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Since their first experimental realizations in the 2000s, bulk electronic topological

materials have been one of the most actively studied areas of condensed matter

physics. Among the more recently discovered classes of topological materials are

the Weyl semimetals whose low energy excitations behave like massless, relativis-

tic particles with well-defined chirality. These material systems display exotic

behavior such as surface Fermi arc states, and the chiral anomaly in which par-

allel magnetic and electric fields lead to an imbalance of left- and right-handed

particles. Much of the research into these materials has focused on the electronic

properties, but relatively little has been directed towards understanding the vi-

brational properties of these systems, or of the interplay between the electronic

and vibrational degrees of freedom. Further, the technological potential of these

materials is still underdeveloped, with the search for physical properties enhanced

by the topological nature of these materials being sought after. In this dissertation

we address both of these issues.

In Chapters III and IV we present temperature dependent Raman investiga-

tions of the the Weyl semimetals WP2, NbAs, and TaAs. Measurements of the

optical phonon linewidths are used to identify the available phonon decay paths,

with ab-initio calculations and group theory used to aid the interpretation of these

results. We find that some phonons display linewidths indicative of dominant de-

cay into electron-hole pairs near the Fermi surface, rather than decay into acoustic

phonons. In light of these results we discuss the role of phonon-electron coupling

in the transport properties of these Weyl semimetals.



In Chapter V, we discuss the construction of our “PVIC” setup for the mea-

surement of nonlinear photocurrents. We discuss the experimental capabilities

that the system was designed to possess, the operating principles behind key com-

ponents of the system, and give examples of the operating procedures for using the

setup. The penultimate chapter, Chapter VI, presents the results of photocurrent

measurements using this setup on the Weyl semimetal TaAs. Through careful

analysis of the photocurrent polarization dependence, we identify a colossal bulk

photovoltaic effect in this material which exceeds the response displayed by previ-

ously studied materials by an order of magnitude. Calculations of the second-order

optical conductivity tensor show that this result is consistent with the divergent

Berry connection of the Weyl nodes in TaAs.

In addition to these topics, Chapter II addresses the results of Raman mea-

surements on thin film heterostructures of the topological insulator Bi2Se3 and the

magnetic semiconductor EuS. By investigating the paramagnetic Raman signal in

films with different compositions of EuS and Bi2Se3 we provide indirect evidence of

charge transfer between the two layers. We also track the evolution of phonon en-

ergies with varying film thicknesses on multiple substrates which provides insight

into the interfacial strain between layers.

We conclude the dissertation in Chapter VII with a summary of the main

results from each preceding chapter, and give suggestions for future experiments

that further investigate these topics.
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CHAPTER I

Introduction

The profound role of symmetry in the study of physics can hardly be over-

stated. From Noether’s theorem relating the presence of continuous symmetries

to conservation laws[1, 2], to the Landau theory of phase transitions[3, 4], the

symmetries of a system, and often their breaking, are crucial in understanding

its properties and behavior. Yet for all the successes of symmetry in describing

physical media and their phases, in the 1980s evidence began emerging that cer-

tain phenomena could not be explained on the basis of symmetry alone. After

many pioneering theoretical works the picture that instead emerged was that it

was the topology of the electronic wave functions that was crucial to describing

these phenomena. Today, the combination of both symmetry and topology yields

a richer and more complete understanding of materials than ever before. In this

dissertation we present research into the physics of topological materials utilizing

techniques that are deeply influenced by the underlying material symmetries.

1.1 Scope of this Dissertation

The works described in this dissertation are broken up into two main parts.

The first part is primarily concerned with the use of Raman spectroscopy as a

probe of phonons and phonon-electron coupling in different topological materials.
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Chapter II addresses Raman spectra from thin film heterostructures of the topo-

logical insulator Bi2Se3 and the magnetic semiconductor EuS. By investigating the

paramagnetic Raman signal in films with different compositions of EuS and Bi2Se3

we provide indirect evidence of charge transfer between the two layers. We also

track the evolution of phonon energies with varying film thicknesses on multiple

substrates which provides insight into the interfacial strain between layers.

Chapters III and IV present temperature dependent Raman investigations of

the the Weyl semimetals WP2, NbAs, and TaAs. Measurements of the optical

phonon linewidths are used to investigate the available phonon decay paths, with

ab-initio calculations and group theory used to aid the interpretation of these re-

sults. We find that some phonons display linewidths indicative of dominant decay

into electron-hole pairs near the Fermi surface, rather than decay into acoustic

phonons. In light of these results we discuss the role of phonon-electron coupling

in the transport properties of these Weyl semimetals.

The second part of the dissertation is broken into two chapters. The first,

Chapter V, addresses the construction of the Photo-Voltage-Current-Conductivity

or “PVIC” setup for the measurement of nonlinear photocurrents. We discuss the

experimental capabilities that the system was designed to possess, the operating

principles behind key components of the system, and give examples of the op-

erating procedures for using the setup. The penultimate chapter, Chapter VI,

presents the results of photocurrent measurements using this setup on the Weyl

semimetal TaAs. Through careful analysis of the photocurrent polarization depen-

dence, we identify a colossal bulk photovoltaic effect in this material which exceeds

the response displayed by previously studied materials by an order of magnitude.

Calculations of the second-order optical conductivity tensor show that this result

is consistent with the divergent Berry connection of the Weyl nodes in TaAs.

We conclude the dissertation in Chapter VII with a summary of the main
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results from each preceding chapter, and give suggestions for future experiments

that further investigate these topics.

The rest of this introduction chapter will review pertinent background material.

We introduce some key concepts about topological materials, Raman spectroscopy,

and nonlinear photocurrents. Since symmetry and group theory feature heavily

in many of the phenomena we investigate, we dedicate a fair amount of discussion

to these topics. References to many invaluable resources are given, which the

interested reader may pursue for more comprehensive treatments of that material.

1.2 The Berry Phase and Topological Materials

One of the earliest and perhaps the most well-known example of an application

of topological concepts in condensed matter physics was the discovery of the integer

quantum Hall effect exactly 40 years ago[5]. The quantized plateaus of the Hall

conductance can be shown to be multiples of the quantum of conductance, e2/h,

and an integer topological invariant Cn called the Chern number[6–9]:

σxy =
e2

h
Cn (1.1)

The Chern number here is an example of what is known as a geometric or Berry

phase. Named for Sir Michael Berry, who introduced and developed the concept in

his seminal 1984 work[10], the Berry phase is an additional, gauge-invariant phase

factor acquired by a quantum mechanical system when it adiabatically evolves

through a cyclical process. The Berry phase may be expressed as[10, 11]:

γn = i

∮
C

〈n(R)|∇R|n(R)〉 · dR (1.2)

3



where γn is the Berry phase, |n(R)〉 is the wave function which is parameterized

by R, and C is a closed loop in the parameter space (R is a generalized parameter

which need not be spatial). A gauge-dependent vector potential known as the

Berry connection may be defined as An(R) ≡ i〈n(R)|∇R|n(R)〉. In terms of the

Berry connection we may write:

γn = i

∮
C

A(R) · dR (1.3)

If we consider the Berry phase as being analogous to a magnetic flux, then the

Berry connection is analogous to the electromagnetic vector potential A(r). The

path integral in Eq. 1.3 then resembles Gauss’ law for magnetic fields, though

written for the vector potential. This analogy can be extended further by consid-

ering the curl of the Berry connection, known as the Berry curvature, Ωn(R) ≡

∇R ×An(R). Using Stokes’s theorem the Berry phase may then be rewritten as

a surface integral:

γn =

∫
S

Ωn(R) · dR (1.4)

The Berry curvature is thus analogous to the magnetic field.

In the setting of crystalline solids we can identify the lattice momentum k

as our parameter, with the BZ serving as the parameter space[11]. The wave

functions and their associated energy bands will therefore be the familiar Bloch

wave functions[12]. An alternate form for the Berry curvature proves useful in

these contexts:

Ωn(k) = −Im
∑
n′ 6=n

〈n(k)|∇kH|n′(k)〉 × 〈n′(k)|∇kH|n(k)〉
(En − En′)2

(1.5)

The denominator of this expression goes to zero when the energy gap between

two bands vanishes, causing a divergence in the Berry curvature. We may thus
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identify such band crossings as monopoles of the Berry curvature[11]. Precisely

at these points the wave functions of the two crossing bands are not well-defined,

as can be seen in soluble models such as the Su-Schrieffer-Heeger model[13]. The

comprehensive identification and topological classification of band crossings is a

matter beyond the scope of this dissertation[14]. We will limit our discussion to

two classes of topological materials: Weyl semimetals and topological insulators.

1.2.1 Weyl Semimetals

Weyl semimetal (WSM) are a recently realized class of topological materials

which, in the ideal case, have low energy excitations that behave like relativistic

Weyl fermions[15]. These fermions are solutions to a massless version of the Dirac

equation:

i~γµ∂µψ = 0 (1.6)

(where γµ are the Dirac matrices) which was originally considered by Hermann

Weyl in 1929[16]. In addition to being massless, Weyl fermions have a definite

chirality, meaning that the spin and momentum are locked parallel or anti-parallel

to one another[15, 17]. Weyl fermions are thus said to come in one of two types:

right- or left-handed, depending on the relative direction between the spin and

momentum. In their condensed matter realization, Weyl fermions exist as quasi-

particle excitations in the vicinity of so-called Weyl nodes[18], which are band

crossings with linear dispersions in three-dimensions that act as monopoles of

Berry curvature. We now consider what specific material properties are required

to produce a WSM.

A well-known theorem from Neumann and Wigner states that energy crossings

between bands of the same symmetry are generally forbidden[19]. “Avoided cross-

ings,” as they are known, result from interactions between the two bands which

lift the degeneracy and produce a band gap. However, as shown by Herring in
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1937[20], band degeneracies unrelated to specific symmetries may occur in systems

of three or higher spatial dimensions. Is it these “accidental” crossings that can

give rise to Weyl nodes.

As noted above, these band crossings act as monopoles of the Berry curva-

ture. The transformation properties of the Berry curvature under two fundamental

symmetries: time-reversal and inversion, will determine whether a material can

support the existence of Weyl nodes. Under time-reversal symmetry the Berry

curvature transforms as[11]:

Ωn(k) = −Ωn(−k) (1.7)

while under inversion symmetry it transforms as:

Ωn(k) = Ωn(−k) (1.8)

It is clear from these relations that if a material possesses both time-reversal and

inversion symmetry that the Berry curvature will be zero throughout the entire

BZ. To support a non-zero Berry curvature a material must therefore break either

time-reversal or inversion symmetries. In addition to this, the fermion doubling

theorem of Nielsen and Ninomiya states that Weyl nodes must come in pairs of

opposite chirality[17, 21, 22]. In other words, the number of sources and sinks of

Berry curvature in the BZ must be the same. If a material system breaks time

reversal symmetry, we thus find that the minimum possible number of Weyl nodes

will be two: one left and one right chiral node. On the other hand, if a material

breaks inversion symmetry we find that the minimum number of nodes must be

four.

In the vicinity of the Weyl node the dispersion relation may be obtained from
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the Hamiltonian in Eq. 1.6:

En = ±~vFk · σ (1.9)

where vF is the Fermi velocity and σ are the Pauli spin matrices. The dispersion

is linear in momentum in all three-directions, with the spin polarized parallel or

anti-parallel to the momentum. In the ideal case, the Weyl nodes are located at

the Fermi energy and there are no other topologically trivial bands coexisting at

the Fermi energy. However, finding such materials presents a challenge[23], since

many WSM have trivial bands that also cross the Fermi energy[24], or have Weyl

nodes that are located far from the Fermi energy[25].

The family of compounds (Nb,Ta)(P,As) were the first theoretically predicted

inversion symmetry breaking WSM[26] to be experimentally confirmed. Angle

resolved photoemission spectroscopy measurements of the bulk and surface band

structures revealed the presence of Weyl nodes and surface Fermi arcs[27–29],

and transport measurements presented evidence for the chiral anomaly[30–32] (al-

though debate arose whether the negative magnetoresistance taken as evidence

for the chiral anomaly could have been due to non-topological effects such as cur-

rent jetting[33]). Since 2015 numerous other WSM have been identified, and we

refer the interested reader to review articles and the references within for more

information[15, 23, 34].

We lastly discuss the distinction between type-I and type-II WSM. In a type-I

WSM the constant energy cross section of the Weyl cone shrinks to a point as the

energy is swept through the Weyl node. In contrast, for type-II WSM the constant

energy surface does not become point-like at the energy of the Weyl node due to

the intersection of the electron and hole pockets that form the node[35]. The

Weyl cones of a type-II WSM are therefore tilted versions of type-I Weyl cones.

In Chapter III we investigate the type-II WSM WP2.
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1.2.2 Topological Insulators

The class of materials known as topological insulators are characterized by an

electrically insulating bulk, but conducting surface states[17, 36–38]. The insulat-

ing bulk of a topological insulator (TI) has a non-zero Z2 topological index[39–41]

which distinguishes it from a topologically trivial insulating state such as vacuum

or air. In the same way that a sphere cannot be smoothly deformed into a torus

because they are topologically distinct, the bulk band structure of a topological

insulator cannot smoothly deform into that of vacuum or air. At the boundary

between the TI and the trivial insulator (i.e. the surface of the TI) we therefore

find linearly dispersing, gapless surface states which form a two-dimensional Dirac

cone[36].

The surface states may be described by the Hamiltonian[17]:

H(k) =

~vFk · σ 0

0 −~vFk · σ

 (1.10)

where k = (kx, ky) and σ = (σx, σy) (this Hamiltonian is four-dimensional). The

spins of the electrons are polarized perpendicular to the momentum[42, 43], with

the handedness determined by the specific crystal surface. These surface states

are protected by time-reversal symmetry[41] and breaking this symmetry can lift

the degeneracy at the Dirac node[44]. This corresponds to having introduced a

mass term proportional to the σz Pauli matrix in the above Hamiltonian.

The first 3D topological insulator to be experimentally identified was Bi1−xSbx

in 2008[42]. Not long after this initial discovery the so-called “second generation”

of topological insulators were realized in the (Sb,Bi)2(Se,Te)3 family of materi-

als[45–47]. The Bi2Se3 family in particular are layered van der Waals materials

which allows exfoliation down to single atomic layers. High quality thin films
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can also be grown by molecular beam epitaxy (MBE) which has allowed for the

creation of high quality heterostructures between TIs and other materials. One

notable such example are heterostructures of ferromagnetic materials and TIs.

The interfacial magnetic field produced by the magnetic material can break time-

reversal symmetry at the surface of the TI, opening a gap and leading to e.g. the

quantum anomalous Hall effect[48, 49].

1.3 Crystal Symmetry: Point and Space Groups

Group theory is a powerful mathematical tool which has many applications

in the study of crystalline solids[50–52]. The groups most often discussed in this

context are the point group and space group of a crystal. The space group of a

crystal has as its elements the infinite group of translation operations, the finite

group of rotation elements (here “rotation” also includes improper rotations such

as mirror planes or roto-inversions) that are allowed by the translation symmetry

of the crystal lattice, and all combinations of these allowed translation and rotation

operations[53]. The point group, by contrast, consists solely of the allowed rotation

elements. Unlike the group of translation operations, which is always a normal

subgroup of the space group, the point group in general is not a normal subgroup

of the space group. If it is the case that the point group is a normal subgroup of the

space group, then the space group is said to be symmorphic. On the other hand, if

the point group is not a normal subgroup, then the space group is said to be non-

symmorphic. In less abstract terms, a symmorphic space group is one in which

none of the point group operations involve an accompanying lattice translation,

while in a non-symmorphic space group at least one point group element requires

a simultaneous lattice translation (e.g. a screw-axis or a glide plane).

Of considerable import to us will be the characters of the irreducible repre-

sentations associated with each of these groups. The character of an irreducible
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representation is the trace of the matrix of that representation[51]. The trans-

lation group has as its irreducible representations the one-dimensional matrices:

exp(ik ·RL), where k is a wave vector and RL is a lattice translation vector[53].

Since these representations are one-dimensional the characters are simply these

same phase factors. For the point groups, character tables for the irreducible rep-

resentations may be found in numerous references, and where necessary we will

reproduce these tables such as in Section 1.4.2 below. The characters of space

group representations are more cumbersome to evaluate, and due to the infinite

number of translation elements it is not feasible to enumerate them. We will make

use of the characters for full group representations of the space group in Chap-

ters III and IV, with more details concerning their derivation given in Chapter III.

In Chapter VI we will also use group theory to identify the non-zero elements

of response tensors. Neumann’s Principle states that: “the symmetry of a physical

property of a crystal must include the same spatial symmetry characteristics as

the crystal structure and thus the symmetry of the matter tensor must include

all of the symmetry operations contained in the point group of the crystal.”[50]

Mathematically this may be expressed through the relation:

σ′ij = RikRjlσkl (1.11)

where σkl is the k and lth element of the original tensor σ, σ′ij is the i and jth

element of the transformed tensor σ′, and Rik are the elements of the matrix R

representing a symmetry operation. If the symmetry operation R belongs to the

point group of the crystal, then the elements of σ′ must be identical to those from

σ[50]. The relation above is valid for second-rank tensors, and similar relations

may be readily derived for tensors of higher rank.
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1.4 Raman Scattering

The inelastic scattering of light was first experimentally observed in 1928 by

Sir C.V. Raman[54], a discovery for which he was awarded the 1930 Nobel Prize

in Physics. In the following decades, and in particular after the advent of laser

technology, Raman scattering (as it became known) developed into a canonical

spectroscopic technique for the study of condensed matter systems. In this section

we will introduce some of the fundamental concepts necessary for an understand-

ing of the Raman spectra and results presented in the first few chapters of this

dissertation. More specific background material will be provided where needed in

the individual chapters.

Figure 1.1: Feynman diagram showing a typical Raman scattering process. A
photon of energy ~ωi is absorbed, creating an electron-hole pair. The electron
then emits a phonon of energy ~ω before recombining with the hole and emitting
a photon of energy ~ωo = ~ωi − ~ω.

The Feynman diagram for a typical Raman scattering process is shown in

Figure 1.1. A photon of energy ~ωi is first absorbed by an electron in the material

which creates an electron-hole pair. This may occur through excitation into real or

virtual electronic states, with the former potentially leading to resonant excitation

via judicious choice of excitation energy[55]. The electron (or hole) then interacts

with the lattice and creates a phonon of energy ~ω and momentum q. Though

not the focus of this dissertation, the excitation of magnons, excitons, and other

discrete or continuous lattice excitations are also possible via Raman scattering[56–

59]. The electron and hole then recombine and emit a photon of energy ~ωo =
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~ωi − ~ω, which is often referred to as the Raman scattered light[55]. Scattering

of light at longer wavelengths (lower energy) than the incident radiation is known

as Stokes scattering. The reverse process where a phonon is instead absorbed

leading to shorter wavelength (higher energy) scattered light is known as anti-

Stokes scattering. Because anti-Stokes scattering requires the absorption of a

phonon, anti-Stokes spectral features will vanish below temperatures at which

there is a population of the corresponding optical phonons. Stokes scattering

by contrast results in the creation of a phonon and so may be observed at any

temperature. This distinction is often captured in the ratio of Stokes to anti-Stokes

scattering intensity:

IS
IAS
∝ nB(ω, T ) + 1

nB(ω, T )
= e~ω/kBT (1.12)

where nB(ω, T ) is the Bose-Einstein distribution function. The proportionality

factor may be made into an equivalence by accounting for the distinct frequencies

of the scattered light[60].

Because Raman scattering is a higher order process, the great majority of

photons will not be inelastically scattered by the medium[55]. To experimentally

detect the Raman scattered radiation one must generally filter out light of the orig-

inal wavelength by orders of magnitude. The remaining light is dispersed by, e.g., a

diffraction grating and collected by a CCD[61], with the resulting spectra plotted

as CCD counts as a function of wavenumbers (cm−1) or energy (meV). Single-

phonon features appear as peaks at the Γ point energy of the optical phonon.

Two-phonon[62], electronic Raman[58], or numerous other mechanisms may also

produce spectral features, although we will not discuss such topics here.

The intensity of Raman scattered light follows the well-known relation[55]:

IR ∝ |êo ·R · êi|2 (1.13)
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where êi(êo) is the polarization vector of the incident (scattered) light and R

is the Raman tensor. The elements of the Raman tensor will depend upon the

irreducible representation of the specific mode and may also be predicted by group

theory[55, 63]. Through the dependence on the polarization of both the incident

and scattered light, the polarization selection rules may be established for a given

mode. These selection rules may be used to identify the representation of an

unknown mode, a process which we will go through in some detail in Chapter III.

A common notation which we will use to denote the polarization configuration of

our measurements is “Porto’s notation”[64]. In this notation one writes:

ki(êiês)ks (1.14)

where ki(ks) is the direction of propagation of the incident (scattered) light, and

êi and ês are the direction of the polarization vector as defined above. All of

our measurements were carried out in the back scattering geometry such that

ks = −ki. We therefore will often omit the k and simply write, for example, XX

or XY, to denote the polarization of the incident and scattered electric fields.

1.4.1 Phonon Lineshapes

The most common lineshape for a phonon to display in Raman spectra is the

Lorentzian profile. This function takes the form[65]:

L(ω;ω0, Γ, A) =
2AΓ

π(4(ω − ω0)2 + Γ 2)
(1.15)

where ω0 is the line center, Γ is the full-width at half-maximum (FWHM), and A is

the amplitude of the mode. To account for instrument induced broadening of this

Lorentzian profile[65–67] we will use the related Voigt function in the actual fitting

of our spectra. A Voigt profile is the convolution of the above Lorentzian profile
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with a Gaussian profile which accounts for the instrument induced broadening[65–

67]:

V (ω) =

∞∫
−∞

L(ω′)G(ω′ − ω)dω′

= A
4
√

ln 2

π3/2ΓG

∞∫
−∞

ΓL
4(ω′ − ω0)2 + Γ 2

L

exp

[
−4(ln 2)(ω − ω′)2

Γ 2
G

]
dω′ (1.16)

where ΓL(ΓG) is the linewidth of the Lorentzian (Gaussian). This convolution

does not have an analytic expression, thus efficient algorithms for highly accurate

numerical approximations are used instead[66].

The other well-known but less commonly observed lineshape is the Fano pro-

file[68]. This asymmetric profile may occur when a discrete state (i.e. the phonon)

interferes with a continuum of states (often electronic). The resulting profile has

the form[65]:

F (ω;ω0, ΓL, A) =
2A

q2ΓLπ

[
(q + ε)2

1 + ε2
− 1

]
, ε ≡ 2(ω − ω0)

ΓL
(1.17)

where q is known as the Fano asymmetry parameter and is defined as[68]:

q ≡ 〈Φ|T |i〉
πV ∗E〈ψE|T |i〉

(1.18)

Here VE is the electron-phonon coupling strength (we have assumed coupling to

an electronic continuum), T is the transition operator, |i〉 is the ground state,

〈Φ| is the discrete phonon state, and 〈ψE| is the electronic state. In the limit

that q → ±∞ one recovers the symmetric Lorentzian profile. This function also

may be convoluted with a Gaussian to obtain an expression that accounts for the

instrumental broadening[65], though as with the case for the Lorentzian profile,

there is no simple analytic expression.
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1.4.2 Group Theory and Mode Classification

The number of phonon branches in a solid may be calculated as 3N where N is

the number of atoms in the primitive unit cell[12]. The irreducible representations

of these phonon branches may then be identified through the use of group the-

ory[51]. The first step in this process is to construct the equivalence representation,

Γequiv, by identifying which atoms are either transformed back onto their original

atomic site or into an equivalent site by each of the point group operations (only

one operation from each distinct class actually needs to be considered). The direct

product of Γequiv with the vector representation Γvec will then produce a reducible

representation which, when decomposed, will yield the irreducible representations

of the phonon branches at the Γ point in the BZ. We will explicitly work this out

as an example for WP2, a material which we will return to in Chapter III.

WP2 crystallizes in the space group Cmc21 with point group C2v. There are

four symmetry operations and irreducible representations in this point group,

whose character table is reproduced in Table 1.1. This table also lists the re-

ducible representations Γequiv, Γvec, their direct product, and their respective de-

composition into irreducible components. As noted above, the characters of the

equivalence representation Γequiv may be found by acting the point group sym-

metry elements on the crystal lattice. If after transformation by the symmetry

element an atom returns to its specific atomic site or an equivalent atomic site it

is assigned a one, and if it does not then it is assigned a zero. Summing over all

the atoms in the unit cell then gives you the character of Γequiv for that symmetry

element. Since there are six atoms in the WP2 unit cell, we find a character of

six for the identity operation. Under the C2 operation no atoms return to their

atomic sites so we have a character of zero for this operation (the C2 operation is

a combined rotation and translation operation within the space group so it is no

surprise that when only considering the rotation aspect none of the atoms return
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to an equivalent atomic site). For the other combined rotation and translation

operation, the glide plane σv(xz), we also find a character of zero, while under the

σv(yz) operation all of the atoms return to an equivalent site giving a character

of six.

E C2(z) σv(xz) σv(yz)
A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 1 −1
B2 1 −1 −1 1

Γequiv 6 0 0 6 3A1 + 3B2

Γvec 3 −1 1 1 A1+B1+B2

Γequiv ⊗ Γvec 18 0 0 6 6A1+3A2+3B1+6B2

Table 1.1: Character table for the C2v point group, equivalence representation
Γequiv, vector representation Γvec, and the decomposition of their direct product.

The Γvec representation may be found by identifying which irreducible repre-

sentations transform as the (x, y, z) components of a vector[51]. For the case of

the C2v point group these are the A1, B1, and B2 irreducible representations. The

direct product Γequiv⊗Γvec may then be evaluated either through the direct multi-

plication of the corresponding characters, or through the use of product tables for

their irreducible components. In the bottom right column of Table 1.1 we show the

decomposition of this direct product, which corresponds to the symmetries of each

phonon branch in WP2. There are a total of 18 total modes, three of which are

acoustic and have the same representations as Γvec. The remaining 15 modes are

optical and have the representations 5A1 + 3A2+2B1+5B2. This calculation may

be verified by use of the automated tools found on the Bilbao Crystallographic

Server[63].

The machinery of group theory may also be used to evaluate the selection

rules for various scattering processes within a material[53]. These calculations are

much more involved than those detailed above for the identification of phonon
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mode symmetries, so we leave the relevant details to Chapter III.

1.4.3 Anharmonicity and Phonon Decay

A well-known failure of the harmonic approximation is that readily observed

physical properties, such as the expansion of a solid with increasing tempera-

ture, are unable to be explained[12]. The resolution to this problem lies in the

incorporation of anharmonic effects into the theory. Third- and fourth-order an-

harmonic terms may be treated perturbatively or through the use of many-body

techniques[69]. We will not explicitly discuss such theory here, choosing instead

to focus on the experimentally observed consequences of anharmonicity and the

models used in the analysis of these results.

The energy of a phonon will typically decrease as the temperature is raised due

to both anharmonic renormalization and lattice expansion[70, 71]. At tempera-

tures below ∼ TD/3 (TD is the Debye temperature) the phonon energy becomes

independent of temperature[72], while above this temperature the decrease in en-

ergy is often found to be linear with temperature. If fourth-order anharmonic

terms are significant then this decrease may become quadratic. In contrast to the

energy, the linewidth of a phonon will generally increase with rising temperatures.

In further contrast, the linewidth is independent of the effects of lattice expan-

sion[70] and is solely related to the phonon-phonon or phonon-electron decay paths

available to the phonon mode. Third-order anharmonic interactions describe the

decay of an optical phonon into two acoustic/optic phonons, while fourth-order

anharmonic interactions capture the decay into trios of acoustic/optic phonons.

Energy and momentum conservation must be satisfied in such decay processes,

and since Raman probes approximately zone center phonons, this will result in

pairs of acoustic phonons with q′ = −q′ for the case of three interacting phonons.

The model most often used to describe these behaviors is known as the Kle-
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mens’ model[73], with its generalization to fourth-order effects known as the ex-

tended Klemens’ model[70]. These models make some simplifying assumptions

about the pairs and trios of acoustic/optic phonons involved in the optical phonon

decay. For the lowest order term describing an optical phonon of energy ω0 and

momentum q ≈ 0 into two acoustic/optic phonons with momenta q′ = −q′, the

energy of the resulting phonons is assumed to be ω0/2. Similarly, for the de-

cay into trios of acoustic/optic phonons the resulting phonon energies are each

assumed to be ω0/3. These assumptions simplify the expressions predicted to

govern the temperature dependence of phonon linewidths and energies[70]:

Γ (T ) = Γ0 + A (1 + 2nB(ω0/2, T )) +B
(
1 + 3nB(ω0/3, T ) + 3(nB(ω0/3, T ))2

)
(1.19)

ω(T ) = ω0 + C (1 + 2nB(ω0/2, T )) +D
(
1 + 3nB(ω0/3, T ) + 3(nB(ω0/3, T ))2

)
(1.20)

In Eq. 1.19 the coefficients A and B capture the strength of the three- and four-

phonon processes respectively. The Γ0 term is included to account for any tem-

perature independent contribution that may arise from e.g. impurity or defect

scattering. The C and D terms of Eq. 1.20 for the phonon energy have a similar

interpretation as A and B, although the C term will also contain contributions

from lattice expansion. ω0 is the harmonic phonon energy.

1.5 Nonlinear Photocurrents

The material response to an applied stimulus is often assumed to be linear. A

canonical example of this is Ohm’s Law[12, 74]:

J = σE (1.21)
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where an applied electric field E produces a current J through the material tensor

σ. The single power of E on the right-hand side of this equation signifies that this

expression describes a linear order response. However, this is not the only order

response that is possible. This was made experimentally apparent in 1961 almost

immediately after the invention of the laser when second-harmonic generation

(SHG) was first observed[75]. To describe such effects, the response is expanded

as a power series in the electric field[76]:

J = σ(1)E + σ(2)EE + σ(3)EEE + · · · (1.22)

where σ(n) is the nth-order conductivity tensor and will be a tensor of rank n+ 1.

In this dissertation we will limit our focus to second-order effects arising from two

powers of the electric field.

