
Persistent link: http://hdl.handle.net/2345/bc-ir:108933

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Electronic Thesis or Dissertation, 2020

Copyright is held by the author. This work is licensed under a Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).

Essays in Contest Theory:

Author: Dimitar Simeonov

http://hdl.handle.net/2345/bc-ir:108933
http://escholarship.bc.edu


Essays in Contest Theory

Dimitar Simeonov

A dissertation
submitted to the Faculty of

the Department of Economics
in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

Boston College
Morrissey College of Arts and Sciences

Graduate School

July 2020



Copyright © 2020 Dimitar Simeonov
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The majority of this work focuses on the theoretical analysis of collective action,

group efficiency, and incentive mechanisms in team contests where individual outlays

of heterogeneous agents are not observable. The reward allocation within the group

is instead dependent on observable worker characteristics, modeled as individual abil-

ities, as well as on the observable level of aggregate output. I study the incentives

for free-riding and the group-size paradox under a very general set of intra-team

allocation rules. I further derive the optimal allocation mechanism which rewards

agents according to a general-logit specification based on their relative ability. I de-

rive conditions under which a team’s performance is most sensitive to the ability of

its highest-skill members, while at the same time higher spread in the distribution of

ability has a positive effect on group output.

In the final chapter I shift attention to the problem of optimal player order choice

in dynamic pairwise team battles. I show that even if player order choice is conducted

endogenously and sequentially after observing the outcomes of earlier rounds, then

complete randomization over remaining agents is always a subgame perfect equilib-

rium. The zero-sum nature of these type of contests implies that expected payoffs for

each team are independent of whether the contest matching pairs are determined en-

dogenously and sequentially or announced before the start of the game. In both cases

the ex-ante payoffs are equivalent to those when an independent contest organizer

randomly draws the matches.
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Chapter 1

The Evolution of the Theory of
Collective Action and the
Group-size Paradox

A vast subfield of the early Contest Theory literature during the late 1970s and

1980s focused on extending the seminal works of Olson (1965), Tullock (1967, 1980),

and Krueger (1974). These were mostly articles aimed at studying the rent-seeking

effects that typically occur in situations where multiple agents individually compete

for private rewards. It was not until the early 1990s, however, that researchers started

shifting their attention to group contests, reward allocation, and incentives. The first

such work to exclusively focus on rent-seeking for pure public goods was that of Katz,

Nitzan, and Rosenberg (1990). Most of the early motivation for the increased interest

in this particular direction of research at the time had to do with the numerous cases

where the rent sought was a public good. The rise of the dollar in the early 80s left

many U.S. industries in a difficult position. Struggles for government support in the

form of industry-wide subsidies and lobbying for relaxed regulation were a common

theme at the time and eventually culminated with the Plaza Accord in 1985. A

central question of interest that arose was: how did the total rent-seeking of those

businesses and institutions compare to the public good benefit they would eventually
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receive?

This was precisely the question that Katz, Nitzan, and Rosenberg (1990) embarked

to answer. The authors consider a pollution clean-up example in one of two distinct

locations under the jurisdiction of a local authority. Identical clean-up costs and

identical valuations of clean air by all individuals across both locations are assumed.

The only heterogeniety between the two locations come from the different number of

individuals living in each location. The two groups engage in a rent seeking contest,

where the probability of success for location 1 is given, following Tullock (1980),

as the ratio between the total amount spent on rent-seeking by location 1 and the

total amount spent on rent-seeking by both locations 1 and 2. To start with, the

authors assume risk neutrality of all agents. Under these conditions Katz, Nitzan,

and Rosenberg (1990) show that the total rent-seeking done for the public good will

equal only one half of the benefit to a single individual. This suggests that the total

rent dissipation is likely to be very small compared to the cost of providing the public

good in practice. Furthermore, they show that this result is completely independent

of both the total number of individuals and the distribution of those individuals across

the two locations. These results seem very robust as they continue to hold even in the

case of more than two teams, different wealth levels across locations, and risk averse

agents.

Another interesting facet of Katz, Nitzan, and Rosenberg’s (1990) model is that

in the unique symmetric equilibrium the free-rider problem seems to disappear on

the team-level. The reason for this comes from the fact that the free-rider problem

is exactly counterbalanced by the increase in the total size of the prize for the group

- both increase equivalently with group size. Each extra individual added to one lo-

cation decreases the rent-seeking by others. But the aggregate decrease he causes is

exactly equal to his own rent-seeking. It should be noted that in the unique equilib-
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rium all teams, regardless of size, end up with equal rent-seeking, thus allowing each

equal probability of winning the contest. In a way, this exactly replicates Tullock’s

(1980) result for individual agents competing for private reward and suggests that

the groups in this model really behave as if they were single contestants - a possible

explanation for the irrelevance of the size and distribution of agents across locations.

This naturally also implies that members of less populous locations will spend more

per-capita than members of more populous ones. Thus, the free-rider effect is clearly

observable on the individual level. On the group level, however, the aggregate prize

increases at the same rate, so the free-rider effect dissipates.

A very similar work that almost complements Katz, Nitzan, and Rosenberg’s

(1990) is that of Nitzan (1991). Once again the analysis is centered around a number

of groups which compete for a single rent; all group members voluntarily decide on

their individual rent-seeking effort; and a single group wins the entire prize with

probability following Tullock (1980). However, unlike Katz, Nitzan, and Rosenberg’s

(1990), the single reward is characterized as a private good that has to be divided

among winning group members by some prespecified allocation rule. The specific

rule considered by Nitzan (1991) is a mixed allocation method in which a fraction

of the prize is divided under the egalitarian approach (equal distribution), while the

remaining fraction is allocated according to relative effort.

In the extreme case when the entire reward is split equally among team members

Nitzan (1991) shows that total rent-seeking is a small fraction of the total value of

the prize, it increases with the number of competing groups and decreases with the

total population. Furthermore, the free-riding effect is very clearly pronounced, lead-

ing larger groups to spend less on rent-seeking and leaving smaller groups members

with higher expected payoffs and higher chance of winning the rent. The opposite

extreme when the allocation mechanism is based purely on relative effort presents
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rather contrasting results. The number of teams no longer affects the total rent dis-

sipation and all agents across all teams have equal expected payoff in equilibrium.

Indeed, all agents exert the same level of individual rent seeking regardless of the

size of their team or the distribution of individuals across teams. This result implies

that the free-riding effect is completely cancelled out by the positive group-size effect.

The rent seeking of each group is thus proportional to its size and larger groups have

higher chances of winning the rent. Most of the rent is dissipated in this case. Finally,

Nitzan (1991) shows that in the full version of his model, when the allocation rule is

part-egalitarian and part based on relative effort, a few interesting observations tran-

spire. First, the number of competing teams does still have a positive effect on the

total rent seeking (this effect only disappears if the entire reward is split according to

relative effort). Secondly and not surprisngly, the degree of egalitarianism negatively

impacts the degree of total rent dissipation. Third, and perhaps most interesting, the

effect of the total population size is ambiguous - it is positive if the level of egalitari-

anism is very low, but negative otherwise. The one factor that is completely neutral

across all cases is that a change in the distribution of individuals across groups always

leaves the degree of rent dissipation unchanged.

Even though Nitzan’s (1991) mixed allocation rule approach provides a lot of

intuitive understanding of both the rent dissipation and the significance of the free-

rider problem, one big concern that remained unanswered was the determination of

the level of egalitarianism in each group. Nitzan (1991) assumed for the sake of

existence of Nash Equilibrium that all teams follow the same allocation mechanism.

This certainly does not have to be the case if the groups or teams were allowed to

be strategic in their choice of egalitarian versus performance-based prize sharing.

This question was first addressed by Lee (1995). He took the exact model presented

by Nitzan (1991), but transformed it into a two stage game. In stage one each
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team representative picks what fraction of the reward will be allocated based on the

egalitarian rule and what fraction would be given based on relative effort in order to

maximize the team’s aggregate expected payoff. This choice is made conditional on

the equilibrium allocation rules of all opposing groups, thus making the solution a

subgame perfect equilibrium. In the second stage all members of all groups observe

the realised levels of egalitarianism and pick individual outlays optimally. Lee (1995)

shows that in the two team case, if both teams are equally populous, then the optimal

allocation rule is to reward group members entirely based on relative contributions.

If, however, the two teams are of unequal size, then the smaller team still should

allocate the reward based on relative efforts, while the bigger team should employ

the mixed rule in Nitzan (1991). The degree of egalitarianism in the larger group

also grows with the degree of disparity in team sizes. In equilibrium both teams exert

equal levels of rent-seeking, thus making both equally likely to win. Furthermore, this

rent dissipation is once again equivalent to that of the single player case in Tullock

(1980). Given this, the above result should make intuitive sense - as the bigger team

grows in numbers, it needs less and less individual contribution from each member in

order to compete agaisnt the smaller team. This allows it a choice of a more relaxed

approach when incentivizing its agents, hence allowing for a more liberal use of the

egalitarian rule despite the free-rider effect it may cause. Finally, Lee (1995) shows

that it is not really the team’s larger size that drives this effect. Even with more than

two groups it is optimal for every team leader to chose the relative performance-based

allocation rule and completely forego the egalitarian approach as long as all teams

are smaller than half the total population. Thus, the only case in which a partially

egalitarian mechanism could show up in equilibrium is when one of the teams has

grown large enough to include more than half of all agents.

It should be noted that even thought both groups end up sharing equal rent,
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the ability of the smaller group in Lee (1995) to compete is severely limited by the

restriction that the degree of egalitarianism be a positive fraction. Baik and Lee

(1997) substantially extend the original two-stage game by removing this restriction.

They allow the fraction of the rent distributed equally to be both negative or bigger

than 1. The fraction can be negative if a group takes equal contributions from all

members and then redistributes them according to relative outlays. Alternatively, a

fraction bigger than 1 would imply that a group collects resources from its agents

based on their relative effort and then redistributes those equally among everyone.

The latter case could actually discourage members from sharing in the rent seeking

effort and could even lead to a negative aggregate group outlays. The authors allow

this to be the case as long as the total outlays of both teams remain positive. If

this were to occur, then the group with negative outlays will lose the contest with

probability 1. This is a very interesting possibility as the winning team effectively

”bribes” the loser by allowing them to borrow some of their outlays, thus exacerbating

the free-rider problem on the losing team and securing its own victory.

In the subgame perfect equilibrium, however, this does not occur. The more

populous team still chooses a degree of egalitarianism between 0 and 1, just as in the

original model of Lee (1995). The difference in Baik and Lee (1997) is that the smaller

team ends up choosing a negative degree of egalitarianism. It borrows equally from

all its members and then redistributes the collected extra rent among them according

to relative effort. This incentivizes the smaller group to share a larger portion of

the total outlays and gives it higher probability of winning the contest. Just as in

the previous few papers with private rents, the degree of rent dissipation remains

independent of the distribution of individuals across teams. It is equal to (N − 1)/N

where N is the total populatoin, the same as in the single player contest of Tullock

(1980).
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Baik and Lee (1997) also add an extra third stage to the contest which occurs

before the allocation rule selection. In this extra stage they allow individual members

to change teams. If the total number of members is even, then in equilibrium both

teams end up with equal size and the expected payoff to each agent is the same. If

the total number of players is odd, then in equilibrium one of the teams has an extra

member. The sharing rules in stage two will then be very close to allocation based on

relative effort. These results strongly rely on having only two competing groups and

on the use of the relaxed parameter restriction framework for the allocation rules in

Nitzan (1991).

One point that fails to be addressed in the works discussed thus far is the pos-

sibility that large groups lacking proper incentives sometimes fail to organize and

lobby. A situation in which some contestants reitre from seeking a rent is commonly

referred to as oligopolization. Different works in the late 80s try to characterize when

oligopolization might occur based on mostly individual player characteristics. Hillman

and Riley (1989) explain this as a consequence of disparities in the prize valuations

of individual agents. Skaperdas (1991) attributes it to endowment differences, and

Hirshleifer (1989) shows that it can be a result of the structure of contest success

functions. None of these works, however, discuss the importance of group character-

istics. Ueda (2002) is the first to properly address this issue, once again in the context

of Nitzan’s (1991) model. Ueda (2002) points out that both Nitzan (1991) and most

of the following literature in the 90s focuses too strongly on the interior equilibria,

and he argues that this is not equivalent to lack of oligopolization. Consider a two

group contest for instance. According to the view of the earlier works, if one of the

teams seizes to compete, then the other would need to show only minimal effort to

win the prize, resulting in monopolization. But this is certainly not the case in the

presence of internal team incentives. The players on the remaining team may still
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put in a lot of effort because of the within-group competition.

In this context, Ueda (2002) is able to find the degree of rent dissipation even in

the most general case with many teams. He defines a measure γi which represents the

stand-alone incentives for any group member of team i - the marginal benefit from

effort that this individual would earn even if all her teammates decide to refrain from

participation. He then considers the difference between γi and the relative effort of

this individual compared to the total outlays by everyone else. In a way this weighs

the difference between the individual marginal benefit from effort and the individual

equilibrium effect on the probability to win from this same effort. Ueda (2002) shows

that if we considered all possible subsets of competing groups, then in the unique Nash

Equilibrium the set of active groups maximize this difference on average (it should be

noted that this difference only depends negatively on the degree of egalitarianism and

the size of the group, so it can be calculated exogenously for every team). In other

words, in any Nash Equilibrium, each active individual achieves the highest degree

of individual reward relative to her own effect on the probability to win on average.

This result allows Ueda (2002) not only to find an explicit formula for the degree of

rent dissipation, but also to show that in equilibrium rent dissipation is maximized

across all possible subsets of possibly active groups. To interpret this differently,

only groups whose members receive stand-alone incentives γi exceeding the degree

of rent dissipation will choose to remain active in equilibrium. This throws a lot of

light on the occurence of monopolization in the original work of Nitzan (1991). If a

team can achieve high enough stand-alone incentives by employing allocation rules

based sufficiently on performance, then it can potentially make the benefit of effort in

competing groups too low, thus completely removing them from the contest. Perhaps

ironically, this still maximizes the degree of rent dissipation. In a way, even though

other groups retire from the contest, the remaining team still exerts a lot of effort to
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maintain this status. This bears a lot of resemblance to entry-deterrence games in

Industrial Organization, but it also goes beyond that because there is still internal

competition between the monopolizing team members for the division of the reward.

These oligopolization results only hold in the context of predetermined levels of

egalitarianism. It would make sense that if team leaders are allowed to choose the al-

location mechanisms endogenously and maximize group welfare, then they would not

simply let their group drop out of the contest. Ueda (2002) confirms this intuition by

showing that when applying the same formulation to Baik and Lee’s (1997) two-stage

game with endogenous choice of distribution rules oligopolization never occurs. Every

member of every team will always put in positive effort in the unique equilibrium.

Despite the ubiquitous presence of the central theme of rent dissipation in Nitzan

(1991), Lee (1995), and Baik and Lee (1997), these works inevitably throw light on

another very closely related problem - that of the the group-size paradox. Dating

back to Olson’s (1965) thesis, the group-size paradox states that larger groups are

less effective at attaining their goals than smaller ones. It should be noted that the

concepts of group and effectiveness more often than not come hand-in-hand . After

all, agents tend to pool efforts only if the group action is likely more effective than

individual outlays in the first place. And yet the question of what group effectiveness

is can be quite ambiguous. The most common interpretation, established in the early

works of Olson (1965), Chamberlin (1974), and Oliver and Marlwell (1988) is that

effectiveness is nothing else than the group’s probability of earning a certain prize or

rent. Olson’s (1965) argument that larger groups are less likely to accomplish their

goals raised a lot of questions at its time. Most of us are more likely accustomed to

the polar opposite of divide and conquer. The early literature identified the natural

culprit for the occurence of the group-size paradox as the free-rider problem. Larger

groups tend to make individual deviations seem less impactful, while at the same
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time reducing the size of private rewards. A natural way to resolve this problem is

to address the question of how to divide the rewards in ways to counter the free-rider

problem. The results of Nitzan (1991), Lee (1995), and Baik and Lee (1997) clearly

suggest that incentive schemes that are less egalitarian and more performance-based

seem to avoid and reverse the group-size paradox. However, alternative individual

incentives seem not to be the only way to resolve this phenomenon.

A very different approach, based on the early intuition of Chamberlin (1974), is

offered by Esteban and Ray (2001). The authors show that even if the division of

private rewards is performed in a completely egalitarian way, the group-size paradox

is still very unlikely to occur as long as the rewards exhibit at least some public

characterisitcs. The latter are quite likely in reality as even purely monetary rewards

often come with a degree of recognition or reputation. To demonstrate this result,

Esteban and Ray (2001) focus on one key element that was mostly overlooked in the

literature up to that point - the convexity of the effort cost function. They argue that

the standard case of linear cost of effort is very unrealistic: imperfect capital markets

make the opportunity costs of borrowing large amounts steeper, while time-based

effort should also come at increasing cost as it tends to make the less remaining

time for alternate actions more valuable. In their model, a fixed fraction of the

economic rent is provided as a public good, while the remaining private good is

dividied equally among winning group members. This is to be distinguished from the

perceived degree of publicness, which is given as the fraction of the individual reward

that comes as a public good. The latter depends on group size - larger groups will

divide the private component among more members, thus making the public good

constitute a higher fraction of individual rewards, even though it is a predetermined

fraction on the group level. It turns out that it is the difference between precisely this

perceived degree of publicness of the good and the elasticity of the individual cost of
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effort that determines whether the group-size paradox occurs or not. Esteban and

Ray (2001) first show a very strong result - if in the unique symmetric equilibrium

the effort cost elasticities are larger than one (quadratic cost or steeper), then the

level of collective action increases in group size. They further show that the group-

size paradox also seizes to exist if those elasticities are smaller than one as long

as the degree of publicness of the rent is high enough. The closer the effort cost

elasticities are to 0 (linear cost), the higher the required threshold of publicness of

the good in order to ensure this result. But even if these conditions are violated, it

is still possible for the group-size paradox to disappear depending on the sizes of the

participating teams. If the teams are populous enough, then the degree of perceived

publicness of the good may be large enough relative to the cost elasticities, so that the

actual level of publicness does not matter. This last result is particualry interesting

because it can explain why it is typically large and diversified organizations and not

narrower specialized groups that succeed in their lobbying efforts for government

support. These conclusions also suggest that the group-size paradox is only certain

to occur in the extreme case of linear costs and purely private rents. For any other

parameter values it is more likely for the effect to be reversed. Additionally, these

results hold not only when comparing different-sized teams in any given equilibrium,

but also when possible growth in the size of any given group leads to an adjustment

towards a new quilibrium. Finally, Esteban and Ray (2001) were able to classify the

types of prizes for which their conclusions apply as equivalent to Chamberlin’s (1974)

original definition of normal goods - goods for which a unit increase in effort by team

members leads to an equilibrium individual effort decrease of less than one unit. The

convexity of the cost of effort is sufficient to establish this relationship in equilibrium.

