1)− 1−ρ

1+ρ

2
∫ 1

0
W 2(r)dr

when ρ is closer to −1, 1−ρ
1+ρ tends to infinity. Thus we will have strong negative asymptotic bias

and this will be more obvious for finite sample simulation. This simple example illustrate why OLS
estimator has strong downward bias in unit root setting with strong negative dependence.

For EFGM copula, joint sieve estimator, two-step sieve estimator and three-step empirical esti-
mator behave quite similar, for all three nonstationary structure and four copula parameter choice.
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Theoretical explanation is shown in Chen et al. [2009] as EFGM copula is very close to the indepen-
dent copula (C(u1, u2) := u1u2, c(u1, u2) ≡ 1), because the distance between EFGM copula function
to the independent copula function is αu1u2(1− u1)(1− u2) ≤ 0.0625α for α ∈ [−1, 1].7

In summary, for Gaussian copula, Frank copula and EFGM copula, we can keep using two-step
sieve estimator and three-step empirical estimator, unless for extreme case (unit root with strong
negative dependence, Gaussian copula α0 = −0.9; Frank copula α0 = −15). When dependence is
strongly positive (Gaussian α0 = 0.9, Frank α0 = 15), joint > two-step > three-step. However, the
efficiency loss is not huge and we can still believe in the estimation from two-step sieve method and
three-step empirical method.

For copula with tail dependence, both two-step sieve estimator and three-step empirical estimator
do not converge well. Two-step sieve estimator has an acceptable bias but the variance is exploding,
whereas three-step empirical estimator is strongly downward biased. The stronger of tail dependence,
the worse performance for these two estimators. Meanwhile, joint sieve estimator is always stable
even for extreme tail dependence, such as Clayton copula (α0 = 10, 12) and Gumbel copula (α0 =
6, 7). Hence we recommend using joint sieve method when dealing with copula with tail dependence,
especially when data shows strong tail dependence.

In most cases, joint parametric estimator with mis-specified parametric marginal diverges from
the true value and is not comparable from other estimators. If we do not have strong belief about
parametric family structure of marginal, semi-parametric sieve method (joint or two-step) will defi-
nitely be a better choice.

6.2.5 Robustness and prior information

Variance of two-step sieve estimator explodes for Clayton copula, under Laguerre polynomial with
square sieve (Equation 1), especially when tail dependence is large (α0 = 10, 12), although the bias
of copula estimator is quite mild for two-step sieve estimator. In this section, we consider power
series log sieve (Equation 2) to check whether this phenomenon is general when we select different
sieve. Also we want to see if joint sieve estimator will still dominant other estimators for this log
sieve.

Same as Chen et al. [2009], we use sieve basis {1, |y|3/2, y2, y4} to approximate t(5) and sieve
basis {1, |y|5/4, |y|3/2, y2, y4} to approximate t(3). Then when marginal is t(5), KN = 3, A0(y) ≡ 1,
A1(y) = |y|3/2, A2(y) = y2 and A3(y) = y4. When marginal is t(3), KN = 4, A0(y) ≡ 1, A1(y) =
|y|5/4, A2(y) = |y|3/2, A3(y) = y2, A4(y) = y4. Then the marginal density function f0(y) can be
approximated as:

exp

(
KN∑
k=1

akAk(y)

)
∫

exp

(
KN∑
k=1

akAk(y)

)
dy

We approximate the density f0 the support [min(Vt)−sV ,max(Vt)+sV ], where sY is the sample
standard deviation of {Vt}. To evaluate the integral that appears in above density approximation,
we use a grid of equidistant points on [min(Vt)− sV ,max(Vt) + sV ]. The grid size in our estimation
report was chosen to be 0.005. In all simulation, sample size is T = 2000, number of repetition is
N = 500, marginal is student t distribution with degree of freedom 3 or 5, nonstationary structure
is as Section 6.2.2. Detail results are listed in Section 12.

Our results show that variance of two-step sieve estimator still diverges under power series log
sieve, although its bias is even a little smaller than joint estimator. Meanwhile joint sieve estimator is
quite stable, dominating both two-step sieve estimator and three-step empirical estimator proposed
in Chen and Xiao [2016]. For example, Clayton copula α0 = 12, Xt time trend together with marginal
t(3), the bias of two-step sieve estimator is even a little better than ideal estimator (0.848 < 0.890),
whereas the variance of two-step sieve estimator explodes. Joint estimator (MSE 4.942) dominates
two-step sieve estimator (MSE 29.732) and three-step empirical estimator (MSE 38.277) in this case.

7This could also be illustrated by Kendall’s tau. α = 0.9 ⇒ τ = 0.2, ρ = 0.3; α = 0.5 ⇒ τ = 0.111, ρ = 0.167;
α = −0.9⇒ τ = −0.2, ρ = −0.3; α = −0.5⇒ τ = −0.111, ρ = −0.167. They are quite similar and close to 0, which
is Kendall’s tau and Spearman’s rho for independent copula.
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Above results indicate that our finite sample simulation results that two-step sieve estimator
explodes when tail dependence is strong is not coincident. To further research why two-step sieve
estimator perform very bad for Clayton copula and Gumbel copula and how its performance are
affected by non-stationary linear filtering, we make simulation on F (γ0, v

∗) and ‖v∗‖2 in next section.
Before then, we will make a little modification for three-step estimator.

Notice that for all sieve based estimator (joint sieve estimator S1, two-step sieve estimator S2
and ideal sieve estimator S), we incorporate the prior information that the true marginal density
is symmetric around zero, whereas for three-step empirical estimator we still utilize the natural
empirical distribution function to approximate the true distribution function, not considering the
addition information from symmetry. Could three-step empirical estimator improve a lot if we add
this prior information appropriately?

For data V1, V2, · · · , Vn, if we know in advance that the marginal density is symmetric, then a
better approximation for true distribution F0(·) in empirical form is:

F̃ (x) =
1

2

(
1 + sign(x) · 1

n+ 1

n∑
t=1

I(|Vt| ≤ x)

)
(8)

We denote this estimator as E1, reported in the last column in Section 12. With symmetric
information incorporated, bias is smaller and the resulting MSE is nearly halved. For example,
Clayton copula, α0 = 12, Xt time trend, marginal t(3), MSE decreased from 38.277 to 20.807, when
we use F̃ (·) instead of natural empirical distribution function. However, MSE of joint sieve estima-
tor is only 4.942, a much better performance. Hence, symmetric version of empirical distribution
function does help a lot for estimator performance, it will still be strictly dominated by joint sieve
estimator, when tail dependence is relatively strong, like Clayton copula and Gumbel copula, if
copula parameter is large.

6.2.6 Semiparametric efficiency

If joint sieve estimator of linear filtering coefficient β̂jointn has the usual convergence rate: Gn(β̂jointn −
β0) = Op(1/

√
n), then joint sieve estimator of copula parameter α̂jointn is semiparametric efficient,

when both marginal and copula are symmetric. This fact follows from Remark 14 and Chen et al.
[2009].

Analyze the cases when marginal is symmetric and our focus is copula parameter. For Frank
copula and EFGM copula, both joint-sieve estimator and two-step sieve estimator are theoretically
equivalent to ideal sieve estimator hence seimparametric efficient. For Gaussian copula, joint sieve
estimator, two-step sieve estimator and three-step empirical estimator has the exactly the same
limiting distribution8 as ideal sieve estimator, hence all three estimators being semiparametric ef-
ficient. However, finite sample results above show that joint sieve estimator is still better than its
competitors, especially when the dependence is extreme.

To further illustrate the convergence speed, for Frank copula with time trend and cointegration,
sample size ranging from T = 200 to T = 1500, we plot the finite sample MSE of five estimators:
joint sieve estimator, two-step sieve estimator, ideal sieve estimator(theoretically best), three-step
empirical estimator and three-step modified empirical estimator(see above section). Simulation
repetition is N = 2000. I attach results for α0 = 15 here. For full simulation results are in: please
click link here.

8Chen et al. [2006] show that for stationary model where Yt is directly observed, empirical distribution method
reaches semiparameteric efficiency bound for Gaussian copula. While Chen and Xiao [2016] demonstrates that non-
stationary structure will not affect limiting distribution of three-step empirical estimator. Thus three-step empirical
estimator is semiparametric efficient when copula is Gaussian.
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Figure 1: Frank copula, α0 = 15

When dependence is low (α0 = ±0.5), all estimators behave similar, the efficiency loss is quite
trifling when we take different estimation methods. When dependence is large (α0 = ±15), all
estimators are asymptotically equivalent. However, only joint sieve estimator keeps the same path
of ideal sieve estimator. Other estimators display some efficiency loss when sample size is small.
These figures not only demonstrate that joint sieve estimator has superb finite sample performance
but also show us an intuition that the assumption Gn(β̂jointn − β0) = Op(1/

√
n) should be satisfied

and thus α̂jointn is root-n normally distributed with same limiting variance as ideal sieve estimator.

6.3 Analysis of F (γ0, v
∗) and ‖v∗‖2

In this section, we use simulation in a new sieve space Bn to approximate true v∗ and finally get
‖v∗‖2 and F (γ0, v

∗) for Clayton copula and Gumbel copula.

6.3.1 Simulation scheme

Denote space L̃0
2[0, 1] as function space from unit interval to real line satisfying zero integration,

finite square integration and symmetry around 1
2 :

L̃0
2[0, 1] :=

{
e : [0, 1]→ R1

∣∣∣∣∫ 1

0

e(u)du = 0,

∫ 1

0

[e(u)]
2

du < +∞, e(u) = e(1− u)

}
Let e∗ solves the following infinite dimensional optimization problems:

inf
e∈L̃0

2[0,1]
E

(
∂ log c(U1,U2;α0)

∂α − e(U2)− ∂ log c(U1,U2;α0)
∂u1

∫ U1

0
e(u)du

−∂ log c(U1,U2;α0)
∂u2

∫ U2

0
e(u)du

)2
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and I∗(α0) be the minimum objective function value. Here both U1 and U2 are uniformly distributed
random variables, joint distribution following copula c(·, ·;α0).

Then from Chen et al. [2009], we have ‖v∗‖2 = 1
I∗(α0) and v∗ = [1,−e∗(F0(·))f0(·)] · ‖v∗‖2.

In general, there is no closed form solution of e∗ and I∗(α0). Nevertheless we use a sieve for
L0

2[0, 1]. Sieve space B̃n is recommended from Chen et al. [2006] due to its simple structure9:

B̃n =

{
e(u) =

Kn∑
k=1

ak
√

2 cos(2kπu), u ∈ [0, 1],

Kn∑
k=1

a2
k < +∞

}

In experiment, we letN = 1, 000, 000 andKN = 20 to solve optimization problems for a1, a2, · · · , a20.
Simulate bivariate uniformly distributed random variables (U1i, U2i), joint distribution following

copula function c(·, ·;α0), independent across i = 1, 2, · · · , n. Then we need to solve optimization
problem:

min
a1,··· ,a20

1,000,000∑
i=1

(
∂ log c(U1i,U2i;α0)

∂α −
KN∑
k=1

ak
√

2 cos(2kπU2i)− ∂ log c(U1i,U2i;α0)
∂u1

·

KN∑
k=1

ak
√

2 sin(2kπU1i)
2kπ − ∂ log c(U1,U2;α0)

∂u2
·
KN∑
k=1

ak
√

2 sin(2kπU2i)
2kπ

)2

to get a1, a2, · · · , a20 and denote the minimum objective function value as I∗(α0).

Notice v∗f (y) = −
√

2f0(y)
I∗

KN∑
k=1

ak cos(2kπF0(y)), then:

v∗F (y) = −
√

2

2kπI∗

KN∑
k=1

ak sin(2kπF0(y))

v̇∗f (y) =

√
2

I∗

KN∑
k=1

ak

{
2kπ sin [2kπF0(y)] · [f0(y)]

2 − cos [2kπF0(y)] · ḟ0(y)
}

With the help of detail equation in Section 9.3, we can simulate to get F (γ0, v
∗).

F (γ0, v
∗) = E

v̇∗f (Vt) · f(Vt)− f ′(Vt) · v∗f (Vt)

[f(Vt)]
2

+c1(Ut−1, Ut;α0) · v∗f (Vt−1) + c11(Ut−1, Ut;α0) · v∗F (Vt−1) · f(Vt−1)

+c12(Ut−1, Ut;α0) · v∗F (Vt) · f(Vt−1) + c12(Ut−1, Ut;α0) · v∗F (Vt−1) · f(Vt)

+c1α(Ut−1, Ut;α0) · v∗α + c2α(Ut−1, Ut;α0) · v∗α
+c2(Ut−1, Ut;α0) · v∗f (Yt) + c22(Ut−1, Ut;α0) · v∗F (Vt) · f(Vt)

Notice c(u1, u2;α) ≡ c(u2, u1;α) holds for all five copulas introduced in Section 2.4, we have:

Ec1(Ut−1, Ut;α0) · v∗f (Vt−1) = Ec2(Ut−1, Ut;α0) · v∗f (Vt)

Ec11(Ut−1, Ut;α0) · v∗F (Vt−1) · f(Vt−1) = Ec22(Ut−1, Ut;α0) · v∗F (Vt) · f(Vt)

Ec12(Ut−1, Ut;α0) · v∗F (Vt) · f(Vt−1) = Ec12(Ut−1, Ut;α0) · v∗F (Vt−1) · f(Vt)

Ec1α(Ut−1, Ut;α0) = Ec2α(Ut−1, Ut;α0)

9As we restrict our density to be symmetric around zero, function e(·) should be symmetric around 1
2

, thus we

consider sieve space B̃n only including even terms cos(2kπu), but without odd terms cos((2k− 1)πu) as they are not
symmetric around 1

2
.
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take last equation for example. From c(u1, u2;α) ≡ c(u2, u1;α) we have log c(u1, u2;α) ≡ log c(u2, u1;α),
thus c1α(u1, u2;α) ≡ c2α(u1, u2;α), hence

Ec1α(Ut−1, Ut;α0) =

∫ 1

0

∫ 1

0

c1α(u1, u2;α0) · c(u1, u2;α0)du1du2

=

∫ 1

0

∫ 1

0

c2α(u2, u1;α0) · c(u2, u1;α0)du1du2

=

∫ 1

0

∫ 1

0

c2α(u1, u2;α0) · c(u1, u2;α0)du1du2

= Ec2α(Ut−1, Ut;α0)

Notice both v∗f and f0 are symmetric around zero, the first term will be zero:

E
v̇∗f (Vt) · f0(Vt)− ḟ0(Vt) · v∗f (Vt)

[f0(Vt)]
2 = 0

Hence we only need to simulate: Ec1(Ut−1, Ut;α0)·v∗f (Yt−1), Ec11(Ut−1, Ut;α0)·v∗F (Vt−1)·f(Vt−1),
Ec12(Ut−1, Ut;α0) · v∗F (Vt) · f(Vt−1) and Ec1α(Ut−1, Ut;α0). We generate M = 1, 000, 000 random
pairs of (Y1i, Y2i) ∼ C(F0(·), F0(·);α0), independent each other, to simulate these constants: U1i =
F−1

0 (V1i), U2i = F−1
0 (V2i).

10

Detail results are listed in Section 10.

6.3.2 Results discussion

For Clayton copula, I∗(0.05857 → 0.01265 → 0.00431 → 0.00328) decreases with α0(2 → 5 →
10 → 12). For Gumbel copula, I∗(0.15178 → 0.02298 → 0.00529 → 0.00369) decreases with
α0(2→ 3.5→ 6→ 7). Both results are consistent with our finite sample results that the larger the
copula parameter α0(hence larger tail dependence), the larger MSE of the ideal estimator.

For Clayton copula, |F (γ0, v
∗)| increase with α0 for both t(3) and t(5). This indicates that

filtering term may have a huge difference to our two step sieve estimator comparing with ideal
estimator. Consistent with bad performance of two step estimator relative to ideal estimator when
tail dependence is large following our finite sample results.

For Gumbel copula, |F (γ0, v
∗)| also increase with α0 for both t(3) and t(5). However, the

magnitude is smaller than Clayton copula. Hence although two step estimator is also affected by
linear filtering for Gumbel copula, its difference with ideal estimator is smaller than Clayton copula.

Notice all estimators are significant in a 99% confidence interval11, combining with finite sample
simulation results, we can conclude that nonstationary structure will have a significant influence on
two-step sieve estimator for Clayton copula and Gumbel copula.

6.3.3 Robustness

All the above simulation results are based on sieve choice KN = 20 for space Bn. In this section,
we set instead KN = 22 to check whether the simulation results are robust when we approximate
v∗f with different sieve complexity.

Results for a1, a2, · · · , a22 and I(α∗) are attached referred to full simulation results. I(α∗) for
KN = 20 implies the limiting variance for ideal sieve estimator ‖v∗‖2 = 1/I(α∗) will increase with
tail dependence. Results for KN = 22 illustrates same pattern and the implied standard deviation
are quite similar:

10For example, we simulate Ec1(Ut−1, Ut;α0) · v∗f (Vt−1) as:

1

1, 000, 000

1,000,000∑
i=1

c1(U1i, U2i;α0) · v∗f (V1i)

1199% confidence interval is computed as: mean value ± 2.58× standard deviation /
√

1, 000, 000
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Table 5: Simulation results for ‖v∗‖ under KN = 20 and KN = 22

Clayton copula α0 = 2 α0 = 5 α0 = 10 α0 = 12

KN = 20 4.131889428 8.892009093 15.22619114 17.46279624
KN = 22 4.138018088 8.905668555 15.2466739 17.48473315

Gumbel copula α0 = 2 α0 = 3.5 α0 = 6 α0 = 7

KN = 20 2.566823748 6.597379413 13.75524445 16.45891828
KN = 22 2.572639121 6.643081106 13.92829938 16.68856978

Results for F (γ0, v
∗) are attached in Section 10.2. Estimation for F (γ0, v

∗) is quite similar for
KN = 20 and KN = 22. For example, with Clayton copula α0 = 5 and marginal t(3), F (γ0, v

∗) ≈
3.795 for KN = 20 and F (γ0, v

∗) ≈ 3.807 for KN = 22. And the results are all significant for both
Clayton copula and Gumbel copula and for both t(3) and t(5).

All above results indicate robustness of our simulation scheme.

6.4 Variance of ξ

From Remark 14, the effect of nonstaionary structure to limiting distribution of estimator has three

effects: F (γ0, v
∗),
∫ 1

0
X(r)dr and limiting distribution of linear filtering coefficient. In above section,

there is clear evidence to reveal that F (γ0, v
∗) is not zero for Clayton copula and Gumbel copula.

The magnitude |F (γ0, v
∗)| will increase with tail dependence.

∫ 1

0
X(r)dr is irrelevant with copula

structure. In this section, through a simplified model, we will demonstrate that limiting variance
of linear filtering coefficient estimator through OLS method explosed as tail dependence gets larger,
for Clayton copula and Gumbel copula. And this provides an intuition why two-step sieve estimator
gets diverged but joint sieve estimator is stable, when tail dependence becomes larger.

Suppose now both marginal distribution (F0 and f0) and copula parameter (α0) are observed.
Only time trend and cointegration are considered here such that Xt is independent of the Yt system.
We need to incorporate the copula structure into the objective function for MLE estimator β̂MLE

n

by maximizing:

max

n∑
t=1

log f0(Yt −Xtβ) +

n∑
t=2

log c(F0(Yt−1 −Xt−1β), F0(Yt −Xtβ), α0)

to get β̂MLE
n .

Suppose we still have consistency condition β̂MLE
n

p→ β0, make Taylor expansion, we have:

1√
n

n∑
t=1

h(Vt−1, Vt) ≈ A3 ·G−1
n Xt ·

√
nGn(β̂MLE

n − β0)

for h(Vt−1, Vt) := ġ(Vt) + l1(Vt−1, Vt;α0) + l2(Vt−1, Vt;α0).
Here A3 is defined as the expectation of:

g̈(Vt) + c11(Vt−1, Vt;α0) + 2c12(Vt−1, Vt;α0) + c22(Vt−1, Vt;α0)

Then the limiting distribution of β̂MLE
n is:

√
nGn(β̂MLE

n − β0)⇒ ω1

A3
·
∫ 1

0
X(r)dW (r)∫ 1

0
[X(r)]2dr

here W (·) is a standard Wiener process independent of X(·) and ω2
1 is the long run variance of

h(Vt−1, Vt) := ġ(Vt) + l1(Vt−1, Vt;α0) + l2(Vt−1, Vt;α0). However, we can see that h(Vt−1, Vt) is in
fact a martingale difference sequence E (h(Vt−1, Vt)|Ft−1) = 0, where Ft is defined as the σ−algebra
generated by Vt, Vt−1, Vt−2, · · · . See remark below for detail. Hence ω2

1 is indeed the variance of

h(Vt−1, Vt), ω
2
1 = E [ġ(Vt) + l1(Vt−1, Vt;α0) + l2(Vt−1, Vt;α0)]

2
.