Second-order nonlinear effects require broken inversion symmetry for their ex-

pression[76]. This can be seen by noting that the inversion operation, which sends

x→ −x, will result in J→ −J and E→ −E. If the material in question possesses

inversion symmetry, then from Neumann’s Principle you would find σ(2) → σ(2).

The combination of all of these yields:

J = σ(2)EE → J = −σ(2)EE (1.23)

which is only able to be satisfied if σ(2) = 0. (This same requirement will be true

for any nonlinear effect that is even in the electric field.) Second-order effects may

therefore occur only in materials which lack inversion symmetry, or at the surface

of a material where inversion symmetry is always broken.

Unlike linear responses, second-order nonlinear effects may occur at frequencies

distinct from the applied electric fields. We explicitly write out the frequency
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components of each term in the following expression:

J(ω1 ± ω2) = σ(2)(ω1 ± ω2;ω1, ω2)E(ω1)E(ω2) (1.24)

There are two options for the response: it may occur at the sum frequency, ω1+ω2,

or it may occur at the difference frequency, ω1−ω2. In many experiments ω1 = ω2

which results in responses at 2ω and 0, which correspond to SHG and second-order

photocurrents respectively. We hereafter focus exclusively on photocurrents.

Second-order nonlinear photocurrents may broadly be categorized into two

types: those that arise from circularly or linearly polarized light respectively[77].

Whether a specific noncentrosymmetric material supports photocurrents of these

types will be determined by the point group symmetries of the crystal via the

second-order conductivity tensor. Using the generalization of Eq. 1.11 for a third-

rank tensor[50]:

σ′ijk = RilRjmRknσlmn (1.25)

we obtain a system of 27 equations for the σ′ijk and the σlmn for each point group

operation R. This system of equations may be solved to identify the non-zero

and unique components of σ, a task which is simplified by noting that for many

point groups a significant number of the elements will vanish. In addition to the

constraints imposed by the point group symmetries, we have an additional con-

straint that arises from index interchange of the two electric field components[77,

78]. The origin of this requirement is more readily seen if we rewrite Eq. 1.24 in

the Fourier frequency space and in component form:

Ji = σ
(2)
ijkEjE

∗
k (1.26)

The current Ji is required to be real, so upon taking the complex conjugate of
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each side we obtain:

(
Ji = σ

(2)
ijkEjE

∗
k

)∗
J∗i = Ji = (σ

(2)
ijk)
∗E∗jEk

σ
(2)
ijkEjE

∗
k = (σ

(2)
ijk)
∗E∗jEk (1.27)

from which we can see that σ
(2)
ijk = (σ

(2)
ikj)
∗. Writing σ

(2)
ijk in terms of real and

imaginary components we therefore have:

σ
(2)
ijk = σijk + iηijk (1.28)

σ
(2)
ijk = σijk + iηijk (1.29)

σijk = σikj (1.30)

ηijk = −ηikj (1.31)

where in the last two lines we made use of σ
(2)
ijk = (σ

(2)
ikj)
∗. The real part of σ

(2)
ijk,

which we have labeled σijk, is symmetric under this interchange of indices while

the imaginary part ηijk is anti-symmetric. Noting that for linearly polarized light

the polarization vectors will be real and that for circularly polarized light the

polarization vectors will be imaginary, we find that we may associate the symmet-

ric/real part of the tensor with photocurrents that respond to linearly polarized

light (linear photogalvanic effect (LPGE)), and the anti-symmetric/imaginary part

with photocurrents that respond to circularly polarized light (circular photogal-

vanic effect (CPGE)).

As an explicit example we consider the point group C4v, which will be useful for

our discussion of photocurrents in the WSM TaAs in Chapter VI. The generating

elements of the C4v point group are the identity operation, E; the 180◦ rotation

around the z-axis, δ2z; the 90◦ rotation around the z-axis, δ4z; and the mirror
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plane normal to the y-axis, my. Applying the latter three operations to Eq. 1.25

in turn we find:

σ =



0 0 σxzx

0 0 0

σxxz 0 0

0 0 0

0 0 σxzx

0 σxxz 0

σzxx 0 0

0 σzxx 0

0 0 σzzz



(1.32)

There are seven non-zero elements, of which four are unique. Next, considering

the interchange of the last two indices we find:

σ = σS + iηAS



0 0 σxxz − iηxxz

0 0 0

σxxz + iηxxz 0 0

0 0 0

0 0 σxxz − iηxxz

0 σxxz + iηxxz 0

σzxx 0 0

0 σzxx 0

0 0 σzzz



(1.33)

where σijk are the symmetric elements and ηijk are the asymmetric elements.

There are three unique elements for the symmetric part: σxxz, σzxx, and σzzz; and

only one unique element for the asymmetric part: ηxxz. From the form of this

tensor we find that a LPGE may be generated along any crystal axis, but that a
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CPGE may only be generated perpendicular to the c-axis (which lacks a mirror

plane). This will generally be true for any material that supports a CPGE, with

the exception of materials which lack any mirror planes whatsoever. In such a case

the CPGE is generated along the propagation direction of the incident light[79,

80].

1.5.1 Connection to Topology

The second-order optical conductivity tensor σ(0;ω,−ω) which describes the

LPGE or “shift current” is directly related to the interband Berry connection[81].

This can be intuitively understood by considering the response of an electron

to photoexcitation. When an electron is excited from the valence band to the

conduction band there can be a concomitant change in the real space position

of the electron. This is particularly the case when the valence and conduction

bands arise from orbitals associated with different atoms within the unit cell.

We therefore consider the expectation value of the position operator 〈|x|〉 for the

electron. Recalling that in the momentum basis the position operator may be

expressed as x = i~∂/∂k we find that:

〈n(k)|x|n(k)〉 = i~〈n(k)|∇k|n(k)〉 (1.34)

which up to the factor of ~ is the just the definition of the Berry connection.
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CHAPTER II

Charge Transfer in Bi2Se3/EuS Heterostructures

2.1 Introduction

The class of materials known collectively as “topological insulators” were the

first intrinsically topological materials to be experimentally identified[45, 46]. In

the ideal case these materials are insulators in their bulk, but have conducting

surface states due to the bulk-boundary correspondence, and the topological phase

transition that occurs when passing from the topologically non-trivial bulk to

the trivial insulating state of air. These states are protected by time reversal

symmetry. In particular, the Bi2Se3 family is van-der-Waals bonded, which enables

exfoliation and the creation of heterostructures with other 2D materials.

Because of these surface states there has been considerable research dedicated

to creating heterostructures with these materials. For our discussion here we

focus on the use of thin film ferromagnets, wherein the exchange field present at

the interface between the materials can break the time reversal symmetry of the

topological surface states and open a gap in their spectrum[44, 82–86]. This has

lead to the observation of effects such as the quantum anomalous Hall effect[48,

49]. EuS is an insulating ferromagnet that can be grown by MBE, which has led

to its wide use in creating such heterostructures.

Another effect that has been successfully used to generate novel heterostruc-
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tures is the charge transfer phenomenon. When two materials are brought to-

gether, the different chemical potentials of each material must come to a common

equilibrium. Depending on the material specific work functions, this can result in

different functional behaviors such as Schottky barriers, etc. It has also been seen

to generate metal to insulator transitions in heterostructures of LAO/STO[87], as

well as enhancing the superconducting transition temperature of FeSe[88].

In the results discussed herein we provide indirect evidence, through the use

of Raman spectroscopy, of a significant charge transfer in heterostructures of

EuS/Bi2Se3. Raman spectroscopy is a well-suited probe for investigations of mag-

netic and lattice effects in such heterostructures, due to its sensitivity to both lat-

tice and magnetic excitations, particularly in EuS. We performed measurements

on a series of EuS/Bi2Se3 thin films and found that the EuS Raman signal, whose

presence is known to indicate the paramagnetic state of the system, is absent in

all measured heterostructures. Direct measurements of the magnetic system rule

out magnetic ordering at room temperature, and further calculations of the thin

film interference rule out optical suppression of the mode. Using a simple model

we therefore ascribe the absence of this mode to charge transfer between the EuS

and Bi2Se3.

2.1.1 EuS Raman Signal

Since understanding the origin of the Raman signal of EuS will be crucial to

an understanding of the results presented in this chapter, we devote here a brief

discussion to this topic. The appearance of first order Raman signal from EuS is

unexpected. EuS has the same crystal structure as NaCl – two inter-penetrating

face-centered cubic lattices. With two atoms per unit cell there are only six phonon

modes, three of which are acoustic. The three optical modes are all degenerate at

the zone center and, due to the lack of a unique inversion center, are odd under
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inversion and therefore Raman inactive. (Specifically, at the zone center they have

the irreducible representation T1u.) However, the entire EuX (where X = O, S, Se

Te) family of materials have been experimentally observed to display first-order

Raman scattering[89–92].

The explanation for this unexpected result has its roots in the coupling between

the magnetic and vibrational systems. Large momentum phonons are typically un-

able to be generated by Raman scattering due to the need to conserve momentum

and the low momentum provided by optical wavelength photons. (Two-phonon

features circumvent this by generating phonons with opposite momentum such

that the net is still approximately zero. However, we will here be restricting our

discussion to one-phonon processes.) In the case of the EuX materials, the mo-

mentum necessary to excite phonons far from the zone center is contributed by the

spin system[92]. A Feynman diagram describing the scattering process that we

describe is shown in Figure 2.1. At room temperature EuS is paramagnetic and

the 4f Eu spins are disordered. Incoming photons of energy ~ωi excite electrons

from the 4f band to the 5d conduction band leaving behind holes. These holes

are able to interact with both the lattice and the spin system, producing an LO

phonon of energy ~Ω and momentum q, and a spin excitation with energy ~Ωm

and momentum q′. The hole and electron then recombine and emit a Raman scat-

tered photon with energy ~ωo. To conserve momentum q′ = −q, and likewise to

conserve energy, ~ωo = ~ωi + ~Ω + ~Ωm. In the room temperature paramagnetic

phase, the different spin states are degenerate and therefore ~Ωm = 0, i.e. there

is no energy cost for creating the spin excitation. However, when the crystal has

long–range magnetic order, the magnons at finite q now have a non-zero energy

cost associated with them. And, the probability of creating a magnon via Raman

scattering is proportional to (~Ωm)−1. Thus as the system passes through its Curie

temperature there is an associated quenching of the Raman scattering[90, 92].
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Figure 2.1: Feynman diagram for the first-order Raman scattering in EuS. In
the paramagnetic state the disordered spin system provides the momentum (q′)
necessary to generate the optical phonon of energy Ω and momentum q = −q′.

2.2 Experiments

2.2.1 Growth of Thin Films

EuS and Bi2Se3 thin films were epitaxially grown in a custom-built MBE sys-

tem. The base pressure of the system was 2× 10−10 Torr. Effusion cells contain-

ing 5N purity Bi and Se were used to grow the Bi2Se3, while an electron beam

evaporator was used for the growth of the EuS and the protective layers of amor-

phous Al2O3. To ensure the formation of high quality interfaces, the growth was

monitored by in situ reflection high-energy electron diffraction (RHEED). The

preparation of atomically flat substrate surfaces was also done in situ through

several baking treatments and monitoring with RHEED. Two different substrates

were used for growth, sapphire (Al2O3) and STO. As is discussed in relation to

the phonon modes of Bi2Se3 later, the sapphire possesses a larger in-plane lat-

tice constant than that of Bi2Se3, while STO has a smaller lattice constant than

Bi2Se3.

Once the substrates were prepared, the Bi and Se were simultaneously evapo-

rated with a 1:15 flux ratio to the substrate, at a fixed temperature of 240±5 ◦C.

Despite this ratio differing from the 2:3 ratio in the desired Bi2Se3 phase, we note

that this phase is quite stable, and self-adjusting of the final composition occurs at
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this elevated growth temperature. A ∼1-2 Å/min growth rate was used to avoid

kinetic surface roughening and provide an ultra-smooth surface. For EuS, a much

faster growth rate of 0.5-0.6 Å/s from a single electron-beam source was used to

help mitigate the high reactivity of Eu atoms and the dissociation problems of S.

A final protective capping layer of 5 nm thick, amorphous Al2O3 was grown on

top of the Bi2Se3 bilayers (at room temperature). All of this was done in the same

deposition chamber without breaking ultra-high vacuum conditions.

2.2.2 Raman Measurements

Raman measurements were performed using a WITec alpha-300R confocal Ra-

man system. The unpolarized, 532 nm (2.33 eV) light was focused using a 100x

objective to a spot size of ∼1 µm. The power was kept low at 10 µW to avoid

local heating of the Bi2Se3[93]. Any “cosmic rays” in the spectra were removed by

a wavelet based algorithm[94] and the resulting spectra where then averaged and

normalized by power and integration time.

The Raman spectra of a 5 nm thick EuS film on a sapphire substrate is shown

in Figure 2.2. The fundamental EuS Raman peak is clearly visible in this spectrum

at an energy of 30.4 meV, which is ∼2% higher than the typical room temperature

value of 29.8 meV[89–91]. The energy of this mode is known to decrease as the

sample temperature is decreased[91]. However, these measurements were carried

out at room temperature so this is unlikely to be the explanation. Inter-facial

strain is also unlikely to explain the resulting shift, since the strain from the

sapphire lattice would be tensile and would also cause a decrease of the mode

energy. We hypothesize that the shift results from the presence of Eu-O bonds

that arise from both the oxygen terminated surface of the sapphire substrate, as

well as the amorphous Al2O3 capping layer. Sulfur atoms are known to dissociate

from the EuS thin films during growth, leaving behind anion vacancies[86]. These
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Figure 2.2: Raman spectra of a 5 nm thick EuS film grown on a sapphire substrate.
The fundamental spin-disorder mode is clearly visible at 30.4 meV, as are its second
and third harmonic overtones at 60.8 and 91.2 meV respectively.

vacancies may then be occupied by O atoms during the growth of the capping

layer. The O atoms are lighter than the S atoms, so the phonon mode will shift

to a higher energy[91].

We now investigate the spectra of a Bi2Se3/EuS bilayer, shown in Figure 2.3.

The Bi2Se3 was 7 QL thick and the EuS was 10 nm thick. The two modes at

16.5 meV and 21.7 meV are the E2
g and A2

1g phonons of Bi2Se3 respectively. Sur-

prisingly, the EuS mode at 30.4 meV is absent from this bilayer. This occurs

despite the thickness of EuS in this sample being twice as much as the bare EuS

sample shown in Figure 2.2, which would presumably lead to a larger signal level.

Raman measurements were repeated on samples with 7 QL of Bi2Se3 and 2 or

5 nm of EuS (see Figure 2.9(b)), as well as samples with 5 QL of Bi2Se3 with 2,

5, or 10 nm of EuS. In none of these samples was the signal from EuS observable.

2.2.3 Magnetic Measurements

To determine if magnetic ordering is responsible for the absence of the EuS

Raman peak we measured the magnetic moment of our samples as a function of
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Figure 2.3: Raman spectra of 7 QL Bi2Se3 with 10 nm thick EuS on a sapphire sub-
strate. While the Bi2Se3 phonon modes are clearly visible at 16.5 and 21.7 meV,
the EuS mode at 30.4 meV is absent.

temperature. Measurements were taken from 2 to 380 K using a Quantum Design

MPMS in the laboratory of Professor Michael Graf. Two samples were measured,

one with just EuS on sapphire, and the other with EuS/Bi2Se3 on sapphire. The

EuS was 5 nm thick in both films, and the Bi2Se3 was 7 QL thick. While EuS

is paramagnetic, with a bulk Curie temperature of 16 K[90, 92], the sapphire

substrate contributes a large diamagnetic background to the overall signal. We

removed this contribution by repeating the measurements on a sapphire substrate

identical to the ones on which the thin films were grown. The response from the

sapphire substrate was then scaled by mass to match that of the other thin films

(the mass of the few nanometer thick EuS and Bi2Se3 was assumed to be negligible

for this calculation since the substrates were ∼1 mm thick), and subtracted from

the measurements on films with EuS/Bi2Se3.

The magnetic moment data thus obtained is shown in Figure 2.4, with the

data from the EuS sample shown in blue, and the EuS/Bi2Se3 sample in red. The

two curves fall exactly on top of each other, indicating that the presence of the

Bi2Se3 does not affect the ordering temperature of the EuS. Furthermore, at 300 K
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Figure 2.4: The magnetic moment of a EuS/sapphire thin film sample in blue is
compared to the magnetic moment from a Bi2Se3/EuS/sapphire thin film in red.
The diamagnetic background from the sapphire substrates has been subtracted
out.

where the Raman measurements were performed, there does not appear to be any

magnetic moment which indicates that the EuS is indeed paramagnetic at room

temperature. From this we conclude that magnetic ordering of the EuS spins is

not responsible for the absence of the magnetic fluctuation induced Raman mode

in EuS and that another mechanism must be the cause.

2.3 Discussion and Analysis

2.3.1 Fabry-Perot Interference Calculations

Having eliminated magnetic ordering as the cause for the absence of the EuS

Raman mode in the spectra from our EuS/Bi2Se3 thin films, we explore the pos-

sibility of interference suppressing the observation of the mode. Due to the multi-
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layered nature of our samples, multiple reflections may occur at the various inter-

faces which can lead to enhancement or suppression of either or both the incident

laser and the Raman scattered light. Such effects are famous for producing the

multi-colored appearance of soap films. More recently in the field of 2D materials,

they have also been found to explain, among other things, the variation in inten-

sity with dielectric thickness for Raman signal from graphene[95–97], and thickness

dependent Raman from exfoliated flakes of Bi2Se3[93] and MoS2[98]. Here, we de-

velop an extension of the multi-reflection model (MRM) used by Zhang et al [98]

which accounts for the peculiarities of the thin films investigated here.

The reflection and transmission coefficients between two materials are defined

as

rij =
ñi − ñj
ñi + ñj

(2.1)

tij =
2ñi

ñi + ñj
(2.2)

where ñi is the complex index of refraction for material i. In general it is written

as ñ = n + ik and is a function of wavelength. We define the phase propagation

coefficients, βi as

βi =
2πñi
λ

(2.3)

In this expression λ will belong to either the wavelength of the incident light or

the wavelength of the Raman scattered light – the appropriate choice is clear upon

inspection.

The first interference factor accounts for the multiple reflections of the incident

light within the heterostructure. The schematic diagram for this process is shown

in Figure 2.5 The first term is represented by the red dot and is written as

a1 = te01e
−iβ2y (2.4)
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Figure 2.5: Diagram showing the rays that contribute to interference of the inci-
dent laser. The black arrows show the path of the incident laser, while the purple
arrows indicate where multiple reflections can occur for the transmitted part of
the beam. The distance y into the EuS indicates the depth at which we are calcu-
lating the interference of the electric fields and will be integrated over to find the
total enhancement.

where we have defined the effective transmission coefficient te01 which accounts for

the possibility of multiple reflections within the capping layer. The subsequent

terms are represented by the blue dots:

a2 = te01r
e
23e
−iβ2(2d2−y) (2.5)

a3 = te01r
e
23r

e
21e
−iβ2(2d2)e−iβ2y (2.6)

a4 = te01(r
e
23)

2re21e
−iβ2(2d2)e−iβ2(2d2−y) (2.7)

a5 = te01(r
e
23)

2(re21)
2e−iβ2(4d2)e−iβ2y (2.8)

a6 = te01(r
e
23)

3(re21)
2e−iβ2(4d2)e−iβ2(2d2−y) (2.9)

· · ·

where, similar to te01, r
e
21 and re23 take into account multiple reflections within the

capping and Bi2Se3 layers respectively. Summing all of these terms to find the
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overall factor we find

Finc =
∞∑
l=1

al (2.10)

= te01e
−iβ2y

(
1 + re23r

e
21e
−2iβ2d2 + (re23r

e
21e
−2iβ2d2)2 + · · ·

)
(2.11)

+ te01r
e
23e
−iβ2(2d2−y)

(
1 + re23r

e
21e
−2iβ2d2 + (re23r

e
21e
−2iβ2d2)2 + · · ·

)
(2.12)

= te01
(
e−iβ2y + re23e

−iβ2(2d2−y)
) [ ∞∑

n=0

(
re23r

e
21e
−2iβ2d2

)n]
(2.13)

= te01
e−iβ2y + re23e

−iβ2(2d2−y)

1− re23re21e−2iβ2d2
(2.14)

The effective transmission/reflection coefficients are derived in an analogous man-

ner. For te01 we have the terms:

b1 = t01t12e
−iβ1d1 (2.15)

b2 = t01t12e
−iβ1d1r12r10e

−2iβ1d1 (2.16)

b3 = t01t12e
−iβ1d1

(
r12r10e

−2iβ1d1
)2

(2.17)

· · ·

When summed we obtain

te01 = t01t12e
−iβ1d1

(
1 + r10r12e

−2iβ1d1 + (r10r12e
−2iβ1d1)2 + · · ·

)
(2.18)

=
t01t12e

−iβ1d1

1 + r01r12e−2iβ1d1
(2.19)
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Figure 2.6: Same as the previous figure, but now showing the paths and rays taken
by the Raman scattered light which originates at depth y in the EuS layer.

where in the last line we used the relation rij = −rji. For re23 we have:

c1 = r23 (2.20)

c2 = t23t32r34e
−2iβ3d3 (2.21)

c3 = t23t32r34e
−2iβ3d3(r32r34e

−2iβ3d3) (2.22)

c4 = t23t32r34e
−2iβ3d3

(
r32r34e

−2iβ3d3
)2

(2.23)

· · ·

such that

re23 = r23 +
t23t32r34e

−2iβ3d3

1 + r23r34e−2iβ3d3
(2.24)

This can be further simplified by using the relation tijtji − rijrji = 1,

re23 =
r23 + r34e

−2iβ3d3

1 + r23r34e−2iβ3d3
(2.25)

A similar relation is found for re21,

re21 =
r21 + r10e

−2iβ1d1

1 + r21r10e−2iβ1d1
(2.26)
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The next interference term arises from the multiple reflections experienced by

the Raman scattered light as it leaves the heterostructure. As such, for these

terms the βi should be evaluated at the wavelength of the Raman scattered light.

A diagram for this process is shown in Figure 2.6. The first term is found as

d1 = e−iβ2yte21 (2.27)

where we have defined the effective transmission coefficient te21 which may be shown

to be

te21 =
t21t10e

−iβ1d1

1 + r01r12e−2iβ1d1
(2.28)

Subsequent terms are

d3 = te21e
−iβ2y

(
re21r

e
23e
−2iβ2d2

)
(2.29)

d4 = te21r
e
23e
−iβ2(2d2−y)

(
re21r

e
23e
−2iβ2d2

)
(2.30)

d5 = te21e
−iβ2y

(
re21r

e
23e
−2iβ2d2

)2
(2.31)

d6 = te21r
e
23e
−iβ2(2d2−y)

(
re21r

e
23e
−2iβ2d2

)2
(2.32)

· · ·

Summing these gives us

Fsc = te21e
−iβ2y

(
1 + re21r

e
23e
−2iβ2d2 +

(
re21r

e
23e
−2iβ2d2

)2
+ · · ·

)
(2.33)

+ te21r
e
23e
−iβ2(2d2−y)

(
1 + re21r

e
23e
−2iβ2d2 +

(
re21r

e
23e
−2iβ2d2

)2
+ · · ·

)
(2.34)

= te21
(
e−iβ2y + re23e

−iβ2(2d2−y)
) [ ∞∑

n=0

(
re21r

e
23e
−2iβ2d2

)n]
(2.35)

= te21
e−iβ2y + re23e

−iβ2(2d2−y)

1− re21re23e−2iβ2d2
(2.36)

The enhancement due to the combination of these two effects at the depth y is
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Figure 2.7: Calculated interference enhancement factor for films of varying EuS
thickness, as a function of the Bi2Se3 thickness. The dashed line corresponds to
the thickness of the Bi2Se3 for our measured samples.

given by the complex modulus of the product of our two terms

Fy = |FincFsc|2 (2.37)

To find the total enhancement from the EuS layer we do an integral over the depth

y such that

Ftot = N

d2∫
0

|FenFsc|2dy (2.38)

where N is a normalization constant. In a computational implementation of this

expression the integral is replaced by a summation with dy → ∆y and ∆y � a

where a is approximately the interatomic spacing. N is found by taking the inverse

of Ftot calculated with the Bi2Se3, capping layer, and substrate replaced by air.

The integration was numerically carried out using MATLAB for thin films

of varying Bi2Se3 and EuS thicknesses. The enhancement factors thus obtained

are plotted in Figure 2.7 as a function of Bi2Se3 thickness, with selected EuS
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thicknesses corresponding to those we measured. The largest enhancements are

seen to occur for a Bi2Se3 thickness of ∼10 nm and EuS thickness of 2 nm, with the

peak of the enhancement decreasing and shifting to slightly lower Bi2Se3 thickness

as the EuS thickness is increased. For films with 7 QL of Bi2Se3, indicated by the

vertical dashed line, the enhancement decreases as EuS thickness is increased up

to 10 nm. In the absence of a Bi2Se3 layer (0 nm) we find an enhancement factor of

0.25 which indicates that, as expected, the Raman signal from a thin slab of EuS

will be decreased compared to a bulk crystal. To obatin the expected enhancement

factors for our films, we divide the value for each EuS thickness at 7 QL by the 0.25

value at 0 nm Bi2Se3 to find enhancement factors of 2.5/0.25 = 10, 1.9/0.25 = 7.6,

and 1.2/0.25 = 4.8 for 10, 5, and 2 nm of EuS respectively. As all of these indicate,

we should expect a larger Raman signal from the EuS when the Bi2Se3 is present.

This is however, in clear contrast to what our Raman measurements revealed. We

therefore conclude that Fabry-Perot interference is not causing suppression of the

mode, and that another mechanism must be responsible.

2.3.2 Charge Transfer

We now discuss how changes in the electronic structure of the EuS/Bi2Se3

heterostructures could lead to suppression of the EuS Raman mode. We start by

once more considering in detail the scattering processes which produce the EuS

Raman signal. Light absorbed by the EuS excites an electron from the 4f valence

band to the 5d conduction band, leaving behind a hole[92]. This hole then interacts

with both the spin and vibrational systems, as depicted in Figure 2.1, before

recombining and emitting the Raman scattered photon. This process depends

very strongly on the energy of the incident radiation, with the resonance peak

occurring quite close to the 2.33 eV of our laser[89, 99]. This type of resonance

most often occurs when the electronic transitions involved in the scattering process,
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like those described above, connect real energy levels instead of virtual energy

levels[59]. These conditions are indeed met for bulk semiconducting EuS where

the chemical potential lies within the 1.65 eV gap[99, 100]. However, as we will

now address, the large difference in work function between EuS and Bi2Se3 can

cause the chemical potential within the EuS to shift to the point that it is no

longer within the band gap and the electronic transitions produced by our laser

are no longer resonant.

The electrical properties of an interface can be largely affected by the relative

chemical potentials of the two materials. The chemical potential must smoothly

transition between the materials at the interface, which can result in a transfer of

charge from one material to the other. The energies of the chemical potentials are

determined by their material’s respective work functions, which is often identified

through photo-emission measurements. In the case of EuS, the work function has

been reported as 3.3 eV[101, 102], with an electron affinity of 2.35 eV[101, 102],

while Bi2Se3 has a reported work function of 5.4 eV[103]. The Bi2Se3 is n doped

(n ∼ 1019 cm−3)[86], which places its chemical potential in the conduction band, so

we therefore treat it as a metal, and the overall interface as metal-semiconductor.

In Figure 2.8 we show a schematic diagram of the Bi2Se3 interface and the

energy levels involved. On the far left and right of the diagram are flat band

diagrams of the valence bands, conduction bands, chemical potentials, and work

functions for Bi2Se3 and EuS respectively. At the interface between Bi2Se3 and

EuS (the middle of the diagram) the difference in work functions leads to an

imbalance in chemical potential. To even this out, electrons flow out of the EuS

and into the Bi2Se3, which results in the formation of a Schottky barrier of height

Ebar = φBi2Se3 − χEuS = 3.05 eV. Taking the difference between the energy of the

barrier and the band gap of EuS tells us that the built-in potential is 1.4 eV. In

other words, the chemical potential of the EuS within the depletion region is shifted
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Figure 2.8: Schematic diagram of the band bending that occurs at the interface
between EuS and Bi2Se3. The work function of Bi2Se3 (φBi2Se3 = 5.4 eV) is larger
than that of EuS (φEuS = 3.3 eV) which leads to the formation of a Schottky
barrier of height φBi2Se3 − χEuS = 3.05 eV at their interface. To balance the
chemical potential, electrons move from EuS to the Bi2Se3 resulting in a depletion
region in which photoexcitation by our 2.33 eV laser is no longer possible.

down by 1.4 eV, as can be seen in the central part of the diagram. The spatial

extent of this region is expected to be on the order of hundreds of nanometers,

which is much larger than the thickness of our EuS films. We therefore expect

that the entire EuS film experiences this lowering of the chemical potential.

In bulk EuS the 2.33 eV of our laser is capable of exciting electrons from the 4f

valence band into the 5d conduction band[89, 92, 99], as shown on the right side

of Figure 2.8. However, in the EuS/Bi2Se3 heterostructures we now find that, as a

result of the shifted chemical potential, ≈ 3 eV is required to excite an electron out

of the valence band. The electronic transitions available with a 2.33 eV laser are

then no longer real, but virtual, and the conditions for resonance in the Raman

signal are no longer satisfied. We therefore conclude that this large transfer of

charge between EuS and Bi2Se3 is responsible for the absence of the EuS Raman

signal in our heterostructures. Future Raman measurements of similar thin films

with shorter wavelength lasers, or optical transmission/absorption measurements
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Figure 2.9: (a) Raman spectra from bulk Bi2Se3. (b) Spectra of EuS/Bi2Se3 films
on sapphire substrates. The vertical black line represents the energy of the modes
from bulk Bi2Se3. (c) Same as (b) but on STO substrates. (d) Percent difference
in energy of the Bi2Se3 modes as a function of EuS thickness.

may be capable of confirming this hypothesis.

2.4 Strain

We lastly discuss the role of interfacial strain in our EuS/Bi2Se3 thin films.