The evidence in favor of the disappearance of the group-size paradox seems even

stronger if one allows the private prize sharing rule to be endogenized. This was first
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established by Nitzan and Ueda (2011), whose work serves as a nice bridge between

the group-size paradox literature and the rent dissipation literature discussed thus

far. On one hand Nitzan and Ueda (2011) generalize Esteban-Ray’s model by still

focusing on a mixed public-private reward and convex costs of individual effort. But

on the other hand, they allow for analysis of the further effects of incentives by us-

ing the endogenous allocation mechanism for the private component of the reward

from Nitzan (1991). They consider a two-stage model in which each group leader

first chooses what fraction of the private rewards will be allocated based on relative

effort and what fraction based on the egalitarian rule. This is done in a way that

maximizes the group’s aggregate welfare. In the second stage each member chooses

effort optimally. Most importantly, the first-stage choice of the allocation rule is done

in private and not observable by outsiders. The rationale behind this assumption

is that the sharing rule is not meant to be a strategic variable. For instance, the

employment of very strong incentives within a group, if observable, may send a signal

to opponents about the nature of the competition they will face, and thus affect both

their expectations and equilibrium efforts. This may undermine the value of such rule

in the first place, but even if we were to abstract from such equilibrium effects, what

is to say that the the group will not change its rule later in secret? Such allocation

mechanisms are naturally chosen internally and it would be challenging to enforce

public revelation. Thus, the degree of egalitarianism remains private information

only observable by team members. The implications of this assumption are crucial

for the choice of equilibrium concept in such a model because individual agents never

face a fully defined subgame. Each group member is not able to infer the payoff func-

tions of opposing group players and will have to form believes about the other group’s

allocation rules. Hence the use of perfect Bayesian Equilibrium. The authors show

that there is a unique such equilibrium in which every individual in the same group
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chooses symmetric effort. Moreover, the endogenous level of egalitarianism is posi-

tively related to a group’s equilibrium probability of winning the prize. This closely

supports the earlier intuition that only weaker (in this case smaller) teams resort to

performance-based incentives in order to be able to compete with stronger teams.

Finally, Nitzan and Ueda (2011) also show that the group-size paradox completely

disappears as long as the prize is not completely private. This is a much stronger

result than the one in Esteban and Ray (2001) as it does not depend on the elasticity

of the cost function. Since effort is extracted optimally, the group leader is able to

creative postive effort externalities from each agent. The latter effectively sets the

marginal cost of individual effort equal to the added marginal benefit of all group

members, thus significantly increasing her outlay. This positive externality naturally

scales with group size - the larger the group, the higher the added benefit of using the

optimal incentive scheme. Additionally, this clearly implies that groups with lower

marginal costs will have higher probabilities of success and will have the freedom to

use more egalitarian allocation rules.

The study of incentives discussed so far has centered exclusively on models in

which the inherent symmetry amongst agents in each group has lead to similarly

symmtrical treatment of those agents in equilibrium. This neglects one of the main

aspects of Olson’s (1965) thesis: giving incentives to a subgroup of agents might lead

to an improvement in the group’s welfare. The reason why this effect has escaped

most of the contest theory literature in the 90s and early 2000s is to a big extent

due to the fact that all these models treat agents’ efforts as perfectly substitutable.

Unfortunately, perfect substitutability is an extreme that enforces equal treatment

of individuals in symmetric equilibria and in many ways fails to adequately address

the core ideas of Olson (1965). Without adding explicit hetorogeneity among group

members, Ray, Baland, and Dagnelie (2007) were among the first to provide early
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insight regarding this issue. They consider a single-team model in which group out-

put is given by a constant elasticity of substitution production function of individual

outlays. The agents are otherwise symmetric and the cost of effort is linear, but the

share each agent receives of the total prize can be different. In this context, Ray,

Baland, and Dagnelie (2007) study the dependancy of aggregate social surplus (the

difference between total team output and the added cost of effort) on the structure

of the share vector. The authors show that if the elasticity of substitution is no more

than 2, then the marginal effects of the individual shares on aggregate welfare is de-

creasing in share size. In other words, transfering a small fraction of reward from

individuals who are treated more favorably by the allocation rule to individuals who

receive less, would provide positive incentives and increase aggregate output as long

as personal efforts are strong enough complements. The only vector of shares that

cannot be improved in this manner is the one that treats all members equally. It is

very important to understand that this is not an optimality result in a mechanism

design sense. Instead, it is an improvability result given a starting equilibrium. Ray,

Baland, and Dagnelie (2007) also show that if the elasticity of substitution is greater

than 2 then the equal treatment (fully egalitarian) outcome is improvable by equal-

treatment minorities, i.e. outcomes in which the rewards are split evenly, but only

among a subset of agents. It is argued via simulations that as the degree of substi-

tutability among agents increases, the number of agents that receive positive shares

must decrease. It had been commonly observed that Olson’s (1965) arguments seem

adequate when agents are perfect substitutes, but that they fall apart when agents

are perfect complements. The significance of Ray, Baland, and Dagnelie (2007) is to

provide a bridge that reconciles both sides of the argument while providing a com-

plete characterization across the full spectrum of complementarity between individual

efforts.
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A different approach to introducing heterogneity in the collective action problem

is presented in Epstein and Mealem (2009). In their model each individual receives

a different benefit if her team wins the prize. This private valuation is not affected

by the size of her team as the reward is considered a public good within the team.

The authors consider two mathematically equivalent formulations. In the first the

group’s success chance is given by relative group outlays as in Tullock (1980) and

the cost of effort is convex. The alternative formulation includes linear cost of effort

but diminishing returns to individual effort. Similar to Esteban and Ray (2001),

the convexity of the effort cost function limits the potential for free-riding. As the

degree of convexity increases, the relative equilibrium efforts between any two group

members become proportionally equal to the ratio between their private benefits from

winning. Furthermore, the same increase in convexity (or decline in the marginal

benefit of effort) in the limit leads to an equilibrium outcome in which only the

number of individuals in each group matters. The individual valuations seize to have

effect on the group’s probability of success. This is simply a result of the declining

personal outlays. In the limit each member’s contribution is so small that the relative

differences between players become irrelevant. Perhaps more intriguing in Epstein

and Mealem (2009) are the results relating to group composition and interaction

between teams. The authors show that an increase in a given individual valuation

will increase the equilibrium effort of that player, while decreasing the efforts of all

her teammates. Note that the group’s total outlays will increase, thus eliminating the

group-size paradox. Furthermore, this increment in valuation will stimulate the other

team’s members if their group is stronger (defined by the level of aggregate valuation

added across members). The opposite effect will occur if the other team is weaker

- then all its members will reduce their equilibrium effort, thus making their team

even weaker. Finally, Epstein and Mealem (2009) consider the question of increasing
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group size by adding either one or two additional members (with equal aggregate

valuation). There are two competing effects from increase in a group’s aggregate

benefit from the reward. On the one hand this would affect everyone’s individual

effort levels to increase team output, but on the other hand this benefit is affected by

diminishing returns to individual effort. It is shown that if the convexity of effort is

low enough, then it is optimal to add one single individual with higher valuation to

the group. If, however, the marginal benefit of effort declines sharply, then it is always

optimal to add two individuals with smaller valuations. Indeed, the best change in

team composition would be to take full advantage of cost-sharing and to add as large

a group as possible with as small individual benefits as possible, presenting a very

strong argument against the group-size paradox.

The significance of inequality of individual valuations is further studied by Nitzan

and Ueda (2014), who extend Epstein and Mealem (2009) in two ways. First, they

allow for a prize with mixed public and private characteristics. Second, even thought

the public component is equally valued by all group members, the private component

is dividied according to predetermined and possibly unequal shares. It is the presence

of these unequal shares that leads to heterogeneity of individual valuations. Nitzan

and Ueda (2014) show that more unequal stakes lead to improvements in group per-

formance as long as the group’s equilibrium effort is low to begin with. Since the

inter-group contest success probabilities are given by relative team efforts, this im-

plies that this result is appicable to situations when either the team is a small part

of a contest against a multitude of opponents, or if a very strong opponent exists.

The nature of this result is most emphasized when the cost of effort is linear. In that

case it is optimal to concentrate the private rewards in the hands of a single group

member, leading to monopolization of the private component. However, Nitzan and

Ueda (2014) point out that ironically this monopolization comes at the cost of wel-
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fare lost by the monopolizing agent. In the alternative case when the cost of effort

is convex, the authors show that more equal share distribution always benefits the

performance of the group and higher individual stakes always lead to higher expected

utility within the group.

One way in which the analysis of Nitzan and Ueda (2014) can be extended is

by addressing the possible existence of complementarity between agents in a group.

Indeed, this has been an overarching problem in the literature on collective action up

to this point. Multiple works noted above demonstrate the importance of convexities

in the cost of effort, while others such as Ray, Baland, and Dagnelie (2007) focused on

complementarities in production. But to my knowledge, it was not until recently that

models started combining both features within the same framework. A recent work

that adequately extends the findings of Esteban and Ray (2001) and Nitzan and Ueda

(2014) in this respect is that of Kobayashi and Konishi (2020). The authors show

that high degree of complementarity between team members’ efforts accompanied by

sufficient convexities in the cost of effort lead to outcomes in which the egalitarian

rule is optimal. Contrarily, if effort costs are near linear or if the agents are closer

to being perfect substitutes, then focusing all the incentives in the hands of a single

team member maximizes team performance. Thus, Kobayashi and Konishi (2020)

very nicely unify the results from the previously discussed literature, while at the

same time providing a specific threshold separating the cases in which egalitarian-

ism and monopolization occur optimally. Furthermore, they strengthen the previous

results of Nitzan and Ueda (2014) and Esteban and Ray (2001), which were based

on Lorentz domination-based arguments, by directly addressing the optimality of the

chosen sharing rules in a full two-stage game. In stage one each group leader selects

a sharing rule for her team with the objective to maximize the team’s winning prob-

ability. In the second stage the team members observe the allocation rule and chose
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effort in a Nash Equilibrium across all members and all teams. A key to the analysis

of Kobayashi and Konishi (2020) is the use of the constant elasticity of subsititu-

tion effort aggregator within each group. Together with a constant-elasticity of the

marginal cost of effort formulation, this allows them to characterize equilibrium team

output and the second stage equilibrium on the group level entirely, thus providing

the above-mentioned results.

Finally, a very similar framework is employed by Crutzen, Flamand, and Sahuguet

(2020). The main distinction is that the authors consider the case of multiple indivisi-

ble rewards. They compare two types of prize-sharing rules within a team: egalitarian

versus a list rule. Under the list rule the rewards are allocated according to a predeter-

mined list of members, while under the egalitarian rule a fair lottery is used. Crutzen,

Flamand, and Sahuguet (2020) show that, once again, the degree of complementar-

ity between individual efforts and the degree of convexity of the effort cost function

are the key determinants for which kind of mechanism stimulates group perfromance

more. They confirm the findings of Kobayashi and Konishi (2020) in that high degree

of convexity or high degree of complementarity make the egalitarian rule preferable in

terms of increasing the probability of the team’s success. In the opposite case when

the list rule performs better, Crutzen, Flamand, and Sahuguet (2020) aslo discuss the

differences between open and closed lists. From the perspective of political science

open lists are typically considered superior in the sense that they provide more incen-

tives across the board. With closed lists individuals ranked near the top or bottom

rarely tend to exert much effort regardless. It is shown that this is indeed the case

only for intermediate values of the complementarity between individual efforts. As

agents become close to perfect substitutes or as the cost function approaches linear,

then the closed list would perform better.
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Chapter 2

Efficiency and Incentives in Teams
with Heterogenous Agents

2.1 Introduction

Compensation schemes designed to motivate team members have been a central issue

in the economic analysis of labor provision (Irlenbusch, Ruchala, 2006), as well as in

the theory of contests in general. Many businesses differentiate between merit-pay

rewards such as salary and performance-based rewards such as bonuses and variable

pay options. In many cases these performance-based rewards are not conditioned on

individual performance, but rather on team performance (Hamilton, Nickerson, and

Owan, 2003). Typically there are two reasons for that: (1) individual performance is

not observable or not verifiable in court; and (2) these mechanisms are designed to en-

courage cooperative behavior in order to take advantage of existing complementarities

between individual efforts in production.

Motivated by these observations from the empirical labor literature, this paper

focuses on the theoretical analysis of collective action, group efficiency, and incentive

mechanisms in situations when individual outlays of heterogeneous agents are not

observable. Since the reward allocation within the group cannot be conditioned on
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effort, it is going to be dependent instead on observable worker characteristics, hereby

modeled as ”individual abilities”, as well as on the observable level of aggregate

output. The heterogeneity granted by the differences in agent productivity and the

inability of the team leader to condition rewards on personal outlays are the two

main distinguishing features of this work. A third distinguishing feature lies in the

incentives of the group leader. Here she is not a benevolent social planner trying

to maximize group welfare. Instead she tries to maximize team output directly. In

this model it is perhaps reasonable to think of the team leader as a department

chair trying to coordinate the efforts of her subordinates, or in the context of sports

as the coach stimulating his team to compete. Similar to a mechanism designer, the

objective of the team leader is to select an allocation rule that adequately incentivizes

the agents to exert more effort. The model unfolds as a two-stage game. The team

leader first selects an allocation mechanism - a complete contingency plan of how the

total reward will be divided depending on the realized abilities of the agents and on

the aggregate level of their output. Then the agents observe the allocation rule and

everyone’s abilities, and choose effort optimally in a Nash Equilibrium.

At this point, it is instructive to mention that I split the analysis into two distinct

sections. First I study the properties of the second stage equiilbrium for a fairly gen-

eral set of allocation rules. This allows me to discuss incentives for free-riding and the

disappearance of the group-size paradox in a broader sense without having to narrow

the focus on any one specific mechanism. The particular restrictions are that the

allcoation rule is weakly monotonic, non-wasteful, and the elasticity of the marginal

benefit of output for each agent is bounded by the elasticity of the marginal cost of

effort. The last condition is required for the second-order condition for individual

optimization. These allocation rules allow the team’s leader to reward certain agents

at the expense of others as the group becomes more productive. Having examined
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the general case, I only then move on to derive the optimal allocation rule and study

its implications for optimal group structure.

Motivated by Olson’s (1965) thesis, most of the previous works on collective action

starting the early 90s have focused on providing better understanding of the group-

size paradox, the idea that larger groups are less effective at achieving commong

goals. The early literature identified the natural culprit for the occurence of the

group-size paradox as the free-rider problem. Larger groups tend to make individual

deviations seem less impactful, while at the same time reducing the size of private

rewards. There are three main approaches commonly used to address this issue: (1)

introduce pubilc component to the otherwise private rewards earned by the agents,

as was originally done by Nitzan (1991); (2) introduce incentives that diminish the

free-rider problem by conditioning individual payoffs on relative effort (as oppposed

to equal shares), mostly emphasized in the extensions provided by Lee (1995) and

Baik and Lee (1997); and (3) by introducing complementarities in individual efforts,

as well as cost-sharing incentives generated by high elasticity of the marginal cost of

effort, highlighted by the insightful work of Esteban and Ray (2001) and Ray, Baland,

Dagnelie (2007). Finally it should be noted that just as in this paper, Ray, Baland,

Dagnelie (2007) also consider a situation in which efforts are not observable. However,

they use constant exogenous shares in their allocation rule. I will show that using

linear shares eliminates one of the key incentives for free-riding, and thus limits the

scope of the discussion.

The philosophy behind the model in this paper in many ways unifies the preced-

ing literature by focusing on the common factor among those different approaches -

the relationship between the marginal benefits of individual agents and the level of

aggregate output. Observe the common theme that runs in many of those results.

When we have fully private rewards, adding a new member to a group reduces the
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share of everyone else, thus reducing the marginal benefit they receive when output

increases. By adding a public component to the rewards, we can limit the magnitude

of this decrease and hence limit free-riding incentives. Similarly, when the individual

payoffs are mostly private, the team representative can fight the free-riding incentives

by directly condioning payoffs on relative efforts. This is once again just another way

to prevent the marginal benefit of output from declining too sharply as the group

increases in size. A contribution of this work is to show that at the core of how we

address the free-rider incentives and the group-size paradox is the general problem of

how fast marginal benefits decline with output. For this purpose, in the first part of

this paper, I focus very broadly on any weakly monotonic allocation rules for which

the elasticity of the merginal benefits of all agents are bounded by the elasticity of

the cost of effort. The idea is that as output increases, all active agents are rewarded

more, but some at increasing and others at decreasing rates. If the rate of decrease

of the marginal benefit of any given agent is too sharp, this particular agent will fall

victim to free-riding.

Following in the steps of Kobayashi and Konishi (2020) and Crutzen, Flamand,

and Sahuguet (2020), I use a constant elasticity of marginal cost of effort and a CES

aggregator of individuals outlays that controls for the elasticity of substitution. I show

that if the elasticity of the marginal benefits of the agents with respect to both output

and the productivity of their teammates are too negative relative to the degree of

complementarity and the elasticity of output with respect to individual productivity,

then free-riding occurs. This is a general result that unifies all of the preceding works

by focusing on the core issue. In particular, suppose that the aggregate potency of

a group increases, either because of the addition of a new member, or because of

increase in the productivity (or human capital) of the existing agents. Then, if the

allocation rule overrewards the new member at the expense of everyone else, or if the
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rate at which their marginal benefits decline with output are too steep (negative),

then those agents will engage in free-riding and the organization will more likely suffer

from a decrease in group effectiveness. The previous literature on collective action

limits its attention to the first effect only (elasticity with respect to the potency of

the group) and neglects the second (elasticity with respect to aggregate outlays). I

show that even if the first effect is not strong enough to cause free-riding by itself, the

addition of the second effect could be enough to do so. One way to minimize these

free-riding incentives is by implementing allocation rules that are close to linear shares

(eliminating the second effect). It should be noted that Ray, Baland, Dagnelie (2007)

use such linear shares and the group-size paradox disappears. My work provides

deeper understanding of why that occurs.