26



Remark 16. Notice E (h(Vt−1, Vt)|Ft−1) = E (h(Vt−1, Vt)|Vt−1) due to Markov property. We first
show that El1(Vt−1, Vt;α0|Yt−1) = 0:

El1(Vt−1, Vt;α0|Vt−1) =

∫ +∞

−∞

∫ +∞

−∞
c1(F0(y1), F0(y2);α0) · [f0(y1)]

2 · f0(y2)dy1dy2

=

∫ +∞

−∞

∫ +∞

−∞
c1(F0(y1), F0(y2);α0) · [f0(y1)]

2 · f0(y2)dy2dy1

=

∫ +∞

−∞
[f0(y1)]

2 ·
(∫ 1

0

c1(F0(y1), u;α0)du

)
dy1∫ 1

0
c(F0(y1), u;α0)du will always be 1 no matter what value y1 takes, as this is the condi-

tional density of second element of a bivariate copula system given the first element. If we as-

sume differentiation and integration can exchange, then we have
∫ 1

0
c(F0(y1), u;α0)du ≡ 0. Hence

El1(Vt−1, Vt;α0|Vt−1) is always zero.
We next show that E (ġ(Vt)|Vt−1) + E (l2(Vt−1, Vt;α0)|Vt−1) ≡ 0:

E (l2(Vt−1, Vt;α0)|Vt−1) =

∫ +∞

−∞

∫ +∞

−∞
c2(F0(y1), F0(y2);α0) · f0(y1) · [f0(y2)]

2
dy1dy2

=

∫ +∞

−∞

∫ +∞

−∞
c2(F0(y1), F0(y2);α0) · f0(y1) · [f0(y2)]

2
dy2dy1

=

∫ +∞

−∞
f0(y1) ·

(∫ +∞

−∞
f0(y2)dc(F0(y1), F0(y2);α0)

)
dy1

= −
∫ +∞

−∞

∫ +∞

−∞
f ′0(y2) · c(F0(y1), F0(y2);α0) · f0(y2)dy1dy2

= −E (ġ(Vt)|Vt−1)

the integration will hold once the regulation condition is satisfied:

lim
y2→+∞

f0(y2)c(F0(y1), F0(y2);α0) = lim
y2→−∞

f0(y2)c(F0(y1), F0(y2);α0) = 0

Limiting distribution for OLS estimator β̂OLSn follows similar pattern as we just replace the
variance of Vt with its long run variance:

√
nGn(β̂OLSn − β0)⇒ ωV ·

∫ 1

0
X(r)dW (r)∫ 1

0
[X(r)]2dr

We need to compare ω1/|A3| with ωV to measure performance of β̂MLE
n and β̂OLSn . We generate

a 10 million length time series to simulate the long run variance of Yt through method in Newey and

West [1987] with Bartlett kernel12, ω2
V ≈ γ̂0 + 2

∞∑
k=1

(
1− k

L+1

)
γ̂k.

Simulation repetition is 80 times and results are reported as an simple average. Detail simulation
results are attached below:

Table 6: Clayton copula

marginal t(3) α0 = 2 α0 = 5 α0 = 10 α0 = 12√
lrvar(Yt) 5.18401319 11.42061148 22.41561542 26.73142608√

var h(Yt−1, Yt)/|A3| 1.72819808 1.42744164 1.20674291 1.16647114

marginal t(5) α0 = 2 α0 = 5 α0 = 10 α0 = 12√
lrvar(Yt) 3.71094687 8.04308102 15.64510863 18.61165040√

var h(Yt−1, Yt)/|A3| 1.66953871 1.39415455 1.18403436 1.14351576

12Kernel window size is set to be L = max{L ≤ 2000|γ̂(L+ 1) ≤ 0.005}.
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Table 7: Gumbel copula

marginal t(3) α0 = 2 α0 = 3.5 α0 = 6 α0 = 7√
lrvar(Yt) 4.17103442 7.83155913 13.94437015 16.61133628√

var h(Yt−1, Yt)/|A3| 2.13638789 2.39868612 2.39310372 2.38050671

marginal t(5) α0 = 2 α0 = 3.5 α0 = 6 α0 = 7√
lrvar(Yt) 3.08007116 5.76228169 10.33584921 12.37445128√

var h(Yt−1, Yt)/|A3| 2.21904427 2.65616174 2.69937590 2.68964755

Simulation results show that MLE estimator β̂MLE
n will outperform OLS estimator β̂OLSn , es-

pecially when Yt has large tail dependence. Take Clayton copula marginal t(5) for example, the
long run variance of Yt is strictly increasing with the copula parameter(α0 : 2 → 5 → 10 → 12,

ωY : 3.71 → 8.08 → 15.65 → 18.61), indicating bad performance of OLS estimator β̂OLSn when
copula parameter is extreme. However, ω1/|A3| is roughly constant(α0 : 2 → 5 → 10 → 12,
ω1/|A3| : 1.67→ 1.39→ 1.18→ 1.14). These results further illustrates another excuse for explosion
of two-step sieve estimator and the advantage of joint sieve estimator under strong tail dependence,
due to different precision of estimation for nonstationary filtering coefficient.

7 Empirical Application

7.1 Model

Academics, practitioners and individual investors have long been interested in understanding the
value and usefulness of sell-side analysts’ equity reports. In recent years, security analysts have been
increasingly disclosing target prices in these reports, along with their stock recommendations and
earnings forecasts. Theses target prices provide market participants with analysts’ most concise and
explicit statement on the magnitude of the firm’s expected value. Brav and Lehavy [2003] analyzes
the long-term behavior of market and target prices by establish a cointegration relationship between
them:

Yt = Xtβ0 + Vt

here Yt is stock price and Xt is consensus stock price. Both time series follow a unit root pattern
and there exists a cointegration relation β0 such that the residuals Vt = Yt −Xtβ0 are stationary.

When making prediction of Yt based on Xt, we also have past information Yt−1 and Xt−1

available. Although Vt−1 is still not available as β0 is not observed, we can get residuals V̂t−1 from
our estimator β̂. If we can research on the residual structure of Yt and get some useful inference of
Vt based on V̂t−1, a more efficient and precise prediction of Vt (or its quantile) would be desirable.
However, the prediction cannot be done until we specify the serial relationship of Vt. In this part,
we furthermore utilize our copula technique to analyze dependence structure in the residuals derived
from this cointegration to see whether the suggested dependency is consistent and robust.

Given copula structure c(u1, u2;α) and past information Ft−1 = σ {Xt, Yt−1, Xt−1, Yt−2, Xt−2 · · · },
the 5% quantile of stock price Yt is predicted as Xtβ̂ + V̂ , here V̂ is the solution of:∫ V̂

−∞
c(F̂ (Yt−1 −Xt−1β̂), F̂ (y); α̂)f̂(y)dy = 0.05 (9)

and the conditional expectation of stock price Yt is predicted as:

Xtβ̂ +

∫ +∞

−∞
c(F̂ (Yt−1 −Xt−1β̂), F̂ (y); α̂)f̂(y)ydy

α̂ is estimator for copula parameter, β̂ is estimator for cointegration coefficient, F̂ and f̂ are non-
parametric estimator for marginal distribution and density respectively. Better estimation results
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of these variables are attractive for value-at-risk calculation and stock price prediction conditional
on consensus target price.

Stock price data is from CRSP13, Zt is weekly stock close price. Target price data is from IBES14,
Xt is consensus target price issued over the proceeding past range from 1 day to 90 days15. Both
data are split adjusted. Intuitively, left side is closing price in one week, which we want to predict.
On one day before, we had collected all target price available in 90 days then take an average. As
each target price prediction is for 12 months, this consensus target price could be viewed as a proxy
of analysts’ consensus prediction of stock’s one year profitability.

We consider stock price of Amazon incorporation(Nasdaq AMZN) in recent 10 years, from 2008
January to 2018 April (Apr. 20, 2018). Length of time series is 537. We first conduct augmented
Dickey Fuller test for both stock weekly price and consensus target price. Both fail to reject the
null hypothesis H0 : existing unit root, with p-value larger than 0.99. Then we conduct Johansen
cointegration test. Result shows that we should reject the null hypothesis H0 : no integration, at
1% level significance level.16

Table 8: Cointegration test
H0 : no cointegration test statistic 10% 5% 1%

AMZN 80.20 12.91 14.90 19.19

First, we run ordinary least square to get residuals V̂t and make a plot of (V̂t−1, V̂t), from which
we can observe positive dependence clearly:

Figure 2: Plot of OLS residuals (Ŷt−1, Ŷt), NASDAQ AMZN

13The Center for Research in Security Prices. Thanks to Boston College for purchasing the data.
14Institutional Brokers Estimate System. Thanks to Boston College for purchasing the data.
15We will select other days for robustness test in Section 7.4
1610%, 5%, 1% means critical value at corresponding significance level. Out test statistic 102.38 is larger than 1%

significance level critical value 19.19. Hence we can reject the null hypothesis at 1% significance level.
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We first try Gaussian copula to compare joint sieve method, two-step sieve method and three-
step empirical method. Our choice of sieve is consistent with Section 6.2.3, Laguerre polynomials
to order K = 3, 4 or 5. Selection of number of sieve terms K̂n are based on small sample AIC of
Burnham and Anderson [2003]: K̂n = arg max

K
{Ln(γ̂n(K))− K

n−K−1}. We also add a variance term

σ to control the scale:

f(y) =
1

σ

[
Kn∑
k=0

ak ·
Lk(|y|/σ)√

2
· e− x2

]2

hence we will estimate the standard variance σ at the same time with ai, i = 0, 1, · · · , 5.
Results for Gaussian copula are based on data to September 2018. Length of time series is 507.

The remaining 30 samples are left for out-of-sample prediction in next section.

Table 9: Gaussian copula, in-sample estimation
joint two step empirical

filter β 0.86143812 0.87177696 0.87177696
copula α 0.88745260 0.88753331 0.87059250

Estimation of copula parameter is similar between between four methods. Whereas two-step
sieve method shows a little larger positive dependence. Meanwhile, our estimation of linear filtering
coefficient from joint sieve method is also robust, which is quite close to OLS result(0.86143812 →
0.87177696).

7.2 Prediction

7.2.1 Conditional quantile

The estimated marginal distribution function F̂ is automatically monotonic for both sieve method
and empirical method. We can easily pass Equation 9 to step 2 in Section 6.1 for solving the
conditional quantile in analytic expression.

First step, we compute the estimated residuals in past period as: V̂t = Yt−Xtβ̂. Then we transfer
V̂t−1 to uniform: Ût−1 = F̂ (V̂t−1). Let C1(Ût−1, Ût) = 0.05 to solve Ût. For Gaussian copula, we have
an analytic expression from Equation 6 as Ût = Φ(V ), then the conditional quantile Q̂τ (Yt|Ft−1)

is computed as Xtβ̂ + F̂−1(V ):

V = Φ−1(0.05×
√

2π · φ
(

Φ−1(Ût−1)
)
· exp

([
Φ−1(Ût−1)

]2
/2

)
;µ = α̂Φ−1(Ût−1), σ2 = 1− α̂2)

here φ(·) and Φ(·) are density and distribution functions for standard normal distribution, respec-
tively. Φ(·;µ, σ2) is the distribution function for normal distribution with mean µ and variance σ2,
Φ−1(·;µ, σ2) is the corresponding inverse.

As the conditional quantile is unobserved from the data, we conduct a simulation with similar
copula parameter to test whether sieve methods have better prediction precision for conditional
quantile comparing to empirical method.

We generate time series Yt = Xtβ0 + Vt for t = 1, 2, · · · , T = 600. (Vt−1, Vt) satisfies Gaussian
copula for α0 = 0.9 together with marginal t(3). Xt follows unit root Xt = Xt−1 + εt, εt ∼ N(0, 1)

independent of Vt. The first 500 data are used for estimation of β̂, α̂ and F̂ (·). Remaining 100 data
are for out-of-sample test of conditional quantile. We consider two fitness measures: mean square√√√√ 1

100

600∑
t=501

(
Q̂(Ŷt|Ft−1)−Q(Yt|Ft−1)

)2

and mean absolute value
1

100

600∑
t=501

∣∣∣Q̂(Ŷt|Ft−1)−Q(Yt|Ft−1)
∣∣∣
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here Q(Yt|Ft−1) is the conditional quantile obtained with same procedure above but based on true
parameter β0 = 1, α0 = 0.9 and F0 ∼ t(3).

For both criterions, joint sieve method provides the best prediction of conditional quantile,
whereas three-step empirical method is the worst among three.

Table 10: Gaussian copula, conditional quantile
joint two step empirical

mean square 0.06049159 0.10284027 0.25545852
mean absolute value 0.04910866 0.08871507 0.10042358

7.2.2 Conditional expectation

Unlike conditional quantile where we have analytic expression, theoretically calculation of:∫ +∞

−∞
c(F̂ (Yt−1 −Xt−1β̂), F̂ (y); α̂)f̂(y)ydy

is time consuming. In this section, we consider an simulation approximation utilizing the special
structure of Gaussian copula to check whether our sieve methods have a better predicting power.

Notice the fact that if (Vt−1, Vt) ∼ C(F (Vt−1), F (Vt);α) for Gaussian copula, then the conditional
distribution of Φ−1(F (Vt)) given Vt−1 is:

Φ−1(F (Vt))|Vt−1 ∼ N
(
α · Φ−1(F (Vt−1)), 1− α2

)
Generate i.i.d. random variables ξi ∼ N(0, 1), i = 1, 2, · · · ,M = 20000. Given estimation of α̂,

β̂ and F̂ (no matter based on sieve method or empirical method), an approximation of Vt given past
information could be:

1

M

M∑
i=1

Φ
(
F̂−1(α̂ · Φ−1(F (Yt−1 −Xt−1β̂)) +

√
1− α2ξi)

)
thus conditional expectation of Zt given Xt is approximated as:

Xtβ̂ +
1

M

M∑
i=1

Φ
(
F̂−1(α̂ · Φ−1(F (Yt−1 −Xt−1β̂)) +

√
1− α2ξi)

)
For out-of-sample prediction, we consider two criterion functions: mean square and mean absolute

value. Results based on 30 observations are attached below:

Table 11: Gaussian copula, out-of-sample prediction
joint two step empirical

mean square 47.49788177 45.99579732 59.91085578
mean absolute value 40.65527030 38.83713746 46.77323927

Both joint sieve method and two-step sieve method have a better prediction power than three-
step empirical method. It seems surprising at first glance that two-step sieve method is a little better
than joint sieve method. However, this result is indeed consistent with our finite sample simulation
rsults. For Gaussian copula, α0 = 0.5, cointegration, time length T = 500, when marginal is t(3),
relative efficiency is 1.072 for joint sieve estimator and 1.155 for two-step sieve estimator. When
marginal is t(5), relative efficiency is 1.021 for joint sieve estimator and 1.018 for two-step sieve
estimator. Their performance are quite close and it is not amazing that two-step sieve method will
outperform joint sieve method in a single experiment.
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7.3 Tail dependence

However, Gaussian copula has zero tail dependence and hence cannot reflect effect of extreme event.
Financial markets tend to exhibit tail dependence, especially lower tail dependence. For example,
major stock returns in normal times have a correlation of, roughly 0.5, but in September/October
2008, some pairs had correlation of over 0.9. They were both falling massively. Copulas without
tail dependence, such as Gaussian copula, will under estimate potential loss when market disaster
happens. Wen et al. [2012], Jondeau and Rockinger [2006] and Nguyen and Bhatti [2012] are
examples when people considers copulas rather than Gaussian copula for modeling tail dependence.
Here we apply Clayton copula to model the lower tail dependence of residuals Vt.

Result for Clayton copula:

Table 12: Clayton copula, in-sample estimation
joint two step empirical

filter β 1.11467093 0.87177696 0.87177696
copula α no convergence no convergence 3.52417476

Estimation of copula parameter will not converge for both joint sieve method and two-step sieve
method. Whereas three-step empirical method and its modification show a larger tail dependence(α =
3.5→ λL = 82.03%). We make plot of (Vt−1, Vt) from simulation of Clayton copula α0 = 3.5 together
with marginal t(3) and t(5):

Figure 3: Clayton copula, α0 = 3.5, (Yt−1, Yt)

When α0 = 3.5, cluster of lower tail is quite obvious. Comparing to plot of OLS residuals
(V̂t−1, V̂t) where lower tail is still disperse, we believe that no evidence showing strong lower tail
dependence. Hence result from three-step empirical method (and its modification) is misleading
for this application and our sieve methods illustrates correctly that Clayton copula may not be a
good choice to model serial dependence for the residual terms and whether we should utilize tail
dependence in this setting is questionable.

We conduct a simulation to illustrate the above results. Suppose the true model is generated
through Gaussian copula but we use Clayton copula to fit the data. We want to show that the above
empirical results are not coincident but with some certainty, that empirical method will lead to a
misleading result for sure and sieve method will diverge with large probability.

Yt = Xtβ0 + Vt for t = 1, 2, · · · , T = 500. (Vt−1, Vt) satisfies Gaussian copula for α0 = 0.9
together with marginal t(3). Xt follows unit root Xt = Xt−1 + εt, εt ∼ N(0, 1) independent of
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Vt. Results based on Clayton copula are attached below, showing that joint sieve estimator and
two-step sieve estimator tend to explode while empirical estimator is quite stable around 3, which
is a misleading result as we state above.

Table 13: Clayton copula, true data from Gaussian copula
joint two step empirical

mean 55.48412474 70.36815328 2.74811295
median 35.43051811 44.86515709 2.71396259

std 75.62500201 79.59951726 0.42425493
2.5% 2.99817449 3.19520767 2.00109238
97.5% 289.89230810 315.23311081 3.65729449

7.4 Robustness

The above results are based on consensus target price average in 90 days. We also consider other
choices for robustness, like 75 days and 105 days, difference in around two weeks. Both new target
price series pass the augmented Dickey Fuller test with p-value greater than 0.99. Conclusion are
similar and we attach detail output in Section 13.

All results here indicate that if people want to apply our model to characterize the unobserved
stationary residuals as parametric copula together with nonparametric marginal, sieve method could
be a better choice than empirical method.

8 Conclusion and extensions

This paper considers estimation of copula based dynamic semiparametric models coupled with non-
stationary filtration. A two-step sieve method is proposed and asymptotic properties of the proposed
estimators are developed. We show that its limiting distribution is not affected by nonstationary
structure if both the marginal and copula are symmetric. In the absence of symmetry, the limiting
distributions are usually non-normal due to nonstationarity, and the impact of the preliminary fil-
tration is increasing with the strength of asymmetric tail dependence. Simulation results indicate
that the tail dependence brings a finite sample bias in the two-step sieve estimator. For this reason,
a joint sieve estimator is also proposed and studied. Monte Carlo simulation demonstrates that
the joint estimation is superior in all cases than two-step estimators. An empirical estimation for
cointegration between weekly stock price and consensus target price to highlight the theoretical find-
ing. The results are important for value-at-risk calculation and stock price prediction conditional
on consensus target price.

EXTENSION. When nonstationarity exists in objective function, identification is quite hard
without some higher order assumption (see e.g. De Jong [2002]). Moreover, the sieve structure will
make the problem quite complex. Hence theoretical property of joint sieve method is still unknown.
For example, when both marginal and copula are symmetric, how can we derive the convergence
rate of linear coefficient estimator; when symmetric is violated (e.g. Clayton copula), what is the
limiting distribution of joint sieve estimator?

Another extension would be inference. Our model fully characterizes the joint probability distri-
bution, making sieve likelihood ratio test available as in Chen et al. [2009]. Simulations of bootstrap
likelihood ratio test on joint sieve estimation have been done and the size is great. Theoretical
validation of this inference procedure is of practical value for further research.
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9 Technical Appendix

9.1 Proof of Lemma 1

Proof. For any positive ε > 0, we consider P

(
sup

α∈A,f∈Fn
|Qn(α, f)−Q(α, f)| > ε

)
.

Let b∗n =
√
n(X ′1(β0 − β̂), X ′2(β0 − β̂), · · · , X ′n(β0 − β̂)). Here β̂ is the estimator satisfying

Assumption 2.
Then Qn(α, f) = Ln(γ, b∗n). Definition of Ln is referred to equation (4).
Now we analyze ‖b∗n‖1:

‖b∗n‖1 = max
1≤t≤n

√
n|X ′t(β0 − β̂)|

= max
1≤t≤n

|X ′tG−1
n ·
√
nGn(β0 − β̂)|

≤ max
1≤t≤n

‖G−1
n Xt‖2 · ‖

√
nGn(β̂ − β0)‖2

The last step is because for two vectors α and β, |αTβ| ≤
√
αTα ·

√
βTβ by Cauchy Schwarz

inequality.
Following Assumption 2, G−1

n X[nr] ⇒ X(r), then by continuous mapping theorem, max
1≤t≤n

‖G−1
n Xt‖2 ⇒

sup
0<r<1

‖X(r)‖2. Also
√
nGn(β̂−β0) = Op(1), then ‖

√
nGn(β̂−β0)‖2 = Op(1). Thus ‖b∗n‖1 = Op(1).

By definition of Op(1), for any positive δ > 0, there exists B > 0 and N0 such that P(‖b∗n‖1 >
B) ≤ δ when n ≥ N0.

Then when n ≥ N0, the event sup
α∈A,f∈Fn

|Ln(γ, b∗n) − Q(α, f)| > ε implies either ‖b∗n‖1 > B or

‖b∗n‖1 ≤ B, sup
β∈B,f∈Fn

|Ln(γ, b∗n)−Q(β, f)| > ε.

The probability of first event is smaller than δ. The probability of second event is smaller than:

P

 sup
b∈Rn,‖b‖1≤B

γ∈Γn

|Ln(γ, b)−Q(β, f)| > ε


Notice this term tends to zero when n→∞ following Assumption 8. We have:

lim sup
n→∞

P

(
sup

α∈A,f∈Fn
|Qn(α, f)−Q(α, f)| > ε

)
≤ δ

Choice of δ > 0 is arbitrary. Hence we have

lim
n→∞

P

(
sup

α∈A,f∈Fn
|Qn(α, f)−Q(α, f)| > ε

)
= 0

Thus uniform continuity sup
α∈A,f∈Fn

|Qn(α, f)−Q(α, f)| = op(1) is verified.
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9.2 Proof of Theorem 1

Proof. First notice γ̂n = (α̂n, f̂n) will maximize Qn(α, f) in Γn, for any ε > 0, we have:

P (‖γ̂n − γ0‖c > ε) ≤ P

 sup
γ∈Γn

‖γ−γ0‖c>ε

Qn(α, f) ≥ Qn(α0, πnf0)


Following triangle inequality:

sup
γ∈Γn

‖γ−γ0‖c>ε

Qn(α, f) ≤ sup
γ∈Γn

‖γ−γ0‖c>ε

[Q(α, f) + |Qn(α, f)−Q(α, f)|]

≤ sup
γ∈Γn

‖γ−γ0‖c>ε

Q(α, f) + sup
γ∈Γn

|Qn(α, f)−Q(α, f)|

Qn(α0,Πnf0) ≥ Q(α0,Πnf0)− |Qn(α0,Πnf0)−Q(α0,Πnf0)|
≥ Q(α0,Πnf0)− sup

γ∈Γn

|Qn(α, f)−Q(α, f)|

Combine above equations, we have:

sup
γ∈Γn

‖γ−γ0‖c>ε

Qn(α, f) ≥ Qn(α0, πnf0)

implies
sup
γ∈Γn

‖γ−γ0‖c>ε

Q(α, f) ≥ Q(α0,Πnf0)− 2 sup
γ∈Γn

|Qn(α, f)−Q(α, f)|

further implies

2 sup
γ∈Γn

|Qn(α, f)−Q(α, f)|+ [Q(α0, f0)−Q(α0,Πnf0)] (10)

≥ Q(α0, f0)− sup
α∈A,f∈Fn

Q(α, f)

Following Assumption 5, right hand side: Q(α0, f0)− sup
α∈A,f∈Fn

Q(α, f) is larger than η(ε) > 0.