Although the EuS Raman mode was not observed in our measurements, the Bi2Se3

modes were, and through analysis of their behavior as we vary the thickness of

the EuS layer or the substrate we can learn about the nature of the strain present

in these films. We first measure the Raman spectra of bulk Bi2Se3, which was

freshly cleaved prior to measurement. The spectra from bulk Bi2Se3 is shown

in Figure 2.9(a), which reveals two modes at 16.4 and 21.9 meV. As discussed

earlier, these correspond to the E2
g and A2

1g modes respectively, whereas the other

two Raman active modes were not observed due to the low energy cut-off of our

filter.

With bulk Bi2Se3 measured for comparison, we now turn to the spectra from

EuS/Bi2Se3 films on two different substrates, sapphire and STO. In Figure 2.9(b)
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we show spectra measured on sapphire substrates with 0, 2, 5, and 10 nm thick

EuS, while Figure 2.9(c) shows the same thing on STO substrates. On sapphire,

the Bi2Se3 modes can be seen to shift down in energy from the bulk value as the

EuS thickness is increased. Similar behavior is observed for the films on STO

substrates, although to a much lesser degree. The energies extracted from fitting

of the peaks, expressed as the percent difference from the bulk value, are plotted

in Figure 2.9(d).

These shifts in energy can be explained by interfacial strain due to lattice

mismatches of the Bi2Se3, the EuS, and the sapphire and STO substrates. The

Bi2Se3 grows along the [0001] direction which has an in-plane lattice constant of

4.128 Å[104]. The EuS grows along the [111] direction and therefore has inter-

atomic spacing of a/
√

2 = 4.220 Å. Since the lattice constant of EuS is slightly

larger than that of Bi2Se3, there will be a tensile strain acting to pull the Bi2Se3

atoms apart. This results in a weaker inter-atomic force and, as ω ∝
√
k/m, a

decrease in the energy of the phonon modes, in accordance with our observations.

This is further supported by observing the energy shifts of the Bi2Se3 modes

in the absence of any EuS. Sapphire, also in the [0001] direction, has an in-plane

lattice constant of 4.785 Åwhich is greater than that of Bi2Se3, while STO has a

smaller lattice constant of 3.905 Å. We would therefore anticipate that the Bi2Se3

modes will decrease in energy when grown on sapphire substrates, and increase

in energy when grown on STO. The measured values shown in Figure 2.9(d) are

in agreement with this prediction. We note too that the out-of-plane A2
1g mode

appears to display a larger degree of change compared to the in-plane E2
g mode

for both substrates.
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2.5 Conclusions

We performed a series of Raman measurements on EuS/Bi2Se3 thin films.

Though measurable on films with only EuS, the EuS Raman signal that indicates

its degree of magnetic ordering was not found to appear on films with both EuS

and Bi2Se3. While this could potentially indicate a dramatic increase in the Curie

temperature of the EuS due to the proximity of spins from Bi2Se3, measurements of

the magnetic moment indicate that there is no magnetic ordering present at room

temperature. We instead identify charge transfer from the EuS into the Bi2Se3

and the associated change in chemical potential as the mechanism suppressing the

observation of this mode, while also ruling out optical interference through the

use of numerical calculations. This charge transfer may be useful in future studies

hoping to harness or tune the electrical response of topological insulators.
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CHAPTER III

Phonon-Electron Coupling in WP2

3.1 Topological Semimetals and Mobility

The nascent field of topological semimetals is home to materials which display

a range of remarkable transport phenomena, including enormous magnetoresis-

tance and mobilities[24, 105–107]. The observation of such behavior in topological

systems initially suggested that the topological nature of the electronic bands was

a crucial ingredient. However, non-topological semimetals such as LaAs or PtSn4

have also been found to display similar remarkable magnetoresistances and mobil-

ities[108–110], which instead suggests that these properties are more endemic to

semimetals in general. Some reports have indeed suggested that the primary fac-

tor is the near-perfect electron-hole compensation inherent to these semimetallic

systems[108, 110]. In addition to their still debated origin, there is often enormous

variation in the temperature dependence of these properties, indicating that tem-

perature dependent scattering processes such as those provided by electron-phonon

coupling are important.

The transition metal dipnictide WP2 is an ideal semimetal in which to study

the role of coupling between the electron and phonon systems. In its topolog-

ical β-WP2 phase it displays the largest magnetoresistance of any topological

semimetal[106]. Further, at low temperatures there are some experiments sug-
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gesting electron hydrodynamic behavior[111], which would indicate a large degree

of coupling between the electrons and phonons. In WP2 the resistivity deceases

by four orders of magnitude between room temperature and 2 K, while the mo-

bility increases by five orders of magnitude over the same temperature range[106].

Over the range where the majority of this change occurs the resistivity appears

to be dominated by electron-phonon scattering[106, 112]. Previous computational

works have similarly suggested that electron-phonon coupling plays an important

role in determining the macroscopic transport properties of WP2[113].

An important and related consideration is the phonon-electron scattering, i.e.

the scattering of phonons by electrons. Evidence for strong phonon-electron cou-

pling in topological semimetals (TSM) has been primarily reported via optical

spectroscopies that directly probe the system’s phonons[114–117]. However it

remains unclear what combination of factors contribute to the phonon-electron

scattering and thus its role in the transport behavior of TSMs. To this end we

performed a combined experimental, computational, and theoretical investiga-

tion of the phonon-electron coupling in WP2. Using Raman spectroscopy, first

principles calculations, and symmetry analysis, we provide evidence that phonon-

electron scattering dominates the linewidth behavior of certain optical phonons

over a wide temperature range. The ab-initio calculations further elucidate the

roles played by the relative phase space and phonon-electron coupling strength in

the dominance of phonon-electron scattering.

3.2 Crystal Symmetry and Raman Modes

WP2 may crystallize in two different structures. The α-WP2 phase is cen-

trosymmetric[118], forming in the space group C12/m1 (No. 12). Due to the pres-

ence of inversion symmetry the α phase is topologically trivial, although it does

display many of the same defining transport characteristics such as extreme mag-
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netoresistance and high mobility[110] like its toplogical counterpart β-WP2[106].

The β phase lacks inversion symmetry, with an orthorhombic unit cell belonging

to space group Cmc21 (No. 36). In the work presented here we focus exclusively

on β-WP2.

The unit cell of β-WP2 (hereafter referred to simply as WP2) contains two

inequivalent W sites, such that there are six atoms (two W and four P) within

the unit cell. This gives rise to a total of 18 phonon branches, of which three are

acoustic and the remaining 15 optic. The four classes of symmetry operations in

WP2 mean there are four irreducible representations (for now we ignore the double

space group operations). At the Γ point, group theory therefore predicts the 15

optical modes may be identified as[63]: 5A1, 3A2, 2B1, and 5B2. As discussed

shortly, we use the distinct polarization dependence associated with each mode

symmetry to assign an irreducible representation to each phonon feature in our

Raman spectra.

3.3 Polarization Dependent Raman Measurements

Raman spectra were collected in the backscattering configuration using a cus-

tom built setup[61]. The 532 nm light from a frequency doubled Nd:YAG laser

was focused by a 100X long-working distance objective to a spot size of ≈2 µm

in a Montana Instruments cryostation which enabled access to temperatures from

300 to 10 K. An incident power of ¡250 µW was used to achieve satisfactory signal-

to-noise ratios, with minimal laser induced heating. This was checked using the

Stokes to anti-Stokes ratio at all temperatures where anti-Stokes signal was mea-

surable (& 100 K). Any presented spectra have been averaged and had background

dark counts subtracted and cosmic rays removed.

To measure the polarization dependence of the Raman modes we rotated a

double Fresnel rhomb which was placed in the optical path before the sample,
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Figure 3.1: Schematic diagram of the optical setup used to perform the polariza-
tion dependent measurements of WP2.

such that the light passes through the double rhomb twice, once on the way in

and again after reflection from the sample surface. The double Fresnel rhomb

acts as a half-wave plate (HWP), rotating the plane of the linear polarization in a

manner equivalent to rotation of the sample. The reflected and Raman scattered

light then passes through a beam splitter before passing through an analyzing

polarizer. A HWP placed before the beam splitter allowed us to select between

XX and XY polarizations. A schematic of these optical elements is shown in

Figure 3.1.

The polarization dependence of a Raman mode’s intensity may be used to

determine its irreducible representation. For a given mode, the intensity follows

the formula:

I ∝ |ês ·R · êi|2 (3.1)

where êi(ês) are the polarization vectors for the incident (scattered) light, and R

is the Raman tensor for the phonon mode. The Raman tensors associated with
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each of the irreducible representations of WP2 are[63],

A1 =


a 0 0

0 b 0

0 0 c

 (3.2)

A2 =


0 d 0

d 0 0

0 0 0

 (3.3)

B1 =


0 0 e

0 0 0

e 0 0

 (3.4)

B2 =


0 0 0

0 0 f

0 f 0

 (3.5)

From the form of these tensors we can see that certain modes will only appear

when measured on specific crystal surfaces. For example, the A2 modes will be

observable when light is incident on an ab-surface, but absent when measured on

an ac-surface.

Room temperature Raman spectra of WP2 in the XX (black) and X′X′ (red)

polarization configurations are shown in Figure 3.2. In XX there are seven visible

modes, while in X′X′ there are 11 modes, giving a total of 13 unique modes. The

number of modes present in the spectra indicate that the measured crystal surface

must not be a simple ab, ac, or bc surface, since at most we would expect ten modes

to appear if we measured a bc surface (5A1 and 5B2). To properly describe the

polarization dependence of the measured modes we will therefore have to include
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Figure 3.2: Room temperature Raman spectra of WP2 in the XX and X′X′ polar-
ization configurations.

rotation matrices which transform the Raman tensors given above.

The effect of the HWP is accounted for by inserting the appropriate Jones

matrices into Equation 3.1 such that we obtain:

I ∝
∣∣ês ·H−1 ·R ·H · êi∣∣2 (3.6)

where H is

H =


cos(2φ) sin(2φ) 0

sin(2φ) − cos(2φ) 0

0 0 0

 (3.7)

and φ is the angle the HWP makes with the horizontal. To further account for an
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out-of-plane sample rotation we insert the rotation matrix O:

O =


1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)




cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)



=


cos(β) 0 sin(β)

sin(α) sin(β) cos(α) − cos(β) sin(α)

− cos(α) sin(β) sin(α) cos(α) cos(β)

 (3.8)

where α accounts for rotations around the x-axis, and β for rotations around the

y-axis. (Rotations about the z-axis will merely introduce a phase to the HWP

dependence so they are not considered here.) This gives us the final expression:

I ∝
∣∣ês ·H−1 ·O−1 ·R ·O ·H · êi∣∣2 (3.9)

The most general expressions obtained from this relation are quite cumbersome,

however we found through comparison to our measured spectra that only non-zero

values of α were required to capture the observed polarization dependence. This

suggests that the surface measured in Figure 3.2 contains an in-plane a-axis, with

some out-of-plane b and c components.

We now derive the explicit forms of the polarization dependence for each of the

irreducible representations. We assume that the light is incident along the z-axis

such that our polarization vectors are given as:

ês =

(
1 0 0

)
, êi(X) =


1

0

0

 , êi(Y ) =


0

1

0

 (3.10)
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Figure 3.3: Polarization dependence of the WP2 Raman spectra as the Fresnel
rhomb is rotated.

We then find, for each of the modes in XX and XY, the relations:

IXX(A1) ∝
1

16
[((2a+ b+ c) + (b− c) cos(2α))

+ ((2a− b− c)− (b− c) cos(2α)) cos(2φ)]2

∝ [A+B cos(2φ)]2 (3.11)

IXY (A1) ∝
1

16
[((−2a+ b+ c) + (b− c) cos(2α)) sin(2φ)]2

∝ [C sin(2φ)]2 (3.12)

IXX(A2) ∝ [d cos(α) sin(2φ)]2 ∝ [D sin(2φ)]2 (3.13)

IXY (A2) ∝ [d cos(α) cos(2φ)]2 ∝ [D cos(2φ)]2 (3.14)

IXX(B1) ∝ [e sin(α) sin(2φ)]2 ∝ [E sin(2φ)]2 (3.15)

IXY (B1) ∝ [e sin(α) cos(2φ)]2 ∝ [E cos(2φ)]2 (3.16)

IXX(B2) ∝
[
f sin(2α) sin2(φ)

]2 ∝ [F − F cos(2φ)]2 (3.17)

IXY (B2) ∝
[

1

2
f sin(2α) sin(2φ)

]2
∝ [F sin(2φ)]2 (3.18)

In Figure 3.3 we show an example of the polarization dependent spectra ob-

tained from our WP2 crystals. Spectra were recorded every 15◦ of the incident
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polarization in both XX and XY (only XX is shown in Figure 3.3) from 0◦ to

180◦. The mode intensities were extracted, and then the data from 0◦ to 90◦ was

symmetrized with the data from 180◦ to 90◦ to remove any variations in inten-

sity produced by the Fresnel rhomb. The symmetrized data were then fit with the

expressions derived above to identify the modes symmetry. Where necessary, com-

parison to density-functional theory (DFT) was also used to assist in symmetry

identification.

The symmetrized intensity data and fits are shown in Figures 3.4 through 3.15,

with a summary of the mode symmetry assignments in Table 3.1. The predicted

assignments agree very well with those identified experimentally. Only one B1

mode went completely unobserved in all of our measurements, likely due to the

mode being too weak to observe.

(a) (b)

Figure 3.4: Polarization dependence of the A1(1) phonon mode at 22.48 meV as
measured on two separate faces (a) and (b).
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(a) (b)

Figure 3.5: Polarization dependence of the A1(2)/A2(3) phonon mode at
35.84 meV as measured on two separate faces (a) and (b).

(a) (b)

Figure 3.6: Polarization dependence of the A1(3) phonon mode at 44.89 meV as
measured on two separate faces (a) and (b).

(a) (b)

Figure 3.7: Polarization dependence of the A1(4) phonon mode at 49.60 meV as
measured on two separate faces (a) and (b).
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(a) (b)

Figure 3.8: Polarization dependence of the A1(5) phonon mode at 65.00 meV as
measured on two separate faces (a) and (b).

(a) (b)

Figure 3.9: Polarization dependence of the A2(1) phonon mode at 20.37 meV as
measured on two separate faces (a) and (b).

(a) (b)

Figure 3.10: Polarization dependence of the A2(2) phonon mode at 32.38 meV as
measured on two separate faces (a) and (b).
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(b)

Figure 3.11: Polarization dependence of the B1(2) phonon mode at 40.47 meV.

(a) (b)

Figure 3.12: Polarization dependence of the B2(1) phonon mode at 21.50 meV as
measured on two separate faces (a) and (b).

(b)

Figure 3.13: Polarization dependence of the B2(2) phonon mode at 36.96 meV.
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(a) (b)

Figure 3.14: Polarization dependence of the B2(3) phonon mode at 45.84 meV as
measured on two separate faces (a) and (b).

(a) (b)

Figure 3.15: Polarization dependence of the B2(5) phonon mode at 68.90 meV as
measured on two separate faces (a) and (b).

The A1 modes show a greater degree of variation in their polarization depen-

dence between the two measured crystals. This likely results from different angles

α for each of the two crystals, which combined with the three unique tensor ele-

ments that enter Eqs. 3.11 and 3.12 can lead to qualitatively different polarization

dependencies. The modes of other symmetries have only one unique tensor ele-

ment and so their polarization dependence can only be scaled in magnitude by

different angles α.

We note that the mode at 35.6 meV displays a unique polarization depen-

dence compared to the other A1 modes. We found this dependence could be
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well explained by assuming that this peak actually corresponds to a degeneracy

(within our experimental resolution) between the A1(2) and A2(3) mode. Fitting

the response with a sum of the intensity dependence expected from both of these

representations gives an excellent fit to the data and we therefore label this mode

as A1(2)/A2(3). This is in slight contrast to a previous Raman work[119] which

found the energies of these two modes to be marginally, but measurably different.

Mode ωexpt. ωDFT

A2(1) 20.37 20.88
B2(1) 21.50 21.32
A1(1) 22.48 21.97
B1(1) NA 32.36
A2(2) 32.38 32.70
A2(3) 35.84 36.38
A1(2) 35.84 37.03
B2(2) 36.96 37.49
B1(2) 40.47 42.33
A1(3) 44.89 45.43
B2(3) 45.84 47.76
A1(4) 49.60 52.49
B2(4) 55.20 58.07
A1(5) 65.00 66.97
B2(5) 68.90 70.54

Table 3.1: Irreducible representations and mode energies identified from exper-
iment. Experimental energies (ωexpt.) are compared to predicted values (ωDFT)
from theory. All quantities are in meV.

3.4 Temperature Dependent Measurements

With the symmetry of each mode now identified, we begin our discussion of

the temperature dependence of the Raman spectra. Spectra were recorded from

10 K to 300 K, with temperature steps of 10 K. In an initial round of measure-

ments we also recorded spectra from 8 K to 30 K in steps of 2 K. Figure 3.16

shows the temperature dependent spectra recorded in the XX configuration, while

Figure 3.17 shows the spectra in X′X′.
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Figure 3.16: Temperature dependence of the WP2 Raman spectra in XX.

Figure 3.17: Temperature dependence of the WP2 Raman spectra in X′X′.
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3.4.1 Temperature Dependence of Phonon Energies

Phonon energies will typically decrease as the temperature is raised due to a

combination of lattice expansion and anharmonic renormalization[70, 73]. Devi-

ations from this behavior can be possible signs of phonon-electron coupling, and

have been observed in other topological semimetal (TSM)s[117]. A previous report

observed an anomalous decrease in the mode energies of WP2 below ∼ 25 K[120]

which was interpreted as evidence for phonon-electron coupling. In our initial run

of temperature dependent measurements we also observed similar behavior. How-

ever, in repeat measurements where we allowed more time for the WP2 crystals

to come to thermal equilibrium with the cryostat at each temperature we found

that the anomalous changes were no longer present. In Figure 3.18 through 3.22

we show the change in phonon energy from the lowest temperature value as a

function of temperature for each set of measurements. As described above, the

anomalous changes seen in Trial 1 are not reproduced in Trials 2 or 3. We there-

fore conclude that such anomalies in the phonon energy are experimental artifacts

and not evidence for phonon-electron coupling.

Figure 3.18: Difference in phonon energy from lowest measured temperature value
(ω0) as a function of temperature for the A2(1), B2(1), and A1(1) modes.

The quantitative behavior of the phonon energies was extracted by fitting the

peaks with Voigt profiles. A Voigt profile is the convolution of a Lorentzian which
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Figure 3.19: Difference in phonon energy from lowest measured temperature value
(ω0) as a function of temperature for the A2(2), A1(2), and B2(2) modes.

Figure 3.20: Difference in phonon energy from lowest measured temperature value
(ω0) as a function of temperature for the B1(2), A1(3), and B2(3) modes.

Figure 3.21: Difference in phonon energy from lowest measured temperature value
(ω0) as a function of temperature for the A1(4), B2(4), and A1(5) modes.
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Figure 3.22: Difference in phonon energy from lowest measured temperature value
(ω0) as a function of temperature for the B2(5) mode.

accounts for the intrinsic phonon response and a Gaussian which accounts for the

instrument induced broadening. A Gaussian linewidth of 0.217 meV, determined

from fitting of the Rayleigh line, was used for the fitting. We then fit the mode

energies as a function of temperature using the extended Klemens’ model[70, 73].

In Figures 3.23 through 3.27 we show the temperature dependence of each mode,

with the red solid lines showing the fitting results. Table 3.2 contains a summary

of the fitting results.

Figure 3.23: Phonon energy vs temperature with fits using the extended Klemens’
model as red lines for the A2(1), B2(1), and A1(1) modes.
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Figure 3.24: Phonon energy vs temperature with fits using the extended Klemens’
model as red lines for the A2(2), A1(2), and B2(2) modes.

Figure 3.25: Phonon energy vs temperature with fits using the extended Klemens’
model as red lines for the B1(2), A1(3), and B2(3) modes.

Figure 3.26: Phonon energy vs temperature with fits using the extended Klemens’
model as red lines for the A1(4), B2(4), and A1(5) modes.
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Figure 3.27: Phonon energy vs temperature with fits using the extended Klemens’
model as red lines for the B2(5) modes

Mode ω0 (meV) C (meV) D (meV)
A2(1) 20.37±0.01 -0.0003215±0.0073 -0.004177±0.000697
B2(1) 21.50±0.01 0.006153±0.0052 -0.006002±0.000527
A1(1) 22.48±0.01 -0.08552±0.0106 -0.004248±0.0011
A2(2) 32.38±0.02 0.03723±0.0128 -0.01504±0.0018

A1(2)/A2(3) 35.84±0.02 0.04342±0.0192 -0.02217±0.0029
B2(2) 36.96±0.02 0.001872±0.0190 -0.01876±0.0029
B1(2) 40.47±0.11 -0.00631±0.1132 -0.02334±0.0184
A1(3) 44.89±0.07 0.09941±0.0818 -0.03588±0.0145
B2(3) 45.84±0.01 -0.1535±0.0254 -0.2303±0.0045
A1(4) 49.60±0.03 -0.05144±0.0363 -0.04046±0.0066
B2(4) 55.20±0.06 -0.3878±0.0469 NA
A1(5) 65.00±0.01 -0.5474±0.0102 NA
B2(5) 68.90±0.01 -0.6249±0.0062 NA

Table 3.2: Results of fitting WP2 phonon energies with the extended Klemens’
model

We lastly discuss the percent change of the mode energies as a function of

temperature. Figure 3.28 reveals that the A1(1) mode changes by nearly 2% from

10 to 300 K, while all the other observed modes change by ≤ 1%. While this

could be a sign of phonon-electron coupling in the A1(1) mode, the temperature

dependence of phonon energies contains contributions from multiple sources so an

unambiguous interpretation is challenging. We therefore turn to the temperature
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dependence of the phonon linewidths.

Figure 3.28: Percent difference of phonon energies from the lowest temperature
value as a function of energy.

3.4.2 Temperature Dependence of Phonon Linewidths

The phonon linewidth only contains information related to its available decay

paths. The model most often assumed is that the near Γ -point optical phonons

probed in Raman spectroscopy decay into acoustic phonons[70, 73]. A schematic

of the lowest order such process is shown in Figure 3.29, where an optical phonon

of energy ω decays into two acoustic phonons with energy ω/2 and equal but

opposite momentum. Due to the bosonic nature of phonons, the temperature

dependence of this model is governed by the Bose-Einstein distribution function

nB(ω, T ). The linewidths predicted by this model therefore increase monotonically

with temperature as the population of phonons increases. In Figure 3.30 we show

the linewidths of the three higher energy A1 modes which all display linewidths

consistent with this model. The solid red lines are fits using the extended Klemens’

model, and are seen to reproduce the experimental data quite well.
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Figure 3.29: A diagram showing the lowest order anharmonic decay process of an
optical phonon with energy ω decaying into two acoustic phonons with energy ω/2
and opposite but equal momentum.

Figure 3.30: Temperature dependence of the three higher energy A1 modes show-
ing behavior consistent with the anharmonic model of decay. Red lines are fits to
the data using the extended Klemens’ model.

The temperature dependence of the linewidths for the lowest two energy A1

modes (the A1(1) mode at ∼ 22.4 meV and the A1(2) mode at ∼35.8 meV) are

plotted in Figure 3.31. In contrast to the behavior seen for the higher energy A1

modes, the linewidths of these two modes deviate from the prediction of the Kle-

mens’ model. For the A1(1) mode we see that, at low temperatures below ∼50 K,

the linewidth has a nearly constant value of 0.36 meV. Above this temperature

the linewidth grows rapidly, achieving a maximum value of ∼0.65 meV at ∼200 K,

before slowly decreasing as it approaches room temperature. Though on a smaller

65



scale, the A1(2) mode displays similar behavior. In particular, a linewidth that de-

creases with rising temperature is unable to be explained by a model that assumes

decay into bosonic particles. We instead identify the temperature dependence ob-

served in these modes as resulting from decay into electron-hole pairs near the

Fermi surface.

Figure 3.31: Temperature dependence of the two lower energy A1 modes, as well
as the A2(2) mode which has an energy between the A1 modes. The two A1 modes
show anomalous linewidths consistent with decay into electron-hole pairs near the
Fermi surface, while the A2 mode shows anharmonic decay. The blue lines are
fits using a model of electron-hole pair decay, while the red line is a fit using the
extended Klemens’ model.

The observation of these anomalous linewidths for only the lower energy A1

modes suggests that the energy of the phonon plays a role in determining its

primary decay paths. We find however, that this alone is not able to explain

all of our results. In particular, we note that the A2(2) mode at ∼32.3 meV –

an energy between that of the A1(1) and A1(2) modes – does not display the

same phonon-electron dominated linewidth, see Figure 3.31. This suggests that in

order to understand why the A1 modes display these behavior, in addition to the

phonon energy we must also consider the symmetry of the phonon. This is further

confirmed by noting that none of the other modes of A2 or B2 symmetries display

anomalous linewidths. The temperature dependence of these mode’s linewidths
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are shown in Figures 3.32 through 3.33, with Table 3.3 summarizing the results of

fitting with the extended Klemens’ model.

Figure 3.32: Temperature dependence of phonon linewidths for the A2(1), B2(1),
and B2(2) modes. Red lines are fits to the data using the extended Klemens’
model.

Figure 3.33: Temperature dependence of phonon linewidths for the B1(2), B2(3),
and B2(4) modes. Red lines are fits to the data using the extended Klemens’
model.
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Figure 3.34: Temperature dependence of the B2(5) phonon linewidth. The red
line is a fit to the data using the extended Klemens’ model.

Mode Γ0 (meV) A (meV) B (meV)
A2(1) 0.0804±0.0110 0.01825±0.0033 NA
B2(1) 0.08718±0.0076 0.008325±0.0026 NA
A2(2) NA 0.06337±0.0062 0.01057±0.0016
B2(2) 0.05661±0.0126 0.03363±0.0068 NA
B1(2) 0.0524±0.0.0887 0.03557±0.0.0512 NA
A1(3) NA 0.2977±0.0135 0.01712±0.0053
B2(3) 0.09723±0.0135 0.1469±0.0090 NA
A1(4) NA 0.1301±0.0026 NA
B2(4) NA NA NA
A1(5) NA 0.1938±0.0023 NA
B2(5) 0.03168±0.0154 0.1816±0.0127 NA

Table 3.3: Results of fitting WP2 phonon linewidths with the extended Klemens’
model

We briefly discuss some of the odd features seen in several of the modes shown

here. For the A2(1) mode the linewidth appears to saturate above ∼200 K in a

manner similar to that observed for the A1(1) and A1(2) linewidths. While this

could indicate the influence of phonon-electron decay processes, we found that,

within the resolution of our measurements, fitting with the phonon-electron model

did not yield a discernible improvement over the Klemens’ model. We therefore

assume that, while phonon-electron signatures may be present, we cannot resolve

them due to the very narrow nature of this mode. Similarly, for the B2(1) there
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is a sudden apparent increase of linewidth around ∼200 K which could be taken

as an indication of phonon-electron contributions to the linewidth. This apparent

upturn however is an artifact of our least-squares fitting algorithm and the fact

that this very narrow mode begins to be overlapped by the adjacent broad A1(1)

mode around 170 K, as may be seen in Figure 3.17. Lastly, for the B1(2) and

B2(4) modes, there are several temperatures at which the linewidths appear to

vary wildly. These modes were very weak in our measured spectra and an accurate

estimate of the linewidth is therefore challenging. This is also the reason for the

significant error bars visible for these modes.

3.5 Model of Phonon Decay into Electron-Hole Pairs

Linewidths indicative of optical phonon decay into electron-hole pairs have

been observed in a number of semimetals, including TaAs[114, 115], NbAs[114],

MoTe2[116], graphite[121, 122], and Cd3As2[117]. The model developed to de-

scribe this behavior assumes an optical phonon at the Γ point (q = 0) decays into

an electron-hole pair via a vertical, interband transition. The linewidth there-

fore depends upon the difference in Fermi occupation factors between the initial

and final states[123]. The initial state is often assumed to be below the chemical

potential EF , which leads to a linewidth that monotonically decreases with ris-

ing temperature as the occupancy of the electron and hole states approach the

same value. This is in contrast to the behavior we observe in our linewidths, see

Figure 3.31, so we find that we must modify the model accordingly.

To account for the spin-orbit split bands of WP2 and the observed linewidth

behavior we modify the model from its original version. In its original form the

model predicts: Γ (T ) ∝ nF (−ωph/2, T ) − nF (ωph/2, T ), where nF (ω, T ) is the

Fermi-Dirac distribution function, and the first (second) term refers to the hole

(electron) state. We instead alter this to read as: Γ (T ) ∝ nF (ωa, T ) − nF (ωa +
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Figure 3.35: Diagram depicting interband (pink arrow) and intraband (blue arrow)
transitions by optical phonons. An energy ~ωa separates the initial state from the
chemical potential EF . The electronic energy bands are labeled by irreducible
representations Γ i and Γ j, while the optical phonon has representation Γ k. A
transition is symmetry allowed only if Γ k is contained in the direct product of the
band representations.

ωph, T ), where ωph is the energy of the optical phonon and ωa represents the energy

difference between the chemical potential and initial electron state. A schematic

of the states and transitions involved is shown in Figure 3.35. The inclusion

of the ωa term allows for the initial electronic state to be unoccupied at low

temperatures. As the temperature is increased, thermal population of the state

leads to a turning-on of the decay process and an increase in the linewidth. At yet

higher temperatures the behavior returns to that of the original model and the

linewidth decreases as a function of temperature. Fits to the linewidths using this

model are shown as solid blue lines in Figure 3.31, and can be seen to reproduce

the data very well. From the fitting we find ωa values of 24.48 ± 0.61 meV and

22.64 ± 1.73 meV for the A1(1) and A1(2) modes respectively. The magnitudes

of the ωa are consistent with the assumption of our model that the transitions

are occurring close to the chemical potential (on an energy scale of the optical

phonons). A summary of the fitting results may be found in Table 3.4.
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Mode Γ0 (meV) F (meV) ωa (meV)
A1(1) 0.3686±0.0022 2.001±0.058 24.48±0.61
A1(2) 0.2849±0.0028 0.6261±0.0495 22.64±1.73

Table 3.4: Results of fitting WP2 phonon linewidths with the electron-hole decay
model, Γ (T ) = Γ0 + F (nF (ωa, T )− nF (ωa + ωph, T )).