In the second half of this paper I move on to discuss the optimal allocation mech-

anism, in which each individual is rewarded based on their relative ability compared

to that of everyone else (up to a power higher than unity). In the case of symmetric

player abilities, this reduces to the egalitarian rule, confirming the unimprovability

result of Ray, Baland, Dagnelie (2007) as a special case. This also conforms with the

corresponding findings in Kobayashi and Konishi (2020) and Crutzen, Flamand, and

Sahuguet (2020). Naturally, the group-size paradox is completely eliminated under

the optimal rule. Moreover, I am able to obtain a characterization of the optimal

group structure when ability is transferable between individuals. Consider a sce-

nario, for instance, when an agent is replaced by someone with slightly higher ability,

while another agent is replaced by someone with slightly lower ability - a tradeoff that

could occur during the hiring process preceding the game. Would this type of effective

transfer of ability be beneficial for the productivity of the group? I show that as long

as convexity of the cost of effort and the complementarity in production are both not

too hith, then the equilibrium effort choice of high ability players is more sensitive
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to changes in productivity of their teammates, and at the same time aggregate effi-

ciency is maximized when investing addtional ability in those high ability players in

the first place. This implies that transfering a small amount of productivity from a

low ability to a high ability player can improve aggregate efficiency. Furthermore, if

we want to transfer a fixed ε amount of ability, the most efficient way to do this is by

taking it away from the lowest ability member and giving it to the highest ability one.

Combined, these results imply that the distribution of abilities should be as spread

out as possible, a phenomenon that I refer to as ”preferences for diversity”. In the

limit it would be most effective to have one very high skill member accompanied by

a ”competitive fringe” of low ability players.

Before proceeding with the model I provide a detailed perspective on the evolution

of the collective action literature in the following section.

2.2 Single Team Model

Consider a group of n agents who jointly engage in collective action resulting in the

production of certain output. Each agent i ∈ {1, ..., n} is endowed with a different

level of productivity, which will be denoted by ai ≥ 0, and exerts effort denoted by

the continuous variable ei ≥ 0. Throughout the rest of this paper I will refer to this

productivity as the ability of each member. By assumption, the abilities of all agents

are common knowledge within the group. I am allowing for the abilities of some

agents to be zero and I will refer to those agents as dormant, since they are unable to

contribute to output. The remaining agents with positive ability will be considered

active. The presence of dormant players is important because it will later allow room

for increasing team size as a result of improvements in player productivity.

The joint level of output X is determined according to a CES production tech-
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nology:

X =
(

n∑
i=1

(aiei)1−σ
) 1

1−σ

(2.1)

This formulation allows me to consider different degrees of effort complementarity

measured by σ ∈ (0, 1). For values of σ > 1 a unique degenerate zero-effort equi-

librium exists, so I ignore this case. Naturally, the reciprocal 1
σ

is the elasticity of

substitution between individual effort outlays.

Following Esteban and Ray (2001), I assume that effort becomes increasingly more

costly with individual outlays. More specifically, I use the convex cost function

C(ei) = eβ+1
i

β + 1 (2.2)

The variable β > 0 is the constant elasticity of the marginal cost of effort (β =
eiC
′′(ei)

C′(ei) ). This specification corresponds to situations in which increasing effort takes

more time investment, thus increasing the opportunity cost of any remainng free

time for alternative activities. Finally, the cost function is common among all team

members as it is perceived that they partake in identical production activities within

the group.

I assume that the group is represented by a team leader who collects a fixed

fraction of total output (1 − γ)X. The remaining fraction γX is fully transferable

back to the agents. The team leader is not a benevolent social planner. His incentive

is to maximize group output. This is a departure from the standard literature on

collective action where joint welfare is typically the objective function. In this model

it is perhaps reasonable to think of the team leader as a department chair trying to

coordinate the efforts of her subordinates, or in the context of sports as the coach

stimulating his team to compete. Similar to a mechanism designer, the objective of
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the team leader is to select an allocation rule that adequately incentivizes the agents to

exert more effort. In this paper, however, payoff schemes based on individual outlays

will not be achievable. Instead, I assume, as is often the case, that the agent’s efforts

are not contractible in advance (even though they can be inferred in equilibrium).

The only available information on which the team leader can condition the individual

compensations are the agents’ abilities and the realized total team output (which is

assumed observable).

The chosen allocation rule will be denoted by

Q(a, X) = [q1(a, X), ..., qi(a, X), ..., qn(a, X)] (2.3)

where a is the full vector of individual abilities and qi(a, X) ≥ 0 is the share of the

reward given to any player i. In what follows I will often suppress the argument a and

denote these shares simply by qi(X) for brevity, but it should be emphasized that any

allocation rule is a full plan of action - it specifices how the reward is to be divided

for any vector of abilities. In particular, it conveys how the shares would be adjusted

if the abilities of any subset of players were to change. I restrict the space of feasible

sharing rules to all twice continuously differentialbe,weakly monotonic (with respect

to X). That is, for any active player i: ∂qi
∂X
≥ 0 An additional assumption sufficient for

individual optimality is that εXi < β, where εXi = X
∂2qi
∂X2
∂qi
∂X

is the elasticity of agent i’s

marginal benefit with respect to aggregate output. Note that this elasticity could be

even larger in any equilibrium. However, as the share of any given individual in total

output converges to 1, the elasticity condition becomes necessary and sufficient. Given

that β can be very large, the restriction εXi < β should allow for enough convexity in

the individual shares, even though it may be a tighter bound than necessary.

By assumption team output is fully transferable (after the team leader collects
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a fraction) back to the agents, hence I restrict attention to non-wasteful allocation

rules:

n∑
i=1

qi(a, X) = γX (2.4)

These restrictions imply that as the team becomes more productive the reward

each active individual receives also increases weakly. However, this can occur at a

decreasing rate. Intuitively, as group ouput increases all contributors are positively

rewarded, but their overall share of output remains the same. This still allows a lot

of freedom in the individual shares as they can be locally concave or convex (but not

too convex as the elasticities of the marginal benefits are bounded by β).

The rest of the model unfolds as a two-stage game. The team leader first selects an

allocation mechanism Q(a, X). The agents observe the allocation rule and everyone’s

abilities, and choose effort optimally in a Nash Equilibrium.

2.2.1 Equilibrium Effort Selection

In this, as well as the following two sections, I abstract away from the incentives

provided by the team leader and the first stage of the game. Instead, I consider any

exogenously given allocation rule Q(a, X) and more broadly study the properties of

the resulting second-stage equilibrium.

The individual utility of agent i is given as the value of her share of the reward

net of effort:

Ui(qi(X), ei) = qi(X)− C(ei) (2.5)

It should be immediately obvious that for every dormant agent it is always a
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dominant strategy to exert zero effort - increasing effort by such an individual is

costly and yet it brings no benefit since it does not affect output. On the other hand,

each active member of the group maximizes her utility by selecting effort optimally,

given the effort choice of everyone else:

max
ei≥0

qi(X)− eβ+1
i

β + 1

The first order condition is:

∂U

∂ei
= ∂qi
∂X

(X)∂X
∂ei
− eβi = 0

Using the fact that:

∂X

∂ei
= a1−σ

i Xσe−σi

it is straightforward to show that equilibrium individual effort equals

e?i = X? σ
σ+β

(
a1−σ
i

∂qi
∂X

(a, X?)
) 1
σ+β

(2.6)

Equation (2.6) implicitly solves for the equilibrium effort of agent i as a function of

the equilibrium team ouput X?. The first term on the right-hand side is a scale effect

suggesting that being on a more productive team may provide feedback incentives

for higher individual contributions. Moreover, this aggregate feedback effect becomes

stronger as the complementarity in production σ increases, thus matching the natu-

ral intuition that being on a more productive or competitive team can be stimulating

especially when working as a team is essential. The presence of the second term

(ai) shows that in any equilibrium higher ability individuals tend to contribute more.

Strategic effects aside, members with higher ability find it easier to compensate for
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the disutility of effort because their contribution is more valuable to team output per

unit of outlays. Furthermore, the positive ability effect becomes stronger the weaker

the complementarity between team members and the lower the elasticity of marginal

cost. The former should be quite understandable as higher complementarities would

limit the effectiveness of any one agent and hence constrain the importance of indi-

vidual ability. Contrarily, higher substitutability would allow the higher ability of one

member to compensate for the possibly low contributions by teammates, therefore

stimulating that member to work even harder. This effect could easily be countered,

however, by the choice of allocation rule. The presence of the last term suggests that

if the marginal benefit of total output to agent i is too low, then it can disincentivize

the agent. Additionally, it should be noted that equation (2.4) implies that

n∑
i=1

∂qi
∂X

(a, X?) = γ (2.7)

We can observe that there will be a distinct trade-off from the perspective of the

team leader when it comes to motivating team members. A more substantial increase

in the marginal benefit from output for one of them must often come at the cost of

disincentivizing someone else.

2.2.2 Equilibrium Group Output

By aggregating the individual equilibrium efforts from (2.6) it is straghtforward to

show the following result:

Proposition 1 Second stage equilibria exist for any Q(a, X) and any vector a. Equi-

librium team output is implicitly defined by the solution to:
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X?β =
 n∑
i=1

a
(1−σ)(β+1)

σ+β
i

(
∂qi
∂X

(a, X?)
) 1−σ
σ+β


σ+β
1−σ

(2.8)

Having solved for team output X?, the unique individual effort outlays of any

active agent can be found from (2.6).

The advantage of aggregating (2.6) across individuals is not only that it allows

us to confirm existence and uniqueness of second-stage equilibrium, but also that

it provides a useful equation (2.8) that allows us to characterize the second stage

equilibrium level of team output. Also note that there may be multiple fixed points

in equation (2.8), but for each of them the vector of equilibrium individual efforts is

unique, thus leading to possibly multiple distinct equilibria.

2.2.3 Discussion

The contest theory literature on collective action historically has focused on one re-

current question: how does group size affect team output? The overarching consensus

is that in cases when agents are perfect substitutes strong free-rider incentives arise

that can reduce team output, i.e. the group size paradox. Many works starting with

Nitzan (1991) and culminating with Esteban and Ray (2001) have shown that adding

public component of the rewards can easily reverse the group size paradox. But

how about settings when the goods are entirely private? The seminal work of Ray,

Baland, and Dagnelie (2007) shows that complementarity between agents can have

similar consequences in eliminating the group-size paradox. In all of the preceding

literature, however, agents are treated symmetrically in terms of their contributions,

and so the only way to increase team size is by adding more players. The hetorogenous

nature of my model allows to address group size questions from a slightly different
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perspective: how does an increase in individual ability affect group output? To ob-

serve the similar nature of the two problems consider a situation in which a dormant

member receives a positive boost in ability. This outcome is equivalent to that of

adding a new member to the team (recall that the allocation rule specifies a full

contingency plan depending on player abilities, so this type of change is well defined

within the confines of the model). Alternatively, a member i may leave the group and

be replaced by someone even more productive (interpreted once again as an increase

in ability ai). The key insight is that it is the aggregate potency of the group that

should be the determining factor for free-rider incentives and aggregate output rather

than the number of agents alone.

Proposition 2 Suppose that agent j is active in any initial equilibrium. Let

Ej =
n∑
i=1

ε
aj
i (X?) (aiei)?1−σ

(ajej)?1−σ

where ε
aj
i (X?) =

aj
∂2qi(X

?)
∂X∂aj

∂qi(X?)
∂X

is the elasticity of the marginal benefit of output for

agent i with respect to the ability of agent j in equilibrium. Then an increase in the

ability of agent j increases group efficiency, ∂X?

∂aj
> 0, if and only if (β+1)+(1−σ)Ej >

0.

Proposition 2 extends the results of Kobayashi and Konishi (2020). It confirms

that if we consider an increase in ability of any given individual as a form of indirectly

increasing group size, then the group size paradox completely disappears when either

the degree of complementarity σ or the elasticity of the marginal cost of effort β are

high enough. This result accounts for the adjustment towards the new equilibrium.

Observe that as σ → 1, Ej →
∑n
i=1 ai

∂2qi
∂X∂aj
∂qi
∂X

. As long as the elasticities are bounded the

term (1−σ)Ej becomes arbitrarily small, ensuring that the condition is satisfied. The
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boundedness of elasticities is a rather mild requirement that prevents the team leader

from dropping the marginal rewards to zero when a teammate’s ability increases.

Thus, we can conlude that high complementarity between individual efforts rules

out the group-size paradox. The individual whose ability has increased only holds a

limited impact on aggregate output and more effort from teammates is likely required

in order to to take advantage of her productivity increase, thus increasing aggregate

efficiency. Similarly, for any given σ, increasing the elasticity of the marginal cost of

effort arbitrarily high limits the potential for large increases in effort by the chosen

individual. Group members are likely to realize that cost-sharing is essential, thus

limiting free-riding and eliminating the group-size paradox.

Next, we are going to turn attention to the special case of increasing the ability

of a dormant agent. But before we do that I impose the following assumption:

Assumption 3 (Irrelevance of Dormant Agents) Dormant agents have no ef-

fect on the distribution of marginal benefits from group output among everyone else:

lim
aj→0

∂2qi
∂X∂aj

= 0, ∀i 6= j

Assumption 3 ensures that as an individual becomes active, at the margin, the

effect of his initial ability increase on the marginal benefits of everyone else vanishes

in the limit. Intuitively, when an agent ”activates” his ability is still essentially zero

and he has no effective contribution to ouput. Any changes in output must originate

from the active agents’ abilities and efforts and thus the presence of the dormant

player should have no relavance for the marginal benefits of everyone else.

Corollary 4 If agent j is dormant in the initial equilibrium, then ∂X?

∂aj
≥ 0 if and

only if
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∑
i 6=j

(aie?i )1−σ ∂2qi
∂X∂aj

≥ 0

If Assumption 3 holds, then ∂X?

∂aj
= 0.

The last result shows that Irrelevance of Dormant Agents is a sufficient condi-

tion for the group size paradox to disappear when adding a brand new member is

considered. If Assumption 3 is violated, then the cross-partial effects in Corollary 4

are likely negative (in the most intuitive case adding a new player could mean lower

shares for everyone else) and group-size paradox would arise. It should be noted that

Independence of Dormant Agents ensures that the equilibrium efforts of all other

agents are not affected when any given dormant player becomes marginally active

(shown in the proof of Proposition 6. In light of this the result of Corollary 4 should

not come as a surprise - if all other agents maintain the same effort and the ability of

the new agent added is marginally zero, then clearly group output will not be initially

affected. The results above can be unified in the following Corollary:

Corollary 5 Suppose that Irrelevance of Dormant Agents holds. Let

Ē = − sup
{X?,j}

|Ej|

be finite, and suppose that (β + 1) + (1 − σ)Ē > 0. Then the group-size paradox

disappears for any discrete increase in the ability of any agent:

4X? =
∫ ai+4ai

ai

∂X∗

∂a
da > 0

As long as the elasticities εaji (X?) are bounded, then either high enough β or high

enough σ can guarantee disappearance of the group-size paradox. This result unifies
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much of the preceding literature, in which particular bounds on β and σ typically

ensure this result. In order to better understand how the incentives of individual

players are affected, however, it would be instructive to study the behavior of their

optimal effort not only in this marginal case, but also when the ability of already

active agents increases.

Proposition 6 The equilibrium effort of agent i responds to changes in the ability

of agent j as follows:

(i) ∂e?i
∂aj

= 0 if agent j is dormant under Independence of Irrelevant Alternatives

(ii) sign
(
∂e?i
∂aj

)
= sign

[
(σ + εXi )εajX + ε

aj
i

]
when aj > 0,

where εXi = X? ∂
2qi
∂X2
∂qi
∂X

is the elasticity of the marignal benefit of group output to agent

i in equilibrium, εajX = ∂X?

∂aj

aj
X? is the elasticity of equilibrium output with respect to aj,

and ε
aj
i =

aj
∂2qi
∂X∂aj
∂qi
∂X

is the elasticity of agent i’s marginal benefit of output with respect

to the ability of agent j.

The second part of Proposition 6 allows us to identify the source of possible free-

rider incentives. To understand this, first note that εXi ≤ 0 for at least some agents

(it is not possible for all marginal benefits to be increasing or the agents’ aggregate

reward would increase faster than output). It is also instructive to consider the most

”standard” case when ε
aj
i ≤ 0. Intuitively, if agent j’s marginal benefit of output

increases in her own ability, then at least some of the other agents must have their

marginal benefits reduced. Furthermore, consider the case when the elasticity of the

marginal cost of effort is high enough, β > −Ej − 1, so that the group-size paradox

disappears and εajX > 0 (this assumed mostly for convenience as it will allow us to see

the effects of changing σ without worrying about a sign change in εajX ) . Under these

assumptions, Proposition 6 says that agent i is affected by free-rider incentives if and

only if:
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εXi + σ < −ε
aj
i

ε
aj
X

(2.9)

Given the ”standard” assumptions above, the right hand side is positive. Note that

in the literature on collective action εaji is commonly referred to as the negaitve free-

rider effect, while εajX as the positive group-size effect, i.e. free-riding is considered to

originate from the negative sign of εaji . Typically, the relative size of these two effects

is the key to eliminating the group-size paradox (making the ratio on the right-hand

side as small as possible). The third effect, εXi is new to this work. It has remained

hidden in previous works either because of the use of constant-share allocation rules

or because of the use of symmetric equilibria. In both of those cases εXi = 0. Thus,

the presence of εXi in Propostition 6 challenges the common definition of what free-

riding is while also providing an explanation for why it appears so predominant in

previous works.

There are two ways to think about this result. Firstly, given any σ, even if the

group-size effect is positive, it is still possible that a free-rider effect occurs among

some team members. In particular this happens to those individuals whose elasticity

of marginal benefit either with respect to output (εXi ) or with respect to aj,(εaji ), is

too negative. This should make a lot of intuitive sense. If an agent’s marginal reward

declines too fast with aggregate output, then a boost in a teammate’s productivity

is more likely to encourage them to lower their effort. This occurs both because the

marginal benefit of their effort declines with the equilibrium adjustment, but also

because the output contribution from their teammate is likely to compensate for it.

This disincentivizing effect is further exacerbated if the agent whose ability increased

is overrewarded at their expense due to the redistribution of marginal benefits (a very

negative εaji ). The philosophical perspective presented here is that free-riding does
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not only depend on each agent becoming a smaller part of the group, but also on her

being treated as such by the allocation rule. Even if σ < − ε
aj
i

ε
aj
X

(as in the majority

of ealier works), it is still possible for the team leader to choose εXi high enough for

specific targeted agents and completely prevent them from free-riding.