Following Assumption 7 and uniform continuity sup
α∈A,f∈Fn

|Qn(α, f)−Q(α, f)| = op(1), left hand

side: 2 sup
γ∈Γn

|Qn(α, f)−Q(α, f)|+ [Q(α0, f0)−Q(α0,Πnf0)] is op(1) + o(1), which is still op(1).

By definition of convergence in probability, the probability of this event (i.e. equation (10)) will
tend to zero when n→∞.

Hence P (‖γ̂ − γ0‖c > ε) tends to zero when n towards to infinity. Thus ‖γ̂ − γ0‖ = op(1).

Furthermore, we have ‖γ̂ − γ0‖c = ‖α̂− α0‖2 + ‖f̂ − f0‖c = op(1), this implies α̂
p→ α0.

9.3 Proof of Theorem 2

Proof. Let r(γ, γ0) = l(γ, V̂t−1, V̂t)− l(γ0, Vt−1, Vt)− ∂l(γ0,Vt)
∂γ′ [γ − γ0].

Denote r∗(γ, γ0) = l(γ, Vt−1, Vt)− l(γ0, Vt−1, Vt)− ∂l(γ0,Vt−1,Vt)
∂γ′ [γ − γ0].

Then for a sequence εn satisfying ε̃n <
√
nεn = o(1), where ε̃n is defined in Assumption 19, we
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have:

0 ≤ Qn(γ̂n)−Qn(γ̂n ± εnΠnv
∗)

=
1

n

n∑
t=2

[l(γ̂n, V̂t−1, V̂t)− l(γ̂n ± εnΠnv
∗, V̂t−1, V̂t)

+
1

n
[log f̂n(V1)− log(f̂n(V1)± εnΠnv

∗
f (V1))]

= ∓εn ·
∂l(γ0, Vt−1, Vt)

∂γ′
[Πnv

∗] + µn(r(γ̂n, γ0)− r(γ̂n ± εnΠnv
∗, γ0))

+E0
1

n

n∑
t=2

[r∗(γ̂n, γ0)− r∗(γ̂ ± εnΠnv
∗, γ0)]

+E0
1

n

n∑
t=2

[
l(γ̂n, V̂t−1, V̂t)− l(γ̂n ± εnΠnv

∗, V̂t−1, V̂t)

−l(γ̂n, Vt−1, Vt) + l(γ̂n ± εnΠnv
∗, Vt−1, Vt)

]
+

1

n
[log f̂n(V1)− log(f̂n(V1)± εnΠnv

∗
f (V1))]

:= A1 +A2 +A3 +A4 + εn · op(n−
1
2 )

The first term A1 := ∓εn · ∂l(γ0,Yt−1,Yt)
∂γ′ [Πnv

∗] = ∓εn · ∂l(γ0,Vt−1,Vt)
∂γ′ [v∗] + εn · op(n−

1
2 ) from Chen

et al. [2009] proof Theorem 4.1 Claim 1.

The second term A2 := µn(r(γ̂n, γ0)− r(γ̂ ± εnΠnv
∗, γ0)) = εn · op(n−

1
2 ) from Assumption 20.

The third term A3 := E 1
n

n∑
t=2

[r∗(γ̂n, γ0) − r∗(γ̂n ± εnΠnv
∗, γ0)] = ±εn× < γ̂n − γ0, v

∗ > +εn ×

op(n
−1/2) from proof of Chen et al. [2009] Theorem 4.1 Claim 3.

The last term A4 := E0
1
n

n∑
t=2

[l(γ̂n, V̂t−1, V̂t)− l(γ̂n ± εnΠnv
∗, V̂t−1, V̂t)− l(γ̂n, Vt−1, Vt) + l(γ̂n ±

εnΠnv
∗, Vt−1, Vt)] could be simplified to ∓εn · F (γ0, v

∗) ·
∫ 1

0
X(r)dr · ξ + εn · op(1/

√
n) due to As-

sumption 21, 21, 18 and 2.
Combine the above terms, we get:

√
n(α̂n − α0)⇒ −F (γ0, v

∗)×
∫ 1

0

X(r)dr × ξ +N(0, ‖v∗‖2)

Here N(0, ‖v∗‖2) is the limiting distribution of
√
n · ∂l(γ0,Vt−1,Vt)

∂γ′ [v∗], see Chen et al. [2009] proof
of Theorem 4.1.

F (γ0, v
∗) is defined as E∂2l(γ0,Vt−1,Vt)

∂γ∂y1
[v∗] + E∂2l(γ0,Vt−1,Vt)

∂γ∂y2
[v∗]. The detail expression is:

E
v̇∗f (Vt) · f0(Vt)− ḟ0(Vt) · v∗f (Vt)

[f0(Vt)]2

+ Ec11(Ut−1, Ut;α0) · v∗F (Vt−1) · f0(Vt−1) + Ec12(Ut−1, Ut;α0) · v∗F (Vt−1) · f0(Vt)

+ Ec1(Ut−1, Ut;α0) · v∗f (Vt−1) + Ec2(Ut−1, Ut;α0) · v∗f (Vt)

+ Ec12(Ut−1, Ut;α0) · v∗F (Vt) · f0(Yt−1) + Ec22(Ut−1, Ut;α0) · v∗F (Vt) · f0(Vt)

+ Ec1α(Ut−1, Ut;α0) · f0(Vt−1) · v∗α + Ec2α(Ut−1, Ut;α0) · f0(Vt) · v∗α
Here v∗F (x) =

∫ x
−∞ v∗f (y)dy, Ut−1 = F0(Vt−1), Ut = F0(Vt).

c1(u1, u2, α) = ∂ log c(u1,u2,α)
∂u1

, c2(u1, u2, α) = ∂ log c(u1,u2,α)
∂u2

.

cα(u1, u2, α) = ∂ log c(u1,u2,α)
∂β , c11(u1, u2, α) = ∂2 log c(u1,u2,α)

∂u2
1

.

c12(u1, u2, α) = ∂2 log c(u1,u2,α)
∂u1∂u2

, c22(u1, u2, α) = ∂2 log c(u1,u2,α)
∂u2

2
.

c1α(u1, u2, α) = ∂2 log c(u1,u2,α)
∂u1∂α

, c2α(u1, u2, α) = ∂2 log c(u1,u2,α)
∂u2∂α

.
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Remark 17. Definition of l(γ, y1, y2) is:

l(γ, y1, y2) = log f(y2) + log c

(∫ y1

−∞
f(y)dy,

∫ y2

−∞
f(y)dy;α

)
Notice that v∗ has two parts: v∗ = (v∗α, v

∗
f ), then:

l(γ0 + ηv∗, y1, y2) = log
[
f0(y2) + ηv∗f (y2)

]
+

log c

(∫ y1

−∞
f0(y)dy + η

∫ y1

−∞
v∗f (y)dy,

∫ y2

−∞
f0(y)dy + η

∫ y2

−∞
v∗f (y)dy;α0 + ηv∗α

)
From equation 5, define F0(x) :=

∫ x
−∞ f0(y)dy and v∗F (x) =

∫ x
−∞ v∗f (y)dy, we have:

∂l(γ, y1, y2)

∂γ′
[v∗] =

v∗f (y2)

f(y2)
+ c1 (F0(y1), F0(y2);α0) · v∗F (y1) +

c2 (F0(y1), F0(y2);α0) · v∗F (y2) + cα (F0(y1), F0(y2);α0) · v∗α

Take derivative to y1:

∂2l(γ0, y1, y2)

∂γ∂y1
[v∗] = c11 (F0(y1), F0(y2);α0) · f0(y1) · v∗F (y1) +

c1 (F0(y1), F0(y2);α0) · v∗f (y1) + c12 (F0(y1), F0(y2);α0) · f0(y1) · v∗F (y2) +

c1α (F0(y1), F0(y2);α0) · f0(y1) · v∗α

Take derivative to y2:

∂2l(γ0, y1, y2)

∂γ∂y2
[v∗] =

v̇∗f (y2) · f0(y2)− ḟ0(y2) · v∗f (y2)

[f(y2)]
2 + c11 (F0(y1), F0(y2);α0) · f0(y1) · v∗F (y1) +

c1 (F0(y1), F0(y2);α0) · v∗f (y1) + c12 (F0(y1), F0(y2);α0) · f0(y1) · v∗F (y2) +

c1α (F0(y1), F0(y2);α0) · f0(y1) · v∗α

Replace y1 with Vt−1, y2 with Yt. Also denote Ut−1 = F0(Vt−1), Ut = F0(Vt), we have:

E
∂2l(γ0, Vt−1, Vt)

∂γ∂y1
[v∗] + E

∂2l(γ0, Vt−1, Vt)

∂γ∂y2
[v∗]

= E
v̇∗f (Vt) · f0(Vt)− ḟ0(Vt) · v∗f (Vt)

[f0(Vt)]2

+ Ec11(Ut−1, Ut;α0) · v∗F (Vt−1) · f0(Vt−1) + Ec12(Ut−1, Ut;α0) · v∗F (Vt−1) · f0(Vt)

+ Ec1(Ut−1, Ut;α0) · v∗f (Vt−1) + Ec2(Ut−1, Ut;α0) · v∗f (Vt)

+ Ec12(Ut−1, Ut;α0) · v∗F (Vt) · f0(Yt−1) + Ec22(Ut−1, Ut;α0) · v∗F (Vt) · f0(Vt)

+ Ec1α(Ut−1, Ut;α0) · f0(Vt−1) · v∗α + Ec2α(Ut−1, Ut;α0) · f0(Vt) · v∗α

A more detailed proof is omitted due to the length of the paper but is available upon request.
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10 Simulation for F (γ0, v
∗) for Clayton and Gumbel copula

10.1 KN = 20

Table 14: Clayton copula

Clayton α0 = 2 α0 = 5 α0 = 10 α0 = 12

t(3) 1.10991432 3.79487138 9.41862191 11.63949125
left 1.08583010 3.71753452 9.20862531 11.35345182

right 1.13399854 3.87220824 9.62861852 11.92553068
t(5) 1.49694402 4.39367369 10.04265303 12.29797097
left 1.46836395 4.29856560 9.79114444 11.96080819

right 1.52552410 4.48878179 10.29416161 12.63513376

Table 15: Gumbel copula

Gumbel α0 = 2 α0 = 3.5 α0 = 6 α0 = 7

t(3) -0.35962340 -1.21945840 -3.27915940 -4.14579532
left -0.37250963 -1.26587638 -3.43938546 -4.37154749

right -0.34673717 -1.17304041 -3.11893333 -3.92004315
t(5) -0.45954655 -1.26717679 -2.97835988 -3.69481887
left -0.47427085 -1.32361721 -3.18271507 -3.98469622

right -0.44482225 -1.21073637 -2.77400469 -3.40494152

10.2 KN = 22

Table 16: Clayton copula

Clayton α0 = 2 α0 = 5 α0 = 10 α0 = 12

t(3) 1.11351056 3.80699264 9.44613433 11.67302713
left 1.08939602 3.72974093 9.23669040 11.38772307

right 1.13762510 3.88424434 9.65557826 11.95833119
t(5) 1.50173782 4.40824070 10.07445166 12.33684502
left 1.47318417 4.31365127 9.82503578 12.00244720

right 1.53029147 4.50283014 10.32386755 12.67124284

Table 17: Gumbel copula

Gumbel α0 = 2 α0 = 3.5 α0 = 6 α0 = 7

t(3) -0.36122994 -1.23548582 -3.36153808 -4.26244901
left -0.37415915 -1.28229997 -3.52443241 -4.49254466

right -0.34830072 -1.18867166 -3.19864375 -4.03235336
t(5) -0.46140088 -1.28162959 -3.04303470 -3.78464738
left -0.47615549 -1.33832683 -3.24977658 -4.07869208

right -0.44664627 -1.22493234 -2.83629282 -3.49060268
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11 Square root sieve

11.1 Time trend

Table 18: Clayton copula, α0 = 12; Xt time trend; marginal t(3)

α0 = 12 S1 S2 S E P

mean 12.390020 12.091684 12.340644 6.104206 16.029835
bias 0.390020 0.091684 0.340644 -5.895794 4.029835
std 2.424539 6.170698 2.177290 1.875286 4.300961

MSE 6.030506 38.085919 4.856632 38.277081 34.737834
relative 1.241705 7.842044 1 7.881405 7.152659

2.5% 9.455326 5.316279 10.296216 3.285070 8.409757
97.5% 19.884956 25.000000 20.022432 10.576679 25.000000

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve 0.078258 2.195015 4.824215 0.999039 1.000786
OLS 0.065571 2.921240 8.537945 0.992728 1.003194

parametric 19.901275 47.339936 2637.130306 0.996754 1.156430

Table 19: Clayton copula, α0 = 12; Xt time trend; marginal t(5)

α0 = 12 S1 S2 S E P

mean 12.502974 12.145863 12.374938 6.128115 14.022040
bias 0.502974 0.145863 0.374938 -5.871885 2.022040
std 2.580538 5.789021 2.246420 1.912847 3.551555

MSE 6.912157 33.534035 5.186981 38.138012 16.702190
relative 1.332597 6.465039 1 7.352641 3.220021

2.5% 9.449404 5.546247 10.321597 3.268238 8.024558
97.5% 23.026350 25.000000 21.763029 10.699746 25.000000

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve -0.055905 0.610807 0.376211 0.998851 1.000753
OLS 0.046979 2.242401 5.030571 0.994035 1.002667

parametric 20.324849 41.614826 2144.893247 0.998357 1.131316
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11.2 Unit root

Table 20: Clayton copula, α0 = 12; Xt unit root; marginal t(3)

α0 = 12 S1 S2 S E P

mean 12.399042 11.937420 12.340731 6.219080 15.834364
bias 0.399042 -0.062580 0.340731 -5.780920 3.834364
std 2.298290 5.510775 2.177099 1.950947 3.651948

MSE 5.441371 30.372562 4.855858 37.225234 28.039068
relative 1.120579 6.254829 1 7.666047 5.774277

2.5% 9.721399 5.640541 10.296216 3.291824 9.020098
97.5% 18.612457 25.000000 20.022435 10.811720 25.000000

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve -0.144993 1.015039 1.051327 0.997780 1.001457
OLS 2.408317 1.892584 9.381863 0.999844 1.006944

parametric -1.052325 7.451765 56.636187 0.994238 1.004058

Table 21: Clayton copula, α0 = 12; Xt unit root; marginal t(5)

α0 = 12 S1 S2 S E P

mean 12.510076 12.069806 12.374938 6.264702 13.895997
bias 0.510076 0.069806 0.374938 -5.735298 1.895997
std 2.458474 5.252980 2.246420 2.011569 3.044865

MSE 6.304270 27.598676 5.186981 36.940052 12.866010
relative 1.215403 5.320759 1 7.121686 2.480443

2.5% 9.606274 5.881196 10.321597 3.276511 8.486591
97.5% 21.130121 25.000000 21.763029 11.086462 25.000000

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve -0.126832 1.020734 1.057985 0.997611 1.001754
OLS 2.381391 1.850620 9.095819 0.999873 1.006666

parametric -0.294973 12.419458 154.329937 0.996393 1.002898
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11.3 Cointegration

Table 22: Clayton copula, α0 = 12; Xt cointegration; marginal t(3)

α0 = 12 S1 S2 S E P

mean 12.327888 11.817449 12.340682 5.874031 15.756159
bias 0.327888 -0.182551 0.340682 -6.125969 3.756159
std 2.277177 5.223738 2.177206 1.814410 3.358357

MSE 5.293045 27.320762 4.856291 40.819577 25.387293
relative 1.089936 5.625850 1 8.405505 5.227713

2.5% 9.733464 5.445915 10.296216 3.150459 11.564163
97.5% 18.842197 25.000000 20.022436 10.238318 25.000000

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve -0.118581 5.503727 30.305069 0.988646 1.010854
OLS 1.672495 65.560251 4300.943799 0.893515 1.113421

parametric -0.077138 12.432901 154.582985 0.974382 1.024501

Table 23: Clayton copula, α0 = 12; Xt cointegration; marginal t(5)

α0 = 12 S1 S2 S E P

mean 12.378719 11.969450 12.374938 5.893641 13.974475
bias 0.378719 -0.030550 0.374938 -6.106359 1.974475
std 2.356531 5.022992 2.246420 1.822452 2.796164

MSE 5.696666 25.231382 5.186981 40.608949 11.717088
relative 1.098262 4.864367 1 7.829014 2.258942

2.5% 9.760541 5.716948 10.321597 3.161708 10.886874
97.5% 21.213324 25.000000 21.763029 10.262889 25.000000

β0 = 1 bias×103 std×103 MSE×106 2.5% 97.5%

sieve -0.049948 5.165665 26.686589 0.990082 1.010590
OLS 1.144755 50.229566 2524.319730 0.911823 1.095445

parametric -0.075015 6.572480 43.203117 0.987086 1.013605

12 Log sieve

12.1 Time trend

Table 24: Clayton copula, α0 = 12; Xt time trend; marginal t(3)

α0 = 12 S1 S2 S E E1

mean 10.820670 11.152059 11.109732 6.104206 7.983544
bias -1.179330 -0.847941 -0.890268 -5.895794 -4.016456
std 1.884414 5.386411 1.180313 1.875286 2.162303

MSE 4.941834 29.732428 2.185714 38.277081 20.807470
relative 2.260970 13.603070 1 17.512388 9.519757

2.5% 8.063555 5.123517 9.007488 3.285070 4.489908
97.5% 14.438227 25.000000 13.108848 10.576679 12.687488
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Table 25: Clayton copula, α0 = 12; Xt time trend; marginal t(5)

α0 = 12 S1 S2 S E E1

mean 11.156425 11.449140 11.301299 6.128115 8.190875
bias -0.843575 -0.550860 -0.698701 -5.871885 -3.809125
std 1.710430 5.289210 1.057431 1.912847 2.342150

MSE 3.637191 28.279192 1.606343 38.138012 19.995100
relative 2.264268 17.604705 1 23.742136 12.447591

2.5% 8.460203 5.258930 9.316576 3.268238 4.564534
97.5% 14.929536 25.000000 13.332056 10.699746 13.467270

12.2 Unit root

Table 26: Clayton copula, α0 = 12; Xt unit root; marginal t(3)

α0 = 12 S1 S2 S E E1

mean 10.969984 11.175585 11.114346 6.219080 8.031966
bias -1.030016 -0.824415 -0.885654 -5.780920 -3.968034
std 1.605914 5.062578 1.164483 1.950947 1.965568

MSE 3.639892 26.309357 2.140403 37.225234 19.608748
relative 1.700564 12.291777 1 17.391693 9.161241

2.5% 8.272588 5.343988 9.041769 3.291824 4.626597
97.5% 14.223595 25.000000 13.108848 10.811720 11.918983

Table 27: Clayton copula, α0 = 12; Xt unit root; marginal t(5)

α0 = 12 S1 S2 S E E1

mean 11.269823 11.524558 11.301302 6.264702 8.199972
bias -0.730177 -0.475442 -0.698698 -5.735298 -3.800028
std 1.696507 4.997589 1.057432 2.011569 2.051522

MSE 3.411296 25.201937 1.606343 36.940052 18.648955
relative 2.123642 15.689018 1 22.996373 11.609576

2.5% 8.590813 5.570762 9.316576 3.276511 4.665593
97.5% 14.842655 25.000000 13.332055 11.086462 12.382381

12.3 Cointegration

Table 28: Clayton copula, α0 = 12; Xt cointegration; marginal t(3)

α0 = 12 S1 S2 S E E1

mean 10.924942 10.880250 11.107974 5.874031 7.966668
bias -1.075058 -1.119750 -0.892026 -6.125969 -4.033332
std 1.354789 4.568501 1.191008 1.814410 1.945689

MSE 2.991203 22.125040 2.214210 40.819577 20.053475
relative 1.350912 9.992294 1 18.435277 9.056717

2.5% 8.340442 5.180986 8.999724 3.150459 4.467643
97.5% 13.402914 25.000000 13.108848 10.238318 11.872324
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Table 29: Clayton copula, α0 = 12; Xt cointegration; marginal t(5)

α0 = 12 S1 S2 S E E1

mean 11.158440 11.151072 11.301302 5.893641 8.105867
bias -0.841560 -0.848928 -0.698698 -6.106359 -3.894133
std 1.260010 4.457627 1.057432 1.822452 2.015088

MSE 2.295848 20.591118 1.606343 40.608949 19.224851
relative 1.429239 12.818635 1 25.280380 11.968089

2.5% 8.666289 5.360964 9.316576 3.161708 4.500327
97.5% 13.710618 25.000000 13.332055 10.262889 12.289780

13 Empirical results

13.1 Target price: 75 days

Table 30: Cointegration test
H0 : no cointegration test statistic 10% 5% 1%

AMZN 94.58 12.91 14.90 19.19

Table 31: Gaussian copula, in-sample estimation
joint two step empirical

filter β 0.85885274 0.86628940 0.86628940
copula α 0.88111838 0.87691301 0.85902297

Table 32: Gaussian copula, out-of-sample prediction
joint two step empirical

mean square 49.22776111 46.27214580 62.11960223
mean absolute value 42.09943212 39.48921785 49.27176517

Table 33: Clayton copula, in-sample estimation
joint two step empirical

filter β 1.01641083 0.86628940 0.86628940
copula α no convergence no convergence 3.14160691

13.2 Target price: 105 days

Table 34: Cointegration test
H0 : no cointegration test statistic 10% 5% 1%

AMZN 102.38 12.91 14.90 19.19
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Table 35: Gaussian copula, in-sample estimation
joint two step empirical

filter β 0.86604591 0.87677088 0.87677088
copula α 0.87837231 0.89761183 0.88144247

Table 36: Gaussian copula, out-of-sample prediction
joint two step empirical

mean square 49.68143941 45.53424167 57.73661726
mean absolute value 41.98012533 38.14044441 44.67737604

Table 37: Clayton copula, in-sample estimation
joint two step empirical

filter β 1.12172763 0.87677088 0.87677088
copula α no convergence no convergence 3.58999512
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Part II

Chapter 2: Estimation of Parametric
Dynamic Copula Models with Filtered
Nonstationarity

Abstract

This paper considers estimation of copula based dynamic parametric models coupled with
nonstationary filtration. Two new methods are proposed: joint estimator and two-step estima-
tor. New theoretical results are obtained regarding: (1) conditions under which these estimator
are equivalent asymptotically; (2) the effects of nonstationarity on limiting distributions and its
relationship to tail dependence of copula. Monte Carlo simulation compares the performance
between literature three-step estimator and our two new estimators. Three-step estimator is
in general inferior to our two estimators. Joint estimator is found to always be superior to all
other estimators in a variety of Monte Carlo simulation designs, especially in the presence of
strong tail dependence. Hence joint method is what we suggest in practical use.