3.6 Electronic Band Structure and Phonon Transition Den-

sity of States

We now examine the role played by the phonon energy in determining its

linewidth behavior. In Figure 3.36 we show the calculated band structure of WP2

within ±1 eV of the Fermi level, which agrees well with previous work[25, 113].

Along the Σ (Γ → Σ0), ∆ (Γ → Y), and C (Y → C0) cuts the gaps between

neighboring bands appear to be on an energy scale similar to the optical phonons.

To explicitly confirm the presence of such gaps, we calculated the low temper-

ature, weighted JDOS for vertical (q = 0) transitions between states within an

(largest) optical phonon energy (±70 meV) of the Fermi level. The results of this

calculation are shown in Figure 3.37, and reveal that available transitions exist

across the entire optical phonon energy range, with the largest JDOS occurring

between 40 and 60 meV. The A1 modes that display phonon-electron dominated

linewidths have energies of 22.4 and 35.8 meV, which have a comparatively smaller

JDOS. In contrast, the higher energy A1 modes that fall in the 40–60 meV range

have linewidths that are dominated by phonon-phonon decay, which suggests that

the availability of electronic states is not the largest contributing factor to under-

standing the phonon linewidths. As we discuss later, while energy conservation

does play a role, we must also consider the role of momentum conservation.
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Figure 3.36: The calculated band structure of WP2 along high symmetry lines.
The yellow shaded regions indicate cuts where transitions by Γ point optical
phonons are allowed.

Figure 3.37: Weighted JDOS for vertical (q = 0) transitions between electronic
states within ±70 meV of the chemical potential.

3.7 Selection Rules for Phonon Scattering

3.7.1 Wave Vector Conservation

We noted earlier that phonons of A1 and A2 symmetries display markedly dif-

ferent linewidth dependencies, despite occurring in the same energy range. We now

evaluate the selection rules for phonon scattering by electronic energy bands to de-

termine if there is a symmetry based reason why certain modes display anomalous

linewidths and others do not. Our first step in accomplishing this is to establish

which symmetry lines and points in the electronic BZ permit scattering by zone

center optical phonons. We may organize wave vectors in the BZ by identifying

which wave vectors are equivalent to one another under the symmetry operations

of the crystal. A group of equivalent such wave vectors is called the “star” of the

wave vector, and in WP2 there are 19 distinct stars that may be identified[63].

Some of these represent specific points of symmetry, such as the Γ = (0, 0, 0) point,
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while others represent lines of symmetry, such as the Σ = (k, 0, 0) line. Scattering

events typically take a particle with one wave vector into a new wave vector, with

momentum conservation dictating which wave vectors may be related. The prob-

lem of identifying which symmetry lines and points allow scattering by Γ point

phonons therefore becomes one of establishing which products contain the star of

Γ . However, in a crystal lattice momentum is only conserved up to a reciprocal

lattice vector, so care must be taken when identifying which star a wave vector

belongs to.

The wave vector selection rules for the direct product of two stars may be

established by evaluating the sum of each element of the first star with each

element of the second star[124]. The resulting set of wave vectors consists of an

integer number of complete and distinct stars. We provide an example of one such

calculation below for the direct product of Σ = (k, 0, 0) with Σ ′ = (k′, 0, 0) in

WP2.

(k′, 0, 0) (−k′, 0, 0)

(k, 0, 0) (k + k′, 0, 0) (k − k′, 0, 0)

(−k, 0, 0) (−(k − k′), 0, 0) (−(k + k′), 0, 0)

From this table it is clear that there are two stars which arise from wave vector

conservation: Σ ′′ = (k + k′, 0, 0) and Σ ′′′ = (k − k′, 0, 0). In the limit that k′ → k

we note that we recover Σ ′′′ → Γ , and we therefore identify the Σ line as having

the potential for scattering by Γ point phonons.

In the following table we enumerate some of the wave vector selection rules

for the various stars in WP2. This table is not comprehensive, it leaves out many

potential combinations that will not produce Γ or near-Γ phonons. However since

we are investigating phonons produced by Raman scattering which satisfy these

limited criteria we will not require additional selection rules. For reading this

table, we use the notation developed by Birman et al.[124] where the two wave
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vectors A and B involved in the direct product are represented by the bra 〈AB|,

while the stars C contained in their direct product are denoted as kets |C〉. The

number 〈AB|C〉 = N indicates how many times the star C appears in the direct

product of A and B.

Table 3.5: Wave vector selection rules

〈ΓΓ |Γ 〉 = 1 〈EE′|Σ ′′〉 = 1 Σ ′′ = (k + k′, 0, 0)
〈YY|Γ 〉 = 1 〈EE′|Σ ′′′〉 = 1 Σ ′′′ = (k − k′, 0, 0)
〈ZZ|Γ 〉 = 1 〈MM′|M′′〉 = 1 M′′ = (k1 + k′1, 0, k2 + k′2)
〈ΛΛ′|Λ′′〉 = 1 Λ′′ = (0, 0, k + k′) 〈MM′|M′′′〉 = 1 M′′′ = (k1 − k′1, 0, k2 + k′2)
〈TT|Γ 〉 = 1 〈NN′|M′′〉 = 1 M′′ = (k1 + k′1, 0, k2 + k′2)
〈HH′|Λ′′〉 = 1 Λ′′ = (0, 0, k + k′) 〈NN′|M′′′〉 = 1 M′′′ = (k1 − k′1, 0, k2 + k′2)
〈SS|Γ 〉 = 2 〈∆∆′|∆′′〉 = 1 ∆′′ = (0, k + k′, 0)
〈SS|Y〉 = 2 〈∆∆′|∆′′′〉 = 1 ∆′′′ = (0, k − k′, 0)
〈RR|Γ 〉 = 2 〈BB′|∆′′〉 = 1 ∆′′ = (0, k + k′, 0)
〈RR|Y〉 = 2 〈BB′|∆′′′〉 = 1 ∆′′′ = (0, k − k′, 0)
〈DD′|Λ′′〉 = 2 Λ′′ = (0, 0, k + k′) 〈KK′|K′′〉 = 1 K′′ = (0, k1 + k′1, k2 + k′2)
〈DD′|H′′〉 = 2 H′′ = (0, 1, k + k′) 〈KK′|K′′′〉 = 1 K′′′ = (0, k1 − k′1, k2 + k′2)
〈ΣΣ ′|Σ ′′〉 = 1 Σ ′′ = (k + k′, 0, 0) 〈(GP)(GP′)|GP′′〉 = 1 GP′′ = (k1 + k′1, k2 + k′2, k3 + k′3)
〈ΣΣ ′|Σ ′′′〉 = 1 Σ ′′′ = (k − k′, 0, 0) 〈(GP)(GP′)|GP′′′〉 = 1 GP′′′ = (k1 − k′1, k2 − k′2, k3 + k′3)
〈CC′|Σ ′′〉 = 1 Σ ′′ = (k + k′, 0, 0) 〈(GP)(GP′)|GP′′′′〉 = 1 GP′′′′ = (k1 + k′1, k2 − k′2, k3 + k′3)
〈CC′|Σ ′′′〉 = 1 Σ ′′′ = (k − k′, 0, 0) 〈(GP)(GP′)|GP′′′′′〉 = 1 GP′′′′′ = (k1 − k′1, k2 + k′2, k3 + k′3)
〈AA′|Σ ′′〉 = 1 Σ ′′ = (k + k′, 0, 0)
〈AA′|Σ ′′′〉 = 1 Σ ′′′ = (k − k′, 0, 0)

〈Σ(GP)|GP′〉 = 1 GP′ = (k1 + k′1, k2, k3) 〈∆(GP)|GP′〉 = 1 GP′ = (k1, k2 + k′2, k3)
〈Σ(GP)|GP′′〉 = 1 GP′′ = (k1 − k′1, k2, k3) 〈∆(GP)|GP′′〉 = 1 GP′ = (k1, k2 − k′2, k3)
〈C(GP)|GP′〉 = 1 GP′ = (k1 + k′1, 1 + k2, k3)
〈C(GP)|GP′′〉 = 1 GP′′ = (k1 − k′1, 1 + k2, k3)

We find that 18 of these selection rules either explicitly contain Γ or reduce to

Γ in the limit that k′ → k. We further reduce these 18 by comparing these cuts

to the Fermi surface of WP2 to identify which cuts will have possible electronic

transitions by optical phonons. There are three symmetry lines, Σ,∆, and C, as

well as a subset of the general k-points GP. For these four we will evaluate the

direct product of their allowed representations.

3.7.2 Direct Product Reduction Coefficients

The selection rules for electronic transitions may be found by decomposing the

direct product:

?Γ (i)
n (k)⊗ ?Γ (j)

m (k′) (3.19)
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where ?Γ
(i)
n (k) is the ith irreducible representation in the full group representation

of the star of the wave vector k, associated with band n. A phonon induced tran-

sition between bands is allowed only for phonons with irreducible representation

?Γ (k) contained in the above decomposition, i.e, if

?Γ (k)(k− k′) ⊂? Γ (i)
n (k)⊗ ?Γ (j)

m (k′) (3.20)

To evaluate direct products between irreducible representations at different wave

vectors we use the full-group method developed by J. Birman et. al.[124, 125] The

characters for the full-group representations were found by consulting the Bilbao

Crystallographic Server[63]. We will go through one explicit example of the direct

inspection method, the other results may be found through similar means and are

summarized in Table 3.7.

In the character table below the rows are labeled by irreducible representations

at the Γ and Σ points, with the columns corresponding to the various symmetry

operations of the double space group Cmc21. The final column is a combined

mirror and translation operation which will be discussed in more detail shortly.

For now, it is important just to note that the translation is along the same direction

as Σ. The last five rows correspond to direct products of representations from Σ.

To identify the irreducible representations contained in these direct products we

assign a coefficient to each representation contained in the direct product (in this

case, Γ and Σ representations are allowed). We then construct equations from the

columns of the character table, as well as from the wave vector selection rules until

we have enough linearly independent equations to solve for the various coefficients.

Let us carry out this procedure for the direct product ?Σ
(3)⊗ ?Σ

(3)
. Recalling the

wave vector selection rules for Σ (and noting that here we have for simplicity set
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Table 3.6: Character table of full group representations for Γ , Σ, and direct
products of irreducible representations from Σ.

{ε|0} {δ2z|(0, 0, 1/2)} {ρy|(0, 0, 1/2)} {ρx|0} {R|0} {ρy|t1 + (0, 0, 1/2)}
Γ (1) 1 1 1 1 1 1

Γ (2) 1 1 −1 −1 1 −1

Γ (3) 1 −1 −1 1 1 −1

Γ (4) 1 −1 1 −1 1 1

Γ
(5)

2 0 0 0 −2 0
?Σ(1) 2 0 2 0 2 2cos(k)
?Σ(2) 2 0 −2 0 2 −2 cos(k)
?Σ

(3)
2 0 0 0 −2 2sin(k)

?Σ
(4)

2 0 0 0 −2 −2 sin(k)
?Σ(1) ⊗ ?Σ(1) 4 0 4 0 4 2 + 2 cos(2k)
?Σ(1) ⊗ ?Σ(2) 4 0 −4 0 4 −2− 2 cos(2k)
?Σ

(3) ⊗ ?Σ
(3)

4 0 0 0 4 2− 2 cos(2k)
?Σ

(3) ⊗ ?Σ
(4)

4 0 0 0 4 −2 + 2 cos(2k)
?Σ

(4) ⊗ ?Σ
(4)

4 0 0 0 4 2− 2 cos(2k)

k = k′) we have:

?Σ ⊗ ?Σ = 2Γ ⊕ ?Σ (3.21)

This equation informs us that the total dimensionality of the Γ representations

contained in this direct product will be two, while that from ?Σ will be one. In

terms of coefficients, this becomes:

g1 + g2 + g3 + g4 + 2g5 = 2 (3.22)

2s1 + 2s2 + 2s3 + 2s4 = 2 (3.23)

where the gi (sj) are coefficients corresponding to the Γ (Σ) representations.

The coefficients of 2 for g5, and the si arise due to each of these representations

being two dimensional. (The 2 on the right hand side of Eq. 3.21 arises for the

same reason.) In principle, we now require seven additional linearly independent

equations to uniquely solve for the coefficients. We will find however, that this

number will not be required.
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The equations found from the columns of the character table are:

g1 + g2 − g3 − g4 = 0 (3.24)

g1 − g2 − g3 + g4 + 2s1 − 2s2 = 0 (3.25)

g1 − g2 + g3 − g4 = 0 (3.26)

g1 + g2 + g3 + g4 − 2g5 + 2s1 + 2s2 − 2s3 − 2s4 = 4 (3.27)

(for now we will not use the final column). We now have six linearly independent

equations, and nine unknown coefficients. By comparison of Eqs. 3.22, 3.23 and

3.27 it is clear that we can set g5 = s3 = s4 = 0, since the coefficients by definition

must be positive or zero. This leaves us with three equations and six unknown

coefficients. The other equations must be found from combination rotation and

translation operations. One such example is in the last column of the table from

which we find:

g1 − g2 − g3 + g4 + 2 cos(k)s1 − 2 cos(k)s2 + 2 sin(k)s3 − 2 sin(k)s4 = 2− 2 cos(2k)

(3.28)

An important thing to note in this equation is that, exact arithmetic agreement

will not occur, since factors of 2k appear in the argument of the cosine function

on the right hand side, while only k appears on the left hand side. However, this

is to be expected, since the ?Σ that enter the decomposition of the direct product

are those at 2k and not at the original k. We may therefore treat the 2k and k as

“equivalent” for the purposes of characters. (One has to be more careful when not

considering k = k′ and pay attention to whether it is k + k′ or k − k′ that is the

argument of a given function.) With this final equation, our reduction problem

is now trivial. From this equation alone it is clear that g1 = g4 = 1 and s2 = 1,

while all other coefficients are zero.
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The other direct products may be solved through identical means. In many

cases, as with the one we worked out explicitly, visual inspection of the character

table will yield the coefficients without explicit arithmetic. This is particularly true

if one evaluates the characters for combined rotation and symmetry operations as

in the last column of the above table.

Table 3.7 summarizes the direct products and decompositions relevant to our

results. The leftmost column indicates whether the transition represented by the

direct product in the second column is interband or intraband, while the third

column presents the decomposition of the direct product and establishes which

phonons may facilitate such a transition. The labeling of these direct products as

corresponding to inter- or intra-band is valid here since we only consider transitions

on the energy scale of the optical phonons. The final column considers the limit

where k → k′ (i.e. q → 0) which indicates which Γ point phonons are capable of

interband or intraband transitions, though in the case of intraband transitions it

is more accurate to say the Γ point representation for a given phonon branch.

Considering interband transitions first, we find from the last column of Ta-

ble 3.7 that phonons of Γ (2), Γ (3), or Γ (4) (A2, B2, or B1 respectively) represen-

tations are capable of producing interband transitions, while Γ (1)(A1) phonons

are forbidden. For intraband transitions we instead find that Γ (1)(A1) phonon

branches are permitted, along with Γ (3) and Γ (4) branches.

Table 3.7: Direct product decompositions

Transition Type Direct Product Decomposition Limit k → k′, (q → 0)

Interband Σ
(3)

(k, 0, 0)⊗Σ(4)
(k′, 0, 0) Σ(1)(k + k′, 0, 0)⊕Σ(2)(k − k′, 0, 0) Σ(1)(2k, 0, 0)⊕ Γ (2) ⊕ Γ (3)

∆
(3)

(0, k, 0)⊗∆(4)
(k′, 0, 0) ∆(1)(0, k + k′, 0)⊕∆(2)(0, k − k′, 0) ∆(1)(0, 2k, 0)⊕ Γ (2) ⊕ Γ (4)

C
(3)

(k, 1, 0)⊗ C
(4)

(k′, 1, 0) Σ(1)(k + k′, 0, 0)⊕Σ(2)(k − k′, 0, 0) Σ(1)(2k, 0, 0)⊕ Γ (2) ⊕ Γ (3)

Intraband Σ
(3)

(k, 0, 0)⊗Σ(3)
(k′, 0, 0) Σ(2)(k + k′, 0, 0)⊕Σ(1)(k − k′, 0, 0) Σ(2)(2k, 0, 0)⊕ Γ (1) ⊕ Γ (4)

Σ
(4)

(k, 0, 0)⊗Σ(4)
(k′, 0, 0) Σ(2)(k + k′, 0, 0)⊕Σ(1)(k − k′, 0, 0) Σ(2)(2k, 0, 0)⊕ Γ (1) ⊕ Γ (4)

∆
(3)

(0, k, 0)⊗∆(3)
(0, k′, 0) ∆(2)(0, k + k′, 0)⊕∆(1)(0, k − k′, 0) ∆(2)(0, 2k, 0)⊕ Γ (1) ⊕ Γ (3)

∆
(4)

(0, k, 0)⊗∆(4)
(0, k′, 0) ∆(2)(0, k + k′, 0)⊕∆(1)(0, k − k′, 0) ∆(2)(0, 2k, 0)⊕ Γ (1) ⊕ Γ (3)

C
(3)

(k, 1, 0)⊗ C
(3)

(k′, 1, 0) Σ(2)(k + k′, 0, 0)⊕Σ(1)(k − k′, 0, 0) Σ(2)(2k, 0, 0)⊕ Γ (1) ⊕ Γ (4)

C
(4)

(k, 1, 0)⊗ C
(4)

(k′, 1, 0) Σ(2)(k + k′, 0, 0)⊕Σ(1)(k − k′, 0, 0) Σ(2)(2k, 0, 0)⊕ Γ (1) ⊕ Γ (4)
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We also evaluate the direct products that involve wave vectors from different

stars, and the direct product for wave vectors of no special symmetry, i.e. general

k-points, GP. These direct products describe scattering events which may take an

electron on or off a specific line of symmetry, or which occur at a general location

in the BZ respectively. A general k-point respects only the identity operation, so

there will be only one possible irreducible representation, or two when considering

the double group space group. As a result, the selection rules for inter- and

intraband transitions will be the same for any direct product that involves a general

k-point. Since most of the Fermi surface in WP2 exists at general k-points, we

expect the selection rules derived here to describe most of the phonon mediated

electronic transitions.

Table 3.8: Direct product decompositions with general k-points

Transition Type Direct Product Decomposition

Both Σ
(3)

(k, 0, 0)⊗GP
(2)

(k′1, k
′
2, k
′
3) GP(1)(k′1 + k, k′2, k

′
3)⊕GP(1)(k′1 − k, k′2, k′3)

Σ
(4)

(k, 0, 0)⊗GP
(2)

(k′1, k
′
2, k
′
3) GP(1)(k′1 + k, k′2, k

′
3)⊕GP(1)(k′1 − k, k′2, k′3)

∆
(3)

(0, k, 0)⊗GP
(2)

(k′1, k
′
2, k
′
3) GP(1)(k′1, k

′
2 + k, k′3)⊕GP(1)(k′1, k

′
2 − k, k′3)

∆
(4)

(0, k, 0)⊗GP
(2)

(k′1, k
′
2, k
′
3) GP(1)(k′1 + k, k′2, k

′
3)⊕GP(1)(k′1 − k, k′2, k′3)

C
(3)

(k, 1, 0)⊗GP
(2)

(k′1, k
′
2, k
′
3) GP(1)(k′1 + k, 1 + k′2, k

′
3)⊕GP(1)(k′1 − k, 1 + k′2, k

′
3)

C
(4)

(k, 1, 0)⊗GP
(2)

(k′1, k
′
2, k
′
3) GP(1)(k′1 + k, 1 + k′2, k

′
3)⊕GP(1)(k′1 − k, 1 + k′2, k

′
3)

GP
(2)

(k1, k2, k3)⊗GP
(2)

(k′1, k
′
2, k
′
3) GP(1)(k1 + k′1, k2 + k′2, k3 + k′3)⊕GP(1)(k1 − k′1, k2 − k′2, k3 + k′3)

⊕GP(1)(k1 + k′1, k2 − k′2, k3 + k′3)⊕GP(1)(k1 − k′1, k2 + k′2, k3 + k′3)

Table 3.8 shows the decompositions of the direct products described above.

Since the electronic bands are described only by additional representations in-

troduced by the double group, we only show the direct products involving these

representations. We find that for all of the direct products considered here the

decomposition contains the irreducible representation GP(1). This irreducible rep-

resentation is the only possible representation for phonons at general k-points. As

such, we find that any phonon branch is capable of facilitating inter- or intraband

transitions of these types. As discussed above in regards to Table 3.7, these se-

lection rules are more restrictive when only considering scattering along lines of

symmetry. We therefore conclude that both interband and intraband scattering
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likely contribute to the observed linewidth behavior of the A1 modes, and that

another feature besides mode symmetry must be found to explain the lack of ob-

served anomalies in modes of other symmetries. Further, per these selection rules,

only interband transitions with q 6= 0 are possible for the A1 phonons, so we turn

our attention to determining whether momentum conservation may be satisfied

under our experimental conditions.

3.8 Momentum Conservation

For interband phonon decay into electron-hole pairs the momentum and energy

conservation is trivially satisfied. As shown in Figure 3.37, interband transitions

with q = 0 exist across the entire range of optical phonon energies. Interband

transitions with q ≈ 0 will therefore have a very similar phase space. For intraband

scattering we explicitly estimate both the momentum provided by the photons and

the momentum required for the electronic transition. We first assume that, near

the Fermi energy, the electronic bands are approximately linear[126], with a slope

given by the experimentally measured Fermi velocities[111]. The change in energy

and momentum are then related by the expression:

∆E = ~vF∆k (3.29)

where vF is the Fermi velocity. The Fermi velocities for the different electron and

hole pockets have been reported[111] as vF,α = 1.46 × 105 m/s, vF,β = 1.47 ×

105 m/s, vF,γ = 3.78× 105 m/s, and vF,δ = 3.97× 105 m/s. The α and β pockets

intersect the Σ cut, while the γ and δ pockets intersect ∆, and C. We calculate

the momentum required for each pocket separately.

For the A1(1) phonon, which has energy ∼22.4 meV, we find using Eq. 3.29

the required momenta: ∆kα = 2.33 × 108 m−1, ∆kβ = 2.32 × 108 m−1, ∆kγ =
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9.00 × 107 m−1, and ∆kδ = 8.57 × 107 m−1. Repeating this calculation for the

A1(2) phonon, which has energy ∼35.8 meV, we obtain: ∆kα = 3.76 × 108 m−1,

∆kβ = 3.70× 108 m−1, ∆kγ = 1.44× 108 m−1, and ∆kδ = 1.37× 108 m−1.

We next determine the momentum provided by the laser to the phonons. In

the backscattering configuration the transferred momentum is found as:

q ≤ 2
2πni(λ)

λ
(3.30)

where ni(λ) is the wavelength dependent index of refraction along the ith crystal

direction, and λ is the wavelength of the optical excitation. The optical constants

of WP2 have yet to be experimentally reported, so we used values obtained from

first principles calculations.

The index of refraction may be calculated from the dielectric function as

n =

√√
ε21 + ε22 + ε1

2
(3.31)

where ε1(ε2) is the real (imaginary) part of the dielectric function. The dielec-

tric function was calculated from first principles using the methods outlined in

Refs. [127–129]. In Figure 3.38 we show the calculated room temperature di-

electric function along each crystallographic direction as a function of energy. A

vertical dashed line is drawn at 2.33 eV (532 nm), corresponding to the energy

of the laser used in our experiments. In Figure 3.39 the indices of refraction cal-

culated for each crystallographic direction are shown, with values at 2.33 eV of

na = 3.11, nb = 3.59, and nc = 4.10.
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Figure 3.38: Imaginary (i-iii) and real (iv-vi) parts of the complex dielectric
function along the a (i,iv), b (ii,v), and c (iii,vi) crystallographic directions at
T= 298 K. The vertical dotted line is drawn at ~ω = 2.33 eV, which is the energy
of the laser used in our experiments.

Figure 3.39: Index of refraction along a (i), b (ii), and c (iii) crystallographic
directions at T = 298 K. The vertical dotted line is drawn at ~ω = 2.33 eV.,
which is the energy of the laser used in our experiments.

Using Eq. 3.30 we find for the different crystal axes: qa = 7.35× 107 m−1, qb =

8.48× 107 m−1, and qc = 9.68× 107 m−1. We therefore see that, for light incident

along the c-axis, which corresponds to the XX polarization configuration of our
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measurements, the incident radiation is capable of providing enough momentum

for A1 phonons to produce intraband transitions. It does however fall short for the

A1(2) phonon which suggests that while both interband and intraband processes

may be available for the A1(1) phonon, only interband processes are available for

the A1(2) phonon. Regardless, it is clear that the momentum necessary for an

intraband transition by the higher energy A1 modes, which we estimate would

have a minimum value of q ≈ 1.71 × 108 m−1, is unable to be provided by the

laser, and thus only interband transitions may contribute to the phonon-electron

component of their linewidths.

3.9 Phonon-Electron Coupling Strengths

The A2, B1, and B2 representations all appear in one form or another in the

selection rules derived above, yet their experimentally measured linewidths display

no anomalous behavior. We therefore inspect the mode resolved phonon-electron

coupling strength, calculated from first principles. Figure 3.40 shows the calcu-

lated phonon dispersion of WP2, with the effective normalized phonon-electron

matrix element projected onto each mode. The acoustic branches display an over-

all greater coupling, while the optical modes show the largest coupling along the

∆ and T to Y to Z cuts. These cuts correspond to phonon wave vectors that

connect separate parts of the Fermi surface[114].
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Figure 3.40: The calculated phonon dispersion of WP2 with the correction to
the imaginary part of the phonon self-energy due to phonon-electron coupling
projected onto each mode.

To better understand the behavior of the modes observed in our measurements

we show a close up of the phonon dispersion along the Σ and ∆ cuts in Figure 3.41.

In this figure the coupling strength for the acoustic modes is not shown to better

reveal the trends of the optic modes. At q = 0 the phonon-electron coupling

strength for all optic modes is very weak, with most modes displaying a |g| on

the order of 0.1 meV. This comparatively weak coupling suggests that interband

transitions with q = 0 do not represent a significant source of phonon-electron

scattering. For finite q we observe that, for the lower energy A1(1) and A1(2)

modes, the coupling strength increases by an order of magnitude, while for the

higher energy modes the increase in coupling strength is not as dramatic. Despite

showing similar increases in coupling strength, the A2(1) and B2(1) modes do not

display a clear phonon-electron contribution to their linewidths. This suggests

that for modes of these symmetries the connection between higher phonon-electron

coupling and linewidth behavior is less clear. Overall, noting that such finite q is
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within our experimentally accessible range, we find these trends in the coupling

strength to be consistent with our measurements and interpretation of the phonon

linewidths.

Figure 3.41: A zoomed in view of the phonon-electron coupling strength for small
q near Γ . Only the optical modes have the coupling strength projected onto them.

We also discuss features of the phonon dispersion which may explain why

phonon-electron decay can dominate over the usual phonon-phonon decay. The

phonon disperison in Figure 3.40 reveals that there is no energy separation be-

tween the acoustic and the lowest energy optic modes. In addition, the acoustic

modes are spread over a very narrow bandwidth, and near Γ there is very lit-

tle separation between the three acoustic branches. This latter feature is similar

to the “acoustic bunching” described in the for high thermal conductivity ma-

terials[130]. The combination of these features suggest that there is a restricted

phase space for phonon-phonon decay by the lowest energy optical modes, which

may lead to longer phonon-phonon lifetimes. On the other hand, for the higher

energy modes there are considerably more phonon-phonon decay paths available,

which could contribute to the dominance of phonon-phonon behavior in the mea-
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sured linewidths. To help visualize this we show the calculated phonon density of

states (DOS) in Figure 3.42. As discussed heuristically above, we see that there is

very little DOS below ∼ 20 meV, which will limit the likelihood of phonon-phonon

decay for the lowest energy optical modes. In contrast, there exists considerably

more DOS for the higher energy modes.

Figure 3.42: The phonon density of states (DOS) of WP2 calculated from first
principles.

The bunching arguments above will also apply to the phonon-phonon scatter-

ing rates for the acoustic modes. Combined with the much larger phonon-electron

coupling strengths displayed by the acoustic modes (see Figure 3.40), we expect

that this could lead to the dominance of phonon-electron scattering over phonon-

phonon scattering for these modes. Similar conclusions concerning the relative

phonon-electron and phonon-phonon lifetimes have been drawn in other compu-

tational works as well[113]. Scattering of electrons by acoustic modes is generally

interband (higher q and energy) or intraband (low q and energy) which can lead

to intraband scattering becoming more prevalent at lower temperatures.

We lastly comment on the role that the topological features of β-WP2’s elec-

tronic structure may play in the phonon-electron decay mechanism we report on.

In β-WP2 the Weyl nodes are located hundreds of meV below the Fermi surface[25,

126]. The impact of these nodes on the transport properties of bulk WP2, which
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typically are sensitive to the Fermi surface, is therefore questionable. For the

particular phonon-electron decay mechanism discussed here, the nodes themselves

do not seem to play any role in facilitating the effect, since the optical phonon

energies are an order of magnitude smaller than the depth of the Weyl nodes.

We do note though, that the spin-orbit coupling giving rise to the Weyl nodes

also produces the band splitting that enables interband phonon decay paths[25].

Further evidence that this effect is not related to the topological nature of β-WP2

may be found in another recent study of the phonon dynamics of α-WP2 which

displayed nearly identical linewidth behavior, despite α-WP2 being topologically

trivial[120]. While the topological nature of the material may not play a direct role

in the phonon-electron behavior discussed here, the features of electronic bands in

topological materials may provide the proper conditions for such behavior to oc-

cur. If crossed and linearly dispersing bands are found near the Fermi energy, then

interband optical phonon decay may occur for phonons of arbitrary energy. As

noted earlier, similar linewidth behavior has indeed been reported for TaAs and

NbAs[114, 115], two prototypical Weyl semimetals with Weyl nodes near their

Fermi surfaces. In addition, the heavy atoms with large spin-orbit coupling found

in many topological materials also lead to a reduction in the bandwidth of the

acoustic phonons, limiting the available phase space for phonon-phonon scatter-

ing as discussed above. We thus conclude that while the effects we observed here

could be possible in a semimetallic system regardless of its topological nature,

the unique features of topological semimetals may provide a canvas well-suited for

their expression.