A second way to consider the condition of Proposition 6 is to take any given

allocation rule and consider what happens as σ changes. Suppose now that the

agents become stronger substitutes. If σ becomes low enough then it is possible for

all agents (other than j) to be afflicted by free-rider incentives.

Proposition 7 Suppose that β > −Ej − 1. Consider any allocation rule Q(a, X)

such that

min
{i:ai>0}

{sup
X
εXi } = ε̄ < 0

Then for any σ < |̄ε| an increase in agent j’s ability will lead to lower equilibrium

effort by everyone else.

The condition on β is just meant to ensure that the condition of Proposition 2 is

satisfied for consistency. This is the case in which the equilibrium increase in effort

by agent j is sufficient to overcompensate for this discouraging effect on everyone else

and the group-size paradox still vanishes.

This result has huge implications since it suggests that a lot of control over how

agents respond to increases in teammate abilities lies in the hands of the team leader.

For any given σ she can minimize the free-riding incentives by ensuring that these

elasticities are close to zero. The potential for free riding will be minimized in the

extreme case when all of these elasticities are zero, the case of linear shares. We can

interpret this observation as a bridge between the general case discussed thus far and

the optimal rule in the following section. Reducing free-riding incentives should have
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a significant impact on maximizing team efficiency. Thus, the result above hints that

the optimal allocation rule should exhibit linear shares. This is indeed the case.

2.3 Optimal Allocation of Rewards

We can now turn to the problem of the team leader whose payoff is a fraction of total

output. Therefore, she wants to choose the allocation rule Q(a, X) in a way that

maximized aggregate efficiency X? in the second-stage equilibrium. This is where

equation (2.8) from Proposition (1) is going to be very useful.

Lemma 8 Suppose that β > 1 − 2σ. Given any vector of abilities a and any fixed

level of aggregate output X, the expression

G

(
a, X, ∂q1

∂X
(a, X), ..., ∂qn

∂X
(a, X)

)
=
 n∑
i=1

a
(1−σ)(β+1)

σ+β
i

(
∂qi
∂X

(a, X)
) 1−σ
σ+β


σ+β
1−σ

obtains maximum when

∂qi
∂X

(a, X) = αi∑n
j=a αj

γ (2.10)

where αi = a
(1−σ)(β+1)
β−(1−2σ)
i ,∀i = 1, ..., n.

Proof. In any given state of the world defined by a and X, the problem of maximizing

G reduces to that of choosing the marginal benefits to each member γi = ∂qi
∂X

(a, X)

optimally. We have the following constrained optimization problem:

max
(γi)ni=1

n∑
i=1

a
(1−σ)(β+1)

σ+β
i γ

1−σ
σ+β
i
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subject to:

n∑
i=1

γi = γ

where the constraint is just a rewritten form of inequality 2.7.

The assumption β > 1 − 2σ ensures that this is a covex optimization problem.

Note that given the objective function, it is clear that the inequality constraint must

bind at the optimum.

The first order condition for constrained optimization is:

1− σ
σ + β

a
(1−σ)(β+1)

σ+β
i γ

1−σ
σ+β−1
i = λ,∀i = 1, ..., n

or

γi =
(
ai
a1

) (1−σ)(β+1)
β−(1−2σ)

γ1

After plugging in the constraint it is straightforward to obtain:

γ?i = a
(1−σ)(β+1)
β−(1−2σ)
i∑n

j=1 a
(1−σ)(β+1)
β−(1−2σ)
j

γ

A key observation from Lemma 8 is that the marginal benefits that maximize Γ

are independent of the state of the world X and only depend on the relative abil-

ities of the agents. This ensures that for any vector of abilities a the expression∑n
i=1 a

(1−σ)(β+1)
σ+β

i

(
∂qi
∂X

(a, X)
) 1−σ
σ+β is uniformly bounded as a function of X. We summa-

rize this observation in the following Lemma:

Lemma 9 For any vector of individual abilities a and any allocation rule Q(a, X),

the left-hand side of equation (2.8)
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G(X) =
 n∑
i=1

a
(1−σ)(β+1)

σ+β
i

(
∂qi
∂X

(a, X)
) 1−σ
σ+β


σ+β
1−σ

is uniformly bouded by the constant function

A(X) = γ

(
n∑
i=1

a
(1−σ)(β+1)
β−(1−2σ)
i

)β−(1−2σ)
1−σ

(2.11)

Proof. Plug in the optimal shares from Lemma 8 yields the results.

G(X) ≤ γ


n∑
i=1

a
(1−σ)(β+1)

σ+β
i

 a
(1−σ)(β+1)
β−(1−2σ)
i∑n

j=1 a
(1−σ)(β+1)
β−(1−2σ)
j


1−σ
σ+β


σ+β
1−σ

= γ

(
n∑
i=1

a
(1−σ)(β+1)
β−(1−2σ)
i

)β−(1−2σ)
1−σ

Finally we are ready to state the optimal allocation mechanism.

Proposition 10 Suppose that β > 1 − 2σ. Then, for any vector of abilities a, the

constant share allocation rule

qi(a, X) = a
(1−σ)(β+1)
β−(1−2σ)
i∑n

j=1 a
(1−σ)(β+1)
β−(1−2σ)
j

γX (2.12)

maximizes second-round equilibrium output. The value of the corresponding equi-

librium output equals

X? = A
1
β = γ

1
β

(
n∑
k=1

a
(1−σ)(β+1)
β−(1−2σ)
k

)β−(1−2σ)
β(1−σ)
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and the individual effort outlays by

e?i = γ
1
β a

2(1−σ)
β−(1−2σ)
i

(
n∑
k=1

a
(1−σ)(β+1)
β−(1−2σ)
k

) 2σ−1
β(1−σ)

Proof. Plug in the optimal shares from Lemma 8 yields:

The choice of qi(a, X) = γ?iX ensures that the left-hand side of equation (2.8)

obtains its smallest uniform upper bound. Given that the left-hand side of equa-

tion (2.8) is the exponential function Xβ this ensures that the unique fixed point in

equation (2.8) is maximized.

Figure 1 below shows visually the idea behind the optimality of the allocation rule

in Proposition 10. For any given allocation rule Q, the right-hand side G(Q,X) of

Equation (2.8) is bounded by the constant A. When the optimal allocation rule Q?

is used the right-hand side achieves this smallest uniform bound: G(Q?, X) = A. In

this case the equilibrium is unique and dominates every other equilibrium under any

other allocation rule.

Figure 2.1: Fixed Points in Aggregate Output

X

Xβ

A

G(Q,X)

X*(optimal)

G(Q*,X)

multiple equilibria
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This result as well as the discussion in the following sections strongly depend on

the assumption that β > 1−2σ. It should be noted that in the opposite case when β <

1− 2σ, i.e. when the cost of effort is near linear and/or when agents’ inputs are near

perfect substitutes, then it is optimal to give the entire reward to the highest-ability

player. Focusing all incenctives in the hands of a single individual corresponds closely

to Olson’s idea that the efficiency of collective action diminishes with group size when

the rewards are entirely private and individuals are close substitutes. In this model

this effect is further emphasized by the fact that when agents are perfect substitutes

it is socially wasteful to incentivize anyone but the highest ability individual as he

provides the highest contribution per unit of effort (assuming near linear effort cost).

In this paper we focus on the more interesting outcome when β > 1− 2σ.

2.3.1 Discussion

Proposition 10 implies that the optimal (team payoff-maximizing) allocation rule

assigns each team member a fixed share of the team reward, equal to her relative

ability compared to the ability of her teammates (up to a power β+1
β−(1−2σ)). This holds

if either the cost of effort is sufficiently convex (βj > 1 - quadratic cost or higher),

or if the degree of complementarity between individual member efforts is sufficiently

high (σ > 1
2). It is easiest to relate this result to the existing literature by looking at

a symmetric ability case.

Corollary 11 Suppose that β > 1 − 2σ. If all agents are endowed with identical

ability a, then the optimal allocation rule is the egalitarian rule q?i (X) = γX
n

.

Ray, Baland, Dagnelie (2007) show that the egalitarian rule is not improvable by

Lorenz domination as long as σ > 1
2 . The result provided here both incorporates

their finding as a special case, but also stengthens it by using optimality instead of
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improvability. If there is low degree of substitutability between team members’ efforts,

then each member’s contribution is relatively more essential for her team’s output,

and providing equal incentives is most cost efficient. Similarly, if the costs of effort

exhibit high degree of convexity, then it would be very expensive (in terms of the

share rewarded) for a team to stimulate one individual to work very hard. Instead, it

would be much less costly to extract moderate effort from multiple individuals, hence

the egalitarian rule.

Next, I state a few results regarding team composition that are jointly discussed

below.

Corollary 12 (Disappearance of the group-size paradox) Suppose that β > 1−

2σ. Then aggregate efficiency is increasing in individual ability, ∂X∗

∂ai
> 0 if ai > 0,

and ∂X∗

∂ai
→ 0 when ai → 0.

Corollary 13 (Individual Effort Response) Suppose that β > 1−2σ and suppose

that the optimal allocation rule is used. Then:

(i) ∂e?i
∂aj

> 0 if and only if σ > 1
2 for any active agent i. Free-riding occurs if and

only if σ < 1
2

(ii) ∂e?i
∂aj

= 0 for any dormant agent i. Dormant agents are not responsive to

changes in group potency.

(iii) limaj→0
∂e?i
∂aj

= 0

(iv) Higher ability individuals are always more sensitive to changes in a teammate’s

ability:

∂e?i
∂aj

=
(
ai
ak

) 2(1−σ)
β−(1−2σ) ∂e?k

∂aj

(v) Changes in the ability of high skill individuals have stronger impact on the

equilibrium effort of everyone else if and only if σ < 2
β+3 .
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∂e?i
∂aj

=
(
aj
ak

) 2(1−σ)−σ(β+1)
β−(1−2σ) ∂e?i

∂ak

Corollary 14 (Preferences for Diversity) Suppose that β > 1−2σ and σ < 2
β+3 .

Also suppose that ability is freely transferable among individuals. Then under the

optimal allocation rule:

∂X?

∂aj
=
(
aj
ai

) 2(1−σ)−σ(β+1)
β−(1−2σ) ∂X?

∂ai

(i) Consider two members i and j with with ai < aj. Then taking away ε > 0

ability from i and giving it to j will result in higher group efficiency. The benefit of

this transfer decreases in magnitude for higher σ, and disappears as σ → 1.

(ii) If ε > 0 ability were to be transferred between any two individuals, then the

aggregate increase in productivity is maximized when the transfer occurs from the

lowest ability to the highest ability agent.

Corollary 12 ascertains that the group-size paradox is completely absent as long as

the optimal allocation rule is used. Note that the fact that ∂X∗

∂ai
= 0 when ai = 0 does

not pose a contradiction to this claim. The group leader will always be indifferent

between hiring a dormant agent or not given the relative ability distribution rule.

However, as long as the added player has any positive ability ai > 0 , no matter how

small, her total effect on team efficiency will always be positive: 4X? =
∫ ai

0
∂X∗

∂a
da >

0. Thus, ”activating” a dormant individual always has a positive effect on team

output and the group-size paradox vanishes.

At the same time, however, there could still be free-rider incentives as Corollary

13 shows. If the elasticity of substitution is higher than 2, then adding an agent

with ability aj to the group will lower the equilibrium effort of everyone else: 4e?i =
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∫ aj
a=0

∂e?i
∂a
da < 0,∀i 6= j. Given Corollary 12, it must be the case that individual j’s

added effort overcompensates in the aggregate.

Corollary 12 also allows us to observe that the highest ability individuals have

the strongest incentive effects on the rest of the group as long as it is not the case

that both β and σ are very high. Since both of these variables negatively impact the

importance of ability, it makes should make intuitive sense that they cannot both

be arbitrarily large ( σ < 2
β+3) for this result to hold. The equilibrium share of any

agent i is more severely impacted by an ε change in the ability of another agent j

than from change in the ability of agent k as long as aj > ak. It is very important

to understand how this works throught the interplay of parts (i) and (v) of Corollary

12. Consider first the case when the complementarity between individual outlays is

high enough so that no free-riding occurs σ > 1
2 . Then the more we decrease the

equilibrium share of any agent i while increasing the ability (and hence share) of

agent j, the more i is stimulated to work harder in order to compensate for his share

loss, while taking advantage of the complementarity of efforts. Given (v), this is

achieved by choosing j to be the higest ability teammate. Now consider the opposite

case when σ < 1
2 and free-riding occurs. Then increasing the ability of agent j makes

her increase her outlays, while reducing those of everyone else. Even though the rest

of the agents reduce their equilibrium effort the most when j is the highest ability

agent, the decrease in their shares is also the biggest, so the two effects counter each

other. Thus, agent j’s (the only agent whose effort increases in equilibrium) share

increase is maximized, giving her the strongest incentives to increase her outlays. The

combined effect of her higher ability and higher incentivization overcompensates for

the effort loss in everyone else as given by Corollary 12. Additionally, we can also

note that part (iv) of Corollary 13 indicates that the highest ability individuals are

also the ones stre sensitive to changes in other player’s productivity. This further
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reinforces the intuition above - if the ε > 0 extra ability were allocated to someone

else, then the highest ability agent would generate the most sizeable free-rider effect

since she is most sensitive. By choosing her as the recipient of ε we ensure that the

least sensitive subset of n− 1 agents will engage in free-riding.

Corollary14 presents an additional unique result that implies that widening the

spread of the ability distribution within any given subset of agents will always increase

the group’s efficiency. We should be careful not to interpret this result as implying

that the incentives should be focused in the hands of one agent while removing ev-

eryone else from the group. The transfer is conditional on both agents being active

and thus Corollary14 merely addresses the distribution of ability and its effect on

aggregate potency once the set of active agents is determined. It is still beneficial to

add more agents to the team by Corollary 12, but once they join, the spread between

individual abilities should be as wide as possible. Combining both results suggests

that both bigger and more diverse teams are more productive. Additionally, it also

transipres from the proof of Corollary14 that if an ε > 0 ability were to be added to

the team, it is best invested in the higher productivity members as increases in their

marginal effectiveness are most impactful. Corollary 13 shows why this is the case

when we consider the strategic effect of this ability transfer. Equilibrium individual

effort outlays are more sensitive to changes in the ability of high-skill individuals

than to changes in the ability of low-skill individuals. Thus, investing any fixed ε > 0

increment in ability to the most skilled agent is most efficient because it provides the

strongest strategic response from the rest of the team.
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2.4 Appendix A

2.4.1 Second Order Condition for Utility Maximization
∂2Ui
∂e2

i

= ∂2qi
∂X2

(
∂X

∂ei

)2

+ ∂qi
∂X

∂2X

∂e2
i

− βeβ−1
i < 0

Note that because the effort aggregator exhibits constant returns to scale in indi-

vidual effort it follows that:

∂2X

∂e2
i

= σXσ−1a1−σ
i e−σ−1

i

(
ei
∂X

∂ei
−X

)
< 0

Plugging in from the first order condition for eβi and rearranging terms yields:

∂2Ui
∂e2

i

< 0 ⇐⇒ a1−σ
i e?1−σi

X?1−σ (εXi + σ) < σ + β

The first term is the individual equilibrium output of player i relative to that of

the entire team (X?1−σ = ∑n
j=1 aje

?1−σ
j ) before aggregating and so it is less than or

equal to unity. The inequality provides an upper bound on the elasticity εXi of the

marginal benefit to player i with respect to output X. It is always satisfied if εXi < β.

2.4.2 Proposition 1 Proof:

Plug in from (2.6) into the equation from team output (2.1):

X? =

 n∑
i=1

a1−σ
i

X? σ
σ+β

(
a1−σ
i

∂qi
∂X

(X?)
) 1
σ+β

1−σ
1

1−σ

Redistributing terms yields (2.8). Note that the left-hand side of (2.8) is a strictly

increasing (exponential) function of X?, while the right-hand side is bounded, and

continuous as a function of X?. Continuity follows from C2 and boundedness from
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(2.7). Thus, we obtain existence of X?. Plugging back into (2.6) yields the unique

Nash Equilibrium effort levels for any given X?.

2.4.3 Proposition 2 Proof:

Implicitly differentiate equation (2.8):

β(1− σ)
σ + β

X?
β(1−σ)
σ+β −1 −

n∑
i=1

a
(1−σ)(β+1)

σ+β
i

1− σ
σ + β

(
∂qi
∂X

) 1−σ
σ+β−1

∂2qi
∂X2

 ∂X?

∂aj
=

= (1− σ)(β + 1)
σ + β

a
(1−σ)(β+1)

σ+β −1
j

(
∂qj
∂X

) 1−σ
σ+β

+ 1− σ
σ + β

n∑
i=1

a
(1−σ)(β+1)

σ+β
i

(
∂qi
∂X

) 1−σ
σ+β−1

∂2qi
∂X∂aj

The term in the square brackets of the left-hand side can be rewritten as follows:

1
X?

(1− σ)
σ + β

βX?
β(1−σ)
σ+β −

n∑
i=1

a
(1−σ)(β+1)

σ+β
i

(
∂qi
∂X

) 1−σ
σ+β

εXi

 >

1
X?

β
(1− σ)
σ + β

X?
β(1−σ)
σ+β −

n∑
i=1

a
(1−σ)(β+1)

σ+β
i

(
∂qi
∂X

) 1−σ
σ+β

 = 0

We have used the assumption that εXi < β. Thus, the sign of ∂X?

∂aj
is the same as

the sign of the right-hand side. Rewrite the right-hand side as follows:

1− σ
(σ + β)X?

(1−σ)σ
σ+β

[(β + 1)a
(1−σ)(β+1)

σ+β −1
j

(
∂qj
∂X

) 1−σ
σ+β

X?
(1−σ)σ
σ+β +

n∑
i=1

ai
aj
a

(1−σ)(β+1)
σ+β −1

i

(
∂qi
∂X

) 1−σ
σ+β

X?
(1−σ)σ
σ+β

aj
∂2qi
∂X∂aj
∂qi
∂X

] =

47



= 1− σ
(σ + β)X?