14 Introduction

Chen and Xiao [2016] propose the following model:

Zt = X ′tβ + Yt

(Yt−1, Yt) ∼ C(F (Yt−1, θ), F (Yt, θ);α)

where Xt is a non-stationary trend and distribution of Yt is characterized by a parametric copula and
marginal. Chen and Xiao [2016] research on this model based on three step estimator. After first
step linear filter β to get residues, they estimate the marginal θ at the second step and estimate the
copula parameter α at last. In this paper, we consider two alternative estimators: joint estimator and
two-step estimator. For two-step estimator, after first step linear filtration β, we estimate marginal
θ and copula α together. For joint estimator, we estimate three terms β, θ and α at the same time.

Chen and Xiao [2016] show that the nonstationarity will affect the limiting distribution of three-
step estimator in general case. We derive the same results for joint estimator and two-step estimator.
However, in the special case when both copula and marginal are symmetric, all three estimators will
not be affected by the structure of nonstationary regressor Xt. Both joint estimator and two-step
estimator are asymptotically equivalent to the infeasible estimator. And we show that all of them
are better than three-step estimator asymptotically.

When either copula or marginal is asymmetric, the above equivalence relationship does not hold
and the nonstationarity will affect the limiting distribution of above estimators. Especially for
copulas with tail dependence, such as Clayton and Gumbel, we show that this effect is positively
related to the strength of tail dependence. The theoretical results are consistent with finite simulation
findings that relative MSE of our estimators comparing to the infeasible benchmark is increasing
with tail dependence.

Three step estimator is found to suffer finite sample bias when tail dependence is strong. Our
simulation results demonstrate that our joint method is very stable, even under extreme tail depen-
dence. Furthermore, for copulas without tail dependence, three-step estimator is still inferior to our
joint estimator and two-step estimator in finite sample performance.

14.1 Related literature

While a large number of previous work using copulas has focused on modeling the contemporaneous
dependence between multiple univariate series, there are also a growing number of papers using
copulas to model the temporal dependence of univariate nonlinear time series. Darsow et al. [1992],
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Victor et al. [2006] and Ibragimov [2009] provide characterizations of a copula-based time series to
be a Markov process. See Patton [2012] for a review of copula models in economic time series.

There is fairly extensive literature concentrating only on nonlinearity by assuming that Yt is di-
rectly observed in the copula Markov process. Joe [1997] proposes a general structure with paramet-
ric stationary Markov models based on parametric copulas and parametric marginal distributions.
Chen and Fan [2006] characterizes copula function by parametric family, but deals with marginal
distribution nonparametrically with empirical distribution. Chen et al. [2009] use sieve maximum
likelihood estimation method to solve the model with parametric copula function and nonparametric
marginal distribution function. Doukhan et al. [2005] research on the case for both copula function
and univariate marginal distribution function estimated nonparametrically.

All the above models are based on assumption of stationarity. However, nonstationarity is an
important empirical features in economic and financial time series. Many observed time series seem
to display non-stationary characteristics. To the best of the author’s knowledge, Chen and Xiao
[2016] is the only literature combining nonstationarity and nonlinearity together based on copula
Markov model in a fully parametric way. Chen and Xiao [2016] also analyze the semiparametric
model by treating marginal nonparametrically. In this paper, we only research on fully parametric
model. Results for semiparametric model will be presented in another project.

The rest of this article is organized as follows. In Section 15 and 16, we introduce our estimators,
the nonstationary structure and several commonly used copulas. In Section 17, we analyze the
relationship among estimators when both copula and marginal are symmetric. In Section 18 and
19, we concentrate on how asymmetry of copula and marginal will affect our estimators. In Section
20 we summarize simulation results on finite sample performance. Section 21 concludes.

15 Background

15.1 The Model

We assume that the observed time series {Zt}nt=1 can be modeled as:

Zt = X ′tβ0 + Yt

where X ′tβ0 is the non-stationary component and Yt is the stationary component with non-linearity.
In particular, we assume that Xt is a d dimensional vector of dependent variables that may be
non-stationary. The second component, Yt, is a stationary process with non-linearity that can be
captured by a copula function. For simplicity and without loss of generality, we assume in this paper
that {Yt}nt=1 is a first-order strictly stationary Markov process. Higher order Markov process can be
investigated similarly.

Under the assumption that {Yt}nt=1 is a first-order stationary Markov process, its statistic prop-
erty is fully characterized by the true bi-variate joint distribution of Yt−1 and Yt, say H0(yt−1, yt).
Further suppose that Yt is continuously distributed. Denote marginal distribution function of Yt be
F0(·), respectively. Then by Sklar’s theorem, there exists unique copula function C0(·, ·) satisfying:

H0(a, b) = C0(F0(a), F0(b))

which holds for all (a, b) ∈ R2.
Here the copula function C0(·, ·) is a bi-variate probability distribution function with uniform

marginals. Denote the corresponding copula density of C0(u1, u2) by c0(u1, u2), and the density of
the marginal distribution F0(·) by f0(·), the true conditional density of Yt given Yt−1 is:

p(Yt|Yt−1) = f0(Yt)c(F0(Yt−1), F0(Yt))

Thus, given {Yt}nt=1, the log likelihood of the sample is

1

n

n∑
t=1

log f0(Yt) +
1

n

n∑
t=2

log c(F0(Yt−1), F0(Yt)) (11)
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For convenience of asymptotic analysis, we make following assumptions on the dynamics of the
latent process {Yt}.

Assumption 22. {Yt : t = 1, 2, · · · , n} is a sample of a stationary first-order Markov process
generated from (F (·; θ0), C(·, ·;α0)), where F (·; θ0) is the true invariant distribution up to unknown
value θ0, is absolutely continuous with respect to Lebesgue measure on the real line; C(·, ·;α0) is the
true parametric copula for (Yt−1, Yt) up to unknown value α0, is absolutely continuous with respect
to Lebesgue measure on [0, 1]2, and is neither the Fréchet-Hoeffding upper (C(u1, u2) = min{u1, u2})
nor the the lower (C(u1, u2) = max{u1 + u2 − 1, 0}) bound.

Assumption 23. The process {Yt} is absolutely regular with mixing coefficient β(τ) = O(τ−δ), for
a constant δ > 0.

Remark 18. See Chen and Fan [2006], Chen et al. [2009], Beare [2010], Beare [2012], Longla and
Peligrad [2012] and others about sufficient conditions that most commonly used copula-based Markov
process is geometric ergodic and hence absolutely regular with polynomial decay mixing coefficinets.
.

Concerning on the non-stationary component and the related filtration, we make the following
assumptions to facilitate asymptotic analysis.

Assumption 24. There exists a scaling matrix Gn such that:(
Xn(r)
Yn(r)

)
⇒
(

X(r)
λYW (r)

)

here Xn(r) := G−1
n X[nr] and Yn(r) := 1√

n

[nr]∑
t=1

Yt. λ
2
Y := EY 2

t +2
∞∑
s=1

EYtYt+s is the long run variance

of Yt. W (r) is a standard Wiener process.

Remark 19. Due to non-stationarity in Xt, we introduced appropriate re-standardization via the
scaling matrix Gn to facilitate asymptotic analysis. The limit of the standardized non-stationary
component, X(r), may be stochastic or deterministic or a mixture of stochastic and deterministic
functions. In the case when X(r) contains stochastic functions, W (r) and X(r) may be correlated.

The limiting distribution, ξ, of the filtration parameter is a function of X(·) and may not be a
normal variate. Leading cases that are widely used in time series application includes the following:

Example 4. Deterministic trend.
Xt is a vector of deterministic trend function and G−1

n X[nr] ⇒ X(r), where X(r) is a continuous

limiting trending function. Let the estimator of β be β̂n,

√
nGn(β̂n − β0)⇒ ξ1

where in general ξ1 is a normal variate.
Then the detrend data is given by Ŷt = Zt − X ′tβ̂. For example, if the observed time series

{Zt}nt=1 contains a linear trend:
Zt = β01 + β02 · t+ Yt

In practice, we estimate copula model based on OLS:

Ŷt = Zt − β̂01 − β̂02 · t

The corresponding standardization matrix is Gn = diag(1, n),
√
nGn = diag(n

1
2 , n

3
2 ), Xt = (1, t)′

and X(r) = (1, r)′. Limiting distribution is ξ1 = λξ, where:

ξ =

(
1 1

2
1
2

1
3

)−1

·
(

W (1)∫ 1

0
sdW (s)

)
here W (s), s ∈ [0, 1] is the standard Brownian motion,
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If we estimate copula model through LAD to get β̂, then the limiting distribution is ξ1 =
λ∗Y

2f0(0)ξ,

here λ∗2Y := E [Y ∗t ]
2

+ 2
∞∑
s=1

EY ∗t Y ∗t+s is the long run variance of Y ∗t = 2I (Yt ≥ 0)− 1, the sign of Yt.

f0(·) is the true marginal density of Yt and we need to assume that it is positive at zero.

Example 5. Cointegration Time Series.
Xt is a vector of non-stationary process with unit roots, Xt = Xt−1 + εt, Gn =

√
n, G−1

n X[nr] ⇒

X(r) = λεW1(r). Here W1(s), s ∈ [0, 1] is a standard Brownian motion, λ2
ε := E ε2

t + 2
∞∑
s=1

E εtεt+s
is the long run variance of εt. Assume εt is independent of Yt.

Then the OLS estimator β̂ is still rate-n converging n(β̂ − β0)⇒ ξ2 = λY
λε
ξ, where

ξ =

[∫ 1

0

W 2
1 (r)dr

]−1 [∫ 1

0

W1(r)dW2(r)

]

here λ2
Y := EY 2

t + 2
∞∑
s=1

EYtYt+s is the long run variance of Yt, W2(s), s ∈ [0, 1] is another standard

Brownian motion independent with W1(·).
Similar as previous example, if we estimate copula model through LAD to get β̂, then the

limiting distribution is ξ2 =
λ∗Y

2λεf0(0)ξ, here λ∗2Y := E [Y ∗t ]
2

+ 2
∞∑
s=1

EY ∗t Y ∗t+s is the long run variance

of Y ∗t = 2I (Yt ≥ 0)−1, the sign of Yt. f0(·) is the true marginal density of Yt and we need to assume
that it is positive at zero.

15.2 Copulas

Before analyzing large sample property of our two step estimator, we first introduce some commonly
used copulas and their properties.

Suppose (U1, U2) and (V1, V2) are two pairs bivariate uniformly distributed random variables,
joint distribution following copula C(·, ·). Then the Kendall’s tau is defined as the probability of
concordance minus the probability of discordance, see Nelson [1999] chapter 5:

τ = P [(U1 − V1)(U2 − V2) > 0]− P [(U1 − V1)(U2 − V2) < 0]

= 4

∫ 1

0

∫ 1

0

C(u1, u2)c(u1, u2)du1du2 − 1

Because Kendall’s tau is the difference of two probabilities, we have −1 ≤ τ ≤ 1. Positive τ
means positive dependence and negative τ means negative dependence.

Tail dependence measures the dependence between the variables in the upper right quadrant and
in the lower left quadrant of [0, 1]2. The lower and upper tail dependence coefficients λL and λU in
terms of copula are defined as:

λL = lim
u→0+

P(U2 ≤ u|U1 ≤ u) = lim
u→0+

C(u, u)

u

λU = lim
u→1−

P(U2 ≥ u|U1 ≥ u) = lim
u→1−

1 + C(u, u)− 2u

1− u
We consider five copulas in this paper, each with four choices of copula parameter:

• Gaussian copula
C(u1, u2;α0) = Φα(Φ−1(u1),Φ−1(u2))

c(u1, u2;α0) =
φα(Φ−1(u1),Φ−1(u2))

φ(Φ−1(u1)) · φ(Φ−1(u2))

here Φ(·) and φ(·) denote the CDF and PDF of standard normal distribution respectively.
Φα(·) and φα(·) denote the CDF and PDF of bivariate normal distribution with correlation α
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respectively. Range for α is −1 ≤ α ≤ 1.
When α > 0, dependence is positive:
α = 0.9⇒ τ = 0.713, ρ = 0.891; α = 0.5⇒ τ = 0.333, ρ = 0.483
When α < 0, dependence is negative:
α = −0.9⇒ τ = −0.713, ρ = −0.891; α = −0.5⇒ τ = −0.333, ρ = −0.483
There is no tail dependence for Gaussian copula.

• Frank copula

C(u1, u2;α) = − 1

α
· log

(
1− (1− e−αu1)(1− e−αu2)

1− e−α

)

c(u1, u2;α) = α · e
−αu1e−αu2

1− e−α
·
(

1− (1− e−αu1)(1− e−αu2)

1− e−α

)−2

here α ∈ R1.
When α > 0, dependence is positive:
α = 15⇒ τ = 0.7626, ρ = 0.9294; α = 5⇒ τ = 0.4567, ρ = 0.6435.
When α < 0, dependence is negative:
α = −15⇒ τ = −0.7626, ρ = −0.9294; α = −5⇒ τ = −0.4567, ρ = −0.6435
There is no tail dependence for Frank copula.

• Clayton copula
C(u1, u2;α) = (u−α1 + u−α2 − 1)−

1
α

c(u1, u2;α) = (1 + α) · u−α−1
1 · u−α−1

2 · (u−α1 + u−α2 − 1)−
1
α−2

here α is positive.
Clayton copula has Kendall’s tau τ = α

2+α and lower tail dependence coefficient λL = 2−1/α

that is increasing in α, but no upper tail dependence.
When α = 2, τ = 0.5, ρ = 0.682, λL = 0.7071.
When α = 5, τ = 0.7143, ρ = 0.885, λL = 0.871.
When α = 10, τ = 0.833, ρ = 0.958, λL = 0.933.
When α = 12, τ = 0.857, ρ = 0.969, λL = 0.944.

• EFGM copula
C(u1, u2;α) = u1u2[1 + α(1− u1)(1− u2)]

c(u1, u2;α) = 1 + α(1− 2u1)(1− 2u2)

here range for α is −1 ≤ α ≤ 1.
When α > 0, dependence is positive:
α = 0.9⇒ τ = 0.2, ρ = 0.3; α = 0.5⇒ τ = 0.111, ρ = 0.167
When α < 0, dependence is negative:
α = −0.9⇒ τ = −0.2, ρ = −0.3; α = −0.5⇒ τ = −0.111, ρ = −0.167
There is no tail dependence for EFGM copula.

• Gumbel copula

C(u1, u2;α) = exp
[
− ((− log u1)α + (− log u2)α)

1
α

]
c(u1, u2;α) = exp

[
− ((− log u1)α + (− log u2)α)

1
α

]
· ((− log u1)α + (− log u2)α)

1
α−2

·(− log u1)α−1 · (− log u2)α−1 · 1

u1u2
·[

((− log u1)α + (− log u2)α)
1
α + (α− 1)

]
here α needs to be larger than 1.
Gumbel copula has Kendall’s tau τ = 1− 1

α and upper tail dependence coefficient λU = 2−21/α
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that is increasing in α, but no lower tail dependence.
When α = 2, τ = 0.5, ρ = 0.682, λU = 0.586.
When α = 3.5, τ = 0.7143, ρ = 0.887, λU = 0.781.
When α = 6, τ = 0.833, ρ = 0.96, λU = 0.8775.
When α = 7, τ = 0.857, ρ = 0.971, λU = 0.896.

16 Estimators

Now we have three variables to estimate: linear filtering coefficient β, copula parameter α and
parametric marginal θ. The copula α and marginal θ are our main focuses.

16.1 Three step method

Chen and Xiao [2016] propose the three-step method. During first step, they estimate β through
some moment condition or quantile condition. Then θ is estimated at the second step. α is solved
during last stage.

If residual Yt satisfies the moment condition EYt = 0, then β̃ can be estimated through OLS:

min

n∑
t=1

(Zt −X ′tβ)2

If median of Yt is zero, MedYt = 0. Then during first step, we run absolute mean deviation to
get β̃:

min

n∑
t=1

|Zt −X ′tβ|

More generally, if Yt has known quantile at τ , Qτ (Yt) = a, then use quantile regression to solve
β̃:

min

n∑
t=1

ρτ (Zt −X ′tβ)

here ρτ (u) = u (τ − I(u < 0)). Absolute mean deviation is the specific case when τ = 0.5.
Once β̃ is reached from first step estimation, residuals Ŷt could be computed as:

Ŷt = Zt −X ′tβ̃

During second step, we estimate marginal parameter θ through filtering residuals Ŷt:

max

n∑
t=1

log f(Ŷt, θ)

At last step, we estimate α by:

max
α

n∑
t=2

log c(F (Ŷt−1, θ̂), F (Ŷt, θ̂), α)

Denote the estimators as β̂3step = β̃, α̂3step and θ̂3step.

16.2 Two step method

With similar first step estimation to get β̃ and Ŷt, two-step estimation differs with three-step method
from the second step, as α and θ are estimated jointly rather than separately:

max
α,θ

n∑
t=1

log f(Ŷt, θ) +

n∑
t=2

log c(F (Ŷt−1, θ), F (Ŷt, θ), α)

Denote the estimators as β̂2step = β̃, α̂2step and θ̂2step.

52



16.3 Joint method

For joint estimator, α, β and θ are estimated at the same time:

max
α,β,θ

n∑
t=1

log f(Zt −Xtβ, θ) +

n∑
t=2

log c(F (Zt−1 −Xt−1β, θ), F (Zt −Xtβ, θ), α)

Denote the estimators as β̂joint, α̂joint and θ̂joint.

16.4 Infeasible(ideal) estimator

For comparison purpose, we also research on infeasible(ideal) estimator where Yt is assumed to be
directly observed. α and θ are jointly estimated:

max
α,θ

n∑
t=1

log f(Yt, θ) +

n∑
t=2

log c(F (Yt−1, θ), F (Yt, θ), α)

Denote the estimators as α̂ideal and θ̂ideal.

16.5 Comparisons among above estimators

In later sections, we will demonstrate the following relationship for limiting distribution of both
copula α and marginal θ:

• When both copula and marginal are symmetric
Linear filtering method has no effects on all the estimators: joint, two-step and three-step.
Furthermore, asymptotically:
joint ≈ two-step(OLS) ≈ two-step(LAD) ≈ ideal � three-step(OLS) ≈ three-step(LAD)

• When either copula or marginal is asymmetric
The above equivalence relationship broke up. However, we show that joint estimator is the
best among several candidates:
ideal � joint � two-step � three-step

17 Effect of nonstationarity

17.1 Limiting distribution

For β̂OLS when EYt = 0 and β̂MED when MedYt = 0, we have Gn(β̂ − β0) = Op(1/
√
n). Now

suppose β̂joint also satisfies this property:

Gn(β̂joint − β0) = Op(1/
√
n)

Then for both joint and two-step estimators, α̂ and θ̂ will maximize:

max

n∑
t=1

log f(Ŷt, θ) +

n∑
t=2

log c(F (Ŷt−1, θ), F (Ŷt, θ), α)

Remark 20. Denote g(y, θ) := log f(y, θ), gi(y, θ) := ∂g(y,θ)
∂i , i = y, θ,

gij(y, θ) := ∂2g(y,θ)
∂i∂j , i, j could be y, θ,

l(y1, y2, α, θ) := log c(F (y1, θ), F (y2, θ);α), li(y1, y2, α) := ∂l(y1,y2,α)
∂yi

, i = 1, 2, α, θ,17

lij(y1, y2, α) := ∂2l(y1,y2,α)
∂yi∂y′j

, i, j could be 1, 2, α, θ.