3.10 Conclusions

We have measured and analyzed the temperature dependent Raman spectra of

the topological semimetal WP2. Through examination of the temperature depen-
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dence of the phonon linewidths, we identified electron-hole decay as the primary

path for the lowest energy A1 optical phonon modes over a broad temperature

range. Through the use of group theory we further identified that such transitions

result from interband and intraband scattering with finite q, which combined with

the necessary energy and momentum conservation clarifies why only certain modes

display this behavior. We also discussed the role of the phonon-electron coupling

strength and the relative availability of phonon-phonon decay paths in facilitating

these effects. The much larger phonon-electron coupling strengths calculated for

the acoustic modes suggest that they may display similar behavior and scatter

primarily off of charge carriers, contributing to the significant temperature depen-

dence observed in the mobility and resistivity and potentially contributing to the

development of hydrodynamic behavior. We anticipate that future investigations

utilizing e.g. resonant inelastic x-ray spectoscopy, or Brillouin scattering will be

valuable in furthering the understanding of phonon dynamics both in WP2 and in

semimetals in general.
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CHAPTER IV

Phonon Scattering in NbAs and TaAs

4.1 Introduction

The family of transition metal mono-pnictides comprised of (Nb,Ta)(P,As) are

prototypical type-I Weyl semimetals. The electronic structure of these inversion

breaking semimetals has been extensively studied using angle resolved photoe-

mission spectroscopy (ARPES)[27–29, 31] leading to the identification of 24 total

Weyl nodes throughout the first BZ. By contrast, very little effort has been made

to understand the vibrational properties of these materials, or the coupling be-

tween the electronic and vibrational systems. Prior to the publication of this

author’s work[114] on NbAs and TaAs, only two articles investigating the Ra-

man spectra[131, 132] had been published, and only one[133] on the infrared (IR)

spectra had dealt with optical phonons. In particular, the Raman works were

fairly limited in scope, focusing only on consistency with group theoretical pre-

dictions and characterization between the different (Nb,Ta)(P,As) compounds at

room temperature. The IR work provided more in depth temperature analysis

of the TaAs A1 phonon. They observed a temperature dependent Fano lineshape

which was attributed to electron-phonon coupling between the A1 mode and the

Weyl fermion quasiparticles in the vicinity of the Weyl nodes. In addition, the

temperature dependence of the linewidth indicated that the A1 mode decays into
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electron-hole pairs, rather than the typical decay into acoustic phonons.

In this chapter we present temperature dependent Raman spectroscopy studies

of NbAs and TaAs. We place particular emphasis on the temperature dependence

of the A1 mode linewidths which, like the IR work[133], display a temperature

dependence indicative of phonon decay into electron-hole pairs rather than acous-

tic phonons. Interestingly, we find that this observation depends on the crystal

surface upon which one measures the Raman spectrum of NbAs. This difference is

attributed to the small but non-zero momentum imparted to the created phonon.

The A1 phonons in the two measurement configurations have perpendicular mo-

menta, and therefore have different decay channels available to them, as supported

by group theoretical calculations. We also identified a temperature independent

Fano lineshape of the B1 modes in NbAs, consistent with a modest degree of

electron-phonon coupling in these materials. Lastly, we also discuss more gen-

eral pathways in the BZ by which optical phonons can cause scattering between

different parts of the FS.

4.2 Experiments

Single crystals of NbAs and TaAs were provided by Professor Ni at UCLA. De-

tails on the synthesis and growth may be found in reference[134]. Specific crystal

surfaces were first identified by the presence of Raman modes previously identi-

fied in[131, 132] by measurement in the WITec alpha-300R Raman spectrometer

located in the Burchlab glovebox. After identifying the surface for investigation,

the samples were mounted onto Montana Instruments sample holders using sil-

ver epoxy to ensure both good thermal contact and adhesion during cool down.

Temperature dependent Raman measurements were carried out using the custom

built Raman spectrometer described in [135]. The 532 nm light from a frequency

doubled Nd:YAG laser was focused onto the samples using a long working distance
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100X objective to a spot size of approximately 1-2 µm. The power was kept below

320 µW for NbAs and 400 µW for TaAs to avoid local heating by the laser. The

temperature was varied from 5 to 300 K for NbAs, and 10 to 300 K for TaAs.

4.3 Computational Methods

The imaginary part of the phonon self-energy correction due to the electron-

phonon interaction is evaluated in the Migdal approximation[136],

ImΠqα =
~

2τqα
= 2π

∑
mn

∫
BZ

Ω dk

(2π)3

∣∣∣gqαkm,(k+q)n

∣∣∣2×(fkn−f(k+q)m)δ(~ωqα−ε(k+q)m+εkn),

(4.1)

This self-energy is related to the lifetime produced by scattering of phonons via

the electron-phonon interaction, and is directly proportional to the corresponding

phonon scattering rate. To calculate this self-energy, we use first-principles den-

sity functional theory (DFT) calculations of the electron-phonon matrix elements

from JDFTx[137]. The independent electron and phonon states were calculated

using fully-relativistic ultrasoft pseudopotentials[138, 139] parameterized for the

PBEsol exchange-correlation functional[140]. For NbAs and TaAs, we obtain well-

converged DFT results for an 8× 8× 8 k-point mesh, Marzari-Vanderbilt (“cold”)

smearing [141] with 0.001 Hartree width, a 4×4×4 phonon supercell, and a plane-

wave energy cutoff of 24 Hartrees for NbAs and 22 Hartrees for TaAs. Using a

basis of maximally-localized Wannier functions[136], we then interpolate all ener-

gies and matrix elements to a much finer k-mesh of 224× 224× 224 wave vectors

for room temperature in TaAs and 200× 200× 200 in NbAs in order to converge

the necessary Brillouin zone integral for the phonon self-energy. Methods for this

calculation are presented in a previous work[114].
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4.4 Temperature Dependent NbAs Raman Spectra and

Fano Lineshape of the B1 Modes

The temperature dependent Raman spectra of NbAs in the XX polarization

configuration from 5 to 300 K are plotted in Figure 4.1. There are three phonon

modes visible in these spectra, the lower two are of B1 symmetry, and the highest

is of A1 symmetry[131]. All three modes are seen to decrease in energy as the

temperature is increased, in agreement with the standard expectations of lattice

expansion and anharmonic interactions[70, 73]. For the sake of clarity we also

plot the 5 K spectra alone in Figure 4.2. Close inspection of the tails of the B1

modes reveals a subtle asymmetry in their lineshape. The lower energy B1 mode

at 29.5 meV appears to have more spectral weight on its lower energy side, while

the higher energy B1 mode at 31.5 meV appears to have more spectral weight

on its higher energy side. This is most clearly seen by observing how much more

sharply the two modes disappear in the region between each other.

Figure 4.1: Temperature dependent Raman spectra of NbAs in the XX polariza-
tion configuration from 5 to 300 K.
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Figure 4.2: NbAs XX spectra at 5 K.

In order to confirm this asymmetry we fit the spectra with both symmetric

(Voigt) and asymmetric (Gaussian-broadened Fano) lineshapes and then compared

the results both visually and quantitatively through the χ2 fitting metric. The

results of these fittings are shown in Figure 4.3, with the normalized χ2 for each

fit shown in Figure 4.4.

The Voigt fit to the B1 modes visibly underestimates the spectral weight on

the left (right) side of the lower (higher) energy modes. On the other hand, the

Fano fit clearly captures the lineshape of the modes. The improvement in fitting

accuracy is confirmed by the normalized χ2 metric where we see a 50% better

result obtained with the Fano compared to the Voigt fit.

Having confirmed the presence of the Fano asymmetry in the B1 modes, we

inspect the temperature dependence of the Fano asymmetry parameter q. In

Figure 4.5 we see that, over the temperature range investigated, the q for each

mode remains temperature independent. This is in stark contrast to the behavior

that was observed in the IR work[133], where the q for the A1 mode followed

the same temperature dependence as the linewidth (specifically, the difference of
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Figure 4.3: Left: Fitting to the B1 modes by symmetric Voigt profiles. Right: Fit
to the same data but using asymmetric Fano profiles.

Figure 4.4: Normalized χ2 fitting metric showing a quantitative improvement in
the fit by using the Fano over the Voigt profiles.
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Fermi occupation functions which will be discussed in more detail shortly). While

a theoretical explanation for the static temperature dependence we observed is

still lacking, phenomenologically we note that the strength of the electron-phonon

coupling as calculated (and discussed in more detail later) seems to be nearly

temperature independent, which is consistent with such a lack of temperature

dependence in the lineshape.

Figure 4.5: Temperature dependence of the Fano asymmetry parameters in NbAs.

4.5 Temperature Dependent TaAs Raman Spectra

Raman spectra for TaAs measured from room temperature down to 10 K are

plotted in Figure 4.6. Due to the larger mass of Ta compared to Nb, the B1(2)

and A1 modes switch order in energy[132] such that from low to high energy

we have: B1(1), A1, and B1(2). Unlike both the IR work on TaAs[133] and our

NbAs results, none of the phonon modes display any asymmetry in their lineshape.
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A possible explanation for this is the different excitation mechanism for Raman

scattering compared to IR measurements. In an IR measurement the creation of

a phonon is caused directly by the absorption of light with energy equal to the

phonon’s energy. Likewise, the electronic continuum that couples to the phonon

and produces the asymmetry is also directly excited by the light. On the other

hand, in Raman scattering the energy of the incident light is typically orders of

magnitudes larger than the phonon energy. (In this specific case our laser excites

at 2.3 eV, compared to the phonon energies of approximately ≈0.02-0.03 eV).

Instead, as discussed in chapter I, the phonon is created by emission (in the case of

Stokes) from the optically generated electron-hole pair. If the electronic continuum

is unable to be generated by such a mechanism, i.e. is Raman inactive, then the

phonon would not display an asymmetry in its lineshape. It also may be possible

that the A1 phonon measured in the IR and Raman measurements are at slightly

different momentum, since the momentum provided by the visible wavelength laser

in Raman experiments is two orders of magnitude larger than the IR light in the

IR measurements.
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Figure 4.6: Temperature dependent Raman spectra of TaAs in the XX polarization
configuration from 10 to 300 K.

To explicitly confirm the lack of asymmetry in the B1 modes of TaAs we at-

tempted to fit them with Fano lineshapes. If the lineshape is completely symmetric

then we expect the 1/q parameter to approach zero. The 1/q values we obtained

from attempting to fit the B1 modes of TaAs are plotted versus temperature in

Figure 4.7. As could be expected from the visual appearance of the Raman spec-

tra, the values are computationally zero for both modes, confirming the lack of

any asymmetry in the TaAs B1 modes. While this result is not particularly illu-

minating on its own, it does illustrate by point of contrast the aptness of fitting

the NbAs B1 modes with Fano lineshapes, since we there obtained a demonstrably

non-zero value for 1/q.
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Figure 4.7: Fano asymmetry parameters 1/q vs temperature for the TaAs B1

modes. The values obtained from these fits were computationally zero for all
temperatures, indicating the lack of any asymmetry in the lineshapes.

4.6 Temperature Dependence of the A1 Linewidth

In the Raman spectra of NbAs and TaAs the A1 modes fail to display any

asymmetry in their lineshape. However, the linewidth of these modes do dis-

play atypical temperature dependencies. The temperature dependence of optical

phonon linewidths is typically driven by their decay into acoustic phonons[70,

73]. As a result, most optical phonons display a linewidth that is nearly constant

at low temperatures, and that grows linearly at higher temperatures. (In very

anharmonic materials higher order (four-phonon) decay mechanisms may also be

relevant and contribute a quadratic term to the temperature dependence of the

linewidth[70].) In contrast, the temperature dependence we observe for the A1

modes (a) displays a very rapid increase at relatively low temperatures and (b)

more substantially, decreases at higher temperatures. Such a temperature de-

pendence is clearly at odds with the established behavior for decay into acoustic

phonons, and therefore necessitates an alternative explanation.
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Figure 4.8: Temperature dependent linewidths of the A1 phonon mode in (a) NbAs
and (b) TaAs. The solid blue lines are fits to the data using a model of optical
phonon decay into electron-hole pairs.

The high temperature decrease of the A1 linewidths suggests a decay into

fermionic particles, rather than bosonic. To understand why we arrive at such

a conclusion, we first review some of the relevant physics concerning fermions.

Fermions, unlike bosons, are subject to the Pauli exclusion principle; two fermions

are unable to simultaneously occupy the exact same quantum state. As a conse-

quence of this fundamental principle, fermions display statistics that are distinct

from those of bosons. This is captured by the Fermi-Dirac distribution function:

nF (ω, T ) =
1

e(~ω−µ)/kBT + 1
(4.2)

where ~ω is the energy of the fermion, and µ is the chemical potential. At zero

temperature, any states with energy less than the chemical potential are occupied,

while states with energy above are unoccupied. At higher temperatures, some of

the states below the chemical potential are thermally excited into higher energy

states, with the result being that the line between occupied and unoccupied states

becomes smeared. As the temperature approaches infinity, all states (or more pre-

cisely, as many states as there are electrons) become equally likely to be occupied
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due to this smearing.

To understand how this can result in a linewidth that decreases with increasing

temperature, let us imagine that we have a simple two-state system, where the two

states have an energy difference ∆, and that we populate this system with a single

fermionic particle. (To be more rigorous, we should technically assume a large

number of identical such systems, but the physics we are interested in addressing

is not aided by such rigor.) At zero temperature, the lower energy state is occupied

and the higher energy state is unoccupied. If the fermion absorbs an energy ∆,

say from a phonon, then it will be excited to the higher energy state. If we were to

assign a probability to the chances of this absorption happening (while only taking

into account the occupancy of the upper and lower states as being relevant to this

probability), we would assign it a probability of 1 at zero temperature. At higher

temperatures, such that kBT ∼ ∆, there is now a chance that the fermion has

been thermally excited into the upper energy level. If we were to now ask what

the probability of the phonon absorption is, we would find that our probability is

now less than one, since when the fermion is in the higher energy state it can no

longer absorb the phonon energy ∆. From the point of view of the phonon, the

probability of it being able to transfer its energy to the fermion, in other words

to decay, has clearly decreased as the temperature increased. Since the phonon

linewidth is directly proportional to its rate of decay (or inversely proportional to

its lifetime), we find that the phonon lifetime will decrease as the temperature is

increased.

The simplest model we can use to describe such a process thus assumes that

the phonon linewidth is proportional to the difference in occupation functions be-

tween an initial hole state and a final electron state. We also include a temperature

independent offset to account for any disorder or low temperature, residual anhar-

monic renormalization that may be present in the system. Our model therefore
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takes the form:

Γ (T ) = Γ0 + F (nF (−ωh, T )− nFωe, T )) (4.3)

where Γ0 is the temperature independent term, ωh is the energy of the hole, ωe is

the energy of the electron, and F is a factor which governs the degree to which

the linewidth is renormalizd. Such a model was originally developed in the study

of graphite/graphene[123], where due to the particle-anti-particle symmetry, the

electron and hole energies were assumed to be equal (ωh = ωe). However, in

the case of a WSM with anisotropic, tilted Weyl bands and a finite chemical

potential, this assumption is no longer likely to hold. Indeed, attempts to fit

our experimental data which assumed ωh = ωe and excluded a chemical potential

were entirely unsuccessful. We further generalized the above model to take into

account the tilt of the Weyl nodes by allowing the electron and hole energies to

be unequal. (The introduction of a chemical potential has a similar, but slightly

different effect.)

Fits to the A1 linewidths are shown as solid blue lines in Figure 4.8. For the

NbAs data the model is quite successful at reproducing the observed trends over

the entire measured temperature range. As properly motivated later, we assume

that the electron-hole pairs are being generated at the W1 Weyl nodes which lie

in the kz = 0 plane. For TaAs we see some deviations from this model, with a

sharper reduction in linewidth around ∼ 150 K than our simple model captures,

and then an upturn around ∼200 K. The upturn may occur due to a transition to

anharmonic dominated decay[122]. The anharmonic contribution to the linewidth

is expected to grow with increasing temperature, so a cross-over between the

two mechanisms is inevitable. The lack of similar behavior in NbAs over the

same temperature range may be due to a larger phonon-electron contribution, as

evidenced by the larger A1 linewidth in NbAs compared to TaAs.
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4.7 ZZ NbAs Raman Spectra and Group Theory Analysis

We also performed temperature dependent measurements with light incident

along the a-axis of the crystal in both ZZ and ZX configurations, as shown in

Figure 4.9. (In the previous measurements the light was incident along the c-axis

of the crystal, in the XX polarization configuration.) With light incident on an ac-

surface the three optical modes of E symmetry become active, while the B1 modes

are no longer present. We also note the presence of an additional mode, which

had previously been ascribed as a defect mode[132]. This assignment is confirmed

via the near temperature independence of its linewidth, see Figure 4.20. The

temperature dependence of the E modes is consistent with the usual model of

anharmonic decay, as discussed in more detail in Section 4.9.

Figure 4.9: Left: Raman spectra of NbAs with light incident along the a-axis, in
the ZZ configuration. Right: The same surface but in cross-polarized configuration
(ZX).

Interestingly, the A1 mode, which is active for both crystal surfaces, has a

markedly different temperature dependence when measured on this surface. In

Figure 4.10 we plot the linewidth as measured on both the ab- and ac-surfaces (XX

and ZZ respectively). The magnitude of the linewidth is considerably smaller when
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Figure 4.10: The A1 phonon linewidth in NbAs as measured on an ab-surface (XX)
and an ac-surface (ZZ). Both the magnitude and dependence on temperature vary
significantly between the two measurements.

measured in the ZZ configuration, and the temperature dependence is emblematic

of anharmonic decay rather than decay into electron-hole pairs. The distinct

behaviors observed in these two measurements are difficult to reconcile if we make

the typical assumption that optical phonons probed in Raman scattering have

zero momentum[55]. Under such an assumption we would have to ascribe both

observed behaviors to the same Γ point phonon, which is not possible. Instead,

we must consider the small but non-zero momentum imparted to the phonon in

perpendicular directions for each measurement configuration.

Before approaching this from a group theoretical approach, we numerically

estimate the momentum of the phonons created under our experimental condi-

tions. In the XX configuration the light is incident along the c-axis of the crystal,

while in the ZZ configuration it is incident along the a- or b-axes, which are

symmetrically equivalent. The phonons created in each of these conditions will

have either qXX = (0, 0, qc) or qZZ = (qa, 0, 0) (where for ZZ we will be assum-

ing light incident along the a-axis). Our measurements were performed in the
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backscattering configuration, so the specific qi may be calculated from the rela-

tion qi ≤ 4πnj(λ)/λ, where nj(λ) is the index of refraction for light of wavelength

λ polarized along the jth crystal axis. The indices of refraction at the 532 nm

wavelength of our laser were estimated from our first-principles calculations[127]

as na = 3.43 and nc = 3.74. For XX we therefore estimate the phonon momentum

as qXX = (0, 0, 8.11× 10−3 Å
−1

), and in ZZ we estimate qZZ = (8.83× 10−3 Å
−1

),

which are ∼ 1.55% and ∼ 0.5% of each respective Brillouin zone direction.

Having estimated the momentum of the phonons in each measurement config-

uration, we turn now to a group theoretical approach to our phonon scattering

problem. The selection rules for phonon scattering may be established by evalu-

ating the direct product of the irreducible representations for the initial and final

electronic states. A transition or scattering event is symmetry allowed if the ir-

reducible representation of the phonon is contained in the decomposition of this

direct product[124]. We will not go into the details concerning the evaluation of

the direct products here, since much of the work involved is nearly identical to

that developed and discussed in Chapter III. Instead we will just provide as much

detail as necessary to understand and justify the conclusions drawn from the group

theoretical analysis.

The FS of NbAs and TaAs consists of multiple banana-like electron and hole

pockets, with some additional small ovular electron pockets[134, 142]. The avail-

able surface for phonon decay is not too dissimilar from the FS, as can be seen in

Figure 4.12. By necessity, the Weyl nodes exist at general k-points[26], and the

majority of the FS does as well. In evaluating the selection rules for phonon scat-

tering we therefore primarily consider electronic transitions between two general

k-points. At general k-points the only point group symmetry operation present

is the identity operation. In the double space group both the identity operation

corresponding to a 2π rotation and the operation corresponding to a 4π rotation
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will be present. There will therefore be two irreducible representations at GPs (for

“General Point”), the GP(1) representation and the GP
(2)

representation, where

the bar indicates that the representation arises from considering the double space

group. The electronic bands at these points will have the GP
(2)

representation, so

we consider the direct product GP
(2)

(k) ⊗ GP
(2)

(k′). The wave vector selection

rules may be found as:

GP
(2)

(k)⊗GP
(2)

(k′) = GP
(1)
1 ⊕GP

(1)
2 ⊕GP

(1)
3 ⊕GP

(1)
4 ⊕GP

(1)
5 ⊕GP

(1)
6 ⊕GP

(1)
7 ⊕GP

(1)
8

(4.4)

where the wave vectors for each GPi on the right hand side are:

GP1 = (k1 + k′1, k2 + k′2, k3 + k′3)

GP2 = (k1 − k′1, k2 − k′2, k3 + k′3)

GP3 = (k1 − k′2, k2 + k′1, k3 + k′3)

GP4 = (k1 + k′2, k2 − k′1, k3 + k′3)

GP5 = (k1 − k′1, k2 + k′2, k3 + k′3)

GP6 = (k1 + k′1, k2 − k′2, k3 + k′3)

GP7 = (k1 + k′2, k2 + k′1, k3 + k′3)

GP8 = (k1 − k′2, k2 − k′1, k3 + k′3)

Since we are only capable of probing phonons with small momentum we then take
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the limit k′ → k. In this limit we have

GP1 → GP1 = (2k1, 2k2, 2k3)

GP2 → 8Λ = (0, 0, 2k3)

GP3 → GP2 = (k1 + k2, k1 − k2, 2k3)

GP4 → GP2 = (k1 + k2, k1 − k2, 2k3)

GP5 → 2B2 = (0, 2k2, 2k3)

GP6 → 2B1 = (2k1, 0, 2k3)

GP7 → 2A1 = (k1 + k2, k1 + k2, 2k3)

GP8 → 2A2 = (k1 − k2, k1 − k2, 2k3)

where the numerical coefficients indicate how many copies of the new wave vector

star are present. From these expressions we find that transitions at general k-

points by exactly Γ point phonons are not allowed by wave vector conservation.

There are no point group symmetries relating +z to −z so the phonon must have a

non-zero qz = 2kz component. The lack of any FS near Γ rules out the possibility

of any small q phonons that belong to the GP1, GP2, B1, B2, A1, or A2 stars

contributing to the behavior observed in our measurements. Thus only Λ phonons

with q = (0, 0, 2kz) are both capable of producing an electronic transition at a

general point/near the Weyl nodes and experimentally accessible through Raman

scattering. This second criteria is only satisfied if the qz = 2kz is within the ∼ 1.5%

range of qz/(2π/c) that we estimated above, which restricts us to consideration

of the FS on or close to the kz = 0 plane. We note however, that the eight W1

Weyl nodes are located within the kz = 0 plane[26, 27]. Consistent with our

discussion above, this suggests that the A1 phonon linewidth behavior observed in

the XX measurement configuration is indicative of phonon decay via the creation

of electron-hole pairs near the W1 Weyl nodes. Although they did not carry out

106



group theoretical calculations to confirm this behavior, the group who performed

IR measurements of the A1 mode in TaAs arrived at this same conclusion[115].

By contrast, in the ZZ measurement the phonons have no qz and only a small qx

component. They are therefore unable to satisfy momentum conservation due to

the lack of any FS near Γ and their linewidth behavior is instead dominated by

decay into acoustic phonons. The momentum conservation rules derived here from

group theory, combined with consideration of the FS of NbAs and TaAs provide

an explanation for the distinct linewidth behavior displayed by the A1 mode when

measured on perpendicular crystal surfaces.

4.8 Phonon-Electron Coupling Strength and Other Phonon

Mediated Channels

We now discuss the results of our ab-initio calculations of the phonon-electron

coupling strength. In Figure 4.11 we show the calculated imaginary part of the

phonon-electron self-energy at room temperature plotted along the phonon dis-

persions for (a) NbAs and (b) TaAs. Overall we note a larger magnitude of the

phonon-electron self energy in NbAs compared to TaAs, which may be consis-

tent with the presence (absence) of asymmetric lineshapes for the B1 modes in

NbAs (TaAs), and with the larger magnitude of the phonon-electron dominated

A1 linewidth in NbAs compared to TaAs. The largest self energy is seen to occur

along the Λ (Γ → Z) and ∆ (Γ → X) cuts. The larger self energy along Λ,

and particularly near Γ , is consistent with our observations of phonon-electron

dominated linewidths for the A1 modes measured in the XX configuration, and

with our group theoretical calculations. Measurements of the resistivity have also

revealed anistropy between ρxx and ρzz[143] which may be consistent with the

larger phonon-electron coupling calculated along the Λ direction.
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Figure 4.11: Correction to the imaginary part of the phonon self-energy due to
the electron-phonon interaction at room temperature projected onto the phonon
dispersions of (a) NbAs and (b) TaAs. For both materials, there is a notable
increase in self-energy along Λ (Γ → Z) and ∆ (Γ → X). The overall calculated
self-energy is less for TaAs than NbAs, but similar wave vectors show enhanced
phonon self-energy in both materials.

Although we are unable to access large momentum phonons through optical

measurements, we discuss the possible scattering pathways which may contribute

to the electron-phonon coupling in NbAs and TaAs. In Figure 4.12(b) and (c)

we plot the surface of electronic states that are both energetically within the

maximum phonon energy (∼ 38 meV) of another electronic state and the chemical

potential. The relatively small phonon energy scale compared to the electronic

energy scale results in surfaces that are not too dissimilar from the FS, with the

main distinction being that the ovular electron pockets having been subsumed

by the larger banana-like pockets. The q plotted in each figure correspond to

wave vectors from Figure 4.11 which display larger phonon-electron self energy.

From these figures it is clear that the phonon wave vectors with larger self energy

correspond to wave vectors that connect different parts of the NbAs FS.

108



Figure 4.12: (a) A possible phonon-mediated transition within a single Weyl cone.
(b) and (c) show the Brillouin zone of NbAs, with orange areas indicating the
electronic states which are energetically within 35.8 meV (about the largest phonon
energy in NbAs) of another state and the chemical potential. The q in these images
indicate possible wave vectors corresponding to those with increased electron-
phonon self-energy as shown in Figure 4.11. Here, q1 is a wave vector at or near
Γ , and q2 and q3 are respectively along the lines from Γ -X and Γ -Z.

4.9 Anharmonic Fitting of Other Phonon Modes

In contrast to the anomalous behavior displayed by the A1 modes in NbAs and

TaAs, the other observed modes displayed linewidth behavior consistent with the

typical anharmonic model of optical phonons. In Figures 4.13 through 4.23 we

show the energy and temperature dependence of these other modes with fits using
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the extended Klemens’ model[70, 73].

Figure 4.13: Temperature dependence of the energy and linewidth for the B1(1)
mode of NbAs.

Figure 4.14: Temperature dependence of the energy and linewidth for the B1(2)
mode of NbAs.

110



Figure 4.15: Temperature dependence of the energy for the A1 mode of NbAs
measured in the XX polarization configuration.

Figure 4.16: Temperature dependence of the energy for the A1 mode of NbAs
measured in the ZZ polarization configuration.
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Figure 4.17: Temperature dependence of the energy and linewidth for the E(1)
mode of NbAs.

Figure 4.18: Temperature dependence of the energy and linewidth for the E(2)
mode of NbAs.
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Figure 4.19: Temperature dependence of the energy and linewidth for the E(3)
mode of NbAs.

Figure 4.20: Temperature dependence of the energy and linewidth for the defect
mode (D) in NbAs.
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Figure 4.21: Temperature dependence of the energy and linewidth for the B1(1)
mode of TaAs.

Figure 4.22: Temperature dependence of the energy and linewidth for the B1(2)
mode of TaAs.
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Figure 4.23: Temperature dependence of the energy for the A1 mode of TaAs.

As noted above, the Raman spectra of NbAs in the ZZ and ZX configurations

(Figure 4.9) reveal the presence of an additional mode not predicted by group

theory at ∼ 32 meV. In a previous report of the room temperature NbAs Raman

spectra[132] this was assumed to be a defect mode. In Figure 4.20 we find that the

linewidth of this mode is nearly constant over the measured temperature range

which confirms this assignment.

The Klemens’ model describes the decay of an optical phonon with energy ω0

and q ≈ 0 into two acoustic phonons of equal energy ω0/2 and opposite momentum

q1 = −q2[73]. The extended Klemens’ model also considers higher order processes

whereby optical phonons may also decay into trios of acoustic phonons[70]. This

model predicts that the optical phonon energy as a function of temperature is

given by:

ω(T ) = ω0 + C (1 + 2nB(ω0/2, T )) +D
(
1 + 3nB(ω0/3, T ) + 3 (nB(ω0/3, T ))2

)
(4.5)
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and that the linewidth is given by:

Γ (ω, T ) = Γ0 + A (1 + 3nB(ω/2, T )) +B
(
1 + 2nB(ω/3, T ) + 3 (nB(ω/3, T ))2

)
(4.6)

where nB(ω, T ) is the Bose occupation factor, ω0 is the bare phonon energy, Γ0 is a

temperature independent linewidth contribution coming from impurity scattering,

C (A) is the third order correction to the phonon energy, and D (B) is the fourth

order correction to the phonon linewidth. (The C term also accounts for the effects

of lattice expansion.) In Tables 4.1 and 4.2 we show the anharmonic coefficients

obtained from fitting of our data with the extended Klemens’ model.