(1−σ)σ
σ+β

[
(β + 1)

e?1−σj

aσj
+ (1− σ)

n∑
i=1

ai
aj

e?1−σi

aσi
ε
aj
i

]

=
(1− σ)e?1−σj

(σ + β)X?
(1−σ)σ
σ+β

[
(β + 1) + (1− σ)

n∑
i=1

(aiei)?1−σ
(ajej)?1−σ

ε
aj
i

]

which gives the desired result.

2.4.4 Proposition 3 Proof:

∂e?i
∂aj

= a
1−σ
σ+β
i

1
σ + β

(
X?σ ∂qi

∂X

) 1
σ+β−1 [(

σX?σ−1 ∂qi
∂X

+X?σ ∂
2qi

∂X2

)
∂X?

∂aj
+X?σ ∂2qi

∂X∂aj

]

The sign depends only on the term in the square brackets above. Note that when

agent j is dormant this term becomes zero, hence ∂e?i
∂aj

= 0. Suppose instead that

aj > 0. The term in the square brackets can be rewritten as:

X?σ ∂qi
∂X

aj

[
(σ + εXi )εajX + ε

aj
i

]

where εXi = X? ∂
2qi
∂X2
∂qi
∂X

is the elasticity of the marignal benefit of group output to agent

i in equilibrium, εajX = ∂X?

∂aj

aj
X? is the elasticity of equilibrium output with respect to

aj, and εaji =
aj

∂2qi
∂X∂aj
∂qi
∂X

is the elasticity of the marginal benefit of output to agent i with

respect to the ability of agent j.

2.4.5 Corollary (12) Proof:

∂X?

∂ai
= β + 1

β
a

(1−σ)(β+1)
β−(1−2σ) −1
i

(
n∑
k=1

a
(1−σ)(β+1)
β−(1−2σ)
k

)β−(1−2σ)
β(1−σ) −1

≥ 0

with strict inequality for ai > 0.
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2.4.6 Corollary (13) Proof:

∂e?i
∂aj

= a
2(1−σ)

β−(1−2σ)
i

(1− σ)(β + 1)
β − (1− 2σ)

2σ − 1
β(1− σ)

(
n∑
k=1

a
(1−σ)(β+1)
β−(1−2σ)
k

) 2σ−1
β(1−σ)−1

a
2(1−σ)−σ(β+1)
β−(1−2σ)

j

2.4.7 Corollary (14) Proof:
∂X?

∂aj
∂X?

∂ai

=
(
aj
ai

) 2(1−σ)−σ(β+1)
β−(1−2σ)

Since the power 2(1−σ)−σ(β+1)
β−(1−2σ) is positive only if σ < 2

β+3 , it implies that higher ability

members bring higher marginal benefit from individual productivity in equilibrium.
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Chapter 3

Optimal Intra-team Allocation in
Group Contests with
Heterogeneous Agents

In this chapter I consider a multi-team extension of the basic model which should allow

better understanding of how the fundamental results can adapt when interactions

between teams are introduced.

The basic assumptions on the individual team level are essentially the same as

the single-team model, but I include them for completeness. Section 1.1 describes the

characteristics of the participants in the contest: individuals and teams. I then move

on to discuss the general structure of the team contests in section 1.2. Once this is

done, section 1.3 sets up the within-team reward allocation problem. Finally, section

1.4 defines equilibrium in this extended model.

3.0.1 Team-Specific Characteristics

There are J teams and each team j = 1, ..., J consists of nj members, N = ∑J
i=1 ni.

Each member i of team j is endowed with ability aij ≥ 0 and makes effort denoted

by the continuous variable eij ≥ 0. It is assumed that the individual abilities remain

private information within each team - each player knows the ability of her teammates,
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but not the abilities of agents on other teams. I assume that all individuals on the

same team face the same team-specific cost function Cj(eij) = e
βj+1
ij

βj+1 . Note that

the teams and players are completely heterogeneous - both the cost parameters and

number of players differ across teams, and so does individual player ability.

Team output Xj is, once again, given by a constant elasticity of substitution

aggregator:

Xj =
( nj∑
i=1

(aijeij)1−σj

) 1
1−σj

The elasticity of substitution 1
σj

also differs across teams. The same restriction

0 < σj < 1 applies since the σj > 1 case leads to a unique zero-effort equilibrium.

3.0.2 Inter-Team Prize Allocation Mechanism

I consider the most general type of contest in which the overall prize pool is allocated

among the competing teams based on their team outputs. Let X denote the vector

of realized team outputs: X = (X1, ..., XJ). Each Xj is the aggregated effort of all

team j members. The vector X is important in two different ways: 1) it determines

the size of the overall prize pool through a general production function F (X), and

2) it is used to determine how the prize pool is allocated among teams through an

inter-team allocation mechanism p(X) = (p1(X), ..., pJ(X)).

If we consider each team as a different department within a firm, then the function

F (X1, ..., XJ) summarizes the firm-level production technology and shows how the

efforts of individual departments affect the overall size of aggregate production (each

team can be interpreted as a factor of production). In this case, it could make sense to

impose standard classical assumptions on the production technology. Alternatively,

the overall prize pool may be fixed at a given value V, so that team effort has no effect
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on it: F (X) = V , just as would be the case in a standard Tullock contest. To keep

this as general as possible I only impose non-negative and non-increasing marginal

products: ∂F
∂Xj
≥ 0 and ∂2F

∂X2
j
≤ 0. This allows to endogenize size of the reward, without

ruling out fixed prize contests.

The prize is divided among the teams according to a predetermined allocation

mechanism denoted by p(X) = (p1(X), ..., pJ(X)). The share won by team j, pj(X1, ..., Xj)

is twice continuously differentiable and monotonic in own-team effort ∂pj
∂Xj

> 0. I as-

sume that the reward allocation mechanism p(X) is common knowledge among all

competing teams and that for any given realization of team outputs X = (X1, ..., XJ)

the shares pj(X) are assigned to satisfy the resource constraint ∑J
j=1 pj(X) ≤ F (X).

It should be noted that the divisibility of the reward is immaterial in the context of

this paper. The shares pj(X) could easily be interpreted as winning probabilities of

the (then) indivisible reward F (X).

To understand the scope of these assumptions note two familiar special cases: (1)

If F (X) = V and pj(X) = Xj
X1+...+XJ , then this is a standard Tullock contest with

fixed prize pool - a very common case in the contest theory literature; (2) If F (X)

is a constant returns to scale technology and pj(X) = ∂F
∂Xj

, then we have a standard

classical production function in which the factors of production receive their marginal

product.

3.0.3 Intra-Team Reward Alocation

Each team j = 1, ..., J is represented by a leader who keeps a fraction (1− γj) of the

team’s payoff pj(X). The team leader’s goal is once again to maximize team output.

The allocation rule within each each is going to be denoted by Qj(aj, pj(X)) =

(q1j(aj, pj(X)), q2j(aj, pj(X)), ..., qnjj(aj, pj(X))). Each qmj(aj, pj(X)) is the value
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awarded to member m of team j and is conditional on the realized outcome X only

via the team reward pj(X). The key assumption here is that each team considers

only the size of its own prize when deciding on how to solve this allocation problem.

The performance of the opposing teams only affects this allocation indirectly, through

the team contest mechanism p(X). This rules out ”grudges” against opposing teams

in which the team leader is willing to punish his team members if an opposing team

does well. Also note that aj is the vector of abilities on team j only. The shares

{qmj(aj, pj(X))}kjm=1 are assumed to be continuous, twice continuously differentiable,

weakly monotonic in pj(X): ∂qmj
∂pj(X) ≥ 0, and once again that εXjij < βj (for a discussion

of these assumptions visit the single-team problem. Just as in the single-team case,

after the leader of team j takes his share of the team reward (1 − γj)pj(X), the

remainder is fully transferable back to the team members ∑nj
m=1 qmj(aj, pj(X)) =

γjpj(X) for any pj(X).

3.1 Equilibrium

The problem is modelled as a two-stage game. In stage one all team leaders select an

allocation mechanism for their team and in stage two all agents select effort optimally.

Note that the abilities of all agents and the allocation rules chosen remain private

information within each team.

Consider first the extended effort-choice game played among all individuals across

all teams. The solution concept used in the second round departs from a standard

Nash Equilibrium. In particular, the equilibrium efforts of individual agents will be

selected as a best reponse to their teammates’ actions, but more importantly as a best

response only to the aggregated output of other groups. Each agent is very limited in

her understanding of the institutional characteristics of the other teams. She does not
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know their reward allocation mechanism, she does not know their abilities, and she

may not even know how many members they have. When choosing her best response

she is only able to act strategically against their aggregate output choice. The latter

affects her and the output of her team via the inter-team contest rule only.

Before defining the equilibrium formally, it is instructive to discuss the incentives

for both agents and leaders in slightly more detail first. Consider the optimization

problem for each individual player. Given the effort of all other agents on her team,

given her team’s allocation rule, and given the team output levels of all other teams,

each member m of group j chooses effort emj to maximize her utility:

max
emj≥0

Umj(emj) = qmj(aj, pj(X))− Cj(emj)

Observe that the utility of agent m on team j is only affected by the collective

action of other teams X1, ..., Xj−1, Xj+1, ...Xj. If two or more agents on another team

change their efforts in a way that does not affect their team’s output, then she will

remain unaffected. Similarly, if both the allocation rule and efforts within any other

team change in a way that leaves their output constant, she is once again unaffected.

Indeed, she may not even be able to detect that such changes ocurred. By assuming

that she plays best response to those aggregate actions only, and not to the individual

play of the agents generating them, I am able to go around the incomplete information

structure of the problem.

Using this observation, I define the equilibrium in individual effort choice as fol-

lows:

Definition 15 (Equilibrium among the agents) A vector of efforts {{e?mj}
nj
m=1}Jj=1

constitutes an equilibrium among the agents if for all agents i on all teams j:
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e?ij ∈ arg max
eij≥0

qij(aj, pj(e?−ij, eij, X?
−j))− Cj(eij)

i.e. given her team’s allocation rule Qj, each agent selects her effort optimally as

a best response to her teammates’ efforts {e?mj}m 6=i,and as a best response to the

equilibrium ouputs of all other teams X?
−j.

Next, consider the first-round problem for the team-leaders. Recall that each team

leader’s payoff is (1 − γj)pj(X). The equilibrium of the game among the agents X?

will satisfy the utitlity maximization for the team leaders if and only if:

Q?
j ∈ arg max

Qj
pj(X?

−j, Xj(Qj)),∀j = 1, ..., J

Given the equilibrium output choice of other teams, the aggregate output of team

j must maximize leader j’s utility. This is achieved by selecting the allocation rule

optimally.

3.2 Individual Effort Choice

Consider the optimization problem for each individual player. Given the effort of all

other agents on her team, given her team’s allocation rule, and given the team output

levels of all other teams, each member m of group j chooses effort emj to maximize

her utility:

max
emj≥0

Umj(emj) = qmj(aj, pj(X))− Cj(emj)

Note that for brevity I will supress the argument aj and denote ∂qmj
∂pj(X) = q′mj(pj(X)).

It is a dominant strategy for every dormant team member to put in zero effort. The

general form of the First Order Condition is for any active agent is:
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q′mj(pj(X)) ∂pj
∂Xj

(X1, ..., XJ) ∂Xj

∂emj
= C ′j(emj)

Note that with the CES effort aggregator:

∂Xj

∂emj
= a

1−σj
mj X

σj
j e
−σj
mj

The First Order Condition for emj then simplifies to:

e∗mj =
(
a

1−σj
mj q′mj(pj(X))

) 1
σj+βj

(
∂pj
∂Xj

) 1
σj+βj

X

σj
σj+βj
j (3.1)

Equation (3.1) implicitly shows that when each individual chooses her effort con-

tribution optimally, she does not need to take into account the individual effort of

opposing players, but it is sufficient to consider only the aggregated effort of oppos-

ing teams. Given the aggregated output of other teams, and given the effort of her

teammates, her effort choice is affected by her ability amj, the rate at which she gets

rewarded for increasing team output q′mj(pj(E)), the rate at which her team gets

rewarded by the contest allocation mechanism ∂pj
∂Ej

, the degree of complementarity of

team members’ effort σj, and the degree of convexity of the team-specific cost funtion

βj. Comparing this to the single team case, note the only difference is the presence

of the ∂pj
∂Xj

term which accounts for the fact that the team reward is not simply the

given team’s output, but is instead given by the intra-team contest rule.

3.2.1 Equilibrium Group Ouput

Just as in the single-team model we can aggregate the first-order conditions to obtain

the following equation that defines the best response X?
j .
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Proposition 16 Suppose that ∂
∂Xj

(
X
βj
j

∂pj
∂Xj

)
> 0. Then for any vector of team out-

puts by other teams (X1, ..., Xj−1, Xj+1, ..., XJ), and any allocation rule Qj(aj, pj(X)),

there exist a unique best response e?mj by each member of team j.

The aggregated ”group best reponse” X?
j for team j can be uniquely obtained by

solving:

(X?
j )βj =

(
∂pj
∂Xj

(X?)
) nj∑

m=1
a

(1−σj)(βj+1)
σj+βj

mj q′mj(pj(X?))
1−σj
σj+βj


σj+βj
1−σj

(3.2)

and the individual best reponses e?mj can be found by plugging into Equation 3.1

The proof follows exactly in the steps of the single-team case. One thing that

has to be taken care of is the presence of the ∂pj
∂Xj

(X?). It imposes a constraint on

the types of team contests for which Proposition 16 holds. It states that as a given

team increases its aggregate effort, the rate at which its resulting reward grows cannot

increase faster than the elasticity of the marginal cost of effort βj > 0, i.e. we rule out

contests in which team rewards can grow exponentially with effort. This assumption

is very mild and should be trivially satisfied in most fixed-reward contests, as well

as in firm production models exhibiting constant or decreasing returns. Consider a

classical model of a production funcion in which each factor(team) is paid is marginal

product, for example. The condition is then equivalent to assuming that the marginal

product of each factor cannot increase faster than the exponantial rate βj.

3.3 Optimal Allocation Rule

Recall that the objective for each team leader was to maximize pj(X) with respect

to Xj. Note that by assumption ∂pj
∂Xj

> 0. Hence, the following Lemma:
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Lemma 17 Given any vector of output choices by other teams, X−j, the utility of the

leader of team j is maximized if and only if her team’s output Xj is also maximized

conditional on X−j.

Lemma (17) is an intermediate step showing that utility maximization and output

maximization conditional on other teams’ choices are equivalent from the perspective

of the group leader.

Proposition 18 (Optimal Intra-Team Allocation Rule:) Suppose that the fol-

lowing conditions hold:

(i) ∂
∂Xj

(
X
βj
j

∂pj
∂Xj

)
> 0

(ii) βj > 1− 2σj

Then selecting the intra-team allocation rule

Q?
j(aj, pj(X)) = (q?1j(aj, pj(X)), ...q?kjj(aj, pj(X)))

such that

q?mj(aj, pj(X)) =
a

(1−σj)(βj+1)
βj−(1−2σj)
mj∑kj

h=1 a

(1−σj)(βj+1)
βj−2(1−σj)
hj

γjpj(X),

for all m = 1, ..., nj is a dominant strategy for every team leader in the first stage.

Proof.

By Lemma 17, the objective of the team leader is to maximize X?
j for any vector

X−j. But for the same vector X−j the aggregated best response of team j’s agents

must satisfy equation 3.2. This problem is equivalent to that of maximizing group

output in the individual effort choice game conditional on the equilibrium behavior
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of other teams. This is the same optimization problem as in the single-team case,

hence the result.

Imposing the optimal allocation rule incentivizes each team to select the best

response X?
j collectively in agreement with the team leader’s agenda.

Proposition 19 ( Second Stage Equilibria under the Optimal Rule:) Under

the conditions of Proposition 18, an equilibrium exists and must satisfy the following

system of equations:

(i) Aggregate equilibrium output levels are determined by the system of equations:

X
?βj
j = Aj

∂pj
∂Xj

(X?) (3.3)

where Aj = γj

∑nj
m=1 a

(1−σj)(βj+1)
βj−(1−2σj)
mj


βj−(1−2σj)

1−σj

.

(ii) For any vector of equilibrium outputs X?, the individual equilibrium efforts

can be obtained from Equation 3.1.

Proof. We are going to show existence of equilibrium for the aggregated ouput X.

Note that the set of all possible aggregate output vectors is closed and convex. The

equilibrium aggregate output of team j is also bounded as long as ∂
∂Xj

(
X
βj
j

∂pj
∂Xj

)
> 0

is satisified. The mapping given by the system of equations (3.3) is continuous. By

Brouwer’s Fixed Point Theorem there exists a fixed point X?. Individual equilibrium

efforts are always uniquely determined for any X? by point (ii) of Proposition 19,

hence we obtain existence.

Plugging in the consistent allocation rule into Equation (3.2) gives the desired

result.

Proposition 19 shows that discussing the equilibrium on the team level as described
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by the system 3.3 is sufficient since the individual equilibrium efforts can always be

derived uniquely afterwards.

3.4 Special Case: Tullock Contest with a Fixed

Reward

It would be interesting to gain more understanding about the interaction between

teams in any equilibrium. In order to do this, in this section I turn my attention on a

type of contest rule that has been very prevalent in the literature on collective action

- a fixed reward contest where the probability of success for each team is given by

Tulock’s (1980) relative effort formulation.

Consider a contest with symmetric costs of effort βj = β, ∀j, a fixed prize pool

of value V, and a reward mechanism in which the share of the prize pj earned by

each team j is proportional to its relative effort: pj = Xj
X1+...+XJ . In the context

of the general model from the previous section, the total prize pool is given by

the production function F (X1, ..., XJ) = V where agregate output is fixed and in-

dependent of team inputs, and the total prize earned by each team j is equal to

pj(X) = pjV = Xj
X1+...+XJ V . Each pj can be interpreted as the probability of winning

the reward V.

Denote total ouput t by X = X1 + ...+XJ and let X −Xj = X−j. Then,

∂pj
∂Xj

= (X1 + ...+XJ)−Xj

(X1 + ...+XJ)2 V = X−j
X2 V

The condition of Proposition (18) is satisfied:
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(i) ∂

∂Xj

Xβ
j

∂pj
∂Xj

 = ∂

∂Xj

 Xβ
j

X−j
X2 V

 =
βXβ−1

j X2 + 2Xβ
j X

X−jV
> 0

Assuming that βj > 1− 2σj, ∀j ≤ J ,we can apply the result of Proposition (19).