17For symbolic simplification, yα is viewed as α and yβ is viewed as β.
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Consider the first order condition for α̂ and θ̂:

n∑
t=2

lα(Ŷt−1, Ŷt, α̂, θ̂) = 0

n∑
t=1

gθ(Ŷt, θ̂) +

n∑
t=2

lθ(Ŷt−1, Ŷt, α̂, θ̂) = 0

Notice:
Ŷt = Zt −X ′tβ̂

We make first order Taylor expansion around (Yt−1, Yt, α0, θ0), ignoring the higher order terms:

1√
n

n∑
t=2

lα(Yt−1, Yt, α0, θ0) +
1

n

n∑
t=2

l1α(Yt−1, Yt, α0, θ0) ·G−1
n X ′t−1 ·

√
nGn(β0 − β̂)

+

n∑
t=2

l2α(Yt−1, Yt, α0, θ0) ·G−1
n X ′t ·

√
nGn(β0 − β̂) +

1

n

n∑
t=2

lαα(Yt−1, Yt, α0, θ0) ·
√
n(α̂− α0)

+
1

n

n∑
t=2

lαθ(Yt−1, Yt, α0, θ0) ·
√
n(θ̂ − θ0)

≈0

1√
n

n∑
t=1

gθ(Yt, θ0) +
1

n

n∑
t=1

gθθ(Yt, θ0) ·
√
n(θ̂ − θ0) +

1

n

n∑
t=1

ġθ(Yt, θ0) ·G−1
n X ′t ·

√
nGn(β0 − β̂)

+
1√
n

n∑
t=2

lα(Yt−1, Yt, α0, θ0) +
1

n

n∑
t=2

l1θ(Yt−1, Yt, α0, θ0) ·G−1
n X ′t−1 ·

√
nGn(β0 − β̂)

+

n∑
t=2

l2θ(Yt−1, Yt, α0, θ0) ·G−1
n X ′t ·Gn(β0 − β̂) +

1

n

n∑
t=2

lαθ(Yt−1, Yt, α0, θ0) ·
√
n(α̂− α0)

+
1

n

n∑
t=2

lθθ(Yt−1, Yt, α0, θ0) ·
√
n(θ̂ − θ0)

≈0

Remark 21. From Assumption 23, we have following weak laws of large numbers once gij and lij
are assumed to be smooth enough:

1

n

n∑
t=2

lij(Yt−1, Yt, α0, θ0)
p→ Elij(Yt−1, Yt, α0, θ0) i, j = 1, 2, α, θ

1

n

n∑
t=1

gij(Yt)
p→ Egij(Yt) i, j = y, θ

For symbol simplification, denote: Egij := Egij(Yt, θ0) and Elij := Elij(Yt−1, Yt, α0, θ0).

From Assumption 24,
n∑
t=1

G−1
n Xt ⇒

∫ 1

0
X(r)dr. Hence we have:

(
Elαα Elαθ
Elαθ Elθθ + Egθθ

)
·
( √

n(α̂− α0)√
n(θ̂ − θ0)

)
≈ − 1√

n

( ∑
lα∑

gθ +
∑
lθ

)
+(

El1α + El2α
Egyθ + El1θ + El2θ

)
·
[∫ 1

0

X(r)dr

]>
·
√
nGn(β̂ − β0)
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Assume the left matrix is revertible, split copula α and marginal θ separately, we have:

√
n(α̂− α) ≈ A ·

[∫ 1

0

X(r)dr

]>
·
√
nGn(β̂ − β0) + ξα

√
n(θ̂ − θ0) ≈ B ·

[∫ 1

0

X(r)dr

]>
·
√
nGn(β̂ − β0) + ξθ

here ξ = (ξα, ξθ) is a normally distributed random variable, which is the limiting distribution of
infeasible estimator when Yt is directly observed (Section 16.4). A and B are two constant terms
only depending on copula and marginal:

A =
[El1α + El2α] · [Elθθ + Egθθ]− [Egyθ + El1θ + El2θ] · Elαθ

Elαα · [Elθθ + Egθθ]− (Elαθ)2

B =
−Elαθ · [El1α + El2α] + [Egyθ + El1θ + El2θ] · Elαα

Elαα · [Elθθ + Egθθ]− (Elαθ)2

If we can show that A = B = 0, then estimation of β̂ will not affect the limiting distribution of
α̂ and θ̂. Thus both joint estimator and two step estimator will have the same limiting distribution
with ideal estimator where Yt is directly observed (see Section 16.4).

Remark 22. This also means that linear filtering method (through OLS or LAD) will not affect
the limiting distribution of two step estimator asymptotically (and both are equivalent to ideal
estimator).

The detail derivations of expression for A and B are listed in Appendix.

17.2 Symmetry

Suppose the copula has symmetric property:

c(u1, u2, α) = c(1− u1, 1− u2, α)

and the marginal distribution is also symmetric:

f(y, θ) = f(−y, θ)

In this section, we will show that under the above two symmetry restrictions, A = B = 0.
From symmetry property we have:

g(Yt, θ) ≡ g(−Yt, θ)

F (Yt, θ) ≡ 1− F (−Yt, θ)

l(Yt−1, Yt, α, θ) = l(−Yt−1,−Yt, α, θ)

Hence:

El1α(Yt−1, Yt, α0, θ0) = 0

El2α(Yt−1, Yt, α0, θ0) = 0

El1θ(Yt−1, Yt, α0, θ0) = 0

El2θ(Yt−1, Yt, α0, θ0) = 0

Egθy(Yt) = 0

For the first term:
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l1(y1, y2, α, θ) ≡ −l1(−y1,−y2, α, θ)

l1α(y1, y2, α, θ) ≡ −l1α(−y1,−y2, α, θ)

El1α(y1, y2, α, θ) =

∫ +∞

−∞

∫ +∞

−∞
l1α(y1, y2, α, θ)f(y1, θ0)f(y2, θ0)c(F (y1, θ0), F (y2, θ0);α0)dy1dy2

=

∫ +∞

−∞

∫ +∞

−∞
l1α(−y1,−y2, α, θ)f(−y1, θ0)f(−y2, θ0)c(F (−y1, θ0), F (−y2, θ0);α0)dy1dy2

= −
∫ +∞

−∞

∫ +∞

−∞
l1α(y1, y2, α, θ)f(y1, θ0)f(y2, θ0)c(F (y1, θ0), F (y2, θ0);α0)dy1dy2

= −El1α(y1, y2, α, θ)

For the last term:
gθ(y, θ) ≡ gθ(−y, θ)

gθy(y, θ) ≡ −gθy(−y, θ)

Egθy(Yt, θ) =

∫ +∞

−∞
gθy(y, θ)f(y, θ0)dy

=

∫ +∞

−∞
gθy(−y, θ)f(−y, θ0)dy

= −
∫ +∞

−∞
gθy(y, θ)f(y, θ0)dy

= −Egθy(Yt, θ)

The remaining terms can be analyzed similarly.
From simple algebra in the appendix, we show that Gaussian, Frank and EFGM copulas are

symmetric. Hence, when the marginal distribution is also symmetric around zero, like student t
distribution, joint estimator and two-step estimator (both OLS and LAD) of α̂ and θ̂ are equivalent
to the ideal estimator for these three copulas.

17.2.1 Three step estimator

In this section, we analyze three-step estimator when both copula and marginal are symmetric.
Assume Yt is observed, rather than the infeasible estimator where copula α and marginal θ are

jointly estimated, consider the ‘inference functions for margins’ (IFM) as in Joe [1997], chapter 10.
Estimate θ first through true Yt:

max
θ

n∑
t=1

log f(Yt, θ)

Then estimate α by:

max
α

n∑
t=2

log c(F (Yt−1, θ̂), F (Yt, θ̂), α)

Following Chen and Xiao [2016], the three-step estimator will be equivalent to IFM asymptoti-
cally if:

El1α = El2α = El1θ = El2θ = Elαθ = Egyθ = 0
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This will be ensured by the symmetry properties. Hence, either through OLS or LAD in the first
step filtration, three-step estimator behave asymptotically the same as if the residual Yt is directly
observed. Hence the last part of equivalence equation in Section 16.5 is established: three-step(OLS)
≈ three-step(LAD).

However, above argument cannot apply to the equivalence relationship between three-step and
our previous class (joint, two-step and ideal), because IFM is usually less efficient than our infeasi-
ble(ideal) estimator. Although Joe [1997] points out that the efficiency loss may be quite low under
some cases, we use a brief simulation to illustrate that three-step estimator is indeed inferior in an
asymptotic sense.

17.2.2 Simulation

To further illustrate the asymptotic properties of these estimators, we run simulation using Gaussian
copula with time trend, copula parameter α0 = 0.9, sample size ranging from T = 1500 to T = 5000.
We plot the finite sample MSE of five estimators: joint, two-step(OLS), two-step(LAD), three-
step(OLS), three-step(LAD) and ideal estimators(theoretically the best). Simulation repetition is
M = 2000. Marginal distribution is student t with degree of freedom 3 or 5. X axis is the sample
size and Y axis is the square root of finite sample MSE. I attach results for α0 = 0.9 here for both
copula α and marginal θ.

Figure 4: Gaussian copula, time trend, α0 = 0.9, marginal t(3)

Figure 5: Gaussian copula, time trend, α0 = 0.9, marginal t(5)

When sample size is large, joint, two-step(OLS) and two-step(LAD) estimators behave roughly
the same as ideal estimator. Three-step(OLS) and three-step(LAD) also coincides, but there is a
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clear gap between two classes. Above two figures are strong evidences for the following asymptotic
relationship when both copula and marginal are symmetric:

• joint ≈ two-step(OLS) ≈ two-step(LAD) ≈ ideal � three-step(OLS) ≈ three-step(LAD)

18 Tail Dependence

For copulas with one-side tail dependence such as Clayton copula and Gumbel copula, symmetric
property is not holding. The constant terms A and B are not zeros and the nonstationary structure
will affect the limiting distribution of copula α and marginal θ. In this section, we use simulation
to illustrate the relationship between this effect and strength of tail dependence.

If the marginal distribution is symmetric, we still have: Egyθ = 0. Also notice that both two
copulas satisfy:

c(u1, u2, α) ≡ c(u2, u1, α)

hence
El1α(Yt−1, Yt, α0, θ0) = El2α(Yt−1, Yt, α0, θ0)

El1θ(Yt−1, Yt, α0, θ0) = El2θ(Yt−1, Yt, α0, θ0)

Thus we only need to simulate: El1α, El1θ, Elαα, Elαθ, Elθθ and Egθθ. We generate M = 2× 106

random pairs (Y1i, Y2i) ∼ C(F0(·), F0(·);α0) independent each other, to simulate these constants.
For example, El1α is approximated as:

1

M

M∑
i=1

l1α(Y1i, Y2i, α0, θ0)

Copula parameter α ranges from 2 to 15 for both Clayton and Gumbel. X axis is α and Y axis
is constant A or B. Simulation results are graphed below:

Figure 6: Clayton copula

58



Figure 7: Gumbel copula

For marginal being both t(3) and t(5), absolute value of A and B is strictly increasing with tail
dependence. The theoretical result here is consistent with finite simulation findings that relative
MSE of our estimators comparing to the infeasible bechmark is increasingly with tail dependence.
This fact indicates that nonstationary filtering term may have a huge difference to our estimators
comparing with ideal estimator when tail dependence is very strong.

For Clayton copula, we also make a similar experiment as in Section 17.2.2, where the X axis
the sample size and Y axis the square root of finite sample MSE.

Figure 8: Clayton copula, time trend, α0 = 2, marginal t(3)

Figure 9: Clayton copula, time trend, α0 = 2, marginal t(5)
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As the constant term A 6= 0 and B 6= 0, linear filtering method does affect the limiting distribu-
tion:

• two-step (OLS) 6≈ two-step (LAD)

• three-step (OLS) 6≈ three-step (LAD)

Joint estimator is still the best estimator available closed to ideal estimator. And the following
general relationship holds:

• ideal � joint � two-step � three-step

Notice for both figures, especially square root of marginal θ, three step estimator is far behind other
competitiors.

19 Asymmetric marginal

When both copula and marginal are symmetric, nonstationarity has no effect on copula parameter
estimation. We have shown that, when copula is asymmetric, despite the fact that marginal is still
symmetric,

√
nGn(β̂−β0) does involve into the limiting distribution of

√
n(α̂−α0) and

√
n(θ̂− θ0).

Also, this effect is positively dependent on degree of asymmetry (tail dependence). Then a natural
question arises: what if the copula is symmetric but the marginal is asymmetric? Could we get a
similar figure as above?

Before moving forward to the technical detail, we first introduce an asymmetric marginal distri-
bution: linear combination of student t distribution and centered chi-square distribution.

Denote density of t distribution ft:

ft(y, θ) =
Γ
(

1+θ
2

)
√
πθΓ

(
θ
2

) (1 +
y2

θ

)− 1+θ
2

Denote density of chi-square distribution fχ:

fχ(y, θ) =
1

2
θ
2 Γ
(
θ
2

)y θ2−1e−
θ
2 I(y > 0)

Then the density of our asymmetric marginal could be expressed as:

f(y, θ) := (1− λ)ft(y, θ) + λfχ(y + 2θ, 2θ) (12)

The following figure demonstrates the effect of different weight λ on asymmetry. The more weight
(larger λ) we put on the mixed normal, the more asymmetry the density has.
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Figure 10: Plot of density for different weight λ

Simulation design is similar as in Section 17.2.2, except that the marginal is asymmetric with
the weight λ = 0.7 and true parameter value θ0 = 4. Also, as the median of the marginal is not zero
any more, both two-step and three-stem estimator are generated only through OLS in the first step
linear filtering.

Figure 11: Gaussian copula, time trend, α0 = 0.9, marginal asymmetric

Gaps are obvious among several estimators when sample size is large. Joint estimator is un-
believely well for copula parameter α as it could catch up with the ideal estimator, although for
marginal θ, joint estimator is still a little behind the ideal estimator. Above figure is a strong
evidence for the following asymptotic relationship when symmetry relationship is broken up:
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• ideal � joint � two-step � three-step (where the efficiency loss of joint estimator comparing
to ideal case is tiny)

Notice for both figures, three step estimator is far behind other competitiors.

20 Finite sample performance

We exam the finite sample performance of the joint, two-step and three-step estimators. For compar-
ison purpose, we also simulate the ideal estimator (I) serving as a benchmark. Simulation repetition
times is M = 2000 and time series length is n = 500. Copula and its parameter choice is as in
Section 15.2. Marginal distribution is set as student t distribution with degree of freedom 3 or 5,
together with the asymmetric marginal as in equation 12.

We consider two types of nonstationarity:

• Deterministic time trend as in Example 4: Xt = t, β0 = 1.

• Cointegration time series as in Example 5: Xt = Xt−1 + vt, β0 = 1.

Under different combinations of nonstationary filtering (2), copula functions (5), copula parameters
(4) and marginal distributions (3), 120 tables are generated. Due to lack of space, we only include
several typical results in Section 23. Full simulation results are available through request from the
author.

Section 23.1 summarizes the results for Gaussian copula with copula parameter α0 = 0.9.
Section 23.2 summarizes the results for Frank copula with copula parameter α0 = 15. Section
23.3 summarizes the results for Clayton copula with copula parameter α0 = 5. Joint estimator
is denoted as (P1). Two step estimator through OLS is denoted as (P2). Two step estimator
through LAD is denoted as (M2). Three step estimator through OLS is denoted as (P3). Three
step estimator through LAD is denoted as (M3). Ideal estimator is denoted as (I). The Monte Carlo
bias, standard deviation (std), Mean Square Error (MSE), and the ratio of MSE over the MSE of
infeasible estimator (RMSE), for both copula α and marginal θ are reported in each table. All the
simulations reveal the following clear patterns18:

First, the joint estimator performs very well in terms of bias, variance, MSE compared to the
other estimators (two-step and three-step). The RMSE of joint estimator is the smallest in almost
all the situations.

Second, when the positive dependence is quite strong, three-step estimator may diverge in finite
sample. For example, in table 38 and 39, the RMSE for θ(P3) and θ(M3) are larger than 10,000.

Third, even when both copula and marginal are symmetric, hence joint estimator and two-step
estimator are equivalent asymptotically, joint estimator will strictly dominate in finite sample. For
example, in table 44, the RMSE of α(P1) is 1.041, very close to the ideal estimator, while the RMSE
of α(P2) is 3.57 and the the RMSE of α(M2) is 2.83.

Last, for copulas with strong tail dependence, both two-step estimator and three-step estimator
do not perform very well. For example, in table 50, the RMSE of α(P2) and α(M2) are larger than
70 and the RMSE of θ(M2) and θ(M3) are larger than 16. Joint estimator performs very well in
both copula α and marginal θ even under strong tail dependence (both lower tail for Clayton and
upper tail for Gumbel). For example, in above case (table 50), the RMSE of α(P1) is 1.588 and the
RMSE of θ(P1) is 1.08.

18An exception is EFGM copula, where all estimators behave quite similar. Theoretical explanation is shown in
Chen et al. [2009] as EFGM copula is very close to the independent copula (C(u1, u2) := u1u2, c(u1, u2) ≡ 1), because
the distance between EFGM copula function to the independent copula function is αu1u2(1− u1)(1− u2) ≤ 0.0625α
for α ∈ [−1, 1]. This could also be illustrated by Kendall’s tau and Spearman’s rho. α = 0.9 ⇒ τ = 0.2, ρ = 0.3;
α = 0.5⇒ τ = 0.111, ρ = 0.167; α = −0.9⇒ τ = −0.2, ρ = −0.3; α = −0.5⇒ τ = −0.111, ρ = −0.167. The value is
very close to 0, indicating nearly independence.
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21 Conclusion

This paper considers estimation of copula based dynamic parametric models coupled with nonsta-
tionary filtration. Two new methods are proposed: joint estimator and two-step estimator. New
theoretical results are obtained regarding:

• Conditions under which these estimator are equivalent asymptotically:
when both copula and marginal are symmetric:
joint ≈ two-step(OLS) ≈ two-step(LAD) ≈ ideal � three-step(OLS) ≈ three-step(LAD)
when either copula or marginal is asymmetric:
ideal � joint � two-step � three-step

• Tail dependence ⇒ effect of nonstationarity on limiting distributions:
The stronger the tail dependence, the larger effect of nonstationarity (both the nonstationary
structure and the nonstationary estimation method) to the limiting distribution.

Monte Carlo simulation compares the performance between literature three-step estimator and our
two new estimators. Three-step estimator is in general inferior to joint estimator and two-step
estimator. Joint estimator is found to always be superior to all other estimators in a variety of
Monte Carlo simulation designs, especially in the presence of strong tail dependence. Hence joint
method is what we suggest in practical use.

Extension. We have also done some preliminary simulation for the dependent cointegration
case Zt = Xtβ + Yt when Xt is not independent with Yt. Joint estimator is still doing very well.
However, we do not explicitly measure the dependent structure into the objective function of the
joint method. There should be a more efficient way to estimate the dependent cointegration model.

Another extension would be inference. Our model fully characterizes the joint probability distri-
bution, making likelihood ratio test available as in Chen and Xiao [2016]. Simulations of bootstrap
likelihood ration test on joint estimation have been done and the size is great. Theoretical validation
of this inference procedure is of practical value for further research.
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Werner Ploberger and Walter Krämer. The cusum test with ols residuals. Econometrica: Journal
of the Econometric Society, pages 271–285, 1992.

Peter M Robinson. Root-n-consistent semiparametric regression. Econometrica: Journal of the
Econometric Society, pages 931–954, 1988.

M Sklar. Fonctions de repartition an dimensions et leurs marges. Publ. inst. statist. univ. Paris, 8:
229–231, 1959.

Charles J Stone. Optimal global rates of convergence for nonparametric regression. The annals of
statistics, pages 1040–1053, 1982.

H Victor, Rustam Ibragimov, Shaturgun Sharakhmetov, et al. Characterizations of joint distri-
butions, copulas, information, dependence and decoupling, with applications to time series. In
Optimality, pages 183–209. Institute of Mathematical Statistics, 2006.

Timothy J Vogelsang. Sources of nonmonotonic power when testing for a shift in mean of a dynamic
time series. Journal of Econometrics, 88(2):283–299, 1999.

Xiaoqian Wen, Yu Wei, and Dengshi Huang. Measuring contagion between energy market and stock
market during financial crisis: A copula approach. Energy Economics, 34(5):1435–1446, 2012.

22 Technical Appendix

22.1 Copula simulation

If (Y1, Y2) ∼ C(F0(·), F0(·)) and we know Y1 in advance, we can apply the conditional approach
described in Nelson [1999] to generate uniform distributed time series satisfying the specific copula,
then apply inverse distribution function F−1

0 (·) to get Y2:

1. Let U1 = F0(Y1).
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2. Generate a uniformly distributed random variable ε. Solve U2 by C1(U1, U2) = ε.
Here C1 := ∂C

∂u1
is the conditional distribution of U2 given U1.

3. Y2 = F−1
0 (U2), here F0(·) is true marginal distribution function of Y1 and Y2.

To generate a first order Markov process specified by a copula C(·, ·) and a marginal F0(·), we can
repeat this algorithm sequentially.