Mode ω0 (meV) C (meV) D (meV) Γ0 (meV) A (meV) B (meV)
E(1) 18.97 -0.0038 -0.0022 0.0507 0.0149 N/A
E(2) 29.56 -0.0365 -0.0096 0.1180 0.0130 N/A
B1(1) 29.57 -0.0341 -0.0099 0.0845 0.0195 N/A
E(3) 31.57 -0.0268 -0.0089 0.0875 0.0331 N/A
B1(2) 31.60 -0.0300 -0.0087 0.0789 0.0224 N/A
A1 34.30 -0.1497 -0.0042 0.0678 0.0301 N/A

Table 4.1: Anharmonic coefficients obtained from fitting the NbAs energy and
linewidth data with the extended Klemens’ model.

Mode ω0 (meV) C (meV) D (meV) Γ0 (meV) A (meV) B (meV)
B1(1) 21.78 -0.0552 N/A 0.0494 -0.0073 0.0024
A1 31.89 -0.1425 N/A N/A N/A N/A
B1(2) 32.63 -0.08638 N/A 0.0220 0.0101 N/A

Table 4.2: Anharmonic coefficients obtained from fitting the TaAs energy and
linewidth data with the extended Klemens’ model.

4.10 Conclusions

We performed temperature dependent measurements of the Raman spectra

of both NbAs and TaAs. The B1 modes of NbAs were found to display weakly

asymmetric Fano lineshapes that were independent of temperature, while the same
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modes in TaAs displayed no asymmetry in their lineshapes. The A1 modes in

both NbAs and TaAs displayed linewidths that deviated from the usual behavior

expected from anharmonic decay into acoustic phonons, which was instead inter-

preted as arising from decay into electron-hole pairs near the W1 Weyl nodes in

the kz = 0 plane. This interpretation was supported by group theoretical calcula-

tions of the allowed decay paths, and ab-initio calculations of the phonon-electron

self energy. Our calculations also revealed larger phonon-electron self energy for

large momentum phonons with wave vectors that connect separate parts of the

FS. Overall we find qualitative agreement between our experimental and compu-

tationally predicted results. The work presented here sheds new light on phonon

scattering in these prototypical type-I Weyl semimetals and should motivate future

studies into the interplay between the phonon and electronic systems.
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CHAPTER V

Photocurrent Measurement Apparatus

5.1 Overview

The second-order nonlinear photocurrent response is a way to probe the topo-

logical properties of a material. As discussed in more detail in the introduction,

the second-order conductivity tensor which gives rise to the CPGE or LPGE is di-

rectly proportional to the Berry connection[81]. In some special cases, the CPGE

may be quantized[79, 80], and other novel nonlinear effects can arise due to sub-

tle symmetry breaking induced by the spatial properties of the beam[144] or at

the edges of exfoliated materials[145]. In order to measure these nonlinear pho-

tocurrents, we needed to have an experimental setup capable of carrying out such

measurements. As part of my PhD research I assembled and constructed such a

photocurrent measurement setup. Informally dubbed the “PVIC” setup (short for

Photo-Voltage/Current/Conductivity), this setup primarily consists of the laser

sources, the various optics for controlling the beam propagation and polarization,

translation stages for the sample, and the electrical measurement equipment used

to detect the generated photocurrents. In this chapter we discuss the experimen-

tal capabilities that we required for the setup, the individual components that

comprise the system, the procedures for alignment of the infrared lasers used in

this system, the types of measurements that can be made using the system, the
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general operating procedures for these measurements, and some of the analysis

techniques used for interpreting the data produced by the setup.

5.2 Requirements

The first and most obvious requirement for our photocurrent measurement

setup is a laser light source for excitation of the nonlinear response. A suitable

choice of laser is here informed by the particular physics that we are attempting

to investigate. Photocurrents produced in Weyl semimetal systems, sensitive to

the Berry connection of the Weyl nodes[81, 146, 147], are predicted to strongly

depend on the wavelength of the excitation, with longer wavelengths producing a

generally larger response[148, 149]. The array of long wavelength laser options,

with photon energies on the scale of the Weyl nodes, is quite small. We therefore

elected to use a CO2 laser which emits radiation at 10.6 µm corresponding to an

energy of ∼117 meV. CO2 lasers have extensive academic and industrial use, due

to their high power and coherence. As discussed in more detail in the following

section, we also later incorporated a quantum cascade laser (QCL) with tunable

wavelength from 4.4 to 5.4 µm into our setup.

Nonlinear responses at a minimum depend on two powers of the electric field,

with the specific material response determined by the nth order optical conduc-

tivity tensor. The polarization dependence of these nonlinear responses will be

determined by the crystalline symmetries that constrain the elements of the con-

ductivity tensors. One well-known example of this is the CPGE whereby a pho-

tocurrent is excited by circularly polarized light[150, 151]. Experimental measure-

ment of the polarization dependence is therefore crucial to identifying the origin

of a particular response. For this reason we require comprehensive tuning of the

polarization in our setup by wave plates. In particular, we make substantial use

of a QWP which allows for the production of circularly polarized light, controlled
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by an encoded and motorized mount for accurate and reproducible rotation.

Accurate and reliable positioning of the sample is also a prerequisite for our

photocurrent measurements. For example, the spatial distribution of a photocur-

rent can reveal its generation mechanism, as commonly seen in the characteristic

profile produced by the PTE[150, 152]. Motorized stages with high resolution and

encoded translation were purchased to fulfill this need. Along with these stages,

a custom designed adapter was machined to allow mounting of the samples to the

stages.

The photocurrents we wish to measure will be electrical signals by nature so we

require electrical measurement and characterization equipment. We will discuss

the two types of lock-in amplifiers that we used in the development of our system.

Current sources and multimeters for electrical characterization of our samples were

also required.

The last main category of requirements for our setup consists of the various

optical and optomechanical components necessary for building an optics setup.

An example of this might be gold coated mirrors and their kinematic mounts used

to guide the CO2 laser emission onto our main optical path. We will not dedicate

specific discussion to most of these, since their use is generally self-evident. In the

following section we will discuss the relevant details for the non-trivial components

of our photocurrent measurement setup introduced above.

5.3 Components

In this section we discuss the individual components that comprise the photo-

voltage-current-conductivity (PVIC) system.
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5.3.1 Laser Sources

5.3.1.1 CO2 Laser

The first laser used in the construction of the photocurrent setup is a CO2 laser

producing mid-infrared (MIR) radiation at 10.6 µm. The laser, a model L4SL

from Access Laser, has a maximum power output of ∼1 W, a beam diameter of

∼2.4 mm, and is horizontally polarized. The laser head is water cooled, which

we discuss more in section 5.3.2. The continuous wave (CW) output from the

laser is controlled by pulse width modulation (PWM) of an applied signal from

its controller. In this section we will discuss some of the steps undertaken to

implement safe operation of this laser, as well as some of the details concerning

the mechanisms and modes by which the laser may be operated.

The L4SL is a class IV laser which produces a MIR beam invisible to the human

eye. The implementation and adherence to proper safety protocols is thus vital

when using such equipment. First, safety goggles which filter out MIR light were

purchased, and usage of these goggles was mandated for any personnel within

the optics room while the laser is operational. Second, a lighted sign outside

each entrance indicates whether the laser is currently in operation or not. Third,

an optical shutter was placed right after the laser in the path of the beam and

connected to the room interlock system. This interlock system is connected to

keypads outside each entrance to the optics room. Entrance to the room without

first entering the safety code will trigger the optical shutter and block the output

beam. An alarm will also sound indicating that the safety mechanism has been

tripped.

Stability of the laser unit is critical for experimental use. To securely mount

the laser to the optical table we designed a custom adapter plate with clear holes

to screw into the bottom of the laser casing, and four clear holes to attach to
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Figure 5.1: The CO2 laser secured to the optical table using the custom machined
mount.

1” posts. The posts were tightly clamped to the optical table which provided a

robust and vibrationally stable foundation for the laser. A picture of the unit is

shown in Figure 5.1.

The radiation emitted by the laser is PWM, which means that it follows the

on/off pattern of a TTL input with variable duty-cycle. The duty-cycle describes

the percentage of the pulse cycle during which the signal is on. For example, a

100% duty-cycle corresponds to a constantly on input, resulting in a CW output,

whereas a 10% duty-cycle would mean the laser only emits for 10% of each fre-

quency cycle. The duty-cycle may be controlled through adjustment of a dial on

the laser controller, which is one method by which the effective power output of the

laser may be tuned. Emission from the laser always occurs at ∼1 W, but depend-

ing on the duty-cycle you will achieve different time-averaged powers. Returning
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to the previous examples, the 100% duty-cycle will have a time-averaged power of

1 W, and the 10% duty-cycle will have a 0.1(1 W) = 0.1 W time-averaged power.

True CW output of the laser is thus only possible at maximum power, although

the default frequency of the PWM is 16 kHZ, so for processes which occur on

shorter time scales the output will be effectively CW. Modulation of the laser at

other frequencies is possible through application of an external TTL signal of 0-5 V

at frequencies from 0-400 kHz. This may be a valuable alternative to mechanical

chopping of the laser when higher frequency modulation is desired.

5.3.1.2 Quantum Cascade Laser

The second laser incorporated into our photocurrent measurement setup is

a QCL from Daylight Solutions. The MIRCat is a tunable MIR laser source,

with the two modules in it covering the 4.47–5.07 µm and 5.00–5.41 µm ranges

respectively. The emitted radiation is vertically polarized, and can be controlled

either through the use of their proprietary software, MIRCat Control, or through

LabVIEW with VIs provided by the company. All of the functionality provided by

their proprietary software may be reproduced using LabVIEW. The output power

varies as a function of the chosen wavelength, with the peak emitted power for

CW operation being ∼220 mW. Emission from the MIRCat may either be pulsed

or CW depending on which mode is selected. For our experiments we exclusively

used the CW mode.

5.3.2 Water Chiller

Both of the laser sources require water cooling to prevent their overheating.

The first water chiller used in the construction of our setup was an A28/AC150

from Thermo-Fisher Scientific. To help isolate vibrations from the water chiller

we placed it in the closet of our optics room and ran tubing out of feedthroughs
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to the closet space. The tubing was run along the length of the optic tables, with

multiple branches added to allow for the addition of future equipment. (This was

in fact used for additional cooling of the CCD in our Raman spectroscopy system.)

An additional water chiller was acquired with the QCL. This chiller, a Ther-

mocube 200 from Solid State Cooling Systems was incorporated and made com-

patible with the CO2 laser as well. 1/4” CPC connects that run from each laser

can be quickly connected or disconnected from the Thermocube depending on

which laser is in operation. After the acquisition of this chiller we used the Ther-

mocube exclusively, while the Thermo-Fisher Scientific chiller was dedicated solely

to chilling of the CCD.

5.3.3 Mechanical Chopper

The photocurrent signals measured in our experiments may be quite small, on

the order of µA down to nA. In order to reliably measure these signals we introduce

an ac modulation to the laser which in turn produces an ac modulation of the

photocurrent. This allows us to use lock-in amplifiers to measure the resulting

photocurrents and achieve higher sensitivity. The ac modulation is introduced

through the use of a mechanical chopper placed in the beam path. The mechanical

chopper consists of a DC motor which rotates a metal wheel with periodically

spaced apertures. A photointerruptor attached to the housing detects the passing

of the blades and, via the electronic controller, produces an output TTL signal

which is used as the reference for lock-in measurements.

In our setup we use a SciTec Instruments Model 300CD optical chopper which

consists of the control unit, the chopping head, and a set of blades that can be

attached to the chopping head. The different blades have slots of different sizes,

allowing the beam to be chopped over a wide range of frequencies from 5–3000 Hz.

The control unit allows for manual setting of the chopping frequency by rotation
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of a knob on the front of the control unit. Alternatively one can provide a 0–15 V

DC signal which can control the frequency of the blades. This latter option is

useful for experiments in which one wants to tune the chopping frequency of the

light since it allows for straightforward automation with an appropriate voltage

source.

Mechanical chopping of the beam may also be of use for double modulation

experiments. A current with frequency ω1 may be applied at the same time the

light is chopped with frequency ω2 and signals resulting from both the light and the

current may be looked for at the sum or difference frequencies ω1 ± ω2. However,

drift over time of the mechanical chopper frequency necessitates care be taken in

the generation of the sum or difference frequency reference signal.

5.3.4 Quarter-wave Plate

QWPs are generally known for being able to convert linearly polarized light

into circularly polarized light. The principle underlying this functionality is the

birefringence of the material used to construct the wave plate. Namely, light

polarized along different crystal axes travels with different speeds through the

crystal. We first discuss the distinctions between different polarizations of light,

and we then discuss the principles behind the operation of a QWP. We conclude

with some details concerning the specific QWP used in our setup.

The polarization state of an electromagnetic wave generally refers to the di-

rection of the electric field component of the wave[74]. There are three main

categories of polarization states: unpolarized light, in which there is no net direc-

tion of the electric field vector; linearly polarized light, in which the electric field

vector oscillates along a single axis normal to the direction of propagation; and

elliptically polarized light, in which the electric field vector rotates throughout

the plane perpendicular to the direction of propagation[153]. Circularly polarized
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light occurs as a special case of the more general elliptically polarized light. There

have been multiple systems developed to describe the polarization state of an elec-

tromagnetic wave, among these the Stokes parameters and the Jones matrices are

the most commonly used[153]. In our discussion here we will make use of the Jones

matrix formalism since this will allow easy connection to the nonlinear response

of materials to the applied radiation.

In the Jones matrix formalism the polarization state of a wave is described by

a column vector, with the three rows corresponding to the electric field component

along the three Cartesian axes, see Eq. 5.1.

E =


E0xe

iφx

E0ye
iφy

E0ze
iφz

 (5.1)

where E0i is the amplitude of the electric field along the ith direction, and φi is

the phase along the ith direction. For light propagating along the ẑ-direction we

will have

E =


E0xe

iφx

E0ye
iφy

0

 (5.2)

(where we have assumed propagation in a vacuum in the absence of any charge

sources). Light that is linearly polarized along the x-axis will have a Jones vector:

EX =


E0xe

iφx

0

0

 (5.3)
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while light polarized along the y-axis will have a Jones vector:

EY =


0

E0ye
iφy

0

 (5.4)

When working with light that is initially linearly polarized we will generally ignore

the phases φx or φy. Circularly polarized light occurs when the electric field

direction rotates in the (assumed) xy-plane with equal amplitudes along the x

and y-directions. For left circularly polarized light the x-component leads the

y-component by π/4, so we have (in normalized form)

EL =
E0√

2


1

i

0

 (5.5)

For right circularly polarized light we have the opposite phase relation between

the x and y-components such that:

ER =
E0√

2


1

−i

0

 (5.6)

The effect of an optical element such as a QWP may also be captured through

the use of a Jones matrix which acts on the Jones vector of the light[153]. A

QWP with its fast-axis at an angle of φ to the horizontal has a corresponding
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Jones matrix:

QWP(φ) =


cos2 φ+ i sin2 φ (1− i) sinφ cosφ 0

(1− i) sinφ cosφ sin2 φ+ i cos2 φ 0

0 0 0

 (5.7)

In the chapter VI discussion of the nonlinear response of TaAs we will make

extensive use of these expressions.

We now turn to our discussion of the principles behind the operation of a QWP.

As noted earlier, the central physical property of materials used to create QWPs

is their birefringence. Birefringence occurs when the underlying crystal structure

is anisotropic, such that light polarized along one axis travels through the crystal

with a different speed than light polarized along another axis[153]. Invariably

the speed of propagation along one axis is faster than the other, and this axis

is referred to as the “fast-axis.” When a wave plate is fabricated from a source

single crystal, the crystal is cut and polished such that the fast-axis lies within the

surface plane of the final wave plate. The “slow-axis” is therefore also within this

plane and, depending on the orientation of the wave plate, different components

of the light’s polarization will experience different indices of refraction.

The critical step in the creation of a specific wave plate is then in the establish-

ment of the wave plate thickness. Let us assume that the light incident upon the

wave plate is polarized such that equal projections are made upon the slow- and

fast-axes of the wave plate. Prior to its incidence upon the wave plate, these pro-

jections have a difference in phase such that they produce the specific polarization

state of the light thus assumed. In traveling through the wave plate, the relative

phase between the two components will change as the component parallel to the

fast-axis travels faster than the component parallel to the slow-axis. The thickness

of the wave plate can therefore be chosen to select for a specific difference in phase
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between the two components. A wave plate with thickness chosen to produce a

π/2 phase difference between the two components is called a quarter-wave plate,

whereas one with a π phase difference is a half-wave plate. The specific thickness

required for a wave plate of given phase retardance will naturally depend on the

material and wavelength dependent indices of refraction.

The orientation of a QWP is typically specified in relation to the direction of

the fast-axis, see Eq. 5.7. If we assume an input light of fixed polarization, rotation

of the QWP in the plane normal to the propagation of light will change the relative

angle between the polarization of the incident light and the fast-axis of the QWP.

This will result in different projections upon the fast- and slow-axes, such that

the output light is generally elliptically polarized. Assuming the convention used

in Eq. 5.7, with light that is initially horizontally polarized, if the fast-axis is at

an angle of φ = 0◦ to the horizontal, there will be no change in the polarization

state of the beam, other than an additional phase factor applied to the horizontally

polarized light. At φ = 45◦ the light will be converted to right circularly polarized,

as some straightforward matrix multiplication and normalization will reveal. At

φ = 90◦ we once again have no change in the polarization of the light, while

at φ = 145◦ we will obtain left circularly polarized light. In total, we find that

circularly light will be produced a total of four times, with left and right circular

polarizations being produced twice each.

For our experiments which primarily used a CO2 laser producing horizontally

polarized light at 10.6 µm we used a QWP made from CdSe. CdSe crystallizes

in the hexagonal wurtzite structure, which has unique a and c axes[154], leading

to its birefringent properties. The QWP had a square shape, which required

us to design and manufacture a custom holder so it could be mounted on our

motorized rotation stage. Created from aluminum, the holder consisted of two

annuli, between which the wave plate was secured. Through-holes in the bottom
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plate allowed it to be fastened to the rotation mount, while through-holes in the

upper plate allowed it to be fastened to additional tapped holes in the bottom

plate. Soft plastic o-rings were placed between the annuli and the wave plate to

cushion and protect the wave plate. An image of the assembled structure is shown

in Figure 5.2.

Figure 5.2: The QWP mounted in our custom-made holder, attached to the mo-
torized rotation mount from Standa.

5.3.5 Encoded Rotation Mount

Measurements of polarization dependent responses require repeatable and ac-

curate rotation of the polarizing optics. The goal of having automated, high

measurement throughput introduces the additional requirement for a motorized

implementation. To meet all of these needs we made use of an encoded, motor-

ized rotation mount from Standa. The rotation mount, seen above in Figure 5.2,

has an angular resolution of 0.00125◦ (4.5 arcsec), which due to the inclusion

of an encoder is highly repeatable. LabVIEW sub-VIs and drivers provided by

the company allowed it to be integrated into our suite of LabVIEW software for
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straightforward automation. In the rest of this section we discuss some of the

details concerning our LabVIEW implementation of this motor.

Proper calibration of the rotation stage is vital to its operation. For this

rotation mount, a file which contains the calibration information may be created

using the proprietary software SMCView available from the standa.lt website.

Once the proper calibration settings have been achieved, a <filename>.usm file

may be output which can be loaded during control of the stage through LabVIEW.

Figure 5.3: A screenshot of the LabVIEW VI used to control the rotation mount
with the QWP.

A picture of the LabVIEW VI for control of the rotation mount is shown

in Figure 5.3. When initiated, the user should first click on the Find Devices

button. The program will then search through the USB ports of the computer

to find the correct port for the rotation mount controller. Then, the user clicks

on the Load Profile button and selects the proper <>.usm calibration file which

contains the settings for the controller. After this the various controls of the VI

may be used to control the positioning of the stage as desired.
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In other LabVIEW VIs which require control of the stage we have implemented

Shared Variables which link to the VI directly controlling the stage. These Shared

Variables can change the Destination Position, read the Current Position, and

Start the rotation of the stage. The usage of Shared Variables instead of embedding

control of the stage explicitly within the other VIs grants a few benefits. One, the

control architecture and initialization of the other program is simpler. Two, failure

of the other program does not lead to any unintended operation of the stage. And

third, the stage can be controlled independently of other programs, which can

prove useful in the event of failure of other VIs. Similar program design choices

were made for the translation stages onto which the samples are mounted.

5.3.6 Mercury-Cadmium-Telluride Infrared Detector

An MCT detector was included in our setup to measure the light reflected from

the device. By recording this measurement as the sample is scanned underneath

the laser we are able to obtain an intensity map of the reflected light and thus

“image” the sample. Comparison of this reflectance image and the simultaneously

measured photocurrent to pictures of the device taken in visible wavelength mi-

croscopes allows us to identify where on the sample a specific response is being

generated. Furthermore, in measurements of the polarization dependence, vari-

ation of the reflectance as the QWP was rotated allows for precise identification

of the polarization of the radiation incident upon the sample. In this section we

discuss some of the basic operating principles of an MCT detector, how we incor-

porated the MCT into our setup, and how we identified the polarization of the

laser from the reflectance measured by the MCT.

The basic principle underlying the operation of an MCT is photoconductivity.

Briefly stated, illumination of the MCT crystal by infrared radiation changes its

conductivity. In operational use this is detected by applying a small bias current
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Figure 5.4: MCT scan of an FTS device.

and measuring the resulting voltage across the detector. A change in the conduc-

tivity will be manifested as a change in the measured voltage, since the voltage

is proportional to both the applied current and the resistance of the detector. In

order to guarantee that the measured voltage change results solely from a change

in the resistance of the MCT detector and not from a simultaneous change of the

applied current, typically a resistor with resistance much larger than the MCT

is connected in series and a voltage applied across the combined system. The

large resistor thus acts as a “current source” which is stable against changes in

the resistance of the MCT. For our specific setup, a 1 kΩ resistor was placed in

series with the detector and, during use, a voltage is applied across the resistor

using a power source. A gold-coated off-axis paraboloid mirror was used to focus

the reflected light onto the MCT detector, which actually consists of an array of

identical detectors. In order to accurately measure the voltage across the MCT

and thus the relative intensity of light incident on the detector, we modulate the

light using an optical chopper. We are then able to lock-in to the measured voltage

and isolate the voltage response due solely to the incident light.
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An example reflectance map from a device is shown in Figure 5.4. This device

consisted of an exfoliated FeTe0.5Se0.5 flake with six gold contacts on an SiO2/Si

wafer. The gold contacts have a much higher reflectance compared to the SiO2

wafer, so the corresponding MCT signal is larger. In the grayscale colormap used

in the figure the gold contacts appear as the white regions, while the darker gray

regions are the SiO2/Si wafer. The relatively large spot size of the focused laser

(∼ 30 µm) leads to the lack of resolution in defining the smaller features of the

device.

The MCT response may also be used to identify the polarization state of the

beam incident upon the sample. In polarization dependence experiments with the

CO2 laser where the QWP is rotated and the sample fixed, we observe a four-

fold modulation of the MCT signal with peaks occurring whenever the light is

circularly polarized. This modulation occurs because of the angle of the beam

splitter (BS) being used to reflect light to the MCT. The BS is at an angle of

∼ 45◦ to the beam path, which is close to Brewster’s angle such that vertically

polarized light is preferentially reflected towards the MCT. The light emitted

by the CO2 laser is horizontally polarized so, when the QWP is at angle of 0◦

and does not change the polarization as the laser passes forward or back, the

least amount of light is reflected and there is a minimum in the MCT signal. On

the other hand, when the QWP is at 45◦ and produces circularly polarized light,

when the reflected beam from the sample passes back through the QWP the light

becomes polarized at −45◦ to the horizontal and thus has a vertical component.

This vertical polarization component is more strongly reflected by the BS and

produces a maximum in the MCT signal. In Figure 5.5 we show a characteristic

measurement of the reflectance as a function of the QWP angle in black, as well

as the power recorded by a power meter with polarizing optics to select for left

circularly polarized light in red. The four-fold variation in the MCT response is
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Figure 5.5: The reflectance and power recorded by the MCT and power meter
respectively. The simultaneous peaks in the power and reflectance indicate QWP
angles where left circularly polarized light was produced.

clear, and the alignment of the peaks for left circularly polarized light as measured

by the power meter match with two of the peaks for the reflectance.

The variation in the MCT response described above can be captured through

the use of Jones matrices for the relevant optics. The Jones matrix for a QWP

was given above as Eq. 5.7, but we also need to introduce the Jones matrix for

back reflection:

MR =

−1 0

0 1

 (5.8)

and a matrix that represents the BS which preferentially reflects vertically polar-

ized light:

BS =

0.2 0

0 0.9

 (5.9)

where we have assumed for the sake of modeling that 20% of horizontally polarized
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light and 90% of vertically polarized is reflected. Assuming that our light is initially

horizontally polarized, we find that the light that reaches the MCT will be of the

form:

E(φ) = BS ·QWP(−φ) ·MR ·QWP(φ) ·

1

0

 =

−0.2 cos(2φ)

0.9 sin(2φ)

 (5.10)

It is important to note that the light reflected by the sample sees the QWP at an

angle of −φ as opposed to +φ. From this we calculate the intensity

I(φ) = |E|2 =

(
−0.2 cos(2φ) 0.9 sin(2φ)

)−0.2 cos(2φ)

0.9 sin(2φ)

 (5.11)

= 0.425− 0.385 cos(4φ) (5.12)

From this expression we find that there are minima in the intensity for 0◦, 90◦,

180◦, and 270◦ degrees, corresponding to horizontally polarized light at the sample,

and maxima at 45◦, 135◦, 225◦, and 315◦, corresponding to circularly polarized

light at the sample, in agreement with the data shown in Figure 5.5. We also note

that if the light is initially vertically polarized, as from the QCL, that the maxima

in the MCT response will no longer correspond to circularly polarized light, but

the minima will.

5.3.7 Beam splitter

A BS was placed in the beam path to capture a portion of the light reflected by

the sample and reflect it towards the MCT detector discussed in the previous sec-

tion. We discuss here the specific criteria which informed our BS selection. First,

the BS must be highly transparent across both the MIR and visible wavelength

range. In particular, since we do not want a large portion of the incident beam
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or returning beam to be reflected (the latter to avoid unnecessary loss of power

and the former to avoid damaging the MCT) we want a material with very high

transmittance in the MIR. Second, since the optical path is not under vacuum we

require a material which is non-hygroscopic so that it does not deteriorate due to

the presence of moisture in the air. After perusing the materials available from

International Crystals, we found that BaF2 was well-suited for this role. BaF2 is

both highly transparent from 150 nm to 11.5 µm and non-hygroscopic. A polished

window, of 1” diameter and 2 mm thickness, was purchased from them and used

as our BS.

5.3.8 Focusing Lens

To focus the light down onto the sample we use a plano-convex ZnSe lens

purchased from Thorlabs, Inc. The focal length of the 0.5” diameter lens was

15 mm, chosen to produce a small spot size of ∼ 30 µm at the sample. The lens

has an anti-reflective coating for wavelengths 7–12 µm.

5.3.9 Motorized Stages

Positioning of the sample underneath the focused beam was achieved using en-

coded, motorized stages. The Standa 8MT167-25 stages have a travel range of 1”,

with a minimum step size of 0.625 µm, and the encoders guarantee reproducible

positioning down to ∼1.5 µm. Since the minimum spot size theoretically achiev-

able using the CO2 laser is ∼ 5 µm, and our measured spot size was ∼ 30 µm, we

found that this resolution was more than adequate for our scans.

The stages can be controlled using the XILab software provided by Standa

or through LabVIEW. For experimental use a LabVIEW VI was written which

allows control of the stages both by the user and programatically through com-

mands sent by other VIs. The front panel of this program is shown in Figure 5.6.
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Figure 5.6: Front panel of the LabVIEW VI for controlling the motorized XYZ
stages.

Rough positioning of the stage can be done through manual control with the arrow

buttons. For more precise control, specific coordinates may be entered and moved

to using the Move To and Step To buttons. The Move To option will move the

stage to the specified coordinates (shown in units of internal steps). while the

Step To option will increment the stages by the amount entered below (also in

steps). In addition to the commands through the front panel, additional motion

control can be achieved through shared variables which allow other VIs to operate

through this VI.

The samples are mounted to the stage using a custom designed adapter. The

adapter was designed in the Fusion 360 CAD software and machined out of G10

garolite. This material was chosen since it is both machinable and highly insulat-

ing, preventing any unintentional electrical connections from occurring.
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5.3.10 Breakout Boxes

The breakout boxes used to interface the sample and our measurement equip-

ment went through a number of iterations before the final design which is currently

in use. In this section we describe the salient features of the first and last versions,

and discuss the reasons why the newer, improved version was made.

The first version of our breakout boxes consisted of two 4.7”×7.39” aluminum

boxes, each with ten holes drilled for BNC connectors, additional holes to allow

the cable from the samples into each box, and a final hole which had a connector

inserted to allow for grounding of the boxes. The ten BNC connectors on each box

had the inner signal line electrically isolated from the outer shield line. Inside the

boxes, individual wires corresponding to each contact pad on our sample holders

were soldered to the BNC connectors. The boxes while in use were kept grounded

through direct connection to the building ground.

We found that, while simple, this first version of the breakout boxes had issues

with grounding of the samples. Namely, when connected to this breakout box the

samples were kept floating at all times. When measurement equipment such as

preamplifiers were turned on for use, current surges could potentially flow through

the sample and damage or destroy them if small or fragile enough. Such current

surges did in fact lead to the loss of multiple samples, which set back our ability

to progress with experiments since the samples were custom made by an external

group.

To address this issue we made changes both to the breakout boxes and to our

procedures for measuring samples. The major change implemented to the breakout

boxes was the inclusion of a second BNC connector for each contact. The signal

line of this second BNC was directly wired to the signal line of the first, and

the outer shield line was directly connected to the box ground. A shorting cap

placed on this second BNC therefore shorts the signal line from the sample to the
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ground of the box, leaving the original BNC connector available for connection

and powering on/off of equipment while the sample remains grounded.