Equilibrium team efforts must satisfy:

X?β
j = Aj

X?
−j

X?2 V (3.4)

where recall that Aj = γj

(∑kj
m=1 a

β
β−2(1−σj)
mj

)β−2(1−σj)
1−σj

. In what follows I am going to

refer to Aj as the aggregate ability of team j.

Rewrite equation (3.4) as follows:

X?β
j = V Aj

X?
j

X?
−j

X?

X?
j

X?

which simplifies to

X?
j =

(
p?j(1− p?j)AjV

) 1
β+1 (3.5)

where p?j = X?
j

X?
1 +...+X?

J
Equation (3.5) implicitly solves for the aggregated best

response effort of team j as a function of its equilibrium share p?j , aggregate team

ability Aj, and the value of the reward V.

Proposition 20 Equilibrium team effort for any team j with aggregate ability Aj is

maximized when p?j = 1
2 with ∂X?

j

∂p?j
> 0 if p?j < 1

2 and ∂X∗j
∂p?j

< 0 if p?j > 1
2 .

Proof.

∂X?
j

∂p?j
= 1
β + 1

(
p?j(1− p?j)AjV

) −β
β+1 AjV (1− 2p?j) Q 0⇔ p?j R

1
2
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Corollary 21 Equilibrium team effort for any team j is increasing in other teams’

aggregate outlays if p?j > 1
2 and decreasing in other teams’ aggregate outlays if p?j < 1

2 .

Proof.

pj = Xj

Xj +X−j
⇒ Xj = pj

1− pj
X−j

Equation (3.5) is thus equivalent to:

(
p?j

1− p?j

)β+1 1
p?j(1− p?j)

= V Aj

X?β+1
−j

or
p?βj

(1− p?j)β+2 = V Aj

X?β+1
−j

(3.6)

The left-hand side is increasing in p?j , hence ∂p?j
∂X−j

< 0. The result follows from

Proposition 20.

Corollary 21 shows that competition incentivizes a team to exert more effort only

as long as it wins half of the total reward V or more.

A ”winning” team with p?j >
1
2 is positively stimulated by extra competition,

leading it to increase team effort, while ”losing” teams with p?j <
1
2 are discouraged

by higher competition in equilibrium. Figure 1 shows the reaction function for team

j. The peak always lies on the 45◦ line.
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Figure 3.1: Best Response for team j

X-j

Xj

45°

Rj

3.4.1 Equilibrium in the Two Team Case

Next we explicitly solve for the second stage Nash Equilibrium in the case of two

competing teams only.

Theorem 22 The unique equilibrium in the two team case is given by:.

X?
1 =

 V A
2+β
1+β
1 A

1
1+β
2(

A
1

1+β
1 + A

1
1+β
2

)2


1

1+β

;X?
2 =

 V A
2+β
1+β
2 A

1
1+β
1(

A
1

1+β
1 + A

1
1+β
2

)2


1

1+β

Proof.

Using p?2 = 1− p?1 and the equilibrium equations:

X?
1 = [p?1(1− p?1)V A1]

1
1+β

X?
2 = [p?2(1− p?2)V A2]

1
1+β
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we obtain:

p?1
p?2

= X?
1

X?
2

=
(
A1

A2

) 1
β+1

or:

p?1 = A
1

1+β
1

A
1

1+β
1 + A

1
1+β
2

; p?2 = A
1

1+β
2

A
1

1+β
1 + A

1
1+β
2

Plugging back into the equilibrium conditions gives the desired result.

In the symmetric case when A1 = A2 = A, the equilibrium shares are p?1 = p?2 = 1
2

and the best response finctions intersect at their peaks on the 45◦ line (X?
1 = X?

2 =(
V A
4

) 1
β+1 ) . Figure 2 depicts this case. Figure 3 shows the equilibrium when A1 > A2

(higher team skill shifts the best response peak higher along the 45◦ line).

Figure 3.2: Equilibrium in the Symmetric Case A1 = A2

X1

X2

X1*

X2*

R2

R1

These results suggest that in order to maximize total team outlays X?
1 +X?

2 , the

two teams should be as equally matched as possible (A1 = A2). This turns out to be

the case and the result is presented in the following section.
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Figure 3.3: Equilibrium in the case A1 > A2
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3.4.2 Effort-Maximizing Inter-Team Skill Distribution

So far we have treated the composition of each team, represented by the aggregate

team ability Aj, as exogenous. However, it is often the case in the real world that

individual skills are transferable and any given employee could be assigned to different

departments or teams. If that is the case, then an interesting question might arise for

the firm manager: how should different eployees be assigned across teams in order to

maximize total equilibrium output (effort)? Alternatively, a common point of interest

in the collective action literature is the size of rent dissipation. In this context, it

would be interesting to see how the distribution of aggregate ability across teams

maximizes the extent of rent dissipation.

Proposition 23 If there are only two teams with aggregate abilities A1 and A2, and

aggregate team ability is freely transferable between teams, then total rent dissipation

is maximized when A1 = A2.

Proof.

It can be shown that total outlays in the unique equilibrium are given by:
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X∗1 +X∗2 = V
1

β+1A
1

(β+1)2
1 A

1
(β+1)2
2

(
A

1
β+1
1 + A

1
β+1
2

)β−1
β+1

The problem for the contest designer is:

max
{A1,A2}

X∗1 +X∗2 , s.t.A1 + A2 ≤ Ā

The first order condition for A1 is:

V
1

β+1
1

(1 + β)2A
1

(1+β)2−1
1 A

1
(1+β)2
2

(
A

1
1+β
1 + A

1
1+β
2

)β−1
1+β

+V
1

1+βA
1

(1+β)2
1 A

1
(1+β)2
2

β − 1
1 + β

(
A

1
1+β
1 + A

1
1+β
2

)β−1
β 1

1 + β
A

1
β

1 = λ

Combining this with the first order condition for A2 we obtain:

A2

[
βA

1
1+β
1 + A

1
1+β
2

]
= A1

[
βA

1
1+β
2 + A

1
1+β
1

]

Let x =
(
A1
A2

) 1
β+1 > 0. Then the last equation becomes:

xβ+1 + (β − 1)xβ − (β − 1)x− 1 = 0

Rewrite this as:

βx(xβ − 1) + (xβ+2 − 1) = 0

Note that since β > 0, the left hand side is always negative for 0 < x < 1 and

always positive for x > 1. Thus the obvious solution x∗ = 1 is the only point that

satisifes the equality, i.e. A1 = A2.
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Proposition 23 shows that in order to maximize total rent dissipation, the contest

designer should try to assign agents to teams in a way that makes the resulting two

teams as evenly balanced in terms of skill as possible. The intuition behind this

result can be observed from Figure 2. When the teams are equally matched, the

equilibrium is at the intersection of the peaks of the two best-response functions,

hence the maximum achievable effort is exerted by both teams.

3.4.3 Equilibrium With J Teams

We begin the equilibrium analysis in the general case of J teams with an observation:

a team’s equilibrium share is always positive as long as its aggregate ability is nonzero.

This follows directly from the equilibrium condition:

p?βj
(1− p?j)β+2 = V Aj

X?β+1
−j

Theorem 24 Monotonicity of Equilibrium: For any two teams j and k: X?
j ≥ X?

k if

and only if Aj ≥ Ak.

Proof. As long as we exclude the degenerate case of Aj = 0, all teams will exert

positive effort in equilibrium. Using pj = Xj
X

and 1 − pj = X−Xj
X

we can plug into

X?
j = [p?j(1− p?j)V Aj]

1
β+1 to obtain:

X?β+1
j =

X?
j

X?

X? −X?
j

X?
V Aj

For any two given teams j and k:
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X?β
j

X?β
k

=
X? −X?

j

X? −X?
k

Aj
Ak

Denote by X?
−jk the equilibrium effort exerted by all teams other than j and k:

X?
−jk = X? −X?

j −X?
k . Then the equation above can be rewritten as:

X?β
j (X?

−jk +X?
j )

X?β
k (X?

−jk +X?
k)

= Aj
Ak

For any given equilibrium effort by the rest of the teams X?
−jk, the expression

X∗βj (X?
−jk +X?

j ) is an increasing function of X?
j , hence the result.

Corollary 25 Equilibrium in the Symmetric Case: If Aj = Ak = Ā,∀j, k ≤ J , then

p∗j = 1
J

and X∗j = [J−1
J2 ĀV ]

1
β+1 ,∀j ≤ J .

Proof. In the symmetric case Aj = Ak,∀j, k ≤ J : for any X∗−jk and any X∗k the

unique solution to:

X?β
j (X?

−jk +X?
j ) = X?β

k (X?
−jk +X?

k)

is

X?
j = X?

k

Proposition 26 The Equilibrium with any number of teams J is unique.

Proof. Consider once again the equation:

X?β
j

X?β
k

=
X? −X?

j

X? −X?
k

Aj
Ak
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Using p?j
p?
k

= X?
j

X?
k

we can rewrite this as:

p?βj

p?βk
=

1− p?j
1− p?k

Aj
Ak

or expressed relative for team 1:

p?βj
1− p?j

= Aj
A1

p?β1
1− p?1

The last equation implies that for any p?1, there is a unique solution p?j = gj(p?1),

an increasing function. Then we can recover the value of p?1 from ∑k
j=1 gj(p?1) = 1.

3.5 Appendix B

3.5.1 Second Order Condition

I show the conditions under which the solution above is indeed a maximum. There

are two key assumptions needed here. The first one is that σj < 1 and the second is

the following technical condition: ∂
∂Xj

(
X
βj
j

∂pj
∂Xj

)
> 0 (for a discussion of the latter see

Proposition 1 ):

∂2Umj(emj)
∂e2

mj

= amjq
′′
mj(pj(X))

(
∂pj
∂Xj

)2
∂Xj

∂emj
X
σj
j e
−σj
mj +amjq′mj(pj(X))∂

2pj
∂X2

j

∂Xj

∂emj
X
σj
j e
−σj
mj

+amjq′mj(pj(X)) ∂pj
∂Ej

∂Xj

∂emj
σjX

σj−1
j e

−σj
mj +amjq′mj(pj(X)) ∂pj

∂Xj

X
σj
j (−σj)e−σj−1

mj −(βj)eβj−1
mj

69



= amjq
′
mj(pj(X)) ∂pj

∂Xj

X
σj
j

∂Xj

∂emj
e
−σj
mj

 ∂pj
∂Xj

q′′mj(pj(X))
q′mj(pj(X)) +

∂2pj
∂X2

j

∂pj
∂Xj

+ σj
Xj

− σj

emj
∂Xj
∂emj

−(βj)eβj−1
mj

= e
βj+σj
mj amjX

σj
j e
−σj
mj e

−σj
mj

 ∂pj
∂Xj

q′′mj(pj(X))
q′mj(pj(X)) +

∂2pj
∂X2

j

∂pj
∂Xj

+ σj
Xj

− σj

emj
∂Xj
∂emj

− (βj)eβj−1
mj

= e
βj−σj
mj amjX

σj
j

 ∂pj
∂Xj

q′′mj(pj(X))
q′mj(pj(X)) +

∂2pj
∂X2

j

∂pj
∂Xj

+ σj
Xj

− σj

emj
∂Xj
∂emj

− (βj)eβj−1
mj

= e
βj−σj
mj amjX

σj
j

 ∂pj
∂Xj

q′′mj(pj(X))
q′mj(pj(X)) +

∂2pj
∂X2

j

∂pj
∂Xj

+
σjX

σj
j

Xjej
∂Xj
∂emj

(
amje

1−σj
mj −X

1−σj
j

)−(βj)eβj−1
mj

= e
βj−σj
mj amjX

σj
j

 ∂pj
∂Xj

q′′mj(pj(X))
q′mj(pj(X)) +

σjX
σj
j

Xjej
∂Xj
∂emj

(
amje

1−σj
mj −X

1−σj
j

)

+eβj−σj−1
mj amjX

σj
j

∂2pj
∂X2

j

∂pj
∂Xj

− (βj)eβj−1
mj

By assumption q′′mj(pj(X)) ≤ 0.

∂

∂Xj

Xβj
j

∂pj
∂Xj

 > 0⇒ (βj)Xβj
j

∂pj
∂Xj

−Xβj
j

∂2pj
∂X2

j

> 0

or

X
βj
j

(
(βj)
Xj

∂pj
∂Xj

− ∂2pj
∂X2

j

)
> 0⇒

∂2pj
∂X2

j

∂pj
∂Xj

<
(βj)
Xj
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After plugging these results into the second order condition to obtain:

∂2Umj(emj)
∂e2

mj

< e
βj−σj
mj amjX

σj
j

 σjX
σj
j

Xjemj
∂Ej
∂emj

(
amje

1−σj
mj −X

1−σj
j

)

+eβj−σjmj amjX
σj
j

(βj − 1)
Xj

− (βj − 1)eβj−1
mj

= σje
βj−1
mj X

σj−1
j

(
amje

1−σj
mj −X

1−σj
j

)
+

(βj)eβj−1
mj

X
1−σj
j

(
amje

1−σj
mj −X

1−σj
j

)
Recall from the CES effort aggregator and assuming σj < 1, we have: Ej =(∑kj
h=1 ahje

1−σj
hj

) 1
1−σj ⇒ amje

1−σj
mj −E

1−σj
j ≤ 0. Note that the last expression can equal

0 in the case when there is only one person on team j, hence the weak inequality.

Thus it follows that as long as emj > 0 (interior solution), then the second order

condition for individual utility maximization is satisfied:

∂2Umj(emj)
∂e2

mj

< σje
βj−1
mj X

σj−1
j

(
amje

1−σj
mj −X

1−σj
j

)
+

(βj)eβj−1
mj

X
1−σj
j

(
amje

1−σj
mj −X

1−σj
j

)
≤ 0.
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Chapter 4

Equilibrium Player Choices in
Team Contests with Multiple
Pairwise Battles

4.1 Introduction

In their influential paper in group contests, Fu, Lu, and Pan (2015) analyze a multi-

battle team contest in which players from two rival teams form pairwise matches

to compete in distinct component battles—each player fights exactly one battle in

the whole contest. They naturally assume that the winning probability of battles is

depicted by a function that is homogeneous of degree zero in players’ efforts,1 they

show that the outcomes of past battles do not distort the outcomes of future battles,

as long as the pairwise matches between the players from the two teams stay the

same. That is, (i) the winning probability in each battle (match) is independent of

the history of that battle, (ii) the winning probability of a team is independent of

the sequence of battles, and (iii) the winning probability of a team is independent of

temporal structure of the component battles (i.e., one-shot or sequential). Moreover,

they also show that neither the total expected effort nor the overall outcome of the
1This genre of technology includes many well-accepted models, such as the general Tullock

contest and first-price all-pay auction.
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contest depends on (i) the battle sequence or (ii) the temporal structure. These are

quite striking results, which have interesting implications for team competitions in

sports and other areas.2 In a different line of the literature, Hamilton and Romano

(1998) consider the situation in which the two team leaders choose the order of players

in a multi-battle contest strategically. They assume that each individual match has

an exogenously fixed winning probability and the number of players in each team

is exactly the same as the number of battles. Employing a one-shot simultaneous

ordering choice game, they show that there is a mixed strategy equilibrium in which

both teams assign the same probability to every ordering of the players, and that the

winning outcome of the team contest (expected winning probability) is shown to be

unique by von Neumann’s minimax theorem in a two-person zero-sum game. This is

also an intriguing observation.

In this study, we combine these two papers—we will consider the team leaders’

strategic assignment problem of players to component battles as in the multi-battle

team contest of Fu, Lu, and Pan (2015). In doing so, we will analyze not only Hamil-

ton and Romano’s (1998) one-shot ordering choice problem but also a sequential

battle-by-battle player choice problem following the spirit of Fu, Lu, and Pan (2015).

A one-shot simultaneous ordering choice before the first battle starts may not actu-

ally be the most common practice—for example, in the Davis Cup in men’s tennis,

the team captains announce which players are called to compete in the next match

only after the revelation of the results of the previous matches. In the MLB World

Series, team managers announce starting pitchers on each game day. In addition, by

introducing a sequential player choice of the next battle, we may reveal intriguing

insights regarding the following questions: Is it important to have a lead in the early
2Despite of all of these neutrality results by Fu, Lu, and Pan (2015), Barbieri and Serena (2019)

show that the expected winners’ efforts are higher if battles are held simultaneously than if they are
held sequentially under a natural condition.
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stage (a momentum/discouraging effect)? Do players fight more fiercely in the late

stage? Do the results from previous rounds affect leaders’ or players’ decisions in

later stages?

We first reproduce the result by Hamilton and Romano (1998) on one-shot order-

ing choice games when pairwise battle winning probabilities are exogenous by directly

using the resulting matchings instead of strategy profiles. In this way, we can also

show that the expected winning probability of a team is the same as the one when

the contest organizer chooses a matching of players totally randomly (Proposition

1). Using this result, we show that the totally mixed strategy Nash equilibrium in

Hamilton and Romano (1998) extends to a one-shot order choice game in the Fu,

Lu, and Pan multi-battle contest environment in which each player’s effort level is

endogenously determined, and that the expected winning probability of a team is

the same when the contest organizer chooses a matching of players totally randomly

(Theorem 1). Although Fu, Lu, and Pan (2015) assume that the pairwise player

matching in their multi-battle contests is fixed, we show that their invariance result

regarding the outcome (winning probability) of each pairwise battle is more general

than that—as long as a pair of players are matched in one of the multiple battles

in a team contest, the expected outcome (winning probability) stays the same, ir-

respective of the rest of the matches. Thus, for any realization of a matching as a

result of (mixed strategy) equilibrium, the history independence result for the wining

probability of each pairwise match in Fu, Lu, and, Pan (2015) still follows, resulting

in the Hamilton-Romano totally random equilibrium. In the sequential player-choice

game, however, the argument is more involved. For any history, each of the matched

players in a battle needs to foresee what the winning probability of her team if the

current battle is won or lost, and they make their effort decisions based on this in-

formation. We will demonstrate Fu, Lu, and Pan’s (2015) induction arguments still
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works and show that the team’s ex ante winning probability is again the same as the

ones under the Hamilton-Romano totally random Nash equilibrium and the totally

random matching of players by the contest organizer (Theorem 2). As a corollary,

we can say that the ex ante expected equilibrium effort of each player is invariant of

the type of player choice game—one-shot or sequential. Thus, we can add another

invariance result to Fu, Lu, and Pan (2015).