For five copulas we consider in 15.2, expressions of conditional distribution C1 are:

• Gaussian copula

C1(u1, u2, α) =
1

2π
√

1− α2
· 1

φ(Φ−1(u1))
·∫ Φ−1(u2)

−∞
exp

[
− [Φ−1(u1)]2 + x2 − 2αx · Φ−1(u1)

2(1− α2)

]
dx

• Frank copula

C1(u1, u2;α) =

(
1− (1− e−αu1)(1− e−αu2)

1− e−α

)−1

· 1− e−αu2

1− e−α
· e−αu1

• Clayton copula
C1(u1, u2;α) = (u−α1 + u−α2 − 1)−

1
α−1 · u−α−1

1

• EFGM copula
C1(u1, u2;α) = u2[1 + α(1− u2)(1− 2u1)]

• Gumbel copula

C1(u1, u2;α) = exp
[
− ((− log u1)α + (− log u2)α)

1
α

]
·

((− log u1)α + (− log u2)α)
1
α−1 · (− log u1)α−1 · 1

u1

22.2 Symmetry of copulas

For Gaussian, Frank and EFGM copula, the following symmetric property is satisfied:

c(u1, u2;α) = c(1− u1, 1− u2;α)

For Gaussian copula:

c(1− u1, 1− u2;α)

=
φα(Φ−1(1− u1),Φ−1(1− u2))

φ(Φ−1(1− u1)) · φ(Φ−1(1− u2))

=
φα(−Φ−1(u1),−Φ−1(u2))

φ(−Φ−1(u1)) · φ(−Φ−1(u2))

=
φα(Φ−1(u1),Φ−1(u2))

φ(Φ−1(u1)) · φ(Φ−1(u2))

= c(u1, u2;α)
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For Frank copula:

c(1− u1, 1− u2;α)

= α · e
αu1eαu2 · e−2α

1− e−α
·
(

1− (1− e−α · eαu1)(1− e−α · eαu2)

1− e−α

)−2

= α · e
−αu1e−αu2

1− e−α
·
(
e−α · eαu1 + e−α · eαu2 − e−α − e−2αeαu1eαu2

1− e−α

)−2

· (e−αu1e−αu2 · eα)−2

= α · e
−αu1e−αu2

1− e−α
·
(
e−αu2 + e−αu1 − e−αu1e−αu2 − e−α

1− eα

)−2

= α · e
−αu1e−αu2

1− e−α
·
(

1− (1− e−αu1)(1− e−αu2)

1− e−α

)−2

= c(u1, u2;α)

For EFGM copula:

c(1− u1, 1− u2;α)

= 1 + α(2u1 − 1)(2u2 − 1)

= 1 + α(1− 2u1)(1− 2u2)

= c(u1, u2;α)

22.3 Constants A and B

The expression for A and B is:(
A
B

)
=

(
Elαα Elαθ
Elαθ Elθθ + Egθθ

)−1

×
(

El1α + El2α
Egyθ + El1θ + El2θ

)
The inverse of matrix is:(

Elαα Elαθ
Elαθ Elθθ + Egθθ

)−1

=
1

Elαα · [Elθθ + Egθθ]− (Elαθ)2 ·
(

Elθθ + Egθθ −Elαθ
−Elαθ Elαα

)
Combining the above two equations, we have:

A =
[El1α + El2α] · [Elθθ + Egθθ]− [Egyθ + El1θ + El2θ] · Elαθ

Elαα · [Elθθ + Egθθ]− (Elαθ)2

B =
−Elαθ · [El1α + El2α] + [Egyθ + El1θ + El2θ] · Elαα

Elαα · [Elθθ + Egθθ]− (Elαθ)2

67



23 Tables

23.1 Gaussian copula

23.1.1 Time trend

Table 38: Normal copula, α0 = 0.9; Xt time trend; marginal t(3)

α0 = 0.9 P1 P2 M2 P3 M3 I

mean 0.899586 0.895923 0.897059 0.891702 0.892529 0.899323
bias -0.000414 -0.004077 -0.002941 -0.008298 -0.007471 -0.000677
std 0.010914 0.011578 0.011258 0.018205 0.017829 0.010821

MSE 0.000119 0.000151 0.000135 0.000400 0.000374 0.000118
relative 1.014634 1.281681 1.151695 3.404846 3.178599 1

2.5% 0.877465 0.872078 0.873887 0.854232 0.854905 0.877386
97.5% 0.920068 0.917044 0.917807 0.924029 0.924064 0.919437

θ0 = 3 P1 P2 M2 P3 M3 I

mean 3.108162 3.211068 3.159608 5.245809 5.162396 3.133271
bias 0.108162 0.211068 0.159608 2.245809 2.162396 0.133271
std 0.660914 0.678009 0.683229 60.088270 59.325965 0.665609

MSE 0.448507 0.504246 0.492277 3615 3524 0.460797
relative 0.973329 1.094291 1.068317 7846 7648 1

2.5% 2.159470 2.239992 2.186189 1.887734 1.892296 2.184898
97.5% 4.669615 4.815974 4.781117 10.046583 9.744579 4.692251

Table 39: Normal copula, α0 = 0.9; Xt time trend; marginal t(5)

α0 = 0.9 P1 P2 M2 P3 M3 I

mean 0.899402 0.897445 0.897687 0.892387 0.893077 0.899231
bias -0.000598 -0.002555 -0.002313 -0.007613 -0.006923 -0.000769
std 0.010171 0.010353 0.010274 0.016714 0.016588 0.010017

MSE 0.000104 0.000114 0.000111 0.000337 0.000323 0.000101
relative 1.028364 1.126465 1.098695 3.341862 3.200943 1

2.5% 0.878585 0.876059 0.876449 0.858950 0.859400 0.878924
97.5% 0.918945 0.916544 0.916934 0.922681 0.923143 0.918046

θ0 = 5 P1 P2 M2 P3 M3 I

mean 5.441528 5.613763 5.593364 128.951013 115.432356 5.516748
bias 0.441528 0.613763 0.593364 123.951013 110.432356 0.516748
std 2.312500 2.469017 2.544495 734.161241 690.961193 2.549045

MSE 5.542604 6.472750 6.826538 554356 489622 6.764658
relative 0.819347 0.956848 1.009148 81948 72379 1

2.5% 3.314031 3.426234 3.380807 2.835703 2.801019 3.416062
97.5% 9.671101 10.334626 10.016158 1954.050667 502.746450 9.871510
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Table 40: Normal copula, α0 = 0.9; Xt time trend; marginal t(4) + c(8)

α0 = 0.9 P1 P2 P3 I

mean 0.89926630 0.89589313 0.89195210 0.89928966
bias -0.00073370 -0.00410687 -0.00804790 -0.00071034
std 0.00876768 0.01053527 0.01556571 0.00860546

MSE 0.00007741 0.00012786 0.00030706 0.00007456
relative 1.03825395 1.71487288 4.11838185 1

2.5% 0.88172902 0.87263578 0.85927207 0.88203373
97.5% 0.91593527 0.91378343 0.91854498 0.91538371

θ0 = 4 P1 P2 P3 I

mean 3.98303536 3.91928173 3.84988800 3.98217360
bias -0.01696464 -0.08071827 -0.15011200 -0.01782640
std 0.25753093 0.34476266 0.61756440 0.24568923

MSE 0.06660998 0.12537673 0.40391940 0.06068098
relative 1.09770765 2.06616190 6.65644150 1

2.5% 3.46231455 3.22082383 2.79917365 3.48185908
97.5% 4.48501683 4.60080147 5.23210550 4.45860162

23.1.2 Cointegration

Table 41: Normal copula, α0 = 0.9; Xt cointegration; marginal t(3)

α0 = 0.9 P1 P2 M2 P3 M3 I

mean 0.899618 0.895688 0.896885 0.891601 0.892495 0.899323
bias -0.000382 -0.004312 -0.003115 -0.008399 -0.007505 -0.000677
std 0.010907 0.011696 0.011368 0.018211 0.017889 0.010821

MSE 0.000119 0.000155 0.000139 0.000402 0.000376 0.000118
relative 1.013234 1.321711 1.181816 3.421089 3.201377 1

2.5% 0.877585 0.870970 0.874165 0.853676 0.854366 0.877386
97.5% 0.920092 0.916969 0.918120 0.925649 0.925465 0.919437

θ0 = 3 P1 P2 M2 P3 M3 I

mean 3.111106 3.216810 3.166404 6.185583 6.123448 3.133271
bias 0.111106 0.216810 0.166404 3.185583 3.123448 0.133271
std 0.661508 0.686007 0.687187 102.839123 102.853688 0.665609

MSE 0.449937 0.517613 0.499917 10586 10588 0.460797
relative 0.976432 1.123299 1.084897 22973 22978 1

2.5% 2.155947 2.233299 2.178310 1.884454 1.882621 2.184898
97.5% 4.692468 4.827157 4.775221 10.019529 9.553549 4.692250
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Table 42: Normal copula, α0 = 0.9; Xt cointegration; marginal t(5)

α0 = 0.9 P1 P2 M2 P3 M3 I

mean 0.899450 0.897219 0.897506 0.892329 0.893027 0.899231
bias -0.000550 -0.002781 -0.002494 -0.007671 -0.006973 -0.000769
std 0.010146 0.010450 0.010360 0.016727 0.016645 0.010017

MSE 0.000103 0.000117 0.000114 0.000339 0.000326 0.000101
relative 1.022790 1.158505 1.124997 3.354979 3.226355 1

2.5% 0.878972 0.875126 0.876368 0.858020 0.858371 0.878924
97.5% 0.918828 0.916528 0.916940 0.924178 0.924550 0.918046

θ0 = 5 P1 P2 M2 P3 M3 I

mean 5.445645 5.644230 5.608832 126.384921 109.907787 5.516748
bias 0.445645 0.644230 0.608832 121.384921 104.907787 0.516748
std 2.102694 2.726667 2.524513 730.030226 674.096598 2.549043

MSE 4.619921 7.849745 6.743841 547678 465411 6.764649
relative 0.682951 1.160407 0.996924 80961 68800 1

2.5% 3.328483 3.382052 3.342897 2.792522 2.769337 3.416062
97.5% 9.775784 10.088137 10.020469 1512.932685 279.039347 9.871510

Table 43: Normal copula, α0 = 0.9; Xt cointegration; marginal t(4) + c(8)

α0 = 0.9 P1 P2 P3 I

mean 0.89924269 0.89599635 0.89197074 0.89928966
bias -0.00075731 -0.00400365 -0.00802926 -0.00071034
std 0.00881583 0.01051900 0.01541873 0.00860546

MSE 0.00007829 0.00012668 0.00030221 0.00007456
relative 1.05008071 1.69905026 4.05327818 1

2.5% 0.88116720 0.87307901 0.85893169 0.88203373
97.5% 0.91581359 0.91420738 0.91924271 0.91538371

θ0 = 4 P1 P2 P3 I

mean 3.97992926 3.93659601 3.85902482 3.98217360
bias -0.02007074 -0.06340399 -0.14097518 -0.01782640
std 0.25817535 0.32945915 0.59404548 0.24568923

MSE 0.06705734 0.11256340 0.37276403 0.06068098
relative 1.10508011 1.85500293 6.14301268 1

2.5% 3.47094721 3.28299957 2.85856438 3.48185908
97.5% 4.47861583 4.58205128 5.15340742 4.45860162

70



23.2 Frank copula

23.2.1 Time trend

Table 44: Frank copula, α0 = 15; Xt time trend; marginal t(3)

α0 = 15 P1 P2 M2 P3 M3 I

mean 14.975880 14.234989 14.353372 14.204292 14.311321 14.967962
bias -0.024120 -0.765011 -0.646628 -0.795708 -0.688679 -0.032038
std 0.714247 1.080195 0.983946 1.089068 0.995717 0.699688

MSE 0.510731 1.752063 1.386278 1.819220 1.465731 0.490589
relative 1.041056 3.571343 2.825739 3.708233 2.987694 1

2.5% 13.696303 11.828572 12.242359 11.801502 12.184435 13.688136
97.5% 16.446371 16.090483 16.082049 16.088059 16.072224 16.425091

θ0 = 3 P1 P2 M2 P3 M3 I

mean 3.135608 3.199695 3.147308 3.320591 3.286403 3.137857
bias 0.135608 0.199695 0.147308 0.320591 0.286403 0.137857
std 0.532003 0.567349 0.550899 0.796558 0.774648 0.532244

MSE 0.301417 0.361763 0.325189 0.737284 0.682106 0.302288
relative 0.997119 1.196748 1.075759 2.439011 2.256476 1

2.5% 2.360041 2.376653 2.347515 2.281861 2.267837 2.363160
97.5% 4.349428 4.510561 4.390622 5.287423 5.182795 4.349278

Table 45: Frank copula, α0 = 15; Xt time trend; marginal t(5)

α0 = 15 P1 P2 M2 P3 M3 I

mean 14.978688 14.383173 14.415088 14.345261 14.375190 14.972209
bias -0.021312 -0.616827 -0.584912 -0.654739 -0.624810 -0.027791
std 0.704850 0.952712 0.929078 0.967364 0.941058 0.688958

MSE 0.497268 1.288136 1.205308 1.364476 1.275978 0.475435
relative 1.045921 2.709384 2.535170 2.869954 2.683812 1

2.5% 13.703685 12.296102 12.429349 12.249768 12.412091 13.716361
97.5% 16.434110 16.123656 16.118490 16.095313 16.092844 16.396803

θ0 = 5 P1 P2 M2 P3 M3 I

mean 5.427665 5.572849 5.482046 8.527833 8.424681 5.427466
bias 0.427665 0.572849 0.482046 3.527833 3.424681 0.427466
std 1.473976 1.746573 1.692623 111.697258 111.696841 1.466280

MSE 2.355503 3.378673 3.097342 12488.723163 12487.912708 2.332705
relative 1.009773 1.448392 1.327790 5353.750531 5353.403099 1

2.5% 3.678427 3.680425 3.633327 3.539867 3.497319 3.679464
97.5% 8.893497 9.255556 8.929565 12.060738 11.615047 8.859804
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Table 46: Frank copula, α0 = 15; Xt time trend; marginal t(4) + c(8)

α0 = 15 P1 P2 P3 I

mean 14.95123620 14.30776466 14.22129885 14.95503530
bias -0.04876380 -0.69223534 -0.77870115 -0.04496470
std 0.70195759 1.05389251 1.08743938 0.69067359

MSE 0.49512236 1.58987919 1.78889988 0.47905183
relative 1.03354653 3.31880410 3.73425117 1

2.5% 13.70918320 11.93998538 11.81915939 13.69693652
97.5% 16.37324070 16.10425599 16.03290645 16.38130845

θ0 = 4 P1 P2 P3 I

mean 3.94812795 3.93748755 3.88713798 3.95112650
bias -0.05187205 -0.06251245 -0.11286202 -0.04887350
std 0.24502390 0.37274686 0.51629464 0.24342824

MSE 0.06272742 0.14284803 0.27929799 0.06164593
relative 1.01754359 2.31723373 4.53068020 1

2.5% 3.43126609 3.20945303 2.86512379 3.43689742
97.5% 4.39935160 4.68992269 4.96361424 4.40169095

23.2.2 Cointegration

Table 47: Frank copula, α0 = 15; Xt cointegration; marginal t(3)

α0 = 15 P1 P2 M2 P3 M3 I

mean 14.981861 14.224796 14.346228 14.196673 14.307627 14.967962
bias -0.018139 -0.775204 -0.653772 -0.803327 -0.692373 -0.032038
std 0.710132 1.075943 0.980935 1.085849 0.993013 0.699688

MSE 0.504616 1.758594 1.389652 1.824401 1.465456 0.490589
relative 1.028592 3.584657 2.832618 3.718795 2.987133 1

2.5% 13.702979 11.744206 12.112664 11.723884 12.093277 13.688144
97.5% 16.481840 16.111950 16.157846 16.071548 16.103368 16.425103

θ0 = 3 P1 P2 M2 P3 M3 I

mean 3.135664 3.198107 3.148140 3.311231 3.277886 3.137858
bias 0.135664 0.198107 0.148140 0.311231 0.277886 0.137858
std 0.532424 0.567431 0.551989 0.781120 0.760275 0.532244

MSE 0.301880 0.361224 0.326637 0.707013 0.655239 0.302288
relative 0.998650 1.194968 1.080549 2.338872 2.167599 1

2.5% 2.362109 2.384196 2.357822 2.274032 2.257115 2.363166
97.5% 4.352706 4.541677 4.400361 5.316165 5.206149 4.349280
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Table 48: Frank copula, α0 = 15; Xt cointegration; marginal t(5)

α0 = 15 P1 P2 M2 P3 M3 I

mean 14.984991 14.372991 14.404355 14.338307 14.368163 14.972208
bias -0.015009 -0.627009 -0.595645 -0.661693 -0.631837 -0.027792
std 0.700414 0.951904 0.930451 0.966884 0.942239 0.688957

MSE 0.490805 1.299263 1.220531 1.372702 1.287032 0.475434
relative 1.032330 2.732795 2.567196 2.887264 2.707071 1

2.5% 13.717547 12.209744 12.310220 12.167040 12.310457 13.716359
97.5% 16.456527 16.139807 16.168742 16.078081 16.112626 16.396771

θ0 = 5 P1 P2 M2 P3 M3 I

mean 5.425945 5.570076 5.483073 6.036676 5.934112 5.427467
bias 0.425945 0.570076 0.483073 1.036676 0.934112 0.427467
std 1.471667 1.635090 1.581719 2.752677 2.621064 1.466277

MSE 2.347234 2.998507 2.735193 8.651927 7.742542 2.332697
relative 1.006232 1.285425 1.172545 3.708980 3.319137 1

2.5% 3.679114 3.693157 3.652556 3.522234 3.476637 3.679459
97.5% 8.852422 9.248426 9.043495 12.211053 11.653345 8.859796

Table 49: Frank copula, α0 = 15; Xt cointegration; marginal t(4) + c(8)

α0 = 15 P1 P2 P3 I

mean 14.95458399 14.31933663 14.24088918 14.95503565
bias -0.04541601 -0.68066337 -0.75911082 -0.04496435
std 0.70035035 1.05078606 1.07988563 0.69067396

MSE 0.49255323 1.56745396 1.74240220 0.47905231
relative 1.02818257 3.27198916 3.63718569 1

2.5% 13.68603371 11.83766346 11.69052361 13.69693116
97.5% 16.39749940 16.16419693 16.14412387 16.38127765

θ0 = 4 P1 P2 P3 I

mean 3.94648959 3.95418829 3.90042707 3.95112643
bias -0.05351041 -0.04581171 -0.09957293 -0.04887357
std 0.24758449 0.36969669 0.47773050 0.24342805

MSE 0.06416144 0.13877435 0.23814120 0.06164584
relative 1.04080733 2.25115509 3.86305363 1

2.5% 3.41116653 3.23130785 2.94809193 3.43689603
97.5% 4.39536611 4.70760663 4.84631928 4.40169048
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23.3 Clayton copula

23.3.1 Time trend

Table 50: Clayton copula, α0 = 5; Xt time trend; marginal t(3)

α0 = 5 P1 P2 M2 P3 M3 I

mean 5.004177 5.180811 5.087672 4.695532 4.856148 4.993004
bias 0.004177 0.180811 0.087672 -0.304468 -0.143852 -0.006996
std 0.382395 7.241352 2.589089 1.420804 1.216885 0.303379

MSE 0.146243 52.469864 6.711067 2.111385 1.501503 0.092088
relative 1.588085 569.781215 72.876875 22.927970 16.305134 1

2.5% 4.323025 3.366441 3.750594 3.225135 3.584222 4.445209
97.5% 5.765372 7.740841 7.079887 8.107023 7.573691 5.614109

θ0 = 3 P1 P2 M2 P3 M3 I

mean 3.098873 3.154934 3.046188 4.302119 4.147187 3.102354
bias 0.098873 0.154934 0.046188 1.302119 1.147187 0.102354
std 0.500921 0.785852 0.653033 1.780595 1.630571 0.480340

MSE 0.260697 0.641568 0.428585 4.866034 3.974801 0.241203
relative 1.080823 2.659873 1.776868 20.174052 16.479096 1

2.5% 2.333418 1.668549 1.835400 1.461138 1.444718 2.383341
97.5% 4.319237 4.775363 4.481057 8.546290 7.964598 4.292948

Table 51: Clayton copula, α0 = 5; Xt time trend; marginal t(5)

α0 = 5 P1 P2 M2 P3 M3 I

mean 5.007355 4.972956 5.092554 4.752493 4.903096 4.991784
bias 0.007355 -0.027044 0.092554 -0.247507 -0.096904 -0.008216
std 0.405413 2.079547 1.580341 1.233135 1.107888 0.293124

MSE 0.164414 4.325245 2.506044 1.581881 1.236805 0.085989
relative 1.912026 50.299881 29.143719 18.396276 14.383269 1

2.5% 4.297535 3.466686 3.710439 3.341005 3.563765 4.449929
97.5% 5.829868 7.684039 7.485375 7.777593 7.419336 5.590978

θ0 = 5 P1 P2 M2 P3 M3 I

mean 5.356028 5.573711 5.342138 49.565179 34.680431 5.350891
bias 0.356028 0.573711 0.342138 44.565179 29.680431 0.350891
std 1.417924 2.152214 1.840395 416.915655 325.848714 1.332860

MSE 2.137263 4.961168 3.504113 175804 107058 1.899640
relative 1.125089 2.611636 1.844619 92546 56357 1

2.5% 3.612740 2.610428 2.769917 2.176628 2.124112 3.671294
97.5% 8.835572 10.648695 9.782142 46.491965 31.197025 8.708020
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Table 52: Clayton copula, α0 = 5; Xt time trend; marginal t(4) + c(8)

α0 = 5 P1 P2 P3 I

mean 5.00040533 4.92492217 4.19226542 4.99346500
bias 0.00040533 -0.07507783 -0.80773458 -0.00653500
std 0.38432473 1.19804838 1.34371591 0.32287738

MSE 0.14770566 1.44095660 2.45800760 0.10429251
relative 1.41626340 13.81649185 23.56840040 1

2.5% 4.28247098 3.11712872 2.36204297 4.36875859
97.5% 5.78940646 7.80589064 7.57466813 5.66008408

θ0 = 4 P1 P2 P3 I

mean 3.98781894 3.86226228 3.24216553 3.98560651
bias -0.01218106 -0.13773772 -0.75783447 -0.01439349
std 0.28139238 0.69068341 0.73807542 0.27231290

MSE 0.07933005 0.49601526 1.11906842 0.07436149
relative 1.06681626 6.67032429 15.04903153 1

2.5% 3.42672389 3.02912450 2.03076418 3.45200574
97.5% 4.57925787 4.48766034 5.08011945 4.58028729

23.3.2 Cointegration

Table 53: Clayton copula, α0 = 5; Xt cointegration; marginal t(3)

α0 = 5 P1 P2 M2 P3 M3 I

mean 4.999695 4.913607 4.996693 4.655947 4.807326 4.993004
bias -0.000305 -0.086393 -0.003307 -0.344053 -0.192674 -0.006996
std 0.355793 4.409542 2.123469 1.172701 1.052907 0.303379

MSE 0.126588 19.451520 4.509131 1.493601 1.145736 0.092088
relative 1.374650 211.228122 48.965596 16.219328 12.441784 1

2.5% 4.329355 3.425135 3.751143 3.292677 3.635771 4.445209
97.5% 5.715926 6.731062 6.515857 7.690381 7.341182 5.614109