The procedure we now follow when using these boxes is as follows: the shorting

caps are kept on the secondary BNC connectors whenever the system is not in

use. This keeps every contact from the sample connected to the room ground and

prevents any spruious current from flowing through the device. Prior to use, any

electrical equipment is connected to the primary BNC connector and turned on.

Since the shorting caps remain in place, any current surges do not flow through

the sample. Once all of the measurement equipment is connected and turned on

the shorting caps may be removed, with one shorting cap left in place to act as the

measurement circuit ground. After the measurement has been completed, shorting

caps are immediately replaced onto the secondary BNCs. Electrical equipment

may then be turned off.

5.3.11 PXI

The PXI is a modular DAQ instrument available from National Instruments.

The two modules in our unit have four BNC connections each, with the PXI-4461

module having two output and two input connections, and the PXI-4462 having

four input connections. The analog output connections of the PXI-4461 module

can produce voltages from ±10 V, and can output DC and AC signals. LabVIEW

is used to program each module, with the inputs on the 4462 module primarily

being used for digital lock-in amplifiers, and the output of the 4461 being used as

a programmable voltage source.

Of the four BNC connections on the 4462 module, one is used for the reference

signal input, and the other three are used as individual lock-in amplifiers. The

lock-in amplifier sub-VIs are no longer supported by National Instruments and

are password protected which prevents any modification. Although the lock-in
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sub-VIs have a “time constant” input, which nominally should correspond to the

time over which the signal is averaged, in practice this time constant does not

appear to reliably affect the signal-to-noise ratio. The digital lock-ins also lack

filtering options at 60 or 120 Hz. Further, since the digital lock-ins are run through

LabVIEW with the the resources of the on-board CPU of the PXI (which is almost

comically under-powered) the system often struggles to keep up with the demands

of running its own hardware. Due to these concerns we stopped using the PXI for

data acquisition and switched to the much more reliable SRS830 lock-in amplifiers.

5.3.12 Lock-In Amplifiers

The SR830 lock-in amplifier from Stanford Research Systems is now used as the

primary instrument for photocurrent measurement in this setup. One advantage of

using the SR830s over the PXI for lock-ins is the superior filtering and sensitivity

provided by the SR830. The notch filters at 60 and 120 Hz, and the wide range

of available time constants, result in a much higher signal-to-noise ratio compared

to the virtual lock-ins on the PXI. In addition, the ability to manually select the

reference frequency, using the internal oscillator of the SR830, is a feature that

is completely absent for the PXI. Another advantage is the ability to output the

measured signal from the SR830 so that it could be measured by a second lock-in.

Lastly, since the SR830 has its internal hardware, it is not reliant on the CPU of

the PXI to run.

The SR830s were connected to our computer by GPIB cables. LabVIEW VIs

for controlling the SR830, available freely from SRS, were used to integrate the

lock-ins with our previously developed measurement VIs.
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5.3.13 Multimeter

To measure DC voltages we used a HP 3478A multimeter, which was con-

nected to our computer via GPIB cable. The minimum voltage measurable on

this equipment is quoted at 150 nV, however in practice we found it was closer

to 200 nV. Similar to the other equipment, LabVIEW VIs were used to automate

the recording of measurements from this hardware.

5.3.14 Current Sources

For sourcing current in measurements of resistance or photoconductivity we

used either a Keithley 6220 or 6221 current source. The 6221 is capable of sourc-

ing both DC and AC, while the 6220 can only source DC. The minimum output

current for each of these is 2 nA, which for AC output from the 6221 will also be

the minimum resolution of the signal. A reference signal for AC output from the

6221 can be manually turned on with only a little extra effort. Both of these cur-

rent sources were connected to the computer through GPIB cables and controlled

through LabVIEW VIs.

5.4 Alignment

The infrared lasers used in this setup provide a challenge for proper alignment

since they cannot be seen by the naked human eye. The solution to this problem

that we opted for was to first align all of our optics with a visible wavelength

laser, and then ensure that our infrared laser and the visible laser were co-aligned

with each other. When finished, the infrared laser is thus properly aligned with

our optics. In this section we detail some of the specific steps taken to optimize

this procedure and guarantee both that initial co-alignment could be achieved and

that realignment would be simple.
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Figure 5.7: Diagram showing the method by which the visible alignment laser and
the infrared laser are aligned together. The visible laser is first aligned through
the two apertures, the flipper mirror for it moved out of the path, and then the
infrared laser aligned through the same two apertures.

Initial alignment was achieved through the use of two apertures, fixed in place.

These two apertures were placed along the final desired optical path, with as large

a distance between them as needed both to accommodate the optics to be used in

the final setup and to provide filtering sensitivity to small angular deviations. We

note here that, due to the relatively simple needs of our setup, only two apertures

were needed for the entire optical path. If longer optical paths are needed, this

procedure can be used with as many apertures as required. A diagram of this is

shown in Figure 5.7.

The visible wavelength laser is first aligned through the apertures using kine-

matic mounts. Passage through the near aperture is tuned by the first mirror,

and passage through the far aperture by the second mirror. Since the visible laser

spot can be seen no special equipment is required to make sure that the beam

is passing through the apertures beyond ones eyes (while following proper safety

protocol). By iterating back and forth between these two apertures the visible

beam can eventually be precisely steered such that it passes directly through the

center of both apertures. This same procedure is then repeated with the IR laser,

with the caveat that now alignment through the apertures is checked using a power
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meter since the beam cannot be perceived by the eye. Once the alignment of the

IR laser through the apertures is completed we now know that the visible beam

and the IR beam are coincident with one another. Any subsequent alignment of

additional optics using the visible beam will result in alignment for the IR beam.

5.5 Photo-voltage vs Photo-current Measurements

Electrical measurement of a photocurrent response may be performed using one

of two approaches. The first technique directly measures the induced current using

a load resistor placed in series with the sample. The second technique measures

the current indirectly through a measurement of the voltage generated across the

sample. In this section we will discuss both of these techniques and the relative

advantages and disadvantages posed by each.

Direct measurement of the current is the more commonly used technique in

contemporary research. A load resistor of known resistance is placed in series with

the sample and the voltage across this resistor measured using a multimeter for

DC photocurrent generation or a lock-in amplifier for AC photocurrent generation.

From the measured voltage and the known resistance one immediately calculates

the photocurrent since the sample and the load resistor are in series. One ad-

vantage of this technique is that photo-induced changes in the conductivity of

the sample that may potentially be produced will not affect the measured voltage

since the voltage measurement occurs across the load resistor which is not being

irradiated. This same advantage becomes indispensable if cryogenic measurements

are to be performed, since the resistance of the sample will invariably change with

temperature. When directly measuring the photocurrent in this manner it is cru-

cial to guarantee the existence of only one electrical ground in the measurement

circuit. If there are multiple available current paths then the measured value may

not be accurate. This may be the only drawback to this method, as it limits
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current measurement to only one set of contacts at a time.

Measurement of the photovoltage generated across the sample allows for the

measurement of multiple contacts at a time. The voltmeter should have a resis-

tance many orders of magnitude larger than the device, and no current should

flow between the two points of measurement. The voltage measured for one set of

contacts should therefore be unaffected by a simultaneous measurement of another

set, though care must still be taken to ensure that the measurement circuit has

a single, well-defined electrical ground. The photovoltage thus measured may be

converted to the photocurrent by dividing the voltage by the appropriate resis-

tance of the sample. The resistance should be measured both with and without

illumination in order to determine if there is any change in the resistance produced

by the light. This can prove extremely cumbersome if the laser is being scanned

over the device, as in principle the resistance should be measured at each individ-

ual laser position to properly extract the current. In cryogenic measurements this

approach again has the obvious drawback that it requires a measurement of the

resistance at each temperature in order to properly obtain the photocurrent.

5.6 Operating Procedures

In this section we give a brief overview of the measurement procedures for this

system. The instructions here are not intended to be comprehensive, rather, they

are intended to illustrate the typical steps taken in use of this system. For such

reasons we will not delve overly deep into details concerning, for example, the

individual steps required for use of a given LabVIEW VI.

The steps we enumerate here below are general to any measurement to be car-

ried out using this system. Once appropriate, we will distinguish procedures for

different specific measurements.
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General Start Up Procedures:

1. Put on a pair of infrared safety goggles.

2. Turn on the room interlock system.

3. Check that the water lines from the chiller are connected to the proper laser,

and that any vales are open.

4. Turn the water chiller on, and make sure that it is set to the correct tem-

perature (typically ∼ 20◦).

5. Turn the laser on, and allow sufficient time (typically ∼1 hour) for the laser

to warm up.

6. Using the power meter, set the power of the laser to the desired level.

7. If using the optical chopper, turn the chopper on and set the frequency to

the desired rate.

8. If using the MCT, perform an initial filling of the MCT with liquid nitrogen,

wait 30–45 minutes, and then fill it once again. Turn on the power supply

to the MCT and set to the desired voltage level.

9. With the shorting caps of the breakout box in place, connect and then turn

on any electrical measurement equipment.

10. Only once all of the electrical equipment is turned on, remove all but one

shorting cap from the breakout box, with the remaining cap serving to des-

ignate the ground for the measurement circuit.

11. Open LabVIEW and the PVIC Setup Master Control Project project.
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(Some of the above steps which require waiting may be performed simultane-

ously.) We next go through the procedure for carrying out a scan of the sample.

Photocurrent Scan Procedures:

1. From the PVIC Setup Master Control Project window open Three Axes

Translation Stage Control.vi. Run the VI and make sure that all three

stages connect and communicate properly.

2. Open QWP Rotation Stage Controller.vi and rotate the QWP or HWP

to the angle producing the desired polarization.

3. Open Area Scan.vi and enter the range of coordinates to be scanned over.

4. Specify the file save path for the data.

5. Click the Calculate Area button, and then the Start Scan button.

6. After the scan has completed, stop the VI and place the shorting caps back

on the contacts. Only once the shorting caps are back on, turn off the

electrical measurement equipment.

We conclude this section with the procedure for performing a polarization de-

pendence measurement.

Polarization Dependence Procedures:

1. From the PVIC Setup Master Control Project window open Three Axes

Translation Stage Control.vi. Run the VI and make sure that all three

stages connect and communicate properly.

2. Move the stages to the desired sample position.

147



3. Open QWP Rotation Stage Controller.vi and make sure that the rota-

tion stage is functioning properly.

4. Open Polarization Dependence.vi and enter the range of angles to be

measured and the desired angular resolution.

5. Specify the file save path for the data.

6. Run the VI.

7. After the measurement has completed, stop the VI and place the shorting

caps back on the contacts. Only once the shorting caps are back on, turn

off the electrical measurement equipment.

5.7 Data Analysis

The data obtained from measurements in this system may largely be cate-

gorized into two types. The first type are data sets coming from scans of the

laser across the sample. Such data consists of a set of photocurrent and/or re-

flectance measurements, each labeled by the encoder position of the stages when

that measurement was recorded. A two-dimensional “map” of the data may then

be produced by plotting the individual points at grid locations according to their

positions. MATLAB codes for automatic sorting and plotting these data sets

were written to enable quick processing of photocurrent scans. An example of a

reflectance scan may be seen in Figure 5.4, while an example of a photocurrent

map is shown in Figure 5.8.

148



Figure 5.8: Photovoltage recorded as the laser was scanned over a large TaAs
sample. The two peaks of opposite sign from the PTE are clearly visible.

Spatial scans of the photocurrent response may be useful for identifying where

on the sample the photocurrent is primarily being generated. This can further be

aided by comparison to an appropriate reflectance map recorded by the MCT. This

can be of great use in establishing the generation mechanism responsible for the

measured photocurrent. As an example of this we show a plot of the photocurrent

response of a TaAs device in Figure 5.8. The two peaks visible in this scan are

indicative of a response due to the PTE. The change in sign of the photocurrent

results from a change in the direction of the thermal gradient produced by the

laser, for more discussion see Chapter VI. Scans may also be used to identifty the

149



presence of a CPGE. A CPGE will produce a current that travels in one direction

for one helicity of the light, and in the opposite direction for the other helicity.

Meanwhile, other photocurrent generation mechanisms should not be sensitive to

the helicity of the light. Taking the difference between a scan obatined with left

and right circularly polarized light will therefore yield the response due purely to

a CPGE if present[151].

The second main type of data that can be obtained from this system is the

polarization dependence of the photocurrent at a specific location on the sample.

The QWP is rotated incrementally and the photocurrent recorded at each angular

position. A plot of the photocurrent as a function of the QWP angle may then be

fit to extract the various components that are present. Depending on the symme-

tries of the material under investigation, different components of the photocurrent

response may be associated with different generation mechanisms. The general

functional form of a photocurrent response is[134, 150]:

J(φ) = D + CC cos(2φ) + CS sin(2φ) + LC cos(4φ) + LS sin(4φ) (5.13)

where φ is the angle of the QWP, D is a polarization independent fitting term,

CC/S are the fitting terms for the two-fold responses, and LC/S are the fitting

terms for the four-fold responses. Circularly polarized light may generate the CC

term, while linearly polarized light can contribute to the D and LC/S terms.

In Eq. 5.13 we note that there are no sine or cosine terms with odd arguments.

This results from the even number of times in which circular and linear polariza-

tions are generated by the QWP. However, in real data there may be terms with

odd arguments that appear due to extraneous effects such as the precession of the

beam due to rotation of the QWP. These artifacts can be removed by averaging

the data from 0◦ to 180◦ with the data from 180◦ to 360◦. Sine or cosine terms
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with odd arguments are eliminated by such an averaging procedure (as can read-

ily be pictured for a term ∝ sin(φ)) and the physical terms with even arguments

remain. This procedure requires data be taken for a complete 360◦ rotation of the

QWP, and in the end will reduce the data set down to only 0◦ to 180◦.

An example polarization dependent response is plotted in Figure 5.9. The

photocurrent consists of a sum of sine and cosine terms as described by Eq. 5.13,

here used to produce the fit shown as a solid magenta line. Although the raw

data was acquired over a full 360◦ rotation of the QWP, the data shown here was

symmetrized using the above procedure and thus is only shown from 0◦ to 180◦.

The different values of the photocurrent at 45◦ and 135◦ indicate that there is

a response to circularly polarized light, since these are the two angles for right

and left circularly polarized light respectively. In addition, there is a polarization

independent offset which is seen by noting that the oscillatory terms do not center

around a current of zero.

Figure 5.9: Example polarization dependent photocurrent measurement from a
TaAs device. Both two- and four-fold variations in the response are observed.
The magenta line is a fit using Eq. 5.13.
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CHAPTER VI

Bulk Photovoltaic Effect in TaAs

6.1 Introduction

Recently there has been renewed interest in the nonlinear generation of light

due to its connection to electron topology[146, 155, 156]. Of particular inter-

est here is the bulk photovoltaic effect (BPVE) or “shift current,” a nonlinear

mechanism where direct acceleration of electronic quasi-particles in response to

linearly polarized light results in an electric current[81]. First discovered in fer-

roelectric insulators, the shift current was initially attributed to their built-in

electric fields[157]. However, the nonlinear nature of the effect was established in

the following decades[77], and its connection to topology made at the turn of the

century[81]. Physically the shift current may be understood as resulting from the

change in center of the Wannier function of the particle upon interband optical

excitation. It is therefore closely linked to the Berry connection, which may be

expressed as the expectation value of the position operator in the crystal unit cell.

Second-order nonlinear optical effects such as the BPVE require materials with

a lack of inversion symmetry. Under the right conditions this same requirement

may generate a WSM. The electronic structure of a WSM is characterized by the

presence of three-dimensional linearly dispersing bands, coming in pairs known as

Weyl nodes. The Berry connection is singular at the precise location of the node,
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but is generally enhanced in its vicinity. A number of materials have recently been

confirmed to be WSM, with experimental evidence for the Weyl nodes and their

singular Berry connection[27–29, 31]. Due to their topological properties, there

have been numerous theoretical[148, 149, 158, 159] and experimental works[79,

145, 151, 160] investigating the nonlinear responses of these materials. In the

work we present here, we investigate the nonlinear response of the WSM TaAs

to linearly polarized light. We find that, in a reflection of its topological nature,

the BPVE response of TaAs is an order of magnitude larger than any previously

reported, and due to the gap-less nature of the semi-metallic system, it occurs in

a wavelength range in which such effects were previously inaccessible.

6.2 Experimental Setup

We briefly describe the photocurrent measurement setup used to investigate

nonlinear photocurrents in TaAs; a more detailed discussion may be found in

Chapter V. A diagram of the setup is shown in Figure 6.1. The 10.6 µm output

from a CO2 laser is modulated by a mechanical chopper so that we may use a

lock-in amplifier to measure the resulting photocurrent. The light then passes

through a BS which redirects reflected light towards a MCT detector, allowing

us to measure the relative reflectance. A QWP on a motorized rotation stage

controls the polarization of the light, which is focused onto the sample using a

plano-convex ZnSe lens with a 15 mm focal length, resulting in a spot size of

∼ 30 µm. The sample itself is mounted on a motorized three-axis translation

stage allowing for precise positioning of the sample underneath the incident laser.

Photocurrent signals are measured using a National Instruments PXI DAQ system

after amplification and frequency filtering by an SRS voltage pre-amplifier.
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Figure 6.1: A schematic of the photocurrent measurement system used to investi-
gate the nonlinear response of TaAs.

Figure 6.2: The conventional unit cell of TaAs.

6.3 TaAs: Crystal Symmetry and Nonlinear Photocur-

rents

TaAs crystallizes in the tetragonal, non-symmorphic space group I41md (No. 109),

the conventional unit cell is shown in Figure 6.2. This structure lacks inversion

symmetry which allows both for the presence of Weyl nodes within its BZ and the

generation of second-order nonlinear photocurrents. The equation governing the

generation of such photocurrents is:

Ji = σ
(2)
ijkEjE

∗
k (6.1)
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where Ji is the current along the ith crystallographic direction, Ej is the (complex)

electric field polarized in the jth direction, and σ
(2)
ijk is the second-order conduc-

tivity tensor. The third-rank tensor σ
(2)
ijk in general contains 27 elements, however

many of these will be zero or equivalent to other elements due to Neumann’s

principle which states that the tensor must be invariant under the symmetry op-

erations of the crystal[50]. Applying the symmetry elements of the C4v point group

to this tensor we find that there are seven non-zero elements, of which four are

independent. These are listed below:

σaac = σbbc, σaca = σbcb, σcaa = σcbb, σccc (6.2)

where we have dropped the (2) superscript. These elements may generally be

complex, which we write as:

σaac = σaac + iηaac (6.3)

where σaac is the real part, and ηaac is the imaginary part. In addition to the crystal

symmetry operations, we require an additional symmetry which is interchange of

the electric field components. For the conductivity tensor, this corresponds to an

exchange of indices and complex conjugation. This leads to the relations:

σaac = σ∗aca (6.4)

σaac + iηaac = σaca − iηaca (6.5)
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from which we find σaac = σaca and ηaac = −ηaca. On the other hand, for elements

with repeated indices we find:

σcaa = σ∗caa (6.6)

σcaa + iηcaa = σcaa − iηcaa (6.7)

which tells us that while (trivially) σcaa = σcaa, and ηcaa = −ηcaa = 0. Summariz-

ing we have the real elements:

σaac = σaca = σbbc = σbcb, σcaa = σcbb, σccc (6.8)

and the imaginary elements:

ηaac = ηbbc = −ηaca = −ηbcb (6.9)

Physically we may associate the real parts of the tensor with the response to

linearly polarized light, and the imaginary parts with the response to circularly

polarized light. We hereafter focus on the response to linearly polarized light.

With the second-order optical conductivity tensor elements for TaAs identified

we may now derive the photocurrent expressions. We first assume that the light

is normally incident on an ac crystal surface. The implicit sum in Eq. 6.1 then

results in, for the two unique crystal axes on this surface (neglecting the CPGE

terms):

Ja = σaac(EaE
∗
c + EcE

∗
a) (6.10)

Jc = σcaa|Ea|2 + σccc|Ec|2 (6.11)

We note that along the c-axis the response is proportional to the intensity of the
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electric field along each axis, while along the a-axis it results from a mixture of both

polarization components. This will have useful implications for our experimental

ability to resolve the origin of measured photocurrents. For light incident on an ab

surface there will be no nonlinear response due to the lack of corresponding tensor

elements. The physical cause behind this is the requirement of the electric field

polarization along the crystal c-axis – the only axis which lacks a mirror operation

and can loosely be thought of as “breaking” the inversion symmetry of the crystal.

In our experiments we measured the photocurrent as the QWP was rotated.

To obtain the predicted functional dependence we express the electric field com-

ponents in Eq.’s 6.10 and 6.11 in terms of the angle of the QWP via its associated

Jones matrix, given below:

QWP(φ) =

 cos2 φ+ i sin2 φ (1− i) sinφ cosφ

(1− i) sinφ cosφ sin2 φ+ i cos2 φ

 (6.12)

Assuming the incident light is polarized along a horizontal x-axis we find:

Ex(φ)

Ey(φ)

 =

 cos2 φ+ i sin2 φ (1− i) sinφ cosφ

(1− i) sinφ cosφ sin2 φ+ i cos2 φ


E

0


= E

 (cos2 φ+ i sin2 φ)

((1− i) sinφ cosφ)

 (6.13)

Now, assuming the crystal a-axis is parallel to x and the crystal c-axis to y,

such that we may associate Ea = Ex(φ) and Ec = Ey(φ), we obtain after some

simplification:

Ja(φ) =
1

2
σaacE

2 sin(4φ) (6.14)

Jc(φ) =
1

4
E2 ((σccc + 3σcaa) + (σcaa − σccc) cos(4φ)) (6.15)
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We observe that along each axis there is a distinct dependence on the angle of

the QWP; along the a-axis it depends upon the sine of the angle, while along

the c-axis it depends upon cosine of the angle and has a polarization independent

term. As discussed below in the context of photothermal effects, we will be able

to exploit this functional dependence to isolate the nonlinear response.

For the purposes of generalization we also consider an in-plane rotation of the

sample by an angle β. We apply a rotation matrix to the electric fields in Eq. 6.13

to find:Ex′(φ, β)

Ey′(φ, β)

 =

 cos β sin β

− sin β cos β


 (cos2 φ+ i sin2 φ)E

((1− i) sinφ cosφ)E


= E

 cos β(cos2 φ+ i sin2 φ) + sin β(1− i) sinφ cosφ

− sin β(cos2 φ+ i sin2 φ) + cos β(1− i) sinφ cosφ

 (6.16)

Substituting these into our photocurrent equations yields:

Ja(φ, β) =
1

2
(−σaac(sin(2β) + sin(2β − 4φ)) (6.17)

Jc(φ, β) =
1

4
(σcaa(2 + cos(2β)) + σccc(2− 2 cos(2β)) + (σcaa − σccc) cos(2β − 4φ))

(6.18)

We find that rotating the sample introduces both sin(4φ) and cos(4φ) terms along

both axes, which can complicate the analysis.
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6.3.1 Photothermal Response

Figure 6.3: Diagram of the photo-thermoelectric effect.

In addition to the nonlinear response of TaAs we also expect to measure re-

sponses due to the PTE, a diagram of which is shown in Figure 6.3. When the

laser is incident on one side of the device it produces a thermal gradient ∇T , which

in turn produces a voltage ∆V through the Seebeck effect[151, 161]. Because this

response depends upon the temperature gradient, if the laser is swept across the

contacts of the device you will observe a characteristic sign change as the direction

of the gradient is reversed.

We confirm this aspect through both simulations and measurements, as shown

in Figure 6.4. The photocurrent measured across two contacts is plotted along

the y-axis as a function of the laser position as it is swept between the contacts.

Simulation and experiment produce nearly identical results, with the character-

istic sign change of the PTE response being prominent in both plots. We model

this response as follows: the laser spot is assumed to have a Gaussian profile and

the induced temperature change is assumed proportional to the intensity. The

PTE response is proportional to the temperature gradient and therefore to the
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Figure 6.4: (Left) The simulated spatial dependence of the PTE response when
measured along two contacts. Asymmetry in the response can result from purely
geometric effects. (Right) The measured spatial dependence of photocurrent mea-
sured from a TaAs device. The asymmetry here results from a combination of
geometric effects and additional nonlinear photocurrent generation mechanisms.

gradient of the Gaussian intensity profile. Fits to the response utilizing the gra-

dient of a Gaussian are shown as solid red lines in Figure 6.4. While these fits

capture most of the observed behavior, they fail to capture the asymmetry in the

peak magnitudes. In the experimental measurements, we found that this asym-

metry was well captured by assuming a Gaussian response centered on the device

(blue line) which presumably has its physical origin in the nonlinear photocurrent

generation. However, we still found asymmetries in the peak heights of the simu-

lated PTE respones in the absence of any nonlinear responses, indicating that the

asymmetry may also result from extrinsic effects such as the device geometry. We

therefore find that separation of the PTE from the nonlinear response by spatial

dependence alone is unsuitable and instead consider the polarization dependence

of each response.

For the PTE response the laser acts as a local heat source, so we expect the

response to be determined by the overall intensity of the absorbed light. We allow

this to depend on the polarization of the incident light due to anisotropy from

either the device or the underlying crystal structure. We write the current Ji
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along the ith crystallographic direction as:

JPTEi = Ai
(
αj|Ej|2 + αk|Ek|2

)
(6.19)

where Ai is a constant that depends on the thermal gradient, resistance, Seebeck

coefficient, and other physical parameters, αj is the absorption coefficient along the

jth crystallographic direction, and Ej is the electric field along the same direction.

Using the expressions for the electric fields in Eq. 6.13 we obtain:

JPTEa (φ) =
1

4
AaE

2 ((αc + 3αa) + (αc − αa) cos(4φ)) (6.20)

JPTEc (φ) =
1

4
AcE

2 ((αc + 3αa) + (αc − αa) cos(4φ)) (6.21)

From this we can see that the polarization dependent response from the photother-

mal effect is identical to that from nonlinear effects along the c-axis, as in Eq. 6.15,

whereas the nonlinear response along the a-axis is unique. We therefore make use

of the distinction between the polarization dependence of the nonlinear response

and the photothermal response along the a-axis to disentangle these two effects.

6.4 Device Design

Previous measurements of nonlinear photocurrents in TaAs focused on the

response to circularly polarized light and were measured on a bulk crystal[151]. As

a result, the temperature range over which the CPGE was observable was limited

to ¡100 K due to the dominance of thermal effects and resistive losses at ambient

temperatures. This was explained as resulting from the competition between two

length scales: the first being between the spot size of the incident radiation and

the contact separation; and the second being between the penetration depth of

the laser and the thickness of the crystal. Both of these are a consequence of
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the photocurrent generation occurring only within the illuminated region of the

samples. Laterally this is determined by the spot size and normal to the surface it

is by the penetration depth. The photocurrent generated within this region spreads

out until it reaches the contacts where it may be collected and measured, see

Figure 6.5. Therefore if the spot size is much smaller than the contact separation,

the thickness much larger than the penetration depth, or both, the measured

photocurrent may be suppressed by the resistive losses that occur before reaching

the contacts. Such effects were estimated as suppressing the measured CPGE by

a factor of 104 in previous work[151].

Figure 6.5: Resistive losses for generated photocurrent may occur if the contact
separation is much larger than the spot size and the thickness is much larger than
the penetation depth of the light.

To mitigate these effects one would like a device with contact separation on the

scale of the spot size, and a thickness on the order of the penetration depth. How-

ever, the penetration depth in TaAs at 10.6 µm is ∼ 250 nm[133], which is much

smaller than the size of most as-grown crystals. In order to fabricate devices of such

dimensions we utilized focused-ion-beam (FIB) based fabrication[162], through a

process which we now describe in detail. Devices were fabricated starting from

the as-grown single crystals. A FIB was used to slice a micron scale lamella out

of the single crystal surface. This lamella was then transferred onto a sapphire
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Figure 6.6: False colored SEM image of a microcopic TaAs (purple) device with
Au (yellow) contacts. The device is approximately three times thicker than the
penetration depth of the light used (≈ 750 nm).

substrate with pre-made gold contacts and secured in place by a small amount

of epoxy. Contacts to the sample are made by sputter-coating the sample and

surrounding region with 100 nm of gold, followed by another round of FIB to cut

individual contacts. A final found of FIB is used to shape the TaAs into the final

device configuration (Hall bar) and thickness.

A scanning electron microscope (SEM) image of one TaAs device is shown in

Figure 6.6. The thickness of the device is ∼750 nm thick, approximately three

times the penetration depth. Furthermore, the lateral dimensions of the Hall bar

are approximately 11×2 µm such that the exposed TaAs is smaller than the min-

imum achievable spot size using our focusing optics. The microscopic dimensions

of the device should, as discussed above, reduce the resistive losses experienced

by the generated photocurrent. The particular device shown in Figure 6.6 has

the crystallographic a-axis along the long direction of the Hall bar with the c-

axis along the short, perpendicular direction. We also fabricated a device with

the crystal a- and b-axes in the plane, as well as multiple devices with smaller

thicknesses (∼400 nm).
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6.5 Photocurrent Measurements

In Figure 6.7 we show three different TaAs devices from which we measured

the photocurrent response. The first and third devices had ac-surfaces, while the

second device had a ab-surface. This is indicated in the upper row of panels B–D,

as well as a false-colored SEM image of each device. As discussed in Section 6.3

we anticipate that shift currents will be observed for the ac-face devices while, due

to the lack of an in-plane c-axis, no shift currents will be generated for the ab-face

device. In order to distinguish PTE responses from shift current, we measured

the photocurrent as a function of the QWP angle. Prior to fitting, the data

was symmetrized by averaging the data from 0◦ to 180◦ with that from 180◦

to 360◦. This eliminates any sine and cosine functions with odd arguments (e.g.

sinφ, cosφ) that may result from beam precession due to rotation of the QWP from

contributing, while preserving those with even arguments (e.g. sin(4φ), cos(4φ)).