In the next subsection, we provide a brief literature review. In Section 2, we will

start with a three-battle contest example with exogenously fixed winning probabilities

for each pairwise match between players from the two teams. This illustrates the

equivalence between the outcome (ex ante team winning probability) of the one-shot

game and the one of the sequential move game. In Section 3, we introduce the general

model using matching language and replicate Hamilton and Romano’s (1998) result

by using matching theory (Proposition 1). Then, in Section 4, we endogenize the

winning probability of each race and show that the same results hold (Theorems 1 and

2, and Corollary 1). In Section 5, we conclude by providing examples of illustrating

the importance of each of our assumptions: namely, the number of players in each

team and the number of battles need to be the same for our equivalence results.

4.1.1 Related Literature

Our paper contributes the burgeoning literature on multi-battle contests.3 Harris and

Vickers (1987) model a two-firm R&D competition as series of individual stages; in

each stage the success probability depends on the firms’ efforts in that stage. The first

firm to win N or more stages than its opponent wins the whole competition—a tug-of-

war game. They show that the trailing firm makes less efforts, and the effort decreases

as the deficit increases—the momentum effect. Klumpp and Polborn (2006) consider
3For a complete review of this literature, please see Kovenock and Roberson (2012).
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a multi-district campaign spending game, e.g., US presidential primaries, in which

district competitions are modeled as Tullock competitions and hold sequentially. The

candidate who gets a majority of the districts wins the game. They show that the

momentum effect exists and candidates tend to spend more in early voting districts. In

Konrad and Kovenock (2009), two players compete in a race comprised of a sequence

of battles, and each component battle is modeled as a first-price all-pay auction. They

characterize the unique subgame perfect equilibrium and show that the expected effort

in each battle can be non-monotonic as the competition gets tighter. All in all, both

outcomes and strategies in each battle depend on the previous results. These history

dependence results in this line of the literature are rooted in the presumption that

the participants in each battle are the same.

There are papers other than Fu, Lu, and Pan (2015) that consider multi-battle

group contests in which each battle is played by different players. Häfner (2017)

investigates a tug-of-war game played by a (potentially) infinite number of different

players, and shows that there exists a unique Markov-perfect equilibrium. Barbieri

and Serena (2019) show that the expected winners’ efforts are higher if battles are held

simultaneously than sequentially in the Fu-Lu-Pan model under a natural condition.

These two papers assume that the matching of players is prefixed, but Barbieri and

Serena (2019) also consider a contest-design problem and show that the sequential

game in which players are ordered from less efficient to more efficient is the setup that

minimizes winners’ efforts. Fu and Lu (2018) consider a strategic player assignment

game in a two-team, two-stage, all-pay contest, in which each team has one stronger

and one weaker player. This model has the closest motivation to ours, but there is a

fundamental difference between the two. They assume that the team with the higher

aggregate effort wins the prize, whereas we assume that the team with the majority

of individual battle victories wins. They show that in equilibrium, both teams assign

76



the stronger players in the second stage as long as the intra-team heterogeneity of

player ability is not excessive. Thus, it is easy to see that our neutrality result

crucially depends on this difference. Klumpp, Konrad, and Solomon (2019) consider

a sequential multi-battle Blotto game that respects the majoritarian rule, but where

the resource is not reusable.4 They show that the player should split the resource

evenly across all battles in the unique equilibrium, and thus the winning chance in

each battle is independent of how many games were won/lost before that battle.

4.2 A Three-Player Example with Exogenous Win-

ning Probabilities

Here, we present Example 1. Teams A and B each have three players labeled 1, 2,

and 3. Suppose for simplicity that the winning probability in each pairwise battle

is exogenously given. Since each match is a zero-sum game, we summarize these

winning probabilities in a single matrix (Q) from the perspective of team A only:

Q =


q11 q12 q13

q21 q22 q23

q31 q32 q33



where qij ∈ [0, 1] is the winning probability of team A’s player i when i is matched

with team B’s player j for all i, j = 1, 2, and 3.

We first analyze the Nash equilibrium strategy profiles of the one-shot game in

which both team leaders simultaneously choose the order in which their players com-
4Konard (2018) also shows this even split result in a best-of-three contest. Konrad (2018)

studies the best-of-three sequential Blotto game and shows that if the resource can be reused in
future battles, there are discouragement effects for the lagging player and a showdown effect when
the battle is decisive.
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pete. Note that each team leader’s strategies are player orderings. For example, if

leader A plays 123 and leader B plays 123, then the resulting pairwise battles are

(1, 1), (2, 2), and (3, 3). Also, a strategy profile of 123 and 123 is the same as that of

132 and 132, and a strategy profile of 123 and 321 is the same as that of 132 and 312,

etc. The winning probability of team A for any strategy combination is, in principle,

calculable. Therefore, we have the following payoff (winning probability) matrix for

leader A:

Leader B

Leader A

123 132 213 231 312 321

123 α β γ δ ε φ

132 β α δ γ φ ε

213 γ ε α φ β δ

231 ε γ φ α δ β

312 δ φ β ε α γ

321 φ δ ε β γ α

where, for example, α = q11q22q33 + q11q22 (1− q33) + (1− q11) q22q33 + q11 (1− q22) q33

and β, γ, δ, ε, φ are similarly defined. Notice that α, β, γ, δ, ε, φ show up exactly once

for each row and column (though some of them may take the same values).

Now, assume that leader B plays all pure strategies with probability 1
6 each.

Clearly, leader A is indifferent between all pure strategies. Let leader A play all pure

strategies with probability 1
6 each. Then, leader B is also indifferent between all pure

strategies. Thus, this is a mixed strategy equilibrium. Since this is a two-person

zero-sum game, the Nash equilibrium payoff and the minimax value are the same.

Moreover, by von Neumann’s theorem, the minimax value is unique. Thus, we have

unique Nash equilibrium winning probability P̄A, which is supported by a complete
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randomization with equal probabilities. This is the same result as in Hamilton and

Romano (1998).

Notice that leader A’s expected payoff is

P̄A = α + β + γ + δ + ε+ φ

6

We now turn to a sequential choice game. That is, leader A and leader B simul-

taneously choose the first player, observe the outcome of the resulting match, and

then again choose their second player simultaneously (the players for the third battle

are automatically determined using the leftover players). The question is what is a

subgame perfect equilibrium of this sequential game. We start with an analysis of

each subgame. Suppose that in the first battle, team A’s player 1 and team B’s player

1 were matched and one of them won the first match. Whoever won, the rest of the

game reduces to the order choice of the remaining two players on each team only.

The resulting payoff matrix is as follows:

1
2

1
2

23 32
1
2 23 a b

1
2 32 b a

In this matrix, a, b ∈ [0, 1] are team A’s winning probabilities (strategy profiles (23, 23)

and (32, 32) achieve the same winning probability, since players 2 and 2 and 3 and

3 are matched anyway). Notice that the unique Nash equilibrium in this zero-sum

game is that both teams play 23 with probability 1
2 . This does not depend on which

team won in the first match. Furthermore, the battle (1, 1) in the first round was

chosen completely arbitrarily and the equal-probability continuation equilibrium is
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not affected. This means that in every subgame, both teams play 1
2 and 1

2 for the rest

of the ordering no matter who was paired in the first battle and regardless of who

wins it.

Now, we consider the first round battle. Suppose that leader B selects players

1, 2, and 3 with probability 1
3 for each. If leader A chooses player 1 and leader B

happens to choose player 1, leader A knows that the subsequent battles {(2, 2), (3, 3)}

and {(2, 3), (3, 2)} happen with an equal probability of 1
2 for each. That is, the sets

of pairwise battles {(1, 1), (2, 3), (3, 2)} and {(1, 1), (2, 2), (3, 3)} end up played with

probability 1
3×

1
2 = 1

6 for each. The same argument applies to the case when leader B

happens to play 2 and 3. In the end, each possible matching is played with probability
1
6 . Thus, leader A is indifferent between choosing players 1, 2, or 3 in the first round,

and in the second round he chooses the rest of the orderings with probability 1
2 for

each (this is equivalent to choosing a player from the two remaining players with

probability 1
2). Clearly, leader A will place probability 1

3 for each of his three players

in the first round. His equilibrium payoff is again P̄A. This discussion shows that

the sequential game outcome is the same as the simultaneous game outcome. By

induction, we can see that the argument works for any (odd) number of players.�

4.3 The Basic Model—Exogenous Winning Prob-

abilities in Battles

There are two teams, A and B. Each team has 2n+1 players where n ∈ N . The whole

competition consists of 2n+1 sequential (or simultaneous) head-to-head battles. The

winning team is the one which wins n+ 1 battles. There is a team leader in charge of

deciding the order in which players on each team will enjoy a payoff of 1 if his team
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wins. Let NA = {i1, ..., i2n+1} and NB = {j1, ..., j2n+1} be the sets of players of teams

A and B, and let i and j be the representative elements in NA and NB, respectively.

Team ν’s leader can choose the ordering of the players—πA : {1, ..., 2n+ 1} → NA

and πB : {1, ..., 2n+ 1} → NB are one-to-one mappings. The two leaders announce

the ordering of their players simultaneously at the beginning of the competition.

Let Πν be the set of all orderings, and then a strategy combination is denoted by

(πA, πB) ∈ ΠA × ΠB.

Let a matching µ : NA → NB be a one-to-one function such that µ−1(µ(i)) = i

for all i ∈ NA. Since |NA| = |NB|, µ(NA) = NB. Let M(NA, NB) denote the set

of all matchings. Note that there are (2n + 1)! possible matchings, and for each πA,

there is exactly one πB that generates a particular matching µ. Moreover, given a

matching µ, there are (2n + 1)! combinations of (πA, πB) ∈ ΠA × ΠB that yield the

same µ.

We assume that the winning probability of each match of players from teams A

and B is independent of how other players are matched and which player wins. Team

A’s players’ winning probabilities when they are matched with each of the players on

team B are exogenously given by5

Q =


qi1j1 · · · qi1j2n+1

... . . . ...

qi2n+1j1 · · · qi2n+1j2n+1



where a generic match is denoted by (i, j) with team A’s (i’s) winning probability

being qij. This Q matrix is perfectly general. We allow for the cases in which player i1

does well against most of the players on team B, but i1 somehow always loses against
5In the next section, we endogenize winning probabilities in battles by considering multi-battle

contest game following Fu, Lu, and Pan (2015).
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j2n+1.

The static nature of the winning probability matrix Q implies that the payoffs of

this game depend only on the resulting matching, i.e. two strategy profiles that lead to

the same matching will result in identical payoffs for both teams. Denote the expected

payoffs from a given matching for each team by P̃A(µ) (and P̃B(µ) = 1 − P̃A(µ))

accordingly. Let W =
{
S ∈ 2{1,2,...,2n+1} : |S| ≥ n+ 1

}
.

P̃A (µ) ≡
∑
S∈W

∏
r∈S

(
qirµ(ir)

)
×
∏
r 6∈S

(
1− qirµ(ir)

) .

There are (2n + 1)! strategy profiles
(
πA, πB

)
∈ ΠA × ΠB that achieve the same

matching µ ∈M(NA, NB), where M(NA, NB) denotes the set of all possible match-

ings. Also note that there are (2n+ 1)! elements in M and ((2n+ 1)!)2 elements in

ΠA×ΠB. We now consider team A’s winning probability when there exists a contest

organizer who picks a matching totally randomly to be

P̄A ≡ 1
(2n+ 1)!

∑
µ∈M(NA,NB)

P̃A(µ).

Since the corresponding matching for any given combination of (πA, πB) is unique,

we can slightly abuse the notation to let µ : ΠA×ΠB →M(NA, NB) be the matching

generated from permutations
(
πA, πB

)
, such that µ(i) = πB(

(
πA
)−1

(i)) for all i ∈

NA. Then, A’s ex ante winning probability given (πA, πB) can be written as

PA(πA, πB) ≡ P̃A(µ(πA, πB)).

Similarly, define PB(πA, πB). It is clear that PA(πA, πB) + PB(πA, πB) = 1.

Thus, the game with two team leaders who maximize their teams’ winning proba-
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bility is a zero-sum game with strategy sets ΠA and ΠB, and with a ΠA×ΠB payoff ma-

trix P ≡
(
PA(πA, πB)

)
πA∈ΠA,πB∈ΠB

. In this case, a mixed strategy is mv : Πv → [0, 1]

with ∑
πv∈Πv m

v(πv) = 1 for v = A,B. Let m̄v(πv) = 1
|Πv | = 1

(2n+1)! for all πv ∈ Πv

and k = A,B be the mixed strategy that assigns equal probability to all strategies.

Notice that for each A’s pure strategy πA ∈ ΠA, each µ ∈ M(NA, NB) realizes once

and only once for some πB ∈ ΠB. With some abuse of notation, we have

PA(πA, m̄B) = 1
(2n+ 1)!

∑
µ∈M(NA,NB)

P̃A(µ) = P̄A

for any πA ∈ ΠA, and team A is indifferent between all possible orderings if team B

employs m̄B. For the same reason, team B obtains payoff

PB(m̄A, πB) = 1− P̄A

for any πB ∈ ΠB. Therefore, we obtain the result by Hamilton and Romano (1998).

Proposition 1 (Hamilton and Romano 1998) Suppose that the winning probabilities

of all pairwise battles are described by a static matrix Q. A total randomization over

all orderings of players with equal probability (m̄A, m̄B) is a Nash equilibrium of the

one-shot ordering-choice game. Moreover, in every Nash equilibrium of the game,

team A’s winning probability, P̄A, is exactly the same as the one when the contest

organizer picks a matching of players totally randomly .

Note that there are many other Nash equilibria in our static game, although the

equilibrium payoffs are unique, as is shown in von Neumann (1928). For example,

consider the following 2n + 1 strategies: πv1 = (i1, ..., i2n+1), πv2 = (i2n+1, i1, ..., i2n),

πv2 = (i2n, i2n+1, i1, ..., i2n−1),..., and πv2n+1 = (i2, ..., i2n+1, i1). Let m̂v be m̂v(πv` ) =
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1
2n+1 for all ` = 1, ..., 2n+ 1 and m̂v(πv) = 0 for any other πv. If team B uses strategy

m̂B, then each player on team A is matched with all of the team B players with equal

probability 1
2n+1 . Thus, team A is indifferent between all strategies in ΠA. Therefore,

m̂A is one of the best responses to m̂B, and
(
m̂A, m̂B

)
is a Nash equilibrium, too.

There are many other ways to select 2n + 1 pure strategies that do this same thing.

Hence, we have a continuum of Nash equilibria with the same expected payoffs.

4.4 Endogenous Winning Probabilities in Battles

So far, we have assumed that the winning probabilities for team A’s players against

team B’s players are exogenously determined for all possible pairs of player matches,

i.e., players’ behavior is exogenous. In this section, we relax this assumption following

the arguments of the invariance results in Fu, Lu, and Pan (2015). We again assume

that
∣∣∣NA

∣∣∣ =
∣∣∣NB

∣∣∣ = 2n + 1 and that the leaders of teams A and B simultaneously

choose the player ordering at the beginning of the contest. Consider a battle between

players i ∈ NA and j ∈ NB. Although the same result applies to any of the examples

listed in their paper, we will focus on a variation of a complete-information generalized

Tullock contest (Model 6 in Fu, Lu, and Pan 2015). To apply their invariance result,

assume that (ij-pair-specific) contest success function qij(xi, xj) is (i) homogenous of

degree zero in xi and xj, (ii) ∂qij
∂xi

> 0 and ∂2qij
∂x2
i
< 0, and (iii) ∂qij

∂xj
< 0 and ∂2qij

∂x2
j
> 0,

where xi and xj are effort levels by players i and j, respectively. Players i and j have

constant marginal costs of effort ci, cj > 0 and benefits Vi, Vj > 0 from their team’s

winning the majority of battles. If this is just a single battle played by i and j, then

players i and j solve the following problems, respectively:

max
xi

qij(xi, xj)Vi − cixi
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and

max
xj

(1− qij(xi, xj))Vj − cjxj.

The following result is first shown by Malueg and Yates (2005). For completeness,

we include a concise proof.6

Lemma 1 (Malueg and Yates 2005) In a complete information general Tullock contest

played by (i, j), team A member i’s equilibrium winning probability is q̄ij = qij( cjVj ,
ci
Vi

).

Moreover, if the equilibrium effort vector given the full prize is (x∗i (i, j), x∗j(i, j)), then

the prize is multiplied by p, and thus the equilibrium effort vector is (px∗i (i, j), px∗j(i, j));

i.e., the equilibrium efforts are homogeneous of degree one in the value of the prize.

Proof. The first order conditions are

∂qij(xi, xj)
∂xi

Vi − ci = 0 (4.1)

and

− ∂qij(xi, xj)
∂xj

Vj − cj = 0 (4.2)

Since qij(xi, xj) is homogenous of degree zero, we have a Euler equation

∂qij(xi, xj)
∂xi

xi + ∂qij(xi, xj)
∂xj

xj = 0.

These three equations imply
xi
xj

= Vicj
Vjci

.

6This is a variation on Observations 1 and 2 in Fu, Lu, and Pan (2015) in our context. In their
Extensions and Caveats section, they show that asymmetric valuations can be allowed as long as
there is no personal battle-specific payoff.

85



Thus, team A’s equilibrium winning probability is written as

q̄ij = qij(
Vi
ci
,
Vj
cj

).

Since qij(xi, xj) is homogenous of degree zero, ∂qij(xi,xj)
∂xi

and ∂qij(xi,xj)
∂xj

are homogeneous

of degree -1. Thus, we have

∂qij(pxi, pxj)
∂ (pxi)

= 1
p

∂qij(xi, xj)
∂xi

for all p > 0 (the same result holds for xj). This implies

∂qij(pxi, pxj)
∂ (pxi)

pVi − ci = ∂qij(xi, xj)
∂xi

Vi − ci = 0.

That is, if (xi, xj) = (x∗i (i, j), x∗j(i, j)) solves the system of equations (4.1) and (4.2),

then (xi, xj) = (px∗i (i, j), px∗j(i, j)) solves the system of equations

∂qij(xi, xj)
∂xi

pVi − ci = 0

and

−∂qij(xi, xj)
∂xj

pVj − cj = 0.