θ0 = 3 P1 P2 M2 P3 M3 I

mean 3.102791 3.178882 3.091936 4.281357 4.152847 3.102354
bias 0.102791 0.178882 0.091936 1.281357 1.152847 0.102354
std 0.498549 0.693241 0.615315 2.026734 1.798961 0.480340

MSE 0.259117 0.512582 0.387064 5.749528 4.565318 0.241203
relative 1.074271 2.125109 1.604727 23.836925 18.927317 1

2.5% 2.358046 1.912758 2.051686 1.402880 1.391340 2.383341
97.5% 4.354536 4.772549 4.546638 8.499422 8.038827 4.292948
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Table 54: Clayton copula, α0 = 5; Xt cointegration; marginal t(5)

α0 = 5 P1 P2 M2 P3 M3 I

mean 4.998967 4.892269 4.998314 4.715263 4.839748 4.991784
bias -0.001033 -0.107731 -0.001686 -0.284737 -0.160252 -0.008216
std 0.364725 2.026218 1.519511 1.031309 0.957447 0.293124

MSE 0.133026 4.117164 2.308915 1.144673 0.942386 0.085989
relative 1.547003 47.880023 26.851232 13.311824 10.959352 1

2.5% 4.309386 3.552950 3.726283 3.403930 3.620481 4.449929
97.5% 5.746006 6.860581 6.745947 7.364923 7.204350 5.590978

θ0 = 5 P1 P2 M2 P3 M3 I

mean 5.368794 5.564606 5.396362 49.450230 39.429079 5.350891
bias 0.368794 0.564606 0.396362 44.450230 34.429079 0.350891
std 1.424991 1.902027 1.733268 425.870993 368.746049 1.332860

MSE 2.166609 3.936487 3.161322 183341 137159 1.899640
relative 1.140537 2.072228 1.664169 96514 72202 1

2.5% 3.616808 2.992781 3.079820 2.084198 2.044659 3.671294
97.5% 9.016202 10.436735 9.662374 46.549061 36.267775 8.708020

Table 55: Clayton copula, α0 = 5; Xt cointegration; marginal t(4) + c(8)

α0 = 5 P1 P2 P3 I

mean 4.99514978 4.86945055 4.11373254 4.99346500
bias -0.00485022 -0.13054945 -0.88626746 -0.00653500
std 0.35956211 0.95801696 1.17511658 0.32287738

MSE 0.12930843 0.93483965 2.16636899 0.10429251
relative 1.23986312 8.96363188 20.77204801 1

2.5% 4.32780709 3.25541648 2.45197685 4.36875859
97.5% 5.73282528 7.12774365 7.07648049 5.66008408

θ0 = 4 P1 P2 P3 I

mean 3.98391982 3.91307617 3.24458305 3.98560650
bias -0.01608018 -0.08692383 -0.75541695 -0.01439350
std 0.28064693 0.36563003 0.79121477 0.27231291

MSE 0.07902127 0.14124107 1.19667558 0.07436149
relative 1.06266390 1.89938457 16.09267865 1

2.5% 3.42907370 3.21806552 2.02015083 3.45200571
97.5% 4.57105847 4.61500087 5.13306225 4.58028739
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Part III

Chapter 3: Testing for Structural Change
with Good Size and Power19

Abstract

This paper studies procedures for testing structural changes with good size and power prop-
erties. We focus on dynamic models and the analysis covers a wide range of important inference
problems. A leading case is testing for changing trends in dynamic models. In this case, existing
tests either suffer from substantial size distortions or exhibit non-monotonic power. Size and
power problems also surface in other dynamic models. We propose to address these two issues
simultaneously by constructing estimates for nuisance parameters using nonparametrically de-
trended residuals to achieve good power and an appropriate bootstrap procedure to improve the
size. The core of the construction is a modified bootstrap procedure. It is of sieve type and it
differs from the conventional bootstrap procedure in two aspects: (1) it uses estimates from the
nonparametric regression to generate bootstrap samples, and (2) it uses simulations to correct
for the bias associated with the estimates for the largest auto-regressive root. We show that the
procedure yields tests with adequate size and good power against a broad class of structural
changes, including one time discrete change, smooth change and multiple structural changes. It
is hoped that the results obtained in this paper will be of interests not only from the perspective
of testing for structural changes, but also from the broader perspective of understanding the
size and power properties of bootstrap testing procedures applied to dynamic models.

24 Introduction

Testing for structural changes in dynamic models is a common practice in empirical time series anal-
ysis. Most of the commonly used tests are asymptotic tests, relying on asymptotic approximations
for relevant critical values. As a direct consequence, the resulting tests may suffer from size distor-
tions when the sample size is small, or when series is persistent. The problem is particularly acute
when nuisance parameters (long run variance) are estimated under the alternative hypothesis. For
example, let’s consider using the Sup-Wald (Sup-W) test as in Andrews [1993] to test for structural
change in a linear regression with a constant and linear trend and an AR(1) error process driven by
independently and identically distributed normal innovations. Then, the rejection frequency at 5%
nominal level can be as large as 45% (29%) when the auto-regressive coefficient is 0.9, the sample
size is T = 100 (T = 200) and the trimming proportion is 10%. The rejection frequencies increase to
56% and 44% respectively when the auto regressive coefficient is 0.95. To fix the problem, Diebold
and Chen [1996] suggested using a bootstrap procedure. However, they do not provide a theory and,
more importantly, the power property of the procedure is not examined. Hansen [2000] proposed a
“fixed regressor” bootstrap and established its asymptotic validity. His focus was different in that
the goal was to provide asymptotic valid inference when marginal distributions of the regressors
change overtime. His results greatly facilitate the analysis in this paper.

Another important issue is the power properties of structural change tests. Perron [1991] and
Vogelsang [1999] documented a rather disturbing phenomenon, namely the issue of non-monotonic
power. Specifically, Vogelsang [1999] considered the issue of testing for a shift in the mean of a
dynamic time series. He showed that if the variance is estimated under the null hypothesis, then the
power of many commonly used tests eventually decreases as the magnitude of the structural change
increases. Such power problem is also observed in other situations when nuisance parameters are
estimated under the null hypothesis. Juhl and Xiao [2009] investigated the problem of non-monotonic
power in tests for a changing mean. They provided a theoretical explanation for the non-monotonic
power problem and proposed a modification using a non-parametric estimator for the mean function
to obtain residuals for variance estimation. The source of non-monotonic power is eliminated and
the resulting procedure has good power properties. However, the empirical size of such tests is

19Joint work with Zhijie Xiao xiaoz@bc.edu and Zhongjun Qu qu@bu.edu
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affected by the bandwidth choice. A procedure with good size and power performance awaits to be
developed.

In this paper, we address the size and power issues simultaneously and develop testing procedures
with improved size and power properties. This goal is achieved by coupling bootstrap based tests
with non-parametric methods.

We first investigate the performance of a conventional bootstrap procedure that involves esti-
mating all parameters under the null hypothesis and subsequently using them to generate bootstrap
samples. We show that this procedure significantly improves the size; however it also exhibits
non-monotonic power. What is interesting is that it delivers better power than the correspond-
ing asymptotic tests, in the sense that the power decreases at a latter stage, due to the fact that
when a break presents, the estimate of the auto-correlation coefficient is biased upward and accord-
ingly bootstrap critical values are smaller than the asymptotic ones. Unfortunately, the power still
diminishes and this occurs for parameter values than are of particular importance in practice.

We then propose a new procedure, in which we use nonparametrically detrended residuals to
construct tests to achieve good power and a modified bootstrap procedure to improve the size.
First, we follow Juhl and Xiao [2009] and use nonparametrically estimated residuals to construct
the long run variance estimate. This ensures that the long run variance estimate will be consistent
even under the alternative hypothesis, including the cases of multiple structural changes and smooth
changes. Second, we introduce a modified bootstrap procedure to account for uncertainty associated
with parameter estimation, with special attention paid to the effect of the non-parametric procedure
with a particular bandwidth. The modified bootstrap procedure is of sieve type and it differs from
the conventional ones in two aspects: (1) it uses nonparametrically estimated residuals to generate
the bootstrap sample, and (2) it uses and additional layer of bootstrap to reduce the bias associated
with estimating the dynamics of the model. We prove that the procedure is asymptotically valid.
We also use simulations to show that it yields tests with adequate size and significantly, sometimes
drastically, improved power over the asymptotic tests and the conventional bootstrap tests.

The importance and application of bias correction in dynamic models has been studied in the
literature. Kilian [1998] proposes a bootstrap after bootstrap procedure to construct confidence
intervals for bias reduced estimate of the impulse response. More remotely, Andrews and Chen
[1994] and Fair [1996] also studied the median unbiased procedures which aimed to eliminate the
median biased procedures which aimed to eliminate the median bias associated with the largest
auto-regressive root in finite order autoregressions.

Another advantage of our procedure is that it allows a rather broad class of regressors, including
stationary regressors as well as deterministic trends. This property is also shared by Hansen [2000].
And it is different from most of the existing literature, in which models with trends and with
stationary regressors are considered separately.

The paper is structured as follows. Section 2 presents the model of interest and discusses the null
and alternative hypothesis. Leading examples are also given. It also reports the result of a small
simulation to illustrate the size and power issue associated with a model with a linear trend. Section
3 examines the power property of the conventional bootstrap tests. Section 4 proposes modified
testing procedures and establishes its asymptotic validity. It also conducts simulations to evaluate
its finite sample performance. Section 5 concludes.

25 The model and assumptions

Consider the following time series model:

yt = x′tγ + z′tβt + ut, t = 1, 2, · · · , T (13)

where ut is an error term that may be serially correlated, and the regressor xt and zt can be
deterministic or stochastic. More specific assumptions about ut, xt and zt will be given later. The
issue of interest is to test whether βt is constant, while γ is restricted to be time invariant, i.e.:

H0 : βt ≡ β for all t ≥ 1
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Under the alternative hypothesis, βt has one or more structural changes, i.e.:

H1 :


βt = β1 if 1 ≤ t ≤ k1

βt = β2 if k1 < t ≤ k2

· · · · · ·
βt = βm if km−1 < t ≤ T

with βi 6= βj for some 1 ≤ i, j ≤ m. The number and locations of the breaks are unknown. The
goal is to construct a testing procedure that enjoys good size and power properties.

The above setting is quite general and includes several important models that are widely studied
in econometrics. We list a few leading examples below.

Example 6. (Testing for a changing trend in dynamic models with serially correlated errors).
In this case, xt = 0 and zt is a deterministic trend, say a polynomial trend given by zt =
(1, t/T, · · · , (t/T )p)′. The model then reduces to:

yt = z′tβt + ut, t = 1, 2, · · · , T (14)

where the errors ut are often serially correlated. A special case of (14) that is of particular interest in
practice is zt = 1. This model has been widely studied in the literature; see Perron [1991], Vogelsang
[1999], Deng and Perron [2008], and Juhl and Xiao [2009]. For the purpose of asymptotic analysis,
we assume that there exists a limiting trend function g(r) such that z[Tr] → g(r), as T → ∞,
uniformly in r ∈ [0, 1]. If zt = (1, t/T, · · · , (t/T )p)′, then g(r) = (1, r, · · · , rp)′ with r ∈ [0, 1].

Example 7. (Models with strictly exogenous regressors and serially correlated errors). Hansen
[2000] considered the following model (t = 1, 2, · · · , T ):

yt =z′tβt + ut,

zt =
√
t/Tvt with vt ∼ i.i.d. N(0, 1)

The example, although simple, illustrates an important point. namely, when marginal distri-
butions of the regressors vary over time, the asymptotic distributions of the commonly used tests
(say the Sup-W test as in Andrews [1993]) will be in general depend on the second moments of the
regressors. And the critical values of the tests need to be tabulated on a case by case basis. For this
type of models, bootstrap becomes a necessity.

Our model (13) can include ingredients from both examples 1 and 2.
A large family of tests has been proposed; see Perron et al. [2006] for a comprehensive review.

In this paper, we focus on the following tests due to their wide application in practice.

• (i) The Sup-W statistic of Andrews [1993];

• (ii) The Exp-W and Ave-W statistics of Andrews and Ploberger [1994];

• (iii) The multiple-break tests of Bai and Perron [1998];

• (iv) The CUSUM (Kolmogorov-Smirnoff) test with OLS residuals by Ploberger and Krämer
[1992];

• (v) The QS (Cramer von-Mises) tests by Perron [1991].

Note that these tests can be broadly divided into two categories, namely the Wald-type tests (i to iii),
which require estimation regression coefficients under the alternative hypothesis, and the residual-
based test (iv and v), which involve estimation using the full sample. The procedures proposed in
this paper apply to all of them. To simplify the notation, we use S to denote an arbitrary statistic
among the listed statistics and use L to denote its limiting distribution under the null hypothesis.

Before proceeding any further, we present some simple simulation results to illustrate the size
and power issues associated with these tests. We use the Sup-W and the CUSUM test as examples.
The findings carry to other tests as well. For simplicity and without loss of generality, we focus on
the case with one break.
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25.1 Preliminary simulations

We focus on the following Data Generating Process (DGP) with a single structural change in linear
trend:

yt =

{
α+ γt+ ut if 1 ≤ t ≤ k1

α+ γt+ (t− k1)β + ut if k1 < t ≤ T
(15)

where ut ∼ ARMA(1, 1) (including white noise, AR(1) and MA(1))

ut = ρut−1 + et + θet−1, et ∼ i.i.d.N(0, 1)

We set α = γ = 0, k1 = T/2 and consider the following specifications ρ = 0, 0.5, 0.7, 0.9 and
θ = 0, 0.2. The sample size T = 200 and the simulation repetition is 5, 000 times. For each case,
we vary the values of β to examine the size and power of the tests. For the both Sup-W test and
CUSUM test, a single break is allowed. We report rejection frequencies at a 5% nominal level.

Suppose our OLS regression is:
yt = α̃+ γ̃t+ ũt

then the CUSUM statistic is:

max
[Tε]≤t≤[T−Tε]

∣∣∣∣∣ 1

ω̂
√
T

t∑
s=1

ũs

∣∣∣∣∣
The trimming proportion is set to 10% hence ε = 5%. For T = 200, it means we take maximiza-

tion over [10, 190].
For the Sup-W test, suppose the single break is at t = t0, we consider the OLS regression under

Ht0 :
yt = x′tγ + z′tβ + z′tθ1(t ≤ t0) + ut, (t = 1, 2, · · · , T )

Use F test whether θ = 0. The statistics at time t0 is:

Ft0 =
A>t0Bt0At0

ω̂2

Here At0 =
t0∑
t=1

ztut −
t0∑
t=1

ztz
′
t ·
(

T∑
t=1

ztz
′
t

)−1

·
T∑
t=1

ztut

Bt0 =
t0∑
t=1

ztz
′
t −

t0∑
t=1

ztz
′
t ·
(

T∑
t=1

ztz
′
t

)−1

·
t0∑
t=1

ztz
′
t

Then the Sup-W statistic is:

max
[Tε]≤t≤[T−Tε]

∣∣∣∣∣A
>
[Tr]B[Tr]A[Tr]

ω̂2

∣∣∣∣∣
Both Wald type test and residual based test require an estimate for the long run variance of

ut, ω̂
2. In practice, we have the options of estimating it under the null or under the alternative

hypothesis20. It is well known that the choice has important effect on the finite sample size and
power of the tests. In our setting, ω̂ is estimated by imposing the null hypothesis. We apply the
autoregressive spectral density estimate, with the lag order determined by BIC21.

Remark 23. ω̂ can also be estimated under the alternative hypothesis. In this case, we first find the
break date that minimizes the sum of squared residuals from estimation (15). Then, we estimate
the residuals conditional on the estimated break date. Finally, we estimate the long run variance
from these residuals.

20Although for the Sup-W (resp. CUSUM) test, it is more natural to estimate the variance under the alternative
(resp. null) hypothesis, the limiting null distribution is invariant to such a choice under the assumption |ρ| < 1.

21The maximum lag length is set as KT = int(12(T/100))1/4
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The limiting distribution of CUSUM statistic is:

sup
ε≤r≤1−ε

∣∣∣∣W (r)−
(
r r2

)′ × ( 4 −6
−6 12

)
×
(
W (1)

∫ 1

0
sdW (s)

)∣∣∣∣
The limiting distribution of Sup-W statistic is:

sup
ε≤r≤1−ε

∣∣A>(r)B(r)A(r)
∣∣

here B(r) =

(
1 r
r r2/2

)
−
(

1 r
r r2/2

)
×
(

4 −6
−6 12

)
×
(

1 r
r r2/2

)
and A(r) =

(
W (r)∫ r

0
sdW (s)

)
−
(

1 r
r r2/2

)
×
(

4 −6
−6 12

)
×
(

W (1)∫ 1

0
sdW (s)

)
.

We approximate the standard Brownian motion with 20, 000 i.i.d. N(0, 1) random variable and
repeat the simulation for 20, 000 times to compute critical values. The 95% critical value CUSUM
statistic is 0.9019972.

First we set β to zero and consider the size of the tests. When the long run variance is estimated
under the null hypothesis, the test will be conservative, especially in the presence of strong positive
correlation. For CUSUM test, when ρ = 0.9, the rejection rate is 0.04% for AR(1) and 0.08% for
ARMA(1).

Table 56: CUSUM size (nominal 5%, T = 200)
rejection rate ρ = 0 ρ = 0.5 ρ = 0.7 ρ = 0.9

θ = 0 2.96% 1.34% 0.44% 0.04%
θ = 0.2 2.04% 1.04% 0.66% 0.08%

Remark 24. For Sup-W test when the long run variance is estimated under the alternative hypothesis,
size distortions occur and serious over-rejection is observed and it can be 45% when ρ = 0.9 and
T = 100. The size distortion persists after T is increased to 200.

Next, consider the power of the tests. Figure reports power of the CUSUM test when the long
run variance is estimated imposing the null hypothesis. Non-monotonic power presents and clearly
the deterioration affects parameter value of practical interest: for ρ = 0.9, the power is virtually
zero throughout. This is again particularly disturbing since we often expect macro time series to
be strongly positively auto-correlated. The above phenomenon has been widely documented and
explained: see Perron [1991], Vogelsang [1999], and Crainiceanu and Vogelsang [2007].
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Figure 12: CUSUM, no MA term
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Figure 13: CUSUM, with MA term

To summarize, the result shows that significant size distortions exist when the errors are per-
sistent. This is true irrespective whether the variance is estimated under the null or alternative
hypothesis. While the size distortion is smaller if the variance is estimated under the null, the power
is also miserable.

The size distortion is because standard asymptotic theory does not provide an adequate approx-
imation in finite samples when the series are persistent. A natural solution is to bootstrap. The
non-monotonic power is due to “incorrect”estimation of nuisance parameters (in this case the long
run variance) under the alternative hypothesis. The estimate diverges as the size of the break in-
creases. A natural solution is to use an alternative estimate that is bounded even when the break
size is large. The estimate also needs to allow for the possibility that an unknown number of breaks
may occur under the alternative hypothesis.

In this paper, we will attempt to address two issues simultaneously and in a general framework.
We now state the assumptions under which we will be working.

25.2 Assumptions

All of the aforementioned tests involve estimating the following regression using a sub-sample or the
full sample (0 < r ≤ 1):

yt = x′tγ + z′tβ + ut, t = 1, 2, · · · , [Tr]

Let wt = (x′t, z
′
t)
′ and θ = (γ′, β′)′. We may rewrite the above regression as:

yt = w′tθ + ut, t = 1, 2, · · · , [Tr]
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The OLS estimator of θ is then given by:

θ̃(r) =

[Tr]∑
t=1

wtw
′
t

−1[Tr]∑
t=1

wtyt


Under the null hypothesis,

√
T (θ̃(r)− θ) =

 1

T

[Tr]∑
t=1

wtw
′
t

−1 1√
T

[Tr]∑
t=1

wtut


We impose the following assumption about the property of the regressors.

Assumption 25. The partial sum processes of the regressors and their second moment satisfy the
following conditions:

1

T

[Tr]∑
t=1

wt ⇒ N(r)

1

T

[Tr]∑
t=1

wtw
′
t ⇒M(r)

where N(r) is a vector of limiting function of the regressors, and M(r) is a positive definite matrix
function.

The regressors can include stationary as well as trending regressors. Let wt,j denote the jth

component of wt. If wt,j is a stationary stochastic process with mean zero, then the corresponding
component in N(r) is zero. If wt,j is a deterministic trend, then the corresponding component in
N(r) is the limiting trend function. Assumption 25 is more general than what is typically adopted
in the structural change literature, under which models with trending and stationary regressors are
usually treated separately because they lead to different limiting distributions (c.f. Bai and Perron
[1998]). A notable exception is Hansen [2000].

The sequence of errors {ut} satisfy following conditions.

Assumption 26. ut = C(L)εt, where C(L) =
+∞∑
j=0

cjL
j, c0 = 1, and L is the lag operator, with

C(z) 6= 0 for all z inside the unit circle (|z| ≤ 1) and
+∞∑
j=0

js|cj | <∞ for some s ≥ 1, and εt is i.i.d.

with Eε2
t = σ2

ε , Eε4
t < +∞. Eutws = 0 for all t and s.

We denote the long run variance of ut by ω2 and its short run variance by σ2, respectively.
In Assumption 26, the errors are generated by a linear process, which covers a wide range

of time series and includes stationary ARMA(p, q) process as a special case. The summability and
moment conditions ensure an invariance principle for the sieve bootstrap that we use in our proposed
procedure. Under these assumptions,

1√
T

[Tr]∑
t=1

εt ⇒ σεW (r)

1√
T

[Tr]∑
t=1

ut ⇒ ωW (r)

where W is a standard Wiener process.
The following assumption is concerned with the relation between the regressors and the errors.
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Assumption 27. Ewtut = 0 for all t, 1√
T

[Tr]∑
t=1

wtut ⇒ G(r) and 1√
T

[Tr]∑
t=1

wtw
′
tu

2
t ⇒ σ2M(r). Here

G(r) is a mean-zero Gaussian process.

Remark 25. Assumptions 2 and 3 are conventional assumptions assumed in stationary time series
analysis. See Hansen [2000] and Park [2002] for similar assumptions.