The measured photocurrents were fit by a phenomenological function of the

form:

J(φ) = D + LS sin(4φ) + LC cos(4φ) + CS sin(2φ) + CC cos(2φ) (6.22)

where LS/C capture the responses to linear polarization, CS captures the response

to circularly polarized light, CC captures any other two-fold response, and D is a

polarization independent term. In order to ensure that our fitting accurately cap-

tures the polarization dependent phase of the response we carefully calibrated the

angle of the QWP. This was accomplished through two independent approaches.

The first approach utilized a series of additional optics placed after the QWP:

a Fresnel rhomb, a linear polarizer, and then a power meter. As the QWP was

rotated, the light changes from horizontally polarized to circularly polarized, and

then back to horizontally polarized. The fixed Fresnel rhomb allows the horizon-
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Figure 6.7: A Diagram of the device showing the axis along which the current is
being measured. B,C,D Upper panel: SEM image of the device being measured
and its crystal orientation. Middle/Lower panels: black dots show the measured
photocurrents with the solid magnenta lines representing fits to the data using
Eq. 6.22. The crystal axis is labeled in each panel. The inset of each panel shows
the relative magnitude of the LS and LC fitting terms.

tally polarized light to pass through unchanged, but alters circularly polarized

light to linearly polarized at either ±45◦ to the vertical axis depending on the

light’s helicity. The linear polarizer then may be used to select for light of right

or left helicity. With the linear polarizer at −45◦ we selected for left circularly

polarized light and by recording the power as the QWP was rotated we identified

the precise angles at which left circularly polarized light occurred.
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Figure 6.8: The reflectance and power recorded by the MCT and power meter
respectively. The concurrent peaks in the power and reflectance indicate QWP
angles where left circularly polarized light was produced.

The second approach utilized the polarization dependence of the reflectance

recorded by our MCT. Due to the near 45◦ angle of our BS, vertically polarized

light is more strongly reflected than horizontally polarized light. The MCT signal

therefore has a maximum whenever the input light is circularly polarized and

a minimum whenever it is horizontally polarized, since in the former case the

reflected light comes back from the QWP as vertically polarized.

The reflectance recorded by the MCT and the power recorded by the power

meter as the QWP was rotated through 360◦ are shown in Figure 6.8. The four

peaks in the MCT reflectance (black) correspond to the four times that circularly

polarized light is achieved – left and right twice each. The two peaks in the power

correspond to those for left circularly polarized light, and we can see that the data

line up nicely with each other. After identification of the angles for which left

circularly polarized light occurred (∼ 87◦ and ∼ 267◦ respectively) we shifted any
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measured photocurrent data so that horizontally polarized light occurred at 0◦.

The results of our photocurrent measurements are shown in Figure 6.7. The

middle row of panels B–D show the signal measured on the longitudinal direction

of each Hall bar, which correspond to the a-axis as indicated in each panel, while

the bottom row shows measurements along the transverse Hall bar direction which

correspond to the c-axis and b-axis as indicated. Inset in each panel is the nor-

malized weight of the LC(red) and LS(green) fitting terms, where LS and LC are

defined as in Eq. 6.22. We consider first the results from the ac-device in panels

B. Along the a-axis of this device we find that the LS term is five times larger

than that of the LC term, consistent with a dominant shift current response. In

contrast, along the c-axis we find that the LC term is dominant over the LS term,

consistent with photocurrent generated by both PTE and shift current generation

mechanisms.

We next consider the response from the ab-face device shown in panels C. As

discussed above, we expect no shift current response from such a device due to the

lack of an in-plane crystallographic c-axis. We do however anticipate a response

coming from the PTE, which should be qualitatively similar along each crystal

axis. The relative LC and LS weights shown as insets confirm this expectation,

with LC providing the dominant response for both crystal axes, in contrast to the

results from the ac-device.

As a check on the aptness of our technique for identifying photocurrents based

off on the polarization dependence, we carried out measurements on a third TaAs

device, shown in panels D, that was rotated by 90◦ in comparison to the previous

devices. Rotation of the device by 90◦ will change the sign of the shift current

response when compared to the original orientation, but it will not change the

phase relation between sine or cosine terms, see Eq’s. 6.17 and 6.18. The insets

in panel D show behavior consistent with the previous ac-face device, with the
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LS term dominating along the a-axis, and term LC dominating along the c-axis.

Furthermore, the sign of the LS term does change when rotated by 90◦, consistent

with the theoretical prediction. Table

Device Crystal Axis D (µA) LS (µA) LC (µA)
ac-1 a -0.3825 -0.05318 -0.016063

c -0.08718 -0.02282 0.1114
ab a -1.388 -0.4923 2.010

b 4.095 0.06037 0.9252
ac-2 a 0.1799 0.04937 0.03049

c -2.55 0.0464 -0.1496
ac-2 (rotated) a -2.602 -7.149 -0.799

c -26.31 -0.197 2.341

Table 6.1: Results of fitting the photocurrent data in Figure 6.7.

Lastly, to verify the second-order nature of the measured shift currents we

measured the power dependence of the polarization independent (D), and linear

sine and cosine terms (LS and LC). In addition to the expected linear power

dependence from a second-order nonlinear effect, the PTE is also anticipated to be

linear in power due to its dependence on the intensity of the light. Figure 6.9 shows

that, over the 30 mW to 300 mW range, the response of all terms is approximately

linear, in accordance with the theoretical expectations.
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Figure 6.9: Power dependence of the D,LS, and LC terms from fitting. All are
found to be linear.

6.6 Elimination of Other Nonlinear Mechanisms

In this section we discuss how we may rule out other nonlinear mechanisms as

the source for our observed photocurrents. We consider first the photon drag[163]

and the third-order nonlinear response[160]. Photon drag is an effect whereby the

momentum of the incident photon is imparted to the electronic system, and is

governed by the relation

Ji = ΦijklqjEkEl (6.23)

where qj is the jth component of the photon’s momentum, and Φijkl is a fourth-

rank tensor. The third-order nonlinear response is governed by a similar relation,

Ji = σ
(3)
ijklEjEkEl (6.24)

except the photon momentum has been replaced by a DC electric field Ej. The

fourth-rank tensors in each of these processes are constrained by the same sym-
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metries, and thus share the same non-zero and linear independent elements. We

enumerate these below for the symmetric (Φijkl, σijkl)

Φcccc

Φaaaa = Φbbbb

Φaabb = Φbbaa

Φaacc = Φbbcc

Φccaa = Φccbb

Φabab = Φabba = Φbaba = Φbaab

Φacac = Φacca = Φbcbc = Φbccb

Φcaca = Φcaac = Φcbcb = Φcbbc (6.25)

and anti-symmetric components (Ψijkl, ηijkl):

Ψabab = Ψbaba = −Ψabba = −Ψbaab

Ψacac = Ψbcbc = −Ψacca = −Ψbccb

Ψcaca = Ψcbcb = −Ψcaac = −Ψcbbc (6.26)

As so for the second-order photocurrents, we consider only the symmetric parts

which govern the response to linearly polarized light. For the photon drag we

expand the current expression for each axis to find:

Ja = Φaaaaqa|Ea|2 + Φaabbqa|Eb|2 + Φaaccqa|Ec|2

+ Φababqb(EaE
∗
b + EbE

∗
a) + Φacacqc(EaE

∗
c + EcE

∗
a) (6.27)

Jc = Φccccqc|Ec|2 + Φccaaqc(|Ea|2 + |Eb|2)

+ Φcacaqa(EcE
∗
a + EaE

∗
c ) + Φcbcbqb(EcE

∗
b + EbE

∗
c ) (6.28)
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In the geometry of our experiments, the ac-surface of the crystal was in-plane.

Assuming the light was normally incident on this surface, we have qa = qc = 0,

and Eb = 0. It is then clear that the photocurrent due to photon drag uniformly

disappears. Our experiments were carried out at normal or near-normal incidence,

so we expect that photon drag did not contribute to our measured photocurrents.

Even allowing for a small degree of misalignment, the terms resembling those

from the shift current (EaE
∗
c +EcE

∗
a) are proportional to qc ∝ sin θ, where θ is the

angle of incidence, such that at near normal incidence such terms would be heavily

suppressed. We additionally note that such a term would have disappeared when

the sample was rotated by 90◦, yet we did not observe such behavior. We therefore

rule out photon drag as being responsible for our observed photocurrents.

We now consider in detail the third-order response. As noted above, in order

to generate such a response from a monochromatic light source the third electric

field contribution must be a DC electric field distinct from the light, such that:

Ji(0) = σ
(3)
ijklEj(0)Ek(ω)El(−ω) (6.29)

One possible source of the DC field could be the laser induced thermal gradients

responsible for the PTE. Expanding the current relation we obtain:

Ja = σ(3)
aaaaEa(0)|Ea|2 + σ

(3)
aabbEa(0)|Eb|2 + σ(3)

aaccEa(0)|Ec|2

+ σ
(3)
ababEb(0)(EaE

∗
b + EbE

∗
a) + σ(3)

acacEc(0)(EaE
∗
c + EcE

∗
a) (6.30)

Jc = σ(3)
ccccEc(0)|Ec|2 + σ(3)

ccaaEc(0)(|Ea|2 + |Eb|2)

+ σ(3)
cacaEa(0)(EcE

∗
a + EaE

∗
c ) + σ

(3)
cbcbEb(0)(EcE

∗
b + EbE

∗
c ) (6.31)

While there are terms that do resemble those from the second-order response,

we note that if the DC electric field is produced by the laser then the power
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dependence should be higher than linear. However as seen in Figure 6.9 the power

dependence of all terms was linear. It is also possible that a built-in electric field

such as that from a p − n junction could lead to observation of these third-order

effects but not alter the power dependence. Measurements of the IV response of

our devices both with and without illumination reveal Ohmic behavior which rules

out this possibility as well. We therefore conclude that third-order responses are

not the explanation for our measured photocurrents.

Figure 6.10: Representative current vs voltage measurements from a TaAs with
(red) and without (black) laser illumination.

6.7 Comparison to Theory and Band Structure Calcula-

tions

In this section we compare our measured results to those predicted by band

structure calculations. We begin with a discussion of the microscopic theory for

the shift current. As shown in Eq. 6.1 the shift current is facilitated by the second-

order conductivity tensor σ
(2)
ijk. This tensor is non-zero only in materials which lack
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a center of inversion[81, 146, 155, 156, 164]. We also define the shift vector

R =
∂φ

∂k
+ Acc −Avv (6.32)

where φ is the phase of the velocity matrix element across the conduction and

valence bands, and

Amn(k) = i〈ψm|∂k|ψn〉 (6.33)

is the Berry connection between the mth and nth electronic bands at a given

momentum k. It can be shown[81] that the second-order optical conductivity

tensor is directly proportional to the integral of this shift vector over the BZ.

Measurements of the tensor are therefore a way to directly measure the Berry

curvature of a material.

The microscopic expression for the second-order conductivity tensor is given

as[81]:

σ
(2)
ijk(ω) = −iπe

3

~2

∫
dk3

(2π)3

∑
n,m

fnm
(
rjmnr

k
nm;i + rkmnr

j
nm;i

)
δ(ωmn − ω) (6.34)

where n and m denote the band indices, fnm = fn − fm is the difference in

Fermi occupation functions, ωmn = (En −Em)/~ is the energy difference between

bands, rinm = Ainm(1 − δn,m) is the interband Berry connection, and rinm;j is the

generalized derivative of rinm defined as rinm;j = ∂k,jr
i
nm − i(Ajnn − Ajmm)rinm. In

the case of linearly polarized light with polarization along the jth direction, which

corresponds to tensor element σ
(2)
ijj , the above expression simplifies to:

σ
(2)
ijj = −2πe3

~2

∫
dk3

(2π)3

∑
n,m

fnm|rjnm|2Ri
nmδ(ωmn − ω) (6.35)
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where

Ri
nm =

∂φnm
∂ki

+ Ainn − Aimm (6.36)

is the ith component of the shift vector defined above in Eq. 6.32, and φnm =

− arg[rjnm]. In a system with a finite gap, we expect σ
(2)
ijj to disappear for energies

below the gap, as in the case of ferroelectric insulators[157]. However, in systems

such as TaAs which have no electronic band gap and a singular Berry connection,

the shift current tensor is anomalously large in the low ω limit[148].

In our experiments the photons have energy ~ω = 117 meV. At this energy

the dispersions near the Weyl nodes are no longer linear. In order to quantita-

tively model the response it is therefore important to use detailed models of the

band structure from first-principles calculations, rather than a simple model of a

generic type-I WSM. DFT calculations of the electronic band structure of TaAs

were initially carried out using the Quantum Espresso package[165]. A 32-band

tight binding Hamiltonian model was then obtained from the DFT data using

the Wannier90 package[166]. The tight binding model well reproduces the low

energy features of the reported band structure of TaAs, including the energy and

momentum locations of the Weyl nodes, and the electron and hole pockets (see

for example [167]). In Figure 6.11 we show the first BZ of TaAs with the calcu-

lated FS at charge neutrality. The 24 Weyl nodes are in close proximity to the

nearly nodal rings visible along the four primary axes. The nodes are labeled in

Figure 6.12 which shows a zoomed-in version of the electron and hole pockets. In

Figure 6.13 we show the momentum space surface which corresponds to a direct

energy gap of 117 meV. At this energy all of the Weyl nodes are enclosed by the

surface which indicates that, as noted above, the band dispersion has significantly

deviated from linear.
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Figure 6.11: The first BZ of TaAs showing the calculated FS at charge neutrality.

H

W1 W2

Figure 6.12: The Fermi pockets of TaAs near one nearly nodal ring. The red
electron and hole pockets enclose the W1 and W2 Weyl nodes, while the gray hole
pockets (H) are topologically trivial.
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Figure 6.13: The momentum space surface formed by the direct energy gap of
117 meV.

The second-order optical conductivity tensor was calculated from the full 32-

band tight binding model at room temperature. The conductivity values were

calculated for doping values µ = −20 meV to µ = +20 meV. The resulting values

for the tensor element σ
(2)
aac are shown in Figure 6.14 as a function of incident

photon energy. The dashed line at 117 meV shows the energy of the laser used in

our measurements. We can see that in this energy range the tensor element has a

relatively constant value at no doping, and with mild hole doping, although with

electron doping there is a greater degree of variation. At lower energies we see

that there is a large peak in the tensor value, suggesting that future experiments

with longer wavelength sources will be valuable.
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Figure 6.14: Calculated values of σ
(2)
aac as a function of doping level and incident

photon energy. The dashed line indicates the energy of the laser used in our
experiments.

To properly compare our photocurrent measurements to the predicted values

we calculate the carrier concentrations from measurements of the Hall resistance.

These transport measurements were carried out using a custom-built transport

system and AMI 9 T superconducting split-coil magnet[168]. An AC at 586.3 Hz

was applied to the current leads of the Hall bar and the voltage drops across the

device recorded by SR830 lock-in amplifiers. The exact value of the current was

simultaneously monitored by measurement of the voltage across a known resistor

in-series with the device. At 8 K we recorded the magnetic field dependence of the

longitudinal and transverse voltages out to 8 T. The Hall conductivity calculated

from these measurements is shown in Figure 6.15. The sharp peak at low fields
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and saturation at higher fields are consistent with previously published results[32].

We fit the Hall conductivity with a two-carrier model, with the results shown as

the red line. From this fitting we extract the electron and hole concentrations

ne = 8.08 × 1017 cm−3 and nh = 9.35 × 1017 cm−3 respectively, which shows

that there is a very slight hole doping of our TaAs. (As an aside, the electron

and hole mobilities obtained from fitting were µe = 7.3 × 104 cm2/(V·s) and

µh = 1.6×104 cm2/(V·s), which are consistent with measurements of bulk crystals,

indicating that the FIB fabrication did not result in damages to the underlying

crystal.)

Figure 6.15: Hall conductivity data in black with the red line showing the fit by
a two-band model.

The values of σijk for various doping levels are shown in Table 6.2. For a

very slight hole doping as in our samples we see that theory predicts a value

of σaac = 201 µA/V2. From our experimentally measured values we calculate

σaac = 32 ± 3.7 µA/V2. These values appear to disagree by approximately an
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Tensor Element (µA/V2) µ = 0 µ = 10 meV µ = −10 meV

σ
(2)
aac 201 206 191

σ
(2)
caa 30 54 5

σ
(2)
ccc −227 −231 −216

Table 6.2: The calculated room-temperature shift-current response tensor at vari-
ous values of the chemical potential, including charge neutrality (chemical poten-
tial µ = 0 meV), electron doping µ = 10 meV, and hole doping µ = −10 meV.

order of magnitude. We note however, that this experimental value did not take

into account the reflectance of TaAs and assumed that all of the incident light

was absorbed by the sample. The reflectance of TaAs at 10.6 µm is ∼0.78[133],

which when accounted for in our calculated of the conductivity tensor yields a

value of σaac = 154± 17 µA/V2, in much closer agreement with the theoretically

predicted value. We lastly note that in the tight-binding contributions there are

two interband transitions which contribute to σaac. One of these is two between

two Weyl bands, while the other is between one of the Weyl bands and a higher

energy conduction band. The former of these contributes σaac = 251 µA/V2

while the latter contributes σaac = −50 µA/V2. This suggests that the primary

contributions to the shift current come from the Weyl nodes.

6.8 Glass Coefficient

In this section we discuss the calculation of the Glass coefficient which enables

comparison of the shift current response of TaAs to other materials. As discussed

above, the generation of photocurrent occurs only within the penetration depth

of the light within the material. In order to account for the absorptive losses one

typically calculates the Glass coefficient[156, 169]. Named for A.M. Glass who

performed some of the pioneering work on the BPVE[169], the Glass coefficient

normalizes the second-order optical conductivity by the absorption coefficient.
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This results in the expression

J = αGI (6.37)

where α is the absorption coefficient, I the incident intensity, J the current density,

and G the Glass coefficient, often expressed in units of cm/V.

From the SEM images of the device we estimate the device thickness and width

to be 410 nm and 2 µm respectively. Using |LS| = 0.05318 µA we find a current

density J = 64.85 kA/m2. The absorption coefficient of α = 7.7 × 106 1/m was

calculated from optical conductivity data reported in [133]. We estimate the spot

size by scanning the laser across the device which resulted in an estimate for the

beam radius of ≈ 50 µm. The incident power was 40 mW. Using these values we

calculate a Glass coefficient G = 1.65× 10−7 cm/V.

Figure 6.16: Experimentally measured and calculated Glass coefficients for various
materials. Our reported Glass coefficient for TaAs is shown as a blue square in
a longer wavelength range than any previously reported value, and with larger
magnitude.

In Figure 6.16 we show previously reported and calculated values of the Glass
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coefficient as a function of wavelength. Experimentally measured values are shown

as circles while calculated values are drawn as lines. These materials mostly consist

of ferroelectric insulators or strained semiconductors with band gaps in the visible

range[77, 170–176]. Our value for TaAs is plotted as a blue square. We note that,

not only is our reported value an order of magnitude larger than any previously

reported Glass coefficient, it also is the first report in the mid-IR range.

6.9 Conclusions

We performed measurements of the second-order nonlinear photocurrent in

TaAs. By careful analysis of the polarization dependence of the response we

were able to disentangle the shift current response from the PTE. Our calcu-

lated second-order optical conductivity values agree well with those predicted by

first-principles calculations of the band structure. We further calculate the Glass

coefficient and find that, not only is it the first Glass coefficient reported in the mid-

IR wavelength range, but it is an order of magnitude larger than any previously

reported value. Our microscopic theory indicates that the dominant contribution

to this response comes from the Weyl nodes and their diverging Berry connection.

These results suggest that WSMs could be harnessed for future use in clean energy

technologies.
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CHAPTER VII

Conclusions

7.1 Concluding Remarks

In this dissertation we have presented numerous works investigating multiple

topological materials. In Chapter II we first reported on the Raman spectra of

thin film heterostructures of the topological insulator Bi2Se3 and magnetic semi-

conductor EuS. The paramagnetic Raman signal from EuS was found to be absent

in the Bi2Se3/EuS heterostructures which was taken as indirect evidence for charge

transfer between the two materials. A simple model of the band bending based on

previously reported work functions for the materials suggests that such a charge

transfer is likely, with electrons transferring from the EuS into the Bi2Se3. With

the Fermi level of the EuS thus lowered into the valence band, the resonance condi-

tion for Raman scattering is no longer satisfied, explaining the absence of the mode

in the heterostructures. Temperature dependent measurements of the magnetic

moment and calculations of the Fabry-Perot interference further rule out magnetic

ordering and interference effects respectively from preventing observation of the

mode. In addition, measurements of films with varying EuS thicknesses on mul-

tiple substrates provided evidence for changes in the interfacial strain depending

on the relative lattice mismatch and layer thickness.

In Chapter III we discussed the temperature dependent Raman spectra from
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single crystal WP2. We found that of the 14 optical modes we observed, two of

them (the lowest energy A1 modes) displayed a temperature dependent linewidth

that was dominated by phonon decay into electron-hole pairs near the Fermi sur-

face. First principles calculations of the mode resolved phonon-electron coupling

strength, supported by group theoretical calculations of the scattering selection

rules, indicate that both interband and intraband scattering of electrons by the

finite q phonons contribute to this behavior. Though inaccessible in our Raman

measurements, in light of the significant phonon-electron coupling strengths pre-

dicted by our computational results we discussed the role of phonon-electron scat-

tering by the acoustic phonons in contributing to properties such as the electrical

conductivity and mobility. The bunching of the acoustic mode dispersions can lead

to a reduction in the phonon-phonon scattering rates, allowing phonon-electron

processes to play an enhanced role. We also discussed the ways in which the

topological features of the electronic band structure can facilitate phonon-electron

scattering.

Chapter IV addressed our temperature dependent Raman study of the Weyl

semimetals NbAs and TaAs. In NbAs we observed a temperature independent,

Fano lineshape in the two B1 modes, while the same modes in TaAs displayed

no such asymmetry. First principles calculations of the electron-phonon cou-

pling strength confirm that NbAs has overall larger coupling strengths compared

to TaAs, which is consistent with the B1 modes symmetry/asymmetry. The

linewidths of the A1 modes in both materials were found to display the same

type of phonon-electron behavior as seen in WP2 when measured in the XX con-

figuration. However when NbAs was measured in the ZZ configuration the A1

linewidth was dominated by phonon-phonon scattering. We explained this differ-

ence by using group theory to establish the wave vector selection rules for scatter-

ing of electrons by phonons. Phonons with momentum along the kz direction (as
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in the XX configuration) are able to scatter electrons near the Weyl nodes in the

kz = 0 plane, while phonons with momentum along kx (as in the ZZ configuration)

are unable to satisfy the necessary momentum conservation. The first principles

calculations also suggested that optical phonons with large momenta could be a

significant source of scattering between Weyl nodes of opposite chirality in these

systems.

We then described the development of our photocurrent measurement system

in Chapter V. We discussed the experimental capabilities that we designed the

system to have, and detailed the various components required to achieve these

goals. Since the system was constructed with MIR lasers, we addressed some of

the challenges of working with these invisible light sources and the techniques we

used to manage them. We considered some of the advantages and disadvantages

of different approaches to measuring photocurrents, with the method of measuring

the current across a load resistor in series with the illuminated sample seeming to

offer the clearest benefits. We lastly provided examples of some standard operating

procedures for the system, as well as techniques that can aid in analysis of the

data obtained from this system.

Lastly, in Chapter VI we discussed the results of an experiment performed

using the photocurrent measurement setup described in Chapter V. Our measure-

ments of the second-order nonlinear photocurrent in the Weyl semimetal TaAs

revealed the largest bulk photovoltaic effect reported to date. Careful analysis

of the photocurrent polarization dependence allowed us to separate the BPVE

from the coexisting photo-thermoelectric effect. First principles calculations of

the second-order conductivity tensor show excellent agreement with our reported

value, and suggest that the colossal BPVE we reported on arises due to the diver-

gent Berry connection of the Weyl nodes.
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7.2 Suggested Further Experiments

Our understanding of the phonon linewidths whose temperature dependence

indicates a dominance of phonon-electron decay is far from complete. Let us start

by considering the qualitative and quantitative difference between the linewidth

of the A1 mode in TaAs as measured by Raman and IR spectroscopies[114, 115].

In the IR measurements, the linewidth monotonically decreases as a function of

increasing temperature, in accordance with the electron-hole model developed in

graphite[123]. In contrast, our Raman measurements reveal a linewidth that first

increases with temperature and only then begins to decrease. In our previous

discussion of this difference we ascribed the Raman behavior to a finite chemical

potential compared to the IR work. However, when viewed in totality with other

results it becomes clear that such a picture is not entirely justified.

The first piece of evidence suggesting that this interpretation is incomplete

is the nearly identical linewidth behavior observed in WP2. In TaAs and NbAs

there are Weyl nodes located near the Fermi energy so there is clear meaning to a

chemical potential. However, in WP2 there are no nodes near the Fermi energy. We

modified the interpretation of the chemical potential term in our phonon-electron

linewidth fitting function to account for this by recasting it as an “activation”

energy, ωa, which was required for the electronic transition to be available. Yet

on the energy scale of the optical phonon energies the electronic structure does

not significantly change. Indeed, our calculations explicitly show that interband

and intraband transitions for optical phonons at any energy are available at the

Fermi energy, no ωa needed. The validity of either the chemical potential or the

ωa interpretations are therefore questionable.

Second is the residual linewidth value as T → 0. The phonon-electron model

with finite chemical potential (or ωa) predicts a phonon-electron contribution of

zero to the linewidth as T → 0. We have therefore claimed that the residual
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linewidth is due to anharmonic effects. However, the measurement of the A1

NbAs mode in the ZZ configuration suggests that this is not correct either. In the

ZZ measurement the A1 linewidth very clearly follows the anharmonic trend, and

even at the highest temperatures measured its value fails to reach that of the A1

measurement in XX. The low temperature values for the A1 linewidths observed

across all the materials we report on here must therefore have their origins in a

mechanism not captured by our current modeling.

We believe that future experiments and theoretical works could help shed light

on this unresolved issue. In particular, we anticipate that temperature dependent

inelastic neutron or x-ray measurements that can access a larger range of momen-

tum values will be invaluable to understanding this behavior. We note that the

distinction between the IR and Raman measurements is likely due to the difference

between the momentum imparted to the phonons by each technique. In Raman

the excitation source is an order ∼ 1 eV laser, which can provide momentum of

order 107 m−1, while in IR measurements the phonon is directly created by ab-

sorption of light at its energy of order 0.01 eV, which only has momentum of order

105 m−1. If this does explain the difference between the IR and Raman measure-

ments it will be interesting to see how broader ranges of momentum impact the

phonon lifetimes as well. Raman and IR measurements performed on the same set

of TaAs or NbAs crystals would also help address whether the chemical potential

interpretation is valid.

In the case of WP2, inelastic neutron or x-ray scattering measurements will also

prove invaluable, as will other techniques such as Brillouin scattering which are

able to access the acoustic modes. Although our Raman measurements and first

principles calculations show that phonon-electron processes can dominate in the

optical modes, direct evidence confirming or refuting this behavior in the acoustic

modes would help resolve questions surrounding the origins of the hydrodynamic
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behavior in β-WP2.

There are a number of ways in which the PVIC system described in Chap-

ter V can be improved. One non-trivial though important upgrade would be the

incorporation of cryogenics to allow for sample measurement at variable tempera-

ture. The incorporation of additional light sources to allow for measurement over

a larger range of excitation energies would also prove useful for this system. The

MCT used for reflectance measurements could be replaced by a similar sensor

that does not require liquid nitrogen cooling. This would both reduce the cost of

using the system and allow for reflectance measurements over longer time scales

without requiring the user to refill the MCT every few hours. The LabVIEW

that was developed to control the system was written just to bring the system up

to operation. However, we are certain that improvements could be made which

would increase the rate of data acquisition in the system. Lastly, using lock-in

techniques such a tandem or direct sideband demodulation could allow for the

measurement of effects such as the photo-Hall which result from a combination of

both the optical field and an applied electric field.

Many of these proposed upgrades would be useful in further investigation of the

BPVE in TaAs. Temperature dependent measurements could provide information

about the types of scattering processes that limit the BPVE. Measurements of

the photoresponse at many wavelengths, ideally in a spectroscopic manner, could

allow for comparison of the predicted second-order optical conductivity tensor to

measured values. This could be particularly promising at longer wavelengths where

theory predicts an even larger response due to the diverging Berry connection.

Measurements of NbAs, NbP, or TaP could also be of interest, since they have

similar band structures to TaAs but different degrees of spin-orbit coupling which

should influence the Berry connection of each material.
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mar, V. Süß, D. L. Maslov, C. Felser, and K. Behnia, “Departure from the
Wiedemann–Franz law in WP2 driven by mismatch in T-square resistivity
prefactors”, npj Quantum Materials 3, 64 (2018).

[113] J. Coulter, R. Sundararaman, and P. Narang, “Microscopic origins of hydro-
dynamic transport in the type-II Weyl semimetal WP2”, Physical Review
B 98, 115130 (2018).

[114] J. Coulter, G. B. Osterhoudt, C. A. C. Garcia, Y. Wang, V. M. Plisson,
B. Shen, N. Ni, K. S. Burch, and P. Narang, “Uncovering electron-phonon
scattering and phonon dynamics in type-I Weyl semimetals”, Phys. Rev. B
100, 220301 (2019).

[115] B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang, J. Y. Liu, H.
Xiao, G. F. Chen, S. A. Trugman, J.-X. Zhu, A. J. Taylor, D. A. Yarotski,
R. P. Prasankumar, and X. G. Qiu, “Temperature-tunable Fano resonance
induced by strong coupling between Weyl fermions and phonons in TaAs”,
Nature Communications 8, 14933 (2017).

[116] A. Zhang, X. Ma, C. Liu, R. Lou, Y. Wang, Q. Yu, Y. Wang, T.-l. Xia,
S. Wang, L. Zhang, X. Wang, C. Chen, and Q. Zhang, “Topological phase
transition between distinct Weyl semimetal states in MoTe2”, Phys. Rev.
B 100, 201107 (2019).

[117] A. Sharafeev, V. Gnezdilov, R. Sankar, F. C. Chou, and P. Lemmens, “Op-
tical phonon dynamics and electronic fluctuations in the Dirac semimetal
Cd3As2”, Phys. Rev. B 95, 235148 (2017).
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