We have completed the proof.�

Thus, as long as conditions (i), (ii), and (iii) are satisfied, the winning probability

of player i in a battle with player j is intact at q̄ij since players i and j face the same

probability of their battle to be pivotal p in every contest with multiple pairwise

battles. This is the Observation 2 in Fu, Lu, and Pan (2015). Denote Q̄(NA, NB) =
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(q̄ij)i∈NA,j∈NB to be the pairwise winning probability of player i on team A against j

on team B. Thus, the winning probability of team A in multi-battle contest under

fixed matching µ is always described by

P̃A (µ) ≡
∑
S∈W

∏
r∈S

(
q̄irµ(ir)

)
×
∏
r 6∈S

(
1− q̄irµ(ir)

) .
Using this, we immediately get the following result.

Theorem 1. In a multi-battle generalized Tullock contest, suppose that the two teams

simultaneously choose the order which their players will fight in the battles. We have

the following: (i) for any realized matching µ and any pair (i, j) with µ(i) = j,

player i’s winning probability is invariant at q̄ij, and (ii) a total-randomization strat-

egy profile—both players’ placing probability 1
(2n+1)! in all orderings—is a mixed-

strategy Nash equilibrium; and (iii) team A’s expected winning probability is P̄A =
1

(2n+1)!
∑
µ∈M P̃A(µ).

Proof. By Observations 1 and 2 in Fu, Lu, and Pan (2015) and Lemma 1, we know

that for any realized matching µ ∈ M(NA, NB), in any battle by matched players

(i, j) with µ(i) = j, team A wins with probability q̄ij. Thus, team A’s winning

probability matrix is Q̄(NA, NB). This implies that by Proposition 1, (ii) and (iii)

must hold.�

Now, we will consider sequential battle-by-battle player-choice games. Consider a

state s ∈ S with s =
(
k, `, h;TA, TB

)
, where k is number of battles left, and ` and h

denote the numbers of wins that teams A and B need to become the winning team

at state s, respectively. Moreover, TA and TB denote the set of remaining players for

team A and B, respectively, and S is the set of all states. Note that k = |TA| = |TB|

and ` + h = k + 1. We use the functions k(s) = k, `(s) = `, h(s) = s, TA(s) = TA,
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and TB(s) = TB to indicate the relevant information at state s =
(
k, `, h;TA, TB

)
.

We start with the following definition. In state s, let

P̄A (s) ≡ 1
k(s)!

∑
µ∈M(TA(s),TB(s))

P̃ (µ; k(s), `(s))

where

P̃ (µ; k, `) ≡
∑

S∈W (k,`)

∏
r∈S

(
q̄irµ(ir)

)
×
∏
r 6∈S

(
1− q̄irµ(ir)

)
and

W (k, `) ≡
{
S ∈ 2{1,...,k} : |S| ≥ `

}
.

Note that W (k, `) is the set of winning coalitions when a team needs to win ` out

of k battles. Similar to the previous section, P̄A(s) is A’s winning probability when

there is a contest organizer who totally randomly assigns players to battles after the

state s. We let 4(TA(s)) and 4(TB(s)) be the sets of mixed actions for leader A

and B, respectively, and define σν : S → 4(N ν) such that σν(s) ∈ 4(T ν(s)) as the

mixed strategy of the leader ν. One possible subgame perfect equilibrium strategy is

σ̄ν(s) = 1
T ν(s)(1, 1, ..., 1) ∈ 4T ν(s) for ν = A,B.

In each state s, we need to consider every possible pair of players in the next

battle. For each pair, i ∈ TA(s) and j ∈ TB(s), depending on the the winner of

the battle, the next state will be either si−ij = (k − 1, ` − 1, h;TA\{i}, TB\{j}) or

sj−ij = (k − 1, `, h − 1;TA\{i}, TB\{j}). The former si−ij denotes the state that

succeeds s after a battle between i and j with i being the winner. Furthermore, we

will prove the following result using induction arguments starting from the last battle.

Theorem 2. In a multi-battle generalized Tullock contest, suppose that the two teams

simultaneously choose their players battle by battle sequentially. Then, we have the

following: (i) in any battle in any stage, if players i ∈ TA and j ∈ TB are matched,
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i’s winning probability is invariant at q̄ij; (ii) the total-randomization strategy profile

(σ̄A, σ̄B) is a subgame-perfect equilibrium; and (iii) team A’s expected winning proba-

bility in the beginning of each state s ∈ S is P̄A(s). In particular, for the initial state

s0, we have P̄A(s0) = P̄A = 1
(2n+1)!

∑
µ∈M P̃A(µ).

Proof. By induction, we will show that for any state s with k(s) ≤ k̂ with (i)-(iii)

satisfied, then for a state s′ with k(s) = k̂ + 1, (i)-(iii) are again satisfied.

Suppose that k̂ = 1. For any state s with k(s) = 1, the only meaningful case is

k = ` = h = 1 (otherwise, the game is over). Clearly, the last players i and j make

the best effort to obtain the award Vi and Vj, respectively, so the winning probability

of team A is q̄ij. In any other case, the game is over. Moreover, (ii) and (iii) in this

case are trivial.

Now, suppose that k̂ = 2. There are two meaningful cases: (k, `, h) = (2, 2, 1) or

(2, 1, 2). Consider (k, `, h) = (2, 2, 1). Let TA = {i, i′} and TB = {j, j′}. We know

that if the game is not over after this round (team A player wins), then team A’s

winning probability is qi′j′ if {i′, j′} is selected in the subgame. What, then, about

the second last stage played by players i and j? The payoff functions of players i and

j are given as

[qij(xi, xj)q̄i′j′ ]Vi − cixi

and

[1− qij(xi, xj)q̄i′j′ ]Vj − cjxj,

respectively. The first order conditions are

∂qij(xi, xj)
∂xi

q̄i′j′Vi − ci = 0
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and

−∂qij(xi, xj)
∂xj

q̄i′j′Vj − cj = 0.

Thus, xi
xj

= Vicj
Vjci

and qij( cjVj ,
ci
Vi

) = q̄ij. The matrix game of this subgame is described

by
1
2

1
2

` = 2 jj′ j′j

1
2 ii′ q̄ij q̄i′j′ q̄ij′ q̄i′j

1
2 i′i q̄ij′ q̄i′j q̄ij q̄i′j′

Clearly, a mixed strategy profile with equal probability, (σ̄A(s), σ̄B(s)), is an equilib-

rium and is unique unless q̄ij q̄i′j′ = q̄ij q̄i′j′ . Team A’s winning probability (expected

payoff) is 1
2 (q̄ij q̄i′j′ + q̄ij′ q̄i′j) = P̄A

(
TA, TB, 2, 2, 1

)
. Case (k, `, h) = (2, 1, 2) can be

treated symmetrically by swapping teams A and B. This proves that the induction

hypothesis holds for k = 2.

Consider any subgame starting at state s =
(
k, `, h;TA, TB

)
with |TA| = |TB| = k

and suppose that the induction hypothesis is correct for all states s̃ =
(
k̃, ˜̀, h̃; T̃A, T̃B

)
with |T̃A| = |T̃B| = k̃ where k̃ < k. Denote the set of all possible matchings between

the members of TA and TB by M(TA, TB). Similarly, denote the set of all possible

matchings between the members of TA and TB in which player i ∈ TA is matched

to player j ∈ TB by M(TA, TB; (i, j)). Then, the continuation state when player i

wins is si−ij = (k − 1, ` − 1, h;TA\{i}, TB\{j}) and when j wins the state is sj−ij =

(k−1, `, h−1;TA\{i}, TB\{j}). We first show that (i) holds for any s with k(s) = k.

The payoff functions of players i and j after being matched in state s are

ui = qij(xi, xj)P̄A
(
si−ij

)
Vi + (1− qij(xi, xj)) P̄A

(
sj−ij

)
Vi − cixi

= qij(xi, xj)
(
P̄A

(
si−ij

)
− P̄A

(
sj−ij

))
Vi − cixi + P̄A

(
sj−ij

)
Vi
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and

uj = (1− qij(xi, xj))
(
1− P̄A

(
sj−ij

))
Vj + qij(xi, xj)

(
1− P̄A

(
si−ij

))
Vj − cjxj

= (1− qij(xi, xj))
(
P̄A

(
si−ij

)
− P̄A

(
sj−ij

))
Vj − cjxj −

(
1− P̄A

(
si−ij

))
Vj,

respectively. Thus, by our Lemma 1, equilibrium efforts (xi, xj) satisfy xi
xj

= cj
ci

and

team A’s winning probability is invariant at qij(xi, xj) = q̄ij.

Now, let team leader B randomize his choice of player at state s with equal

probability, i.e., he uses σ̄B(s) = 1
k(s) . The resulting winning probability for team A

from selecting player i at state s is:

1
k

∑
j∈TB

[
q̄ijP̄

A(si−ij) + (1− q̄ij) P̄A(sj−ij)
]

= 1
k

∑
j∈TB

q̄ij 1
(k − 1)!

∑
µ∈M(TA(si−ij),TB(si−ij))

P̃ (µ, k − 1, l − 1)


+1
k

∑
j∈TB

(1− q̄ij)
1

(k − 1)!
∑

µ∈M(TA(sj−ij),TB(sj−ij))

P̃ (µ, k − 1, l)



= 1
k!

∑
j∈TB

∑
µ∈M(TA(si−ij),TB(si−ij))

q̄ijP̃ (µ, k − 1, l − 1)

+ 1
k!

∑
j∈TB

∑
µ∈M(TA(sj−ij),TB(sj−ij))

(1− q̄ij)P̃ (µ, k − 1, l)

= 1
k!

∑
j∈TB

∑
µ∈M(TA−{i},TB−{j})

[
q̄ijP̃ (µ, k − 1, l − 1) + (1− q̄ij)P̃ (µ, k − 1, l)

]

=
∑
j∈TB

1
k

 1
(k − 1)!

∑
µ∈M(TA,TB ;(i,j)))

P (µ, k, l)
 = P̄A(s),
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where M(TA, TB; (i, j)) is a collection of all matchings µ : TA → TB with µ(i) = j.

Each term inside the brackets in the last line equation is the ex ante probability

that team A wins the tournament when player i faces player j, but since the sum is

over all j ∈ TB, the sum equals the overall probability of winning the tournament

under the assumption that the leader of team B mixes equally among all players.

We know this since each battle’s winning probability is independent of other battles’

outcomes from Lemma 1. Note that from the inductive assumption that mixing

equally is a subgame perfect equilibrium in every subsequent state of the world, it

follows that each subgame is weighted by the same probability 1
(k−1)! .

Clearly, the winning probability of team A is P̄A(s), regardless of which player

i ∈ TA(s) is chosen by team A at state s. Thus, team A is indifferent between

all available players. Team A can place equal probability on each player, which

makes team B indifferent between all available players. This concludes that team

A’s equilibrium winning probability at state s is P̄A(s), which is team A’s winning

probability when every possible match occurs with equal probability. Our induction

argument is complete.

Note that at the initial state s0 = (2n+1, n+1, n+1;NA, NB), we have P̄A(s0) =

P̄A = 1
(2n+1)!

∑
µ∈M P̃A(µ) by definition.�

Next, we turn to each player’s ex ante expected effort. By Theorem 2, we know

that every matching µ occurs with probability 1
(2n+1)! ex ante. Since the winning

probability matrix Q̄ is independent according to Theorems 1 and 2, we can calculate

the probability that i and j are matched at state s = (k, `, h;TA, TB), with this battle

being pivotal. First, state s occurs with many possible matchings prior to it—in all el-

ements µ̃ ∈M(NA\TA(s), NB\TB(s)). Second, player i is matched with player j with
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probability 1
k(s) . Third, after the battle (i, j) is over, there are many possible realiza-

tion matchings µ|(TA\{i},TB\{j}) ∈M
(
TA(s)\{i}, TB(s)\{j}

)
with probability 1

(k(s)−1)!

for each. Fourth, for each possible realization matching µ̂ ∈ M
(
TA\{i}, TB\{j}

)
,

the probability that this (i, j) battle is pivotal is

p(s, (i, j)) =
∑

µ̂∈M(TA(s)\{i},TB(s)\{j})

∑
S∈D(k(s)−1,`(s)−1)

∏
r∈S

(
q̄irµ̃(ir)

)
×
∏
r 6∈S

(
1− q̄irµ̃(ir)

)
,

whereD(k, `) ≡ {S ⊆ {1, ..., k} : |S| = `}. Since this probability is common to players

i and j, player i’s expected effort when i and j are matched is p(s, (i, j))x∗i (i, j) by

Lemma 1. And state s occurs with probability

P (s) =
∑

µ̃∈M(NA\TA(s),NB\TB(s))

∑
S∈D(2n+1−k(s),n+1−`(s))

∏
r∈S

(
q̄irµ̃(ir)

)
×
∏
r 6∈S

(
1− q̄irµ̃(ir)

)
.

Therefore, player i’s expected effort when i is matched with j is

E(xi|(i, j)) =
∑

s∈S|(i,j)∈TA(s)×TB(s)
P (s)p(s, (i, j))x∗i (i, j)

=
∑

µ̃∈M(NA\{i},NB\{j})

∑
S∈D(2n,n)

∏
r∈S

(
q̄irµ̃(ir)

)
×
∏
r 6∈S

(
1− q̄irµ̃(ir)

)
x∗i (i, j).

Thus, the coefficient of x∗i (i, j) is nothing but the probability that this battle becomes

pivotal. This implies that neither a sequential choice nor a one-shot choice makes a

difference. Hence, player i’s ex ante expected effort in both cases is

E(xi) = 1
2n+ 1

∑
j∈NB

E(xi|(i, j))

= 1
2n+ 1

∑
j∈NB

∑
µ̃∈M(NA\{i},NB\{j})

∑
S∈{S′∈{1,...,2n}:|S′|=n}

∏
r∈S

(
q̄irµ̃(ir)

)
×
∏
r 6∈S

(
1− q̄irµ̃(ir)

)
x∗i (i, j),

and Fu, Lu, and Pan’s (2015) total effort equivalence result extends to our case, too.
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Corollary 1. The expected effort level of each player in a one-shot ordering choice

game is equal to the level in battle-by-battle sequential choice game.

Although we only considered a fully sequential player-choice game in Theorem 2,

Fu, Lu, and Pan’s (2015) invariance results hold even if the game involves battles with

a more general temporal structure. Their Theorem 3’s logic would hold, although the

argument gets messier by that.

4.5 Concluding Remarks

In this paper, we show that Fu, Lu, and Pan’s (2015) invariance results extend even

if the team leaders strategically choose the order in which players are sent to the

battleground. Somewhat surprisingly, the total randomization of player choice at

any level is the equilibrium strategy irrespective of whether team leaders’ choices are

made as one-shot or battle-by-battle decisions. The independence of each battle’s

winning probability is quite robust as long as the zero homogeneity of the contest

success function of each battle is satisfied. For the invariance results on the expected

winning probability of the whole contest and ex ante effort levels, the choices of player

orderings add more subtleties. First, the number of players who participate in the

2n + 1 battles from each team needs to be exactly 2n + 1. The following example

illustrates the importance of this assumption. For simplicity, we consider a game with

an exogenous winning probability matrix.

Example 2. Suppose that there are three battles and teams A and B have four and
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three players, respectively. We assume the following exogenous probability matrix:

Q =



q11 q12 q13

q21 q22 q23

q31 q32 q33

q41 q42 q43


=



0 0.5 0.5

0 0.5 0.5

0 0.5 0.5

0.5 0 0



That is, player 1 in team B is a dominant player, but players 1, 2, 3 on team A and

players 2 and 3 on team B are exactly in the same league. Player 4 in team A is a weak

player, but is good at dealing with the dominant player 1 on team B (an assassin). In

this case, if team A selects {1, 2, 3}, team A can win only when both players that are

not matched with team B’s dominant player win. Thus, team A’s winning probability

is 0.5 × 0.5 = 0.25. If team A includes the assassin player 4, then it has a positive

winning probability only when assassin player is matched with the dominant player.

This implies that team A’s winning probability is 1
3 × 0.5 = 0.1333 < 0.25. Thus, in

a one-shot static ordering choice game, team A does not use player 4.

In contrast, in a battle-by-battle player choice game, in race 3, if team B still has

the dominant player 1, team A will certainly use player 4 if it still has her. If so, does

team B keep player 1 till race 3? Since the situation is similar to matching pennies,

randomization is needed, so player 1 may be kept. Consider the following case in race

2. Team A won the first round, and still has players 2, 3, and 4, while team B has

players 1 and 2. Team B must win the next two races to win the team contest.

second race 3
4

1
4

` = 1 1 2
3
4 2, 3 0.5 0.75
1
4 4 0.75 0
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Thus, with one additional player, our equivalence result no longer holds.�

Next, unlike in Fu, Lu, and Pan (2015), our player-order choice game does not pre-

serve the invariance in a team’s winning probability if battles are weighted unevenly.

In the last section of Fu, Lu, and Pan (2015), they demonstrate the robustness of

invariance results that allows for component battles to carry different weights. This

result follows in their model, since each battle and the players who play in them are

tied up there. However, in our game, team leaders assign players to each battle. If

a certain battle is weighted heavily, team leaders’ strategy would be affected. We

conclude the paper with the following simple example (fixed Q again).

Example 3. Suppose that there are three battles with potentially different weights,

and teams A and B have three players each. The team that wins with a total weight

more than 1
2 wins the contest. We assume the following exogenous probability matrix:

Q =


q11 q12 q13

q21 q22 q23

q31 q32 q33

 =


0.5 0.7 0.9

0.3 0.5 0.7

0.1 0.3 0.5



Player 1 is the dominant player on each team. If the weight of each battle is 1
3 each

as before, then we know that the total randomization is used in any setup. But now,

suppose that the first battle’s weight is more than 1
2 . In this case, only the first

battle matters for the contest outcome. Obviously, both team leaders assign their

best player to the first battle. Thus, our results no longer hold.�

Finally, even though this chapter addresses the invariance results when each team

member is selected to play a single match, it should be noted similar results can be

extended for cases when this condition is partially relaxed. One such environment is

studied in Anbarci, Sun, and Ünver (2020). The authors consider sequentially fair
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mechanisms in penalty shootouts - mechanisms designed to resolve ties in high level

sports competitions such as soccer and hockey. They show that the fixed order in

which the penalties are taken can affect the fairness of such mechanisms, and with

the exception of one specific such order under sudden-death, all other mechanisms

are sequentially unfair. However, Anbarci, Sun, and Ünver (2020) demonstrate that

taking any such mechanism consisting of a sudden-death element, and extending its

continuation with a sequentially-fair mechanism with sudden-death rounds can lead

to a sequentially-fair mechanism. In any such mechanism the player-order choice once

again becomes irrlevant.
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