Under the stated assumptions, we have

√
T (θ̃(r)− θ) =

 1

T

[Tr]∑
t=1

wtw
′
t

−1 1√
T

[Tr]∑
t=1

wtut

⇒M(r)−1G(r)

We now consider implications of Assumptions 1-3 for the two examples considered. The analysis
helps to pinpoint aspects of the model that determine the null limiting distributions of the tests.

Example. 1(continued). We have z[Tr] → g(r) uniformly in r ∈ [0, 1]. Thus,

1

T

[Tr]∑
t=1

wt ⇒ N(r) =

∫ r

0

g(s)ds

1

T

[Tr]∑
t=1

wtw
′
t ⇒M(r) =

∫ r

0

g(s)g(s)′ds

Specifically,

N(r) =


r∫ r

0
sds
· · ·∫ r

0
spds



M(r) =


r

∫ r
0
sds · · ·

∫ r
0
spds∫ r

0
sds

∫ r
0
s2ds · · ·

∫ r
0
sp+1ds

· · ·
. . .∫ r

0
spds

∫ r
0
sp+1ds · · ·

∫ r
0
s2pds


If zt = 1, then g(r) = 1, N(r) = r, and M(r) = r. Under Assumption 2 and 3,

1√
T

[Tr]∑
t=1

wtut ⇒ G(r) = ω

∫ r

0

g(s)dW (s)

and

1

T

[Tr]∑
t=1

wtw
′
tu

2
t ⇒ σ2M(r) = σ2

∫ r

0

g(s)g′(s)ds

Thus
√
T (θ̃(r)− θ)⇒M(r)−1G(r) =

[∫ r

0

g(s)g′(s)ds

]−1

· ω
∫ r

0

g(s)dW (s)

Let ũt denote the regression residuals obtained imposing the null hypothesis, we have
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1√
T

[Tr]∑
t=1

ũt =
1√
T

[Tr]∑
t=1

(yt − x′tγ̃ − z′tβ̃)

=
1√
T

[Tr]∑
t=1

ut −
1

T

[Tr]∑
t=1

w′t ·
√
T (θ̃ − θ)

⇒ ωW (r)−
∫ r

0

g(s)′ds ·
[∫ r

0

g(s)g′(s)ds

]−1

· ω
∫ r

0

g(s)dW (s)

= ωW(r) (16)

The first equation is the main ingredient of Wald-based tests and the second equation plays a
similar role in residuals based tests. The above result demonstrates what are expected to enter the
limiting distributions of the tests.

Example. 2(continued) wt = zt =
√
t/Tvt, vt ∼ N(0, 1). Thus, as shown as Hansen [2000],

1

T

[Tr]∑
t=1

wt ⇒ N(r) = 0

1

T

[Tr]∑
t=1

wtw
′
t ⇒M(r) = r2/2

Also,

1√
T

[Tr]∑
t=1

wtut =
1√
T

[Tr]∑
t=1

√
t

T
utvt ⇒ G(r) = σ

∫ r

0

√
sdW1(s)

because vt is i.i.d. N(0, 1) and independent of ut, long run variance of utvt is just variance of utvt
which is σ2 = Eu2

t . Specifically notice that W1(r) is the Wiener process independent of W (r) as
vtut is uncorrelated with ut.

Hence,
√
T (θ̃(r)− θ)⇒M(r)−1G(r) =

2σ

r2

∫ r

0

√
sdW1(s)

Further,

1√
T

[Tr]∑
t=1

ũt =
1√
T

[Tr]∑
t=1

ut −
1

T

[Tr]∑
t=1

w′t ·
√
T (θ̃ − θ)

⇒ ωW (r)−G(1)M(1)−1N(r)

= ωW (r)

We can also include a time trend xt = t/T here. Then wt = (xt, zt) = (t/T,
√
t/Tvt).

1

T

[Tr]∑
t=1

wt ⇒ N(r) =

(
r/2
0

)
1

T

[Tr]∑
t=1

wtw
′
t ⇒M(r) =

(
r3/3 0

0 r2/2

)
Also,

1√
T

[Tr]∑
t=1

wtut ⇒
(

ωW (r)
σ
∫ r

0

√
sdW1(s)

)
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notice that W1(r) is the Wiener process independent of W (r) as vtut is uncorrelated with ut.
Hence,

√
T (θ̃(r)− θ)⇒M(r)−1G(r) =

(
3ω
r3 W (r)

2σ
r2

∫ r
0

√
sdW1(s)

)
Further,

1√
T

[Tr]∑
t=1

ũt =
1√
T

[Tr]∑
t=1

ut −
1

T

[Tr]∑
t=1

w′t ·
√
T (θ̃ − θ)

⇒ ωW (r)−G(1)M(1)−1N(r)

= ω [W (r)− 3rW (1)/2]

The proposed procedure involves nonparametric estimation of nuisance parameters. We impose
the following assumptions on the kernel K(·) and the bandwidth h.

Assumption 28. K(·) is a bounded, non-negative, symmetric Lipschitz continuous density such

that
∫ +∞
−∞ |uK(u)|du < +∞. The bandwidth h satisfies h → 0 and Th4 → ∞ and Th6 → 0 as

T →∞.

This assumption is the similar as Assumptions 5 and 6 in Juhl and Xiao [2009]. Our bandwidth
requirement is stronger than Juhl and Xiao [2009] as we include the case where regressors are
stationary while Juhl and Xiao [2009] only consider fixed time trend regressors. The conditions,
along with Assumptions 1 to 3, ensure the nuisance parameter estimates have good properties under
both the null and the alternative hypothesis.

When xt or zt are stationary regressors, we need some technical constraints on its dependence:

Assumption 29. The stationary regressors part of wt need to satisfy the following conditions:
(i). wt = (x′t, z

′
t) has finite eight order moment: sup

t
E ‖wt‖8 < +∞.

(ii). ut is independent of data up to fourth order:

E[‖U‖i|X,Z] = E ‖U‖i i = 1, 2, 3, 4

where U := (u1, u2, · · · , uT )′, X := (x′1, x
′
2, · · · , x′T ) and Z := (z′1, z

′
2, · · · , z′T ).

(iii).wt = (x′t, z
′
t) is strong mixing with coefficient decaying in polynomial rate:

αm ≤ cm−3

for some constants c > 0.

Remark 26. αm is defined as:

αm = sup{|P(A ∩B)− P(A)P(B)| : A ∈ F i
1, B ∈ F∞i+m, i ∈ Z+)}

F i
1 denotes the σ−algebra generated by w1, w2, · · · , wi.
F∞i+m denotes the σ−algebra generated by wi+m, wi+m+1, · · · .

Remark 27. For stationary regressors, we need the strong mixing rate is at least with cubic poly-
nomial order. This is required to ensure uniform convergence. Cubic order is very mild, see Hansen
[2008]. It will be satisfied if the strong mixing rate is exponentially decayed. Specifically, i.i.d.
sequence automatically fulfills the condition.

Remark 28. For Hansen [2000] special case (see Example 2), if the stochastic regressor is as f (t/T ) vt
where f(·) denotes a deterministic time trend (f(x) =

√
x in Example 2), we need vt to meet all

above requirements listed in Assumption 29.

Having laid out the model and the assumptions needed, we now turn to bootstrap procedures
for improved inference. We first investigate the appropriateness of procedures along the line of
conventional bootstrap method.
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26 Conventional bootstrap tests

We consider the following procedure, which we label as the conventional sieve bootstrap test. We
assume the errors of the model are serially correlated. The case with lagged dependent variables
and martingale difference errors can be handled along the same lines, the findings are similar.

1. Estimate (13) and construct the test, say the Sup-W test or the CUSUM test, where the long
run variance is estimated under the null hypothesis using an autoregressive approximation.
The lag order is determined using BIC and denoted by k.

2. (Generate the bootstrap sample). First, obtain residuals imposing the null hypothesis:

ũt = yt − x′tγ̃ − z′tβ̃

Then, estimate an AR(k) model for ũt:

ũt =

k∑
j=1

dj ũt−j + et

Denote the estimated parameters and residuals as d̃j and ẽt. Next, sample with replacement
from the re-centered empirical distribution of {ẽt}Tt=1 to obtain {ẽ∗t }Tt=1.
Finally, generate ũ∗t recursively as

ũ∗t =

k∑
j=1

d̃j ũ
∗
t−j + ẽ∗t

and generate y∗t as y∗t = x′tγ̃ + x′tβ̃ + ũ∗t . Note that the regressors xt and zt are fixed across
bootstrap samples, as in Hansen [2000].

3. Estimate (13) using {y∗t }Tt=1 and construct the test as in Step 1.

4. Repeat step 2 and 3 for B times and obtain the bootstrap critical values.

5. Report a rejection if the value of the statistic in step 1 exceeds the critical value.

The above procedure can be shown to have correct size asymptotically. Indeed simulations show
that it improves upon asymptotic tests. To this end, we again consider the model in Section (25.1).
When error correlation is mild, size of conventional bootstrap test is very close to the nominal size
of 5%. However, when error correlation is very strong (ρ = 0.9), it is still conservative, 2.8% for
AR(1) and 2.6% for ARMA(1, 1).
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Figure 14: CUSUM, no MA term
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Figure 15: CUSUM, with MA term

The power property awaits to be explored. Some interesting pattern emerges from above figures.
First, the test shows non-monotonic power. The second and slightly surprising result is that the
power of the bootstrap test improves upon the asymptotic test, with power decreasing at a latter
stage. And the improvement is relatively more significant when the autocorrelation is mild. This
is because when a break is present, the sum of the estimated autoregressive coefficients is upward
biased. Hence the estimated long run variance is exploding. As a result, the bootstrap critical
values are smaller than the asymptotic ones. Finally, and more importantly, the power improvement
is limited. When ρ = 0.9, the power is below 10% globally, for both AR and ARMA residuals.
This is disturbing since this corresponds to a region of parameter values of particular importance to
economics.

If it is known a prior that at most one break occurs under the alternative hypothesis. Then,
we can modify the first and third step by estimating the long run variance under the alternative
hypothesis. Specifically, we first find the break date that minimizes the sum of squared residuals.
Then, we estimate the residuals conditional on the estimated break date and use them to construct
an estimate for the long run variance. We conducted some simulations and the results shows that this
indeed delivers significant power improvements over the procedure discussed above. However, the
improvement vanishes if multiple breaks occur of if the change is smooth, and similar non-monotonic
pattern as in above figures emerges. Because in practice we rarely know the number of breaks before
looking at the data, it is desirable to have a procedure that can adapt to multiple changes. We now
consider such procedures.

Specifically we propose bootstrap based testing procedures using a nuisance parameter estimator
with nonparametrically detrended data. The proposed procedures have subtle differences depending
on whether lagged dependent variables are present or absent in the regression. We treat these two
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cases sequentially.

27 Bootstrap procedures for models with dependent errors

Lagged dependent variables are not present and Assumption 2(i) applies. We first propose a pro-
cedure without bootstrap bias correction. We name this procedure as bootstrap with nonpara-
metrically estimated residuals. We label this procedure as NB(bootstrap with nonparametrically
estimated residuals).

1. (Construct the test statistic). We estimate different regressions. The first regression is a
regression of (13) under the null, denote the corresponding parameter estimates as γ̃ and
β̃, and residuals as ũt. Next, we construct a nuisance parameter estimator that have good
properties even under the alternative with structural breaks (non-constant βt). In particular,
we consider the following semiparametric regression with partially varying coefficients:

yt = x′tγ̂ + z′tβ̂

(
t

T

)
+ ût, t = 1, 2, · · · , T (17)

let ût be the corresponding residuals. Based on ût, estimate the following autoregressive model
for ût with lag order determined by AIC or BIC:

ût = ρ1ût−1 + ρ2∆ût−1 + · · ·+ ρk∆ût−k+1 + et

Denote the parameter estimates as ρ̂ = (ρ̂1, ρ̂2, · · · , ρ̂k) and residuals as êt. We can then use êt
and ρ̂ to construct an estimate for the long-run variance of ut. Denote the estimate by σ̂2. We
construct the test statistic in the conventional way as the standard procedure, as in Bai and
Perron [1998] except that we use ω̂2 as the variance estimate. For example, for the CUSUM
or QS tests, the partial sum process will be constructed based on the residuals from the (null)
restricted regression in the standard way but ω̂2 will be used for standardization. Denote the
testing statistic as S.

2. (Generate the bootstrap sample). Next, sample with replacement from the re-centered empir-
ical distribution of {êt}Tt=1 to obtain {ê∗t }Tt=1. Simulate samples under the null (using γ̃ and
β̃). Specifically, we generate

u∗t = ρ̂1u
∗
t−1 + ρ̂2u

∗
t−2 + · · ·+ ρ̂ku

∗
t−k + ê∗t

y∗t = x′tγ̃ + z′tβ̃ + u∗t

Based on the bootstrapped data {y∗t }, we construct the bootstrapped test statistic as Step 1,
i.e. we again estimate two sets of regressions based on {u∗t }, and construct an estimate σ̂∗ for
the long-run variance of {u∗t } based on the semiparametric regression, and construct the test
statistics as the standard procedure, except that we use σ̂∗2 as the variance estimate. Notice
that we use, in the bootstrap stage, the same bandwidth and lag order in Step 1. Denote the
bootstrapped test statistic as S∗.

3. Repeat step 2 for N times, denote the test statistic for each simulated sample as S∗b , b =
1, 2, · · · , N . The limiting null distribution of the test statistic can then be approximated by
the empirical distribution of S∗b . Let C∗α be the (1− α)-th quantile of {S∗b }Nb=1, i.e.

P∗ (S∗b ≤ C∗α) = 1− α

4. Compare the testing statistic S in step 1 with the bootstrapped critical value C∗α. The null
hypothesis will be rejected at the level α if S ≥ C∗α.
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In the leading case of testing for a changing trend in dynamic models, xt = 0 and zt is a deterministic
trend, the semiparametric regression (17) reduces to a varying coefficient nonparametric estimation

yt = z′tβ̂ (t/T ) + ût, t = 1, 2, · · · , T

which can be estimated by (using a local constant estimator)

β̂t = arg min
β

T∑
s=1

(ys − z′sβ)
2 ·K

(
t− s
Th

)
Consider the special case with zt = (1, t/T ). Then, the preceding equation becomes

(
β̂t,0, β̂t,1

)
= arg min

β0,β1

T∑
s=1

(
ys − β0 − β1 ·

s

T

)2

·K
(
t− s
Th

)
This can also be written as(

β̂t,0, β̂t,1

)
= arg min

β0,β1

T∑
s=1

[
ys −

(
β0 + β1 ·

t

T

)
− β1 ·

s− t
T

]2

·K
(
t− s
Th

)
which is equivalent to

(
β̂∗t,0, β̂

∗
t,1

)
= arg min

β∗0 ,β
∗
1

T∑
s=1

[
ys − β∗0 − β∗1 ·

s− t
T

]2

·K
(
t− s
Th

)

and the local estimate for z′tβ (t/T ) is then given by β̂∗t,0. If the regression (13) has only a constant
term, i.e. zt = 1, the the problem becomes

β̂t,0 = arg min
β0

T∑
s=1

(ys − β0)
2 ·K

(
t− s
Th

)
and this is simply the Nadaraya-Watson estimator.

The following result shows that the bootstrap procedure consistently estimates the null limiting
distribution. Note that the convergence is in the sense of Giné and Zinn [1990].

Theorem 3. Under the null hypothesis and Assumptions 1–5, S∗
d→ L in P.

Definition 1. We say ξ∗T = op∗(1) in P if P ∗(|ξ∗T | > ε) = op(1) for all ε > 0.

Here P ∗(·) := P (·|X,Y, Z) is bootstrap probability conditional on data and E∗(·) := E(·|X,Y, Z)
is bootstrap expectation conditional on data.

Definition 2. We say ξ∗T = Op∗(1) in P if δT ξ
∗
T = op∗(1) for any positive sequence δT = o(1).

27.1 A modified bootstrap procedure

In many macroeconomic applications, the serial correlation can be quite strong and the largest
autoregressive root may be close to 1. In this case, estimate of ρ1 may be downward biased under
the null hypothesis. As a result, the bootstrap procedure discussed above may have size distortions.
Based on such a consideration, we consider a modification that using an additional layer of bootstrap
to correct the bias. We label this procedure as modified bootstrap procedure.

1. (Construct the test statistic). Same as before, denote the testing statistic as S.
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2. (Bias correction). Re-sample with replacement from the re-centered empirical distribution of
êt and simulate samples under the null (using γ̃ and β̃) in the same way, i.e. we generate

u∗t = ρ̂1u
∗
t−1 + ρ̂2∆u∗t−1 + · · ·+ ρ̂k∆u∗t−k+1 + ê∗t

y∗t = x′tγ̃ + z′tβ̃ + u∗t

Based on the re-sampled data {y∗t }, following step 1, we estimate (ρ1, ρ2, · · · , ρk). Repeat
this for B times (again, with the same bandwidth and lag order), and denote the estimated
autoregressive coefficients for j-th sample as (j = 1, 2, · · · , B)

ρ̂∗(j) = (ρ̂
∗(j)
1 , · · · , ρ̂∗(j)k )

Estimate the bias of the largest autoregressive root:

b̂ = ρ̂1 −
1

B

∑
ρ̂
∗(j)
1

Finally, construct the bias corrected estimate for ρ1 as

ρ̂c1 =

{
ρ̂1 + b̂ if |ρ̂1 + b̂| < 1

ρ̂1 otherwise

3. (Generate the bootstrap sample). Re-sample with replacement from the re-centered empirical
distribution of êt and generate the bootstrap sample using bias-corrected estimates, i.e. we
generate

uc∗t = ρ̂c1u
∗
t−1 + ρ̂2∆u∗t−1 + · · ·+ ρ̂k∆u∗t−k+1 + e∗t

yc∗t = x′tγ̃ + z′tβ̃ + uc∗t

and construct the test statistic in the same way as step 1 (again the same bandwidth and lag
order are used).

4. Repeat step 3 for N times, denote the testing statistic for each simulated sample as Sc∗b ,
b = 1, 2, · · · , N . The limiting null distribution of the test statistic can then be approximated
by the empirical distribution of Sc∗b . Let Cc∗α be the (1− α)-th quantile of {Sc∗b }Nb=1, i.e.,

P∗ (Sc∗b ≤ Cc∗α ) = 1− α

5. Compare the testing statistic S in step 1 with the bootstrapped critical value Cc∗α . The null
hypothesis will be rejected at the level α if S ≥ Cc∗α .

Remark 29. The application of nonparametric estimates ensure the tests have monotonic power.
The bootstrap fixes the size. For persistent data, it is crucial to apply the bias correction before
bootstrapping. It is important to note that the correction acknowledges that the bias depends
on both the data generating process and the bandwidth, and this is why the bandwidth are fixed
throughout. Also, we correct the bias only if this does not violate the stationarity condition, because
we do not really want to move the estimate if it is already above the true value.

Theorem 4. Under the null and Assumptions 1–5, conditional on the data and for almost all sample

paths, Sc∗
D→ L in P.
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27.2 Simulation

We still use the same data generating process and consider the same specifications as in section 25.1.
We report results for the CUSUM test. (Results for Sup-W test are very similar.) The reported
values are based on 5, 000 replications with 200 bootstrap samples for each replication. Lag orders
are determined by BIC. For nonparametric estimation, we consider Epanechnikov kernel and apply
a local-constant estimator. The bandwidth is set to

h = cT−1/5

where T is the sample size and c is a constant. We consider c = 1.0 and 2.0. Results are quite
similar and our reports are based on c = 1.0. Note that for T = 200, h then takes values 0.347 and
0.693, for c = 1.0 and 2.0, respectively. Thus, c = 2.0 could be viewed as large bandwidth choice for
sample sizes (T = 200) typically encountered in macroeconomics.

We first consider NB without size correction. The power property is attractive as all of them are
monotonic to structural break. The results show that the size becomes more stable and close to the
nominal level except when the series is very persistent. When error correlation is ρ = 0.9, the test
is quite aggressive, 8.34% for AR(1) and 9.08% for ARMA(1, 1).

Figure 16: CUSUM, no MA term
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Figure 17: CUSUM, with MA term
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Figure 18: CUSUM, no MA term
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Figure 19: CUSUM, with MA term

The bias correction, employed in modified bootstrap procedure, offers a further refinement. The
size becomes uniformly closer to the nominal level with the improvement being more significant when
the series is persistent. Notice the power of modified test is a little worse than bootstrap without
size correction, when residuals is persistent (ρ = 0.9). We view this as an acceptable price paid to
have sizes uniformly closer to nominal level (and to be able to handle a wide range of models with
trending moments).

28 Conclusion

This paper studies procedures for testing structural changes with good size and power properties.
We focus on dynamic models and the analysis covers a wide range of important inference problems.
Existing tests either suffer from substantial size distortions or exhibit non-monotonic power. We
propose to address these two issues simultaneously by constructing estimates for nuisance parameters
using nonparametrically detrended residuals to achieve good power and an appropriate bootstrap
procedure to improve the size. The core of the construction is a modified bootstrap procedure.
It is of sieve type and it differs from the conventional bootstrap procedure in two aspects: (1) it
uses estimates from the nonparametric regression to generate bootstrap samples, and (2) it uses
simulations to correct for the bias associated with the estimates for the largest auto-regressive root.
We show that the procedure yields tests with adequate size and good power against a broad class
of structural changes, including one time discrete change, smooth change and multiple structural
changes.

Extension: this paper concentrates on the model where dynamics are relegated to the error
term. In other contexts, it may be desirable to model the dynamics directly. For example, a lagging
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term yt−1 could be included:
yt = ρyt−1 + x′tγ + z′tβ + ut

Here ut is assumed to be a martingale difference sequence to avoid endogeneity. We want to
test whether there is a structure break in β. Furthermore, the lagging term could be added to the
test, that is, whether there is a structural break in ρ. Extending our algorithms (with good size
and power properties) to this dynamic model is of practical value and will be analyzed in another
project.
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